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Abstract 

The goal of the present thesis was to introduce a Bayesian model of stress 

assignment in reading. According to this model, readers compute probabilities of stress 

patterns by assessing prior beliefs about the likelihoods of stress patterns in a language 

and combining that information with non-lexical evidence for stress patterns provided by 

the word. The choice of a response is thought of as a random walk-type process which 

takes the system from a starting point to a response boundary. The calculated Bayesian 

probabilities determine the drift rate towards each boundary such that the probability of 

an error and the response latency are related to the posterior probabilities of the stress 

patterns.      

The Bayesian model of stress assignment was implemented for Russian disyllabic 

words. In Study 1, the distribution of stress patterns in a corpus of Russian disyllabic 

words (reflecting prior beliefs about the likelihoods of stress patterns) was analyzed. 

Further, non-lexical sources of evidence for stress in Russian were investigated. In Study 

2, the effect of spelling-to-stress consistency of word endings on naming performance 

was examined. Study 3 was a binary logistic regression analysis of a set of predictors of 

stress patterns (length, log frequency, grammatical category, word onset complexity, 

word coda complexity, and spelling-to-stress consistency of six orthographic 

components) in a corpus of disyllabic words. In Study 4, a generalized linear mixed 

effects model with the same variables as predictors of stress assignment performance was 

applied to word naming data. Based on the combination of the results, it was concluded 

that there are three sources of evidence for stress in Russian:  the orthography of the first 

syllable, of the second syllable, and of the ending of the second syllable.  



iii 

 

The model was tested in two simulations. In Study 5, the predictions of the model 

were compared with stress assignment performance of speakers of Russian naming 

words. In Study 6, the model was tested on its ability to simulate stress assignment 

performance of readers naming nonwords. The model managed to predict not only the 

most frequent stress pattern that readers assigned, but also the relative ratio of trochaic 

versus iambic responses given by the participants. 

 

Keywords: stress assignment, lexical stress, computational model, Bayesian 

probabilities, Russian, polysyllabic words, corpus analysis, stress cues, simulations, word 

recognition  
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Bayesian Model of Stress Assignment in Reading 

Chapter 1 – General Introduction 

 Lexical stress,  defined as the relation between prominent and weak syllables in a 

word realized via changes in frequency, duration, and intensity, has been shown to 

perform many functions in oral and written communication. For example, stress aids in 

the process of speech segmentation (Cutler & Norris, 1988; Norris, McQueen, & Cutler, 

1995), regulates attentional processes in speech perception (Mens & Povel, 1986; Pitt & 

Samuel, 1990), and facilitates lexical access in spoken word recognition (Cutler & 

Clifton, 1984; van Donselaar, Koster, & Cutler, 2005). It has also been reported that a 

reader’s sensitivity to lexical stress information predicts reading abilities (Kuhn & Stahl, 

2003; Whalley & Hansen, 2006) and that activation of lexical stress information is a vital 

step in word processing in overt as well as in silent reading (Ashby & Clifton, 2005; 

Breen & Clifton, 2011).                  

Due to the apparent importance of prosodic (especially stress) information in 

reading, questions concerning the mechanisms of stress assignment in written word 

comprehension clearly need additional investigation. To this point, however, the majority 

of theoretical and computational constructs developed in the area of reading research 

have centred on the mechanisms involved in the processing of single-syllable words that, 

due to their structure, do not require prosodic processing by a reader. Only recently the 

field has seen a shift toward the study of polysyllabic words, making it obvious that a 

full-fledged model of word reading should provide an explanation of not only the 

mechanisms of grapheme-to-phoneme mapping, but also of the principles of lexical stress 

assignment.  
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In modeling the process of grapheme-to-phoneme mapping, there are two general 

computational approaches: the dual-route view implemented in the Dual Route Cascaded 

(DRC) model of reading (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and the 

single-route, connectionist view implemented in the Parallel Distributed Processing 

(PDP) model of reading (Harm & Seidenberg, 2004). Although neither model explicitly 

models the stress assignment process, there are ways within each model to expand the 

architecture to allow it to, potentially, explain how lexical stress is assigned (Arciuli, 

Monaghan, & Ševa, 2010; Perry, Ziegler, & Zorzi, 2010; Rastle & Coltheart, 2000; Ševa, 

Monaghan, & Arciuli, 2009). However, as will be shown below, the performance of these 

models in terms of stress assignment is not very good, especially when one compares the 

models’ output on nonwords with behavioral data; that is, in assigning stress to nonwords 

these models are consistent with participants’ behavior for only about 65% of the stimuli.  

In this thesis, an alternative, previously not considered, approach to the modeling 

of the process of lexical stress assignment in reading is proposed. Specifically, it is 

suggested that stress assignment in reading can be thought of as a Bayesian decision-

making process that involves updating the probability estimates of hypothetical outcomes 

(i.e., stress patterns) by considering evidence, specifically, non-lexical cues to stress, that 

provide various levels of support for each of the possible stress patterns. This Bayesian 

model of stress assignment is intended to be a universal model that can be applied to any 

language of the world that is characterized by the presence of lexical stress. Further, the 

proposed model can, potentially, explain the process of stress assignment in reading 

polysyllabic words of any length. However, the present thesis is only concerned with 

evaluating a Bayesian model of stress assignment for disyllabic Russian words.  
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In Russian, the process of stress assignment appears to be complicated because 

stress is not explicitly marked in the orthography and it does not conform to any clear 

implicit rules. Although there are a number of morphemes that provide readers with stress 

position information (e.g., the suffix “изм” is always stressed as in фашИзм ([fashizm]), 

афорИзм ([afarizm]); throughout the thesis stressed vowels in examples are capitalized), 

the majority of Russian words have stress-ambiguous morphemes (for a review see, 

Coats, 1976; Lagerberg, 1999). Therefore, even morphology has limited usefulness in 

terms of helping readers accurately assign stress. Finally, Russian readers cannot rely on 

information about the frequency of stress patterns in the language because the percentage 

of disyllabic words with stress on first syllable (i.e., a trochaic stress pattern) appears to 

be virtually the same as the percentage of words with stress on second syllable (i.e., an 

iambic stress pattern).  

Due to the complexity of the stress assignment process for Russian speakers, a 

widely accepted view has been that a Russian word’s stress is assigned only following the 

retrieval of accurate stress information from the word’s lexical representation (Gouskova, 

2010; Lukyanchenko, Idsardi, & Jiang, 2011). Although it is quite possible that, in 

making stress assignment decisions, Russian readers demonstrate greater reliance on 

lexical processing than readers of a language with a more predictable prosodic system, it 

seems unlikely that, in Russian, lexical retrieval is the only means of stress assignment 

used by readers. Indeed, the main goal of the present research, the development of a 

Bayesian model of stress assignment, is based on the assumption that native readers of 

Russian do use non-lexical information to assign stress. If that assumption is incorrect, 
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then, the Bayesian model of stress assignment, a model that is essentially non-lexical, 

will not be able to simulate stress assignment performance in Russian.              

The selection of Russian provides a number of additional benefits. First of all, it 

expands the range of languages in which the modeling of the process of stress assignment 

in reading has been attempted. In fact, all existing models have been created to explain 

stress assignment in English. Doing so limits the generalizability of those models. 

Secondly, English is likely not the best choice of a language for investigating this issue. It 

has been noted that around 80% of disyllabic English words have trochaic stress, which 

likely creates a strong bias toward this stress pattern in native speakers of English 

(Arciuli & Cupples, 2004; 2006; Kelly, Morris, & Verrekia, 1998). Therefore, in English 

it becomes difficult to disentangle the effect of the bias toward a trochaic stress pattern 

from other non-lexical factors that readers may utilize. By employing Russian, a language 

with no apparent stress bias, one should be able to overcome this limitation. 

In the present thesis, material is presented in the following order. In Chapter 2, an 

overview of three computational models of stress assignment is provided. According to 

the model by Rastle and Coltheart (2000), word stress can be assigned lexically or non-

lexically, following stress assignment rules. The second model (Seva et al., 2009) 

involves a connectionist network that considers orthographic cues in assigning stress. 

Finally, according to the Connectionist Dual Process (CDP++) model of reading (Perry et 

al., 2010), stress can be processed via a lexical route or a non-lexical route that is 

conceived of as a connectionist network. The models were tested on their ability to 

predict stress patterns in English disyllabic words and nonwords. While the performance 

of the models on words was decent, none of the models provided an especially good fit to 
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the nonword data. These results suggested that further attempts to model stress 

assignment process are needed. 

In Chapter 3, the general framework of a Bayesian model of stress assignment in 

reading that can compute the posterior probabilities of stress patterns for any letter string 

is described. In calculating the posterior probabilities, the model considers two types of 

information: prior probabilities of the stress patterns and the likelihood of a particular 

stress pattern given certain types of non-lexical evidence. The prior probabilities refer to 

the frequency with which various stress patterns occur in a specific language. The 

likelihood of stress patterns given certain non-lexical evidence refers to the probability of 

stress patterns when different potential stress cues present in the orthographic input are 

considered. The Bayesian model of stress assignment can be applied to any language that 

utilizes lexical prosody, although prior probabilities and sources of evidence for stress 

would be language-specific. 

Chapter 4 is a review of the prior research looking for the potential sources of 

evidence for stress in a number of languages. First of all, studies that investigated the 

impact of the frequency of stress patterns in the language (i.e., stress regularity) on native 

speakers’ performance are described. Thus, the validity of the statement that the 

information about overall prior probabilities of stress patterns is considered in the process 

of stress assignment is assessed. Then, research that investigated other potential sources 

of evidence for stress patterns is described. Among some of the proposed cues to stress 

are graphemic complexity of the onset of a word, graphemic complexity of the coda of a 

word, grammatical category, consistency with which the ending of a word maps onto a 
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stress pattern, and, finally, consistency with which the beginning of a word maps onto a 

stress pattern. 

In Chapter 5, the factors underlying the implementation of the Bayesian model of 

stress assignment for Russian disyllables are laid out. First, to assess prior probabilities of 

iambic and trochaic stress patterns in Russian, an analysis of a corpus of Russian 

disyllabic words was conducted. This analysis showed that 55% of disyllabic Russian 

words have iambic stress, while 45% of disyllabic words have trochaic stress. Then, a 

factorial study and two regression analyses were conducted to distinguish the sources of 

evidence for stress patterns in Russian. In the factorial study, the naming performance of 

speakers of Russian on words that differed in stress patterns (iambic vs. trochaic), 

grammatical categories (adjective vs. noun vs. verb), and consistency with which word 

endings can predict stress patterns (consistent vs. inconsistent) was observed. The 

analysis demonstrated a reliance of speakers of Russian on the consistency with which 

the orthography of word ending maps onto the stress pattern of a word.  

Next, a binary logistic regression analysis using a corpus of Russian disyllabic 

words was run with a goal of assessing what cues exist in the language that predict stress 

patterns. Then, in a generalized linear mixed effects model, the same predictor cues were 

used to assess the stress assignment performance of speakers of Russian on a set of 500 

disyllabic words. Out of eleven potential predictors considered (Log Frequency, Length, 

Onset Complexity, Ending Complexity, Grammatical Category, Consistency of the First 

Syllable, Consistency of the Beginning of the First Syllable, Consistency of the Ending of 

the First Syllable, Consistency of the Second Syllable, Consistency of the Beginning of 

the Second Syllable, Consistency of the Ending of the Second Syllable), the spelling-to-
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stress consistency measures of three orthographic components (the First Syllable, the 

Second Syllable, and the Ending of the Second Syllable) were the most important 

predictors of stress assignment in Russian. Thus, it was concluded that the orthography of 

the first syllable, the orthography of the second syllable, and the orthography of the 

ending of the second syllable are the most likely sources of evidence for readers to use 

when assigning stress patterns in Russian disyllabic words.  

In Chapter 6, two simulations were run to test the predictive power of the 

Bayesian model of stress assignment in Russian. The predictions of the model concerning 

stress assignment performance were compared to behavioral data. The posterior 

probabilities of iambic and trochaic stress patterns that the model computed were 

reflective of the performance of native speakers of Russian on a set of Russian disyllabic 

words. That is, participants were more likely to make stress assignment errors if, 

according to the model’s computation, the posterior probability of the actual stress 

pattern that a word has was comparatively low. On the other hand, if the posterior 

probability of the actual stress pattern of a word was high, participants were less likely to 

assign an incorrect stress pattern to this word. Further, the model was successful in 

predicting stress assignment performance on a set of nonwords.  

Chapter 7 is a summary of the research reported in this thesis. The general 

conclusion is that the Bayesian model of lexical stress assignment derived here, which is 

based on the idea that in making lexical stress decisions readers integrate non-lexical 

sources of evidence for lexical stress to update prior beliefs about stress patterns, is a 

viable computational model of stress assignment.  
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Chapter 2 – Models of Stress Assignment 

2.1. Introduction 

One of the greatest limitations of the majority of the models of visual word 

recognition is that, for the sake of simplicity, they were created to deal with monosyllabic 

words only. The models of monosyllabic reading cannot be readily applied to 

polysyllabic words as they lack, in their architecture, mechanisms that would enable them 

to deal with syllabification and stress assignment. This limitation has been acknowledged 

by a number of researchers who have created models of polysyllabic word reading (Ans, 

Carbonnel, & Valdois, 1998; Kello, 2006; Perry et al., 2010; Rastle & Coltheart, 2000), 

or models of stress assignment (Black & Byng, 1986; Seva et al., 2009). The three most 

cited models that provide some insight into the mechanisms by which lexical stress is 

assigned are the dual-route model by Rastle and Coltheart (2000), the connectionist 

model by Seva et al. (2009), and the CDP++ model by Perry et al. (2010). These three 

models are discussed in this Chapter in detail, but, prior to that, a brief overview of other 

attempts to explain how stress is assigned in polysyllabic words is provided.   

One of the first models of stress assignment was proposed by Black and Byng 

(1986). This model advances the idea that in the process of assigning stress, readers use 

the knowledge of the frequency of stress patterns in the language. More specifically, a 

reader identifies the number of syllables in a word and assigns the most frequent stress 

type for words of that syllabic length. Then, the assembled phonological representation 

guides a lexical search. If the phonological candidate matches a memory representation, 

the word is pronounced. If the matching of the candidate and lexical representation fails, 

the entire cycle is repeated assigning the second most frequent stress type.  
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The model by Black and Byng (1986) has several drawbacks. First of all, the 

frequency of stress patterns in the language has not been consistently demonstrated to 

affect readers’ performance (Gutierrez-Palma & Palma-Reyes, 2008; Rastle & Coltheart, 

2000). In fact, it has been shown that readers more often rely on non-lexical orthographic 

cues to stress rather than rules of the type proposed by Black and Byng (Burani & 

Arduino, 2004; Sulpizio, Job, & Burani, 2012). Secondly, while this model might have 

some success in simulating stress assignment in languages with a dominate stress pattern 

(e.g., in English or Italian), it would be unable to do so in languages that do not possess a 

stress pattern that dominates (e.g., in Russian). Finally, the suggestion of a mandatory 

check of a candidate against memory representations seems to be questionable because it 

presupposes an obligatory access of the lexicon when reading words. If lexical access is 

an obligatory step in the process of word recognition, it is unclear why readers would not 

retrieve stress pattern information directly from memory rather than applying some non-

lexical rules and, then, follow that process with checks of lexical memory.           

A quite different theoretical approach was taken by Ans et al. (1998), who 

proposed a connectionist multiple-trace memory model (MTM) of polysyllabic word 

reading. The MTM contains a network of connections between two orthographic input 

layers, an episodic memory layer, and a phonological output layer. The weights of 

connections between layers are adjusted via back-propagation as the model is exposed to 

lexical representations and naming errors made by the model are discovered. A lexical 

item presented to the MTM is processed in a global mode and in an analytical mode. In 

the global mode, all letters of the word are processed in parallel. In the analytical mode, a 

word is decomposed into syllables and each syllable is processed one-by-one by the 
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model. Hence, there are two orthographic input layers (traces): whole-word orthographic 

representations and syllable orthographic representations. The phonological output is 

based on the processing of both representations (multiple traces).  

The MTM has been implemented and successfully tested in French word and 

nonword naming. However, it has one major limitation that does not allow it to be 

implemented in many other world languages. While the MTM can simulate the 

grapheme-to-phoneme mapping process, it does not have a component in its architecture 

that would deal with lexical stress. This is not problematic in French as this language 

does not have lexical stress, but rather utilizes prosodic stress (i.e., stress is placed on the 

final syllable of a string of words, or the next-to-final syllable, if the final syllable is a 

schwa). On the other hand, in languages like Spanish, Italian, Russian, or English, in 

which there is lexical stress and stress position is flexible in a word, the MTM would not 

be able to provide fully specified phonological output.  

A connectionist approach to modeling the processing of polysyllables has also 

been implemented in the Junction model of Kello (2006). In this model, one simple 

recurrent network at the input level converts variable length sequences into fixed-width 

representations, and another simple recurrent network at the output level regenerates the 

sequence from the fixed-width representation. These representations and semantic 

representations are joined together via a set of intermediate nodes that are responsible for 

the mapping of graphemes onto phonemes. Thus, the mapping of orthography to 

phonology is mediated by semantics, rather than being direct as in the MTM model 

described above.  
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The Junction model was further elaborated by Sibley, Kello, and Seidenberg 

(2010) by including stress output nodes and by changing the input coding. At the 

moment, it is difficult to assess the theoretical and practical validity of the Junction 

model and its variants, as the models are still in their preliminary stages of development 

and have not been tested extensively. Mainly, researchers tested the Junction model on its 

ability to account for the variance in the response latency of the words in the ELP 

database (Yap & Balota, 2009). The model could account for about 30% of the variance 

in the RT data. The ability of this model to accurately generate pronunciations was far 

from the level of a skilled reader as the model produced errors in 70% of cases in its 

original version (Kello, 2006) and in 35% of cases in its later version (Sibley, Kello, & 

Seidenberg, 2010). Further, the specifics of the performance of the Junction model on 

stress assignment were not clear as the modelers did not specify whether the errors that 

the model committed were segmental (i.e., incorrect mapping of orthography onto 

phonology) or supra-segmental (i.e., incorrect mapping of orthography onto stress) in 

nature.                   

Next, descriptions and assessments of performance of two well-tested models of 

stress assignment (Rastle & Coltheart, 2000; Seva et al., 2010) and a model of reading 

that has a stress assignment component in its architecture (Perry et al., 2010) are 

provided. These models can be viewed as extensions of two competing approaches to 

computational modeling of reading processes, that is the dual-route approach (Rastle & 

Coltheart, 2000; Perry et al., 2010) and the connectionist, single-route approach (Seva et 

al., 2010).   
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2.2. The model by Rastle and Coltheart (2000)  

The model of stress assignment by Rastle and Coltheart (2000) was conceived 

within the framework of the dual-route theory of reading (Coltheart et al., 1993). 

According to this theory, phonology can be assembled from spelling based on a set of 

rules (the non-lexical route) or retrieved from lexical memory (the lexical route). The 

rules the non-lexical route uses are derived on statistical grounds and reflect the most 

frequently associated grapheme-to-phoneme mappings. The original DRC model could 

simulate the naming of monosyllabic words only. In order to extend it to the domain of 

polysyllabic words, Rastle and Coltheart (2000) developed a model of lexical stress 

assignment for English disyllabic items.    

The architecture of this model of stress assignment is very similar to that of the 

DRC as the assignment of stress can be completed lexically via retrieval of stress 

information from memory or as a result of computations by a non-lexical, rule-based 

system using an algorithm. The rules of the stress-assigning algorithm reflect previously 

reported findings of associations that exist in English between some morphemes and 

certain stress patterns (Fudge, 1984). The non-lexical route is utilized when readers 

assign stress to nonwords or regularly stressed words (i.e., words for which the proposed 

algorithm predicts stress patterns correctly), especially if the word is a low frequency 

word. The lexical route is used when readers assign stress to irregularly stressed words 

(i.e., words for which the proposed algorithm does not predict stress patterns correctly), 

and, to some extent, to regularly stressed words, if these are high frequency items.  

The algorithm goes through the following steps (see Figure 1). First, it determines 

whether a word has any prefixes. As prefixes are unstressed in English, any disyllabic 



13 

 

word with a prefix will have stress on the second syllable. If no prefix is identified, then, 

the algorithm searches for the presence of suffixes. All prefixes and suffixes are checked 

for their legality to avoid the identification of affixes in monomorphemic words (e.g., -er 

in corner). If the algorithm concludes that a word does contain a legal suffix, then, this 

suffix is checked against the store of stress-taking suffixes. If the suffix is stress-taking, 

the word is assigned second syllable stress. If the suffix is not stress-taking, the word is 

assigned first syllable stress. Finally, if neither a prefix nor a suffix are identified, the 

algorithm assigns the most frequent stress pattern in English (i.e., stress on first syllable).         

The algorithm proposed by Rastle and Coltheart (2000) was evaluated using a set 

of disyllabic words taken from the CELEX database (Baayen, Piepenbrock, & van Rijn, 

1995). The algorithm assigned stress correctly to 90% of these English disyllabic words. 

However, the performance of the algorithm on words with a (common for English) 

trochaic stress versus a (less frequent) iambic stress was not identical. While the ability of 

the model to correctly predict trochaic stress was exceptional (95% correct), the model’s 

hit rate for words with iambic stress was relatively low (67% correct).  

The predictions of the algorithm were also compared to the performance of native 

speakers on a set of nonwords created for this purpose. The algorithm produced the same 

response as speakers in 84% of cases, although the performance of the algorithm on items 

with trochaic versus iambic stress was slightly different. The model predicted correctly 

the speakers’ assignments in 81% of nonwords assigned trochaic stress and in 89% of 

nonwords assigned iambic stress, which stands in contrast to the results of simulations on 

words.  
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Figure 1 

The set of non-lexical stress rules in the model of stress assignment by Rastle and 

Coltheart (2000) 
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This fact that the algorthim did as well as it did on iambically stressed nonwords 

might suggest that the nonwords were not created in an arbitrary way. In fact, the 

majority of them did contain stress-bearing affixes. Thus, the modelers were testing the 

items that were predisposed to be assigned iambic stress both by the readers and by the 

algorithm. Further, Seva et al. (2009) showed that the performance of the algorithm on a 

different set of nonwords (Kelly, 2004) was less impressive: the algorithm was correct in 

78% of cases when nonwords were given trochaic stress by readers and only in 44% of 

cases when readers assigned iambic stress to nonwords. 

In addition to the relatively modest results demonstrated by the algorithm, there 

are other points of criticism of this model. First, the distinction between lexical and non-

lexical routes is not clear in the model as the non-lexical route is perceived as containing 

storage of affixes that carry lexically relevant information. Secondly, the researchers 

posit that the process of stress assignment in English is based on knowledge of the 

associations between morphemes and stress patterns. However, their stress-bearing 

suffixes include some word endings that are not suffixes at all (e.g., -oo, -ique), 

undermining the whole idea of morphologically based mechanism. Further, the system 

that checks on whether a string of graphemes is a valid affix or not implemented in the 

algorithm would run into problems handling pseudo-complex words (e.g., corner), words 

that the algorithm supposedly does not parse into pseudo-morphemes. In contrast, there is 

now substantial evidence suggesting that morphological parsing occurs pre-lexically for 

these types of words (Diependale, Sandra, & Grainger, 2005; Morris, Grainger, Holcomb, 

2008). Note also that the algorithm in its present, rather complex, form can only explain 

stress assignment in disyllabic words. The extension of this model to words of other 
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syllabic length would require addition of a significant number of new components to the 

model’s architecture, making it even more complicated from a computational point of 

view. Finally, it is not clear whether this algorithm can be applied to polysyllabic words 

of any other language than English. To a certain extent, the model does perform 

satisfactorily in English due to the fact that it contains a default trochaic stress rule, which 

by itself can correctly predict stress assignment in 80% of English words. The ability of 

this algorithm to adequately explain stress assignment in languages that do not possess a 

default stress pattern or do not exhibit associative connections between morphology and 

stress patterns appears to be rather limited.   

2.3. The model by Seva, Monaghan, and Arciuli (2009)  

Seva, Monaghan, and Arciuli (2009) based the architecture of their model on the 

tenets of the connectionist model of reading (Plaut, McClelland, Seidenberg, & Patterson, 

1996) that suggests that lexical and non-lexical processing, in fact, arise from a single 

connectionist mechanism. The knowledge of grapheme-to-phoneme correspondences, in 

the form of statistical probabilities, is stored in connections between input and output 

layers via a layer of hidden units. Upon being exposed to a corpus of words, the 

connectionist model adjusts weights on connections between units in a way that reflects 

associative relations between orthography and phonology. Similar principles are extended 

to the process of stress assignment in the model by Seva et al. (2009), which is based on 

the idea that orthographic patterns are probabilistically associated with stress patterns. 

With sufficient exposure to words, the model can discover the statistical regularities 

present between orthography and stress, and utilize them in the process of stress 

assignment.  



17 

 

The model is a simple supervised feed-forward connectionist network that maps 

orthography of English disyllables onto stress patterns (see Figure 2). The orthographic 

input layer is composed of 14 slots with 26 letter units per slot. Words are presented at 

the input layer left aligned. The input layer is connected to a layer of 100 hidden units, 

which in turn are connected to one stress output unit. For words with trochaic stress, the 

stress unit activity is 0, for words with iambic stress, its activity is 1. The model was 

judged to have assigned trochaic stress if the activation of output unit was less than .5, 

and iambic stress if the activation of the output unit was greater than .5. The model was 

trained on a set of disyllabic words with the weights on connections between units being 

adjusted by way of back-propagation based on errors.   

The model was tested on words from the CELEX database and two sets of 

nonwords. The performance of the model on words used in the process of training was 

very high (99% correct for words with trochaic stress and 92% correct for words with 

iambic stress). The model’s performance on words not used during training was slightly 

less accurate (97% correct for words with trochaic stress and 77% correct for words with 

iambic stress). The performance of the connectionist model on nonwords from the study 

by Rastle and Coltheart (2000) was not perfect (69% correct responses) mainly due to its 

inability to assign second syllable stress patterns correctly (88% correct predictions for 

trochaically stressed words and 50% correct predictions for iambically stressed words). 

The results of the testing of the model on nonwords from the study by Kelly (2004) were 

also modest (65% correct responses) again due to the model’s poor performance on 

iambically stressed words (42% of correct responses in comparison to 89% on items that 

were assigned trochaic stress).  
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Figure 2 

The architecture of the connectionist model of stress assignment by Seva et al. (2009) 
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One concern was that this connectionist model might be performing poorly on 

nonwords due to the fact that the left-aligned model considered the statistical 

probabilities that exist between stress patterns and word beginnings only, while readers 

might be using probabilities that exist between stress patterns and other orthographic 

components (e.g., word endings). To make the regularities of both word beginnings and 

of word endings available to the model, the modelers included both left-aligned and a 

right-aligned orthographic input layers in the model (Arciuli et al., 2010; see Figure 3).  

The model was trained on words from the Educator’s Word Frequency Guide 

(Zeno, Ivens, Millard, & Duvvuri, 1995), reflecting the lexicons of children at different 

ages. The model exposed to the lexicon of a 5-6 year old child demonstrated a significant 

bias towards assigning a trochaic stress pattern to words, a bias that decreased with the 

incremental exposure of the model to a later age lexicon. Having received additional 

training, the model with left-aligned and right-aligned input layers assigned stress 

correctly in 99% of words, which is significantly better than the model with only a left-

aligned (86%) or a right-aligned input layer (83%). Unfortunately, as the authors do not 

provide the details of the performance of the full model on words with first and second 

syllable stress separately (which is required for proper assessment of the performance of 

the model as words with different stress patterns were not represented in the lexicons 

proportionally), it might still be the case that the improved model has some difficulty in 

predicting second syllable stress correctly. Such was, indeed, the cases for the left-

aligned model, which was correct on 96% of words with first syllable stress and only on 

49% of words with second syllable stress and right-aligned model, which was correct on 

96% of words with first syllable stress and 35% of words with second syllable stress. 



20 

 

Figure 3 

The architecture of the connectionist model of stress assignment by Arciuli et al. (2010) 
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The full model was also tested against the behavioral performance of children of 

different age groups on 24 nonwords that contained orthographic strings that cued first or 

second syllable stress. Although the low number of tested items makes generalization 

difficult, the model underperformed on items to which participants assigned second 

syllable stress. Thus, in predicting the behavior of 11-12 year olds, the model was correct 

on 92% of nonwords that were given first syllable stress, and only on 67% of nonwords 

that were given second syllable stress. 

In summary, Arciuli et al.’s (2010) model of stress assignment is an improvement 

over earlier models as it is not limited to an a priori determined set of rules. However, in 

its present implementation, the model seems to be sensitive to orthographic cues of word 

beginnings and word endings only, while readers might be paying attention to other 

orthographic components while assigning lexical stress. Further, the connectionist model 

does not perform well in assigning second syllable stress to either words or, especially, 

nonwords. This difficulty presumably arises from the fact that in English many 

orthographic cues are associated with first syllable stress, while the extent of the 

association between orthography and a second syllable stress pattern is not large. This 

difference in the scope of the probabilistic relation between orthography and stress 

patterns for two types of words occurs mainly due to there being a greater number of 

words with first syllable stress in English. In light of this fact, it might be difficult for the 

connectionist model to predict stress pattern assignment in languages that do not have a 

more frequent stress pattern. In such languages, the associations between orthographic 

cues and stress patterns might, in general, be weak and, therefore, the performance of the 

model might be only mediocre.                 
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2.4. The Connectionist Dual Process ++ (CDP++) model (Perry et al., 2010) 

The CDP++ (Perry et al., 2010) is a model of word reading built on the strengths 

of the dual-route and the connectionist models. Similar to the dual-route model, the 

CDP++ distinguishes between lexical and sub-lexical processing. However, the sub-

lexical route is represented by a connectionist network, rather than by a set of rules. The 

architecture of the CDP++ is depicted in Figure 4. In the CDP++, a buildup of activation 

starts at the level of orthographic features which is, then, fed to the level of letters 

consisting of 16 letter slots. At further stages of processing, letters are mapped onto 

orthographic and, further, onto segmental phonemic and suprasegmental stress 

representations. This mapping may be achieved via lexical or sub-lexical routes. 

The lexical route is a fully interactive network consisting of phonological and 

orthographic lexicons. The representation at the letter level activates orthographic entries 

in the lexicon on the basis of letter overlap. Orthographic entries that do not contain 

letters being activated at the letter level of the model are inhibited. Entries in the 

orthographic lexicon, then, activate whole-word representations in the phonological 

lexicon. Finally, lexical phonological representations activate corresponding phoneme 

output units and one of two stress output units in the phonological output buffer. In the 

lexical route of the CDP++, all levels are connected in a way that makes feedback 

possible. Thus, the activation of the stress or phoneme output unit in the phonological 

output buffer can be sent to the phonological lexicon, and activate phonological lexical 

representations.     



 

Figure 4 

The architecture of the CDP++

 

 

The architecture of the CDP++ 
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The sublexical route is represented by a graphemic buffer that organizes letters 

into a graphosyllabic template and the connectionist two-layer network of phonological 

assembly (TLA network) that encodes statistical regularities. In the graphemic buffer, a 

sublexical orthographic representation is constructed by a graphemic parser that analyzes 

letter input, transforms letters into graphemes, and maps them onto syllabic templates of 

the first and the second syllables. Each syllabic template has three onset slots, one vowel 

slot, and four coda slots. Thus, the complete template of a disyllabic word has the 

following structure: CCCVCCC.CCCVCCC. An issue of an ambiguity in syllabification 

present in English (e.g., the word demand can be segmented as de.mand or as dem.and) 

has been addressed by the modelers by applying a widely accepted phonological 

constraint, known as the Maximal Onset Principle (Kahn, 1976). According to this 

principle, consonants occurring between two vowels are assigned to the onset position of 

the second syllable, if this does not lead to the creation of codas or onsets that are illegal 

in the language. Thus, the word demand will be represented in the graphemic buffer in 

the following way: d**e***.m**and* (asterisk represents an empty slot). 

A representation constructed in the graphemic buffer is next processed in the TLA 

network which is a simple two layer network of connections between orthographic input 

and phonological output. The orthographic input is encoded over 16 slots with 96 

grapheme nodes per slot. The phonological output is encoded over 16 phoneme slots with 

44 phoneme nodes per slot and a stress slot with two nodes. Two stress nodes have lateral 

inhibitory connections. Thus, the activation of one stress node inhibits the other. The 

activation from sub-lexical output nodes is sent to the phoneme output and stress output 

nodes. The naming of a word starts only if phonological as well as stress output units are 
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activated. Unlike the lexical route, the sub-lexical route of the CDP++ is not interactive. 

The activation goes only in the direction described above with no feedback possible.    

The CDP++ was trained on words from the CELEX database (Baayen et al., 

1995) and, then, tested on the same words that were used during the training stage. The 

CDP++ showed outstanding performance on this corpus with 97% of stress patterns 

overall being predicted correctly. However, the accuracy of the model on words with a 

less common (in English) second syllable stress was slightly worse (88% correct) than on 

words with a more common (in English) first syllable stress (99% correct). The 

performance of the model on nonwords from the study by Rastle and Coltheart (2000) 

was less accurate. The model was correct in 92% of items with first syllable stress, and in 

51% of items with second syllable stress. A similar pattern emerged when the model was 

tested on nonwords from the study by Kelly (2004), showing 93% accuracy for the 

nonwords stressed on their first syllable, but only 45% accuracy for nonword stressed on 

their second syllable.  

To summarize, the CDP++ was able to perform well on the corpus of English 

disyllabic words, but it had substantial difficulty in simulating the nonword data as seen 

in a trend to overgeneralize a first-syllable stress pattern. So far, the CDP++ has only 

been used to simulate the performance of readers on English disyllabic words. The 

authors state that with minor changes the architecture of the CDP++ can be applied to 

words of other syllabic lengths and other languages. However, no modeling attempts of 

that kind have been completed yet, and the ability of the model to simulate stress 

assignment in languages in which, unlike in English, there is no dominant stress pattern 

present remains to be examined.      
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2.5. Conclusion  

There has been some progress in modeling the reading of polysyllabic words and 

the process of stress assignment. In all of the reviewed models created to deal with 

English disyllabic words, it is suggested that orthographic (Seva et al., 2009; Perry et al., 

2010) or morphological (Rastle & Coltheart, 2000) cues present in the written input are 

used in computing the correct stress pattern. In general, these computational models 

demonstrate good performance on word reading and high percentage agreement on stress 

assignment in nonwords that are named with first syllable stress by native speakers. The 

performance on the naming of nonwords that are empirically assigned second syllable 

stress is considerably less impressive. 

Figure 5 contains summary information concerning each model’s performance on 

a corpus of disyllabic words (see Figure 5A), nonwords taken from the study by Rastle 

and Coltheart (2000) (see Figure 5B), and nonwords taken from the study by Kelly 

(2004) (see Figure 5C). While all models performed well in assigning correct stress 

pattern to words with stress on the first syllable, the CDP++ and the connectionist model 

by Seva et al. (2009) (when tested on words that were also used during training of the 

model) were the most successful in assigning stress to words with second syllable stress. 

The algorithm of Rastle and Coltheart demonstrated the least ability to predict second 

syllable stress in the corpus of English disyllabic words. On the other hand, that 

algorithm provided the best fit to the behavioral data using a set of nonwords taken from 

the study by Rastle and Coltheart. Moreover, the algorithm showed equally good 

performance on nonwords from this set of nonwords that were assigned first as well as 

second syllable stress. In contrast, the model by Seva et al. (2009) and the CDP++ 
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performed poorly on these nonwords, especially nonwords that were assigned second 

syllable stress by readers. It has been suggested that this difference in the performance of 

the models is due to a somewhat biased choice of nonwords in the study by Rastle and 

Coltheart. Finally, the results of the simulations of the behavioral data taken from the 

study by Kelly showed that all three models performed poorly on nonwords that readers 

pronounced with second syllable stress. The CDP++ showed the best hit rate when the 

stress patterns of Kelly’s nonwords with first syllable stress had to be predicted, while the 

algorithm of Rastle and Coltheart was the least successful in simulating the behavioral 

data for these stimuli.  

Overall, it appears that the CDP++ performs better than the algorithm of Rastle 

and Coltheart (2000) and slightly better than the model of Seva et al. (2009). However, 

the performance of the CDP++ is still far from perfect, and it has not yet been tested 

extensively. The present thesis is not an attempt to directly examine the approach to 

stress assignment modeling proposed in the CDP++ but, instead, to consider an 

alternative, potentially equally plausible way to model this process. In the present thesis, 

it is suggested that stress assignment in reading can be viewed as a process of evaluation 

of probabilities of stress patterns. A probability of a stress pattern is computed by 

adjusting the prior belief about the likelihood of this stress pattern being present in a 

word as well as evidence for stress provided by the orthography of a word being read. 
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Figure 5 

Correct stress agreement (percentage) for the model by Rastle & Coltheart (2000), the 

model by Seva et al. (2009), and the CDP++ on a set of disyllabic words (A), Rastle and 

Coltheart (2000) nonwords (B), and Kelly (2004) nonwords (C) 
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Chapter 3 – Bayesian Model of Stress Assignment 

3.1. Introduction 

People constantly face the challenge of interpreting uncertain signals coming from 

a noisy environment and acting in the face of incomplete knowledge. One of the ways of 

dealing with this uncertainty is to process information using a probabilistic framework. In 

the presence of uncertainty, a person can make intelligent decisions by considering 

estimates of the probabilities of events rather than accepting the idea that data is limited 

to two values only (e.g., true or false). Thus, the human mind can potentially be perceived 

as an evaluator of the likelihoods of events aiming at near optimal decisions (Anderson, 

1991). The view of the human mind as a probability estimator, which is associated with 

the Bayesian theory, has been widely adopted to explain various cognitive processes (for 

a review see Griffiths, Kemp, & Tenenbaum, 2008), although this approach also finds its 

opponents (Bowers & Davis, 2012; Jones & Love, 2011). 

This chapter starts with an introduction of the basic ideas of Bayesian 

probabilities that despite their simplicity appear to be very powerful in explaining many 

phenomena in our environment. Then, a review of previous research pointing at the 

probabilistic nature of human cognition overall as well as of specific cognitive processes, 

including language, is provided. Indeed, language is characterized by uncertainty and its 

processing can be viewed as a problem of probabilistic constraint satisfaction. The 

process of lexical stress assignment, the topic of investigation in the present thesis, is also 

often ambiguous and, thus, it might be useful to consider this process in a probabilistic 

rather than a deterministic framework. In this chapter, a model of stress assignment that is 

based on the principles of Bayesian probabilities is proposed and described.            
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3.2. Bayesian probability 

Probability is a numerical measure of the relative frequency of an event or the 

strength of a belief in a certain proposition. In describing human cognition, the subjective 

interpretation of probability (i.e., belief strength), in which probability can be viewed as a 

mental phenomenon, appears to be more appropriate. By convention, probability ranges 

from 0 to 1, where 0 means that the belief is certainly false and 1 means that it is certainly 

true. In a probabilistic system, one considers the probability of various possible 

hypotheses about the state of the environment, based on the sensory input received from 

this environment and prior knowledge about the state of the world. Such probability 

calculations are typically based on some form of Bayesian inference.  

Bayesian inference is based upon a simple formula known as Bayes’ rule (Bayes, 

1763/1958), which is traditionally presented in the following form: 

 
( | ) ( )

( | )
( )

P d h P h
P h d

P d
=  , (1) 

where h refers to a hypothesis, and d stands for some data used as evidence in the process 

of inference. In computing the probability of the hypothesis given the data, also known as 

posterior probability, one uses the knowledge of the probability of the data given the 

hypothesis, or likelihood of evidence, ( | )P d h , the probability of the hypothesis before 

the data was assessed, or prior probability, P(h), and the total probability of the data 

regardless of the hypothesis, P(d). The total probability of the data is calculated by 

summing the products of the likelihood of evidence and prior probabilities of all possible 

hypotheses about the process. Thus, the formula can be re-written as:  
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where H refers to the hypothesis space, or the set of all nonzero probability hypotheses. 

Thus, the posterior probability is proportional to the product of prior probabilities and the 

likelihoods of evidence. The sum in the denominator is used to normalize the posterior 

probabilities in such a way that they all sum up to one. For the probabilities to sum up to 

one, the hypotheses considered as alternative explanations of the data should be mutually 

exclusive, that is, two or more cannot be true at the same time. 

 Here is an example to illustrate how the posterior probabilities of a hypothesis are 

computed. Imagine that a doctor assesses the probability that a patient has pneumonia 

considering a patient’s positive X-ray test. In this case, a doctor has two alternative 

hypotheses: pneumonia and no pneumonia. The only evidence that he has at this point is 

the result of an X-ray test. First, the doctor measures the prior probability of a patient 

having this disease. He knows that only 5% of previously treated patients in his care had 

pneumonia, therefore, P(pneumonia) = .05, while P(no pneumonia) = .95. Next, the 

doctor calculates the likelihood that a patient has a positive X-ray test given pneumonia. 

The doctor finds that 70% of patients with pneumonia had positive X-ray tests, while 

only 10% of patients who did not have pneumonia had positive X-ray tests. Thus, 

( | )P test pneumonia = .70, while P(test | no pneumonia) = .10. Thus, the posterior 

probability that a patient has pneumonia given a positive X-ray test can be calculated:  

 
(.70)(.05)

( | ) .27
(.70)(.05) (.10)(.95)

P pneumonia test = =
+

  (3) 

3.3. The probabilistic nature of human cognition    

The world we live in is highly probabilistic. The fact that we see dark clouds in 

the sky does not necessarily mean that it is going to rain, although this possibility may be 

reasonably high. If we drop a glass vase, the chances are high that it will break; however, 
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it may stay intact. If we see someone crying, we are more likely to think that the person is 

upset, however, these might be tears of joy. Therefore, similar to the doctor who makes 

probabilistic diagnosis based on certain prior observations of patients in his care, people 

make inductive inferences by evaluating the probabilities of possible hypotheses and 

selecting what appears to be the most probable one based on some past observations.   

The complexity of the world that our mind has to grasp makes such metaphors as 

the Bayesian brain or probabilistic mind very popular in cognitive and neuropsychology. 

In fact, the idea of the probabilistic nature of human cognition has been described as “the 

most exciting and revolutionary paradigm to hit cognitive science since connectionism” 

(Movellan & Nelson, 2001, p.691). According to this idea, people learn probabilities of 

various objects that they observe in the world very quickly (Peterson & Beach, 1967) or 

even encode them automatically (Zacks & Hasher, 2002). In this way, the human mind 

operates like a statistician, although people are often vulnerable to incorrect assumptions 

about the relevance of the observed sample to the population, which gives rise to 

incorrect assessments of probabilities and, therefore, various erroneous conclusions and 

biases (for a review, see Hansson, Juslin, & Winman, 2008). There is also a claim in the 

literature that the human mind is not only generally good in grasping probabilities from 

the environment, but it constantly engages in action-oriented predictive processing 

(Clark, 2013). More specifically, our brain forms expectancies based on prior experience 

that are adjusted by weighing various cues arriving from sensory modalities.    

Originally, the Bayesian view of cognition was thought to be able to explain the 

computational level of the processing only. Currently, there is growing evidence that 

probabilistic analysis is relevant to human cognition at the neuronal level as well (for a 
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review, see Doya, Ishii, Pouget, & Rao, 2007). It has been suggested that probability 

distributions may be encoded in neurons in such a way that inference is achieved by 

summing up the firing rates (Ma, Beck, Latham, & Pouget, 2006) and that spiking 

neurons reflect integration of information over time (Deneve, 2004). Further, evidence 

for the integration of top-down prior information and bottom-up sensory data has been 

demonstrated in recurrent loops in the visual cortex (Lee & Mumford, 2003). Thus, 

Bayesian models of cognition are likely to be biologically plausible.    

The probabilistic approach has been widely applied to explain many areas of 

human cognition including visual perception (Feldman, 2001), object recognition 

(Kersten, Mamassian, & Yuille, 2004), motor control (Kording & Wolpert, 2006), and 

eye movements (Najemnik & Geisler, 2009), to memory (Dennis & Humphreys, 2001), 

and theory of mind (Baker, Saxe, & Tenenbaum, 2009). Most relevant to the current 

thesis, another aspect of cognition that many researchers have started evaluating using the 

Bayesian approach is language (for a review, see Jurafsky, 2003). Traditionally, language 

has been viewed as involving a set of abstract units that are generated according to some 

formal rules. These rules are deterministic in their nature. However, in reality, language 

is characterized by the presence of significant noise and ambiguity that speakers can 

successfully deal with. In other words, language processing can be viewed as a process of 

probabilistic constraint satisfaction (McRae, Spivey-Knowlton, & Tanenhaus, 1998; 

Seidenberg & MacDonald, 1999). 

The principles of probabilistic inference have been applied by researchers to 

explain language perception, production, and learning. Thus, there are a number of 

models of speech recognition couched in the Bayesian framework (Charter & Maning, 
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2006; Norris, 2006; Norris & Kinoshita, 2008; Norris & McQueen, 2008). Further, there 

is a view that probabilistic knowledge plays a role in language production with more 

probable structures in grammar or in the mental lexicon being accessed faster or with 

more confidence than less probable ones. Finally, the knowledge of probabilities has been 

shown to be implicated in language acquisition (Saffran, 2002; Xu & Tenenbaum, 2007). 

In the present thesis, it is proposed that principles of probabilistic inference as underlying 

mechanisms of cognitive action can be extended to the process of stress assignment, a 

process which is characterized by a high degree of uncertainty in many languages.  

3.4. The Bayesian model of stress assignment 

Within the Bayesian framework, the process of stress assignment can be viewed 

as the process of posterior probability estimation for alternative hypotheses concerning 

the position of stress. There are as many hypotheses considered for a word as there are 

syllables in the word. The idea that in the process of stress assignment a reader examines 

the likelihoods of only those stress patterns that are possible for a word of certain syllabic 

length assumes that a reader is aware of the syllabic length of a word before the 

probability of each hypothesis is computed. Although there is currently no strong 

evidence showing a time-period when the discrimination of words according to their 

syllabic length occurs, it seems likely that it happens at early stages of processing, and 

there is some empirical support for this claim (Ashby & Rayner, 2004; Ashby & Martin, 

2008). Further, the assumption that readers assess the probabilities of only those stress 

patterns that are possible in a word has been made in all previous models of polysyllabic 

word reading and models of stress assignment (Perry et al., 2010; Seva et al., 2009).  
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As in the CDP++ (Perry et al., 2010), a reasonable assumption is that the 

decisions concerning the number of syllables that a word has are most likely to be made 

based on the information about the number of vowel graphemes in a letter string. For 

example, the identification of two vowels in a string would indicate that this string should 

be processed as a disyllabic word, and, thus, two hypotheses about stress patterns would 

be assessed in the process of stress assignment. This assumption does raise the question 

of how readers cope with situations in which the number of syllables and the number of 

vowel graphemes differ (e.g., the silent vowel –e at the end of monosyllabic English 

words or the so-called “hiatus” words.  Those types of words are likely to be more 

difficult for readers to deal with (Chetail & Content, 2012; Chetail & Content, 2013)). 

The computation of the posterior probability of each stress pattern in a word given 

some (non-lexical) evidence, ( | )P stress evidence , presupposes the assessment of the prior 

probability that a word of this language has a hypothesized stress pattern, P(stress), and 

the likelihood with which evidence considered is associated with the hypothesized stress 

pattern, ( | )P evidence stress . In the Bayesian calculation of the posterior probability of a 

stress pattern, the product of the prior probability of this stress pattern and likelihood of 

evidence given this probability is divided by the sum of the products of prior probabilities 

and likelihoods of evidence of all alternatives (stress’) in the hypothesis space (STRESS). 

Thus, the general Bayes’ formula given in the Equation 2 can be re-written as follows:    

 

'

( | ) ( )
( | )

( | ') ( ')
stress STRESS

P evidence stress P stress
P stress evidence

P evidence stress P stress
∈

=
∑

  (4) 

The calculation of the prior probability of a stress pattern in a language, P(stress), 

must involve readers estimating the frequencies of various stress patterns in the words of 
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the language. The prior probability of a stress pattern does differ significantly from 

language to language. For example, in English, disyllabic words have trochaic stress 

pattern in 80% of cases and iambic stress pattern in 20% of cases, while, in Finnish, 

100% of disyllabic words have trochaic stress. Thus, in English, the prior probability of a 

trochaic stress pattern, P(trochaic), equals .80, while, in Finnish, it is 1.00. On the other 

hand, the prior probability of iambic stress pattern, P(iambic), is .20 in English and 0.00 

in Finnish. What is assumed here is that readers have a good idea of these probabilities 

because they are sensitive to the frequencies of the patterns they personally experience. 

Equating the prior probability of a stress pattern with the frequency of the stress 

patterns in the language is motivated by the fact that readers have been shown to be 

sensitive to frequency in many realms. First of all, frequencies of linguistic structures 

have been shown to impact the production and comprehension of speech. Thus, more 

frequent words enjoy a processing advantage over less frequent ones (Balota & 

Chumbley, 1985). In case of ambiguous words, more common meanings appear to be 

accessed first (Dell, 1990). Finally, people are aware of the frequencies with which words 

co-occur, and use these transitional probabilities in speech production and comprehension 

(Saffran, Newport, & Aslin, 1996). Therefore, it is quite likely that the frequency with 

which stress patterns occur in the language might be picked up by speakers and used in 

the processing of polysyllabic words. The utilization of this information seems to be 

ecologically plausible, especially if there is a dominant stress pattern in a language, as it 

would significantly decrease uncertainty in the system and would simplify the process of 

stress assignment.  
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Indeed, there have been a number of empirical studies showing that readers are 

aware of the statistical distribution of stress patterns in the language and use this 

information in the processing of polysyllabic words (Colombo, 1992; Monsell, Doyle, & 

Haggard, 1989). Some researchers have claimed that, in some languages, readers assign 

the most frequent stress pattern by default (Black & Byng, 1986; Colombo, 1992). Within 

the proposed model of stress assignment, exclusive use of a default mechanism of 

assigning stress is only possible if a hypothesized stress pattern is the only stress pattern 

realized in the words of a specific syllabic length (i.e., in a language where the stress 

pattern is always fixed to some syllable). In this case, the prior probability of this stress 

pattern, P(stress), equals 1.00, while the prior probability of the stress pattern 

corresponding to the alternative hypothesis, P(stress’), equals 0.00. This means that 

further evaluation of the likelihood of evidence is not needed as it would not change the 

posterior probabilities of stress patterns. In all other cases, when stress can be assigned to 

any syllable in words of a certain length (i.e., a language where stress placement is 

flexible), the information about the frequency of stress patterns only establishes a bias 

towards the more frequent stress pattern (reflected in the P(stress) values) that can be 

diminished or even reversed if some source of non-lexical evidence is strongly associated 

with the alternative stress pattern(s).  

In the calculation of the posterior probability of a hypothesized stress pattern, 

therefore, non-lexical sources of evidence for stress are important. A reliable source of 

evidence should be in a significant probabilistic relation with a specific stress pattern. In 

other words, the presence of this evidence in a word should act as a cue signaling the 

presence of the hypothesized stress pattern. Thus, evidence for stress is assessed from the 
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point of view of its informational value or its validity. For example, if in a language all 

disyllabic words having trochaic stress start with two consonants and words with an 

iambic stress pattern mainly have one consonant in their onset, the complexity of the 

onset is a highly valid stress cue. The validity of a stress cue can be estimated by multiple 

regression analysis, in which the values of a stress cue are regressed on stress patterns of 

all words of the language that might have this stress pattern.  

The presence of a correlation between some cue and a stress pattern in the 

language does not necessarily mean that readers employ it in their stress assignment 

decisions. While informative, these cues might be ignored by the readers. Therefore, 

besides having high validity, proper stress cues that might be included in the model 

should also be used by readers (i.e., the cues should have high “utility”). The utility of the 

stress cue can be obtained by regressing values of a stress cue on the patterns of stress 

assignment performance demonstrated by readers.  

The impact of stress cues is in a trade-off relationship with the impact of prior 

probabilities of stress patterns. The more reliable the stress cue is, the less the stress 

assignment performance is influenced by the prior probabilities. On the other hand, if a 

stress cue is only weakly reliable, the role of the prior probabilities of stress patterns 

increases. Similar to the prior probabilities of stress patterns that are language specific, 

the nature of the stress cues and the number of the stress cues with high validity and 

utility are expected to differ from language to language.  

Readers might utilize multiple sources of evidence in making stress assignment 

decisions. The assumption in the model is that multiple stress cues are considered in a 

stepwise fashion, starting with the most informative cue to stress in a language and going 
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to the least informative one. Thus, if there are two stress cues in the language A and B, 

and A is a more informative one, the model, first, calculates the posterior probability of 

the stress pattern given evidence A, ( | )P stress A , by using the following equation: 

 

'

( | ) ( )
( | )

( | ') ( ')
stress STRESS

P A stress P stress
P stress A

P A stress P stress
∈

=
∑

  (5) 

Next, the posterior probability of the stress pattern given both evidence A and B is 

calculated. To do this, the model incorporates the likelihood of evidence B given the 

stress pattern ( ( | )P B stress ) along with the probability of that stress pattern that already 

reflects the likelihood of evidence A ( ( | )P stress A ) that will be referred to as P(stress)*. 

In other words, at this stage, the prior probabilities that the model uses are not those that 

reflect the frequency of various stress patterns in the language, but, rather are the 

probabilities based on the frequency of each stress pattern among the words of the 

language that are also characterized by the presence of cue A (i.e., the posterior 

probabilities calculated based on the existence of evidence A). Thus, at the second stage 

of the computation, the formula is:  

 

'

( | ) ( )*
( | , )

( | ')(1 ( )*)
stress STRESS

P B stress P stress
P stress A B

P B stress P stress
∈

=
−∑

  (6) 

Note that the stepwise approach in updating the posterior probabilities using 

several sources of evidence assumes that these two sources are conditionally independent 

of each other. The sources can be considered independent if the existence of one of them 

does not change the impact (i.e., the probability associated with the various possible 

stress assignments) of the other source. In the case of non-lexical cues to stress this is not 

always the case, and some sources might be correlated to some extent. Thus, the posterior 
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probabilities computed by the model may be overestimated. However, it is possible to 

measure the degree of correlation between two cues and remove any statistical 

dependency that is due to confounding. 

The computed estimates of posterior probabilities for alternative stress patterns 

are used by a reader in the selection of a response. This selection is likely to unfold in a 

way similar to random walk or multiple racing diffusion process (Ratcliff, 1978; Ratcliff 

& McKoon, 2008; Voss, Nagler, & Lerche, in press). In the diffusion process, there is a 

gradual drift toward decision boundaries. The response is initiated when a decision 

boundary (also known as response criterion) has been reached. There would need to be as 

many decision boundaries as there are possible stress patterns for a particular word. For 

example, for a disyllabic word, there are two decision boundaries and, thus, this decision 

making process is essentially similar to the one described in the diffusion model of binary 

decision making (Ratcliff, 1978). For a word consisting of three syllables, on the other 

hand, there are three decision boundaries and, thus, the prosess of selecting one of three 

stress patterns is similar to the one described by the models of decision making with 

multiple alternatives (Leite & Ratcliff, 2010; Ratcliff & Starns, 2013).  

Each of the possible stress pattern choices has a posterior probability provided by 

the calculations inherent in the Bayesian model of stress assignment described in the 

present thesis. The evidence for each pattern accumulates during these calculations in 

such a way that evidence for one alternative is evidence against the others. The 

movement from the starting point of the random walk to one of the decision boundaries 

happens with a drift rate that is directly related to the quality of the evidence for a stress 

pattern extracted from the orthography of a stimulus (i.e., the calculated probabilities). 
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With a high drift rate, indicating that the evidence for certain stress pattern is very strong, 

a decision boundary of this stress pattern will be reached relatively rapidly. Hence, the 

likelihood of incorrect stress pattern choice should be low. In contrast, when the drift rate 

is low due to the fact that the evidence for neither stress pattern (i.e., the posterior 

probability) is very strong, the likelihood of the system producing an incorrect stress 

pattern response is somewhat higher.  

The decision boundaries are flexible, as their position in relation to each other can 

be changed to reflect a speed-accuracy trade-off. Thus, when a task accentuates the 

importance of the correct stress assignment over speed of performance, the boundaries 

are moved farther apart. Doing so, of course, leads to a more accurate performance, but 

there is a delay in response time. On the other hand, when the speed of naming is a 

priority, the decision boundaries are moved closer, thus, allowing the process to reach a 

decision boundary relatively rapidly. However, performance is likely to be somewhat 

error prone.     

For the purpose of illustration, the Bayesian model’s computations of the 

posterior probabilities of trochaic and iambic stress patterns for a novel word belpet 

completed based on a corpus of disyllabic words of a fictitious language are described. 

This language has only 30 disyllabic words (see Table 1) and three sources of evidence 

for stress: the orthography of the ending of the second syllable (i.e., the second vowel of 

a word and all following consonants), the orthography of the first syllable, and, finally, 

the orthography of the beginning of the first syllable (i.e., all graphemes up to and 

including the vowel of the first syllable).  
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Table 1 

The corpus of disyllabic words of a fictitious language used to illustrate the computation 

of the stress patterns by the Bayesian model of stress assignment 

 Words with Trochaic Stress Words with Iambic Stress 

 

BELTIK 

BELKOP 

BETNIK 

BELSIK 

BENSET 

BELRAT 

BELMOT 

BERMAT 

DOMRET 

FAPRET 

FAMLIK 

KOLTIK 

LIPSET 

MERLIK 

MOLTET 

MONPIK 

NERMET 

NELTIK 

POMLOP 

TERLIK 

 

BELTOP 

BENRET 

BELTET 

DOLMAT 

DOLPIK 

DOLNOP 

FAPLOP 

KILPIK 

LIPSOP 

MERLON 
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First of all, the model assesses the prior distribution of stress patterns in this 

language. As 67 % of words have trochaic stress pattern, prior probability that a word has 

trochaic stress, P(Stress1), is .67, while prior probability that a word has iambic stress, 

P(Stress2), is .33. Next, the model consideres the evidence provided in the orthography 

of the word. The model computes that the ending –et of the word belpet is present in 30% 

of words with trochaic and 10% of words with iambic stress. Following the formula,   

( | 1) ( 1)
( 1| )

( | 1) ( 1) ( | 2) ( 2)

P et Stress P Stress
P Stress et

P et Stress P Stress P et Stress P Stress

−
− =

− + −
 , (7) 

the model calculates that the posterior probability of a word having a trochaic stress 

pattern given the presence of the ending -et as: 

 
(.30)(.67) .20

( 1| ) .87
(.30)(.67) (.10)(.33) .23

P Stress et− = = =
+

  (8) 

Hypotheses are in trade-off relations with each other in a way that increasing the 

belief in one hypothesis decreases the belief for the other hypotheses. As the model 

described here assesses two mutually exclusive hypotheses (i.e., a trochaic stress pattern 

vs. an iambic stress pattern), it is sufficient to calculate the probability of one hypothesis. 

The posterior probability of the other hypothesis can then be directly calculated: 

 ( 2 | ) 1 ( 1 | ) 1 .87 .13P Stress et P Stress et− = − − = − =   (9) 

The model next accounts for the evidence provided by the first syllable bel- 

present in 25% of words with trochaic stress and 20% of words with iambic stress. The 

model uses this stress cue to update its earlier beliefs about stress patterns that were based 

on the presence of the evidence –et in the word. Thus, ( 1 | )P Stress et− , further referred to 

as P(Stress1)*, serves as the model’s new prior probability of a trochaic stress pattern, 

while ( 2 | )P Stress et− , further referred to as P(Stress2)*, is the new prior probability of 
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an iambic stress pattern. The posterior probability that the word belpet has trochaic stress 

given the presence of –bel and -et is calculated following the formula: 

 

( 1| , )

( | 1) ( 1)*

( | 1) ( 1)* ( | 2) ( 2)*

P Stress bel et

P bel Stress P Stress

P bel Stress P Stress P bel Stress P Stress

− − =

−

− + −

 , (10) 

 
(.25)(.87) .22

( 1| , ) .88
(.25)(.87) (.20)(.13) .25

P Stress bel et− − = = =
+

 . (11) 

As the final step in the calculation, the model considers the evidence for trochaic 

and iambic stress patterns provided the beginning be-. In assessing the likelihood of 

evidence for this orthographic component, the model cannot simply base its decision on 

the scope of representation of this cue in words with trochaic versus iambic stress 

patterns due to the fact that the beginning be- is a part of the first syllable bel- that has 

been already accounted for by the model. This confound can be eliminated if the model 

considers the distribution of this cue in all words with trochaic versus iambic stress 

patterns except the words that have first syllable bel-. Out of words that meet 

abovementioned criterion, 15% have trochaic stress and 10 % have iambic stress. The 

model uses this stress cue to update its earlier beliefs about stress patterns that were based 

on the presence of the evidence bel- and -et in the word. Thus, P(Stress1|bel-,-et), further 

referred to as P(Stress1)**, serves as the model’s new prior probability of a trochaic 

stress pattern, while P(Stress2|bel-,-et), further referred to as P(Stress2)**, is the new 

prior probability of an iambic stress pattern. The model calculates the posterior 

probability that the word belpet has a trochaic stress pattern given the evidence be-, bel-, 

and -et, using the formula: 
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( 1| , , )

( | 1) ( 1)**

( | 1) ( 1)** ( | 2) ( 2)**

P Stress be bel et

P be Stress P Stress

P be Stress P Stress P be Stress P Stress

− − −

−

− −

=

+

 , (12) 

   
(.15)(.88) .13

( 1| , , ) .93
(.15)(.88) (.10)(.12) .14

P Stress be bel et− − − = = =
+

 . (13) 

Thus, based on the prior knowledge of the distribution of stress patterns in the language 

and correlations that exist between three types of orthographic cues and stress patterns in 

the words of this language, the Bayesian model of stress assignment predicted that the 

novel word belpet is very likely to be assigned trochaic stress pattern. 

The calculations of probabilities of stress patterns provided above reflect the 

behavior of an ideal observer, who computes the most probable stress pattern given the 

whole corpus of the language. The real patterns of behavior are expected to be correlated 

with the patterns produced by the model, but are unlikely to be identical. First of all, 

humans might be good statisticians, but they are not perfect, while the model’s 

computation is error-free. As various errors, biases, and heuristics are common features 

of human cognition (Tversky & Kahneman, 1974), departures from optimal behavior are 

expected in human performance. Secondly, the Bayesian model of stress assignment is a 

model based only on non-lexical information and people might also use stress 

information stored in lexical memory, especially if in the result of the non-lexical 

computation of stress patterns, the calculated posterior probabilities are fairly similar.    

As a final note, it should be mentioned that the Bayesian framework is essentially 

generative, meaning that observed data (evidence) is generated by some underlying 

source that relates it to a hypothesis. For example, in estimating the probability of 

pneumonia, a doctor might consider various symptoms that are generated by an 
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underlying illness directly (e.g., fever, coughing, chest pain) or indirectly (e.g., positive 

X-ray test, positive blood culture test). In the proposed Bayesian model of stress 

assignment in reading, the evidence that is considered is the orthography of a word that 

readers implicitly believe is indirectly associated with various stress patterns. The 

underlying cause that brings together orthography and stress pattern is the phonology of 

the language. In the process of language acquisition, children first master aural speech 

with all of the probabilistic information that it provides. Among other information, 

children learn that some similar sounding words are more likely to have the same stress 

pattern. Later, children learn to map sounds onto abstract orthographic representations (to 

write) and to decode the orthography back to phonology (to read). In the process of 

reading, it is not enough just to construct the string of phonemes, one also needs to apply 

a stress pattern to this string. At the early stages of literacy acquisition, children might 

map graphemes onto phonemes first, and, then, use the earlier acquired knowledge of 

probabilistic relations between sounds and stress patterns to select the most likely stress 

pattern to be applied to a string of phonemes. With further improvements in literacy, 

readers might still be going through the same serial steps from orthography to phonology 

and, then, to stress patterns. Alternatively, they could be gradually switching to a more 

efficient serial way of processing with orthography being mapped onto phonology and 

stress pattern at the same time.   
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Chapter 4 – Non-lexical Sources of Evidence for Stress Patterns 

4.1. Introduction 

Within the proposed model of stress assignment, a prior belief about the 

likelihood with which a word has a certain stress pattern (reflecting the frequency of this 

stress pattern in a language) is adjusted by non-lexical evidence for stress patterns 

derived from the orthographic input. The first goal of this chapter is to substantiate the 

claim that readers do utilize information about the frequency of stress patterns in a 

language when they assign stress to words. This idea has been widely considered in prior 

research, however, the empirical findings have been somewhat mixed. Some researchers 

have demonstrated the effect of the frequency of stress patterns on naming, and, further, 

posit that a more frequent stress pattern is applied to words by default (Black & Byng, 

1986; Breen & Clifton, 2011; Colombo, 1992). Others failed to provide behavioral 

support for the default stress pattern hypothesis, and state that the frequency of the stress 

patterns in a language plays little, if any, role (Burani & Arduino, 2004; Sulpizio, Job, & 

Burani, 2012; Sulpizio, Arduino, Paizi, & Burani, 2013). In the proposed model, an 

intermediate position is taken. On the one hand, there is a substantial amount of evidence 

suggesting that readers are likely to be impacted by the knowledge of the distribution of 

stress types in a language. However, this knowledge is not used as a default rule, but 

rather as a prior belief about the likelihood with which a word has a particular stress 

pattern. This prior belief can be easily changed by the assessment of non-lexical, 

orthographic cues present in a word that are probabilistically associated with certain 

stress patterns.         
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The second goal, therefore, is to consider a range of non-lexical cues to stress that 

might play a role in stress assignment. For example, in a selected number of languages 

(e.g., Greek, Spanish), readers can rely on diacritics, which are orthographic marks used 

to indicate the syllable to stress (Protopapas, 2006). In other languages (e.g., English, 

Russian), stress patterns may be signaled by the morphology of a word (Rastle & 

Coltheart, 2000), although this cue would be of use only when a polymorphemic word is 

being read. In this Chapter, only those cues that are likely to be used in a wide range of 

languages and that are likely to be relevant for words of various morphemic structures are 

considered. The first cue of such type is the orthographic complexity of word onsets and 

codas. In English, it has been suggested that disyllabic words with complex graphemic 

onsets (i.e., onsets containing more than one consonant grapheme) tend to have an iambic 

stress pattern (Kelly, Morris, & Verrekia, 1998), while words with complex graphemic 

codas (i.e., codas containing more than one consonant graphemes) tend to have a trochaic 

stress pattern (Kelly, 2004). Further, the orthography of word beginnings and endings has 

been shown to be utilized by readers as lexical stress indicator (Arciuli & Cupples, 2007). 

Finally, some researchers proposed that the knowledge of a word’s grammatical category 

is also a cue to lexical stress as the frequency of the stress pattern within certain 

grammatical categories exerts more influence on stress assignment than overall stress 

type frequency (Kelly & Bock, 1988). A more detailed review of research related to a 

number of potential sources of evidence for word stress is provided below.  

4.2. Frequency of stress patterns in the language 

Languages differ significantly with respect to the distribution of stress patterns. In 

fixed-stress languages (e.g., Hungarian, Finnish), there is only one stress pattern. 
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Therefore, readers do not have to derive stress information from print or lexical 

knowledge. They can apply the only available stress pattern to a word by default and 

always be correct. In contrast, in free-stress languages (e.g., English, Spanish, Italian), 

stress assignment is a cognitively demanding task requiring stress pattern identification in 

each polysyllabic word. Readers of these languages do, however, possess the knowledge 

of the relative probability of occurrence of various stress patterns in a language. In so 

called bounded languages (i.e., languages that have the tendency for stress to be drawn to 

the right or to the left edge of a word), certain stress patterns would occur significantly 

more often than the others. These stress patterns would be considered “regular” or 

“typical”, while the other(s) would be called “irregular” or “atypical”. For example, in 

English, a trochaic stress pattern is regular as 80% of disyllabic words have stress on their 

first syllable (Cutler & Carter, 1987). Simply by applying the more frequent stress pattern 

to all words of the language, an English speaker would assign stress correctly in 80% of 

cases. On the other hand, there are unbounded languages (e.g., Russian) in which words 

with different stress patterns are represented in the lexicon in approximately equal 

proportions. The knowledge of frequencies of stress patterns in these languages is of 

reduced value as there is no regular (or irregular) stress.   

As noted, stress regularity has often been considered to be an important variable 

affecting word processing. In one of the most influential models of spoken word 

production Weaver++, it was argued that the most frequent stress pattern is applied to a 

word’s syllabic structure by default (Levelt, 1989; Levelt, Roelofs, & Meyer, 1999). This 

idea was extended to the area of written word comprehension, where it was suggested 

that readers of languages with a regular stress pattern possess implicit knowledge about 
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the frequency of that pattern. This knowledge forms a strong bias to apply a regular stress 

pattern as some type of default rule (Colombo, 1992; Monsell, Doyle, & Haggard, 1989). 

Essentially, these researchers proposed that there are differences in the way regular and 

irregular stress patterns are processed. While regular stress patterns are applied by 

default, irregular ones must be either computed non-lexically (typically for low frequency 

words) or retrieved from lexical memory (typically for high frequency words).  

The presence of alleged differences in the way words with regular versus irregular 

stress patterns are processed suggests that speakers should behave differently when 

reading words with regular versus irregular stress patterns. If a regular stress pattern is 

applied essentially by default, then words that have this stress (i.e., regular words) should 

enjoy a processing advantage. On the other hand, words with an irregular stress pattern 

(i.e., irregular words) should be more difficult to process. In addition, similarly to the 

effect of the regularity of spelling-sound correspondences, which is observed with words 

of low frequency only (Seidenberg, Waters, Barnes, & Tanenhaus, 1984), stress 

regularity should interact with lexical frequency such that irregular words of low 

frequency should incur the most processing cost. 

Evidence for a significant stress regularity effect and its interaction with lexical 

frequency has been reported in English (Brown, Lupker, & Colombo, 1994; Monsell, 

Doyle, & Haggard, 1989). It took readers longer to name less frequent iambic stress 

words compared to more frequent trochaic stress words. Further, the effect of stress 

regularity was evident when low frequency words were used as stimuli, while high 

frequency words were immune to a regularity effect. Colombo (1992) replicated the 

stress regularity effect and stress regularity by frequency interaction in Italian. Moreover, 
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this effect was significant even when regular versus irregular words were presented in 

separate blocks, suggesting that the knowledge of the frequency of stress patterns is not 

reduced by strategic manipulations. Additionally, there were replications of a stress 

regularity effect in Dutch (Schiller, Fikkert, & Levelt, 2004) and in Greek (Protopapas, 

Gerakaki, & Alexandri, 2006). These replications in languages with different regular 

stress patterns demonstrate that the effect is driven by the frequency of stress pattern and 

not simply by a bias to the beginnings or endings of words.  

 Colombo (1992) provided a theoretical explanation for the stress regularity effect 

and its interaction with lexical frequency, similar, in essence, to the principles of the Dual 

Route Model of reading (Coltheart & Rastle, 1994). According to Colombo, stress in 

high-frequency words that have strong lexical connections, is assigned via the lexical 

route. On the other hand, low-frequency words have less established lexical links, 

allowing time for stress information to be computed by mapping spelling onto stress 

patterns; i.e., a non-lexical route is utilized with the most frequent stress pattern being 

assigned by default before the correct stress assignment can be produced by the lexical 

route. For low frequency regular words, the lexical and non-lexical reading procedures 

will produce the same response. On the other hand, if a low frequency word possesses an 

irregular stress pattern, the temporarily assigned default stress will not be correct. The 

conflicting outputs of the lexical and non-lexical routes result in a delay in pronunciation 

and a decline in accuracy.  

Additional support for the processing advantage of regularly stressed words is 

provided by patient data. English-speaking deep dyslexic aphasic patients made fewer 

errors on regularly compared to irregularly stressed words (Black and Byng, 1986; 
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Nickels & Howard, 1999). Similar findings of poor accuracy in naming of irregularly 

stressed words were reported in Italian (Cappa, Nespor, Ielasi, & Miozo, 1997; Laganaro, 

Vacheresse, & Frauenfelder, 2002; Miceli & Caramazza, 1993).  

There is also some evidence, from eye-tracking experiments, for the special status 

of a regular stress pattern in word reading (Breen & Clifton, 2011; Sulpizio & McQueen, 

2012). In a study by Breen and Clifton (2011), English participants read limericks that 

had stress-alternating homographs (e.g., prEsent – presEnt) embedded in them, while the 

participants’ eye-movements were recorded. The results demonstrated a reading cost 

when the lexical stress of the homograph, as determined by context, mismatched the 

metrical pattern of the limerick, but only in the case of irregularly stressed homographs 

(i.e., a word with iambic stress in trochaic metrical context). There were no processing 

costs when a word with a regular, trochaic stress pattern was presented in an iambic 

metrical context. Further, in a study by Sulpizio and McQueen (2012), Italian speakers 

learned tri-syllabic names of nonsense objects that they had to identify later on visual 

displays based on an auditory presentation that contained full or reduced acoustic stress 

cues. The researchers found that the acoustic manipulation of stress cues did not affect 

the speed of recognition of nonsense objects with regular, penultimate stress. Moreover, 

overall targets with penultimate stress were recognized faster than targets with ante-

penultimate stress, signaling that there is a distributional stress bias toward the more 

frequent penultimate stress pattern in Italian. 

Finally, there is an ERP study conducted in Turkish that provides evidence for 

differences in the processing of words with regular, final syllable stress and words with 

irregular, non-final syllable stress (Domahs, Genc, Knaus, Wiese, & Kabak, 2012). In 
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this study, the visual presentation of a word was followed by the aural presentation of the 

same word with either a proper or an improper stress pattern.  Stress violations involving 

the assignment of regular stress modulated the N400 ERP component, which is reflective 

of the difficulties in accessing the lexical representation of a word.  More importantly, 

however, violations with irregular stress modulated the P300 ERP component, which is 

the signature of phonological reevaluation of the stress pattern. Thus, in the case of the 

regular stress pattern, participants have difficulty judging that this pattern is incorrect 

unless they access the word’s lexical representation, while the incorrect usage of an 

irregular stress pattern is detected easily and very early in processing.                      

Not all results have been supportive of the “default” stress hypothesis, however 

(Kelly, Morris, & Verrekia, 1998; Rastle & Coltheart, 2000; Sulpizio, Job, & Burani, 

2012). For example, Kelly et al. (1998) showed that readers named words with irregular 

iambic stress faster than words with regular trochaic stress. This unusual pattern could be 

attributed partially to the choice of stimuli. Kelly et al. proposed that words with an 

irregular (in English) iambic stress pattern are orthographically marked in that the 

endings of those words have more letters than needed for proper phonemic processing 

(e.g., -ette, -elle, -oo). The experimenters, therefore, manipulated not only stress patterns 

of the words but also the presence of orthographic markers of iambic stress. Thus, half of 

their words with trochaic stress and half of their words with iambic stress contained 

endings that were representative of the iambic stress pattern, while the presence or 

absence of orthographic markers of trochaic stress was not controlled for. This 

characteristic of the stimuli might have given rise to a strategy that produced the 

advantage in processing for irregularly stressed words.      
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The issue of the effect of stress regularity on word naming in English has also 

been investigated by Rastle and Coltheart (2000). The words used in their Experiment 1 

were not explicitly selected to contain “orthographic markers” of an iambic stress pattern. 

In their experiment, there was no difference in the speed of processing of words with 

irregular iambic stress versus words with regular trochaic stress.  

Further, there are other reports of failed attempts to find a processing advantage 

for words with more frequent compared to less frequent stress patterns in Spanish 

(Gutierrez-Palma & Palma-Reyes, 2008) and in Italian (Burani & Arduino, 2004; 

Sulpizio, Job, & Burani, 2012; Sulpizio, Arduino, Paizi, & Burani, 2013). Moreover, not 

only adult readers, but also children, who are expected to rely on sub-lexical processing 

to a greater extent (Ziegler & Goswami, 2005), failed to show sensitivity to stress 

dominance in other studies (Gutierrez-Palma & Palma-Reyes, 2004; Paizi, Zoccolotti, & 

Burani, 2011), although young children, who had just started learning to read, did apply a 

regular stress pattern to nonwords that they were asked to name (Arciuli et al., 2010). 

Thus, a tendency for stress regularization appears to decline gradually with age 

potentially due to the overall improvement in literacy and due to the acquisition of other 

stress cues present in the language. Indeed, dyslexic children, who have difficulty in 

acquiring reading skills, often show a similar pattern of stress regularization errors as 

novice readers (Paizi et al., 2011). Although knowledge of the existence of a regular 

stress pattern is likely still accessible in adults and young skilled readers, it may not be a 

leading source of evidence for stress patterns anymore and, therefore, the stress regularity 

effect can often not be registered behaviorally.            
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Finally, the idea that there is a strong default mechanism of regular stress 

assignment found no support in a study by Colombo and Zevin (2009). Using a “pathway 

priming” methodology, in which participants named a target word or a nonword preceded 

by a set of (prime) words or nonwords that either had or did not have the same stress 

pattern as the target, these researchers demonstrated that participants were more likely to 

be impacted by the stress pattern of the primes or by lexical knowledge than by the 

knowledge of a more frequent stress pattern in the language. Nevertheless, there was also 

some evidence for a bias to assign regular stress to words when the experimental 

manipulation made sub-lexical processing of stimuli more likely. 

The suggestion that the most frequent stress pattern forms a bias in the stress 

assignment process and acts as a strong cue to stress is, therefore, open to debate. On the 

one hand, there are studies showing that there is a processing advantage for words with 

the more frequent stress patterns. These findings are often interpreted as denoting the 

presence of a default mechanism or rule, according to which the most frequent stress 

pattern is assigned by default to any word in a language. On the other hand, this idea of a 

default regular stress mechanism is not supported by investigations that failed to 

demonstrate a processing advantage for words with a regular stress pattern or that showed 

a processing disadvantage for words with regular stress. Based on those types of findings, 

one could argue that the knowledge of the distribution of stress patterns in a language is 

of little, if any, value or utility in the process of word recognition. Alternatively, one 

could easily argue that there is enough evidence suggesting that information about the 

frequency of stress patterns in the language is available to readers and impacts the 

processing of polysyllabic words. However, this impact is not in the form of a default 
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rule that is applied to words, but rather in the form of prior belief that any word is more 

likely to have a more frequent than less frequent stress pattern. This information is easily 

accessible and at early stages of literacy acquisition it is the main source of evidence for 

stress. With the development of reading skills, it seems likely that readers acquire other 

orthographic cues that are probabilistically associated with stress patterns and these cues 

are used in order to adjust their prior beliefs formed by the knowledge of the distribution 

of stress patterns.  Hence, the impact of the existence of regular stress pattern is muted, 

causing that impact to sometimes fail to be evident.            

4.3. Orthographic complexity of word onsets and codas 

Stress patterns can be marked in the orthography via associations that exist 

between graphemic combinations and stress patterns. One of the associations of this type 

is that of stress and complexity of words’ codas (Kelly et al., 1998) and/or complexity of 

words’ onsets (Kelly, 2004). A word’s coda is defined as the ending of a word that 

includes all word final consonants that follow the vowel of the last syllable of a word 

(e.g., effe-ct, patte-rn, lette-r). Onset corresponds to a consonant cluster that precedes the 

first vowel of a word (e.g., n-umber, bl-ossom, spl-ashy).  

Thus, Kelly et al. (1998) found that many codas of disyllabic English words are 

correlated with stress patterns. For example, words containing coda –t are more likely to 

have trochaic stress pattern (e.g., comet, sonnet, market), while words containing coda –

tte are more likely to have iambic stress (e.g. roulette, corvette, dinette). Based on these 

observations, Kelly et al. proposed that orthographic cues to stress are located in the 

second syllable of the disyllabic words and that these cues typically mark only the 

irregular (for English) iambic stress pattern by representing the information about the 
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phoneme of the coda by using more letters than needed. As a result, irregular words with 

iambic stress that are marked by codas as having an iambic stress pattern should be as 

easily processed as regular trochaic stress words.  

Indeed, Kelly et al. (1998) demonstrated that words with an iambic stress pattern 

orthographically marked for this type of stress by their codas and non-marked words with 

a trochaic stress pattern (i.e., words that did not contain codas associated with iambic 

stress) had a processing advantage in naming and lexical decision tasks over non-marked 

for iambic stress iambic words and trochaic words that contained iambic orthographic 

cues. These findings support a claim that orthographic cues to stress are learned by 

readers, and that the presence of these cues in words expedites their processing. 

Further, Kelly (2004) showed that there is also a relationship between stress 

patterns and onsets in English disyllabic words. A corpus analysis revealed that the 

incidence of trochaic stress increased significantly with the number of consonants in 

word onset position (Kelly, 2004). Words that had no onset consonants had trochaic 

stress in 35% of the cases, while words with two consonants in their onset had trochaic 

stress in 83% of the cases. These results were further corroborated in a study by Arciuli 

and Cupples (2007). Moreover, it was demonstrated that English readers are sensitive to 

onset complexity as a stress cue as they assigned first syllable stress to disyllabic 

nonwords more often when they began with two consonants rather than one (e.g., 

flormand vs. formand; Kelly, 2004). In sum, the behavioral evidence indicates that 

speakers do consider the complexity of both word codas and word onsets in assigning 

lexical stress.  
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4.4. Orthography of word endings and beginnings  

The hypothesis that orthography can implicitly provide information about stress 

patterns has been extended from word onsets and codas to orthographic elements of 

greater length: word endings and word beginnings. Most of the research concentrated on 

investigating the validity of word endings as stress cues. For a disyllabic word, word 

ending is defined as a fragment that includes a vowel of the second syllable and all 

following consonants (e.g., wind-ow; prod-uce; nam-ing). Words with the same 

orthographic component in their structure are assumed to form neighborhoods (e.g., in 

English, mark-et, brack-et, pack-et, bask-et, cad-et). Words with identical endings that 

map onto the same stress pattern are called “stress friends” (e.g., market: bracket). Words 

with identical endings that do not map onto the same stress pattern are called “stress 

enemies” (e.g., market: cadet). A word like “market” that has many “stress friends” is 

called consistent, while a word like “cadet” that has many “stress enemies” is called 

inconsistent.   

The consistency with which graphemes map onto phonemes has been investigated 

in monosyllabic word reading (Jared, McRae, & Seidenberg, 1990; Jared, 2002), and it 

has been demonstrated that words with a high degree of consistency enjoy a processing 

advantage. Colombo (1992) extended this idea to the domain of polysyllabic word 

reading (in Italian) and proposed that the consistency of a word’s orthography-to-stress 

mapping may have an effect on stress assignment. The presence of common letter 

clusters in words with different stress patterns (“stress enemies”) may slow down the 

assignment of the correct stress due to the competition from partially activated, 

alternative variants of lexical stress compared to words that do not have “stress enemies”.   
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An experimental investigation of the consistency effect in Italian demonstrated an 

interaction of consistency and regularity of stress (Colombo, 1992). The processing of 

regularly stressed words with many stress enemies was not slower than the processing of 

regularly stressed words with many friends. Only irregularly stressed words were subject 

to the influence of orthography-to-stress mapping consistency. When words with 

irregular stress pattern had many stress friends, that fact compensated for its irregularity 

with naming latencies being the same as the latencies of regularly stressed words. On the 

other hand, words with irregular stress patterns that had many stress enemies required 

more time for naming and were more likely to be pronounced with an incorrect stress 

pattern (Experiment 4, Colombo, 1992). Further, the reliance of readers on the knowledge 

of the overall distribution of stress patterns in the language and the distribution of stress 

patterns in words forming neighborhoods has been demonstrated in a nonword naming 

experiment (Experiment 5, Colombo, 1992). Thus, according to Colombo, there are two 

factors that influence stress assignment in Italian. The first factor is stress regularity: the 

most frequent stress pattern can be assigned by default. The second factor is stress 

consistency as defined by the distribution of stress patterns in a word’s orthographic 

neighborhood formed on the basis of the orthography of the word’s ending.  

Burani and Arduino (2004) criticized Colombo’s (1992) experiments on the 

grounds of an inappropriate matching of items on a number of variables including 

summed frequency of stress friends and initial phoneme characteristics. The performance 

of readers on naming of better matched Italian words that varied in stress consistency of 

word endings and stress regularity showed a significant consistency effect in both 

regularly and irregularly stressed words. Words with many stress friends were read faster 
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and with fewer mistakes than words that had many stress enemies. There was, however, 

neither a regularity effect nor a consistency by regularity interaction.  

There have been a number of replications of the effect of stress consistency of 

word endings in Italian. For example, in a naming study by Sulpizio, Arduino, Paizi, and 

Burani (2013), participants were sensitive to stress cues provided by word endings, 

although this sensitivity was greater for endings associated with the irregular (in Italian) 

antepenultimate stress pattern. Further, the effect of stress neighborhood on naming was 

also demonstrated in typically developing and developmental dyslexic Italian children 

(Paizi et al., 2011). Both participant groups read words with many stress friends more 

accurately than words with many stress enemies. These results suggest that stress 

assignment in Italian is driven by distributional information about the consistency of the 

stress pattern and the orthography of word endings. 

Performance on regularly and irregularly stressed words with different degrees of 

stress consistency was also examined in English (Arciuli & Cupples, 2006; 2007; Arciuli 

et al., 2010). A large scale analysis of the corpus of disyllabic English words revealed 

that the orthography of many word endings is probabilistically associated with lexical 

stress (Arciuli & Cupples, 2006). For example, words ending in “-ock” tend to have a 

trochaic stress pattern (e.g., hammock, bullock, pollock), while words ending in “-oon” 

tend to have iambic stress pattern (e.g., baboon, lagoon, maroon). In fact, a discriminant 

function analysis of an English disyllabic corpus showed that the correct classification of 

word stress types based on the orthography of word endings occurred in 95% of cases. 

Further, adult and child participants were shown to be sensitive to the probabilistic stress 

cues provided by word endings (Arciuli & Cupples, 2006; Arciuli et al., 2010).   
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As noted, recently, it has been suggested that not only word endings, but also 

word beginnings, can serve as useful stress cues (Arciuli & Cupples, 2007; Arciuli et al., 

2010). The word beginning of a disyllabic word is defined as the segment containing all 

graphemes up to and including the first vowel (e.g., fo-rmer, mo-del, e-nding). An 

analysis of the corpus of English disyllabic words showed that some word beginnings 

occur more often in trochaically stressed words, whereas other word beginnings occur 

more often in iambically stressed words (Arciuli & Cupples, 2007). In addition, the 

results of a discriminant function analysis with word beginnings considered as the only 

criterion for stress classification demonstrated that the correct grouping of words into 

trochaic versus iambic stress occurred in 90% of cases (Arciuli et al., 2010). In follow-up 

studies, empirical evidence was obtained showing that when reading nonwords 

containing orthographic cues to stress adults and children were sensitive to beginnings as 

well as endings (Arciuli & Cupples, 2007; Arciuli et al., 2010).  

In summary, even in languages that do not use explicit orthographic markers of 

stress (i.e. diacritics), there are certain orthographic patterns that signal what stress type 

should be assigned to a word. Word beginnings and endings were empirically shown to 

be utilized as stress cues by readers. The limitation of these findings is that they were 

reported in a few languages only. To allow for greater generalization of the idea that 

lexical stress decisions can be made based on orthographic information, investigations of 

the role of orthography in stress assignment in other languages are needed.     

4.5. Grammatical category 

Another potential cue to stress is the grammatical category of a word. In some 

languages, the distribution of stress patterns in words of different grammatical categories 
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might be different. For instance, in English, trochaic stress is more typical in disyllabic 

nouns, whereas most disyllabic verbs often exhibit iambic stress (Chomsky & Halle, 

1968). Readers might be aware of these differences and might be more inclined to assign 

the most frequent (for words of certain grammatical category) stress pattern to a word 

belonging to a particular grammatical category. Thus, in English, nouns might be more 

likely assigned trochaic stress, while verbs might be more likely assigned iambic stress.      

Kelly and Bock (1998) noted this characteristic of the English stress system and 

suggested that nouns with trochaic stress and verbs with iambic stress may be considered 

as having regular stress in English. Empirical evidence for the impact of grammatical 

category on stress assignment has been provided by Kelly and Bock in two experiments 

involving reading nonwords embedded in verb versus noun biasing contexts. The results 

showed that speakers were sensitive to the relation between grammatical category and 

stress patterns. Specifically, nonwords acting as nouns were more likely to be assigned 

trochaic stress, while nonwords acting as verbs were more likely to receive iambic stress. 

Additional evidence for the impact of grammatical category on stress assignment 

has been provided by Arciuli and Cupples (2004, 2006, 2007). For example, Arciuli and 

Cupples (2004) showed that speakers of English classified visually presented stimuli as 

verbs or nouns faster and more accurately if items were what they call typically stressed 

(i.e., trochaic nouns and iambic verbs). Further, typically stressed nouns and verbs also 

enjoyed a processing advantage over atypically stressed iambic nouns and trochaic verbs 

in naming and lexical decision tasks (Arciuli & Cupples, 2006). Finally, in an onset-

gating paradigm, in which words were presented aurally in increasing increments of 
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length, participants were better at identifying words with a stress pattern typical for their 

grammatical category (Arciuli & Cupples, 2007).  

   In an analysis of the corpus of English disyllabic words, Arciuli and Cupples 

(2006) demonstrated that English word endings are probabilistically associated with 

certain stress patterns as well as with certain grammatical categories. Across all endings, 

correlations between grammatical category and stress patterns were highly significant 

(nouns and trochaic stress: r = .70; verbs and iambic stress: r = .75). Further, the 

researchers provided evidence that speakers of English use the cues to grammatical 

category and stress patterns provided by the word endings. Based on these findings, 

Arciuli and Cupples (2006) concluded that typically stressed English words may enjoy a 

processing advantage due to the fact that, in these cases, orthographic cues are often 

consistent with one another in terms of providing the correct combination of grammatical 

category and stress pattern information.  

To conclude, grammatical category does appear to be probabilistically related to 

lexical stress. So far, this relation has been established and investigated in English only. 

However, even in English, it is not clear how exactly the knowledge of grammatical 

category is utilized in the process of stress assignment. On the one hand, it could be that 

orthography cues grammatical category directly, which in its turn influences assignment 

of stress. On the other hand, orthography might be cuing grammatical category and 

lexical stress at the same time and independently from each other. The correlation 

between grammatical category and stress pattern might be an artifact of the relationship 

between each of these factors and orthographic cues.         
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4.6. Conclusion 

The goal of this chapter was to assess the empirical evidence for the claim that 

readers are sensitive to the distribution of stress patterns in a language and use this 

information in the process of stress assignment. The second goal was to discuss a set of 

stress cues that have been shown to signal proper stress patterns (i.e., to have high 

validity) and to be used by readers (i.e., to have high utility). Such cues might potentially 

be used in the proposed Bayesian model of stress assignment as evidence used to adjust 

any prior belief about a stress pattern, based on stress frequency. The following 

conclusions, concerning these factors, can be offered. 

First of all, previous research does provide evidence that readers are aware of the 

distribution of stress patterns in the language. In some studies, these results are often 

interpreted as favoring the default stress hypothesis, an idea that the most frequent stress 

pattern is assigned to words automatically. This idea, however, contradicts the principles 

of the Bayesian model of stress assignment to be proposed here. In the model, there are 

no procedural differences in the way more frequent versus less frequent stress patterns 

are assigned to words. In both cases, readers evaluate evidence that is provided by the 

orthographic input and make decisions based on that evidence. The only difference 

between two stress patterns is that in order for a less frequent stress pattern to be 

assigned, readers require stronger evidence for this stress pattern than in case of a more 

frequent stress pattern. There have been a number of failed attempts to demonstrate that 

the most frequent stress pattern is assigned by default. However, none of those studies 

posit that the information about the frequency of stress patterns in the language is 

unavailable or unused by readers. 



65 

 

Secondly, this review detailed research examining various stress cues. Stress cues 

that have been shown to influence the processing of polysyllables in a greater number of 

languages and are relevant for all words regardless of their morphological status concern 

the orthography of a word. For example, orthographic complexity of word onsets and 

codas has been linked to the assignment of stress in English disyllabic words. Further, it 

was demonstrated that the orthography of word beginnings and word endings might be 

good cues to stress. Finally, there are some suggestions that the grammatical category of 

a word is a potential stress cue. However, at this point, it is unclear whether grammatical 

category cues stress directly or whether the orthography is cuing both grammatical 

category and lexical stress at the same time.    

This list is not exhaustive as there might be some other stress cues that have not 

yet been investigated. Further, the presented research was mainly conducted in English 

and Italian, languages that are stress bounded, and, thus, these cues might be 

characteristic only of languages that have regular stress patterns. Therefore, further 

investigations of stress cues in other languages, especially in languages with no regular 

stress pattern, are required. A final point to be made is that although in making stress 

assignment decisions, readers can evaluate all sources of evidence available in the 

language, doing so might be a time-consuming process. Therefore, during routine word 

processing, which is usually time-constrained, the set of stress cues being analyzed is 

likely limited to only those sources of information that are highly indicative of the stress 

patterns in the language and ones that readers have learned to rely on.  
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Chapter 5 – Implementation of the Bayesian Model of Stress Assignment in Russian 

5.1. Introduction 

The present chapter represents the beginning of the process of implementing the 

Bayesian model of stress assignment in Russian. Stress in Russian is flexible and it often 

serves to distinguish between otherwise identical lexical items (e.g., зАмок (“castle”) – 

замОк (“lock”); мУка (“burden”) - мукА (“flour”)) or between grammatical forms of the 

same lexical item (e.g., рУки (plural, nominal “hands”) – рукИ (singular, genitive 

“hand”); лЕсу (dative, “forest) – лесУ (locative, “forest”). Despite the importance of 

lexical stress for word recognition, its assignment in Russian is complex and is often a 

source of speech errors as there are no clear rules to follow and there is no dominant 

stress pattern in this language. The complexity of the stress system in Russian has been 

taken by some researchers as indicating that lexical stress in Russian is assigned only 

following the retrieval of accurate stress information from the word’s lexical 

representation (Gouskova, 2010; Lukyanchenko, Idsardi, & Jiang, 2011). One of the 

goals of the present research was to assess whether this position is incorrect and, instead, 

there are at least some non-lexical cues that readers of Russian actually do use to assign 

stress. If the results confirm that stress in Russian can be and is computed non-lexicaly, 

then, these non-lexical cues can be considered as valid and potentially utilized sources of 

evidence for stress within a Bayesian model of stress assignment. Hence, a computational 

implementation of that model can be created and its performance on stress assignment 

can be assessed in a series of simulations. For the sake of simplicity, only the issue of 

stress assignment in disyllabic Russian words was investigated here.   
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Study 1 was a corpus analysis of the distribution of trochaic versus iambic stress 

patterns in a set of Russian disyllabic words. The goal was to determine if there are any 

distributional differences for these two stress patterns and whether there are grounds to 

expect that readers in Russian might be biased for a particular stress pattern. The analysis 

was conducted over all disyllabic words regardless of their grammatical category and 

separately for words of each grammatical category to see if stress regularity could be 

found in Russian when only words performing one grammatical function are considered. 

This analysis provided us with the information about prior biases to stress pattern that the 

Bayesian model of stress assignment requires.  

The next goal was to identify a set of non-lexical sources of evidence for stress 

that are present in Russian and that are used by native speakers. This investigation 

involved the combination of factorial and regression approaches. First, a factorial study 

investigated the impact of a number of variables on performance in a naming task (Study 

2). In this study, one question was whether there is any evidence for a bias to either a 

trochaic or an iambic stress pattern demonstrated by readers of Russian. A second 

question was whether readers are sensitive to the effect of two potential cues to stress: 

spelling-to-stress consistency of word endings and grammatical category.  

Although a factorial design allows an investigator to claim that the manipulation 

of independent variables is responsible for significant effects, this approach has some 

limitations. The most important one is that it does not allow for the examination of effects 

of many variables within one study. A complementary approach allowing researchers to 

overcome this limitation and to conduct an investigation which is more exploratory in 

nature is regression analyses. In a regression study, the effect of many variables within a 



68 

 

single data set, which usually includes a significant number of observations, is analyzed. 

Following the suggestions that it is useful to combine factorial and regression analyses 

(Balota, Yap, Hutchinson, & Cortese, 2012; Treiman et al., 1995), it seemed prudent not 

to limit the investigation to factorial studies only, but also to undertake what Balota et al. 

(2012) termed a “megastudy” approach in the attempt to establish a set of non-lexical 

cues to stress present in Russian and used by Russian readers.   

Therefore, a binary logistic regression was run on a set of non-lexical predictor 

variables of stress patterns in the corpus of more than 13,942 words (Study 3). This study 

allowed the discovery of at least some of the non-lexical cues that are probabilistically 

associated with stress patterns in Russian. Then, a generalized linear mixed effects model 

(Study 4) that had the same set of predictors was applied to the results of stress 

assignment performance of readers on a set of 500 disyllabic words. Study 5 allowed an 

assessment of the actual utilization of the potential cues to stress. The expectation is that 

the combination of factorial and regression studies would allow identification of most of 

the non-lexical sources of evidence that could be used to predict stress assignment in 

Russian using the proposed Bayesian framework.             

5.2. Study 1: Corpus analysis of prior probabilities of stress patterns in Russian 

The goal of this study was to establish the prior probabilities of trochaic and 

iambic stress patterns in Russian by investigating the distribution of these stress patterns 

in the language. Both type-based (proportion of words with trochaic versus iambic stress 

patterns) and token-based (proportion of the summed logarithmic frequencies of words 

with trochaic versus iambic stress) distributions of stress patterns were calculated. 

Method 
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All disyllabic words from the Frequency Dictionary of Modern Russian 

(Lyashevskaya & Sharov, 2009) were selected. The dictionary provides lemmatized 

forms of the words only. In the morphologically rich Russian language, however, readers 

are exposed to inflected forms more often than to lemmatized forms. Therefore, inflected 

forms of words were retrieved from the Dictionary of Russian Grammar (Zaliznyak, 

2003) and added to the database. Only words with a frequency of at least 1 per million 

words according to the Russian National Corpus (http://ruscorpora.ru) were considered. 

The resulting database consisted of 13,942 words. The information about the grammatical 

category and frequency of each word was retrieved from the Frequency Dictionary of 

Modern Russian (Lyashevskaya & Sharov, 2009). The stress pattern information was 

verified by consulting the Dictionary of Russian Lexical Stress (Zarva, 2001).   

Results and Discussion 

Table 2 presents the proportion of each stress pattern calculated based on the 

number of words with trochaic versus iambic stress as a function of grammatical 

category. Table 3 presents the proportion of each stress pattern calculated based on the 

summed logarithmic frequency of words with trochaic versus iambic stress as a function 

of grammatical category. The results of both analyses showed that there is no dominant 

stress pattern in Russian. In the type-based analysis, a trochaic stress pattern was present 

in 55% of the words and an iambic stress pattern was present in 45% of the words, while 

in the token-based analysis 57% of the words had trochaic stress and 43% of the words 

had iambic stress. The analysis of the distribution of stress patterns in words of various 

grammatical categories demonstrated a potentially interesting result. Adjectives 

frequently had trochaic stress (type-based analysis: 80%; token based analysis: 81%).  
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Table 2 

Number and Proportion of Each Stress Type for Russian Disyllabic Words in the Corpus 

 Trochaic Stress Iambic Stress 

Grammatical 
Category 

Number Proportion (%) Number Proportion (%) 

Adjective 1707 80 401 20 

Noun 4678 55 3884 45 

Verb 1100 38 1844 62 

Other 162 50 166 50 

Total 7647 55 6295 45 

Note. The stress type proportions are calculated based on the total number of words in the 

grammatical category in question in the corpus. Trochaic Stress refers to stress on the 

first syllable of a word. Iambic Stress refers to stress on the second syllable of a word.  
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Table 3 

Summed Logarithmic Frequency and Proportion of Each Stress Type for Russian 

Disyllabic Words in the Corpus 

 Trochaic Stress Iambic Stress 

Grammatical 
Category 

Summed Log 
Frequency 

Proportion (%) Summed Log 
Frequency 

Proportion (%) 

Adjective 2221 81 514 19 

Noun 6110 56 4580 44 

Verb 1248 38 2007 62 

Other 655 49 679 51 

Total 10234 57 7780 43 

Note. The stress type proportions are calculated based on the summed logarithmic 

frequency of words in the grammatical category in question in the corpus. Trochaic Stress 

refers to stress on the first syllable of a word. Iambic Stress refers to stress on the second 

syllable of a word.  
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Verbs, in contrast, more often had iambic stress (type-based analysis: 62%; token-based 

analysis: 62%). For nouns, trochaic stress occurred approximately as often as iambic 

stress (type-based analysis: 55% vs. 45%; token-based analysis: 57% vs. 43%). Other 

grammatical categories (prepositions, pronouns, adverbs, etc.) showed an approximately 

50:50 split, although there were only small numbers of words in each of these categories.   

Based on these data, it appears that Russian does not possess a regular stress 

pattern, meaning that the prior probabilities of trochaic and iambic stress patterns are 

approximately the same. Therefore, the readers of Russian are unlikely to be biased 

toward either stress pattern when assigning stress to disyllabic words. At the same time 

there is a dominance of the trochaic stress pattern for adjectives which potentially might 

influence the processing of words belonging to that grammatical category. A small 

dominance of the opposite, iambic stress pattern does exist for verbs. Finally, there is no 

regular stress pattern for nouns. What remains to be investigated, of course, is whether 

the presence of differences in the distribution of stress patterns at the level of 

grammatical categories influences word processing.  

5.3. Sources of evidence for stress patterns in Russian 

5.3.1. Study 2: Factorial investigation of the role of stress regularity, stress 

consistency of word ending, and grammatical category on word naming 

The goal of Study 2 was to examine the role that stress regularity, stress 

consistency of word ending, and grammatical category play in Russian word naming. As 

noted, the effect of these variables on stress assignment has been investigated in a limited 

number of languages (mainly English and Italian), and the results that were reported in 

these studies were somewhat inconsistent (Arcuili & Cupples, 2006; Burani & Arduino, 
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2004; Colombo, 1992). Therefore, it is not yet clear whether these variables have an 

impact on word processing and, hence, whether they could be considered valid and 

utilized stress cues that should be incorporated into a Bayesian model of stress 

assignment in Russian.    

One issue investigated in Study 2 was whether Russian readers demonstrate an 

overall bias to either trochaic or iambic stress patterns in naming disyllabic words. Such a 

result seems unlikely because Russian does not have a regular stress that dominates the 

language. Therefore, if all other variables are equated, latency differences in reading 

words with first versus second syllable stress are unlikely.    

The other issue concerns the readers’ reliance on the consistency of the 

relationship between the orthography of the word ending and the stress pattern. Previous 

research has not fully established whether the differential latencies observed in naming of 

polysyllabic words reflect the effect of consistency of stress, regularity of stress or the 

combined effects of consistency and regularity. Because Russian nouns do not possess a 

regular stress pattern, those words should provide good grounds for examining the impact 

of consistency uncontaminated by regularity effects. If consistency matters, there should 

be faster response times to nouns that have consistent stress patterns. In contrast, 

adjectives and possibly verbs have regular stress patterns which will allow an 

examination of the potential interaction of regularity and consistency for these stimuli. 

The presence of any effect of consistency would indicate that the orthography of word 

ending serves as a reliable stress cue in Russian. 

Study 2 also allowed an examination of the impact of grammatical category on 

word naming and, in particular, whether the different levels of regularity in adjectives, 
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nouns, and verbs revealed in Russian might matter. The question is whether readers are 

sensitive to these differences, and whether they use this information in naming Russian 

disyllabic words. The evidence for a stress regularity effect at the level of grammatical 

category in Russian (e.g., a processing advantage for trochaic adjectives) would provide 

evidence that a word’s grammatical category affects stress assignment.  

The final issue concerns the more general claim that stress is assigned to words in 

Russian only as a result of lexical retrieval (Gouskova, 2010). If so, no significant 

differences in the processing times and accuracy of stress assignment as a function of 

consistency or regularity should emerge for words in any grammatical category. In 

contrast, the demonstration of an impact of regularity and/or consistency on word naming 

would signal utilization of non-lexical information by readers and, therefore, it would 

suggest that a Bayesian model (or some other type of non-lexical model of stress 

assignment) would be appropriate for modeling stress assignment in Russian.          

Method 

Participants 

Twenty eight undergraduate students from Altay State University (Barnaul, 

Russia) took part in this experiment for a small monetary remuneration (age 17 – 35; M = 

19). All were native speakers of Russian. None of the participants reported high 

proficiency in any second language.  

Materials 

A set of 192 disyllabic words (see Appendix A) was created by crossing of 

grammatical category (adjective vs. noun vs. verb), stress consistency of word ending 

(consistent vs. inconsistent), and stress type (first syllable stress vs. second syllable 
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stress). None of the words contained morphemes that are associated with only one stress 

pattern; thus, the decisions about proper stress could not be biased by morphology. The 

stress pattern of each word was determined by consulting the Dictionary of Russian 

Lexical Stress (Zarva, 2001). Only the items with a frequency less than 20 per million as 

reported in the Frequency Dictionary of Modern Russian (Lyashevskaya & Sharov, 2009) 

were used. The sets were matched on length, word frequency, orthographic neighborhood 

size (Coltheart, Davelaar, Jonasson & Besner, 1977), and in a word-by-word manner on 

initial phoneme characteristics. Because it is unclear whether imageability affects 

performance in visual word recognition tasks (Cortese & Khanna, 2007; Zevin & Balota, 

2000), no attempt was made to match the words on imageability. A post hoc analysis did, 

however, show that, as expected, nouns were rated as more imageable than adjectives or 

verbs. However, imageability did not vary as a function of consistency or regularity.   

The consistency measures were calculated using the database created for Study 1. 

Consistency was based on the neighborhood created by words sharing an ending (i.e., the 

vowel of the second syllable and all following consonants). Words in the neighborhood 

that had the same stress patterns were categorized as stress friends. Stress enemies were 

neighbors with the opposite stress pattern. The method for calculating spelling-stress 

consistency was analogous to that used by Treiman et al. (1995) for spelling-sound 

consistency. The type consistency measure for each word was calculated as the number 

of stress friends divided by the number of all words with the same ending. The 

calculation of token consistency was carried out by dividing the summed frequency of 

friends by the summed frequency of all words with the same ending.   
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The words in conditions with consistent spelling-to-stress mappings were 

matched on type (M = 0.72) and token consistency (M = 0.69). Words in conditions with 

inconsistent spelling-to-stress mapping were also matched on these measures (type 

consistency: M = 0.35; token consistency: M = 0.36). Words with consistent versus 

inconsistent spelling-to-stress mappings differed significantly from each other when type, 

F(1,191) = 1155.94, p < .001, as well as token, F(1,191) = 241.79, p < .001, measures 

were compared. The mean characteristics of the word sets are shown in Table 4 for words 

with consistent (A) and inconsistent (B) spelling-to-stress mappings. 

The 192 experimental items were mixed with 108 disyllabic filler words. The 

filler words had equal proportions of trochaic and iambic stress to reflect the absence of a 

dominant stress pattern in Russian. The number of filler words belonging to a specific 

grammatical category was varied to replicate the proportion of words of each category in 

the language. The distribution of stress within words of a certain grammatical category 

essentially reflected the frequency of stress type within each grammatical category.      

Procedure 

Participants were instructed to read aloud words presented on the screen one at a 

time as quickly and as accurately as possible. Instructions and stimuli were presented 

using the DMDX display system (Forster & Forster, 2003). The list of 300 items was 

presented in three blocks of trials. There was a preceding practice block of 20 words. The 

order of blocks and of items within blocks was randomized for each participant. Each 

trial started with the presentation of a fixation point for 500 ms. A target word in upper-

case appeared in white on a black background (Courier New, 12 font) for 2000 ms or 

until the participant responded. The intertrial interval was 1000 ms.  
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Table 4 

Mean characteristics of the words with consistent (A) and inconsistent (B) spelling-to-

stress mappings used in Study 2 

A. 

 Adjectives Nouns Verbs 

Characteristics Trochaic 
Stress 

Iambic 
Stress 

Trochaic 
Stress 

Iambic 
Stress 

Trochaic 
Stress 

Iambic 
Stress 

 
Words 16 16 16 16 16 16 

Length 5.63 5.50 5.25 5.44 5.38 5.63 

Frequency   3.27 2.82 3.37 3.32 3.03 3.17 

N-size 2.69 3.31 3.88 2.88 3.31 3.06 

Imageability 4.03 4.55 4.59 5.11 4.08 4.17 

Type 
Consistency 

0.70 0.76 0.70 0.69 0.69 0.76 

Token 
Consistency     

0.74 0.70 0.66 0.69 0.67 0.71 

B. 

 Adjectives Nouns Verbs 

Characteristics Trochaic 

Stress 

Iambic 

Stress 

Trochaic 

Stress 

Iambic 

Stress 

Trochaic 

Stress 

Iambic 

Stress 

Words 16 16 16 16 16 16 

Length 5.31 5.38 5.50 5.31 5.44 5.31 

Frequency   2.96 3.35 3.58 3.22 3.47 2.85 

N-size 2.94 3.50 2.53 3.63 3.00 3.38 

Imageability 4.16 4.11 5.23 5.37 4.41 4.30 

Type 
Consistency 

0.36 0.35 0.36 0.36 0.33 0.37 

Token 
Consistency     

0.39 0.35 0.34 0.36 0.36 0.36 



78 

 

Results 

Responses were marked using CheckVocal (Protopapas, 2007) by the author and 

two other native speakers of Russian. To reduce the effects of outliers, latencies slower 

than 1500 ms or faster than 200 ms were discarded from the analyses. The total 

percentage of discarded data-points was 2.4%.  Latencies and error rates were analyzed 

using a linear mixed effects model with Subjects and Items entered as crossed random 

factors, and with Stress Type (trochaic vs. iambic), Stress Consistency (consistent vs. 

inconsistent), and Grammatical Category (adjectives vs. nouns vs. verbs) entered as fixed 

factors.  The analysis was conducted using the R package lme4 (Bates & Maechler, 

2010). The mean latencies and percentage of errors are shown in Table 5. 

As expected, latencies to words with trochaic stress (M = 684 ms, SD = 42) did 

not differ significantly from those for words with iambic stress (M = 686 ms, SD = 41), t 

(5025) = 0.70, β = 2.44, p = .48. However, participants were more likely to make stress 

assignment errors on the words with iambic (7.1%) than trochaic stress (4.5%), z = 3.88, 

β = 0.99, p < .01. Also as expected, there was a main effect of consistency in the analysis 

of latencies, t (5025) = 4.89, β = 17.00, p < .01, and in the analysis of errors, z = 6.19, β = 

1.62, p < .01. Participants were faster (M = 676 ms, SD = 37) and more accurate (3% 

errors) in naming words with stress consistent endings in comparison to words with stress 

inconsistent endings (M = 693 ms, SD = 44; 8.6% errors). The main effect of 

grammatical category was also significant in both the latency, t (5024) = 4.13, β = 17.50, 

p < .01, and the error analyses, z = 2.04, β = 0.63, p = .04. None of the interactions 

reached significance either in the latency (all ts < 1.39) or the error analyses (all zs < 

.93).  
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Table 5 

Mean naming latencies and percentage of errors as a function of type of stress, 

consistency of stress and grammatical category in Study 2 (word naming) 

 Trochaic Stress Iambic Stress 

 Consistent Inconsistent Consistent Inconsistent 

Grammatical 
Category 

RT %Error RT %Error RT %Error RT %Error 

Adjectives 667 1.1 668 3.1 663 3.6 693 8.5 

Nouns 689 4.7 709 11.6 690 6.9 710 13.4 

Verbs 678 1.2 689 5.8 668 1.6 691 8.4 

Overall 678 2.3 689 6.8 674 4.0 698 10.1 

Note. N = 28. Trochaic Stress refers to stress on the first syllable of a word. Iambic Stress 

refers to stress on the second syllable of a word. Latencies (RTs) are reported in ms. 
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Planned contrasts were carried out to compare mean latencies and error rates for 

the three grammatical categories. The mean latency for nouns (M = 700 ms, SD = 44) 

was significantly larger than that for adjectives (M = 673 ms, SD = 38), t (5025) = 4.59, β 

= 38.84, p < .01, or verbs (M = 681 ms, SD = 34), t (5025) = 2.45, β = 17.45, p = .01. The 

error rate for nouns (9.1%) was also significantly higher than that for adjectives (4.0%), z 

= 4.46, β = 0.04, p < .01, or verbs (4.2%), z = 3.45, β = 1.06, p < .01. The difference in 

naming latencies for verbs compared to adjectives was also significant, t (5025) = 2.35, β 

= 19.88, p = .02, although verbs and adjectives did not differ significantly in terms of 

error rates, z = 0.62, β = 0.20, p = .54.  

Although the grammatical category factor did not interact with any other 

variables, it was decided to fit mixed effects models with Subjects and Items entered as 

crossed random factors, and with Stress Type (trochaic vs. iambic) and Stress 

Consistency (consistent vs. inconsistent) entered as fixed factors to the latency and error 

data of each grammatical category. This was done to assess if the presence of a regular 

stress pattern in adjectives leads to differential performance of readers on words of this 

category compared to nouns and verbs that do not have regular stress patterns.  

For adjectives, there was a main effect of stress type in the latency analysis (M = 

668 ms, SD = 37 vs. M = 679 ms, SD = 39), t (1655) = 2.80, β = 22.73, p = .01, and in the 

analysis of errors (2.4% vs. 5.7%), z (1655) = 5.17, β = 1.50, p < .01. The main effect of 

consistency was significant in the analysis of errors (2% vs. 6%), z = 2.27, β = 1.18, p = 

.02, but not in the latency analysis (M = 667 ms, SD = 33 vs. M = 690 ms, SD = 44), t 

(1655) = 0.22, β = 2.28, p = .77. Finally, there was a significant interaction between stress 
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type and consistency for adjectives in the latency analysis, t (1654) = 2.26, β = 25.88, p = 

.03, although not in the analysis of errors, z = 0.63, β = 0.38, p = .52.  

For nouns, the only significant main effect was that of consistency both in the 

latency analysis (M = 690 ms, SD = 45 vs. M = 710 ms, SD = 48), t (1655) = 1.98, β = 

18.69, p = .05, and in the analyses of errors (5.8% vs. 12.4%), z = 3.18, β = 0.86, p < .01. 

The main effect of stress type was not significant either in the latency analysis, t (1655) = 

0.13, β = 1.26, p = .90, or in the error analysis, z = 1.76, β = 0.32, p = .08. Similarly, there 

was no significant interaction of consistency and stress type in either analysis, t (1655) = 

0.01, β = 0.06, p = .99; z = 0.06, β = 0.02, p = .95.  

For verbs, there was a significant main effect of consistency in the error analysis 

(1.0% vs. 7.4%), z = 2.06, β = 1.77, p = .04, but not in the latency analyses (M = 673 ms, 

SD = 30 vs. M = 690 ms, SD = 36), t (1655) = 1.42, β = 11.20, p = .15. The main effect of 

stress type was not significant in either the latency or error analyses, t (1655) = 0.23, β = 

2.01, p = .80; z = 1.68, β = 1.03, p = .09. Likewise, the interaction of stress type and 

consistency did not reach significance in either the latency or error analyses, t (1655) = 

1.07, β = 11.78, p = .29; z = 0.49, β = 0.56, p = .62.  

Discussion   

The hypothesis that differences in processing of disyllabic words with stress on 

the first versus the second syllable are unlikely to appear in Russian was generally 

supported. There was no evidence of an overall latency difference between words with 

trochaic versus iambic stress. Although participants did make more stress assignment 

errors in naming words with second compared to first syllable stress, this difference was 

small in size (less than 1 error per participant). Further, a stress type effect was not 
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realized for either nouns or verbs, grammatical categories that do not have a regular stress 

pattern. In contrast, readers were not only faster and more accurate in naming Russian 

adjectives than naming nouns and verbs, but they also showed a stress type effect, with 

shorter latencies and fewer errors when naming regular, first syllable stress adjectives 

than when naming irregular, second syllable stress adjectives.     

The effect of consistency (of the stress pattern) was successfully demonstrated. 

Words with endings associated with their stress patterns were named faster and more 

accurately than words that had endings signaling a different stress pattern. This effect 

remained significant even when separate analyses of nouns and verbs were conducted. In 

contrast, in the analysis of adjectives, an interaction of consistency and stress type was 

observed. Consistency had no effect on the speed of processing of adjectives with regular 

trochaic stress, while adjectives with infrequent iambic stress showed a consistency effect 

in the latency analysis. Therefore, it is clear that stress consistency is an important cue in 

stress assignment.  

Finally, with respect to the more general question of how stress is assigned in 

Russian, Study 2 provided evidence that that process is not simply a lexically based one. 

Instead, readers do use other types of information, in particular, stress regularity and 

stress consistency when naming Russian words. 

5.3.2. Study 3: Binary logistic regression of a set of non-lexical predictors on 

stress patterns in a corpus of Russian disyllabic words.  

The goal of Study 3 was to explore whether there are relationships between a 

range of non-lexical variables and stress patterns in Russian by running a binary logistic 

regression analysis with stress patterns of 13,943 disyllabic words entered as the criterion 
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variable and eleven variables entered as predictors. The predictor variables were 

Grammatical Category, Log Frequency, Length, Word Onset Complexity, Word Coda 

Complexity, and a set of six orthographic components. 

The choice of some of the variables entered into a regression model as predictors 

of stress patterns was, to some extent, empirically driven. Thus, Grammatical Category 

was included as a predictor as prior studies in English demonstrated the presence of a 

relationship between stress patterns and a word’s grammatical role (Arciuli & Cupples, 

2004, 2006). Further, as shown in Studies 1 and 2 of the present thesis, relations between 

grammatical category and stress patterns also exist in Russian. There have also been prior 

empirical demonstrations of associations existing between stress patterns and 

orthographic complexity of Word Onsets and Word Codas (Kelly et al., 1998; Kelly, 

2004). Hence, these variables were entered as predictors into the regression. If the 

complexity of an orthographic segment matters in stress assignment, then, overall 

complexity of a word might also matter. Therefore, word length as a reflection of the 

overall structural complexity of a word was also included as a predictor in the analysis.      

The present study also involved an exploratory approach as a variety of 

orthographic segments that might be associated with stress patterns were analyzed. The 

orthographic segments were the First Syllable (further referred to as CVC1), the 

Beginning of the First Syllable (CV1), the Ending of the First Syllable (VC1), the Second 

Syllable (CVC2), the Beginning of the Second Syllable (CV2), and the Ending of the 

Second Syllable (VC2). The symbols C and V refer not just to single consonants or 

vowels, but rather to all letters of that type before the next type is encountered. For 

example, in the word крона, the segment CV1 refers to кро-. An example of the division 
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of a word into the segments that were used in the calculation of spelling-to-stress 

consistency measures entered into binary logistic regression as predictors of stress 

patterns is presented for the word маркер in Figure 6. 

Syllables were included because there is a hypothesis that syllables do play an 

important role in visual recognition of polysyllabic words (Carreiras & Perea, 2002). For 

example, it has been demonstrated that readers require more time for naming disyllabic 

words than monosyllabic words (Balota et al., 2007; Yap & Balota, 2009). Further, 

syllable frequency has been demonstrated to influence response times in German and 

Spanish (Alvarez, Carreiras, & Taft, 2001; Conrad & Jacobs, 2004), with words having 

high-frequency syllables producing longer latencies than words having low-frequency 

syllables. These studies suggest that at least in some languages, readers parse polysyllabic 

words into syllabic units at early stages of the processing. Therefore, the orthography of 

syllables and, more specifically, information about the consistency with which 

orthography of syllables maps onto stress patterns might be available for readers and 

might assist them in establishing stress patterns of polysyllabic words.   

Further, in this regression analysis, the ability of some components of syllables to 

predict stress patterns in Russian was assessed. The components of syllables considered 

were beginnings (i.e., all consonants preceding a nucleus vowel + a nucleus vowel) and 

endings (i.e., all consonants following a nucleus vowel + a nucleus vowel). The 

Beginning of the First Syllable (CV1) refers to the same orthographic component as 

previously investigated, the word beginning. The Ending of the Second Syllable (VC2) 

refers to the same orthographic component as previously investigated, the word ending. 
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Figure 6 

The division of the word MARKEP into six orthographic segments for calculating 

spelling-stress consistency 
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Hence, the inclusion of CV1 and VC2 into the regression equation is driven by previous 

empirical findings. To obtain a broader picture of the impact of various orthographic 

components on the process of stress assignment, CV2 and VC1 orthographic components 

were also included as predictors of stress patterns. 

The final variable was logarithmic frequency. This variable could be of theoretical 

interest if certain stress patterns are more likely to occur in words that readers encounter 

frequently or, alternatively, in words that occur rarely in the language.  

Method 

Materials 

A corpus of 13,943 disyllabic Russian words was compiled for the present study.  

Both lemmatized (i.e., dictionary forms) and inflected forms of the words were included. 

Lemmatized forms of the words were taken from the Frequency Dictionary of Modern 

Russian (Lyashevskaya & Sharov, 2009), while inflected forms of the words were 

retrieved from the Dictionary of Russian Grammar (Zaliznyak, 2003). The only 

constraint on the choice of words was the frequency of word usage with words that have 

frequency of less than 1 per million words being excluded.  

The words were used as items in a binary logistic regression. The binary 

dependent variable was a stress pattern of the word coded as “0” (trochaic stress pattern) 

or “1” (iambic stress pattern). The stress pattern information was verified in the 

Dictionary of Russian Lexical Stress (Zarva, 2001). The information about the 

grammatical category and the frequency of each word was retrieved from the Frequency 

Dictionary of Modern Russian (Lyashevskaya & Sharov, 2009). The length variable 

corresponded to the number of letters in a word. The onset complexity of each word was 



87 

 

defined as the number of consonants in the word onset position. The coda complexity of 

each word was established as the number of consonants in the word coda position.  

Spelling-stress consistency measures were calculated for six orthographic 

segments: CVC1, CV1, VC1, CVC2, CV2, and VC2. In making decisions about the 

division of words into syllables, a number of principles were followed. First of all, the 

Maximal Onset Principle, a widely recognized principle of syllabification in 

contemporary linguistics (Giegerich, 1992), was considered. According to the Maximal 

Onset Principle, intervocalic consonants are maximally assigned to the onsets of syllables 

in conformity with language-specific and universal conditions. In other words, in a 

disyllabic word, syllables should be divided in such a way that as many consonants as 

possible are assigned to the beginning of the second syllable rather than the ending of the 

first syllable (e.g., English: a-fraid, ba-sics, so-fa; Russian: ка-ток, ро-тик, са-жа). 

The main language-specific requirement is that words should be divided into syllables 

that have legal onsets and codas in their language. For example, the proper syllabification 

of the English word kitchen is not ki-tchen, but rather kit-chen as the letter cluster “tch” is 

an illegal onset in English. Similarly, a Russian word близкий is syllabified as близ-кий 

as the letter cluster “зк” is an illegal onset in Russian. A universal principle that was also 

considered is that syllabification should not violate morphemic divisions. Thus, the 

English word artist contains syllables art-ist rather than ar-tist and the Russian word 

выслать (meaning “send away”) contains syllables вы-слать (the prefix вы (“away”) + 

the root слать (“send”)) rather than выс-лать as in the former cases syllable division 

agrees with morphemic division.   
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Following these principles, it was possible to determine unequivocally first and 

second syllable divisions for 92% of words in the corpus. The syllabification in the 

remaining 8% of words was less straightforward. These were words with intervocalic 

consonant clusters that could serve both as a legal coda if attached to the first syllable and 

as a legal onset if attached to the second syllable and, further, these words were made of 

one derivational morpheme. Thus, in deciding on the division of a word into syllables, 

neither distributional nor morphological information were useful. In the case of these 

words, a reader might establish the syllable division in one of the three ways: (1) by 

maximizing a coda of the first syllable (маск-а), (2) by maximizing an onset of the 

second syllable (ма-ска), or (3) by splitting a consonant cluster between a coda of the 

first syllable and an onset of the second syllable (мас-ка).  

The method of syllabification preferred by Russian speakers was determined 

through a survey in which 23 native speakers of Russian had to indicate the way they 

would divide a disyllabic word into syllables by typing in the first and second syllables 

for each given word. One hundred words that were ambiguous from the point of view of 

syllable division were presented in this pilot experiment (see Appendix B). The results 

showed that Russian readers mainly divided disyllabic words containing intervocalic 

consonants by splitting a consonant cluster between a coda of the first syllable and an 

onset of the second syllable (84% of responses), followed by maximizing an onset of the 

second syllable (14% of responses), and, finally, by maximizing a coda of the first 

syllable (2%). Based on these findings, words with an ambiguous syllable boundary in 

the corpus were divided into syllabic units by splitting a consonant cluster between a 

coda of the first syllable and an onset of the second syllable.                    
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The beginning of the first syllable (CV1) corresponded to all initial consonants of 

the first syllable preceding the vowel plus the vowel of that syllable. The beginning of the 

second syllable (CV2) corresponded to all initial consonants of the second syllable 

preceding the vowel plus the vowel of that syllable. The ending of the first syllable (VC1) 

corresponded to the vowel of the first syllable plus all consonants of that syllable 

following this vowel. The ending of the second syllable (VC2) corresponded to the vowel 

of the second syllable plus all consonants of that syllable following this vowel. 

For each orthographic segment of interest, spelling-to-trochaic stress consistency 

measures were calculated, using the method analogous to that used by Treiman et al. 

(1995) for spelling-sound consistency. Words sharing a certain orthographic component 

were defined as the words in the target’s neighborhood. In calculating the type 

consistency measure, the proportion of words with trochaic stress in the neighborhood 

was calculated. For example, all Russian disyllabic words with CVC1 вра- have a 

trochaic stress pattern, therefore, words in the neighborhood “вра” have a consistency 

measure for CVC1 that equals 1.00. On the other hand, all Russian disyllabic words with 

CVC1 дя- have an iambic stress pattern, therefore, for any word in that neighborhood the 

consistency measure of CVC1 equals 0.00. Cases when certain orthographic components 

were only associated with either trochaic or iambic stress pattern were rare. The majority 

of words belonged to neighborhoods consisting of words with both trochaic and iambic 

stress patterns. In addition to type consistency measures, token consistency measures, 

corresponding to the proportion of the summed frequency of words with iambic stress in 

certain orthographic neighborhood divided by the summed frequency of all words in this 

orthographic neighborhood, were calculated.  
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Results  

A set of binary logistic regressions was run to predict stress patterns for words in 

the corpus using combinations of eleven predictors: Grammatical Category, Log 

Frequency, Length, Onset Complexity, Ending Complexity, and Consistency of CVC1, 

CV1, VC1, CVC2, CV2, and VC2. The goal was to find a model with a minimum number 

of factors that would still have high predictive power. In other words, the goal was to find 

a balance between the simplicity of a model and its goodness of fit. The full model was 

simplified in a backward stepwise fashion using p ≥ .05 on the likelihood ratio test as an 

exclusion criterion. The backward design was selected over the frontward design as it 

provides an opportunity to look at all the variables in the model at once and to assess all 

possible subsets of the set of potential independent variables. Further, backward selection 

has been shown to produce regression models that provide a better fit to the data than 

models produced as the result of forward selection (Harrel, Lee, & Mark, 1996).  

The goodness of fit of a model was assessed with the Akaike Information 

Criterion (AIC), the Bayesian Information Criterion (BIC), the Deviance Information 

Criterion (DIC), and the log likelihood (logL) that describe the trade-off between 

accuracy and complexity of a model. A model that minimizes AIC, BIC, DIC, and 

increases logL is a preferred choice. Further, to select amongst competing models a 

likelihood ratio test was completed. The analysis was conducted using the R package 

lme4 (Bates & Maechler, 2010). Due to the fact that the stress consistency could be either 

a type or a token measure, two separate sets of regressions were conducted.  

In the first analysis, type consistency measures were used. The measures of 

goodness of fit and the results of the likelihood ratio tests of the models tested are given 
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in Table 6. A full model with all eleven predictors provided a significantly better fit to the 

data than a null model with intercept only, χ2 (13) = 9873.83, p < .001. In the full model 

eight variables were significant predictors of stress patterns: Grammatical Category (z = -

1.96, p = .05), Onset Complexity (z = -5.86, p < .001), Ending Complexity (z = 2.96, p = 

.003), Log Frequency (z = -1.98, p = .05), CVC1 (z = -34.45, p < .001), CVC2 (z = -32.51, 

p < .001), CV2 (z = 3.30, p = .001), and VC2 (z = -3.27, p = .001).  

First, logistic regressions were run on eleven different models that had only one 

predictor entered. Doing so established the goodness of fit of each individual predictor 

and the following order of elimination of predictors: Length (χ2(1) = 4.45, p = .04), Log 

Frequency (χ2 (1) = 13.70, p < .001), Onset Complexity (χ2 (1) = 172.71, p < .001), 

Ending Complexity (χ2 (1) = 361.07, p < .001), Grammatical Category (χ2 (3) = 864.07, 

p < .001), VC1 (χ2 (1) = 1224.07, p < .001), CV1 (χ2 (1) = 2318.78, p < .001), CV2 (χ2 

(1) = 2730.03, p < .001), VC2 (χ2 (1) = 1440.61, p < .001), CVC1 (χ2 (1) = 4530.08, p < 

.001), and CVC2 (χ2 (1) = 6753.63, p < .001). 

The model without Length did not lose in its ability to explain the data compared 

to the full model, χ2 (1) = 3.51, p = .06. Therefore, Length was deleted from the model. 

On the other hand, there was a significant drop in goodness of fit for models when Log 

Frequency, χ2 (1) = 6.11, p = .02, Onset Complexity, χ2 (1) = 5.88, p = .02, Ending 

Complexity, χ2 (1) = 26.98, p < .001, or Grammatical Category, χ2 (3) = 16.05, p = .01 

were eliminated. Hence, these variables were kept in the model as predictors. Next, two 

consistency variables that were not improving the power of the model were dropped, that 

is, VC1, χ2 (1) = 3.56, p = .06, and CV1, χ2 (1) = 0.01, p = .92. The removal of other 

consistency variables resulted in the decline of goodness of fit: CV2, χ2 (1) = 16.21,   
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Table 6.  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on type count). 

  Goodness of Fit Measures 
 
 

Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

 
1. 

 
Null Model 

      

2. Grammatical 
Category* 
Log Frequency* 
Length 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2*, VC2* 

8856 8953 -4415 8830 1 χ2 (12) = 

9873.83,           

p < .001 

3. Grammatical 
Category* 

17280 17310 -8636 17272 1 χ
2 (3) = 864.07,  

p < .001 

4. Log Frequency* 18126 18141 -9061 18122 1 χ
2 (1) = 13.70,  

p < .001 
5. Length* 18135 18150 -9066 18131 1 χ2 (1) = 4.45,  

p = .04 
6. Onset Complexity* 17967 17982 -8982 17963 1 χ2 (1) = 172.71,  

p < .001 
7. Ending Complexity* 17779 17794 -8887 17775 1 χ

2 (1) = 361.07,  
p < .001 

8. CV1* 13610 13625 -6803 13606 1 χ
2 (1) = 2318.08, 

p < .001 
9. VC1* 16916 16931 -8456 16912 1 χ

2 (1) = 1224.07, 
 p < .001 

10. CV2* 11386 11401 -5691 11382 1 χ
2 (1) = 2730.03, 

p < .001 
11. VC2* 15306 15836 -7908 15817 1 χ

2 (1) = 1440.61, 
 p < .001 

12. CVC1* 13471 13485 -6733 13467 1 χ
2 (1) = 4530.08, 

p < .001 
13. CVC2* 

 
12979 12994 -6487 12975 1 χ

2 (1) = 6753.63, 
p < .001 

Note. Asterisk indicates fixed factors in the regression models that were significant 
predictors of stress patterns.  
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Table 6 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on type count). 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

14 Grammatical 
Category* 
Log Frequency 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2, VC2* 

8857 8947 -4417 8833 2 χ2 (1) = 3.51,  
p = .06 

15 Grammatical 
Category* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2*, VC2* 

8868 8950 -4423 8840 14 χ2 (1) = 6.11,  
p = .02 

16 Grammatical 
Category* 
Log Frequency 
Ending Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2*, VC2* 

8864 8947 -4421 8841 14 χ2 (1) = 5.88,  
p = .02 

17 Grammatical 
Category 
Log Frequency 
Onset Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, CV2*, VC2* 

8895 8977 -4436 8860 14 χ2 (1) = 26.98, 
p < .001 

18 Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2, VC2* 

8862 8929 -4422 8849 14 χ2 (3) = 16.05,  
p = .01 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models.  
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Table 6 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on type count). 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

19 Grammatical Category 
Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1* 
CVC2*, CV2*, VC2* 

8858 8940 -4418 8836 14 χ2 (1) = 3.56, 
p = .06 

20 Grammatical Category 
Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC1*,  
CVC2, CV2, VC2 

8856 8930 -4418 8836 19 χ2 (1) = 0.01, 
p = .92 

21 Grammatical Category* 
Log Frequency 
Onset Complexity* 
Ending Complexity* 
CVC1*, CVC2*, VC2* 

8866 8933 -4424 8852 20 χ2 (1) = 
16.21,  

p < .001 

22 Grammatical Category 
Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CVC2*, CV2* 

8861 8930 -4428 8845 20 χ2 (1) = 8.50,  
p < .001 

23 Grammatical Category 
Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC2*, CV2*, VC2* 

1230
5 

1237
7 

-3046 12338 20 χ2 (1) = 
3502.70,  
p < .001 

24 Grammatical Category 
Log Frequency* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV2*, VC2* 

1081
6 

1083
7 

-3894 10319 20 χ2 (1) = 
1482.60, 
 p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models. 
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Table 6 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on type count). 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AI
C 

BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

25 Grammatical Category 
Onset Complexity* 
Ending Complexity* 
CVC1* 
CVC2*, CV2, VC2* 

8859 8901 -4413 8840 20 χ
2 (1) = 3.63, 

p = .06 

26 Onset Complexity* 

Ending Complexity* 

CVC1* 

CVC2*, CV2*, VC2* 

8860 8913 -4423 8847 25 χ2 (3) = 7.32,  

p = .06 

27 Ending Complexity* 
CVC1* 
CVC2*, CV2*, VC2* 

8868 8913 -4428 8853 26 χ2 (1) = 5.64,  
p = .02 

28 Onset Complexity* 
CVC1* 
CVC2*, CV2*, VC2* 

8878 8919 -4429 8872 26 χ2 (1) = 24.87, 
p < .001 

29 Ending Complexity* 
Onset Complexity* 
CVC1*,CVC2*, VC2* 

8890 8935 -4439 8872 26 χ2 (1) = 25.34, 
p < .001 

30 Ending Complexity* 
Onset Complexity* 
CVC1*,CVC2*, VC2* 

8868 8913 -4428 8852 26 χ2 (1) = 4.43,  
p = .04 

31 Ending Complexity* 
Onset Complexity* 
CVC2*,CV2*, VC2* 

11331 11376 -5660 11319 26 χ2 (1) = 
2472.70,  
p < .001 

32 Ending Complexity* 
Onset Complexity* 
CVC1*,CV2*, VC2* 

10397 10372 -5557 10345 26 χ2 (1) = 
1497.60,  
p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. The model in bold is the final 

simplified model with a minimum possible number of factors in it that still had high 

power to predict stress patterns. 
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p < .001, VC2, χ2 (1) = 8.50, p = .001, CVC1, χ2 (1) = 3502.70, p < .001, and CVC2, χ2 (1) 

= 1482.60, p < .001. Thus, in the first round of simplification, the full model was reduced 

to a model with eight predictors: Log Frequency, Onset Complexity, Ending Complexity, 

Grammatical Category, CVC1, CVC2, CV2, and VC2. 

Next, the possibility of simplifying the model further was examined. The model 

without Log Frequency fit the data as well as the model with this factor in it, χ2 (1) = 

3.63, p = .06. Similarly, the elimination of Grammatical Category from the model did not 

decrease the goodness of fit significantly, χ2 (3) = 7.32, p = .06. Hence, these factors were 

deleted from the model. The exclusion of all other variables was associated with 

weakening of the power of the model: Onset Complexity, χ2 (1) = 5.64, p = .02, Ending 

Complexity, χ2 (1) = 24.87, p < .001, CV2, χ2 (1) = 25.34, p < .001, VC2, χ2 (1) = 4.43, p 

= .04, CVC1, χ2 (1) = 2472.70, p < .001, and CVC2, χ2 (1) = 1497.00, p < .001. As a 

result, the final simplified model that could explain the data as well as the full model had 

six variables in it that were all significant predictors of stress patterns in Russian 

disyllabic words: Ending Complexity, z = 2.38, p = .02, Onset Complexity, z = -4.94, p < 

.001, CVC1, z = -46.54, p < .001, CV2, z = 5.14, p < .001, CVC2, z = -32.99, p < .001, 

and VC2, z = -2.11, p = .04. 

The regressions were run for a second time using token consistency measures. 

The measures of goodness of fit and the results of the likelihood ratio tests of the models 

are provided in Table 7. A full model with eleven predictors in it provided a better fit to 

the data in comparison to an intercept only model, χ2 (13) = 8304.07, p < .001. In the full 

model nine variables were significant predictors of stress patterns in Russian disyllabic 

words: Ending Complexity (z = 2.42, p = .02), Onset Complexity (z = -7.80, p < .001), 
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Table 7.  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on token count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

1. Null Model       

2. Grammatical Category 
Log Frequency* 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1, VC1* 
CVC2*, CV2*, VC2* 

9858 9954 -4915 9831 1 χ2 (12) = 

8304.07, 

 p < .001 

3. Grammatical Category 
Log Frequency* 
Onset Complexity 
Ending Complexity* 
CVC1*, CV1, VC1* 
CVC2*, CV2*, VC2* 

9867 9957 -4922 9843 2 χ
2 (1) = 11.77, 

p < .001 

4. Grammatical Category 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1, VC1* 
CVC2*, CV2*, VC2* 

9867 9957 -4921 9843 2  χ
2 (1) = 11.32, 

p < .001 

5. Grammatical Category 
Log Frequency* 
Length* 
Ending Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2*, VC2* 

9862 9951 -4919 9838 2 χ
2 (1) = 5.88,  

p = .02 

6. Grammatical Category 
Log Frequency 
Length* 
Onset Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, CV2*, VC2* 

9918 1000
8 

-4971 9894 2 χ
2 (1) = 62.62, 

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models.  
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Table 7 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on token count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

7. Log Frequency 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, CV2, VC2* 

9859 9934 -4919 9839 2 χ
2 (3) = 7.07,  

p = .07 

8. Log Frequency 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, VC1* 
CVC2*, CV2*, VC2* 

9858 9926 -4920 9847 7 χ
2 (1) = 6.85,  

p = .01 

9. Log Frequency* 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1* 
CVC2*, CV2*, VC2* 

9863 9923 -4924 9847 7 χ
2 (1) = 6.64,  

p = .01 

10. Log Frequency* 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, VC2* 

9961 9927 -4969 9923 8 χ
2 (1) = 80.14, 

p = .01 

11. Log Frequency* 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2* 

9959 10018 -4971 9942 8 χ
2 (1) = 102.14, 

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models.  
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Table 7 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on token count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

12. Log Frequency 
Length* 
Onset Complexity* 
Ending Complexity* 
CV1*, VC1 
CVC2*, CV2, VC2* 

11600 11660 -5792 1158
4 

8  χ
2 (1) = 

1743.30, 
 p < .001 

13. Log Frequency 
Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1 
CV2*, VC2* 

11868 11928 -5926 1185
2 

8 χ2 (1) = 
2011.90,  
p < .001 

14. Length* 

Onset Complexity* 

Ending Complexity* 

CVC1*, CV1*, VC1* 

CVC2*, CV2*, VC2* 

9858 9926 -4920 9849 8 χ
2
 (1) = 2.96,  

p = .09 

15. Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2*, VC2* 

9869 9943 -4900 9861 14  χ
2 (1) = 12.68, 

p < .001 

16. Length 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, CV2, VC2* 

9863 9835 -4915 9855 14 χ
2 (1) = 6.21,  

p = .01 

17. Length* 
Onset Complexity* 
CVC1*, CV1*, VC1 
CVC2*, CV2, VC2* 

9885 9874 -5025 9910 14 χ
2 (1) = 60.17, 

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models. The model in bold is the final 
simplified model with a minimum possible number of factors in it that still had high 
power to predict stress patterns. 
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Table 7 (continued).  

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions 

predicting stress patterns in the corpus (consistency measures are based on token count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

18. Length 
Onset Complexity* 
Ending Complexity* 
CV1*, VC1* 
CVC2*, CV2*, VC2* 

11379 11381 -6192 11409 14 χ
2 (1) = 

1560.17,  
p < .001 

19. Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, VC1* 
CVC2*, CV2*, VC2* 

9862 9835 -4913 9856 14 χ
2 (1) = 6.54, 

p = .01 

20. Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1* 
CVC2*, CV2*, VC2 

9863 9832 -4910 9857 14 χ
2 (1) = 7.28, 

p = .001 

21. Length 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CV2*, VC2* 

11309 11123 -6156 11323 14 χ
2 (1) = 

1474.30,  
p < .001 

22 Length* 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, VC2* 

9854 9860 -4930 9866 14 χ
2 (1) = 16.15, 

p < .001 

23 Length 
Onset Complexity* 
Ending Complexity* 
CVC1*, CV1*, VC1* 
CVC2*, CV2* 

9917 9892 -4938 9909 14 χ
2 (1) = 60.17, 

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. 

 



101 

 

Length (z = 3.42, p < .001), Log Frequency (z = -3.36, p < .001), CVC1 (z = -25.45, p < 

.001), VC1 (z = -2.61, p = .01), CVC2 (z = -38.57, p < .001), CV2 (z = -4.25, p < .001), 

and VC2 (z = -19.95, p < .001).  

The full model was further simplified following the same steps as in the analysis 

in which type consistency measures were used. The likelihood ratio tests showed a 

significant drop in the goodness of fit of models if Length, χ2 (1) = 11.77, p < .001, Log 

Frequency, χ2 (1) = 11.32, p < .001, Onset Complexity, χ2 (1) = 5.88, p = .02, or Ending 

Complexity, χ2 (1) = 62.62, p < .001 were eliminated. On the other hand, Grammatical 

Category did not add to the power of the model to explain the data, χ2 (3) = 7.07, p = .07, 

and, thus, was removed. Attempts to further simplify the model were not successful. 

There was a significant decrease in the goodness of fit measures when the following 

variables were eliminated from the model: CV1, χ2 (1) = 6.85, p = .01; VC1, χ2 (1) = 6.64, 

p = .01; CV2, χ2 (1) = 80.14, p = .01; VC2, χ2 (1) = 102.14, p < .001; CVC1, χ2 (1) = 

1743.30, p < .001; and CVC2, χ2 (1) = 2011.90, p < .001. Thus, in the first round of 

model reduction, the model included ten predictors: Length, Log Frequency, Onset 

Complexity, Ending Complexity, CVC1, CV1, VC1, CVC2, CV2, and VC2.  

In the second round of model reduction, Log Frequency, which was not 

improving the goodness of fit of the model (χ2 (1) = 2.96, p = .09), was eliminated. The 

elimination of other variables resulted in a significant decline in the power of the model 

to fit the data (Length, χ2 (1) = 12.68, p < .001; Onset Complexity, χ2 (1) = 6.21, p = .01; 

Ending Complexity, χ2 (1) = 60.17, p < .001; CVC1, χ2 (1) = 1560.17, p < .001; CV1, χ2 

(1) = 6.54, p = .01; VC1, χ2 (1) = 7.28, p = .001; CVC2, χ2 (1) = 1474.30, p < .001; CV2, 

χ
2 (1) = 16.15, p < .001; and VC2, χ2 (1) = 60.17, p < .001). Thus, the final model that 
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could explain the data as well as the full model contained nine predictors: Onset 

Complexity (z = -2.49, p = .02), Ending Complexity (z = -7.66, p < .001), Length (z = 

3.59, p = .003), CVC1 (z = -36.58, p < .001), CV1 (z = -2.57, p = .01), VC1 (z = -2.69, p = 

.01),  CVC2 (z = -38.67, p < .001), CV2 (z = 3.70, p = .01), and VC2 (z = -19.99, p < 

.001). 

Discussion 

Study 3 involved two sets of binary logistic regressions on stress patterns in a 

corpus of Russian disyllabic words. The variables evaluated as predictors of stress 

patterns were Length, Log Frequency, Grammatical Category, Onset Complexity, Ending 

Complexity, and Spelling-to-Stress Consistency of CVC1, CV1, VC1, CVC2, CV2, and 

VC2 that were estimated based either on type or token information. The goal was to 

simplify full models in such a way that a final model would fit the data with the 

minimum number of predictor variables possible. Variables that survive this 

simplification procedure and remain significant predictors of stress patterns in the corpus 

would be considered to have strong associative relationships with stress patterns, and, 

thus, may reliably be treated as valid stress cues in Russian.  

A final model with type consistency measures contained six predictor variables 

(Onset Complexity, Ending Complexity, CVC1, CVC2, CV2, and VC2), while a final 

model with token consistency measures had nine predictors (Onset Complexity, Ending 

Complexity, Length, CVC1, CV1, VC1, CVC2, CV2, and VC2). Two simplified models 

(i.e., the model with type consistency measures vs. the model with token consistency 

measures) were compared on their ability to fit the data. The results showed that despite 

the fact that the final model with type consistency measures had fewer predictor variables 
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in it (six vs. nine), this model provided a significantly better fit to the data compared to 

the model with token consistency measures, χ2 (3) = 994.04, p < .001. All measures of 

goodness of fit point to the superiority of the model with type consistency variables (AIC 

= 8860, BIC = 8913, logLik = -4423, DIC = 8846) over the model with token consistency 

variables (AIC = 9858, BIC = 9926, logLik = -4920, DIC = 9849) to predict stress 

patterns in the corpus of Russian disyllabic words. Therefore, the variables that were 

significant predictors of stress patterns in the model with type consistency measures are 

more likely to be the relevant stress cues than variables that were significant predictors of 

stress patterns in the model with token consistency measures.   

Thus, the results of the binary logistic regression suggest that there are six 

potential sources of stress pattern information in Russian. First, disyllabic words with 

complex onsets are more likely to have a trochaic than an iambic stress pattern. In 

contrast, the presence of complex codas appears to be associated more with an iambic 

than with a trochaic stress pattern. Further, four measures based on the orthography of a 

word were predictive of stress patterns in the corpus: CVC1, CVC2, CV2, and VC2. For 

three orthographic components (CVC1, CVC2, and VC2), a high score on the 

consistency of orthography to a trochaic stress pattern was associated with higher 

likelihood that a word does have a trochaic stress pattern. In other words, a word in an 

orthographic neighborhood that consists mainly of words with trochaic stress is more 

likely to have a trochaic stress pattern in comparison to a word from an orthographic 

neighborhood that consists mainly of words with iambic stress. On the other hand, for the 

orthographic component CV2, there was an unexpected reversed relationship between the 

consistency measure and stress pattern. More specifically, the analysis indicates that a 
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high score on the consistency of orthography to a trochaic stress pattern was associated 

with a higher likelihood that a word has an iambic stress pattern. This result is 

counterintuitive and difficult to interpret from the perspective of the cognitive 

mechanisms that might cause it, suggesting that it is likely a statistical artifact. Therefore, 

although CV2 as a variable was a significant predictor of stress in the final equation, it 

seems unlikely that CV2 is a valid stress cue in Russian. In conclusion, the result of the 

binary logistic regression analysis singled out a set of five variables that are 

probabilistically associated with stress patterns in the corpus of Russian disyllabic words: 

Onset Complexity, Ending Complexity, CVC1, CVC2, and VC2.          

5.3.4. Study 4: Generalized linear mixed effects regression of a set of non-lexical 

predictors on stress assignment performance by native speakers of Russian.    

The main finding of Study 3 was that there are five non-lexical variables that are 

related to stress patterns in Russian. However, in order to conclude that any particular cue 

is a source of evidence that is used in the process of stress assignment (within the 

framework of the Bayesian model), it is necessary to demonstrate that this cue is not only 

of high validity, but also of high utility, that is, that readers are aware of this cue and use 

it in making stress assignment decisions. To assess the utility of the stress cues identified 

in Study 3, a generalized linear mixed effects model with the set of eleven non-lexical 

predictor variables was applied to stress assignment performance of readers who were 

asked to name 500 disyllabic words.  

Method 

Participants 
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Thirty four undergraduate students from Altay State University (Barnaul, Russia) 

took part in this experiment for a small monetary remuneration (age 17 – 23; M = 19). All 

were native speakers of Russian. None of the participants reported high proficiency in 

any second language.  

Materials 

A set of 500 disyllabic words (see Appendix C) was randomly selected from the 

database created for Study 3. Post-hoc analysis of the randomly selected words showed 

that the distribution of stress patterns and words according to grammatical category in 

this set of experimental items was similar to that in the language. Further, to make sure 

that this set of words is representative of the corpus of Russian disyllabic words from the 

point of view of associations existing between non-lexical cues and stress patterns, a 

binary logistic regression was carried out. In this analysis, the question was whether 

stress patterns for the 500 words selected can be predicted from a set of eleven predictor 

variables: Grammatical Category, Log Frequency, Length, Onset Complexity, Ending 

Complexity, and Consistency of six orthographic components (CVC1, CV1, VC1, CVC2, 

CV2, and VC2). The analysis was conducted using the R package lme4 (Bates & 

Maechler, 2010). Similar to Study 3, two sets of binary logistic regressions were 

completed: one with type consistency measures and the other with token consistency 

measures. Both models were simplified using the same steps and rationale as in Study 3. 

In a regression analysis in which type consistency measures were included, a full 

model was simplified to a model that contained six predictor variables: Log Frequency, 

Onset Complexity, Ending Complexity, CVC1, CVC2, and VC2. In this model, three 

variables were significant predictors of stress patterns (Onset Complexity: z = -2.14, p = 
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.03; CVC1: z = -5.33, p < .001; and CVC2: z = -5.52, p < .03), two were marginally 

significant (Ending Complexity: z = 1.74, p = .08; and VC2: z = -1.86, p = .06), and one 

was non-significant (Log Frequency: z = -1.48, p = .14). The simplified model with six 

predictors provided a significantly better fit to the data than intercept only model χ2 (7) = 

347.51, p < .001. Further, the simplified model did not differ significantly from the full 

model in its ability to fit the data, χ2 (7) = 2.62, p = .92. 

Next, an analysis in which token consistency measures were included was 

undertaken. A full model with eleven predictors was simplified to a model with six 

predictors: Onset Complexity, Ending Complexity, CVC1, CV1, CVC2, and VC2. In this 

model, four variables were significant predictors of stress (Onset Complexity: z = -1.96, p 

= .05; CVC1: z = -4.13, p < .001; CVC2: z = -6.14, p < .001; and VC1: z = -2.86, p = .004) 

and two variables were marginally significant predictors of stress (Ending Complexity: z 

= 1.72, p = .09; and CV1: z = -1.83, p = .07). The simplified model fit the data better than 

an intercept only model, χ2 (7) = 320.29, p < .001. At the same time, the simplified model 

was as good in its power to predict stress patterns as a full model with all eleven 

predictors in it, χ2 (6) = 3.72, p = .72.  

Finally, similarly to the results observed in Study 3, the data were better fit by the 

model with type rather than token consistency, χ2 (1) = 27.22, p < .001. Therefore, in 

assessing the variables from the point of view of their validity as stress cues, the focus is 

on the results of the regression with type consistency measures. In this analysis, five 

variables were probabilistically associated with stress patterns in the corpus of 500 

words: Onset Complexity, Ending Complexity, CVC1, CVC2, and VC2. These are the 

same stress cues that were reported to have high validity in predicting stress patterns in 
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Study 3. The only variable that was a significant predictor of stress in Study 3, but did not 

make it to the final model in this analysis of the much smaller corpus was CV2. However, 

in Study 3, the CV2 variable demonstrated an unexpected reversed relationship with 

stress patterns that appears to have been an artifact. The fact that CV2 was not among the 

significant predictors of stress in the present analysis adds to the likelihood that in Study 

3, the associative relationship between CV2 and stress patterns was artifactual. Overall, 

the results of the binary logistic regression on the corpus of 500 selected words suggest 

that this corpus is representative of a large corpus of Russian disyllabic words from the 

point of view of having stress cues with high validity.             

Procedure 

Participants were instructed to read aloud as quickly and as accurately as possible 

words presented on the screen one at a time. Instructions and stimuli were presented, and 

responses were recorded using the DMDX display system (Forster & Forster, 2003). The 

list of 500 items was presented over two blocks of trials. Every participant named both 

blocks of trials. The order of blocks and of items within blocks was randomized for each 

participant. Each trial started with the presentation of a fixation point for 500 ms. The 

target word in upper-case appeared in white on a black background (Courier New, 12 

font) for 2000 ms or until the participant responded. The intertrial interval was 1000 ms. 

Results 

The author and two other native speakers of Russian listened to the responses and 

marked stress patterns that participants assigned to words. There were no cases that were 

treated by markers as ambiguous from the point of view of stress pattern implementation. 

A pronunciation of a word with a trochaic stress was coded as “0”; while a pronunciation 



108 

 

of a word with an iambic stress was coded as “1”. This categorical response variable was 

analyzed using a generalized linear mixed-effects model (GLMM), with Subjects and 

Items as random crossed factors. Fixed factors that were considered during this analysis 

were Grammatical Category, Log Frequency, Length, Onset Complexity, Ending 

Complexity, and consistency of six orthographic components (CVC1, CV1, VC1, CVC2, 

CV2, and VC2). Due to the fact that the stress consistency measure could be conceived 

either as type or token consistency, two separate sets of GLMMs were conducted. 

The analysis was exploratory in nature as the goal was to find a model with a 

minimum possible number of factors that would still fit the data well. The goodness of fit 

of a model was assessed with the following measures describing the trade-off between 

accuracy and complexity of a model: the Akaike Information Criterion (AIC), the 

Bayesian Information Criterion (BIC), the Deviance Information Criterion (DIC), and the 

log likelihood (logL). To select amongst competing models a likelihood ratio test was 

used. The analysis was conducted using the R package lme4 (Bates & Maechler, 2010).  

First, the results of the analyses involving the model with type consistency 

measures are reported. The measures of goodness of fit and the summary of likelihood 

ratio tests of this model and other versions of this model are given in Table 8. The 

likelihood ratio test of the full model against a model that had no fixed factors entered 

(i.e., null model) showed that the full model fit the data significantly better, χ2 (12) = 

458.03, p < .001. Out of eleven, only four factors were significant predictors of stress 

assignment performance: Ending Complexity (z = 2.12, p = .03), CVC1 (z = -5.49, p < 

.001), CVC2 (z = -9.59, p < .001), and VC2 (z = -2.56, p = .01).   
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Table 8 

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on type count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

1. Null Model 7917 7940 -3955 7911   

2. Grammatical Category 
Log Frequency 
Length 
Onset Complexity 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7481 7589 -3726 7453 1 χ
2 (12) = 458.03,  

p < .001 

3. Grammatical Category* 7890 7929 -3940 7880 1 χ
2 (2) = 30.63,  

p < .001 
4. Log Frequency* 7911 7942 -3951 7903 1 χ

2 (1) = 8.08,  
p = .004 

5. Length 7918 7949 -3955 7910 1 χ2 (1) = .83,  
p = .36 

6. Onset Complexity* 7908 7939 -3950 7900 1 χ2 (1) = 10.78,  
p = .001 

7. Ending Complexity* 7884 7915 -3938 7876 1 χ
2 (1) = 34.45,  

p < .001 
8. CVC1* 7707 7738 -3849 7699 1 χ

2 (1) = 211.93,  
p < .001 

9. VC1* 7875 7906 -3934 7867 1 χ
2 (1) = 43.66, 

 p < .001 
10. CVC2* 7775 7806 -3883 7867 1 χ

2 (1) = 152.84, 
 p < .001 

11. CV1* 7847 7878 -3919 7839 1 χ
2 (1) = 72.24, 

 p < .001 
12. CV2* 7842 7901 -3941 7863 1 χ

2 (1) = 48.18,  
p < .001 

13. VC2* 7793 7824 -3893 7758 1 χ
2 (1) = 125.43,  

p < .001 
Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. 
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Table 8 (continued) 

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on type count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

14. Grammatical Category 
Log Frequency 
Onset Complexity 
Ending Complexity 
CVC1*, CV1*, VC1 
CVC2*, CV2, VC2* 

7482 7583 -3728 7456 2 χ
2 (1) = 3.15,  

p = .07 

15. Grammatical Category 
Onset Complexity 
Ending Complexity 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7482 7575 -3729 7458 14 χ2 (1) = 1.87,  
p = .17 

16. Grammatical Category 
Ending Complexity 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7480 7566 -3729 7458 15 χ
2 (1) = .58,  

p = .44 

17. Ending Complexity 
CVC1*, CV1*, VC1 
CVC2*, CV2, VC2* 

7477 7546 -3729 7459 16 χ
2 (2) = .09,  

p = .95 

18. CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7477 7539 -3730 7461 17 χ
2 (1) = 2.16,  

p = .14 

19. CVC1*, CV1* 
CVC2*, CV2, VC2* 

7611 7665 -3799 7597 18 χ
2 (1) = 136.44,  

p < .001 

20. CVC1*, CV1*, VC1 
CVC2*, VC2* 

7474 7531 -3730 7460 18 χ2 (1) = .02,  
p = .89 

21. CVC1*, VC1 

CVC2*, VC2* 

7475 7529 -3730 7461 20 χ
2
 (1) = .16,  

p = .68 

22. CVC1*, VC1 
CVC2* 

7582 7628 -3785 7570 21 χ2 (1) = 14.00,  
p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models. The model in bold is the final 
simplified model with a minimum possible number of factors in it that still had high 
power to predict stress patterns. 



111 

 

Table 8 (continued) 

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on type count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Statistical Test 

23. CVC1*, VC1* 
VC2* 

7560 7606 -3774 7548 21 χ
2 (1) = 87.03,  

p < .001 

24. VC1 
CVC2*, VC2* 

7538 7584 -3763 7526 21 χ
2 (1) = 36.58,  

p < .001 

25. CVC1* 
CVC2*, VC2 

7554 7600 -3771 7542 21 χ
2 (1) = 81.07,  

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. 
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 Next, the model was simplified in a backward stepwise fashion using p ≥ .05 on 

the likelihood ratio test as the exclusion criterion. To identify the order of exclusion of 

factors from the full model, the individual ability of each predictor to fit the data was 

assessed by running GLMMs on eleven different models that had only one predictor 

variable entered as a fixed factor. Then, the goodness of fit of each model was contrasted 

with that of the null model. Following the results of this analysis, the complexity of the 

full model was reduced by eliminating the predictor variables in the following order: 

Length (χ2 (1) = .83, p = .36), Log Frequency (χ2 (1) = 8.08, p = .004), Onset Complexity 

(χ2 (1) = 10.78, p = .001), Grammatical Category (χ2 (2) = 30.63, p < .001), Ending 

Complexity (χ2 (1) = 34.45, p < .001), VC1 (χ2 (1) = 43.66, p < .001), CV2 (χ2 (1) = 48.18, 

p < .001), CV1 (χ2 (1) = 72.24, p < .001), VC2 (χ2 (1) = 125.43, p < .001), CVC2 (χ2 (1) = 

152.84, p < .001), and CVC1 (χ2 (1) = 211.93, p < .001). 

In the process of model reduction, Length was the first factor excluded as a 

predictor as it did not improve goodness of a fit of the model, χ2 (1) = 3.15, p = .07. Next, 

Log Frequency, χ2 (1) = 1.87, p = .17, Onset Complexity, χ2 (1) = .58, p = .44, 

Grammatical Category, χ2 (2) = .09, p = .95, and Ending Complexity, χ2 (1) = 2.16, p = 

.14, were excluded. As the omission of VC1 lead to a significant decrease in explanatory 

power of the model, χ2 (1) = 136.44, p < .001, this factor was kept in the equation. The 

following likelihood ratio tests showed that the model can be further simplified by 

eliminating CV2, χ2 (1) = .02, p = .89, and CV1, χ2 (1) = .16, p = .68. Further exclusion of 

the remaining consistency measures from the model resulted in a significant loss of 

goodness of fit: VC2, χ2 (1) = 14.00, p < .001; CVC2, χ2 (1) = 87.03, p < .001, and CVC1, 

χ
2 (1) = 36.58, p < .001. Attempts to further simplify this model by excluding any of the 
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four predictors resulted in a decline of goodness of fit: VC1, χ2 (1) = 81.05, p < .001, 

VC2, χ2 (1) = 108.83, p < .001, CVC2, χ2 (1) = 87.01, p < .001, and CVC1, χ2 (1) = 64.79, 

p < .001. As a result, the original model with eleven predictors was simplified to a model 

with only four predictors: VC1, VC2, CVC2, and CVC1. Out of four factors in the final 

model, only three were significant predictors of stress assignment performance: CVC1 (z 

= -5.49, p < .001), CVC2 (z = -9.59, p < .001), and VC2 (z = -2.56, p = .01). 

The same set of models was tested for a second time using token consistency 

measures. The measures of goodness of fit and the results of the likelihood ratio tests of 

the full model and other simplified versions of this model are provided in Table 9. The 

comparison of the null model with no fixed factors and the model with all eleven 

predictors demonstrated that the full model provided a significantly better fit to the data, 

χ
2 (12) = 350.03, p < .001. Further, in the full model, only three factors were significant 

predictors of stress assignment performance: CVC1 (z = -4.45, p < .001), CVC2 (z = -

7.01, p < .001), and VC2 (z = -3.02, p = .003).  

The full model was simplified following the same steps as in the analysis in which 

type consistency measures were used. Length was preserved as a factor in the model as its 

exclusion lead to the significant reduction in goodness of fit, χ2 (1) = 163.10, p < .001. 

On the other hand, Log Frequency was discarded from the analysis as this variable did 

not assist in explaining the data, χ2 (1) = 0.00, p = 1.00. Further, Onset Complexity and 

Grammatical Category predictors were kept in the equation as there was loss in 

explanatory power when they were removed (Onset Complexity: χ2 (1) = -128.24, p < 

.001; Grammatical Category, χ2 (2) = 56.64, p < .001). In contrast, the models without 

Ending Complexity, χ2 (1) = 0.00, p = 1.00, VC1, χ2 (1) = 2.05, p = .15, CV2, χ2 (1) =  
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Table 9  

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on token count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

1. Null Model 7917 7940 -3955 7911   

2. Grammatical Category 
Log Frequency 
Length 
Onset Complexity 
Ending Complexity 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7589 7697 -3780 7561 1 χ
2 (11) = 350.03, 

 p < .001 

3. Grammatical Category 
Log Frequency 
Onset Complexity 
Ending Complexity 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7750 7851 -3862 7724 2 χ
2 (1) = 163.10,  

p < .001 

4. Grammatical Category 
Length 
Onset Complexity 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7557 7658 -3766 7531 2 χ
2 (1) = 0.00,  

p = 1.00 

5. Grammatical Category 
Length 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7684 7777 -3830 7660 4 χ
2
 (1) = 128.24,  

p < .001 

6. Length 
Onset Complexity 
Ending Complexity* 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7700 7593 -3738 7476 4 χ
2 (2) = 56.64,  

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. 
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Table 9 (continued) 

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on type count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Statistical Test 

7. Grammatical Category 
Length 
Onset Complexity 
CVC1*, CV1, VC1 
CVC2*, CV2, VC2* 

7500 7593 -3738 7476 4 χ
2 (1) = 0.00,  

p = 1.00 

8. Grammatical Category 
Length 
Onset Complexity 
CVC1*, CV1 
CVC2*, CV2, VC2* 

7500 7585 -3739 7478 7 χ
2 (1) = 2.05,  

p = .15 

9. Grammatical Category 
Length 
Onset Complexity 
CVC1*, CV1 
CVC2*, VC2* 

7509 7582 -3735 7479 8 χ
2 (1) = 1.85,  

p = .17 

10. Grammatical Category 
Length 
Onset Complexity 
CVC1*,CVC2*, VC2* 

7498 7575 -3739 7478 9 χ
2 (1) = 0.12,  

p = .73 

11. Grammatical 
Category* 
Length 
Onset Complexity 
CVC1*, CVC2* 

7553 7603 -3758 7515 10 χ
2 (1) = 37.09,  

p < .001 

12. Grammatical Category 
Length 
Onset Complexity 
CVC1*, VC2* 

7574 7644 -3778 7556 10 χ
2 (1) = 78.06,  

p < .001 

13. Grammatical Category 
Length 
Onset Complexity* 
CVC2*, VC2* 

7678 7748 -3830 7660 10 χ
2 (1) = 181.83,  

p < .001 

Note. Asterisk indicates that these fixed factors were significant predictors of stress 

assignment in the corresponding regression models. 
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Table 9 (continued) 

Measures of goodness of fit and likelihood ratio tests of linear mixed effects model 

predicting stress pattern assignment (consistency measures are based on type count) 

   
Goodness of Fit Measures 

 

 
Likelihood Ratio Test 

# Fixed Factors  
(* - p < .05) 

 

AIC BIC LogL DIC Alternative 
Model (#) 

Test Statistic 

14. Length 
Onset Complexity 
CVC1*, CVC2*, VC2 

7563 7625 -3773 7547 10 χ
2 (2) = 68.90,  

p < .001 

15. Grammatical Category 
Onset Complexity 
CVC1*, CVC2*,VC2* 

7496 7566 -3739 7478 10 χ
2 (1) = 0.05,  

p = .82 

16. Grammatical Cateogry 
CVC1*, CVC2*,VC2* 

7496 7558 -3740 7480 15 χ
2 (1) = 1.92,  

p = .17 

17. Grammatical Category 
CVC1*, CVC2* 

7521 7576 -3754 7507 16 χ
2 (1) = 27.48,  

p < .001 

18. Grammatical Category 
CVC1*, VC2* 

7573 7627 -3780 7559 16 χ
2 (1) = 72.27,  

p < .001 

19. Grammatical Category 
CVC2*, VC2* 

8116 8170 -4051 8102 16 χ
2 (1) = 622.25,  

p < .001 

20. CVC1*, CVC2*,  

VC2* 
7493 7539 -3740 7481 16 χ

2
 (2) = 0.71,  

p = .70 

21. CVC2*, VC2* 7783 7822 -3887 7773 20 χ
2 (1) = 292.67,  

p < .001 
22. CVC1*, VC2* 7836 7875 -3913 7826 20 χ

2 (1) = 345.72,  
p < .001 

23. CVC1*, CVC2* 7518 7557 -3754 7508 20 χ
2 (1) = 27.15,  

p < .001 
Note. Asterisk indicates that these fixed factors were significant predictors of stress 
assignment in the corresponding regression models. The model in bold is the final 
simplified model with a minimum possible number of factors in it that still had high 
power to predict stress patterns. 
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1.85, p = .17 and CV1, χ2 (1) = 0.12, p = .73, provided as good a fit to the data as models 

that had these predictors. Therefore, these predictors were excluded from the model. 

Finally, there was a significant decrease in the goodness of fit of models that did not have 

VC2, χ2 (1) = 37.09, p < .001, CVC2, χ2 (1) = 78.06, p < .001, or CVC1, χ2 (1) = 181.83, p 

< .001. Thus, at this point a simplified model contained six fixed factors: Grammatical 

Category, Length, Onset Complexity, VC2, CVC2, and CVC1.  

The model obtained in the first round of likelihood ratio tests was then further 

simplified to a model that had four fixed effects predictors only. This was done by the 

exclusion of Length and Onset Complexity that as predictors were not decreasing 

information entropy significantly (Length: χ2 (1) = 0.05, p = .82; Onset Complexity, χ2 (1) 

= 1.92, p = .17). On the other hand, there was a decline in goodness of fit if the following 

predictors were eliminated from the model: Grammatical Category, χ2 (2) = 68.90, p < 

.001, VC2, χ2 (1) = 27.48, p < .001, CVC2, χ2 (1) = 72.27, p < .001, and CVC1, χ2 (1) = 

622.25, p < .001. The final step was to determine whether it was possible to eliminate 

any of the four predictors left in the model without losing the ability to explain the data. 

While the elimination of VC2, χ2 (1) = 27.15, p < .001, CVC2,  χ2 (1) = 345.72, p < .001, 

and CVC1, χ2 (1) = 292.67, p < .001, appeared to be detrimental for the goodness of fit of 

the model, the exclusion of Grammatical Category as a predictor did not have the same 

effect, χ2 (2) = 0.71, p = .70. As a result, the final model had three fixed factors and it 

could explain the data as well as the full model with all ten predictors entered. In this 

model all fixed factors were significant predictors of stress assignment performance: 

VC2, z = -5.17, p < .001, CVC2, z = -9.15, p < .001, and CVC1, z = -9.61, p < .001.  

Discussion 
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The goal of Study 4 was to assess the utility of various stress cues in Russian; that 

is what non-lexical cues, if any, speakers of Russian use in making stress assignment 

decisions. Two sets of GLMMs on stress assignment performance for native speakers of 

Russian were undertaken. The predictor variables were Length, Log Frequency, 

Grammatical Category, Onset Complexity, Ending Complexity and Consistency 

measures for six orthographic components (CVC1, CV1, VC1, CVC2, CV2, and VC2). 

Type- and token-based consistency measures were entered in the two separate GLMMs. 

Each full model was simplified in a way that would provide the best balance between 

model’s complexity and its ability to explain the data.   

The first model with type-based consistency measures was simplified to a model 

with four predictor variables: CVC1, VC1, CVC2, and VC2. Out of four variables, only 

three (CVC1, CVC2, and VC2) were significant predictors of stress assignment 

performance. The second model in which consistency measures were based on token 

count was simplified to a model with three predictor variables: CVC1, CVC2, and VC2. 

In this simplified equation, all three variables were significant predictors of stress 

assignment performance. Thus, two models based on different methods of consistency 

calculation provided converging results, suggesting that in assigning stress to words in 

Russian readers make use of the knowledge of probabilistic distributions of stress 

patterns over three orthographic components: CVC1, CVC2, and VC2.  

To assess whether the final model with type consistency measures provides a 

better fit to the data than the final model with token consistency measures, likelihood 

ratio tests were used to compare these two models. The results showed that the final 

model with consistency measures based on type count fit the data significantly better than 
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the model with consistency measures based on token count, χ2 (1) = 19.98, p < .001. 

Indeed, the former model provided considerably better measures of goodness of fit 

compared to the latter model (model with type consistency: AIC = 7474, BIC = 7528, 

logLik = -3730, DIC = 7461; model with token consistency: AIC = 7493, BIC = 7539, 

logLik = -3740, DIC = 7481).  

The results of this analysis suggest that not all non-lexical cues that might be used 

as sources of evidence for lexical stress, due to the fact that they have high validity, as 

demonstrated in Study 3, are actually used by Russian readers. That is, in Study 3, it was 

determined that there are probabilistic relations between stress patterns and five non-

lexical cues present in Russian. These cues are Onset Complexity, Ending Complexity, 

CVC1, CVC2, and VC2. In spite of the fact that these variables had high validity (i.e., 

they were significant predictors of stress patterns in the corpus of 500 selected words), 

only three of them appeared to be used by speakers in assigning stress in these 500 

words. Apparently, Onset Complexity and Ending Complexity do not impact naming 

performance. The variables that had high validity and high utility were the consistency 

measures of three orthographic components: CVC1, CVC2, and VC2. Participants were 

more likely to name trochaically stressed words with incorrect iambic stress if a word’s 

CVC1, CVC2, and/or VC2 consistency score was low (i.e., the majority of words having 

the same CVC1, CVC2, or VC2 component had iambic stress patterns). Similarly, 

participants made stress assignment errors on iambically iambically stressedstressed 

words if a word’s CVC1, CVC2, and/or VC2 consistency score was high  (i.e., the 

majority of words having the same CVC1, CVC2, or VC2 component had trochaic stress 

patterns).       
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5.4. Conclusion 

To date, behavioral investigations of the stress assignment process have been 

conducted in a limited number of languages, languages that are all characterized by the 

presence of a dominant stress pattern that is believed to create a bias in assigning stress. 

The presence of a bias of this sort complicates the investigation of other factors as it 

becomes difficult to disentangle the effect of the bias from the effects of other potential 

cues to stress. In an attempt to circumvent this problem, the present thesis involved an 

investigation of mechanisms of stress assignment and an implementation of a proposed 

Bayesian model of stress assignment in Russian, a language in which the assumption has 

been that there is no dominant stress pattern. 

The present Chapter contained the results of a corpus analysis, a factorial study, 

and two regression studies that were conducted with an overall goal of creating a 

computational implementation of the Bayesian model of stress assignment in Russian. At 

this point, the investigation has been limited to disyllabic words only. This research has 

had the following objectives: (1) establishing the distribution of trochaic versus iambic 

stress patterns in the Russian language (prior probabilities of stress patterns); (2) 

identifying a set of valid and utilized non-lexical cues to stress (sources of evidence taken 

into consideration in estimation of posterior probabilities of stress patterns); and (3) 

demonstrating that stress assignment in Russian can be completed non-lexically. 

The analysis of the corpus of Russian disyllabic words (Study 1) provided 

evidence substantiating the assumption that, among the disyllabic words in Russian, 

trochaic and iambic stress patterns occur essentially equally often (55% vs. 45%). As the 

prior probabilities of two stress patterns are very similar, Russian readers should have no 
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reason to demonstrate an overall bias toward either stress type. Further analysis of the 

distribution of stress patterns in words of various grammatical categories revealed that, 

although distribution of stress types in Russian nouns and verbs was not greatly different 

from the distribution observed in the language overall, a trochaic stress pattern was more 

frequent than an iambic stress pattern in adjectives. Thus, Russian provides a unique 

opportunity to observe, within the same language, the behavior of readers in situations 

when there is a regular stress pattern that could create a stress assignment bias (i.e., in 

case of adjectives), and when there would be no bias due to the absence of a regular stress 

pattern (i.e., in case of nouns and, potentially, verbs).  

For this difference in the distribution of stress patterns for adjectives, nouns, and 

verbs to have impact on the processing, it would seem to be necessary that information 

about grammatical category becomes available early on, specifically before stress 

information could be retrieved following a successful lexical access. Prior research on 

grammatical category effects in isolated word recognition does, indeed, suggest that 

grammatical category information is accessed automatically during very early stages of  

lexical processing (Bornkessel & Schlesewski, 2006; Federmeier, Segal, Lombrozo, & 

Kutas, 2000; Vigliocco, Vinson, Arciuli, & Barber, 2008).  

Although none of the experiments cited above had been carried out in Russian, it 

seems possible that information about grammatical category would also be readily 

available in Russian, and would assist readers in stress assignment. Indeed, the findings 

of Study 2 (word naming) provided good evidence that probabilistic distributions of 

stress patterns in words of specific grammatical categories in Russian do play an 

important role. When a certain stress type occurs more often (e.g., first syllable stress in 
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adjectives), readers are sensitive to this information, and appear to be biased to the more 

frequent stress pattern. The stress bias is manifested in faster response times and higher 

accuracy rates in the processing of adjectives with regular first syllable stress compared 

to adjectives with stress on their second syllable. On the other hand, when the 

probabilities of the two stress patterns are nearly equal (e.g., nouns), readers do not 

demonstrate a preference for either stress pattern.  

The lack of a regular stress pattern for nouns and verbs means that stress 

assignment for those words had to be based on other factor(s). Note that the presence of a 

regular stress pattern in one grammatical category did put the regularly stressed words 

belonging to that category into an advantageous position from the point of view of their 

processing compared to the words from other grammatical categories. Significantly faster 

and more accurate processing of adjectives compared to nouns and verbs, as 

demonstrated in Study 2, serves as evidence of the facilitating effect that the presence of 

a regular stress pattern in the language can produce.        

This finding of a regularity effect at the level of grammatical category might 

suggest that in establishing prior probabilities of stress patterns one should consider the 

frequency of stress patterns not among all words of the language, but rather among words 

of the word’s grammatical category in that language. The idea just described is not 

endorsed in the proposed Bayesian model of stress assignment for a number of reasons. 

First of all, prior beliefs about probabilities of stress patterns exist in readers’ minds 

before any processing of a word has been initiated. As at this stage, the grammatical 

status of a word in a standard word naming experiment is generally unknown (unless the 

preceding context provides this information) and therefore, readers cannot adjust their 
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prior beliefs respectively. Secondly, although the stress regularity effect in adjectives 

observed in Study 2 appears to be readily explained by an early activation of grammatical 

category information, there appears to be an alternative explanation. It is quite possible 

that the orthographic cues to grammatical category also provide useful information 

concerning stress assignment in the case of adjectives, but not in the case of nouns and 

verbs. If so, one would expect an overall adjective advantage and a stress regularity effect 

for adjectives but not for nouns and verbs even if the grammatical category was not 

actually activated early in processing. Finally, other empirical results reported here argue 

against the proposal that prior beliefs about likelihood of a stress pattern in a word are 

based on probabilities derived at the level of grammatical categories. Specifically, 

grammatical category did not serve as a significant predictor of stress patterns in Russian 

(Study 3) or as a predictor of stress assignment performance by speakers of this language 

(Study 4). To conclude, based on the results of the studies reported in this Chapter, the 

most likely possibility is that  prior beliefs about stress patterns reflect the native 

speakers’ knowledge of distribution of stress patterns in the language overall, rather than 

their knowledge of distribution of stress patterns in words of certain grammatical 

category. Therefore, the distribution of stress patterns overall (55% - trochaic stress vs. 

45% - iambic stress), appears to be the best information that can be used in calculating 

prior probabilities of stress patterns in the Bayesian model of stress assignment in 

Russian.  

The second goal of this Chapter was to identify valid and utilized stress cues in 

Russian based on a combination of the results provided in the factorial (Study 2) and the 

regression (Studies 3 and 4) studies. In Study 2, the effect of spelling-to-stress 
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consistency of word endings on readers’ naming performance was demonstrated. 

However, the scope of reliance on this stress cue appears to depend on the availability of 

other factors. Experimental results showed that participants were guided mainly by 

consistency cues if there was no dominant stress pattern present (as in case of nouns and 

verbs). On the other hand, in naming adjectives which tend to have trochaic stress, 

consistency only mattered when irregularly stressed iambic adjectives had to be named 

(or alternatively, regularity only mattered when considering adjectives with inconsistent 

endings). This pattern of results suggests that both consistency and regularity are reliable 

stress cues for adjectives and there is only a penalty to pay when neither is valid (i.e., an 

adjective containing an ending consistent with a first syllable stress assignment which, 

nonetheless, is stressed on the second syllable).  

The finding of an interaction between stress regularity and stress consistency 

when naming adjectives does parallel previous results reported  by Colombo (1992), who 

found that only irregular words were affected by the consistency of stress in a naming 

task in Italian. At the same time, the present results stand in contrast to those from 

another study conducted in Italian (Burani & Arduino, 2004) showing comparable effects 

of stress consistency on regularly and irregularly stressed words. Burani and Arduino 

explained the discrepancies between their results and Colombo’s by pointing to a number 

of characteristics of the experimental items that were not controlled properly in 

Colombo’s experiment. Although the stimuli were selected for the present experiments 

by taking into account Burani and Arduino’s criticisms, nevertheless, the same 

interaction that Colombo observed arose here. That is, there was a differential effect of 

stress consistency on regularly versus irregularly stressed words when stress regularity is 
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a meaningful concept (i.e., for Russian adjectives), suggesting that there may be an 

alternative reason why there were different patterns in the two Italian naming studies.  

Thus, the results of Study 2 extend findings reported in Italian (Burani & 

Arduino, 2004; Colombo, 1992) and English (Arciuli et al., 2010) of the significant role 

that the spelling-to-stress consistency of word endings plays in Russian. Although the 

consistency of word endings as stress cues is a thoroughly investigated variable, it is 

likely not the only non-lexical stress cue that readers of Russian use in naming 

polysyllabic words. Therefore, a more exploratory investigation was undertaken by 

running a regression of a set of eleven predictor variables on stress patterns in the corpus 

of Russian disyllabic words (Study 3) and on stress assignment performance 

demonstrated by native speakers (Study 4).   

The results of Study 3 showed that in the corpus of Russian disyllabic words there 

were six variables that were in strong associative relationships with stress patterns. In 

Russian, the stress cues with high validity are onset complexity, coda complexity, and 

spelling-to-stress consistency measures of the first syllable (CVC1), of the second 

syllable (CVC2), of the beginning of the second syllable (CV2), and of the ending of the 

second syllable (VC2).  

Some of these variables have been shown to act as stress cues in other studies. For 

example, the variable CV2 corresponds to the same orthographic component as a word 

ending. As has been previously mentioned, there is consistent evidence that information 

about probabilistic relations between word endings and stress patterns is used by readers 

in naming words and nonwords (Arcuili et al., 2010). Similarly, there have been studies 

demonstrating that in English the complexity of words’ onsets and codas is related to 
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stress pattern information (Kelly et al., 1998; Kelly, 2004). Although the present results 

indicate significant relations between onset/coda complexity and stress patterns in 

Russian, these relations were exactly the opposite in nature to the ones reported by Kelly 

et al. in English. Thus, in English, a word with complex onset is more likely to have a 

trochaic stress, while in Russian a word with such characteristics is more likely to have 

an iambic stress. Further, in English, a word with complex coda is likely to be iambically 

stressed, while in Russian such a word is more likely to be trochaically stressed. 

Spelling-to-stress consistency measures of the first syllable (CVC1), of the second 

syllable (CVC2), and of the beginning of the second syllable (CV2) are the variables that 

were also probabilistically associated with stress patterns in the analysis of the corpus of 

Russian disyllabic words. These variables have not been previously investigated as stress 

cues in any other language. Although all three of these variables were significant 

predictors of stress patterns in the corpus as per the results of the binary logistic 

regression, it is possible that only spelling-to-stress consistency of CVC1 and CVC2 are, 

in fact, stress cues with high validity in Russian. The significance of spelling-to-stress 

consistency of CV2 is likely to be an artifactual finding. 

Study 4 involved an assessment of the utility of stress cues, that is, whether native 

speakers of Russian base their stress assignment decisions on information provided by 

these cues. The results showed that only three variables (consistency measures of the first 

syllable (CVC1), of the second syllable (CVC2), and of the ending of the second syllable 

(VC2)) were driving stress assignment performance of native speakers of Russian. 

Participants were more likely to make stress assignment errors on words with inconsistent 

spelling-to-stress mappings for these three orthographic components. 
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To conclude, it appears that in Russian there are three sources of evidence for 

stress that have high validity (i.e., strong probabilistic associations between cues and 

stress patterns exist in the language) and high utility (i.e., readers use the knowledge of 

these probabilistic associations between cues and stress patterns). Specifically, the 

consistency of the first syllable of a word (CVC1), of the second syllable of a word 

(CVC2), and of the ending of the second syllable of a word (VC2) appear to be the 

sources of evidence for stress patterns that should be included in a Bayesian model of 

stress assignment in Russian.  

Three sources of evidence for stress were identified primarily based on the results 

of two regression studies. In light of this, one might argue that a simple regression model 

that was based on those studies would be as good of a model of stress assignment as the 

Bayesian model of stress assignment proposed in the present thesis. That claim does not 

seem plausible for the following reason. According to Marr (2010), a valid model of any 

information processing system must be characterized by three levels of analysis: a 

computational level (what the system does and why it does it), an algorithmic level (how 

the system does what it does), and a biological level (what neural structures implement 

it). A regression model might provide some information about the algorithmic level of 

implementation of the process of stress assignment, however, it neither has  processing 

implications reflecting the computational level, nor does it appear to be biologicaly 

based. On the other hand, the proposed Bayesian model of stress assignment does 

describe the processes happening during the identification of stress patterns in 

polysyllabic words by readers and representational units (stress cues) implicated in these 

processes. Further, based on some neuropsychological evidence supporting the notion 
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that the human mind constantly engages in probabilistic analysis (Doya, Ishii, Pouget, & 

Rao, 2007), one might expect that there are neural structures and neuronal activities that 

underlie the process of estimation of probabilities of stress patterns in reading. Hence, a 

Bayesian model of stress assignment would seem to supersede any related regression 

model in its ability to explain the process of stress assignment.                 

With respect to one other goal of this research, the present data provide strong 

evidence against the idea that stress assignment in Russian is accomplished only by 

retrieving stress information from the word’s lexical representation. If this hypothesis 

were in fact true, there should not have been either stress regularity or stress consistency 

effects in the factorial study and none of the non-lexical variables would have been 

significant predictors of stress patterns in the regression studies. In contrast, the present 

experiments demonstrate that there are probabilistic, associative connections between 

non-lexical cues and stress patterns in Russian and that native speakers of Russian do 

utilize this non-lexical, distributional information about stress in naming and identifying 

disyllabic Russian words. That is not to deny, of course, the possibility that the specific 

retrieval of word-based stress knowledge in the process of stress assignment might exist 

for Russian speakers and that it might even be greater in Russian compared to other 

languages in which word stress is more predictable.  
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Chapter 6 – Simulations of the Bayesian model of stress assignment in Russian 

6.1. Introduction 

The Bayesian model of stress assignment described in Chapter 3 computes 

posterior probabilities of stress patterns in a polysyllabic word, ( | )P stress evidence , 

based on the knowledge of the frequencies of stress patterns in a language (allowing 

estimates of  prior probabilities, P(stress)) and of the likelihoods with which the non-

lexical evidence considered is associated with a particular stress pattern,

( | )P evidence stress . The computation is performed using the formula given in Equation 

4, which is a modified version of the Bayes rule.  

In the present thesis, the goal is to provide an implementation of the Bayesian 

model of stress assignment in naming Russian disyllabic words. This model produces an 

output in the form of posterior probabilities that a word has a trochaic stress pattern, 

P(Stress1|evidence), or an iambic stress pattern, P(Stress2|evidence). Studies reported in 

Chapter 5 provided the data required for the implementation of this model. Based on the 

results of the corpus analysis (Study 1), it was concluded that the prior probability of a 

trochaic stress pattern (P(Stress1)) in Russian is .55, while the prior probability of an 

iambic stress pattern (P(Stress2)) is .45. Further, the results of a factorial study (Study 2) 

and two regression studies (Study 3 and 4) suggested that there are three predominant 

sources of evidence that are probabilistically associated with stress patterns in Russian: 

spelling-to-stress consistency measures of the first syllable (CVC1), of the second 

syllable (CVC2), and of the ending of the second syllable (VC2).    

Although the order in which the model considers these three sources of evidence 

does not matter for the final calculation, the model initially analyzes the impact of CVC2, 
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then, CVC1, and finishes with VC2 as sources of evidence for stress. This order choice 

reflects the relative strength of association of these sources of evidence with stress 

patterns as seen from the results of the regression analysis of Study 4: CVC2: z = -9.59, p 

< .001 CVC1: z = -5.49, p < .001, and VC2: z = -2.56, p = .01. The specific formula that 

the model uses in computing the posterior probability that a word has, for example, the 

trochaic stress pattern considering evidence provided by the orthography of CVC2 is: 

 
( 2 | 1) .55

( 1| 2)
( 2 | 1) .55 ( 2 | 2) .45

P CVC Stress
P Stress CVC

P CVC Stress P CVC Stress

×
=

× + ×
               (14) 

 Knowing the posterior probability of a trochaic stress pattern being present in a word, the 

model can estimate the posterior probability that a word has an iambic stress pattern: 

 ( 2 | 2) 1 ( 1 | 2)P Stress CVC P Stress CVC= −                               (15) 

Next, the model accounts for the evidence provided by CVC1. The model uses 

this additional evidence to update its probabilities of stress patterns computed previously 

based on the knowledge of CVC2. Thus, at this step, ( 1 | 2)P Stress CVC , referred to as 

P(Stress1)*, serves as the new prior probability of a trochaic stress pattern in a word, 

while ( 2 | 2)P Stress CVC , referred to as P(Stress2)*, is a prior probability that this word 

has an iambic stress pattern. The full equation used in the computation of the posterior 

probability that a word has trochaic stress given the evidence of the orthography of CVC2 

and CVC1 is given below:  

( 1| 2, 1)

( 1| 1) ( 1)*

( 1| 1) ( 1)* ( 1| 2) ( 2)*

P Stress CVC CVC

P CVC Stress P Stress

P CVC Stress P Stress P CVC Stress P Stress

=

×

× + ×

      (16) 

The posterior probability of an iambic stress given a particular CVC2 and CVC1 is 

further estimated: 
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 ( 2 | 2, 1) 1 ( 1 | 2, 1)P Stress CVC CVC P Stress CVC CVC= −                 (17) 

 Finally, the model accounts for the evidence for a trochaic stress pattern provided 

by VC2. As VC2 is a constituent part of CVC2 that has earlier been considered by the 

model, some of the evidence provided by VC2 has already been accounted for. To avoid 

the problem of including the same evidence twice into the model’s computations, the 

model calculates the likelihood of evidence VC2 given stress patterns by assessing only 

those words that were not used earlier in estimating the likelihood of evidence CVC2 

given stress patterns. For example, in computing the posterior probabilities of stress 

patterns for the word мастак, the model first considers the evidence –так (CVC2) that 

is present in 1 word with trochaic stress and 4 words with iambic stress. Next, it considers 

the evidence –мас (CVC1). Finally, the model evaluates the orthographic evidence –ак 

(VC2) present in 4 words with trochaic and 50 words with iambic stress patterns. 

However, as the model has already accounted partially for the evidence –aк (VC2) as a 

constituent part of –так (CVC2), at this step, only words that were not included in the 

estimation of the likelihood of evidence –так (CVC2) (i.e., words that have the evidence 

–ак (VC2), but not the evidence –так (CVC2)) are considered by the model. In the 

corpus, there are 3 words with trochaic (= 4 – 1) and 46 words with iambic stress patterns 

(= 50 – 4) that meet this requirement and that the model examines in estimating the 

likelihood of evidence –ак (VC2) given stress pattern in the process of posterior 

probability estimations of stress for the word мастак.  

The model uses this additional evidence to update its probabilities of stress 

patterns computed previously based on the knowledge of CVC2 and CVC1. Thus, at this 

step, P(Stress1|CVC2,CVC1), further referred to as P(Stress1)**, serves as the new prior 
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probability of a trochaic stress pattern in a word, while P(Stress2|CVC2,CVC1), further 

referred to as P(Stress2)**, is a prior probability that this word has an iambic stress 

pattern. The posterior probability that a word has a trochaic stress pattern given the 

evidence of the orthography of CVC2, CVC1, and VC2 is calculated following the 

formula below: 

( 1 | 2, 1, 2)

( 2 | 1) ( 1)**

( 2 | 1) ( 1)** ( 2 | 2) ( 2)**

P Stress CVC CVC VC

P VC Stress P Stress

P VC Stress P Stress P VC Stress P Stress

=

×

× + ×

                          (18) 

The posterior probability that a word has an iambic stress pattern given a particular 

CVC2, CVC1, and VC2 is further calculated: 

( 2 | 2, 1, 2) 1 ( 1 | 2, 1, 2)P Stress CVC CVC VC P Stress CVC CVC VC= −     (19) 

Using the calculations described above, the model can make predictions about the 

probabilities of stress patterns. In this Chapter, the Bayesian model of stress assignment 

in Russian disyllabic words is evaluated via two sets of simulations. First, the predictions 

of the model about stress patterns are compared with actual stress patterns that words 

have and with the performance of native speakers of Russian on a set of 500 disyllabic 

words (Study 5). The model is expected to be able to predict stress patterns in words and 

to simulate readers’ performance assigning stress to those words. That is, the model 

would be expected to assign higher probabilities to the actual stress pattern of words than 

to the incorrect pattern and to identify those words to which the participants are more 

likely to make stress assignment errors. For those “problematic” words, the model should 

compute posterior probabilities of correct stress patterns that deviate significantly from 

1.0 (complete belief that a stress pattern is correct). There should then be a correlation 

between the size of the deviation of the posterior probability computed by the model for a 
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correct stress of a word from 1.0 and the likelihood that a word is pronounced with an 

incorrect stress pattern in the behavioral data.        

This approach of simulating actual stress assignment performance of native 

speakers naming words rather than only assessing the ability of a model to predict stress 

patterns in the corpus is a novel and, presumably, more critical way of evaluating a 

model’s potential. The previous models of stress assignment that were reviewed in 

Chapter 2 (Rastle & Coltheart, 2000; Seva et al., 2009; Perry et al., 2010) were all tested 

on their ability to predict stress patterns for each word in the corpus of disyllabic words. 

The algorithm by Rastle and Coltheart is unable to simulate actual stress assignment 

performance as its output is deterministic (i.e., trochaic or iambic stress patterns) rather 

than probabilistic. On the other hand, the connectionist model by Seva et al. and the 

nested model by Perry et al. do produce the output in the form of relative activation levels 

of the trochaic versus the iambic stress nodes that can be interpreted as the probabilities 

with which these stress patterns would be assigned by readers to those words. However, 

the modelers preferred to transform the continuous probability values into binary stress 

outputs (with a stress node having the maximum level of activation being considered as 

the stress pattern that the model assigns to a word) and, hence, ran simulations against 

stress patterns in the corpus. In contrast, the predictions of the Bayesian model of stress 

assignment were compared with actual performance of readers on a set of words.           

Further, in Study 6 of the present thesis, the predictions of the Bayesian model 

were compared with the behavioral performance of native speakers of Russian, naming a 

set of 200 disyllabic nonwords. Simulating stress assignment in nonwords is a gold 

standard in the assessment of the effectiveness of models of stress assignment (Perry et 
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al., 2010). In contrast to real words that could potentially be stressed via a lexical lookup 

procedure (a mechanism that is not actually a part of the model), nonword pronunciation, 

including stress placement, is completed fully via non-lexical processing, processing that 

the Bayesian model of stress assignment is specifically created to explain.  

All previously published models of stress assignment have been tested by the 

modelers on their ability to predict stress pattern placement in nonword naming. Stress 

assignment in nonword naming is characterized by great inter-subject variance (Zevin & 

Joanisse, 2000). However, as noted above, because the models produce binary, 

deterministic output (trochaic or iambic stress patterns) or modelers selected to transform 

continuous, probabilistic output into binary, deterministic output, they are unable to 

account for this variability. Therefore, the three most well-known models of stress 

assignment can only predict the most frequent stress pattern that participants assign to a 

nonword, rather than the ratio of responses with trochaic versus iambic stress patterns 

assigned to that nonword. In contrast, the Bayesian model of stress assignment can 

provide estimates of the distribution of trochaic and iambic responses that speakers 

should produce in naming nonwords as well as the most frequent response that should be 

given by participants.          

The computations of the likelihood of evidence were completed using the lexicon 

compiled for the studies reported in Chapter 5. In this lexicon, only the words with a 

frequency of more than one per million were included. Further, only nouns that describe a 

class of entities (i.e., common nouns), but not unique entities (i.e., proper nouns) were 

included. Thus, the lexicon that was used for these calculations did not include all 

disyllabic words of the Russian language. The fact that the lexicon used was not 
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exhaustive might lead to a slight distortion in the computation of the likelihoods of 

evidence. Although this limitation should not change the predictions of the model 

drastically in the majority of cases, it might matter when certain evidence is very low in 

frequency in the language overall (a certain orthographic component is present just in a 

few words) and, therefore, this evidence was not well represented in the selected lexicon. 

For example, in the selected lexicon, there is just one word мольберт that has the 

orthographic component –берт (CVC2). Thus, in calculating the posterior probability of 

a trochaic stress for this word based on the information provided by CVC2, the model 

will predict that there is no chance that this word is assigned a trochaic stress pattern: 

(0 / 7668) .55
( 1| ) .00

((0 / 7668) .55) ((1/ 6274) .45)
P Stress берт

×
− = =

× + ×
.            (20) 

At this point, the assessment of other sources of evidence is meaningless, as the 

model will never be able to move away from the prediction that this word has iambic 

stress no matter how strong some other evidence might be. This situation does not create 

a problem if the model is assessed on its ability to predict a stress pattern for the single 

word мольбЕрт that is a part of the selected lexicon. However, this situation can  

become a problem if the model is assessed on its ability to predict a stress pattern for 

another word with the orthographic component –берт (CVC2) that is not a part of the 

selected lexicon and has a trochaic stress pattern (e.g., the proper name шУберт). The 

model would not be able to predict the correct stress pattern for the word шУберт due to 

the fact that its computations are based on the information provided in the selected 

lexicon, which, in case of the likelihood of evidence –берт (CVC2), does not properly 

reflect the ratio of trochaically versus iambically stressed words with –берт (CVC2) in 

the language.     
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This issue of the distortion in the representation of evidence in the selected 

lexicon is less problematic when certain evidence is represented widely in the language. 

In that situation, even if a few words having a particular orthographic component do not 

make it to the lexicon, the relative strength of the evidence based on that component for 

one of two alternative hypotheses should not depart greatly from the distribution present 

in the language. The issue of incorrect calculations of posterior probabilities due to the 

underrepresentation of certain evidence in the lexicon was addressed in the following 

way. To reflect the possibility that there might be a word present in the language that has 

a certain orthographic component, but that simply did not make it to the lexicon, a 

constant that equals one was added in the calculations of likelihoods of evidence of both 

trochaic stress (P(evidence+1|Stress1)) and iambic stress (P(evidence+1|Stress1)). For 

instance, in calculating the posterior probability of a trochaic stress given –берт (СVC2), 

the evidence for trochaic versus iambic stress is estimated not as 0 and 1 (meaning that in 

the lexicon, 0 words have a trochaic stress pattern and 1 word has an iambic stress 

pattern), but rather as 1 and 2 (meaning that there is potentially 1 word with a trochaic 

stress pattern and 2 words with an iambic stress patterns). Following this way of 

estimating the likelihood of evidence, the posterior probability of a trochaic stress given 

the evidence –берт (CVC2) is: 

 
(1/ 7668) .55

( 1| ) .33
((1/ 7668) .55) ((2 / 6274) .45)

P Stress берт
×

− = =
× + ×

 . (21) 

The implementation of a parameter reflecting the possibility that there might be 

words with certain evidence for stress that were simply not included in the lexicon allows 

the model to make proper estimations of probabilities of stress patterns not just for the 
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word like мольбЕрт, but also for the word like шУберт (when other sources of 

evidence contribute to the computation).            

6.2. Study 5: Simulating stress assignment performance in word naming task 

Study 5 was conducted to assess the ability of the proposed Bayesian model of 

stress assignment to predict stress patterns in Russian disyllabic words and to simulate 

stress assignment performance of native speakers. Perfect performance from the model in 

terms of classifying words was not expected. However, the erroneous predictions that the 

model might make may not necessarily reflect a failure of the model, but rather its 

inability to identify words for which the correct stress assignment is completed via lexical 

retrieval of stress patterns from the memory. The words characterized by these 

inconsistencies in stress patterns assigned via lexical versus non-lexical processing, 

however, should be especially difficult for readers to process and, therefore, these words 

should be more likely to be stressed inappropriately overall compared to words for which 

the model makes stress predictions that are consistent with the actual stress patterns. 

Further, there should be increased error rates in participants’ performance not only when 

the model’s predictions of stress patterns are incorrect, but also when the model predicts 

the correct stress pattern overall, but the posterior probability of this correct stress pattern 

deviates significantly from 1.0. To assess this hypothesis, one can correlate the degree of 

inconsistency of each prediction (i.e., difference between 1.0 and posterior probability of 

a correct stress pattern as estimated by the model) with error rate.                    

Method 

Participants 
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Thirty four undergraduate students from Altay State University (Barnaul, Russia) 

took part in this experiment for a small monetary remuneration (age 17 – 23; M = 19). All 

were native speakers of Russian. None of the participants reported high proficiency in 

any second language.  

Materials 

A set of 500 disyllabic words (see Appendix D) was randomly selected from the 

corpus created for Study 3. Post-hoc analysis showed that the distribution of words 

according to stress patterns and grammatical categories in this set of experimental items 

was similar to that in the language. There were thirty four words that had ambiguous 

stress because they corresponded to two lexical items that differed in stress pattern only 

(e.g., пАром – Instrumental case for “steam” vs. парОм – Nominative case for “ferry”). 

For each of these words, the stress pattern for the more frequent word was selected as the 

correct one.  

Procedure 

For each word, the Bayesian model of stress assignment in Russian was used to 

compute posterior probabilities of trochaic and iambic stress patterns. The posterior 

probability of a stress pattern that exceeded .55 was interpreted as providing significant 

evidence that a word has that stress pattern and does not have the alternative stress 

pattern. The posterior probability of a stress pattern that was less than .45 was interpreted 

as providing evidence that a word does not have that stress pattern and does have the 

alternative stress pattern. Finally, the posterior probability of a stress pattern that was 

within the range of .45 - .55 was interpreted to mean that the model cannot determine 

which of the two stress patterns should be assigned to the word.         
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The behavioral data against which the simulation results were compared was 

collected in the following way. Participants were instructed to read aloud words 

presented on the screen as quickly and as accurately as possible. Instructions and stimuli 

were presented using the DMDX display system (Forster & Forster, 2003). The list of 

500 items was presented in two blocks of trials. Every participant named all 500 items. 

The order of blocks and of items within blocks was randomized for each participant. 

Each trial started with the presentation of a fixation point for 500 ms. The target word in 

upper-case appeared in white on a black background (Courier New, 12 font) for 2000 ms 

or until the participant responded. The intertrial interval was 1000 ms.  

Results 

Responses were marked using CheckVocal (Protopapas, 2007) by the author and 

by two other native speakers of Russian. A response was coded as 0 if a word was 

pronounced with a trochaic stress and as 1 if a word was pronounced with an iambic 

stress. The Bayesian model of stress assignment could predict stress patterns in 78% of 

analyzed words (see Figure 7). Its performance on making correct predictions on trochaic 

stress words was slightly better (81%) than its ability to predict iambic stress (74%). 

Similarly, the model was more often wrong in predicting trochaic stress patterns for 

iambically stressed words (20%) than in incorrectly predicting iambic stress patterns for 

trochaically stressed words (13%). Based on the given evidence, the model could not 

conclude what stress pattern is more likely to be present in a word for 6% of words with 

trochaic stress and 6% of words with iambic stress. Thus, overall the Bayesian model of 

stress assignment could generally predict stress patterns based on non-lexical information 

only, although there were a number of cases when the model made erroneous predictions. 
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Figure 7 

Stress pattern predictions of the Bayesian model of stress assignment in Russian for 

words with trochaic stress (A) and words with iambic stress (B) 
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The next question was whether there is a correlation between the model’s 

predictions and stress assignment performance demonstrated by the readers. For this 

purpose, the posterior probability of an iambic stress pattern as calculated by the model 

was correlated with the proportion of responses with iambic stress that ranged from 0 

(meaning that all participants named a word with a trochaic stress pattern) to 1 (meaning 

that all participants named a word with an iambic stress pattern). The regression analysis 

showed that the posterior probabilities of iambic stress patterns computed by the model 

were predictive of the likelihood that the readers would pronounce these words with 

iambic stress, r (498) = .76, F (1,498) = 681.25, p < .001.  

The preceding analysis is potentially compromised because, for some words, the 

model does predict the incorrect stress. These are the words that are likely to be stressed 

by readers via lexical look-up procedure that is not implemented in the model. Therefore, 

one would expect that, for some of those words, participants would produce the correct 

stress even though non-lexical factors had biased them toward the wrong stress. These 

inconsistencies in stress patterns assigned via lexical versus non-lexical routes may cause 

difficulties in stress assignment. Similarly, one would expect that readers should be prone 

to stress assignment errors when processing words for which the model does predict the 

correct stress pattern; however, the posterior probability of this correct stress pattern as 

calculated by the model is not very high. To assess these predictions, a new variable 

referred to as the Degree of Inconsistency of stress pattern was computed. This variable 

reflects the difference between the probability of a correct stress pattern being assigned 

via a lexical look-up procedure (which equals 1.0) and the probability of a correct stress 

pattern being assigned via a non-lexical procedure (as estimated by the model).  
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The Degree of Inconsistency was entered as a fixed factor into a linear mixed 

effects model. Subjects and Items were entered as random factors. Stress assignment 

performance coded as 0 (correct) or 1 (incorrect) was used as the outcome variable. The 

analysis was conducted using the R package lme4 (Bates & Maechler, 2010). 

Significance values were obtained via Markov Chain Monte Carlo (MCMC) sampling of 

the posterior parameter distributions (sample size = 10,000). 

The model with the Degree of Inconsistency entered as a fixed factor and Subjects 

and Items entered as random factors provided a significantly better fit to the data than the 

model with random factors only, χ2(1) = 194.10, p < .001. Further, the Degree of 

Inconsistency was a significant predictor of error rate, z = 14.76, p < .001. Thus, the 

participants were more likely to assign stress incorrectly to words with a high Degree of 

Inconsistency compared to words with a low degree of Inconsistency (See Figure 8). 

Discussion 

In Study 5, the ability of the Bayesian model of stress assignment to predict stress 

patterns in Russian disyllabic words was assessed. Overall, the model was reasonably 

successful in predicting stress patterns in the language as 78% of words were assigned 

correct stress patterns. For about 6% of words, the model did not predict significant 

differences in the probabilities of trochaic versus iambic stress patterns based on the non-

lexical evidence provided. Finally, for the remaining 16% of words, the model made 

incorrect predictions. These results provide further evidence that stress pattern 

information in Russian can be computed non-lexically in the majority of cases and that 

the proposed Bayesian model of stress assignment is likely to be a viable model for 

explaining non-lexical mechanisms of stress pattern identification.  
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Figure 8 

Error rate as a function of the Degree of Inconsistency between stress pattern predictions 

of the Bayesian model of stress assignment based on the non-lexical evidence given and 

of the lexical look-up procedure 

 

Note. A Degree of Inconsistency that equals 0 refers to complete consistency between the 

lexical information and the predictions made by the Bayesian model, while a Degree of 

Inconsistency that equals 1 refers to complete inconsistency between the lexical 

information and the predictions made by the Bayesian model. 
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The second goal of the study was to assess whether the model can simulate the 

patterns of stress assignment behavior demonstrated by readers. The question was 

whether the model makes predictions about difficulty in assigning stress patterns for the 

same words that readers tend to make stress errors on. From this perspective, words for 

which the model fails to assign stress correctly or for which it struggles in deciding what 

stress pattern is more probable are of special interest. These words are characterized by a 

high degree of inconsistency between the stress pattern predicted by the model, based on 

non-lexical information, compared to accurate lexical information. Often, a reader may 

pronounce such words correctly by retrieving a corresponding stress pattern from lexical 

memory. Although many readers may do exactly that, it does not mean that they will be 

immune to the influence of the non-lexical information that is, in fact, incorrect or 

ambiguous for these words. Therefore, readers are expected to make more stress 

assignment errors on words for which the predictions of the Bayesian model, based 

completely on non-lexical information, deviate significantly from the actual stress 

patterns (stored in lexical memory) for these words.  

The results of Study 5 provided evidence, first of all, that the posterior probability 

of a certain stress pattern in a word computed by the model was predictive of the 

likelihood that this word is pronounced with this stress pattern by readers. Secondly, it 

was also found that the degree of inconsistency of predictions of non-lexical and lexical 

information was related to the probability that readers make stress assignment errors. 

More specifically, if the model predicted that there is a high probability of a certain stress 

pattern and this pattern was, in fact, the stress pattern stored for this word in lexical 

memory, participants rarely assigned an incorrect stress pattern to this word. On the other 
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hand, if according to the model’s computations there was some evidence for a stress 

pattern that is alternative to the one stored in lexical memory, participants were often 

misled by the non-lexical evidence and made stress assignment errors.                        

6.3. Study 6: Simulating stress assignment performance in a nonword naming task  

Although the Bayesian model of stress assignment could successfully predict 

stress patterns in Russian and simulate the stress assignment performance of readers of 

this language, its performance was not perfect. In fact, a perfect performance on 

assigning stress to words is not expected from this model as it mimics non-lexical 

mechanisms of processing only, while stress assignment in words is not immune to the 

impact of lexical information. Thus, in simulating stress assignment in words, the model 

would fail to explain any variance that is due to readers using lexical information. The 

issue of utilization of lexical information does not arise if the model is assessed on its 

ability to simulate stress assignment in nonwords which do not have lexical 

representations in memory and, hence, their stress can only be assigned non-lexically. In 

Study 6, the Bayesian model was assessed on its ability to predict patterns of behavior 

demonstrated by native speakers of Russian assigning stress to nonwords. More 

specifically, the model was evaluated on its ability to predict the most frequent stress 

pattern that readers assign to a nonword, as well as the proportion of responses with 

trochaic and iambic stress that readers produce.  

Method 

Participants 

Thirty undergraduate students from Altay State University (Barnaul, Russia) took 

part in this experiment for a small monetary remuneration (age 17 – 23; M = 19). All 
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were native speakers of Russian. None of the participants reported high proficiency in 

any second language.  

Materials 

A set of 200 disyllabic nonwords (see Appendix E) was created by randomly 

combining first syllables and second syllables of Russian disyllabic words. All nonwords 

were pronounceable and did not violate any ortho-phonological constraints present in 

Russian. To minimize the possibility that stress assignment is completed by analogy to a 

real word, no nonword that is an orthographic neighbor of a real word (Coltheart et al., 

1977) was included as a stimulus in this study.  

Procedure 

For each nonword, the Bayesian model of stress assignment in Russian was used 

to compute posterior probabilities of trochaic and iambic stress patterns. A posterior 

probability of a stress pattern that exceeded .55 is interpreted as providing significant 

evidence that a nonword is likely to be assigned that stress pattern. A posterior 

probability of a stress pattern that was less than .45 is interpreted as providing evidence 

that a nonword is likely to be assigned an alternative stress pattern. A posterior 

probability of a stress pattern that was within the range of .45 - .55 suggests that the 

model cannot determine which pattern is more likely to be assigned to a nonword.         

The behavioral data against which the simulation results were compared was 

collected in the following way. Participants were instructed to read aloud novel words 

that would be presented on the screen as quickly as possible. Instructions and stimuli 

were presented using the DMDX display system (Forster & Forster, 2003). The list of 

200 items was presented in two blocks of trials. Every participant named all 200 items. 
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The order of blocks and of items within blocks was randomized for each participant. 

Each trial started with the presentation of a fixation point for 500 ms. The target nonword 

in upper-case appeared in white on a black background (Courier New, 12 font) for 2000 

ms or until the participant responded. The intertrial interval was 1000 ms.  

Responses were marked using CheckVocal (Protopapas, 2007) by the author and 

by two other native speakers of Russian. A response was coded as “0” if a nonword was 

pronounced with a trochaic stress and as “1” if a nonword was pronounced with an 

iambic stress. If the mean response score for a nonword was less than .45, it was deemed 

that the majority of participants assigned trochaic stress to this nonword. If the mean 

response score for a nonword was more than .55, it was deemed that the majority of 

participants assigned iambic stress to this nonword. Finally, if the mean response score 

was between .45 and .55, it was thought that neither trochaic nor iambic stress pattern 

was a preferred choice in the behavioral data. 

Results  

As can be seen from Table 10, the model made correct predictions about a stress 

pattern that is more likely to be realized by participants for 184 out of 200 nonwords 

(90% correct). More specifically, for nonwords predicted to be given a trochaic stress, 

participants did produce that stress pattern 93% of the time. For nonwords predicted to be 

given iambic stress, participants did produce that stress pattern 88% of the time.  The 

model could not decide on the preferred stress pattern for 16 nonwords and in the data 

participants also had trouble figuring out which stress pattern to assign to five of those 

nonwords. For the remaining 11 nonwords that the model found ambiguous, participants 

had a tendency of assigning one of the two stress patterns reasonably often.         
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Table 50 

Stress pattern assignment predictions of the Bayesian model of stress assignment 

compared with stress pattern assignment performance of readers naming 200 disyllabic 

nonwords 

 Predicted Stress  

 Trochaic Iambic No Preference Total 

Assigned Stress     

Trochaic  64 10 6 80 

Iambic 5 101 5 111 

No Preference 0 4 5 9 

Total 69 115 16 200 
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Further, to assess the ability of the model to predict the proportion of responses 

with trochaic versus iambic stress patterns, the predictions of the model in the form of 

posterior probabilities of iambic stress pattern and the ratio of iambic stress responses 

made by participants to nonwords were submitted to a correlational analysis. The results 

showed that the model’s estimations of posterior probabilities of iambic stress pattern 

were reflective of actual performance, r (198) = .87, F (1, 198) = 600.35, p < .001.  

Discussion 

Study 6 provided clear evidence that the Bayesian model of stress assignment can 

successfully predict what stress pattern participants are more likely to use when naming 

nonwords. One minor discrepancy between the results of the model’s simulations and the 

behavioral data concerned a few nonwords that the model could not classify as either 

having trochaic or iambic stress based on the evidence given. Unlike the model, readers 

did demonstrate a preference for a stress pattern for 70% (11 out of 16) of these 

nonwords that the model failed to classify. The cause of this discrepancy is likely rooted 

in the fact that the model is limited in that it only uses three sources of evidence, sources 

that have been shown to provide highly valid and utilized stress cues in Russian (i.e., 

CVC1, CVC2, and VC2). However, readers are free to use any stress cues that are of 

value for the processing of a specific word/nonword, even if the general validity and 

utility of these cues in the language are relatively low. It is quite possible that readers 

may resort to those less reliable stress cues when information about the probability of 

stress patterns provided by more reliable cues is inconclusive. Overall, the predictions of 

the model about the choice of the most frequent stress pattern and about the proportions 

of trochaic versus iambic responses to nonwords made by readers were quite good.  
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6.4. Conclusion 

In Chapter 6, simulations based on the Bayesian model of stress assignment in 

Russian were provided. First, the model’s predictions about probabilities of stress 

patterns in a set of 500 disyllabic words were compared with actual stress assignment 

performance of native speakers of Russian on those words. In general, the model was 

capable of predicting the correct stress pattern realized for those words in the language. 

More importantly, the model’s predictions were reflective of the patterns of behavior 

demonstrated by the readers. Thus, words for which the model failed to assign stress 

correctly (i.e., posterior probability of a correct stress pattern was low) or for which it had 

difficulty in deciding what stress is more likely to be correct (i.e., posterior probabilities 

of two alternative stress patterns were approximately equal), were, in fact, more likely to 

be pronounced by the readers with incorrect stress compared to words for which the 

model assigned stress correctly (i.e., posterior probability of a correct stress was high). 

The model was also successful in its ability to predict the probabilities with which 

trochaic and iambic stress patterns are assigned to nonwords. That is, if the model 

concluded that for a nonword a particular stress pattern was more probable considering 

the non-lexical evidence available, readers were quite likely to assign that stress pattern. 

The model was also able to predict not just the most frequent stress pattern that the 

readers would assign to a nonword, but also the relative ratio of readers’ trochaic versus 

iambic responses. Overall, the results of the simulations conducted with a set of words 

and nonwords allows one to conclude that the proposed Bayesian model of stress 

assignment is a viable model that is likely to provide a good approximation of the non-

lexical processes involved when a speaker of Russian assigns stress to a disyllabic word. 
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Chapter 7 – General Discussion 

7.1. Summary of Results 

With the shift of interest from the investigation of monosyllabic words to that of 

more complex polysyllabic words that has taken place in the area of visual word 

recognition (Perry et al., 2010; Yap & Balota, 2009), new scientific questions have 

emerged. One such question concerns the principles and mechanisms of lexical stress 

assignment, that is, how is it that readers come to a decision that certain syllables should 

be pronounced with greater prominence than the others (i.e., stressed) in a polysyllabic 

word. Do the readers retrieve this information from memory? Is this information 

computed based on some cues that are present in the orthography of a word? If lexical 

stress is, in fact, computed, what are the cues that allow readers to make a decision about 

the stress pattern that a word has? All of these questions need to be considered by the 

modelers of visual word recognition who wish to account not only for monosyllabic, but 

also for polysyllabic word reading. 

Most models of visual word recognition (e.g., Coltheart et al., 2001; Harm & 

Seidenberg, 2004) were originally created to explain reading of monosyllabic words and, 

thus, did not have in their architectures any mechanisms that could explain the process of 

stress assignment. In response to this limitation, a number of the modelers expanded the 

architecture of their models by introducing new modules aimed at imitating the 

mechanisms by which readers assign stress to words. In Chapter 2, a detailed description 

of the three most well-known models that have components capable of producing an 

output in the form of a stress pattern was given. These are the dual-route model of stress 

assignment by Rastle and Coltheart (2000), the connectionist model by Seva, Monaghan, 
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and Arciuli (2009), and the CDP++, a model that combines some principles of the dual-

route and of the connectionist-type models (Perry et al., 2010). In these models, it is 

suggested that stress patterns are identified based on written cues present in the 

orthography (Perry et al., 2010; Seva et al., 2009) or morphology (Rastle & Coltheart, 

2000) of a word.  

The models’ abilities to simulate stress assignment performance on a set of 

English disyllabic words and nonwords were assessed. Although the performance of 

models on word reading was acceptable as a first pass, none of the models provided a 

particularly good fit to the data. While the models had no difficulty in predicting the 

presence of a more frequent (in English) trochaic stress pattern, the presence of a less 

frequent iambic stress pattern was often not identified properly. A similar pattern was 

registered in simulations run in an attempt to model nonword naming data. The models 

agreed on high percentage of stress assignment responses if participants preferred to 

name a nonword with a trochaic stress. On the other hand, nonwords that were 

pronounced by participants with a less common iambic stress were often incorrectly 

assigned a trochaic stress pattern by the models. Thus, all of the models tended to 

overgeneralize the more frequent trochaic stress pattern at the expense of the less 

common iambic stress pattern.  

In Chapter 3, an alternative way to model the process of stress assignment in 

polysyllabic words was advanced. The proposal is that the human mind, which is 

essentially probabilistic, might be approaching the task of deciding where stress should 

be placed in a word by evaluating the likelihood of each hypothetical outcome, that is, the 

likelihood of each stress pattern that is potentially present in a word. The stress pattern 
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likelihood estimation is completed following the principles of Bayesian probabilities. For 

this reason, the proposed model is referred to as a Bayesian model of stress assignment. 

The Bayesian model of stress assignment can be seen as the process of evidence 

accumulation during the identification of stress patterns in polysyllabic words. The 

process of the actual selection of a stress pattern to be applied to a polysyllabic word can 

be thought of as random walk diffusion process (Ratcliff, 1978). In this situation, the 

decision process moves from a starting point towards decision boundaries with some drift 

rate. This movement is susceptible to the impact of noise in the system that gives rise to 

incorrect responses. The impact of the noise is directly related to the strength of the 

evidence accumulation process (i.e., the posterior probability) that is implemented in the 

Bayesian model of stress assignment (i.e., stronger evidence for a correct stress pattern is 

associated with higher accuracy, while weaker evidence for a correct stress pattern is 

associated with lower accuracy). The estimation of evidence for each stress pattern is 

done by considering prior beliefs about the likelihood of each stress pattern in a language 

and the evidence for each stress pattern provided in a word.  

The prior probability of a stress pattern in a language refers to the frequency of 

this stress pattern in the words of the language. The evidence for stress involves any type 

of non-lexical information present in a word that is probabilistically associated with stress 

patterns in a language. In other words, evidence for stress considered by the model would 

be of high validity. In addition, readers should be sensitive to this evidence and use it in 

making their stress assignment decisions. Thus, the model considers those sources of 

evidence for stress that are not only highly valid, but also highly utilized. There is likely 
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to be a set of stress cues with high validity and utility that is routinely analyzed by 

readers in the process of stress assignment.  

In Chapter 4, empirical support for the assumptions made in the Bayesian model 

of stress assignment was considered. First of all, evidence for the effect of the frequency 

of stress patterns in a language on polysyllabic word naming was reviewed. Previously, 

the debated issue in this area was whether the most frequent stress pattern is assigned by 

default and, thus, whether there is an essential difference in the processing of words with 

more frequent versus less frequent stress patterns (Black & Byng, 1986; Colombo, 1992). 

The polar opposite view was that the frequency of stress patterns in the language plays no 

role in processing at all and, hence, the mechanisms of processing of words with a more 

frequent stress pattern are exactly the same as of words with a less frequent stress pattern 

(Burani & Arduino, 2004). Thus, there are two extreme positions on the issue and both 

positions find some empirical support. On one hand, there are studies showing that 

readers are aware of the distribution of stress patterns in the language and are influenced 

by it to certain extent (Breen & Clifton, 2011; Colombo, 1992). On the other hand, there 

are studies that fail to find any evidence that words with a more frequent stress pattern are 

processed via different mechanisms compared to words with less frequent stress patterns 

(Burani & Arduino, 2004; Sulpizio, Arduino, Paizi, & Burani, 2013). 

A more viable approach would seem to be to take an intermediate position. There 

is a substantial amount of evidence suggesting that readers are aware of statistical 

probabilities of stress patterns in the language. However, that does not mean that a more 

frequent stress pattern is applied to all words automatically following some default rule, 

which, in its turn, gives rise to the processing differences for words with more versus less 
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common stress patterns. Knowledge of the distribution of stress patterns in a language 

may be used as a prior belief about likelihoods with which words have a particular stress 

pattern or, in other words, as a baseline for further computations of probabilities of stress 

patterns. Thus, in the Bayesian model of stress assignment, there are no differences in the 

mechanisms of processing of words with more frequent versus less frequent stress 

patterns, although words with a more frequent stress pattern do enjoy somewhat of a head 

start. However, this initial advantage for words that do have a more frequent stress 

pattern can be easily changed by assessment of non-lexical, orthographic cues that are 

probabilistically associated with less frequent stress patterns. 

Thus, in the proposed model of stress assignment, the most vital role is played by 

non-lexical cues to stress. In Chapter 4, a review of previous research on potential 

sources of evidence for stress in various languages was provided. More specifically, 

studies investigating graphemic complexity of onsets and codas (Kelly, 2004; Kelly, 

Morris, & Verrekia, 1998), orthography of word beginnings and endings (Arciuli et al., 

2010), and grammatical status of a word (Arciuli & Cupples, 2004) as evidence for 

lexical stress were surveyed. It is very likely that this list of stress cues is not 

comprehensive, and that there are other stress cues that have not been investigated yet.  

In making stress assignment decisions, readers might be evaluating all non-lexical 

sources of evidence for stress present in the language. However, due to time-constraints 

and due to the excessive amount of evidence for stress, some of which is redundant, 

readers, in general, are likely to rely on a limited set of highly informative stress cues. 

Doing so would allow readers to assign stress with high accuracy and speed to a majority 

of words. As the Bayesian model presented here is an attempt to explain this common, 
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non-lexical processing of stress assignment, the model considers only those sources of 

evidence that are highly informative in a language. 

The Bayesian model of stress assignment is a universal model that can be applied 

to any language that utilizes lexical stress, although its exact components are language-

specific. In Chapter 5, the bases for implementation of the Bayesian model of stress 

assignment in Russian were outlined. The choice of the language for present research is 

explained by the fact that despite the importance of lexical stress for word recognition in 

Russian, its assignment is very complex and is often a source of speech errors. In 

Russian, there appear to be no clear rules of stress assignment and no dominant stress 

pattern. This complexity of the Russian stress system gave rise to the idea that, in that 

language, stress assignment can be completed only lexically, that is via retrieval of stress 

pattern information from memory (Gouskova, 2010). If this proposal is true, it should be 

extremely challenging, in fact, next to impossible, for a Bayesian model that is essentially 

non-lexical to predict stress pattern placement in Russian words and to simulate stress 

assignment performance for native speakers of Russian.  

In creating the computational implementation of the model for Russian, the 

distribution of stress patterns in the language (i.e., prior probabilities of stress patterns) 

and the nature of cues that are probabilistically associated with stress patterns (i.e., 

sources of evidence for stress) were assessed. To simplify the computation, only 

disyllabic Russian words were considered. In Study 1, the distribution of trochaic versus 

iambic stress patterns in a corpus of Russian disyllabic words was analyzed. This analysis 

showed that the prior probability of a trochaic stress pattern is .55, while the prior 

probability of an iambic stress pattern is .45. Additionally, the analysis of the distribution 
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of stress patterns in words of various grammatical categories showed an interesting 

picture. Adjectives were often associated with trochaic stress (80%), verbs were slightly 

more often associated with iambic stress (62%), and, finally, for nouns, trochaic stress 

occurred approximately as often as iambic stress (55% vs. 45%).   

 The evidence for the bias to either a trochaic or an iambic stress pattern was 

assessed in a word naming task (Study 2). More specifically, one question was whether 

words having a trochaic stress pattern, which is just slightly more frequent in Russian, are 

processed faster than words having an iambic stress pattern. A second question was 

whether there was any evidence for faster and more accurate processing of adjectives 

with trochaic stress due to the fact that this stress pattern is dominant for words of this 

grammatical category. The results showed no effect of stress type overall, but a 

significant main effect of stress type for adjectives, suggesting that readers are sensitive 

to the information about frequencies of stress patterns in the language. Further, due to the 

presence of a more frequent, trochaic stress pattern, adjectives as a grammatical category 

were named and identified as words faster and more accurately than nouns and verbs 

which do not have a more frequent stress pattern. 

The finding of a significant main effect of stress type at the level of grammatical 

category could be interpreted as suggesting that prior probabilities of stress patterns 

reflect the distribution of stress patterns among words of certain grammatical category 

rather than among all words of a language. This proposal, that to some extent contradicts 

the principles of the Bayesian model of stress assignment, is unlikely to be correct. First 

of all, although prior beliefs about stress patterns exist in a reader’s mind before any 

processing has been initiated, in a word naming experiment, a reader is unaware of the 



158 

 

grammatical category of a word before its presentation and, thus, this information cannot 

have any impact on reader’s prior expectations. Secondly, it could be argued that the 

effect of grammatical category observed in Study 2 was not due to the early activation of 

grammatical category information, but rather due to the fact that, in the case of 

adjectives, orthographic cues to grammatical category also provide useful information 

about stress patterns, while orthographic cues to nouns and verbs do not. Therefore, these 

data are not actually inconsistent with the original view that prior beliefs about stress 

patterns reflect the knowledge of distributions of stress patterns in all words of the 

language, rather than in words of certain grammatical category.            

To examine what non-lexical sources of evidence for stress are present in Russian 

and are used by native speakers, a factorial (Study 2) and two regression (Studies 3 and 

4) studies were conducted. The results of Study 2 showed that word ending was an 

important stress cue as words that have word endings representative of correct stress 

patterns had a processing advantage over words with word endings that are representative 

of incorrect stress patterns. A more exploratory approach was taken in Studies 3 and 4 

that were run to examine the power of eleven variables (Length, Log Frequency, 

Grammatical Category, Onset Complexity, Coda Complexity, and spelling-to-stress 

consistency of CVC1, CV1, VC1, CVC2, CV2, and VC2) to predict lexical stress in 

Russian. Study 3 was a binary logistic regression of this set of predictors on stress 

patterns in a corpus of Russian disyllabic words. The aim of this study was to identify 

stress cues having high validity. The results showed that there are six variables 

significantly associated with stress patterns in Russian: Onset Complexity, Coda 

Complexity, the spelling-to-stress consistency of CVC1, CVC2, CV2, and VC2. In Study 
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4, a generalized linear mixed effect model with the same eleven variables as predictors of 

stress assignment performance was applied to the word naming data with an aim of 

identifying stress cues that are of high utility in Russian. The results showed that native 

speakers of Russian essentially base their stress assignment decisions on the information 

provided by the spelling-to-stress consistency of CVC1, CVC2, and VC2.  

Based on the combination of the results provided by the factorial and the 

regression studies, it was concluded that there are three sources of evidence for stress in 

Russian that have high validity (i.e., strong probabilistic associations between cues and 

the stress patterns exist in the language) and high utility (i.e., readers use the knowledge 

of these probabilistic associations between cues and stress patterns). These three sources 

of evidence are the spelling-to-stress consistency of the first syllable (CVC1), the 

spelling-to-stress consistency of the second syllable (CVC2), and the spelling-to-stress 

consistency of the ending of the second syllable (VC2). 

The information about prior probabilities of stress patterns in Russian and about 

the sources of evidence that are considered by native readers of Russian assigning stress 

to disyllabic words was used to create the computational implementation of a Bayesian 

model of stress assignment in Russian. The performance of the model was tested in a 

series of simulations reported in Chapter 6. In Study 5, the predictions of the model were 

compared with stress assignment performance of native speakers of Russian naming 

disyllabic words. The results showed that the model was not only able to predict correctly 

the stress patterns for the majority of the words tested, but also to reflect the patterns of 

behavior demonstrated by the readers. More specifically, the model managed to identify 

those words that participants had difficulty in processing, that is, words that were often 
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assigned incorrect stress patterns in the behavioral data. In Study 6, the model’s ability to 

simulate stress assignment performance of readers naming nonwords was examined. The 

model’s performance in this simulation was quite good as it managed to predict not only 

the most frequent stress pattern that readers assigned to a nonword, but also the relative 

ratio of trochaic versus iambic responses given by the participants. 

7.2. Theoretical implications 

In the present thesis, a new theoretical approach to the modeling of the process of 

stress assignment couched in the principles of Bayesian probabilities has been introduced. 

Within this approach, it is suggested that in deciding where to place stress in a word, a 

reader estimates posterior probabilities of each stress pattern occurring in words in the 

language. The posterior probability of a stress pattern occurring in a word is estimated by 

adjusting a prior belief about the likelihoods of each stress pattern (derived from the 

knowledge of the distribution of stress patterns in the language) based on various non-

lexical sources of evidence for stress present in the orthographic input. The proposed 

Bayesian theoretical framework was implemented in a computational model of stress 

assignment that mapped orthography onto stress position for disyllabic words in Russian. 

This computational model was able to accomplish stress assignment for words and 

nonwords with a high degree of accuracy, implying that the principles underlying this 

model are likely to reflect the mechanisms that are implicated during the process of stress 

assignment.  

The Bayesian model of stress assignment is a model based on non-lexical 

processing. In other words, this model describes the procedures that are likely to occur 

when readers compute stress pattern information based on orthographic input rather than 
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retrieve it directly from the memory. As it turns out, 20% of words in Study 5 could not 

be assigned stress properly following the non-lexical computation. For these words, for a 

reader to properly assign stress, that process must involve lexical retrieval. In the 

behavioral data, it was observed that readers did make significantly more errors on these 

types of words, suggesting that the readers were impacted by misleading information 

provided as the result of the non-lexical computation. However, in general, the readers 

managed to assign stress properly even to those words that the model assigned the 

incorrect stress to. Therefore, similar to the dual-route theory of reading (Coltheart et al., 

1993) and to the stress assignment algorithm by Rastle and Coltheart (2000), the model 

expressed here must incorporate an assumption that stress pattern information may be 

retrieved via a lexical route as well as being computed following the principles of the 

Bayesian model of stress assignment. Unlike the algorithm by Rastle and Coltheart, 

which is rule-driven, stress assignment in the Bayesian model is not governed by pre-

defined linguistic rules, but rather by a combination of different cues that are statistically 

associated with stress patterns. A reliance on non-lexical cues that are probabilistically 

associated with stress patterns is also implemented in the connectionist model of stress 

assignment by Seva et al. (2009). However, the model proposed in this thesis differs from 

the connectionist model of stress assignment because the former model allows that stress 

assignment may happen via the retrieval of localized lexical representations, while the 

latter model denies such a possibility.  

The Bayesian model of stress assignment is most similar to the CDP++ (Perry et 

al., 2011) as both models combine dual-route principles of processing with an idea that 

any non-lexical route would be driven by knowledge of statistical regularities, rather than 
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rule-based algorithms. Despite those similarities, the CDP++ and the Bayesian model of 

stress assignment take different fundamental approaches. The task of the Bayesian model 

is to solve an inductive problem of deciding which of several alternative stress patterns is 

likely to be present in a word taking into consideration some non-lexical evidence that is 

present. The task of any model of stress assignment that utilizes connectionist networks is 

to learn a set of weights on connections among orthographic input and stress output that 

would generate the appropriate stress pattern. To conclude, although the Bayesian model 

of stress assignment does have a lot of features in its architecture and makes some 

theoretical assumptions that are shared with the earlier models of stress assignment, it is a 

novel computational approach that appears to be able to provide new insights into the 

process of stress assignment in a variety of languages. 

In the present thesis, it was demonstrated that the Bayesian model of stress 

assignment can successfully account for the process of stress assignment in Russian 

disyllables. As this model is essentially a model of non-lexical processing, one could 

conclude that lexical stress can be assigned to Russian polysyllabic words non-lexically. 

That is, in Russian, there are stress cues present in the orthography of a word and the 

native speakers of Russian use these cues in computing stress pattern information. This 

finding contradicts a widely accepted view that Russian stress assignment is completed 

only via the retrieval of stress pattern information from the memory (Gouskova, 2010).  

7.3. Limitations and future research 

Although the Bayesian model of stress assignment was successful in the present 

research, there are, of course, a number of lines of research to pursue to further test and 

develop the model. First, in order to adjudicate between competing modeling approaches, 
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one needs to create computational implementations of major models that reflect the stress 

assignment process in one common language. Indeed, it is hard to conclude that one 

model supersedes another if they are tested on words taken from different languages. 

While all previously existing models have been created to simulate stress assignment in 

English, the computational implementation of the Bayesian model described here makes 

predictions about probabilities of lexical stress in Russian. The logical step in this respect 

is to make an implementation of the Bayesian model of stress assignment in English. 

Thus, one could compare directly the ability of models to predict stress patterns in a 

language and patterns of performance of native speakers assigning stress to words.  

As has been mentioned earlier, none of the existing models of stress assignment 

could overcome the issue of overgeneralization of a more frequent trochaic stress pattern 

in English. All models of stress assignment in English demonstrated almost perfect 

performance on words with the more common trochaic stress and less than satisfactory 

performance on words with the less common iambic stress. It is an empirically interesting 

question whether a model based on the Bayesian principles would provide a better fit to 

the English data than existing models do. Within the Bayesian approach, English 

speakers have a high prior belief that any disyllabic word should have trochaic stress. 

Thus, in order to pronounce an iambically-stressed word correctly, a reader may need to 

be provided with orthographic evidence that is very strongly associated with iambic 

stress, while in case of a trochaically stressed word even weak evidence for trochaic 

stress would suffice. 

The Bayesian model of stress assignment should also be tested on its ability to 

predict stress for polysyllabic words of various syllabic lengths. It is an open question 
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whether the model would be as successful in simulating stress assignment performance of 

speakers naming words of more than two syllables as it was in predicting stress patterns 

in disyllabic words. Although the architecture of the model remains the same regardless 

of the syllabic length of a word being read, there are some minor differences. First, there 

would be differences in the number of hypotheses (stress patterns) for which the model 

must compute posterior probabilities. That is, in establishing the likelihoods of stress 

patterns in a disyllabic word, the model has to compute a posterior probability only for 

one hypothesis as the probability of the other hypothesis is the complement of the other 

probability, while during the processing of a trisyllabic word, computations of 

probabilities for two hypotheses would need to be conducted. Secondly, one needs to 

determine whether the sources of evidence for stress remain the same for words of 

various syllabic lengths or whether certain differences in the number and types of cues to 

stress (dependent on the syllabic length of a word) exist.           

Another question for future research concerns the relative time period during 

which lexical stress information is being processed. No assumptions are made about 

when stress is assigned to words in the model as it is not clear at the moment whether 

stress assignment precedes mapping of orthography onto segmental phonology, follows 

it, or whether these two processes occur in parallel during reading. Hence, the stress 

assignment model is not implemented yet as a module within a larger model of 

polysyllabic word reading.  

An additional issue that has not been investigated within the scope of the present 

manuscript is whether the proposed model can account for individual differences in stress 

assignment performance. These differences are likely to emerge as individuals might be 
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exposed to different statistical probabilities even in the same language due to variability 

in the contents and sizes of individuals’ lexicons. Due to these differences in exposure, 

the stress assignment performance of a highly educated person might be quite different 

from the performance of a person with an impoverished lexicon. Similarly, the statistical 

probabilities of the lexicon of a 6-year old child might differ significantly from those of 

an adult. In fact, Arciuli et al. (2010) analyzed a corpus of children’s literature 

appropriate for various age groups, and demonstrated successive changes in the 

distributions of stress patterns (prior probabilities) and in reliable stress cues (likelihoods 

of evidence) that were picked up by children. By learning the language, children adapted 

their predictions to the structure of the language. Further, individual differences in stress 

assignment might be observed due to the regional differences in the language. For 

example, if in a certain dialect many words are stressed differently than in the standard 

language, it is possible that the speakers of this dialect might be relying greatly on the 

probabilities reflected in that dialect rather than in the standard language. The model 

presented here is an approximation only reflecting a behavior of an “average” speaker of 

Russian with the lexicon that contains about 14,000 disyllabic words. However, the 

model can easily be used to simulate individual differences in stress assignment 

performance by varying the size and the content of the lexicon used by the model in the 

process of estimation of posterior probabilities of stress patterns.  

A related question concerns the behavior of bilinguals, who are exposed to 

statistical probabilities of more than one language. At the moment, it is unclear whether 

stress-relevant statistical information is language selective in a way that only probabilities 

of one language are activated at one time, or whether this information is language non-
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selective, meaning that in defining the degree of belief that a word of one language has a 

specific stress pattern, a bilingual relies on the knowledge of stress pattern distributions 

and stress cues of all languages that he/she speaks.     

7.4. Concluding statements 

In the present thesis, a model of stress assignment in reading based on the ideas of 

Bayesian probabilities was advanced. The process of stress assignment is viewed within 

this model as the process of estimation of posterior probabilities of stress patterns. In the 

computation of posterior probabilities of stress patterns, the model adjusts prior 

probabilities of stress patterns reflecting the frequency of stress patterns in the language 

by considering various non-lexical sources of evidence for stress. This model was 

successfully tested in its ability to predict stress patterns in Russian disyllabic words and 

to simulate stress assignment performance of native speakers of Russian. One of the 

greatest advantages of the Bayesian model of stress assignment over all other existing 

models is that unlike other models that predict “average” behavior, the Bayesian model 

can provide simulations of individual differences. In fact, the model was not only able to 

predict the most common stress pattern response to a word, but also the 

difficulty/likelihood of assigning that stress pattern by individual readers.   
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Appendices 

Appendix A 

Russian Disyllabic Words Used in Study 2 

Adjectives:  

Trochaic Stress:  

Consistent: ВИДНОМ, ДИКОМ, ЖАДЕН, ТРУДЕН, КРАТКОМ, ЛЕВОМ, 

РЕЗКОМ, СЛАЩЕ, ТОЧЕН, ОСТРОМ, ЯСНОМ, БЕДЕН, ГЛАВНОМ, ЗЕЛЕН, 

ГОРДОМ, ЧЕСТЕН; Inconsistent: БАБКИН, ВЕСЕЛ, БЛИЗОК, ДЕРЗОК, ЖАЛОК, 

КРАТОК, КРЕПОК, МОЛОД, РОБОК, СЛАДОК, ТОНОК, УЗОК, ЯРОК, ГИБОК, 

ЧЁРТОВ, ВЯЗОК 

Iambic Stress:  

Consistent: КРАСИВ, НЕПРАВ, РЕВНИВ, ЗАЧАТ, ГОРБАТ, СУРОВ, СМЕШОН, 

ТРУСЛИВ, ТЯЖЁЛ, УНЫЛ, БОГАТ, БОЛТЛИВ, ВЫСОК, ЗАЖАТ, ГЛУБОК, 

ЕДИН; Inconsistent: ПЕЧНОЙ, УМНЫ, ЯСНА, БЫЛОМ, ЧУЖОМ, РАВНЫ, 

СВЕЖО, БЛАГИМ, ЖИЛОМ, ЗАБИТ, ГУСТОМ, ДУРНА, ЗЕМНОМ, КРУТОМ, 

ЛЕГКИ, КРУТОМ 

Nouns: 

Trochaic Stress:  

Consistent: ВАЛЬСЫ, ВЕКОМ, КРОВЛИ, КРЕМОМ, МИСКИ, ЖАНРОМ, СЛОГА, 

ТЕСТЯ, АКЦИЙ, ЯВКИ, РУСЛОМ, БАСНЮ, БЛАНКИ, ВАЛОМ, ГАЙКИ, 

ЧУКЧИ; Inconsistent: ОТРОК, ЯДОВ, ГРАМОТ, ГАДОВ, ЧЕХОВ, ЛИФТОВ, 

МАСОК, РЫБИН, СВОДОВ, ПОШЛИН, ВЕТОК, ВЫПЛАТ, БЕСОВ, ЖЕСТОВ, 

КРЕСЕЛ, ПРИСТАВ 
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Iambic Stress:  

Consistent: ЗАБАВ, БОРОД, ГЛУБИН, БЫЛИН, ЧИНОВ, ДЕВЧАТ, ЖИДОВ, 

ЗАСТАВ, ПРУЖИН, КРУЖКОВ, ЛОПАТ, МОРЩИН, СТАНКОВ, КАБИН, ОВЕЦ, 

ЮНЦОВ; Inconsistent: ВЕРХИ, ЯДРОМ, БАШКЕ, ГЕРБОМ, ЧУЛКИ, ЛОТКИ, 

МЕШКИ, СТАНКА, ТИСКИ, ИСТЦОМ, ДВОРЫ, ВОЗНИ, ДУБЫ, ЖИЛЬЦА, 

КРЮЧКИ, КРЫЛОМ 

Verbs: 

Trochaic Stress:  

Consistent: КРУТЯТ, ЛЕЗЛО, ЛЯЖЕШЬ, СБИЛИ, ПОМНИ, АХНУЛ, ЕЗДЯТ, 

БИЛО, ГОНЯТ, ГРЫЗЛО, ЧУЕШЬ, ВЫЙДИ, ВАЛЯТ, БУРКНЕШЬ, ЖАРЯТ, 

КЛАЛИ; Inconsistent: ЕЗДИЛ, ГИБНЕТ, ВЫПЕЙ, ДЛИЛИСЬ, ЧИСТИЛ, ВЕДАЛ, 

ВОЮТ, ДУШАТ, ЖАЖДЕТ, ПРЫГАЛ, КЛЮНУТЬ, НЮХАЛ, МЕЧЕТ, СНИМЕТ, 

ТОПАЛ, АХАЛ 

Iambic Stress: 

Consistent: ЯВИТЬ, ГАДАЛ, БРОСАЛ, ГОСТИЛ, ЧИНИЛ, МОЛИЛ, РЕВЕЛ, 

СТИРАЛ, ТОРЧАТ, УБРАЛ, ЗАДЕЛ, ВИЗЖАЛ, БЕРЕЧЬ, ЗАБИЛ, ТРЕЩАЛ, 

ПРОЩАЛ; Inconsistent: ВЕЗЛИ, БУДИ, ВЕЛЯТ, КЛАДИ, ВИНЯТ, ПЛЕСТИ, 

ЛЕГЛО, МАНИ, СНЕСТИ, ИКНУЛ, ПОЛЗТИ, ЮЛИТ, БОМБЯТ, ГОРЯТ, 

БЛЮСТИ, ЦАРИТ   
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Appendix B 

Russian Disyllabic Words Used As Stimuli in Pilot Experiment Of Study 3 

 

АКТЁР, БАСНИ, БАШМАК, БЕДРУ, БОДРОСТЬ, БУБЛИК, БУГРОМ, БУДНИ, 

БУКЛЕТ, БЫСТРОЙ, ВЕДРУ, ВЕКТОР, ВЕСНА, ВЕТРЕ, ВИСКОВ, ВИТРАЖ, 

ВИХРИ, ВИШНЯ, ВМЕСТО, ВОБЛА, ВОЖДЕЙ, ВОСТОК, ВОСКОМ, ГВОЗДЯ, 

ГЕКТАР, ГИПСА, ГНЕЗДЕ, ГОСТЯМ, ГУСЛЯР, ДЕСПОТ, ДИКТАТ, ДИСКЕ, 

ДОБРОМ, ДОЖДИ, ДОСКА, ДУБЛЯЖ, ДУПЛО, ЕВРЕЙ, ЕЗДИЛ, ЖАЖДЕТ, 

ЖЕСТОВ, ЗАВТРА, ЗВЕЗДЕ, ИГРАТЬ, ИГЛА, ИЗВЕРГ, ИСЛАМ, ИСКРА, 

КАДРЫ, КАЖДЫЙ, КАЗНА, КАКТУС, КАПЛЮ, КАСКИ, КАШЛЯЛ, КЕДРА, 

КИСЛО, КОБРА, КОВРОМ, КОЗЛЫ, КОПНЫ, КОСТЕЙ, КОТЛЕТ, КУКЛЫ, 

ЛАВКУ, ЛИСТОМ, ЛОВКОСТЬ, МАГНИТ, МАСКИ, МАТРОС, МЕТРАХ, 

МЕШКАТЬ, МИКСЕР, МОКРЫЙ, МУДРЫХ, МУСКАТ, НЕГРЫ, НИТРАТ, 

ОКТЯБРЬ, ОСТРЯК, ПАТРОН, ПЕСКОВ, ПЁСТРЫЙ, ПИНГВИН, ПРОСПЕКТ, 

ПУДРА, РЕФРЕН, РЕЗВЫЙ, САБЛЯ, СВИСТОМ, СМОТРИ, СПАЗМЫ, ТАБЛИЦ, 

ТЕСТЯ, УГЛОМ, ФАКТОМ, ХВОСТЫ, ХРАБРОСТЬ, ЯБЛОНЬ, ЭСКИЗ     
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Appendix C 

Russian Disyllabic Words Used As Stimuli in Study 4 

 

КРАЁВ, СДАЮТ, ЗАБАВ, КАБИН, ЧАБАН, АГАТ, ЗАЖАТ, САЖАЛ, НАЙДЁТ, 

ТАЛОН, АЛЬБОМ, КАНАВ, КАНАТ, ЦАРИТ, ЗАСАД, КРАСИВ, РАСПАД, 

ФАСОН, ЗАСТАЛ, КАСТЕТ, ФАШИЗМ, ДЕВЧАТ, ПЛЕВАЛ, БЕГЛЕЦ, ВЕДЁТ, 

ШЕДЕВР, ТЕЛЕЦ, БЕЛЬЯ, БЕРЕЧЬ, БЕРЁШЬ, ВЕРШАТ, СВЕРЛИТЬ, ПЕСКОВ, 

ЦВЕТКИ, ЖРЕЦОВ, ПЕЧАЛЬ, ТРЕЩАЛ, КЛИЕНТ, СИЯТЬ, ПРИБРАТЬ, ПИВКО, 

КИДАЛ, ЛИЗНУТЬ, ДЛИНУ, ИНЫМ, ПИНАТЬ, ЧИНИЛ, ШИПЕЛ, ПИРАТ, 

СТИРАЛ, ИСТЦОМ, ЦИТАТ, ЛИЦЕЙ, ПРИЧУД, КИШКА, ГРОБНИЦ, СОДРАТЬ, 

ВОЖДЮ, ДОЖДЕ, КОЛЁС, ПРОЛИВ, СТВОЛЫ, ТОЛЧКИ, БОЛТЛИВ, 

БЛОНДИН, МОНТАЖ, ВОРЧУН, ГОРЯТ, ДВОРЦЕ, МОРЩИН, ГОРБАТ, 

КОРСЕТ, БРОСАЛ, ПРОСПЕКТ, ГОСТИЛ, КОСТРОВ, МОТАЛ, ОТЁК, ОТЧЁТ, 

БРОШЮР, ВУАЛЬ, ДУБРАВ, УБРАЛ, УГАР, ЛУЖОК, ПРУЖИН, ЧУЖОМ, 

РУКОЙ, ЧУЛАН, УНЫЛ, КУПАТЬ, ЖУРЧАТ, ТРУСЛИВ, ГРУСТИТЬ, СУСТАВ, 

КРЫЛОМ, РЫЧАГ, РЫЧАТ, СМЫЧОК, ЭТАП, ЮНЦОВ, ПЛЯСАЛ, СТРЯХНУТЬ, 

МЯЧОМ, ТЕРПЛЮ, ЗВЕРЬЁ, КРИВЫХ, РОДИТЬ, ПОЛЗТИ, КОНТРАКТ, 

ПОПЕТЬ, ТРУДОВ, ДРУЖИТЬ, ПУТЕЙ, РАЗГУЛ, СКАЛА, ЗАПОР, ЗАСТЫЛ, 

ЛЕЖИТ, ТЕРЯТЬ, ВЕСТЕЙ, СМЕШНА, ЛИСТУ, ВОЗВРАТ, КОЛЕЦ, МОЛИЛ, 

ПРОЛЕЗТЬ, ТОННЕЛЬ, ЖОНГЛЁР, ГЛОТОК, ОТЦЫ, СУМЕЛ, МЫЧАТ, 

КЛЮЧА, ГАЗЕТ, РВАНУЛ, ЖАРА, СПАСТИСЬ, ДЕБОШ, СЛЕЗАЙ, НЕПРАВ, 

ДЕФЕКТ, СПЕШИЛ, ВИЗЖАЛ, ОГНЁМ, СМОЛЧАТЬ, КОТЛЫ, ЖУЮТ, ГУБАМ, 

КУРИ, ГЛУХОЙ, БРАЛА, АНТЕНН, РЕДИС, СЕДЛО, СБЕЖАТЬ, СТРЕЛОК, 
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МЕСИТЬ, ВЗИРАТЬ, ЛИЦЕ, ВОЙНОЙ, ГОНЕЦ, ВОПИЛ, КОПНА, БОРЦА, 

ГЛУБИН, ШУМОК, СУРОВ, ЮЛИТ, РАВНИН, ВРЕДИТЬ, БРЕЗЕНТ, РЕМНЁМ, 

СЛЕПЫМ, ВЕСАМ, СТОЛА, ПУГАЛ, СКЛАДНОЙ, КАТКОВ, ЕДЕ, ДОБРОМ, 

ПОДВОД, ХОЛОП, БАГОР, КОРА, ЯДРОМ, КАЗНЕ, КРАСЕ, ЕДИН, ПЛЕСТИ, 

ЖИЛОМ, ЗАЧАТ, СТРАШНЫ, ИМАМ, РАВНЫ, ПОЛОС, ОРУ, КРУТОМ, ЗЕРНЕ, 

ЖИЛА, СТОПАМ, ВОЛХВЫ, ПЛОТУ, ЗВОНИШЬ, СОСКИ, МУКЕ, ЯСНА, 

СТАНКА, СОНЕТ, ИСКРА, ВИРШИ, МОРДВЫ, ЛОТКИ, МЫСОК, МАНИ, 

ПОРТЫ, ВЕЛОСЬ, ЛИФТОВ, КОЛИ, ДЕЛИ, ДЕНЩИК, ОТРОК, СТРОЁВ, 

СЛОГА, БАЛАХ, ГЕРБОМ, ЛЕСУ, СПИНЫ, БОРОД, УГЛИ, СКЛАДУ, ПОЛКУ, 

ХЛОПОК, ЧАСА, АХАЛ, КОПНЫ, УХЕ, ИРОД, ГОНЯТ, СХВАТИТ, ПРИСТАВ, 

ГВОЗДИК, РОСЧЕРК, ВЕДАЛ, ГИБОК, СТИЛЮ, ТОПАЛ, РОЩУ, ТУШИ, 

ГРЫЗЛО, КЛЕТОК, ПЛАТНОМ, СТАТУЙ, ДОЛЖНЫМ, ПУХУ, ПРОВОД, 

САРЖА, СКВЕРНЫ, ПОШЛОЙ, ПЛЯСКИ, ВАЛЯТ, САМЫХ, ДАРИТ, НИЩЕЙ, 

ВОИН, ЛОБНОМ, ДОМУ, ПОШЛИН, ТОЩЕЙ, СУМА, ПЯТОМ, МАЗАЛ, 

ФРАЗА, КАПЛЮ, ПАРТЫ, ХАТЕ, ВЛЕЗЛИ, ВЕКОМ, СЕЛЬСКОЙ, СЦЕНОЙ, 

ПШЁННЫЙ, КРЕСЕЛ, МЕХОМ, ЧЕХОВ, БЛИЗОК, ВЗВОДЕ, РОДА, КОЙКАХ, 

ТРОЙКА, СКРОМНОЙ, НОСИШЬ, ДОСКУ, ОТРАСЛЬ, ГРУБОЙ, ГРУДУ, 

СКУЛЕ, КРУТЯТ, РУХЛЯДЬ, МЫСА, СЛЫШАЛ, БАБЬЕЙ, ВПАЛА, МАССЕ, 

СТРАСТНЫХ, БЕДЕН, СРЕДНЕ, СДЕЛАЛ, ВЕЧНЫМ, ГНИЛИ, МИЛО, ВВОДИТ, 

РОКА, ТОМЫ, ТОНУТ, ЩУКИ, ТРУПУ, ШКУРКИ, ВЗЯТКИ, ЖАДЕН, ДРАЛИ, 

ПАРА, БЕГЛО, ВЕРНЫХ, ИГРЫ, ХИЛЫЙ, ЛИСТЬЯ, СТОЕК, МОЩНЫМ, 

МУЖЕМ, УЗКИХ, СЫРОМ, СТЫЧКА, ТЯЖБА, СВЯЗЯХ, ЛАЯТЬ, ГРАБЛИ, 

ГЛАВНОМ, ДАВШИЙ, РАВЕН, ТРАВЛЯ, ЛАДНО, СТАДИЙ, СВАДЬБЕ, 
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ВЛАЖНОЙ, ЖАЖДЕТ, ПРАЗДНИК, ЗАЙЦЕВ, ГАЙКИ, АКЦИЙ, ПЛАКАЛ, 

ЖАЛКИ, ЗАЛПЫ, МАЛЬЧИК, ПАЛЬМА, ГРАМОТ, МАМИН, РАМКА, 

ШРАМОМ, ЛАНДЫШ, БЛАНКИ, СТРАННЫМ, БАНТИК, ШАПКАХ, ЖАРЯТ, 

БАРЖИ, ПАСХЕ, КАСКИ, ЧАСТО, КРАТОК, КРАТКОМ, ТРАТА, ХВАТКОЙ, 

ДАЧЕЙ, ПЛАЧА, БАШНЯ, СЛАЩЕ, НЕБА, ЛЕВОМ, БРЁВНА, ДЁГОТЬ, 

БЕДНОСТЬ, МЁДА, РЕЖУ, СВЕЖЫХ, ЛЕЗЛО, ГРЁЗЫ, ЕЗДИЛ, ЕЗДЯТ, 

ЗВЁЗДАХ, РЕЙСЫ, СМЕЛЫХ, ЦЕЛОСТЬ, ЖЁЛТЫМ, БРЕМЯ, ЦЕННОСТЬ, 

ЖЕНСКИХ, ЛЕНТЫ, ЦЕПЬЮ, ВЕРЕН, ДЕРЗОК, МЕРА, СЕРА, СЕРБЫ, 

ДЕРЖИМ, ЧЁРТОВ, КРЕСЛЕ, ПЕСЕН, ВСПЛЕСКИ, ЧЕСТЕН, СВЕТСКИЙ, 

ШЕФОМ, ВИДНОМ, КНИЖКАХ, СНИЗИТ, ВСКРИКНУЛ, ФИЛЬМОМ, 

ЗРИМЫЙ, ЛЬДИНУ, ПРИНЦЫ, ЛИРИК, МИСКИ, СПИСКАМ, МИСТЕР, 

ЧИСТИЛ, БИТЫХ, НИТКЕ, ПЛИТКИ, РИТМОМ, БИТЬСЯ, ПТИЧКИ, ВИШНИ, 

ПРОБКЕ, РОБКИМ, КОВРИК, ПОВОД, БРОДИМ, ВОДНОМ, ВХОДОМ, ЛОДКУ, 

СОДА, СХОДЯТ, ДРОЖЖИ, КОЖЕЙ, ПОЗЫ, СТРОЙНОСТЬ, СРОКИ, МОЛОД, 

ДОЛЛАР, ГРОМОМ, ЛОМОМ, ПОМНИ, ТОННА, ТОНОК, ОПЫТ, СТВОРКИ, 

СПОРТА, СНОСНО, ВОСКОМ, ПРОСЬБЕ, КРОТОСТЬ, СОТНИ, СМОТРИШЬ, 

ВЗДОХОВ, ТОЧКА, БУДНИ, СЛУЖАТ, ГРУЗНЫЙ, БУЛКА, СТУЛА, ТКНУЛА, 

ДУМА, ПУНКТАМ, ХМУРЫМ, КУРТКА, ВКУСНО, МУТНОЙ, СКУЧНОМ, 

ШТУЧКИ, ПУШКЕ, РЫБИН, ВЗРЫВУ, ССЫЛКА, ВЫПЛАТ, ВЫПЕЙ, ВЫПИВ, 

СЫТНЫЙ, ВЫШКА, КРЫШАМ, ПЫШНО, КЛЮНУТЬ, НЮХАЛ, ВЯЗКИЙ, 

СНЯЛИ, ПРЯНЫЙ, ДРЯНЬЮ, МЯСА, ЗЯТЯ, КЛЯЧА, ПРЯЧЕШЬ, ПЕЧАТЬ 
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Appendix D 

Russian Disyllabic Words Used in Study 5 

Actual Stress refers to the stress pattern that a word has in the language (1 = trochaic 

stress; 2 = iambic stress). Predicted Stress refers to the stress pattern that the Bayesian 

model of stress assignment predicted for a word (1 = trochaic stress; 2 = iambic stress; 0 

= no conclusive prediction is made). Assigned Stress1 refers to the proportion of answers 

with trochaic stress given by participants. Predicted Stress1 refers to the proportion of 

answers with trochaic stress predicted by the model. Assigned Stress2 refers to the 

proportion of answers with iambic stress given by participants. Predicted Stress2 refers to 

the proportion of answers with iambic stress predicted by the model. Degree of 

Uncertainty refers to the strength of the belief that a factual stress pattern is the correct 

one as estimated by the model (0 = complete belief; 1 = complete disbelief). Error rate 

refers to the proportion of responses with incorrect stress being assigned to a word.         

Word 

 

 

 

Actual 

Stress 

(Predicted 

Stress) 

Assigned 

Stress1 

(Predicted 

Stress1) 

Assigned 

Stress2 

(Predicted 

Stress2) 

Degree of 

Uncertainty  

 

 

Error Rate 

 

 

сводный 1 (1) 0.97 (1.00) 0.03 (0.00) 0.00 0.03 
местный 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
судный 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
бранный 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
рослый 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
точность 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
людный 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
праздность 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
зоркость 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
ловкость 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
разный 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
дюжий 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
синий 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
стержнем 1 (1) 1.00 (1.00) 0.00 (0.00) 0.00 0.00 
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буркнешь 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
классом 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
ляжешь 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
русских 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
гулко 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
вышлет 1 (1) 0.97 (0.99) 0.03 (0.01) 0.01 0.03 
тусклых 1 (1) 1.00 (0.99) 0.00 (0.01) 0.01 0.00 
кончик 1 (1) 1.00 (0.98) 0.00 (0.02) 0.02 0.00 
прочных 1 (1) 1.00 (0.98) 0.00 (0.02) 0.02 0.00 
бункер 1 (1) 0.97 (0.98) 0.03 (0.02) 0.02 0.03 
дивных 1 (1) 1.00 (0.98) 0.00 (0.02) 0.02 0.00 
пачкой 1 (1) 0.91 (0.98) 0.09 (0.02) 0.02 0.09 
внятно 1 (1) 1.00 (0.98) 0.00 (0.02) 0.02 0.00 
твёрдом 1 (1) 0.91 (0.98) 0.09 (0.02) 0.02 0.09 
дамских 1 (1) 1.00 (0.98) 0.00 (0.02) 0.02 0.00 
риска 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
ложки 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
жирном 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
правом 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
строчку 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
встречных 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
устных 1 (1) 0.97 (0.97) 0.03 (0.03) 0.03 0.03 
хрупкой 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
флангом 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
стенку 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
младшим 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
мрачным 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
чашек 1 (1) 1.00 (0.97) 0.00 (0.03) 0.03 0.00 
пачек 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
южном 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
внучек 1 (1) 0.74 (0.96) 0.26 (0.04) 0.04 0.26 
лунки 1 (1) 0.91 (0.96) 0.09 (0.04) 0.04 0.09 
квасом 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
ясном 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
бабкин 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
блюдом 1 (1) 0.91 (0.96) 0.09 (0.04) 0.04 0.09 
кровли 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
руслом 1 (1) 0.94 (0.96) 0.06 (0.04) 0.04 0.06 
гибнет 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
брался 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
клялся 1 (1) 0.97 (0.96) 0.03 (0.04) 0.04 0.03 
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шляться 1 (1) 1.00 (0.96) 0.00 (0.04) 0.04 0.00 
ставишь 1 (1) 0.94 (0.95) 0.06 (0.05) 0.05 0.06 
щепка 1 (1) 0.91 (0.95) 0.09 (0.05) 0.05 0.09 
сжаты 1 (1) 1.00 (0.95) 0.00 (0.05) 0.05 0.00 
внешне 1 (1) 1.00 (0.95) 0.00 (0.05) 0.05 0.00 
танка 1 (1) 0.97 (0.95) 0.03 (0.05) 0.05 0.03 
сложных 1 (1) 1.00 (0.95) 0.00 (0.05) 0.05 0.00 
ищем 1 (1) 1.00 (0.94) 0.00 (0.06) 0.06 0.00 
свечкой 1 (1) 1.00 (0.94) 0.00 (0.06) 0.06 0.00 
смете 1 (1) 0.91 (0.94) 0.09 (0.06) 0.06 0.09 
старта 1 (1) 1.00 (0.94) 0.00 (0.06) 0.06 0.00 
мачта 1 (1) 1.00 (0.94) 0.00 (0.06) 0.06 0.00 
сферах 1 (1) 0.91 (0.94) 0.09 (0.06) 0.06 0.09 
дует 1 (1) 0.88 (0.94) 0.12 (0.06) 0.06 0.12 
кухня 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
фирмы 1 (1) 0.97 (0.93) 0.03 (0.07) 0.07 0.03 
божьих 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
кочки 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
спички 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
важен 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
стало 1 (1) 1.00 (0.93) 0.00 (0.07) 0.07 0.00 
съезда 1 (1) 0.91 (0.93) 0.09 (0.07) 0.07 0.09 
хлама 1 (1) 0.94 (0.93) 0.06 (0.07) 0.07 0.06 
знатной 1 (1) 0.88 (0.92) 0.12 (0.08) 0.08 0.12 
резком 1 (1) 1.00 (0.92) 0.00 (0.08) 0.08 0.00 
братстве 1 (1) 0.88 (0.92) 0.12 (0.08) 0.08 0.12 
темпом 1 (1) 0.91 (0.92) 0.09 (0.08) 0.08 0.09 
вылет 1 (1) 1.00 (0.92) 0.00 (0.08) 0.08 0.00 
дырки 1 (1) 1.00 (0.92) 0.00 (0.08) 0.08 0.00 
пешку 1 (1) 0.91 (0.92) 0.09 (0.08) 0.08 0.09 
чуешь 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
босса 1 (1) 0.94 (0.91) 0.06 (0.09) 0.09 0.06 
кисло 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
нервам 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
шторы 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
точен 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
шутке 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
взносы 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
жанром 1 (1) 1.00 (0.91) 0.00 (0.09) 0.09 0.00 
фронте 1 (1) 0.91 (0.91) 0.09 (0.09) 0.09 0.09 
лапа 1 (1) 1.00 (0.90) 0.00 (0.10) 0.10 0.00 
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фонде 1 (1) 0.88 (0.90) 0.12 (0.10) 0.10 0.12 
членам 1 (1) 0.91 (0.90) 0.09 (0.10) 0.10 0.09 
школой 1 (1) 0.94 (0.90) 0.06 (0.10) 0.10 0.06 
тестя 1 (1) 0.97 (0.90) 0.03 (0.10) 0.10 0.03 
почве 1 (1) 1.00 (0.90) 0.00 (0.10) 0.10 0.00 
прежней 1 (1) 0.97 (0.90) 0.03 (0.10) 0.10 0.03 
труден 1 (1) 0.97 (0.89) 0.03 (0.11) 0.11 0.03 
йоги 1 (1) 1.00 (0.89) 0.00 (0.11) 0.11 0.00 
гордом 1 (1) 0.97 (0.89) 0.03 (0.11) 0.11 0.03 
явки 1 (1) 0.97 (0.89) 0.03 (0.11) 0.11 0.03 
склонны 1 (1) 1.00 (0.89) 0.00 (0.11) 0.11 0.00 
спорах 1 (1) 1.00 (0.89) 0.00 (0.11) 0.11 0.00 
тигры 1 (1) 1.00 (0.89) 0.00 (0.11) 0.11 0.00 
мышцу 1 (1) 0.82 (0.89) 0.18 (0.11) 0.11 0.18 
знаком* 1 (1) 0.85 (0.89) 0.15 (0.11) 0.11 0.15 
губка 1 (1) 1.00 (0.88) 0.00 (0.12) 0.12 0.00 
клином 1 (1) 0.97 (0.88) 0.03 (0.12) 0.12 0.03 
здешней 1 (1) 1.00 (0.88) 0.00 (0.12) 0.12 0.00 
некой 1 (1) 0.85 (0.88) 0.15 (0.12) 0.12 0.15 
шёлком 1 (1) 0.91 (0.88) 0.09 (0.12) 0.12 0.09 
низки* 1 (1) 0.74 (0.88) 0.26 (0.12) 0.12 0.26 
казус 1 (1) 0.97 (0.88) 0.03 (0.12) 0.12 0.03 
секта 1 (1) 1.00 (0.88) 0.00 (0.12) 0.12 0.00 
скопом 1 (1) 0.85 (0.88) 0.15 (0.12) 0.12 0.15 
било 1 (1) 1.00 (0.87) 0.00 (0.13) 0.13 0.00 
спазмы 1 (1) 1.00 (0.87) 0.00 (0.13) 0.13 0.00 
шашки 1 (1) 0.97 (0.87) 0.03 (0.13) 0.13 0.03 
зёрен 1 (1) 1.00 (0.87) 0.00 (0.13) 0.13 0.00 
дрогнет 1 (1) 1.00 (0.87) 0.00 (0.13) 0.13 0.00 
окрик 1 (1) 0.94 (0.87) 0.06 (0.13) 0.13 0.06 
парке 1 (1) 0.94 (0.86) 0.06 (0.14) 0.14 0.06 
скачет 1 (1) 0.97 (0.86) 0.03 (0.14) 0.14 0.03 
ножны 1 (1) 1.00 (0.86) 0.00 (0.14) 0.14 0.00 
выйди 1 (1) 1.00 (0.86) 0.00 (0.14) 0.14 0.00 
ждало 1 (1) 0.59 (0.85) 0.41 (0.15) 0.15 0.41 
прессы 1 (1) 1.00 (0.85) 0.00 (0.15) 0.15 0.00 
банда 1 (1) 1.00 (0.85) 0.00 (0.15) 0.15 0.00 
валим 1 (1) 0.94 (0.85) 0.06 (0.15) 0.15 0.06 
дали* 1 (1) 0.91 (0.85) 0.09 (0.15) 0.15 0.09 
выжил 1 (1) 1.00 (0.85) 0.00 (0.15) 0.15 0.00 
мечет 1 (1) 0.76 (0.84) 0.24 (0.16) 0.16 0.24 
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ведьму 1 (1) 1.00 (0.84) 0.00 (0.16) 0.16 0.00 
номер 1 (1) 1.00 (0.84) 0.00 (0.16) 0.16 0.00 
вольной 1 (1) 0.85 (0.84) 0.15 (0.16) 0.16 0.15 
клубом 1 (1) 0.97 (0.84) 0.03 (0.16) 0.16 0.03 
цапля 1 (1) 1.00 (0.84) 0.00 (0.16) 0.16 0.00 
ветра* 1 (1) 0.76 (0.84) 0.24 (0.16) 0.16 0.24 
ручка 1 (1) 1.00 (0.84) 0.00 (0.16) 0.16 0.00 
сварка 1 (1) 1.00 (0.84) 0.00 (0.16) 0.16 0.00 
лыжи 1 (1) 1.00 (0.83) 0.00 (0.17) 0.17 0.00 
чукчи 1 (1) 1.00 (0.82) 0.00 (0.18) 0.18 0.00 
рожа 1 (1) 1.00 (0.81) 0.00 (0.19) 0.19 0.00 
схожесть 1 (1) 1.00 (0.81) 0.00 (0.19) 0.19 0.00 
речке 1 (1) 1.00 (0.81) 0.00 (0.19) 0.19 0.00 
спросу 1 (1) 0.88 (0.80) 0.12 (0.20) 0.20 0.12 
эра 1 (1) 1.00 (0.80) 0.00 (0.20) 0.20 0.00 
муха 1 (1) 1.00 (0.80) 0.00 (0.20) 0.20 0.00 
чека* 1 (1) 0.65 (0.80) 0.35 (0.20) 0.20 0.35 
ахнул 1 (1) 0.97 (0.79) 0.03 (0.21) 0.21 0.03 
клали 1 (1) 0.88 (0.79) 0.12 (0.21) 0.21 0.12 
чая 1 (1) 1.00 (0.78) 0.00 (0.22) 0.22 0.00 
фаза 1 (1) 1.00 (0.78) 0.00 (0.22) 0.22 0.00 
паром* 1 (1) 0.82 (0.78) 0.18 (0.22) 0.22 0.18 
долге 1 (1) 0.88 (0.77) 0.12 (0.23) 0.23 0.12 
грызла 1 (1) 1.00 (0.77) 0.00 (0.23) 0.23 0.00 
маслу 1 (1) 0.91 (0.77) 0.09 (0.23) 0.23 0.09 
строгим 1 (1) 1.00 (0.77) 0.00 (0.23) 0.23 0.00 
края* 1 (1) 0.56 (0.77) 0.44 (0.23) 0.23 0.44 
сучья 1 (1) 0.91 (0.77) 0.09 (0.23) 0.23 0.09 
кукиш 1 (1) 1.00 (0.77) 0.00 (0.23) 0.23 0.00 
мылом 1 (1) 1.00 (0.77) 0.00 (0.23) 0.23 0.00 
диком 1 (1) 0.97 (0.76) 0.03 (0.24) 0.24 0.03 
остром 1 (1) 0.85 (0.76) 0.15 (0.24) 0.24 0.15 
валом 1 (1) 0.97 (0.76) 0.03 (0.24) 0.24 0.03 
сизым 1 (1) 0.76 (0.76) 0.24 (0.24) 0.24 0.24 
звукам 1 (1) 1.00 (0.76) 0.00 (0.24) 0.24 0.00 
кремом 1 (1) 1.00 (0.76) 0.00 (0.24) 0.24 0.00 
горной 1 (1) 1.00 (0.76) 0.00 (0.24) 0.24 0.00 
горле 1 (1) 0.85 (0.76) 0.15 (0.24) 0.24 0.15 
виллы 1 (1) 0.97 (0.76) 0.03 (0.24) 0.24 0.03 
гнева 1 (1) 1.00 (0.75) 0.00 (0.25) 0.25 0.00 
вече 1 (1) 0.91 (0.75) 0.09 (0.25) 0.25 0.09 
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скажут 1 (1) 0.97 (0.74) 0.03 (0.26) 0.26 0.03 
толща 1 (1) 0.82 (0.74) 0.18 (0.26) 0.26 0.18 
конном 1 (1) 0.82 (0.73) 0.18 (0.27) 0.27 0.18 
символ 1 (1) 1.00 (0.73) 0.00 (0.27) 0.27 0.00 
тура 1 (1) 0.74 (0.73) 0.26 (0.27) 0.27 0.26 
храмом 1 (1) 1.00 (0.73) 0.00 (0.27) 0.27 0.00 
базой 1 (1) 0.82 (0.73) 0.18 (0.27) 0.27 0.18 
трону 1 (1) 1.00 (0.73) 0.00 (0.27) 0.27 0.00 
сбили 1 (1) 1.00 (0.72) 0.00 (0.28) 0.28 0.00 
реже 1 (1) 1.00 (0.72) 0.00 (0.28) 0.28 0.00 
клала 1 (1) 0.47 (0.72) 0.53 (0.28) 0.28 0.53 
матчей 1 (1) 0.97 (0.71) 0.03 (0.29) 0.29 0.03 
вязок 1 (1) 0.94 (0.71) 0.06 (0.29) 0.29 0.06 
шарфом 1 (1) 0.53 (0.70) 0.47 (0.30) 0.30 0.47 
дверцы 1 (1) 1.00 (0.70) 0.00 (0.30) 0.30 0.00 
дымом 1 (1) 1.00 (0.70) 0.00 (0.30) 0.30 0.00 
цену 1 (1) 1.00 (0.69) 0.00 (0.31) 0.31 0.00 
стоят* 1 (1) 0.65 (0.69) 0.35 (0.31) 0.31 0.35 
пуска 1 (1) 0.82 (0.69) 0.18 (0.31) 0.31 0.18 
года* 1 (1) 0.56 (0.68) 0.44 (0.32) 0.32 0.44 
цвета* 1 (1) 0.50 (0.68) 0.50 (0.32) 0.32 0.50 
ядов 1 (1) 0.85 (0.67) 0.15 (0.33) 0.33 0.15 
сопли* 1 (1) 0.97 (0.67) 0.03 (0.33) 0.33 0.03 
деле 1 (1) 1.00 (0.67) 0.00 (0.33) 0.33 0.00 
дую 1 (1) 0.91 (0.67) 0.09 (0.33) 0.33 0.09 
ноги* 1 (1) 0.94 (0.67) 0.06 (0.33) 0.33 0.06 
мозга 1 (1) 0.71 (0.66) 0.29 (0.34) 0.34 0.29 
нужды* 1 (1) 0.56 (0.66) 0.44 (0.34) 0.34 0.44 
борта 1 (1) 0.47 (0.65) 0.53 (0.35) 0.35 0.53 
тётей 1 (1) 0.91 (0.65) 0.09 (0.35) 0.35 0.09 
пятна* 1 (1) 0.91 (0.64) 0.09 (0.36) 0.36 0.09 
гонор 1 (1) 0.82 (0.64) 0.18 (0.36) 0.36 0.18 
долгу* 1 (1) 0.68 (0.63) 0.32 (0.37) 0.37 0.32 
басню 1 (1) 1.00 (0.63) 0.00 (0.37) 0.37 0.00 
воле* 1 (1) 1.00 (0.62) 0.00 (0.38) 0.38 0.00 
стражи 1 (1) 0.91 (0.62) 0.09 (0.38) 0.38 0.09 
воду 1 (1) 0.97 (0.62) 0.03 (0.38) 0.38 0.03 
душах 1 (1) 0.65 (0.61) 0.35 (0.39) 0.39 0.35 
кудри 1 (1) 0.94 (0.61) 0.06 (0.39) 0.39 0.06 
дозу 1 (1) 0.97 (0.59) 0.03 (0.41) 0.41 0.03 
обществ 1 (1) 0.97 (0.59) 0.03 (0.41) 0.41 0.03 
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графы* 1 (1) 0.76 (0.59) 0.24 (0.41) 0.41 0.24 
клюнет 1 (1) 0.94 (0.59) 0.06 (0.41) 0.41 0.06 
боком 1 (1) 0.94 (0.59) 0.06 (0.41) 0.41 0.06 
села* 1 (1) 0.59 (0.58) 0.41 (0.42) 0.42 0.41 
косы* 1 (1) 0.76 (0.56) 0.24 (0.44) 0.44 0.24 
балла 1 (1) 0.94 (0.56) 0.06 (0.44) 0.44 0.06 
ходу* 1 (0) 0.79 (0.53) 0.21 (0.47) 0.47 0.21 
слухах 1 (0) 0.97 (0.53) 0.03 (0.47) 0.47 0.03 
развит 1 (0) 0.59 (0.53) 0.41 (0.47) 0.47 0.41 
пищей 1 (0) 0.91 (0.52) 0.09 (0.48) 0.48 0.09 
кашлял 1 (0) 0.94 (0.52) 0.06 (0.48) 0.48 0.06 
жестов 1 (0) 0.88 (0.49) 0.12 (0.51) 0.51 0.12 
боги 1 (0) 0.94 (0.49) 0.06 (0.51) 0.51 0.06 
свистом 1 (0) 0.91 (0.49) 0.09 (0.51) 0.51 0.09 
пену 1 (0) 0.91 (0.48) 0.09 (0.52) 0.52 0.09 
снимет 1 (0) 0.97 (0.48) 0.03 (0.52) 0.52 0.03 
зелен 1 (0) 0.85 (0.47) 0.15 (0.53) 0.53 0.15 
тикать 1 (0) 0.50 (0.47) 0.50 (0.53) 0.53 0.50 
кашу 1 (0) 0.79 (0.47) 0.21 (0.53) 0.53 0.21 
крепок 1 (0) 0.97 (0.46) 0.03 (0.54) 0.54 0.03 
робок 1 (2) 0.85 (0.41) 0.15 (0.59) 0.59 0.15 
ярок 1 (2) 0.94 (0.41) 0.06 (0.59) 0.59 0.06 
жалок 1 (2) 0.94 (0.40) 0.06 (0.60) 0.60 0.06 
палок 1 (2) 0.74 (0.40) 0.26 (0.60) 0.60 0.26 
сладок 1 (2) 0.91 (0.40) 0.09 (0.60) 0.60 0.09 
подлой 1 (2) 0.82 (0.39) 0.18 (0.61) 0.61 0.18 
гадов 1 (2) 0.97 (0.39) 0.03 (0.61) 0.61 0.03 
прыгал 1 (2) 0.94 (0.37) 0.06 (0.63) 0.63 0.06 
бури* 1 (2) 0.68 (0.37) 0.32 (0.63) 0.63 0.32 
плохи* 1 (2) 0.68 (0.36) 0.32 (0.64) 0.64 0.32 
бабок 1 (2) 0.91 (0.36) 0.09 (0.64) 0.64 0.09 
змеи* 1 (2) 0.71 (0.33) 0.29 (0.67) 0.67 0.29 
судьбах 1 (2) 0.97 (0.33) 0.03 (0.67) 0.67 0.03 
сглазить 1 (2) 0.94 (0.32) 0.06 (0.68) 0.68 0.06 
сводов 1 (2) 0.76 (0.30) 0.24 (0.70) 0.70 0.24 
елей* 1 (2) 0.44 (0.29) 0.56 (0.71) 0.71 0.56 
трубок 1 (2) 0.88 (0.26) 0.12 (0.74) 0.74 0.12 
перьях 1 (2) 0.91 (0.26) 0.09 (0.74) 0.74 0.09 
воют 1 (2) 0.82 (0.26) 0.18 (0.74) 0.74 0.18 
актов 1 (2) 0.94 (0.26) 0.06 (0.74) 0.74 0.06 
пьяниц 1 (2) 0.91 (0.25) 0.09 (0.75) 0.75 0.09 
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веток 1 (2) 0.79 (0.23) 0.21 (0.77) 0.77 0.21 
звери 1 (2) 0.94 (0.22) 0.06 (0.78) 0.78 0.06 
клеить 1 (2) 1.00 (0.21) 0.00 (0.79) 0.79 0.00 
длились 1 (2) 1.00 (0.21) 0.00 (0.79) 0.79 0.00 
бесов 1 (2) 0.76 (0.20) 0.24 (0.80) 0.80 0.24 
принял 1 (2) 0.65 (0.20) 0.35 (0.80) 0.80 0.35 
душат 1 (2) 0.85 (0.18) 0.15 (0.82) 0.82 0.15 
встретить 1 (2) 0.85 (0.18) 0.15 (0.82) 0.82 0.15 
масок 1 (2) 0.79 (0.17) 0.21 (0.83) 0.83 0.21 
скрипок 1 (2) 0.74 (0.17) 0.26 (0.83) 0.83 0.26 
весел 1 (2) 0.71 (0.17) 0.29 (0.83) 0.83 0.29 
всыпать* 1 (2) 0.59 (0.15) 0.41 (0.85) 0.85 0.41 
тискал 1 (2) 0.74 (0.13) 0.26 (0.87) 0.87 0.26 
детях 1 (2) 0.97 (0.12) 0.03 (0.88) 0.88 0.03 
узок 1 (2) 0.97 (0.12) 0.03 (0.88) 0.88 0.03 
лоцман 1 (2) 0.82 (0.10) 0.18 (0.90) 0.90 0.18 
таять 1 (2) 0.85 (0.05) 0.15 (0.95) 0.95 0.15 
резня 2 (1) 0.21 (0.92) 0.79 (0.08) 0.92 0.21 
высок 2 (1) 0.24 (0.90) 0.76 (0.10) 0.90 0.24 
дружке 2 (1) 0.76 (0.89) 0.24 (0.11) 0.89 0.76 
мелки* 2 (1) 0.50 (0.86) 0.50 (0.14) 0.86 0.50 
нежна 2 (1) 0.38 (0.86) 0.62 (0.14) 0.86 0.38 
ночник 2 (1) 0.15 (0.85) 0.85 (0.15) 0.85 0.15 
тиски 2 (1) 0.38 (0.85) 0.62 (0.15) 0.85 0.38 
минут* 2 (1) 0.18 (0.84) 0.82 (0.16) 0.84 0.18 
джинса 2 (1) 0.50 (0.84) 0.50 (0.16) 0.84 0.50 
корма* 2 (1) 0.35 (0.83) 0.65 (0.17) 0.83 0.35 
глаза* 2 (1) 0.18 (0.81) 0.82 (0.19) 0.81 0.18 
велят 2 (1) 0.29 (0.81) 0.71 (0.19) 0.81 0.29 
летишь 2 (1) 0.09 (0.81) 0.91 (0.19) 0.81 0.09 
близки* 2 (1) 0.32 (0.81) 0.68 (0.19) 0.81 0.32 
грозе 2 (1) 0.24 (0.81) 0.76 (0.19) 0.81 0.24 
пыльца 2 (1) 0.24 (0.80) 0.76 (0.20) 0.80 0.24 
планет 2 (1) 0.15 (0.79) 0.85 (0.21) 0.79 0.15 
штаны 2 (1) 0.09 (0.78) 0.91 (0.22) 0.78 0.09 
печной 2 (1) 0.18 (0.78) 0.82 (0.22) 0.78 0.18 
умны 2 (1) 0.18 (0.77) 0.82 (0.23) 0.77 0.18 
большим* 2 (1) 0.15 (0.77) 0.85 (0.23) 0.77 0.15 
укус 2 (1) 0.26 (0.77) 0.74 (0.23) 0.77 0.26 
любом 2 (1) 0.21 (0.73) 0.79 (0.27) 0.73 0.21 
дубы 2 (1) 0.26 (0.73) 0.74 (0.27) 0.73 0.26 
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парной* 2 (1) 0.35 (0.72) 0.65 (0.28) 0.72 0.35 
кружком 2 (1) 0.15 (0.71) 0.85 (0.29) 0.71 0.15 
дыра 2 (1) 0.12 (0.71) 0.88 (0.29) 0.71 0.12 
хотят 2 (1) 0.03 (0.69) 0.97 (0.31) 0.69 0.03 
кайма 2 (1) 0.32 (0.68) 0.68 (0.32) 0.68 0.32 
ступень 2 (1) 0.18 (0.67) 0.82 (0.33) 0.67 0.18 
бомбят 2 (1) 0.09 (0.67) 0.91 (0.33) 0.67 0.09 
горах 2 (1) 0.09 (0.66) 0.91 (0.34) 0.66 0.09 
толпу 2 (1) 0.24 (0.66) 0.76 (0.34) 0.66 0.24 
тянул 2 (1) 0.12 (0.66) 0.88 (0.34) 0.66 0.12 
вдова 2 (1) 0.09 (0.65) 0.91 (0.35) 0.65 0.09 
грехом 2 (1) 0.26 (0.64) 0.74 (0.36) 0.64 0.26 
земном 2 (1) 0.24 (0.63) 0.76 (0.37) 0.63 0.24 
холмы 2 (1) 0.15 (0.63) 0.85 (0.37) 0.63 0.15 
взрывных 2 (1) 0.15 (0.62) 0.85 (0.38) 0.62 0.15 
пустых 2 (1) 0.06 (0.61) 0.94 (0.39) 0.61 0.06 
винят 2 (1) 0.06 (0.61) 0.94 (0.39) 0.61 0.06 
метлы 2 (1) 0.59 (0.60) 0.41 (0.40) 0.60 0.59 
взяла 2 (1) 0.15 (0.58) 0.85 (0.42) 0.58 0.15 
окне 2 (1) 0.03 (0.57) 0.97 (0.43) 0.57 0.03 
тащи 2 (1) 0.06 (0.56) 0.94 (0.44) 0.56 0.06 
аду* 2 (0) 0.59 (0.55) 0.41 (0.45) 0.55 0.59 
корню* 2 (0) 0.53 (0.54) 0.47 (0.46) 0.54 0.53 
борзой* 2 (0) 0.50 (0.54) 0.50 (0.46) 0.54 0.50 
верста 2 (0) 0.29 (0.53) 0.71 (0.47) 0.53 0.29 
князей 2 (0) 0.38 (0.53) 0.62 (0.47) 0.53 0.38 
смола 2 (0) 0.12 (0.53) 0.88 (0.47) 0.53 0.12 
густом 2 (0) 0.21 (0.53) 0.79 (0.47) 0.53 0.21 
возни 2 (0) 0.32 (0.52) 0.68 (0.48) 0.52 0.32 
гроши 2 (0) 0.21 (0.52) 0.79 (0.48) 0.52 0.21 
голы* 2 (0) 0.56 (0.51) 0.44 (0.49) 0.51 0.56 
бомжи 2 (0) 0.15 (0.51) 0.85 (0.49) 0.51 0.15 
былом 2 (0) 0.29 (0.51) 0.71 (0.49) 0.51 0.29 
фойе 2 (0) 0.06 (0.51) 0.94 (0.49) 0.51 0.06 
жука 2 (0) 0.29 (0.50) 0.71 (0.50) 0.50 0.29 
виске 2 (2) 0.44 (0.44) 0.56 (0.56) 0.44 0.44 
гнилой 2 (2) 0.06 (0.44) 0.94 (0.56) 0.44 0.06 
мешки 2 (2) 0.21 (0.44) 0.79 (0.56) 0.44 0.21 
рублей 2 (2) 0.00 (0.43) 1.00 (0.57) 0.43 0.00 
стрельба 2 (2) 0.09 (0.43) 0.91 (0.57) 0.43 0.09 
верхи 2 (2) 0.32 (0.42) 0.68 (0.58) 0.42 0.32 



197 

 

уйти 2 (2) 0.00 (0.42) 1.00 (0.58) 0.42 0.00 
стена 2 (2) 0.09 (0.41) 0.91 (0.59) 0.41 0.09 
судам 2 (2) 0.12 (0.41) 0.88 (0.59) 0.41 0.12 
чулки 2 (2) 0.06 (0.41) 0.94 (0.59) 0.41 0.06 
бруски 2 (2) 0.18 (0.41) 0.82 (0.59) 0.41 0.18 
софе 2 (2) 0.15 (0.40) 0.85 (0.60) 0.40 0.15 
письмо 2 (2) 0.00 (0.40) 1.00 (0.60) 0.40 0.00 
струну 2 (2) 0.15 (0.39) 0.85 (0.61) 0.39 0.15 
явить 2 (2) 0.18 (0.38) 0.82 (0.62) 0.38 0.18 
багром 2 (2) 0.15 (0.38) 0.85 (0.62) 0.38 0.15 
блинов 2 (2) 0.03 (0.38) 0.97 (0.62) 0.38 0.03 
замкнуть 2 (2) 0.21 (0.38) 0.79 (0.62) 0.38 0.21 
щекам 2 (2) 0.32 (0.37) 0.68 (0.63) 0.37 0.32 
металл 2 (2) 0.00 (0.36) 1.00 (0.64) 0.36 0.00 
буди 2 (2) 0.24 (0.36) 0.76 (0.64) 0.36 0.24 
шкалу 2 (2) 0.12 (0.36) 0.88 (0.64) 0.36 0.12 
горшки 2 (2) 0.24 (0.35) 0.76 (0.65) 0.35 0.24 
взглянуть 2 (2) 0.21 (0.35) 0.79 (0.65) 0.35 0.21 
руды* 2 (2) 0.41 (0.34) 0.59 (0.66) 0.34 0.41 
штабов 2 (2) 0.35 (0.34) 0.65 (0.66) 0.34 0.35 
слюной 2 (2) 0.06 (0.33) 0.94 (0.67) 0.33 0.06 
блоху 2 (2) 0.06 (0.32) 0.94 (0.68) 0.32 0.06 
рядам 2 (2) 0.41 (0.32) 0.59 (0.68) 0.32 0.41 
дворы 2 (2) 0.12 (0.32) 0.88 (0.68) 0.32 0.12 
крючки 2 (2) 0.15 (0.31) 0.85 (0.69) 0.31 0.15 
везли 2 (2) 0.06 (0.30) 0.94 (0.70) 0.30 0.06 
проси 2 (2) 0.00 (0.29) 1.00 (0.71) 0.29 0.00 
фольга 2 (2) 0.15 (0.29) 0.85 (0.71) 0.29 0.15 
заре 2 (2) 0.09 (0.29) 0.91 (0.71) 0.29 0.09 
нажим 2 (2) 0.03 (0.28) 0.97 (0.72) 0.28 0.03 
чинов 2 (2) 0.26 (0.27) 0.74 (0.73) 0.27 0.26 
блюсти 2 (2) 0.03 (0.27) 0.97 (0.73) 0.27 0.03 
редут 2 (2) 0.21 (0.26) 0.79 (0.74) 0.26 0.21 
курорт 2 (2) 0.00 (0.25) 1.00 (0.75) 0.25 0.00 
глубок 2 (2) 0.21 (0.25) 0.79 (0.75) 0.25 0.21 
родня 2 (2) 0.09 (0.25) 0.91 (0.75) 0.25 0.09 
хребту 2 (2) 0.00 (0.25) 1.00 (0.75) 0.25 0.00 
фуршет 2 (2) 0.00 (0.25) 1.00 (0.75) 0.25 0.00 
рыдал 2 (2) 0.00 (0.23) 1.00 (0.77) 0.23 0.00 
икнул 2 (2) 0.21 (0.22) 0.79 (0.78) 0.22 0.21 
варяг 2 (2) 0.18 (0.21) 0.82 (0.79) 0.21 0.18 
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коньках 2 (2) 0.06 (0.21) 0.94 (0.79) 0.21 0.06 
послы 2 (2) 0.18 (0.20) 0.82 (0.80) 0.20 0.18 
кружков 2 (2) 0.12 (0.20) 0.88 (0.80) 0.20 0.12 
снести 2 (2) 0.09 (0.20) 0.91 (0.80) 0.20 0.09 
артель 2 (2) 0.00 (0.19) 1.00 (0.81) 0.19 0.00 
просты 2 (2) 0.18 (0.19) 0.82 (0.81) 0.19 0.18 
забит 2 (2) 0.15 (0.19) 0.85 (0.81) 0.19 0.15 
бросок* 2 (2) 0.18 (0.19) 0.82 (0.81) 0.19 0.18 
вакцин 2 (2) 0.15 (0.18) 0.85 (0.82) 0.18 0.15 
жидов 2 (2) 0.24 (0.18) 0.76 (0.82) 0.18 0.24 
сменил 2 (2) 0.06 (0.18) 0.94 (0.82) 0.18 0.06 
грибов 2 (2) 0.09 (0.18) 0.91 (0.82) 0.18 0.09 
былин 2 (2) 0.15 (0.18) 0.85 (0.82) 0.18 0.15 
банкет 2 (2) 0.00 (0.17) 1.00 (0.83) 0.17 0.00 
поймут 2 (2) 0.00 (0.17) 1.00 (0.83) 0.17 0.00 
ступай 2 (2) 0.06 (0.17) 0.94 (0.83) 0.17 0.06 
вносить 2 (2) 0.15 (0.17) 0.85 (0.83) 0.17 0.15 
парнас 2 (2) 0.00 (0.16) 1.00 (0.84) 0.16 0.00 
виток 2 (2) 0.12 (0.16) 0.88 (0.84) 0.16 0.12 
измен 2 (2) 0.00 (0.16) 1.00 (0.84) 0.16 0.00 
кивок 2 (2) 0.09 (0.15) 0.91 (0.85) 0.15 0.09 
кадастр 2 (2) 0.03 (0.15) 0.97 (0.85) 0.15 0.03 
жилья 2 (2) 0.00 (0.14) 1.00 (0.86) 0.14 0.00 
киоск 2 (2) 0.00 (0.14) 1.00 (0.86) 0.14 0.00 
графин 2 (2) 0.00 (0.14) 1.00 (0.86) 0.14 0.00 
трепать 2 (2) 0.09 (0.13) 0.91 (0.87) 0.13 0.09 
зовут 2 (2) 0.00 (0.12) 1.00 (0.88) 0.12 0.00 
лопат 2 (2) 0.12 (0.12) 0.88 (0.88) 0.12 0.12 
мерцал 2 (2) 0.00 (0.11) 1.00 (0.89) 0.11 0.00 
каков 2 (2) 0.12 (0.11) 0.88 (0.89) 0.11 0.12 
ларец 2 (2) 0.03 (0.11) 0.97 (0.89) 0.11 0.03 
полям 2 (2) 0.00 (0.11) 1.00 (0.89) 0.11 0.00 
террор 2 (2) 0.09 (0.10) 0.91 (0.90) 0.10 0.09 
дурён 2 (2) 0.00 (0.10) 1.00 (0.90) 0.10 0.00 
жильца 2 (2) 0.06 (0.09) 0.94 (0.91) 0.09 0.06 
дремал 2 (2) 0.00 (0.09) 1.00 (0.91) 0.09 0.00 
скрывал 2 (2) 0.00 (0.08) 1.00 (0.92) 0.08 0.00 
ревел 2 (2) 0.09 (0.08) 0.91 (0.92) 0.08 0.09 
застрял 2 (2) 0.00 (0.08) 1.00 (0.92) 0.08 0.00 
конверт 2 (2) 0.00 (0.08) 1.00 (0.92) 0.08 0.00 
зубрить 2 (2) 0.06 (0.08) 0.94 (0.92) 0.08 0.06 
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сетям 2 (2) 0.15 (0.08) 0.85 (0.92) 0.08 0.15 
могил 2 (2) 0.00 (0.08) 1.00 (0.92) 0.08 0.00 
мастак 2 (2) 0.06 (0.07) 0.94 (0.93) 0.07 0.06 
сапог 2 (2) 0.00 (0.07) 1.00 (0.93) 0.07 0.00 
стакан 2 (2) 0.00 (0.07) 1.00 (0.93) 0.07 0.00 
станков 2 (2) 0.06 (0.07) 0.94 (0.93) 0.07 0.06 
шуршал 2 (2) 0.00 (0.07) 1.00 (0.93) 0.07 0.00 
утюг 2 (2) 0.00 (0.06) 1.00 (0.94) 0.06 0.00 
смешон 2 (2) 0.06 (0.06) 0.94 (0.94) 0.06 0.06 
копал 2 (2) 0.00 (0.06) 1.00 (0.94) 0.06 0.00 
ревнив 2 (2) 0.00 (0.06) 1.00 (0.94) 0.06 0.00 
плывут 2 (2) 0.06 (0.06) 0.94 (0.94) 0.06 0.06 
желток 2 (2) 0.06 (0.06) 0.94 (0.94) 0.06 0.06 
тяжёл 2 (2) 0.00 (0.06) 1.00 (0.94) 0.06 0.00 
вставать 2 (2) 0.06 (0.06) 0.94 (0.94) 0.06 0.06 
пингвин 2 (2) 0.00 (0.06) 1.00 (0.94) 0.06 0.00 
червя 2 (2) 0.09 (0.05) 0.91 (0.95) 0.05 0.09 
смущён 2 (2) 0.00 (0.05) 1.00 (0.95) 0.05 0.00 
значок 2 (2) 0.00 (0.05) 1.00 (0.95) 0.05 0.00 
стоять 2 (2) 0.00 (0.04) 1.00 (0.96) 0.04 0.00 
пропал 2 (2) 0.00 (0.04) 1.00 (0.96) 0.04 0.00 
палат 2 (2) 0.06 (0.04) 0.94 (0.96) 0.04 0.06 
цыган 2 (2) 0.18 (0.04) 0.82 (0.96) 0.04 0.18 
вогнать 2 (2) 0.06 (0.04) 0.94 (0.96) 0.04 0.06 
картечь 2 (2) 0.06 (0.04) 0.94 (0.96) 0.04 0.06 
засесть 2 (2) 0.18 (0.04) 0.82 (0.96) 0.04 0.18 
солить 2 (2) 0.00 (0.03) 1.00 (0.97) 0.03 0.00 
борец 2 (2) 0.00 (0.03) 1.00 (0.97) 0.03 0.00 
заход 2 (2) 0.03 (0.03) 0.97 (0.97) 0.03 0.03 
глотать 2 (2) 0.00 (0.03) 1.00 (0.97) 0.03 0.00 
диктат 2 (2) 0.00 (0.03) 1.00 (0.97) 0.03 0.00 
придал 2 (2) 0.03 (0.03) 0.97 (0.97) 0.03 0.03 
обман 2 (2) 0.00 (0.03) 1.00 (0.97) 0.03 0.00 
торчат 2 (2) 0.03 (0.03) 0.97 (0.97) 0.03 0.03 
клеймить 2 (2) 0.15 (0.03) 0.85 (0.97) 0.03 0.15 
валун 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
видать 2 (2) 0.03 (0.02) 0.97 (0.98) 0.02 0.03 
загиб 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
мускат 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
богат 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
сазан 2 (2) 0.06 (0.02) 0.94 (0.98) 0.02 0.06 
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шажок 2 (2) 0.15 (0.02) 0.85 (0.98) 0.02 0.15 
болтал 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
залить 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
жилец 2 (2) 0.00 (0.02) 1.00 (0.98) 0.02 0.00 
забыл 2 (2) 0.03 (0.01) 0.97 (0.99) 0.01 0.03 
призвать 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
шпинат 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
бледнеть 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
ворон* 2 (2) 0.35 (0.01) 0.65 (0.99) 0.01 0.35 
овец 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
башмак 2 (2) 0.03 (0.01) 0.97 (0.99) 0.01 0.03 
задел 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
гектар 2 (2) 0.06 (0.01) 0.94 (0.99) 0.01 0.06 
показ 2 (2) 0.06 (0.01) 0.94 (0.99) 0.01 0.06 
разбив 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
скорбеть 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
навар 2 (2) 0.06 (0.01) 0.94 (0.99) 0.01 0.06 
экран 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
намёк 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
зарыть 2 (2) 0.06 (0.01) 0.94 (0.99) 0.01 0.06 
закон 2 (2) 0.00 (0.01) 1.00 (0.99) 0.01 0.00 
застав 2 (2) 0.03 (0.00) 0.97 (1.00) 0.00 0.03 
мелькнёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
дерёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
начнешь 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
загон 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
начать 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
убьём 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
заснёт 2 (2) 0.06 (0.00) 0.94 (1.00) 0.00 0.06 
пришлёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
зайдёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
внесёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
жуёт 2 (2) 0.00 (0.00) 1.00 (1.00) 0.00 0.00 
отсчёт 2 (2) 0.06 (0.00) 0.94 (1.00) 0.00 0.06 
отлёт 2 (2) 0.03 (0.00) 0.97 (1.00) 0.00 0.03 
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Appendix E 

Nonwords Used in Study 6 

Assigned Stress refers to the stress pattern that the majority of readers assigned to a 

nonword (1 = trochaic stress; 2 = iambic stress; 0 = trochaic and iambic stress patterns 

are assigned equally often). Predicted Stress refers to the stress pattern that the Bayesian 

model of stress assignment predicted for a nonword (1 = trochaic stress; 2 = iambic 

stress; 0 = no conclusive prediction is made). Assigned Stress1 refers to the proportion of 

answers with trochaic stress given by participants. Predicted Stress1 refers to the 

proportion of answers with trochaic stress predicted by the model. Assigned Stress2 

refers to the proportion of answers with iambic stress given by participants. Predicted 

Stress2 refers to the proportion of answers with iambic stress predicted by the model.   

Word 

Assigned 

Stress 

Predicted 

Stress 

Assigned 

Stress1 

Predicted 

Stress1 

Assigned 

Stress2 

Predicted 

Stress2 

актить 2 2 0.27 0.11 0.73 0.89 
анбель 2 2 0.43 0.43 0.57 0.57 
балвор 0 2 0.53 0.33 0.47 0.67 
бижей 2 1 0.33 0.69 0.67 0.31 
блемах 1 1 0.57 0.65 0.43 0.35 
блозан 2 2 0.07 0.01 0.93 0.99 
бомтель 2 2 0.40 0.37 0.60 0.63 
бражнем 1 1 0.87 1.00 0.13 0.00 
бротах 1 1 0.63 0.62 0.37 0.38 
брювал 2 2 0.13 0.10 0.87 0.90 
буйче 1 1 0.87 0.97 0.13 0.03 
вазыв 2 2 0.20 0.07 0.80 0.93 
вамать 2 2 0.40 0.11 0.60 0.89 
вахри 1 1 0.73 0.74 0.27 0.26 
вдолун 2 2 0.10 0.02 0.90 0.98 
вдорать 2 2 0.10 0.02 0.90 0.98 
венлам 2 2 0.23 0.36 0.77 0.64 
взагом 2 0 0.30 0.48 0.70 0.52 
взвожен 1 1 0.97 0.97 0.03 0.03 
взилон 2 2 0.10 0.00 0.90 1.00 
взопал 2 2 0.10 0.18 0.90 0.82 
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взрыжешь 1 1 0.97 0.99 0.03 0.01 
вкужесть 1 1 0.90 0.93 0.10 0.07 
влемок 2 2 0.40 0.32 0.60 0.68 
впразе 1 1 0.83 0.88 0.17 0.12 
врубень 1 1 0.80 0.71 0.20 0.29 
врукарь 2 2 0.27 0.19 0.73 0.81 
встрегой 2 1 0.30 0.78 0.70 0.22 
вхожал 2 2 0.13 0.02 0.87 0.98 
вяже 1 1 0.87 0.95 0.13 0.05 
вязчей 1 1 0.90 0.87 0.10 0.13 
гвозках 0 0 0.50 0.50 0.50 0.50 
гежил 2 2 0.43 0.25 0.57 0.75 
гларю 0 0 0.47 0.49 0.53 0.51 
глулем 1 1 0.77 0.96 0.23 0.04 
гничать 2 2 0.10 0.00 0.90 1.00 
гокут 0 2 0.53 0.40 0.47 0.60 
горлет 2 2 0.30 0.37 0.70 0.63 
граход 2 2 0.20 0.19 0.80 0.81 
греман 1 2 0.63 0.09 0.37 0.91 
грошизм 2 2 0.07 0.02 0.93 0.98 
грунец 2 2 0.27 0.24 0.73 0.76 
гунить 2 2 0.13 0.07 0.87 0.93 
гутать 2 2 0.23 0.04 0.77 0.96 
дажень 1 1 0.77 0.93 0.23 0.07 
дамтик 1 1 0.97 1.00 0.03 0.00 
данкиз 2 2 0.27 0.13 0.73 0.87 
дапасть 2 2 0.33 0.30 0.67 0.70 
дведить 0 2 0.53 0.09 0.47 0.91 
двобеть 2 2 0.30 0.00 0.70 1.00 
дворстак 2 2 0.27 0.01 0.73 0.99 
дёвишь 1 1 0.93 0.95 0.07 0.05 
дёчен 1 1 0.90 0.96 0.10 0.04 
длирец 2 2 0.33 0.08 0.67 0.92 
дойхим 1 1 0.60 0.64 0.40 0.36 
долцы 1 1 0.63 0.66 0.37 0.34 
драшим 0 1 0.47 0.95 0.53 0.05 
дроше 0 1 0.50 0.71 0.50 0.29 
дрямый 1 1 1.00 1.00 0.00 0.00 
думбик 1 1 0.83 1.00 0.17 0.00 
дючешь 1 1 0.97 1.00 0.03 0.00 
дябор 0 1 0.47 0.64 0.53 0.36 
жеран 2 2 0.13 0.00 0.87 1.00 
жерба 1 1 0.83 0.85 0.17 0.15 



203 

 

жрелёт 2 2 0.03 0.00 0.97 1.00 
журбу 2 2 0.37 0.42 0.63 0.58 
журец 2 2 0.03 0.02 0.97 0.98 
замтар 2 2 0.03 0.03 0.97 0.97 
звекой 2 1 0.40 0.77 0.60 0.23 
зверан 2 2 0.07 0.01 0.93 0.99 
звосал 2 2 0.07 0.02 0.93 0.98 
звубор 2 2 0.43 0.29 0.57 0.71 
звурон 2 2 0.03 0.03 0.97 0.97 
земтит 2 2 0.30 0.44 0.70 0.56 
земчать 2 2 0.03 0.00 0.97 1.00 
зергат 2 2 0.10 0.01 0.90 0.99 
зетет 2 2 0.27 0.16 0.73 0.84 
змешей 2 0 0.30 0.46 0.70 0.54 
знарог 2 2 0.13 0.24 0.87 0.76 
зобук 2 2 0.33 0.27 0.67 0.73 
зорва 1 1 0.93 0.94 0.07 0.06 
зревен 1 1 0.90 0.98 0.10 0.02 
зриность 1 1 1.00 1.00 0.00 0.00 
изгель 2 0 0.37 0.45 0.63 0.55 
инкарь 2 2 0.20 0.20 0.80 0.80 
иским 2 1 0.17 0.89 0.83 0.11 
исман 2 2 0.20 0.05 0.80 0.95 
казлать 2 2 0.03 0.07 0.97 0.93 
кармец 2 2 0.20 0.31 0.80 0.69 
кашмом 2 1 0.20 0.80 0.80 0.20 
кваней 2 1 0.23 0.75 0.77 0.25 
кипасть 2 2 0.38 0.35 0.62 0.65 
кирон 2 2 0.03 0.01 0.97 0.99 
клашок 2 2 0.07 0.07 0.93 0.93 
клейпор 2 2 0.43 0.17 0.57 0.83 
клений 1 1 0.97 1.00 0.03 0.00 
клюрам 2 1 0.23 0.62 0.77 0.38 
княлом 1 1 0.67 0.91 0.33 0.09 
княсечь 1 2 0.70 0.16 0.30 0.84 
конрат 2 2 0.20 0.03 0.80 0.97 
корщик 1 1 0.93 0.97 0.07 0.03 
котерн 2 2 0.13 0.10 0.87 0.90 
крамыть 2 2 0.33 0.05 0.67 0.95 
кребат 2 2 0.10 0.07 0.90 0.93 
кригай 2 2 0.17 0.42 0.83 0.58 
крудал 2 2 0.23 0.10 0.77 0.90 
круезд 2 2 0.30 0.18 0.70 0.82 
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крыня 1 1 0.90 0.91 0.10 0.09 
кульзу 0 0 0.50 0.49 0.50 0.51 
лазыв 2 2 0.10 0.09 0.90 0.91 
легный 1 1 0.93 1.00 0.07 0.00 
лемей 2 2 0.13 0.16 0.87 0.84 
ленраж 2 2 0.03 0.02 0.97 0.98 
лираль 2 2 0.10 0.08 0.90 0.92 
лиссак 2 2 0.03 0.00 0.97 1.00 
ловчек 1 1 0.93 0.99 0.07 0.01 
лодаль 1 2 0.63 0.31 0.37 0.69 
лофель 1 1 0.67 0.87 0.33 0.13 
люмер 0 1 0.50 0.91 0.50 0.09 
ляно 1 1 0.97 0.98 0.03 0.02 
мaрлить 2 2 0.40 0.17 0.60 0.83 
марлов 2 2 0.40 0.28 0.60 0.72 
мельна 1 1 0.73 0.59 0.27 0.41 
мёрный 1 1 1.00 1.00 0.00 0.00 
миртель 0 1 0.47 0.74 0.53 0.26 
морлась 2 2 0.30 0.20 0.70 0.80 
мохарь 2 2 0.43 0.26 0.57 0.74 
мулог 2 2 0.33 0.13 0.67 0.87 
мытень 1 1 0.70 0.67 0.30 0.33 
мятырь 1 1 0.63 0.79 0.37 0.21 
навюр 2 2 0.03 0.04 0.97 0.96 
нербок 1 1 0.63 0.78 0.37 0.22 
нилун 2 2 0.07 0.04 0.93 0.96 
ныраж 2 2 0.07 0.01 0.93 0.99 
общур 0 0 0.47 0.50 0.53 0.50 
овлам 2 2 0.17 0.27 0.83 0.73 
оклать 2 2 0.23 0.11 0.77 0.89 
орант 2 2 0.17 0.02 0.83 0.98 
орман 2 2 0.43 0.03 0.57 0.97 
пагель 1 1 0.67 0.80 0.33 0.20 
паркон 2 2 0.10 0.05 0.90 0.95 
певчить 1 2 0.67 0.07 0.33 0.93 
пелон 2 2 0.07 0.01 0.93 0.99 
первисть 1 1 0.80 0.92 0.20 0.08 
петвы 0 2 0.53 0.43 0.47 0.57 
пижей 2 0 0.17 0.50 0.83 0.50 
племан 2 2 0.43 0.04 0.57 0.96 
плепеть 2 2 0.20 0.00 0.80 1.00 
плиным 0 1 0.47 0.91 0.53 0.09 
пличёт 2 2 0.07 0.00 0.93 1.00 
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плорем 1 1 0.70 0.92 0.30 0.08 
пойвых 1 1 0.80 0.64 0.20 0.36 
потырь 2 2 0.37 0.33 0.63 0.67 
прелак 2 2 0.07 0.02 0.93 0.98 
прилец 2 2 0.07 0.01 0.93 0.99 
пруёв 2 2 0.13 0.07 0.87 0.93 
прулат 2 2 0.00 0.02 1.00 0.98 
пулень 1 1 0.73 0.75 0.27 0.25 
пытен 1 2 0.70 0.31 0.30 0.69 
раверт 0 2 0.47 0.26 0.53 0.74 
разварь 2 2 0.17 0.07 0.83 0.93 
райдал 2 2 0.23 0.19 0.77 0.81 
рикиш 1 1 0.93 0.96 0.07 0.04 
сампить 0 0 0.50 0.49 0.50 0.51 
сверщей 2 2 0.33 0.36 0.67 0.64 
свяпор 2 2 0.21 0.32 0.79 0.68 
сгобам 1 1 0.60 0.63 0.40 0.37 
слачерк 1 1 0.87 0.94 0.13 0.06 
слыкость 1 1 0.97 1.00 0.03 0.00 
слютаж 2 2 0.10 0.00 0.90 1.00 
смычишь 1 1 0.63 0.57 0.37 0.43 
сойтят 2 1 0.30 0.62 0.70 0.38 
спатат 2 2 0.03 0.02 0.97 0.98 
сроций 1 1 0.97 1.00 0.03 0.00 
стебно 1 1 0.97 0.96 0.03 0.04 
стрезент 2 2 0.20 0.02 0.80 0.98 
стрельщал 2 2 0.07 0.02 0.93 0.98 
стручаг 2 2 0.07 0.06 0.93 0.94 
стрявец 2 2 0.33 0.06 0.67 0.94 
съезнем 1 1 0.87 1.00 0.13 0.00 
тверщик 1 1 0.77 0.89 0.23 0.11 
тикон 2 2 0.23 0.12 0.77 0.88 
толнер 1 1 0.80 0.91 0.20 0.09 
томент 2 2 0.37 0.05 0.63 0.95 
торлий 1 1 0.97 0.99 0.03 0.01 
трувал 2 2 0.13 0.03 0.87 0.97 
успект 2 2 0.03 0.01 0.97 0.99 
фавит 2 1 0.30 0.73 0.70 0.27 
фарлый 1 1 0.97 1.00 0.03 0.00 
фибом 2 1 0.40 0.84 0.60 0.16 
фильсы 1 1 0.93 0.98 0.07 0.02 
фралость 1 1 0.93 1.00 0.07 0.00 
хвопы 1 1 0.70 0.68 0.30 0.32 
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храбне 1 1 0.80 0.96 0.20 0.04 
хражет 1 1 0.60 0.75 0.40 0.25 
хрупцев 1 1 0.93 0.97 0.07 0.03 
черпость 1 1 0.90 0.98 0.10 0.02 
шайвать 2 2 0.23 0.08 0.77 0.92 
шпирять 2 2 0.07 0.01 0.93 0.99 
юкиш 1 1 0.93 0.92 0.07 0.08 
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Appendix F 

Letter of Information (in Russian) 
 

Информационное письмо 

Исследование механизмов постановки ударения в русском языке 

В данном эксперименте на экране компьютера Вам будут представлены 

комбинации букв русского языка. В зависимости от того в какую 

экспериментальную группу Вы попали, Вам нужно будет решить являются ли 

данные комбинации словами русского языка или прочитать их вслух. Постарайтесь 

выполнять задание как можно правильнее и быстрее. В случае публикации 

результатов, Ваша личная информация останется конфиденциальной. Участие в 

эксперименте не связано с риском. В эксперименте не используется обман или 

скрытые манипуляции. Экспериментаторо объяснит цель эксперимента по 

окончанию сессии. Ваше участие добровольное и Вы в праве прекратить 

выполнение задания в любой момент. За участе в эксперименте Вам будет 

выплачено вознаграждение в размере $5.    

------------------------------------------------------------------------------------------------------------ 

Я прочитал/а информационное письмо и согласен/согласна принять участие в нем. 

Экспериментатор ответил на все мои вопросы. 

_________________________ _____________________________ 

Подпись участника                  Подпись экспериментатора 

_________________________ _____________________________ 

ФИО участника                         ФИО экспериментатора 

_____________________________  

Дата 
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