View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Scholarship@Western

Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

1-8-2014 12:00 AM

A Bayesian Model of Stress Assignment in Reading

Olessia Jouravlev
The University of Western Ontario

Supervisor
Stephen J. Lupker
The University of Western Ontario

Graduate Program in Psychology

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of
Philosophy

© Olessia Jouravlev 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

b Part of the Psycholinguistics and Neurolinguistics Commons

Recommended Citation

Jouravley, Olessia, "A Bayesian Model of Stress Assignment in Reading" (2014). Electronic Thesis and
Dissertation Repository. 1913.

https://ir.lib.uwo.ca/etd/1913

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://core.ac.uk/display/61642631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1913&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/382?utm_source=ir.lib.uwo.ca%2Fetd%2F1913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1913?utm_source=ir.lib.uwo.ca%2Fetd%2F1913&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A BAYESIAN MODEL OF STRESS ASSIGNMENT IN READING

(Thesis format: Monograph)

by

Olessia Jouravlev

Graduate Program in Psychology

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Olessia Jouravlev, 2014



Abstract

The goal of the present thesis was to introduce a Bayesian model of stress
assignment in reading. According to this model, readers compute probabilities of stress
patterns by assessing prior beliefs about the likelihoods of stress patterns in a language
and combining that information with non-lexical evidence for stress patterns provided by
the word. The choice of a response is thought of as a random walk-type process which
takes the system from a starting point to a response boundary. The calculated Bayesian
probabilities determine the drift rate towards each boundary such that the probability of
an error and the response latency are related to the posterior probabilities of the stress
patterns.

The Bayesian model of stress assignment was implemented for Russian disyllabic
words. In Study 1, the distribution of stress patterns in a corpus of Russian disyllabic
words (reflecting prior beliefs about the likelihoods of stress patterns) was analyzed.
Further, non-lexical sources of evidence for stress in Russian were investigated. In Study
2, the effect of spelling-to-stress consistency of word endings on naming performance
was examined. Study 3 was a binary logistic regression analysis of a set of predictors of
stress patterns (length, log frequency, grammatical category, word onset complexity,
word coda complexity, and spelling-to-stress consistency of six orthographic
components) in a corpus of disyllabic words. In Study 4, a generalized linear mixed
effects model with the same variables as predictors of stress assignment performance was
applied to word naming data. Based on the combination of the results, it was concluded
that there are three sources of evidence for stress in Russian: the orthography of the first

syllable, of the second syllable, and of the ending of the second syllable.



The model was tested in two simulations. In Study 5, the predictions of the model
were compared with stress assignment performance of speakers of Russian naming
words. In Study 6, the model was tested on its ability to simulate stress assignment
performance of readers naming nonwords. The model managed to predict not only the
most frequent stress pattern that readers assigned, but also the relative ratio of trochaic

versus iambic responses given by the participants.

Keywords: stress assignment, lexical stress, computational model, Bayesian
probabilities, Russian, polysyllabic words, corpus analysis, stress cues, simulations, word

recognition
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Bayesian Model of Stress Assignment in Reading
Chapter 1 — General Introduction

Lexical stress, defined as the relation between prominent and weak syllables in a
word realized via changes in frequency, duration, and intensity, has been shown to
perform many functions in oral and written communication. For example, stress aids in
the process of speech segmentation (Cutler & Norris, 1988; Norris, McQueen, & Cutler,
1995), regulates attentional processes in speech perception (Mens & Povel, 1986; Pitt &
Samuel, 1990), and facilitates lexical access in spoken word recognition (Cutler &
Clifton, 1984; van Donselaar, Koster, & Cutler, 2005). It has also been reported that a
reader’s sensitivity to lexical stress information predicts reading abilities (Kuhn & Stahl,
2003; Whalley & Hansen, 2006) and that activation of lexical stress information is a vital
step in word processing in overt as well as in silent reading (Ashby & Clifton, 2005;
Breen & Clifton, 2011).

Due to the apparent importance of prosodic (especially stress) information in
reading, questions concerning the mechanisms of stress assignment in written word
comprehension clearly need additional investigation. To this point, however, the majority
of theoretical and computational constructs developed in the area of reading research
have centred on the mechanisms involved in the processing of single-syllable words that,
due to their structure, do not require prosodic processing by a reader. Only recently the
field has seen a shift toward the study of polysyllabic words, making it obvious that a
full-fledged model of word reading should provide an explanation of not only the
mechanisms of grapheme-to-phoneme mapping, but also of the principles of lexical stress

assignment.



In modeling the process of grapheme-to-phoneme mapping, there are two general
computational approaches: the dual-route view implemented in the Dual Route Cascaded
(DRC) model of reading (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and the
single-route, connectionist view implemented in the Parallel Distributed Processing
(PDP) model of reading (Harm & Seidenberg, 2004). Although neither model explicitly
models the stress assignment process, there are ways within each model to expand the
architecture to allow it to, potentially, explain how lexical stress is assigned (Arciuli,
Monaghan, & Seva, 2010; Perry, Ziegler, & Zorzi, 2010; Rastle & Coltheart, 2000; Seva,
Monaghan, & Arciuli, 2009). However, as will be shown below, the performance of these
models in terms of stress assignment is not very good, especially when one compares the
models’ output on nonwords with behavioral data; that is, in assigning stress to nonwords
these models are consistent with participants’ behavior for only about 65% of the stimuli.

In this thesis, an alternative, previously not considered, approach to the modeling
of the process of lexical stress assignment in reading is proposed. Specifically, it is
suggested that stress assignment in reading can be thought of as a Bayesian decision-
making process that involves updating the probability estimates of hypothetical outcomes
(i.e., stress patterns) by considering evidence, specifically, non-lexical cues to stress, that
provide various levels of support for each of the possible stress patterns. This Bayesian
model of stress assignment is intended to be a universal model that can be applied to any
language of the world that is characterized by the presence of lexical stress. Further, the
proposed model can, potentially, explain the process of stress assignment in reading
polysyllabic words of any length. However, the present thesis is only concerned with

evaluating a Bayesian model of stress assignment for disyllabic Russian words.



In Russian, the process of stress assignment appears to be complicated because
stress is not explicitly marked in the orthography and it does not conform to any clear
implicit rules. Although there are a number of morphemes that provide readers with stress
position information (e.g., the suffix “uzm” is always stressed as in ¢pawdizm ([fashizm]),
agopHsm ([afarizm]); throughout the thesis stressed vowels in examples are capitalized),
the majority of Russian words have stress-ambiguous morphemes (for a review see,
Coats, 1976; Lagerberg, 1999). Therefore, even morphology has limited usefulness in
terms of helping readers accurately assign stress. Finally, Russian readers cannot rely on
information about the frequency of stress patterns in the language because the percentage
of disyllabic words with stress on first syllable (i.e., a trochaic stress pattern) appears to
be virtually the same as the percentage of words with stress on second syllable (i.e., an
iambic stress pattern).

Due to the complexity of the stress assignment process for Russian speakers, a
widely accepted view has been that a Russian word’s stress is assigned only following the
retrieval of accurate stress information from the word’s lexical representation (Gouskova,
2010; Lukyanchenko, Idsardi, & Jiang, 2011). Although it is quite possible that, in
making stress assignment decisions, Russian readers demonstrate greater reliance on
lexical processing than readers of a language with a more predictable prosodic system, it
seems unlikely that, in Russian, lexical retrieval is the only means of stress assignment
used by readers. Indeed, the main goal of the present research, the development of a
Bayesian model of stress assignment, is based on the assumption that native readers of

Russian do use non-lexical information to assign stress. If that assumption is incorrect,



then, the Bayesian model of stress assignment, a model that is essentially non-lexical,
will not be able to simulate stress assignment performance in Russian.

The selection of Russian provides a number of additional benefits. First of all, it
expands the range of languages in which the modeling of the process of stress assignment
in reading has been attempted. In fact, all existing models have been created to explain
stress assignment in English. Doing so limits the generalizability of those models.
Secondly, English is likely not the best choice of a language for investigating this issue. It
has been noted that around 80% of disyllabic English words have trochaic stress, which
likely creates a strong bias toward this stress pattern in native speakers of English
(Arciuli & Cupples, 2004; 2006; Kelly, Morris, & Verrekia, 1998). Therefore, in English
it becomes difficult to disentangle the effect of the bias toward a trochaic stress pattern
from other non-lexical factors that readers may utilize. By employing Russian, a language
with no apparent stress bias, one should be able to overcome this limitation.

In the present thesis, material is presented in the following order. In Chapter 2, an
overview of three computational models of stress assignment is provided. According to
the model by Rastle and Coltheart (2000), word stress can be assigned lexically or non-
lexically, following stress assignment rules. The second model (Seva et al., 2009)
involves a connectionist network that considers orthographic cues in assigning stress.
Finally, according to the Connectionist Dual Process (CDP++) model of reading (Perry et
al., 2010), stress can be processed via a lexical route or a non-lexical route that is
conceived of as a connectionist network. The models were tested on their ability to
predict stress patterns in English disyllabic words and nonwords. While the performance

of the models on words was decent, none of the models provided an especially good fit to



the nonword data. These results suggested that further attempts to model stress
assignment process are needed.

In Chapter 3, the general framework of a Bayesian model of stress assignment in
reading that can compute the posterior probabilities of stress patterns for any letter string
is described. In calculating the posterior probabilities, the model considers two types of
information: prior probabilities of the stress patterns and the likelihood of a particular
stress pattern given certain types of non-lexical evidence. The prior probabilities refer to
the frequency with which various stress patterns occur in a specific language. The
likelihood of stress patterns given certain non-lexical evidence refers to the probability of
stress patterns when different potential stress cues present in the orthographic input are
considered. The Bayesian model of stress assignment can be applied to any language that
utilizes lexical prosody, although prior probabilities and sources of evidence for stress
would be language-specific.

Chapter 4 is a review of the prior research looking for the potential sources of
evidence for stress in a number of languages. First of all, studies that investigated the
impact of the frequency of stress patterns in the language (i.e., stress regularity) on native
speakers’ performance are described. Thus, the validity of the statement that the
information about overall prior probabilities of stress patterns is considered in the process
of stress assignment is assessed. Then, research that investigated other potential sources
of evidence for stress patterns is described. Among some of the proposed cues to stress
are graphemic complexity of the onset of a word, graphemic complexity of the coda of a

word, grammatical category, consistency with which the ending of a word maps onto a



stress pattern, and, finally, consistency with which the beginning of a word maps onto a
stress pattern.

In Chapter 5, the factors underlying the implementation of the Bayesian model of
stress assignment for Russian disyllables are laid out. First, to assess prior probabilities of
iambic and trochaic stress patterns in Russian, an analysis of a corpus of Russian
disyllabic words was conducted. This analysis showed that 55% of disyllabic Russian
words have iambic stress, while 45% of disyllabic words have trochaic stress. Then, a
factorial study and two regression analyses were conducted to distinguish the sources of
evidence for stress patterns in Russian. In the factorial study, the naming performance of
speakers of Russian on words that differed in stress patterns (iambic vs. trochaic),
grammatical categories (adjective vs. noun vs. verb), and consistency with which word
endings can predict stress patterns (consistent vs. inconsistent) was observed. The
analysis demonstrated a reliance of speakers of Russian on the consistency with which
the orthography of word ending maps onto the stress pattern of a word.

Next, a binary logistic regression analysis using a corpus of Russian disyllabic
words was run with a goal of assessing what cues exist in the language that predict stress
patterns. Then, in a generalized linear mixed effects model, the same predictor cues were
used to assess the stress assignment performance of speakers of Russian on a set of 500
disyllabic words. Out of eleven potential predictors considered (Log Frequency, Length,
Onset Complexity, Ending Complexity, Grammatical Category, Consistency of the First
Syllable, Consistency of the Beginning of the First Syllable, Consistency of the Ending of
the First Syllable, Consistency of the Second Syllable, Consistency of the Beginning of

the Second Syllable, Consistency of the Ending of the Second Syllable), the spelling-to-



stress consistency measures of three orthographic components (the First Syllable, the
Second Syllable, and the Ending of the Second Syllable) were the most important
predictors of stress assignment in Russian. Thus, it was concluded that the orthography of
the first syllable, the orthography of the second syllable, and the orthography of the
ending of the second syllable are the most likely sources of evidence for readers to use
when assigning stress patterns in Russian disyllabic words.

In Chapter 6, two simulations were run to test the predictive power of the
Bayesian model of stress assignment in Russian. The predictions of the model concerning
stress assignment performance were compared to behavioral data. The posterior
probabilities of iambic and trochaic stress patterns that the model computed were
reflective of the performance of native speakers of Russian on a set of Russian disyllabic
words. That is, participants were more likely to make stress assignment errors if,
according to the model’s computation, the posterior probability of the actual stress
pattern that a word has was comparatively low. On the other hand, if the posterior
probability of the actual stress pattern of a word was high, participants were less likely to
assign an incorrect stress pattern to this word. Further, the model was successful in
predicting stress assignment performance on a set of nonwords.

Chapter 7 is a summary of the research reported in this thesis. The general
conclusion is that the Bayesian model of lexical stress assignment derived here, which is
based on the idea that in making lexical stress decisions readers integrate non-lexical
sources of evidence for lexical stress to update prior beliefs about stress patterns, is a

viable computational model of stress assignment.



Chapter 2 — Models of Stress Assignment
2.1. Introduction

One of the greatest limitations of the majority of the models of visual word
recognition is that, for the sake of simplicity, they were created to deal with monosyllabic
words only. The models of monosyllabic reading cannot be readily applied to
polysyllabic words as they lack, in their architecture, mechanisms that would enable them
to deal with syllabification and stress assignment. This limitation has been acknowledged
by a number of researchers who have created models of polysyllabic word reading (Ans,
Carbonnel, & Valdois, 1998; Kello, 2006; Perry et al., 2010; Rastle & Coltheart, 2000),
or models of stress assignment (Black & Byng, 1986; Seva et al., 2009). The three most
cited models that provide some insight into the mechanisms by which lexical stress is
assigned are the dual-route model by Rastle and Coltheart (2000), the connectionist
model by Seva et al. (2009), and the CDP++ model by Perry et al. (2010). These three
models are discussed in this Chapter in detail, but, prior to that, a brief overview of other
attempts to explain how stress is assigned in polysyllabic words is provided.

One of the first models of stress assignment was proposed by Black and Byng
(1986). This model advances the idea that in the process of assigning stress, readers use
the knowledge of the frequency of stress patterns in the language. More specifically, a
reader identifies the number of syllables in a word and assigns the most frequent stress
type for words of that syllabic length. Then, the assembled phonological representation
guides a lexical search. If the phonological candidate matches a memory representation,
the word is pronounced. If the matching of the candidate and lexical representation fails,

the entire cycle is repeated assigning the second most frequent stress type.



The model by Black and Byng (1986) has several drawbacks. First of all, the
frequency of stress patterns in the language has not been consistently demonstrated to
affect readers’ performance (Gutierrez-Palma & Palma-Reyes, 2008; Rastle & Coltheart,
2000). In fact, it has been shown that readers more often rely on non-lexical orthographic
cues to stress rather than rules of the type proposed by Black and Byng (Burani &
Arduino, 2004; Sulpizio, Job, & Burani, 2012). Secondly, while this model might have
some success in simulating stress assignment in languages with a dominate stress pattern
(e.g., in English or Italian), it would be unable to do so in languages that do not possess a
stress pattern that dominates (e.g., in Russian). Finally, the suggestion of a mandatory
check of a candidate against memory representations seems to be questionable because it
presupposes an obligatory access of the lexicon when reading words. If lexical access is
an obligatory step in the process of word recognition, it is unclear why readers would not
retrieve stress pattern information directly from memory rather than applying some non-
lexical rules and, then, follow that process with checks of lexical memory.

A quite different theoretical approach was taken by Ans et al. (1998), who
proposed a connectionist multiple-trace memory model (MTM) of polysyllabic word
reading. The MTM contains a network of connections between two orthographic input
layers, an episodic memory layer, and a phonological output layer. The weights of
connections between layers are adjusted via back-propagation as the model is exposed to
lexical representations and naming errors made by the model are discovered. A lexical
item presented to the MTM is processed in a global mode and in an analytical mode. In
the global mode, all letters of the word are processed in parallel. In the analytical mode, a

word is decomposed into syllables and each syllable is processed one-by-one by the
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model. Hence, there are two orthographic input layers (traces): whole-word orthographic
representations and syllable orthographic representations. The phonological output is
based on the processing of both representations (multiple traces).

The MTM has been implemented and successfully tested in French word and
nonword naming. However, it has one major limitation that does not allow it to be
implemented in many other world languages. While the MTM can simulate the
grapheme-to-phoneme mapping process, it does not have a component in its architecture
that would deal with lexical stress. This is not problematic in French as this language
does not have lexical stress, but rather utilizes prosodic stress (i.e., stress is placed on the
final syllable of a string of words, or the next-to-final syllable, if the final syllable is a
schwa). On the other hand, in languages like Spanish, Italian, Russian, or English, in
which there is lexical stress and stress position is flexible in a word, the MTM would not
be able to provide fully specified phonological output.

A connectionist approach to modeling the processing of polysyllables has also
been implemented in the Junction model of Kello (2006). In this model, one simple
recurrent network at the input level converts variable length sequences into fixed-width
representations, and another simple recurrent network at the output level regenerates the
sequence from the fixed-width representation. These representations and semantic
representations are joined together via a set of intermediate nodes that are responsible for
the mapping of graphemes onto phonemes. Thus, the mapping of orthography to
phonology is mediated by semantics, rather than being direct as in the MTM model

described above.
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The Junction model was further elaborated by Sibley, Kello, and Seidenberg
(2010) by including stress output nodes and by changing the input coding. At the
moment, it is difficult to assess the theoretical and practical validity of the Junction
model and its variants, as the models are still in their preliminary stages of development
and have not been tested extensively. Mainly, researchers tested the Junction model on its
ability to account for the variance in the response latency of the words in the ELP
database (Yap & Balota, 2009). The model could account for about 30% of the variance
in the RT data. The ability of this model to accurately generate pronunciations was far
from the level of a skilled reader as the model produced errors in 70% of cases in its
original version (Kello, 2006) and in 35% of cases in its later version (Sibley, Kello, &
Seidenberg, 2010). Further, the specifics of the performance of the Junction model on
stress assignment were not clear as the modelers did not specify whether the errors that
the model committed were segmental (i.e., incorrect mapping of orthography onto
phonology) or supra-segmental (i.e., incorrect mapping of orthography onto stress) in
nature.

Next, descriptions and assessments of performance of two well-tested models of
stress assignment (Rastle & Coltheart, 2000; Seva et al., 2010) and a model of reading
that has a stress assignment component in its architecture (Perry et al., 2010) are
provided. These models can be viewed as extensions of two competing approaches to
computational modeling of reading processes, that is the dual-route approach (Rastle &
Coltheart, 2000; Perry et al., 2010) and the connectionist, single-route approach (Seva et

al., 2010).
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2.2. The model by Rastle and Coltheart (2000)

The model of stress assignment by Rastle and Coltheart (2000) was conceived
within the framework of the dual-route theory of reading (Coltheart et al., 1993).
According to this theory, phonology can be assembled from spelling based on a set of
rules (the non-lexical route) or retrieved from lexical memory (the lexical route). The
rules the non-lexical route uses are derived on statistical grounds and reflect the most
frequently associated grapheme-to-phoneme mappings. The original DRC model could
simulate the naming of monosyllabic words only. In order to extend it to the domain of
polysyllabic words, Rastle and Coltheart (2000) developed a model of lexical stress
assignment for English disyllabic items.

The architecture of this model of stress assignment is very similar to that of the
DRC as the assignment of stress can be completed lexically via retrieval of stress
information from memory or as a result of computations by a non-lexical, rule-based
system using an algorithm. The rules of the stress-assigning algorithm reflect previously
reported findings of associations that exist in English between some morphemes and
certain stress patterns (Fudge, 1984). The non-lexical route is utilized when readers
assign stress to nonwords or regularly stressed words (i.e., words for which the proposed
algorithm predicts stress patterns correctly), especially if the word is a low frequency
word. The lexical route is used when readers assign stress to irregularly stressed words
(i.e., words for which the proposed algorithm does not predict stress patterns correctly),
and, to some extent, to regularly stressed words, if these are high frequency items.

The algorithm goes through the following steps (see Figure 1). First, it determines

whether a word has any prefixes. As prefixes are unstressed in English, any disyllabic
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word with a prefix will have stress on the second syllable. If no prefix is identified, then,
the algorithm searches for the presence of suffixes. All prefixes and suffixes are checked
for their legality to avoid the identification of affixes in monomorphemic words (e.g., -er
in corner). If the algorithm concludes that a word does contain a legal suffix, then, this
suffix is checked against the store of stress-taking suffixes. If the suffix is stress-taking,
the word is assigned second syllable stress. If the suffix is not stress-taking, the word is
assigned first syllable stress. Finally, if neither a prefix nor a suffix are identified, the
algorithm assigns the most frequent stress pattern in English (i.e., stress on first syllable).

The algorithm proposed by Rastle and Coltheart (2000) was evaluated using a set
of disyllabic words taken from the CELEX database (Baayen, Piepenbrock, & van Rijn,
1995). The algorithm assigned stress correctly to 90% of these English disyllabic words.
However, the performance of the algorithm on words with a (common for English)
trochaic stress versus a (less frequent) iambic stress was not identical. While the ability of
the model to correctly predict trochaic stress was exceptional (95% correct), the model’s
hit rate for words with iambic stress was relatively low (67% correct).

The predictions of the algorithm were also compared to the performance of native
speakers on a set of nonwords created for this purpose. The algorithm produced the same
response as speakers in 84% of cases, although the performance of the algorithm on items
with trochaic versus iambic stress was slightly different. The model predicted correctly
the speakers’ assignments in 81% of nonwords assigned trochaic stress and in 89% of
nonwords assigned iambic stress, which stands in contrast to the results of simulations on

words.
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The set of non-lexical stress rules in the model of stress assignment by Rastle and
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This fact that the algorthim did as well as it did on iambically stressed nonwords
might suggest that the nonwords were not created in an arbitrary way. In fact, the
majority of them did contain stress-bearing affixes. Thus, the modelers were testing the
items that were predisposed to be assigned iambic stress both by the readers and by the
algorithm. Further, Seva et al. (2009) showed that the performance of the algorithm on a
different set of nonwords (Kelly, 2004) was less impressive: the algorithm was correct in
78% of cases when nonwords were given trochaic stress by readers and only in 44% of
cases when readers assigned iambic stress to nonwords.

In addition to the relatively modest results demonstrated by the algorithm, there
are other points of criticism of this model. First, the distinction between lexical and non-
lexical routes is not clear in the model as the non-lexical route is perceived as containing
storage of affixes that carry lexically relevant information. Secondly, the researchers
posit that the process of stress assignment in English is based on knowledge of the
associations between morphemes and stress patterns. However, their stress-bearing
suffixes include some word endings that are not suffixes at all (e.g., -oo, -ique),
undermining the whole idea of morphologically based mechanism. Further, the system
that checks on whether a string of graphemes is a valid affix or not implemented in the
algorithm would run into problems handling pseudo-complex words (e.g., corner), words
that the algorithm supposedly does not parse into pseudo-morphemes. In contrast, there is
now substantial evidence suggesting that morphological parsing occurs pre-lexically for
these types of words (Diependale, Sandra, & Grainger, 2005; Morris, Grainger, Holcomb,
2008). Note also that the algorithm in its present, rather complex, form can only explain

stress assignment in disyllabic words. The extension of this model to words of other



16

syllabic length would require addition of a significant number of new components to the
model’s architecture, making it even more complicated from a computational point of
view. Finally, it is not clear whether this algorithm can be applied to polysyllabic words
of any other language than English. To a certain extent, the model does perform
satisfactorily in English due to the fact that it contains a default trochaic stress rule, which
by itself can correctly predict stress assignment in 80% of English words. The ability of
this algorithm to adequately explain stress assignment in languages that do not possess a
default stress pattern or do not exhibit associative connections between morphology and
stress patterns appears to be rather limited.

2.3. The model by Seva, Monaghan, and Arciuli (2009)

Seva, Monaghan, and Arciuli (2009) based the architecture of their model on the
tenets of the connectionist model of reading (Plaut, McClelland, Seidenberg, & Patterson,
1996) that suggests that lexical and non-lexical processing, in fact, arise from a single
connectionist mechanism. The knowledge of grapheme-to-phoneme correspondences, in
the form of statistical probabilities, is stored in connections between input and output
layers via a layer of hidden units. Upon being exposed to a corpus of words, the
connectionist model adjusts weights on connections between units in a way that reflects
associative relations between orthography and phonology. Similar principles are extended
to the process of stress assignment in the model by Seva et al. (2009), which is based on
the idea that orthographic patterns are probabilistically associated with stress patterns.
With sufficient exposure to words, the model can discover the statistical regularities
present between orthography and stress, and utilize them in the process of stress

assignment.
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The model is a simple supervised feed-forward connectionist network that maps
orthography of English disyllables onto stress patterns (see Figure 2). The orthographic
input layer is composed of 14 slots with 26 letter units per slot. Words are presented at
the input layer left aligned. The input layer is connected to a layer of 100 hidden units,
which in turn are connected to one stress output unit. For words with trochaic stress, the
stress unit activity is 0, for words with iambic stress, its activity is 1. The model was
judged to have assigned trochaic stress if the activation of output unit was less than .5,
and iambic stress if the activation of the output unit was greater than .5. The model was
trained on a set of disyllabic words with the weights on connections between units being
adjusted by way of back-propagation based on errors.

The model was tested on words from the CELEX database and two sets of
nonwords. The performance of the model on words used in the process of training was
very high (99% correct for words with trochaic stress and 92% correct for words with
iambic stress). The model’s performance on words not used during training was slightly
less accurate (97% correct for words with trochaic stress and 77% correct for words with
iambic stress). The performance of the connectionist model on nonwords from the study
by Rastle and Coltheart (2000) was not perfect (69% correct responses) mainly due to its
inability to assign second syllable stress patterns correctly (88% correct predictions for
trochaically stressed words and 50% correct predictions for iambically stressed words).
The results of the testing of the model on nonwords from the study by Kelly (2004) were
also modest (65% correct responses) again due to the model’s poor performance on
iambically stressed words (42% of correct responses in comparison to 89% on items that

were assigned trochaic stress).
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Figure 2

The architecture of the connectionist model of stress assignment by Seva et al. (2009)
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One concern was that this connectionist model might be performing poorly on
nonwords due to the fact that the left-aligned model considered the statistical
probabilities that exist between stress patterns and word beginnings only, while readers
might be using probabilities that exist between stress patterns and other orthographic
components (e.g., word endings). To make the regularities of both word beginnings and
of word endings available to the model, the modelers included both left-aligned and a
right-aligned orthographic input layers in the model (Arciuli et al., 2010; see Figure 3).

The model was trained on words from the Educator’s Word Frequency Guide
(Zeno, Ivens, Millard, & Duvvuri, 1995), reflecting the lexicons of children at different
ages. The model exposed to the lexicon of a 5-6 year old child demonstrated a significant
bias towards assigning a trochaic stress pattern to words, a bias that decreased with the
incremental exposure of the model to a later age lexicon. Having received additional
training, the model with left-aligned and right-aligned input layers assigned stress
correctly in 99% of words, which is significantly better than the model with only a left-
aligned (86%) or a right-aligned input layer (83%). Unfortunately, as the authors do not
provide the details of the performance of the full model on words with first and second
syllable stress separately (which is required for proper assessment of the performance of
the model as words with different stress patterns were not represented in the lexicons
proportionally), it might still be the case that the improved model has some difficulty in
predicting second syllable stress correctly. Such was, indeed, the cases for the left-
aligned model, which was correct on 96% of words with first syllable stress and only on
49% of words with second syllable stress and right-aligned model, which was correct on

96% of words with first syllable stress and 35% of words with second syllable stress.



Figure 3

The architecture of the connectionist model of stress assignment by Arciuli et al. (2010)
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The full model was also tested against the behavioral performance of children of
different age groups on 24 nonwords that contained orthographic strings that cued first or
second syllable stress. Although the low number of tested items makes generalization
difficult, the model underperformed on items to which participants assigned second
syllable stress. Thus, in predicting the behavior of 11-12 year olds, the model was correct
on 92% of nonwords that were given first syllable stress, and only on 67% of nonwords
that were given second syllable stress.

In summary, Arciuli et al.’s (2010) model of stress assignment is an improvement
over earlier models as it is not limited to an a priori determined set of rules. However, in
its present implementation, the model seems to be sensitive to orthographic cues of word
beginnings and word endings only, while readers might be paying attention to other
orthographic components while assigning lexical stress. Further, the connectionist model
does not perform well in assigning second syllable stress to either words or, especially,
nonwords. This difficulty presumably arises from the fact that in English many
orthographic cues are associated with first syllable stress, while the extent of the
association between orthography and a second syllable stress pattern is not large. This
difference in the scope of the probabilistic relation between orthography and stress
patterns for two types of words occurs mainly due to there being a greater number of
words with first syllable stress in English. In light of this fact, it might be difficult for the
connectionist model to predict stress pattern assignment in languages that do not have a
more frequent stress pattern. In such languages, the associations between orthographic
cues and stress patterns might, in general, be weak and, therefore, the performance of the

model might be only mediocre.
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2.4. The Connectionist Dual Process ++ (CDP++) model (Perry et al., 2010)

The CDP++ (Perry et al., 2010) is a model of word reading built on the strengths
of the dual-route and the connectionist models. Similar to the dual-route model, the
CDP++ distinguishes between lexical and sub-lexical processing. However, the sub-
lexical route is represented by a connectionist network, rather than by a set of rules. The
architecture of the CDP++ is depicted in Figure 4. In the CDP++, a buildup of activation
starts at the level of orthographic features which is, then, fed to the level of letters
consisting of 16 letter slots. At further stages of processing, letters are mapped onto
orthographic and, further, onto segmental phonemic and suprasegmental stress
representations. This mapping may be achieved via lexical or sub-lexical routes.

The lexical route is a fully interactive network consisting of phonological and
orthographic lexicons. The representation at the letter level activates orthographic entries
in the lexicon on the basis of letter overlap. Orthographic entries that do not contain
letters being activated at the letter level of the model are inhibited. Entries in the
orthographic lexicon, then, activate whole-word representations in the phonological
lexicon. Finally, lexical phonological representations activate corresponding phoneme
output units and one of two stress output units in the phonological output buffer. In the
lexical route of the CDP++, all levels are connected in a way that makes feedback
possible. Thus, the activation of the stress or phoneme output unit in the phonological
output buffer can be sent to the phonological lexicon, and activate phonological lexical

representations.



Figure 4

The architecture of the CDP++
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The sublexical route is represented by a graphemic buffer that organizes letters
into a graphosyllabic template and the connectionist two-layer network of phonological
assembly (TLA network) that encodes statistical regularities. In the graphemic buffer, a
sublexical orthographic representation is constructed by a graphemic parser that analyzes
letter input, transforms letters into graphemes, and maps them onto syllabic templates of
the first and the second syllables. Each syllabic template has three onset slots, one vowel
slot, and four coda slots. Thus, the complete template of a disyllabic word has the
following structure: CCCVCCC.CCCVCCC. An issue of an ambiguity in syllabification
present in English (e.g., the word demand can be segmented as de.mand or as dem.and)
has been addressed by the modelers by applying a widely accepted phonological
constraint, known as the Maximal Onset Principle (Kahn, 1976). According to this
principle, consonants occurring between two vowels are assigned to the onset position of
the second syllable, if this does not lead to the creation of codas or onsets that are illegal
in the language. Thus, the word demand will be represented in the graphemic buffer in
the following way: d**e*** m**and* (asterisk represents an empty slot).

A representation constructed in the graphemic buffer is next processed in the TLA
network which is a simple two layer network of connections between orthographic input
and phonological output. The orthographic input is encoded over 16 slots with 96
grapheme nodes per slot. The phonological output is encoded over 16 phoneme slots with
44 phoneme nodes per slot and a stress slot with two nodes. Two stress nodes have lateral
inhibitory connections. Thus, the activation of one stress node inhibits the other. The
activation from sub-lexical output nodes is sent to the phoneme output and stress output

nodes. The naming of a word starts only if phonological as well as stress output units are
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activated. Unlike the lexical route, the sub-lexical route of the CDP++ is not interactive.
The activation goes only in the direction described above with no feedback possible.

The CDP++ was trained on words from the CELEX database (Baayen et al.,
1995) and, then, tested on the same words that were used during the training stage. The
CDP++ showed outstanding performance on this corpus with 97% of stress patterns
overall being predicted correctly. However, the accuracy of the model on words with a
less common (in English) second syllable stress was slightly worse (88% correct) than on
words with a more common (in English) first syllable stress (99% correct). The
performance of the model on nonwords from the study by Rastle and Coltheart (2000)
was less accurate. The model was correct in 92% of items with first syllable stress, and in
51% of items with second syllable stress. A similar pattern emerged when the model was
tested on nonwords from the study by Kelly (2004), showing 93% accuracy for the
nonwords stressed on their first syllable, but only 45% accuracy for nonword stressed on
their second syllable.

To summarize, the CDP++ was able to perform well on the corpus of English
disyllabic words, but it had substantial difficulty in simulating the nonword data as seen
in a trend to overgeneralize a first-syllable stress pattern. So far, the CDP++ has only
been used to simulate the performance of readers on English disyllabic words. The
authors state that with minor changes the architecture of the CDP++ can be applied to
words of other syllabic lengths and other languages. However, no modeling attempts of
that kind have been completed yet, and the ability of the model to simulate stress
assignment in languages in which, unlike in English, there is no dominant stress pattern

present remains to be examined.
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2.5. Conclusion

There has been some progress in modeling the reading of polysyllabic words and
the process of stress assignment. In all of the reviewed models created to deal with
English disyllabic words, it is suggested that orthographic (Seva et al., 2009; Perry et al.,
2010) or morphological (Rastle & Coltheart, 2000) cues present in the written input are
used in computing the correct stress pattern. In general, these computational models
demonstrate good performance on word reading and high percentage agreement on stress
assignment in nonwords that are named with first syllable stress by native speakers. The
performance on the naming of nonwords that are empirically assigned second syllable
stress is considerably less impressive.

Figure 5 contains summary information concerning each model’s performance on
a corpus of disyllabic words (see Figure SA), nonwords taken from the study by Rastle
and Coltheart (2000) (see Figure 5B), and nonwords taken from the study by Kelly
(2004) (see Figure 5C). While all models performed well in assigning correct stress
pattern to words with stress on the first syllable, the CDP++ and the connectionist model
by Seva et al. (2009) (when tested on words that were also used during training of the
model) were the most successful in assigning stress to words with second syllable stress.
The algorithm of Rastle and Coltheart demonstrated the least ability to predict second
syllable stress in the corpus of English disyllabic words. On the other hand, that
algorithm provided the best fit to the behavioral data using a set of nonwords taken from
the study by Rastle and Coltheart. Moreover, the algorithm showed equally good
performance on nonwords from this set of nonwords that were assigned first as well as

second syllable stress. In contrast, the model by Seva et al. (2009) and the CDP++
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performed poorly on these nonwords, especially nonwords that were assigned second
syllable stress by readers. It has been suggested that this difference in the performance of
the models is due to a somewhat biased choice of nonwords in the study by Rastle and
Coltheart. Finally, the results of the simulations of the behavioral data taken from the
study by Kelly showed that all three models performed poorly on nonwords that readers
pronounced with second syllable stress. The CDP++ showed the best hit rate when the
stress patterns of Kelly’s nonwords with first syllable stress had to be predicted, while the
algorithm of Rastle and Coltheart was the least successful in simulating the behavioral
data for these stimuli.

Overall, it appears that the CDP++ performs better than the algorithm of Rastle
and Coltheart (2000) and slightly better than the model of Seva et al. (2009). However,
the performance of the CDP++ is still far from perfect, and it has not yet been tested
extensively. The present thesis is not an attempt to directly examine the approach to
stress assignment modeling proposed in the CDP++ but, instead, to consider an
alternative, potentially equally plausible way to model this process. In the present thesis,
it is suggested that stress assignment in reading can be viewed as a process of evaluation
of probabilities of stress patterns. A probability of a stress pattern is computed by
adjusting the prior belief about the likelihood of this stress pattern being present in a

word as well as evidence for stress provided by the orthography of a word being read.
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Chapter 3 — Bayesian Model of Stress Assignment
3.1. Introduction

People constantly face the challenge of interpreting uncertain signals coming from
a noisy environment and acting in the face of incomplete knowledge. One of the ways of
dealing with this uncertainty is to process information using a probabilistic framework. In
the presence of uncertainty, a person can make intelligent decisions by considering
estimates of the probabilities of events rather than accepting the idea that data is limited
to two values only (e.g., true or false). Thus, the human mind can potentially be perceived
as an evaluator of the likelihoods of events aiming at near optimal decisions (Anderson,
1991). The view of the human mind as a probability estimator, which is associated with
the Bayesian theory, has been widely adopted to explain various cognitive processes (for
a review see Griffiths, Kemp, & Tenenbaum, 2008), although this approach also finds its
opponents (Bowers & Davis, 2012; Jones & Love, 2011).

This chapter starts with an introduction of the basic ideas of Bayesian
probabilities that despite their simplicity appear to be very powerful in explaining many
phenomena in our environment. Then, a review of previous research pointing at the
probabilistic nature of human cognition overall as well as of specific cognitive processes,
including language, is provided. Indeed, language is characterized by uncertainty and its
processing can be viewed as a problem of probabilistic constraint satisfaction. The
process of lexical stress assignment, the topic of investigation in the present thesis, is also
often ambiguous and, thus, it might be useful to consider this process in a probabilistic
rather than a deterministic framework. In this chapter, a model of stress assignment that is

based on the principles of Bayesian probabilities is proposed and described.
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3.2. Bayesian probability

Probability is a numerical measure of the relative frequency of an event or the
strength of a belief in a certain proposition. In describing human cognition, the subjective
interpretation of probability (i.e., belief strength), in which probability can be viewed as a
mental phenomenon, appears to be more appropriate. By convention, probability ranges
from O to 1, where 0 means that the belief is certainly false and 1 means that it is certainly
true. In a probabilistic system, one considers the probability of various possible
hypotheses about the state of the environment, based on the sensory input received from
this environment and prior knowledge about the state of the world. Such probability
calculations are typically based on some form of Bayesian inference.

Bayesian inference is based upon a simple formula known as Bayes’ rule (Bayes,
1763/1958), which is traditionally presented in the following form:

P(hld):w , (1)

where & refers to a hypothesis, and d stands for some data used as evidence in the process
of inference. In computing the probability of the hypothesis given the data, also known as
posterior probability, one uses the knowledge of the probability of the data given the

hypothesis, or likelihood of evidence, P(d | h), the probability of the hypothesis before

the data was assessed, or prior probability, P(h), and the total probability of the data
regardless of the hypothesis, P(d). The total probability of the data is calculated by
summing the products of the likelihood of evidence and prior probabilities of all possible
hypotheses about the process. Thus, the formula can be re-written as:

_ P(dIh)P(h)
Phld)= > P(dIR)YP(h) ®

h'eH
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where H refers to the hypothesis space, or the set of all nonzero probability hypotheses.
Thus, the posterior probability is proportional to the product of prior probabilities and the
likelihoods of evidence. The sum in the denominator is used to normalize the posterior
probabilities in such a way that they all sum up to one. For the probabilities to sum up to
one, the hypotheses considered as alternative explanations of the data should be mutually
exclusive, that is, two or more cannot be true at the same time.

Here is an example to illustrate how the posterior probabilities of a hypothesis are
computed. Imagine that a doctor assesses the probability that a patient has pneumonia
considering a patient’s positive X-ray test. In this case, a doctor has two alternative
hypotheses: pneumonia and no pneumonia. The only evidence that he has at this point is
the result of an X-ray fest. First, the doctor measures the prior probability of a patient
having this disease. He knows that only 5% of previously treated patients in his care had
pneumonia, therefore, P(pneumonia) = .05, while P(no pneumonia) = .95. Next, the
doctor calculates the likelihood that a patient has a positive X-ray test given pneumonia.
The doctor finds that 70% of patients with pneumonia had positive X-ray tests, while
only 10% of patients who did not have pneumonia had positive X-ray tests. Thus,

P(test | pneumonia) =70, while P(test | no pneumonia) = .10. Thus, the posterior

probability that a patient has pneumonia given a positive X-ray test can be calculated:

(70005
(70)(.05)+(.10)(.95)

3)

P(pneumonia | test) =

3.3. The probabilistic nature of human cognition
The world we live in is highly probabilistic. The fact that we see dark clouds in
the sky does not necessarily mean that it is going to rain, although this possibility may be

reasonably high. If we drop a glass vase, the chances are high that it will break; however,
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it may stay intact. If we see someone crying, we are more likely to think that the person is
upset, however, these might be tears of joy. Therefore, similar to the doctor who makes
probabilistic diagnosis based on certain prior observations of patients in his care, people
make inductive inferences by evaluating the probabilities of possible hypotheses and
selecting what appears to be the most probable one based on some past observations.

The complexity of the world that our mind has to grasp makes such metaphors as
the Bayesian brain or probabilistic mind very popular in cognitive and neuropsychology.
In fact, the idea of the probabilistic nature of human cognition has been described as “the
most exciting and revolutionary paradigm to hit cognitive science since connectionism”
(Movellan & Nelson, 2001, p.691). According to this idea, people learn probabilities of
various objects that they observe in the world very quickly (Peterson & Beach, 1967) or
even encode them automatically (Zacks & Hasher, 2002). In this way, the human mind
operates like a statistician, although people are often vulnerable to incorrect assumptions
about the relevance of the observed sample to the population, which gives rise to
incorrect assessments of probabilities and, therefore, various erroneous conclusions and
biases (for a review, see Hansson, Juslin, & Winman, 2008). There is also a claim in the
literature that the human mind is not only generally good in grasping probabilities from
the environment, but it constantly engages in action-oriented predictive processing
(Clark, 2013). More specifically, our brain forms expectancies based on prior experience
that are adjusted by weighing various cues arriving from sensory modalities.

Originally, the Bayesian view of cognition was thought to be able to explain the
computational level of the processing only. Currently, there is growing evidence that

probabilistic analysis is relevant to human cognition at the neuronal level as well (for a
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review, see Doya, Ishii, Pouget, & Rao, 2007). It has been suggested that probability
distributions may be encoded in neurons in such a way that inference is achieved by
summing up the firing rates (Ma, Beck, Latham, & Pouget, 2006) and that spiking
neurons reflect integration of information over time (Deneve, 2004). Further, evidence
for the integration of top-down prior information and bottom-up sensory data has been
demonstrated in recurrent loops in the visual cortex (Lee & Mumford, 2003). Thus,
Bayesian models of cognition are likely to be biologically plausible.

The probabilistic approach has been widely applied to explain many areas of
human cognition including visual perception (Feldman, 2001), object recognition
(Kersten, Mamassian, & Yuille, 2004), motor control (Kording & Wolpert, 2006), and
eye movements (Najemnik & Geisler, 2009), to memory (Dennis & Humphreys, 2001),
and theory of mind (Baker, Saxe, & Tenenbaum, 2009). Most relevant to the current
thesis, another aspect of cognition that many researchers have started evaluating using the
Bayesian approach is language (for a review, see Jurafsky, 2003). Traditionally, language
has been viewed as involving a set of abstract units that are generated according to some
formal rules. These rules are deterministic in their nature. However, in reality, language
is characterized by the presence of significant noise and ambiguity that speakers can
successfully deal with. In other words, language processing can be viewed as a process of
probabilistic constraint satisfaction (McRae, Spivey-Knowlton, & Tanenhaus, 1998;
Seidenberg & MacDonald, 1999).

The principles of probabilistic inference have been applied by researchers to
explain language perception, production, and learning. Thus, there are a number of

models of speech recognition couched in the Bayesian framework (Charter & Maning,
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2006; Norris, 2006; Norris & Kinoshita, 2008; Norris & McQueen, 2008). Further, there
is a view that probabilistic knowledge plays a role in language production with more
probable structures in grammar or in the mental lexicon being accessed faster or with
more confidence than less probable ones. Finally, the knowledge of probabilities has been
shown to be implicated in language acquisition (Saffran, 2002; Xu & Tenenbaum, 2007).
In the present thesis, it is proposed that principles of probabilistic inference as underlying
mechanisms of cognitive action can be extended to the process of stress assignment, a
process which is characterized by a high degree of uncertainty in many languages.
3.4. The Bayesian model of stress assignment

Within the Bayesian framework, the process of stress assignment can be viewed
as the process of posterior probability estimation for alternative hypotheses concerning
the position of stress. There are as many hypotheses considered for a word as there are
syllables in the word. The idea that in the process of stress assignment a reader examines
the likelihoods of only those stress patterns that are possible for a word of certain syllabic
length assumes that a reader is aware of the syllabic length of a word before the
probability of each hypothesis is computed. Although there is currently no strong
evidence showing a time-period when the discrimination of words according to their
syllabic length occurs, it seems likely that it happens at early stages of processing, and
there is some empirical support for this claim (Ashby & Rayner, 2004; Ashby & Martin,
2008). Further, the assumption that readers assess the probabilities of only those stress
patterns that are possible in a word has been made in all previous models of polysyllabic

word reading and models of stress assignment (Perry et al., 2010; Seva et al., 2009).
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As in the CDP++ (Perry et al., 2010), a reasonable assumption is that the
decisions concerning the number of syllables that a word has are most likely to be made
based on the information about the number of vowel graphemes in a letter string. For
example, the identification of two vowels in a string would indicate that this string should
be processed as a disyllabic word, and, thus, two hypotheses about stress patterns would
be assessed in the process of stress assignment. This assumption does raise the question
of how readers cope with situations in which the number of syllables and the number of
vowel graphemes differ (e.g., the silent vowel —e at the end of monosyllabic English
words or the so-called “hiatus” words. Those types of words are likely to be more
difficult for readers to deal with (Chetail & Content, 2012; Chetail & Content, 2013)).

The computation of the posterior probability of each stress pattern in a word given
some (non-lexical) evidence, P(stress | evidence) , presupposes the assessment of the prior
probability that a word of this language has a hypothesized stress pattern, P(stress), and
the likelihood with which evidence considered is associated with the hypothesized stress

pattern, P(evidence | stress). In the Bayesian calculation of the posterior probability of a

stress pattern, the product of the prior probability of this stress pattern and likelihood of
evidence given this probability is divided by the sum of the products of prior probabilities
and likelihoods of evidence of all alternatives (stress’) in the hypothesis space (STRESS).
Thus, the general Bayes’ formula given in the Equation 2 can be re-written as follows:
P(evidence | stress)P(stress)

z P(evidence stress")P(stress")

stress'€STRESS

“4)

P(stress | evidence) =

The calculation of the prior probability of a stress pattern in a language, P(stress),

must involve readers estimating the frequencies of various stress patterns in the words of
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the language. The prior probability of a stress pattern does differ significantly from
language to language. For example, in English, disyllabic words have trochaic stress
pattern in 80% of cases and iambic stress pattern in 20% of cases, while, in Finnish,
100% of disyllabic words have trochaic stress. Thus, in English, the prior probability of a
trochaic stress pattern, P(trochaic), equals .80, while, in Finnish, it is 1.00. On the other
hand, the prior probability of iambic stress pattern, P(iambic), is .20 in English and 0.00
in Finnish. What is assumed here is that readers have a good idea of these probabilities
because they are sensitive to the frequencies of the patterns they personally experience.
Equating the prior probability of a stress pattern with the frequency of the stress
patterns in the language is motivated by the fact that readers have been shown to be
sensitive to frequency in many realms. First of all, frequencies of linguistic structures
have been shown to impact the production and comprehension of speech. Thus, more
frequent words enjoy a processing advantage over less frequent ones (Balota &
Chumbley, 1985). In case of ambiguous words, more common meanings appear to be
accessed first (Dell, 1990). Finally, people are aware of the frequencies with which words
co-occur, and use these transitional probabilities in speech production and comprehension
(Saffran, Newport, & Aslin, 1996). Therefore, it is quite likely that the frequency with
which stress patterns occur in the language might be picked up by speakers and used in
the processing of polysyllabic words. The utilization of this information seems to be
ecologically plausible, especially if there is a dominant stress pattern in a language, as it
would significantly decrease uncertainty in the system and would simplify the process of

stress assignment.
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Indeed, there have been a number of empirical studies showing that readers are
aware of the statistical distribution of stress patterns in the language and use this
information in the processing of polysyllabic words (Colombo, 1992; Monsell, Doyle, &
Haggard, 1989). Some researchers have claimed that, in some languages, readers assign
the most frequent stress pattern by default (Black & Byng, 1986; Colombo, 1992). Within
the proposed model of stress assignment, exclusive use of a default mechanism of
assigning stress is only possible if a hypothesized stress pattern is the only stress pattern
realized in the words of a specific syllabic length (i.e., in a language where the stress
pattern is always fixed to some syllable). In this case, the prior probability of this stress
pattern, P(stress), equals 1.00, while the prior probability of the stress pattern
corresponding to the alternative hypothesis, P(stress’), equals 0.00. This means that
further evaluation of the likelihood of evidence is not needed as it would not change the
posterior probabilities of stress patterns. In all other cases, when stress can be assigned to
any syllable in words of a certain length (i.e., a language where stress placement is
flexible), the information about the frequency of stress patterns only establishes a bias
towards the more frequent stress pattern (reflected in the P(stress) values) that can be
diminished or even reversed if some source of non-lexical evidence is strongly associated
with the alternative stress pattern(s).

In the calculation of the posterior probability of a hypothesized stress pattern,
therefore, non-lexical sources of evidence for stress are important. A reliable source of
evidence should be in a significant probabilistic relation with a specific stress pattern. In
other words, the presence of this evidence in a word should act as a cue signaling the

presence of the hypothesized stress pattern. Thus, evidence for stress is assessed from the
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point of view of its informational value or its validity. For example, if in a language all
disyllabic words having trochaic stress start with two consonants and words with an
iambic stress pattern mainly have one consonant in their onset, the complexity of the
onset is a highly valid stress cue. The validity of a stress cue can be estimated by multiple
regression analysis, in which the values of a stress cue are regressed on stress patterns of
all words of the language that might have this stress pattern.

The presence of a correlation between some cue and a stress pattern in the
language does not necessarily mean that readers employ it in their stress assignment
decisions. While informative, these cues might be ignored by the readers. Therefore,
besides having high validity, proper stress cues that might be included in the model
should also be used by readers (i.e., the cues should have high “utility”’). The utility of the
stress cue can be obtained by regressing values of a stress cue on the patterns of stress
assignment performance demonstrated by readers.

The impact of stress cues is in a trade-off relationship with the impact of prior
probabilities of stress patterns. The more reliable the stress cue is, the less the stress
assignment performance is influenced by the prior probabilities. On the other hand, if a
stress cue is only weakly reliable, the role of the prior probabilities of stress patterns
increases. Similar to the prior probabilities of stress patterns that are language specific,
the nature of the stress cues and the number of the stress cues with high validity and
utility are expected to differ from language to language.

Readers might utilize multiple sources of evidence in making stress assignment
decisions. The assumption in the model is that multiple stress cues are considered in a

stepwise fashion, starting with the most informative cue to stress in a language and going
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to the least informative one. Thus, if there are two stress cues in the language A and B,
and A is a more informative one, the model, first, calculates the posterior probability of

the stress pattern given evidence A, P(stress|A), by using the following equation:

P(Al stress)P(stress)
Z P(Alstress ") P(stress")

stress'€eSTRESS

P(stress| A) =

®)

Next, the posterior probability of the stress pattern given both evidence A and B is
calculated. To do this, the model incorporates the likelihood of evidence B given the

stress pattern ( P(B | stress) ) along with the probability of that stress pattern that already
reflects the likelihood of evidence A ( P(stress | A)) that will be referred to as P(stress)*.

In other words, at this stage, the prior probabilities that the model uses are not those that
reflect the frequency of various stress patterns in the language, but, rather are the
probabilities based on the frequency of each stress pattern among the words of the
language that are also characterized by the presence of cue A (i.e., the posterior
probabilities calculated based on the existence of evidence A). Thus, at the second stage
of the computation, the formula is:

P(B|stress)P(stress)™*

z P(B | stress")(1— P(stress)*)

stress'eSTRESS

P(stress| A,B) =

(6)

Note that the stepwise approach in updating the posterior probabilities using
several sources of evidence assumes that these two sources are conditionally independent
of each other. The sources can be considered independent if the existence of one of them
does not change the impact (i.e., the probability associated with the various possible
stress assignments) of the other source. In the case of non-lexical cues to stress this is not

always the case, and some sources might be correlated to some extent. Thus, the posterior
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probabilities computed by the model may be overestimated. However, it is possible to
measure the degree of correlation between two cues and remove any statistical
dependency that is due to confounding.

The computed estimates of posterior probabilities for alternative stress patterns
are used by a reader in the selection of a response. This selection is likely to unfold in a
way similar to random walk or multiple racing diffusion process (Ratcliff, 1978; Ratcliff
& McKoon, 2008; Voss, Nagler, & Lerche, in press). In the diffusion process, there is a
gradual drift toward decision boundaries. The response is initiated when a decision
boundary (also known as response criterion) has been reached. There would need to be as
many decision boundaries as there are possible stress patterns for a particular word. For
example, for a disyllabic word, there are two decision boundaries and, thus, this decision
making process is essentially similar to the one described in the diffusion model of binary
decision making (Ratcliff, 1978). For a word consisting of three syllables, on the other
hand, there are three decision boundaries and, thus, the prosess of selecting one of three
stress patterns is similar to the one described by the models of decision making with
multiple alternatives (Leite & Ratcliff, 2010; Ratcliff & Starns, 2013).

Each of the possible stress pattern choices has a posterior probability provided by
the calculations inherent in the Bayesian model of stress assignment described in the
present thesis. The evidence for each pattern accumulates during these calculations in
such a way that evidence for one alternative is evidence against the others. The
movement from the starting point of the random walk to one of the decision boundaries
happens with a drift rate that is directly related to the quality of the evidence for a stress

pattern extracted from the orthography of a stimulus (i.e., the calculated probabilities).
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With a high drift rate, indicating that the evidence for certain stress pattern is very strong,
a decision boundary of this stress pattern will be reached relatively rapidly. Hence, the
likelihood of incorrect stress pattern choice should be low. In contrast, when the drift rate
is low due to the fact that the evidence for neither stress pattern (i.e., the posterior
probability) is very strong, the likelihood of the system producing an incorrect stress
pattern response is somewhat higher.

The decision boundaries are flexible, as their position in relation to each other can
be changed to reflect a speed-accuracy trade-off. Thus, when a task accentuates the
importance of the correct stress assignment over speed of performance, the boundaries
are moved farther apart. Doing so, of course, leads to a more accurate performance, but
there is a delay in response time. On the other hand, when the speed of naming is a
priority, the decision boundaries are moved closer, thus, allowing the process to reach a
decision boundary relatively rapidly. However, performance is likely to be somewhat
error prone.

For the purpose of illustration, the Bayesian model’s computations of the
posterior probabilities of trochaic and iambic stress patterns for a novel word belpet
completed based on a corpus of disyllabic words of a fictitious language are described.
This language has only 30 disyllabic words (see Table 1) and three sources of evidence
for stress: the orthography of the ending of the second syllable (i.e., the second vowel of
a word and all following consonants), the orthography of the first syllable, and, finally,
the orthography of the beginning of the first syllable (i.e., all graphemes up to and

including the vowel of the first syllable).
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Table 1
The corpus of disyllabic words of a fictitious language used to illustrate the computation

of the stress patterns by the Bayesian model of stress assignment

Words with Trochaic Stress Words with lambic Stress
BELTIK BELTOP
BELKOP BENRET
BETNIK BELTET
BELSIK DOLMAT
BENSET DOLPIK
BELRAT DOLNOP
BELMOT FAPLOP
BERMAT KILPIK
DOMRET LIPSOP
FAPRET MERLON
FAMLIK
KOLTIK
LIPSET
MERLIK
MOLTET
MONPIK
NERMET
NELTIK
POMLOP

TERLIK
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First of all, the model assesses the prior distribution of stress patterns in this
language. As 67 % of words have trochaic stress pattern, prior probability that a word has
trochaic stress, P(Stressl), is .67, while prior probability that a word has iambic stress,
P(Stress2), 1s .33. Next, the model consideres the evidence provided in the orthography
of the word. The model computes that the ending —et of the word belpet is present in 30%
of words with trochaic and 10% of words with iambic stress. Following the formula,

P(—et | Stress1) P(Stressl)

P(Stressl|—et) = ) (7
P(—et | Stress1)P(Stressl) + P(—et | Stress2) P(Stress?2)
the model calculates that the posterior probability of a word having a trochaic stress
pattern given the presence of the ending -ef as:
30)(. 2
P(Stressl|—et) = (.30)(67) = —0 =.87 (8)

(30)(.67)+(.10)(.33) .23
Hypotheses are in trade-off relations with each other in a way that increasing the
belief in one hypothesis decreases the belief for the other hypotheses. As the model
described here assesses two mutually exclusive hypotheses (i.e., a trochaic stress pattern
vs. an iambic stress pattern), it is sufficient to calculate the probability of one hypothesis.
The posterior probability of the other hypothesis can then be directly calculated:
P(Stress2|—et) =1— P(Stressl|—et)=1-.87=.13 9)
The model next accounts for the evidence provided by the first syllable bel-
present in 25% of words with trochaic stress and 20% of words with iambic stress. The
model uses this stress cue to update its earlier beliefs about stress patterns that were based

on the presence of the evidence —et in the word. Thus, P(Stressl|—et) , further referred to

as P(Stress1)*, serves as the model’s new prior probability of a trochaic stress pattern,

while P(Stress2|—et), further referred to as P(Stress2)*, is the new prior probability of
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an iambic stress pattern. The posterior probability that the word belpet has trochaic stress

given the presence of —bel and -et is calculated following the formula:

P(Stressl| bel—,—et) =
P(bel—| Stressl) P(Stressl) * , (10)
P(bel—| Stress1)P(Stressl) *+P(bel—| Stress2)P(Stress2) *

(.25)(.87) _ 22
(25)(.87)+(20)(.13) .25

P(Stressl|bel—,—et) = =.88 . (11)

As the final step in the calculation, the model considers the evidence for trochaic
and iambic stress patterns provided the beginning be-. In assessing the likelihood of
evidence for this orthographic component, the model cannot simply base its decision on
the scope of representation of this cue in words with trochaic versus iambic stress
patterns due to the fact that the beginning be- is a part of the first syllable bel- that has
been already accounted for by the model. This confound can be eliminated if the model
considers the distribution of this cue in all words with trochaic versus iambic stress
patterns except the words that have first syllable bel-. Out of words that meet
abovementioned criterion, 15% have trochaic stress and 10 % have iambic stress. The
model uses this stress cue to update its earlier beliefs about stress patterns that were based
on the presence of the evidence bel- and -et in the word. Thus, P(Stressi|bel-,-et), further
referred to as P(Stressl)**, serves as the model’s new prior probability of a trochaic
stress pattern, while P(Stress2lbel-,-et), further referred to as P(Stress2)**, is the new
prior probability of an iambic stress pattern. The model calculates the posterior
probability that the word belpet has a trochaic stress pattern given the evidence be-, bel-,

and -et, using the formula:
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P(Stressl| be—,bel—,—et) =
P(be—| Stressl)P(Stressl) ** , (12)
P(be-| Stress1)P(Stressl)**+ P(be—| Stress2) P(Stress2) **

P(Stressl| be—,bel—,—et) = (15)(.88) = E =093 . (13)
(.15)(.88)+(.10)(.12) .14

Thus, based on the prior knowledge of the distribution of stress patterns in the language
and correlations that exist between three types of orthographic cues and stress patterns in
the words of this language, the Bayesian model of stress assignment predicted that the
novel word belpet is very likely to be assigned trochaic stress pattern.

The calculations of probabilities of stress patterns provided above reflect the
behavior of an ideal observer, who computes the most probable stress pattern given the
whole corpus of the language. The real patterns of behavior are expected to be correlated
with the patterns produced by the model, but are unlikely to be identical. First of all,
humans might be good statisticians, but they are not perfect, while the model’s
computation is error-free. As various errors, biases, and heuristics are common features
of human cognition (Tversky & Kahneman, 1974), departures from optimal behavior are
expected in human performance. Secondly, the Bayesian model of stress assignment is a
model based only on non-lexical information and people might also use stress
information stored in lexical memory, especially if in the result of the non-lexical
computation of stress patterns, the calculated posterior probabilities are fairly similar.

As a final note, it should be mentioned that the Bayesian framework is essentially
generative, meaning that observed data (evidence) is generated by some underlying
source that relates it to a hypothesis. For example, in estimating the probability of

pneumonia, a doctor might consider various symptoms that are generated by an
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underlying illness directly (e.g., fever, coughing, chest pain) or indirectly (e.g., positive
X-ray test, positive blood culture test). In the proposed Bayesian model of stress
assignment in reading, the evidence that is considered is the orthography of a word that
readers implicitly believe is indirectly associated with various stress patterns. The
underlying cause that brings together orthography and stress pattern is the phonology of
the language. In the process of language acquisition, children first master aural speech
with all of the probabilistic information that it provides. Among other information,
children learn that some similar sounding words are more likely to have the same stress
pattern. Later, children learn to map sounds onto abstract orthographic representations (to
write) and to decode the orthography back to phonology (to read). In the process of
reading, it is not enough just to construct the string of phonemes, one also needs to apply
a stress pattern to this string. At the early stages of literacy acquisition, children might
map graphemes onto phonemes first, and, then, use the earlier acquired knowledge of
probabilistic relations between sounds and stress patterns to select the most likely stress
pattern to be applied to a string of phonemes. With further improvements in literacy,
readers might still be going through the same serial steps from orthography to phonology
and, then, to stress patterns. Alternatively, they could be gradually switching to a more
efficient serial way of processing with orthography being mapped onto phonology and

stress pattern at the same time.
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Chapter 4 — Non-lexical Sources of Evidence for Stress Patterns

4.1. Introduction

Within the proposed model of stress assignment, a prior belief about the
likelihood with which a word has a certain stress pattern (reflecting the frequency of this
stress pattern in a language) is adjusted by non-lexical evidence for stress patterns
derived from the orthographic input. The first goal of this chapter is to substantiate the
claim that readers do utilize information about the frequency of stress patterns in a
language when they assign stress to words. This idea has been widely considered in prior
research, however, the empirical findings have been somewhat mixed. Some researchers
have demonstrated the effect of the frequency of stress patterns on naming, and, further,
posit that a more frequent stress pattern is applied to words by default (Black & Byng,
1986; Breen & Clifton, 2011; Colombo, 1992). Others failed to provide behavioral
support for the default stress pattern hypothesis, and state that the frequency of the stress
patterns in a language plays little, if any, role (Burani & Arduino, 2004; Sulpizio, Job, &
Burani, 2012; Sulpizio, Arduino, Paizi, & Burani, 2013). In the proposed model, an
intermediate position is taken. On the one hand, there is a substantial amount of evidence
suggesting that readers are likely to be impacted by the knowledge of the distribution of
stress types in a language. However, this knowledge is not used as a default rule, but
rather as a prior belief about the likelihood with which a word has a particular stress
pattern. This prior belief can be easily changed by the assessment of non-lexical,
orthographic cues present in a word that are probabilistically associated with certain

stress patterns.
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The second goal, therefore, is to consider a range of non-lexical cues to stress that
might play a role in stress assignment. For example, in a selected number of languages
(e.g., Greek, Spanish), readers can rely on diacritics, which are orthographic marks used
to indicate the syllable to stress (Protopapas, 2006). In other languages (e.g., English,
Russian), stress patterns may be signaled by the morphology of a word (Rastle &
Coltheart, 2000), although this cue would be of use only when a polymorphemic word is
being read. In this Chapter, only those cues that are likely to be used in a wide range of
languages and that are likely to be relevant for words of various morphemic structures are
considered. The first cue of such type is the orthographic complexity of word onsets and
codas. In English, it has been suggested that disyllabic words with complex graphemic
onsets (i.e., onsets containing more than one consonant grapheme) tend to have an iambic
stress pattern (Kelly, Morris, & Verrekia, 1998), while words with complex graphemic
codas (i.e., codas containing more than one consonant graphemes) tend to have a trochaic
stress pattern (Kelly, 2004). Further, the orthography of word beginnings and endings has
been shown to be utilized by readers as lexical stress indicator (Arciuli & Cupples, 2007).
Finally, some researchers proposed that the knowledge of a word’s grammatical category
is also a cue to lexical stress as the frequency of the stress pattern within certain
grammatical categories exerts more influence on stress assignment than overall stress
type frequency (Kelly & Bock, 1988). A more detailed review of research related to a
number of potential sources of evidence for word stress is provided below.

4.2. Frequency of stress patterns in the language
Languages differ significantly with respect to the distribution of stress patterns. In

fixed-stress languages (e.g., Hungarian, Finnish), there is only one stress pattern.
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Therefore, readers do not have to derive stress information from print or lexical
knowledge. They can apply the only available stress pattern to a word by default and
always be correct. In contrast, in free-stress languages (e.g., English, Spanish, Italian),
stress assignment is a cognitively demanding task requiring stress pattern identification in
each polysyllabic word. Readers of these languages do, however, possess the knowledge
of the relative probability of occurrence of various stress patterns in a language. In so
called bounded languages (i.e., languages that have the tendency for stress to be drawn to
the right or to the left edge of a word), certain stress patterns would occur significantly
more often than the others. These stress patterns would be considered “regular” or
“typical”, while the other(s) would be called “irregular” or “atypical”. For example, in
English, a trochaic stress pattern is regular as 80% of disyllabic words have stress on their
first syllable (Cutler & Carter, 1987). Simply by applying the more frequent stress pattern
to all words of the language, an English speaker would assign stress correctly in 80% of
cases. On the other hand, there are unbounded languages (e.g., Russian) in which words
with different stress patterns are represented in the lexicon in approximately equal
proportions. The knowledge of frequencies of stress patterns in these languages is of
reduced value as there is no regular (or irregular) stress.

As noted, stress regularity has often been considered to be an important variable
affecting word processing. In one of the most influential models of spoken word
production Weaver++, it was argued that the most frequent stress pattern is applied to a
word’s syllabic structure by default (Levelt, 1989; Levelt, Roelofs, & Meyer, 1999). This
idea was extended to the area of written word comprehension, where it was suggested

that readers of languages with a regular stress pattern possess implicit knowledge about
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the frequency of that pattern. This knowledge forms a strong bias to apply a regular stress
pattern as some type of default rule (Colombo, 1992; Monsell, Doyle, & Haggard, 1989).
Essentially, these researchers proposed that there are differences in the way regular and
irregular stress patterns are processed. While regular stress patterns are applied by
default, irregular ones must be either computed non-lexically (typically for low frequency
words) or retrieved from lexical memory (typically for high frequency words).

The presence of alleged differences in the way words with regular versus irregular
stress patterns are processed suggests that speakers should behave differently when
reading words with regular versus irregular stress patterns. If a regular stress pattern is
applied essentially by default, then words that have this stress (i.e., regular words) should
enjoy a processing advantage. On the other hand, words with an irregular stress pattern
(i.e., irregular words) should be more difficult to process. In addition, similarly to the
effect of the regularity of spelling-sound correspondences, which is observed with words
of low frequency only (Seidenberg, Waters, Barnes, & Tanenhaus, 1984), stress
regularity should interact with lexical frequency such that irregular words of low
frequency should incur the most processing cost.

Evidence for a significant stress regularity effect and its interaction with lexical
frequency has been reported in English (Brown, Lupker, & Colombo, 1994; Monsell,
Doyle, & Haggard, 1989). It took readers longer to name less frequent iambic stress
words compared to more frequent trochaic stress words. Further, the effect of stress
regularity was evident when low frequency words were used as stimuli, while high
frequency words were immune to a regularity effect. Colombo (1992) replicated the

stress regularity effect and stress regularity by frequency interaction in Italian. Moreover,
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this effect was significant even when regular versus irregular words were presented in
separate blocks, suggesting that the knowledge of the frequency of stress patterns is not
reduced by strategic manipulations. Additionally, there were replications of a stress
regularity effect in Dutch (Schiller, Fikkert, & Levelt, 2004) and in Greek (Protopapas,
Gerakaki, & Alexandri, 2006). These replications in languages with different regular
stress patterns demonstrate that the effect is driven by the frequency of stress pattern and
not simply by a bias to the beginnings or endings of words.

Colombo (1992) provided a theoretical explanation for the stress regularity effect
and its interaction with lexical frequency, similar, in essence, to the principles of the Dual
Route Model of reading (Coltheart & Rastle, 1994). According to Colombo, stress in
high-frequency words that have strong lexical connections, is assigned via the lexical
route. On the other hand, low-frequency words have less established lexical links,
allowing time for stress information to be computed by mapping spelling onto stress
patterns; i.e., a non-lexical route is utilized with the most frequent stress pattern being
assigned by default before the correct stress assignment can be produced by the lexical
route. For low frequency regular words, the lexical and non-lexical reading procedures
will produce the same response. On the other hand, if a low frequency word possesses an
irregular stress pattern, the temporarily assigned default stress will not be correct. The
conflicting outputs of the lexical and non-lexical routes result in a delay in pronunciation
and a decline in accuracy.

Additional support for the processing advantage of regularly stressed words is
provided by patient data. English-speaking deep dyslexic aphasic patients made fewer

errors on regularly compared to irregularly stressed words (Black and Byng, 1986;
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Nickels & Howard, 1999). Similar findings of poor accuracy in naming of irregularly
stressed words were reported in Italian (Cappa, Nespor, lelasi, & Miozo, 1997; Laganaro,
Vacheresse, & Frauenfelder, 2002; Miceli & Caramazza, 1993).

There is also some evidence, from eye-tracking experiments, for the special status
of a regular stress pattern in word reading (Breen & Clifton, 2011; Sulpizio & McQueen,
2012). In a study by Breen and Clifton (2011), English participants read limericks that
had stress-alternating homographs (e.g., prEsent — presEnt) embedded in them, while the
participants’ eye-movements were recorded. The results demonstrated a reading cost
when the lexical stress of the homograph, as determined by context, mismatched the
metrical pattern of the limerick, but only in the case of irregularly stressed homographs
(i.e., a word with iambic stress in trochaic metrical context). There were no processing
costs when a word with a regular, trochaic stress pattern was presented in an iambic
metrical context. Further, in a study by Sulpizio and McQueen (2012), Italian speakers
learned tri-syllabic names of nonsense objects that they had to identify later on visual
displays based on an auditory presentation that contained full or reduced acoustic stress
cues. The researchers found that the acoustic manipulation of stress cues did not affect
the speed of recognition of nonsense objects with regular, penultimate stress. Moreover,
overall targets with penultimate stress were recognized faster than targets with ante-
penultimate stress, signaling that there is a distributional stress bias toward the more
frequent penultimate stress pattern in Italian.

Finally, there is an ERP study conducted in Turkish that provides evidence for
differences in the processing of words with regular, final syllable stress and words with

irregular, non-final syllable stress (Domahs, Genc, Knaus, Wiese, & Kabak, 2012). In
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this study, the visual presentation of a word was followed by the aural presentation of the
same word with either a proper or an improper stress pattern. Stress violations involving
the assignment of regular stress modulated the N400 ERP component, which is reflective
of the difficulties in accessing the lexical representation of a word. More importantly,
however, violations with irregular stress modulated the P300 ERP component, which is
the signature of phonological reevaluation of the stress pattern. Thus, in the case of the
regular stress pattern, participants have difficulty judging that this pattern is incorrect
unless they access the word’s lexical representation, while the incorrect usage of an
irregular stress pattern is detected easily and very early in processing.

Not all results have been supportive of the “default” stress hypothesis, however
(Kelly, Morris, & Verrekia, 1998; Rastle & Coltheart, 2000; Sulpizio, Job, & Burani,
2012). For example, Kelly et al. (1998) showed that readers named words with irregular
iambic stress faster than words with regular trochaic stress. This unusual pattern could be
attributed partially to the choice of stimuli. Kelly et al. proposed that words with an
irregular (in English) iambic stress pattern are orthographically marked in that the
endings of those words have more letters than needed for proper phonemic processing
(e.g., -ette, -elle, -00). The experimenters, therefore, manipulated not only stress patterns
of the words but also the presence of orthographic markers of iambic stress. Thus, half of
their words with trochaic stress and half of their words with iambic stress contained
endings that were representative of the iambic stress pattern, while the presence or
absence of orthographic markers of trochaic stress was not controlled for. This
characteristic of the stimuli might have given rise to a strategy that produced the

advantage in processing for irregularly stressed words.
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The issue of the effect of stress regularity on word naming in English has also
been investigated by Rastle and Coltheart (2000). The words used in their Experiment 1
were not explicitly selected to contain “orthographic markers” of an iambic stress pattern.
In their experiment, there was no difference in the speed of processing of words with
irregular iambic stress versus words with regular trochaic stress.

Further, there are other reports of failed attempts to find a processing advantage
for words with more frequent compared to less frequent stress patterns in Spanish
(Gutierrez-Palma & Palma-Reyes, 2008) and in Italian (Burani & Arduino, 2004;
Sulpizio, Job, & Burani, 2012; Sulpizio, Arduino, Paizi, & Burani, 2013). Moreover, not
only adult readers, but also children, who are expected to rely on sub-lexical processing
to a greater extent (Ziegler & Goswami, 2005), failed to show sensitivity to stress
dominance in other studies (Gutierrez-Palma & Palma-Reyes, 2004; Paizi, Zoccolotti, &
Burani, 2011), although young children, who had just started learning to read, did apply a
regular stress pattern to nonwords that they were asked to name (Arciuli et al., 2010).
Thus, a tendency for stress regularization appears to decline gradually with age
potentially due to the overall improvement in literacy and due to the acquisition of other
stress cues present in the language. Indeed, dyslexic children, who have difficulty in
acquiring reading skills, often show a similar pattern of stress regularization errors as
novice readers (Paizi et al., 2011). Although knowledge of the existence of a regular
stress pattern is likely still accessible in adults and young skilled readers, it may not be a
leading source of evidence for stress patterns anymore and, therefore, the stress regularity

effect can often not be registered behaviorally.
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Finally, the idea that there is a strong default mechanism of regular stress
assignment found no support in a study by Colombo and Zevin (2009). Using a “pathway
priming” methodology, in which participants named a target word or a nonword preceded
by a set of (prime) words or nonwords that either had or did not have the same stress
pattern as the target, these researchers demonstrated that participants were more likely to
be impacted by the stress pattern of the primes or by lexical knowledge than by the
knowledge of a more frequent stress pattern in the language. Nevertheless, there was also
some evidence for a bias to assign regular stress to words when the experimental
manipulation made sub-lexical processing of stimuli more likely.

The suggestion that the most frequent stress pattern forms a bias in the stress
assignment process and acts as a strong cue to stress is, therefore, open to debate. On the
one hand, there are studies showing that there is a processing advantage for words with
the more frequent stress patterns. These findings are often interpreted as denoting the
presence of a default mechanism or rule, according to which the most frequent stress
pattern is assigned by default to any word in a language. On the other hand, this idea of a
default regular stress mechanism is not supported by investigations that failed to
demonstrate a processing advantage for words with a regular stress pattern or that showed
a processing disadvantage for words with regular stress. Based on those types of findings,
one could argue that the knowledge of the distribution of stress patterns in a language is
of little, if any, value or utility in the process of word recognition. Alternatively, one
could easily argue that there is enough evidence suggesting that information about the
frequency of stress patterns in the language is available to readers and impacts the

processing of polysyllabic words. However, this impact is not in the form of a default



56

rule that is applied to words, but rather in the form of prior belief that any word is more
likely to have a more frequent than less frequent stress pattern. This information is easily
accessible and at early stages of literacy acquisition it is the main source of evidence for
stress. With the development of reading skills, it seems likely that readers acquire other
orthographic cues that are probabilistically associated with stress patterns and these cues
are used in order to adjust their prior beliefs formed by the knowledge of the distribution
of stress patterns. Hence, the impact of the existence of regular stress pattern is muted,
causing that impact to sometimes fail to be evident.

4.3. Orthographic complexity of word onsets and codas

Stress patterns can be marked in the orthography via associations that exist
between graphemic combinations and stress patterns. One of the associations of this type
is that of stress and complexity of words’ codas (Kelly et al., 1998) and/or complexity of
words’ onsets (Kelly, 2004). A word’s coda is defined as the ending of a word that
includes all word final consonants that follow the vowel of the last syllable of a word
(e.g., effe-ct, patte-rn, lette-r). Onset corresponds to a consonant cluster that precedes the
first vowel of a word (e.g., n-umber, bl-ossom, spl-ashy).

Thus, Kelly et al. (1998) found that many codas of disyllabic English words are
correlated with stress patterns. For example, words containing coda —¢ are more likely to
have trochaic stress pattern (e.g., comet, sonnet, market), while words containing coda —
1te are more likely to have iambic stress (e.g. roulette, corvette, dinette). Based on these
observations, Kelly et al. proposed that orthographic cues to stress are located in the
second syllable of the disyllabic words and that these cues typically mark only the

irregular (for English) iambic stress pattern by representing the information about the
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phoneme of the coda by using more letters than needed. As a result, irregular words with
iambic stress that are marked by codas as having an iambic stress pattern should be as
easily processed as regular trochaic stress words.

Indeed, Kelly et al. (1998) demonstrated that words with an iambic stress pattern
orthographically marked for this type of stress by their codas and non-marked words with
a trochaic stress pattern (i.e., words that did not contain codas associated with iambic
stress) had a processing advantage in naming and lexical decision tasks over non-marked
for iambic stress iambic words and trochaic words that contained iambic orthographic
cues. These findings support a claim that orthographic cues to stress are learned by
readers, and that the presence of these cues in words expedites their processing.

Further, Kelly (2004) showed that there is also a relationship between stress
patterns and onsets in English disyllabic words. A corpus analysis revealed that the
incidence of trochaic stress increased significantly with the number of consonants in
word onset position (Kelly, 2004). Words that had no onset consonants had trochaic
stress in 35% of the cases, while words with two consonants in their onset had trochaic
stress in 83% of the cases. These results were further corroborated in a study by Arciuli
and Cupples (2007). Moreover, it was demonstrated that English readers are sensitive to
onset complexity as a stress cue as they assigned first syllable stress to disyllabic
nonwords more often when they began with two consonants rather than one (e.g.,
flormand vs. formand; Kelly, 2004). In sum, the behavioral evidence indicates that
speakers do consider the complexity of both word codas and word onsets in assigning

lexical stress.
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4.4. Orthography of word endings and beginnings

The hypothesis that orthography can implicitly provide information about stress
patterns has been extended from word onsets and codas to orthographic elements of
greater length: word endings and word beginnings. Most of the research concentrated on
investigating the validity of word endings as stress cues. For a disyllabic word, word
ending is defined as a fragment that includes a vowel of the second syllable and all
following consonants (e.g., wind-ow; prod-uce; nam-ing). Words with the same
orthographic component in their structure are assumed to form neighborhoods (e.g., in
English, mark-et, brack-et, pack-et, bask-et, cad-et). Words with identical endings that
map onto the same stress pattern are called “stress friends” (e.g., market: bracket). Words
with identical endings that do not map onto the same stress pattern are called “stress
enemies” (e.g., market: cadet). A word like “market” that has many “stress friends” is
called consistent, while a word like “cadet” that has many “stress enemies” is called
inconsistent.

The consistency with which graphemes map onto phonemes has been investigated
in monosyllabic word reading (Jared, McRae, & Seidenberg, 1990; Jared, 2002), and it
has been demonstrated that words with a high degree of consistency enjoy a processing
advantage. Colombo (1992) extended this idea to the domain of polysyllabic word
reading (in Italian) and proposed that the consistency of a word’s orthography-to-stress
mapping may have an effect on stress assignment. The presence of common letter
clusters in words with different stress patterns (“stress enemies””) may slow down the
assignment of the correct stress due to the competition from partially activated,

alternative variants of lexical stress compared to words that do not have “stress enemies”.
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An experimental investigation of the consistency effect in Italian demonstrated an
interaction of consistency and regularity of stress (Colombo, 1992). The processing of
regularly stressed words with many stress enemies was not slower than the processing of
regularly stressed words with many friends. Only irregularly stressed words were subject
to the influence of orthography-to-stress mapping consistency. When words with
irregular stress pattern had many stress friends, that fact compensated for its irregularity
with naming latencies being the same as the latencies of regularly stressed words. On the
other hand, words with irregular stress patterns that had many stress enemies required
more time for naming and were more likely to be pronounced with an incorrect stress
pattern (Experiment 4, Colombo, 1992). Further, the reliance of readers on the knowledge
of the overall distribution of stress patterns in the language and the distribution of stress
patterns in words forming neighborhoods has been demonstrated in a nonword naming
experiment (Experiment 5, Colombo, 1992). Thus, according to Colombo, there are two
factors that influence stress assignment in Italian. The first factor is stress regularity: the
most frequent stress pattern can be assigned by default. The second factor is stress
consistency as defined by the distribution of stress patterns in a word’s orthographic
neighborhood formed on the basis of the orthography of the word’s ending.

Burani and Arduino (2004) criticized Colombo’s (1992) experiments on the
grounds of an inappropriate matching of items on a number of variables including
summed frequency of stress friends and initial phoneme characteristics. The performance
of readers on naming of better matched Italian words that varied in stress consistency of
word endings and stress regularity showed a significant consistency effect in both

regularly and irregularly stressed words. Words with many stress friends were read faster
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and with fewer mistakes than words that had many stress enemies. There was, however,
neither a regularity effect nor a consistency by regularity interaction.

There have been a number of replications of the effect of stress consistency of
word endings in Italian. For example, in a naming study by Sulpizio, Arduino, Paizi, and
Burani (2013), participants were sensitive to stress cues provided by word endings,
although this sensitivity was greater for endings associated with the irregular (in Italian)
antepenultimate stress pattern. Further, the effect of stress neighborhood on naming was
also demonstrated in typically developing and developmental dyslexic Italian children
(Paizi et al., 2011). Both participant groups read words with many stress friends more
accurately than words with many stress enemies. These results suggest that stress
assignment in Italian is driven by distributional information about the consistency of the
stress pattern and the orthography of word endings.

Performance on regularly and irregularly stressed words with different degrees of
stress consistency was also examined in English (Arciuli & Cupples, 2006; 2007; Arciuli
et al., 2010). A large scale analysis of the corpus of disyllabic English words revealed
that the orthography of many word endings is probabilistically associated with lexical
stress (Arciuli & Cupples, 2006). For example, words ending in “-ock” tend to have a
trochaic stress pattern (e.g., hammock, bullock, pollock), while words ending in “~-oon”
tend to have iambic stress pattern (e.g., baboon, lagoon, maroon). In fact, a discriminant
function analysis of an English disyllabic corpus showed that the correct classification of
word stress types based on the orthography of word endings occurred in 95% of cases.
Further, adult and child participants were shown to be sensitive to the probabilistic stress

cues provided by word endings (Arciuli & Cupples, 2006; Arciuli et al., 2010).
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As noted, recently, it has been suggested that not only word endings, but also
word beginnings, can serve as useful stress cues (Arciuli & Cupples, 2007; Arciuli et al.,
2010). The word beginning of a disyllabic word is defined as the segment containing all
graphemes up to and including the first vowel (e.g., fo-rmer, mo-del, e-nding). An
analysis of the corpus of English disyllabic words showed that some word beginnings
occur more often in trochaically stressed words, whereas other word beginnings occur
more often in iambically stressed words (Arciuli & Cupples, 2007). In addition, the
results of a discriminant function analysis with word beginnings considered as the only
criterion for stress classification demonstrated that the correct grouping of words into
trochaic versus iambic stress occurred in 90% of cases (Arciuli et al., 2010). In follow-up
studies, empirical evidence was obtained showing that when reading nonwords
containing orthographic cues to stress adults and children were sensitive to beginnings as
well as endings (Arciuli & Cupples, 2007; Arciuli et al., 2010).

In summary, even in languages that do not use explicit orthographic markers of
stress (i.e. diacritics), there are certain orthographic patterns that signal what stress type
should be assigned to a word. Word beginnings and endings were empirically shown to
be utilized as stress cues by readers. The limitation of these findings is that they were
reported in a few languages only. To allow for greater generalization of the idea that
lexical stress decisions can be made based on orthographic information, investigations of
the role of orthography in stress assignment in other languages are needed.

4.5. Grammatical category
Another potential cue to stress is the grammatical category of a word. In some

languages, the distribution of stress patterns in words of different grammatical categories
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might be different. For instance, in English, trochaic stress is more typical in disyllabic
nouns, whereas most disyllabic verbs often exhibit iambic stress (Chomsky & Halle,
1968). Readers might be aware of these differences and might be more inclined to assign
the most frequent (for words of certain grammatical category) stress pattern to a word
belonging to a particular grammatical category. Thus, in English, nouns might be more
likely assigned trochaic stress, while verbs might be more likely assigned iambic stress.

Kelly and Bock (1998) noted this characteristic of the English stress system and
suggested that nouns with trochaic stress and verbs with iambic stress may be considered
as having regular stress in English. Empirical evidence for the impact of grammatical
category on stress assignment has been provided by Kelly and Bock in two experiments
involving reading nonwords embedded in verb versus noun biasing contexts. The results
showed that speakers were sensitive to the relation between grammatical category and
stress patterns. Specifically, nonwords acting as nouns were more likely to be assigned
trochaic stress, while nonwords acting as verbs were more likely to receive iambic stress.

Additional evidence for the impact of grammatical category on stress assignment
has been provided by Arciuli and Cupples (2004, 2006, 2007). For example, Arciuli and
Cupples (2004) showed that speakers of English classified visually presented stimuli as
verbs or nouns faster and more accurately if items were what they call typically stressed
(i.e., trochaic nouns and iambic verbs). Further, typically stressed nouns and verbs also
enjoyed a processing advantage over atypically stressed iambic nouns and trochaic verbs
in naming and lexical decision tasks (Arciuli & Cupples, 2006). Finally, in an onset-

gating paradigm, in which words were presented aurally in increasing increments of
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length, participants were better at identifying words with a stress pattern typical for their
grammatical category (Arciuli & Cupples, 2007).

In an analysis of the corpus of English disyllabic words, Arciuli and Cupples
(2006) demonstrated that English word endings are probabilistically associated with
certain stress patterns as well as with certain grammatical categories. Across all endings,
correlations between grammatical category and stress patterns were highly significant
(nouns and trochaic stress: » = .70; verbs and iambic stress: r = .75). Further, the
researchers provided evidence that speakers of English use the cues to grammatical
category and stress patterns provided by the word endings. Based on these findings,
Arciuli and Cupples (2006) concluded that typically stressed English words may enjoy a
processing advantage due to the fact that, in these cases, orthographic cues are often
consistent with one another in terms of providing the correct combination of grammatical
category and stress pattern information.

To conclude, grammatical category does appear to be probabilistically related to
lexical stress. So far, this relation has been established and investigated in English only.
However, even in English, it is not clear how exactly the knowledge of grammatical
category is utilized in the process of stress assignment. On the one hand, it could be that
orthography cues grammatical category directly, which in its turn influences assignment
of stress. On the other hand, orthography might be cuing grammatical category and
lexical stress at the same time and independently from each other. The correlation
between grammatical category and stress pattern might be an artifact of the relationship

between each of these factors and orthographic cues.
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4.6. Conclusion

The goal of this chapter was to assess the empirical evidence for the claim that
readers are sensitive to the distribution of stress patterns in a language and use this
information in the process of stress assignment. The second goal was to discuss a set of
stress cues that have been shown to signal proper stress patterns (i.e., to have high
validity) and to be used by readers (i.e., to have high utility). Such cues might potentially
be used in the proposed Bayesian model of stress assignment as evidence used to adjust
any prior belief about a stress pattern, based on stress frequency. The following
conclusions, concerning these factors, can be offered.

First of all, previous research does provide evidence that readers are aware of the
distribution of stress patterns in the language. In some studies, these results are often
interpreted as favoring the default stress hypothesis, an idea that the most frequent stress
pattern is assigned to words automatically. This idea, however, contradicts the principles
of the Bayesian model of stress assignment to be proposed here. In the model, there are
no procedural differences in the way more frequent versus less frequent stress patterns
are assigned to words. In both cases, readers evaluate evidence that is provided by the
orthographic input and make decisions based on that evidence. The only difference
between two stress patterns is that in order for a less frequent stress pattern to be
assigned, readers require stronger evidence for this stress pattern than in case of a more
frequent stress pattern. There have been a number of failed attempts to demonstrate that
the most frequent stress pattern is assigned by default. However, none of those studies
posit that the information about the frequency of stress patterns in the language is

unavailable or unused by readers.
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Secondly, this review detailed research examining various stress cues. Stress cues
that have been shown to influence the processing of polysyllables in a greater number of
languages and are relevant for all words regardless of their morphological status concern
the orthography of a word. For example, orthographic complexity of word onsets and
codas has been linked to the assignment of stress in English disyllabic words. Further, it
was demonstrated that the orthography of word beginnings and word endings might be
good cues to stress. Finally, there are some suggestions that the grammatical category of
a word is a potential stress cue. However, at this point, it is unclear whether grammatical
category cues stress directly or whether the orthography is cuing both grammatical
category and lexical stress at the same time.

This list is not exhaustive as there might be some other stress cues that have not
yet been investigated. Further, the presented research was mainly conducted in English
and Italian, languages that are stress bounded, and, thus, these cues might be
characteristic only of languages that have regular stress patterns. Therefore, further
investigations of stress cues in other languages, especially in languages with no regular
stress pattern, are required. A final point to be made is that although in making stress
assignment decisions, readers can evaluate all sources of evidence available in the
language, doing so might be a time-consuming process. Therefore, during routine word
processing, which is usually time-constrained, the set of stress cues being analyzed is
likely limited to only those sources of information that are highly indicative of the stress

patterns in the language and ones that readers have learned to rely on.
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Chapter 5 — Implementation of the Bayesian Model of Stress Assignment in Russian
5.1. Introduction

The present chapter represents the beginning of the process of implementing the
Bayesian model of stress assignment in Russian. Stress in Russian is flexible and it often
serves to distinguish between otherwise identical lexical items (e.g., 34mox (“castle”) —
3amOxk (“lock™); mVka (“burden”) - myxA (“flour”)) or between grammatical forms of the
same lexical item (e.g., p ¥xu (plural, nominal “hands”) — pyx (singular, genitive
“hand”); nEcy (dative, “forest) —necV (locative, “forest”). Despite the importance of
lexical stress for word recognition, its assignment in Russian is complex and is often a
source of speech errors as there are no clear rules to follow and there is no dominant
stress pattern in this language. The complexity of the stress system in Russian has been
taken by some researchers as indicating that lexical stress in Russian is assigned only
following the retrieval of accurate stress information from the word’s lexical
representation (Gouskova, 2010; Lukyanchenko, Idsardi, & Jiang, 2011). One of the
goals of the present research was to assess whether this position is incorrect and, instead,
there are at least some non-lexical cues that readers of Russian actually do use to assign
stress. If the results confirm that stress in Russian can be and is computed non-lexicaly,
then, these non-lexical cues can be considered as valid and potentially utilized sources of
evidence for stress within a Bayesian model of stress assignment. Hence, a computational
implementation of that model can be created and its performance on stress assignment
can be assessed in a series of simulations. For the sake of simplicity, only the issue of

stress assignment in disyllabic Russian words was investigated here.
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Study 1 was a corpus analysis of the distribution of trochaic versus iambic stress
patterns in a set of Russian disyllabic words. The goal was to determine if there are any
distributional differences for these two stress patterns and whether there are grounds to
expect that readers in Russian might be biased for a particular stress pattern. The analysis
was conducted over all disyllabic words regardless of their grammatical category and
separately for words of each grammatical category to see if stress regularity could be
found in Russian when only words performing one grammatical function are considered.
This analysis provided us with the information about prior biases to stress pattern that the
Bayesian model of stress assignment requires.

The next goal was to identify a set of non-lexical sources of evidence for stress
that are present in Russian and that are used by native speakers. This investigation
involved the combination of factorial and regression approaches. First, a factorial study
investigated the impact of a number of variables on performance in a naming task (Study
2). In this study, one question was whether there is any evidence for a bias to either a
trochaic or an iambic stress pattern demonstrated by readers of Russian. A second
question was whether readers are sensitive to the effect of two potential cues to stress:
spelling-to-stress consistency of word endings and grammatical category.

Although a factorial design allows an investigator to claim that the manipulation
of independent variables is responsible for significant effects, this approach has some
limitations. The most important one is that it does not allow for the examination of effects
of many variables within one study. A complementary approach allowing researchers to
overcome this limitation and to conduct an investigation which is more exploratory in

nature is regression analyses. In a regression study, the effect of many variables within a
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single data set, which usually includes a significant number of observations, is analyzed.
Following the suggestions that it is useful to combine factorial and regression analyses
(Balota, Yap, Hutchinson, & Cortese, 2012; Treiman et al., 1995), it seemed prudent not
to limit the investigation to factorial studies only, but also to undertake what Balota et al.
(2012) termed a “megastudy” approach in the attempt to establish a set of non-lexical
cues to stress present in Russian and used by Russian readers.

Therefore, a binary logistic regression was run on a set of non-lexical predictor
variables of stress patterns in the corpus of more than 13,942 words (Study 3). This study
allowed the discovery of at least some of the non-lexical cues that are probabilistically
associated with stress patterns in Russian. Then, a generalized linear mixed effects model
(Study 4) that had the same set of predictors was applied to the results of stress
assignment performance of readers on a set of 500 disyllabic words. Study 5 allowed an
assessment of the actual utilization of the potential cues to stress. The expectation is that
the combination of factorial and regression studies would allow identification of most of
the non-lexical sources of evidence that could be used to predict stress assignment in
Russian using the proposed Bayesian framework.

5.2. Study 1: Corpus analysis of prior probabilities of stress patterns in Russian

The goal of this study was to establish the prior probabilities of trochaic and
iambic stress patterns in Russian by investigating the distribution of these stress patterns
in the language. Both type-based (proportion of words with trochaic versus iambic stress
patterns) and token-based (proportion of the summed logarithmic frequencies of words
with trochaic versus iambic stress) distributions of stress patterns were calculated.

Method
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All disyllabic words from the Frequency Dictionary of Modern Russian
(Lyashevskaya & Sharov, 2009) were selected. The dictionary provides lemmatized
forms of the words only. In the morphologically rich Russian language, however, readers
are exposed to inflected forms more often than to lemmatized forms. Therefore, inflected
forms of words were retrieved from the Dictionary of Russian Grammar (Zaliznyak,
2003) and added to the database. Only words with a frequency of at least 1 per million
words according to the Russian National Corpus (http://ruscorpora.ru) were considered.
The resulting database consisted of 13,942 words. The information about the grammatical
category and frequency of each word was retrieved from the Frequency Dictionary of
Modern Russian (Lyashevskaya & Sharov, 2009). The stress pattern information was
verified by consulting the Dictionary of Russian Lexical Stress (Zarva, 2001).

Results and Discussion

Table 2 presents the proportion of each stress pattern calculated based on the
number of words with trochaic versus iambic stress as a function of grammatical
category. Table 3 presents the proportion of each stress pattern calculated based on the
summed logarithmic frequency of words with trochaic versus iambic stress as a function
of grammatical category. The results of both analyses showed that there is no dominant
stress pattern in Russian. In the type-based analysis, a trochaic stress pattern was present
in 55% of the words and an iambic stress pattern was present in 45% of the words, while
in the token-based analysis 57% of the words had trochaic stress and 43% of the words
had iambic stress. The analysis of the distribution of stress patterns in words of various
grammatical categories demonstrated a potentially interesting result. Adjectives

frequently had trochaic stress (type-based analysis: 80%; token based analysis: 81%).
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Table 2

Number and Proportion of Each Stress Type for Russian Disyllabic Words in the Corpus

Trochaic Stress Tambic Stress

Grammatical Number Proportion (%) Number Proportion (%)
Category

Adjective 1707 80 401 20

Noun 4678 55 3884 45

Verb 1100 38 1844 62
Other 162 50 166 50

Total 7647 55 6295 45

Note. The stress type proportions are calculated based on the total number of words in the
grammatical category in question in the corpus. Trochaic Stress refers to stress on the

first syllable of a word. Iambic Stress refers to stress on the second syllable of a word.
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Table 3
Summed Logarithmic Frequency and Proportion of Each Stress Type for Russian

Disyllabic Words in the Corpus

Trochaic Stress lambic Stress

Grammatical Summed Log Proportion (%) Summed Log Proportion (%)
Category Frequency Frequency

Adjective 2221 81 514 19

Noun 6110 56 4580 44

Verb 1248 38 2007 62

Other 655 49 679 51
Total 10234 57 7780 43

Note. The stress type proportions are calculated based on the summed logarithmic
frequency of words in the grammatical category in question in the corpus. Trochaic Stress
refers to stress on the first syllable of a word. Iambic Stress refers to stress on the second

syllable of a word.
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Verbs, in contrast, more often had iambic stress (type-based analysis: 62%; token-based
analysis: 62%). For nouns, trochaic stress occurred approximately as often as iambic
stress (type-based analysis: 55% vs. 45%; token-based analysis: 57% vs. 43%). Other
grammatical categories (prepositions, pronouns, adverbs, etc.) showed an approximately
50:50 split, although there were only small numbers of words in each of these categories.

Based on these data, it appears that Russian does not possess a regular stress
pattern, meaning that the prior probabilities of trochaic and iambic stress patterns are
approximately the same. Therefore, the readers of Russian are unlikely to be biased
toward either stress pattern when assigning stress to disyllabic words. At the same time
there is a dominance of the trochaic stress pattern for adjectives which potentially might
influence the processing of words belonging to that grammatical category. A small
dominance of the opposite, iambic stress pattern does exist for verbs. Finally, there is no
regular stress pattern for nouns. What remains to be investigated, of course, is whether
the presence of differences in the distribution of stress patterns at the level of
grammatical categories influences word processing.
5.3. Sources of evidence for stress patterns in Russian
5.3.1. Study 2: Factorial investigation of the role of stress regularity, stress
consistency of word ending, and grammatical category on word naming

The goal of Study 2 was to examine the role that stress regularity, stress
consistency of word ending, and grammatical category play in Russian word naming. As
noted, the effect of these variables on stress assignment has been investigated in a limited
number of languages (mainly English and Italian), and the results that were reported in

these studies were somewhat inconsistent (Arcuili & Cupples, 2006; Burani & Arduino,
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2004; Colombo, 1992). Therefore, it is not yet clear whether these variables have an
impact on word processing and, hence, whether they could be considered valid and
utilized stress cues that should be incorporated into a Bayesian model of stress
assignment in Russian.

One issue investigated in Study 2 was whether Russian readers demonstrate an
overall bias to either trochaic or iambic stress patterns in naming disyllabic words. Such a
result seems unlikely because Russian does not have a regular stress that dominates the
language. Therefore, if all other variables are equated, latency differences in reading
words with first versus second syllable stress are unlikely.

The other issue concerns the readers’ reliance on the consistency of the
relationship between the orthography of the word ending and the stress pattern. Previous
research has not fully established whether the differential latencies observed in naming of
polysyllabic words reflect the effect of consistency of stress, regularity of stress or the
combined effects of consistency and regularity. Because Russian nouns do not possess a
regular stress pattern, those words should provide good grounds for examining the impact
of consistency uncontaminated by regularity effects. If consistency matters, there should
be faster response times to nouns that have consistent stress patterns. In contrast,
adjectives and possibly verbs have regular stress patterns which will allow an
examination of the potential interaction of regularity and consistency for these stimuli.
The presence of any effect of consistency would indicate that the orthography of word
ending serves as a reliable stress cue in Russian.

Study 2 also allowed an examination of the impact of grammatical category on

word naming and, in particular, whether the different levels of regularity in adjectives,
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nouns, and verbs revealed in Russian might matter. The question is whether readers are
sensitive to these differences, and whether they use this information in naming Russian
disyllabic words. The evidence for a stress regularity effect at the level of grammatical
category in Russian (e.g., a processing advantage for trochaic adjectives) would provide
evidence that a word’s grammatical category affects stress assignment.

The final issue concerns the more general claim that stress is assigned to words in
Russian only as a result of lexical retrieval (Gouskova, 2010). If so, no significant
differences in the processing times and accuracy of stress assignment as a function of
consistency or regularity should emerge for words in any grammatical category. In
contrast, the demonstration of an impact of regularity and/or consistency on word naming
would signal utilization of non-lexical information by readers and, therefore, it would
suggest that a Bayesian model (or some other type of non-lexical model of stress
assignment) would be appropriate for modeling stress assignment in Russian.

Method

Participants

Twenty eight undergraduate students from Altay State University (Barnaul,
Russia) took part in this experiment for a small monetary remuneration (age 17 — 35; M =
19). All were native speakers of Russian. None of the participants reported high
proficiency in any second language.

Materials

A set of 192 disyllabic words (see Appendix A) was created by crossing of
grammatical category (adjective vs. noun vs. verb), stress consistency of word ending

(consistent vs. inconsistent), and stress type (first syllable stress vs. second syllable
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stress). None of the words contained morphemes that are associated with only one stress
pattern; thus, the decisions about proper stress could not be biased by morphology. The
stress pattern of each word was determined by consulting the Dictionary of Russian
Lexical Stress (Zarva, 2001). Only the items with a frequency less than 20 per million as
reported in the Frequency Dictionary of Modern Russian (Lyashevskaya & Sharov, 2009)
were used. The sets were matched on length, word frequency, orthographic neighborhood
size (Coltheart, Davelaar, Jonasson & Besner, 1977), and in a word-by-word manner on
initial phoneme characteristics. Because it is unclear whether imageability affects
performance in visual word recognition tasks (Cortese & Khanna, 2007; Zevin & Balota,
2000), no attempt was made to match the words on imageability. A post hoc analysis did,
however, show that, as expected, nouns were rated as more imageable than adjectives or
verbs. However, imageability did not vary as a function of consistency or regularity.

The consistency measures were calculated using the database created for Study 1.
Consistency was based on the neighborhood created by words sharing an ending (i.e., the
vowel of the second syllable and all following consonants). Words in the neighborhood
that had the same stress patterns were categorized as stress friends. Stress enemies were
neighbors with the opposite stress pattern. The method for calculating spelling-stress
consistency was analogous to that used by Treiman et al. (1995) for spelling-sound
consistency. The type consistency measure for each word was calculated as the number
of stress friends divided by the number of all words with the same ending. The
calculation of token consistency was carried out by dividing the summed frequency of

friends by the summed frequency of all words with the same ending.
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The words in conditions with consistent spelling-to-stress mappings were
matched on type (M = 0.72) and token consistency (M = 0.69). Words in conditions with
inconsistent spelling-to-stress mapping were also matched on these measures (type
consistency: M = 0.35; token consistency: M = 0.36). Words with consistent versus
inconsistent spelling-to-stress mappings differed significantly from each other when type,
F(1,191) = 1155.94, p < .001, as well as token, F(1,191) =241.79, p <.001, measures
were compared. The mean characteristics of the word sets are shown in Table 4 for words
with consistent (A) and inconsistent (B) spelling-to-stress mappings.

The 192 experimental items were mixed with 108 disyllabic filler words. The
filler words had equal proportions of trochaic and iambic stress to reflect the absence of a
dominant stress pattern in Russian. The number of filler words belonging to a specific
grammatical category was varied to replicate the proportion of words of each category in
the language. The distribution of stress within words of a certain grammatical category
essentially reflected the frequency of stress type within each grammatical category.

Procedure

Participants were instructed to read aloud words presented on the screen one at a
time as quickly and as accurately as possible. Instructions and stimuli were presented
using the DMDX display system (Forster & Forster, 2003). The list of 300 items was
presented in three blocks of trials. There was a preceding practice block of 20 words. The
order of blocks and of items within blocks was randomized for each participant. Each
trial started with the presentation of a fixation point for 500 ms. A target word in upper-
case appeared in white on a black background (Courier New, 12 font) for 2000 ms or

until the participant responded. The intertrial interval was 1000 ms.



Table 4
Mean characteristics of the words with consistent (A) and inconsistent (B) spelling-to-

stress mappings used in Study 2

A.

Adjectives Nouns Verbs
Characteristics Trochaic  Iambic Trochaic Iambic Trochaic Iambic

Stress Stress Stress Stress Stress Stress

Words 16 16 16 16 16 16
Length 5.63 5.50 5.25 5.44 5.38 5.63
Frequency 3.27 2.82 3.37 3.32 3.03 3.17
N-size 2.69 3.31 3.88 2.88 3.31 3.06
Imageability 4.03 4.55 4.59 5.11 4.08 4.17
Type 0.70 0.76 0.70 0.69 0.69 0.76
Consistency
Token 0.74 0.70 0.66 0.69 0.67 0.71
Consistency
B.

Adjectives Nouns Verbs

Characteristics Trochaic  Iambic  Trochaic Iambic  Trochaic Tambic

Stress Stress Stress Stress Stress Stress
Words 16 16 16 16 16 16
Length 5.31 5.38 5.50 5.31 5.44 5.31
Frequency 2.96 3.35 3.58 3.22 3.47 2.85
N-size 2.94 3.50 2.53 3.63 3.00 3.38
Imageability 4.16 4.11 5.23 5.37 4.41 4.30
Type 0.36 0.35 0.36 0.36 0.33 0.37
Consistency
Token 0.39 0.35 0.34 0.36 0.36 0.36

Consistency
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Results

Responses were marked using CheckVocal (Protopapas, 2007) by the author and
two other native speakers of Russian. To reduce the effects of outliers, latencies slower
than 1500 ms or faster than 200 ms were discarded from the analyses. The total
percentage of discarded data-points was 2.4%. Latencies and error rates were analyzed
using a linear mixed effects model with Subjects and Items entered as crossed random
factors, and with Stress Type (trochaic vs. iambic), Stress Consistency (consistent vs.
inconsistent), and Grammatical Category (adjectives vs. nouns vs. verbs) entered as fixed
factors. The analysis was conducted using the R package /me4 (Bates & Maechler,
2010). The mean latencies and percentage of errors are shown in Table 5.

As expected, latencies to words with trochaic stress (M = 684 ms, SD = 42) did
not differ significantly from those for words with iambic stress (M = 686 ms, SD =41), ¢
(5025) =0.70, p = 2.44, p = .48. However, participants were more likely to make stress
assignment errors on the words with iambic (7.1%) than trochaic stress (4.5%), z = 3.88,
£ =0.99, p <.01. Also as expected, there was a main effect of consistency in the analysis
of latencies, ¢ (5025) = 4.89, £ =17.00, p < .01, and in the analysis of errors, z =6.19, f =
1.62, p < .01. Participants were faster (M = 676 ms, SD = 37) and more accurate (3%
errors) in naming words with stress consistent endings in comparison to words with stress
inconsistent endings (M = 693 ms, SD = 44; 8.6% errors). The main effect of
grammatical category was also significant in both the latency, 7 (5024) = 4.13, = 17.50,
p < .01, and the error analyses, z =2.04, f = 0.63, p = .04. None of the interactions
reached significance either in the latency (all £s < 1.39) or the error analyses (all zs <

93).



Table 5

Mean naming latencies and percentage of errors as a function of type of stress,

consistency of stress and grammatical category in Study 2 (word naming)

Trochaic Stress

Tambic Stress

Consistent Inconsistent Consistent Inconsistent
Grammatical RT  %Error RT  %Error RT  %Error RT  %Error
Category
Adjectives 667 1.1 668 3.1 663 3.6 693 8.5
Nouns 689 4.7 709 11.6 690 6.9 710 13.4
Verbs 678 1.2 689 5.8 668 1.6 691 8.4
Overall 678 2.3 689 6.8 674 4.0 698 10.1

79

Note. N = 28. Trochaic Stress refers to stress on the first syllable of a word. lambic Stress

refers to stress on the second syllable of a word. Latencies (RTs) are reported in ms.
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Planned contrasts were carried out to compare mean latencies and error rates for
the three grammatical categories. The mean latency for nouns (M = 700 ms, SD = 44)
was significantly larger than that for adjectives (M = 673 ms, SD = 38), 1 (5025) = 4.59, S
=38.84, p < .01, or verbs (M = 681 ms, SD =34), 1 (5025) =2.45, f=17.45, p = .01. The
error rate for nouns (9.1%) was also significantly higher than that for adjectives (4.0%), z
=4.46, =0.04, p < .01, or verbs (4.2%), z = 3.45, p = 1.06, p < .01. The difference in
naming latencies for verbs compared to adjectives was also significant, 7 (5025) = 2.35,
= 19.88, p = .02, although verbs and adjectives did not differ significantly in terms of
error rates, z = 0.62, f = 0.20, p = .54.

Although the grammatical category factor did not interact with any other
variables, it was decided to fit mixed effects models with Subjects and Items entered as
crossed random factors, and with Stress Type (trochaic vs. iambic) and Stress
Consistency (consistent vs. inconsistent) entered as fixed factors to the latency and error
data of each grammatical category. This was done to assess if the presence of a regular
stress pattern in adjectives leads to differential performance of readers on words of this
category compared to nouns and verbs that do not have regular stress patterns.

For adjectives, there was a main effect of stress type in the latency analysis (M =
668 ms, SD =37 vs. M = 679 ms, SD = 39), ¢ (1655) = 2.80, f =22.73, p = .01, and in the
analysis of errors (2.4% vs. 5.7%), z (1655) = 5.17, f = 1.50, p < .01. The main effect of
consistency was significant in the analysis of errors (2% vs. 6%), z=2.27, f=1.18, p =
.02, but not in the latency analysis (M = 667 ms, SD =33 vs. M =690 ms, SD =44), t

(1655) = 0.22, p =2.28, p = .77. Finally, there was a significant interaction between stress
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type and consistency for adjectives in the latency analysis, ¢ (1654) =2.26, f =25.88, p =
.03, although not in the analysis of errors, z = 0.63, f = 0.38, p = .52.

For nouns, the only significant main effect was that of consistency both in the
latency analysis (M = 690 ms, SD =45 vs. M =710 ms, SD =48), 1 (1655)=1.98, f =
18.69, p = .05, and in the analyses of errors (5.8% vs. 12.4%), z = 3.18, = 0.86, p < .01.
The main effect of stress type was not significant either in the latency analysis, ¢ (1655) =
0.13, f=1.26, p = .90, or in the error analysis, z = 1.76, f = 0.32, p = .08. Similarly, there
was no significant interaction of consistency and stress type in either analysis, ¢ (1655) =
0.01, #=0.06, p =.99; z=0.06, = 0.02, p = .95.

For verbs, there was a significant main effect of consistency in the error analysis
(1.0% vs. 7.4%), z =2.06, f = 1.77, p = .04, but not in the latency analyses (M = 673 ms,
SD =30 vs. M =690 ms, SD = 36), t (1655) = 1.42, f = 11.20, p = .15. The main effect of
stress type was not significant in either the latency or error analyses, ¢ (1655) = 0.23, f =
2.01, p=.80;z=1.68, f =1.03, p = .09. Likewise, the interaction of stress type and
consistency did not reach significance in either the latency or error analyses, ¢ (1655) =
1.07, p=11.78,p = .29; z=0.49, f = 0.56, p = .62.

Discussion

The hypothesis that differences in processing of disyllabic words with stress on
the first versus the second syllable are unlikely to appear in Russian was generally
supported. There was no evidence of an overall latency difference between words with
trochaic versus iambic stress. Although participants did make more stress assignment
errors in naming words with second compared to first syllable stress, this difference was

small in size (less than 1 error per participant). Further, a stress type effect was not
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realized for either nouns or verbs, grammatical categories that do not have a regular stress
pattern. In contrast, readers were not only faster and more accurate in naming Russian
adjectives than naming nouns and verbs, but they also showed a stress type effect, with
shorter latencies and fewer errors when naming regular, first syllable stress adjectives
than when naming irregular, second syllable stress adjectives.

The effect of consistency (of the stress pattern) was successfully demonstrated.
Words with endings associated with their stress patterns were named faster and more
accurately than words that had endings signaling a different stress pattern. This effect
remained significant even when separate analyses of nouns and verbs were conducted. In
contrast, in the analysis of adjectives, an interaction of consistency and stress type was
observed. Consistency had no effect on the speed of processing of adjectives with regular
trochaic stress, while adjectives with infrequent iambic stress showed a consistency effect
in the latency analysis. Therefore, it is clear that stress consistency is an important cue in
stress assignment.

Finally, with respect to the more general question of how stress is assigned in
Russian, Study 2 provided evidence that that process is not simply a lexically based one.
Instead, readers do use other types of information, in particular, stress regularity and
stress consistency when naming Russian words.

5.3.2. Study 3: Binary logistic regression of a set of non-lexical predictors on
stress patterns in a corpus of Russian disyllabic words.

The goal of Study 3 was to explore whether there are relationships between a
range of non-lexical variables and stress patterns in Russian by running a binary logistic

regression analysis with stress patterns of 13,943 disyllabic words entered as the criterion
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variable and eleven variables entered as predictors. The predictor variables were
Grammatical Category, Log Frequency, Length, Word Onset Complexity, Word Coda
Complexity, and a set of six orthographic components.

The choice of some of the variables entered into a regression model as predictors
of stress patterns was, to some extent, empirically driven. Thus, Grammatical Category
was included as a predictor as prior studies in English demonstrated the presence of a
relationship between stress patterns and a word’s grammatical role (Arciuli & Cupples,
2004, 2006). Further, as shown in Studies 1 and 2 of the present thesis, relations between
grammatical category and stress patterns also exist in Russian. There have also been prior
empirical demonstrations of associations existing between stress patterns and
orthographic complexity of Word Onsets and Word Codas (Kelly et al., 1998; Kelly,
2004). Hence, these variables were entered as predictors into the regression. If the
complexity of an orthographic segment matters in stress assignment, then, overall
complexity of a word might also matter. Therefore, word length as a reflection of the
overall structural complexity of a word was also included as a predictor in the analysis.

The present study also involved an exploratory approach as a variety of
orthographic segments that might be associated with stress patterns were analyzed. The
orthographic segments were the First Syllable (further referred to as CVC1), the
Beginning of the First Syllable (CV1), the Ending of the First Syllable (VC1), the Second
Syllable (CVC2), the Beginning of the Second Syllable (CV2), and the Ending of the
Second Syllable (VC2). The symbols C and V refer not just to single consonants or
vowels, but rather to all letters of that type before the next type is encountered. For

example, in the word xpona, the segment CV1 refers to kpo-. An example of the division



84

of a word into the segments that were used in the calculation of spelling-to-stress
consistency measures entered into binary logistic regression as predictors of stress
patterns is presented for the word mapkep in Figure 6.

Syllables were included because there is a hypothesis that syllables do play an
important role in visual recognition of polysyllabic words (Carreiras & Perea, 2002). For
example, it has been demonstrated that readers require more time for naming disyllabic
words than monosyllabic words (Balota et al., 2007; Yap & Balota, 2009). Further,
syllable frequency has been demonstrated to influence response times in German and
Spanish (Alvarez, Carreiras, & Taft, 2001; Conrad & Jacobs, 2004), with words having
high-frequency syllables producing longer latencies than words having low-frequency
syllables. These studies suggest that at least in some languages, readers parse polysyllabic
words into syllabic units at early stages of the processing. Therefore, the orthography of
syllables and, more specifically, information about the consistency with which
orthography of syllables maps onto stress patterns might be available for readers and
might assist them in establishing stress patterns of polysyllabic words.

Further, in this regression analysis, the ability of some components of syllables to
predict stress patterns in Russian was assessed. The components of syllables considered
were beginnings (i.e., all consonants preceding a nucleus vowel + a nucleus vowel) and
endings (i.e., all consonants following a nucleus vowel + a nucleus vowel). The
Beginning of the First Syllable (CV1) refers to the same orthographic component as
previously investigated, the word beginning. The Ending of the Second Syllable (VC2)

refers to the same orthographic component as previously investigated, the word ending.



Figure 6

The division of the word MARKEP into six orthographic segments for calculating

spelling-stress consistency
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Hence, the inclusion of CV1 and VC2 into the regression equation is driven by previous
empirical findings. To obtain a broader picture of the impact of various orthographic
components on the process of stress assignment, CV2 and VC1 orthographic components
were also included as predictors of stress patterns.

The final variable was logarithmic frequency. This variable could be of theoretical
interest if certain stress patterns are more likely to occur in words that readers encounter
frequently or, alternatively, in words that occur rarely in the language.

Method

Materials

A corpus of 13,943 disyllabic Russian words was compiled for the present study.
Both lemmatized (i.e., dictionary forms) and inflected forms of the words were included.
Lemmatized forms of the words were taken from the Frequency Dictionary of Modern
Russian (Lyashevskaya & Sharov, 2009), while inflected forms of the words were
retrieved from the Dictionary of Russian Grammar (Zaliznyak, 2003). The only
constraint on the choice of words was the frequency of word usage with words that have
frequency of less than 1 per million words being excluded.

The words were used as items in a binary logistic regression. The binary
dependent variable was a stress pattern of the word coded as “0” (trochaic stress pattern)
or “1” (iambic stress pattern). The stress pattern information was verified in the
Dictionary of Russian Lexical Stress (Zarva, 2001). The information about the
grammatical category and the frequency of each word was retrieved from the Frequency
Dictionary of Modern Russian (Lyashevskaya & Sharov, 2009). The length variable

corresponded to the number of letters in a word. The onset complexity of each word was



87

defined as the number of consonants in the word onset position. The coda complexity of
each word was established as the number of consonants in the word coda position.
Spelling-stress consistency measures were calculated for six orthographic
segments: CVCI1, CV1, VCI1, CVC2, CV2, and VC2. In making decisions about the
division of words into syllables, a number of principles were followed. First of all, the
Maximal Onset Principle, a widely recognized principle of syllabification in
contemporary linguistics (Giegerich, 1992), was considered. According to the Maximal
Onset Principle, intervocalic consonants are maximally assigned to the onsets of syllables
in conformity with language-specific and universal conditions. In other words, in a
disyllabic word, syllables should be divided in such a way that as many consonants as
possible are assigned to the beginning of the second syllable rather than the ending of the
first syllable (e.g., English: a-fraid, ba-sics, so-fa; Russian: ka-moxk, po-muk, ca-sca).
The main language-specific requirement is that words should be divided into syllables
that have legal onsets and codas in their language. For example, the proper syllabification
of the English word kitchen is not ki-tchen, but rather kit-chen as the letter cluster “tch” is
an illegal onset in English. Similarly, a Russian word 6ausxuii is syllabified as 6nu3z-xuii
as the letter cluster “3x” is an illegal onset in Russian. A universal principle that was also
considered is that syllabification should not violate morphemic divisions. Thus, the
English word artist contains syllables arz-ist rather than ar-tist and the Russian word
sviciams (meaning “send away””) contains syllables esi-crams (the prefix ur (“away”) +
the root crams (“‘send”)) rather than esic-rame as in the former cases syllable division

agrees with morphemic division.
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Following these principles, it was possible to determine unequivocally first and
second syllable divisions for 92% of words in the corpus. The syllabification in the
remaining 8% of words was less straightforward. These were words with intervocalic
consonant clusters that could serve both as a legal coda if attached to the first syllable and
as a legal onset if attached to the second syllable and, further, these words were made of
one derivational morpheme. Thus, in deciding on the division of a word into syllables,
neither distributional nor morphological information were useful. In the case of these
words, a reader might establish the syllable division in one of the three ways: (1) by
maximizing a coda of the first syllable (mack-a), (2) by maximizing an onset of the
second syllable (ma-cka), or (3) by splitting a consonant cluster between a coda of the
first syllable and an onset of the second syllable (mac-xa).

The method of syllabification preferred by Russian speakers was determined
through a survey in which 23 native speakers of Russian had to indicate the way they
would divide a disyllabic word into syllables by typing in the first and second syllables
for each given word. One hundred words that were ambiguous from the point of view of
syllable division were presented in this pilot experiment (see Appendix B). The results
showed that Russian readers mainly divided disyllabic words containing intervocalic
consonants by splitting a consonant cluster between a coda of the first syllable and an
onset of the second syllable (84% of responses), followed by maximizing an onset of the
second syllable (14% of responses), and, finally, by maximizing a coda of the first
syllable (2%). Based on these findings, words with an ambiguous syllable boundary in
the corpus were divided into syllabic units by splitting a consonant cluster between a

coda of the first syllable and an onset of the second syllable.



89

The beginning of the first syllable (CV1) corresponded to all initial consonants of
the first syllable preceding the vowel plus the vowel of that syllable. The beginning of the
second syllable (CV2) corresponded to all initial consonants of the second syllable
preceding the vowel plus the vowel of that syllable. The ending of the first syllable (VC1)
corresponded to the vowel of the first syllable plus all consonants of that syllable
following this vowel. The ending of the second syllable (VC2) corresponded to the vowel
of the second syllable plus all consonants of that syllable following this vowel.

For each orthographic segment of interest, spelling-to-trochaic stress consistency
measures were calculated, using the method analogous to that used by Treiman et al.
(1995) for spelling-sound consistency. Words sharing a certain orthographic component
were defined as the words in the target’s neighborhood. In calculating the type
consistency measure, the proportion of words with trochaic stress in the neighborhood
was calculated. For example, all Russian disyllabic words with CVCI1 gpa- have a
trochaic stress pattern, therefore, words in the neighborhood “Bpa” have a consistency
measure for CVCI that equals 1.00. On the other hand, all Russian disyllabic words with
CVC1 0s- have an iambic stress pattern, therefore, for any word in that neighborhood the
consistency measure of CVC1 equals 0.00. Cases when certain orthographic components
were only associated with either trochaic or iambic stress pattern were rare. The majority
of words belonged to neighborhoods consisting of words with both trochaic and iambic
stress patterns. In addition to type consistency measures, token consistency measures,
corresponding to the proportion of the summed frequency of words with iambic stress in
certain orthographic neighborhood divided by the summed frequency of all words in this

orthographic neighborhood, were calculated.
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Results

A set of binary logistic regressions was run to predict stress patterns for words in
the corpus using combinations of eleven predictors: Grammatical Category, Log
Frequency, Length, Onset Complexity, Ending Complexity, and Consistency of CVCI,
CVI, VCI, CVC2, CV2, and VC2. The goal was to find a model with a minimum number
of factors that would still have high predictive power. In other words, the goal was to find
a balance between the simplicity of a model and its goodness of fit. The full model was
simplified in a backward stepwise fashion using p > .05 on the likelihood ratio test as an
exclusion criterion. The backward design was selected over the frontward design as it
provides an opportunity to look at all the variables in the model at once and to assess all
possible subsets of the set of potential independent variables. Further, backward selection
has been shown to produce regression models that provide a better fit to the data than
models produced as the result of forward selection (Harrel, Lee, & Mark, 1996).

The goodness of fit of a model was assessed with the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), the Deviance Information
Criterion (DIC), and the log likelihood (logL) that describe the trade-off between
accuracy and complexity of a model. A model that minimizes AIC, BIC, DIC, and
increases logL is a preferred choice. Further, to select amongst competing models a
likelihood ratio test was completed. The analysis was conducted using the R package
Ime4 (Bates & Maechler, 2010). Due to the fact that the stress consistency could be either
a type or a token measure, two separate sets of regressions were conducted.

In the first analysis, type consistency measures were used. The measures of

goodness of fit and the results of the likelihood ratio tests of the models tested are given
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in Table 6. A full model with all eleven predictors provided a significantly better fit to the
data than a null model with intercept only, )(2 (13) =9873.83, p < .001. In the full model
eight variables were significant predictors of stress patterns: Grammatical Category (z = -
1.96, p = .05), Onset Complexity (z =-5.86, p < .001), Ending Complexity (z =2.96, p =
.003), Log Frequency (z =-1.98, p =.05), CVCI (z =-34.45, p < .001), CVC2 (z = -32.51,
p <.001), CV2 (z=3.30, p =.001), and VC2 (z =-3.27, p = .001).

First, logistic regressions were run on eleven different models that had only one
predictor entered. Doing so established the goodness of fit of each individual predictor
and the following order of elimination of predictors: Length (y2(1) = 4.45, p = .04), Log
Frequency (y2 (1) = 13.70, p < .001), Onset Complexity (y2 (1) = 172.71, p < .001),
Ending Complexity (y2 (1) = 361.07, p < .001), Grammatical Category (y2 (3) = 864.07,
p <.001), VCI (2 (1) = 1224.07, p < .001), CVI (> (1) = 2318.78, p < .001), CV2 (4*
(1) =2730.03, p < .001), VC2 (> (1) = 1440.61, p < .001), CVCI (* (1) = 4530.08, p <
.001), and CVC2 (* (1) = 6753.63, p < .001).

The model without Length did not lose in its ability to explain the data compared
to the full model, )(2 (1) =3.51, p = .06. Therefore, Length was deleted from the model.
On the other hand, there was a significant drop in goodness of fit for models when Log
Frequency, )(2 (1)=6.11, p = .02, Onset Complexity, )(2 (1)=5.88, p=.02, Ending
Complexity, )(2 (1) =26.98, p < .001, or Grammatical Category, )(2 3)=16.05,p= .01
were eliminated. Hence, these variables were kept in the model as predictors. Next, two
consistency variables that were not improving the power of the model were dropped, that
is, VCI, * (1) =3.56, p = .06, and CVI, 5* (1) = 0.01, p = .92. The removal of other

consistency variables resulted in the decline of goodness of fit: CV2, )(2 (1)=16.21,
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Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on type count).

Goodness of Fit Measures

Likelihood Ratio Test

# Fixed Factors AIC BIC LogL DIC Alternative  Test Statistic
(*-p<.05) Model (#)
1. Null Model
2. Grammatical 8856 8953  -4415 8830 1 x2(12) =
Category* 9873.83,
Log Frequency* p <.001
Length
Onset Complexity*
Ending Complexity*
CVCI1#, CVl1, VCI1
CVC2*, CV2*, VC2*
3. Grammatical 17280 17310 -8636 17272 1 % (3) =864.07,
Category* p <.001
4.  Log Frequency* 18126 18141 -9061 18122 1 2 (1)=13.70,
p < .001
5. Length* 18135 18150 -9066 18131 1 12 (1) =445,
p=.04
6.  Onset Complexity* 17967 17982  -8982 17963 1 2 (1) =172.71,
p <.001
7.  Ending Complexity* 17779 17794  -8887 17775 1 % (1) =361.07,
p <.001
8. CVI* 13610 13625 -6803 13606 1 % (1) =2318.08,
p <.001
9. VCI* 16916 16931 -8456 16912 1 2 (1) =1224.07,
p <.001
10. CV2* 11386 11401  -5691 11382 1 2 (1) =2730.03,
p <.001
11. VC2* 15306 15836  -7908 15817 1 2 (1) = 1440.61,
p <.001
12. CVCI1* 13471 13485 -6733 13467 1 2 (1) =4530.08,
p <.001
13. CvV(C2* 12979 12994  -6487 12975 1 2 (1) = 6753.63,
p <.001

Note. Asterisk indicates fixed factors in the regression models that were significant

predictors of stress patterns.
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Table 6 (continued).
Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on type count).

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC BIC  LogL DIC  Alternative Test Statistic
(*-p<.05) Model (#)

14 Grammatical 8857 8947  -4417 8833 2 x2 (1) =3.51,
Category* p=.06
Log Frequency
Onset Complexity*
Ending Complexity*
CVCI1* CV1* VC1
CvVC2#, CV2, VC2*

15  Grammatical 8868 8950  -4423 8840 14 x2 (1) =6.11,
Category* p=.02
Onset Complexity*

Ending Complexity*
CVC1#, CV1, VCI1
CVC2*, CV2*, VC2*

16  Grammatical 8864 8947 4421 8841 14 x2 (1) =5.88,
Category* p=.02
Log Frequency
Ending Complexity*
CVCI1*, CV1* VC1
CVC2*, CV2*, VC2*

17  Grammatical 8895 8977  -4436 8860 14 %2 (1) =26.98,
Category p <.001
Log Frequency
Onset Complexity*
CVCI1# CV1* VC1*
CVC2*, CV2*, VC2*

18  Log Frequency* 8862 8929  -4422 8849 14 2 (3) =16.05,
Onset Complexity* p=.01
Ending Complexity*

CVCI1# CV1* VC1
CVC2#,CV2, VC2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models.
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Table 6 (continued).
Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on type count).

Goodness of Fit Measures Likelihood Ratio Test
# Fixed Factors AIC BIC  LogL DIC  Alternative Test Statistic
(*-p<.05) Model (#)

19  Grammatical Category 8858 8940 -4418 8836 14 x2 (1) = 3.56,
Log Frequency* p=.06
Onset Complexity*

Ending Complexity*
CVCI1* CV1*
CVC2*, CV2*, VC2*

20  Grammatical Category 8856 8930 -4418 8836 19 2 (1) =0.01,
Log Frequency* p=.92
Onset Complexity*

Ending Complexity*
CVCI1#,
CV(C2,CV2,VC2

21  Grammatical Category* 8866 8933  -4424 8852 20 2 (1) =
Log Frequency 16.21,
Onset Complexity* p <.001
Ending Complexity*

CVCI#, CVC2*#, VC2*

22 Grammatical Category = 8861 8930 -4428 8845 20 x2 (1) = 8.50,
Log Frequency* p <.001
Onset Complexity*

Ending Complexity*
CVCI*, CVC2*, CV2*

23 Grammatical Category 1230 1237  -3046 12338 20 2 (1) =
Log Frequency* 5 7 3502.70,
Onset Complexity* p <.001
Ending Complexity*

CVC2*, CV2*, VC2*

24 Grammatical Category 1081 1083  -3894 10319 20 2 (1) =
Log Frequency* 6 7 1482.60,
Onset Complexity* p <.001
Ending Complexity*

CVCI*, CV2* VC2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models.



Table 6 (continued).

95

Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on type count).

Goodness of Fit Measures

Likelihood Ratio Test

# Fixed Factors Al BIC LogL. DIC Alternative  Test Statistic
(*-p<.05) C Model (#)

25  Grammatical Category 8859 8901  -4413 8840 20 Xz (1)=13.63,
Onset Complexity* p=.06
Ending Complexity*

CVCl1*
CVC2*, CV2, VC2*

26  Onset Complexity™ 8860 8913  -4423 8847 25 12 (3)=17.32,
Ending Complexity* p=.06
CVC1#*

CvCz2#, CV2*, VC2*

27  Ending Complexity* 8868 8913  -4428 8853 26 x2 (1) = 5.64,
CVCl1* p=.02
CVC2*, CV2*, VC2*

28  Onset Complexity* 8878 8919 4429 8872 26 x2 (1) =24.87,
CVCl1* p <.001
CVC2*, CV2*, VC2*

29  Ending Complexity* 8890 8935 4439 8872 26 x2 (1) =25.34,
Onset Complexity* p <.001
CVCI*,CVC2*, VC2*

30  Ending Complexity* 8868 8913 4428 8852 26 x2 (1) =443,
Onset Complexity* p=.04
CVCI*,CVC2*, VC2*

31  Ending Complexity* 11331 11376 -5660 11319 26 2 (1) =
Onset Complexity* 2472.70,
CVC2#,CV2*, VC2* p <.001

32  Ending Complexity* 10397 10372 -5557 10345 26 2 (1) =
Onset Complexity* 1497.60,
CVCI*,CV2*, VC2* p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models. The model in bold is the final

simplified model with a minimum possible number of factors in it that still had high

power to predict stress patterns.
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p <.001, VC2, ¥* (1) = 8.50, p = .001, CVCI, y* (1) = 3502.70, p < .001, and CVC2, * (1)
=1482.60, p < .001. Thus, in the first round of simplification, the full model was reduced
to a model with eight predictors: Log Frequency, Onset Complexity, Ending Complexity,
Grammatical Category, CVCI, CVC2, CV2, and VC2.

Next, the possibility of simplifying the model further was examined. The model
without Log Frequency fit the data as well as the model with this factor in it, )(2 ()=
3.63, p = .06. Similarly, the elimination of Grammatical Category from the model did not
decrease the goodness of fit significantly, )(2 (3) =7.32, p = .06. Hence, these factors were
deleted from the model. The exclusion of all other variables was associated with
weakening of the power of the model: Onset Complexity, )(2 (1)=5.64, p = .02, Ending
Complexity, y* (1) =24.87, p < .001, CV2, * (1) = 25.34, p < .001, VC2, y* (1) = 4.43, p
=.04, CVCI, »* (1) = 2472.70, p < .001, and CVC2, y* (1) = 1497.00, p < .001. As a
result, the final simplified model that could explain the data as well as the full model had
six variables in it that were all significant predictors of stress patterns in Russian
disyllabic words: Ending Complexity, 7z =2.38, p = .02, Onset Complexity, 7 =-4.94, p <
001, CVCl1, z=-46.54, p < .001, CV2,z=5.14, p < .001, CVC2, z =-32.99, p < .001,
and VC2, z=-2.11, p = .04.

The regressions were run for a second time using token consistency measures.
The measures of goodness of fit and the results of the likelihood ratio tests of the models
are provided in Table 7. A full model with eleven predictors in it provided a better fit to
the data in comparison to an intercept only model, )(2 (13) =8304.07, p < .001. In the full
model nine variables were significant predictors of stress patterns in Russian disyllabic

words: Ending Complexity (z =2.42, p = .02), Onset Complexity (z =-7.80, p <.001),
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Table 7.
Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on token count)

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC  BIC Logl. DIC Alternative  Test Statistic
(*-p<.05) Model (#)

1. Null Model

2. Grammatical Category 9858 9954  -4915 9831 1 x2(12) =
Log Frequency* 8304.07,
Length* p <.001
Onset Complexity*

Ending Complexity*
CVCI1*, CV1, VCI*
CVC2*, CV2*, VC2*

3. Grammatical Category 9867 9957  -4922 9843 2 v (1D)=11.77,
Log Frequency* p <.001
Onset Complexity
Ending Complexity*

CVC1*,CV1, VCI*
CVC2*, CV2*, VC2*

4.  Grammatical Category 9867 9957  -4921 9843 2 2 (1) =11.32,
Length* p <.001
Onset Complexity*

Ending Complexity*
CVCI1#*, CV1, VCI*
CVC2*, CV2*, VC2*

5. Grammatical Category 9862 9951 -4919 9838 2 2 (1)=5.88,
Log Frequency* p=.02
Length*

Ending Complexity*
CVCI1# CV1* VC1
CVC2*, CV2*, VC2*

6.  Grammatical Category 9918 1000 -4971 9894 2 2 (1) =62.62,
Log Frequency 8 p <.001
Length*

Onset Complexity*
CVCI1* CV1* VC1*
CVC2*, CV2*, VC2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models.
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Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on token count)

Fixed Factors
(*-p<.05

Goodness of Fit Measures

AIC

BIC

LogL

DIC Alternative

Likelihood Ratio Test

Model (#)

Test Statistic

10.

11.

Log Frequency
Length*

Onset Complexity*
Ending Complexity*
CVCI1* CV1* VC1*
CvVC2*, CV2, VC2*

Log Frequency
Length*

Onset Complexity*
Ending Complexity*
CVCI1#, VC1*
CVC2*, CV2*, VC2*

Log Frequency*
Length*

Onset Complexity*
Ending Complexity*
CVC1*, CV1*
CVC2* CV2*, VC2*

Log Frequency*
Length*

Onset Complexity*
Ending Complexity*
CVCI1* CV1* VC1*
CV(C2*, VC2*

Log Frequency*
Length*

Onset Complexity*
Ending Complexity*
CVC1# CV1, VCI1
CvVC2*, CV2*

9859

9858

9863

9961

9959

9934

9926

9923

9927

10018

-4919

-4920

4924

-4969

-4971

9839

9847

9847

9923

9942

2

¥ 3)=17.07,
p=.07

¥ (1) =6.85,
p=.01

2 (1) =6.64,
p=.01

2 (1) =80.14,
p=.01

2 (1)=102.14,
p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models.
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Table 7 (continued).
Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on token count)

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC BIC Logl. DIC Alternative  Test Statistic

(*-p<.05) Model (#)

12. Log Frequency 11600 11660 -5792 1158 8 (D)=
Length* 4 1743.30,
Onset Complexity* p <.001
Ending Complexity*

CVI1*, VCI1
CVC2*, CV2, VC2*

13.  Log Frequency 11868 11928 -5926 1185 8 2 (1) =
Length* 2 2011.90,
Onset Complexity* p <.001
Ending Complexity*

CVCI1*, CV1* VC1
CV2* VC2*

14. Length* 9858 9926  -4920 9849 8 2 (1) =2.96,
Onset Complexity* p=.09
Ending Complexity*

CVC1#, CV1#%, VC1*
CVC2*, CV2*, VC2*

15.  Onset Complexity* 9869 9943 -4900 9861 14 ¥ (1) =12.68,
Ending Complexity* p <.001
CVCI1*, CV1* VC1
CVC2*, CV2*, VC2*

16. Length 9863 9835 4915 9855 14 (1) =621,
Ending Complexity* p=.01
CVCI1# CV1* VC1*

CvVC2#, CV2, VC2*

17. Length* 9885 9874  -5025 9910 14 2 (1) =60.17,

Onset Complexity* p <.001

CVCI1*, CV1* VC1
CVC2*, CV2, VC2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models. The model in bold is the final
simplified model with a minimum possible number of factors in it that still had high
power to predict stress patterns.
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Table 7 (continued).
Measures of goodness of fit and likelihood ratio tests of binary logistic regressions

predicting stress patterns in the corpus (consistency measures are based on token count)

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC  BIC Logl. DIC Alternative Test Statistic

(*-p<.05) Model (#)

18. Length 11379 11381 -6192 11409 14 v (D)=
Onset Complexity* 1560.17,
Ending Complexity* p <.001
CVI1* VCI1*

CVC2* CV2*, VC2*

19. Length* 9862 9835 4913 9856 14 2 (1)=6.54,
Onset Complexity* p=.01
Ending Complexity*

CVCI1#, VC1*
CVC2*, CV2*, VC2*

20. Length* 9863 9832 4910 9857 14 2 (1)=17.28,
Onset Complexity* p =.001
Ending Complexity*

CVCI* CV1*
CVC2*, CV2*¥,VC2

21.  Length 11309 11123  -6156 11323 14 (D)=
Onset Complexity* 1474.30,
Ending Complexity* p <.001
CVCIl* CV1* VC1*

CV2* VC2*

22 Length* 9854 9860  -4930 9866 14 ¥ (1) =16.15,
Onset Complexity* p <.001
Ending Complexity*

CVCI1* CV1* VC1*
CV(C2*, VC2*

23 Length 9917 9892  -4938 9909 14 2 (1) =60.17,
Onset Complexity* p <.001
Ending Complexity*

CVCI1* CV1* VC1*
CvVC2#, CV2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models.
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Length (z =3.42, p <.001), Log Frequency (z = -3.36, p < .001), CVCI (z=-25.45,p <
.001), VCI (z=-2.61,p =.01), CVC2 (z =-38.57, p < .001), CV2 (z =-4.25, p < .001),
and VC2 (z =-19.95, p < .001).

The full model was further simplified following the same steps as in the analysis
in which type consistency measures were used. The likelihood ratio tests showed a
significant drop in the goodness of fit of models if Length, y* (1) = 11.77, p < .001, Log
Frequency, )(2 (1)=11.32, p <.001, Onset Complexity, )(2 (1)=5.88, p=.02, or Ending
Complexity, )(2 (1) =62.62, p <.001 were eliminated. On the other hand, Grammatical
Category did not add to the power of the model to explain the data, )(2 (3)=7.07, p=.07,
and, thus, was removed. Attempts to further simplify the model were not successful.
There was a significant decrease in the goodness of fit measures when the following
variables were eliminated from the model: CV1, )(2 (1)=6.85,p=.01; VCI, )(2 (1) =6.64,
p=.01;CV2, x* (1)=80.14, p = .01; VC2, * (1) = 102.14, p < .001; CVCIL, * (1) =
1743.30, p < .001; and CVC2, )(2 (1)=2011.90, p < .001. Thus, in the first round of
model reduction, the model included ten predictors: Length, Log Frequency, Onset
Complexity, Ending Complexity, CVCI1, CVI1, VCI, CVC2, CV2, and VC2.

In the second round of model reduction, Log Frequency, which was not
improving the goodness of fit of the model (;* (1) = 2.96, p = .09), was eliminated. The
elimination of other variables resulted in a significant decline in the power of the model
to fit the data (Length, y* (1) = 12.68, p < .001; Onset Complexity, x* (1) = 6.21, p = .01;
Ending Complexity, x* (1) = 60.17, p < .001; CVCI, »* (1) = 1560.17, p < .001; CVI, 3*
(1)=6.54,p=.01; VCI, y* (1) =7.28, p = .001; CVC2, y* (1) = 1474.30, p < .001; CV2,

)(2 (1)=16.15, p <.001; and VCZ,;(2 (1)=60.17, p <.001). Thus, the final model that
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could explain the data as well as the full model contained nine predictors: Onset
Complexity (z =-2.49, p = .02), Ending Complexity (z =-7.66, p < .001), Length (z =
3.59, p=.003), CVCI (z=-36.58, p <.001), CVI (z=-2.57,p=.01), VCI (z=-2.69,p =
.01), CVC2 (z=-38.67, p<.001), CV2 (z=3.70, p=.01), and VC2 (z=-19.99, p <
.001).

Discussion

Study 3 involved two sets of binary logistic regressions on stress patterns in a
corpus of Russian disyllabic words. The variables evaluated as predictors of stress
patterns were Length, Log Frequency, Grammatical Category, Onset Complexity, Ending
Complexity, and Spelling-to-Stress Consistency of CVCI1, CV1, VCI1, CVC2, CV2, and
VC2 that were estimated based either on type or token information. The goal was to
simplify full models in such a way that a final model would fit the data with the
minimum number of predictor variables possible. Variables that survive this
simplification procedure and remain significant predictors of stress patterns in the corpus
would be considered to have strong associative relationships with stress patterns, and,
thus, may reliably be treated as valid stress cues in Russian.

A final model with type consistency measures contained six predictor variables
(Onset Complexity, Ending Complexity, CVC1, CVC2, CV2, and VC2), while a final
model with token consistency measures had nine predictors (Onset Complexity, Ending
Complexity, Length, CVC1, CV1, VCI1, CVC2, CV2, and VC2). Two simplified models
(i.e., the model with type consistency measures vs. the model with token consistency
measures) were compared on their ability to fit the data. The results showed that despite

the fact that the final model with type consistency measures had fewer predictor variables



103

in it (six vs. nine), this model provided a significantly better fit to the data compared to
the model with token consistency measures, )(2 (3) =994.04, p < .001. All measures of
goodness of fit point to the superiority of the model with type consistency variables (AIC
= 8860, BIC = 8913, logLik = -4423, DIC = 8846) over the model with token consistency
variables (AIC = 9858, BIC = 9926, logLik = -4920, DIC = 9849) to predict stress
patterns in the corpus of Russian disyllabic words. Therefore, the variables that were
significant predictors of stress patterns in the model with type consistency measures are
more likely to be the relevant stress cues than variables that were significant predictors of
stress patterns in the model with token consistency measures.

Thus, the results of the binary logistic regression suggest that there are six
potential sources of stress pattern information in Russian. First, disyllabic words with
complex onsets are more likely to have a trochaic than an iambic stress pattern. In
contrast, the presence of complex codas appears to be associated more with an iambic
than with a trochaic stress pattern. Further, four measures based on the orthography of a
word were predictive of stress patterns in the corpus: CVCI1, CVC2, CV2, and VC2. For
three orthographic components (CVC1, CVC2, and VC2), a high score on the
consistency of orthography to a trochaic stress pattern was associated with higher
likelihood that a word does have a trochaic stress pattern. In other words, a word in an
orthographic neighborhood that consists mainly of words with trochaic stress is more
likely to have a trochaic stress pattern in comparison to a word from an orthographic
neighborhood that consists mainly of words with iambic stress. On the other hand, for the
orthographic component CV2, there was an unexpected reversed relationship between the

consistency measure and stress pattern. More specifically, the analysis indicates that a
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high score on the consistency of orthography to a trochaic stress pattern was associated
with a higher likelihood that a word has an iambic stress pattern. This result is
counterintuitive and difficult to interpret from the perspective of the cognitive
mechanisms that might cause it, suggesting that it is likely a statistical artifact. Therefore,
although CV2 as a variable was a significant predictor of stress in the final equation, it
seems unlikely that CV2 is a valid stress cue in Russian. In conclusion, the result of the
binary logistic regression analysis singled out a set of five variables that are
probabilistically associated with stress patterns in the corpus of Russian disyllabic words:
Onset Complexity, Ending Complexity, CVCI1, CVC2, and VC2.

5.3.4. Study 4: Generalized linear mixed effects regression of a set of non-lexical
predictors on stress assignment performance by native speakers of Russian.

The main finding of Study 3 was that there are five non-lexical variables that are
related to stress patterns in Russian. However, in order to conclude that any particular cue
is a source of evidence that is used in the process of stress assignment (within the
framework of the Bayesian model), it is necessary to demonstrate that this cue is not only
of high validity, but also of high utility, that is, that readers are aware of this cue and use
it in making stress assignment decisions. To assess the utility of the stress cues identified
in Study 3, a generalized linear mixed effects model with the set of eleven non-lexical
predictor variables was applied to stress assignment performance of readers who were
asked to name 500 disyllabic words.

Method

Participants
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Thirty four undergraduate students from Altay State University (Barnaul, Russia)
took part in this experiment for a small monetary remuneration (age 17 — 23; M = 19). All
were native speakers of Russian. None of the participants reported high proficiency in
any second language.

Materials

A set of 500 disyllabic words (see Appendix C) was randomly selected from the
database created for Study 3. Post-hoc analysis of the randomly selected words showed
that the distribution of stress patterns and words according to grammatical category in
this set of experimental items was similar to that in the language. Further, to make sure
that this set of words is representative of the corpus of Russian disyllabic words from the
point of view of associations existing between non-lexical cues and stress patterns, a
binary logistic regression was carried out. In this analysis, the question was whether
stress patterns for the 500 words selected can be predicted from a set of eleven predictor
variables: Grammatical Category, Log Frequency, Length, Onset Complexity, Ending
Complexity, and Consistency of six orthographic components (CVC1, CV1, VCI1, CVC2,
CV2, and VC2). The analysis was conducted using the R package /me4 (Bates &
Maechler, 2010). Similar to Study 3, two sets of binary logistic regressions were
completed: one with type consistency measures and the other with token consistency
measures. Both models were simplified using the same steps and rationale as in Study 3.

In a regression analysis in which type consistency measures were included, a full
model was simplified to a model that contained six predictor variables: Log Frequency,
Onset Complexity, Ending Complexity, CVCI1, CVC2, and VC2. In this model, three

variables were significant predictors of stress patterns (Onset Complexity: z=-2.14,p =
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.03; CVCI: z=-5.33, p < .001; and CVC2: 7 =-5.52, p < .03), two were marginally
significant (Ending Complexity: z=1.74, p = .08; and VC2: z =-1.86, p = .06), and one
was non-significant (Log Frequency: z =-1.48, p = .14). The simplified model with six
predictors provided a significantly better fit to the data than intercept only model )(2 7=
347.51, p < .001. Further, the simplified model did not differ significantly from the full
model in its ability to fit the data, )(2 (7)=2.62,p = .92.

Next, an analysis in which token consistency measures were included was
undertaken. A full model with eleven predictors was simplified to a model with six
predictors: Onset Complexity, Ending Complexity, CVC1, CV1, CVC2, and VC2. In this
model, four variables were significant predictors of stress (Onset Complexity: z =-1.96, p
=.05; CVCI: z=-4.13, p < .001; CV(C2: z=-6.14, p < .001; and VCI: z =-2.86, p = .004)
and two variables were marginally significant predictors of stress (Ending Complexity: 7
=1.72, p=.09; and CVI: z =-1.83, p = .07). The simplified model fit the data better than
an intercept only model, y* (7) = 320.29, p < .001. At the same time, the simplified model
was as good in its power to predict stress patterns as a full model with all eleven
predictors in it, y* (6) = 3.72, p = .72.

Finally, similarly to the results observed in Study 3, the data were better fit by the
model with type rather than token consistency, )(2 (1)=27.22, p < .001. Therefore, in
assessing the variables from the point of view of their validity as stress cues, the focus is
on the results of the regression with type consistency measures. In this analysis, five
variables were probabilistically associated with stress patterns in the corpus of 500
words: Onset Complexity, Ending Complexity, CVCI, CVC2, and VC2. These are the

same stress cues that were reported to have high validity in predicting stress patterns in
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Study 3. The only variable that was a significant predictor of stress in Study 3, but did not
make it to the final model in this analysis of the much smaller corpus was CV2. However,
in Study 3, the CV2 variable demonstrated an unexpected reversed relationship with
stress patterns that appears to have been an artifact. The fact that CV2 was not among the
significant predictors of stress in the present analysis adds to the likelihood that in Study
3, the associative relationship between CV2 and stress patterns was artifactual. Overall,
the results of the binary logistic regression on the corpus of 500 selected words suggest
that this corpus is representative of a large corpus of Russian disyllabic words from the
point of view of having stress cues with high validity.

Procedure

Participants were instructed to read aloud as quickly and as accurately as possible
words presented on the screen one at a time. Instructions and stimuli were presented, and
responses were recorded using the DMDX display system (Forster & Forster, 2003). The
list of 500 items was presented over two blocks of trials. Every participant named both
blocks of trials. The order of blocks and of items within blocks was randomized for each
participant. Each trial started with the presentation of a fixation point for 500 ms. The
target word in upper-case appeared in white on a black background (Courier New, 12
font) for 2000 ms or until the participant responded. The intertrial interval was 1000 ms.

Results

The author and two other native speakers of Russian listened to the responses and
marked stress patterns that participants assigned to words. There were no cases that were
treated by markers as ambiguous from the point of view of stress pattern implementation.

A pronunciation of a word with a trochaic stress was coded as “0”’; while a pronunciation
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of a word with an iambic stress was coded as “1”. This categorical response variable was
analyzed using a generalized linear mixed-effects model (GLMM), with Subjects and
Items as random crossed factors. Fixed factors that were considered during this analysis
were Grammatical Category, Log Frequency, Length, Onset Complexity, Ending
Complexity, and consistency of six orthographic components (CVCI, CVI, VCI, CVC2,
CV2, and V(C2). Due to the fact that the stress consistency measure could be conceived
either as type or token consistency, two separate sets of GLMMs were conducted.

The analysis was exploratory in nature as the goal was to find a model with a
minimum possible number of factors that would still fit the data well. The goodness of fit
of a model was assessed with the following measures describing the trade-off between
accuracy and complexity of a model: the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC), the Deviance Information Criterion (DIC), and the
log likelihood (logL). To select amongst competing models a likelihood ratio test was
used. The analysis was conducted using the R package Ime4 (Bates & Maechler, 2010).

First, the results of the analyses involving the model with type consistency
measures are reported. The measures of goodness of fit and the summary of likelihood
ratio tests of this model and other versions of this model are given in Table 8. The
likelihood ratio test of the full model against a model that had no fixed factors entered
(i.e., null model) showed that the full model fit the data significantly better, y* (12) =
458.03, p < .001. Out of eleven, only four factors were significant predictors of stress
assignment performance: Ending Complexity (z=2.12,p =.03), CVCI (z=-5.49,p <

.001), CVC2 (z=-9.59, p < .001), and VC2 (z =-2.56, p = .01).
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Table 8
Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on type count)

Goodness of Fit Measures Likelihood Ratio Test
# Fixed Factors AIC BIC LogL DIC Alternative Test Statistic
(*-p<.05) Model (#)
1. Null Model 7917 7940 -3955 7911
2. Grammatical Category 7481 7589 -3726 7453 1 % (12) = 458.03,
Log Frequency p <.001
Length
Onset Complexity
Ending Complexity*
CVCI1#, CV1, VCI1
CvVC2#, CV2, VC2*
3. Grammatical Category* 7890 7929 -3940 7880 1 2 (2) =30.63,
p <.001
4.  Log Frequency* 7911 7942 -3951 7903 1 2 (1)=8.08,
p =.004
5. Length 7918 7949 -3955 7910 1 x2 (1) = .83,
p=.36
6.  Onset Complexity* 7908 7939 -3950 7900 1 x2 (1) =10.78,
p=.001
7. Ending Complexity* 7884 7915 -3938 7876 1 2 (1) =34.45,
p <.001
8. CVCI* 7707 7738 -3849 7699 1 2 (1)=211.93,
p <.001
9. VCI* 7875 7906 -3934 7867 1 % (1) = 43.66,
p <.001
10. CV(C2* 7775 7806 -3883 7867 1 2 (1) =152.84,
p <.001
11. CVI* 7847 7878 -3919 7839 1 2 (1) =172.24,
p <.001
12. CV2* 7842 7901 -3941 7863 1 2 (1) =48.18,
p <.001
13. VC2* 7793 7824 -3893 7758 1 2 (1) =125.43,
p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models.
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Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on type count)

Goodness of Fit Measures

Likelihood Ratio Test

# Fixed Factors AIC BIC LogL DIC Alternative Test Statistic
(*-p<.05) Model (#)

14.  Grammatical Category 7482 7583  -3728 7456 2 ¥ (1)=3.15,
Log Frequency p=.07
Onset Complexity
Ending Complexity
CVCI1*, CV1* VC1
CVC2*, CV2, VC2*

15.  Grammatical Category 7482 7575 -3729 7458 14 v (1)=1.87,
Onset Complexity p=.17
Ending Complexity
CVCI1#,CV1, VCI1
CVC2*, CV2, VC2*

16. Grammatical Category 7480 7566 -3729 7458 15 1 (1)=.58,
Ending Complexity p=.44
CVCI1#,CV1, VCI1
CVC2*, CV2, VC2*

17.  Ending Complexity 7477 7546 -3729 7459 16 2 (2)=.09,
CVCI1# CV1* VC1 p=.95
CVC2#, CV2, VC2*

18. CVCI1* CVl1, VCI1 7477 7539  -3730 7461 17 2 (1) =2.16,
CVC2*, CV2, VC2* p=.14

19. CVCI* CV1* 7611 7665 -3799 7597 18 2 (1) =136.44,
CVC2*, CV2, VC2* p <.001

20. CVCI* CV1* VCl 7474 7531 -3730 7460 18 $ (1) =.02,
CV(C2#, VC2* p=.89

21. CVC1%,v(C1 7475 7529 -3730 7461 20 1 (1) =.16,
CvCz#, vez* p =.68

22. CVCI1*,VCl1 7582 7628 -3785 7570 21 ¥ (1) = 14.00,
CvVC2* p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models. The model in bold is the final

simplified model with a minimum possible number of factors in it that still had high
power to predict stress patterns.
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Table 8 (continued)
Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on type count)

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC BIC Logl DIC Alternative  Statistical Test

(*-p<.05 Model (#)

23. CVCI1* VCI1* 7560 7606 -3774 7548 21 ){2 (1) =87.03,
VC2* p <.001

24. VCI1 7538 7584 -3763 7526 21 ){2 (1) =36.58,
CVQC2*, VC2* p <.001

25. CVCI1* 7554 7600 -3771 7542 21 ){2 (1) =81.07,
CVC2*, VC2 p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models.
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Next, the model was simplified in a backward stepwise fashion using p > .05 on
the likelihood ratio test as the exclusion criterion. To identify the order of exclusion of
factors from the full model, the individual ability of each predictor to fit the data was
assessed by running GLMMs on eleven different models that had only one predictor
variable entered as a fixed factor. Then, the goodness of fit of each model was contrasted
with that of the null model. Following the results of this analysis, the complexity of the
full model was reduced by eliminating the predictor variables in the following order:
Length ()(2 (1)=.83, p=.36), Log Frequency (;(2 (1) =8.08, p = .004), Onset Complexity
(7 (1)=10.78, p = .001), Grammatical Category (" (2) = 30.63, p < .001), Ending
Complexity (* (1) = 34.45, p < .001), VCI (> (1) = 43.66, p < .001), CV2 (4* (1) = 48.18,
p <.001), CVI (* (1) =72.24, p < .001), VC2 (* (1) = 125.43, p < .001), CVC2 (¥* (1) =
152.84, p < .001), and CVCI (4* (1) =211.93, p < .001).

In the process of model reduction, Length was the first factor excluded as a
predictor as it did not improve goodness of a fit of the model, )(2 (1)=3.15, p = .07. Next,
Log Frequency, )(2 (1) =1.87, p =.17, Onset Complexity, )(2 (1)=.58,p = .44,
Grammatical Category, )(2 (2) =.09, p = .95, and Ending Complexity, )(2 (H=2.16,p=
.14, were excluded. As the omission of VCI lead to a significant decrease in explanatory
power of the model, )(2 (1)=136.44, p < .001, this factor was kept in the equation. The
following likelihood ratio tests showed that the model can be further simplified by
eliminating CV2, y* (1) = .02, p = .89, and CVI, * (1) = .16, p = .68. Further exclusion of
the remaining consistency measures from the model resulted in a significant loss of
goodness of fit: VCZ,)(2 (1)=14.00, p < .001; CVC2, )(2 (1)=287.03, p < .001, and CVCI,

)(2 (1)=36.58, p < .001. Attempts to further simplify this model by excluding any of the
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four predictors resulted in a decline of goodness of fit: VC1, )(2 (1)=81.05, p <.001,
VC2, ¥* (1) = 108.83, p < .001, CVC2, * (1) = 87.01, p < .001, and CVCI, y* (1) = 64.79,
p <.001. As a result, the original model with eleven predictors was simplified to a model
with only four predictors: VCI, VC2, CVC2, and CVCI. Out of four factors in the final
model, only three were significant predictors of stress assignment performance: CVCI (z
=-5.49, p <.001), CVC2 (z =-9.59, p < .001), and VC2 (z =-2.56, p = .01).

The same set of models was tested for a second time using token consistency
measures. The measures of goodness of fit and the results of the likelihood ratio tests of
the full model and other simplified versions of this model are provided in Table 9. The
comparison of the null model with no fixed factors and the model with all eleven
predictors demonstrated that the full model provided a significantly better fit to the data,
)(2 (12) =350.03, p < .001. Further, in the full model, only three factors were significant
predictors of stress assignment performance: CVCI (z =-4.45, p < .001), CVC2 (z =-
7.01, p <.001), and VC2 (z =-3.02, p =.003).

The full model was simplified following the same steps as in the analysis in which
type consistency measures were used. Length was preserved as a factor in the model as its
exclusion lead to the significant reduction in goodness of fit, )(2 (1)=163.10, p < .001.
On the other hand, Log Frequency was discarded from the analysis as this variable did
not assist in explaining the data, )(2 (1) =10.00, p = 1.00. Further, Onset Complexity and
Grammatical Category predictors were kept in the equation as there was loss in
explanatory power when they were removed (Onset Complexity: )(2 (1)=-128.24,p <
.001; Grammatical Category, )(2 (2) =56.64, p <.001). In contrast, the models without

Ending Complexity, x* (1) = 0.00, p = 1.00, VCI, * (1) =2.05, p = .15, CV2, y* (1) =
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Table 9
Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on token count)

Goodness of Fit Measures Likelihood Ratio Test

# Fixed Factors AIC BIC LogL DIC Alternative Test Statistic
(*-p<.05) Model (#)

1. Null Model 7917 7940 -3955 7911

2. Grammatical Category 7589 7697 -3780 7561 1 % (11) = 350.03,
Log Frequency p <.001
Length
Onset Complexity
Ending Complexity
CVCI1#, CV1, VCI1
CvVC2#, CV2, VC2*

3. Grammatical Category 7750 7851 -3862 7724 2 2 (1) =163.10,
Log Frequency p <.001
Onset Complexity
Ending Complexity
CVC1*,CV1, VCl1
CvVC2*, CV2, VC2*

4.  Grammatical Category 7557 7658 -3766 7531 2 % (1) =0.00,
Length p=1.00
Onset Complexity
Ending Complexity*

CVCI1#,CV1, VCI1
CvVC2*, CV2, VC2*

5.  Grammatical Category 7684 7777 -3830 7660 4 X (1)=128.24,
Length p <.001
Ending Complexity*

CVCI1#, CV1, VCI1
CvVC2#, CV2, VC2*

6. Length 7700 7593  -3738 7476 4 % (2) =56.64,
Onset Complexity p <.001
Ending Complexity*

CVCI1#, CV1, VCI1
CVC2*, CV2, VC2*

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models.
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Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on type count)

Fixed Factors
(*-p<.05

Goodness of Fit Measures

AIC

BIC

Logl. DIC Alternative

Likelihood Ratio Test

Model (#)

Statistical Test

10.

11.

12.

13.

Grammatical Category
Length

Onset Complexity
CVC1*,CV1, VCl1
CVC2*, CV2, VC2*

Grammatical Category
Length

Onset Complexity
CVC1# CV1

CvVC2*, CV2, VC2*

Grammatical Category
Length

Onset Complexity
CVCI1#,CV1

CVC2*, VC2*

Grammatical Category
Length

Onset Complexity
CVCI*,CVC2*, VC2*

Grammatical
Category*

Length

Onset Complexity
CVCI1# CVC2*

Grammatical Category
Length

Onset Complexity
CVCI#, VC2*

Grammatical Category
Length

Onset Complexity*
CVC2*, VC2*

7500

7500

7509

7498

7553

7574

7678

7593

7585

7582

7575

7603

7644

7748

-3738

-3739

-3735

-3739

-3758

-3778

-3830

7476

7478

7479

7478

7515

7556

7660

4

10

10

10

¥ (1) =0.00,
p=1.00

¥ (1) =2.05,
p=.15

¥ (1)=1.85,
p=.17

¥ (1)=0.12,
p=.73

2 (1) =137.09,
p <.001

2 (1) =78.06,
p <.001

¥ (1)=181.83,
p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress

assignment in the corresponding regression models.
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Measures of goodness of fit and likelihood ratio tests of linear mixed effects model

predicting stress pattern assignment (consistency measures are based on type count)

Goodness of Fit Measures

Likelihood Ratio Test

# Fixed Factors AIC BIC LogL DIC Alternative Test Statistic
(*-p<.05) Model (#)

14.  Length 7563 7625 -3773 7547 10 % (2) =68.90,
Onset Complexity p <.001
CVCI#, CVC2*%,VC2

15.  Grammatical Category 7496 7566 -3739 7478 10 ¥ (1)=0.05,
Onset Complexity p=.82
CVCI*, CVC2*,VC2*

16. Grammatical Cateogry 7496 7558 -3740 7480 15 (1) =1.92,
CVCI#*, CVC2*,VC2* p=.17

17.  Grammatical Category 7521 7576 -3754 7507 16 2 (1)=27.48,
CVCI1# CVC2* p <.001

18. Grammatical Category 7573 7627 -3780 7559 16 1 (1)=72217,
CVCI1#, VC2* p <.001

19. Grammatical Category 8116 8170 -4051 8102 16 2 (1) =622.25,
CV(C2*, VC2* p <.001

20. CVC1%, CVC2*%, 7493 7539 -3740 7481 16 27 (2)=0.71,
VC2* p=.70

21. CVC2*, VC2* 7783 7822 -3887 7773 20 2 (1)=292.67,

p <.001

22. CVCI*, VC2* 7836 7875 -3913 7826 20 2 (1) =345.72,

p <.001
23. CVCI*, CVC2* 7518 7557 -3754 7508 20 2 (1)=27.15,
p <.001

Note. Asterisk indicates that these fixed factors were significant predictors of stress
assignment in the corresponding regression models. The model in bold is the final
simplified model with a minimum possible number of factors in it that still had high

power to predict stress patterns.
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1.85,p=.17 and CV1, )(2 (1)=0.12, p = .73, provided as good a fit to the data as models
that had these predictors. Therefore, these predictors were excluded from the model.
Finally, there was a significant decrease in the goodness of fit of models that did not have
VC2, ¥* (1) =37.09, p <.001, CVC2, * (1) = 78.06, p < .001, or CVCI, ¥* (1) = 181.83, p
< .001. Thus, at this point a simplified model contained six fixed factors: Grammatical
Category, Length, Onset Complexity, VC2, CVC2, and CVCI.

The model obtained in the first round of likelihood ratio tests was then further
simplified to a model that had four fixed effects predictors only. This was done by the
exclusion of Length and Onset Complexity that as predictors were not decreasing
information entropy significantly (Length: )(2 (1)=0.05, p = .82; Onset Complexity, )(2 (1)
=1.92, p =.17). On the other hand, there was a decline in goodness of fit if the following
predictors were eliminated from the model: Grammatical Category, )(2 (2)=68.90, p <
001, VC2, y* (1) =27.48, p < .001, CVC2, ¥* (1) =72.27, p < .001, and CVCI, * (1) =
622.25, p < .001. The final step was to determine whether it was possible to eliminate
any of the four predictors left in the model without losing the ability to explain the data.
While the elimination of VCZ,)(2 (1)=27.15, p < .001, CVC2, )(2 (1)=345.72, p < .001,
and CVClI, )(2 (1)=292.67, p <.001, appeared to be detrimental for the goodness of fit of
the model, the exclusion of Grammatical Category as a predictor did not have the same
effect, )(2 (2) =0.71, p =.70. As a result, the final model had three fixed factors and it
could explain the data as well as the full model with all ten predictors entered. In this
model all fixed factors were significant predictors of stress assignment performance:
VC2,z7=-5.17,p < .001, CVC2, z=-9.15, p < .001, and CVCI, 7 =-9.61, p < .001.

Discussion



118

The goal of Study 4 was to assess the utility of various stress cues in Russian; that
is what non-lexical cues, if any, speakers of Russian use in making stress assignment
decisions. Two sets of GLMMs on stress assignment performance for native speakers of
Russian were undertaken. The predictor variables were Length, Log Frequency,
Grammatical Category, Onset Complexity, Ending Complexity and Consistency
measures for six orthographic components (CVC1, CV1, VC1, CVC2, CV2, and VC2).
Type- and token-based consistency measures were entered in the two separate GLMMs.
Each full model was simplified in a way that would provide the best balance between
model’s complexity and its ability to explain the data.

The first model with type-based consistency measures was simplified to a model
with four predictor variables: CVCI, VCI, CVC2, and VC2. Out of four variables, only
three (CVC1, CVC2, and VC2) were significant predictors of stress assignment
performance. The second model in which consistency measures were based on token
count was simplified to a model with three predictor variables: CVC1, CVC2, and VC2.
In this simplified equation, all three variables were significant predictors of stress
assignment performance. Thus, two models based on different methods of consistency
calculation provided converging results, suggesting that in assigning stress to words in
Russian readers make use of the knowledge of probabilistic distributions of stress
patterns over three orthographic components: CVCI, CVC2, and VC2.

To assess whether the final model with type consistency measures provides a
better fit to the data than the final model with token consistency measures, likelihood
ratio tests were used to compare these two models. The results showed that the final

model with consistency measures based on type count fit the data significantly better than
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the model with consistency measures based on token count, )(2 (1)=19.98, p <.001.
Indeed, the former model provided considerably better measures of goodness of fit
compared to the latter model (model with type consistency: AIC = 7474, BIC = 7528,
logLik = -3730, DIC = 7461; model with token consistency: AIC = 7493, BIC = 7539,
logLik = -3740, DIC = 7481).

The results of this analysis suggest that not all non-lexical cues that might be used
as sources of evidence for lexical stress, due to the fact that they have high validity, as
demonstrated in Study 3, are actually used by Russian readers. That is, in Study 3, it was
determined that there are probabilistic relations between stress patterns and five non-
lexical cues present in Russian. These cues are Onset Complexity, Ending Complexity,
CVClI, CV(C2, and VC2. In spite of the fact that these variables had high validity (i.e.,
they were significant predictors of stress patterns in the corpus of 500 selected words),
only three of them appeared to be used by speakers in assigning stress in these 500
words. Apparently, Onset Complexity and Ending Complexity do not impact naming
performance. The variables that had high validity and high utility were the consistency
measures of three orthographic components: CVCI, CVC2, and VC2. Participants were
more likely to name trochaically stressed words with incorrect iambic stress if a word’s
CVCl, CVC2, and/or VC2 consistency score was low (i.e., the majority of words having
the same CVC1, CVC2, or VC2 component had iambic stress patterns). Similarly,
participants made stress assignment errors on iambically iambically stressedstressed
words if a word’s CVC1, CVC2, and/or VC2 consistency score was high (i.e., the
majority of words having the same CVC1, CVC2, or VC2 component had trochaic stress

patterns).
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5.4. Conclusion

To date, behavioral investigations of the stress assignment process have been
conducted in a limited number of languages, languages that are all characterized by the
presence of a dominant stress pattern that is believed to create a bias in assigning stress.
The presence of a bias of this sort complicates the investigation of other factors as it
becomes difficult to disentangle the effect of the bias from the effects of other potential
cues to stress. In an attempt to circumvent this problem, the present thesis involved an
investigation of mechanisms of stress assignment and an implementation of a proposed
Bayesian model of stress assignment in Russian, a language in which the assumption has
been that there is no dominant stress pattern.

The present Chapter contained the results of a corpus analysis, a factorial study,
and two regression studies that were conducted with an overall goal of creating a
computational implementation of the Bayesian model of stress assignment in Russian. At
this point, the investigation has been limited to disyllabic words only. This research has
had the following objectives: (1) establishing the distribution of trochaic versus iambic
stress patterns in the Russian language (prior probabilities of stress patterns); (2)
identifying a set of valid and utilized non-lexical cues to stress (sources of evidence taken
into consideration in estimation of posterior probabilities of stress patterns); and (3)
demonstrating that stress assignment in Russian can be completed non-lexically.

The analysis of the corpus of Russian disyllabic words (Study 1) provided
evidence substantiating the assumption that, among the disyllabic words in Russian,
trochaic and iambic stress patterns occur essentially equally often (55% vs. 45%). As the

prior probabilities of two stress patterns are very similar, Russian readers should have no



121

reason to demonstrate an overall bias toward either stress type. Further analysis of the
distribution of stress patterns in words of various grammatical categories revealed that,
although distribution of stress types in Russian nouns and verbs was not greatly different
from the distribution observed in the language overall, a trochaic stress pattern was more
frequent than an iambic stress pattern in adjectives. Thus, Russian provides a unique
opportunity to observe, within the same language, the behavior of readers in situations
when there is a regular stress pattern that could create a stress assignment bias (i.e., in
case of adjectives), and when there would be no bias due to the absence of a regular stress
pattern (i.e., in case of nouns and, potentially, verbs).

For this difference in the distribution of stress patterns for adjectives, nouns, and
verbs to have impact on the processing, it would seem to be necessary that information
about grammatical category becomes available early on, specifically before stress
information could be retrieved following a successful lexical access. Prior research on
grammatical category effects in isolated word recognition does, indeed, suggest that
grammatical category information is accessed automatically during very early stages of
lexical processing (Bornkessel & Schlesewski, 2006; Federmeier, Segal, Lombrozo, &
Kutas, 2000; Vigliocco, Vinson, Arciuli, & Barber, 2008).

Although none of the experiments cited above had been carried out in Russian, it
seems possible that information about grammatical category would also be readily
available in Russian, and would assist readers in stress assignment. Indeed, the findings
of Study 2 (word naming) provided good evidence that probabilistic distributions of
stress patterns in words of specific grammatical categories in Russian do play an

important role. When a certain stress type occurs more often (e.g., first syllable stress in
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adjectives), readers are sensitive to this information, and appear to be biased to the more
frequent stress pattern. The stress bias is manifested in faster response times and higher
accuracy rates in the processing of adjectives with regular first syllable stress compared
to adjectives with stress on their second syllable. On the other hand, when the
probabilities of the two stress patterns are nearly equal (e.g., nouns), readers do not
demonstrate a preference for either stress pattern.

The lack of a regular stress pattern for nouns and verbs means that stress
assignment for those words had to be based on other factor(s). Note that the presence of a
regular stress pattern in one grammatical category did put the regularly stressed words
belonging to that category into an advantageous position from the point of view of their
processing compared to the words from other grammatical categories. Significantly faster
and more accurate processing of adjectives compared to nouns and verbs, as
demonstrated in Study 2, serves as evidence of the facilitating effect that the presence of
a regular stress pattern in the language can produce.

This finding of a regularity effect at the level of grammatical category might
suggest that in establishing prior probabilities of stress patterns one should consider the
frequency of stress patterns not among all words of the language, but rather among words
of the word’s grammatical category in that language. The idea just described is not
endorsed in the proposed Bayesian model of stress assignment for a number of reasons.
First of all, prior beliefs about probabilities of stress patterns exist in readers’ minds
before any processing of a word has been initiated. As at this stage, the grammatical
status of a word in a standard word naming experiment is generally unknown (unless the

preceding context provides this information) and therefore, readers cannot adjust their
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prior beliefs respectively. Secondly, although the stress regularity effect in adjectives
observed in Study 2 appears to be readily explained by an early activation of grammatical
category information, there appears to be an alternative explanation. It is quite possible
that the orthographic cues to grammatical category also provide useful information
concerning stress assignment in the case of adjectives, but not in the case of nouns and
verbs. If so, one would expect an overall adjective advantage and a stress regularity effect
for adjectives but not for nouns and verbs even if the grammatical category was not
actually activated early in processing. Finally, other empirical results reported here argue
against the proposal that prior beliefs about likelihood of a stress pattern in a word are
based on probabilities derived at the level of grammatical categories. Specifically,
grammatical category did not serve as a significant predictor of stress patterns in Russian
(Study 3) or as a predictor of stress assignment performance by speakers of this language
(Study 4). To conclude, based on the results of the studies reported in this Chapter, the
most likely possibility is that prior beliefs about stress patterns reflect the native
speakers’ knowledge of distribution of stress patterns in the language overall, rather than
their knowledge of distribution of stress patterns in words of certain grammatical
category. Therefore, the distribution of stress patterns overall (55% - trochaic stress vs.
45% - 1ambic stress), appears to be the best information that can be used in calculating
prior probabilities of stress patterns in the Bayesian model of stress assignment in
Russian.

The second goal of this Chapter was to identify valid and utilized stress cues in
Russian based on a combination of the results provided in the factorial (Study 2) and the

regression (Studies 3 and 4) studies. In Study 2, the effect of spelling-to-stress
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consistency of word endings on readers’ naming performance was demonstrated.
However, the scope of reliance on this stress cue appears to depend on the availability of
other factors. Experimental results showed that participants were guided mainly by
consistency cues if there was no dominant stress pattern present (as in case of nouns and
verbs). On the other hand, in naming adjectives which tend to have trochaic stress,
consistency only mattered when irregularly stressed iambic adjectives had to be named
(or alternatively, regularity only mattered when considering adjectives with inconsistent
endings). This pattern of results suggests that both consistency and regularity are reliable
stress cues for adjectives and there is only a penalty to pay when neither is valid (i.e., an
adjective containing an ending consistent with a first syllable stress assignment which,
nonetheless, is stressed on the second syllable).

The finding of an interaction between stress regularity and stress consistency
when naming adjectives does parallel previous results reported by Colombo (1992), who
found that only irregular words were affected by the consistency of stress in a naming
task in Italian. At the same time, the present results stand in contrast to those from
another study conducted in Italian (Burani & Arduino, 2004) showing comparable effects
of stress consistency on regularly and irregularly stressed words. Burani and Arduino
explained the discrepancies between their results and Colombo’s by pointing to a number
of characteristics of the experimental items that were not controlled properly in
Colombo’s experiment. Although the stimuli were selected for the present experiments
by taking into account Burani and Arduino’s criticisms, nevertheless, the same
interaction that Colombo observed arose here. That is, there was a differential effect of

stress consistency on regularly versus irregularly stressed words when stress regularity is
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a meaningful concept (i.e., for Russian adjectives), suggesting that there may be an
alternative reason why there were different patterns in the two Italian naming studies.

Thus, the results of Study 2 extend findings reported in Italian (Burani &
Arduino, 2004; Colombo, 1992) and English (Arciuli et al., 2010) of the significant role
that the spelling-to-stress consistency of word endings plays in Russian. Although the
consistency of word endings as stress cues is a thoroughly investigated variable, it is
likely not the only non-lexical stress cue that readers of Russian use in naming
polysyllabic words. Therefore, a more exploratory investigation was undertaken by
running a regression of a set of eleven predictor variables on stress patterns in the corpus
of Russian disyllabic words (Study 3) and on stress assignment performance
demonstrated by native speakers (Study 4).

The results of Study 3 showed that in the corpus of Russian disyllabic words there
were six variables that were in strong associative relationships with stress patterns. In
Russian, the stress cues with high validity are onset complexity, coda complexity, and
spelling-to-stress consistency measures of the first syllable (CVC1), of the second
syllable (CVC2), of the beginning of the second syllable (CV2), and of the ending of the
second syllable (VC2).

Some of these variables have been shown to act as stress cues in other studies. For
example, the variable CV2 corresponds to the same orthographic component as a word
ending. As has been previously mentioned, there is consistent evidence that information
about probabilistic relations between word endings and stress patterns is used by readers
in naming words and nonwords (Arcuili et al., 2010). Similarly, there have been studies

demonstrating that in English the complexity of words’ onsets and codas is related to
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stress pattern information (Kelly et al., 1998; Kelly, 2004). Although the present results
indicate significant relations between onset/coda complexity and stress patterns in
Russian, these relations were exactly the opposite in nature to the ones reported by Kelly
et al. in English. Thus, in English, a word with complex onset is more likely to have a
trochaic stress, while in Russian a word with such characteristics is more likely to have
an iambic stress. Further, in English, a word with complex coda is likely to be iambically
stressed, while in Russian such a word is more likely to be trochaically stressed.

Spelling-to-stress consistency measures of the first syllable (CVC1), of the second
syllable (CVC2), and of the beginning of the second syllable (CV2) are the variables that
were also probabilistically associated with stress patterns in the analysis of the corpus of
Russian disyllabic words. These variables have not been previously investigated as stress
cues in any other language. Although all three of these variables were significant
predictors of stress patterns in the corpus as per the results of the binary logistic
regression, it is possible that only spelling-to-stress consistency of CVCI1 and CVC2 are,
in fact, stress cues with high validity in Russian. The significance of spelling-to-stress
consistency of CV2 is likely to be an artifactual finding.

Study 4 involved an assessment of the utility of stress cues, that is, whether native
speakers of Russian base their stress assignment decisions on information provided by
these cues. The results showed that only three variables (consistency measures of the first
syllable (CVC1), of the second syllable (CVC2), and of the ending of the second syllable
(VC2)) were driving stress assignment performance of native speakers of Russian.
Participants were more likely to make stress assignment errors on words with inconsistent

spelling-to-stress mappings for these three orthographic components.
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To conclude, it appears that in Russian there are three sources of evidence for
stress that have high validity (i.e., strong probabilistic associations between cues and
stress patterns exist in the language) and high utility (i.e., readers use the knowledge of
these probabilistic associations between cues and stress patterns). Specifically, the
consistency of the first syllable of a word (CVC1), of the second syllable of a word
(CVC2), and of the ending of the second syllable of a word (VC2) appear to be the
sources of evidence for stress patterns that should be included in a Bayesian model of
stress assignment in Russian.

Three sources of evidence for stress were identified primarily based on the results
of two regression studies. In light of this, one might argue that a simple regression model
that was based on those studies would be as good of a model of stress assignment as the
Bayesian model of stress assignment proposed in the present thesis. That claim does not
seem plausible for the following reason. According to Marr (2010), a valid model of any
information processing system must be characterized by three levels of analysis: a
computational level (what the system does and why it does it), an algorithmic level (how
the system does what it does), and a biological level (what neural structures implement
it). A regression model might provide some information about the algorithmic level of
implementation of the process of stress assignment, however, it neither has processing
implications reflecting the computational level, nor does it appear to be biologicaly
based. On the other hand, the proposed Bayesian model of stress assignment does
describe the processes happening during the identification of stress patterns in
polysyllabic words by readers and representational units (stress cues) implicated in these

processes. Further, based on some neuropsychological evidence supporting the notion
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that the human mind constantly engages in probabilistic analysis (Doya, Ishii, Pouget, &
Rao, 2007), one might expect that there are neural structures and neuronal activities that
underlie the process of estimation of probabilities of stress patterns in reading. Hence, a
Bayesian model of stress assignment would seem to supersede any related regression
model in its ability to explain the process of stress assignment.

With respect to one other goal of this research, the present data provide strong
evidence against the idea that stress assignment in Russian is accomplished only by
retrieving stress information from the word’s lexical representation. If this hypothesis
were in fact true, there should not have been either stress regularity or stress consistency
effects in the factorial study and none of the non-lexical variables would have been
significant predictors of stress patterns in the regression studies. In contrast, the present
experiments demonstrate that there are probabilistic, associative connections between
non-lexical cues and stress patterns in Russian and that native speakers of Russian do
utilize this non-lexical, distributional information about stress in naming and identifying
disyllabic Russian words. That is not to deny, of course, the possibility that the specific
retrieval of word-based stress knowledge in the process of stress assignment might exist
for Russian speakers and that it might even be greater in Russian compared to other

languages in which word stress is more predictable.
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Chapter 6 — Simulations of the Bayesian model of stress assignment in Russian
6.1. Introduction
The Bayesian model of stress assignment described in Chapter 3 computes

posterior probabilities of stress patterns in a polysyllabic word, P(stress |evidence),

based on the knowledge of the frequencies of stress patterns in a language (allowing
estimates of prior probabilities, P(stress)) and of the likelihoods with which the non-
lexical evidence considered is associated with a particular stress pattern,

P(evidence | stress) . The computation is performed using the formula given in Equation
4, which is a modified version of the Bayes rule.

In the present thesis, the goal is to provide an implementation of the Bayesian
model of stress assignment in naming Russian disyllabic words. This model produces an
output in the form of posterior probabilities that a word has a trochaic stress pattern,
P(Stressllevidence), or an iambic stress pattern, P(Stress2levidence). Studies reported in
Chapter 5 provided the data required for the implementation of this model. Based on the
results of the corpus analysis (Study 1), it was concluded that the prior probability of a
trochaic stress pattern (P(Stressl)) in Russian is .55, while the prior probability of an
iambic stress pattern (P(Stress2)) is .45. Further, the results of a factorial study (Study 2)
and two regression studies (Study 3 and 4) suggested that there are three predominant
sources of evidence that are probabilistically associated with stress patterns in Russian:
spelling-to-stress consistency measures of the first syllable (CVC1), of the second
syllable (CV(C2), and of the ending of the second syllable (VC2).

Although the order in which the model considers these three sources of evidence

does not matter for the final calculation, the model initially analyzes the impact of CVC2,
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then, CVCl1, and finishes with VC2 as sources of evidence for stress. This order choice
reflects the relative strength of association of these sources of evidence with stress
patterns as seen from the results of the regression analysis of Study 4: CVC2: z=-9.59, p
<.001 CVCl1: z=-5.49, p <.001, and VC2: z =-2.56, p = .01. The specific formula that
the model uses in computing the posterior probability that a word has, for example, the
trochaic stress pattern considering evidence provided by the orthography of CVC2 is:

P(CVC2| Stress1)x.55
P(CVC2| Stressl)x.55+ P(CVC2| Stress2)x.45

P(Stress1 | CVC2) = (14)

Knowing the posterior probability of a trochaic stress pattern being present in a word, the
model can estimate the posterior probability that a word has an iambic stress pattern:
P(Stress21 CVC2)=1— P(Stress11 CVC?2) (15)
Next, the model accounts for the evidence provided by CVC1. The model uses
this additional evidence to update its probabilities of stress patterns computed previously
based on the knowledge of CVC2. Thus, at this step, P(Stressl| CVC?2), referred to as
P(Stress1)*, serves as the new prior probability of a trochaic stress pattern in a word,
while P(Stress2|1CVC2), referred to as P(Stress2)*, is a prior probability that this word

has an iambic stress pattern. The full equation used in the computation of the posterior
probability that a word has trochaic stress given the evidence of the orthography of CVC2
and CVCl is given below:

P(Stress1 | CVC2,CVC1) =
P(CVC1| Stressl)x P(Stressl) * (16)
P(CVC1I Stressl)x P(Stressl) *+P(CVC1| Stress2) x P(Stress2)*

The posterior probability of an iambic stress given a particular CVC2 and CVCl is

further estimated:
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P(Stress2 1 CVC2,CVC1)=1- P(Stress1 I CVC2,CVC1) (17)

Finally, the model accounts for the evidence for a trochaic stress pattern provided
by VC2. As VC2 is a constituent part of CVC2 that has earlier been considered by the
model, some of the evidence provided by VC2 has already been accounted for. To avoid
the problem of including the same evidence twice into the model’s computations, the
model calculates the likelihood of evidence VC2 given stress patterns by assessing only
those words that were not used earlier in estimating the likelihood of evidence CVC2
given stress patterns. For example, in computing the posterior probabilities of stress
patterns for the word macmax, the model first considers the evidence —mak (CVC2) that
is present in 1 word with trochaic stress and 4 words with iambic stress. Next, it considers
the evidence —mac (CVC1). Finally, the model evaluates the orthographic evidence —ak
(VC2) present in 4 words with trochaic and 50 words with iambic stress patterns.
However, as the model has already accounted partially for the evidence —ax (VC2) as a
constituent part of —max (CVC2), at this step, only words that were not included in the
estimation of the likelihood of evidence —max (CVC2) (i.e., words that have the evidence
—ax (VC2), but not the evidence —mak (CVC2)) are considered by the model. In the
corpus, there are 3 words with trochaic (=4 — 1) and 46 words with iambic stress patterns
(= 50 — 4) that meet this requirement and that the model examines in estimating the
likelihood of evidence —ax (VC2) given stress pattern in the process of posterior
probability estimations of stress for the word macmax.

The model uses this additional evidence to update its probabilities of stress
patterns computed previously based on the knowledge of CVC2 and CVCI1. Thus, at this

step, P(StresslICVC2,CVCI), further referred to as P(Stress1)**, serves as the new prior
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probability of a trochaic stress pattern in a word, while P(Stress2ICVC2,CVC1), further
referred to as P(Stress2)**, is a prior probability that this word has an iambic stress
pattern. The posterior probability that a word has a trochaic stress pattern given the
evidence of the orthography of CVC2, CVCl1, and VC2 is calculated following the
formula below:

P(Stress11 CVC2,CVC1,VC2) =
P(VC2| Stress]) x P(Stressl) ** (18)
P(VC2| Stressl) x P(Stressl) **+ P(VC2 | Stress2) x P(Stress2) **

The posterior probability that a word has an iambic stress pattern given a particular
CVC2, CVC(Cl, and VC2 is further calculated:
P(Stress2 | CVC2,CVC1L,VC2)=1-P(Stress1 I CVC2,CVC1,VC?2) (19)

Using the calculations described above, the model can make predictions about the
probabilities of stress patterns. In this Chapter, the Bayesian model of stress assignment
in Russian disyllabic words is evaluated via two sets of simulations. First, the predictions
of the model about stress patterns are compared with actual stress patterns that words
have and with the performance of native speakers of Russian on a set of 500 disyllabic
words (Study 5). The model is expected to be able to predict stress patterns in words and
to simulate readers’ performance assigning stress to those words. That is, the model
would be expected to assign higher probabilities to the actual stress pattern of words than
to the incorrect pattern and to identify those words to which the participants are more
likely to make stress assignment errors. For those “problematic” words, the model should
compute posterior probabilities of correct stress patterns that deviate significantly from
1.0 (complete belief that a stress pattern is correct). There should then be a correlation

between the size of the deviation of the posterior probability computed by the model for a
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correct stress of a word from 1.0 and the likelihood that a word is pronounced with an
incorrect stress pattern in the behavioral data.

This approach of simulating actual stress assignment performance of native
speakers naming words rather than only assessing the ability of a model to predict stress
patterns in the corpus is a novel and, presumably, more critical way of evaluating a
model’s potential. The previous models of stress assignment that were reviewed in
Chapter 2 (Rastle & Coltheart, 2000; Seva et al., 2009; Perry et al., 2010) were all tested
on their ability to predict stress patterns for each word in the corpus of disyllabic words.
The algorithm by Rastle and Coltheart is unable to simulate actual stress assignment
performance as its output is deterministic (i.€., trochaic or iambic stress patterns) rather
than probabilistic. On the other hand, the connectionist model by Seva et al. and the
nested model by Perry et al. do produce the output in the form of relative activation levels
of the trochaic versus the iambic stress nodes that can be interpreted as the probabilities
with which these stress patterns would be assigned by readers to those words. However,
the modelers preferred to transform the continuous probability values into binary stress
outputs (with a stress node having the maximum level of activation being considered as
the stress pattern that the model assigns to a word) and, hence, ran simulations against
stress patterns in the corpus. In contrast, the predictions of the Bayesian model of stress
assignment were compared with actual performance of readers on a set of words.

Further, in Study 6 of the present thesis, the predictions of the Bayesian model
were compared with the behavioral performance of native speakers of Russian, naming a
set of 200 disyllabic nonwords. Simulating stress assignment in nonwords is a gold

standard in the assessment of the effectiveness of models of stress assignment (Perry et
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al., 2010). In contrast to real words that could potentially be stressed via a lexical lookup
procedure (a mechanism that is not actually a part of the model), nonword pronunciation,
including stress placement, is completed fully via non-lexical processing, processing that
the Bayesian model of stress assignment is specifically created to explain.

All previously published models of stress assignment have been tested by the
modelers on their ability to predict stress pattern placement in nonword naming. Stress
assignment in nonword naming is characterized by great inter-subject variance (Zevin &
Joanisse, 2000). However, as noted above, because the models produce binary,
deterministic output (trochaic or iambic stress patterns) or modelers selected to transform
continuous, probabilistic output into binary, deterministic output, they are unable to
account for this variability. Therefore, the three most well-known models of stress
assignment can only predict the most frequent stress pattern that participants assign to a
nonword, rather than the ratio of responses with trochaic versus iambic stress patterns
assigned to that nonword. In contrast, the Bayesian model of stress assignment can
provide estimates of the distribution of trochaic and iambic responses that speakers
should produce in naming nonwords as well as the most frequent response that should be
given by participants.

The computations of the likelihood of evidence were completed using the lexicon
compiled for the studies reported in Chapter 5. In this lexicon, only the words with a
frequency of more than one per million were included. Further, only nouns that describe a
class of entities (i.e., common nouns), but not unique entities (i.e., proper nouns) were
included. Thus, the lexicon that was used for these calculations did not include all

disyllabic words of the Russian language. The fact that the lexicon used was not
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exhaustive might lead to a slight distortion in the computation of the likelihoods of
evidence. Although this limitation should not change the predictions of the model
drastically in the majority of cases, it might matter when certain evidence is very low in
frequency in the language overall (a certain orthographic component is present just in a
few words) and, therefore, this evidence was not well represented in the selected lexicon.
For example, in the selected lexicon, there is just one word mo.b6epm that has the
orthographic component —6epm (CVC2). Thus, in calculating the posterior probability of
a trochaic stress for this word based on the information provided by CVC2, the model
will predict that there is no chance that this word is assigned a trochaic stress pattern:

(0/7668)x.55 _ 00
((0/7668)x.55)+((1/6274)x.45)

P(Stressl|—6epm) = (20)

At this point, the assessment of other sources of evidence is meaningless, as the
model will never be able to move away from the prediction that this word has iambic
stress no matter how strong some other evidence might be. This situation does not create
a problem if the model is assessed on its ability to predict a stress pattern for the single
word monv6Epm that is a part of the selected lexicon. However, this situation can
become a problem if the model is assessed on its ability to predict a stress pattern for
another word with the orthographic component —6epm (CVC2) that is not a part of the
selected lexicon and has a trochaic stress pattern (e.g., the proper name wY6epm). The
model would not be able to predict the correct stress pattern for the word wY6epm due to
the fact that its computations are based on the information provided in the selected
lexicon, which, in case of the likelihood of evidence —6epm (CVC2), does not properly
reflect the ratio of trochaically versus iambically stressed words with —6epm (CVC2) in

the language.
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This issue of the distortion in the representation of evidence in the selected
lexicon is less problematic when certain evidence is represented widely in the language.
In that situation, even if a few words having a particular orthographic component do not
make it to the lexicon, the relative strength of the evidence based on that component for
one of two alternative hypotheses should not depart greatly from the distribution present
in the language. The issue of incorrect calculations of posterior probabilities due to the
underrepresentation of certain evidence in the lexicon was addressed in the following
way. To reflect the possibility that there might be a word present in the language that has
a certain orthographic component, but that simply did not make it to the lexicon, a
constant that equals one was added in the calculations of likelihoods of evidence of both
trochaic stress (P(evidence+1IStressl)) and iambic stress (P(evidence+1|Stressl)). For
instance, in calculating the posterior probability of a trochaic stress given —6epm (CVC2),
the evidence for trochaic versus iambic stress is estimated not as 0 and 1 (meaning that in
the lexicon, O words have a trochaic stress pattern and 1 word has an iambic stress
pattern), but rather as 1 and 2 (meaning that there is potentially 1 word with a trochaic
stress pattern and 2 words with an iambic stress patterns). Following this way of
estimating the likelihood of evidence, the posterior probability of a trochaic stress given
the evidence —6epm (CVC2) is:

(1/7668)x.55 3
((1/7668)x.55)+((2/6274)x.45)

P(Stressl|—6epm) = (21)

The implementation of a parameter reflecting the possibility that there might be
words with certain evidence for stress that were simply not included in the lexicon allows

the model to make proper estimations of probabilities of stress patterns not just for the
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word like monv6Epm, but also for the word like wY6epm (when other sources of
evidence contribute to the computation).
6.2. Study 5: Simulating stress assignment performance in word naming task

Study 5 was conducted to assess the ability of the proposed Bayesian model of
stress assignment to predict stress patterns in Russian disyllabic words and to simulate
stress assignment performance of native speakers. Perfect performance from the model in
terms of classifying words was not expected. However, the erroneous predictions that the
model might make may not necessarily reflect a failure of the model, but rather its
inability to identify words for which the correct stress assignment is completed via lexical
retrieval of stress patterns from the memory. The words characterized by these
inconsistencies in stress patterns assigned via lexical versus non-lexical processing,
however, should be especially difficult for readers to process and, therefore, these words
should be more likely to be stressed inappropriately overall compared to words for which
the model makes stress predictions that are consistent with the actual stress patterns.
Further, there should be increased error rates in participants’ performance not only when
the model’s predictions of stress patterns are incorrect, but also when the model predicts
the correct stress pattern overall, but the posterior probability of this correct stress pattern
deviates significantly from 1.0. To assess this hypothesis, one can correlate the degree of
inconsistency of each prediction (i.e., difference between 1.0 and posterior probability of
a correct stress pattern as estimated by the model) with error rate.

Method

Participants
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Thirty four undergraduate students from Altay State University (Barnaul, Russia)
took part in this experiment for a small monetary remuneration (age 17 — 23; M = 19). All
were native speakers of Russian. None of the participants reported high proficiency in
any second language.

Materials

A set of 500 disyllabic words (see Appendix D) was randomly selected from the
corpus created for Study 3. Post-hoc analysis showed that the distribution of words
according to stress patterns and grammatical categories in this set of experimental items
was similar to that in the language. There were thirty four words that had ambiguous
stress because they corresponded to two lexical items that differed in stress pattern only
(e.g., nApom — Instrumental case for “steam” vs. napOm — Nominative case for “ferry”).
For each of these words, the stress pattern for the more frequent word was selected as the
correct one.

Procedure

For each word, the Bayesian model of stress assignment in Russian was used to
compute posterior probabilities of trochaic and iambic stress patterns. The posterior
probability of a stress pattern that exceeded .55 was interpreted as providing significant
evidence that a word has that stress pattern and does not have the alternative stress
pattern. The posterior probability of a stress pattern that was less than .45 was interpreted
as providing evidence that a word does not have that stress pattern and does have the
alternative stress pattern. Finally, the posterior probability of a stress pattern that was
within the range of .45 - .55 was interpreted to mean that the model cannot determine

which of the two stress patterns should be assigned to the word.
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The behavioral data against which the simulation results were compared was
collected in the following way. Participants were instructed to read aloud words
presented on the screen as quickly and as accurately as possible. Instructions and stimuli
were presented using the DMDX display system (Forster & Forster, 2003). The list of
500 items was presented in two blocks of trials. Every participant named all 500 items.
The order of blocks and of items within blocks was randomized for each participant.
Each trial started with the presentation of a fixation point for 500 ms. The target word in
upper-case appeared in white on a black background (Courier New, 12 font) for 2000 ms
or until the participant responded. The intertrial interval was 1000 ms.

Results

Responses were marked using CheckVocal (Protopapas, 2007) by the author and
by two other native speakers of Russian. A response was coded as O if a word was
pronounced with a trochaic stress and as 1 if a word was pronounced with an iambic
stress. The Bayesian model of stress assignment could predict stress patterns in 78% of
analyzed words (see Figure 7). Its performance on making correct predictions on trochaic
stress words was slightly better (81%) than its ability to predict iambic stress (74%).
Similarly, the model was more often wrong in predicting trochaic stress patterns for
iambically stressed words (20%) than in incorrectly predicting iambic stress patterns for
trochaically stressed words (13%). Based on the given evidence, the model could not
conclude what stress pattern is more likely to be present in a word for 6% of words with
trochaic stress and 6% of words with iambic stress. Thus, overall the Bayesian model of
stress assignment could generally predict stress patterns based on non-lexical information

only, although there were a number of cases when the model made erroneous predictions.
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Figure 7
Stress pattern predictions of the Bayesian model of stress assignment in Russian for

words with trochaic stress (A) and words with iambic stress (B)

A: Trochaic Stress

6%

DO Trochaic Stress

@ ambic Stress

B Unclear

81%

B: lambic Stress

6%

O lambic Stress
B Trochaic Stress

DOUnclear

74%
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The next question was whether there is a correlation between the model’s
predictions and stress assignment performance demonstrated by the readers. For this
purpose, the posterior probability of an iambic stress pattern as calculated by the model
was correlated with the proportion of responses with iambic stress that ranged from 0
(meaning that all participants named a word with a trochaic stress pattern) to 1 (meaning
that all participants named a word with an iambic stress pattern). The regression analysis
showed that the posterior probabilities of iambic stress patterns computed by the model
were predictive of the likelihood that the readers would pronounce these words with
iambic stress, r (498) = .76, F (1,498) = 681.25, p < .001.

The preceding analysis is potentially compromised because, for some words, the
model does predict the incorrect stress. These are the words that are likely to be stressed
by readers via lexical look-up procedure that is not implemented in the model. Therefore,
one would expect that, for some of those words, participants would produce the correct
stress even though non-lexical factors had biased them toward the wrong stress. These
inconsistencies in stress patterns assigned via lexical versus non-lexical routes may cause
difficulties in stress assignment. Similarly, one would expect that readers should be prone
to stress assignment errors when processing words for which the model does predict the
correct stress pattern; however, the posterior probability of this correct stress pattern as
calculated by the model is not very high. To assess these predictions, a new variable
referred to as the Degree of Inconsistency of stress pattern was computed. This variable
reflects the difference between the probability of a correct stress pattern being assigned
via a lexical look-up procedure (which equals 1.0) and the probability of a correct stress

pattern being assigned via a non-lexical procedure (as estimated by the model).
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The Degree of Inconsistency was entered as a fixed factor into a linear mixed
effects model. Subjects and Items were entered as random factors. Stress assignment
performance coded as O (correct) or 1 (incorrect) was used as the outcome variable. The
analysis was conducted using the R package /me4 (Bates & Maechler, 2010).
Significance values were obtained via Markov Chain Monte Carlo (MCMC) sampling of
the posterior parameter distributions (sample size = 10,000).

The model with the Degree of Inconsistency entered as a fixed factor and Subjects
and Items entered as random factors provided a significantly better fit to the data than the
model with random factors only, )(2(1) =194.10, p < .001. Further, the Degree of
Inconsistency was a significant predictor of error rate, z = 14.76, p < .001. Thus, the
participants were more likely to assign stress incorrectly to words with a high Degree of
Inconsistency compared to words with a low degree of Inconsistency (See Figure 8).

Discussion

In Study 5, the ability of the Bayesian model of stress assignment to predict stress
patterns in Russian disyllabic words was assessed. Overall, the model was reasonably
successful in predicting stress patterns in the language as 78% of words were assigned
correct stress patterns. For about 6% of words, the model did not predict significant
differences in the probabilities of trochaic versus iambic stress patterns based on the non-
lexical evidence provided. Finally, for the remaining 16% of words, the model made
incorrect predictions. These results provide further evidence that stress pattern
information in Russian can be computed non-lexically in the majority of cases and that
the proposed Bayesian model of stress assignment is likely to be a viable model for

explaining non-lexical mechanisms of stress pattern identification.
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Figure 8
Error rate as a function of the Degree of Inconsistency between stress pattern predictions
of the Bayesian model of stress assignment based on the non-lexical evidence given and
of the lexical look-up procedure
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Note. A Degree of Inconsistency that equals O refers to complete consistency between the
lexical information and the predictions made by the Bayesian model, while a Degree of
Inconsistency that equals 1 refers to complete inconsistency between the lexical

information and the predictions made by the Bayesian model.
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The second goal of the study was to assess whether the model can simulate the
patterns of stress assignment behavior demonstrated by readers. The question was
whether the model makes predictions about difficulty in assigning stress patterns for the
same words that readers tend to make stress errors on. From this perspective, words for
which the model fails to assign stress correctly or for which it struggles in deciding what
stress pattern is more probable are of special interest. These words are characterized by a
high degree of inconsistency between the stress pattern predicted by the model, based on
non-lexical information, compared to accurate lexical information. Often, a reader may
pronounce such words correctly by retrieving a corresponding stress pattern from lexical
memory. Although many readers may do exactly that, it does not mean that they will be
immune to the influence of the non-lexical information that is, in fact, incorrect or
ambiguous for these words. Therefore, readers are expected to make more stress
assignment errors on words for which the predictions of the Bayesian model, based
completely on non-lexical information, deviate significantly from the actual stress
patterns (stored in lexical memory) for these words.

The results of Study 5 provided evidence, first of all, that the posterior probability
of a certain stress pattern in a word computed by the model was predictive of the
likelihood that this word is pronounced with this stress pattern by readers. Secondly, it
was also found that the degree of inconsistency of predictions of non-lexical and lexical
information was related to the probability that readers make stress assignment errors.
More specifically, if the model predicted that there is a high probability of a certain stress
pattern and this pattern was, in fact, the stress pattern stored for this word in lexical

memory, participants rarely assigned an incorrect stress pattern to this word. On the other
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hand, if according to the model’s computations there was some evidence for a stress
pattern that is alternative to the one stored in lexical memory, participants were often
misled by the non-lexical evidence and made stress assignment errors.
6.3. Study 6: Simulating stress assignment performance in a nonword naming task

Although the Bayesian model of stress assignment could successfully predict
stress patterns in Russian and simulate the stress assignment performance of readers of
this language, its performance was not perfect. In fact, a perfect performance on
assigning stress to words is not expected from this model as it mimics non-lexical
mechanisms of processing only, while stress assignment in words is not immune to the
impact of lexical information. Thus, in simulating stress assignment in words, the model
would fail to explain any variance that is due to readers using lexical information. The
issue of utilization of lexical information does not arise if the model is assessed on its
ability to simulate stress assignment in nonwords which do not have lexical
representations in memory and, hence, their stress can only be assigned non-lexically. In
Study 6, the Bayesian model was assessed on its ability to predict patterns of behavior
demonstrated by native speakers of Russian assigning stress to nonwords. More
specifically, the model was evaluated on its ability to predict the most frequent stress
pattern that readers assign to a nonword, as well as the proportion of responses with
trochaic and iambic stress that readers produce.

Method

Participants

Thirty undergraduate students from Altay State University (Barnaul, Russia) took

part in this experiment for a small monetary remuneration (age 17 —23; M = 19). All
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were native speakers of Russian. None of the participants reported high proficiency in
any second language.

Materials

A set of 200 disyllabic nonwords (see Appendix E) was created by randomly
combining first syllables and second syllables of Russian disyllabic words. All nonwords
were pronounceable and did not violate any ortho-phonological constraints present in
Russian. To minimize the possibility that stress assignment is completed by analogy to a
real word, no nonword that is an orthographic neighbor of a real word (Coltheart et al.,
1977) was included as a stimulus in this study.

Procedure

For each nonword, the Bayesian model of stress assignment in Russian was used
to compute posterior probabilities of trochaic and iambic stress patterns. A posterior
probability of a stress pattern that exceeded .55 is interpreted as providing significant
evidence that a nonword is likely to be assigned that stress pattern. A posterior
probability of a stress pattern that was less than .45 is interpreted as providing evidence
that a nonword is likely to be assigned an alternative stress pattern. A posterior
probability of a stress pattern that was within the range of .45 - .55 suggests that the
model cannot determine which pattern is more likely to be assigned to a nonword.

The behavioral data against which the simulation results were compared was
collected in the following way. Participants were instructed to read aloud novel words
that would be presented on the screen as quickly as possible. Instructions and stimuli
were presented using the DMDX display system (Forster & Forster, 2003). The list of

200 items was presented in two blocks of trials. Every participant named all 200 items.
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The order of blocks and of items within blocks was randomized for each participant.
Each trial started with the presentation of a fixation point for 500 ms. The target nonword
in upper-case appeared in white on a black background (Courier New, 12 font) for 2000
ms or until the participant responded. The intertrial interval was 1000 ms.

Responses were marked using CheckVocal (Protopapas, 2007) by the author and
by two other native speakers of Russian. A response was coded as “0” if a nonword was
pronounced with a trochaic stress and as “1” if a nonword was pronounced with an
iambic stress. If the mean response score for a nonword was less than .45, it was deemed
that the majority of participants assigned trochaic stress to this nonword. If the mean
response score for a nonword was more than .55, it was deemed that the majority of
participants assigned iambic stress to this nonword. Finally, if the mean response score
was between .45 and .55, it was thought that neither trochaic nor iambic stress pattern
was a preferred choice in the behavioral data.

Results

As can be seen from Table 10, the model made correct predictions about a stress
pattern that is more likely to be realized by participants for 184 out of 200 nonwords
(90% correct). More specifically, for nonwords predicted to be given a trochaic stress,
participants did produce that stress pattern 93% of the time. For nonwords predicted to be
given iambic stress, participants did produce that stress pattern 88% of the time. The
model could not decide on the preferred stress pattern for 16 nonwords and in the data
participants also had trouble figuring out which stress pattern to assign to five of those
nonwords. For the remaining 11 nonwords that the model found ambiguous, participants

had a tendency of assigning one of the two stress patterns reasonably often.
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Table 50
Stress pattern assignment predictions of the Bayesian model of stress assignment
compared with stress pattern assignment performance of readers naming 200 disyllabic

nonwords

Predicted Stress

Trochaic Tambic No Preference Total
Assigned Stress
Trochaic 64 10 6 80
lambic 5 101 5 111
No Preference 0 4 5 9

Total 69 115 16 200
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Further, to assess the ability of the model to predict the proportion of responses
with trochaic versus iambic stress patterns, the predictions of the model in the form of
posterior probabilities of iambic stress pattern and the ratio of iambic stress responses
made by participants to nonwords were submitted to a correlational analysis. The results
showed that the model’s estimations of posterior probabilities of iambic stress pattern
were reflective of actual performance, r (198) = .87, F (1, 198) = 600.35, p < .001.

Discussion

Study 6 provided clear evidence that the Bayesian model of stress assignment can
successfully predict what stress pattern participants are more likely to use when naming
nonwords. One minor discrepancy between the results of the model’s simulations and the
behavioral data concerned a few nonwords that the model could not classify as either
having trochaic or iambic stress based on the evidence given. Unlike the model, readers
did demonstrate a preference for a stress pattern for 70% (11 out of 16) of these
nonwords that the model failed to classify. The cause of this discrepancy is likely rooted
in the fact that the model is limited in that it only uses three sources of evidence, sources
that have been shown to provide highly valid and utilized stress cues in Russian (i.e.,
CVCl1, CVC2, and VC2). However, readers are free to use any stress cues that are of
value for the processing of a specific word/nonword, even if the general validity and
utility of these cues in the language are relatively low. It is quite possible that readers
may resort to those less reliable stress cues when information about the probability of
stress patterns provided by more reliable cues is inconclusive. Overall, the predictions of
the model about the choice of the most frequent stress pattern and about the proportions

of trochaic versus iambic responses to nonwords made by readers were quite good.
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6.4. Conclusion

In Chapter 6, simulations based on the Bayesian model of stress assignment in
Russian were provided. First, the model’s predictions about probabilities of stress
patterns in a set of 500 disyllabic words were compared with actual stress assignment
performance of native speakers of Russian on those words. In general, the model was
capable of predicting the correct stress pattern realized for those words in the language.
More importantly, the model’s predictions were reflective of the patterns of behavior
demonstrated by the readers. Thus, words for which the model failed to assign stress
correctly (i.e., posterior probability of a correct stress pattern was low) or for which it had
difficulty in deciding what stress is more likely to be correct (i.e., posterior probabilities
of two alternative stress patterns were approximately equal), were, in fact, more likely to
be pronounced by the readers with incorrect stress compared to words for which the
model assigned stress correctly (i.e., posterior probability of a correct stress was high).

The model was also successful in its ability to predict the probabilities with which
trochaic and iambic stress patterns are assigned to nonwords. That is, if the model
concluded that for a nonword a particular stress pattern was more probable considering
the non-lexical evidence available, readers were quite likely to assign that stress pattern.
The model was also able to predict not just the most frequent stress pattern that the
readers would assign to a nonword, but also the relative ratio of readers’ trochaic versus
iambic responses. Overall, the results of the simulations conducted with a set of words
and nonwords allows one to conclude that the proposed Bayesian model of stress
assignment is a viable model that is likely to provide a good approximation of the non-

lexical processes involved when a speaker of Russian assigns stress to a disyllabic word.
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Chapter 7 — General Discussion
7.1. Summary of Results

With the shift of interest from the investigation of monosyllabic words to that of
more complex polysyllabic words that has taken place in the area of visual word
recognition (Perry et al., 2010; Yap & Balota, 2009), new scientific questions have
emerged. One such question concerns the principles and mechanisms of lexical stress
assignment, that is, how is it that readers come to a decision that certain syllables should
be pronounced with greater prominence than the others (i.e., stressed) in a polysyllabic
word. Do the readers retrieve this information from memory? Is this information
computed based on some cues that are present in the orthography of a word? If lexical
stress is, in fact, computed, what are the cues that allow readers to make a decision about
the stress pattern that a word has? All of these questions need to be considered by the
modelers of visual word recognition who wish to account not only for monosyllabic, but
also for polysyllabic word reading.

Most models of visual word recognition (e.g., Coltheart et al., 2001; Harm &
Seidenberg, 2004) were originally created to explain reading of monosyllabic words and,
thus, did not have in their architectures any mechanisms that could explain the process of
stress assignment. In response to this limitation, a number of the modelers expanded the
architecture of their models by introducing new modules aimed at imitating the
mechanisms by which readers assign stress to words. In Chapter 2, a detailed description
of the three most well-known models that have components capable of producing an
output in the form of a stress pattern was given. These are the dual-route model of stress

assignment by Rastle and Coltheart (2000), the connectionist model by Seva, Monaghan,
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and Arciuli (2009), and the CDP++, a model that combines some principles of the dual-
route and of the connectionist-type models (Perry et al., 2010). In these models, it is
suggested that stress patterns are identified based on written cues present in the
orthography (Perry et al., 2010; Seva et al., 2009) or morphology (Rastle & Coltheart,
2000) of a word.

The models’ abilities to simulate stress assignment performance on a set of
English disyllabic words and nonwords were assessed. Although the performance of
models on word reading was acceptable as a first pass, none of the models provided a
particularly good fit to the data. While the models had no difficulty in predicting the
presence of a more frequent (in English) trochaic stress pattern, the presence of a less
frequent iambic stress pattern was often not identified properly. A similar pattern was
registered in simulations run in an attempt to model nonword naming data. The models
agreed on high percentage of stress assignment responses if participants preferred to
name a nonword with a trochaic stress. On the other hand, nonwords that were
pronounced by participants with a less common iambic stress were often incorrectly
assigned a trochaic stress pattern by the models. Thus, all of the models tended to
overgeneralize the more frequent trochaic stress pattern at the expense of the less
common iambic stress pattern.

In Chapter 3, an alternative way to model the process of stress assignment in
polysyllabic words was advanced. The proposal is that the human mind, which is
essentially probabilistic, might be approaching the task of deciding where stress should
be placed in a word by evaluating the likelihood of each hypothetical outcome, that is, the

likelihood of each stress pattern that is potentially present in a word. The stress pattern
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likelihood estimation is completed following the principles of Bayesian probabilities. For
this reason, the proposed model is referred to as a Bayesian model of stress assignment.

The Bayesian model of stress assignment can be seen as the process of evidence
accumulation during the identification of stress patterns in polysyllabic words. The
process of the actual selection of a stress pattern to be applied to a polysyllabic word can
be thought of as random walk diffusion process (Ratcliff, 1978). In this situation, the
decision process moves from a starting point towards decision boundaries with some drift
rate. This movement is susceptible to the impact of noise in the system that gives rise to
incorrect responses. The impact of the noise is directly related to the strength of the
evidence accumulation process (i.e., the posterior probability) that is implemented in the
Bayesian model of stress assignment (i.e., stronger evidence for a correct stress pattern is
associated with higher accuracy, while weaker evidence for a correct stress pattern is
associated with lower accuracy). The estimation of evidence for each stress pattern is
done by considering prior beliefs about the likelihood of each stress pattern in a language
and the evidence for each stress pattern provided in a word.

The prior probability of a stress pattern in a language refers to the frequency of
this stress pattern in the words of the language. The evidence for stress involves any type
of non-lexical information present in a word that is probabilistically associated with stress
patterns in a language. In other words, evidence for stress considered by the model would
be of high validity. In addition, readers should be sensitive to this evidence and use it in
making their stress assignment decisions. Thus, the model considers those sources of

evidence for stress that are not only highly valid, but also highly utilized. There is likely
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to be a set of stress cues with high validity and utility that is routinely analyzed by
readers in the process of stress assignment.

In Chapter 4, empirical support for the assumptions made in the Bayesian model
of stress assignment was considered. First of all, evidence for the effect of the frequency
of stress patterns in a language on polysyllabic word naming was reviewed. Previously,
the debated issue in this area was whether the most frequent stress pattern is assigned by
default and, thus, whether there is an essential difference in the processing of words with
more frequent versus less frequent stress patterns (Black & Byng, 1986; Colombo, 1992).
The polar opposite view was that the frequency of stress patterns in the language plays no
role in processing at all and, hence, the mechanisms of processing of words with a more
frequent stress pattern are exactly the same as of words with a less frequent stress pattern
(Burani & Arduino, 2004). Thus, there are two extreme positions on the issue and both
positions find some empirical support. On one hand, there are studies showing that
readers are aware of the distribution of stress patterns in the language and are influenced
by it to certain extent (Breen & Clifton, 2011; Colombo, 1992). On the other hand, there
are studies that fail to find any evidence that words with a more frequent stress pattern are
processed via different mechanisms compared to words with less frequent stress patterns
(Burani & Arduino, 2004; Sulpizio, Arduino, Paizi, & Burani, 2013).

A more viable approach would seem to be to take an intermediate position. There
is a substantial amount of evidence suggesting that readers are aware of statistical
probabilities of stress patterns in the language. However, that does not mean that a more
frequent stress pattern is applied to all words automatically following some default rule,

which, in its turn, gives rise to the processing differences for words with more versus less
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common stress patterns. Knowledge of the distribution of stress patterns in a language
may be used as a prior belief about likelihoods with which words have a particular stress
pattern or, in other words, as a baseline for further computations of probabilities of stress
patterns. Thus, in the Bayesian model of stress assignment, there are no differences in the
mechanisms of processing of words with more frequent versus less frequent stress
patterns, although words with a more frequent stress pattern do enjoy somewhat of a head
start. However, this initial advantage for words that do have a more frequent stress
pattern can be easily changed by assessment of non-lexical, orthographic cues that are
probabilistically associated with less frequent stress patterns.

Thus, in the proposed model of stress assignment, the most vital role is played by
non-lexical cues to stress. In Chapter 4, a review of previous research on potential
sources of evidence for stress in various languages was provided. More specifically,
studies investigating graphemic complexity of onsets and codas (Kelly, 2004; Kelly,
Morris, & Verrekia, 1998), orthography of word beginnings and endings (Arciuli et al.,
2010), and grammatical status of a word (Arciuli & Cupples, 2004) as evidence for
lexical stress were surveyed. It is very likely that this list of stress cues is not
comprehensive, and that there are other stress cues that have not been investigated yet.

In making stress assignment decisions, readers might be evaluating all non-lexical
sources of evidence for stress present in the language. However, due to time-constraints
and due to the excessive amount of evidence for stress, some of which is redundant,
readers, in general, are likely to rely on a limited set of highly informative stress cues.
Doing so would allow readers to assign stress with high accuracy and speed to a majority

of words. As the Bayesian model presented here is an attempt to explain this common,
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non-lexical processing of stress assignment, the model considers only those sources of
evidence that are highly informative in a language.

The Bayesian model of stress assignment is a universal model that can be applied
to any language that utilizes lexical stress, although its exact components are language-
specific. In Chapter 5, the bases for implementation of the Bayesian model of stress
assignment in Russian were outlined. The choice of the language for present research is
explained by the fact that despite the importance of lexical stress for word recognition in
Russian, its assignment is very complex and is often a source of speech errors. In
Russian, there appear to be no clear rules of stress assignment and no dominant stress
pattern. This complexity of the Russian stress system gave rise to the idea that, in that
language, stress assignment can be completed only lexically, that is via retrieval of stress
pattern information from memory (Gouskova, 2010). If this proposal is true, it should be
extremely challenging, in fact, next to impossible, for a Bayesian model that is essentially
non-lexical to predict stress pattern placement in Russian words and to simulate stress
assignment performance for native speakers of Russian.

In creating the computational implementation of the model for Russian, the
distribution of stress patterns in the language (i.e., prior probabilities of stress patterns)
and the nature of cues that are probabilistically associated with stress patterns (i.e.,
sources of evidence for stress) were assessed. To simplify the computation, only
disyllabic Russian words were considered. In Study 1, the distribution of trochaic versus
iambic stress patterns in a corpus of Russian disyllabic words was analyzed. This analysis
showed that the prior probability of a trochaic stress pattern is .55, while the prior

probability of an iambic stress pattern is .45. Additionally, the analysis of the distribution
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of stress patterns in words of various grammatical categories showed an interesting
picture. Adjectives were often associated with trochaic stress (80%), verbs were slightly
more often associated with iambic stress (62%), and, finally, for nouns, trochaic stress
occurred approximately as often as iambic stress (55% vs. 45%).

The evidence for the bias to either a trochaic or an iambic stress pattern was
assessed in a word naming task (Study 2). More specifically, one question was whether
words having a trochaic stress pattern, which is just slightly more frequent in Russian, are
processed faster than words having an iambic stress pattern. A second question was
whether there was any evidence for faster and more accurate processing of adjectives
with trochaic stress due to the fact that this stress pattern is dominant for words of this
grammatical category. The results showed no effect of stress type overall, but a
significant main effect of stress type for adjectives, suggesting that readers are sensitive
to the information about frequencies of stress patterns in the language. Further, due to the
presence of a more frequent, trochaic stress pattern, adjectives as a grammatical category
were named and identified as words faster and more accurately than nouns and verbs
which do not have a more frequent stress pattern.

The finding of a significant main effect of stress type at the level of grammatical
category could be interpreted as suggesting that prior probabilities of stress patterns
reflect the distribution of stress patterns among words of certain grammatical category
rather than among all words of a language. This proposal, that to some extent contradicts
the principles of the Bayesian model of stress assignment, is unlikely to be correct. First
of all, although prior beliefs about stress patterns exist in a reader’s mind before any

processing has been initiated, in a word naming experiment, a reader is unaware of the
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grammatical category of a word before its presentation and, thus, this information cannot
have any impact on reader’s prior expectations. Secondly, it could be argued that the
effect of grammatical category observed in Study 2 was not due to the early activation of
grammatical category information, but rather due to the fact that, in the case of
adjectives, orthographic cues to grammatical category also provide useful information
about stress patterns, while orthographic cues to nouns and verbs do not. Therefore, these
data are not actually inconsistent with the original view that prior beliefs about stress
patterns reflect the knowledge of distributions of stress patterns in all words of the
language, rather than in words of certain grammatical category.

To examine what non-lexical sources of evidence for stress are present in Russian
and are used by native speakers, a factorial (Study 2) and two regression (Studies 3 and
4) studies were conducted. The results of Study 2 showed that word ending was an
important stress cue as words that have word endings representative of correct stress
patterns had a processing advantage over words with word endings that are representative
of incorrect stress patterns. A more exploratory approach was taken in Studies 3 and 4
that were run to examine the power of eleven variables (Length, Log Frequency,
Grammatical Category, Onset Complexity, Coda Complexity, and spelling-to-stress
consistency of CVCI, CV1, VCI, CVC2, CV2, and VC2) to predict lexical stress in
Russian. Study 3 was a binary logistic regression of this set of predictors on stress
patterns in a corpus of Russian disyllabic words. The aim of this study was to identify
stress cues having high validity. The results showed that there are six variables
significantly associated with stress patterns in Russian: Onset Complexity, Coda

Complexity, the spelling-to-stress consistency of CVCI, CVC2, CV2, and VC2. In Study
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4, a generalized linear mixed effect model with the same eleven variables as predictors of
stress assignment performance was applied to the word naming data with an aim of
identifying stress cues that are of high utility in Russian. The results showed that native
speakers of Russian essentially base their stress assignment decisions on the information
provided by the spelling-to-stress consistency of CVCI, CVC2, and VC2.

Based on the combination of the results provided by the factorial and the
regression studies, it was concluded that there are three sources of evidence for stress in
Russian that have high validity (i.e., strong probabilistic associations between cues and
the stress patterns exist in the language) and high utility (i.e., readers use the knowledge
of these probabilistic associations between cues and stress patterns). These three sources
of evidence are the spelling-to-stress consistency of the first syllable (CVC1), the
spelling-to-stress consistency of the second syllable (CVC2), and the spelling-to-stress
consistency of the ending of the second syllable (VC2).

The information about prior probabilities of stress patterns in Russian and about
the sources of evidence that are considered by native readers of Russian assigning stress
to disyllabic words was used to create the computational implementation of a Bayesian
model of stress assignment in Russian. The performance of the model was tested in a
series of simulations reported in Chapter 6. In Study 5, the predictions of the model were
compared with stress assignment performance of native speakers of Russian naming
disyllabic words. The results showed that the model was not only able to predict correctly
the stress patterns for the majority of the words tested, but also to reflect the patterns of
behavior demonstrated by the readers. More specifically, the model managed to identify

those words that participants had difficulty in processing, that is, words that were often
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assigned incorrect stress patterns in the behavioral data. In Study 6, the model’s ability to
simulate stress assignment performance of readers naming nonwords was examined. The
model’s performance in this simulation was quite good as it managed to predict not only
the most frequent stress pattern that readers assigned to a nonword, but also the relative
ratio of trochaic versus iambic responses given by the participants.
7.2. Theoretical implications

In the present thesis, a new theoretical approach to the modeling of the process of
stress assignment couched in the principles of Bayesian probabilities has been introduced.
Within this approach, it is suggested that in deciding where to place stress in a word, a
reader estimates posterior probabilities of each stress pattern occurring in words in the
language. The posterior probability of a stress pattern occurring in a word is estimated by
adjusting a prior belief about the likelihoods of each stress pattern (derived from the
knowledge of the distribution of stress patterns in the language) based on various non-
lexical sources of evidence for stress present in the orthographic input. The proposed
Bayesian theoretical framework was implemented in a computational model of stress
assignment that mapped orthography onto stress position for disyllabic words in Russian.
This computational model was able to accomplish stress assignment for words and
nonwords with a high degree of accuracy, implying that the principles underlying this
model are likely to reflect the mechanisms that are implicated during the process of stress
assignment.

The Bayesian model of stress assignment is a model based on non-lexical
processing. In other words, this model describes the procedures that are likely to occur

when readers compute stress pattern information based on orthographic input rather than
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retrieve it directly from the memory. As it turns out, 20% of words in Study 5 could not
be assigned stress properly following the non-lexical computation. For these words, for a
reader to properly assign stress, that process must involve lexical retrieval. In the
behavioral data, it was observed that readers did make significantly more errors on these
types of words, suggesting that the readers were impacted by misleading information
provided as the result of the non-lexical computation. However, in general, the readers
managed to assign stress properly even to those words that the model assigned the
incorrect stress to. Therefore, similar to the dual-route theory of reading (Coltheart et al.,
1993) and to the stress assignment algorithm by Rastle and Coltheart (2000), the model
expressed here must incorporate an assumption that stress pattern information may be
retrieved via a lexical route as well as being computed following the principles of the
Bayesian model of stress assignment. Unlike the algorithm by Rastle and Coltheart,
which is rule-driven, stress assignment in the Bayesian model is not governed by pre-
defined linguistic rules, but rather by a combination of different cues that are statistically
associated with stress patterns. A reliance on non-lexical cues that are probabilistically
associated with stress patterns is also implemented in the connectionist model of stress
assignment by Seva et al. (2009). However, the model proposed in this thesis differs from
the connectionist model of stress assignment because the former model allows that stress
assignment may happen via the retrieval of localized lexical representations, while the
latter model denies such a possibility.

The Bayesian model of stress assignment is most similar to the CDP++ (Perry et
al., 2011) as both models combine dual-route principles of processing with an idea that

any non-lexical route would be driven by knowledge of statistical regularities, rather than
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rule-based algorithms. Despite those similarities, the CDP++ and the Bayesian model of
stress assignment take different fundamental approaches. The task of the Bayesian model
is to solve an inductive problem of deciding which of several alternative stress patterns is
likely to be present in a word taking into consideration some non-lexical evidence that is
present. The task of any model of stress assignment that utilizes connectionist networks is
to learn a set of weights on connections among orthographic input and stress output that
would generate the appropriate stress pattern. To conclude, although the Bayesian model
of stress assignment does have a lot of features in its architecture and makes some
theoretical assumptions that are shared with the earlier models of stress assignment, it is a
novel computational approach that appears to be able to provide new insights into the
process of stress assignment in a variety of languages.

In the present thesis, it was demonstrated that the Bayesian model of stress
assignment can successfully account for the process of stress assignment in Russian
disyllables. As this model is essentially a model of non-lexical processing, one could
conclude that lexical stress can be assigned to Russian polysyllabic words non-lexically.
That is, in Russian, there are stress cues present in the orthography of a word and the
native speakers of Russian use these cues in computing stress pattern information. This
finding contradicts a widely accepted view that Russian stress assignment is completed
only via the retrieval of stress pattern information from the memory (Gouskova, 2010).
7.3. Limitations and future research

Although the Bayesian model of stress assignment was successful in the present
research, there are, of course, a number of lines of research to pursue to further test and

develop the model. First, in order to adjudicate between competing modeling approaches,
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one needs to create computational implementations of major models that reflect the stress
assignment process in one common language. Indeed, it is hard to conclude that one
model supersedes another if they are tested on words taken from different languages.
While all previously existing models have been created to simulate stress assignment in
English, the computational implementation of the Bayesian model described here makes
predictions about probabilities of lexical stress in Russian. The logical step in this respect
is to make an implementation of the Bayesian model of stress assignment in English.
Thus, one could compare directly the ability of models to predict stress patterns in a
language and patterns of performance of native speakers assigning stress to words.

As has been mentioned earlier, none of the existing models of stress assignment
could overcome the issue of overgeneralization of a more frequent trochaic stress pattern
in English. All models of stress assignment in English demonstrated almost perfect
performance on words with the more common trochaic stress and less than satisfactory
performance on words with the less common iambic stress. It is an empirically interesting
question whether a model based on the Bayesian principles would provide a better fit to
the English data than existing models do. Within the Bayesian approach, English
speakers have a high prior belief that any disyllabic word should have trochaic stress.
Thus, in order to pronounce an iambically-stressed word correctly, a reader may need to
be provided with orthographic evidence that is very strongly associated with iambic
stress, while in case of a trochaically stressed word even weak evidence for trochaic
stress would suffice.

The Bayesian model of stress assignment should also be tested on its ability to

predict stress for polysyllabic words of various syllabic lengths. It is an open question



164

whether the model would be as successful in simulating stress assignment performance of
speakers naming words of more than two syllables as it was in predicting stress patterns
in disyllabic words. Although the architecture of the model remains the same regardless
of the syllabic length of a word being read, there are some minor differences. First, there
would be differences in the number of hypotheses (stress patterns) for which the model
must compute posterior probabilities. That is, in establishing the likelihoods of stress
patterns in a disyllabic word, the model has to compute a posterior probability only for
one hypothesis as the probability of the other hypothesis is the complement of the other
probability, while during the processing of a trisyllabic word, computations of
probabilities for two hypotheses would need to be conducted. Secondly, one needs to
determine whether the sources of evidence for stress remain the same for words of
various syllabic lengths or whether certain differences in the number and types of cues to
stress (dependent on the syllabic length of a word) exist.

Another question for future research concerns the relative time period during
which lexical stress information is being processed. No assumptions are made about
when stress 1s assigned to words in the model as it is not clear at the moment whether
stress assignment precedes mapping of orthography onto segmental phonology, follows
it, or whether these two processes occur in parallel during reading. Hence, the stress
assignment model is not implemented yet as a module within a larger model of
polysyllabic word reading.

An additional issue that has not been investigated within the scope of the present
manuscript is whether the proposed model can account for individual differences in stress

assignment performance. These differences are likely to emerge as individuals might be
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exposed to different statistical probabilities even in the same language due to variability
in the contents and sizes of individuals’ lexicons. Due to these differences in exposure,
the stress assignment performance of a highly educated person might be quite different
from the performance of a person with an impoverished lexicon. Similarly, the statistical
probabilities of the lexicon of a 6-year old child might differ significantly from those of
an adult. In fact, Arciuli et al. (2010) analyzed a corpus of children’s literature
appropriate for various age groups, and demonstrated successive changes in the
distributions of stress patterns (prior probabilities) and in reliable stress cues (likelihoods
of evidence) that were picked up by children. By learning the language, children adapted
their predictions to the structure of the language. Further, individual differences in stress
assignment might be observed due to the regional differences in the language. For
example, if in a certain dialect many words are stressed differently than in the standard
language, it is possible that the speakers of this dialect might be relying greatly on the
probabilities reflected in that dialect rather than in the standard language. The model
presented here is an approximation only reflecting a behavior of an “average” speaker of
Russian with the lexicon that contains about 14,000 disyllabic words. However, the
model can easily be used to simulate individual differences in stress assignment
performance by varying the size and the content of the lexicon used by the model in the
process of estimation of posterior probabilities of stress patterns.

A related question concerns the behavior of bilinguals, who are exposed to
statistical probabilities of more than one language. At the moment, it is unclear whether
stress-relevant statistical information is language selective in a way that only probabilities

of one language are activated at one time, or whether this information is language non-
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selective, meaning that in defining the degree of belief that a word of one language has a
specific stress pattern, a bilingual relies on the knowledge of stress pattern distributions
and stress cues of all languages that he/she speaks.
7.4. Concluding statements

In the present thesis, a model of stress assignment in reading based on the ideas of
Bayesian probabilities was advanced. The process of stress assignment is viewed within
this model as the process of estimation of posterior probabilities of stress patterns. In the
computation of posterior probabilities of stress patterns, the model adjusts prior
probabilities of stress patterns reflecting the frequency of stress patterns in the language
by considering various non-lexical sources of evidence for stress. This model was
successfully tested in its ability to predict stress patterns in Russian disyllabic words and
to simulate stress assignment performance of native speakers of Russian. One of the
greatest advantages of the Bayesian model of stress assignment over all other existing
models is that unlike other models that predict “average” behavior, the Bayesian model
can provide simulations of individual differences. In fact, the model was not only able to
predict the most common stress pattern response to a word, but also the

difficulty/likelihood of assigning that stress pattern by individual readers.
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Appendices
Appendix A
Russian Disyllabic Words Used in Study 2

Adjectives:
Trochaic Stress:
Consistent: BUJHOM, IMKOM, XXAJIEH, TPYJIEH, KPATKOM, JIEBOM,
PE3KOM, CJIAILIE, TOYEH, OCTPOM, ACHOM, BEJIEH, 'TTABHOM, 3EJIEH,
I'OPJ1OM, YECTEH; Inconsistent: BABKWUH, BECEJI, BJIM30K, JEP30K, )XAJIOK,
KPATOK, KPEIIOK, MOJIO/I, POBOK, CJIAZIOK, TOHOK, Y30K, SPOK, 'MBOK,
YEPTOB, BA30K
Iambic Stress:
Consistent: KPACHB, HETIPAB, PEBHUB, 3AUAT, TOPBAT, CYPOB, CMEIIIOH,
TPYCJIUB, TSKEJI, YHBUL, BOT'AT, BOJTJUB, BBICOK, 3AXKAT, I'NTYBOK,
EJIVH; Inconsistent: IEUHOU, YMHBI, SICHA, BbJIOM, UY2KOM, PABHBI,
CBEXO, BJIATUM, XXNJIOM, 3ABUT, I'YCTOM, IYPHA, 3EMHOM, KPYTOM,
JIET'KU, KPYTOM
Nouns:
Trochaic Stress:
Consistent: BAJIbCbl, BEKOM, KPOBJIN, KPEMOM, MUCKH, )KAHPOM, CJIOT'A,
TECTS, AKIIUU, IBKU, PYCJIOM, BACHIO, BJIAHKH, BAJIOM, ' AVIKH,
UYKYU; Inconsistent: OTPOK, SAJ10B, TPAMOT, 'AZIOB, UEXOB, JIN®TOB,
MACOK, PbIBMH, CBO/10OB, ITOIIJIMH, BETOK, BBIIIJIAT, BECOB, ) KXECTOB,

KPECEJL ITPUCTAB
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Iambic Stress:

Consistent: 3ABAB, BOPO/I, I')/TYBUH, bbIJIMH, YNHOB, IEBYAT, X XJIOB,
3ACTAB, ITPYXXUH, KPYXKOB, JIOITAT, MOPIIIMH, CTAHKOB, KABWH, OBEII,
FOHIIOB; Inconsistent: BEPXU, AJIPOM, BAILLIKE, TEPBOM, UVYJIKU, JIOTKH,
MENIKH, CTAHKA, TUCKHU, UCTLHOM, IBOPbI, BO3HU, AYbbI, ) KUJIbIIA,
KPIOUYKMH, KPHIJIOM

Verbs:

Trochaic Stress:

Consistent: KPYTAT, JIE3JIO, JISIXKEIb, CBUJIN, IOMHU, AXHVYJI, E3JAT,
BUJIO, 'OHAT, I'PBI3JIO, UYEIID, BBIPIHH, BAJIAT, BYPKHEIID, XXAPAT,
KIIAJIU; Inconsistent: E3JIWJI, TUBHET, BBIIIEN, JUINJINCh, YUCTUJI, BEIAJI,
BOIOT, AVIOAT, XXAXIET, TIPBIT'AJI, KIIFOHYTh, HIOXAJI, MEYET, CHUMET,
TOITAJI, AXAJI

Iambic Stress:

Consistent: IBUTbH, 'AJJAJI, BPOCAJIL, TOCTWJI, YUHWNJI, MOJINJI, PEBEJI,
CTUPAIJI, TOPYAT, YBPAJI, 3AIEJI, BU3KAJI, BEPEUb, 3ABWJI, TPEIIAJI,
[TPOLLAJT; Inconsistent: BE3JIW, BY I, BEJIAT, KITAJIWA, BUHAT, IIJIECTU,
JIET'JIO, MAHU, CHECTU, UKHVYJI, I1IOJI3THU, FOJIUT, BOMBAT, T'OPAT,

BJIFOCTU, HAPUT
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Appendix B

Russian Disyllabic Words Used As Stimuli in Pilot Experiment Of Study 3

AKTEP, BACHU, BAILIMAK, BEJIPY, BOJIPOCTb, BYBJIMK, BYTPOM, BY/IHH,
BYKJIET, BBICTPO1, BEJIPY, BEKTOP, BECHA, BETPE, BUCKOB, BUTPAXK,
BUXPU, BULLIHS, BMECTO, BOBJIA, BOX/IEI, BOCTOK, BOCKOM, TBO3/14,
TEKTAP, TUIICA, THE3/E, TOCTSIM, TYCJISIP, AECTIOT, IUKTAT, IUCKE,
JIOBPOM, JIOXKJIU, IOCKA, JYBJISDK, IYIUIO, EBPE, E3/IUJL, )KAX/IET,
JKECTOB, 3ABTPA, 3BE3/IE, UTPATD, UT'JIA, U3BEPT, CJIAM, UCKPA,
KAJIPBL, KAYXKIBIIN, KASHA, KAKTYC, KATLTIO, KACKH, KAILLJISUL, KEJIPA,
KHUCJIO, KOBPA, KOBPOM, KO3JIbI, KOITHBI, KOCTEN, KOTJIET, KYKJIBL,
JIABKY, JINICTOM, JIOBKOCTb, MATHUT, MACKU, MATPOC, METPAX,
MEIIKATb, MUKCEP, MOKPBII, MYJIPBIX, MYCKAT, HET'PBLI, HUTPAT,
OKTSIEPB, OCTPSIK, [TATPOH, TIECKOB, IECTPBIN, IMHTBUH, TTIPOCIIEKT,
TIYJIPA, PE®PEH, PE3BBII, CABJISI, CBUCTOM, CMOTPH, CTIA3MBI, TABJIMIL,

TECTS, YI'JIOM, ®AKTOM, XBOCTbBI, XPABPOCTD, AbJIOHb, DCKI3
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Appendix C

Russian Disyllabic Words Used As Stimuli in Study 4

KPAEB, CIIAIOT, 3ABAB, KABUH, UABAH, ATAT, 3AXKAT, CAXAJL, HAUJET,
TAJIOH, AJIbBOM, KAHAB, KAHAT, ITAPUT, 3ACAJ], KPACUB, PACITA/I,
®ACOH, 3ACTAIJL, KACTET, ®AIIN3M, JEBYAT, INIEBAJI, BEI'JIELL, BEAET,
IIEJIEBP, TEJIELL, BEJIbS, BEPEUB, BEPEIID, BEPIIIAT, CBEPJIMTH, ITECKOB,
[IBETKMH, XXPELIOB, ITEUAJIb, TPEIIAJI, KJIMEHT, CUATh, [TIPUBPATH, ITMBKO,
KWUJAJL JU3HYTh, JUVIMHY, UHBIM, ITMHATH, YUWHWJI, IIUTIE]L, TTUPAT,
CTUPAIJL, UCTLIOM, LINTAT, JIMLIEU, IIPUUY ]I, KAIIIKA, TPOBHUL], COJIPATh,
BOXJIIO, JOXJIE, KOJIEC, ITPOJIMB, CTBOJIBI, TOJIUKH, BOJITJINB,
BJIOHJIVH, MOHTAX, BOPUVYH, T'OPSAT, JBOPIIE, MOPIIIMH, TOPBAT,
KOPCET, EPOCAJI, I[TPOCIIEKT, TOCTUJI, KOCTPOB, MOTAJI, OTEK, OTUET,
BPOILIIOP, BYAJIb, JIVEPAB, YEPAJL, YT AP, JTYKOK, TIPYKUH, UYKOM,
PYKOI, UYJIAH, YHbBUI, KYIIATb, )KXYPUAT, TPYCJIMB, TPYCTUTh, CYCTAB,
KPBIJIOM, PBIYAT, PBIYAT, CMBIUYOK, STAII, FOHIIOB, ITJIACAJL, CTPSIXHYTh,
MSYOM, TEPIUTIO, 3BEPLE, KPUBBIX, POJIUTH, ITIOJI3TU, KOHTPAKT,
[IOITETh, TPYJIOB, JIPYXKUTb, ITYTEN, PA3I'VJI, CKAJIA, 3ATIOP, 3ACTHIJI,
JIEXKUT, TEPATh, BECTEN, CMEIIHA, JIUCTY, BO3BPAT, KOJIEL], MOJIMJI,
[TPOJIE3Th, TOHHEJIb, JKOHT'JIEP, TJIOTOK, OTIbI, CYMEJI, MBIUAT,
KJIIOYA, TA3ET, PBAHVIJI, )KAPA, CIIACTUCH, IEBOIII, CJIE3AH, HEIIPAB,
JIE®EKT, CIIEILIMJI, BU3XXAJI, OTHEM, CMOJIYATD, KOTJIBI, XKYIOT, TYBAM,

KYPU, TJIVXOU, BPAJIA, AHTEHH, PEJIUC, CEJJIO, CEEXXATh, CTPEJIOK,
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MECHTbD, B3UPATb, JIMIE, BOMHOM, TOHELL, BOIINJI, KOITHA, BOPILIA,
IJIYBUH, IIYMOK, CYPOB, IOJIUT, PABHUH, BPEJIUTh, BPE3EHT, PEMHEM,
CJIEITIBIM, BECAM, CTOJIA, ITYT'AJI, CKJIAJTHOM, KATKOB, EJIE, JIOBPOM,
IIOJIBOJ1, XOJIOII, BAT'OP, KOPA, IJIPOM, KA3HE, KPACE, EJIUH, IVIECTH,
JKWJIOM, 3AUAT, CTPAILIHBI, UMAM, PABHBI, IT0JIOC, OPY, KPYTOM, 3EPHE,
JKWJIA, CTOITIAM, BOJIXBBI, IVIOTY, 3BOHUILIL, COCKU, MYKE, SICHA,
CTAHKA, COHET, UCKPA, BUPIII, MOPJIBBI, JIOTKH, MBICOK, MAHH,
[IOPTHI, BEJIOCh, JINDTOB, KOJIU, JIEJIN, JEHIIUK, OTPOK, CTPOEB,
CJIOT'A, BAJIAX, TEPBOM, JIECY, CITMHBI, BOPOJI, YIJIU, CKJIAZLY, TTOJIKY,
XJIOIIOK, YACA, AXAJIL, KOITHBI, YXE, UPOJI, TOHST, CXBATHUT, IIPUCTAB,
I'BO3/IUK, POCUEPK, BEJIAJI, THBOK, CTUJIIO, TOITAJL, POIILY, TYIIIH,
I'PBI3JIO, KJIETOK, INTATHOM, CTATYH, TOJDKHBIM, ITYXY, ITPOBO/I,
CAPXA, CKBEPHbI, ITOIIJIOM, TUISICKH, BAJIST, CAMBIX, JIAPUT, HUILIEM,
BOWH, JOBHOM, JOMY, TIOIIJIVH, TOILLEN, CYMA, ITITOM, MA3AJI,
®PA3A, KAIIJTIO, IIAPTHI, XATE, BJIE3JIU, BEKOM, CEJILCKOM, CIIEHOM,
MIIEHHBIN, KPECEJ, MEXOM, YEXOB, BJIN30K, B3BOJIE, POJIA, KOMKAX,
TPOMKA, CKPOMHO, HOCHIIIb, JJOCKY, OTPACJIb, TPYBOH, TPY]TY,
CKVJIE, KPYTST, PYXJIS/Ib, MBICA, CJIBIIIIAJI, BABBEH, BITAJIA, MACCE,
CTPACTHBIX, BEJIEH, CPEJIHE, CJIEJIAJI, BEUHBIM, THUJIM, MUJIO, BBOJIUT,
POKA, TOMBI, TOHYT, II[IYKHU, TPYITY, LIIKYPKH, B3SITKH, )KAJIEH, IPAJIH,
[TIAPA, BEI'JIO, BEPHBIX, UT'PbI, XWJIBIN, TUCThS, CTOEK, MOIIHBIM,
MVYKEM, Y3KHX, CbIPOM, CThIUKA, TSXKEA, CBA3SX, JTASTh, TPABJIN,

TJIABHOM, JIABILINIA, PABEH, TPABJIS, JTAJTHO, CTAINN, CBAJIBBE,
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BJIAYKHOM, XKAXJIET, ITIPA3JHUK, 3AULIEB, TAKU, AKLIMI, [JIAKAJIL,
JKAJIKM, 3AJIIIBI, MAJIBYMK, ITAJIBMA, TPAMOT, MAMIH, PAMKA,
IIIPAMOM, JIAH/IbIII, BJIAHKH, CTPAHHBIM, BAHTUK, IITAIIKAX, JKAPSIT,
BAPXH, TIACXE, KACKH, YACTO, KPATOK, KPATKOM, TPATA, XBATKOH,
JIAUE, TIJTAYA, BAIIIHS, CJIAILE, HEBA, IEBOM, BPEBHA, JIETOTh,
BEJJHOCTb, MEJIA, PEXY, CBEXbIX, JIE3J1IO, I'PE3BI, E3/IUJI, E3JIAT,
3BE3/IAX, PEVCBI, CMEJIBIX, IIEJIOCTD, JKEJITBIM, BPEMS, IITEHHOCTb,
JKEHCKUX, JIEHTHI, LIEITBbIO, BEPEH, JIEP3OK, MEPA, CEPA, CEPBBI,
JIEPXKUM, YEPTOB, KPECJIE, [IECEH, BCIUIECKH, YECTEH, CBETCKHH,
IIIE®OM, BUJTHOM, KHMXKAX, CHU3UT, BCKPUKHYJI, ®PUJIBMOM,
3PUMBIN, IbIVHY, IPUHIIBI, JIMPUK, MUCKH, CITUCKAM, MHUCTEP,
YUCTUJI, BUTBIX, HUTKE, IJIUTKW, PUTMOM, BUTHCS, IITUYKU, BUILIHU,
[IPOBKE, POBKMM, KOBPHK, ITOBO/I, BPOJIMIM, BOJTHOM, BXOJIOM, JIOJIKY,
COJIA, CXOJAT, IPOXKH, KOXKEM, ITO3bI, CTPOMHOCTb, CPOKH, MOJIO/,
JIOJIJIAP, TPOMOM, JIOMOM, ITIOMHH, TOHHA, TOHOK, OITbIT, CTBOPKH,
CIIOPTA, CHOCHO, BOCKOM, ITPOCHBE, KPOTOCTb, COTHU, CMOTPHIIIb,
B3JI0XOB, TOUKA, BYIHU, CJIYXKAT, TPY3HBIM, BYJIKA, CTYJIA, TKHYJIA,
JIYMA, ITYHKTAM, XMVPbIM, KYPTKA, BKYCHO, MYTHOM, CKYYHOM,
IITYYKH, ITYUIKE, PEIBVH, B3PbIBY, CCBIJIKA, BBITVIAT, BBITIEN, BBITINUB,
CBITHBIM, BBIIIKA, KPBIIIAM, ITBIIITHO, KJIFOHYTh, HIOXAJI, BA3KUN,

CHSUJIM, TIPSIHBIN, IPSIHBIO, MSICA, 3TS, KJISIYA, IIPSYELLD, ITEYATH



Actual Stress refers to the stress pattern that a word has in the language (1 = trochaic

stress; 2 = iambic stress). Predicted Stress refers to the stress pattern that the Bayesian
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model of stress assignment predicted for a word (1 = trochaic stress; 2 = iambic stress; 0

= no conclusive prediction is made). Assigned Stress1 refers to the proportion of answers

with trochaic stress given by participants. Predicted Stress1 refers to the proportion of

answers with trochaic stress predicted by the model. Assigned Stress2 refers to the

proportion of answers with iambic stress given by participants. Predicted Stress2 refers to

the proportion of answers with iambic stress predicted by the model. Degree of

Uncertainty refers to the strength of the belief that a factual stress pattern is the correct
one as estimated by the model (0 = complete belief; 1 = complete disbelief). Error rate

refers to the proportion of responses with incorrect stress being assigned to a word.

Word Actual Assigned Assigned Degree of

Stress Stress1 Stress2 Uncertainty Error Rate

(Predicted  (Predicted (Predicted

Stress) Stress1) Stress2)
CBOJIHBIH 1(1) 0.97 (1.00)  0.03(0.00) 0.00 0.03
MECTHBIN 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
CY/HBIH 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
OpaHHBII 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
POCTBIT 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
TOYHOCTb 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
JIFO THBIN 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
npasaHocts 1 (1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
30pPKOCTh 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
JIOBKOCTb 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
pas3HbIi 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
TTFOKU I 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
CUHUHA 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00
CTEepIKHEM 1(1) 1.00 (1.00)  0.00 (0.00)  0.00 0.00



OypKHeUIb
KJIACCOM
JISDKEIb
PYCCKHUX
TYJIKO
BBIIIIET
TYCKJIBIX
KOHYHK
MPOYHBIX
OyHKep
JABHBIX
MayKoi
BHATHO
TBEPIOM
JAMCKHUX
pHUCKa
JIOXKKH
KUPHOM
MpaBoOM
CTPOUKY
BCTPEUYHBIX
YCTHBIX
XPYIKOU
(bnanTOM
CTCHKY
MJTQIIIHIM
MpaYHbIM
YaIek
rnmayex
FOKHOM
BHYYEK
JTYHKHU
KBacoM
SICHOM
0aOKuH
OJ1r010M
KpOBJH
pyciom
ruOHeT
Opaics
KJISUICS

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(1)

1.00 (0.99)
1.00 (0.99)
1.00 (0.99)
1.00 (0.99)
1.00 (0.99)
0.97 (0.99)
1.00 (0.99)
1.00 (0.98)
1.00 (0.98)
0.97 (0.98)
1.00 (0.98)
0.91 (0.98)
1.00 (0.98)
0.91 (0.98)
1.00 (0.98)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
0.97 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.97)
1.00 (0.96)
1.00 (0.96)
0.74 (0.96)
0.91 (0.96)
1.00 (0.96)
1.00 (0.96)
1.00 (0.96)
0.91 (0.96)
1.00 (0.96)
0.94 (0.96)
1.00 (0.96)
1.00 (0.96)
0.97 (0.96)

0.00 (0.01)
0.00 (0.01)
0.00 (0.01)
0.00 (0.01)
0.00 (0.01)
0.03 (0.01)
0.00 (0.01)
0.00 (0.02)
0.00 (0.02)
0.03 (0.02)
0.00 (0.02)
0.09 (0.02)
0.00 (0.02)
0.09 (0.02)
0.00 (0.02)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.03 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.03)
0.00 (0.04)
0.00 (0.04)
0.26 (0.04)
0.09 (0.04)
0.00 (0.04)
0.00 (0.04)
0.00 (0.04)
0.09 (0.04)
0.00 (0.04)
0.06 (0.04)
0.00 (0.04)
0.00 (0.04)
0.03 (0.04)

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04

0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.03
0.00
0.09
0.00
0.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.26
0.09
0.00
0.00
0.00
0.09
0.00
0.06
0.00
0.00
0.03
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HUIATHCS
CTaBHIIIb
IenKa
CKAThI
BHEIIIHE
TaHKa
CIIOKHBIX
HIEM
CBEUKOH
cMeTe
crapra
Ma4yTa
chepax
yeT
KYXHS
bupMbI
00XKBHX
KOUKHU
CITMYKU
Ba)KCH
cTajo
che3na
XJIaMa
3HATHOM
pe3KoM
OparctBe
TEMIIOM
BBLICT
JBIPKHA
1(S111:9%
qyelrb
bocca
KHCJIO
HEpBaM
IITOPHI
TOYCH
ITyTKE
B3HOCKI
KAHPOM

¢bponTe
narna

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(1)

1.00 (0.96)
0.94 (0.95)
0.91 (0.95)
1.00 (0.95)
1.00 (0.95)
0.97 (0.95)
1.00 (0.95)
1.00 (0.94)
1.00 (0.94)
0.91 (0.94)
1.00 (0.94)
1.00 (0.94)
0.91 (0.94)
0.88 (0.94)
1.00 (0.93)
0.97 (0.93)
1.00 (0.93)
1.00 (0.93)
1.00 (0.93)
1.00 (0.93)
1.00 (0.93)
0.91 (0.93)
0.94 (0.93)
0.88 (0.92)
1.00 (0.92)
0.88 (0.92)
0.91 (0.92)
1.00 (0.92)
1.00 (0.92)
0.91 (0.92)
1.00 (0.91)
0.94 (0.91)
1.00 (0.91)
1.00 (0.91)
1.00 (0.91)
1.00 (0.91)
1.00 (0.91)
1.00 (0.91)
1.00 (0.91)
0.91 (0.91)
1.00 (0.90)

0.00 (0.04)
0.06 (0.05)
0.09 (0.05)
0.00 (0.05)
0.00 (0.05)
0.03 (0.05)
0.00 (0.05)
0.00 (0.06)
0.00 (0.06)
0.09 (0.06)
0.00 (0.06)
0.00 (0.06)
0.09 (0.06)
0.12 (0.06)
0.00 (0.07)
0.03 (0.07)
0.00 (0.07)
0.00 (0.07)
0.00 (0.07)
0.00 (0.07)
0.00 (0.07)
0.09 (0.07)
0.06 (0.07)
0.12 (0.08)
0.00 (0.08)
0.12 (0.08)
0.09 (0.08)
0.00 (0.08)
0.00 (0.08)
0.09 (0.08)
0.00 (0.09)
0.06 (0.09)
0.00 (0.09)
0.00 (0.09)
0.00 (0.09)
0.00 (0.09)
0.00 (0.09)
0.00 (0.09)
0.00 (0.09)
0.09 (0.09)
0.00 (0.10)

0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.10

0.00
0.06
0.09
0.00
0.00
0.03
0.00
0.00
0.00
0.09
0.00
0.00
0.09
0.12
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.09
0.06
0.12
0.00
0.12
0.09
0.00
0.00
0.09
0.00
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.00
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donme
YIeHaM
IIKOJIOM
TECTS
IOYBE
MpEeKHEN
TpyZEeH
Horu
ropaoM
SIBKU
CKJIOHHBI
cropax
TUTPBI
MBIIIIITY
3HaKOM™
ryoka
KJIMHOM
3JICIIHEH
HEKOI
MIETTKOM
HU3KI*
Ka3yc
CEKTa
CKOIIOM
om0
CIIa3MBbI
[IAIIKH
3€peH
JPOTHET
OKPHK
napke
CKayer
HOKHBI
BBIAIHN

b 91 E:1) (6]
MIPECCHI
Oanma
BaJIUM
manu*
BBDKHII
MCUYET

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(1)

0.88 (0.90)
0.91 (0.90)
0.94 (0.90)
0.97 (0.90)
1.00 (0.90)
0.97 (0.90)
0.97 (0.89)
1.00 (0.89)
0.97 (0.89)
0.97 (0.89)
1.00 (0.89)
1.00 (0.89)
1.00 (0.89)
0.82 (0.89)
0.85 (0.89)
1.00 (0.88)
0.97 (0.88)
1.00 (0.88)
0.85 (0.88)
0.91 (0.88)
0.74 (0.88)
0.97 (0.88)
1.00 (0.88)
0.85 (0.88)
1.00 (0.87)
1.00 (0.87)
0.97 (0.87)
1.00 (0.87)
1.00 (0.87)
0.94 (0.87)
0.94 (0.86)
0.97 (0.86)
1.00 (0.86)
1.00 (0.86)
0.59 (0.85)
1.00 (0.85)
1.00 (0.85)
0.94 (0.85)
0.91 (0.85)
1.00 (0.85)
0.76 (0.84)

0.12 (0.10)
0.09 (0.10)
0.06 (0.10)
0.03 (0.10)
0.00 (0.10)
0.03 (0.10)
0.03 (0.11)
0.00 (0.11)
0.03 (0.11)
0.03 (0.11)
0.00 (0.11)
0.00 (0.11)
0.00 (0.11)
0.18 (0.11)
0.15 (0.11)
0.00 (0.12)
0.03 (0.12)
0.00 (0.12)
0.15 (0.12)
0.09 (0.12)
0.26 (0.12)
0.03 (0.12)
0.00 (0.12)
0.15(0.12)
0.00 (0.13)
0.00 (0.13)
0.03 (0.13)
0.00 (0.13)
0.00 (0.13)
0.06 (0.13)
0.06 (0.14)
0.03 (0.14)
0.00 (0.14)
0.00 (0.14)
0.41 (0.15)
0.00 (0.15)
0.00 (0.15)
0.06 (0.15)
0.09 (0.15)
0.00 (0.15)
0.24 (0.16)

0.10
0.10
0.10
0.10
0.10
0.10
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.13
0.13
0.13
0.13
0.13
0.13
0.14
0.14
0.14
0.14
0.15
0.15
0.15
0.15
0.15
0.15
0.16

0.12
0.09
0.06
0.03
0.00
0.03
0.03
0.00
0.03
0.03
0.00
0.00
0.00
0.18
0.15
0.00
0.03
0.00
0.15
0.09
0.26
0.03
0.00
0.15
0.00
0.00
0.03
0.00
0.00
0.06
0.06
0.03
0.00
0.00
0.41
0.00
0.00
0.06
0.09
0.00
0.24
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BEIbMY
HOMED
BOJIbHOMN
KIIyOOM
Larist
BeTpa*
pydKa
CBapkKa
JTBDKA
9yKUH
poxa
CXOXKECTh
peuke
crpocy
apa
Myxa
yeka*
axHyI
KJIaJIH
qast
¢daza
napom™
J0JIre
rpbI3ia
Maciy
CTPOrUM
Kpas*
Cyubs
KYKHII
MBLIOM
JTUKOM
OCTPOM
BaJIOM
CU3BIM
3BYKaM
KpeMOM
TOPHOMU
ropJse
BUJLITBI
rHeBa
BEue

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(1)

1.00 (0.84)
1.00 (0.84)
0.85 (0.84)
0.97 (0.84)
1.00 (0.84)
0.76 (0.84)
1.00 (0.84)
1.00 (0.84)
1.00 (0.83)
1.00 (0.82)
1.00 (0.81)
1.00 (0.81)
1.00 (0.81)
0.88 (0.80)
1.00 (0.80)
1.00 (0.80)
0.65 (0.80)
0.97 (0.79)
0.88 (0.79)
1.00 (0.78)
1.00 (0.78)
0.82 (0.78)
0.88 (0.77)
1.00 (0.77)
0.91 (0.77)
1.00 (0.77)
0.56 (0.77)
0.91 (0.77)
1.00 (0.77)
1.00 (0.77)
0.97 (0.76)
0.85 (0.76)
0.97 (0.76)
0.76 (0.76)
1.00 (0.76)
1.00 (0.76)
1.00 (0.76)
0.85 (0.76)
0.97 (0.76)
1.00 (0.75)
0.91 (0.75)

0.00 (0.16)
0.00 (0.16)
0.15 (0.16)
0.03 (0.16)
0.00 (0.16)
0.24 (0.16)
0.00 (0.16)
0.00 (0.16)
0.00 (0.17)
0.00 (0.18)
0.00 (0.19)
0.00 (0.19)
0.00 (0.19)
0.12 (0.20)
0.00 (0.20)
0.00 (0.20)
0.35 (0.20)
0.03 (0.21)
0.12 (0.21)
0.00 (0.22)
0.00 (0.22)
0.18 (0.22)
0.12 (0.23)
0.00 (0.23)
0.09 (0.23)
0.00 (0.23)
0.44 (0.23)
0.09 (0.23)
0.00 (0.23)
0.00 (0.23)
0.03 (0.24)
0.15(0.24)
0.03 (0.24)
0.24 (0.24)
0.00 (0.24)
0.00 (0.24)
0.00 (0.24)
0.15(0.24)
0.03 (0.24)
0.00 (0.25)
0.09 (0.25)

0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.17
0.18
0.19
0.19
0.19
0.20
0.20
0.20
0.20
0.21
0.21
0.22
0.22
0.22
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.25
0.25

0.00
0.00
0.15
0.03
0.00
0.24
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00
0.35
0.03
0.12
0.00
0.00
0.18
0.12
0.00
0.09
0.00
0.44
0.09
0.00
0.00
0.03
0.15
0.03
0.24
0.00
0.00
0.00
0.15
0.03
0.00
0.09
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CKaxyT
TOJIIIA
KOHHOM
CHMBOJI
Typa
XpaMoM
Oa3oit
TPOHY
coun
pexe
Kjana
MaTdeH
BSI30K
mapgom
JIBEPIIBI
JBIMOM
1eHy
crosaT*
ycKa
roga*
nBera*
SA7I0B
corm™®
JeJie
Y10
HOTH*
Mo3ra
HYXJIbI*
Oopra
TéTEH
msITHA*
TOHOP
nonry*
0acHIO
Bose*
CTpaxu
BOY
JyTax
KyApH
03y
o011eCcTB

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
(D)
1(1)

0.97 (0.74)
0.82 (0.74)
0.82 (0.73)
1.00 (0.73)
0.74 (0.73)
1.00 (0.73)
0.82 (0.73)
1.00 (0.73)
1.00 (0.72)
1.00 (0.72)
0.47 (0.72)
0.97 (0.71)
0.94 (0.71)
0.53 (0.70)
1.00 (0.70)
1.00 (0.70)
1.00 (0.69)
0.65 (0.69)
0.82 (0.69)
0.56 (0.68)
0.50 (0.68)
0.85 (0.67)
0.97 (0.67)
1.00 (0.67)
0.91 (0.67)
0.94 (0.67)
0.71 (0.66)
0.56 (0.66)
0.47 (0.65)
0.91 (0.65)
0.91 (0.64)
0.82 (0.64)
0.68 (0.63)
1.00 (0.63)
1.00 (0.62)
0.91 (0.62)
0.97 (0.62)
0.65 (0.61)
0.94 (0.61)
0.97 (0.59)
0.97 (0.59)

0.03 (0.26)
0.18 (0.26)
0.18 (0.27)
0.00 (0.27)
0.26 (0.27)
0.00 (0.27)
0.18 (0.27)
0.00 (0.27)
0.00 (0.28)
0.00 (0.28)
0.53 (0.28)
0.03 (0.29)
0.06 (0.29)
0.47 (0.30)
0.00 (0.30)
0.00 (0.30)
0.00 (0.31)
0.35 (0.31)
0.18 (0.31)
0.44 (0.32)
0.50 (0.32)
0.15(0.33)
0.03 (0.33)
0.00 (0.33)
0.09 (0.33)
0.06 (0.33)
0.29 (0.34)
0.44 (0.34)
0.53 (0.35)
0.09 (0.35)
0.09 (0.36)
0.18 (0.36)
0.32 (0.37)
0.00 (0.37)
0.00 (0.38)
0.09 (0.38)
0.03 (0.38)
0.35(0.39)
0.06 (0.39)
0.03 (0.41)
0.03 (0.41)

0.26
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.28
0.28
0.28
0.29
0.29
0.30
0.30
0.30
0.31
0.31
0.31
0.32
0.32
0.33
0.33
0.33
0.33
0.33
0.34
0.34
0.35
0.35
0.36
0.36
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.41
0.41

0.03
0.18
0.18
0.00
0.26
0.00
0.18
0.00
0.00
0.00
0.53
0.03
0.06
0.47
0.00
0.00
0.00
0.35
0.18
0.44
0.50
0.15
0.03
0.00
0.09
0.06
0.29
0.44
0.53
0.09
0.09
0.18
0.32
0.00
0.00
0.09
0.03
0.35
0.06
0.03
0.03
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rpadbr®
KJIIOHET
OOKOM
cenma*
KOCBHI™*
Oanna
xony*
ciryxax
pa3BUT
nuIein
KaIIsT
’KECTOB
ooru
CBHCTOM
neHy
CHUMET
3eNeH
THKATb
Karry
KpemnokK
pobok
SIPOK
YKaJIOK
MaJoK
clagoK
MOJJI0M
raJioB
TpbITal
Ooypu*
moxu™*
0abox
3Men*
cyabbax
CIJIa3UTh
CBOJIOB
eneu*
TpyOOK
MephsIxX
BOIOT
aKTOB
MIbSTHUIL

1(D)
1(D)
1(D)
1(D)
1(D)
1(D)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
1.(0)
12
12
12
12
12
12
12
1(2)
12
12
12
12
12
12
12
1(2)
12
12
12
12
12

0.76 (0.59)
0.94 (0.59)
0.94 (0.59)
0.59 (0.58)
0.76 (0.56)
0.94 (0.56)
0.79 (0.53)
0.97 (0.53)
0.59 (0.53)
0.91 (0.52)
0.94 (0.52)
0.88 (0.49)
0.94 (0.49)
0.91 (0.49)
0.91 (0.48)
0.97 (0.48)
0.85 (0.47)
0.50 (0.47)
0.79 (0.47)
0.97 (0.46)
0.85 (0.41)
0.94 (0.41)
0.94 (0.40)
0.74 (0.40)
0.91 (0.40)
0.82 (0.39)
0.97 (0.39)
0.94 (0.37)
0.68 (0.37)
0.68 (0.36)
0.91 (0.36)
0.71 (0.33)
0.97 (0.33)
0.94 (0.32)
0.76 (0.30)
0.44 (0.29)
0.88 (0.26)
0.91 (0.26)
0.82 (0.26)
0.94 (0.26)
0.91 (0.25)

0.24 (0.41)
0.06 (0.41)
0.06 (0.41)
0.41 (0.42)
0.24 (0.44)
0.06 (0.44)
0.21 (0.47)
0.03 (0.47)
0.41 (0.47)
0.09 (0.48)
0.06 (0.48)
0.12 (0.51)
0.06 (0.51)
0.09 (0.51)
0.09 (0.52)
0.03 (0.52)
0.15 (0.53)
0.50 (0.53)
0.21 (0.53)
0.03 (0.54)
0.15 (0.59)
0.06 (0.59)
0.06 (0.60)
0.26 (0.60)
0.09 (0.60)
0.18 (0.61)
0.03 (0.61)
0.06 (0.63)
0.32 (0.63)
0.32 (0.64)
0.09 (0.64)
0.29 (0.67)
0.03 (0.67)
0.06 (0.68)
0.24 (0.70)
0.56 (0.71)
0.12 (0.74)
0.09 (0.74)
0.18 (0.74)
0.06 (0.74)
0.09 (0.75)

0.41
0.41
0.41
0.42
0.44
0.44
0.47
0.47
0.47
0.48
0.48
0.51
0.51
0.51
0.52
0.52
0.53
0.53
0.53
0.54
0.59
0.59
0.60
0.60
0.60
0.61
0.61
0.63
0.63
0.64
0.64
0.67
0.67
0.68
0.70
0.71
0.74
0.74
0.74
0.74
0.75

0.24
0.06
0.06
0.41
0.24
0.06
0.21
0.03
0.41
0.09
0.06
0.12
0.06
0.09
0.09
0.03
0.15
0.50
0.21
0.03
0.15
0.06
0.06
0.26
0.09
0.18
0.03
0.06
0.32
0.32
0.09
0.29
0.03
0.06
0.24
0.56
0.12
0.09
0.18
0.06
0.09
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BETOK
3BepHU
KJIEUTh
JUTAIIACE
OecoB
TIPUHST
TymiaT
BCTPETUTH
MacoK
CKPHUIIOK
Becel
BCHINTaTh*
THCKaJ
JETIX
Y30K
JIOLIMaH
TasITh
pe3Hs
BBICOK
IpYKKE
MeIKu*
HEXHA
HOYHHUK
TUCKU
MUHYT*
JOKAHCA
Kopma*
riaaza*
BEJIAT
JIETUIID
Omu3Ku*
rpo3e
MBLIBIA
IUTAHET
IITaHBI
MEYHOM
YMHBI
oonpImuM*
VKYC
JIF000M
TyOBI

12
12
12
1(2)
12
12
12
12
12
12
12
1(2)
12
12
1(2)
12
12
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D

0.79 (0.23)
0.94 (0.22)
1.00 (0.21)
1.00 (0.21)
0.76 (0.20)
0.65 (0.20)
0.85 (0.18)
0.85 (0.18)
0.79 (0.17)
0.74 (0.17)
0.71 (0.17)
0.59 (0.15)
0.74 (0.13)
0.97 (0.12)
0.97 (0.12)
0.82 (0.10)
0.85 (0.05)
0.21 (0.92)
0.24 (0.90)
0.76 (0.89)
0.50 (0.86)
0.38 (0.86)
0.15 (0.85)
0.38 (0.85)
0.18 (0.84)
0.50 (0.84)
0.35 (0.83)
0.18 (0.81)
0.29 (0.81)
0.09 (0.81)
0.32 (0.81)
0.24 (0.81)
0.24 (0.80)
0.15 (0.79)
0.09 (0.78)
0.18 (0.78)
0.18 (0.77)
0.15 (0.77)
0.26 (0.77)
0.21 (0.73)
0.26 (0.73)

0.21 (0.77)
0.06 (0.78)
0.00 (0.79)
0.00 (0.79)
0.24 (0.80)
0.35 (0.80)
0.15 (0.82)
0.15 (0.82)
0.21 (0.83)
0.26 (0.83)
0.29 (0.83)
0.41 (0.85)
0.26 (0.87)
0.03 (0.88)
0.03 (0.88)
0.18 (0.90)
0.15 (0.95)
0.79 (0.08)
0.76 (0.10)
0.24 (0.11)
0.50 (0.14)
0.62 (0.14)
0.85 (0.15)
0.62 (0.15)
0.82 (0.16)
0.50 (0.16)
0.65 (0.17)
0.82 (0.19)
0.71 (0.19)
0.91 (0.19)
0.68 (0.19)
0.76 (0.19)
0.76 (0.20)
0.85 (0.21)
0.91 (0.22)
0.82 (0.22)
0.82 (0.23)
0.85(0.23)
0.74 (0.23)
0.79 (0.27)
0.74 (0.27)

0.77
0.78
0.79
0.79
0.80
0.80
0.82
0.82
0.83
0.83
0.83
0.85
0.87
0.88
0.88
0.90
0.95
0.92
0.90
0.89
0.86
0.86
0.85
0.85
0.84
0.84
0.83
0.81
0.81
0.81
0.81
0.81
0.80
0.79
0.78
0.78
0.77
0.77
0.77
0.73
0.73

0.21
0.06
0.00
0.00
0.24
0.35
0.15
0.15
0.21
0.26
0.29
0.41
0.26
0.03
0.03
0.18
0.15
0.21
0.24
0.76
0.50
0.38
0.15
0.38
0.18
0.50
0.35
0.18
0.29
0.09
0.32
0.24
0.24
0.15
0.09
0.18
0.18
0.15
0.26
0.21
0.26
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MapHON*
KPY>KKOM
JBIpa
XOTAT
Kaiima
CTYyTICHb
OoMOsT
ropax
TOJIITY
TSAHYI
BIOBa
rpexoM
3€MHOM
XOJIMBI
B3PBIBHBIX
MYCTBIX
BHHST
METJIBI
B3sJ1a
OKHE
Taum
any*
KOpHIO*
oop3oin™
BepcTa
KHs3el
cMoJia
T'yCTOM
BO3HU
TPOIIN
TOJIBI*
OOMKH
OBLIOM
doiie
KyKa
BHUCKE
THUJION
MEIIKU
pyouneit
cTpenboa
BEpXHU

2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(D
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(0)
2(2)
22
22
2(2
22
2(2)

0.35 (0.72)
0.15 (0.71)
0.12 (0.71)
0.03 (0.69)
0.32 (0.68)
0.18 (0.67)
0.09 (0.67)
0.09 (0.66)
0.24 (0.66)
0.12 (0.66)
0.09 (0.65)
0.26 (0.64)
0.24 (0.63)
0.15 (0.63)
0.15 (0.62)
0.06 (0.61)
0.06 (0.61)
0.59 (0.60)
0.15 (0.58)
0.03 (0.57)
0.06 (0.56)
0.59 (0.55)
0.53 (0.54)
0.50 (0.54)
0.29 (0.53)
0.38 (0.53)
0.12 (0.53)
0.21 (0.53)
0.32 (0.52)
0.21 (0.52)
0.56 (0.51)
0.15 (0.51)
0.29 (0.51)
0.06 (0.51)
0.29 (0.50)
0.44 (0.44)
0.06 (0.44)
0.21 (0.44)
0.00 (0.43)
0.09 (0.43)
0.32 (0.42)

0.65 (0.28)
0.85 (0.29)
0.88 (0.29)
0.97 (0.31)
0.68 (0.32)
0.82 (0.33)
0.91 (0.33)
0.91 (0.34)
0.76 (0.34)
0.88 (0.34)
0.91 (0.35)
0.74 (0.36)
0.76 (0.37)
0.85 (0.37)
0.85 (0.38)
0.94 (0.39)
0.94 (0.39)
0.41 (0.40)
0.85(0.42)
0.97 (0.43)
0.94 (0.44)
0.41 (0.45)
0.47 (0.46)
0.50 (0.46)
0.71 (0.47)
0.62 (0.47)
0.88 (0.47)
0.79 (0.47)
0.68 (0.48)
0.79 (0.48)
0.44 (0.49)
0.85 (0.49)
0.71 (0.49)
0.94 (0.49)
0.71 (0.50)
0.56 (0.56)
0.94 (0.56)
0.79 (0.56)
1.00 (0.57)
0.91 (0.57)
0.68 (0.58)

0.72
0.71
0.71
0.69
0.68
0.67
0.67
0.66
0.66
0.66
0.65
0.64
0.63
0.63
0.62
0.61
0.61
0.60
0.58
0.57
0.56
0.55
0.54
0.54
0.53
0.53
0.53
0.53
0.52
0.52
0.51
0.51
0.51
0.51
0.50
0.44
0.44
0.44
0.43
0.43
0.42

0.35
0.15
0.12
0.03
0.32
0.18
0.09
0.09
0.24
0.12
0.09
0.26
0.24
0.15
0.15
0.06
0.06
0.59
0.15
0.03
0.06
0.59
0.53
0.50
0.29
0.38
0.12
0.21
0.32
0.21
0.56
0.15
0.29
0.06
0.29
0.44
0.06
0.21
0.00
0.09
0.32
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YUTH
CTeHa
cylaam
EVAIIN
Opycku
code
MUCHMO
CTpyHY
SIBUTH
Oarpom
OJIMHOB
3aMKHYTb
ieKam
MeTaJI
Oynu
LKAy
TOPIIKU
B3TJISTHYTh
pyasr*
mTaboB
CIIFOHOM
010Xy
psaam
JIBOPBI
KPIOUKH
BE3IIU
npocu
¢domnbra
3ape
HaXUM
YIHOB
omoctu
penyt
KypopT
TTyOOK
POIHS
XpeoTy
dypurer
pBIIAT
UKHYI
Bapsr

22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2
22
22
22
22
2(2)
22
22
2(2
22
2(2)

0.00 (0.42)
0.09 (0.41)
0.12 (0.41)
0.06 (0.41)
0.18 (0.41)
0.15 (0.40)
0.00 (0.40)
0.15 (0.39)
0.18 (0.38)
0.15 (0.38)
0.03 (0.38)
0.21 (0.38)
0.32 (0.37)
0.00 (0.36)
0.24 (0.36)
0.12 (0.36)
0.24 (0.35)
0.21 (0.35)
0.41 (0.34)
0.35 (0.34)
0.06 (0.33)
0.06 (0.32)
0.41 (0.32)
0.12 (0.32)
0.15 (0.31)
0.06 (0.30)
0.00 (0.29)
0.15 (0.29)
0.09 (0.29)
0.03 (0.28)
0.26 (0.27)
0.03 (0.27)
0.21 (0.26)
0.00 (0.25)
0.21 (0.25)
0.09 (0.25)
0.00 (0.25)
0.00 (0.25)
0.00 (0.23)
0.21 (0.22)
0.18 (0.21)

1.00 (0.58)
0.91 (0.59)
0.88 (0.59)
0.94 (0.59)
0.82 (0.59)
0.85 (0.60)
1.00 (0.60)
0.85 (0.61)
0.82 (0.62)
0.85 (0.62)
0.97 (0.62)
0.79 (0.62)
0.68 (0.63)
1.00 (0.64)
0.76 (0.64)
0.88 (0.64)
0.76 (0.65)
0.79 (0.65)
0.59 (0.66)
0.65 (0.66)
0.94 (0.67)
0.94 (0.68)
0.59 (0.68)
0.88 (0.68)
0.85 (0.69)
0.94 (0.70)
1.00 (0.71)
0.85 (0.71)
0.91 (0.71)
0.97 (0.72)
0.74 (0.73)
0.97 (0.73)
0.79 (0.74)
1.00 (0.75)
0.79 (0.75)
0.91 (0.75)
1.00 (0.75)
1.00 (0.75)
1.00 (0.77)
0.79 (0.78)
0.82 (0.79)

0.42
0.41
0.41
0.41
0.41
0.40
0.40
0.39
0.38
0.38
0.38
0.38
0.37
0.36
0.36
0.36
0.35
0.35
0.34
0.34
0.33
0.32
0.32
0.32
0.31
0.30
0.29
0.29
0.29
0.28
0.27
0.27
0.26
0.25
0.25
0.25
0.25
0.25
0.23
0.22
0.21

0.00
0.09
0.12
0.06
0.18
0.15
0.00
0.15
0.18
0.15
0.03
0.21
0.32
0.00
0.24
0.12
0.24
0.21
0.41
0.35
0.06
0.06
0.41
0.12
0.15
0.06
0.00
0.15
0.09
0.03
0.26
0.03
0.21
0.00
0.21
0.09
0.00
0.00
0.00
0.21
0.18
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KOHBKax
TTOCITBI
KPY’KKOB
CHECTH
aprenb
MIPOCTHI
3a0uT
Opocox*
BaKIMH
KHUJIOB
CMEHMUJI
rpuboB
ObUTHH
OaHKeT
MIOMMYT
cTynamu
BHOCHUTH
napHac
BUTOK
WU3MEH
KHBOK
KaJlacTp
KBS
KHOCK
rpadun
Tpenarb
30BYT
jomnar
Mepuan
KaKOB
napery
MOJIAM
TEppop
1ypeH
KUIIbLIA
apemait
CKPBIBAJ
peBen
3acTpsuI
KOHBEPT
3yOpHThH

22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2
22
22
22
22
2(2)
22
22
2(2
22
2(2)

0.06 (0.21)
0.18 (0.20)
0.12 (0.20)
0.09 (0.20)
0.00 (0.19)
0.18 (0.19)
0.15 (0.19)
0.18 (0.19)
0.15 (0.18)
0.24 (0.18)
0.06 (0.18)
0.09 (0.18)
0.15 (0.18)
0.00 (0.17)
0.00 (0.17)
0.06 (0.17)
0.15 (0.17)
0.00 (0.16)
0.12 (0.16)
0.00 (0.16)
0.09 (0.15)
0.03 (0.15)
0.00 (0.14)
0.00 (0.14)
0.00 (0.14)
0.09 (0.13)
0.00 (0.12)
0.12 (0.12)
0.00 (0.11)
0.12 (0.11)
0.03 (0.11)
0.00 (0.11)
0.09 (0.10)
0.00 (0.10)
0.06 (0.09)
0.00 (0.09)
0.00 (0.08)
0.09 (0.08)
0.00 (0.08)
0.00 (0.08)
0.06 (0.08)

0.94 (0.79)
0.82 (0.80)
0.88 (0.80)
0.91 (0.80)
1.00 (0.81)
0.82 (0.81)
0.85 (0.81)
0.82 (0.81)
0.85 (0.82)
0.76 (0.82)
0.94 (0.82)
0.91 (0.82)
0.85 (0.82)
1.00 (0.83)
1.00 (0.83)
0.94 (0.83)
0.85 (0.83)
1.00 (0.84)
0.88 (0.84)
1.00 (0.84)
0.91 (0.85)
0.97 (0.85)
1.00 (0.86)
1.00 (0.86)
1.00 (0.86)
0.91 (0.87)
1.00 (0.88)
0.88 (0.88)
1.00 (0.89)
0.88 (0.89)
0.97 (0.89)
1.00 (0.89)
0.91 (0.90)
1.00 (0.90)
0.94 (0.91)
1.00 (0.91)
1.00 (0.92)
0.91 (0.92)
1.00 (0.92)
1.00 (0.92)
0.94 (0.92)

0.21
0.20
0.20
0.20
0.19
0.19
0.19
0.19
0.18
0.18
0.18
0.18
0.18
0.17
0.17
0.17
0.17
0.16
0.16
0.16
0.15
0.15
0.14
0.14
0.14
0.13
0.12
0.12
0.11
0.11
0.11
0.11
0.10
0.10
0.09
0.09
0.08
0.08
0.08
0.08
0.08

0.06
0.18
0.12
0.09
0.00
0.18
0.15
0.18
0.15
0.24
0.06
0.09
0.15
0.00
0.00
0.06
0.15
0.00
0.12
0.00
0.09
0.03
0.00
0.00
0.00
0.09
0.00
0.12
0.00
0.12
0.03
0.00
0.09
0.00
0.06
0.00
0.00
0.09
0.00
0.00
0.06
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CeTsIM
MOTHII
MacTaK
caror
cTakaH
CTaHKOB
[Ty pIat
yTIOT
CMEILIOH
KOIIal
PEBHHB
TUTBIBYT
JKEJITOK
TSDKEN
BCTaBaTh
IMMHTBUH
9epBs
CMYLIEH
3HAYOK
CTOSTH
mpomat
najat
LBITaH
BOTHATh
KapTedb
3aCcecTh
COJIUTH
Oopen
3axX0]1
IJ10TaTh
TAKTAT
pUIaT
oOmaH
TOpUaT
KJICHMHTH
BaJyH
BHJATh
3aru0
MyCKaT
oorar
caszaH

22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2
22
22
22
22
2(2)
22
22
2(2
22
2(2)

0.15 (0.08)
0.00 (0.08)
0.06 (0.07)
0.00 (0.07)
0.00 (0.07)
0.06 (0.07)
0.00 (0.07)
0.00 (0.06)
0.06 (0.06)
0.00 (0.06)
0.00 (0.06)
0.06 (0.06)
0.06 (0.06)
0.00 (0.06)
0.06 (0.06)
0.00 (0.06)
0.09 (0.05)
0.00 (0.05)
0.00 (0.05)
0.00 (0.04)
0.00 (0.04)
0.06 (0.04)
0.18 (0.04)
0.06 (0.04)
0.06 (0.04)
0.18 (0.04)
0.00 (0.03)
0.00 (0.03)
0.03 (0.03)
0.00 (0.03)
0.00 (0.03)
0.03 (0.03)
0.00 (0.03)
0.03 (0.03)
0.15 (0.03)
0.00 (0.02)
0.03 (0.02)
0.00 (0.02)
0.00 (0.02)
0.00 (0.02)
0.06 (0.02)

0.85 (0.92)
1.00 (0.92)
0.94 (0.93)
1.00 (0.93)
1.00 (0.93)
0.94 (0.93)
1.00 (0.93)
1.00 (0.94)
0.94 (0.94)
1.00 (0.94)
1.00 (0.94)
0.94 (0.94)
0.94 (0.94)
1.00 (0.94)
0.94 (0.94)
1.00 (0.94)
0.91 (0.95)
1.00 (0.95)
1.00 (0.95)
1.00 (0.96)
1.00 (0.96)
0.94 (0.96)
0.82 (0.96)
0.94 (0.96)
0.94 (0.96)
0.82 (0.96)
1.00 (0.97)
1.00 (0.97)
0.97 (0.97)
1.00 (0.97)
1.00 (0.97)
0.97 (0.97)
1.00 (0.97)
0.97 (0.97)
0.85 (0.97)
1.00 (0.98)
0.97 (0.98)
1.00 (0.98)
1.00 (0.98)
1.00 (0.98)
0.94 (0.98)

0.08
0.08
0.07
0.07
0.07
0.07
0.07
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.05
0.05
0.05
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02

0.15
0.00
0.06
0.00
0.00
0.06
0.00
0.00
0.06
0.00
0.00
0.06
0.06
0.00
0.06
0.00
0.09
0.00
0.00
0.00
0.00
0.06
0.18
0.06
0.06
0.18
0.00
0.00
0.03
0.00
0.00
0.03
0.00
0.03
0.15
0.00
0.03
0.00
0.00
0.00
0.06
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IIaKOK
Ooiran
3aJINTh
JKHIICI]
3a0b11
MpU3BAThH
IIIAHAT
OJIeqHETH
BOpOH*
OBeI]
OammMak
3aj1ell
reKTap
IoKas
pa3ouB
CKOpOeTh
HaBap
JKpaH
HaMéEK
3apbITh
3aKOH
3acTaB
MEJILKHET
JepEeT
HaYyHEIIb
3aroH
Ha4aTh
yObéM
3aCHET
MPUILIET
3aineT
BHECET
KyET
OTCUET
OTNET

22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2)
22
22
22
22
2(2)
22
22
2(2
22
22
22
22

0.15 (0.02)
0.00 (0.02)
0.00 (0.02)
0.00 (0.02)
0.03 (0.01)
0.00 (0.01)
0.00 (0.01)
0.00 (0.01)
0.35 (0.01)
0.00 (0.01)
0.03 (0.01)
0.00 (0.01)
0.06 (0.01)
0.06 (0.01)
0.00 (0.01)
0.00 (0.01)
0.06 (0.01)
0.00 (0.01)
0.00 (0.01)
0.06 (0.01)
0.00 (0.01)
0.03 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.06 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.00 (0.00)
0.06 (0.00)
0.03 (0.00)

0.85 (0.98)
1.00 (0.98)
1.00 (0.98)
1.00 (0.98)
0.97 (0.99)
1.00 (0.99)
1.00 (0.99)
1.00 (0.99)
0.65 (0.99)
1.00 (0.99)
0.97 (0.99)
1.00 (0.99)
0.94 (0.99)
0.94 (0.99)
1.00 (0.99)
1.00 (0.99)
0.94 (0.99)
1.00 (0.99)
1.00 (0.99)
0.94 (0.99)
1.00 (0.99)
0.97 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
0.94 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
1.00 (1.00)
0.94 (1.00)
0.97 (1.00)

0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.15
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.35
0.00
0.03
0.00
0.06
0.06
0.00
0.00
0.06
0.00
0.00
0.06
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.00
0.00
0.00
0.00
0.06
0.03
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Appendix E

Nonwords Used in Study 6
Assigned Stress refers to the stress pattern that the majority of readers assigned to a
nonword (1 = trochaic stress; 2 = iambic stress; 0 = trochaic and iambic stress patterns
are assigned equally often). Predicted Stress refers to the stress pattern that the Bayesian
model of stress assignment predicted for a nonword (1 = trochaic stress; 2 = iambic
stress; 0 = no conclusive prediction is made). Assigned Stress1 refers to the proportion of
answers with trochaic stress given by participants. Predicted Stress1 refers to the
proportion of answers with trochaic stress predicted by the model. Assigned Stress2
refers to the proportion of answers with iambic stress given by participants. Predicted
Stress2 refers to the proportion of answers with iambic stress predicted by the model.

Assigned Predicted Assigned Predicted Assigned Predicted

Word Stress Stress Stress1 Stress1 Stress2 Stress2

AKTHUTh 2 2 0.27 0.11 0.73 0.89
aHOenb 2 2 0.43 0.43 0.57 0.57
OanBop 0 2 0.53 0.33 0.47 0.67
OKei 2 1 0.33 0.69 0.67 0.31
Oiemax 1 1 0.57 0.65 0.43 0.35
01103aH 2 2 0.07 0.01 0.93 0.99
OOMTEIIb 2 2 0.40 0.37 0.60 0.63
OpakHeM 1 1 0.87 1.00 0.13 0.00
Oporax 1 1 0.63 0.62 0.37 0.38
OproBai 2 2 0.13 0.10 0.87 0.90
Oyitue 1 1 0.87 0.97 0.13 0.03
Ba3bIB 2 2 0.20 0.07 0.80 0.93
BaMarh 2 2 0.40 0.11 0.60 0.89
Baxpu 1 1 0.73 0.74 0.27 0.26
BIOJIYH 2 2 0.10 0.02 0.90 0.98
BJIOpaTh 2 2 0.10 0.02 0.90 0.98
BEHJIaM 2 2 0.23 0.36 0.77 0.64
B3arOM 2 0 0.30 0.48 0.70 0.52
B3BOJKEH 1 1 0.97 0.97 0.03 0.03
B3UJIOH 2 2 0.10 0.00 0.90 1.00
B30MAaJl 2 2 0.10 0.18 0.90 0.82
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B3pbDKELIb 1 1 0.97 0.99 0.03 0.01
BKYKECTh 1 1 0.90 0.93 0.10 0.07
BIIEMOK 2 2 0.40 0.32 0.60 0.68
BITpa3se 1 1 0.83 0.88 0.17 0.12
BpyOEeHB 1 1 0.80 0.71 0.20 0.29
BpyKaphb 2 2 0.27 0.19 0.73 0.81
BCTPETOii 2 1 0.30 0.78 0.70 0.22
BXOXKaJl 2 2 0.13 0.02 0.87 0.98
BSDKC 1 1 0.87 0.95 0.13 0.05
BsI3Uei 1 1 0.90 0.87 0.10 0.13
rBO3Kax 0 0 0.50 0.50 0.50 0.50
TEXUIT 2 2 0.43 0.25 0.57 0.75
TJ1apio 0 0 0.47 0.49 0.53 0.51
TITyJIeM 1 1 0.77 0.96 0.23 0.04
THUYATh 2 2 0.10 0.00 0.90 1.00
TOKYT 0 2 0.53 0.40 0.47 0.60
ropJyer 2 2 0.30 0.37 0.70 0.63
Ipaxo 2 2 0.20 0.19 0.80 0.81
rpeMaH 1 2 0.63 0.09 0.37 0.91
IPOIIH3M 2 2 0.07 0.02 0.93 0.98
rpyHel 2 2 0.27 0.24 0.73 0.76
T'YHUTD 2 2 0.13 0.07 0.87 0.93
ryTaTh 2 2 0.23 0.04 0.77 0.96
JaKEHb 1 1 0.77 0.93 0.23 0.07
JIAMTHK 1 1 0.97 1.00 0.03 0.00
JTAHKH3 2 2 0.27 0.13 0.73 0.87
JIaracTh 2 2 0.33 0.30 0.67 0.70
BEIUTE 0 2 0.53 0.09 0.47 0.91
JIBOOETH 2 2 0.30 0.00 0.70 1.00
JIBOPCTaK 2 2 0.27 0.01 0.73 0.99
JEBUIID 1 1 0.93 0.95 0.07 0.05
néueH 1 1 0.90 0.96 0.10 0.04
TUTHPEI] 2 2 0.33 0.08 0.67 0.92
JIOHXUM 1 1 0.60 0.64 0.40 0.36
JIOJIIIBI 1 1 0.63 0.66 0.37 0.34
JPAITUM 0 1 0.47 0.95 0.53 0.05
Iporie 0 1 0.50 0.71 0.50 0.29
TIPSIMBII 1 1 1.00 1.00 0.00 0.00
TyMOUK 1 1 0.83 1.00 0.17 0.00
JIOYEllb 1 1 0.97 1.00 0.03 0.00
ns100p 0 1 0.47 0.64 0.53 0.36
KepaH 2 2 0.13 0.00 0.87 1.00
xepoOa 1 1 0.83 0.85 0.17 0.15
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Appendix F

Letter of Information (in Russian)
WNudopmanmoHHOE MHCHEMO
Hccnedosanue mexanuzmos noCmano8Ku yOapenust 8 pyCCKOM A3blKe
B nanHOM SKCIieprMeHTe Ha dKpaHe KoMibloTepa Bam OynyT npeacTaBieHsl
KOMOMHAIHMK OyKB PYCCKOTO sI3bIKa. B 3aBUCHMOCTH OT TOTO B KaKylo
SKCIIEPUMEHTANIbHYIO rpynny Bel nonanu, Bam HyxHO OyJeT pemuTh ABISIOTCS JIU
JaHHbIE KOMOMHALIMY CIIOBAMU PYCCKOTO SI3bIKa MJIM IPOYUTATh UX BeiyX. [locTapaiitech
BBITIOJTHSATH 3aJ[aHKe KaK MOYKHO IMpaBuiibHee U ObicTpee. B ciyuae myOnaukanuu
pe3yibpTaToB, Bamma muunas nHpopMaius ocTaHeTcss KOHPUACHIIHATBHOW. YdJacTue B
AKCIIEPUMEHTE HE CBS3aHO C PUCKOM. B skcriepumMeHTe He NCIoib3yeTcsl OOMaH Win
CKPBIThIE MAHUTTYJIALUU. DKCIIEPUMEHTATOPO OOBSICHUT LIEJIh IKCIIEPUMEHTA 110
OKOHYaHUIO ceccud. Bame yyactue 106poBosibHOE U Bbl B IpaBe NpeKkpaTUTh
BBITIOJIHEHHE 3aJ]aHus B JTI000 MOMEHT. 3a yyacTe B dKcriepuMenTe Bam Oyner

BBITTAYCHO BO3HArPaKACHHUE B pazmepe $5.

A npounTan/a nHGOPMAIIMOHHOE TUCEMO M COTJIaCeH/CoTIacHa IPUHSAThH y4acTHE B HEM.

DKCIepUMEHTATOP OTBETHII HA BCE MOU BOMPOCHI.

[Toanucey yuacTHUKA [Toanuce sxcnepumMeHTaropa

®UO yyacTHUKA ®UO skcnepumeHTaTopa

Hara
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