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Abstract

In order to improve radiological diagnosis of back pain and spine disease, two new algorithms

have been developed to aid the 75% of Canadians who will suffer from back pain in a given

year. With the associated medical imaging required for many of these patients, there is a

potential for improvement in both patient care and healthcare economics by increasing the

accuracy and efficiency of spine diagnosis. A real-time spine image fusion system and an

automatic vertebra/disc labeling system have been developed to address this.

Both magnetic resonance (MR) images and computed tomography (CT) images are often

acquired for patients. The MR image highlights soft tissue detail while the CT image high-

lights bone detail. It is desirable to present both modalities on a single fused image containing

the clinically relevant detail. The fusion problem was encoded in an energy functional balanc-

ing three competing goals for the fused image: 1) similarity to the MR image, 2) similarity

to the CT image and 3) smoothness (containing natural transitions). Graph-Cut and convex

solutions have been developed. They have similar performance to each other and outperform

other fusion methods from recent literature. The convex solution has real-time performance on

modern graphics processing units, allowing for interactive control of the fused image. Clinical

validation has been conducted on the convex solution based on 15 patient images. The fused

images have been shown to increase confidence of diagnosis compared to unregistered MR and

CT images, with no change in time for diagnosis based on readings from 5 radiologists.

Spinal vertebrae serve as a reference for the location of surrounding tissues, but vertebrae

have a very similar appearance to each other, making it time consume for radiologist to keep

track of their locations. To automate this, an axial MR labeling algorithm was developed that

runs in near real-time. Probability product kernels and fast integral images combined with

simple geometric rules were used to classify pixels, slices and vertebrae. Evaluation was con-

ducted on 32 lumbar spine images and 24 cervical spine images. The algorithm demonstrated

99% and 79% accuracy on the lumbar and cervical spine respectively.

Keywords: Spine Diagnosis, Image Fusion, Automatic Labeling, Convex Optimization,
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Chapter 1

Introduction

1.1 Back pain and spinal diseases

Back pain and spinal disease is a debilitating condition that is adversely affecting the lives of

many Canadians and people all over the world. It is estimated that in Canada, musculo-skeletal

disorders including the limbs and spine costs the economy over $20 billion dollars each year.

Back pain and spinal disease is a significant part of this number [35]. It is estimated that 75%

of people will experience back pain in their lives [43]. Additionally, in 1988 there were 101.8

million lost work days in the United States because of back pain [18].

A significant portion of this disease burden results in hospital care. In 2008 1.8% of all hos-

pital visits were due to back pain and disease [43]. Additionally, there has been a large increase

in medical imaging for the diagnosis and treatment of spine disorders. Between 1994 and 2006,

there has been a 300% increase in lower spine magnetic resonance imaging (MR/MRI) scans

[11].

This prevalence of spine imaging motivates a need for effective analysis of these images. In

particular, when both computed tomography (CT) and magnetic resonances images (MR/MRI)

are available they provide complementary information. CT images highlight the bone details

especially the cortical bone edges, while MR images highlight the soft tissue details such as

1
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bone disc. In this work the combined visualization of CT and MR images is investigated for the

diagnosis and treatment of back pain and spinal diseases. To further enhance diagnosis based

on spine images the problem of accurately labeling the location of vertebrae on images of the

spine is also considered.

1.2 Anatomy of the Human Spine

The human spine consists of a series of vertebrae, separated by intervertebral discs. These

form a flexible column, which can be referred to as the spinal column since they appears in the

form of a vertical column when a human is standing upright. The spinal cord runs along this

column. There are five main sections. From top to the bottom these consists of the cervical

spine, containing the seven cervical vertebrae, the thoracic spine, containing the twelve thoracic

vertebrae, the lumbar spine containing five vertebrae, the sacral spine, containing five fused

vertebrae and the coccyx. This column supports the trunk, connecting the head and limbs as

well as protecting the spinal cord and nerves [38]. Intervertebral discs are located between

adjacent vertebrae. They bear weight and allow for motion of the spine. The spinal cord runs

through the vertebrae and behind the discs. This is shown in Fig. 1.1. Fig. 1.1 (a) shows five

sections of the human spine and Fig. 1.1 (b) shows two vertebrae, the spinal cord, nerves and

the intervertebral discs.

The individual vertebrae are bony structures (see Fig. 1.2). They consist of both cortical

bone on the exterior of the vertebrae and trabecular bone found in the centre of the vertebral

body. The vertebral body is found at the anterior (front side) of the vertebrae and the spinous

process is found at the posterior (back) of the vertebrae. Transverse processes are found to the

sides, with the facet joints located below the transverse processes. The facet joints allow for

motion of vertebrae. The spinal cord runs behind the vertebral body in a gap referred to as the

vertebral foramena. The intervertebral discs are located between adjacent vertebrae. On the

exterior of the discs is the annulus fibrosus, which is a ring of fibrocartilage. This encases the
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(a) (b)

Figure 1.1: Diagrams of spinal anatomy: a) The human vertebral column showing the cervical
spine, thoracic spine, lumbar spine, sacrum and coccyx b) a typical vertebrae, showing the
intervertebral discs, nerve tissue and vertebrae (used under Creative Commons attribution-
share alike 3.0 unported, by Anuskafm).

nucleus pulposus, which at birth is mostly water, but stiffens with age. The purpose of these

discs is for load bearing and to allow motion between the vertebrae [38].

1.3 MR and CT for Spine imaging

Magnetic Resonance Imaging (MRI/MR) and computed tomography (CT) are two common

modalities for imaging the human spine. Both provide three dimensional (3D) images of the

spine, highlighting different parts of the anatomy. An MR scanner works because the spins of

certain nuclei will align in a strong magnetic field. One such nucleus is the proton, the nucleus

of a hydrogen atom. Hydrogen atoms are typically found in the human body as parts of water

and fat molecules, which make up most of our soft tissues. For the spine this is why the nerves,

intervertebral discs, spinal cord and cerebral spinal fluid are visible in MR images.

To generate an image from the aligned protons, the magnetic field in the scanner is varied



4 Chapter 1. Introduction

Figure 1.2: Diagram of a Cervical Vertebrae

over the volume of the patient. A pulse sequence of radio-frequency waves is transmitted

to change the protons’ alignment of the magnetic field. Over a period of time, the protons

will relax back towards their original alignment, emitting radio waves as this occurs. It is

the pattern of these emitted radio waves that allows the location and density of protons in the

human body to be recorded as an image. Depending on the exact pulse sequence the image

will be weighted: for fat contrast (T1), water contrast (T2) or the density of protons (PD). [45]

For the human spine, T2 is the most commonly used, but T1 and PD scans can also provide

valuable information.

Figure 1.3 shows a Seimens Avanto 1.5 Tesla MR scanner (Seimens AG, Erlangen, Ger-

many). Under the blanket is the spine coil for acquiring radio frequency signals from the spine.

The patient will be scanned lying on their back. For spine imaging one of the images typically

acquired is generated from a T2 weighted 3D pulse sequence. This 3D image allows views of

the spine in any direction, with images typically formatted as a series of two dimensional (2D)

image slices in the sagittal plane (looking from the side), the axial plane (looking from head to

toe), and coronal plane (looking from front to back).

Another common modality for spine imaging is CT. When X-rays pass through matter they

are attenuated. Attenuation is tissue specific in that tissues with higher density and atoms with

higher atomic numbers have an increased X-ray attenuation. Bone contains large amounts of
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Figure 1.3: Seimens Avanto 1.5 Tesla MR scanner. A spine coil is located under the blanket.

calcium, which attenuates a high fraction of the incident X-rays. This is represented as a whiter

region on an X-ray or CT image, and air appears black as it attenuates almost no X-rays. The

Houndsfield scale is used to crepresent attenuation levels and is based on air having a value of

-1000 Houndsfield Units (HU) and water having a value of 0 HU. Cortical bone is typically

around 1000 HU [20].

To form a CT image, X-ray attenuation measurements are obtained from varying angles

around the patient. These attenuation measurements are then used to reconstruct the 3D image

either on a slice-by-slice 2D set of cross-sectional images, or as a 3D object [20]. In modern

CT scanners, the image is acquired as a helical scan, where the patient is moved through the

scanner as the scanner rotates around the patient. The reconstructed 3D image can then be used

to generate sets of 2D slices in the sagittal, axial and coronal directions [17]. A modern CT
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scanner is shown in Fig 1.4. Again the patient is typically scanned, while on their back.

Figure 1.4: A GE Healthcare Discovery CT750 HD CT scanner.

1.3.1 Images used in this Thesis

For the purpose of this thesis only images already acquired from patients were utilized. Fur-

thermore the methods developed were only targeted towards better utilizing images that would

have already been acquired without this research. This was to avoid the need for additional

imaging with its associated healthcare costs and possible risks to the patients (such as for CT

images).

Both the lumbar spine and cervical spine were investigated. For the lumbar spine T2

weighted 3D SPACE sequences were utilized, providing both sagittal and axial reformatted

views. The T2 weighted images were used as they provided good contrast for the disc and
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nerve structures in the lumbar spine. T1 axial images were also utilized for the purpose of

labelling disc and vertebrae as they are commonly used for clinical diagnosis. For the cervical

spine, T2 axial weighted images were utilized. CT helical images for the lumbar and cervical

spine. Both sagittal and axial formatted images were used.

For both MR and CT the pixel and slice spacings varied for each patient. The ranges of

spaces have been detailed for the data sets utilized (see Chapters 2,3 and 5). Additionally,

unless explicitly stated no contrast was utilized in the images.

1.4 Diseases of the Spine

There are several diseases/pathologies that are common in the lower back and contribute to loss

of mobility along with back pain. These include bone and joints disorders such as fractures and

osteophyte formation. There are also nerve and tissue specific diseases including disc hernia-

tions, disc bulges, disc protrusion/extrusion, sciatica and spinal stenosis. Metastatic disease is

also a concern.

Bone and Joint Diseases

Typical bone diseases/pathologies include fracture of vertebrae, joint disease and osteophyte

formation. Examples of fractures include fractures caused by trauma to a cervical vertebral

body and compression fractures where excessive force has been exerted axial along the spinal

column, causing one or more vertebrae to fracture. Osteophytes are bony growths in response

to areas of specific pressure on the spine. Depending on the location of the osteophyte, nerve

roots or ligaments can be impacted, causing either localized back pain or local paralysis [38].

Various forms of arthritis can affect the spine and include osteoarthritis (usually a result of

age), rheumatoid arthritis, which is an autoimmune disease and ankylosis, where the vertebrae

become fused together.
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Disc Disease

Degenerate disc disease encompasses a large number of disc abnormalities. These include

but are not limited to bulging, herniations such as protrusions / extrusion, narrowing of the

disc and osteophytes. A bulge is defined as the disc protruding beyond the end plates of the

vertebrae over more than 50% of the circumference of the disc, i.e. bulging out into the regions

beyond the vertebrae. A disc extending focally is called herniation and can be characterized as

a protrusion/extrusion [14]. The biggest danger in these scenarios is that the disc material will

impact the nerve tissue causing either pain or local paralysis. A diagram of a normal, herniated

and protruding disc can be seen in Fig. 1.5.

Figure 1.5: Illustrations of normal and protruding discs. In the right most image the nerve is
being compressed due to the extrusion.

Nerve Diseases

Diseases and pathology that impact the nerves can be very debilitating as they can cause pain

and/or local paralysis. An example of this is Sciatica, which is pain radiating downwards from

the lower back into the thigh. This can be caused by compressed nerves at the L5 or S1 levels

because of herniated discs or osteophytes. [38]. Spinal stenosis is another dangerous disorder,

where there is a narrowing of the spinal cord, typically due to discs or osteophytes impacting

the cord.
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Metastatic Disease

The spine is a common location for the metastasis of tumors. This will often cause lesions in

the vertebrae and is indicative of a primary cancer in the patient. Primary tumours can also

form in the spine.

1.5 Overview of the Image Fusion Process

The goal of image fusion is to combine two or more images of the same object into a single

image containing the salient details of the two or more input images. A simple example of

this includes multifocal images [27], where two camera images with different focus settings

are combined into a single image. This can also be applied to medical images, in particular

image fusion of CT and MR images of the spine will be the subject of several of the following

chapters.

In order to construct a fused image, several processing steps need to occur. These can be

divded into image registration, pre-processing and fusion as show in Fig. 1.6. Image registra-

tion is the process of aligning multiple images and is essential for proper image fusion. If the

images are not properly aligned prior to fusion, the output image would have only limited value

to the observer. The second step is pre-processing, in this case the aligned images are processed

to make them more suitable for fusion by filtering out any unwanted details, while enhancing

relavent details. The final step is the pixel-wise image fusion of the aligned and pre-processed

images. Image registration, and pre-processing will be discussed in this section. Pixel-wise

fusion algorithms will be discussed in greater detail in section 1.6 along with chapters 2 and

3. Since pixel-wise image fusion was the primary focus of chapters 2 and 3, registration will

only be briefly discussed and has only been considered in terms of it being a necessary step to

achieved image fusion.
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Image
Registration

Pre-processing Fusion

Figure 1.6: Typical fusion process, 1) Images are aligned (registration), 2) preprocessing oc-
curs, 3) pixel-wise image fusion is carried out.

1.5.1 Distinction between Image Registration and Image Fusion

Image registration is the process of aligning multiple images together. When registered images

are overlayed and displayed together they are often refered to as being fused, with registration

and fusion being almost synonymous in some circles of the medical imaging community. This

can be a source of confusion as pixel-wise image fusion refers only to the process of com-

bining multiple preregistered images. In this thesis, image fusion is refered to as the process

of combining multiple images into a single image and will never to be taken to mean image

registration. The term image fusion will refer to either the entire fusion process of registration,

pre-processing and pixel-wise fusion, or specifically to pixel-wise image fusion. It is hoped

this will be self evident from the context. This distinction is detailed figure 1.7.

1.5.2 Image Registration

Typical algorithms for image registration combine three elements: a transform, an alignment

metric and an optimizer. The first element, the geometric transform defines how a study image,

can be aligned to match a template. Common types of transforms include rigid body trans-

formation (rotation and translation), affine (rotation, translation and shearing) and non-rigid

(warping the image). Once a suitable transformation has been selected, a measurement of how

well the images are aligned needs to be determined. This is refered to as the metric. Common

examples include the sum of squared differences (SSD) between overlapping pixels, or the mu-

tual information (MI) between the images. The former method is useful when the images to

be meausred are from the same modality as it only looks at pixel intensity differences. Similar

images have low SSD values, while dissimilar images have high SSD values. The later: Mutual
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Image
Registration

Pre-processing Pixel-wise
Fusion

Registration

Image Fusion

Pixel-wise
Fusion

Figure 1.7: In this work, fusion should not be confused with registration. Image fusion can
refer to both the entire process of registration, pre-processing and pixel-wise fusion, or pixel-
wise fusion specifically.

information (MI), attempts to determine how well related the information in the two images.

Since MI classifies information as opposed to pixel intensities, it is often used for multimodal

image registration where information is similar between the images, but pixel intensities differ.

A high value of MI indicates a good alignment, while a low MI value is indicative of poor

alignment. The third element in a typical registration algorithm is the optimizer. The optimizer

will adjust the current transform based on the results of the metric, searching for either a min-

imum or maximum value of the metric appropriately. By repeating this process iteratively the

overall metric value can be optimized, which should correspond to a good alignment between

the study and template images.

In this work spine MR and CT images were aligned. A rigid body transformation was used,

although a piecewise rigid transformation (rigidly transforming the vertebrae) could also have

been applied. Both methods preserve the structure of the spine, not allowing bones to deform

in the registration process. For the lumbar spine it was found that rigid body deformation was
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a suitable assumption (see chapter 2). This is likely because patients are scanned lying on their

backs in similar positions for both CT and MR even when the images are acquired up to a year

apart. For the rigid transformation a method using 3D versors (unit quarternions) was applied.

For the metric, since MR and CT are from different modalities MI was used. The optimizer was

designed for the optimization of versor transforms. Chapters 2,3 and 6 contain further details

and discussion on the methods used in this work, but it should be noted that the approaches

employed are fairly standard as image fusion as opposed to registration was the focus of this

work.

1.5.3 Preprocessing

Preprocessing is used to enhance images prior to fusion. This is an optional step, that can be

omitted for some applications. For spine image fusion of CT and MR images, this is a useful

step as unwanted bone details can be removed from CT images. Additionally the relative

intensities of MR and CT images can be adjusted to better highlight either bone or soft tissue

detail when needed. A specific description of the preprocessing steps used is first provided

in chapter 2, when CT/MR fusion is considered. CT soft tissue removal was accomplished

by thresholding out detail below a given HU. This was followed by linearly adjusting the CT

intensities so that the maximum CT pixel intensity approximately matched the maximum MR

pixel intensity. These values are used again in chapter 3, but it is noted that their adjustment

could be beneficial to clinical diagnosis. If the amount of CT soft tissue detail present in the

fused image can be adjusted along with the relative intensity of the MR, it is possible to create

pathology specific fusion settings. These values could then be adjusted interactively by the

radiologists while they examine the spine images, potentially aiding diagnosis.
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1.6 Background and prior art on Pixel-wise Image Fusion

In this section we present a discuss of applications of image fusion and then detail prior art

using transform-based methods, followed by prior art using variational methods. Most of the

methods that will be discussed were not introduced for the purpose of spine image fusion or

even medical image fusion. It has been demonstrated that many of these methods are applicable

to medical image fusion (e.g. [36]). This justifies a general discussion of these methods with

potential medical applications being implied.

1.6.1 Applications of Image Fusion

As previously mentioned, one application of image fusion is for the combination of multifocal

images [27]. In geographical applications, multi-spectral image fusion has proven to be very

useful. Here images acquired from various wavelengths of light are combined into a single

image, to create a composite image of a scene [51]. Arguably high dynamic range imaging,

where multiple exposures of the same scene are combined, could also be classified as image

fusion [31].

There have been many medical applications of fused images. Image fusion has been applied

for brain imaging to combine CT and MR images, highlighting both the bone detail from the

CT image and soft tissue detail from the MR image [32]. The fusion of MR and positron

emission tomography (PET) images have been examined in the context of surgery planning for

patients with epilepsy [50]. The use of fused images allowed for surgeries to be planned in a

non-invasive manner, by highlighting the location of the epilepsy. MRI-SPECT (single photon

emission computed tomography) fusion has also been studied for the purpose of detecting

alzeihmers disease [9]. Here a preliminary study was undertaken to explore the potential of

this technique. Applications of image fusion to digital subtraction angiography (DSA) has also

been considered [55]. Multiple fluoroscopy images of arteries were acquired with and without a

contrast agent. The non-contrasted images was subtracted from the contrasted images to create
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DSA images at varying time points after contrast injection. Muiltiple DSA images were then

fused to generate a fused contrast image over all time points. The fusion of CT images of the

liver is another application that has been previously studied [34]. In this case the images were

all from CT, but were taken at various points during an ablation of a liver tumor to highlight

the progress of the procedure.

Basic methods of image fusion have been examined for the human spine. In this case MR

and CT images are registered and then overlaid. These images have been used for assessing

bone implants [23] and for surgery planning [21, 48]. The combination of these two modalities

provides excellent bone details from the CT image and clear soft tissue details from the MR

images.

1.6.2 Transform-based methods

The discrete wavelet transform (DWT) based image fusion method was proposed for fusing

multifocal images [27]. In this method the two input images were first transformed into the

wavelet image domain. Image fusion was accomplished in the transform domain by applying

a set of simple rules, such as taking the maximum coefficient value, or the average coefficient

value, depending on the detail band being fused. The output fused image could then be recov-

ered by applying the inverse fusion transform. The wavelet transform works by decomposing

an image into four subbands. These are the low detail band (a low resolution version of the

original image) and three high detail bands in the vertical horizontal and diagonal directions.

This is illustrated in Fig. 1.8.

One method that builds on the concept of the DWT is the contourlet transform (CLT) [12].

The 2D-DWT transform is not image oriented, as it only considers vertical, horizontal and di-

agonal edges. This may be sufficient at lower details scales, however when higher detail bands

are considered, there are many edges that are not aligned parallel to any of these three direc-

tions. The contourlet transform seeks to address these drawbacks by considering an increasing

number of directions at finer detail bands. This is accomplished in two steps. In first step, the
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Figure 1.8: An illustration of the transform based fusion process, from left to right: the input
images, the transformed input images showing various detailed bands, the image fused in the
transform domain, the final output image.

image is decomposed into multiple resolutions. These levels are downscaled versions of the

original image. In the second step a directional filter band is applied to all but the lowest scale.

The highest detail version of the image, which is the original is decomposed into the most sub-

directions, with lower resolution versions being decomposed into fewer subdirections. This is

demonstrated in Fig. 1.9. In this way the CLT considers a much greater amount of edge infor-

mation than the DWT. For applications to image fusion, the input images are first transformed

by the CLT. Fusion can then be carried out on the various detail and direction subbands of the

CLT, creating a fused transformed image. The final fused image is then recovered by applying

an inverse CLT transform [52].

Similar to the contourlet transform, the curvelet transform [39] also seeks to preserve edge

structures in images. It has also been applied for image fusion. The advantage of the con-

tourlet over the curvelet transform is that the contourlet transform has been directly formu-

lated in the discrete domain, whereas the curvelet transform is formulated in the continous

domain and needs to be sampled in order to be applicable to images. Other similar transformed

based methods for image fusion include the additive wavelet decomposition [40], the complex

wavelet transform [19, 26] and other wavelet approaches [42].
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Original Multiscale Directional

Decomposition Decomposition

Figure 1.9: An illustration of the contourlet transform, showing the multiscale decomposition
and the directional subbands. The arrows indicate approximate detail directions.

In all these methods decimations are included and there is a limit to the number of directions

that can be encoded. This can introduce artifacts into the final image, especially when two

dissimilar images are fused [36]. For medical purposes these artifacts have the potential to

distort certain pathologies to the point where they may not be seen.

Another transform based fusion method includes the use of an independent component

analysis basis [37]. This basis must be trained for the specific images in use and has the

advantage of being problem specific; however its flexibility is reduced because of this. The

polyharmonic local sine transform [28] has also been proposed; however, like all transform

methods it is constrained by the quality of the transform.

1.6.3 Functional-optimization methods

Another set of approaches to solving the image fusion problem use functional optimization.

Here the fusion problem is encoded as mathematical functional. Just like mathematical func-

tions take a set of input variables and then output a variable, it is possible to design a set of

functionals that take images as inputs and then output a value. We refer to this output value
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as the energy of the functional. Typically the image that corresponds to the lowest possible

energy of this functional is desired. Sometimes the maximum is desired. In these approaches

the image fusion problem is stated as an energy functional consisting of a set of competing

objectives that a fused image should minimize. Examples of possible objectives are similarity

to the input images and smoothness of the final fused image. The energy functional is then

optimized and the final solution is the fused image. These approaches have been considered

in [2, 44, 49] offering the advantage of avoiding the artifacts that can be present due to the

transform methods.

The largest challenge in these methods is how to solve the desired functional. Typically,

gradient descent is employed as in [2, 44, 49]. Given a starting solution the gradient descent

method moves in the direction of steepest descent to find a lower energy solution. This con-

tinues until a minimum energy is found. The difficulty with this method is that it often gets

trapped in locally minimum locations, as opposed to the globally minimum solution. It is desir-

able to find a solution that will give the globally minimum energy for a problem as opposed to

local. Additionally, gradient descent procedures are typically computationally intensive, which

may preclude their use in the three or higher dimensions commonly used for medical images.

One possible solution to the problem of gradient descent is to formulate the functional as a

graph-cut optimization problem [6, 7, 25]. This can then guarantee a near global solution to the

fusion problem. A second approach is the use of convex optimization [3, 4]. Here the energy

is formulated as a convex functional, which can be quickly and globally solved.

1.7 Background and Prior Art on Spine Labeling

Adjacent vertebrae have very similar appearances so it can be time consuming for radiologists

to determine the identity of a particular vertebra in an image. When making a diagnosis of the

spine radiologists must scroll through multiple images slices keeping track of the vertebral level

in the current image. This vertebrae level can then be used as a reference point for describing
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nearby pathology. Radiologists will often cross reference the location of pathology in an axial

slice to a sagittal slice, where it may be more easily located.

Several approaches have been considered in order to automate the labeling of vertebrae

in spine images [1, 16, 22, 24, 29, 30, 41, 46, 54]; however automatic labeling remains a

challenging problem due to a high variability in the image intensities, shape and orientation

of various spine structures [1, 16, 54]. These variations can be seen both within individual

patients and between different patients. Two major approaches have been considered by the

previous algorithms.

(1) Most of the current algorithms address the labeling problem through intensive training

from a manually-labeled data set [1, 15, 16, 41, 46, 54]. Such a training stage aims at learning

the shapes, textures and appearances of different spinal structures. This knowledge is then

used within a classification or regression algorithm (e.g., support vector machine [41], random

forest regression [15, 46] or graphical models [16, 24]) to subsequently label different spinal

structures in the test image. Such algorithms work very well on data sets that closely match the

training data, but would require adjustment/retraining for different data sets or if the imaging

modality and/or acquisition protocol are altered (e.g., an algorithm that is trained and built

for CT images may not perform well on MR data [16, 24, 29, 30, 54]). This might impede

the use of these algorithms in routine clinical practices, where a particular disorder might

be analyzed radiologically using several different imaging modalities/protocols with widely

variable imaging parameters (resulting in extremely high variation in image data).

(2) To the best of our knowledge, all of the current spine labeling algorithms focus on either

the sagittal view [1, 15, 16, 22, 24, 41, 46, 54] or are restricted to CT images [29, 30]. However,

the quantification and level-based reporting of common inter-vertebral disc displacements such

as protrusion, extrusion and bulging require the radiologist to thoroughly inspect all individual

axial MR slices [13], while visually cross-referencing such axial slices to their corresponding

position in the sagittal view. It is, however, important to note that in some cases only the

axial view is available for the patient while in other cases the two scans might be acquired
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at different time points. Therefore, localizing the spinal structures in different views becomes

a challenging task (even for an experienced radiologist), which motivates a stand alone axial

spine detection/labeling algorithm. Such a system would facilitate the generation of radiologic

reports.

1.8 Graph Cut Optimization

Functional optimization methods have been considered for image fusion purposes [2, 44, 49].

These methods have potential applications to medical images. However as noted in section

1.6.3, a large drawback to these methods is the reliance on gradient descent. One possible

solution to the problem of gradient descent is to formulate the functional as a graph-cut opti-

mization problem [6, 7, 25]. Indeed the possibility of utilizing graph-cuts for image fusion is

examined in chapter 2. In this section a background on graph-cut methods is presented as a

precursor to their application for image fusion.

Discrete optimization methods, which use graph cut algorithms have recently sparked a

substantial research effort in computer vision, and led to very efficient algorithms in image

segmentation [8, 47], stereo vision [6] and image restoration [5]. These algorithms seek to find

an optimal pixel labeling for an image. This is based on minimizing an overall data cost of

assigning a given label to each pixel in the image, and a smoothness cost, that seeks to enforce

labeling similarity in local neighbourhoods around each pixel. We can express this as

min
L

E(L) = D(L) + S (L) (1.1)

where L is a set of discrete integer labels, E is the energy we seek to minimize, D represents

the data costs and S represents the smoothness costs.
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1.8.1 Binary Labeling Problem

First we consider the binary labeling problem [7]. Exactly one label lb ∈ [0, 1] is given to each

pixel in the image, with data and smoothness costs being given to the links in the graph. This

is shown in Fig. 1.10. We define a graph G = 〈V,E〉, containing a set of nodes V and set of

weighted edges E. There is one node in G for every pixel in the image domain Ω ∈ R2. There

is an edge connecting each pixel to every other pixel in a local neighbourhood N (typically a

4, 8 or 16 connected region), which is denoted as an n-link. Additionally there is a sink node

and a source node. There is an edge between the sink node and every pixel in the image, and

an edge between the source node and every pixel in the image, these are denoted as t-links.

The t-links encode data costs associated to a given label (either 0 or 1) and the n-links encode

smoothness between labels.

Data 

Smoothness 

 

Source

Sink

(a)

Source

Sink

(b)

Figure 1.10: An illustration of the graph-cut problem: a) A binary graph showing the data cost
of assigning a label to the sink/source and smoothness cost of assigning a labeling to adjacent
pixel locations, b) the end result of the labeling of the graph.

A cut C ⊂ E is a set of edges that separates the sink node from the source node. The

minimum-cut problem consists of finding the cut C with the lowest cost, denoted |C|. This cost

is equal to the sum of all the edges in C and represent the minimum of E. It can be solved

globally and exactly using the algorithms of Boykov and Komologorov [7].
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1.8.2 Multi-label Problem

An illustration of the multi-label graph cut problem is provided in Fig. 1.11. Exactly one label

is given to each pixel in the image, with associated data and smoothness costs assigned to the

links in the graph. Again there is a node for every pixel in the image, and edges connecting

local neighbourhoods of pixels. Instead of a sink and source node, now there is a node for each

label in the expanded set of labels lm ∈ [0, 1, . . . , n]. There are links between each label node

and each pixel in the image. The edges between pixels are weighted based on the labels given

to those pixels. In this case the minimum cut C is sought that creates a set of disjoint subgraphs

with each pixel being assigned exactly one label.

Data 

Smoothness 

Labels

(a)

 

(b)

Figure 1.11: An illustration of the graph-cut problem: a) A graph with 3 possible labels show-
ing the data cost of assigning a label to a node and smoothness cost of assigning a labeling to
adjacent pixel locations, b) the end result of the labeling of the graph.

This problem can be solved in two ways: either by a series of alpha expansion moves or a

series of swap moves [6]. In an alpha expansion moves, every pixel can either keep its original

label or transfer to a new labeling lα. This is iterated over every possible label, until the solution

converges. The individual alpha expansion moves are solved globally using the binary graph

cut algorithm. An alternative to this is the swap move. In this case, every pixel with a label lα

and lβ is considered. The pixels can either keep their original value, or swap values. Again this

is iterated over the possible pixel combinations until convergence, and each individual swap

move can be solved globally using the binary graph cut algorithm. Alpha expansions can be

proven to give an answer within a given distance to the global minimum, while experimentally
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swap moves have been shown to outperform alpha expansions [6].

1.9 Convex Optimization

The field of mathematical optimization deals with the problem of how to find the best possi-

ble solution to a given problem. Typically these problems are formulated as a form of energy

functional minx f (x), where x = xn, n = 1 . . .N is a vector valued variable and f (x) is the func-

tional to be minimized, which we call this the objective function. The goal of the optimization

problem is to find the value x that corresponds to the smallest value of f (x). Analogous to

this is the energy maximization problem, where the goal is to maximize the objective function

instead of minimizing it. If x is a continuous variable, then this is referred to as a continuous

optimization problem and if x can only take on discrete values, we refer to the problem as a

discrete optimization problem. Graph-cut optimization [7] is a special case of discrete opti-

mization, since the pixel values can only take on discrete labels. We will focus on continuous

optimization for the remainder of this section.

It is often valuable to be able to optimize f (xn) subject to some constraints on either f or

xn. These can take the form of inequality constraints e.g. f (xn) < 0, x2 > 6, x3 + x4 < 5 or

equality constraints e.g. f (xn) = 0, x2 = 7, x3 + sin x4 = 2. These problems are referred to as

constrained optimization.

In general, optimizing f (x) is a difficult problem, with or without constraints. There are

often locally ”good” solutions that correspond to local minimas/maximas. These solutions

may not be the best overall solution, which is more desirable and is referred to as the global

optimum. One typical solution to these problems is the use of gradient descent. This is similar

to walking down a mountain in fog. Given a starting point x0, if you take a small step in the

direction of steepest descent you should get a new point x1, which represents a lower value

of f (x) or a lower energy. If you take enough steps, you should get to a point where you are

no longer able to decrease the energy any further. The problem with this approach is that you
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may be in a local optimum as opposed to a global optimum, and you have no way of knowing

whether there is a better solution possible.

There are some problems that can be described by functions where one knows whether a

solution is at a global optimum and that it can be reached easily. The global optimizability

of these functions makes them advantageous to study. One common subset of globally opti-

mizable functionals are linear functions. This consists of the set of all optimization problems

where both the objective function and the constraints are linear in all variables. Efficient al-

gorithms for solving these problems have been known since the 1950’s [10]. However, this is

not the only class of problems where a globally optimum solution can be guaranteed. Convex

optimization problems guarantee a globally optimal solution and they are a superset of linear

optimization problems.

Convex optimization deals with the optimization of functionals where the objective and

inequality constraints are convex and any equality constraints must be linear. This takes the

general form of:

min
x

f0(x)

s.t. fi(x) ≤ 0 (1.2)

where, fn(x) are convex functions, i = 1, 2 . . . n.

A function is convex if and only if it satisfies Jensen’s inequality [4] on every point on it’s

domain:

f (θx1 + (1 − θx2)) ≤ θ f (x1) + (1 − θ) f (x2) (1.3)

where f (x),R → dom( f ) is a convex function, θ ∈ [0, 1], and x1, x2 represent any two points

on the domain of f (x). Geometrically this means that any point xs on a given chord between

two points on the function is always greater than or equal to the function evaluated at that
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point xs as shown in Fig. 1.12. Simple examples include affine functions ( f (x) = ax + b), the

quadratic function ( f (x) = x2) and the absolute value function ( f (x) = |x|). Convex functions

of vector valued inputs can also be considered. Here the function is a vector valued function,

and Jensen’s inequality applies over every combination of two points on the function Convex

functions play a significant role in numerical optimization because global optima can always

be obtained and there are very efficient algorithms for finding those solutions [3, 4].

x1

x2

xs

f (x)

Figure 1.12: An illustration of Jensen’s inequality. Any point on the chord between x1 and x2

is greater than the function at that point.

Image processing problems can be formulated as convex energy optimization problems. If

we consider x to be a vector of all the image pixels, than f (x) corresponds to optimizing over

all the image pixels. This allows convex optimization techniques to be applied to images. In

the context of image analysis, like graph cuts, convex optimization approaches have been the

subject of recent research, [53]. Many of the same problems that can be solved via graph-cuts

can also be optimized through an equivalent convex optimization, these include segmentation

and stereo vision [53]. The most difficult aspect of their use is in finding an equivalent convex

formulation to a given problem. When this can be found, very fast solutions can be obtained.

Convex functions will be essential in the functional optimization methods used for image fusion

presented in chapter 3.
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1.10 Thesis objectives

The primary hypothesis of this work is that the use of fused images will enable more accurate

and quicker diagnosis of spine images. Testing this will require the development of algorithms

that are capable of real-time image fusion of MR and CT images of the spine. The methods

should allow interactive adjustment of the fused images and be compatible with existing ra-

diological work flows. Ideally these algorithms will be suitable for integration into existing

radiology viewing software. To test the primary hypothesis the specific objectives are:

• Develop and validate an algorithm for off line registration of MR and CT images with

minimal user input.

• Develop an image fusion method that accurately displays the clinically relevant details

from both the CT and MR images in a single image.

• Develop a real-time image fusion method, which has similar accuracy to the above

method, allowing for the interactive adjustment of fusion parameters on entire 3D vol-

umes.

• Validate this system on clinical images, comparing the fused images to the current clini-

cal practice. The images will be evaluated by radiologists based on suitability for clinical

diagnosis.

An additional objective of this thesis is to develop an MR spine axial labeling algorithm for

the correct annotation of MR axial images. To be clinical useful, this should have near real-

time performance, while maintaining excellent accuracy. This should enable more accurate

and quicker diagnosis of spine images.
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1.11 Thesis Outline

1.11.1 Chapter 2 - Spine Image Fusion via Graph-Cuts, IEEE Transac-

tions on BioMedical Engineering

This chapter details the design and validation of our image fusion method [36]. Here we present

both a registration algorithm and a graph-cut based fusion algorithm. The registration method

is a 3D rigid registration method, based on Mattes Mutual Information [33]. A 3D versor (unit

quarternion) transform is used to perform this registration based on alignment of soft-tissue

details in the MR and CT images. The accuracy is quantified and was found to be sub-voxel.

The fusion algorithm is based on the minimization of an energy functional via the use of

graph cuts. The goal of this energy functional is to find a new image that is: 1) Similar to

the input MR image, 2) Similar to the input CT image, and 3) contains natural transitions in

the image. This approach offers the advantage of a near global solution avoiding the limits of

transform based methods and gradient descent based energy optimizers.

The results of the fusion algorithm are validated based on the amounts of soft tissue and

bone detail preserved in the fused image compared to the original image. These results are

compared with 3 methods from the literature: 1) The discrete wavelet transform [27], 2). the

contourlet transform [52] and 3). Piella’s variational method [44]. In comparison with these

works our methods are proven to have superior performance based on several quantitative eval-

uations/comparisons over 40 pairs of CT/MR images acquired from 20 patients. Additionally,

four clinical cases studies are provided, highlighting the utility of our approach.

1.11.2 Chapter 3 - Multimodal Spine Fusion: A Convex Approach

In this chapter we detail a new fusion algorithm that provides significant advantages over the

graph-cut (GC) based fusion algorithm of Chapter 2. The graph algorithm provides excellent

image detail in the fused images; however, there are several drawbacks to this method. The GC

method relies on approximations of the allowable gray level values of the image through the
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introduction of multiple labels. Due to memory considerations it is also not extensible to 3D.

Finally it is limited to off-line calculations due to the speed of the GC algorithm. Since GC is

not a parallel problem, it is difficult to optimize it efficiently on modern computing hardware.

A convex formulation of the fusion energy function is proposed meeting the original criteria

of: 1) being similar to the input MR image, 2) being similar to the input CT image and 3)

containing natural transitions in the image. We examined two different criteria for preserving

image similarity and present convex solutions to these two energy functionals.

We report comprehensive experiments and comparisons with images acquired from 30 sub-

jects. We compared the results quantitatively to the original MR and CT images to determine

the amount of clinically-relevant soft tissues and bone structures transferred to the fused im-

ages. Further comparisons with a recent graph cut based method show that the proposed meth-

ods yield competitive performances, while being applicable to 3D volumes. The results have

less than a 10% average difference in pixel intensity from the target input images within the

clinically relevant tissues. Our parallelized implementations on a GPU show that the proposed

algorithms yield real-time solutions fusing 3D spine CT/MR volumes of typical sizes in 1-2s

with an increase in speed in excess of 1000 times compared to the CPU. Case studies high-

lighting the utility of this approach are also included. These results indicate that image fusion

may be a suitable technique for clinical use and are congruent with feedback we have received

from radiologists based on the fused images; however, an observer performance study is now

required to establish the utility of the technique.

1.11.3 Chapter 4 - Image Fusion for Spine Diagnosis

The real time fusion methods of chapter 3 allow for the creation of an interactive diagnosis

tool. Being able to fuse entire volumes in less than a second allows for the adjustment of fusion

parameters by radiologists. These parameters allow radiologists to have anatomy / pathology

specific settings for viewing the fused images. This is similar, but complementary to window

and level tools. Custom software has been designed for viewing fused images that has a similar
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interface to existing radiology viewing software.

This software has been used to investigate the clinical performance our novel image fusion

method, which was presented in chapter 3, for use in diagnosis of the lumbar spine. The fused

images are designed to highlight bone detail from CT images and soft tissue detail from MR

images. Institutional ethics review board approval was obtained for the use of data from 20

patients who had previously had imaging preformed, with the need for informed consent being

waived. Images were obtained from consecutive patients who had an MR scan, and also had

a previous CT scan within the past year. Five radiologists were employed to read the images.

First unregistered MR and CT images were read. This was followed 4 weeks later by registered

MR, CT and fused images. Comparisons were made based on confidence in diagnosis, observer

agreement of protrusion measurements and time for completion of the previous two tasks.

Using the fused images radiologists had an overall higher confidence in diagnosis com-

pared to CT, and the same or higher confidence compared to MR, except when assessing the

exiting nerve root. There was not significant agreement between the readers for measurement

of protrusions using either the fused or unregistered images. In general observers took the same

amount of time to measure protrusions on fused and unregistered images. Overall, adding fused

CT/MR images increases radiologist confidence when assessing CT or MR images of the lum-

bar spine, without an increase in time for diagnosis. As such, it would be desirable to include

the use of fused images in clinical practice.

1.11.4 Chapter 5, Spine Axial MR Classification via Integral Kernel Den-

sity Estimates

Chapter 5 details a system for the automated annotation of MR axial spine images. Most

anatomy in the spine is identified relative to its nearest vertebra. As a result knowing the

correct labeling for the vertebra in the spine is essential for accurate diagnosis and treatment

of spinal disorders. This can be a time consuming process and having an automated system

would remove the need for crossing-referencing axial locations to sagittal images or mentally
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tracking the current vertebral level.

The algorithm is based on a non-linear probability product kernel (PPK) classifier com-

bined with a series of geometric constraints on the vertebrae/discs. Pixels are classified using

the PPK classifier. From this, slice level features are generated, which are in turn used for sin-

gle vertebrae classification. Multiple vertebrae are classified iteratively based on this method.

Our classifier requires evaluations of computationally expensive integrals at each pixel of the

image domain, and direct evaluations of such integrals would be prohibitively time consuming.

We utilize an efficient computation of kernel density estimates and PPK evaluations for large

images and arbitrary local window sizes via integral kernels, an extension of the well-known

integral image method of Viola and Jones. Our method requires a single user click, runs in

near real-time, and does not require an intensive external training. Results are presented us-

ing both T1-weighted and T2-weighted MR axial lumbar spine images from 32 patients and

T2-weighted MR axial cervical spine images from 24 patients. A 99% overall classification

accuracy is demonstrated for vertebrae in the lumbar spine, and 79% accuracy for the cervical

spine.

1.11.5 Chapter 6 Summary, Conclusions and Future Work

The details of chapters 2 through 5 are briefly reviewed and conclusions as to the applicability

of the fusion and labeling systems are presented. Additionally we explore future work related

to image fusion, including: real-time approaches to image registration that utilize the output of

the labeling algorithm, extensions of the fusion work and integration into a clinical product.
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Chapter 2

Spine Image Fusion via Graph Cuts [20]

2.1 Introduction

For spine diseases and injuries, it is common for a patient to receive both an MR and a CT scan

because of their individual benefits. MR images depict useful soft-tissue details including the

spinal discs, nerves, cerebral spinal fluid and spinal cord. Therefore, it is the primary modality

to diagnose protruding and degenerated discs. CT images clearly depict bony structures, espe-

cially the bone cortex, allowing the assessment of damaged joints or osteophyte growth (bony

spurs at the margins of a joint).

Radiologists currently display MR and CT images side by side, when both images are avail-

able. This does provide them with all the available image information, but its accessibility is

limited to visual correlation between the two images. It can be difficult to determine whether

narrowing of a spinal canal is caused by tissue or bone from clinical MR images hence, both

CT and MR can be employed [11]. Using both CT and MR images, as opposed to relying on

a single modality can benefit diagnosis and treatment of osteophytes and degenerate discs that

impact bone and nerve structures. In addition both modalities can aid post operative follow up

after spinal surgery [12]. Here, both the CT and MR modalities provide complementary infor-

mation. In order to properly visualize the related bone and soft tissue structures, the images

37
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must be mentally aligned and fused together. Detecting changes on unregistered, uncombined

images is an error prone task [26] . Therefore, it is highly desirable to fuse these two modal-

ities into a single image showing the clinically significant CT and MR details as well as their

relative locations on a single image. This will remove the need for mental juxtaposition when

examining multiple views. Our goal is to provide and validate such a system.

Here we present a novel method for image fusion of the spine, which preserves the bone

structures and soft tissue detail in a single image. Spine image fusion has the potential to

enable more effective and efficient evaluations of spine disorders, more so as the number of

spine scans increases very rapidly. For instance, in the United States, there has been a 300%

increase in lower spine MR scans in the period between 1994 and 2006 [8], and the percentage

of adults who have suffered from back pain is 75% [24].

Multi-modality image fusion has been studied in other fields, with applications varying

from multifocal [16] to geographical images [23]. In medicine, image fusion has been used for

brain imaging [17, 35], MRI-SPECT fusion [7], epilepsy treatment planning [34], liver ablation

[19] and digital subtraction angiography [38]. For the spine, registered and overlaid CT and

MR spine images have been used for surgery planning [11, 29] and evaluation of bone implants

[12]. A wavelet based approach to image fusion has been proposed by Li et al. [16]. The two

input images were fused in the wavelet domain, and an inverse transformation was applied to

produce the result. Other variations of this technique include additive wavelet decomposition

[23], the contourlet transform [35, 36], the curvelet transform [22] and the complex wavelet

transform [10, 15]. The wavelet or transform based methods can suffer from pixelation artifacts

when two dissimilar images are fused. This is a result of the decimations involved in the

wavelet transform as well as the translation dependence of standard wavelets. This may result

in small details being distorted, leading to a significant loss in image quality. Pathologies that

should have been visible may no longer be seen.

Variational fusion methods have also been investigated [2, 25, 30, 31, 39]. These methods

consist of finding the optimum of an energy functional, often via standard continuous optimiza-
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tion techniques, e.g., gradient descent. For these variational approaches, the main difficulties

come from the limitations of the optimizers. Gradient-descent procedures [2, 25, 30, 31, 39]

yield sub-optimal solutions and have a very high computational load.

Discrete optimization methods, which use graph cut algorithms have recently sparked a

substantial research effort in computer vision, and led to very efficient algorithms in image

segmentation [6, 27], stereo vision [4] and image restoration [3]. For object recognition, graph

cuts have been employed to segment planar surfaces from depth images [13]. Both depth and

intensity values were combined as inputs to a graph cut based segmentation algorithm. Graph

cuts have also been used to determine the optimal fusion rules for combining subbands of a

beamlet transform [37]. Although this method utilizes a graph cut approach for combining

subbands, it is still a transform based method and therefore is limited by the transformation

performed. To the best of our knowledge, graph cut formulations have not been previously

studied in the context of variational approaches to image fusion.

In this study, we state image fusion as a discrete multi-label optimization problem, which

can be solved efficiently with graph cuts [4, 5, 14], via the well-known swap or alpha-expansion

moves [4]. The proposed energy function [21] balances the contributions of three competing

terms: (1) a squared error, which encourages the solution to be similar to the MR input, with

preference to strong MR edges; (2) a squared error, which encourages the solution to be sim-

ilar to the CT input, with preference to strong CT edges; and (3) a prior, favoring smooth

solutions by encouraging neighboring pixels to have similar fused-image values. We further

introduce a transparency-labeling formulation, which significantly reduces the computational

load. The proposed graph-cut fusion guarantees nearly global solutions, while avoiding the

pixelation artifacts that affect standard wavelet based methods. We report several quantita-

tive evaluations/comparisons over 40 pairs of CT/MR images acquired from 20 patients. The

results demonstrate very competitive performance in comparisons to existing variational and

transform-based methods [25, 35, 16].

This work is a significant extension of a preliminary conference version [21]. The dataset
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was increased from 9 to 20 patients, resulting in validation on 40 image slices. A comparison to

Piella’s variational method and validation results based on the structural similarity information

measure (SSIM) have also been added. Two more clinical case studies have also been included.

In section 2.2 we present our formulation of image fusion as a graph cut labeling problem. This

is followed by a description of the dataset, its registration, preprocessing and fusion in section

2.3. We further discuss various case studies, and give a representative sample of the results in

2.4 with a discussion following in 2.5.

2.2 Formulation

2.2.1 Multi-label Formulation

We state image fusion as the following multi-label optimization problem:

λ∗ = min E(λ) with E(λ) = D(λ) + c1R(λ) (2.1)

where:

• Variable λ is a labeling function that assigns each point in image domain Ω to a label l,

which describes the intensity of the fused image at that point:

λ : p ∈ Ω→ λ(p) ∈ L, (2.2)

with L ⊂ I denoting a closed finite set of integers (the possible output intensities).
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• Data termD is defined as:

D(λ) =
∑
p∈Ω

Dp (λ(p))

=
∑
l∈L

∑
p∈Rl

[
w1 (l − u1(p))2 + w2 (l − u2(p))2

]
(2.3)

where u1 : Ω → R and u2 : Ω → R denote the input images, and Rl is the l-label region

defined by {p ∈ Ω|λ(p) = l}. w1 and w2 are weights defined as follows:

s1 = |∇u1| ∗ K s2 = |∇u2| ∗ K

w1 =
s1

s1 + s2
w2 =

s2

s1 + s2
(2.4)

K is a kernel, for instance, a box filter. w1 and w2 bias the solution towards strong edges

in u1 and u2, respectively.

The data term balances the contributions of two competing terms:

1. A squared error which, encourages the solution to be similar to the first input u1, with

preference to strong edges in u1; and

2. A squared error which, encourages the solution to be similar to the second input u2,

with preference to strong edges in u2.

• Smoothness term R favors smooth solutions by encouraging neighboring pixels to have

similar fused-image values:

R(λ) =
∑
{p,q}∈N

r (λ(p), λ(q)) (2.5)

withN being a set containing all pairs of pixels p and q in a local neighborhood of p and
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r (λ(p), λ(q)) is defined by the truncated absolute value:

r (λ(p), λ(q)) = min
(
c2,

∣∣∣lp − lq

∣∣∣) (2.6)

with c2 being a positive constant.

2.2.2 Alpha-blending Reformulation

The above formulation requires a one-to-one correspondence between the labels and pixel in-

tensities. Therefore, the number of labels needed to express the output image is equal to the

number of all possible pixel values. This may lead to a high computational load in the case of

images with large dynamic ranges, as is common in medical imaging. To reduce the number of

labels, we reformulate the data term as a transparency labeling. This is done by expressing the

output image as a function of u1 and u2 via a transparency image α, with α(p) ∈ [0, 1] ∀ p ∈ Ω:

uα = αu1 + (1 − α)u2 (2.7)

where uα denotes the output fused image.

Based on this formulation, we rewrite the data term in (2.3) as follows:

D(λ) =
∑
p∈Ω

Dp (λ(p))

=
∑
l∈Lα

∑
p∈Rl

[
w1 (uα(p, l) − u1(p))2 +

+w2 (uα(p, l) − u2(p))2
]

(2.8)
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where

uα(p, l) =
l

Nl
u1(p) +

(
1 −

l
Nl

)
u2(p) l ∈ Lα (2.9)

with Lα being a new (reduced) set of non-negative integer labels {0, 1, 2, ...,Nl}, parameterized

by the user specified number of labels Nl.

2.2.3 Graph Cut Optimization

Our problem is amenable to efficient graph cut optimization [5, 4, 14]. An illustration of the

multi-label graph cut problem is provided in Fig. 2.1. Exactly one label is given to each pixel

in the image, with associated data and smoothness costs assigned to the links in the graph. To

formulate this optimization let G = 〈V,E〉 be a weighted graph, withV a set of nodes and E a

set of weighted edges. V contains a node for each pixel in Ω and for each label in Lα. There is

an edge e{p,q} between every pair of nodes p, q. A cut C ⊂ E is a set of edges that separates all

the label nodes from each other, thereby creating a sub-graph for each label. The minimum-cut

problem consists of finding a cut Cwith the lowest cost. The cost of this minimum cut, denoted

|C|, equals the sum of the edge weights in C. By properly setting the weights of the graph, one

can use a series of swap moves from combinatorial optimization [5] to efficiently compute the

minimum-cost cuts corresponding to a minimum of functional E.

A swap move starts with a labeled graph and determines for a given pair of labels, p and q,

whether each node having a value in p, q should (1) retain its current label or (2) be updated to

the other label in the pair. Each swap is accomplished globally in an exact manner by finding

the minimum cut on a binary graph consisting of only two labels. This can be extended to

the multi-label case by iterating over the set of all possible pairs of labels. The minimum cut

is selected at each stage, with the final labeling corresponding to a minimum of the energy

functional. One can also use alpha-expansion moves [4] to optimize energy functions of the

form E. It is well-known that alpha-expansion moves guarantee a solution that is within a
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(a) (b)

Figure 2.1: An illustration of the graph-cut problem: a) A graph with 3 possible labels showing
the data cost of assigning a label to a node and smoothness cost of assigning a labeling to
adjacent pixel locations, b) the end result of the labeling of the graph.

constant factor of the global optimum [4]. However, experimentally, it is well established that

swap moves outperform alpha expansions [4]. Therefore, in this work, we used swap moves

with the edge weights defined in Table 2.1; where e{l,p} denotes an edge between a label and a

pixel, and e{p,q} an edge between two adjacent pixels.

Table 2.1: Weights assigned to the edges of the graph for minimizing the proposed fusion
energy

edge weight for

{l, p} w1 (uα(p, l) − u1)2 + w2 (uα(p, l) − u2)2 p ∈ Ω, l ∈ Lα
{p, q} r(lp, lq) p, q ∈ Ω

2.3 Methods

This retrospective study was approved by the Human Subjects Ethics Board of Western Uni-

versity, with the requirement for informed consent being waived. Twenty patient image sets

were randomly selected with the criteria of patients having had both a lumbar MR and CT scan

within a one-year time period. None of these patients had fractures, but other diseases such

as degenerate / protruding discs, spinal stenosis and osteophytes were present. The images

were acquired using either a Magnatom or Avanto Siemens 1.5T MR scanner (Seimens AG,
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Erlangen, Germany), with varying CT scanners depending on the location the CT images were

obtained. The MR scans were acquired using a 3D T2 weighted pulse sequence, and the CT

scans were acquired from either helical or axial slice CT images. No contrast was used in

either scan. The lumbar spine was assumed to be rigid between scans, because the patients

were scanned in a feet first prone position, resulting in very similar postures. We evaluated

the proposed method over 40 pairs of CT/MR images acquired from these 20 patients. Twenty

pairs were from the center sagittal slice, and 20 were from the left side of the patient through

the nerve root bundle. T2-weighted 3D MR images were used because they clearly present the

discs, nerve root bundle and cerebral spinal fluid. The 3D MR/CT images were then registered

and preprocessed. Finally the images were fused as sets of 2D images because radiologists

typically view 3D volumes as stacks of 2D images.

Validation was completed based first on visual results of the fusion, studying clarity of the

detail presented in the fused image, and second via a statistical comparison of the clinically

significant bone and tissue transferred to the fused images. Four clinical case studies were then

examined to illustrate the potential clinical value of this technique. Our method was compared

to four methods: (A) an averaging of the two images, and three methods from recent literature:

(B) the discrete wavelet transform (DWT) [16] (C) the contourlet transform (CLT) [35] and

(D) Piella’s variational method [25]. These methods were implemented using the parameters

listed in their papers. Table 2.2 contains a summary of these features.

2.3.1 Registration and Pre-Processing

The input volumes were registered, using a rigid 3D versor based transform in ITK[1]. The op-

timizer used maximization of Mutual Information (MI) [18] to align soft tissue details present

in both images (note the soft tissue details in the CT image are suitable for registration, but MR

is better for diagnosis). For the purpose of aligning soft tissue each CT image was thresholded

from -255 to 255 Houndsfield Units (HU) or -255 to 0 HU if needed. This kept many of the

soft tissue details, but removed most of the bone detail. Both images were then scaled to an
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Table 2.2: Implementation details and parameters for the three methods from literature

Discreet Wavelet [16] Contourlet Transform [35] Piella Variational [25]

• Subbands: 3 sub-
bands

• Wavelet: Haar wavelet

• Lowpass Rule: pixel-
wise averaging

• Highpass Rule: pixel-
wise selection of the
coefficient with the
largest maximum
value

• Subbands: 4 sub-
bands, with 4,8,16 di-
rectional subbands in
levels 2,3,4 (lowest de-
tail to highest)

• Filters: Lowpass
9-7 Filter, directional
PKVA

• Lowpass Rule: local
energy in a 3x3 win-
dow

• Highpass Rule: local
contourlet contrast

• Parameters η = 0.1,
β = 0.5, γ = 0.3, δt =

0.15

• Kernel w - Gaussian,
σ = 0.1

• Polynomial J′ n = 7,
α = 10, k = 0.25

intensity range of 0 to 255 to be in the same range. The transform was initialized using two

corresponding user-selected points, one from the CT and the other from the MR image. After

this, MI was calculated from the voxels in both images, and the versor transform was iteratively

updated based on MI of the two images at each step. Using the obtained optimal transform,

the original MR image (without intensity scaling) was transformed and resampled to the voxel

spacing of the CT image.

Manual points were selected in the 3D images for the target registration error (TRE) and the

fiducial localization error (FLE) evaluation. The TRE is the mean post registration Euclidean

distance between corresponding pairs of fiducials from the input images. The FLE is the root

mean-squared difference in locations when selecting the same fiducial multiple times in an

image [9]. The TRE used 17 points from two image pairs. For the FLE, 5 distinct points were

defined on the CT image. On 5 separate days, corresponding points in the MR image were

identified producing a total of 25 point sets. These errors were used to validate the registration.

After registration, the original CT images were thresholded at 0 HU, setting any negative

values to 0 HU and leaving other values unchanged. This removed most of the soft-tissue
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Figure 2.2: Histograms of all the images, a) Histogram of all 40 MR images, b) Histogram of
all 40 CT images, c) Histogram of all 40 CT images after Preprocessing (excluding pixels with
an intensity of 0) and histogram of all 40 MR images.

Figure 2.3: Flow chart of the image fusion process: The MR is registered to the CT image. The
CT is thresholded and its histogram is adjusted to match the MR. Finally the images are fused.

details and was done because the MR presents the tissue detail with more clarity, so the CT

tissue detail is undesirable for the fused image. For all 20 patients the MR images were found

to have a maximum intensity of about 700, and the CT images were found to have a maximum

intensity of about 1400. In view of this, the CT intensities were divided by two so that the

MR and CT histograms would have similar intensity ranges prior to fusion. This was needed

to eliminate bias in the fusion algorithm due to differing intensity ranges in the input images.

MR and CT histograms are shown in Fig. 2.2 and Fig. 2.3 shows a flow chart describing the

registration and pre-processing steps.
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2.3.2 The Parameters of our Fusion Method

After preprocessing was completed, fusion could be carried out. For the purpose of these

experiments, c1 was set equal to 0.001(Imax)2

c2
, c2 equal to 0.40 (Nl) and Nl equal to 20, with Imax

being the maximum intensity value in both inputs. Nl and c1 were tuned manually to balance

image quality and speed of computation. c2, was set empirically for smoothness. Constant c1

was set in relation to the maximum value in the data term and in relation to c2.

2.3.3 Statistical Evaluation of the Fused Images

We compared each of the MR and CT images to the fused result within: (1) the regions of soft

tissues, and (2) the regions of bone structures. The soft-tissue details consisted of the discs,

nerves, and cerebral spinal fluid from the MR image, and the bone details were from the CT

image, with a specific focus on the bone cortex. The trabecular bone does not contact soft

tissue and so was omitted. We created image masks of the tissue and bone details for each

patient. The tissue masks were created by manual segmentations of the MR images, and the

bone masks were obtained by thresholding the CT images at a user selected HU for each image

and then manually correcting any errors. Figure 2.4 shows sample masks of the tissue and bone

detail.

We defined a fusion error as the mean absolute-value difference between the MR/CT images

and the fused images in the tissue regions defined by the masks. For the MR images, we

calculated the following two errors:

eMR, Tissue =

∑
MTissue

|IMR − Ifused|

area of the tissue mask
(2.10)

eMR, Bone =

∑
MBone
|IMR − Ifused|

area of the bone mask
(2.11)

where IMR is the intensity of the MR image for a given pixel, Ifused is the intensity of the fused
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Figure 2.4: Sample masks for validating the quality of the fusion algorithm. Top left: sample
MR image, Top right: soft tissue Mask, Bottom Left: sample CT image, Bottom right: bone
detail mask
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image at a given pixel and MTissue, MBone are the non-zero domains of the two masks. Similarly,

two additional errors, eCT, Bone and eCT, Tissue were defined for the CT images. Ideally, there

should be no tissue differences between the MR images and the fused images in the tissue

regions (eMR, Tissue = 0) and no bone difference between the CT images and the fused images

in the bone regions (eCT, Bone = 0). The hypothesis we tested was that the error obtained for

the MR images is lower than the one obtained for the CT images within soft-tissue regions, i.e.

eMR, Tissue < eCT, Tissue, and higher within bone regions eMR, Bone > eCT, Bone.

Each of the four errors were calculated for each patient. Some of the data was found to

be non-normal using a Shapiro-Wilks test [28], thus a non-parametric Wilcoxon test [33] was

used to compare sets of errors. The tissue errors: eMR, Tissue and eCT, Tissue were compared to each

other and the bone errors: eCT, Bone and eMR, Bone, where also compared, in order to determine if

there was a statistical significance difference between them for the 40 patient image sets. These

calculations were performed for each of the five fusion methods using version 20 of the SPSS

statistical software (SPSS Inc., an IBM Company, Armonk, NY).

2.3.4 Additional Metrics for Evaluation

In addition to the above statistical tests, we have also examined the sensitivity and specificity

or our algorithm along with the structural similarity in the masks [32]. For classification, we

have defined true and false positives/negatives (TP,FP,TN,FN) per pixel as:

• TPtissue and TNbone if (eMR, Tissue < eCT, Tissue)

• FPtissue and FNbone if (eMR, Tissue ≥ eCT, Tissue)

• TNtissue and TPbone if (eMR, Bone > eCT, Bone)

• FNtissue and FPbone if (eMR, Bone ≤ eCT, Bone)

Sensitivity and specificity were calculated for each using the total number of TPs, FPs, TNs

and FNs normalized over the image masks, which we denote by nTP, nFP, nTN, and nFN.
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Sensitivity and specificity are defined in (2.12). Since the tissue sensitivity is equal to the bone

specificity and the bone sensitivity is equal to the tissue specificity, only the two sensitivity

values have been reported:

Sensitivity =
nTP

nTP + nFN

Specificity =
nTN

nTN + nFP
(2.12)

The structural similarity metric [32] is defined as:

SSIM(x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

) (2.13)

where µx, µy, σx, σy, σxy represent the means in the x and y images, the variances in the x and y

images and the covariance of the two images respectively. This metric has been applied over a

local window for pixels within the given masks, comparing the MR images to the fused images

in the tissue mask, and the CT images to the fused images in the bone masks. The window

was defined as an 11x11 Gaussian kernel with σ = 1.5. C1 = 0.01 and C2 = 0.03 are positive

constants.

2.4 Results

In the following, we describe a representative sample of the fusion results, report several sta-

tistical evaluations, and discuss four clinical case studies based on our fusion method.

2.4.1 Registration Validation

The TRE [9] was found to be 1.9±0.6 mm with a CT voxel spacing of 3 x 0.3 x 0.3 mm for the

tested images. The FLE was found to be 0.8 ± 0.4 mm. This demonstrates that the registration

accuracy is sub-voxel, since the TRE is greater than the FLE, but less than the diagonal size of
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Figure 2.5: Sample fused Images: top left - input CT, top right input MR, middle fused im-
ages: A) averaging method, B) discrete wavelet transform, C) contourlet, D) Piella’s variational
method, E) our proposed graph cut method, bottom row: magnified images within the region
of interest indicated in the images above.

the voxels.

2.4.2 Sample Images

Figure 2.5 shows sample input images, including the registered CT and MR inputs and the

results of the five fusion methods. It shows that the algorithms perform very differently in

preserving the CT/MR details. As expected, the averaging method (A) loses many details,

whereas the wavelet method (B) introduces block-structure artifacts because it does not account

for shift invariance. The contourlet method (C) significantly blurs the MR details and adds

noise to the CT detail, making it difficult to identify the nerve structures and bones. The

variational method (D) preserves the details, but significantly reduces the intensity range of the

solution. The graph cut result (E) depicts sharp MR and CT details, has a much larger dynamic

range than Piella’s method (D), and is artifact-free.
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Figure 2.6: Masks Values before fusion, a) Tissue mask and left slices, b) Tissue mask and mid
slices, c) Bone mask and left slices, d) Bone mask and mid slices

2.4.3 Evaluation of Masks

We have calculated the mean intensity in the tissue and bone masks, for all the MR and CT

images. This provides a frame of reference for the fusion error calculations and to evaluate the

effectiveness of the masks. These intensities are shown in Fig. 2.6, with separate graphs for

the left sagittal slices through the nerve root bundle and mid sagittal slices, through the center

of the subject. For the tissue mask, in the left slices the MR values are about 50, whereas the

CT values are between 50 and 100, for the mid slices the CT values are about 50, whereas the

MR values range between 100-250 for most patients. This demonstrates that the tissue masks

perform well at discriminating between tissue and bone for the mid slices (high MR, low CT),

but have less differentiation power for the left slices. For the bone masks, on both the left and

mid slices the intensities prior to fusion are between 200 and 300, with the MR values around

100 or less. This shows clear differentiation between bony and tissue detail in the masks.
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Figure 2.7: Fusion Error for our graph cut method: a) eTissue for the left slices, b) eTissue for the
mid slices c) eBone for the left slices and d) eBone for the mid slices

2.4.4 Statistical Results

The results of the fusion errors for our graph-cut method are shown in Fig. 2.7. These show

that eMR,Bone is greater than eCT,Bone error in all images as was hypothesized. For the tissue

errors, eMR,Tissue is fairly constant at about 50 for all images, with eCT,Tissue being much lower on

the left images, than the mid images, but higher than eMR,Tissue for the majority of subjects.

For all five methods, Table 2.3 reports the mean values of eMR,Tissue, eCT,Tissue, eCT,Bone and

eMR,Bone over the 40 image sets. These were measured in pixel intensity. Table 2.3 also shows

p-values for the pairwise and independent Wilcoxon tests comparing eMR,Tissue with eCT,Tissue

and eCT,Bone with eMR,Bone, again over the 40 sets of patient images.

As expected, eCT,Bone = eMR,Bone and eMR,Tissue = eCT,Tissue for the averaging method. For

the wavelet/contourlet methods eMR,Tissue was slightly higher than eCT,Tissue. This is the opposite

of what is desired. On the contrary, for the proposed graph-cut method and Piella’s method

eMR,Tissue is lower than eCT,Tissue. All the methods, except averaging, yielded eCT,Bone < eMR,Bone.

Overall, the proposed graph cut method resulted in the lowest eCT,Bone, and the lowest eMR,Tissue,
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Table 2.3: Mean fusion error values for the 20 patient data sets and statistical-significance test
results for the fusion methods.

Method eMR,Tissue eCT,Tissue PPairwise PIndependent

Averaging 64.2 ± 26.0 64.2 ± 26.0 1 1
DWT [16] 64.9 ± 26.1 63.9 ± 25.9 < 0.001 0.707

Contourlet [35] 73.4 ± 28.6 64.2 ± 24.9 < 0.001 0.083
Piella [25] 152.8 ± 52.6 175.9 ± 54.0 0.002 0.006

Graph Cuts 46.6 ± 12.3 81.7 ± 52.6 0.006 0.020

Method eCT,Bone eMR,Bone PPairwise PIndependent

Averaging 82.5 ± 19.8 82.5 ± 19.8 1 1
DWT [16] 81.9 ± 19.7 83.7 ± 19.8 < 0.001 0.583

Contourlet [35] 82.6 ± 19.7 89.0 ± 18.6 < 0.001 0.121
Piella [25] 84.1 ± 40.6 188.7 ± 48.0 < 0.001 < 0.001

Graph Cuts 57.0 ± 11.9 108.0 ± 36.2 < 0.001 < 0.001

which corresponds well to our purpose. We obtained a mean eCT,Bone value of 57.0 based on

the CT intensity dynamic range of 700. For the soft tissues eMR,Tissue = 46.6. Note that Piella’s

method yielded the highest eMR,Tissue. For bone regions, all the methods, except ours, yielded

approximately the same eCT,Bone.

With the exception of the averaging method eMR,Tissue was found to be pair-wise statisti-

cally different from eCT,Tissue and eCT,Bone was found to be pair-wise statistically different from

eMR,Bone. The independent Wilcoxon tests showed that only Piella’s method and our graph cut

method were statistically significantly different when analyzed as a group.

2.4.5 Additional Metrics

The images have also been analyzed for the sensitivity and specificity of the number of cor-

rectly fused pixels along with the structural similarity between the input images and the fused

images within the mask regions (Table 2.4).

These results show that the averaging method has 0 sensitivity. The DWT and contourlet

methods performed lower than the other two methods, with Piella’s methods having the highest

sensitivity for both CT and MR and graph cuts having the second highest for both. In regards to
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Table 2.4: Mean Sensitivity for Tissue and Bone details along with Mean SSIM Index measures
for all five methods.

Method Sensitivity Sensitivity SSIM SSIM
Tissue Bone Tissue Bone

Averaging 0 ± 0 0 ± 0 0.59 ± 0.32 0.08 ± 0.04
DWT [16] 0.51 ± 0.01 0.76 ± 0.17 0.54 ± 0.32 0.11 ± 0.06

Contourlet [35] 0.50 ± 0.01 0.75 ± 0.17 0.22 ± 0.30 0.12 ± 0.08
Piella [25] 0.86 ± 0.11 0.87 ± 0.08 0.32 ± 0.31 0.15 ± 0.11

Graph Cuts 0.63 ± 0.12 0.84 ± 0.09 0.52 ± 0.33 0.21 ± 0.12

the SSIM index, the averaging method performed best on the MR data, followed by the DWT

and Graph Cut methods. Piella’s methods and the the contourlet transformed did much poorer.

For bone details the graph cut method did the best, followed by Piella’s method, the contourlet

method, the DWT and finally averaging.

2.4.6 Case Studies

Visual Inspection - Lumbar Spine, Joint and Disc Disease We present the first clinical case

study for our fusion technique in Fig. 2.8. In the first case, the patient had a protruding spinal

disc and damaged facet joint. The disc can be seen in the MR image as a hypointense region,

whereas the facet joint is visible in the CT image. There is significant osteoarthritis in the joint.

The fused image clearly shows both of these pathologies in a single image, allowing for a better

diagnosis.

Figure 2.8: Images of damaged spine: left - MR showing a protruding disc (hypointense re-
gion); middle - Fused image showing the disc, the spinal cord and the damaged facet joints;
right - CT image showing damaged facet joints.
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Visual Inspection - Osteophyte Growth The second case study shows osteophyte growth (see

Fig. 2.9), which is the formation of bony spurs at the margins of a joint. On the MR image

alone, it is difficult to see the location of the osteophyte. The CT shows the osteophyte, but

none of the surrounding soft tissue. The fused image shows both the formation of the bony

spurs and the surrounding soft tissue on a single image.

Figure 2.9: Images of bony spur formation: left - in the MR, the osteophyte is not identifiable;
middle - in the fused image, the osteophyte is clearly visible along with the surrounding soft
tissue; right - the CT image shows the osteophyte, but not the soft tissue.

Visual Inspection - Abnormal Vertebrae and Cord damage The third case study shows

spinal cord damage (Fig. 2.10) and an abnormal vertebrae on a single fused image. The cord

damage is not visible on the CT image, while the abnormal vertebrae is difficult to see on the

MR image. The fused image presents both.

MR Image CT ImageFused Image

Figure 2.10: Image of an abnormal vertebrae and cord damage: left - in the MR the cord
damage is easily visible; center - the fused image: the cord damage and the abnormal vertebral
body can be seen clearly; right - the CT image shows the abnormal vertebrae.

Visual Inspection - Osseous Erosion Secondary to Pannus In this patient with rheumatoid

arthritis (Fig. 2.11), pannus is eroding the posterior aspect of the dens. On the MR, the chronic
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pannus is dark and cannot be distinguished from the underlying bony cortex. On the CT, the

margins of the bone are well seen, but soft-tissue contrast is poor. The relationship of the

pannus to the underlying bone is best seen on the fused image.

MR Image CT ImageFused Image

Figure 2.11: The arrows show the pannus eroding the posterior aspect of the tip of the dens.
The relationship between the pannus and the surface of the bone is best seen on the fused
image.

2.5 Discussion

We have investigated a novel CT/MR spine image fusion algorithm based on graph cuts. We

have successfully fused MR and CT images to create a single fused image, providing a new

and effective combined modality for diagnosis. Images were registered, pre-processed and

then fused. This has been tested on 40 sets of clinical images from 20 patients. The graph

cut results show better performance than the averaging method and the three state-of-the-art

methods from the literature. Our method successfully transfers bone detail and soft tissue

detail to the resulting fused image, with only a 57.0 difference in intensity values for the bone

details and 46.6 intensity different for the soft-tissue details, in a dynamic range of 700. Visual

inspection confirms these results, with graph cuts showing the sharpest detail for both the bone

and soft tissue details.

The statistical tests showed pairwise significance for the CT vs MR error in every method

except averaging, however, only Piella’s method and our graph cut method showed groupwise

statistical significance between errors, which is a stronger test. This indicates that these two

methods perform better than the others, in transferring bone detail and soft tissue detail to the



2.5. Discussion 59

fused image. With regard to the additional methods, Piella’s method performed better than

graph cuts in regards to the sensitivity test. However, the graph cut method outperformed

Piella’s method in terms of structural similarity, a test where Piella’s method is expected to

perform well. Piella’s method may have a higher sensitivity than graph-cuts because sensitivity

is strongly influenced by the number of false negatives. Since the MR bone error for Piella’s

method is very high compared to graph-cuts, this would lead to a reduction in false negatives

even though the CT bone error is higher for Piella’s method compared to graph-cuts. Sample

images are shown in Fig. 2.5. In view of all the numeric and visual results, the graph cut

method can be concluded to outperform the existing state-of-the-art methods.

The subvoxel accuracy of the registration ensures that the fusion errors are a result of the

fusion techniques and not misregistration for our 20 patients. In the proposed method, the rigid

image registration assumes minimal structure deformations and patient posture variations. If

significant deformation or patient posture difference was present, the non-rigid registration,

as a pre-processing step, could be replaced with local-affine or non-rigid image registration,

without affecting the quality of the fused images.

One note of interest is that eMR,Tissue and eCT,Tissue for the DWT are similar or lower than

the averaging, contourlet and Piella’s methods, even though the DWT is visually worse than

Piella’s method. The DWT also has a high SSIM value. There was pairwise statistical signifi-

cance of the fusion errors for the DWT, but no groupwise statistical significance. This indicates

its poor ability to discriminate between tissue and bone detail, which is essential for clinical

use.

In this study, the evaluation focuses on fusion of sagittal non-contrast CT and T2 MR

Data. Nonetheless, the proposed graph cut fusion method is general for fusing different image

modalities and images formatted in different reconstruction planes. It is expected to share sim-

ilar success if the model parameters are properly adjusted. This is one of the future directions

of this research.

We have also shown the benefit of our fusion system on four clinical cases, where the fused
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image clearly shows both the bone and soft tissue detail on a single image. This highlights

the pathology on a single image. Our method can successfully combine CT and MR images

of the lumbar spine, while retaining the significant clinical detail. This eliminates the need

for radiologists to mentally align and fuse two separate datasets, along with the associated

potential for errors. Although we do not intend to have fused images replace CT and MR scans

for clinical use, we do see this as a strong tool to add to the current practice and aid radiologists

in completing more accurate and quicker diagnosis.
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Chapter 3

Real time MR/CT Image Fusion for

Lumbar Spine Diagnosis

3.1 Introduction

3.1.1 Background and clinical interest

The current availability of various imaging modalities presents clinicians with various views,

each of which highlights distinct anatomical and functional details. Integrating information

from multiple modalities into a single view, often referred to as image fusion, allows depicting

complementary and clinically important details [8, 20, 34]. An application of high clinical

interest is the fusion of MR and CT data of the spine [22]. MR and CT images are two main

modalities for the diagnosis and treatment of most spine diseases. These two modalities pro-

vide complementary information: an MR scan, especially a T2-weighted image, depicts useful

soft-tissue details of the intervertebral discs, - including diagnosis of protruding and degener-

ated discs, information about the spinal cord and its associated nerves as well as the cerebral

spinal fluid space. A CT scan depicts the high contrast bony structures, especially the bone

cortex, which allows for the assessment of damaged bone and joints. In routine clinical use,

radiologists often examine the two modalities side-by-side, which requires mental reposition-
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ing, alignment and fusion of the respective images in order to determine the relative locations

of details in the two images. This is an error-prone and time-consuming process. Even when

the MR and CT images are closely aligned the position of anatomy in one image relative to

anatomy in the other image may not be clear, such as the exact edges of a protrusion relative to

surrounding bone tissue.

As a complement to MR and CT images currently used, the addition of a fused image of the

spine containing both the soft tissue and bone details from the MR and CT images promises

to facilitate more accurate diagnoses in less time. This is particularly important given the

exponential increase in spine scans during the last decade. For instance, the study in [9] reports

a 300% increase in the number of lower spine MR scans in the period between 1994 and 2006.

Also, the study in [9] reports that 75% of adults will suffer from back pain, which was the

cause of 1.8% of all hospital visits in the United States in 2008.

Image fusion has seen multiple medical applications. These include: image fusion used

for brain imaging [20, 34], MRI-SPECT fusion [8], non-invasive epilepsy surgery planning

[32], and digital subtraction angiography [38]. For the treatment and diagnosis of the human

spine, registered and overlaid images have been utilized in the evaluation of bone implants [15]

and for surgery planning [14, 29]. More recently, the fusion of MR and CT spine images was

studied in [22], which was demonstrated to be the state-of-the-art for spine image fusion. The

largest drawback to this method is its computational time, making it unsuitable to real-time

image fusion.

Clinically, a large drawback to long computational time is the inability to interactively ad-

just the fused image. Currently when viewing medical images, radiologists can adjust the win-

dow and level, to optimally highlight a specific tissue range. These settings are often changed

multiple times throughout a reading. For fused images, similar controls are also desirable.

Allowing clinicians control over the fused images will allow radiologists to explore different

tissue / disease settings. An example of this capability is the need to adjust the relative balance

between the CT and MR images. A real-time image fusion system is the easiest way to provide
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this capability.

3.1.2 Technical Overview of Prior Art on Image Fusion

In addition to the medical applications of [8, 14, 15, 20, 22, 29, 32, 34, 38] there has been exten-

sive research into non-medical image fusion applications, which vary from multifocal images

[18] to multi-spectral imaging (often with geographical applications) [33]. Both medical and

non-medical applications are implemented using similar techniques and in general these for-

mulations of image fusion algorithms fall within two main categories: (1) Transform-based

methods [13, 17, 18, 24, 25, 34, 35] and (2) Functional-optimization methods [2, 22, 27, 30].

Transform-based methods

Transform-based methods fuse the input images in a transformation domain, not the image

domain. For instance, a wavelet-based approach has been proposed in [18], where two images

of different focal lengths were fused in the wavelet domain, and an inverse transformation was

applied to recover the final result. Additionally wavelet transform variations include: additive

wavelet decomposition [25], the contourlet transform [34, 35], the curvelet transform [24], the

complex wavelet transform [13, 17] and other wavelet approaches [26]. Other methods include

using an independent component analysis basis [23] and the polyharmonic local sine transform

[19]. Due to the limitations of the transforms used, transform-based methods often distort fine

details, which may affect important clinical information. For example, wavelet-based methods

suffer from pixelation artifacts when two dissimilar images are fused. This is a result of the

decimations needed for the forward and inverse transforms, which are compounded because

standard wavelets are not image oriented. Such artifacts may lead to a significant loss of image

quality, making it difficult to visualize certain pathologies to the point where they may not be

seen. Contourlets [34, 35] and complex wavelets [13, 17] were also studied to address this

problem. Unfortunately, such descriptions are limited in the number of directions that can be

represented in their structures. Use of an independent component analysis basis [23] is another
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alternative. However, the basis must be trained to generate an application specific transform.

This has the advantage of being problem specific, but also leads to a high dependency on the

trained basis, reducing its flexibility.

Functional-optimization methods

Functional-optimization statements of image fusion have recently attracted several research

efforts [2, 22, 27, 30], and can address some of the limitations of transform based methods.

Unfortunately, the main difficulties in these methods come from the limitations of the optimiz-

ers. For instance, the methods in [2, 27, 30] rely on standard gradient-descent procedures. Such

optimizers yield sub-optimal solutions and a very large computational load, which precludes

their use in 3D (or higher) dimension, as is common in medical imaging. The recent study in

[22] attempted to address spine image fusion with a multi-label graph cut formulation, where

the fused image is described by a finite set of labels. Using established graph-cut optimizers

from combinatorial optimization (e.g., swap expansion moves) [6], the authors of [22] showed

promising performances in the 2D case, outperforming the methods of [18, 27, 34]. It is well

known that graph cuts can yield an excellent performance in the case of 2D grids [5], with a

relatively small number of labels and neighborhood systems. However, the extension of graph-

cut optimizers to applications where the number of labels is large, as is the case of image fusion

problems, or when the image dimension is high (3D or higher) as is the case of medical data,

may result in a very large computation and memory load [16]. The complexity of multi-label

graph cuts increases super-linearly with the number of labels because pairwise combinations

of the labels are considered. Furthermore, graph cuts cannot be easily parallelized because of

the pairwise potentials [36]. Ideally a real-time image fusion system could be utilized to allow

interactive adjustment of the fused images.
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3.1.3 Contributions of this study

This study investigates multi-modal spine image fusion algorithms based on convex optimiza-

tion. We are able to solve a similar model to [22], while allowing for interactive adjustment of

the fused images via real-time computation. We optimize an objective functional that contains

three terms: (1) an edge weighted data term, seeking a solution that is similar to the MR image,

(2) an edge weighted data term, seeking a solution that is similar to the CT image, and (3) a

total variational term that encourages edge smoothness in the output image. The data terms are

constrained by their L1 and L2 norms (absolute value and squared difference) and weighted by

gradients in the images. Unlike the graph cut approaches [22] we are able to ensure a globally

optimal solution, without the need for multiple labels in the image, via convex optimization.

We demonstrate these results on 30 patient volumes.

The major contributions of this work include four new convex approaches to spine image

fusion. These are shown to have similar or better performance than the state-of-the-art graph

cut approach [22], which has only been applied to 2D image slices. The four novel methods are

applicable to both 2D and 3D images, and achieve real-time results on a GPU for 3D volumes.

This allows interactive adjustment of the fused images. These methods include convex absolute

value difference methods (CABS) and convex squared difference methods (CSD), which are

both implemented in 2D and 3D.

The remainder of this paper is organized as follows. In section 3.2, we state image fusion as

a functional optimization and discuss two solutions, namely: convex absolute value difference

methods and convex squared difference methods, based on a previous conference paper by

one of the authors [37]. In section 3.3, the experimental methods are described, including

data selection and preprocessing, along with registration methods and our validation scheme.

Several experiments with their results are presented in section 3.4, including the registration

results, visual and numerical fusion results and results on the computational runtimes of the

algorithms. This is followed by a brief discussion in section 3.5 with proofs from section 3.2

contained in the appendix.
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3.2 Convex Optimization Approaches to Image Fusion

Here we present an overview of the fusion problem, including its formulation with a focus

on the details impacting the clinical results of this work. The mathematical details including

a rigorous definition of equations, along with further derivations, proofs and implementation

details are provided in the appendix.

We seek to minimize an energy functional that balances three competing terms in order to

create a single fused image that preserves the important clinical details in the input MR and CT

images. These terms and their goals are designed as follows:

1. An edge weighted data term, biasing the solution towards a fused image that is similar

to the input MR image. This aims to preserve soft tissue detail from the discs, nerves

and spinal cord. In the T2-weighted MR image, the nerve roots, spinal cord and cerebral

spinal fluid present with strong edges and high pixel intensities. The discs in the T2-MR

image also present with a high intensity value.

2. An edge weighted data term, biasing the solution towards a fused image that is similar

to the input CT image. This aims to preserve cortical bone detail, which has both strong

edges and high pixel intensity corresponding to the high Houndsfield Units (HU).

3. An edge preserving smoothness term, biasing the solution to maintain natural transitions

in the image.

We can express the above criteria as the minimum of a functional of the following general

form:

min
u

E(u) := D(u, f1, f2) + λS(u) . (3.1)

where, u, represents our output image, f1 represents the first input image (the MR scan), f2

represents the second input image (the CT scan), and λ is a positive constant. Additionally D
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represents a data term, dependent on the input images and the output images, and S represents

a smoothness term, which is only dependent on the output image.

Specifically we define the data termD as:

D(u) =

∫
Ω

w1A( f1 − u) dx +

∫
Ω

w2A( f2 − u) dx , (3.2)

Where A is some positive convex function (e.g. ( f − u)2 or | f − u|), w1, w2 are weights that

depend on the edges of the images and Ω is the domain of the image. This encodes objectives

1) and 2) resulting inD measuring an edge-weighted conformity of a solution u.

We define the smoothness term S(u) to be the total variation of u, which is designed to

create an output image containing natural transitions, encoding objective 3). The use of the total

variational smoothness term preserves strong edges in the image, while preserving smoothness.

We choose the L1-norm (absolute value) and the L2-norm (squared difference) for A as

these are two of the most commonly used norms. This results in the following two data terms:

L1-norm problem:DABS(u) =

∫
Ω

w1 | f1 − u| dx +

∫
Ω

w2 | f2 − u| dx (3.3)

or

L2-norm problem:DSD(u) =

∫
Ω

w1 (u − f1)2 dx +

∫
Ω

w2 (u − f2)2 dx . (3.4)

These data terms result in the following optimization problems, which we denote as EABS for

the absolute value norm and ESD for the squared difference norm:

min
u∈Ω

{
EABS =

∫
Ω

w1 | f1 − u| dx +

∫
Ω

w2 | f2 − u| dx + λ

∫
Ω

|∇u| dx
}

(3.5)
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or

min
u:Ω

{
ESD =

1
2

∫
Ω

w1(u − f1)2dx +
1
2

∫
Ω

w2(u − f2)2dx + λ

∫
Ω

|∇u| dx
}

(3.6)

We can solve these two energies, using two different algorithms. We refer to these algo-

rithms as CABS (convex absolute value) and CSD (convex squared difference) for EABS and

ESD respectively. We have left further details of these two algorithms for the appendix. It is

important to note that these solutions are convex, which means that we can always find the

image that corresponds to the optimal energy and we can do so very efficiently. Addition-

ally the algorithms used to find the optimal fused image are highly parallel and amenable to

implementation on modern graphics hardware. This addresses the biggest drawback of the

state-of-the-art algorithm [22] allowing for an interactive image fusion system.

3.3 Data Selection and Evaluation Methods

This retrospective study was approved by the Human Subjects Ethics Board of the University of

Western Ontario, with the requirement for informed consent waived. A total of 30 patients were

randomly selected, who had received lumbar MR and CT scans at most one year apart. The

patients had a range of diseases including osteophytes, spinal stenosis and disc protrusions. The

MR scanners used were a Magnetom and Avanto Siemens 1.5T MR scanners (Seimens AG,

Erlangen, Germany). The CT scanner used varied based on the location where the images were

acquired. Pairs of CT and T2 weighted 3D MR images were selected for each patient. These

CT and MR images were sagittal reconstructions from axial CT slices and 3D T2-weighted

MR scans respectively. The CT pixel spacing was 0.9mm by 0.9mm, with a slice thickness

varying between 1.5-3mm, depending on the patient. The MR pixel spacing varied from 0.41

mm by 0.41mm to 0.94 by 0.94 mm, with the slice thickness varying between 0.27 mm and

0.41mm, depending on the patient. The image pairs were then registered, preprocessed and

fused into a single image. For each patient a pair of corresponding sagittal slices, from the
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registered images, were selected at the middle of the patient. For 2D fusion algorithms, the

image pairs were selected prior to fusion. These were then fused and validation was performed

on these slices. For 3D fusion algorithms, slice selection was completed after the fusion of the

3D images and validation was performed on these slices.

The techniques were validated based first on visual results for the clarity and detail present

in the fused images. Statistical comparisons were then made, based on the clinically relevant

tissues transferred from the input images to the fused images. Time for computation was also

analyzed, including runtimes for the fusion algorithms and a comparison of runtimes with vary-

ing image sizes. Finally, clinical case studies are presented to illustrate the clinical potential of

this technique. A total of six methods were compared: 1) a simple averaging of the two input

images, 2) a multi-label graph cut method (GC) [22], 3) our absolute value convex method

in 2D (CABS-2D), 4) our absolute value convex method in 3D (CABS-3D), 5) our squared

difference convex method in 2D (CSD-2D), and 6) our squared difference convex method in

3D (CSD-3D).

3.3.1 Registration

Each pair of 3D MR and CT images were rigidly registered to each other. This was accom-

plished using rigid registration based on the Mattes mutual information metric [21] and was

implemented using the Insight toolkit [1]. The 3D versor class and its associated optimizer

were used for the transformation. For each image pair, registration was initialized based on a

user identified corresponding point located on each of the two images. The MR images were

registered to the CT images based on soft tissue correspondence and then resampled to the CT

voxel size. The CT soft tissue is suitable for registration purposes, but MR is the preferred

modality for diagnosis.
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3.3.2 Validation of Registration

A Target Registration Error (TRE) and Fiducial Localization Error (FLE) [11] were calculated

to validate the registration of the images. A total of 48 fiducials, based on 12 fiducials each

from four patients, were used for calculating the TRE. These were identified manually in cor-

responding CT and MR images based on four points located on the vertebral edges on each of

three separate vertebrae per patient. For calculating the FLE, four fiducials were identified in a

sample CT image and corresponding fiducials were located in the MR image. The MR fiducial

selection was repeated 5 more times resulting in a total of 24 samples being used to calculate

the FLE. To account for memory bias, the minimum gap between repetitions was 8 hours.

3.3.3 Preparation of the Dataset

The registered images were preprocessed prior to image fusion. In order to remove unwanted

soft tissue detail from the CT image, the intensities were cut-off below a user specified min-

imum cut-off Imin. To ensure that the CT bone structures would not eclipse the soft tissue

structures in terms of relative brightness, the images were scaled to be within similar ranges,

again by a user adjustable parameter d. This preprocessing is detailed in (3.7),

I =


0 Io ≤ Imin

(Io − Imin) /d Io > Imin

(3.7)

where Io is the initial CT intensity (in HU), and I is the output intensity.

To maintain a fair comparison, the algorithms were tested with the same parameters as

[22]: d = 0 and Imin = 2. In clinical use these could be easily varied. Histograms of the 30

mid-sagittal slices are shown in Fig. 3.1 before and after fusion using these parameters. A flow

chart of the registration, preprocessing and fusion processing is shown in Fig. 3.2.
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Figure 3.1: Histograms of the 30 mid-sagittal images, a) Histogram of the 30 MR images,
b) Histogram of the 30 CT images, c) Histogram of the 30 CT images after Preprocessing
(excluding pixels set to 0) and histogram of the 30 MR images

Figure 3.2: A flow chart of the registration, preprocessing and fusion of the data.

3.3.4 Parameters for our Image Fusion Methods

For our fusion methods, the kernel K, used in (3.11) was a 3x3, or 3x3x3 box filter, for the

2D and 3D methods respectively. These kernels have been normalized so the elements sum to

1. The individually tuned parameters are given in Table 3.1. These were divided based on λ

from (3.5) and (3.6), which was tuned for visual quality, and c, τ, from (3.27), (3.34) and (3.44)

which were tuned for rate of convergence.

Table 3.1: Parameters used for the convex fusion methods. Visual quality was affected by the
weight of smoothing λ, while the rate of convergence for the algorithm was determined by step
sizes c and τ.

Fusion Method Visual Quality Speed
CABS-2D λ = 0.2 c = 25, τ = 0.15
CSD-2D λ = 1.0 τ = 0.23

CABS-3D λ = 0.2 c = 28, τ = 0.11
CSD-3D λ = 1.0 τ = 0.10
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Figure 3.3: Sample masks for validating the quality of the fusion algorithm. From the left to
right: - CT input image, bone detail mask, MR input image, soft tissue detail mask

3.3.5 Fusion Validation

The goal of the fusion is to create a fused image containing the soft tissue detail from the MR

images, and the bony detail from the CT images. To test this, first the areas of soft tissue and

the regions of bone were defined for each of the patients. The areas of soft tissue consist of the

spinal cord, the cerebral spinal fluid, the discs and the nerve tissue. Tissue masks were created

by manually segmenting these soft tissue details from the mid-sagittal slices taken from each

of the registered 3D MR images. The bony details consist of the bone, with an emphasis on

the bone cortex. Bone masks, for each patient, were created from the CT images using the

mid-sagittal slices. The slices have been thresholded to include any CT value corresponding to

bone, with a user-selected threshold in HU for each slice. These were then manually refined,

to correct any errors. The masks were checked for correctness by a radiologist (GJG). Sample

masks and images are shown in Fig. 3.3.

Based on these masks, we define four fusion errors. For the CT image, the two errors are

eCT,Bone, which is the error between the fused image and the CT image in the bone regions and

eCT,Tissue, which is the error between the fused image and the CT image in the tissue regions.

These are formulated as:

eCT,Bone =

∑
MBone
|ICT − IFused|

area of the bone mask
eCT,Tissue =

∑
MTissue

|ICT − IFused|

area of the tissue mask

where ICT denotes the intensity of the CT image at a given pixel, IFused denotes the intensity of

the fused image at a given pixel, and MBone, MTissue are the non-zero domains of the bone and
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tissue masks. In a similar way two more errors: eMR,Bone and eMR,Tissue were defined for the MR

images. Ideally the fused image will be exactly the same as the MR image in the soft tissue

regions and the fused image will be exactly the same as the CT image in the bone regions. This

corresponds to eMR,Tissue = 0 and eCT,Bone = 0, with eCT,Tissue and eMR,Bone being much higher.

The hypothesis we tested was that the CT error should be lower than the MR error in the bone

regions i.e., eCT,Bone < eMR,Bone and higher in the tissue regions, i.e., eCT,Tissue > eMR,Tissue.

To compare the six fusion methods, the four errors were calculated for each patient using

each fusion method. The values could then be evaluated for statistical significance. For each

method, the values of eMR,Tissue were compared to eCT,Tissue, and the values of eCT,Bone were

compared to eMR,Bone. Some of the data was found to be non-parametric by a Shapiro-Wilks test

[28], thus a non-Parametric Wilcoxon test [31] was used. These calculations were performed

using version 20 of the SPSS statistical software (SPSS Inc., an IBM Company, Armonk, NY).

3.3.6 Runtime Validation

The mean times for computation and the number of iterations to convergence were calculated.

For the 2D case the mean runtime was calculated using the mid-sagittal slices, for the 30

patients with the error rate for convergence set at ε < 10−4. For the 3D cases, the convergence

was set at ε < 10−3. The computations were performed using a quad core 2.0 GHz Xeon

processor (Intel, Santa Clara, CA, USA), 2GB of RAM and an NVidia GEFORCE 680 GTX

(Nvidia, Santa Clara, CA, USA) with 1536 CUDA cores and 2GB of video RAM. The CPU

implementations were written in C++ and the GPU implementations were written in CUDA.

Matlab version 7.8.0 (The Mathworks Inc, Natick, MA, USA) was used to load the images and

call the CPU / CUDA algorithms.
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Table 3.2: Target Registration Error based on four subjects and Fiducial Localization Error
based on one subject. All measurements are in mm.

Axial Sagittal Coronal Total
TRE 0.97 ± 0.40 0.89 ± 0.26 1.03 ± 0.30 1.90 ± 0.51
FLE 0.51 ± 0.23 0.83 ± 0.64 0.84 ± 0.21 0.62 ± 0.44

3.4 Experiment Results

3.4.1 Registration Results and Validation

For the registration, the TRE was found to be 1.9 ± 0.5 mm, based on four subjects with voxel

sizes in the range of: 0.30-0.48 x 0.30-0.48 x 2.5-3 mm and the FLE of was found to be 0.6±0.4

mm based on one subject with a voxel spacing of 0.33 x 0.33 x 2.0 mm. Table 3.2 contains a

breakdown of these values in the axial, sagittal and coronal directions. The TRE voxel sizes are

based on the CT images from the four subjects used to evaluate the registration, while the FLE

voxel size is based on the CT image from the subject used. For all 30 subjects, the registered

MR images have been resampled to match the corresponding CT image spacing for each CT-

MR image pair. It should be noted that the TRE values for the sagittal and coronal planes are

greater than the in-plane pixel spacing; however, these measurements are limited by the FLE,

which is also greater than the in-plane pixel spacing. The overall TRE is less than the voxel

size for the CT and resampled MR images so it can be concluded that the registration error is

subvoxel.

3.4.2 Visual Results

A visual comparison of the methods can be seen in Fig. 3.4 and Fig. 3.5. Sagittal slices through

the center of the spine are shown in the first image, and slices through the dorsal root ganglion

are shown in the second. The six fusion methods: 1) averaging, 2) graph cuts, 3) CABS-2D

(the 2D version of our convex absolute value method), 4) CABS-3D (the 3D counterpart to

CABS-2D), 5) CSD-2D (the 2D version of our convex squared differences method) and 6)
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CSD-3D (the 3D counterpart to CSD-2D) were compared for clarity of bone and soft tissue

detail present in the fused images. Additionally, cross-sectional views from the 3D methods

CABS-3D and CSD-3D are shown in Fig. 3.6.

Figure 3.4: Fused sagittal midslices showing the cerebral spinal fluid and vertebrae of the
patient. A: Input CT image, B: Input MR image, C: Fused averaging method, D: Fused CABS-
2D, E: Fused CSD-2D, F: Fused graph cut method, G: Fused CABS-3D, H: Fused CABS-2D

Based on the results in Fig. 3.4 and Fig. 3.5 some comments can be made on the visual

advantages of the various methods. The averaging results, shown in image C in both figures,

do fuse the images, but the results are blurry and lose some details. The CABS methods,

which are shown for 2D in image D and 3D in image G (for both figures), produce some

noticeable artifacts in the images. These two images are clearer than the averaged image, but

these artifacts affect the quality of the results. In Fig. 3.4, they are significantly less noticeable

than in Fig. 3.5. The 3D version appears to have more smoothing than the 2D version. The
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Figure 3.5: Fused sagittal slices showing the nerve roots of the patient, A: Input CT image,
B: Input MR image, C: Fused averaging method, D: Fused CABS-2D, E: Fused CSD-2D, F:
Fused graph cut method, G: Fused CABS-3D, H: Fused CABS-2D
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CSD results, found in image E for 2D and image H for 3D (for both figures), are much clearer

than the averaging method, and delineate the edge details clearly. Again the 3D version appears

to have more smoothing than the 2D version. Finally, the graph cut results also show crisp edge

details. Visually the CSD-2D and the graph cut 2D cases appear very similar.

Figure 3.6: 3D fused images. The sets of groups are as labeled, with the CT and MR on the
top and the CABS-3D and CSD-3D results below. Within each group of 3 images, the coronal
image is on the top, the saggital view is on the bottom left and the axial is on the bottom right.
This demonstrates the ability to fuse an image completely in 3D

For the 3D views shown in Fig. 3.6, the details in both sets of images are very clear,

although there are more smoothing artifacts in the CABS-3D images than the CSD-3D images.

This is most noticeable in the sagittal plane likely because of the pixel spacing differences



82 Chapter 3. Real timeMR/CT Image Fusion for Lumbar Spine Diagnosis

between the sagittal and other directions.

3.4.3 Validation of the Fusion Masks

Bone and tissue masks were generated for each patient. For each patient, the mean intensity

values in the MR and the preprocessed CT images for the two masks are shown with error

bars for standard deviation in Fig. 3.7. In the tissue masks, the mean MR intensity values vary

between 100 and 250, depending on the image. This is consistent with soft tissue detail. For the

CT images the mean intensity is about 50 for all images. Again, this is consistent with minimal

soft tissue detail present in the CT image and demonstrates that the tissue mask can differentiate

between soft tissue detail in the MR and CT images. In the bone masks, the CT images have

mean intensity values between 175 and 275, which is consistent with bone detail. In the same

mask the MR values are in the range of 30-130. Additionally, for all images, the standard

deviation was approximately proportional to the mean signal. These results demonstrate that

the bone mask can differentiate between bone detail present in the CT image and a lack of bone

detail in the MR image.

3.4.4 Statistical Evaluation

Based on the bone and tissue masks, the fusion errors: eMR,Tissue, eCT,Tissue, eCT,Bone and eMR,Bone

were calculated for each patient and each of the six fusion methods. For our CABS and CSD

methods, these errors are shown for the 2D algorithms in Fig. 3.8 and for the 3D algorithms in

Fig. 3.9. These show the general trend that eMR,Tissue < eCT,Tissue and eCT,Bone < eMR,Bone for our

methods.

The data for all six fusion methods was tested for normality. The results for the statistical

significance of the data being normally distributed based on a Shapiro Wilks test [28] are

shown in Table 3.3. Since some of the data was found to be non-normal (p < 0.05), further

comparisons were made using a non-parametric Wilcoxon [31] test.

Using a pairwise Wilcoxon test [31] eMR,Tissue was compared to eCT,Tissue and eCT,Bone was
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Figure 3.7: Mean image intensity values in the MR and preprocessed CT images prior to
fusion, with one standard deviation given by the error bars, a) mean pixel intensities with
standard deviations in the tissue mask, b) mean pixel intensities with standard deviations in the
bone masks.

Table 3.3: Statistical significance of the normality tests of the fusion errors, (p-values for nor-
mality tests)

P-eMR,Tissue P-eCT,Tissue P-eCT,Bone P-eMR,Bone

Average .455 .455 .324 .324
GC .057 .701 .456 .759

CABS-2D .022 .660 .362 .532
CSD-2D .051 .696 .474 .763

CABS-3D .732 .721 .369 .594
CSD-3D .020 .851 .475 .836
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Figure 3.8: Fusion Error values for our 2D Fusion Methods, a) Tissue errors for MR and CT
b) Bone errors for MR and CT.



3.4. Experiment Results 85

5 10 15 20 25 30
0

50
100
150
200
250

Fusion Error in Tissue Masks, 3D Methods

Patient Number

F
u

si
o

n
 E

rr
o

r

 

 
CABS−3D
MR,Tissue
CSD−3D
MR,Tissue
CABS−3D
CT,Tissue
CSD−3D
CT,Tissue

(a)

5 10 15 20 25 30
0

50
100
150
200
250

Fusion Error in Bone Masks, 3D Methods

Patient Number

F
u

si
o

n
 E

rr
o

r

 

 
CABS−3D
MR,Bone
CSD−3D
MR,Bone
CABS−3D
CT,Bone
CSD−3D
CT,Bone

(b)

Figure 3.9: Fusion Error values for our 3D Fusion Methods, a) Tissue errors for MR and CT
b) Bone errors for MR and CT.
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Table 3.4: Mean fusion errors and statistical significance of Wilcoxon test results for the six
fusion methods.

eMR,Tissue eCT,Tissue P - Value
Average 79.58 ± 26.08 79.58 ± 26.08 1

GC 42.68 ± 11.44 116.76 ± 47.32 < 0.001
CABS-2D 27.67 ± 9.47 131.69 ± 56.74 < 0.001
CSD-2D 42.41 ± 11.41 116.82 ± 47.25 < 0.001

CABS-3D 34.29 ± 8.28 125.19 ± 56.32 < 0.001
CSD-3D 45.26 ± 10.04 114.01 ± 48.19 < 0.001

eCT,Bone eMR,Bone P - Value
Average 71.24 ± 13.83 71.24 ± 13.84 1

GC 48.95 ± 10.13 93.52 ± 25.23 < 0.001
CABS-2D 29.54 ± 13.45 113.08 ± 33.61 < 0.001
CSD-2D 48.73 ± 10.16 93.75 ± 25.21 < 0.001

CABS-3D 21.87 ± 8.70 120.82 ± 31.04 < 0.001
CSD-3D 43.21 ± 8.45 99.28 ± 25.40 < 0.001

compared to eMR,Bone. Table 3.4 shows the mean values for these errors for the patient data sets,

along with the p-values for the Wilcoxon test. In all cases except for the averaging method,

the results were statistically significantly different. As expected for the averaging method, for

a given mask, the errors were identical for the two input images. For the other five methods,

the results show that the soft tissue detail is coming primarily from the MR images with the

bone detail primarily coming from the CT images. In terms of relative comparisons, the CABS

results are the best numerically with the lowest error in soft tissue and bone detail in both the

2D and 3D cases. As expected the averaging results are the worst. The graph cuts and CSD

results are similar. The graph cuts have less error for the soft tissue and more error for the bony

detail compared to the CSD results. Based on this analysis, the CABS results were optimal.

Aside from the averaging method, the other results performed close to one another with less

than a 10% difference between the ideal (the dynamic range was found to be about 700 pixel

intensity levels for all images). These percentages are presented in Table 3.5.
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Table 3.5: Fusion errors as a percentage of the image’s dynamic range (700)

eMR,Tissue eCT,Tissue eCT,Bone eMR,Bone

Average 11% 11% 10% 10%
GC 6.1% 17% 7.0% 13%

CABS-2D 4.0% 19% 4.2% 16%
CSD-2D 6.1% 17% 7.0% 13%

CABS-3D 5.0% 18% 3.1% 17%
CSD-3D 6.5% 16% 6.2% 14%

Table 3.6: Mean computational times and iterations to convergence, of the 2D fusion methods,
for a single sagittal slice. Convergence was set at ε < 10−4

Time per slice(s) Iterations to Convergence
GC - CPU 36 N/A

CABS-2D - CPU 207 329
CABS-2D - GPU 0.77 328
CSD-2D - CPU 8.2 21
CSD-2D - GPU 0.052 21

3.4.5 Runtime Analysis

For the 2D algorithms, the mean algorithm runtime per slice and the mean number of iterations

for convergence are summarized in Table 3.6. These results were based on the mid-sagittal

slices for each of the 30 patients. For the 3D algorithms, the mean total runtime, the mean

algorithm runtime, the mean algorithm runtime per slice and the mean number of iterations to

convergence are summarized in Table 3.7. These results were based on 3D volumes.

Based on the evaluation results shown in tables 3.6 and 3.7, the CSD method clearly has

the shortest runtime in both the 2D and 3D cases. The graph cut method execution time is

shorter on the CPU than the CABS method, but longer than the CSD method. The methods

Table 3.7: Mean computational times and iterations to convergence for a volume. Convergence
was set at ε < 10−3

Total Algorithm Computation Time Iterations to
Time (s) Time (s) per slice (s) Convergence

CABS-3D - CPU ∼ 2100 ∼ 2100 ∼ 80 154
CABS-3D - GPU 2.1 1.7 0.074 154
CSD-3D - CPU 327 ∼ 327 10 10
CSD-3D - GPU 0.46 0.14 0.016 10
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implemented on the GPU required the shortest time, with the CSD method being shorter than

the CABS method, and both methods having results in real-time making them suitable for

clinical applications.

Two different experiments were performed to demonstrate that the convex algorithms’ run-

times are linear with respect to the number of pixels in the image. In the first experiment, the

mean time to calculate one iteration of the algorithm was plotted vs the number of slices in the

image, using a fixed slice size of 512x512 pixels. The images used were from the 30 patient

datasets. As can be seen in Fig. 3.10 a) these results show a linear relationship between runtime

and number of slices, for both the CABS-3D and the CSD-3D algorithm. For the second exper-

iment, runtime was compared with image size variation in the x and y directions. Eight differ-

ent images where used, having x and y sizes from {64 × 64, 128 × 28, 172 × 712 . . . 512 × 512}

with 20 slices in the z direction, These were plotted versus the algorithm run time for 1000

iterations. Again, in both cases, a linear relationship was found see Fig. 3.10 b). Combined,

the results in Fig. 3.10 show that the algorithm run time is linear with the number of pixels in

the image.
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Figure 3.10: a) Runtime results for the CABS-3D and CSD-3D method, compared with slice
number b) Runtime results for various image sizes for both the CABS-3D and CSD-3D meth-
ods.
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MR Image Fused Image CT Image

Figure 3.11: Presence of osteophytes. Left: MR image, the osteophyte is not easily visible.
Middle: fused image (CSD-3D), the osteophyte and the soft tissue details are clearly depicted.
Right: CT image, the osteophyte is visible.

3.4.6 Case Studies

Four case studies of fused images are shown detailing a patient with osteophytes (formation of

bony spurs at the margins of a joint) in the lumbar spine in Fig. 3.11, a lumbar spine patient

with pathology near the L4 and L5 vertebrae in Fig. 3.12 and a patient with a fracture in their

L1 vertebrae Fig. 3.13. The final case presents a patient with metastatics disease visible in

the spine shown with multiple preprocessing settings to better highlight the pathology (see Fig.

3.14).

On the MR image shown in Fig. 3.11, the osteophyte is poorly seen and it is difficult to

distinguish the osteophyte from the adjacent disc. On the CT image, the osteophyte is well

seen but the disc is not. Both are well seen on the fused image and it is easy to distinguish the

disc from the osteophyte.

In cases of lumbar spine disease (Fig. 3.12), the fused image can accurately show facet

damage and a protruding disc on a single image. The T2 - weighted MR sequence clearly

highlights a protruding disc between L4 and L5, and the nerve roots can also be seen above

and below this disc. In the CT image, the facet joints between L4 and L5 can be clearly

visualized. The fused image clearly presents all of these details and their relative locations as

shown in Fig. 3.12.
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Figure 3.12: Patient with lumbar degenerative disc disease. Left: the MR image clearly depicts
the bulging disc. Middle: the fused image (CSD-3D) depicting the bulging disc and facet joint
arthrosis. Right: the CT image presents the facet arthrosis. 1. nerve roots, 2. bulging disc, 3.
facet joint arthrosis.

In the third case (Fig. 3.13), vertebroplasty cement post fracture is visible in the CT image

and appears only as a black mass in the MR image. The fused image (CSD-3D) shows a

combined view of both the input images.

The final case study shows a patient with metastatic disease in the lumbar spine. Four

different views are presented in Fig. 3.14 highlighting the utility of adjustable preprocessing.

For each of the four views, the CT image is shown on the left, the fused image in the centre and

the MR image is shown on the right. The metastatic disease is visible as bright white regions on

the C6 - T2 vertebrae in the MR images on Figs. 3.14a - 3.14c. In Fig. 3.14a; the CT highlights

the bone edges, while the MR image shows the disc, spinal cord and vertebrae detail. The fused

image used the standard settings (see eq: (3.7) ). Here the metastases are not visible, hence the

fused image is of limited use. Fig. 3.14b has utilized an alternate preprocessing scheme for

the fused image allowing the contrast changes due to the metastatases to be visible along with

the cortical bone, spinal cord, nerve tissue and intervertebral disc. Fig. 3.14c utilizes fusion

settings highlighting the cortical bone edges and metastases in particular. Finally, Fig. 3.14d

shows a view of the patient through the nerve root bundle, with both the bone edges and nerve

roots visible in the fused image. It is important to note that since the fusion occurs in real-time,

the preprocessing settings can be interactively adjusted in a patient specific manner, as was
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MR Image Fused Image CT Image

Figure 3.13: Fracture case: L1 compression fracture post vertebroplasty. On MR, vertebro-
plasty cement shows low signal which cannot be differentiated from disc or compressed bone.
On CT, cement can be easily differentiated from disc and compressed bone, but the disc mar-
gins are not well delineated. The fused image differentiates and delineates all of these structures
well.

done in this case.

These clinical examples illustrate the added benefit to diagnosis that these image fusion

techniques offer to complement the original MR and CT images.

3.5 Conclusions and Discussions

We have presented four methods of image fusion based on convex energy minimization meth-

ods in 2D and 3D. We have achieved results with real time execution for the 2D and 3D images,

while maintaining similar results to the state-of-the-art graph cut method based on a validation

using images from 30 patients. The TRE was found to be 1.9 ± 0.6 mm, which is less than

the voxel size. The in-plane TRE is about 1mm in the sagittal and coronal directions, but these

values are limited by the FLE measurements which are also about 1mm. The registration al-

gorithm provides sub-voxel accuracy on our data set, which is necessary for pixel-wise image

fusion, otherwise misregistration would play a significant factor in the fusion. It should be

noted that the subvoxel registration accuracy shows that for these cases the lumbar spine can

be assumed to be a rigid body, and deformable registration is not needed. If a more flexible

registration technique was utilized for images with significant deformations our fusion method
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(a) (b)

(c) (d)

Figure 3.14: Four different views of a patient with metastatic disease. a) Fused image with
normal settings where the metastases are not visible in the fused image, b) alternate settings
highlighting the metastases in the fused image, c) additional settings highlighting both cortical
bone and the contrast due to metastases in the fused image, d) view through the nerve root
bundle, with the fused image showing both the nerve roots and the cortical bone.
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could be applied to these registered images.

The fusion results show there is less than 10% difference in pixel intensity in the areas of

interest (soft tissue including the spinal cord and the bone structures). The error for the CABS-

2D method is the least, with similarly low errors for the CABS-3D method. In view of the

visual results however, the CSD results and graph cuts appear better in this case.

For the mean tissue and bone values in the masks, shown in Fig. 3.7, there is a variation in

soft tissue image intensity, especially for subject 14. Further inspection of the images, showed

that there are no obvious abnormalities with any of the images, but rather for subject 14 there

is lower overall signal, with a corresponding lower standard deviation.

The CSD-2D method is better than graph cut for the soft tissue detail and worse for the

bony detail. Visually the graph cut results are similar to the CSD-2D results, being the clearest

and showing the best edge detail. In terms of runtime, the CSD-3D requires the shortest time

to converge of the 3D methods, with a mean runtime of 0.461 seconds on the GPU, while

the CABS-3D method had a mean runtime of 2.06 s on the GPU. Based on execution time, the

lack of smoothing artifacts and statistically good fusion results (although not the best), we have

determined the CSD-3D method to be the most desirable, for further clinical testing.

The utility of real-time fusion has been demonstrated in the fourth case study (Fig. 3.14).

In this case the standard fusion settings did not highlight the pathology on the fused image

however, using alternate settings the pathology is clearly highlighted. It should be noted that

all the views in the images in Fig. 3.14 were live screen captures from our interactive fusion

viewer and the settings were determined interactively in real-time.

With this technique, physicians can see diseases such as, osteophyte growth, protruding

discs and damaged facet joints on a fused image, as a complement to the original CT and MR

images. This should allow for easier and more accurate diagnosis than would be available

without the fused images. These results indicate that image fusion may be a suitable technique

for clinical use and are congruent with feedback we have received from radiologists based on

the fused images; however, an observer performance study is now required to establish the



94 Chapter 3. Real timeMR/CT Image Fusion for Lumbar Spine Diagnosis

utility of the technique.
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3.7 Appendix

Here we present a rigorous treatment of the fusion problem. Based on the three objectives in

Section 3.2 We can express the fusion problem as the minimum of a functional of the following

general form:

min
u

E(u) := D(u, f1, f2) + λS(u) . (3.8)

where u : Ω → R is an image function encoding the fusion solution, f1, f2 : Ω2 → R2 are the

input scans (MR and CT in this work), Ω ⊂ Rn is the image domain, typically R2 or R3, and λ

a positive constant.

Functional (3.8) includes two different types of terms:

• A data term D(u, f1, f2) (denoted as D(u) for convenience), encoding objectives 1) and

2), which measures an edge-weighted conformity of a solution u to input images f1 or f2
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(MR and CT):

D(u) =

∫
Ω

w1A( f1 − u) dx +

∫
Ω

w2A( f2 − u) dx , (3.9)

with A(·) a positive convex function, (we will study different choices of A(·) later). w1 :

Ω→ R and w2 : Ω→ R are two non-negative edge-weight functions verifying

w1(x) + w2(x) = 1 , ∀x ∈ Ω , (3.10)

and are defined as follows:

w1(x) =
g1(x)

g1(x) + g2(x)
, w2(x) =

g2(x)
g1(x) + g2(x)

, ∀x ∈ Ω (3.11)

where gi(x) = |∇(K ∗ fi)|, i = 1, 2, and K is a kernel, for instance a Gaussian filter. w1

and w2 bias the solution towards strong edges in f1 and f2, respectively.

• A smoothness (total-variation) functional, S(u) encoding objective 3):

S(u) =

∫
Ω

|∇u| dx (3.12)

This penalizes transitions in solution u, while preserving edge detail, encouraging neigh-

boring pixels/voxels to have similar fused-image values, while allowing for transitions at

edges.

In the following, we will study the corresponding optimization problems when the convex

penalty function A(u) is the L1-norm (absolute value) or L2-norm (squared difference), i.e., the

corresponding data term is one of the following:

L1-norm problem:DABS(u) =

∫
Ω

w1 | f1 − u| dx +

∫
Ω

w2 | f2 − u| dx (3.13)
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or

L2-norm problem:DSD(u) =

∫
Ω

w1 (u − f1)2 dx +

∫
Ω

w2 (u − f2)2 dx . (3.14)

Given the convexity of both functionsD(u) and S(u) in (3.1), the proposed optimization prob-

lem for image fusion reduces to a convex optimization problem for which the global optimum

exists, avoiding the gradient descent approaches of [30, 27] and graph cut approach of [22].

In the following we will show that: (1) The L1-norm solution can be obtained efficiently by

solving an equivalent constrained problem via the augmented Lagrange multiplier method; and

(2) The L2-norm solution can be obtained by a projection onto a convex set.

3.7.1 Equivalent Convex Formulation (Absolute Value)

We consider functional (3.1), with data term D(u) defined by (3.3). This functional shall be

denoted EABS because of the absolute value data term it contains. Hence our problem can be

written as:

min
u∈Ω

{
EABS =

∫
Ω

w1 | f1 − u| dx +

∫
Ω

w2 | f2 − u| dx + λ

∫
Ω

|∇u| dx
}

(3.15)

Proposition 1: The unconstrained minimization problem (3.5) is equivalent to the following

constrained optimization problem:

max
q1,q2

max
p∈Cλ

∫
Ω

q1 f1dx +

∫
Ω

q2 f2dx

s.t. q1(x) ∈ [−w1(x),w1(x)], q2(x) ∈ [−w2(x),w2(x)].

q1 + q2 = div p (3.16)

where Cλ the set of continuously differentiable vector functions with compact support contained
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in Ω ⊂ Rn, and having an L1-norm less than λ:

Cλ :=
{
p|p ∈ C1

c (Ω,Rn) , |p(x)| ≤ λ,∀x ∈ Ω
}

(3.17)

Note that variable function u does not appear in the constrained problem in (3.16). As we shall

see shortly, u will act as a multiplier to equality constraint q1 + q2 = div p..

Proof of Proposition 1:

Proof The conjugate function A∗ of A = |x| can be computed by:

A∗(y) = sup
x∈domA

{yx − |x|} (3.18)

where dom A is the domain of A, which is R in this case. Notice that A∗(y) = 0 ∀y ∈ [−1, 1]

and is unbounded everywhere else. Refer to [4], section 3.3, for further details on conjugate

functions.

Now, we define functions A1 and A2 as follows:

A1(v) = A∗∗1 (v) = max
s1

{
vs1 − A∗1(s1)

}
, A2(v) = A∗∗2 (v) = max

s2

{
vs2 − A∗2(s2)

}
(3.19)

This results in a data term of the following form:

DABS = max
s1,s2∈[−1,1]

∫
Ω

w1
(
( f1 − u) s1 − A∗1(s1)

)
dx +

∫
Ω

w2
(
( f2 − u) s2 − A∗2(s2)

)
dx

= max
s1,s2∈[−1,1]

∫
Ω

w1 f1s1dx +

∫
Ω

w2 f2s2dx −
∫

Ω

u (w1s1 + w2s2) dx (3.20)

The smoothness term S(u) can be expressed as follows [12]:

S(u) = λ

∫
Ω

|∇u| dx = max
p∈Cλ

∫
Ω

u div p dx (3.21)
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Substituting (3.20) and (3.21) into (3.5), we obtain:

min
u

max
s1,s2

max
p∈Cλ

∫
Ω

w1s1 f1dx +

∫
Ω

w2s2 f2dx +

∫
Ω

u div p dx −
∫

Ω

u (w1s1 + w2s2) dx

s.t. s1(x) ∈ [−1, 1], s2(x) ∈ [−1, 1]. (3.22)

The original problem is now expressed as a minimization of maximums. For (3.22), the con-

ditions of the minimax theorem hold (see [10], Chapter 6, Proposition 2.4). The constraints

on s1 and s2 are convex, and the functional is linear in u, p, s1 and s2. This implies that the

functional is convex l.s.c (lower semi-continuous) for fixed u and concave u.s.c (upper semi-

continuous) for fixed p, s1 and s2. It follows that the order of the min and max operators can be

interchanged [10]. Now, using variable changes q1 = w1s1 and q2 = w2s2, we further express

(3.22) as the following constrained problem:

max
q1,q2

max
p∈Cλ

min
u

∫
Ω

q1 f1dx +

∫
Ω

q1 f2dx +

∫
Ω

u div p dx −
∫

Ω

u (q1 + q2) dx

s.t. q1(x) ∈ [−w1(x),w1(x)], q2(x) ∈ [−w2(x),w2(x)], (3.23)

Now, by minimizing over u, we obtain:

div p − (q1 + q2) = 0 (3.24)

Therefore, (3.23) can be formulated as the following constrained optimization problem:

max
q1,q2

max
p∈Cλ

∫
Ω

q1 f1dx +

∫
Ω

q2 f2dx

s.t. q1(x) ∈ [−w1(x),w1(x)], q2(x) ∈ [−w2(x),w2(x)].

q1 + q2 = div p (3.25)

Note that u can act as a multiplier to the equality constraint in (3.16). In view of this the
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Lagrangian function of (3.16) is:

max
q1,q2

max
p∈Cλ

min
u

∫
Ω

q1 f1dx +

∫
Ω

q1 f2dx +

∫
Ω

u div p dx −
∫

Ω

u (q1 + q2) dx

s.t. q1(x) ∈ [−w1(x),w1(x)], q2(x) ∈ [−w2(x),w2(x)], (3.26)

Therefore, defining the corresponding augmented Lagrangian function (c is a scalar):

Lc(q1, q2, p, u) =

∫
Ω

q1 f1dx +

∫
Ω

q2 f2dx +

∫
Ω

u (div p − (q1 + q2)) dx −
c
2
‖divp − (q1 + q2)‖2

(3.27)

we can solve (3.5) using the augmented Lagrangian algorithm [3], as shown in algorithm 1.

Variables q1, q2 and pk are first optimized pointwise by a projection onto their associated con-

vex sets. We define Proj as constraining a value to be within a given convex set. For scalar

variable q1, Proj|q1 |≤w1
results in simply restricting the final value to be within [−w1,w1]. i.e.

Proj|q1 |≤w1
(q1) =



−w1 if q1 < −w1

q1 if − w1 ≤ q1 ≤ w1

w1 if w1 < q1

(3.28)

For vector variable p, function ProjCλ
results in constraining the vector to lie within a ball or

radius λ:

ProjCλ
(p) =


p if ‖p‖ ≤ λ

λ p
‖p‖ if ‖p‖ > λ

(3.29)

With the use of a splitting method, we proceed by first optimizing the inner variables,

q1, q2, p. Variables q1 and q2 can be updated pointwise at each iteration, while p can be updated
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with Chambolle’s projection [7], which is solved iteratively by:

pi+1 = ProjCλ

(
pi + τ∇

{
divpi −

((
qi+1

1 + qi+1
2

)
+ ui/c

)})
(3.30)

where τ is the step size of each iteration. Finally u is updated, repeating until convergence. This

is shown in algorithm 1. The solution will converge with only one iteration of (3.30) within

each main loop of the iterations. Note that this optimization can be completed in parallel for

each point in the image. This algorithm is easily implemented in both 2D and 3D. It can also

be easily parallelized and executed on a graphics card.

3.7.2 Equivalent Convex Formulation (Squared Differences)

We now consider the data term in (3.4), which gives the following minimization problem:

min
u:Ω

{
ESD =

1
2

∫
Ω

w1(u − f1)2dx +
1
2

∫
Ω

w2(u − f2)2dx + λ

∫
Ω

|∇u| dx
}

(3.36)

To minimize this functional, first let us consider the following proposition:

Proposition 2: The problem in (3.6) is equivalent to the following optimization problem:

min
p∈Cλ

∫
Ω

(w1 f1 + w2 f2 − divp)2 dx (3.37)

Proof of Proposition 2:

Proof Combining (3.6) and (3.21) leads to the formulation

min
u

max
p∈Cλ

1
2

∫
Ω

w1(u − f1)2dx +
1
2

∫
Ω

w2(u − f2)2dx +

∫
Ω

u div p dx (3.38)

Since this functional satisfies the conditions of the minimax theorem [10], we can change the
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Algorithm 1: L1-norm Optimization (EABS)
For each k-iteration,

1. Optimize qk+1
1 by fixing qk

2, pk and uk, giving:

qk+1
1 = arg max

|q1(x)|≤w1(x)
Lc(qk

1, q
k
2, pk, uk)

= Proj|q1(x)|≤w1(x)

(
f1/c +

(
div pk − qk

2(x) − uk/c
))

(3.31)

which can be solved pointwise.

2. Optimize qk+1
2 by fixing qk+1

1 , pk and uk, giving:

qk+1
2 = arg max

|q2(x)|≤w2(x)
Lc(qk+1

1 , qk
2, pk, uk)

= Proj|q2(x)|≤w2(x)

(
f2/c +

(
div pk − qk+1

1 (x) − uk/c
))

(3.32)

which can be solved pointwise.

3. Optimize pk+1 by fixing qk+1
1 , qk+1

2 and uk, giving:

pk+1 = arg min
p∈Cα

∥∥∥∥div p −
(
qk+1

1 + qk+1
2 + uk/c

)∥∥∥∥2
(3.33)

which can be iteratively solved, by projecting
(
qk+1

1 + qk+1
2 + uk/c

)
onto Cλ using:

pi+1 = ProjCλ

(
pi + τ∇

{
divpi −

((
qi+1

1 + qi+1
2

)
+ ui/c

)})
(3.34)

4. Update uk+1 by

uk+1 = uk + c
(
qk+1

1 + qk+1
2 − div pk+1

)
(3.35)

which can be solved pointwise.

5. let k = k + 1

6. repeat until the solution converges
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order of optimization. Rearranging, and using w1 + w2 = 1, (3.38) becomes:

max
p∈Cλ

min
u

∫
Ω

{
u2

2
− u (w1 f1 + w2 f2) +

w1 f 2
1 + w2 f 2

2

2
+ u div p

}
dx (3.39)

Defining f = w1 f1 + w2 f2, and remembering that w1 f 2
1 + w2 f 2

2 is a constant relative to u (and

to p), we obtain:

max
p∈Cλ

min
u

∫
Ω

{
u2

2
− u f + u div p + const

}
dx (3.40)

From setting the derivative of the integrand in (3.40) equal to zero and noting the convexity of

(3.40), we obtain the optimal value of u, denoted by u∗:

u∗ − f + divp = 0

u∗ = f − divp (3.41)

Rearranging (3.40) gives:

max
p∈Cλ

min
u

∫
Ω

{
u
(u
2
− f + div p

)
+ c

}
dx (3.42)

Substituting u∗ from (3.41), results in:

max
p∈Cλ

∫
Ω

{
( f − div p)

(
−

f − div p
2

)
+ c

}
dx

= max
p∈Cλ

∫
Ω

{
−

1
2

( f − div p)2 + c
}

dx

= min
p∈Cλ

∫
Ω

(w1 f1 + w2 f2 − div p)2 dx

(3.43)

Using the result in proposition 2, our problem reduces to a projection of the weighted image

onto the convex set Cλ. This can be solved efficiently via Chambolle’s projection algorithm [7],
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by iterating:

pi+1 = ProjCλ

(
pi + τ∇

{
(w1 f1 + w2 f2) − divpi

})
(3.44)

This algorithm is easily implemented in both 2D and 3D. It can also be easily parallelized and

executed on a graphics card, resulting in a very efficient solution.

3.7.3 Extension to n-image fusion

The formulations of section 3.7.2 can be extended to n images. An application of such an

extension would be the fusion of T1-weighted MR, T2-weighted MR and CT scans of the

spine. In this case, the multi-image fusion problem becomes:

min
u:Ω→R

1
2

n∑
1

∫
Ω

wn(u − fn)2dx + α

∫
Ω

|∇u| dx (3.45)

where fn are the input images, and the weights wn are extended as follows:

gn = |∇ fn| ∗ K

wn =
gn∑n
1 gn

(3.46)

Proposition 3: The problem in (3.45) is equivalent to the following optimization problem:

min
p∈Cλ

∫
Ω

∑
n

wn fn − divp

2

(3.47)

The proof follows the same steps as the proof of Proposition 2 (see appendix). Similarly to

section 3.7.2, our problem reduces to a projection of the weighted image onto the convex set

Cλ. This can be solved efficiently via the Chambolle’s projection algorithm [7], by iterating:

pi+1 = ProjCλ

pi + τ∇

∑
n

wn fn − divpi

 (3.48)
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where τ is the step size of each iteration.
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Chapter 4

A Clinical Evaluation of Fused MR/CT

images for Spine Diagnosis

4.1 Introduction

The information on magnetic resonance (MR) and computed tomography (CT) of the lumbar

spine is complementary [4]. By fusing these two modalities it is possible to create a single

image that combines the bony detail highlighted in the CT scan and the soft tissue structures

that are more clearly visualized in the MR images [4]. This enhanced view will allow the

interpreting clinician to localize the pathologies on a single image allowing for better charac-

terisation of the interactions between bone and soft tissues, particularly at bony margins. The

intent is to create an additional view that adds value for the interpreting physician, rather than

a replacement for both source views.

Image fusion techniques have been applied to liver ablation [3] and to MRI SPECT images

[1], where techniques such as the addition of images will suffice. However the spine presents

a difficult technical challenge because of the complexity of the two image sets being fused.

We have created a system for real-time image fusion designed and proven [4] to preserve soft

tissue detail from the MR image and cortical bone detail from the CT images based on novel

109
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algorithms. Interactive controls allow the clinician to adjust the fused image via, 1) CT soft

tissue removal, based on removing soft tissues below a given Houndsfield unit, and 2) changing

the relative intensity of the MR image compared to the CT image. An example of a fused image

is shown in Fig. 4.1.

Figure 4.1: Comparison of CT, MR and Fused images. Top: sagittal lumbar spine images,
Bottom, axial lumbar spine slices. Left: CT, Center: new fused images, Right: T2-weighted
MR image.

It was hypothesized that employing these fused images for spine diagnosis compared to

unregistered MR and CT images, radiologists would have a higher confidence in their diag-

nosis, have a lower inter-observer variability in measuring protrusions and spend less time on

diagnosis than without using fused images.
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4.2 Materials and Methods

4.2.1 Data Selection

Institutional ethics review board approval was obtained for the use of data from 20 patients

who had previously had imaging preformed. Individual consent was not needed as per the

approval of the ethics review board. To obtain a routine set of clinical images, MR lumbar spine

images were collected from the last 20 sequential patients at St. Joseph’s Health Care London

who also had a lumbar CT scan within a year of their lumbar MR scan. The corresponding

CT images were also collected. Thoracic and cervical spine images were not included in the

20 subjects as their lower prevalence would not provide enough statistical power to provide

meaningful results. The MR images were acquired using a SIEMENS 1.5T Avanto (Seimens

AG, Erlangen, Germany). These were 3D T2 weighted images acquired using the SPACE

pulse sequence with variable slice thickness and number of slices. The CT images came from

a variety of scanners at multiple sites with variable slice thickness and number of slices.

Of the 20 images, 15 were then registered and fused using the methods of Miles et. al

[4] and Yuan et. al. [5]. The other five images could not be registered due to non-rigid

deformations or poor image quality such as motion artifacts and were omitted from the final

analysis.

4.2.2 Reader Selection

The images were read by five radiologists, with varying levels of experience. Reader #1 had 2

years of experience since completion of residency including a one year fellowship in muscu-

loskeletal imaging and 1 year of breast imaging, Radiologist #2 had 5 years of post-residency

experience with fellowship training in Breast Imaging and Cross Sectional Imaging. Radiol-

ogist #3 had 5 years of post-residency experience including a 1 year Women’s and abdominal

radiology fellowship and a 2 year breast and cross sectional imaging fellowship. Radiologist

#4 had 15 years of post-residency experience and completed a fellowship in cross-sectional
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and women’s imaging. Radiologist #5 has 9 years of experience including a one year Neurora-

diology subspecialty training followed by an 18 month Neuroradiology fellowship.

4.2.3 Evaluation of Images

To evaluate the suitability of fused images for use in clinical practice, a comparison was made

between current practice using unregistered CT and MR images and the proposed use of regis-

tered CT, MR and fused images. Evaluation occurred in two phases. In the first phase, unreg-

istered CT and MR images were evaluated. In the second phase, registered CT, MR and fused

images were evaluated. In order to eliminate memory bias, there was atleast a 4 week interval

between the first and second phase for each reader. Additionally, to blind the participants, they

were not told about the purpose of the study until the second phase of reading.

The images were evaluated based on two tasks: 1) ranking of the images and 2) measure-

ment of protrusions. For the rankings, the readers were asked their confidence in assessing:

1) disc contours, 2) disc protrusions, 3) spinal stenosis, 4) foraminal stenosis, 5) exiting nerve

roots, 6) the facet joints (based on osteoarthritis, synovial cysts, edema, erosions, and anky-

losis), 7) ligamentum flavum, 8) differentiating between disc and osteophyte, 9) making the

overall correct diagnosis and 10) whether in aggregate the images were aesthetically pleasing.

The ranking was done using a 1-5 scale with one being no confidence and five being extremely

confident. These rankings were made for each subject and each modality provided (i.e., MR,

CT for the first phase of testing and MR, CT and fused for the second phase of testing).

The readers were also asked ”to determine the greatest sagittal and transverse dimension in

mm of the largest extrusion/protrusion, not including osteophytes, providing the best measure-

ment that would be suitable in a radiological report.” They were provided with the definition

of protrusions/extrusions given in [2]. They were also provided with the level of the protru-

sion, which had been previously identified by a senior radiologist with 19.5 years of experience

including a one-year fellowship in musculoskeletal radiology and 6 months fellowship in in-

terventional radiology, who was not included in the 5 reviewing radiologists. The readers were
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given the choice of using either the CT or MR for the measurement in phase 1 and were in-

structed to use the fused image for phase 2.

4.2.4 Software Viewer

Custom software designed to provide similar functionality to GE PACS radiology software (GE

Healthcare, Milwaukee, Il) was used for the testing. All the readings and measurements were

timed by the software to determine how long the participants spent on the given cases. Both

sagittal and axial views were presented to the radiologists as shown in 4.1.

4.2.5 Statistical Analysis Methods

All data was analysed using SPSS Statistics 21 (IBM Corp, Armonk, New York) statistical

significance was set at P < 0.05. Comparisons of the ranking results for each questions was

conducted first using a Friedman test to determine if there was a significant difference in ranks,

followed by non-parametric Wilcoxon tests between modalities, with statistical significance set

at P < 0.01 to account for multiple comparisons.

The measurement results were imputed to account for missing data. This was determined to

be valid as less than 15% of the data was missing and the changes in results of further statisti-

cal tests were small between the imputed and non-imputed data. Consistency of measurements

was determined using a two-way mixed single measures intra-class correlation based on ab-

solute agreement. This was computed for all reviewers together with agreement defined to be

an ICC value greater than .8. Additionally, Levene’s test was conducted to analyze whether

the variance was different between the two phases of the study for individual reviews and all

reviewers.

Time results were also imputed. Again this was determined to be valid as less than 15% of

the data was missing and the changes in effect size were small between the imputed and non-

imputed data. The imputed results were analysed using a two-way repeated measures ANOVA

to test for differences between readers and between phases of the study.
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4.3 Results

4.3.1 Ranking Results

The average rankings with standard error for the five readers in a given phase of the study and

modality are presented in Table 4.1. A comparison was made between the fused images and

the other modalities in both phases of the study to determine whether there were significant

differences between rankings. Based on Friedman tests there was a significant difference in

ranks between modalities P < .001 for all 10 questions. Individual modalities were compared

and the P values are contained in Table 4.2, with any significant results marked with a *.

Table 4.1: Average confidence ratings over the 5 readers for the given anatomy/question and
for the given modality and phase of the study.

Question
Phase1 Phase 2

CT MR CT MR Fused
Disc Contours 3.30 ± .32 4.37 ± .18 3.43 ± .28 4.70 ± .09 4.37 ± .23
Disc Protrusions 3.20 ± .44 4.40 ± .19 3.30 ± .29 4.57 ± .13 4.33 ± .18
Spinal Stenosis 3.93 ± .26 4.73 ± .08 3.93 ± .29 4.77 ± .06 4.63 ± .17
Foraminal Stenosis 3.87 ± .20 4.57 ± .16 3.60 ± .19 4.63 ± .12 4.43 ± .20
Exiting Nerve Root 3.47 ± .20 4.43 ± .12 3.07 ± .29 4.53 ± .16 4.13 ± .23
Facet Joints 4.33 ± .04 4.37 ± .06 4.07 ± .11 4.27 ± .11 4.27 ± .11
Ligamentum Flavum 3.57 ± .27 4.67 ± .08 3.32 ± .25 4.67 ± .08 4.53 ± .18
Disc vs Osteophytes 4.47 ± .08 4.03 ± .17 4.40 ± .12 3.70 ± .07 4.67 ± .15
Overall Confidence 3.53 ± .32 4.47 ± .15 3.67 ± .22 4.37 ± .17 4.50 ± .18
Aesthetically Pleasing 4.13 ± .18 4.43 ± .11 3.97 ± .34 4.57 ± .13 4.17 ± .27

Based on these values, it can be seen that the fused image is better for differentiating disc

and osteophytes than the registered MR and provides an overall higher confidence in diagnosis.

The registered MR provided a higher confidence than the fused image for assessing the exiting

nerve root. Readers had a higher confidence using the fused images compared to the CT images

from phase 2 for all 10 questions.

It should be noted that the CT images were exactly the same in both phases of testing

as the MR images were registered to the CT images. There are fewer statistically significant

differences compared to the fused image for phase 1 CT than phase 2 CT. Users likely adjusted
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Table 4.2: Statistical Power (P Value) for differences between the given modalities and phases
of testing. Note significance was set at P < 0.01 to account for multiple comparisons. Any
statistically significant values have been marked with a *.

Question
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 CT Phase 1 MR
CT vs CT vs MR vs MR vs vs vs
Fused Fused Fused Fused Phase 2 CT Phase 2 MR

Disc Contours *.001 *.001 .369 .031 .513 *.002
Disc Protrusions *.001 *.001 .322 .201 .374 .017
Spinal Stenosis *.001 *.001 .833 .865 .422 .861
Foraminal Stenosis *.001 *.001 .076 .076 *.006 .610
Exiting Nerve Root *.001 *.001 .025 *.005 .032 .117
Facet Joints .583 *.001 .134 .039 *.002 *.010
Ligamentum Flavum *.001 *.001 .382 .678 .319 .316
Disc vs Osteophytes *.006 *.001 *.001 *.001 .156 .022
Overall Confidence *.001 *.001 .529 *.003 .179 *.008
Aesthetically Pleasing .164 *.003 .251 .065 .742 .179

their rankings slightly when the fused image was presented, making a relative comparison

between the CT and fused image. A similar effect occurred between testing phases with the

MR images. We have reported comparisons in rankings between the CT/MR images from

phase 2 vs the fused image as a result of this.

4.3.2 Measurement Results

The average protrusion size found by the five readers for phase 1 and phase 2 of the study in

both the axial and sagittal planes is shown in Table 4.3. Intra-class correlations (ICC) showing

the degree of agreement between readers are also show in Table 4.3. All values were less than

.8 demonstrating lack of agreement between readers.

Table 4.3: Average protrusion size (mm) and intra-class correlations for all 5 readers. The
Intra-class correlation is two-way mixed model absolute measure, with agreement defined as
ICC > 0.8.

Unregistered (Phase 1) Fused (Phase 2)
Axial Sagittal Axial Sagittal

Average Protrusion Size (mm) 17.2 ± 5.4 11.9 ± 2.6 20.3 ± 11.6 9.3 ± 2.7
Intra-class Correlation .367 .202 .417 .484
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Levene’s tests were conducted to determine whether there was an inhomogeneity of vari-

ance between testing phases for individual readers and for all readers. These results are shown

in Table 4.4. Reader 3 showed an inhomogeneity of variance between testing phases. There

was no other significant inhomogeneity. This indicates a possible learning effect for reader 3.

Table 4.4: Significance results (P-values) of Levene’s test for homogeneity of variance between
testing phases.

Axial Sagittal
Reader 1 .520 .936
Reader 2 .869 .358
Reader 3 .001 .168
Reader 4 .432 .111
Reader 5 .553 .690
All Readers .646 .871

4.3.3 Time Results

The average times for completing the rankings and measurement tasks per patient are presented

in Table 4.5.

Table 4.5: Average time per subject in seconds for completing the rankings and measurement
tasks in phase 1 (non-registered images) and phase 2 (registered and fused images) of the study.

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 All Readers

Phase 1
Ranking 597 ± 260 661 ± 242 496 ± 212 227 ± 48 115 ± 71 419 ± 238
Measurement 581 ± 196 555 ± 259 560 ± 204 191 ± 48 426 ± 287 463 ± 164

Phase 2
Ranking 94 ± 42 42 ± 22 494 ± 396 31 ± 9 138 ± 73 160 ± 192
Measurement 126 ± 114 48 ± 30 230 ± 138 38 ± 10 94 ± 95 107 ± 77

An analysis of variance was conducted for both the rankings and measurements based on

the readers (radiologists) and phases of the study (unregistered vs registered). The results are

contained in Table 4.6. Based on the results of the ANOVA test, there was no significant

difference in times for ranking P = .085 or measurement P = .179 between the two phases

of the study. There was a significant difference between radiologists for rankings F(3, 44) =

38.47,P < 0.001 and measurements F(1, 13) = 22.28,P < 0.001 and for a combination of
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radiologist and phase for the rankings F(3, 41) = 6.17,P = 0.002, however these differences

were not examined further as the primary goal of the study was a comparison between phases.

Table 4.6: ANOVA results for times to perform rankings and times to make measurements,
with statistically significant result denoted with a *.

Degrees of Freedom P-value Effect Size η2 Power

Ranking
Radiologist F(3, 44) *.000 .733 1.00
Phase F(1, 14) .085 .197 .407
Radiologist*Phase F(3, 41) *.002 .306 .940

Measurement
Radiologist F(1, 13) *.000 .712 .998
Phase F(1, 9) .179 .191 .256
Radiologist*Phase F(1, 11) .102 .257 .387

4.4 Discussion

A previously presented technique [4] was tested for clinical utility. A fused image was created

that successfully combined the bone cortex detail from the CT and the soft tissues visible in

the MR modality.

Based on the results from five readers, it has been shown that in general the readers are

more confident making diagnosis using the fused images than the CT. They have similar con-

fidences for the majority of questions when making diagnosis using the fused images and MR

images. The fused images were better for distinguishing between disc and osteophyte than the

MR images and readers had an overall higher confidence in diagnosis using the fused images

compared to the MR images. Readers were more confident using the MR images than the fused

for examining the exiting nerve root.

When measuring protrusion sizes the intra-class correlation coefficients did not show agree-

ment between readers for either phase of the study and Levene’s tests only show inhomogeneity

for reader three on the axial images. This is likely a learning effect. In general this indicates

the source of variation in measurements is primarily due to variation between radiologists as

opposed to the different phases of the study.
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There was no statistical difference in the times taken for rankings and measurements be-

tween the unregistered images and the fused images. It should be noted that the unregistered

images were not linked so the readers scrolled independently through these images, whereas

the fused images were registered to the MR and CT images and could be linked if the user

elected to do so. This may have made completing the tasks for the fused images more efficient.

There were three series of images compared for phase 2, compared to two for phase 1, but the

registered MR images were resampled so contained fewer slices, which may also have affected

the time for completion.

A limitation of this study is that the users were shown the unregistered images first, fol-

lowed by the fused images. This may have introduced a bias. A further limitation of the study

is in determining whether the measured improvements are primarily due to the linking and reg-

istering of the images as opposed to fusing the images. To be more certain a future third phase

of the study could be conducted comparing registered MR and CT without the fused images.

With that said, the results of the current study indicate that the improvement was due to fusion

as opposed to linking and registering because the readers had a higher confidence in making a

diagnosis using the fused images compared to the registered CT images and in specific areas

compared to the registered MR images.

In general the performance of the fused images was similar to the unregistered images in

terms of time to review images. Fused images were associated with overall higher or the same

confidence in assessment compared to MR and CT, except when assessing the exiting nerve

root. The variability in measuring protrusions is primarily from differences in radiologists as

opposed to fused vs non-registered MR/CT images. In view of these advantages and consid-

ering that using the fused images did not increase the average time needed to evaluate each

subject it would be a useful additional modality to complement CT and MR images when both

are available. It is suggested that MR images be used for diagnosis exiting nerve roots as

opposed to the fused images.

A limitation in this technique is the difficulty in accurate registration of CT and MR spine
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images. The registration technique employed for this study assumes a rigid transformation

between the CT and MR images, demonstrating subvoxel registration accuracy when this as-

sumption is valid [4]. For patients with non-rigid deformations between the MR and CT scans,

this technique is not applicable as demonstrated by the 5 patient images that were not able to be

registered. These non-rigid deformations include positional changes and potential for anatomi-

cal changes between scans. Additionally due to running time the registration process currently

takes place off-line.

Future work could involve the investigation of different possible user interfaces for the

fused images, including as reader 5 suggested, having the fused image able to be toggle on or

off over the MR image. This would effectively toggle the bone detail on and off over the MR

image. It would also be useful to evaluate the fusion of other MR modalities with CT images,

such as T1 images, along with more flexible and efficient registration methods

In conclusion, adding a series of fused CT/ MR images improves radiologist’s confidence in

assessing CT and MR images of the lumbar spine without adding time to the interpretation. The

magnitude and number of structures showing improvement is greater for CT. The improvement

for MR is mainly in assessment of disc vs osteophyte, though improvement for the study as a

whole was also shown. These results suggest that commercial development of CT/ MR fusion

software for the lumbar spine would be beneficial.
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Chapter 5

Spine Axial MR Classification via Integral

Kernel Density Estimates

5.1 Introduction

Radiologic assessment is an essential step in managing patients with spinal diseases or dis-

orders. This is particularly true given the prevalence of spinal diseases and the increase in

medical imaging of the spine. Up to 75% of people will experience back pain in their lives

with 1.8% of all hospital visits in the USA being a result of back pain and related disorders

[19]. There has also been a 300% increase in the number of MR scans in the USA from the

period between 1996 and 2002 [4]. In the diagnosis of spinal diseases, accurate detection and

labeling of different spinal structures is vital, as many interventions require precise anatomic

information [1, 8, 11, 13, 16, 18, 21, 26]. Correct annotation of the vertebral level of an image

slice is particularly important as these slices serve as a reference for describing locations of

additional pathology, such as the intervertebral discs [5]. Incorrectly identifying vertebrae may

lead to wrong level surgery [10, 17] or misdiagnosis.

It can be time consuming for radiologists to determine the identity of a particular vertebra

in an image, since adjacent vertebras have very similar appearance. Even when a vertebra has

121
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been identified, a radiologist must remember its identity and location as they make a diagnosis

from multiple slices in an image. Axial locations are cross-referenced from sagittal images.

However, this is still dependent on the radiologist locating the cross-referenced vertebra in

the sagittal image. Correctly identifying vertebra is especially difficult in cases where the

sagittal image is not available, or the cross-referencing cannot be relied upon, i.e., when there

are deformations between sagittal and axial images due to patient repositioning. Even when

the sagittal images are available for cross referencing, the topmost and bottommost axial slice

belonging to a given vertebrae need to be identified for annotation of all axial image slices. This

is a non-trivial task based on sagittal images alone and is more suitable to be performed on axial

images. Accurate automatic labeling of axial slices would alleviate the need for radiologists

to mentally label slices and would also provide consistency for all practitioners referencing a

given patient image. Furthermore, vertebrae detection and identification is required for image

processing tasks such as registration [22], automated diagnosis [25], 3D spine reconstruction

[14] and segmentation [15, 16].

5.1.1 Previous Labeling Work

Generating these labels in a manual fashion is tedious, subjective, and time-consuming. There-

fore, automating the process is desired and has recently sparked an impressive research effort

[1, 8, 11, 13, 15, 16, 18, 21, 26]. Automated labeling of such images is, however, a challenging

problem as the field-of-view (i.e., the number of visible vertebral levels), the distributions of

image intensities, and the sizes, shapes, and orientations of different spinal structures are highly

variable among different patients [1, 8, 26]. Algorithms for the lumbar spine are more common

than the cervical spine, with the lumbar spine being studied by [1, 7, 8, 11, 15, 16, 18, 21, 26]

and the cervical spine being studied by [7, 8, 11, 13, 18, 21, 26]

There are two major limitations with current automated spine labeling algorithms:

(1) Most of the current algorithms address the labeling problem through intensive training

from a manually-labeled data set [1, 7, 8, 18, 21, 26]. Such a training stage aims at learning
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the shapes, textures and appearances of different spinal structures. This knowledge is then

used within a classification or regression algorithm (e.g., support vector machine [18], ran-

dom forest regression [7, 21] or graphical models [8, 13]) to subsequently label different spinal

structures in the test image. Such algorithms work very well on data sets that closely match the

training data, but would require adjustment/retraining for different data sets or if the imaging

modality and/or acquisition protocol are altered (e.g., an algorithm that is trained and built for

CT images may not perform well on MR data [8, 13, 15, 16]). This might impede the use of

these algorithms in routine clinical practices, where a particular disorder might be analyzed ra-

diologically using several different imaging modalities/protocols with widely variable imaging

parameters (resulting in extremely high variation in image data).

(2) To the best of our knowledge, most of the current spine labeling algorithms focus on

either the sagittal view [1, 7, 8, 11, 13, 18, 21] or are restricted to CT/X-Ray images [7, 8, 15,

16, 13, 21]. The work of [26] utilizes 3D MRI volumes directly. Axial labeling is beneficial as

the quantification and level-based reporting of common inter-vertebral disc displacements such

as protrusion, extrusion and bulging require the radiologist to thoroughly inspect all individual

axial MR slices [5], while visually cross-referencing such axial slices to their corresponding

position in the sagittal view (Fig. 5.5). It is, however, important to note that in some cases only

the axial view is available for the patient while in other cases the two scans might be acquired

at different time points. Therefore, localizing the spinal structures in different views becomes

a challenging task (even for an experienced radiologist), which motivates a stand-alone axial

spine detection/labeling algorithm. Such a system would facilitate the generation of radiologic

reports. Again, even the when there is a sagittal view to cross-reference from, the lowermost

and uppermost slices still need to be determined to label all sagittal slices. Additionally none

of the MR based methods offer near real-time performance that we are aware of.
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5.1.2 Integral Images

Integral images are well known in computer vision literature and allow for the fast computation

of the sum of pixels of any rectangular regions of an image. Introduced for the purpose of

human face detection [23], integral images are very efficient, demonstrating a speed up of

several orders of magnitude compared to direct computation. Their computational complexity

depends only on the size of the image rather than the size of the rectangular region, reducing the

computational complexity to O(1) for each sub region [3]. Extensions of this work include the

calculation of histograms via integral images [20, 24] and calculating geometric distributions

[9] for the purposes of template matching in photographs. Extensions involving probability

product kernels have also been considered for template matching in photographs [3].

5.1.3 Contributions of this work

In this work, we present a robust, near real-time axial MR labeling algorithm. Individual pixels

are classified through a non-linear probability product kernel (PPK) based classification. Based

on these classified pixels, per slice features are generated, which are used to classify individual

vertebra. Multiple vertebra are then iteratively identified based on the location of previous ver-

tebrae. Our classifier requires evaluations of computationally expensive integrals at each pixel

of the image domain. However, direct evaluations of such integrals would be prohibitively time

consuming. We utilize an efficient computation of kernel density estimates and PPK evaluation

for large volumes and arbitrary local window sizes via integral kernels. This algorithm is O(nz)

with respect to n and z, where n is the number of pixels in the image and z is the number of

histogram bins. Results can be achieve in near real-time with a GPU implementation. Further-

more, the proposed method does not require intensive external training. The performance of

the algorithm was quantified on 32 sets of T1-weighted 3D MR images of the lumbar spine

and 24 sets of T2-weighted 3D MR images from the cervical spine. Each 3D image contained

multiple 2D slices.

The paper is organized as follows: in section 5.2, the labeling algorithm is introduced,
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where pixels are classified using a PPK classifier, with slices and vertebrae then classified

based on this information. After this, the experiments are outlined in section 5.3 followed by

the results in section 5.4. Finally, conclusions are presented.

5.2 Formulation

To properly find the correct axial annotations, our algorithm works on a hierarchy of feature

levels, with the features from the current level used as inputs to the next level. A single user-

selected point is the only user input needed. Based on this point, pixels can be classified,

followed by slices, followed in turn by single vertebra and finally, followed by multiple verte-

bras. At each stage we aim to minimize the number of tuned parameters, while utilizing robust

geometric information in order to provide a flexible model for classification. A diagram of this

hierarchy is shown in Fig. 5.1. Each of these steps will be detailed in subsequent sections.

Pixel

Classification

Slice

Classification

Vertebra

Classification

Multiple 

Vertebrae

Classification

Level 1

Level 2

Level 3

Level 4

Figure 5.1: The hierarchy of feature levels for classifying discs and vertebrae.

5.2.1 Efficient Pixel Classification via Integral Kernel Images

Pixelwise Probability Kernel Matching

We propose a non-linear classifier, which determines whether the neighbourhood of each pixel

p matches a target distribution. Such neighbourhood distributions contain contextual informa-

tion, thereby providing much richer inputs to the classifier than individual pixel intensities. Let
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D j : Ω ⊂ R2 → R, j ∈ [1 . . .N], be a set of input images, which correspond to the axial slices

of a given spine series. Ω is the image domain and N is the number of slices in the series. For

each D ∈ {D j, j = 1 . . .N} and each pixel p : (x, y) ∈ Ω, we seek to create a non-linear kernel

based classifier of the form:

sign
(
φ
(
Pp,W,D, PL

)
− ρ

)
(5.1)

where PL is an a priori learned distribution, ρ is a constant and Pp,W,D is the kernel density

estimate (KDE) of the distribution of image data D within a window W centered at pixel

p : (x, y) ∈ Ω:

Pp,W,D =

∑
p∈W kDz (p)
|W|

∀z ∈ Z (5.2)

where |W| is the number of pixels withinW and Z is a finite set of bins encoding the space

of image variables. kDz is a kernel function defined by the following:

kDz (p) =



1
√

2πσ2
exp

(z−D(p))2

2σ2

or

δ (z −D(p))

(5.3)

where σ is the width of the kernel and δ(t) is the dirac delta function, which is equal to 1 if

t = 0, and 0 elsewhere. The first case corresponds to the Gaussian kernel, and the second case

to bin counting, i.e., normalized histogram.

φ is a probability product kernel [12], which measures the degree of similarity between two

distributions:

φ
(
Pp,W,D, PL

)
=

∑
z∈Z

[
Pp,W,D(z)PL(z)

]γ
, γ ∈ [0, 1] (5.4)

Based on these pixelwise classifications, we further add regional geometrical constraints to
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produce a classification for each sliceD ∈ {D j, j = 1 . . .N}.

Efficient Computation of PPK via Integral Kernels

To embed rich contextual information about the vertebrae/discs, we need to use large-size

windows in our classifiers. For large windows, the computation of (5.4) for each pixel in D

is very expensive computationally if performed by direct evaluation. In the following, we

describe an efficient computation of kernel density estimates and PPK evaluations for large

images and arbitrary window sizes via integral kernels. Such integral-kernel method can be

viewed as an extension of the integral-image method of Viola and Jones [23], which is well-

known in computer vision. First, recall the integral-image method.

Integral images: Given an input image D, the corresponding integral image ID is defined

as the sum of all pixel intensities to the left and above the current pixel:

ID(x, y) =
∑
u≤x

∑
v≤y

D(u, v) (5.5)

The sum of intensities of all pixels within an arbitrary rectangular window defined on the

domain ofD can be computed from the integral image using only the corners of the rectangle:

x2∑
u=x1

y2∑
v=y1

D(u, v) = ID(x1, y1) + ID(x2, y2)

− ID(x1, y2) − ID(x2, y1) (5.6)

where (x1, y1) are the coordinates of the upper left corner of the rectangle and (x2, y2) are those

of the lower right corner. Since (5.5) can be computed efficiently for the entire image and

(5.6) can be computed very efficiently for a given rectangle, this method is very efficient when

multiple windows need to be computed from the same image.

Integral kernels: To extend the idea of integral images to integral kernels and efficiently

compute the PPK in (5.4), we build for each slice D a set of separate kernel images defined
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over Ω: kD1 , k
D
2 , . . . k

D
z , z ∈ Z, as shown in Fig. 5.2 a. We can then proceed to compute an

integral kernel image based on each kz. In a similar way to (5.5), and for each p = (x, y) ∈ Ω,

we define the integral kernel image as follows:

IDz (x, y) =
∑
u≤x

∑
v≤y

kDz (u, v) (5.7)

Now we can easily show that the kernel density estimates Pp,W,D can be calculated from the

integral kernel images using five simple operations for each p(x, y) ∈ Ω:

Pp,W,D(z) =

IDz (x1, y1) + IDz (x2, y2) − IDz (x1, y2) − IDz (x2, y1)
(x2 − x1 + 1)(y2 − y1 + 1)

(5.8)

where x1 = x − w
2 , x2 = x + w

2 , y1 = y − h
2 and y2 = y + h

2 , with w and h being the width and

height ofW (an illustration is given in Fig. 5.2 b).

... ...

kD1 kDi kDz

p

IDi (p) IDz (p)ID1 (p)

pp

(a)

IDz

p
wh

p1

p2

(b)

Figure 5.2: Diagram of the Integral Kernels: (a) Formation of integral kernel images 1 . . . z,
using point p = (x, y), (b) A diagram of the window centered at pixel p = (x, y) defined by
p1 = (x1, y1) and p2 = (x2, y2).

This leads to the following efficient evaluation of classifier (5.1) for every (x, y) ∈ Ω:
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(a) (b) (c)

Figure 5.3: Diagram of pixel classifications from images: a) a simple user input used for all
slices, b) pixel classifications for a vertebra, c) pixel classifications for an intervertebral disc.

sign

∑
z∈Z

PL(z)
(
IDz (x1, y1) + IDz (x2, y2)

(x2 − x1 + 1)

−IDz (x1, y2) − IDz (x2, y1)
)

(y2 − y1 + 1)


γ

− ρ

 (5.9)

The above function has a computational complexity that is linearly proportional to the number

of pixels in Ω and the cardinality ofZ, and is independent of the window’s size. This method is

also highly suited to modern graphics cards because it is amenable to parallel implementations.

Pixel-level Classifications via Integral Kernel Images

To provide the initial training, a single user point po = (xo, yo) ∈ Ω is selected on a single slice

in the series. Then, the prior distribution PL is learned from a window of size w × h centered

on po. Examples of the obtained pixel-level classifications are shown in Fig. 5.3, where the

results are depicted for both vertebrae and disc slices, based on the simple training input from

a different slice. To avoid processing the entire slice, only pixels within a region-of-interest Rs

around the input point are considered in the pixel-level classification process. The pixel-level

classifications we obtained from (5.1) will be used to further generate slice-level classifications.
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5.2.2 Slice-level Classifications

The second level of features is the area of pixels classified as vertebrae in a given slice. We

group vertebra pixels into sets of 4-connected regions: S i, i = 1, 2, . . . . These connected

regions are then filtered, discarding any region with an area less than a specified area Amin or

whose centroid ci ∈ Ω is further than dmax from po using the standard Euclidean distance. The

area of the largest remaining S i is then used as a feature for slice-level classifications. If all the

connected regions are removed, we assign value 0 to this feature. The following describes the

criteria for including or discarding a region:

Criteria =



Include
{
S i|area(S i) > Amin,

‖ci, p0‖ < dmax} , ∅

Discard otherwise

(5.10)

5.2.3 Vertebra Classification

The next level of classification is identifying individual vertebrae. We start with an input set of

adjacent slicesDk, k ⊂ [1,N] in the neighbourhood of a vertebra. These slices are all the slices

with a given search height Hs either centered on the initial point or starting at a previously

identified vertebra boundary. We need to classify these slices as either vertebrae or not. As an

input we use the areas Ak from the largest S i for each slice. This becomes a one dimensional

data analysis problem. We start by applying a small smoothing filter to the data As
k = Ak ∗ K,

were As
k is the smoothed data and K is a one dimensional convolution kernel. After this the

slices are assigned a binary classification as either vertebrae: 1 or not: 0 based on

sign
(
As

k − tarea
)

(5.11)

where tarea is a threshold given by tarea = caµarea, with ca being a user defined factor and µarea

being the average of areas As
k. The largest number of adjacent slices classified as vertebrae are



5.3. Methods 131

then defined to be the vertebra. This provides the location of the vertebra including an upper-

most and lower most slice defining the vertical boundaries of the vertebra. We also impose a

minimum vertebrae height Hmin criteria. If no set of adjacent slices meets the minimum height

criteria then no vertebra is classified.

5.2.4 Multiple Vertebra Classification

In order to improve the classification accuracy of the algorithm, iterative model updating can

be employed. By using the location of the most recently found vertebra, a new learned prob-

ability PL can be determined at the center of that vertebra, and a search region for finding the

next vertebrae can be identified. Classification then proceeds up and down the spine. For the

first vertebrae, the initial search height H0
s , is defined to be twice the height of a vertebrae,

centered at the input point. This is because the input point could be selected at either the top

or the bottom of the vertebrae. For finding subsequent vertebrae, the search range Hs begins

at the boundary of the previous vertebrae and extends for the height of a vertebra plus two

intervertebral disc spaces, which should include an entire vertebra.

5.2.5 Algorithm Summary:

An overview the algorithm can be found in Algorithm 2. Step 3 is the most computationally

intensive. However, with the use of integral images, it can be reduced to order nz, where n is

the number of pixels in all image slices and z is the number of features.

5.3 Methods

This retrospective study was approved by the Human Subjects Ethics Board of Western Uni-

versity, with the requirement for informed consent being waived. A total of 56 suhjects were

included in this study. A set of axial T1-weighted Magnetic Resonance (MR) lumbar spine

3D images, from 32 patients, was used for the lumbar spine (LSpine) and an additional set
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Algorithm 2: Vertebrae Classification Algorithm

• Given an initial input p = p0 and Vertebrae Vn = V0 ∈ [Vmin,Vmax]

1. Learn the target probability distribution PL.

2. Set the search height Hs = H0
s

3. For each sliceD j in Hs:

(a) Use sign
(
φ
(
Pp, PL

)
− ρ

)
to classify each pixel p via integral kernel images.

(b) Identify the largest connected region SDj , satisfying Amax and dmin.

(c) Calculate area Ak from SDj

4. Using sign
(
As

k − tarea

)
, find the uppermost and lowermost slices for each vertebrae.

5. Update the vertical search region Hs and target distribution PL based on the Vn.

• If Vn ≤ Vmax:

6. While Vn < Vmax,

(a) Let n = n + 1
(b) repeat steps 3-5

• Else:

7. Set Vn = V0. Update the vertical search Hs and target distribution PL based on V0.

8. While Vn ≥ Vmin

(a) Let n = n − 1
(b) Repeat steps 3-5.
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of axial formatted T2-weighted Magnetic Resonance (MR) cervical spine 3D images, from 24

patients, was used for the cervical spine (CSpine). The T2 volumes were acquired using a 3D,

T2-weighted MR sequence. The MR model and manufacturer varied based on the location the

images were acquired. For the T1-images, the slice thickness ranged from 4 to 5 mm and the

in-plane voxel spacing ranged from 4.4 to 10 mm. For the T2 3D images, the slice thickness

ranged from 1.9 to 3.0mm with an in-plane voxel spacing ranging from 0.39 to 0.47 mm. For

the C-spine data, all seven cervical vertebrae (C1-C7) and corresponding inter-vertebral discs

were visible in every image. For the lumbar spine, the number of visible vertebrae varied based

on the subject. These results are shown in Table 5.1.

Table 5.1: The number of vertebrae visible at each level for the lumbar spine data sets acquired
from 32 subjects.

Vertebral Level L5 L4 L3 L2 L1 T12
Number of Visible Vertebrae 32 32 21 11 5 1

The initial user click was placed on a single axial slice, on the C7 vertebra for the cervical

spine labeling and on the L5 vertebra for the lumbar spine labeling. The algorithm labeled the

axial slices as either vertebra or intervertebral disc (Fig. 5.5 and 5.6 depict typical examples

for lumbar and cervical spines respectively).

5.3.1 Choices of the Parameters and Input Selection

The algorithm parameters were selected based either on tuning the proposed classifier or on the

geometric properties of the human spine. The classifier-related parameters were tuned experi-

mentally. The geometric properties were also set experimentally, but corresponded to well doc-

umented measurements from the literature [6, 2]. For both the cervical spine and lumbar spine

images, we used the Dirac delta function to compute the kernel density estimates. Variable

γ was set equal to 0.5, which corresponds to the Bhattacharya distance between distributions.

Pixel-level classification threshold ρ was set equal to 0.75, a value determined experimentally.

The number of bins was experimentally set to be 100. The 1D convolution parameter K was
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set to [0.3 1 0.3], while the area threshold factor ca was fixed equal to 0.75, both determined

experimentally.

The remaining parameters are geometric in nature and have been defined in terms of mil-

limeters, to be invariant to the voxel spacing of the images. These are the search windowW,

the minimum classification area Amin, the maximum distance dmax, the initial search height H0
s ,

the subsequent search height Hs, the minimum vertebrae height Hmin and the region of inter-

est Rs. Table 5.2 shows vertebra and disc measurements (height and width) reported in the

literature [6]. Furthermore, based on data for the lumbar spine [2], the major axis length of

the vertebrae was found to be about 1.5 times the minor axis length (width of the vertebrae).

Based on these values, the cross-sectional area of a vertebra can be overestimated by a rectan-

gle of 1.5w2
vertebrae and underestimated by an oval of size 0.375πw2

vertebrae, with wvertebrae denoting

vertebra width. Our experimental heights, search ranges and area measurements correspond

to these measurements, which can be found in Table 5.2. The search window size was set

experimentally.

Table 5.2: Vertebra and Disc Measurements as well as Overestimates/Underestimates for Cer-
vical and Lumbar Vertebrae.

Measurement L-Spine C-Spine
Vertebra Height (mm) 27.3 ± 1.2 14.6 ± 0.8

Disc Height (mm) 8.8 ± 0.9 4.2 ± 0.5
Vertebrae Width (mm) 34.3 ± 1.8 15.5 ± 0.9

Vertebrae Area Overestimate (mm2) 360 1765
Vertebrae Area Underestimate (mm2) 224 1110

For all the experimentally determined parameters, the tuning was performed on a single

lumbar and c-spine image and verified on two other lumbar and five other c-spine images

before testing the entire dataset. Evaluation was completed using all images, as the tuning set

was so small.
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Table 5.3: Parameter selection for the C-Spine and L-Spine labeling algorithms.

Parameter Symbol L-Spine C-Spine
Pixel Threshold ρ 0.75 0.75
Number of Bins Z 100 100

Search Window (mmxmm) W 12 x 12 8 x 8
Region of Interest (mmxmm) Rs 80 x 80 40 x 40

Minimum Area (mm2) Amin 400 100
Max Distance (mm) dmax 40 20

Minimum Vertebrae Height (mm) Hmin 12.5 5
Area Threshold Factor ca 0.75 0.75

Initial Search Height (mm) H0
s 50 25

Subsequent Search Height (mm) Hs 45 16.2

5.3.2 Validation of Labeling

The performance of the algorithm was validated based on the correct classification of vertebrae,

the classification of individual slices and the distance of the vertebral uppermost and lowermost

slices from the ground truth. The ground truths were manually generated from the axial images.

Each slice was classified as either vertebra or disc based on the percentage of the vertebral

column cross sectional area containing vertebra/disc in that slice. If more than 50% of the

vertebral column consisted of a single vertebra, then that slice was labeled as belonging to that

vertebra; otherwise, it was labeled as disc. This resulted in an uppermost and lowermost slice

for each vertebra (e.g., L3 could be manually labeled to extend from axial slice 24 to slice 30).

Since the C1 and C2 vertebrae are special cervical vertebrae with anatomically overlapping

bone structures, their classification required precise boundary definitions. The C1 vertebrae

were defined from the top of C1’s anterior arch to the bottom of C1’s inferior articular surface

of lateral mass. C2 vertebrae were defined from the top of C2’s dens to the bottom of C2’s

vertebral body. The overlapping structure can be seen in Fig. 5.4. Due to the distinctive

shape of the C1 vertebra it is easily identifiable manually and was omitted from the automatic

classification. The C2 vertebrae have been labeled excluding the dens.

To validate the correct classification of vertebrae, a vertebra was considered to be correctly

labeled if: 1) there was at least one correctly labeled vertebral slice for that vertebra and 2) no
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C1

C2

C1

C2

C1

Figure 5.4: Sagittal (left) and Axial (right) views of the C1 and C2 vertebrae, with the vertebrae
outlined in red. In the axial view the dens of C2 is located inside of C1, resulting in both
vertebrae being visible in some axial slices.

slices were incorrectly labeled as another vertebra. If only condition 2) was met, the vertebra

was considered to be unlabeled, since it was not given any label. The vertebra was considered

to be incorrectly labeled if any of the vertebra’s slices were incorrectly labeled as a different

vertebra. Ideally, all vertebrae will be correctly labeled. An incorrectly labeled vertebra is a

concern, since this can lead to incorrect diagnosis or treatment, whereas an unlabeled vertebra

is merely inconvenient.

To validate the correct classification of individual slices, slices were considered to be cor-

rectly labeled if they matched the ground truth and incorrectly labeled otherwise. Slices beyond

the extent of the vertebral column, such as in the sacrum, were excluded from this analysis.

To validate the vertebral uppermost and lowermost slice boundaries, a comparison was

made with the manually identified ground truths. For each vertebra, the distance, in number

of slices between the labeled uppermost slice of the vertebra and the ground truth uppermost

slice was calculated. The same principle was applied for the lowermost slices. Comparisons

of these distances were then made for each vertebra over the set of subjects by calculating both

the mean distances and the maximum distances in number of slices.

5.3.3 Run Time Validation

The run time for the algorithm was tested. The CPU code was written in Matlab (the Math-

works Nattick MA, USA) and the GPU code was written in CUDA. The experiments were run

on a computer with a Xeon quad core processor (Intel, Santa Clara, CA, USA) 2Gb of ram and

an NVidia GeForce GTX 680 graphics card (Nvidia, Santa Clara CA, USA).
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5.3.4 Sensitivity Analysis of Parameters

In order to determine how robust the algorithm was with regard to changes in parameters, a

sensitivity analysis was performed. For a given parameter, using a sample subject, the clas-

sification accuracy for vertebrae and slices was calculated for a range of possible algorithm

parameters, surrounding the given parameter. The range was specific to each parameter ex-

tending over a wide choice of possible values and was centered at the actual value utilized in

the algorithm (see Table 5.3). The parameters that were analyzed for sensitivity included: the

Bhattacharya threshold, the x and y location of the input point, the search window size, the

number of bins and the area threshold.

5.4 Results

5.4.1 Classification Accuracy

For the lumbar spine, a total of 102 vertebrae were classified. A representative sample labeling

for these images can be seen in Fig. 5.5 for the lumbar spine and in Fig. 5.6 for the cervical

spine. Of the 102 vertebrae, 101 were correctly identified and only 1 was incorrectly identi-

fied for a 99% classification accuracy. The per slice classification accuracy was found to be

88%±7%, and the error in identifying the uppermost and lowermost vertebrae slice boundaries

was found to be 0.83 ± 0.46 slices, with the average maximum distance from the classified up-

permost and lowermost slice boundaries to the ground truth boundaries (over the 32 patients)

being 1.44 ± 0.91 slices. These results are summarized in Table 5.4. It should be noted that

for the one vertebra that was defined as wrong, only one slice was incorrectly classified, with

the rest of the vertebra being correctly classified. This error could be easily identified by a

clinician. Additionally, for the majority of vertebra the boundaries are within one slice of the

manually identified boundaries.

For the cervical spine, a total of 144 vertebrae were classified, with 114 being correctly
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Figure 5.5: Representative output of the lumbar spine detection algorithm displaying axial
slices from each analyzed level with the initial user input chosen at L5, with a labeled sagittal
view provided for illustrative purposes.

Image 80/113Image 89/113 Image 83/113

Image 49/113Image 55/113Image 64/113

Sagittal View

C2
C3
C4
C5
C6
C7

x

x

x

x

x

x

Figure 5.6: Representative output of the cervical detection algorithm displaying axial slices
from each analyzed level with the initial user input chosen at C7, with a labeled sagittal view
provided for illustrative purposes.
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identified, 12 missed and 18 incorrectly labeled for a 79% classification accuracy. The slice

accuracy was 71% ± 21%, the average boundary distance was 2.3 ± 2.5 slices and the average

maximum boundary distance per patient was 5.5 ± 5.1. Out of the 24 patients, it was found

that 4 had significant curvature in the lumbar spine that the algorithm was not set up to handle,

hence there were a high number of mislabeled vertebrae on these images. An example of this

can be seen in Fig. 5.7. New results were obtained with these four patients removed. Out of 120

vertebrae remaining, 107 were correctly labeled, 3 were missed and only 10 were incorrectly

labeled for an 89% classification accuracy. The new slice accuracy was 77%±17%, the average

boundary distance was 2.1±2.4 slices and the average maximum boundary distance per patient

was 5.3 ± 5.0. Both sets of cervical spine results are summarized in Table 5.4. It should be

noted that the cervical results are worse than [18] which had a 97% identification accuracy on

sagittal images, but similar to [26] which had a performance of 79% again on sagittal images.

(a) (b)

Figure 5.7: Examples of cervical spines: a) a straight spine, which the algorithm succeeds on;
b) a spine with significant curvature that the algorithm fails on.

5.4.2 Sensitivity to Input Parameters

The results of varying the input parameters are shown in Fig. 5.8 for the lumbar spine and

in Fig. 5.9 for the cervical spine. For the lumbar spine, varying the Bhattacharya threshold

(Fig. 5.8a) produced very similar results for values in the range of 0.5-0.8, with a large drop
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Table 5.4: Detection accuracy for lumbar and cervical spine.

No. Vertebrae No. Correct No. Missed No. Wrong

LSpine 102 101 0 1
CSpine 144 114 12 18

CSpine (No Deformed Cases) 120 107 3 10
Vertebrae Slice Boundary Max Boundary
Accuracy Accuracy Distance Distance
(Percent) (Percent) (Slices) (Slices)

LSpine 99% 88% ± 7% 0.83 ± 0.46 1.44 ± 0.91
CSpine 79% 71% ± 21% 2.3 ± 2.5 5.5 ± 5.1

CSpine (No Deformed Cases) 89% 77% ± 17% 2.1 ± 2.4 5.3 ± 5.0

in performance for values above 0.8. This is expected since, as the threshold gets higher, the

classified pixels must match the target distribution more closely. This makes the algorithm less

robust to variations away from the target distribution, excluding many pixels that are actually

part of the vertebrae. For the X and Y inputs, Fig. 5.8b and Fig. 5.8c show constant per-

formance until about 20 pixels from the origin, giving a wide range of areas for selecting the

initial point. The method was also very robust to window sizes (Fig. 5.8d) with any window

size greater than 9mm x 9mm producing excellent results. This showed that the larger the input

area for the classification, the better the method performed. Surprisingly, the method was not

sensitive at all to the number of bins (Fig. 5.8e) or the area threshold (Fig. 5.8f). This demon-

strated that these were not important parameters in the algorithm and a possible speed up could

be realized by reducing the number of bins.

For the cervical spine, varying the Bhattacharya threshold (Fig. 5.9a) produced good results

in the range of 0.7-0.87, with a large drop in performance for most values outside this range.

This is not surprising but, unlike the lumbar spine, there was both a lower and upper cut-off.

For the X and Y inputs, Fig. 5.9b and Fig. 5.9c show constant performance until about 8

pixels from the origin, giving a much narrower range for selecting the initial point than for

the lumbar spine. This makes sense given the relative size of the structures. The method was

also very robust to window sizes (Fig. 5.9d). Any window size in the range of 8x8-13x13mm2



5.4. Results 141

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Sensitivity to Bhattacharya Threshold

Bhattacharya Threshold

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Rate Correct Slice Accuracy

(a)

−20 0 20
0

0.2

0.4

0.6

0.8

1
Sensitivity to X−Input Location

X−Input Displacement (Pixels)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Rate Correct Slice Accuracy

(b)

−20 0 20
0

0.2

0.4

0.6

0.8

1
Sensitivity to Y−Input Location

Y−Input Displacement (Pixels)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Rate Correct Slice Accuracy

(c)

6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
Sensitivity to Window Size

Window Width/Height (mm)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Rate Correct Slice Accuracy

(d)

50 100 150
0

0.2

0.4

0.6

0.8

1
Sensitivity to Number of Bins

Number of Bins

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Rate Correct Slice Accuracy

(e)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Sensitivity to Area Threshold

Area Threshold

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Rate Correct Slice Accuracy

(f)

Figure 5.8: Lumbar spine analysis of the sensitivity of the algorithm to changes in various
parameters:, with original values given in parenthesis a) Bhattacharya threshold (0.75), b) X-
input location (0), c) Y-input location (0), d) Window Size (12), e) Number of histogram bins
(100), f) Area threshold (0.75).

showed excellent performance, with a cut-off above and below these values. The upper cut-off

is likely linked to the size of the structures in the cervical spine, whereas the lower cut-off is

likely due to small input size decreasing the classification accuracy. Again, surprisingly the

method was not sensitive to the number of bins (Fig. 5.9e) or the area threshold (Fig. 5.9f),

demonstrating that these are not important parameters in the algorithm and a possible speed up

could be realized by reducing the number of bins.

5.4.3 Run-time results

Table 5.5 shows the runtime along with the computational complexity of our algorithm using a

conventional calculation, the integral image method and a GPU implementation of the integral

images. The GPU based method required 2.95 second to complete compared to the CPU

method, which required 49.2 seconds. This was based on a T1 lumbar spine 3D image with 42

axial slices.
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Figure 5.9: Cervical spine analysis of the sensitivity of the algorithm to changes in various
parameters, with original values given in parenthesis: a) Bhattacharya threshold (0.75), b) X-
input location (0), c) Y-input location (0), d) Window Size (8), e) Number of histogram bins
(100), f) Area threshold (0.75).

Table 5.5: Runtime for 42 axial slices. Local window (w x h) is 50x50 pixels, n is the number
of pixels in the image, and z is the number of kernel features. The computational order of the
integral image method is independent of window size.

CPU-conventional CPU-Integral GPU-Integral
Images Images

Runtime (s) N/A 49.2 2.95
Order w × h × n × z n × z n × z
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5.5 Conclusion

We proposed an efficient algorithm for the classifications of T1-weighted, axial MR images.

We have used an extension of integral images for the efficient computation of image intensity

distributions around local image windows. A probability product kernel method was used with

the intensity distributions to classify pixels in the image. We can classify vertebra and disc

structure using these pixel classifications and simple geometric rules.

The classification accuracy for lumbar spine vertebrae was found to be 99% and for cervical

spine vertebrae to be 79%, with a substantial increase to 89% when only 4 cases with large

deformations were removed. The algorithm also executes in near real-time, taking only a few

seconds to label all the 2D slices in a 3D image. In the single lumbar-spine case where the

algorithm incorrectly labeled a vertebra, only one slice was incorrect, with the remainder of

the slice being given the correct labeling. This should be easily identified by a human operator

and not lead to medical errors.

For the cervical spine, the performance is good, but not as good as for the lumbar spine.

There are some vertebrae that were incorrectly labeled, requiring clinicians to check the results

carefully and manually correct any errors. A sample workflow would be to label the image and

have the clinician check the results, indicating which vertebrae are correct. A new input point

would then be given for a previously missed or incorrectly labeled vertebra with this being used

to attempt to classify any remaining vertebrae. This decrease in accuracy is likely because of

the significantly smaller structures in the cervical spine compared to the lumbar spine. The

maximum errors between the detected uppermost and lowermost vertebrae boundaries and

the ground truth boundaries are high for the cervical spine. This may be in part due to the

C2 vertebrae having a larger height than the other cervical vertebrae. This is not currently

accounted for in the algorithm, but could be the subject of future improvements.

The lower accuracy of the cervical spine algorithm does preclude it from being used as

an unsupervised input to other algorithms; however, its quick run-time makes interactive use

possible. The lumbar spine algorithm is very suitable to being used as an unsupervised input.
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Limitations to this approach include the need for accurate first slice detection. The user is

required to present at least one valid input. Errors in the labeling of the initial point will be

propagated by the algorithm. This work is also limited by the lack of pathological test cases,

so its performance in those circumstances is uncertain. It should be noted that even with these

limitations, if this method works for most clinical cases then it is likely to be used by clinicians.

In this work a machine learning based approach was taken as opposed to segmentation

for reasons of speed and accuracy. Although we don’t doubt that it may have been possible

to accurately segment the spine, in our experience, segmentation of 3D volumes can be com-

putationally expensive. There is also the question of accurate segmentation of the vertebrae

and how the errors would propagate to labeling accuracy. Furthermore, since labeling is a

classification problem, a classification as opposed to segmentation approach was taken.

In the future, we will test this method on other MR modalities, such as proton density,

as well as CT images. We expect excellent results, as recognition is based solely on a learnt

intensity distribution, which is not limited to any specific modality.
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Chapter 6

Summary, Conclusions and Future Work

6.1 Summary of Work

The goal of this work is the creation of tools for increasing the accuracy and efficiency of radi-

ological diagnosis of the lumbar spine. Two problems in particular have been considered. The

first problem is CT/MR spine image fusion and the second is automatic labeling of MR spine

images. To solve these problems, the development of novel algorithms along with software

prototypes simulating their clinical use was completed. Due to the nature of image fusion, a

human observer study was used to validate its clinical performance, whereas the axial labeling

algorithm results can be directly compared to labels identified manually. The following is a

summary of these two projects.

6.1.1 Graph Cut Image Fusion

In chapter 2 we have developed a method of spine image fusion utilizing an energy minimiza-

tion approach solved via graph-cuts. The goal of this technique was to combine the cortical

bone detail, present in CT images with the soft tissue of the spine present in T2-weighted

MR images. Our energy minimization approach avoids the introduction of artifacts present

in transform-based approaches of image fusion [5, 10]. Compared to other energy minimiza-

148
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tion approaches, we can guarantee a near global optimum energy value and avoid the intensive

computations that are common with gradient descent based methods.

We formulated the energy minimization problem as an optimization of three competing

terms. The goal of the first term is to create an image that is similar to the input MR image,

weighted for strong edges. The goal of the second term is to create an image that is similar to

the input CT image, again weighted for strong edges. The final term aims to create an output

image that contains natural transitions between neighbouring pixels. To reduce the computa-

tional complexity of the problem, it has been reformulated as the problem of finding an optimal

alpha labeling, which represents the percentage of each pixel that comes from the MR image

and the percentage of each pixel that comes from the CT image. The reformulated problem can

be efficiently solved using graph-cuts via swap moves from combinatorial optimization [2].

To test this approach a total of 20 MR/CT image pairs were registered based on soft tissue

correspondence. These were then preprocessed and fused. The resulting images were com-

pared to existing methods both visually and numerical. The images fused using graph-cuts

did not contain noticeable artifacts unlike wavelet [5] and Contourlet [10] approaches. It also

preserved the dynamic range of the output images unlike Piella’s variational approach [7].

To numerically compare the images, manually segmented bone and tissue masks were gen-

erated. Fusion errors were calculated based on the pixel-wise difference between the fused

images and MR images in the areas of soft tissue and the fused images and CT images in

the areas of bone detail. The errors for the graph-cut fusion method were less than all the

other methods, which is congruent with a better fused image. Our method also outperformed

the other methods when compared using a sensitivity analysis and structural similarity index

measure.

This fusion system provides an enhanced visualization of the lumbar spine and outperforms

existing methods from the literature in terms of visual appearance and numerical accuracy. It

is hoped that more accurate and more efficient radiological diagnoses can be realized through

the use of these fused images.
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6.1.2 Real Time Image Fusion via Convex Approaches

In order to address some of the deficiencies of the graph-cut approach from chapter 2, we

explored convex optimization approaches to image fusion. The largest drawback to the graph-

cut methods is that they are computationally intensive to calculate [4]. By being non-parallel

in nature they are not amenable to efficient implementation on a GPU and do not achieve real-

time performance. Multi-label graph-cuts are also not practical to implement for 3D images,

due to increased memory and computational load. The largest drawback this imposes is that for

clinical use the fused images would need to be calculated offline, precluding user interaction

with the fused images.

In chapter 3 we considered convex approaches to solving similar energy functionals to

the one proposed in chapter 2. Here convex methods were employed as opposed to graph-cut

approaches. We presented two new families of fusion algorithms based on optimizing a squared

difference (SD) between the fused image and input MR/CT images, and an absolute value

difference (ABS) between the fused image and input MR/CT images. We presented efficient

convex algorithms (CSD) and (CABS) for solving the SD and ABS energy formulation.

Based on 30 MR/CT images pairs, the CSD and CABS are comparable to the graph meth-

ods when validated visually and numerically. CABS performs slightly better numerically than

CSD and graph-cuts, however, the CSD method performs better visually than CABS and sim-

ilarly to graph-cuts both visually and numerically. When run on the CPU, the CABS method

takes longer than the graph-cut methods, while the CSD method has a similar running time

(10-15 minutes). When implemented on a GPU, the CSD method can calculate an entire fused

volume in under a second, providing real-time performance. The CABS takes about 2 second

on the GPU. Additionally these runtime results scale linearly with the number of pixels in the

image.

Through the use of case studies the clinical importance of these images was presented. In

particular, the importance of being able to adjust the settings of the fused images interactively

was demonstration. For a patient with multiple metastases in their spine, the standard fusion
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algorithm settings (such as those used in the graph-cut approach) did not show the metastases

in the fused images. When alternate settings were determined interactively in real-time, the

metastases could be clear highlighted. Additional settings clearly highlighted the cortical bone

detail and the metastases on a single fused image.

The results of this study paved the way for a clinical validation of the interactive real-time

image fusion system.

6.1.3 Clinical Analysis of Image Fusion

In chapter 5 we studied the clinical use of the real-time interactive fusion system developed in

chapter 4. To evaluate its clinical potential for lumbar spine diagnosis, the fusion system was

compared to the use of unregistered MR and CT images, which is the current clinical standard.

Based on the readings of 5 radiologists, the unregistered MR and CT images wee compared

to registered CT, MR and fused images. The images were presented using custom image fusion

viewing software. The readers were asked to rank each presented modality based on confidence

of diagnosis in eight areas of anatomy, along with their overall confidence in diagnosis and

whether the images were aesthetically pleasing. They were also asked to measure the diameter

of the largest protrusion in both the axial and sagittal views. These tasks were timed in order

to determine whether they were completed more efficiently using the fused images.

It was found that the readers had similar confidence or higher confidence using the fused

images compared to the MR images except for diagnosis the exiting nerve but more confidence

compared to the CT images. For the measurement task there was a similar variability when

measuring protrusions on the fused image versus the unregistered MR/CT images. In regard

to time for completing the rankings and measurements, we did not find an overall difference

between using the fused images and the unregistered images.

Based on these results, it can be concluded that the fused images do provide a benefit to

the existing MR and CT images as they generally increase the reader’s overall confidence in

diagnosis. They also did not increase the time required to complete the individual tasks even
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though they added additional options when reading the images. This image fusion is targeted

for inclusion in future versions of the GE PACS radiology software.

6.1.4 Spine Axial Annotations

In chapter 6 we considered the problem of properly annotating the level of vertebrae and discs

in axial MR spine images. Like image fusion, this project is motivated by increasing the

accuracy and efficiency of diagnosis by radiologists. The precise level of a given vertebrae

serves as a reference for surrounding tissue in the spine and incorrectly identified vertebrae can

lead to wrong level surgery [3, 6] or incorrect diagnosis. Identifying this level is also a time

consuming task for radiologists.

We have developed a one click method to label axial slices in both lumbar spine and cervical

spine MR images. This is based on the user identifying a single point inside a single vertebra

and providing the correct annotation for that vertebrae. This avoids the need to constantly cross

reference location based on the sagittal slices, or mentally record the vertebral level.

Using integral images [9] and geometric constraints, classifications can be made for pixels,

then slices, then whole vertebra followed by multiple vertebrae in an image. When imple-

mented on the GPU results are achieved in near-real time. The method has been tested on

T1 lumbar spine images, and T2 cervical spine images. We have achieved 99% classification

accuracy on the lumbar spine and 79% accuracy on the cervical spine.

This algorithm should aid in diagnosis of the spine. It can also serve as an input to future

algorithms for spine segmentation and registration. Ideally both this and the image fusion work

will be implemented in future versions of the GE PACS radiology software.
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6.2 Additional Findings

6.2.1 A note on Colour Imaging

Colour imaging has the potential to allow humans to visualize multiple data sources on a signal

image. Intuitively this could be a powerful method for enhanced visualization of medical

images. It could eliminate ambiguity between detail that presents with similar intensity levels

in both CT and MR images.

To this end, the ability to visualize the cortical bone detail from the CT image on a fused

image was incorporated into the software Fig. 6.1. At least 8 radiologists were given the

opportunity to test the fusion software and were instructed in the availability of the colour

enhanced image. Without fail every radiologist ended up turning off the colour enhancement,

preferring grey scale images. This may be because of familiarity, since radiologist’s typical

workflow involves grey scale images for spine diagnosis, but that is only a potential hypothesis.

It does present a possible direction for future research.

Figure 6.1: Custom fused image viewer showing the cortical bone detail from the CT high-
lighted in orange.
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6.3 Limitations of the Thesis

It is important to not overstate the contributions of this work. Here we present a discussion of

the major limitations of this thesis, in order to provide motivation for future research directions.

6.3.1 Graph Cut Image Fusion

In chapter 2 a first approach to image fusion is presented. An assumption of rigid deformation

between CT and MR images, correctable by rigid registration, has been made. This is a strong

assumption. As discussed in that chapter it has been verified to be accurate for the given dataset,

however there is possibility of anatomical repositioning between scans, especially if these tech-

niques are to be extended to the cervical spine. Piece-wise rigid registration techniques will be

discussed as a future area of research. Additional sources of registration error could include:

anatomical changes (e.g. disc deformations, bone healing, tumour growth, inflammation) be-

tween scans. The limitations of registration accuracy are something that the clinicians utilizing

these techniques would need to consider if fusion is incorporated into radiological practice.

The techniques presented in this chapter also only involve CT and T2 image fusion. An

extensive evaluation of fused CT/T1 and CT/PD images has not been performed. Extensions to

C-spine have also not been thoroughly evaluated, although a small number of cases have been

examined. These are areas of future investigation.

In regards to the algorithms utilized in this work, the largest drawbacks are 1) speed of com-

putation, 2) lack of extensibility to 3D, and 3) utilization of a fixed number of labels quantizing

the output results. These are considered in chapter 3.

6.3.2 Real Time Image Fusion via Convex Approaches

As these results are an extension of those presented in chapter 2, the limitations of registration

and lack of verification on the C-spine and CT/T1, CT/PD images are present.

This work does address the 3 main algorithmic deficiencies of chapter 2, however a limita-
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tion of this work is the assumption of isotropic voxel spacing that was made when extending

the method to 3D. Some investigations were made into this. In particular it is possible to update

the smoothing of the edge weights to account for a non-isotropic voxel spacing.

6.3.3 Clinical Analysis of Image Fusion

As the testing this chapter involved human observers it was the hardest to control experimen-

tally. As has been discussed in chapter 4, one of the largest limitations is that the unregistered

images were examined first, followed by the registered and fused images. There is potential

bias due to the order the images were presented.

Since the registered and fused images were presented together, there is potential that the

effects seen were more a result of the registration and linking of the images rather that the

fusion of the images. There are indications from the data, that this is not the case, however

these are indirect. A future study could include a separate testing phase for registration in

addition to fusion.

6.3.4 Spine Axial Annotations

In this work the largest limitation is the lack of evaluation on highly pathological cases. It

would be beneficial to understand the performance of this algorithm for severely diseased

spines. It should be noted that everyone’s spine is undergoing degeneration and as such ev-

ery patient has some degree of degeneration. It would be beneficial to better understand the

limits of the labeling algorithm. The performance on the cervical spine is another limitation of

this work. This is further discussed in the section on future work.

6.4 Future Work

This project has succeeded in many respects. Image fusion has been shown to be feasible

and desirable in routine radiological diagnosis of the spine. In spite of this success, there are
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several drawbacks to the current implementation of the registration, which remain areas for

future investigation. Addressing these areas should further improve the system and result in a

more desirable end product. In parallel with these improvements, the system is ready for the

investigation of new clinical applications, both for the spine and other areas of anatomy such

as the hand and upper limb.

6.4.1 Real Time Spine Registration

Currently registration stands as a bottleneck for the speed of the fusion. It currently takes

about 5-15 minutes and is completed offline, as only the fusion needs the constant input of the

radiologist. This makes the system slightly more difficult to integrate into an end product. It

would be ideal to maintain the accuracy of the current registration, with a real-time or near real

computational speed.

Near real-time registration speeds of 5-10 second per volume would allow radiologists to

use the fused images without offline registration, while run times of less than 1 second per

volume would be ideal. This would increase the flexibility of image fusion as a tool in general.

Further increases in speed could be considered for applications to image fusion for surgery.

This would likely involve the use of ultrasound or fluoroscopy instead.

Two possible directions for the increase in registration speed are algorithm optimization

and parallelizing the code. Currently, the code runs on the CPU, a GPU implementation could

potentially speed up the code. This would require a parallel implementation of the metric and

the resampler. This may be enough to achieve real-time performance, assuming a one hundred

times speed up by switching to the GPU. Since this would only be a reimplementation of

existing techniques, its research potential may be limited.

An alternative to this method is to first segment the images and then utilize surface matching

approaches to quickly align these structures. Max-flow based segmentation algorithms could

be employed for this [1, 11].
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6.4.2 Piecewise Deformable Registration of the Spine

One of the greatest difficulties with our current registration methods is that they are rigid. It

was found that assuming the lumbar spine is rigid was valid for most of the subjects examined.

However, the cervical spine is likely to demonstrate more deformation between scans. Creating

an algorithm that is capable of rigidly registering these structures would be advantageous.

Piecewise registration of the spine has been proposed in recent literature [8]. The idea

behind this approaches is to treat individual vertebrae as rigid structures since they consist of

bone and align these with the MR image. Soft tissue deformations could then be interpolated

from these rigid deformations and/or a combination of image information.

Having the axial slice boundaries, would be an excellent starting point for this algorithm.

These boundaries, which are already determined by the axial labeling algorithm, could provide

initial localization. From there, rigid registration methods could be employed locally on each

vertebra, using either the existing mutual information based method, or another rigid registra-

tion method. Methods involving segmentation of the images and then applying surface based

registration might be of higher value as long as they can easily be extended to other MR images

such as T1 and PD. Ideally these methods would also work in near real-time (5-10 second per

volume).

6.4.3 Extensions of Image Fusion to T1, PD and other MR modalities

This work has primarily focused on the fusion of CT and T2-weighted lumbar spine images.

Fusion of CT images with T1 images, PD images or other MR modalities may be advantageous.

Ideally the current fusion methods would only need minor modifications to work in these cases.

Registration would need to be examined. Directly registering the CT to T1/PD/Other images

could be investigated. If these methods fail, then registering to the T2 images, which would

in turn be registered to the CT images, may be possible. The new fused results could then be

compared to the CT-T2 fusion results in a clinical study.
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MR Fused CT

Figure 6.2: Fused images of an elbow, showing views of the CT image, fused image and MR
image.

6.4.4 Other Clinical Applications

There are other potential clinical targets for image fusion. Preliminary work with elbow images

has demonstrated that it is possible to fuse these images, showing both the bone and soft tissue

on a single view. This is shown in Fig. 6.2. Other targets could include, the shoulder, knee,

hand and foot. They are all musculo-skeletal targets containing soft tissue and bone structures,

which would be desirable to see on a single image. Additional registration methods may be

needed for these images; however, the current lumbar spine methods can be used as a starting

point for this investigation.

6.5 Conclusion

We have developed and validated two systems designed for increasing the accuracy and ef-

ficiency of radiological diagnosis. This has included the generation of prototype viewers in-

corporating these tools. Both tools show promising results and are now ready for inclusion

in clinical products. Future work could involve examining new clinical targets of this work,

along with speed and flexibility improvements to the registration algorithm employed for image

fusion.
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