Potential for Measurement of Mesospheric Ozone Density from Overdense Meteor Trains with a Monostatic Meteor Radar

Reynold E. Sukara
The University of Western Ontario
Supervisor
Dr. Wayne Hocking
The University of Western Ontario
Graduate Program in Physics
A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science © Reynold E. Sukara 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd
Part of the Other Physics Commons

Recommended Citation

Sukara, Reynold E., "Potential for Measurement of Mesospheric Ozone Density from Overdense Meteor Trains with a Monostatic Meteor Radar" (2013). Electronic Thesis and Dissertation Repository. 1789. https://ir.lib.uwo.ca/etd/1789

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Potential for Measurement of Mesospheric Ozone Density from Overdense Meteor Trains with a Monostatic Meteor Radar

(Thesis format: Monograph)
by

Reynold E. Sukara

Department of Physics and Astronomy
Graduate Program in Physics

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada
© Reynold E. Sukara 2014

Abstract

Thermally ablating meteoroids, colliding with the Earth's atmosphere, leave a high temperature trail containing extremely energetic metallic ions and electrons. A well recognized, but unresolved, anomaly associated with ambipolar diffusion of meteor trains, which is more dominant in overdense meteors, takes place in the initial postadiabatic train expansion. In this work, a newly proposed mechanism explaining this anomaly involving hyperthermal chemical reactions is presented. Data from the SKiYMET meteor radar system, deployed at latitudinally dispersed locations, were used to determine ozone density in the upper atmosphere by analyzing diffusion of overdense meteor trains. The results obtained in this study are in line with satellite measurements of ozone density. Moreover, it was demonstrated that backscatter can detect a direct signature of the newly discovered hyperthermal chemical reactions in overdense meteor trains. The hypothesis proposed in this thesis, suggesting the possibility of measuring the upper atmosphere ozone density using backscatter radar, has been validated.

Key words: ozone, radar, overdense meteors, mesosphere, hyperthermal chemistry, ambipolar diffusion

Dedication

To my Family

Acknowledgments

Finally a part of the journey is over. While the old adage says that it is not the destination, but the journey that matters, I would respectfully disagree with it. Not because it is incorrect, but because in the world we live in, it is only numbers and results that matter, and not much else. That being said, doing another master's degree, this time in the Department of Physics and Astronomy at Western, has taught me many things, but most of them not related to physics.

I am grateful to my family for their patience and support. Next, I am grateful to my supervisor, Dr. Wayne K. Hocking, for trusting me with the project of this magnitude and difficulty, for giving me the opportunity to do it in the first place and for many productive discussions. I also extend my thanks my advisory committee, Dr. John deBruyn and Dr. Richard Holt.

I would like to thank those who I think also contributed to the work and results in this thesis, directly or indirectly, whether they know it or not. Thus, first I would like to acknowledge IACPES, York University, without whose financial support this project would not have been possible, and Carol Weldon, the program coordinator. Next, I would like to thank Dr. Jack Baggaley (New Zealand), who despite serious health problems was maintaining communication with me. On the same note, I want to acknowledge kindness and professionalism of Dr. Richard Wayne (UK), Dr. Shaun Carl (Belgium), Dr. Yutaka Matsumi (Japan) and Dr. James Burkholder (US) who tried to help me with O(1D) chemistry. If I ever end up in academia, these guys are true role models. Special thanks go to Dr. John Plane in UK for his immense help when discussing the O_{2} (delta) chemistry. I would like to sincerely thank Dr. Anne Smith for her help and kindness to provide ozone satellite data from Smith et al. (2013). In addition, I would like to thank Dr. David Tarasick for his help in putting me in touch with Dr. Smith.

I do not want to forget to thank Dr. Secco for offering me to start my PhD with him immediately after the completion of this project.

My thanks also goes to Marcial Garbanzo for his advice when it comes to programing. Last but not least, I would also like to emphasize the multifaceted role of the administrative personnel in the Physics Department, especially Jodi and Clara. Thank you for your kindness and support.

Table of Contents

Abstract ii
Dedication iii
Acknowledgments iv
List of Figures xi
Chapter 1 1

1. Introduction and Background 1
1.1 History 1
1.2 Meteor Fundamentals 4
1.3 Aim and Overview of the Thesis 9
Chapter 2 11
2. Meteor Physics 11
2.1 Ablation Fundamentals 11
2.1.1 Meteor Sputtering 14
2.1.2 Meteor Ablation 17
2.2 Meteor Trail Ionization and β-Coefficient 20
2.3 Meteor Radar Theory and Fresnel Diffraction 24
2.3.1 Application to Underdense Meteor Trains 24
2.3.2 Underdense Meteors - Properties and Characteristics 35
2.3.3 Transition Between Underdense and Overdense Meteors 38
2.3.4 Additional Notes on Meteor Radar 43
2.3.5. Overdense Meteors 46
2.3.6 Overdense Meteors and Ionization Distribution 53
2.4 Initial Radius of the Meteor Train 57
2.5 Meteor Trail Diffusion 63
2.5.1 Diffusion of Meteor Trails in the Presence of Geomagnetic Field 73
2.5.2 The Remaining Questions Regarding Ambipolar Diffusion 75
2.6 Meteor Trail Chemistry, Spectra, Temporal and Thermal Evolution 78
2.7 Initial Temperature of the Meteor Wake and Trail - An Indication of Hyperthermal Chemistry 90
2.8 Meteor Spectra 97
2.8.1 Sources of Long Lived Meteor Emission 102
2.9 Meteor Head 104
2.10 Physical and Chemical Properties of Upper Mesosphere and Lower Thermosphere (MLT) Region 107
2.11 Ozone 112
2.11.1 Ozone Density Obtained from Radars 118
Chapter 3 121
3. Methods 121
3.1 Radar - Instrument Fundamentals 121
3.2 Sites 124
3.2.1 Resolute Bay, Nunavut 124
3.2.2 Yellowknife, NWT 126
3.2.3 CLOVAR, London, ON 126
3.2.4 Socorro, New Mexico 126
3.2.5 Costa Rica 126
3.3 The Hyperthermal Chemistry, the Mechanism and the Role of Ozone in Electron Removal from the Meteor Trail 127
3.4 The Modified Diffusion Equation, Solution, Parameters and Application to Ozone Density Calculation. 135
3.5 Determinations of the Experimental Height of the Maximum Ionization 145
3.6 Initial Radius and Hyperthermal Chemistry Duration Time 146
3.7 Comments and Considerations on Matlab Processing Code 147
3.7.1 Processing raw data 147
3.7.2 Initial Processing 147
3.7.3 Concentration Calculation 154
3.8 Comment on the Error and Uncertainty Treatment 160
3.9 Chapter Graphical Flowchart Summary 165
Chapter 4 166
4. Results 166
4.1. Resolute Bay 168
4.3 CLOVAR 199
4.4 Socorro 201
4.5 Costa Rica 206
4.6 Chapter Summary and Concluding Remarks 208
Chapter 5 209
5. Discussion and Conclusions 209
5.1 Summary and Discussion. 209
5.2 Conclusions. 215
5.3 Future Work 216
Bibliography 219
Appendix 242
Curriculum Vita 283
List of Tables
Table 2.1: Meteor electron densities 49
Table 2.2: Values of initial radius in metres 60
Table 2.3: Thermalization times of electrons 62
Table 2.4: Compiled literature values of the observed and calculated ambipolar diffusion coefficients 72
Table 2.5: Chemical reactions in and around meteor train. 82
Table 2.6: The forbidden transitions, wavelengths and lifetimes for natural oxygen 98
Table 2.7: List of main photochemcal reactions. 117
Table 3.1: Maximum ionization heights. 157
Table 4.1: Number of total events for Resolute Bay 168
Table 4.2: Table with number of total events for Yellowknife. 190
Table 4.3: Number of total events for CLOVAR 199
Table 4. 4: Number of total events for Socorro. 201
Table 4.5: Number of total events for Costa Rica. 206
Table A.1: CLOVAR number of meteors 243
Table A. 2: Costa Rica number of meteors 244
Table A.3: Resolute Bay number of meteors (part 1) 245
Table A.4: Resolute Bay number of meteors (part 2) 246
Table A.5: Socorro number of meteors (part 1) 247
Table A.6: Socorro number of meteors (part 2) 248
Table A.7: Yellowknife number of meteors (part 1) 249
Table A.8: Yellowknife number of meteors (part 2) 250
Table A.9: CLOVAR ambipolar diffusion slope 251
Table A.10: Costa Rica ambipolar diffusion slope 252
Table A.11: Resolute Bay ambipolar diffusion slope (part 1) 253
Table A.12: Resolute Bay ambipolar diffusion slope (part 2) 254
Table A.13: Socorro ambipolar diffusion slope (part 1). 255
Table A.14: Socorro ambipolar diffusion slope (part 2) 256
Table A.15: Yellowknife ambipolar diffusion slope (part 1) 257
Table A. 16: Yellowknife ambipolar diffusion slope (part 2) 258
Table A.17: CLOVAR hyperthermal chemistry slope 259
Table A.18: Costa Rica hyperthermal chemistry slope 260
Table A.19: Resolute Bay hyperthermal chemistry slope (part 1) 261
Table A.20: Resolute Bay hyperthermal chemistry slope (part 2) 262
Table A. 21: Socorro hyperthermal chemistry slope (part 1) 263
Table A.22: Socorro hyperthermal chemistry slope (part 2) 264
Table A.23: Yellowknife hyperthermal chemistry slope (part 1) 265
Table A. 24: Yellowknife hyperthermal chemistry slope (part 2) 266
Table A.25: CLOVAR hyperthermal chemistry diffusion coefficient 267
Table A.26: Costa Rica hyperthermal chemistry diffusion coefficient 268
Table A.27: Resolute Bay hyperthermal chemistry diffusion coefficient (part 1) 269
Table A.28: Resolute Bay hyperthermal chemistry diffusion coefficient (part 2) 270
Table A.29: Socorro hyperthermal chemistry diffusion coefficient (part 1) 271
Table A.30: Socorro hyperthermal chemistry diffusion coefficient (part 2) 272
Table A.31: Yellowknife hyperthermal chemistry diffusion coefficient (part 1) 273
Table A.32: Yellowknife hyperthermal chemistry diffusion coefficient (part 2) 274
Table A.33: CLOVAR ozone concentration $\left(\mathrm{m}^{-3}\right)$ 275
Table A.34: Costa Rica ozone concentration $\left(\mathrm{m}^{-3}\right)$. 276
Table A.35: Resolute Bay ozone concentration (m^{-3}) (part 1) 277
Table A. 36: Resolute Bay ozone concentration (m^{-3}) (part 2) 278
Table A.37: Socorro ozone concentration $\left(\mathrm{m}^{-3}\right)$ (part 1). 279
Table A.38: Socorro ozone concentration (m^{-3}) (part 2). 280
Table A.39: Yellowknife ozone concentration (m^{-3}) (part 1) 281
Table A.40: Yellowknife ozone concentration (m^{-3}) (part 2) 282

List of Figures

Figure 1.1: Strange religious fresco likely depicting the religious interpretation of the
observed meteor phenomena. 1
Figure 1.3: A famous depiction of the November 13, 1833 meteor storm. 2
Figure 1.4: Illustrative representation of the sources of meteoroids within solar system 4
Figure 1.5: Basic terminology for meteors. 5
Figure 1.6: Diurnal variation of meteor rates 6
Figure 1.7: The illustration of the process of meteoroid ablation and particle deposition in the atmosphere. 7
Figure 2.1: Flow regimes for meteoroids 13
Figure 2.2: Depiction of meteor ablation as a function of height where volatiles such as Na and K ablate first, followed by Fe, Mg and Si , and $\mathrm{Ca} . \mathrm{Al}$ and Ti ablate last. 17
Figure 2.3: Illustration of the typical meteor radar setup 26
Figure 2.4: The geometry of the meteor path relative to the observation station. 29
Figure 2.5: Modelled Cornu spiral with no diffusion. The amplitude vector at $x= \pm 1$ is shown (Baggaley and Grant, 2005). 31
Figure 2.6: Predicted behavior of the power and phase of the radar echo from an underdense trail 32
Figure 2.7: Cross section of ionized trail near t_{0} point. 36
Figure 2.8: Typical underdense signal. 38
Figure 2.9: Graphical representation of the transition between underdense and overdense electron density distribution in the meteor trail. 40
Figure 2.10: Section of a meteor trail at 105 km at four successive equal intervals of time after the trail has formed at $t=0$. 41
Figure 2.11: Relevant processes that affect underdense meteor trail, as a function of height (Jones, 1975). 42
Figure 2.12: Geometry of the echo plane. 45
Figure 2.13: Illustrative example of a typical overdense meteor echo. 47
Figure 2.14: The minimum electron line density required to produce an overdense-type echo. 50
Figure 2.15: Cumulative occurrence frequency-duration distribution of overdense echoes for a 10 m radar wavelength. 53
Figure 2.16: Theoretical ionization curve for overdense meteors. 55
Figure 2.17: The distribution of the echo types observed by two separate VHF radar stations 56
Figure 2.18: The height-velocity relationship for meteors observed by radio echo methods and compared with the theoretical curve (Greenhow and Hall, 1960).58
Figure 2.19: The summary of the estimates of meteor initial radius 61
Figure 2.20: Dispersion in obtained diffusion data and the result of fitting (Greenhow and Hall, 1961) 68
Figure 2.21: The comparison of values of ambipolar diffusion obtained by Jones (1975) and the earlier results. 69
Figure 2.22: Scatter plot of the diffusion coefficients obtained from the radar data. 70
Figure 2.23: Height variation of the ambipolar diffusion coefficients parallel (D_{L}) and orthogonal $\left(\mathrm{D}_{\mathrm{T}}\right)$ to the geomagnetic field. 74
Figure 2.24: The vertical profiles of mean decay time for 2005 obtained by Ballinger et al. (2008) 76
Figure 2.25: (a) Distribution of meteor trail decay time (b) height profiles of mean meteor trail decay time. 77
Figure 2.26: Elemental ablation profiles for a 5 mg meteoroid entering at $20 \mathrm{~km} \mathrm{~s}^{-1}$ 79
Figure 2.27: Meteor echo duration vs. reflection heights for radar wavelength $\lambda=9 \mathrm{~m}$. 85
Figure 2.28: Echo duration vs. height profiles for different value of maximum line density 88
Figure 2.29: a) Fe chemistry in the MLT. b) Schematic diagram of magnesium chemistry in the upper mesosphere/lower thermosphere region. 90
Figure 2.30: The intensified TV images of meteor. 92
Figure 2.31: The images show meteor evolution and development of the meteor morphology at 1000 frames/s. 93
Figure 2.32: Three scale-sizes of physical phenomena in the Leonid meteor images. 94
Figure 2.33: Time scales of chemical reactions involving metal-containing species for the case of cooling of a high-altitude Leonid meteoroid of CI elemental composition. 96
Figure 2.34: a) Excitation energies and states of the atomic oxygen b) Possible routes for the loss of atomic oxygen ionization energy 99
Figure 2.35: Three cross-sections through the persistent train at an altitude of 86 km 103
Figure 2.36: The infrared, visible and UV spectra and wavelengths. 104
Figure 2.37: Illustration of how electron density theoretically varies as a function of distance from the meteoroid 106
Figure 2.38: An average temperature profile through the lower layers of the atmosphere. 108
Figure 2.39: Vertical profiles of the mixing ratios of atmospheric constituents in the mesosphere and lower thermosphere 110
Figure 2.40: Potential energy curves for ground and first four excited states of O_{2} 111
Figure 2.41: a) The ionosphere has layers b) The altitudes corresponding to the specificionospheric layer112
Figure 2.42: The diurnal variation in density of O_{3} in the upper atmosphere 113
Figure 2.43: Absorption spectrum and potential energy curves for O_{2}. 114
Figure 2.44: Ozone profiles for each of the instruments on board every satellite 116
Figure 2.45: Log of cumulative number of events vs. \log of radar echo duration 119
Figure 3.1: Planar view of the antenna arrangement for the radar system 122
Figure 3.2: Schematics of the complete SKiYMET system 123
Figure 3.3: Typical radiation pattern of the Yagi-type SKiYMET antenna. 124
Figure 3.4: Mars-like landscape at Resolute Bay, Nunavut 125
Figure 3.5: Typical real time output from all SKiYMET radar sites offering meteor fluxes, mesospheric temperatures and wind speed. 125
Figure 3.6: The locations of the radar sites used in this work are marked on Google Earth in the same order as that described in the text. 127
Figure 3.7: Left: Contours of the number density of ablated vapor; Right: Contours of the translational temperatures 129
Figure 3.8: The collision energy dependence of the $\mathrm{Mg}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}^{+}+\mathrm{O}$ reaction cross section (Dressler, 2001). 132
Figure 3.9: The cross-section of the meteor trail depicting the postadiabatic expansion trail with initial radius r_{0} 134
Figure 3.10: Computed radial profiles of 19 atmospheric constituents 1 second after ablation. 135
Figure 3.11: Observed daytime diffusion coefficient profile for January 2012 at King Sejong Station, Antarctica. 136
Figure 3.12: The $\log -\log$ plot of the cumulative number of events versus echo duration times. 137
Figure 3.13: Schematics of a meteor train expansion. 140
Figure 3.14: Number of observed meteor echoes as a function of altitude (September, 2011, Socorro) 145
Figure 3.15: The schematic plot of the observed ambipolar and hyperthermal chemistry regimes 148
Figure 3.16: Histogram of the number of events. 149
Figure 3.17: Log cumulative number of overdense meteors 150
Figure 3.18: Log cumulative number of meteors 151
Figure 3.19: Plotted log-log curve of the number of cumulative events vs. duration. 152
Figure 3.20: The slope intercept between the diffusion and chemistry regime. 153
Figure 3.21: The pre and post tapering in the ionization curve. 154
Figure 3.22: An image of a bright Leonid meteor. 155
Figure 3.23: The maximum number of meteors as function of specific height 156
Figure 3.24: The example of calculated ozone profile data. 158
Figure 3.25: The spread in values as the result of the random variables calculations. 159
Figure 3.26: Plots of the ambipolar diffusion coefficient measured at Esrange, Sweden, as a function of time 162
Figure 3.27: Screen shot of the live feed from the Tierra del Fuego, Argentina 163
Figure 3.28: Slopes of the ambipolar diffusion 164
Figure 3.29: Flowchart 165
Figure 4.1: Typical profile of the calculated hyperthermal diffusion coefficient 169
Figure 4.2: The behaviour of the calculated hyperthermal diffusion coefficient. 170
Figure 4.3: The theoretical and measured diffusion as a function of height 172
Figure 4.4: Slopes of ambipolar diffusion regime compared with hyperthermal chemistry regime. 173
Figure 4.5: The altitude vs. ambipolar diffusion time. 175
Figure 4.6: Example how the maximum number of meteor events vs. altitude was used to determine the height of the maximum ionization and consequently maximum electron line density. 176
Figure 4.7: The application of Herlofson's (1948) [α_{2}]and Kharchenko (2012) [α_{1}] formula lead to closely matching results in ozne density calculaton. 177
Figure 4.8: Height vs. log density of ozone for May, 2001, Resolute Bay 177
Figure 4.9: Height vs. ozone density with error bars. 178
Figure 4.10: Height vs. ozone density with error bars 178
Figure 4.11: Log of ozone density as a function of height with error bars 179
Figure 4.12: The seasonal behaviour of the ozone density. 180
Figure 4.13: The seasonal variations in secondary ozone maxima in MLT region as a function of altitude as measured at $45^{\circ} \mathrm{N}$. 182
Figure 4.14: Seasonal variations of the meteor decay times at 82 km altitude. 183
Figure 4.15: Seasonal variation of ozone density at altitude of 82 km , above Resolute Bay, obtained from the meteor radar observation of overdense meteor decay times. Error bars represent uncertainty in calculated results. 184
Figure 4.16: Seasonal density plot of ozone concentration. 185
Figure 4.17: Ozone density profile measured in this work. 185
Figure 4.18: Residuals of the nightly and daily ozone values from satellite 186

$$
\begin{aligned}
& \text { Figure 4.19: }(\mathrm{a}-\mathrm{g}) \text { For comparison and data validation, the regression plots of the data } \\
& \text { obtained in this work with daily and nightly variations from different satellites are } \\
& \text { presented above... } 186 \\
& \text { Figure 4.20: The example of well-behaved total duration times } 191 \\
& \text { Figure 4.21: The scattered behaviour of the total duration plotted.................................. } 192 \\
& \text { Figure 4.22: The example of the initially calculated number of removed electrons by } \\
& \text { hyperthermal chemistry regime. .. } 192
\end{aligned}
$$

Figure 4. 23: The example of the matching quantitative and shape behaviour of the plots of the calculated hyperthermally removed electrons. 193
Figure 4.24: Contrasting behaviour of well constrained calculated hyperthermalchemistry diffusion coefficient plotted along theoretical ambipolar coefficient193
Figure 4.25: Representative examples of the obtained results calculated from the well behaved data. 194
Figure 4.26: The calculated ozone density for the month of June, 2008, Yellowknife. 195
Figure 4.27: Daily and nightly ozone density profiles obtained from different satellitescompares with the ozone density as a function of height, for May, 2009, Yellowknife. 196
Figure 4.28: The residuals between SOFIE longitudinally and seasonally averaged ozone density values. 197
Figure 4.29: Daily and nightly residuals between MIPAS ozone profiles and results obtained for July, 2008, Yellowknife. 197
Figure 4.30: Regression plots of GOMOS (nightly) ozone density comparison with 2003and 2009 Yellowknife ozone data. Reasonably good trend can be seen in both............ 198
Figure 4.31: Daily and nightly ozone density profiles from different satellites 200
Figure 4. 32: Ozone density profile for July, 2002, CLOVAR 200
Figure 4.33: Duration time for July, 2011, Socorro, and the ambipolar diffusion coefficient. 202
Figure 4.34: Decay time versus height of all meteors during 2005. 202
Figure 4.35: Ozone seasonal density profiles for 78 and 81 km altitude. 203
Figure 4.36: Seasonal variation of mesospheric ozone concentration above 80 km for a region centered at $38^{\circ} \mathrm{N}$ 203
Figure 4.37: Daily and nightly ozone density profiles compared with the results obtained in this work for June, 2002, Socorro. 204
Figure 4.38: Seasonally and latitudinally averaged satellite ozone density profiles compared with calculated values for May, 2002, Socorro. 204
Figure 4.39: Residuals for MIPAS daily and nightly ozone profiles 205
Figure 4.40: Surface plot of seasonal ozone density variation for 2011 Socorro. 205
Figure 4.41: Satellite observed diurnal variation of ozone density 207

Figure 4.42: Residual values between daily and nightly satellite profiles
Figure 5.1: Translational temperature field from a rarefied flow model 212
Figure 5.2: Popular depictions of the physical processes that lead to meteors............... 213
Figure 5.3: The mass index of the Draconids on October 8, 2011. 214

List of Appendices

Chapter 1

> If we knew what it is we were doing, it would not be called research, would it?

- Albert Einstein

1. Introduction and Background

1.1 History

The study of meteors and associated phenomena is not a recent undertaking. Ancient peoples, from the old to the new world have been closely aware of the "falling stars" which played a significant role in many aspects of people's lives as documented in ancient religious and similar texts (e.g. Figure 1.1).

Figure 1.1: Strange religious fresco entitled "The Crucifixion" from Serbian Monastery Decani, Kosovo, painted in 1350 by an unknown artist, likely depicting the religious interpretation of the observed meteor phenomena (Credit: http://www.xfacts.com/old/).

In more recent history, the extensive renewed interest for meteor research was initiated by the spectacular Leonid meteor storm of 1833 (Burke, 1986) (Figure 1.2).

Figure 1.2: A famous depiction of the November 13, 1833 meteor storm. The original painting was executed around 1887 by the Swiss painter Karl Jauslin under the instructions of the Seventh-day Adventist minister Joseph Harvey Waggoner, who had witnessed the storm from rural eastern Pennsylvania when he was aged 13. The figure shows the Adolf Völlmy engraving that was published in April 1888 in The Signs of the Times, a weekly publication of the Seventh-day Adventist Church. The association of the Leonid storm with the apocalyptic opening of the sixth seal (Revelation 6.13 and Matthew 24.3) was stressed (Credit: http://star.arm.ac.uk/leonid/).

However, it was not until the advent of the modern observational and experimental techniques, such as radar, that has enabled revolutionary understanding of the meteor phenomena, its origins and dynamics. Maxwell's ground-breaking work on electricity and magnetism, followed by Hertz's confirmation of the existence of the radio waves in 1887 and the subsequent radio work of Marconi led Heaviside and Kennelly to propose the existence of the conductive layer in the upper atmosphere that we know today as the ionosphere.

The first radar device to monitor the ionosphere was constructed by the Breit and Tuve in 1926, and it can be said that ionospheric research was instrumental in further development and evolution of the meteor radar. Meteor observations using radar were first conducted in the 1940s. However, it was not until the World War II that radar research experienced the fastest development following the invention of magnetron cavity by British scientists. When Edward Appleton and his team from the Radio Research Board of the British Department of Scientific and Industrial Research used warsurplus radar to study meteors, it opened a new page in meteor research. They concluded that meteors cause abnormal bursts of ionization as they enter the ionosphere (Appleton and Naismith, 1947), thereby confirming the Hantaro Nagaoka hypothesis about meteors and the ionosphere (Nagaoka, 1929). Following the World War II, pioneers like Sir Bernard Lovell, John A. Clegg, John G. Davies, and in Canada, Donald R. W. McKinley and Peter M. Millman among others in the field paved the way for the modern research of meteors using radar techniques. During the early fifties, meteor trails were being used to investigate the high altitude winds, turbulence and even used in long distance meteor burst communication (Weitzen and Ralston, 1988).

This brief historical note does not do justice to all of the pioneers who contributed to the development of radar and its application to meteor research. Therefore, interested readers are directed to several outstanding historical review texts of the radar research by Hey and Stewart (1947), Swords (1986), Buderi (1996) and Watson (2009). Additionally, two comprehensive reviews of the historical meteor research by Kirinov (1960) and Burke (1982) in addition to McKinley (1961) are recommended for a further reading.

1.2 Meteor Fundamentals

The interplanetary space in the solar system is not an empty void. It is filled with cosmic dust and particles of various sizes (Brownlee, 1985) that frequently cross paths with Earth's orbit and subsequently enter the atmosphere at speeds ranging from $11.5 \mathrm{~km} / \mathrm{s}$ to $72.5 \mathrm{~km} / \mathrm{s}$ (Baggaley, 2002). However, most particles enter the atmosphere at speeds ranging from $15 \mathrm{~km} / \mathrm{s}$ to $35 \mathrm{~km} / \mathrm{s}$. A particle moving through space, prior to entering the Earth's atmosphere, is defined as a meteoroid. There are two primary sources of meteoroids impacting the Earth's atmosphere (Ceplecha et al., 1998; Williams, 2002). The first one is sublimating comets as they orbit the sun and are responsible for periodic meteor showers. The second source of meteoroids, which may substantially vary in sizes and composition, and which cross Earth's orbit intermittently, originates from the asteroid belt (Figure 1.3), beyond Mars (Murad and Williams, 2002) and share the orbital plane with the planetary bodies in the solar system.

Figure 1.3: Illustrative representation of the asteroid and cometary sources of meteoroids (http://www.britastro.org/radio/projects/DM-Meteor.temp/meteors.html).

Upon entering the Earth's atmosphere, a meteoroid's hypervelocity collisions with the atmospheric constituents cause frictional heating, resulting in sputtering, evaporation, ablation and fragmentation among the primary ways of meteoroid mass loss. The luminous phenomena that results from collisional de-excitation of the ablated meteoroid atoms and excited atmospheric molecules are defined as meteors, a term that originates from ancient Greek and means "things in the air". In cases when the meteoroid is sufficiently big, and when it does not burn up in the atmosphere and reaches the ground, it is designated as a meteorite (Figure 1.4).

Figure 1.4: Basic terminology for meteors (Ceplecha et al. 1998).

The role of the Poynting-Robertson effect (Wyatt and Whipple, 1950) and the radiation pressure, while very small, contribute to the influx of the Earth's crossing particles. The primary classification arranges meteors into two groups: (i) meteor showers which have spatially and temporally repeating properties, and (ii) sporadic meteors, which are
considered dominant in numbers and in atmospheric mass influx. An apparent diurnal variation in meteor numbers occurs because of the Earth's daily rotation along its orbit, where meteors are swept up in highest numbers during the early morning hours (Figure 1.5).

Figure 1.5: Diurnal variation of meteor rates. In the evening only meteors overtaking Earth are observed and in the morning, meteors with orbital directions opposite to that of Earth and the showers with the same orbital direction are observed (from Sugar, 1964).

While the estimates of the mass influx of the space dust and debris entering the atmosphere vary considerably (McBride et al., 1999), recent conservative estimates suggest that about 200,000 t/year of extra-terrestrial material enters Earth's atmosphere daily (Hughes, 1997).

Depending on the mass, velocity and primarily composition, preheating of the particle in the Earth's atmosphere begins at around 150 km . However the ablation and resulting luminous phenomenon occur between 60 and 120 km (Figure 1.6).

Figure 1.6: The illustration of the process of meteoroid ablation and particle deposition in the atmosphere. a) The ablation process resulting in luminous phenomena. b) The meteor trail can be observed for minutes, depending on the mode of observation. c) The constant influx of the particles and dust maintains continuous metallic layer in the upper atmosphere. d) Illustration of the downward drift of the metallic layer constituents. d) Formation of ionized sporadic E layers as a result of the downward transport of the ionized particles. e) Sporadic neutral layer can from simultaneously (Pellinen-Wannberg et al. 1998).

Meteors are observed and studied by visual techniques, lidar, satellites, rockets (meteor trails) and radar, which is the primary instrument used for data collection in this study. The substantial review of the mentioned methods is given in McKinley (1961) and Murad and Williams (2002). Here, however, only a review of radar theory and methods will be given further consideration as a primary tool of this study. Notably, while all the mentioned methods have their advantages and drawbacks, radar is the Swiss army knife of meteor study, as it collects data continuously and it is not weather dependant. Moreover, it is an excellent tool for the monitoring of meteor mass influx, altitudes, trajectories and velocities. Radar can observe ablating meteoroids down to the lower limit of $80 \mu \mathrm{~m}$ in size (Pellinen-Wannberg et al. 1998), as these are still large enough to generate the required ionisation trails. These very small particles, during the process of ablation and ionized trail formation, are generally considered underdense meteors, and
will be discussed later in the text; however they are not the focus of this work. In general, particles smaller than $20 \mu \mathrm{~m}$ reradiate the heat more efficiently and never reach temperatures required for melting and ablation. Beside its primary role, meteor radar has been used to investigate the turbulence and gravity waves in the mesosphere, and has been utilized by Hocking et al. (1997) and Hocking (1999) who has developed a novel technique of measuring temperature in the region of the mesopause boundary. Moreover, meteor trains observed by radar, allow measurements of the complex dynamics in the upper atmosphere (Marsh and Baggaley, 2001).

While most particles impacting the Earth's atmosphere are below $10^{-3} \mathrm{~m}$, the peak in the size distribution is around $10^{-4} \mathrm{~m}$ (Kalashnikova, 2000; Havnes and Sigernes, 2005). For the meteoroids with velocities in excess of $30 \mathrm{~km} / \mathrm{s}$ the heights with the strongest ablation are between 90 and 105 km , while in the lower speed regime below $30 \mathrm{~km} / \mathrm{s}$ most ablation occurs between 75 and 90 km .

In simple terms, the meteor trail consists of ions and electrons, where the former are responsible for the reflection of radio waves, thus enabling the radar detection. Below 95 km in altitude, beside the ionic diffusion, which is the primary mechanism of the trail expansion, the chemistry plays a significant role in removal of electrons from the meteor train. The collisional deionization and complex set of chemical processes and reaction with the atmospheric constituents are still subject of great interest in the scientific community. Coinciding with the meteor region between 80 km and 95 km altitude is the secondary ozone maxima, exhibiting significantly increased concentration of O_{3} which diverges from theoretical predictions. Owing to its high reactivity, ozone chemically interacts with the ions in the meteor trail and consequently plays an instrumental role in the removal of electrons through the set of relatively fast proceeding chemical reactions which are height and subsequently density dependent.

Consequently, chemical interaction between metallic ions in primarily overdense meteor trains and ambient atmosphere, especially ozone, contributing to the accelerated removal of electrons from the meteor trail and significantly exceeding the rates of ionic (or
hereafter referred as ambipolar) diffusion, may be used to determine ozone density in the upper atmosphere with the meteor radar (Jones et al., 1990).

The study of meteors and meteor trains is as relevant as ever for a wide spectrum of reasons. Those reasons include for example the fundamental necessity of ensuring the safety of the space faring transports and protection of both civilian and military orbital assets facing the risk of micrometeoroid impact. At the other end of the spectrum, meteors in the atmosphere contribute to better understanding of the formation conditions and evolution, as well as fundamental composition of the solar system and beyond.

1.3 Aim and Overview of the Thesis

The work in this thesis was initiated in an attempt to illuminate the reasons for the absence of clear explanation for the anomalous behaviour of the ambipolar diffusion of meteor trains as observed with backscatter meteor radars and continuously well documented in the literature for the past several decades. Furthermore, the main hypothesis motivating this investigation was centered around the idea that ozone (directly or indirectly) is the main participant in chemical reactions with meteoric ions in the immediate stages of the meteor train formation in the upper atmosphere between 80 km and 95 km . Accordingly, the primary goal of this thesis was to explore the such potential role of ozone chemistry during the initial meteor trail expansion and investigate the possibility of using backscatter meteor radar observation of overdense meteor trains electron diffusion as a reliable technique for determination of ozone density in the upper atmosphere. The brief introduction, given in the previous sections, is intended to present in a condensed way the idea and the concept of the meteor studies to the reader. However, it is far from being able to encompass the depth and the extent of the field of meteor studies. The hope is that the remaining chapters will bring the field of meteor research closer to the reader while staying on the course and exploring the novel ideas and hypothesis behind this work.

Consequently, the thesis is organized in such way where the second chapter deals with fundamental concepts of meteor physics, starting with meteor ablation, distinction between overdense and underdense meteors, meteor radar and related issues, such as initial radius, and concludes with a brief discussion about ozone in the upper atmosphere and review of previous efforts aimed of measuring its density profile.

Chapter three describes the methodology deployed in this work, and introduces the radar sites from which data was collected. It describes in detail the technical aspects of data processing and computational details which were used in determining the ozone density in the upper atmosphere.

The results are given in chapter four encompassing all radar sites, and finally chapter five discusses outstanding issues and future research options aimed at further refining the results and concepts presented in this work, and discusses the viability of a commercial application of the developed technique for upper atmospheric ozone measurements.

Chapter 2

No man is wise enough by himself.

- Titus Maccius Plautus

2. Meteor Physics

2.1 Ablation Fundamentals

Starting from the first principles, early authors such as Whipple (1943), Öpik, (1958), McKinley (1961), among others, developed the fundamentals of meteor dynamics that are the foundation of modern meteor physics. While the ablation theory has evolved since then, the question of the meteoroid densities still remains only partially resolved.

At the end of the Second World War, based on earlier observations, Herlofson (1948) was among the first to qualitatively describe the meteoric ablation as a result of hypervelocity collisions with atmospheric molecules. He assumed that the meteoroid collides with a specific atmospheric molecule only once. However, complications arise because, as subsequently noted by many authors, the ablating particle doesn't always behave as a solid body and such cases need to be addressed by other means (McKinley, 1961). There are two basic flow regimes that must be considered when dealing with meteoric ablation. The first case is when the "mean free path" of the air molecules at the specific altitude in the atmosphere is greater than the assumed radius of the meteoroid, in which instance the impact momentum and the energy are transmitted to the ablating particle through the direct collision with the air molecule. In this case no aerodynamic cushion is formed and the heat transfer from impacting atmospheric molecules is extremely high. This leads to rapid heating and subsequent ablation, sputtering and fragmentation (Öpik, 1958). This flow regime is applicable when the Knudsen number (Figure 2.1), which is essentially the ratio of the mean free path in the atmosphere to the characteristic dimension of the particle, is larger than 10 (Campbell-Brown and Koschny, 2004). The second regime exists when the meteoroids have a radius that exceeds the "mean free path", and where aerodynamic cushioning, with thickness of several atomic layers, is formed, affecting the coefficient of the heat transfer and the subsequent depth of
atmospheric penetration (Öpik, 1958). In this flow regime the Knudsen number is below 0.01 (Ceplecha et al. 2000).

Moreover, major studies of meteoric ablation that assume single particle dynamics and a classic model of conservation of energy and momentum, along with meteor light curves, have shown that the theory doesn't always entirely correspond to the observation (Campbell-Brown and Koschny, 2004, and references therein). However, Ceplecha et al. (1998) concluded that 73% of meteors investigated to date can be described well under the framework of single-body theory. Close study of the meteoroid ablation is important as its rate reveals mass deposition, momentum and energy release, thus further illuminating additional physical and chemical properties.

Here, the focus will be on the case of sputtering and ablation, while fragmentation will not be considered in-depth, as the work in this thesis revolves around the very narrow and specific subcategory of the meteors that may reside on the boundary of having characteristics of the both aforementioned flow regimes. These meteors are better known in radio science as overdense and will be discussed in much more detail later in the text, along with considerations of their significance.

Figure 2.1: Top plot: flow regimes for meteoroids between $10^{-5} \mathrm{~m}$ and 1 m diameter, assuming no increase in density over the atmospheric density. Bottom plot: flow regimes assuming intensive ablation increases the density by a factor of 100 (Campbell-Brown and Koschny, 2004).

2.1.1 Meteor Sputtering

Fundamentally, the first stage of meteor ablation is preheating that occurs below 150 km altitude, and generally will depend on the size, velocity and the composition of the particle.

It is during this stage that mass loss of the meteoroid is due to the sputtering process. While particles with the lower mass limit of $\sim 10^{-15} \mathrm{~kg}$ and in the size range of $\sim 10^{-6} \mathrm{~m}$ cannot be heated efficiently to initiate ablation, they are still susceptible to sputtering (Popova, 2004). Extensive treatment of the subject of the sputtering was performed recently by Hill et al. (2005) and Rogers et al. (2005). Their approach has origins in the theoretical treatment of the gas-grain interactions in the interstellar medium first considered by Tielens (1994) and in an experimental study by Mizutani and Nishimatsu (1998). The mechanism of sputtering involves the loss of individual atoms during the high speed collisional process (Opik, 1958) and has been also studied by Lavedinets and Shushkova (1970), Brosch et al. (2001) and Coulson and Wickramasinghe (2003). The colliding atmospheric molecule transfers kinetic energy to the atoms on the surface of the meteoroid and dislodges it from the lattice. This may subsequently cause collisional chain reactions, dislodging several more meteoroid atoms from the surface region. The sputtering yield depends on the specific properties of the impacted particle and the incident angle, and it also depends on the atmospheric mass density and the individual atomic mass of the impacting atmospheric molecule. Sputtering will be the dominant mechanism for the mass loss if the particles have high velocities (above $30 \mathrm{~km} / \mathrm{s}$), low density and low mass ($\sim 10^{-12} \mathrm{~kg}$) and originate from comets. Thus, it is considered as the main mechanism for the destruction of micrometeoroids or interstellar dust that intercepts the Earth's orbit (Rogers et al., 2005). Essentially, the atom will escape the lattice of the hosting surface only if it has sufficient energy to overcome the surface potential barrier. That energy is defined as the surface binding energy U_{o}. Therefore, for a given projectile and target, the minimum projectile energy to induce sputtering, also defined as the threshold energy $\left(E_{t h}\right)$ (Anderson and Bay, 1981), can be expressed:

$$
\begin{gather*}
E_{\text {th }}=\frac{U_{0}}{\beta(1-\beta)} \text { for } \frac{M_{1}}{M_{3}} \leq 0.3, \tag{2.1}\\
E_{\text {th }}=8 U_{0}\left(M_{1} / M_{2}\right)^{1 / 3} \text { for } M_{1} / M_{2}>0.3, \tag{2.2}
\end{gather*}
$$

where M_{1} is the projectile mass and M_{2} is the mean molecular mass per atom of the target. Then the maximum fractional energy transfer β (not the same as the ionization coefficient β discussed later in the text) that is possible in the direct elastic collision can be written as:

$$
\begin{equation*}
\beta=\frac{4 M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}} \tag{2.3}
\end{equation*}
$$

It is now possible to define sputtering yield $Y(E, \theta)$. This parameter describes the mean number of sputtered particles per impacting molecule and depends on the physical characteristics of the target, various properties of the impacting molecule and the incident atom energy and the incident angle (Rogers et al., 2005). The sputtering yield for normal incidence, valid for $E>E_{t h}$ is given by:

$$
\begin{align*}
Y(E, \theta=0)= & \frac{3.56}{U_{0}} \frac{M_{1}}{M_{1}+M_{2}} \frac{Z_{1} Z_{2}}{\sqrt{Z_{1}^{2 / 3}+Z_{2}^{2 / 3}}} \tag{2.4}\\
& \times \alpha \frac{R_{p}}{R} s_{n}(\gamma)\left[1-\left(\frac{E_{t h}}{E}\right)^{2 / 3}\right] \times\left(1-\frac{E_{t h}}{E}\right)^{2}
\end{align*}
$$

where Z_{1} is the atomic number of the impacting atom/molecule and Z_{2} is the atomic number of the impacted meteoroid atom. The parameter α depends on the ratio of the atomic masses and is expressed as $\alpha=0.3\left(M_{2} / M_{1}\right)^{2 / 3}$. The ratio $\frac{R_{p}}{R}$ is a correction factor and it is the ratio between the mean projected range to the mean penetrated path length and was approximated by Bohdansky (1984) as:

$$
\begin{equation*}
\frac{R_{p}}{R}=\left(K \frac{M_{1}}{M_{2}}+1\right)^{-1} \tag{2.5}
\end{equation*}
$$

According to Tielens et al. (1994), K is a "free parameter" which is dependent on the target material. Finally, the universal function $s_{n}(\gamma)$, discussed in much detail in Tielens et al. (1994) depends on the Coulomb interaction and is approximated by Matsunami et al. (1980) and Rogers et al. (2005) as:

$$
\begin{equation*}
s_{n}=\frac{3.441 \sqrt{\gamma} \ln (\gamma+2.718)}{1+6.35 \sqrt{\gamma}+\gamma(-1.708+6.6882 \sqrt{\gamma})} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{M_{2}}{M_{1}+M_{2}} \frac{a}{Z_{1} Z_{2} e^{2}} E \tag{2.7}
\end{equation*}
$$

where e is the elementary charge, and the screening length for the interaction potential between the nuclei a obtained by Tielens et al. (1994) and can be expressed as:

$$
\begin{equation*}
a=\frac{0.885 a_{0}}{\sqrt{Z_{1}^{2 / 3}+Z_{2}^{2 / 3}}} \tag{2.8}
\end{equation*}
$$

Here, a_{0} is the Bohr radius. However, the energy term in equations (2.4) and (2.8) is just the kinetic energy of the impacting atom and it must be calculated in cgs units. For the further simplification of this approach, the reader is directed to (Vondrak et al., 2008). Finally, the magnitude at which the meteoroid atoms are sputtered can be written as:

$$
\begin{equation*}
\frac{d N_{s p}}{d t}=2 A v\left(\frac{m}{\rho_{m}}\right)^{2 / 3} \sum n_{i} Y_{i}(E, \theta=0) \tag{2.9}
\end{equation*}
$$

The number density is denoted by n_{i} and Y_{i} is the sputtering yield of the i_{th} different impacting atmospheric molecule respectively. McKinley (1961) describes the shape factor of the meteoroid which is denoted here as A, and the factor of 2 is used to account for the angular dependence of the sputtering yield. Then the mass rate of change of the sputtering meteoroid is given by Rogers et al. (2005):

$$
\begin{equation*}
\left(\frac{d m}{d t}\right)_{s p}=-2 M_{2} A v\left(\frac{m}{\rho_{m}}\right)^{2 / 3} \sum n_{i} Y_{i}(E, \theta=0) \tag{2.10}
\end{equation*}
$$

For meteoroids which have sufficient size density and velocity such that they result in formation of visual meteors, sputtering is not a significant contributor to the overall mass loss; however, it is an important precursor that still needs to be taken into consideration.

2.1.2 Meteor Ablation

When the particle surface reaches the melting point and ablation is initiated at lower altitudes, the meteoric atoms will ablate differentially, starting with most volatile ones first, while refractory elements ablate last (McNeil et al., 1998; William and Murad, 2002; Vondrak et al., 2008). Generally, the ablation is initiated when the meteoroid surface temperature reaches the minimum of 1850 K (Figure 2.2), however ablating temperatures may exceed several thousand degrees, depending on the mass, velocity, composition and entry angle.

Figure 2.2: Depiction of meteor ablation as a function of height where volatiles such as Na and K ablate first, followed by Fe, Mg and Si , and $\mathrm{Ca} . \mathrm{Al}$ and Ti ablate last.

The ablation efficiency depends on the atmospheric mass density. While Öpik (1958) and McKinley (1961) have given a comprehensive treatment of the subject, the most complete treatment is given by Bronshten (1983). It must be also noted that the energy required to completely vaporize a solid particle is several orders of magnitude smaller than the initial kinetic energy of the meteor (Zinn et al., 2004). For the purpose of completeness, the comprehensive treatment of the deferential ablation given by Vondrak et al. (2008) combined with some of the earlier outstanding works, will be reviewed here to illustrate the ablative processes.

As the ablating meteoroid travels through the atmosphere, its height from the surface z changes in time and is a function of the zenith angle χ :

$$
\begin{equation*}
\frac{d z}{d t}=-V \cos \chi(t) \tag{2.11}
\end{equation*}
$$

Assuming free molecular flow and an approximately spherical shape of the particle with radius R impacting atmospheric column, the expression for the loss of momentum resulting from collisions is:

$$
\begin{equation*}
\frac{d V}{d t}=-\Gamma V^{2} \frac{3 \rho_{a}}{4 \rho_{m} \mathrm{R}}+\rho_{m} g \tag{2.12}
\end{equation*}
$$

Here, V is the velocity of the particle, g is the gravitational acceleration. The dimensionless "free molecular drag" is denoted by Γ and has a value between 0.5 and 1 (Hughes, 1978). This parameter expresses the efficiency of the momentum transfer between the particle and the impacting atmospheric molecules. The sphericity of the particle is assumed because the particle is expected to rotate rapidly during the atmospheric entry thus creating the spherical effect (Hawkes and Jones, 1978). As noted earlier (Bronshten, 1983), and emphasised more recently (Brown et al., 1994), for larger meteoroids the aerodynamic cap would need to be included in calculations.

Thermal energy received by the meteoroid from the impacting atmospheric molecule is balanced by the radiative loss, temperature increase, melting, phase transitions and
vaporization of the meteoritic atoms (Vondrak et al., 2008 and references therein). Then the energy conservation is written as:

$$
\begin{equation*}
\frac{1}{2} \pi R^{2} V^{3} \rho_{a} \Lambda=4 \pi R^{2} \varepsilon \sigma\left(T^{4}-T_{e n v}^{4}\right)+\frac{4}{3} \pi R^{3} \rho_{m} C \frac{d T}{d t}+L \frac{d m}{d t} \tag{2.13}
\end{equation*}
$$

where the parameter Λ is dimensionless and represents the free molecular heat transfer coefficient. It describes the amount of the incident kinetic energy which is transferred to the meteoroid. The left hand side here is just a frictional heating term that is balanced on the right hand side by the loss of energy through radiative loss $\left(4 \pi R^{2} \varepsilon \sigma\left(T^{4}-T_{\text {env }}^{4}\right)\right.$), the energy used to increase the meteoroid temperature $\left(\frac{4}{3} \pi R^{3} \rho_{m} C \frac{d T}{d t}\right)$ and the last term $\left(L \frac{d m}{d t}\right)$ represents the heat lost in the transfer of particle mass into gas phase. Here, ε is the emissivity coefficient; σ is the Stefan-Boltzmann constant and the T and $T_{e n v}$ are the temperatures of the particle surface and the atmospheric surrounding. The specific heat of the meteoroid is C and L is the latent heat of vaporization.

During the period before the onset of ablation, the heat loss due to evaporation is relatively small. However, in the high temperatures limit, evaporation plays a more dominant role in mass loss. The mass loss rate can be then calculated (as per Markova et al., 1986; Love and Brownlee, 1991; Mc-Neil et al., 1998 and Vondrak et al., 2008) by applying Langmuir evaporation. This approach assumes that the rate of evaporation into a vacuum is equal to the rate of evaporation needed to balance the rate of uptake of a species i in a closed system. The rate of mass release of species i with molecular weight μ_{i}, from the meteoroid with area S (Vondrak et al., 2008) is given by:

$$
\begin{equation*}
\frac{d m_{i}^{A}}{d t}=\gamma p_{i} S \sqrt{\frac{\mu_{i}}{2 \pi k_{b}}} \tag{2.14}
\end{equation*}
$$

Where γ is the probability that the molecule remains "stuck" to the surface of the meteoroid, post collision, while p_{i} is the thermodynamic equilibrium pressure of species i in the gas phase. The superscript A refers to ablation and S (below) refers to sputtering. Therefore total mass loss due to the ablation is just a sum over all gas-phase components:

$$
\begin{equation*}
\frac{d m}{d t}=\sum_{i} \frac{d m_{i}^{A}}{d t} \tag{2.15}
\end{equation*}
$$

If the fragmentation is ignored then the total mass loss rate from sputtering and ablation is expressed as:

$$
\begin{equation*}
\frac{d m}{d t}=\frac{d m^{A}}{d t}+\frac{d m^{S}}{d t} \tag{2.16}
\end{equation*}
$$

This model of differential ablation has been verified and observed experimentally by Janches et al. (2008). The ablated material forms a trail of some initial radius closely behind the meteor head, and it contains stripped metallic ions and electrons in a quasineutral arrangement. The collisional and chemical processes with the surrounding atmosphere are instrumental in de-excitation of the high energy species, resulting in a luminous phenomenon and spectral emissions. Meteor radar detects the electrons in the trail. However, at this point the question of meteor ionization has to be addressed first, as even after decades of research there is still the unresolved problem of the meteor ionization coefficient and related parameters discussed in the next section.

2.2 Meteor Trail Ionization and $\boldsymbol{\beta}$-Coefficient

Both theoretical and experimental work of the pre and post Second World War investigators (e.g. Herlofson, 1948; Greenhow and Hawkins, 1952; Greenhow and Neufeld, 1957) have shown that the maximum ionization, and hence electron production in a meteor trail, occurs at distinct atmospheric heights and is related to the size, velocity and composition of the meteoroid. Moreover, early comparisons of the visual and radio observations of meteor trail showed that there are variations and a deviation from the expected theoretical values of the electrons in the meteor trail. This is related to the ablation theory, covered in the previous section, which explains maximum mass loss in the specific atmospheric regions, as a function of meteor physical properties. The ablated atoms expelled from the boiling surface of the main body of the meteoroid have the same or greater initial velocity as a meteoroid and consequently a kinetic energy up to several hundred electron volts. Taking in consideration the visual magnitude $\left(M_{v}\right)$ of the meteor,
derived from optical astronomy, researchers obtained the expression for the luminous intensity (I) (McKinley, 1961):

$$
\begin{equation*}
M_{v}=6.8-2.5 \log _{10} I \tag{2.17}
\end{equation*}
$$

where I is in watts. While a pedantic degree of precision is absent, based on the range of correction factors that must be applied, such as atmospheric absorption and zenith angle, this is a very important parameter for evaluating ionization. The most recent work by Weryk and Brown (2013a, 2013b) seeks to improve the above expression and has achieved significant progress. The luminous intensity, in term of mass loss and velocity, assumed to be closely proportional to the transfer of kinetic energy during ablation and in the spectral range 4500 to 5700 A (Davies and Hall, 1963), can be written as:

$$
\begin{equation*}
I=-\frac{1}{2} \tau_{I} \frac{d m}{d t} V^{2} \tag{2.18}
\end{equation*}
$$

where V is velocity and τ_{I} is the dimensionless luminous efficiency factor, generally difficult to constrain (Öpik,1958). The portion of kinetic energy that drives ionization is assumed to be proportional to the kinetic energy loss of the ablated atoms (McKinley, 1961). Utilizing this relationship, it is then possible to relate the number of the electrons produced in the meteor trail per unit length and give the expression for the energy of the ionization created per unit time:

$$
\begin{equation*}
q V \eta=-\frac{1}{2} \tau_{q} \frac{d m}{d t} V^{2} \tag{2.19}
\end{equation*}
$$

Here, η is the mean ionization potential per specific atom and τ_{q} is the dimensionless ionization-efficiency factor (McKinley, 1961). Using the classic mass change expression from McKinley (1961), the electron production rate per unit length can be easily derived. However McKinley's efforts in defining the mean ionization potential per specific atom were mirrored by the British researchers from the Jordell Bank organization who have defined the ionization coefficient β as a probability that a single ablated atom with mass μ would produce a free electron. Then as a function of β the equation for the number of electrons per unit length in the meteor trail is:

$$
\begin{equation*}
q=-\frac{\beta}{\mu V} \frac{d m}{d t} \tag{2.20}
\end{equation*}
$$

It is then possible to relate the τ_{q} and β in the following way:

$$
\begin{equation*}
\tau_{q}=\frac{2 \eta}{\mu V^{2}} \beta \tag{2.21}
\end{equation*}
$$

McKinley (1961) related luminous efficiency factor and ionization efficiency factor and obtained $\tau_{q} / \tau_{I} \sim V^{2}$. Notably, the work by Weryk and Brown (2013a, 2013b) has made significant progress in improving the relation between β and τ_{I}. While the value of β has been subject of discussion and even disagreement for the past several decades, the value derived by Kaiser (1953) of ~ 0.1 seems to be the most accepted. Following Kaiser’s work, the seminal investigation in understanding the ionization coefficient was conducted by Verniani and Hawkes (1964) and Verniani (1965), where they obtained β as a function of meteor velocity and also considered β for overdense meteors. The importance of understanding the nature of the ionization coefficient (or ionization probability) and deriving the most accurate value β is critical to meteor radar research as the radar technique of observing meteor phenomena principally depends not only on the meteor properties, but also on the properties and efficiency of the meteor trail ionization.

However, the significance of the work by other authors in the field, especially early contributions must be acknowledged. A strong relationship between the luminosity and ionization on one hand, and meteor mass and velocity on the other, was noted by Whipple (1955). Fialko (1959) for instance, further refined the relationship between the ionization coefficient and strength of the radio echo signal and meteor velocity. Davies and Hall (1963) investigated the efficiencies of the luminous and ionizing processes in the meteor trail using simultaneous photographic and radio echo observations. Further incremental improvement to the initial meteor ionization theory by Herlofson (1948) was performed by Furman (1960, 1961, 1964 and 1967). Among the noteworthy achievements of Furman's later work is the mathematical derivation of collisional ionization of the in situ atmospheric molecules by the ablating meteoric atom, in an early attempt to explain the forbidden oxygen emission at $5577 \AA$. It should be remarked at this
point that even now in the $21^{\text {st }}$ century, the access to the range of quality scientific literature from the old Soviet Union is still limited, and that is a significant loss for the global scientific community at large. However, the politics and policy are not the subject of this work, and aforementioned remark is intended to raise the reader's attention to the problem that still persists today.

Additionally, using the height of the maximum ionization obtained from the radar technique only, Rumi (1979) derived a way to evaluate the ionization coefficient from the value of maximum number of electrons ablated per unit length in the specific height region $\left(q_{\max }\right)$. The expression for beta then is:

$$
\begin{equation*}
\beta=9.4 \cdot 10^{5} \frac{q_{\max } \cos ^{2} \chi H}{p_{\max }^{3} v^{6}} \tag{2.22}
\end{equation*}
$$

where H is the scale height at maximum pressure $p_{\max }$ (found in the tables of the U.S. Standard Atmosphere) and the zenith angle is denoted by χ. The importance of this formula in interpreting the results obtained here will be discussed in the following chapters.

Jones (1998) calculated the ionization coefficient theoretically taking into consideration all earlier relevant research. His results are valid for faint meteors with velocity $V \leq$ $35 \mathrm{~km} / \mathrm{s}$ and in analytic form beta is expressed as $\beta \approx 9.4 \cdot 10^{-6}(V-10)^{2} V^{0.8}$. Recent work by Pecinová and Pecina (2008) has resulted in analytical expression for β for higher velocities.

When the ionization coefficient is known, it becomes relatively easy to calculate other meteor properties from the meteor radar echoes and optical studies (McKinley, 1961; Bronshten, 1983). At this point, it is prudent to review the basics of meteor radar theory, before discussing the remaining aspects of the meteor physics.

2.3 Meteor Radar Theory and Fresnel Diffraction

2.3.1 Application to Underdense Meteor Trains

For more than a half a century, meteor radars have been at the forefront of investigation of the meteor phenomena. The peak of meteor radio research was in the 1950s and the 1960s, where for instance in the period between 1951-1960 over 300 papers had been published on the topic (Sugar, 1964). The meteor observations have been carried out predominantly in the range of frequencies between 20 MHz and 70 MHz (Cervera, 1996), however infrequent research has been done with the frequencies as low as 2 MHz (Steel and Elford, 1991) and as high as 900 MHz (Wannberg et al, 2011). Limited by the frequency, the maximum altitude boundary for meteor radar is around 110 km . Here the basis of the radio echo is reviewed along with the issues that accompany meteor radar methodology. A comprehensive description of the meteor radar theory was given by McKinely (1961) and reviewed by Ceplecha et al. (1998) and briefly discussed by Baggaley (2002). Closely related, a recent and comprehensive review of the MST radar development and studies in the period between 1997 and 2008 was given by Hocking (2011).

In this section the backscatter radar theory is discussed in some detail as the backscatter radar is the primary tool deployed in this work (Figure 2.3). However a similar theory applies to the forward scatter and it is relatively similar as it can be seen from (e.g. McKinley, 1961; Foschini, 1997). The most important difference between the two types of radar is that backscatter radar emits short pulses and the transmitter and receiver are spaced relatively close to each other while forward scatter radar emits continuous waves and the transmitter and receiver are separated by considerable distances. The foundation of the radar theory is the electromagnetic radiation and scattering. As indicated earlier in the text, radar "sees" electrons in the meteor trail, as they behave as Hertzian dipoles. On the basis of the electron trail density, it is possible to differentiate between underdense and overdense meteor trains, discussed in detail further in the text. In the context of Hertzian dipole, one may recall the characteristic angular frequency of electrons, derived
from the equation of motion of electron (see Mitchner and Kruger, 1973), can be written as:

$$
\begin{equation*}
\omega_{p}=\sqrt{\frac{n_{e} e^{2}}{\epsilon_{0} m_{e}}} \tag{2.23}
\end{equation*}
$$

where m_{e} is the mass of the electron, n_{e} is electron volume density, e is elementary electron charge and ϵ_{0} is the vacuum dielectric constant.

In order to present the meteor radar theory coherently and following the historical evolution of the field from the work of Herlofson (1951) and onward, underdense trains will be considered first. For now, before the more rigorous discussion about underdense and overdense meteors is initiated, it should suffice to say that in the former, the electron line density is sufficiently low, such that radio waves penetrate the trail and each electron behaves as an individual scatterer. Overdense trails exhibit a different behavior. Their initial electron line density is so high that the trail behaves as a metallic cylinder and the radio waves cannot penetrate the meteor trail surface (Jones and Collins, 1974; Jones and Jones, 1990).

Before proceeding further it should be remarked that the distribution of energy reflected by the meteor trail depends on the ionization distribution in the trail volume, spatial orientation of the trail, radar wavelength, polarization of the incident wave in respect to the trail and generally atmospheric dynamics in the specific region of the atmosphere (Sugar, 1964).

Figure 2.3: Illustration of the typical meteor radar setup.
(Credit: http://www.chemphys.adelaide.edu.au/atmospheric/instrumentation/radar_meteor)

The following analysis of the fundamentals of the radio scatter from meteor trails is closely based on the treatment of the subject by McKinley (1961); Cervera (1996); Badger (2002).

First, the scattering cross section of the free electron is defined as:

$$
\begin{equation*}
\sigma_{e}=4 \pi r_{e}^{2} \sin ^{2} \gamma \tag{2.24}
\end{equation*}
$$

where e and r_{e} are the charge and radius of electron, respectively, and γ is the angle between the electric field vector of the incident wave and the line of sight to the receiver. For the full backscatter, the value of the electron scattering cross section is approximately $1 \times 10^{-28} \mathrm{~m}^{2}$.

At some distance R from the radar transmitter, the power flux of the incident wave at a point on the trail can be written as:

$$
\begin{equation*}
\phi_{i}=\frac{P_{T} G}{4 \pi R^{2}} \tag{2.25}
\end{equation*}
$$

The returned radar signal power, in terms of the single electron scattering is expressed as follows:

$$
\begin{equation*}
\Delta P_{R}=\frac{P_{T} G}{4 \pi R^{2}} \frac{\sigma_{e}}{4 \pi R^{2}} \frac{G \lambda^{2}}{4 \pi}=\frac{G^{2} P_{T} \lambda^{2} \sigma_{e}}{64 \pi^{3} R^{4}} \tag{2.26}
\end{equation*}
$$

where P_{T} and P_{R} are transmitted and received power respectively; G is the gain of the matched antenna and receiver, relative to an isotropic radiator in the free space. Distance from the transmitter is denoted with R, while λ and σ_{e} are the wavelength and electron scattering cross-section respectively. This expression is valid if an identical antenna is used for signal reception, where the absorbing area of the antenna is given by $A_{a}=G \lambda^{2} / 4 \pi$ and impedances are matched. Sugar (1964) gives this expression in terms of the individual transmitter and receiver gain.

It is also convenient to express the equation (2.26) as the power flux of backscattered radiation from a single electron (Cervera, 1996; Badger, 2002), thus:

$$
\begin{equation*}
\phi_{e}=\phi_{i} \frac{\sigma_{e}}{4 \pi R^{2}}=\phi_{i}\left(\frac{r_{e}}{R}\right)^{2} \tag{2.27}
\end{equation*}
$$

The assumption is made that the electrons have Gaussian distribution in the underdense meteor trail and the scattering is entirely in phase, without influence of the geomagnetic field (valid only at higher radar frequencies). Moreover, it is assumed for the purpose of calculations that electrons are in a line element $d s$ (McKinley, 1961). Additionally, it is taken that the trail radius is much smaller than the wavelength and that the secondary and radiative effects can also be also neglected. Then the peak amplitude of the field vector due to a single scattering electron in the trail is $E_{0}=q \sqrt{\left(2 Z_{0} \phi_{e}\right)} d s$, where Z_{0} is the wave impedance of free space.

The returned wave has now traveled a distance of 2 R , and therefore has a modulation factor of $e^{i\left(2 \pi f t-\frac{4 \pi R}{\lambda}\right)}$. Rewriting $\frac{2 \pi}{\lambda}=k$ and $2 \pi f=\omega$, the modulation factor can be written as $e^{i(\omega t-2 k R)}$. Consequently, when R changes as a function of time, phase modulation of the wave is produced and the instantaneous amplitude of the echo signal received from the electrons in the element $d s$ is given by:

$$
\begin{equation*}
d E_{R}=q \sqrt{\left(2 Z_{0} \phi_{e}\right)} \int e^{i(\omega t-2 k R)} d s \tag{2.28}
\end{equation*}
$$

The electron density q per unit length is taken in front of the integral because it is assumed to be constant in the trail. Then the amplitude of total field from all electrons contribution in the trail between s_{1} and s at the antenna (Figure 2.4) is expressed:

$$
\begin{equation*}
E_{R}=q \sqrt{\left(2 Z_{0} \phi_{e}\right)} \int_{s_{1}}^{s} e^{i(\omega t-2 k R)} d s \tag{2.29}
\end{equation*}
$$

The use of the approximation $R \approx R+s^{2} / 2 R_{0}$ and transformation $x=2 s / \sqrt{R_{0} \lambda}$ is required because the integral above is difficult to evaluate. Remarkably, using the approximation for R above, the error is very small (for a trail length of 10 km and $R_{0}=100 \mathrm{~km}$ the error is about 0.001% (Cervera, 1996)).

Figure 2.4: The geometry of the meteor path relative to the observation station. The figure also shows Fresnel oscillations in the amplitude of the radar echo as observed with a backscatter radar. Note that the point t_{0} on the meteor path, is the center of the first Fresnel zone. Inset: The consecutive Fresnel zones are white if they are in phase with the first zone and black if they are out of phase (after McKinley, 1961 and inset from Kero, 2008).

The expression for the amplitude E_{R} is written as follows:

$$
\begin{equation*}
E_{R}=\frac{q}{2} \sqrt{\left(2 Z_{0} \phi_{e} R_{0} \lambda\right)} e^{i\left(\omega t-2 k R_{0}\right)} \int_{x_{1}}^{x} e^{i\left(-\pi \frac{x^{2}}{2}\right)} d x \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{R}=\frac{q}{2} \sqrt{\left(2 Z_{0} \phi_{e} R_{0} \lambda\right)} e^{i\left(\omega t-2 k R_{0}\right)}(C-i S) \tag{2.31}
\end{equation*}
$$

where C and S are Fresnel integrals in optical diffraction theory and are given below:

$$
\begin{equation*}
C=\int_{x_{1}}^{x} \cos \frac{\pi x^{2}}{2} d x \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\int_{x_{1}}^{x} \sin \frac{\pi x^{2}}{2} d x \tag{2.33}
\end{equation*}
$$

The normalized variable x in the Fresnel integral is a function of time and generally referred to as the Fresnel length. The maximum varying frequency of C and S with time is much less than the radar frequency (McKinley, 1961). The orthogonal plot of S and C results in the formation of Euler spiral or Cornu spiral of Fresnel diffraction theory (Figure 2.5) as it is known today (Levien, 2008). It should be observed that most of the contribution to the signal amplitude from the meteor trail comes from the first Fresnel zone whose length can be expressed in terms of R and wavelength dependence $F_{1}=$ $\sqrt{2 \lambda R}$.

Typical scattering zone lengths for a meteor at a range of 140 km are 900 m at 50 MHz , 1200 m at 30 MHz and 2500 m at 6 MHz (Ceplecha et al., 1998). The full interpretation of the values of the normalized x parameter along the Cornu spiral in Figure 2.5 is given by Hecht and Zajac (1974), however a condensed summary is also given in the text below.

The origin of the meteor echo is positioned at $x=-\infty$ in the negative quadrant. From there, the electric field phasor follows the spiral toward the origin, and the amplitude of the returned signal increases continuously. At the same time, the phase angle decreases. The amplitude reaches the maximum value at the moment when a meteor crosses the first Fresnel zone past point t_{0} and the value of x is 1.217 (Figure 2.4 and 2.5). When the point of the maximum amplitude is passed, there is a decrease in magnitude and increase in frequency as the value of x increases toward infinity. The time t_{0} (Figure 2.4 and 2.5) occurs at when x is at the origin. The phase reaches the maximum value when the value of x is 0.6 and beyond this point, the oscillations of decreasing magnitude and increasing frequency take place. It should be noted that the phase and amplitude oscillations are in quadrature with the phase leading (Cervera, 1996). The Cornu spiral is a convenient way to graphically examine the behaviour of the power and phase of the returned echo. The
example of the effects of the diffusion on the echo power and the phase can be observed in (Figure 2.6). McKinley (1961) treats this subject significantly more in depth, and a discussion about Fresnel diffraction of radio signals can be found in most texts covering the subject of antennas and radars (e.g. see Balanis, 2005 for discussion).

Figure 2.5: Modelled Cornu spiral with no diffusion. The amplitude vector at $\mathrm{x}= \pm 1$ is shown (Baggaley and Grant, 2005).

Figure 2.6: Predicted behavior of the power and phase of the radar echo from an underdense trail. Curve A is based on Equation (2.31) and shows the case for no diffusion. Curves B, C, and D show the effect of an increasing degree of diffusion of the trail (Ceplecha et al., 1998).

However, the application of the Fresnel diffraction in the radar meteor theory extend much farther, where for example it is possible to accurately determine meteor speeds using Fresnel techniques (e.g. see Hocking, 2000; Elford, 2004; Baggaley and Grant, 2005; Campbell-Brown and Elford, 2006). The magnitude of the oscillatory field for a particular value of x (Badger, 2002) is given by:

$$
\begin{equation*}
E_{R_{0}}=\frac{q}{2} \sqrt{2 R_{0} \lambda \phi_{e} Z_{0}}\left(C^{2}+S^{2}\right) \tag{2.34}
\end{equation*}
$$

and the power flux can be written as:

$$
\begin{equation*}
\phi_{R}=\frac{\left(E_{R_{0}}\right)^{2}}{2 Z_{0}}=q^{2} \frac{\phi_{e} R_{0} \lambda}{4}\left(C^{2}+S^{2}\right) \tag{2.35}
\end{equation*}
$$

Then the power delivered to the receiver from the scattering contributions of the entire trail is given by:

$$
\begin{equation*}
P_{R}=q^{2} \frac{\phi_{e} G_{R} R_{0}}{16 \pi}\left(C^{2}+S^{2}\right)=q^{2} \frac{\phi_{i} G_{R} \lambda^{3} r_{e}^{2}}{16 \pi R_{0}}\left(C^{2}+S^{2}\right) \tag{2.36}
\end{equation*}
$$

After the substitution for ϕ_{i} is made, then the final expression for the received power is:

$$
\begin{equation*}
P_{R}=P_{T} G_{R} \lambda^{3} q^{2} r_{e}^{2} \frac{\left(C^{2}+S^{2}\right)}{64 \pi^{2} R_{0}^{3}} \tag{2.37}
\end{equation*}
$$

The signal amplitude falls to l / e of its initial value when $r=\lambda / 2 \pi$. For underdense meteors, the returned radar echo from the trail will be attenuated due to the backscatter from the opposite side of the trail being delayed in phase relative to the front of the trail (relative to the observer). That attenuation will be the function of the trail radius and the wavelength and will become severe when $\lambda / 4 \sim r$.

Expressing equation (2.26) in terms of the meteor trail cross-section σ_{T} (Sugar, 1964), and again assuming that antenna and receiver impedances are matched, gives:

$$
\begin{equation*}
P_{R}=\frac{G^{2} P_{T} \lambda^{2} \sigma_{T}}{16 \pi^{2} R^{4}} \tag{2.38}
\end{equation*}
$$

If however one writes the expression for the scattering cross section of the trail as a function of diffusion (discussed in upcoming section), then the equation becomes:

$$
\begin{equation*}
\sigma_{T}=\left(\sqrt{\frac{R \lambda}{2}} r_{e} q^{2}\right)^{2} e^{-\left(\frac{32 \pi^{2} D t}{\lambda^{2}}\right)} \tag{2.39}
\end{equation*}
$$

where the scattering cross section of the trail is σ_{T}, R and λ are distance from the transmitter and the wavelength respectively and r_{e} is the classical radius of the electron. The diffusion coefficient is given by D, q is the electron line density and t is the time
measured from the formation of the trail (in seconds). Because the initial distribution of electrons in the trail mimics the Gaussian, then the expression for radius is written as:

$$
\begin{equation*}
r_{\text {trail }}=\sqrt{4 D t} \tag{2.40}
\end{equation*}
$$

Using equations (2.38) and (2.39) and rewriting the expression for the P_{R}, assuming the existence of the initial radius r_{0} that will be discussed later in the text, one obtains:

$$
\begin{equation*}
P_{R}=\frac{G^{2} P_{T} \lambda^{3} r_{e}^{2} q^{2}}{32 \pi^{2} R^{3}} \exp \left(-\frac{8 \pi^{2} r_{0}^{2}}{\lambda^{2}}\right) \exp \left(-\frac{32 \pi^{2} D t}{\lambda^{2}}\right) \tag{2.41}
\end{equation*}
$$

This equation contains the attenuation terms which approximate the behaviour of the real signal from the meteor trail. The first attenuation factor $\exp \left(-\frac{8 \pi^{2} r_{0}^{2}}{\lambda^{2}}\right)$ arises because of the finite width of the trail, and the second represents the attenuation with time as the trail expands and a destructive interference begins. Here, the assumption is also made that the trail is of infinite length and that every trail has its first Fresnel zone, and exhibits the resulting signal reflection. Since the trails have a finite length in practice, this may not be the case, thus the returned signal may be weak or indistinguishable.

However, the case of underdense meteors is more complicated than the initial assumptions that were made during the theoretical treatment of the underdense meteor trail scattering used to illustrate the fundamentals of the radio theory. In general, there are several attenuation factors that are function of velocity and height, that affect the amplitude of the radio echo from underdense meteors and by extension, to the similar degree from overdense meteors. As clearly observed above, the first one is the initial radius factor which depends on atmospheric density, velocity of the meteoroid and radar wavelength. The second factor is the finite velocity of the meteor which affects the echo amplitude due to the differential diffusion and expansion of the trail at the beginning, middle and end of the observed trail segment. The third factor is the attenuation as a result of pulse repetition. This is relevant when the interpulse period of the meteor radar is comparable or longer than the decay time of the echo due to radial diffusion of the trail ionization, so it is possible that a trail formed after the passage of a transmitted pulse may not be detected (Ceplecha et al., 1998). Finally, ionospheric attenuation factors are relevant especially at heights when ionosphere below meteor trail behaves as a doubly
refracting medium for the passage of radio waves from the meteor radar. This applies to radar frequencies below 10 MHz . Another contribution of ionosphere to the echo amplitude attenuation is the Faraday rotation of the plane of polarization, especially above 15 MHz (Ceplecha et al., 1998).

2.3.2 Underdense Meteors - Properties and Characteristics

Thus far, the exact characteristics defining underdense meteors have still not been elaborated completely. The generalized assumptions made in the previous section are necessary to develop a foundation for interpretation of the experimental radar observation of the physical behaviour of underdense meteors. The additional factors that need to be considered in a study of underdense meteors range from environmental to dynamical. For instance, the contribution of turbulence and wind shear must be considered especially around and below the mesopause.

As noted earlier, the initial radius and ionic diffusion, and its variation with height and meteor velocity affects the radar echo interpretation and it must be accounted for. These parameters will be analyzed in more detail in the next several sections, but for now, more elaborate analysis of underdense meteors will be given.

The duration time of underdense meteor echoes was investigated early on by Herlofson, (1951) and Eshelman, (1995) and was reviewed by McKinley (1961). They considered the phase effects in the trail where the echoes are the strongest and immediately after trail formation. For the purpose of calculation, consider for example an annular ring which is located on the boundary of the meteor trail cross-section (Figure 2.7).

Figure 2.7: Cross section of ionized trail near t_{0} point. Initial radius of the meteor trail is denoted by r_{0}, and the plane PP' is defined as plane of zero phase, which is drawn normal to the line of sight of the far distant radar station.

Then the amplitude of the echo signal from all electrons in that ring is:

$$
\begin{equation*}
d A=2 N r d r \int_{0}^{\pi} \sin \left(2 \pi f t-\frac{4 \pi r}{\lambda} \cos \theta\right) d \theta \tag{2.42}
\end{equation*}
$$

The phase angle of the electrons in the ring element is $(4 \pi r / \lambda) \cos \theta$ (McKinley, 1961). The total number of electrons in the ring N is obtained from the classic solution for the diffusion of the cylindrical meteor trail, with initial radial electron distribution assumed to be Gaussian.

Using the Bessel Function the integral above is expanded:

$$
\begin{equation*}
\int_{0}^{\pi} \cos \left(\frac{4 \pi r}{\lambda} \cos \theta\right) d \theta=\pi J_{0}\left(\frac{4 \pi r}{\lambda}\right) d \theta \tag{2.43}
\end{equation*}
$$

Here, the corresponding integral of the sine function is zero thus the expression for amplitude can be written as:

$$
\begin{equation*}
d A=2 \pi N J_{0}\left(\frac{4 \pi r}{\lambda}\right) r d r \sin 2 \pi f t \tag{2.44}
\end{equation*}
$$

Comparing the obtained amplitude with the one that would result if all electrons were localized in the cross-sectional center, it can be seen that the amplitude of the latter is greater.

Taking into consideration that the resultant phase angle is always zero for any ring, the ratio of the added up amplitude contributions from each ring and resulting amplitude of the electrons in the center can be expressed:

$$
\begin{equation*}
\frac{A}{A_{0}}=\frac{2 \pi \int_{0}^{\infty} N J_{0}\left(\frac{4 \pi r}{\lambda}\right) r d r}{2 \pi \int_{0}^{\infty} N r d r} \tag{2.45}
\end{equation*}
$$

While the analytic solution to the integral in the numerator is difficult because of the presence of the Bessel Function J_{0}, the solution can be easily obtained in the tables of integral solutions in books like "Handbook of integral equations" (Polyanin and Manzhirov, 2008).

The resulting integration becomes:

$$
\begin{equation*}
\frac{P_{R}(t)}{P_{R}(t)}=\left(\frac{A}{A_{0}}\right)^{2}=\exp \left(-\frac{8 \pi^{2} r_{0}^{2}}{\lambda^{2}}\right) \exp \left(-\frac{32 \pi^{2} D t}{\lambda^{2}}\right) \tag{2.46}
\end{equation*}
$$

The obtained result is the same as the attenuation factors obtained in equation (2.38) and echo power primarily decays as a result of diffusion. From the power-amplitude relation in the equation above, and by defining the echo-amplitude decay time t_{u} as the time when power falls over $1 /$ e by convention, the expression is easily written as:

$$
\begin{equation*}
t_{u}=\frac{\lambda^{2}}{16 \pi^{2} D} \tag{2.47}
\end{equation*}
$$

Echo-amplitude decay time is a function of wavelength and diffusion and consequently height, and it remains the same for all underdense meteors, as long as the electron line densities lie below the boundary that separates underdense and overdense meteors. It should not however, be confused with the actual echo duration time of the underdense meteors (Figure 2.8) which is observed by the radar equipment. This theoretical relationship is very important as it can be exploited significantly in other areas of research (e.g. Hocking et al., 1997). If the sole mechanism for electron dissipation in the
underdense meteor trail is ionic diffusion (Kaiser, 1953), then the amplitude A of a radar echo can be written in simple notation using the t_{u} from (2.47) as:

$$
\begin{equation*}
A=A_{0} \exp \left(-\frac{t}{t_{u}}\right) \tag{2.48}
\end{equation*}
$$

As it will be seen later, this is not the case, and the topic will be revisited during the discussion about diffusion in the upcoming sections.

Finally, for backscatter meteor radar, typical decay times for underdense meteors vary between 0.015 s and 0.3 s for the frequencies in the range $30 \mathrm{MHz}-55 \mathrm{MHz}$ (Singer et al., 2008).

Figure 2.8: Typical underdense signal. Note that signal amplitude is in arbitrary units. (source: http://brams.aeronomie.be/pages/theory).

2.3.3 Transition Between Underdense and Overdense Meteors

The previous section inevitably leads to the question about the boundary between underdense and overdense meteors. That question was answered with slightly varying results by several authors beginning with Kaiser and Close (1952), Manning and Eshleman, (1959), and recently by Jones and Collins (1974) and Poulter and Baggaley
(1977; 1978). An easy way of deriving this transition via ratios of received and transmitted power is given by Sugar (1964).

However, in the spirit of historical developments and understanding of the derivation, the approach that uses the dielectric constant is discussed here. The meteor trail is essentially an ionized gas and as such it has a dielectric constant (this term is used in older texts; newer texts refer to it as relative permittivity) which can be defined by:

$$
\begin{equation*}
\kappa=1-\frac{N \lambda^{2}}{\pi} r_{e} \approx 1-81 \frac{N}{f^{2}} \tag{2.49}
\end{equation*}
$$

where N is the number of electrons per cubic meter, $r_{e}=\frac{\mu_{0} e^{2}}{4 \pi m_{e}}=\frac{\sigma_{e}}{4 \pi}=2.8178 *$ $10^{-15} \mathrm{~m}$ is the electron radius, and μ_{0}, e, m_{e} and σ_{e} are permeability of free space, electron charge, mass and cross section, respectively. The incident radiation wavelength is λ and f is the frequency. In general, the meteor trail is considered quasineutral, and underdense meteor trails do not exhibit the resonant oscillation under the incident radiation due to the large separation of electrons and ions, if the incident electric vector is parallel to the axis of the meteor trail (McKinley, 1961). In the case when the electric vector of the radiation is perpendicular to the axis of the meteor trail, resonant effects will occur because of the close ion-electron separation and resulting restoring force. As noted earlier, the density of electrons in the underdense trail is sufficiently low where consequently each electron acts as an independent scatterer. On the opposite end, in overdense trails the electron density is large enough such that the secondary scattering from electron to electron occurs and becomes relevant. The incident radio wave does not penetrate the column completely and the dielectric constant κ in equation (2.49) becomes negative. It is important to distinguish the discussion here between ionized gases and metals. In the wave equation the conductivity is real for metals while it is imaginary for ionized gases. In ionized gases, the phase velocity is greater than the group velocity of light. As a result, when an electromagnetic wave passes through the ionized region, the phase angle continues to increase. The phase angle increases proportionally with the increase in ionized gas density. The critical density of electrons can be found from equation (2.49) by setting $\kappa=0$. The dialectic constant will change from negative values to zero at some critical value of the trail radius, r_{c}.

Equating the classical solution ${ }^{1}$ to the radial diffusion (will be discussed in more detail further in the text) and the equation (2.49) when $\kappa=0$, it is possible to find a solution for the critical value of electron density $\left(N_{c}\right)$:

$$
\begin{equation*}
N_{c}=\frac{\pi}{\lambda^{2} r_{e}}=\frac{q}{\pi\left(4 D t+r_{0}^{2}\right)} \exp \left[-\left(\frac{r_{c}^{2}}{4 D t+r_{0}^{2}}\right)\right] \tag{2.50}
\end{equation*}
$$

where D is ambipolar (ionic) diffusion and r_{0} and r_{c} are initial train radius (at $t=0$) and critical radius for the transition regime, respectively. The value of the transitional electron line density q_{tr} (Figure 2.9) is then obtained by setting
$r_{c}^{2}=4 D t+r_{0}^{2}=\lambda^{2} / 4 \pi^{2}$, thus the expression for q_{tr} can be written as:

$$
\begin{equation*}
q_{t r}=\frac{e}{4 r_{e}} \approx 2.4 * 10^{14} \text { electrons } / \text { meter } \tag{2.51}
\end{equation*}
$$

Figure 2.9: Graphical representation of the transition between underdense and overdense electron density distribution in the meteor trail.
(Source: http://brams.aeronomie.be/pages/theory)

This is the basis of the approach taken by Kaiser and Closs (1952) in their calculation. Further discussion can be explored either in their paper or in the review given by McKinley (1961). The transitional values of electron densities defined by other authors are reasonably similar to the above derived value (see Poulter and Baggaley, 1977, 1978). Finally by convention, the transition between underdense and overdense meteors occurs

[^0]when the evanescent wave amplitude is reduced by $1 / \mathrm{e}$ at the trail axis. It must be noted however that Jones (1995) showed that the distribution of ionization in the meteor trail does not necessarily correspond to Gaussian. Moreover, the effects of geomagnetic field became significant above 95 km and the behaviour of the ionized trail must be treated differently. The main effect of the geomagnetic field is the elliptical shape of diffusion classical radial expansion (Figure 2.10).

Figure 2.10: Section of a meteor trail at 105 km at four successive equal intervals of time after the trail has formed at $t=0$. Contour plots are the curves of constant electron density. The Earth's magnetic field lies in the plane containing the axis of the trail and the major axis of the ellipse. Diffusion in the direction of the major axis is unaffected by the field; diffusion in the direction of the minor axis is severely inhibited. The angle between the field and the meteor trail axis is 50° (Ceplecha et al., 1998).

Before exploring the topic of overdense meteors, which is one of the focal points in this thesis, recent developments regarding the underdense meteors will be touched upon, followed by a brief review of remaining radar topics relevant to this work.

Poole and Kaiser (1967) investigated the distributions of height and maximum ionization for underdense meteors, and based on the work by Kaiser (1953), they obtained an expression for the maximum ionization in terms of atmospheric density and linear concentration of electrons per unit length. They obtained surprising results which indicate that ionization profiles are shorter than predicted by the simple evaporation theory. Their work confirms that the role of geomagnetic field on the ionized trains is considerable, and
that high elevation winds affect trail dynamics for echoes lasting more than one second. In the important work by Jones (1975), a study was conducted to determine the discrepancy between the theoretical and observational variations of radar observed diffusion in underdense meteor trail. The role of chemical removal of electrons was noted along with the wind contribution that requires modification of the equation (2.45) (for details see Jones, 1975). That and the contribution from other factors such as the secondary reflection point and finite velocity effect, are plotted in Figure 2.11 as a function of height.

Figure 2.11: Relevant processes that affect underdense meteor trail, as a function of height (Jones, 1975).

Moreover, among less investigated aspects affecting the echo duration of underdense meteor trails, especially with lower electron densities, are the influences of the mesospheric metallic and ice dust layer, which may impact diffusion by up to ten percent (Havnes and Sigernes, 2005; Singer et al., 2008).

2.3.4 Additional Notes on Meteor Radar

2.3.4.1 Some Limitations of the Radar Technique for the Study of Meteors

Early on (Eshelman, 1959) it was realized that some small deviation from the simple scattering theory occur at very high frequencies. However, following the subsequent work of Greenhow and Hall, (1960a,b), it was realized that those departures are more serious, and as such may introduce serious uncertainties in obtained results (Greenhow, 1963). Primary uncertainties originate from the early absence of reliable data at the time of the initial meteor train formation and loss of electrons by chemical process. Another potential issue is the assumption that all electrons in the initial radius are in linear arrangement. A comprehensive review of some meteor radar limitations was given by Greenhow (1963); however, several decades of the continuous work since then seem to mitigate many of those issues (e.g. Baggaley and Cummack, 1974; Baggaley,1980a; Foschini, 1998; Campbell-Brown, 2003; Jones and Campbell-Brown, 2005).

More recently, some of the still outstanding issues regarding different frequencies in meteor radar work have been revisited and analysed by Mathews (2004). Nevertheless, this investigation pertains more to the systems such as Arecibo, ALTAIR and meteor head echo theory, rather than typical VHF meteor radar used in this thesis. Mathews (2004) however makes one peculiar observation, suggesting that a significant portion of the long duration overdense meteor echoes likely originate from Field-Aligned Irregularities. The validity of this observation should be indeed investigated in more detail, as it is not substantiated in other investigations.

2.3.4.2 Meteor Radar Interferometry

Traditional meteor radar in principle detects only specular reflections (perpendicular to the line of sight) from meteor events. Subsequently, it is very important to determine the direction and spatial coordinates from where the radar echo originates. That information
is critical in many aspects of the physical study of meteor orbital properties and cosmic sources. A number of authors have investigated the methods of determining echo direction in the past (Robertson et al., 1953; Eshelman and Mlodonsky, 1957; Kaiser, 1961; Weiss and Elford, 1963; Jones and Morton, 1977; Morton and Jones, 1982; Baggaley et al., 1994). However, the process of determining meteor radar echo direction has been made significantly easier by the implementation of portable computer systems and their evolution (Jones et al., 1998). On a basic level, the interferometric technique relies on the comparison of the phase of an echo signal at each receiving antenna which are strategically separated at about 0.5λ to also allow for unambiguous determination of echo direction and to avoid coupling effects. In essence, the performance of a radar interferometer depends primarily on the signal phase precision measurement. The design by Hocking et al. (1997) solved many problems and used a 5 antenna array with all sky coverage, while refining the precision of the echo determination to a remarkable range of 1.5%. The following year, Jones et al. (1998) calibrated the system further, and it is now an integral part in all SKiYMET meteor radars. More recently, Poole (2004) further discussed a simplified design of meteor radar antenna interferometer that uses only four receiving elements, where the fourth element is intended to resolve ambiguity. The relevance and practical application of the meteor radar interferometry has been shown by Hocking (2000) where he used the interferometric radar for determination of real-time meteor entry speeds.

2.3.4.3 Meteor Radar Response Function

In order to discriminate between different types of meteors, such as meteor showers and sporadics, especially over long periods of observations, it becomes necessary to develop a meteor radar response to specific events with a particular radiant and characteristics. The fundamentals of the radar response function depend primarily on the antenna pattern, the flux of meteors as a function of mass, zenithal electron density, ionization profile of meteors, the polarization of the radio waves with respect to meteor trail, the elevation of the meteor radiant, the minimum detectable electron line density of the specific radar system, attenuation factors due to the reflection properties of the trail and the detection criteria for a specific radar system (Cervera, 1996). Therefore, if the parameters of the
meteor radar system are well defined and known, the theoretical echo rate for a point source radiant of unit strength can be determined for all positions of the radiant in elevation and azimuth. One of the first aspects to consider in developing the response function is the fact derived from observational data, which indicates that all meteors trails scatter specularly and those events with the same velocities tend to ablate and produce ionized trails at the same height region and over a wide distribution of masses.

Subsequently, the result of such calculations describes the radar system's response to a radiant in any position in the sky and is appropriately defined as a "response function" of the radar (Ceplecha et al., 1998). With the reference to the Figure 2.12, the basic steps in the calculation can be briefly summarized as follows. First, the zenithal angle is used to calculate the meteor flux with some minimum electron line density. Second, the total echo rate can be found by integration over the echo plane strip which contains element $d S$. The detailed treatment and calculation of the response function can be found in (Cervera, 1996; Cervera and Elford, 2004) and a concise review was given by Ceplecha et al. (1998). The importance of meteor radar response function rests in the fact that it can help distinguish the distribution of sporadic meteors in the Earth's orbit and their fraction detectable by radar in much greater detail than it was possible during the early stages of meteor radar research, when computational resources were not available Elford (1964).

Figure 2.12: Geometry of the echo plane. The radiant direction is defined by the elevation angle θ_{r} and azimuth angle ϕ_{r} relative to the radar site at \boldsymbol{O}. The reflection point \boldsymbol{P} on the meteor trail in the echo plane $\boldsymbol{A B C D}$ is at elevation Θ and echo-plane azimuth Φ.

Meteors of a given velocity have beginning and end heights h_{2} and h_{1}, respectively (Ceplecha et al., 1998).

2.3.5. Overdense Meteors

While deceivingly simple in its interpretation, the treatment of overdense meteors is definitely not a trivial matter. Manning (1958), who treated forward scattering of overdense echoes, pointed out that no adequate theory existed during the late fifties to treat overdense echo duration. Herlofson (1951) was the first one to employ the wave treatment to the meteor trail scattering. He investigated the validity of the independent scatterer model and suggested the possibility of the resonant plasma oscillations due to charge separation when the incident wave has a polarization perpendicular to the ionizing column. The problem arises as the wave equations do not possess analytic solutions for the usual Gaussian radial distribution of ionization. That problem was successfully addressed by Poulter and Baggaley (1977) where their seminal work finally resolved several unanswered questions and defined overdense meteors in term of electron density and radar echo behaviour, and confirmed earlier results by Jones and Collins (1974) who showed that the transitional region between underdense and overdense meteor trains linear electron densities lays in the range between $>10^{13}$ and 10^{16} electrons m^{-1}. Further step forward in the investigation of the scattering form the overdense trains for the purpose of forward scattering calculations and geometry was made by Jones and Jones (1990a; 1990b; 1991) who investigated the application of Maxwell's equations (essentially almost the same method applied by Poulter and Baggaley (1977) using a numerical and analytical approach in order to derive the scattering properties and reflection coefficients.

However, before the additional aspects of overdense meteors are further discussed, some historical and quantitative aspects will be first reviewed now. As in the underdense case, a maximum in the backscattered power occurs when the trail is perpendicular to the incident wave and primarily originates from the first Fresnel zone. The backscattered radar echo from overdense meteor (Figure 2.13) may generally last up to several seconds, depending on the radar frequency (Valentic et al., 1996). This review will also try to shed some light on the rather ambiguous understanding of how overdense meteors are
observed with radar, and how they are classified in terms of their visual magnitude, mass, size and possibly composition.

Figure 2.13: Illustrative example of a typical overdense meteor echo. Note that signal amplitude is in arbitrary units (Source: http://brams.aeronomie.be/pages/theory).

While generally accepted by earlier authors, the finding by Derbeneva (1968) that all overdense meteors are visual meteors is the first critical step in narrowing down the physical parameters that define radio overdense meteors, which are not explicitly specified in the principal literature. Depending on the radar frequency and observed height, the range of radio meteors extends broadly from lower underdense limit electron volume density of around $10^{11} \mathrm{~m}^{-3}$, and on the far end of overdense spectrum, meteors with about 10^{20} electrons m^{-3} (Bronshten, 1983; Borovicka, 1993; Borovicka and Zamorano, 1995; Foschini, 1999). Ceplecha et al. (1998) stated that true overdense meteors have electron line densities $>10^{16} \mathrm{~m}^{-1}$ with a transitional regime below that extending to the critical value derived in the previous section. To illustrate the problem at hand, one may observe different published values of overdense meteors in the literature, over the period of several decades. For instance, Derbeneva (1968) stated that a meteor
with electron line density of $10^{15} \mathrm{~m}^{-1}$, has a visual magnitude of -2 . On the other hand, Pallinen-Wannberg et al. (1998) gave the visual magnitude of +4 for a particle of 1.0 mm diameter, which definitely is capable of producing electron line densities in excess of 10^{-} ${ }^{15} \mathrm{~m}^{-1}$ (Kharchenko, 2012). Cevolani and Gabucci, (1996) gave the range of masses for radar and visual meteors, where the two types intersect in the range of mass of about 10^{-6} kg , while Mann et al. (2011) gave the intersecting masses for radar and optical meteors in the range between 10^{-8} and $10^{-5} \mathrm{~kg}$. In terms of visual magnitudes, some authors constrain overdense meteors from forward scatter radar observations, between -1 and +3 on the visual magnitude scale (Meisel and Richardson, 1998). Now, when a brief divergence of sometimes confusing values published in literature is presented, it is easy to see that more work is needed to define what truly constitutes the radio overdense meteor in terms of mass, size, composition and visual and radio magnitude. However, the values published by Manning and Eshleman (1959) and reviewed by Sugar (1964) (Table 2.1) will be taken as authoritative for the purpose of this work.

Table 2.1: Meteor electron densities as a function of mass, radius and visual magnitude (after Manning and Eshleman, 1959 and Sugar 1964).

Approximate Behavior of Meteors of Various Sizes						
$\begin{gathered} \text { Line Density } \\ q \\ \text { Meters }^{-1} \end{gathered}$	Average Flux $m^{-2} s^{-1}$	Average Between Meteors	Maximum Reflection Coefficient	Radar Cross Section Meter ${ }^{2}$	Theoretical Duration at 30 mc	Comments
10^{17}	1.6×10^{-15}	16 hours	4.2	13×10^{6}	4 hours	fireball
10^{16}	1.6×10^{-14}	100 minutes	2.4	4.2×10^{6}	25 seconds	Oth magnitude
10^{15}	1.6×10^{-13}	10 minutes	1.3	1.3×10^{6}	2.5 second	visual losing effect
10^{14}	1.6×10^{-12}	60 seconds	~ 0.5	0.2×10^{6}	0.5 second	5 th magnitude, visibility limited
10^{13}	1.6×10^{-11}	6 seconds	0.089	${ }_{60} \times 10^{3}$	0.5 second	
10^{12}	1.6×10^{-10}	0.6 second	0.0089	${ }^{60}$	0.5 second	10th magnitude
10^{11}	1.6×10^{-9}	0.06 second	${ }_{0}^{0.00089}$	${ }_{0}^{0.6}$	0.5 second	
10^{10} 10	1.6×10^{-8}	0.006 second	0.000089 0.0000089	0.006 0.00006	0.5 second 0.5 second	15th magnitude beyond present radio limit
Note: The average interval between meteors is computed for an observed area of sky of $10^{4} \mathrm{~km}^{2}$; the reflection coefficient was computed for a range of 150 km at a frequency of 30 mc .						

Order-of-Magnitlde Estimates of the Properties of Sporadic Meteors ${ }^{1}$					
	$\underset{(\text { grams })}{\text { Mass }}$	Visual Magni- tude	Radius	Number of this mass or greater swept up by the earth each day	Electron line density (electrons per meter of trail length)
Particles pass through the atmosphere and fall to the ground	10^{4}	-12.5	8 cm	10	-
Particles totally disintegrated in the upper atmosphere	10^{3}	-10.0	4 cm	10^{2}	-
	10^{0}	- 7.5	2 cm	10^{3}	1018
	10	- 5.0	0.8 cm	104	10^{18}
		- 2.5	0.4 cm	10^{5}	${ }^{1017}$
	10-1	0.0	0.2 cm	10^{6}	10^{16}
	10^{-2} 10 10	2.5 5.0	0.08 cm	108	${ }^{10} 10^{15}$
	10^{-9} 10	7.5	0.02 cm	${ }_{10} 0^{8}$	10^{13}
	10^{-5}	10.0	80 microns	10^{20}	10^{12}
Approximate limit of radar measurements \rightarrow	10^{-6}	12.5	40 microns	10^{31}	10^{11}
	10-7	15.0	20 microns	10^{19}	10^{10}
	10^{-8}	17.5	8 microns		?
Micro-meteorites (Particles float down unchanged by atmospheric collisions)	10^{-8}	20.0	4 microns	Total for	Practically
	${ }^{100^{-19}}$	22.5	2 microns	this group	none
			0.8 micron 0.4 micron	estimated as high as	
				$\begin{aligned} & \text { as his } \\ & 10^{\geq 0} . \end{aligned}$	
Particles removed from the solar system by radiation pressure	${ }^{10^{-23}}$	$\stackrel{30}{1}$	0.2 micron	二	二

${ }^{1}$ Reproduced from L. A. Manning and U. R. Eshleman, "Meteors in the Ionosphere," Proc. IRE, vol. 47. p. 191: February, 1959, by permission of The Institute of Electrical and Electronics Engineers, Inc.

Similarly to derivation of the underdense echo duration time, using the expression for the transitional value of electron line density Manning (1958) defined the overdense echo duration time as:

$$
\begin{equation*}
T_{\text {overdense }}=\frac{q \lambda^{2} r_{e}}{4 \pi^{2} D}=\frac{\lambda^{2} q}{4 \pi^{2} D q_{t r}} \tag{2.52}
\end{equation*}
$$

where q, λ and r_{e} are electron line density, radar wave length and electron radius respectively. At this point the sole mechanism of the trail expansion is assumed to be ambipolar diffusion denoted by D. In principle the value of $T_{o v}$ must be greater of equal
to the trail expansion time defined as $r_{0}^{2} / 4 D t$ where r_{0} is the initial trail radius at t_{0} and t is the time since t_{0} (McKinley, 1961).

The electron line density in the overdense meteor trail can be defined in terms of wavelength λ (Figure 2.14) and the transitional value of linear electron concentration $q_{t r}$, which was derived earlier. Thus it can be stated:

$$
\begin{equation*}
q \geq \frac{\pi^{2}}{r_{e}}\left(\frac{r_{0}}{\lambda}\right)^{2}=\pi^{2}\left(\frac{r_{0}}{\lambda}\right)^{2} q_{t r} \tag{2.53}
\end{equation*}
$$

Figure 2.14: McKinley gave the minimum electron line density required to produce an overdense-type echo, which is plotted against the wavelength for selected values of atmospheric height (H) and initial radius (McKinley, 1961). Note however that the values for the initial radius appearing here have been significantly revised since in the last several decades and will be discussed in the next section.

Using equation (2.50) from the previous section, it is possible to write the expression for the critical radius for overdense meteors as:

$$
\begin{equation*}
r_{c}^{2}=\left(4 D t+r_{0}^{2}\right) \ln \left[\frac{q \lambda^{2} r_{e}}{\pi^{2}\left(4 D t+r_{0}^{2}\right)^{2}}\right] \tag{2.54}
\end{equation*}
$$

Again, the ambipolar diffusion is the only mechanism of expansion assumed here. The critical maximum radius can be then obtained by differentiation of the equation above with respect to time and setting it to zero (McKinley, 1961).

The obtained value of critical maximum radius $r_{c(\max)}$ is expressed as:

$$
\begin{equation*}
r_{c(\max)}^{2}=\frac{q}{\pi e N_{c}}=\frac{q \lambda^{2} r_{e}}{\pi^{2} e} \tag{2.55}
\end{equation*}
$$

The expression is independent of initial radius, however if the $r_{c}{ }_{(\max)}$ is less than the initial radius, then the observed meteor is no longer overdense, and classical underdense approach can be taken.

Consequently, the time at which overdense transitions into an underdense meteor trail can be expressed in terms of the initial radius and critical electron density N_{c} and can be written:

$$
\begin{equation*}
t_{(\max)}=\frac{1}{4 D e}\left(\frac{q}{\pi N_{c}}-r_{0}^{2}\right) \tag{2.56}
\end{equation*}
$$

Returning again to equation (2.50) and setting $r_{c}=0$, it is possible to obtain the duration of overdense echo $T_{o v}$, before it transition to underdense, in similar fashion to that done in the underdense case. Then the equation can be stated as (Greenhow, 1952; Kaiser and Greenhow, 1953):

$$
\begin{gather*}
T_{o v}=\frac{q}{4 \pi N_{c}}-\frac{r_{0}^{2}}{4 D} \cong \frac{q}{4 \pi N_{c} D} \cong \frac{q \lambda^{2} r_{e}}{4 \pi^{2} D} \tag{2.57}\\
T_{o v} \cong 7 * 10^{-17} \frac{\lambda^{2} q}{D} \tag{2.58}
\end{gather*}
$$

Here $r_{e} \cong 2.8 * 10^{-15} \mathrm{~m}$ is the classical electron radius. The value published by Ceplecha et al. (1998) derived by using reflection coefficients closely matches the above value. Assuming again that $r_{0} \gg \lambda$ and the approximation that an overdense meteor trail behaves like a metallic cylinder with specular reflection toward the observing location at distance R_{0}, and taking into consideration that the power flux incident upon the "cylinder" is $P_{T} G_{T} / 4 \pi R_{0}^{2}$, the expression for the received power at the receiver, accounting for the distance attenuation factor $1 / 4 \pi R_{0}^{2}$ and total collecting area of the receiving antenna $G \lambda^{2} / 4 \pi$, is written as:

$$
\begin{equation*}
P_{R}=\frac{P_{T} G^{2}}{64 \pi^{2} e^{0.5}}\left(\frac{\lambda}{R_{0}}\right)^{3} \sqrt{r_{c} q}=1.6 * 10^{-11} P_{T} G^{2}\left(\frac{\lambda}{R_{0}}\right)^{3} \sqrt{q} \tag{2.59}
\end{equation*}
$$

where G is the matched gain of the transmitter and receiver. The unit of P_{R} is Watts. On the side note, the value for the P_{R} from Ceplecha et al. (1998) is relatively close, with the exception that P_{R} is approximately proportional to $q^{0.55}$ vs. $q^{0.50}$ derived by McKinley (1961). While $q^{0.55}$ is found to represent the behaviour of overdense meteors better, the $q^{0.50}$, which describes the metallic cylinder, is still the appropriate value used in many discussions covering the topic (Ceplecha et al., 1998).

Baggaley (1979) reaffirmed that, beside the diffusive process, a simple attachment theory discussed in some of the early work is not sufficient to explain the observed radar behaviour of overdense meteor trails. It was clearly shown (Baggaley and Cummack, 1974) that ozone is the main contributing factor, and that the process of oxidation reactions and subsequent dissociative recombination involving meteoric ions is responsible for electron removal from the train. This will be further discussed in the upcoming section of this thesis. Another relevant point observed by Baggaley (1979) indicates that for the slower meteors, because of their deeper atmospheric penetration, the radar echo duration will last much less because of higher density of the reacting atmospheric constituents and subsequent faster removal of electrons from the meteor train (Figure 2.15).

Figure 2.15: Cumulative occurrence frequency-duration distribution of overdense echoes for a 10 m radar wavelength. The velocities are indicated beside each curve in km / s and the dashed curve is for relative comparison with earlier results from McCorsky and Posen (1961) (after Baggaley, 1979).

Moreover, depending on the duration time that the overdense radar echo is observable, there are additional factors besides diffusion and chemical processes that act on the meteor train (Nicholson and Poole, 1974). Those factors might be due to the turbulence, wind shears and gravity waves; however their effect is negligible on the time scale of less than one second.

2.3.6 Overdense Meteors and Ionization Distribution

It was Whipple (1943) and Herlofson (1948) followed by Kaiser (1953) who developed the foundation for understanding of the meteor ionization process and its intensity in the atmosphere.

Production of ionization formed as a result of meteoric ablation, and its subsequent length, always depend on height, velocity, mass and zenith angle of the incident meteoroid and it will follow a very specific curve that is a function of those parameters (Whipple, 1954; Eshleman, 1956; Greenhow and Neufeld, 1957; Lindblad, 1963).

Theoretical ionization curve shown in (Figure 2.16) closely matches observed results that can be obtained by optical means.

Moreover the height of maximum ionization closely corresponds to the height of the maximum visual magnitude (McKinley, 1961), and thus it is possible to derive the electron density from the visual magnitude.

For instance, the visual magnitude M_{v} (McKinley, 1961; Verniani, 1965) of the observed meteor shown in equations (2.17) and (2.18) at the maximum height of ionization can be related to the luminous intensity I (in Watts) and is rewritten again for pedantic reasons as:

$$
\begin{equation*}
M_{v}=6.8-2.5 \log I \tag{2.60}
\end{equation*}
$$

Luminous intensity, which is proportional to kinetic energy of the ablated atoms, can be written in terms of the mass m and velocity v of the meteor:

$$
\begin{equation*}
I=-\tau \frac{v^{2}}{2} \frac{d m}{d t} \tag{2.61}
\end{equation*}
$$

This can be rewritten to account for deceleration:

$$
\begin{equation*}
I=-\tau\left(\frac{v^{2}}{2} \frac{d m}{d t}+m v \frac{d v}{d t}\right) \tag{2.62}
\end{equation*}
$$

Where τ is luminous efficiency, $\frac{d m}{d t}$ is the rate of mass loss and the second term in the brackets accounts for the energy loss due to deceleration (Ceplecha et al., 1998).

For overdense meteors, the length of the path of the ionization will be in excess of 25 km . For the case of underdense meteor ionization, this curve length will be significantly narrower (Greenhow and Neufeld, 1957). Consequently, the electron line density will also be directly proportional to the mass, composition, velocity and zenith angle of the meteor. Furthermore, electron density in the meteor train depends also on the ionization coefficient (Jones, 1997) discussed earlier. It should be noted that when the electron density of the meteor trail is discussed, what is generally meant is the electron production at the maxima of the ionization curve. This is a very important fact, as it will be revisited in detail during the discussion about the methodology deployed in this work in Chapter 3.

Figure 2.16: Theoretical ionization curve for overdense meteors which is calculated from the following expression: $\frac{\alpha}{\alpha_{\max }}=\frac{9}{4} \frac{p}{p_{\max }}\left(1-\frac{1}{3} \frac{p}{p_{\max }}\right)^{2}$, where p and $p_{\max }$ are atmospheric pressures at ionization height and at the height of the maximum ionization, respectively. Their ratio is expressed in terms of scale height H and atmospheric height h as: $\frac{p}{p_{\max }}=\exp \left[-\left(\frac{h-h_{\max }}{H}\right)\right]$, where $h_{\max }$ is the height of the maximum ionization. The electron density and the maximum electron density are denoted by α and $\alpha_{\max }$, respectively. The principal equation above can be also expressed in terms of atmospheric density. The vertical axis on the plot above represents the electron line density which can be inferred from the echo amplitude (adapted from Greenhow and Neufeld (1957) and originally published by Herlofson (1948)).

As mentioned earlier, overdense meteor electron line densities, that are appropriately adjusted using ionization profiles and used for the purpose of this work, will be based on the published data by Sugar (1964). As an example, interpolating from his values, it is readily seen that a meteoroid 3 mm in diameter produces an electron line density of $5 \cdot 10^{15} \mathrm{~m}^{-1}$. While technically this electron density is still in the transition regime (Poulter and Baggaley, 1977, 1978), at least it is possible to begin to reasonably constrain the sizes of radar-detected overdense meteors. This same value of electron density for the same mass is also obtained by Pellinen-Wannberg and Wannberg (1994). This is in line with the observation that all visible meteors have diameter of more than 2 mm (Murad and Williams, 2002).

Overdense meteors represent only small fraction of the total atmospheric influx, and by some estimates may consist up to 5% of the total meteoric flux (Figure 2.17)

Figure 2.17: The distribution of the echo types observed by two separate VHF radar stations at Buckland Park, near Adelaide, Australia. One system was developed by the Atmospheric Physics Group at the University of Adelaide. The other radar belongs to the University of Colorado's Meteor Echo Detection and Collection (MEDAC) system. The top graph shows the distribution of echo classes within the MEDAC. The bottom graph shows the events seen simultaneously by both systems (Valentic et al., 1996).

In conclusion of this section it should be noted that the ionization process of the meteor in the atmosphere will not be possible if the meteoroid velocity is below $9 \mathrm{~km} / \mathrm{s}$ as the
sufficient kinetic energy is not generated by the incident atmospheric molecules (Jones and Halliday, 2001).

2.4 Initial Radius of the Meteor Train

To date there is no complete satisfactory theory that comprehensively explains in physical terms the formation of the initial radius. Knowledge of the initial meteor radius is of critical importance to correctly interpret radio meteor data. Early theoretical work had been pioneered by Öpik (1958), Manning (1958) and Kashcheyev and Lebidenites (1963). Subsequently, many early and contemporary investigators have tried to model the formation of initial train with various degree of success (see for example Mitrov, 1960; Jones, 1995). Following the definition from the early literature, the term initial radius refers to the half-width of the initial Gaussian distribution of ions (or in the case of radio studies, electrons) that has "instantaneously" formed immediately after the passage of the meteor head. For the purpose of the radio studies it is assumed that the initial train radius is much smaller than the radar wavelength.

In principle, the incident atmospheric molecules will impact the meteoroid moving at hypervelocity, with energies of up to several hundreds of electron volts. Because of the high velocity factor, the path of the ablated meteoric atoms will not be a random threedimensional walk (Manning, 1958). The total kinetic energy will depend on the meteoroid velocity. In the general case after the elastic rebound, the impacting atmospheric molecules may have velocities that are in excess of that of the meteoroid. The meteoric atoms that have left the surface of the meteoroid either as a result of sputtering or ablation, will have a wide range of velocities, ranging from slow "thermal" (Mirtov, 1960) to those that might be greater than that of the particle entering the Earth's atmosphere. The probability of inelastic collisions between the molecules in the energy range of tens of thousands of electron volts increases with energy of the colliding particles (Mirtov, 1960). Consequently, during the time that a meteoroid travels through the atmosphere, a great number of inelastic collisions will occur between the meteoric atoms initially leaving the surface of the meteor and incident atmospheric molecules.

Manning (1958) was originally of the opinion that the initial radius of the meteor trail will be in the order of 14 mean free paths in the atmosphere. While it had been shown
that the diameter of the initial meteor train is significantly greater than fourteen mean free paths, based on photographic and radio measurements (Sugar, 1964), it is indeed the atmospheric density that is controlling the factor on the size of the initial radius, but that dependence is again much less than previously thought (Baggaley, 1970, 1980, 1981). Manning (1958) did, however, point out correctly the importance of the mean free path of the atmosphere, ionic diffusion, temperature and meteor velocity in the formation and the size of the initial meteor radius. Moreover, he also realized that the initial radius of overdense meteors will be significantly different from that of underdense events as the temperature in the overdense trail is many times greater. Greenhow and Hall (1960) used experimental photographic and radio data to derive the values of initial radius as a function of height. Their results were significantly greater than those of Manning (1958) and they also observed a strong relationship between the meteor velocity, atmospheric height and the initial radius size (Figure 2.18). As a side-note, it is interesting to observe that the contribution of mass and meteoroid diameter had been rarely mentioned in those early investigations, as most of the events studied were taken as underdense.

Figure 2.18: The height-velocity relationship for meteors observed by radio echo methods and compared with the theoretical curve (Greenhow and Hall, 1960).

Typical radar determinations of the initial underdense meteor radius are based on the known dependence of the radar echo amplitude on the wavelength and the initial radius diameter. Taking the value of the initial radius r_{0} as finite, then the echo amplitude is attenuated by a factor of $\exp \left(\frac{2 \pi r_{0}}{\lambda}\right)^{2}$. If the $r_{0}=\lambda / 2 \pi$, then the echo attenuation is 8.7 dB . However, when $r_{0}>\lambda / 2 \pi$, the attenuation becomes severe, as discussed earlier. Then it is possible to use two different wavelengths and evaluate the echo amplitude ratio, which can be written as: $\left[\left(2 \pi r_{0}\right)^{2}\left(\frac{1}{\lambda_{1}^{2}}-\frac{1}{\lambda_{2}^{2}}\right)\right]$, where λ_{1} and λ_{2} are different wavelengths. When this ratio is determined together with the radar echo height for meteor events, it is possible to estimate the value for initial radius as a function height and meteor velocity (Baggaley, 1970). It should be noted that the Faraday's rotation must be taken into account when measuring the initial radius with VHF radars, where the degree of rotation will depend on the radio wave frequency (Elford and Taylor, 1997).

Baggaley and Fisher (1980) investigated the diameter of the initial meteor radius as a function of electron density in the trail with particular focus on overdense meteors. They had used triple frequency radar setup as a way to improve accuracy of their measurements. For the overdense meteors, the principle of r_{0} determination is the same, with the exception that their duration time will be different. Rewriting again equation (2.52) from the previous section, the duration time, in the absence of the chemical contribution or other factors, is:

$$
\begin{equation*}
T_{\text {overdese }}=\alpha \frac{r_{e} \lambda^{2}}{4 \pi^{2} D}-\frac{r_{0}^{2}}{4 D} \tag{2.63}
\end{equation*}
$$

here α is the linear electron density, r_{e} is the classical electron scattering radius and the expression $\frac{r_{0}^{2}}{4 D}$ can be thought of as the time since the formation of the train. Note that the symbol α is used here for the electron line density, instead of q used earlier in the text. Both symbols are intermittently used in literature, however, for the purpose of clarity only alpha will be used in the remainder of this thesis. Thus, for the meteor entering the Earth's atmosphere, an upper limit to initial radius can be determined by simply recording the lowest wavelength at which an overdense echo can be observed. That can be written in concise form as:

$$
\begin{equation*}
r_{0}<\left(\lambda_{\text {lower }} / \pi\right) \sqrt{\left(\alpha r_{e}\right)} \tag{2.64}
\end{equation*}
$$

Correspondingly, the absence of an echo at a short wavelength defines the lower limit of the initial radius,

$$
\begin{equation*}
r_{0}>\left(\lambda_{\text {upper }} / \pi\right) \sqrt{\left(\alpha r_{e}\right)} \tag{2.65}
\end{equation*}
$$

Knowing the scattering radius of an electron, and with typical wavelength of meteor radar, the necessary wavelength to observe the initial radius of the overdense meteor trail, can be written as: $\lambda=1.7 r_{0}$ (Baggaley and Fisher, 1980). They were able to obtain values of the initial radius between 75 km and 105 km . For illustrative purpose, Table 2.2 with different values of the initial radius compiled from the literature by Ceplecha et al. (1998) is given below. The reported error in the results obtained by Baggaely and Fisher (1980) is about 50%. However, to date, their work is the most reliable estimate of the initial overdense meteor radius, and will be used primarily in the calculation in further chapters in this thesis. It is interesting to observe with respect to the work done in this thesis, that Baggaley and Fisher (1980) remarked that chemical removal of free electrons can contribute to the initial radius values. The relevance of this statement will become considerably clearer in later chapters.

Table 2.2: Values of initial radius in metres. The values in the outlined column are from Baggaley and Fisher (1980) and are used in this thesis (compiled by Ceplecha et al., 1998).

Height km	Experimental				$v=40 \mathrm{~km} \mathrm{~s}^{-1}$	
	$v=20 \mathrm{~km} \mathrm{~s}^{-1}$	$40 \mathrm{~km} \mathrm{~s}^{-1}$	$60 \mathrm{~km} \mathrm{~s}^{-1}$	Bright	Theory (1/ ρ)	$r_{0 \text { (eff) }}$
75	0.22	0.33	0.42	0.35*	-	-
80	0.27	0.40	0.51	0.56*	-	-
85	0.33	0.49	0.63	0.93*	-	-
90	0.41	0.61	0.78	1.62*	0.72	0.72
95	0.51	0.77*	0.98	2.83*	1.53	1.38
100	0.63	0.96*	1.23*	5.00*	3.22	2.16
105	0.79	1.20*	1.53*	8.77	6.82	2.66
110	0.98	1.49*	1.90*	-	15.6	3.10
115	1.19	1.81*	2.30	-	30.6	3.63
120	1.41	2.13	2.72	-	64.4	4.30

A wide range of values of initial meteor trail radius obtained by different authors prior and including 1970, and their significant deviation is illustrated in the Figure 2.19.

Figure 2.19: The summary of the estimates of meteor initial radius compiled up to 1970. The "present results" legend above refers to the experimental results obtained by Baggaley (Baggaley, 1970).

Ablated and ionized meteoric atoms will experience thermalization during the collisions with the surrounding atmosphere (Bronshten, 1983), where the atoms will lose about one third of their speed after each collision, or about half of their energy (Sugar, 1964). It takes about 1×10^{-3} seconds for the meteoric ions to thermalize while electrons will thermalize much slower (Baggaley and Webb, 1977; Ceplecha et al., 1998)(Table 2.3).

Table 2.3: Thermalization times of electrons (ms) (Ceplecha et al., 1998).

Height	Line density $\left(\mathrm{m}^{-1}\right)$		
(km)	$<2.5 \times 10^{14}$	2.5×10^{15}	2.5×10^{16}
80	0.6	0.6	0.5
90	4.0	3.3	1.8
100	21	16	7.5
110	85	66	45
120	240	240	240

Between 75 km and 96 km , the effects of the geomagnetic field will not be significant and the initial trail cross section will have a circular shape. More recently, Jones and Campbell-Brown (2005) investigated the radius of sporadic underdense meteors using dual frequency radar observation, with the results being in close agreement to that of Greenhow and Hall (1960) and diverging slightly from those results obtained by Baggaley (1970) and Ceplecha et al. (1998).

A full theoretical treatment of the initial radius was done by Jones (1995). The importance of this seminal work rests in the fact that he had shown that the radial electron density within the trail is not fully Gaussian. Using computer simulations, Jones (1995) had shown that thermal equilibrium for ions is reached after about $15-20$ collisions which is relatively close to the value of 14 derived by Manning (1958). An important note however must be made regarding Jones' (1995) derivation, which pertains to the fact that his calculations use the assumption of only elastic collisions. In reality, as indicated at the beginning of this section, in addition to elastic collisions there is a large number of
inelastic ones (Mirtov, 1960). At this point however, it is not clear if the inclusion of that fact would change the outcome of the final result. From the theoretical treatment in Bronshten (1983) and Jones (1995) it can be easily seen that the initial radius (in this case the solid particle with no fragmentation is assumed) can be expressed as $\rho^{a} v^{b}$ where $a \sim-1$ and $b \sim 0.8$.

At this point it might be appropriate to recall the derivation of the critical line density defining the transition to the overdense meteor regime (McKinley, 1961) discussed in the previous section. The initial radius will depend on electron density, as pointed by Jones (1995). If McKinley's treatment is followed, then at radar wavelength of 11.4 m the critical density is $8.67 \cdot 10^{14}$. Now using Bronshten's (1983) formula and its improved version (Jones, 1995)

$$
\begin{equation*}
r_{0}=2.845 \times 10^{18} v^{0.8} / n_{a} \tag{2.66}
\end{equation*}
$$

It can be calculated that the initial radius is approximately 15 m at 110 km , for a nonGaussian profile. If the profile is Gaussian, then the necessary electron linear density must be in excess of $6.3 \cdot 10^{15} \mathrm{~m}^{-1}$. Here, the n_{a} is atmospheric density at specific height.

Accordingly, it can be reasonably concluded that the initial radius will also depend on an assumed type of cross-sectional electron density distribution. Consequently, the treatment of the initial radius cannot be the same for underdense, transitional and overdense meteors as pointed by Jones (1995), Baggaley and Fisher (1980) and inferred from the calculations of Poulter and Baggaley (1977; 1978).

2.5 Meteor Trail Diffusion

Following the formation of the initial radius in the region between the $80-95 \mathrm{~km}$, the meteor trail expands under the effect of ambipolar diffusion, which itself is a function of temperature and pressure, and can be expressed in terms of those parameters as $D=$ $K\left(\frac{T^{2}}{P}\right)$ (Hocking et al., 1997), where K is the constant, and T and P are temperature and pressure, respectively.

Below 80 km , the presence of high density neutrals and complex oxidation-dissociation chemistry will increasingly affect the rate of ambipolar diffusion of the meteor trail
expansion. Above 95 km , the role of geomagnetic field starts to play a role in the diffusion of the meteor trail (Kaiser, 1968; Elford and Elford, 2001).

The concept of ambipolar diffusion, without diverging too much into the field of plasma physics, can be presented as follows. The newly formed ionized column with some initial radius left behind a fast moving meteor, is essentially a quasineutral plasma, containing positive metallic ions and electrons. The ions are affected by two primary forces; one is a thermodynamic force resulting from the density gradient within the trail and relative to the ambient atmosphere, and the other is the electric Coulomb force arising between the ions and electrons. The ablated metallic ions have in excess of 100 eV of energy, which is a function of meteor velocity (Baggaley, 1980). This translational energy, through the series of collisions, is converted to heating of the meteor trail and the atmosphere, which is the process that thermalizes both ions and electrons. The process of thermalization is generally over in several tens of milliseconds for ions and around 0.1 s for electrons (Delov, 1975; Baggaley and Fisher, 1977). Free electrons may possess energies in the range of up to 10 eV . However, the metallic ions which are many orders of magnitude heavier than electrons will consequently move much more slowly. The rapid dispersion of electrons is retarded by the electric field induced by separation of charged species, which simultaneously adjusts the ions' speeds and ensures the overall equal diffusion of both electrons and ions. Consequently, the ions and electrons will move together as a single gas under the influence of gravity, density and temperature gradients. In principle, ambipolar diffusion is greater than free molecular diffusion.

If the assumption is made again that the distribution of ionization within the meteor trail (and consequently electrons) is Gaussian, than it is possible to state the standard form of diffusion equation:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=D \frac{\partial^{2} n}{\partial x^{2}} \tag{2.67}
\end{equation*}
$$

Here at the moment, D is considered just general diffusion coefficient. Then assuming radial symmetry, the equation (2.67) can be written in the cylindrical from:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=\frac{D}{r} \frac{\partial}{\partial r}\left(r \frac{\partial n}{\partial t}\right) \tag{2.68}
\end{equation*}
$$

Here, the D can be taken as ambipolar diffusion coefficient. Then the classical solution, for this type of equation, applied to meteor trail, can be expressed as:

$$
\begin{equation*}
n(r, t)=\frac{q}{\pi\left(4 D t+r_{0}^{2}\right)} \exp \left[-\left(\frac{r^{2}}{4 D t+r_{0}^{2}}\right)\right] \tag{2.69}
\end{equation*}
$$

This is in fact the volume density where $n(r, t)$ represents the amount of the diffused electrons, and r_{0} and r are the initial radius of the meteor train and the radial distance from the center, respectively. The equation (2.68) becomes nonlinear and consequently far more difficult to solve analytically when additional terms are added representing the effects of the geomagnetic field, chemistry, turbulence and wind shear.

Now, with the assumption that ambipolar diffusion is the only agent of the ionized trail disintegration, it has been shown that in the echo amplitude from an underdense meteors decays as (Herlofson, 1951; Kaiser, 1953):

$$
\begin{equation*}
A=A_{0} \exp \left(-\frac{t}{\tau}\right) \tag{2.70}
\end{equation*}
$$

Where t is the elapsed time since formation of the train and $\tau=t_{u}$ from equation (2.47) and following the convention, it can be written again as:

$$
\begin{equation*}
\tau=\frac{\lambda^{2}}{16 \pi^{2} D} \tag{2.71}
\end{equation*}
$$

The diffusion coefficient can be estimated by defining the decay time $\tau_{1 / 2}$, from equation (2.71) as the time it takes for the radio echo to decrease to half from its peak, and subsequently D can be expressed as:

$$
\begin{equation*}
D=\frac{\lambda^{2} \ln 2}{16 \pi^{2} \tau_{1 / 2}} \tag{2.72}
\end{equation*}
$$

This is the approach that was taken in early research to evaluate ambipolar diffusion of the meteor trails. However, this is only a general discussion about ambipolar diffusion. A more elaborate discussion about the derivation of ambipolar diffusion can be seen in the work of Francey (1963), Pickering and Windle, (1970) and more recently in the
comprehensive treatment by Robson (2001). Additionally, the approach by Liu (1970) should be noted, as he used very rigorous mathematical procedures, starting with the Maxwell-Boltzmann equation to treat the expansion of the meteor trails more accurately.

However, for the purpose of completeness, a brief mathematical treatment of ambipolar diffusion based on the phenomenological transport equation will be presented. First, the ions are considered in a dilute system and their flux $\boldsymbol{\Phi}_{i}$ (or particle current density) can be written as:

$$
\begin{equation*}
\boldsymbol{\Phi}_{i}=n_{i} \mu_{i} \boldsymbol{E}-D_{i} \frac{\partial n_{i}}{\partial \boldsymbol{r}} \tag{2.73}
\end{equation*}
$$

Here D_{i}, n_{i} and μ_{i} are the ionic diffusion coefficient, ion density and ion mobility, respectively. The vector quantities are in bold, where \boldsymbol{E} is the electrostatic force and \boldsymbol{r} is the radial distance (Jones and Jones, 1990). Now the equation above is written for electrons with corresponding parameters:

$$
\begin{equation*}
\boldsymbol{\Phi}_{e}=-n_{e} \mu_{e} \boldsymbol{E}-D_{e} \frac{\partial n_{e}}{\partial \boldsymbol{r}} \tag{2.74}
\end{equation*}
$$

Dividing both sides of equation (2.73) and equation (2.74) by μ_{i} and μ_{e} respectively, the resulting expressions are given by:

$$
\begin{equation*}
\frac{\boldsymbol{\Phi}_{i}}{\mu_{i}}=n_{i} \boldsymbol{E}-\frac{D_{i}}{\mu_{i}} \frac{\partial n_{i}}{\partial \boldsymbol{r}} \tag{2.75}
\end{equation*}
$$

and for electrons:

$$
\begin{equation*}
\frac{\boldsymbol{\Phi}_{e}}{\mu_{e}}=-n_{e} \boldsymbol{E}-\frac{D_{e}}{\mu_{e}} \frac{\partial n_{e}}{\partial \boldsymbol{r}} \tag{2.76}
\end{equation*}
$$

Now, equations (2.75) and (2.76) can be added with assumption that $n_{e}=n_{i}$ and that $\boldsymbol{\Phi}_{i}=\boldsymbol{\Phi}_{e}$. Moreover, \boldsymbol{E} can be eliminated, and above conditions allows for setting the expression:

$$
\begin{equation*}
\boldsymbol{\Phi}_{i, e}=-D_{a} \frac{\partial n_{i, e}}{\partial \boldsymbol{r}} \tag{2.77}
\end{equation*}
$$

Then the general expression for the ambipolar diffusion coefficient can be written:

$$
\begin{equation*}
D_{a}=\frac{D_{e} \mu_{i}+D_{i} \mu_{e}}{\mu_{e}+\mu_{i}} \tag{2.78}
\end{equation*}
$$

For a dilute system considered here, it is possible to apply the Einstein's relation:

$$
\begin{equation*}
D_{i}=\mu_{i} k T \tag{2.79}
\end{equation*}
$$

Where D_{i} is the ion diffusion coefficient, k is Boltzmann's constant and T is the temperature. The expression (2.79) can also be written for electrons in the same manner. Considering that $\mu_{e} \gg \mu_{i}$ and $D_{e} \gg D_{i}$ and using Einstein's relation to substitute for D_{e} in equation (2.78), it can be easily seen that for quasi-equilibrium, $D_{a} \approx 2 D_{i}$.

The expression (2.67) can be easily derived by substituting the Einstein's relation in the expression for the total flux equation (2.77) and taking the divergence of it. The calculations are elegantly presented in Jones and Jones (1990).

The problem of the behaviour of the ionized meteor trail after formation has been considered by many authors in the past and present. At least one hundred peer reviewed papers have been published on the subject of the meteor trail diffusion alone, between 1949 and 1980.

Greenhow (1952) investigated the behaviour of electrons after formation of the meteor trail. Kaiser (1953) conducted a comprehensive study of the meteor trail diffusion by combining theoretical and experimental methods, established that the role of what was called chemical attachment at the time, contributes to the meteor trail diffusion. Further work was done by Weiss (1955), where he investigated the diffusion coefficients from the rate of decay of the meteor trail of 112 events. Even from a relatively small sample, he was able to observe large scattering, resonance effects and contribution of the magnetic field. The method of the split beam technique was deployed by Greenhow and Neufeld (1955) in order to study diffusion of low electron density meteor trails. Following the already proven method (Kaiser, 1953), they utilized the amplitude records of radio observations to evaluate the diffusion coefficients. The results that they obtained were the best at the time. Murray (1959) used the same methodology and investigated ambipolar diffusion of faint meteors, obtaining the similar results as earlier authors, confirming the existence of large and significant fluctuations in the data (Murray, 1959).

The use of two widely spaced antennas and a single receiver was adopted by Greenhow and Hall (1961). This approach enabled them to significantly improve the result obtained by Greenhow and Neufeld, (1955). The problem of large data scatter could not be avoided again as it can be seen from the Figure 2.20.

Figure 2.20: Dispersion in obtained diffusion data and the result of fitting (Greenhow and Hall, 1961)

Despite a great uncertainty in obtained results, their results are amongst most reliable even when compared with the work of contemporary authors, prior to the 1990s. Another relevant aspect of their work was the observation that there is significant latitudinal and
seasonal variation in the ambipolar diffusion coefficient, which is also recognized to be susceptible to the effects of chemistry.

Jones (1975) concluded that even underdense meteor diffusion is affected by chemical processes. His results and comparison with the earlier work are shown in Figure 2.21 below.

Figure 2.21: The comparison of values of ambipolar diffusion obtained by Jones (1975) and the earlier results.

Likely causes of the large scatter in data in the previously mentioned investigations were discussed by Novotny (1978). He has identified the rotation of meteor trail under the influence of the height gradient of the horizontal wind component, chemical processes, non-uniformity of the electron line density along the meteor trail, resonance effects and data recording methods as the main sources of dispersion in the data. Jones and Jones (1990) examined the relationship between the theoretical and observational diffusion
coefficients. Furthermore, they have theoretically estimated the ionic mobility and analyzed the case of the multiple ion species in the meteor trail. They acknowledged the role of ozone in chemical processes and two-body recombination, which removes electrons from the trail, especially in events with long lasting radio echoes, thus confirming the work of Poole and Nicholson (1975) and Baggaley (1979) which will be discussed in the next section. One of the critical remarks made by Jones and Jones (1990) is the fact that while it is relatively easy to treat the diffusion in the presence of the same ionic species, significant complications arise when there are several different ionic species, even in the case when they have the same molecular mass. The comparison of radar and lidar obtained diffusion coefficients showing significant deviation (Figure 2.22), with lidar data showing greater meteor diffusion rates (Chilson et al., 1996). The influence of the neutral turbulence has been investigated by Hall (2002). Considering that the time scale of signals obtained in this thesis is lower than one second and that Hall (1996) recognized that turbulence will act at time scale equal or greater than 1.6 seconds, it can be concluded that the turbulence will not have any appreciable effect on the data and results obtained here.

Figure 2.22: Scatter plot of the diffusion coefficients obtained from the radar data $\left(D_{R}\right)$ as a function of height compared to the three line profiles of the height vs. diffusion coefficients calculated from the lidar data $\left(\mathrm{D}_{\mathrm{L}}\right)$ for different values of K_{0} (Chilson et al., 1996).

For maximum accuracy, Galligan et al. (2004) used a tristatic setup at the Advanced Meteor Orbit Radar (AMOR) to study ambipolar diffusion from a large set of meteor data, in the region between 70 km and 120 km . They considered the effects of geomagnetic field influence on the diffusion coefficient of meteor trails; however, they did not observe any serious fluctuations in ambipolar diffusion below 100 km , directly induced by the geomagnetic field.

Yee and Close (2011) conducted a meteor plasmas diffusion study using data from a nonspecular trail detected by the Advanced Research Project Agency (ARPA) Long-range Tracking and Identification Radar (ALTAIR). The diffusion coefficients determined from non-specular events were compared to the results from specular studies. They concluded that the results from non-specular trails do not correspond to the results from specular trails, as there is an order of magnitude difference between diffusion coefficients.

Table 2.4 shows selected and compiled values of ambipolar diffusion for heights of 80 km and 100 km , illustrating the divergence in values obtained by various authors throughout years. However, the introduction of the SKiYMET meteor radar system (for example see Hocking et al., 1997; Hocking et al., 2001) has improved the measurement of meteor trail diffusion significantly. SKiYMET has achieved the level of accuracy that was not possible in the early days or by other contemporary meteor radar systems. This will be discussed in more detail in the next chapter.

Table 2．4：Compiled literature values of the observed and calculated ambipolar diffusion coefficients，for comparative purpose，obtained by different authors over the period of four decades

						茞		$\begin{aligned} & \mathscr{0} \\ & \tilde{\sim} \end{aligned}$	
	$\begin{aligned} & \dot{\infty} \\ & \stackrel{1}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{0}{2} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \underset{\rightrightarrows}{=} \end{aligned}$	$\begin{aligned} & \stackrel{0}{7} \\ & \stackrel{1}{-} \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\underset{\sim}{\infty}}$	$\begin{aligned} & \text { ® } \\ & \text { N } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & J \\ & \stackrel{y}{n} \\ & \stackrel{n}{2} \end{aligned}$
	$\frac{n}{n}$	$\underset{o n}{N}$	$\begin{aligned} & n \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\rightharpoonup}{\Xi}$	$$	$\stackrel{\infty}{\underset{\sim}{\Xi}}$	$\begin{gathered} \underset{\sim}{\mathrm{W}} \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{\infty}{0}$
$\begin{gathered} \text { 采 } \\ \text { E. } \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \pi \\ & 0 \end{aligned}$			$\begin{aligned} & \bar{\jmath} \\ & 0 \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i n \\ & 0 \end{aligned}$		$\begin{aligned} & \widehat{x} \\ & \underset{\sim}{1} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & y \\ & y \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \text { تु } \\ & \text { en en en } \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { \# } \\ & \text { N } \\ & \text { N } \\ & \text { D } \\ & \text { 苟 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { ت్ల } \\ & \text { N } \\ & 0 \\ & 0 \\ & \ddot{\#} \end{aligned}$						
Title of the Paper					$\stackrel{4}{Z}$		莯		
en			® O． 0 0	त む \＃ \＃ \＃ \＃	$\begin{aligned} & \text { B } \\ & \text { a } \\ & B \\ & \text { ® } \\ & \text { Di } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { a } \\ & B \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { an } \\ & \stackrel{0}{a} \\ & B \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
シ	$\stackrel{F}{6}$	한	$\stackrel{\theta}{\hat{O}}$	\&	윽	윽	은	$\stackrel{\infty}{2}$	$\underset{\text { Oi }}{ \pm}$

2.5.1 Diffusion of Meteor Trails in the Presence of Geomagnetic Field

Since the geomagnetic field plays a negligible role on the results in this study, an elaborate discussion about diffusion under the geomagnetic influence will be omitted, and the reader is pointed toward comprehensive studies conducted by several key authors in the field. However, the basic premise of the problem of the geomagnetic effect on diffusion is presented here along with a brief historical cross-section of this specific research.

The effect of the geomagnetic field on ambipolar diffusion can be characterized in a way that it increases the lifetime of meteor trails especially in the region above 100 km (Lowell, 1965; Elford and Elford, 2001). This is most applicable to meteors with low plasma density (underdense) as the distance between plasma collisions is relatively large, such that the influence of magnetic field on the ion/electron path is significant. Robson (2001) gave a basic expression for the effective diffusion coefficient as:

$$
\begin{equation*}
D_{\text {eff }}=D_{\text {paralel }} \sin ^{2} \mu \sin ^{2} \theta+D_{\text {orthogonal }}\left(1-\sin ^{2} \mu \sin ^{2} \theta\right) \tag{2.80}
\end{equation*}
$$

where $D_{\text {paralel }}$ and $D_{\text {orthogonal }}$ are the ambipolar diffusion coefficients parallel and orthogonal to the magnetic field, θ is the angle the field makes with the meteor trail, and μ is the angle between the wave vector and the normal to the plane of the trail and the field. The Figure 2.23 illustrates variation of diffusion coefficients with height.

Francey (1964) and Lowell (1965) conducted theoretical calculations of the meteor trail diffusion in the presence of the magnetic field. Additional comprehensive theoretical treatment of ambipolar diffusion in the magnetic field was presented by Kaiser (1968) which laid the foundation for subsequent studies. Phase coherent radar using the horizontally polarized Yagi antennas was deployed by Baggaley and Webb (1980) to investigate a theoretical application to the experiment. Due to a large scatter of diffusion values as a function of height, it was not possible to definitively discern the contribution of geomagnetic field using backscatter radar. They only remarked about a slight decrease of the diffusion coefficient for underdense meteors under the geomagnetic field. However, the effect on overdense meteors was observed to be negligible, at least in backscatter radar measurements.

Figure 2.23: Height variation of the ambipolar diffusion coefficients parallel $\left(D_{L}\right)$ and orthogonal $\left(\mathrm{D}_{\mathrm{T}}\right)$ to the geomagnetic field. The angle θ is defined as the angle the axis of the trail makes with the direction of the magnetic field (Elford, 2001).

Another important theoretical work (Jones, 1991) resulted in the formulation of the analytic solution to the diffusion in "ionized cylindrical train" in the magnetic field. He had also shown that diffusion will be inhibited the most by the effect of the geomagnetic field when the angle between the meteor train axis and the magnetic field lines is close to zero.

A theoretical and modeling study was conducted by Robson (2001) from the perspective of a pure plasma physics approach. He criticized the approach and assumptions taken by Jones (1991) and general treatment of ambipolar diffusion in meteor literature. Robson's approach, while consistent with the conventional plasma physics treatment, diverges to an extent from the results obtained in mainstream meteor literature. Hocking (2005)
conducted an important study of anisotropic meteor trail diffusion under the influence of the geomagnetic field. The critical observation with a significant implication for future studies of anisotropic meteor trail diffusion, suggests the contribution of external electric field in addition to magnetic field effects.

Sophisticated modeling studies of the topic conducted by (Oppenheim et al., 2000; Dyrud et al., 2001; Oppenheim et al., 2003; Dimant et al., 2006) shine a new light on the behaviour of meteor trail plasma in the geomagnetic field and suggest considerable effects only above 105 km .

2.5.2 The Remaining Questions Regarding Ambipolar Diffusion

Among several critical investigations that motivated the work done in this thesis are four recent papers which have questioned the validity of ambipolar diffusion in the meteor region.

Younger et al. (2008) considered the role of the background dust, in the meteor region, in absorption of electrons from the underdense meteor trail which potentially affects the backscatter radar observed diffusion duration. Taking the dust concentration to be in the range of 5×10^{9} to $5 \times 10^{10} \mathrm{~m}^{-3}$ and meteor train electron line densities between $10^{11-10^{14}}$ m^{-1} at altitude of 85 km , they have observed that the echo duration times deviate up to 30% for the meteor trails with lower limit of electron line densities. Similar observations were made by Havnes and Sigernes (2005).

By now it has become obvious that ambipolar diffusion is not the only mechanism which contributes to the electron removal and dispersion from the expanding meteor trail, at least from the perspective of radio observations. While it is well established that chemistry plays an important role in long duration overdense echoes (Baggaley and Cummack, 1974), it is clear that even underdense meteor trails do not diffuse only under the influence of ambipolar diffusion. The question that remains to be answered is what are the other possible mechanisms which remove electrons from the meteor trail.

The same question was asked by Ballinger et al. (2008) as they investigated ambipolar diffusion using the VHF (All-Sky Interferometric Meteor Radar or SKiYMET) backscatter system. Furthermore, they have discussed the vertical decay time profile and
peculiar maxima at approximately 83 km , after which the decay time decreases (Figure $2.24)$, not predicted by the classical ambipolar theory. The possibility of electron-ion recombination as the probable cause for this peculiar behaviour has been proposed.

Figure 2.24: The vertical profiles of mean decay time for 2005 obtained by Ballinger et al. (2008). The profile of weak meteors ($\mathrm{SNR}<12 \mathrm{~dB} \mathrm{)} \mathrm{is} \mathrm{shown} \mathrm{in} \mathrm{blue;} \mathrm{strong} \mathrm{meteors}$ (SNR12 dB) in red. The thin lines on either side of the mean profiles indicate the 99% confidence interval bounds.

A recent study by Kumar and Subrahmanyam (2012) employed the data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on-board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, and they compared it with the radar data to further refine the values of the ambipolar diffusion coefficient in meteor trails. They selected meteors with the echo duration times $\left(\tau_{1 / 2}\right) \leq 0.3$ seconds, and the highest observed meteor count around 90-92 km . The results of this study show a sharp deviation of meteor diffusion observed by
radar and diffusion derived from satellite data (Figure 2.25). The exponential decrease in decay time observed by SABER is in line with theoretical expectations. The large difference represented by the red bars in the figure on the right, especially in the region below 85 km , can only be explained with the contribution from chemistry that removes electrons from the trail, while the rest of the meteor trail constituents continue ambipolar and thermodynamic expansion. The comparison of the satellite and radar results suggests that the diffusion is fastest in the region of $80-88 \mathrm{~km}$. Perhaps not surprisingly, the radar and satellite data match well in the region of $90-96 \mathrm{~km}$ as the role of chemistry is subsiding. However, the interesting result of the investigation by Kumar and Subrahmanyam (2012) points to the fact that above 96 km , the radar slightly overestimates the diffusion rates relative to the satellite. This is surprising as the influence of the geomagnetic field was supposed to somewhat inhibit the diffusion rates.

Figure 2.25: (a) Distribution of meteor trail decay time with respect to height measured using SABER observations during the winter season of 2007 and (b) height profiles of mean meteor trail decay time obtained using radar and SABER observations during the winter season of 2007. The blue triangle profile represents the difference between the SABER and radar measurements (Kumar and Subrahmanyam, 2012).

The authors point toward the dust and aerosols absorption of electrons as discussed in the earlier studies by Havnes and Sigernes (2005) and Younger et al. (2008) as the main contributor for the behaviour of the diffusion coefficient observed by radar. Considering
the low background dust concentration and the phenomena of the thermal and shock wave during the formation of the initial radius, it is not clear how the above mentioned mechanism can play a significant role in removing electrons from the meteor trail.

Then, if chemistry is indeed responsible for the behaviour of the radar observed meteor trail diffusion processes, the question must be posed as to what kind of chemistry is at play here. Considering the small time scales observed during diffusion, it becomes apparent that equilibrium chemistry, which takes place in long lasting overdense meteors, cannot be the culprit here. Indeed, the work of this thesis aims to answer the question posed above. Before that however, the meteor chemistry must be addressed first and will be discussed in detail in the next section.

2.6 Meteor Trail Chemistry, Spectra, Temporal and Thermal Evolution

A comprehensive understanding of meteor interactions with the Earth's atmosphere is still not available (Jenniskens, 2003), despite numerous investigations in the past (see Bronsheten, 1983; Ceplecha et al, 1998). Differential ablation and evaporation of the meteoroids (Vondrak et al., 2008) result in deposition of different meteoric species at a range of heights, and depending on the atmospheric density, composition, ambient temperature, rates of vertical transport and mixing and chemical reactions (Plane, 1991; Hughes, 1992; Helmer et al., 1998; Plane et al., 1999). These effects will impact chemical and physical dynamics in the upper mesosphere and lower thermosphere (MLT) and give rise to relatively narrow layers of metallic ions in the region centered around 90 km altitude (Figure 2.26), in addition to the phenomena of noctilucent clouds.

Correspondingly, spectral evidence of high temperatures in the meteor trail and the meteor head region (Borovicka, 1993,1994; Berezhnoy and Borovicka, 2010) suggests additional thermal and shock modification of the limited cylindrical atmospheric region along meteor trail axis (Zinn et al., 1999).

Figure 2.26: Elemental ablation profiles for a 5 mg meteoroid entering at $20 \mathrm{~km} \mathrm{~s}^{-1}$, as predicted by the Chemical Ablation Model (CABMOD). The particle temperature is shown on the top abscissa (Plane, 2012).

Three major processes controlling the reduction of initial kinetic energies of ablated meteoric atoms to thermal level are elastic scattering, excitation and ionization. Elemental abundances from meteor spectra indicate compositional and chemical background of the original body, and can be used to understand the time scales required for the formation of thermodynamic equilibrium following the fast $\left(\sim 10^{-8} \mathrm{~s}\right)$ atomic collisional excitation and de-excitation processes (Berezhnoy and Borovicka, 2010). Additionally, the meteor spectra give an indication of the chemical processes in and around the meteor trail. For instance, it is known that O^{+}is the most abundant positive ion in the meteor column (Sida, 1969) and can rapidly exchange charge with N_{2} and O_{2}, where both of these processes are much faster than ion loss by radiative recombination with electrons. The charge exchange mentioned above initiates a sequence of reactions
that lead to the formation of oxygen molecules in the first excited state (Baggaley, 1977). A number of theoretical and experimental investigations, combined with spectral methods and other optical means as well as radar studies of the meteor trail have resolved most of the aspects of the meteor train chemistry (Plane, 2003), yet some unresolved questions still need to be addressed (Jenniskens, 2003).

Thus, before a discussion about contemporary scientific understanding of the physical and chemical dynamics and processes controlling the atmospheric evolution of a meteor trail, first a clear distinction must be made in terms of the equilibrium and nonequilibrium processes. While the former received a prominent attention in mainstream meteor publications (e.g. Baggaley and Cummack, 1974), non-equilibrium chemistry and dynamics of the meteor trail (e.g. Park and Menees, 1978) received little or no attention in the literature for the set of reasons elaborated by Dressler (2001). Therefore, the aim of this section is to present the state of knowledge of meteor chemistry with the reflection on the historical progress and evolution of the field, and attempt to subsequently explore the final frontier of hyperthermal chemistry and radiative processes in and around the meteor head and trail.

When discussing meteor chemistry, anomalous diffusion times observed by radar methods in the past must be recognized as the main indicator that ambipolar diffusion is not a singular mechanism governing the removal of electrons from the meteor trail. The main reason for such conclusion is the well understood behaviour of signal amplitude and duration which is taken to be proportional to the electron density in the meteor trail. However, overdense and underdense echoes must be separated as the signal amplitude in the case of the former is much less sensitive to the mass of the observed meteor (Baggaley, 1979). Overdense meteor echoes are predominantly considered based on the echo duration. This is one of many factors which make overdense meteors more suitable for study of chemistry effects in the MLT region.

As far back as 1953, Kaiser proposed a simple mechanism of electron attachment to explain the anomalous behaviour of the meteor radar echo. A similar explanation for overdense echoes was offered by Davis et al. (1959), Greenhow and Hall (1961), Manning (1964) and McIntosh (1966). However, the chemical processes of electron
removal from the meteor trail had been shown to be significantly more complicated than the simple electron attachment, especially in the case of overdense trains (Baggaley, 1972).

Baggaley (1972) had discussed a numerical model of temperature dependent attachment among potentially important mechanisms, where the three body mechanism results from a collision in which an electron and neutral molecule form an excited negative ion, where the reaction is stabilized in a third-body collision, followed by radiation emission. Numerical solutions were obtained for a possible role of detachment involving the negative oxygen molecule.

Additionally, Baggaley (1972) modelled the mechanism of the ion-electron recombination, suggesting that in dense plasmas, the collisional process will control the recombination, while in a tenuous region the radiative process will be dominant. He recognized the controlling role of ozone in dissociative recombination, pointing out that it will not occur unless an ion-atom interchange or charge transfer produces a significant number of diatomic ions. In 1974, Baggaley's perhaps most important contribution to meteor chemistry was the collaborative theoretical investigation and a model of meteor train ion chemistry (Baggaley and Cummack, 1974). In addition to other reactions discussed, the ozone was recognized as the MLT constituent that can react exothermically and sufficiently fast with the meteor metallic ions and through subsequent reactions remove an electron from the trail. Below 80 km however, the three body association involving O_{2} and N_{2} plays a significant role. Similarly, formation of water clusters at these same heights could have minor relevance, where meteoric ion reacts with $\mathrm{H}_{2} \mathrm{O}$ and N_{2}. Baggaley and Cummack (1974) concluded that the time scale of electron attachment to atmospheric neutrals increases from 2.8 s at 70 km and reach $2 \times 10^{3} \mathrm{~s}$ during the day and 140 s during the night at 90 km . Table $2.5(\mathrm{a}, \mathrm{b})$ shows a relatively small list of chemical reactions which occur in and outside of the meteor trail, as suggested by Baggaley and Cummack (1974). The list is small relative to the true extent of complex chemistry processes which take place between meteoric ions, molecules, and the surrounding ionosphere (e.g. Whalley et al., 2011).

Table 2.5: (a) Chemical reactions in and around meteor train (Baggaley and Cummack, 1974).

	Process	Rate employed*	Reference
Attachment			
R1	$\mathrm{O}+\mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}+\mathrm{O}_{2}$	1.6×10^{-30}	Chanin et al. (1959)
R2	$\mathrm{e}+\mathrm{O}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{O}_{2}^{-}+\mathrm{N}_{2}$	1.0×10^{-30}	Hirsi et al. (1966)
R3	$\mathrm{e}+\mathrm{O}_{3} \rightarrow \mathrm{O}^{-}+\mathrm{O}_{2}$	7.0×10^{-12}	Fehsenfeld and Ferguton (1968)
Detachment			
R4	$\mathrm{O}_{2}^{-}+\mathrm{O} \rightarrow \mathrm{O}_{3}+\mathrm{e}$	3×10^{-10}	Fehsenfeld et al. (1967)
R5	$\mathrm{O}_{2}^{-}+\mathrm{O}_{2}\left({ }^{1} \Delta_{q}\right) \rightarrow 2 \mathrm{O}_{2}+\mathrm{e}$	2×10^{-10}	Fehsenfeld et al. (1969a)
R6	$\mathrm{O}^{-}+\mathrm{O} \rightarrow \mathrm{O}_{2}+\mathrm{e}$	1.9×10^{-10}	Ferguson and Fehsenfeld (1969)
R7	$\mathrm{O}^{-}+\mathrm{O}_{2}\left({ }^{1} \Delta_{q}\right) \rightarrow \mathrm{O}_{3}+\mathrm{e}$	3.0×10^{-10}	Fehsenfrld et al. (1969a)
R8	$\mathrm{O}_{3}{ }^{-}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}+$ e	1.0×10^{-10}	Adams and Megill (1967)
R9	$\mathrm{O}_{3}^{-}+\mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}+\mathrm{e}$	1.0×10^{-10}	Adams and Megill (1967)
R10	$\mathrm{O}^{-}+h \nu \rightarrow \mathrm{O}+\mathrm{e}$	$1 \cdot 40$	Branscombe (1964)
R11	$\mathrm{O}_{2}^{-}+h \nu \rightarrow \mathrm{O}_{2}+e$	0.30	Woo et al. (1969)
R12	$\mathrm{O}_{3}^{-}+h v \rightarrow \mathrm{O}_{3}^{+}+\mathrm{e}$	0.06	Dasa (1967)
R13	$\mathrm{CO}_{3}^{-}+h v \rightarrow \mathrm{CO}_{3}+0$	0.04	Kamiyama (1970)
R14	$\mathrm{NO}_{2}^{-}+h \nu \rightarrow \mathrm{NO}_{2}+e$	0.04	Dasa (1967)
R15	$\mathrm{NO}_{3}^{-}+h v \rightarrow \mathrm{NO}_{3}+0$	0.03	Kamiyama (1970)
Exchange reactions			
R16	$\mathrm{O}^{-}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{3}^{-}+\mathrm{O}$	7.0×10^{-10}	Frhsenfrid et al. (1967)
R17	$\mathrm{O}^{-}+2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3}+\mathrm{O}_{2}$	2.0×10^{-30}	Chantr et al. (1959)
R18	$\mathrm{O}_{2}^{-}+\mathrm{O}^{-} \mathrm{O}^{-}+\mathrm{O}_{2}$	1.0×10^{-11}	Dasa (1967)
R19	$\mathrm{O}_{2}^{-}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{3}^{-}+\mathrm{O}_{2}$	3.0×10^{-10}	Fehsenfeld et al. (1967)
R20	$\mathrm{O}_{2}^{-}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{O}_{4}^{-}+\mathrm{M}$	3.5×10^{-31}	Pack and Phelps (1971) MoKnight and Sawina (1970) Parkes (1971)
R21	$\mathrm{O}_{3}^{-}+\mathrm{O} \rightarrow \mathrm{O}_{2}^{-}+\mathrm{O}_{2}$	1.4×10^{-10}	Lelezvier and Branscombe (1968)
R22	$\mathrm{O}_{3}{ }^{-}+\mathrm{CO}_{2} \rightarrow \mathrm{CO}_{3}{ }^{-}+\mathrm{O}_{2}$	4.0×10^{-10}	Fehsenfeld et al. (1967)
R23	$\mathrm{O}_{3}^{-}+\mathrm{NO} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{O}_{2}$	1.0×10^{-11}	Arnold and Krankowsky (1972)
R24	$\mathrm{O}_{4}^{-}+\mathrm{O} \rightarrow \mathrm{O}_{3}^{-}+\mathrm{O}_{2}$	4.0×10^{-10}	Fehsenfrld et al. (1969b)
R25	$\mathrm{O}_{4}^{-}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}+2 \mathrm{O}_{2}$	2.0×10^{-14}	Payzant and Kebarle (1972)
R26	$\mathrm{O}_{4}^{-}+\mathrm{CO}_{2} \rightarrow \mathrm{CO}_{4}^{-}+\mathrm{O}_{2}$	4.3×10^{-10}	Fehsenfeld et al. (1969b)
R27	$\mathrm{O}_{4}^{-}+\mathrm{NO} \rightarrow \mathrm{NO}_{3}^{-*}+\mathrm{O}_{2}$	2.5×10^{-10}	Fehsenfeld et al. (1969b)
R28	$\mathrm{CO}_{4}^{-}+\mathrm{O} \rightarrow \mathrm{CO}_{3}^{-}+\mathrm{O}_{2}$	1.5×10^{-10}	Fehsenfeld et al. (1969b)
R29	$\mathrm{CO}_{4}^{-}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{3}^{-}+\mathrm{CO}_{4}$	1.0×10^{-10}	Arnold and Krankowery (1971)
R30	$\mathrm{CO}_{4}^{-}+\mathrm{NO} \rightarrow \mathrm{NO}_{3}{ }^{-*}+\mathrm{CO}_{2}$	4.8×10^{-11}	Fehsenfeld et al. (1969b)
R31	$\mathrm{CO}_{3}^{-}+\mathrm{O} \rightarrow \mathrm{O}_{\mathrm{s}}^{-}+\mathrm{CO}_{8}$	8.0×10^{-11}	Fehsenfeld et al. (1967)
R32	$\mathrm{CO}_{3}^{-}+\mathrm{NO} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{CO}_{2}$	9.0×10^{-12}	Fehsenfrld et al. (1967)
R33	$\mathrm{NO}_{2}{ }^{-}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{O}_{2}$	1.8×10^{-11}	Fehsenfeld and Ferguson (1968)
R34	$\mathrm{NO}_{2}{ }^{-}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{NO}$	4.0×10^{-12}	Ferguson (1972b)
R35	$\mathrm{NO}_{3}{ }^{-}+\mathrm{NO} \rightarrow \mathrm{NO}_{2}{ }^{-}+\mathrm{NO}_{2}$	1.5×10^{-11}	Ferguson (1972b)

[^1]Table 2.5: (b) Chemical reactions in and around meteor train (Baggaley and Cummack, 1974).

	Process	Rate employed	Reference
Neactions for Fe^{+}			
R36	$\mathrm{Fe}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{FeO}^{+}+\mathrm{O}_{2}$	1.5×10^{-10}	Ferguson and Fehsenfeld (1968)
R37	$\mathrm{Fe}^{+}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{FeO}_{2}^{+}+\mathrm{M}$	1.0×10^{-30}	Ferguson and Fehsenfeld (1968)
R38	$\mathrm{Fe}^{+}+\mathrm{e} \rightarrow \mathrm{Fe}^{+} h \nu$	3.0×10^{-12}	Bates (1962)
R39	$\mathrm{Fe}^{+}+\mathrm{e}+\mathrm{M} \rightarrow \mathrm{Fe}+\mathrm{M}$	1.0×10^{-25}	Danilov (1970)
R40	$\mathrm{FeO}^{+}+\mathrm{O} \rightarrow \mathrm{Fe}^{+}+\mathrm{O}_{2}$	1.0×10^{-10}	Estimate
R41	$\mathrm{FeO}^{+}+\mathrm{e} \rightarrow \mathrm{Fe}+\mathrm{O}$	5.0×10^{-7}	Estimate
R42	$\mathrm{FeO}_{2}{ }^{+}+\mathrm{O} \rightarrow \mathrm{FeO}^{+}+\mathrm{O}_{2}$	1.0×10^{-10}	Estimate
R43	$\mathrm{FeO}_{2}^{+}+\mathrm{e} \rightarrow \mathrm{Fe}+\mathrm{O}_{2}$	3.0×10^{-6}	Swider (1969)
Reactions for Mg^{+}			
R44	$\mathrm{Mg}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{MgO}^{+}+\mathrm{O}_{2}$	2.3×10^{-10}	Ferguson and Fehsenfeld (1968)
R45	$\mathrm{Mg}^{+}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{MgO}_{2}{ }^{+}+\mathrm{M}$	2.5×10^{-30}	Ferguson and Fuysenfeld (1968)
R46	$\mathrm{Mg}^{+}+\mathrm{e} \rightarrow \mathrm{Mg}+\mathrm{hv}$	3.0×10^{-12}	Bates (1962)
R47	$\mathrm{Mg}^{+}+\boldsymbol{\theta}+\mathrm{M} \rightarrow \mathrm{Mg}+\mathrm{M}$	1.0×10^{-26}	Dantrov (1970)
R48	$\mathrm{MgO}^{+}+\mathrm{O} \rightarrow \mathrm{Mg}^{+}+\mathrm{O}_{2}$	1.0×10^{-10}	Ferguson and Fehsenfeld (1968)
R49	$\mathrm{MgO}^{+}+\mathrm{e} \rightarrow \mathrm{Mg}+\mathrm{O}$	5.0×10^{-7}	Estimate
R50	$\mathrm{MgO}_{2}{ }^{+}+\mathrm{O} \rightarrow \mathrm{Mg}^{+} \mathrm{O}+\mathrm{O}_{2}$	1.0×10^{-10}	Estimate
R51	$\mathrm{MgO}_{2}^{+}+\mathrm{e} \rightarrow \mathrm{Mg}^{+} \mathrm{O}_{2}$	3.0×10^{-7}	Swider (1969)
Reactions for Si^{+}			
R52	$\mathrm{Si}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{SiO}^{+}+\mathrm{O}_{2}$	1.0×10^{-10}	Estimate
R53	$\mathrm{Si}^{+}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{SiO}_{2}{ }^{+}+\mathrm{M}$	1.0×10^{-30}	Estimate
R54	$\mathrm{Si}^{+}+\mathrm{e} \rightarrow \mathrm{Si}+\mathrm{h} v$	3.0×10^{-12}	Bates (1962)
R55	$\mathrm{Si}^{+}+\mathrm{e}+\mathrm{M} \rightarrow \mathrm{Si}+\mathrm{M}$	1.0×10^{-26}	Danilov (1970)
R56	$\mathrm{SiO}^{+}+\mathrm{O} \rightarrow \mathrm{Si}^{+}+\mathrm{O}_{2}$	2.0×10^{-10}	Fehsenfeld (1969)
R57	$\mathrm{SiO}^{+}+\mathrm{e} \rightarrow \mathrm{Si}+\mathrm{O}$	5.0×10^{-7}	Estimate
R58	$\mathrm{SiO}_{2}{ }^{+}+\mathrm{e} \rightarrow \mathrm{Si}+\mathrm{O}_{2}$	3.0×10^{-7}	Swider (1969)
Reactions for Na^{+}			
R59	$\mathrm{Na}^{+}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Na}^{+} . \mathrm{N}_{2}+\mathrm{N}_{2}$	1.0×10^{-31}	Estimate
R60	$\mathrm{Na}^{+} \cdot \mathrm{N}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{Na}^{+}+2 \mathrm{~N}_{2}$	1.0×10^{-13}	Keller and Beyer (1971)
R61	$\mathrm{Na}^{+} \cdot \mathrm{N}_{2}+\mathrm{e} \rightarrow \mathrm{Na}+\mathrm{N}_{2}$	5.0×10^{-1}	Estimate
R62	$\mathrm{Na}^{+}+\mathrm{e} \rightarrow \mathrm{Na}+h v$	3.0×10^{-12}	Bates (1962)
R63	$\mathrm{Na}^{+}+\mathrm{e}+\mathrm{M} \rightarrow \mathrm{Na}+\mathrm{M}$	1.0×10^{-26}	Danilov (1970)
Ion-ion reactions			
R64	$\mathrm{X}^{+}+\mathrm{O}^{-} \rightarrow \mathrm{X}+\mathrm{O}$	1.0×10^{-12}	Estimate
R65	$\mathrm{X}^{+}+\mathrm{AB}^{-} \rightarrow \mathrm{X}+\mathrm{AB}$	1.0×10^{-7}	Estimate
R66	$\mathrm{XO}^{+}+\mathrm{O}^{-} \rightarrow \mathrm{XO}+\mathrm{O}$	1.0×10^{-7}	Estimate
R67	$\mathrm{XO}^{+}+\mathrm{AB}^{-} \rightarrow \mathrm{XO}+\mathrm{AB}$	1.0×10^{-7}	Estimate
R68	$\mathrm{XO}_{2}^{+}+\mathrm{O}^{-}, \mathrm{XO}_{2}+\mathrm{O}$	1.0×10^{-7}	Estimate
R69	$\mathrm{XO}_{2}^{+}+\mathrm{AB}^{-} \rightarrow \mathrm{XO}_{2}+\mathrm{AB}$	1.0×10^{-7}	Estimate

The reactions discussed by Baggaley (1972) and Baggaley and Cummack (1974) are the equilibrium processes that take place on time scale of minutes. The mechanism of the fast electron removal reactions has not been completely addressed yet. The key points to recognize here are that the previous mechanisms suggested by earlier authors cannot account for the relatively short lifetime of such phenomena in the meteor trail (e.g. the meteor trail luminosity and red afterglow) compared to the proposed time scale of minutes. The likely mechanism that may cause such manifestations is the chemical production of excited species whose quenching is in the order of seconds.

In overdense meteors, a substantial portion of chemical processes occurs during the meteor trail adiabatic expansion into warm air plasma ($\sim 4400 \mathrm{~K}$) (Jenniskens, 2004) which is a result of the shock wave expansion of the surrounding atmosphere following the hypervelocity collisions with a meteoroid. To illustrate the importance of chemistry in overdense meteors, one might for example consider applying the theory initially derived by Kaiser (1953) to the observed event. Taking an overdense meteor of visual magnitude -3 at 80 km , detected by a 30 MHz VHF system, the theory indicates that such radio echo should last in excess of 20 minutes (Baggaley, 1979). In practice, the received echo from such an event barely lasts 60 seconds in the case of forward scatter radar (Figure 2.27).

Figure 2.27: Meteor echo duration vs. reflection heights for radar wavelength $\lambda=9 \mathrm{~m}$. The solid line represents full theoretical profile for electron line density of $6 \cdot 10^{18} \mathrm{~m}^{-1}$ occurring at 88 km altitude and assumes a classical ionization curve. The dashed line is for the same electron density, for all heights. The dot-dash line represents the profile assuming the classical duration expression. The dotted line represents the experimental profile obtained by McKinley (1961) (Baggaley, 1978).

Clearly, the proposed mechanisms of simple electron attachment are not sufficient to accomplish this, as the rates of reaction for such a process is too large, and thus the reaction time scales are too long. This can be seen from looking at one of the proposed attachment reactions:
$e+O_{3} \rightarrow O^{-}+O_{2}$ and
$e+O_{2}+X \rightarrow O_{2}^{-}+X$, where X is a third body
This mechanism is slow and proceeds at rates much less than the electron detachment, which is in essence restoring electrons at a much faster pace than they are consumed.
$O^{-}+O \rightarrow O_{2}+e$ and
$O_{2}{ }^{-}+O \rightarrow O_{3}+e$

It is therefore apparent that the so called negative ion formation, as a mechanism for electron removal, is insignificant at meteor heights. Nicholson and Poole (1974) examined the problem of overdense meteor echoes behaviour in detail and suggested the contribution of ozone, which agrees with conclusions of Baggaley and Cumack (1974). That conclusion was confirmed when Baggaley $(1978,1979)$ defined the ozone reactions as primary mechanism responsible for the removal of electrons from the overdense meteor trail. The oxidation chemical reactions can be stated as follows:

$$
\begin{equation*}
\mathrm{M}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{MO}^{+}+\mathrm{O}_{2} \tag{2.81}
\end{equation*}
$$

Here, M^{+}can represent any of the main meteoric ions $(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Si})$. The reaction that follows is dissociative recombination:

$$
\begin{equation*}
M O^{+}+e \rightarrow M+O \tag{2.82}
\end{equation*}
$$

In overdense trains, the first reaction (2.81) is the one that controls the echo duration, because it is much slower that the second reaction. To obtain the reaction life time, the classical kinetic theory (Upadhyay, 2006) needs to be consulted, where for some reaction:

$$
A+B \rightarrow C+D
$$

Then:

$$
\begin{equation*}
\text { Rate of Reaction } \approx-\frac{d[A]}{d t}=-\frac{d[B]}{d t}=\frac{d[C]}{d t}=\frac{d[D]}{d t} \tag{2.83}
\end{equation*}
$$

where the bracketed terms are respective concentrations. Using the relation that the rate of reaction equals the inverse to the reaction lifetime τ, it is easy now to solve for the lifetime:

$$
\begin{equation*}
\tau^{-1} \approx \frac{d[A]}{d t} \approx k_{A}[A] \tag{2.84}
\end{equation*}
$$

Taking the reaction coefficients (Baggaley, 1979) for the two reactions as $k_{1}=2 \cdot 10^{-10}$ and $k_{2}=5 \cdot 10^{-7} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, and taking in consideration the height dependent ozone density at 90 km to be approximately $2 \cdot 10^{14} \mathrm{~m}^{-3}$, it is easy to see that at this altitude, the lifetime of the first reaction is approximately 25 seconds. For (2.82) the lifetime can be estimated at 10^{-3} seconds, assuming the overdense train with electron line density of $10^{16} \mathrm{~m}^{-1}$. The reduction reaction, which can be written as:

$$
\begin{equation*}
\mathrm{MO}^{+}+\mathrm{O} \rightarrow \mathrm{M}^{+}+\mathrm{O}_{2} \tag{2.85}
\end{equation*}
$$

will proceed again much slower than (2.82) (Baggaley, 1979), thus it will not have appreciable impact on the evolution of meteor trail. For illustrative purpose, the reaction (2.85) lifetime is about 3 seconds at 80 km and about 200 seconds at 100 km .

Moreover, additional reactions such as the three-body charge transfer involving the metallic ion, oxygen and a third body and the subsequent dissociative recombination will become relevant in terms of meteor timescales only at lower altitudes. In addition, the reaction involving N_{2} and M^{+}will also proceed under the presence of the third body and will contribute to the electron removal from the meteor trail. Baggaley (1979) numerically modeled chemical mechanisms by solving a system of differential equations for each chemically reacting species, using a 10 point finite difference scheme. The results were in line with observed duration times. Figure 2.28 below shows the calculated results and the effects of chemical reactions on duration of meteor echoes from trails with large electron densities. The conclusions, comparing the experiment and models indicate that the effects of chemical processes in the meteor trail are nonlinear, which is opposite of what would be expected from a simple electron attachment process. Moreover, the results from the model show an echo duration diurnal variability which is proportional to the ozone diurnal cycle and corresponds well with the experimental observation (Nicholson and Poole, 1974).

Baggaley's (1979) conclusions confirmed the results obtained earlier by Poole and Nicholson (1975) showing that ozone is a dominant agent in meteor chemistry and that a dissociative recombination of meteoric oxide ions derived from the reaction with ozone in meteor trains is the primary mechanism of the electron removal from the meteor train.

It should be noted that the ionization potential of metal atoms (5-9 eV) from the meteor trail is appreciably less than those of O_{2} and N_{2}, therefore metal ions are stable against charge exchange with major neutrals in the atmosphere (Baggaley, 1980).

Figure 2.28: Echo duration vs. height profiles for different value of maximum line density. Note that in this figure line density is in electrons cm^{-1}, a norm in early literature. For large electron densities, the profiles are distorted at lower altitudes (top of the figure), while the smaller electron line density profiles behave according classical ionization theory (from Baggaley, 1979).

Out of all meteor metal ions detected in the meteor trail and consequently either in metallic layers or in trace quantities in the upper atmosphere, iron, magnesium, calcium, aluminum, potassium, silicon and sodium are the most abundant (Plane, 1991). A comprehensive review of detailed experimental studies that were conducted on the main meteoric ion species in the last several decades was presented by Plane (1991, 2003). Some of the commonly observed and meteor-metal-ion related atmospheric phenomena such as atmospheric glow occurs because the sodium reaction with ozone. This example is brought up, to illustrate dynamic and complex chemistry processes in the upper atmosphere, and can be useful in relating to the topic of luminosity and persistent meteor trains is discussed in the next section. Meteoric metals also play a role in the formation of
sporadic E layers, which can be described as thin layers of metallic ions, typically 1-3 km wide, occurring above 90 km altitude. These phenomena significantly impact radio communication and take place because neutral iron atom reacts with ionized $\mathrm{O}_{2}{ }^{+}$where subsequently Fe will photo-ionize and lose electrons thus contributing to the formation of intermittent dense layers of electrons in the specific region of the atmosphere which have been defined as sporadic E layers in the text above. Taking an illustrative example of the Fe and Mg , which represent the dominant meteor metal ion concentration well, the schematic drawing of the chemical iron and magnesium cycle (Figure 2.29a,b), in and around the meteor trail, is shown below. Correspondingly Fe, Al, and Ca have similar chemical cycles and now it is possible to glance at the complex system of the meteoric metal chemistry. Whalley et al. (2011) studied kinetics of $\mathrm{Mg}+$ and Mg containing reactions with $\mathrm{O}_{3}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. Of particular interest for this thesis are the reaction rates and energies involving O_{3}. An important observation had been made suggesting that the reaction between Mg^{+}and O_{3} occurs at the Langevin capture rate and are temperature independent, and the rate coefficient for the mesospheric region was determined to be $\mathrm{k}(190-340 \mathrm{~K})=(1.17 \pm 0.19) \cdot 10^{-9} \mathrm{~cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$. Plane and Whalley (2012) treated Mg kinetics extensively in a comprehensive laboratory treatment of the full spectrum of magnesium chemistry, reproducing the conditions in the upper atmosphere. They have obtained a new set of rate coefficients relating to the reactions of magnesium oxide, magnesium dioxide and MgCO_{3} with neutral atomic oxygen. Moreover, these results indicate a significantly more important role of O_{2} in the mesosphere where it initiates holding cycles by recombining with radical species such as MgO_{2}. Finally, they had presented a new atmospheric model that can explain the Mg chemical cycle, which corresponds well to physical observations of Mg related atmospheric structures such as Mg layers and their seasonal variations.

The work by Whalley et al. (2011) and Plane and Whalley (2012) confirmed the previously established fact that ozone is the most efficient removal agent of meteoric metal ions. It should be noted at this point that all the above discussion was primarily about equilibrium processes. In addressing the non-equilibrium meteor train chemistry, one should be aware of temperatures in the meteor train and the energies of both electrons and ions discussed earlier in the text.

Figure 2.29: a) Fe chemistry in the MLT. Black arrows: reactions with measured rate coefficients; red, blue, brown arrows indicate reactions which need laboratory study. (Plane, 2012). b) Schematic diagram of magnesium chemistry in the upper mesosphere/lower thermosphere region. Major magnesium species are shown in boxes with bold outlines. Important reaction pathways are indicated with thicker arrows. Reactions with measured rate coefficients are indicated with solid arrows; broken arrows indicate pathways for which rate coefficients are estimated or fitted. Note the role of O_{2} in the $\mathrm{MgO}_{2}-\mathrm{O}_{2} \mathrm{MgO}_{2}-\mathrm{OMgO}_{2}$ and $\mathrm{MgOH}-\mathrm{HOMgO}_{2}-\mathrm{OMgOH}$ holding cycles (Plane and Whalley, 2012).

2.7 Initial Temperature of the Meteor Wake and Trail - An Indication of Hyperthermal Chemistry

New studies are offering improved understanding of the dynamic evolution of small meteoroids in the Earth's atmosphere, with important chemical implications (Jenniskens et al., 1998). Remarkably, it was observed experimentally (using spectral techniques) (Borovicka, 1994) and modeled theoretically that a small meteoroid produces very high
temperatures in its immediate wake (Boyd, 2000; Popova et al., 2000; Jenniskens et al., 2000). While the observation indicates temperatures of up to 10000 K (Borovicka and Jenniskens, 1998), it is reported that the new models predicts time dependent temperatures of about 6300 K at 10 m behind the main meteoroid mass, and 3400 K at the distance of about 40 m from the meteoroid (Jenniskens and Stenbaek-Nielsen, 2004). The new model (Boyd, 2000) shows that the ablation vapor cloud resulting from collisional sputtering travels along with the meteor, determines the size of the meteor wake, and dramatically increases the collision cross-section of the meteoroid (Jenniskens and Stenbaek-Nielsen, 2004). Photographic evidence from the meteor of visual magnitude $\mathrm{M}_{\mathrm{V}}=-3$ (Figure 2.30), studied by Jenniskens and Stenbaek-Nielsen (2004) using a high speed intensified CCD imager, showed the existence of much slower infrared cooling, in addition to the observation of the forbidden green line emission of OI at $5577 \AA$ with a short lifetime, discussed in the next section. This is contrary to the model of rapid cooling obtained by Boyd (2000). However, Jenniskens and Stenbaek-Nielsen (2004) observed much lower temperatures of 4300 K from the meteor spectra, which is significantly lower than either models or previous observations. Furthermore, they detected metallic ions such as Mg I having high energy states (5.11 eV in the case of Mg I). This is significant for the existence of hyperthermal chemistry, which is one of the topics of this thesis. Further implications of the Jenniskens and Stenbaek-Nielsen (2004) work was to document the peculiar phenomenon (Figure 2.31) of the vapour "shield" (shock like structure) of a significantly larger radius than the meteoroid, moving along through the atmosphere with it, and consequently not only affecting the size of the initial radius, but also the ablation coefficient and the behaviour of the shockwave and thermal envelope around the initial radius. This subject of the newly observed shock like structure had been further considered by Stenaek-Nielsen and Jenniskens (2004). They estimated dimensions of this peculiar phenomenon to be up to several hundred meters in diameter. It developed gradually with height (initial altitude of 110 km) and it was observed to be proportional to the meteor brightness. Comparison of the observation with high speed images other three meteors recorded with this camera system showed that the shock like structure does not manifest with faint events. They, however, had not identified the process that is responsible for the formation of this previously unobserved phenomenon.

Observations of the phenomena confirmed the results obtained by model (Boyd, 2000), which showed an ablation vapour cloud about ten times bigger than the meteoroid. Application of the Popova et al. (2000) model suggests that the wake should be 6 m in diameter if Boyd's initial radius of the shock structure is taken to be 19 cm .

Figure 2.30: The intensified TV images of meteor of visual magnitude $\mathrm{M}_{\mathrm{V}}=-3$ studied by Jenniskens and Stenbaek-Nielsen (2004).

Figure 2.31: The images show meteor evolution and development of the meteor morphology at 1000 frames/s. The gas "shield" cap in front of meteor head has important implications regarding the ablation efficiency, initial radius and shock and thermal envelope around the meteor trail. The intensified TV images of meteor of visual magnitude $M_{V}=-3$ studied by Jenniskens and Stenbaek-Nielsen (2004).

Figure 2.32 shows the rendering of the different scales of the observed structure. A very interesting concluding comment by Stenbaek -Nielsen and Jenniskens (2004) suggests the role of UV ionization in formation of this phenomena.

Figure 2.32: Three scale-sizes of physical phenomena in the Leonid meteor images. Top section of figure shows the meteor vapor cloud calculated by Popova et al., 2000. The center section shows the meteor wake calculated by Boyd, 2000. These models do not describe the UV-induced halo and shock-like structure seen in the high frame rate imager (bottom) (Stenaek-Nielsen and Jenniskens 2004).

Spectral measurements indicate that the values of the metal atom excitation temperature are in the range of 3000 K to 5500 K , and do not have a meteoroid mass or velocity dependence (Jenniskens et al., 2004). The highest temperature in the meteor wake has been deduced by Ceplecha (1971) from analysis of OI curve growth and from nitrogen lines. Borovicka (1994) had shown that based on the OI (7774 A) spectra, that the temperatures in the range of 10000 K are most common in bright meteors, especially in the region of the meteor head and immediate wake. Jenniskens et al. (2004) found that for meteoroid masses above $10^{-5} \mathrm{~g}$, which is the lower mass limit for "hot" meteors, temperature does not change dramatically with increasing mass. While it is well understood that meteoric plasma heating results from collisions with the ambient air, Jenniskens et al (2004) indicated that during the radiation emissions from the meteor trail, there is still translational velocity difference in excess of $5 \mathrm{~km} / \mathrm{s}$, between air plasma and the ambient air in the direction along the meteor path. Subsequently, the cooling process in the meteor trail is conducted primarily through the collisional energy transfer and through radiative processes. Jenniskens et al. (2004) showed indeed that even small underdense meteors will have temperature of about 4500 K in their wakes and around the head region. Moreover, this temperature range is favourable for hyperthermal chemical reactions, where the energy input is required for reaction to proceed.

One of the most important publications in the area of the meteor train chemistry (Berezhnoy and Borovicka, 2010) explored the formation of the molecules in bright meteors. From discussions of the meteor physics covered in previous sections, it can be recognized that immediately in the meteor wake and during and post initial meteor trail radius formation, the collisional rate is rapidly decreasing and the level population is not kept at equilibrium (Borovicka and Jenniskens, 2000). During the "bright meteor" phase, the hydrodynamic time scale, defined as the typical lifetime of ablated meteoroid atom/ion/matter in the emitted region which can also be recognized as the relaxation time scale, is also a function of height and meteor trail density (see Baggaley and Webb, 1977), and based on the work of Borovicka and Jenniskens (2000) it can be estimated for large overdense meteors in the mid-atmosphere at 0.05 s for the 4000 K and 0.1 s for the 2000 K temperature. The hydrodynamic time scale is proportional to the radius of the meteor (Berezhnoy and Borovicka, 2010). The chemical time scales for the temperature
of the bright meteor radiation $(\sim 5000 \mathrm{~K})$ are $10^{-4} \mathrm{~s}$. However, at heights above 80 km , in early stages of the meteor trail formation, "chemical equilibrium" (generally referred to as local thermodynamic equilibrium or LTE) cannot be reached when a hydrodynamic time scale is too short $\left(\sim 10^{-3} \mathrm{~s}\right)$ and the emitted region is still lower than 4000 K . Therefore in the meteor region, the oxide formation is expected to occur in the cooling stages (Figure 2.33) of the initially "hot" trail around 2000-3000 K (Berezhnoy and Borovicka, 2010). The temperature at the point of the peak abundance of molecules and the relative abundance of metal oxides will decrease with decreasing pressure.

Figure 2.33: Time scales of chemical reactions involving metal-containing species for the case of cooling of a high-altitude Leonid meteoroid of CI elemental composition. Pressure is $4 \times 10^{-5} \mathrm{bar}$, altitude is 80 km . Air-to-meteoroid vapor mass ratio is 30 . Symbols $\mathrm{CaO}(\mathrm{f}), \mathrm{AlO}(\mathrm{d}), \mathrm{AlO}(\mathrm{f}), \mathrm{MgO}(\mathrm{f}), \mathrm{FeO}(\mathrm{f}), \mathrm{FeO}(\mathrm{d})$, and $\mathrm{SiO}(\mathrm{f})$ represent reactions $\mathrm{Ca}+\mathrm{O}_{2}=\mathrm{CaO}+\mathrm{O}, \quad \mathrm{AlO}+\mathrm{O}=\mathrm{Al}+\mathrm{O}_{2}, \mathrm{Al}+\mathrm{O}_{2}=\mathrm{AlO}+\mathrm{O}, \quad \mathrm{Mg}+\mathrm{O}_{2}=\mathrm{MgO}+\mathrm{O}$, $\mathrm{Fe}+\mathrm{O}_{2}=\mathrm{FeO}+\mathrm{O}, \mathrm{FeO}+\mathrm{O}=\mathrm{Fe}+\mathrm{O}_{2}, \mathrm{Si}+\mathrm{O}_{2}=\mathrm{SiO}+\mathrm{O}$, respectively. Hydrodynamic time scales are also given (Berezhnoy and Borovicka, 2010).

In principle, there are no appreciable mutual reactions between ablated meteoric constituents, therefore the ratios of metal oxide to metal in the meteor train is
independent of the abundance of other metals in the meteor trail and meteoric composition (McNeil et al., 1998; Berezhnoy and Borovicka, 2010). A critical observation made by Berezhnoy and Borovicka (2010) indicates that at 80 km , the ratio of FeO and Fe is about 10^{-5} (Borovicka and Spurny, 1996). That makes sense for strong overdense meteors as the initial formation of FeO does not come from O_{3}; in fact it comes from reactions with the ground and excited O_{2} that is formed by as a result of thermal and photo dissociation of ozone in the immediate vicinity of the meteor head and trail, as it will become evident in Chapters 4 and 5. One should consider that Borovicka and Spurny (1996) were observing strong bolides (electron line density $>10^{19} \mathrm{~m}^{-1}$, according to Sugar (1964)). Consequently, the ratio they obtained corresponds to ozone density in that region $\left(\sim 10^{14} \mathrm{~m}^{-3}\right)$. The importance of this observation will soon be clear. Berezhnoy and Borovicka (2010) concluded that the metal oxides are the most abundant in the temperature range of $2000-2500 \mathrm{~K}$.

The rather indirect evidence from a wide spectrum of literature clearly proves the existence of a hyperthermal chemistry regime in the formation stages of the meteor trail. On such short time scale, there are only very limited number of endothermic chemical reaction that can occur that fast (Dressler, 2001). These hyperthermal chemical reaction(s) and their implications and applicability are the main topic of this work and will be discussed in the upcoming chapters.

2.8 Meteor Spectra

The study of meteor spectra is a fairly mature field of meteor study, with original observations starting in the 1860s by English astronomer Herschel (Millman, 1963). Spectral research of meteor phenomena was accelerated post World War II, reaching its peak in the 1960s and 1970s. For a historical reflection, the reader is referred to the review by Millman (1963) and Ceplecha (1968). Early on, an abundance of various spectral lines was observed, with a few surprising discoveries such as the forbidden OI green line. Accordingly, the discussion in this section is intentionally initiated by reviewing the problem of the oxygen forbidden green line emissions as it has a significant implication on the work in this thesis. However, the meteor spectra are a far broader area of study, and this review cannot do justice to the immense body of work done in the past
century or so. Nevertheless, the hope is to give the most relevant and important aspects of the research, through which the work and results in this thesis can be judged.
"Forbidden" atomic transitions simply imply that they are disallowed for electric dipole radiation, which is the most efficient mechanism. However, according to classical theory, forbidden transitions have small probabilities to occur spontaneously if the atom or molecule is raised to an excited state. This discussion is focused on the forbidden oxygen lines observed from the meteor column. Table 2.6 below gives the forbidden transitions for the natural oxygen atom.

Table 2.6: The forbidden transitions, wavelengths and lifetimes for natural oxygen (Baggaley, 1976c).

Forbidden transitions in OI		
Transition	Wavelength, \AA	Lifetime, S
$\begin{aligned} 2 p^{4} \quad{ }^{1} D_{2} & \rightarrow 2 p^{4}{ }^{3} P_{2} \\ & \rightarrow{ }^{3} P_{1} \\ 2 p^{4} \quad{ }^{1} S_{0} & \rightarrow 2 p^{4}{ }^{3} P_{1} \\ & \rightarrow{ }^{3} P_{2} \\ 2 p^{4} \quad{ }^{1} S_{0} & \rightarrow 2 p^{4}{ }^{1} D_{2} \\ 2 p^{3} 3 s{ }^{5} S_{2}^{0} & \rightarrow 2 p^{4}{ }^{3} P_{2} \\ & \rightarrow{ }^{3} P_{1} \end{aligned}$	$\begin{aligned} & 6300 \cdot 3 \\ & 6363 \cdot 9 \\ & 2972 \cdot 3 \\ & 2958 \cdot 4 \\ & 5577 \cdot 3 \\ & 1355 \cdot 6 \\ & 1358 \cdot 5 \end{aligned}$	$\begin{aligned} & 1.96 \times 10^{2} \\ & 6.10 \times 10^{2} \\ & 14.9 \\ & 2 \cdot 7 \times 10^{3} \\ & 0.74 \\ & 7.7 \times 10^{-4} \\ & 2.5 \times 10^{-3} \end{aligned}$

The origin of the $5577 \AA$ spectral line $[O(1 S) \rightarrow O(1 D)]$, observed at meteor heights by Halliday (1960) and Millman (1960) in very bright meteors, and lasting only up to one second, is of the great importance to meteor studies. It was determined that the presence of the oxygen green line in meteor trains was strongly related to meteor velocity (Baggaley, 1977a). The observed lifetime is in line with theoretical radiative lifetime of the transition $O(1 S) \rightarrow O(1 D)$. This observation was initially controversial as the $5577 \AA$ green line is dominantly a feature of the middle thermosphere auroral phenomena. While Halliday (1960) did not offer any explanation for the observed phenomenon, several
authors, such as Baggaley (1976c) attempted to explain the detected spectra, suggesting high energy electron collisions with ground state atomic oxygen as the excitation agent.

$$
\begin{equation*}
e+O(3 P) \rightarrow O(1 S) \rightarrow e \tag{2.86}
\end{equation*}
$$

Here the energy threshold of 4.18 eV is required for the reaction to proceed (Henry et al., 1969). It must be noted that the maximum cross section for this collision ($2 \cdot 10^{-18} \mathrm{~cm}^{2}$) is a function of energy in this case and is obtained around 9 eV . The other mechanism is a collision with molecular oxygen:

$$
\begin{equation*}
e+O_{2} \rightarrow O+O(1 S)+e \tag{2.87}
\end{equation*}
$$

where in this case the energy threshold is 9.29 eV (Henry et al., 1969) with the maximum cross section obtained at around 25 eV (Baggaley, 1976c).

Baggaley (1976d) also offered the possibility of nitrogen collisions with oxygen, first suggested by Parkinson and Zipf (1970). Another proposed mechanism is energy transfer from excited molecular oxygen (Figure 2.34), chemical reactions such as a triple oxygen recombination, atom exchange in nitric oxide, neutralization and finally dissociation of molecular oxygen ions (Baggaley, 1976c). It is the last process that is of particular interest in this thesis.

Figure 2.34: a) Excitation energies and states of the atomic oxygen, with transition wavelength and radiative life times outlined. b) Possible routes for the loss of atomic oxygen ionization energy (Baggaley, 1980).

One peculiar feature of the green line spectra, and the one with potentially significant implications, is the set of intermittent observations that show the delayed onset of the 5577 Å line, where the maximum intensity will occur at a fraction of a second after the meteor train formation (Baggaley and Cummack, 1977). This behaviour indicated the existence of some kind precursor mechanism prior to the production of $O(1 S)$. A numerical model of production of $\mathrm{O}(1 \mathrm{~S})$ was performed by Baggaley and Cumack (1977) where they considered collisional processes with O^{+}as highly reactive and abundant species in the meteor trail and ground state oxygen and nitrogen.

The reactions used in the model can be written as follows:

$$
\begin{aligned}
& O^{+}(4 S)+O_{2}\left(X^{3} \sum_{g}^{-}\right) \rightarrow O_{2}^{+}\left({ }^{2} \pi_{g}\right)+O(3 P)+1.55 \mathrm{eV} \\
& O^{+}(4 S)+N_{2}\left(X^{1} \sum_{g}^{+}\right) \rightarrow N O^{+}\left({ }^{1} \sum\right)+N(4 S)+1.10 \mathrm{eV}
\end{aligned}
$$

where $O_{2}\left(X^{3} \sum_{g}^{-}\right)$and $N_{2}\left(X^{1} \Sigma_{g}^{+}\right)$are ground states of oxygen and nitrogen respectively. The excited oxygen and nitrogen are given by $O_{2}^{+}\left({ }^{2} \pi_{g}\right)$ and $N O^{+}\left({ }^{1} \Sigma\right)$.

Then the radiative recombination is written as:

$$
O^{+}(4 S)+e \rightarrow O+h v
$$

While this theoretical treatment of the $5577 \AA$ green line emission may not have illuminated the full complexity of the process behind it, the results of the simulation were in line with experimental observations and show for instance that the lifetime of the green line ranges from 0.03 s at 90 km and goes up to 0.6 s at 120 km , corresponding closely with experimental findings. Furthermore, the additional observational campaigns of the meteor green line emission indicate that a two-step charge exchange involving meteoric O^{+}is the likely mechanism responsible for its formation (Baggaley, 1977b).

Moreover, the commonly observed range of orange-red emission 5900-6500 A cannot be atomic in nature, in contrast to the regular meteor spectrum, since any long wavelength multiplets of meteoric atoms or ions would be dominated by stronger multiplets in the blue (Baggaley, 1975a). Baggaley (1977a) argued clearly for the chemical production of excited species. Additionally, the forbidden $\mathrm{O}(1 \mathrm{D})$ line (6300$6364 \AA$) is prominent in the middle and upper thermosphere where it has a lifetime of
~ 100 s in auroras, and it should not exist below 100 km due to collisions with atomic nitrogen, but it has been continuously observed in meteor spectra. Poole (1979) had shown however that dissociative recombination of oxidized meteoric ion with free electrons is the main process responsible for the luminosity of meteor trains.

In principle, meteor spectra consist of individual emission lines of common chemical elements, including both neutral and singly ionized. The atomic lines identified in meteor spectra belong to $\mathrm{H}, \mathrm{Li}, \mathrm{N}, \mathrm{N}^{+}, \mathrm{O}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Mg}^{+}, \mathrm{Al}, \mathrm{Si}, \mathrm{Si}^{+}, \mathrm{Ca}, \mathrm{Ca}^{+}, \mathrm{Ti}, \mathrm{Ti}^{+}, \mathrm{Cr}, \mathrm{Cr}^{+}, \mathrm{Mn}$, $\mathrm{Fe}, \mathrm{Fe}^{+}, \mathrm{Co}, \mathrm{Ni}$, and Sr (for the review of the elemental spectra see Bronshten, 1983; Ceplecha et al., 1998). The great contributions to the field in regard to meteor train spectra were made by Millman (1952), Öpik, (1958), Ceplecha (1968) and a great many others who cannot justifiably be listed here. A historical note and quantitative discussion of meteor spectra can be found in Bronshten (1983). While large atomic and molecular spectral lines had been observed from meteors (and discussed in detail by Bronshten, 1983) the meteor spectrum is dominated by Fe and Mg bands and FeO and MgO oxides, especially in the meteor "wakes" (Ceplecha, 1971). Meteor spectra can be classified in terms of their temporal and spatial origin, as the brightest spectral bands will be observed from the meteor head and the weakest from the meteor trail at some time following the extinction of luminous phenomenon (Borovicka, 1994). A More comprehensive classification scheme was devised by Millman (Millman and McKinley, 1963) according to which lines are the brightest. The four main types are:

Type Y - H and K lines of Ca II (3968 and $3934 \AA$) are the strongest.
Type \mathbf{X} - the Na I or Mg I lines are the strongest.
Type Z - the Fe I or Cr I are the strongest.
Type W - none of the above.
The review by Ceplecha et al. (1998) discusses this in more detail. Another critical application of the meteor spectra is the ability to derive estimates of both electron and elemental densities as well as to measure temperatures of the meteor (Borovicka, 1993, 1994).

In a broad study of sporadic meteors, Borovicka et al. (2005) had shown that only a minority of meteorites show chondritic composition and surprisingly concluded that the iron meteoroids prevail among the millimeter sized particles impacting Earth's atmosphere. Reasonably strong ultraviolet radiation from the study of meteor spectra was detected by Abe et al. (2007) while a previous study by Abe et al. (2004) detected very strong UV emissions, in particular at $3534 \AA$, which corresponds to N_{2}^{+}and a temperature of 10000 K . A spectral measurement of the relatively small masses ranging from 10^{-6} to $10^{-3} \mathrm{~kg}$, equivalent to visual magnitudes ranging from +3 to -4 has yielded evidence of high temperatures ranging from the 4500 to 10000 K (Borovicka et al., 1999). Prior to that, Borovicka (1994) determined that the source of 10000 K temperature comes from the meteor head region (Ca II lines), and that it only corresponds to 0.02% of the total vapour volume in a small meteor and extends up to 5% in larger events. He had suggested that the high temperature region probably corresponds to the meteor shock wave. Detection of FeO in the in the persistent meteor trails showed clearly the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms in the long lasting meteor trains (Jenniskens et al., 2000).

2.8.1 Sources of Long Lived Meteor Emission

Long lasting meteor trains in the MLT region are a window into upper atmosphere chemistry (Jenniskens et al., 2000). The persistent luminosity and red afterglow in the meteor trains, which may last for 1 s to 20 s between $80-90 \mathrm{~km}$ altitudes, following the initial trail formation, has not been completely understood. Luminous phenomena observed in the bright meteor wake for a relatively brief time, and determined to be a function of the initial electron density of the meteor, are generally explained in the early literature in terms of the collisional excitation. Observational evidence (Figure 2.35) and theoretical models clearly point out that most of the chemistry that causes luminous phenomena and long lived meteor trains occurs in the region of the outer boundary of the meteor train cross-section.

Figure 2.35: Three cross-sections through the persistent train at an altitude of 86 km , showing the modeled emission intensity at times 50s (bottom), 100s and 150s after the meteor. The 100 and 150 s sections have been displaced upward by 500 and 1000 m , respectively, for the purpose of presentation. The central emission patch visible at 50 s and 100 s is due to [OI] emission, the outer ring is due to chemiluminescence from metal atom reactions with ambient ozone (Jenniskens et al., 2000).

The immediate spectrum of the meteor trail is dominated primarily by $\mathrm{Fe}, \mathrm{Mg}, \mathrm{O}, \mathrm{Si}$ and Na ions formed during initial high energy collisional processes, with average energy levels of 5 eV (Baggaley, 1975a). The main spectral contribution of the long lasting luminous phenomena is observed during early observations (Liller and Whipple, 1954) to be in the long wavelength range of orange and red (Figure 2.36). Baggaley (1975d) has treated the subject extensively, reviewing possible sources of the afterglow, and concluded that the emission from various chemiluminescent afterglow processes in atmospheric gases alone would be several orders of magnitude too low to account for the observation from luminous meteor trains. Furthermore, he suggested that the likely source of afterglow luminous phenomena in the meteor trail comes from the chemical reactions involving meteoric species.

In important studies, Baggaley (1976b) and Poole (1978) have concluded that reduction of meteoric oxides, formed in reaction with ozone, is the main source of the long lived
meteor train luminosity and radiation. Earlier investigation showed that the additional role of nitric oxide in chemiluminescent processes is not sufficient to count as a primary source of meteor train luminosity (Baggaley, 1975b). Subsequent work however suggests that sodium and ozone reactions are important for extremely long lived meteor emissions with initial visual magnitude $\mathrm{M}_{\mathrm{v}}<-10$ (Baggaley and Cummack, 1979).

Figure 2.36: The infrared, visible and UV spectra and wavelengths. (Credit: nature.berkeley.edu)

2.9 Meteor Head

In simple terms, a spherical large cross-sectional area in front of the hypervelocity meteor that propagates with the same geocentric velocity along with it, and reflects radio signals, is defined as a head echo. The opening sentence and definition at the beginning of this section, is intentionally vague as it is intended to illustrate to the reader the illusiveness of the meteor head echo phenomena. While the meteor echo was first observed in 1947 by Hey et al. (1947) and definitely recognized and acknowledged by McKinley and Millman in 1949, a large body of research since then has not yielded many satisfactory answers regarding the formation, origins and overall behaviour of meteor head echoes. Moreover, the mechanism of the scattering of radio signals from the meteor head is not yet
completely understood. Early on it was recognized that the phenomenon is closely associated with bright meteors and that the radar cross-section of the target is very large (many hundreds of m^{2} according to Cook and Hawkins (1960)) in comparison to the meteoroid size which may be only a few cm in diameter. Additionally, the meteor head echo peak occurs in the region of the ionization curve maxima (McIntosh, 1963). At this point one might be tempted to draw parallels to the high speed photographic image of meteor head captured by Jenniskens and Stenbaek-Nielsen (2004) shown in the previous section. However, that parallel will be explored in upcoming chapters. To explain this, McKinley and Millman (1949) had suggested a hypothesis to account for the ionization of the large area in front of the meteor. They proposed that fast moving and ablating meteoroid acts as the source of intense ultraviolet radiation which ionizes a significant region surrounding the meteoroid. The primary criticism of their hypothesis rested on the fact that at that time there was no known recombination process which would remove electrons rapidly enough to yield an effective "moving ball" target (McIntosh, 1962). Cook and Hawkins (1960) examined McKinley and Millman's (1949) hypothesis, and after mathematical and theoretical treatment, they concluded that photoionization from the region of meteor head can be responsible for the head echoes observed by radar. The new theory of meteor head echoes based on diffraction (Browne and Kaiser, 1953) suggested that the head echo is due to diffraction at the discontinuity in ionization at the end of the ionized column. In that case, the echo amplitude intensity is given by extending the Fresnel diffraction pattern for a considerable distance along the trail, where the echo is expected to fall very rapidly. That had been shown not to be the case (McKinley, 1955), thus Browne and Kaiser's (1953) theory had been proven not to be valid. Moreover, McKinley (1955) showed that ionization persists for only 10^{-3} to 10^{-4} seconds after the passage of the meteor. The further uncertainty in meteor head echo treatment was introduced when Greenhow (1961) suggested that meteor head echo may persist for many seconds after the meteor passage. He had also proposed that the explanation for the head echo can be understood on the basis of a rough or broken electron trail had been addressed by McIntosh (1962) who showed that Greenhow's interpretation did not correspond to true meteor head echoes. Jones and Jones (1997) observed meteor head echoes with visual magnitudes as low as $\mathrm{M}_{\mathrm{v}}=+4$. Their most
significant findings can be summarized as follows: a) every visual meteor produces a head echo; b) the scattering areas associated with the head echoes seem to be distributed approximately as a truncated power law such that the minimum or cut-off scattering area is of the order of less than $1 \mathrm{~m}^{2}$.

The study of the meteor head echo was to an extent reinvigorated during the 1990s (e.g. Pellinen-Wannberg and Wannberg, 1994; Pellinen-Wannberg et al., 1998) and the applications of the observations of meteor head echoes range from velocity determinations of a meteor to calculating meteor plasma density and meteoroid mass from the head echo scattering (Close et al., 2004).

For analytical treatment of the meteor head, it can be assumed that the head plasma density behaves as a Gaussian function and that the radius of the head plasma depends on altitude and scales with the atmospheric mean free path and meteoroid speed (Close et al., 2004). Moreover, it can be assumed that the reflecting component of the head plasma can be approximated as spherically symmetric (Figure 2.37). Experimental data obtained by Close at al. (2002) indicates that the meteor head scattering results from overdense plasma scattering. In addition, Close et al. (2002) showed that at lower altitudes, where the mean free path is small, the radar cross section (RSC) of the head echo will be proportionally smaller.

Figure 2.37: Illustration of how electron density theoretically varies as a function of distance from the meteoroid. The solid white center represents the meteoroid, the shaded portion denotes the region where the electron density increases, and the subsequent dark rings show how the electron density decreases with radius. By assuming overdense reflection, the ultra high frequency (UHF) wave (higher critical frequency) penetrates
further into the meteoroid than the very high frequency (VHF) reflection, thus explaining the lower UHF RCS (radius of head echo) (Close et al., 2002).

A comparison of very high frequency (VHF) meteor radars and ultra-high frequency (UHF) systems shows that head echo target is significantly larger for VHF, because waves with smaller wavelengths penetrate deeper into plasma. Experimental observations indicate that the number of electrons ahead of the meteoroid correspond to the number of electrons in the line density in the trail left behind the meteor (Pallinen-Wannberg, 2005).

2.10 Physical and Chemical Properties of Upper Mesosphere and Lower Thermosphere (MLT) Region

The atmosphere is both a dynamically and chemically complex system (Smith, 2012). The vertical layers are distinguished based on their physical properties such as temperature, pressure and consequently density. This picture gets exponentially more complicated when one considers dynamical aspects such as winds, turbulence and the range of wave phenomena on one side and complex chemistry and photochemical effects on the other. To fully understand the atmosphere, one needs to understand the "orderly chaos". For the purpose of this work the intricacies of the main part of atmosphere below 75 km will not be considered. Much work has been done in the past and much work remains to be done in the future. Rather than reference individual papers, the reader is pointed to several books that would introduce the complex subject of atmospheric physics and chemistry (Salby, 1996; ed. Hewitt and Jackson, 2008; Seinfeld and Pandis, 2012). In this work, the primary concern revolves around understanding the physics and chemistry of the upper mesosphere and lower thermosphere (MLT) which is commonly known as the meteor region.

As the name suggests, the ionosphere, which could be considered weakly ionized plasma, is characterized by the presence of ions and electrons, the latter ones in sufficient concentration that they affect the propagation of radio signals. The term was first used by Watson-Watt, one of the early radar developers, in 1926. In general, the ionized region extends from about 50 km to 1000 km altitude (Pavlov, 2012). The electron concentration is primarily a function of the height and radiation budget (Kelly, 2009), however, many other factors may contribute to variation in electron densities. For ground based sources
of radio waves, the ionosphere exhibits properties of a reflector, contributing significantly to the evolution of radio communications in the past. The term ionosphere encompasses the regions of the upper mesosphere and the lower thermosphere, a region between the heights of $75-110 \mathrm{~km}$ (Figure 2.38). It is considered the boundary between the atmosphere and space (Plane, 2003) and the region of energetic coupling between the neutral and ionic regions of the atmosphere (Plane, 1991).

Figure 2.38: An average temperature profile through the lower layers of the atmosphere. Height (in miles and kilometers) is indicated along each side. Temperatures in the thermosphere continue to climb, reaching as high as $2000^{\circ} \mathrm{C}$ (Credit: National Weather Service).

This region is of particular interest in meteor research as most meteors are detected at these altitudes, where they exhibit highest ionization and ablation. It is also a very
dynamic and energetic region, as gravity and planetary waves and atmospheric tides deposit energy from the direction of the Earth's surface, while high energy input in the form of solar electromagnetic radiation and wind also comes from the space. MLT is also the coldest region in the Earth's atmosphere with temperatures average of 140 K during the summer season (Stickland, 1972; Plane, 1991). The main cause for such counterintuitive behaviour is the adiabatic expansion of the mesosphere. The anatomy of the underlying forces that cause such low temperature in the MLT region can be explained in terms of gravity waves propagating upward from the troposphere. As they travel upward, the wave amplitude increases with the exponentially decreasing pressure, and around $80-90 \mathrm{~km}$ in altitude, waves become unstable and break, depositing the energy and momentum in that region of MLT. This results in a drag effect on zonal winds, affecting a southward meridional flow. Consequently, the upwelling air at northern latitudes which feeds this meridional flow is cooled by adiabatic expansion.

Above 90 km , in the thermosphere, temperatures increase rapidly, reaching 1000 K . However, it must be remarked that this is the kinetic temperature where the vibrational and rotational modes of molecules are not in local thermodynamic equilibrium (LTE) as a result of very low pressure (Plane, 2003). Low pressures in the MLT will affect mean fee paths where for example at 110 km altitude, the mean free path is around one meter. Accordingly, molecular diffusion is the dominant dispersion mechanism. Moreover, the height of about 105 km is defined as the actual boundary between Earth and space, and is referred to as the turbopause. Above 75 km , atomic oxygen O has the highest mixing ratio (Jacob, 1999) (Figure 2.39), and therefore is the most dominant reactive species at these altitudes (Plane, 2003). It also exhibits a strong diurnal variation similar to O_{3}, as a result of the O_{2} photolysis rate variation.

A high plasma concentration above 70 km is due to a strong influx of solar photons that have enough energy to ionize the regional constituents. $\mathrm{The}^{+}{ }_{2}$ and NO^{+}, formed by photoionization, are dominant above 95 km , while below that, at altitudes $70-95 \mathrm{~km}$ negative ions are abundant. O1S and O1D are formed via photolysis of O_{2}, below and in the Schumann-Runge continuum (1300-1950 \AA) and the Schumann-Runge bands (17501950 Å) (Figure 2.40).

Figure 2.39: Vertical profiles of the mixing ratios of atmospheric constituents in the mesosphere and lower thermosphere: (a) species with no diurnal variation; (b) reactive species with significant diurnal variations, where broken lines indicate the nighttime profiles. Profiles calculated using the UEA 1-dimensional mesospheric model for $40^{\circ} \mathrm{N}$ in January (Plane, 2003).

Figure 2.40: Potential energy curves for ground and first four excited states of $\mathrm{O}_{2} . \mathrm{S}-\mathrm{R}=$ Schumann-Runge system, $\mathrm{H}=$ Herzberg continuum, A-A $=$ atmospheric bands (originally published by Gaydon, 1968 and adopted from Finlayson-Pitts and Pitts, 1999).

Moreover, above 100 km , in the lower E region, electrons also exhibit diurnal variation because at those altitudes, the primary source of ions and electrons are solar X-rays and extreme ultraviolet radiation with a wavelength less than $1030 \AA$. It should be noted that in the D region which stretches from 50 km to 95 km (Figure 2.41), due to increased atmospheric density relative to the MLT region, the overall chemistry including the ion chemistry is very complex, and it is beyond the scope of this review. The text by Finlayson-Pitts and Pitts (1999) and the articles by Plane (2003) and Smith (2004) give substantial reviews of the D region chemistry. As indicated in the previous section, the MLT region also hosts the metallic layer which further complicates things chemically. Thus, it is apparent at this stage that combining and understanding the meteor chemistry in the ionospheric setting is a formidable task.

a)

Figure 2.41: a) The ionosphere has layers called D, E, F1, and F2 with the D-layer being the lowest. Depending on whether it's night or day and on intensity of solar radiation these layers can reflect (E, F1, and F2) or absorb (D and E) radio waves. b) The altitudes corresponding to the specific ionospheric layer (Images adopted from online sources: http://tymkrs.tumblr.com/post/4838083914/21-ionosphere-ham-lesson-o-de-day and www.faxswitch.com, respectively).

2.11 Ozone

Ozone is perhaps the most important minor constituent of the atmosphere. When at ground level in gaseous form, it is very toxic; impacting harmfully both flora and fauna. However, ozone plays a critical role in the middle and upper atmosphere as a shield against harmful UV radiation, thus protecting the terrestrial ecosystem (Blake and Carver, 1977). It is also a major contributor in atmospheric chemical processes, and because of its optical and chemical properties, ozone affects the thermal structure and dynamics of the atmosphere (London, 1980). Moreover, ozone is responsible for the chemical evolution of the whole atmosphere on a long term geologic scale (Hunten and Strobel, 1974), and probably a significant factor in the evolution of life on Earth in its present form. It consists of three atoms of oxygen bound together and is very reactive and unstable. Ozone is also pale blue in colour (gaseous from) and has a very distinctive odour hence its name is derived from the Greek word ozein (to smell). It exhibits the highest concentration in the stratosphere.

A sudden increase of ozone concentration in the region of the upper mesosphere and lower thermosphere, with maxima between 85 and 90 km , defies the theoretical
prediction of ozone decrease with increasing height and it is better known as the secondary ozone maximum. Its existence has been known since 1970 (Evans and Llewellyn, 1972; Hays and Roble, 1973 and Miller and Ryder, 1973). On an important note, ozone is the most dominant reactive species in the MLT (Smith et al., 2013).

However, a secondary ozone maximum in the MLT region is in a no man's land, at least in terms of attention of the scientific community. While the lower atmosphere has been extensively studied during the last century, and the exosphere is a domain of satellites, this particular "middle region" has received the least amount of attention in atmospheric literature. That is because the altitude is too high for effective use of stratospheric measurement techniques and too low for in situ satellite measurements (Allen et al., 1984). Mesospheric ozone exhibits strong diurnal (Vaughan, 1982; Green et al., 1986 and Verronen et al., 2005) (Figure 2.42) and seasonal variations (Rogers et al., 2009 and Thomas, 1990). It varies diurnally by almost an order of magnitude (Smith and Marsh, 2005).Vertical diffusive transport may also play a role in ozone diurnal variability.

Figure 2.42: The diurnal variation (nighttime on the left and daytime on the right) in density of O_{3} in the upper atmosphere as measured by Verronen et al. (2005).

In principle, the mechanism behind the diurnal variability of the secondary maximum is well understood. At night, ozone is much more abundant, because of the absence of
photolytic destruction which dominates during the day. Molecular oxygen photolysis by solar radiation in the Schuman-Runge bands and Herzberg continuum produces atomic oxygen (Figure 2.43).

Figure 2.43: Absorption spectrum and potential energy curves for O_{2}. The first $(\mathrm{O}(3 \mathrm{P})+$ $\mathrm{O}(3 \mathrm{P})$ and second $(\mathrm{O}(3 \mathrm{P})+\mathrm{O}(1 \mathrm{D})$) dissociation limits are indicated at 2420 and $1760 \AA$, respectively. Reproduced from Koda and Sugimoto (2003).

Ozone is formed through the three body associative reaction of O and O_{2} as expressed below. For the demonstrative purpose, rather than discussing the Chapman cycle which describes how sunlight converts various form of oxygen from one to another and upon which the ozone chemistry is based, a table with about 50 kinetic and photolytic reactions that in actuality control ozone in the mesosphere is given below (Table 2.7). However, for the illustrative purpose, the general Chapman mechanism for the formation of ozone can be written as follows:

$$
\begin{equation*}
O_{2}+h v \rightarrow O+O \quad(495 k J ; \lambda=2410 \AA ̊) \tag{2.88}
\end{equation*}
$$

where O_{2} absorbs ultraviolet light at $2410 \AA$ and dissociates into two atomic oxygen. Consequently, another O_{2} (because of high concentrations in atmosphere) will react with
a single O alone or in the presence of the third molecule which facilitates heat energy budget, so:

$$
\begin{equation*}
O_{2}+O \rightarrow O_{3} \tag{2.89}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{O}_{2}+\mathrm{O}+\mathrm{M} \rightarrow \mathrm{O}_{3} \tag{2.90}
\end{equation*}
$$

where M can be N_{2} for example.
It should be remarked again that the above reactions are only for illustrative purpose as the ozone cycle and related chemistry are far more complex process.

Intricacies of the production and destruction cycle of ozone are discussed by several authors (Wayne and White, 1968; Crutzen, 1971; Prather, 1973; Allen et al., 1981; Snelling, 1981; Allen et al., 1984; Hippler et al., 1990) and will not be covered in detail here.

At the mesopause ($\sim 80 \mathrm{~km}$) there is a significant transformation of the active-O chemical cycle. In that region, active-O as a group becomes short lived and as a result cycles among the group constituents rapidly during the daylight hours, with the nature of the dominant species dependent on the exact altitude (Allen et al., 1984).

Smith and Marsh (2005), using a three-dimensional dynamical chemical model, investigated the reasons for the secondary ozone maximum. They showed that the nighttime ozone mixing ratios are the same or even larger than those at the stratospheric maximum. Moreover, they concluded that the low temperature in the MLT region is a relevant factor in the increased ozone density, as low temperatures accelerate the formation of ozone and inhibit the loss. Furthermore, eddy diffusion acts to decrease the night time ozone by bringing water up from lower altitudes as water contains hydrogen which destroys ozone. However, molecular diffusion acts to increase the nighttime ozone concentration by moving atomic hydrogen upward out of the MLT region (Smith and Marsh, 2005). Molecular diffusion also increases the concentration of atomic oxygen below 105 km which acts as the additional mechanism for the increase of ozone. Satellite measurements of the secondary ozone maximum show some disagreement, especially above 75 km (Smith et al., 2013) (Figure 2.44).

Figure 2.44: Left panels give the average of all ozone profiles for each of the instruments on board every satellite with volume mixing ratio information. The right panels give the ozone density of all instruments used. For SABER, the solid lines are for $9.6 \mu \mathrm{~m}$ ozone and the dashed line is for $1.27 \mu \mathrm{~m}$. For the solar occultation cases (HALOE, ACEFTS, and SOFIE), solid lines are for sunrise and dashed lines are for sunset. Volume mixing ratio units are in ppmv; density units are cm^{-3} (after Smith et al., 2013).

A worrying trend in observed ozone decrease (Lemonie, 2004) warrants continuous monitoring and measurements of its atmospheric levels. Considering that satellite
measurements are thought to be most accurate, a new method to additionally constrain mesospheric ozone concentration may be needed. The VHF meteor radar and study of overdense meteor trail diffusion behaviour may offer just such possibility.

Table 2.7: List of main photochemical reactions that control ozone in the mesosphere. (after Prather, 1981).

	Reactions	Rate ($\mathrm{cm}^{3} \mathrm{~s}^{-1}$ or $\mathrm{cm}^{6} \mathrm{~s}^{-1}$)		Note*
(R1)	$\mathrm{O}+\mathrm{O}_{2}+\mathrm{M}=\mathrm{O}_{3}+\mathrm{M}$	1.05E-34	$\exp (+510 / 7)$	LPWM
(R2)	$\mathrm{O}+\mathrm{O}_{3}=\mathrm{O}_{2}+\mathrm{O}_{2}$	1.5E-11	$\exp (-2218 / T)$	NASA
(R3)	$\mathrm{O}+\mathrm{O}+\mathrm{M}=\mathrm{O}_{2}+\mathrm{M}$	9.6E-34	$\exp (+480 / T)$	LPWM
(R4)	$\mathrm{O}+\mathrm{OH}=\mathrm{H}+\mathrm{O}_{2}$	$4.0 \mathrm{E}-11$		NASA
(R5)	$\mathrm{O}+\mathrm{HO}_{2}=\mathrm{OH}+\mathrm{O}_{2}$	3.5E-11		NASA
(R)	$\mathrm{O}+\mathrm{H}_{2}=\mathrm{OH}+\mathrm{H}$	5.3E-11	$\exp (-5100 / T)$	LPWM
(R)	$\mathrm{O}\left({ }^{(} \mathrm{D}\right)+\mathrm{N}_{2}=\mathrm{O}+\mathrm{N}_{2}$	2.0E-11	$\exp (+107 / T)$	NASA
(R8)	$\mathrm{O}\left({ }^{(} \mathrm{D}\right)+\mathrm{O}_{2}=\mathrm{O}+\mathrm{O}_{2}$	$2.9 \mathrm{E}-11$	$\exp (+67 / 7)$	NASA
(R9)	$\mathrm{O}\left({ }^{\text {D }}\right.$) $+\mathrm{H}_{2} \mathrm{O}=\mathrm{OH}+\mathrm{OH}$	$2.3 \mathrm{E}-10$		NASA
(R10)	$\mathrm{O}{ }^{(}{ }^{\text {d }}$) $+\mathrm{H}_{2}=\mathrm{OH}+\mathrm{H}$	$0.99 \mathrm{E}-10$		NASA
(R11)	$\mathrm{O}_{3}+\mathrm{H}=\mathrm{OH}+\mathrm{O}_{2}$	1.4E-10	$\exp (-470 / 7)$	NASA
(R12)	$\mathrm{O}_{3}+\mathrm{OH}=\mathrm{HO}_{2}+\mathrm{O}_{2}$	1.6E-12	$\exp (-940 / 7)$	NASA
(R13)	$\mathrm{O}_{3}+\mathrm{HO}_{2}=\mathrm{OH}+\mathrm{O}_{2}+\mathrm{O}_{2}$	$1.1 \mathrm{E}-14$	$\exp (-580 / 7)$	NASA
(R14)	$\mathrm{H}+\mathrm{O}_{2}+\mathrm{M}=\mathrm{HO}_{2}+\mathrm{M}$	1.90E-32	$\exp (+350 / T)$	LPWM
(R15)	$\mathrm{H}+\mathrm{HO}_{2}=\mathrm{H}_{2}+\mathrm{O}_{2}$	$4.2 \mathrm{E}-11$	$\exp (-350 / 7)$	LPWM
(R16)	$\mathrm{H}+\mathrm{HO}_{2}=\mathrm{OH}+\mathrm{OH}$	4.2E-10	$\exp (-950 / 7)$	LPWM
(R17)	$\mathrm{OH}+\mathrm{HO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	$4.0 \mathrm{E}-11$		NASA
(R18)	$\mathrm{OH}+\mathrm{H}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{H}$	$1.2 \mathrm{E}-11$	$\exp (-2200 / 7)$	NASA
(R19)	$\mathrm{OH}+\mathrm{CO}=\mathrm{CO}_{2}+\mathrm{H}$	$1.35 \mathrm{E}-13$	[$1+\mathrm{p}(\mathrm{atm}$)]	NASA
(R20)	$\mathrm{OH}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$	$1.0 \mathrm{E}-11$	$\exp (-500 / 7)$	NASA
(R21)	$\mathrm{NO}+\mathrm{O}+\mathrm{M}=\mathrm{NO}_{2}+\mathrm{M}$	$4.0 \mathrm{E}-33$	$\exp (+940 / 7)$	LPWM
(R22)	$\mathrm{NO}+\mathrm{HO}_{2}=\mathrm{NO}_{2}+\mathrm{OH}$	3.4E-12	$\exp (+250 / 7)$	NASA
(R23)	$\mathrm{NO}+\mathrm{O}_{3}=\mathrm{NO}_{2}+\mathrm{O}_{2}$	$2.3 \mathrm{E}-12$	$\exp (-1450 / T)$	NASA
(R24)	$\mathrm{NO}_{2}+\mathrm{O}=\mathrm{NO}+\mathrm{O}_{2}$	9.3E-12		NASA
(R25)	$\mathrm{NO}_{2}+\mathrm{H}=\mathrm{NO}+\mathrm{OH}$	$4.8 \mathrm{E}-10$	$\exp (-405 / 7)$	NASA
(R26)	$\mathrm{N}+\mathrm{NO}=\mathrm{N}_{2}+\mathrm{O}$	3.4E-11		NASA
(R27)	$\mathrm{N}+\mathrm{O}_{2}=\mathrm{NO}+\mathrm{O}$	$4.4 \mathrm{E}-12$	$\exp (-3220 / T)$	NASA
(R28)	$\mathrm{HCl}+\mathrm{OH}=\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$	$2.8 \mathrm{E}-12$	$\exp (-425 / 7)$	NASA
(R29)	$\mathrm{HCl}+\mathrm{H}=\mathrm{Cl}+\mathrm{H}_{2}$	$2.3 \mathrm{E}-11$	$\exp (-1816 / T)$	LPWM
(R30)	$\mathrm{Cl}+\mathrm{H}_{2}=\mathrm{HCl}+\mathrm{H}$	3.5E-11	$\exp (-2290 / T)$	NASA
(R31)	$\mathrm{Cl}+\mathrm{CH}_{4}=\mathrm{HCl}+\mathrm{CH}_{3}$	$9.9 \mathrm{E}-12$	$\exp (-1359 / T)$	NASA
(R32)	$\mathrm{Cl}+\mathrm{HO}_{2}=\mathrm{HCl}+\mathrm{O}_{2}$	4.5E-11		NASA
(R33)	$\mathrm{Cl}+\mathrm{O}_{3}=\mathrm{ClO}+\mathrm{O}_{2}$	2.8E-11	$\exp (-257 / 7)$	NASA
(R34)	$\mathrm{ClO}+\mathrm{NO}=\mathrm{Cl}+\mathrm{NO}_{2}$	7.8E-12	$\exp (+250 / 7)$	NASA
(R35)	$\mathrm{ClO}+\mathrm{O}=\mathrm{Cl}+\mathrm{O}_{2}$	$7.7 \mathrm{E}-11$	$\exp (-130 / T)$	NASA
(R36)	$\mathrm{CH}_{4}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$	2.4E-12	$\exp (-1710 / T)$	NASA
(R37)	$\left.\mathrm{CH}_{4}+\mathrm{O}^{(1)} \mathrm{D}\right)=\mathrm{OH}+\mathrm{CH}_{3}$	1.4E-10		NASA
(R38)	$\mathrm{O}_{2}+h \nu=0+0$			
(R39)	$\left.\mathrm{O}_{3}+h \nu=\mathrm{O}_{2}\left({ }^{(} \Delta\right)+\mathrm{O}^{(}{ }^{1} \mathrm{D}\right)$			
(R40)	$\mathrm{O}_{3}+h_{\nu}=\mathrm{O}_{2}+\mathrm{O}$			
(R41)	$\mathrm{HO}_{2}+h \nu=\mathrm{OH}+\mathrm{O}$			
(R42)	$\mathrm{H}_{2} \mathrm{O}+h \nu=\mathrm{OH}+\mathrm{H}$			
(R43)	$\mathrm{NO}_{2}+h \nu=\mathrm{NO}+\mathrm{O}$			
(R44)	$\mathrm{NO}+h \nu=\mathrm{N}+\mathrm{O}$			
(R45)	$\mathrm{HCl}+h \mathrm{~h}=\mathrm{H}+\mathrm{Cl}$			
(R46)	$\mathrm{ClO}+h \nu=\mathrm{Cl}+\mathrm{O}$			
(R47)	$\mathrm{CH}_{4}+h \nu=\mathrm{H}_{2}+\mathrm{CH}_{2}$			

2.11.1 Ozone Density Obtained from Radars

The relationship between overdense meteor echo durations and meteor ion-ozone chemistry was utilised during the end of the last century to measure ozone concentration in the MLT region (e.g. Jones et al., 1990; Jones and Simek, 1995). The basis for such an undertaking is a well-known relationship between the number of meteors and echo durations plotted on a log scale, where the change in slope indicates the transition from underdense to overdense regime (Figure 2.45). This relationship can be further treated and it is possible to derive the following expression:

$$
\begin{equation*}
N_{T} \propto T^{-\frac{3(s-1)}{4}} \tag{2.91}
\end{equation*}
$$

where N_{T} is the cumulative number of radar echoes having duration greater or equal than chosen duration time T , and s is the value of the slope (Figure 2.45). This trend was observed and studied by early authors (e.g. Kasier, 1953; Weiss, 1961; McKinley, 1961; and McIntosh, 1966). It must be noted that relationship (2.91) only applies to the underdense echoes. However, early authors did not have sufficient knowledge of the meteor train chemistry and they assumed that electrons are removed by simple attachment process such as one stated below:

$$
\begin{equation*}
e+A \rightarrow A^{-} \tag{2.92}
\end{equation*}
$$

where A is an atmospheric molecule.
It was realized that electron density (n_{e}) decreases according to: $n_{e} \propto e^{-T / T} C$ where if diffusion is ignored, T_{C} depends on the chemical reaction rate R (see Jones et al., 1990).

Figure 2.45: Log of cumulative number of events vs. \log of radar echo duration (modified from Jones et al., 1990).

However, Weiss (1961) determined that the relation (81) can be restated for the case of intermediate (transitional overdense) echoes durations:

$$
\begin{equation*}
N_{T} \propto T^{-\frac{9(s-1)}{2}} \tag{2.93}
\end{equation*}
$$

where s can be obtained experimentally directly by observing either showers or time cumulative events. Then T_{C} can be expressed in terms of a chemical reaction $\left(R_{A}\right)$:

$$
\begin{equation*}
T_{C}=\left(R_{A}[A]\right)^{-1} \tag{2.94}
\end{equation*}
$$

This can be immediately recognized as a classic form of kinetic rate law. In the case when the chemical reaction, which is responsible for electron removal, can be defined, it then can be written:

$$
\begin{equation*}
e+A+B \rightarrow A^{-}+B \tag{2.95}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
T_{C}=\left(R_{A B}[A][B]\right)^{-1} \tag{2.96}
\end{equation*}
$$

Accordingly, the same chemical reactions identified by Baggaley and Cummack (1974) and Poole and Nicholson (1975) and discussed in the earlier sections can be used here. For the convenience of the reader, those chemical reactions will be restated, where meteor metallic ion reacts primarily with ozone as the most dominant reactant:

$$
\begin{gather*}
\mathrm{M}^{+}+\mathrm{O}_{3} \rightarrow \mathrm{MO}^{+}+\mathrm{O}_{2} \tag{2.97}\\
\mathrm{MO}^{+}+e \rightarrow \mathrm{M}+\mathrm{O} \tag{2.98}
\end{gather*}
$$

Using the above methodology, researchers were able to obtain ozone concentration within reasonable accuracy, but the outstanding issue was uncertainty in height (Jones and Simek, 1995; Cevolani et al., 1999). That issue was resolved to a degree by Cevolani and Pupillo (2003). Moreover, those investigators were using the forward scatter systems, thus they were able to track the meteor for a number of seconds and even minutes. That would give plenty of time to observe equilibrium chemical reactions (e.g. reaction (86) is the controlling one as it is slow and reaction (87) cannot proceed unless (86) is completed). That, as explained in the previous sections, is not possible to accomplish with backscatter radar, and consequently equilibrium chemical reactions cannot be detected by a backscatter system.

In conclusion, Cevolani and Pupillo (2003) have reported observations of the downward trend in ozone concentration between 85 and 90 km . If confirmed, such a trend would be a very worrying development and further investigation and measurements on an ongoing basis are needed to assess the global mesospheric ozone trends.

Chapter 3

The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny...'

- Isaac Asimov

3. Methods

3.1 Radar - Instrument Fundamentals

All radar locations in this study host versions of Yagi-type "All-Sky Interferometric Meteor Radar" (SKiYMET) (Hocking et al., 2001; http://mardoc-inc.com), a commercially available and well tested, proven and reliable meteor radar system (Hocking et al., 2001). The design of the system was prioritised to provide not only all sky monitoring capability through the deployment of a wide beam, but also to enable interferometry, using optimal receiver spacings. The system was optimized to accommodate very high pulse repetition frequencies of more than 2 kHz and to operate in the range of $20-50 \mathrm{MHz}$. High pulse repetition frequencies (PRF) can cause problems in the sense that the aliasing range becomes relatively small, at least in terms of meteor observations. The system is described in detail by Hocking et al. (2001), therefore only the fundamentals of the operation and design will be discussed here.

The system is comprised of five antenna elements. The planar schematic of the antenna arrangement is given in the Figure 3.1. The location of the transmitting antenna is not critical as long as it is not too close to the receiving units. What is important is that the receiving antennas must all be in the horizontal plane. From the Figure 3.1, it can be seen that the optimal separation for the receiving antennas is 2λ and 2.5λ in the asymmetric cross arrangement (where λ is the radar wavelength). The receiving antennas are all connected to separate receivers with cables of equal phase length (generally that length is 70 m , as a longer cable will cause significant signal strength loss).

These receivers are part of the Radar Data Acquisition System (RDAS) and are interfaced with the digitization system. The reference frequencies are provided to both transmitter and receiver by the Frequency Synthesizer Unit (FSU). The transmitter unit is comprised
of solid state modules (1 kW each), and is modular in construction to allow for additional installations. It is connected to the transmitting antenna via a high power low-loss cable. Early SKiYMET used a transmitting power of 6 kW , and it is possible to manipulate the selection of the type of the pulsed signal, its duration and length as needed. The whole system is controlled by a UNIX based computer, aiding speed and efficiency in the treatment of data. The schematic of the complete system is shown in Figure 3.2. Details of the underlying software and detection algorithms can be found in Hocking at al. (2001a). It should be noted that the proper meteor event signature selection and discrimination is a rigorous and multistage process, enabling the elimination of false positives and is also sufficiently optimized to allow for high resolution data input.

Figure 3.1: Planar view of the antenna arrangement for the radar system. The location of the transmitter antenna is not critical and can be placed in any convenient location. The receiving antennas all need to be in a horizontal plane. The symbol λ represents the radar wavelength (Hocking et al., 2001).

SKiYMET Hardware and Software Flow Diagram

Figure 3.2: Schematics of the complete SKiYMET system showing the interaction between and within various software and hardware components (Hocking et al., 2001a).

The SKiYMET system is also an excellent tool for the study of the dynamics of the mesosphere and lower thermosphere and is capable, for example, of measuring mesospheric winds and mesospheric temperatures that can be derived from underdense meteor diffusion times (Hocking et al., 1997; Hocking 1999; Singer et al., 2003; Hocking et al., 2004; Singer et al., 2004; Hocking, 2004). Moreover, it can be easily
accommodated for the use in space research and space debris studies. The typical radiation pattern of the SKiYMET system is given in Figure 3.3.

Figure 3.3: Typical radiation pattern of the Yagi-type SKiYMET antenna. a) Horizontal radiation pattern with azimuthal cuts at $10^{\circ}, 60^{\circ}$ and 80° zenith angle; b) Vertical radiation pattern with zenithal cuts at 0° and 45° azimuth and a $3-\mathrm{dB}$ beam width of 109° (after Singer et al., 2004 and therein courtesy of Genesis Software).

3.2 Sites

The data were collected for a period of several years, defined more specifically later in the text in the data table, from five geographically distinct sites. They are listed according to their latitudinal locale starting from the most northern site (Resolute Bay) and progressing toward the equator.

3.2.1 Resolute Bay, Nunavut

The Resolute Bay radar site has the coordinates $74.7^{\circ} \mathrm{N}$ and $94.9^{\circ} \mathrm{W}$ (Figure 3.4). The system operates at 51.5 MHz . A typical live feed from the site is shown in the Figure 3.5 below, where it gives the real time information about the flux, decay time, and wind speed. The complete description of the Resolute Bay radar system and operational
parameters are given by Hocking et al. (2001b). It should be noted that this is the only site that operates at a frequency above 50 MHz .

Figure 3.4: Mars-like landscape at Resolute Bay, Nunavut (Credit: Sukara, R. (2012)).

Figure 3.5: Typical real time output from all SKiYMET radar sites offering meteor fluxes, mesospheric temperatures and wind speed (www.physics.uwo.ca/ \sim whocking/axonmet/radarsites).

3.2.2 Yellowknife, NWT

The Yellowknife installation is located at $62.5^{\circ} \mathrm{N}$ and $114.3^{\circ} \mathrm{W}$. The radar operates at 35.6 MHz and is located on the property of the Yellowknife Geophysical Observatory, a facility of Natural Sciences Canada.

3.2.3 CLOVAR, London, ON

The CLOVAR site, located at $43^{\circ} .07 \mathrm{~N}, 81^{\circ} .34 \mathrm{~W}$, is in the renovation stage at the moment. The data was obtained for the period while in operation in the past. However, when it comes to the meteor files, this site had the scarcest and most sporadic data, because of its intermittent operation in the past, where the system was in experimental mode, being switched between meteor radar and wind profiler (see Hocking, 1997). The details of CLOVAR technical and operational specification were described by Hocking (1997). The operational frequency of this radar is $\mathbf{4 0 . 6 8} \mathrm{MHz}$.

3.2.4 Socorro, New Mexico

This radar is owned by Mardoc Inc. and leased to the University of Western Ontario. It is located at $34.06^{\circ} \mathrm{N}$ and $106.92^{\circ} \mathrm{S}$, and it is situated on the property owned by The New Mexico Institute of Mining and Technology. The system operates at $\mathbf{3 5 . 2 4} \mathrm{MHz}$.

3.2.5 Costa Rica

This is the most southern radar site from which data was collected. It is located at the Santa Cruz campus of the University of Costa Rica. The radar operates at $\mathbf{3 5 . 6 5} \mathbf{~ M H z}$, and the latitude and longitude of the site location are $10.29^{\circ} \mathrm{N} 85.59^{\circ} \mathrm{W}$.

All radar sites are marked, from north to south in the order discussed in the text, on the Google Earth to illustrate the geographical arrangement of noted locations (Figure 3.6).

Figure 3.6: The locations of the radar sites used in this work are marked on Google Earth in the same order as that described in the text.

3.3 The Hyperthermal Chemistry, the Mechanism and the Role of Ozone in

Electron Removal from the Meteor Trail

The "new" model for the mechanism of hyperthermal chemistry and the role of ozone in the removal of electrons in the initial stage of the "hot" meteor trail formation will now be presented. It is the basis of this new and previously ignored mechanism which is subsequently used to calculate ozone density from overdense meteor trails in the MLT region.

However, some fundamentals need to be discussed first. It is important to note as a preamble, that this model is only applicable to overdense events and the physical
interpretation and reasoning for that will become clear shortly. Moreover, it only applies to the expansion of the "hot" meteor trail before the trail temperature decreases below the critical value for the hyperthermal reactions ($\mathrm{T}>1500 \mathrm{~K}$, based on the work by Berezhnoy and Borovicka, 2010; Dressler, 2001).

For an unbiased observer, the meteor field as a subset of astronomy has been to a certain extent insulated for the past five to six decades. This statement is not made lightly, but considering somewhat limited collaboration and knowledge exchange with other fields, it is justified. Consider, for example, the atmospheric interactions of the hypervelocity body entering the Earth's atmosphere. It has been known for the past several decades that the flow field of the hypervelocity body (velocity $>7 \mathrm{~km} \mathrm{~s}^{-1}$) emits radiation resulting from the aerodynamically shock heated air with high intensity in UV spectrum (e.g. Kemp, 1959; Keck et al., 1959; Kivel, 1961; Camm et al., 1961; Strack, 1962; Nerm, 1965; Reis, 1967; Anderson, 1969; Levin et al., 1993; Erdman et al., 1993). However, only a handful of recent meteor research papers have acknowledged the phenomena and its subsequent manifestation during the meteor flight (e.g. Stenbaek-Nielsen and Jenniskens, 2004; Kasuga et al., 2005). It is not clear why the existence of aforementioned phenomena has not been exploited in meteor research, but it should be acknowledged that almost all literature dealing with the ultraviolet radiation from the hypervelocity bodies in the atmosphere was under a domain of defense and military sponsored research. Such circumstances could be reasonably justified to explain why such knowledge has not permeated the wider meteor research field.

The importance of the subject discussed above and its application to meteor research is best viewed through the lenses of meteor chemistry. General sizes of overdense meteors ($>10^{-3} \mathrm{~m}$) and their average velocities $\left(\sim 30 \mathrm{~km} \mathrm{~s}^{-1}\right)$ are sufficient to form a hydrodynamic interaction layer (or a shock layer) in front of the meteoroid (Popova et al., 2003; Stenbaek-Nielsen and Jenniskens, 2004) which emits strong UV radiation and as a consequence, instantaneously photo dissociates the ambient atmosphere, with special emphasis here given to ozone.

Such a dichotomy between research disciplines is unfortunate when the missed opportunities are considered. For example in 1949, McKinley and Millman discussed UV
radiation from the meteor head but were subsequently ignored. This present knowledge however, can be consequently easily exploited and utilised now.

However, before a discussion of the possible meteor related scientific application of the existence of such phenomena proceeds, another mechanism of ozone destruction must be considered first. In Chapter 2, the high temperatures around a meteor head and wake have been explored (Figure 3.7).

Figure 3.7: Left: Contours of the number density of ablated vapor; Right: Contours of the translational temperatures in the immediate wake of the small overdense Leonid meteor (after Boyd, 1998).

The relevance of the high temperature regime lies in the fact that the thermal shock wave and high temperatures of the meteor trail (up to 10000 K) are sufficient to cause wide thermal decomposition of ozone (Wulf and Tolman, 1927; Pshezhetskiy et al., 1959; Jones and Davidson, 1962; Michael, 1971; Peukert et al., 2013), a rate of which is inversely proportional to pressure. While ozone will easily decompose at temperatures as low as 373 K , at temperatures above 1373 K that process will be very rapid and will produce an excited oxygen singlet.

Thus it is apparent that at least in the case of overdense meteors, there are two primary physical mechanisms of ozone decomposition in a limited volume around the meteor train.

It is important to remark at this point, that underdense meteors in most cases do not develop a shock layer because of their small size and thus are not observed to emit ultraviolet radiation and consequently photo-dissociate ozone. However, it is very likely
that the thermal front propagating orthogonally from the initially formed underdense trail will decompose a small volume of ozone around the meteor trail.

Finally, the question of how the above discussed mechanisms can be exploited to determine ozone from radar observation of overdense meteor trail can be answered.

Consider a simple photo dissociation of ozone under ultraviolet radiation ($\lambda \leq 3100 \AA$). The reaction will proceed as follows:

$$
\begin{equation*}
O_{3}+h v \rightarrow O_{2}\left(a^{1} \Delta_{g}\right)+O(1 D) \tag{3.1}
\end{equation*}
$$

where $O_{2}\left(a^{1} \Delta_{g}\right)$ is the so called singlet oxygen, which is one energy level up from the ground state and it is highly reactive because of the electron shells arrangement. $O(1 D)$ is the first excited state (singlet) of the single atomic oxygen (Fote et al., 1996), and is relatively unstable with a short lifetime. In the MLT region, the photolysis rate is $\mathrm{J}_{\mathrm{O} 3}=$ $8.1 \cdot 10^{-3}$ and therefore it proceeds almost instantaneously (Khabibrakhmanov et al., 2002). Under the regular equilibrium chemistry regime, a meteoric metal ion $\left(M^{+}\right)$would react with ozone to form an oxide, which is responsible for the removal of electrons from the expanding meteor trail. However, that is not physically possible in the first stage of the expansion of the "hot" meteor trail, when ions and electrons have large translational energies and the trail temperature is in thousands of Kelvin. Moreover, a meteoric metal ion is unlikely to react with any constituents of the meteor trail as discussed in the previous chapter, and it cannot react collisionaly with ground state or excited atomic oxygen in equilibrium. However, an endothermic reaction between M^{+}and $O_{2}\left(a^{1} \Delta_{g}\right)$ occurs in the initial post-adiabatic expansion of meteor train (time scale <0.1 second) and depends on thermodynamic and mixing considerations (Dressler, 2001). This is indeed high energy hyperthermal chemistry which occurs very rapidly that was either not considered in the past or was just not known to exist. It is interesting to observe that at least to the best knowledge of the author here, and prior to this work, there are only two published papers (Menees and Park, 1976; Park and Menees, 1978) and one book chapter (Dressler, 2001) dealing with the problem of meteor train hyperthermal chemistry either directly or indirectly.

An important detail must be emphasized at this point. Meteoric metal ions have low ionization potentials and can be ionized more efficiently in high velocity collisions relative to the main atmospheric constituents such as N_{2} and O_{2}. Moreover, another important aspect needs to be highlighted, which is that no neutrals (i.e. O) have been observed in the immediate wake of the meteor having more than 4 eV in excitation energies (Bronshten, 1983). This implies that neutrals such as O in the immediate meteor spectrum must have formed through the following reaction (dissociative recombination) that was already seen earlier in the text:

$$
\begin{equation*}
\mathrm{MO}^{+}+e \rightarrow M+O \tag{3.2}
\end{equation*}
$$

Most reactive collisions in meteor trail occur below 20 eV (Dressler, 2001). The important hyperthermal chemical reaction according to Dressler (2001) in the initially formed meteor trail, which needs to take place before the reaction above can proceed, is given below:

$$
\begin{equation*}
\mathrm{M}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{MO}^{+}+\mathrm{O} \tag{3.3}
\end{equation*}
$$

For the case when $\mathrm{M}=\mathrm{Fe}^{+}$or Mg^{+}in the last equation, observational evidence indicates that under hyperthermal conditions, subsequent reactions proceed at the collisional rate (Ferguson and Fehsenfeld, 1968). This agrees well with the observed trend in data in this thesis. However, there is a slight problem with this approach. A key point to observe is that for the case of overdense meteors, the temperature field and UV radiation in the vicinity of the trail are sufficiently strong to cause either decomposition or ionization of neutral oxygen in the narrow volume around meteor train. Consequently, the resulting products $\left(\mathrm{O}_{2}{ }^{+}, \mathrm{O}\right)$ cannot react with $\mathrm{M}+$ in the immediate vicinity of the meteor train. The only available agent that can react more aggressively with a metal ion under hyperthermal conditions is $O_{2}\left(a^{1} \Delta_{g}\right)$ which results from either photo dissociation or thermal decomposition of ozone. Thus the full circle has been completed, and the fast and time limited hyperthermal chemistry regime responsible for the removal of electron from the meteor trail has been identified with confidence.

From the experimental observations it is known, in general, that metal ion species will undergo collision controlled reactions with oxygen forming an oxide, below 100 eV in
collisional energies (Rutherford and Vroom, 1976). The threshold collisional energy for Mg reaction with O_{2} is 5.12 eV , where reaction cross section will depend on the collisional energy (Figure 3.8).

Figure 3.8: The collision energy dependence of the $\mathrm{Mg}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}^{+}+\mathrm{O}$ reaction cross section which is a function of kinetic energy in the center-of-mass frame (CM) (lower x axis) and laboratory frame (upper x axis). Note that a cross section σ (used to define the probability of interaction between particles) is a hypothetical area measure around the target atom and if another particle crosses that surface there will be some interaction. Arrows pointing down indicate the thresholds for thermodynamic and impulsive reactivity (labeled " T " and ' I ", respectively), and arrows pointing up indicate the thermodynamic and impulsive onsets of reaction $\mathrm{M}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{M}^{+}+\mathrm{O}+\mathrm{O}:(---)$, models of the thermodynamic and impulsive reactivity, convoluted over the experimental kinetic energy distribution; (-), the sum of these models (Dressler, 2001 and reference therein).

Threshold energies for $\mathrm{Fe}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{FeO}^{+}+\mathrm{O}$ are slightly higher than for $\mathrm{Mg}^{+}+\mathrm{O}_{2} \rightarrow$ $\mathrm{MgO}^{+}+\mathrm{O}$ (Armentrout et al., 1982). Therefore, it is reasonable to expect the similar or
smaller threshold energies for $O_{2}\left(a^{1} \Delta_{g}\right)$ relative to its high reactivity. Considering that meteor metal ions possess up to several hundreds of eV in translational energy, which is a function of meteor velocity, the reaction will take place within the first several collisions. The time scale for the reactions of Mg^{+}and Fe^{+}may take up to 0.1 s relative to the meteor trail temperature (Berezhnoy and Borovicka, 2010). To further constrain time scales of the considered reactions, one must also consider electron thermalization time discussed in Chapter 2 that may take also up to about 0.1 s depending on the altitude (Baggaley and Webb, 1977). The reason for such electron thermalization dependency may be understood in terms those high energy electrons are not likely to participate in the reaction below:

$$
\begin{equation*}
\mathrm{MO}^{+}+e \rightarrow M+O \tag{3.4}
\end{equation*}
$$

Therefore, the expected time scale at which hyperthermaly formed oxides engage in removal of ambipolarly diffusing electrons from the boundary of the meteor trail and the ambient atmosphere should be in the range of 0.1 second or less, which is in line with the observations obtained in this work. Moreover, the observational data indicates that meteor trail cools more slowly that it was theoretically expected (Jenniskens and Stenbaek-Nielsen, 2004).

What has been left out of the discussion so far in this section is the application to the ozone measurement using backscatter radar observations of overdense meteors. To address that, consider a meteor trail immediately after instantaneous adiabatic formation at $\mathrm{t}=0$ and $\mathrm{r}=\mathrm{r}_{0}$ (Figure 3.9).

The ozone in the ambient region of the atmosphere has been photo dissociated and thermally decomposed in some limited volume around trail (Figure 3.10), with the highest concentration of the $O_{2}\left(a^{1} \Delta_{g}\right)$ at the boundary of the initial radius, and decreasing likely at a rate slower than exponential.

Therefore, the main region of interest is the meteor trail boundary. As the ambipolar diffusion proceeds to expand the meteor trail, in some very small time increment $\Delta \mathrm{t}$, the amount of ions will diffuse under ambipolar diffusion at the boundary and rapidly react with $O_{2}\left(a^{1} \Delta_{g}\right)$. The electrons which have assumed the Gaussian distribution within the
trail will also diffuse through the boundary under ambipolar diffusion and will be rapidly consumed on the other side by the maximum concentration of newly formed ionic metal oxide. Thus, if one can solve for the number of electrons removed from the boundary region by the ionic metal oxide, then by extension it is possible to determine ozone density. The validation of this theory will be tested in Chapters 4 .

Figure 3.9: The cross-section of the meteor trail depicting the postadiabatic expansion trail with initial radius r_{0} (inner circle), and outer circle depicts expansion driven under ambipolar diffusion. A point to note here is that the region of the maximum hyperthermal chemistry (formation of ionic metal oxides) surrounds the meteor trail boundary at or in
immediate vicinity of r_{0} (depicted through the brightest yellow colour). Moreover, the assumed distribution of electron in the meteor train is Gaussian.

Figure 3.10: Computed radial profiles of 19 atmospheric constituents 1 second after ablation, for the 526 g Leonid object. Note that the large mass of this fire ball can be easily scaled down to average masses of overdense meteors. A particular attention should be directed at the concentration of $\mathrm{O}_{3}, \mathrm{O} 1 \mathrm{D}$ and $\mathrm{O}_{2}\left({ }^{1} \Sigma\right)$. Note that $\mathrm{O}_{2}\left({ }^{1} \Sigma\right)$ is the same as the notation for the $O_{2}\left(a^{1} \Delta_{g}\right)$ in this work. The inverse proportionality between O_{3} and $\mathrm{O}(1 \mathrm{D})$ for example is in line with what is proposed here (Zinn and Drummond, 2005).

3.4 The Modified Diffusion Equation, Solution, Parameters and Application to Ozone Density Calculation

Resolving the behaviour of meteor echoes duration, inconsistency in ambipolar diffusion and possible effects of hyperthermal chemistry, especially on overdense meteors (Figure 3.11) is not a trivial task. Since the early days, effects of chemical processes on echo duration had been known (Davies et al., 1959; Greenhow and Hall, 1962), albeit not completely understood. In addition, the peculiar statistical behaviour and trend in the logarithmic plot of the cumulative number of meteor echoes and echo duration times was
experimentally observed and understood in cases where echoes could be detected for a long period of time (i.e. forward scatter radar). That statistical trend showing the change in slope between underdense and overdense meteors had been related to meteoroid mass distribution (Weiss, 1961; McIntosh, 1966) and meteor electron line density (Manning, 1962, 1963). Moreover, Manning (1962) theoretically treated the subject extensively and showed that the slopes will change with changing heights and meteor electron densities.

Figure 3.11: Observed daytime diffusion coefficient profile for January 2012 at King Sejong Station, Antarctica, taken from Aura EOS MLS satellite instrument (solid line) and the 33 MHz meteor radar (error bars). Numerical simulations for different initial electron line densities are shown for comparison (broken lines) (Lee at al. 2013).

More recent examples of logarithmic plots of cumulative number of detected meteors vs. meteor radar echo duration times obtained from the forward scatter radar can be seen in Ye et al. (2013) published by Dr. Peter Brown's Group at Western University.

When the logarithmic plots of the cumulative number of events vs. echo duration times were initially plotted for the backscatter radar data set used here, the obtained results were rather surprising. The well-known behaviour of the slopes (Figure 3.12) on the aforementioned plot was also observed in the past (e.g. Kaiser, 1953) and more recently practically applied by Jones et al. (1990). Jones et al. (1990) were able to calculate ozone
concentration from the duration time on a logarithmic plot using the transition from underdense to overdense regimes, as discussed in the previous chapter of this thesis. However, this type of behaviour was only thought to occur in data that were obtained from forward scatter radars, and where the effect of equilibrium chemistry had enough time to take place and is consequently observed (Baggaley, 1979). This type of thermal equilibrium chemistry, where ozone reacts with a metal ion to form oxide, which in turn consumes an electron, was discussed in detail by Poole and Nicholson (1975) and Baggaley (1979).

Figure 3.12: The $\log -\log$ plot of the cumulative number of events versus echo duration times. The plot shows well know behaviour of slopes of ambipolar diffusion controlling underdense trails and chemistry regime, which in turn controls the removal of electrons from overdense meteor trails. Note, however, that the behaviour of the slope of chemistry was thought to apply only to the spontaneous and exothermic chemical reactions between ozone and meteor metallic ions, where ionic oxide (product) is responsible for the removal of electrons from the meteor trail. The transition region between underdense and overdense meteors marked by the arrow, corresponds to the electron line density of 2.4 . $10{ }^{14}$ electrons m^{-1}.

First, the treatment introduced by Jones et al. (1990) and discussed in Chapter 2 cannot be utilized in the case here as the time scale is too short to apply the rate coefficient for the reaction $\left(\mathbf{M O}^{+}+\boldsymbol{e}\right)$ in calculation of ozone density. Also, in the case of hyperthermal chemistry, equilibrium rate reactions do not apply. The solution can be sought in earlier literature (e.g. Manning, 1962, 1963; McIntosh, 1966) that developed the theoretical treatment and interpretation of the behaviour change in slopes between what today can be called the diffusion and chemistry regimes. These authors preferred to use the term "attachment" instead of chemistry process.

Applying the complicated differentiations of logarithmic functions, as done by Manning (1962) to account for the observed slope changes, which would not be usable anyway at this stage of research, it is reasonable, based on the existing accumulated knowledge of ambipolar diffusion and the effects of chemistry, to simply relate experimentally obtained values of diffusion and chemistry regime slopes. This approach can be justified knowing that ambipolar diffusion is a function of temperature and pressure (Hocking, 1997), and chemistry is a function of atmospheric density, composition and meteor electron line density. Because the theoretical and experimental values of ambipolar diffusion are widely known, the goal is to relate the role of chemistry to already known parameters.

First however, the full diffusion equation for the total loss of electrons from the meteor train can be written as follows:

$$
\begin{equation*}
\frac{d n_{e}(r, t)}{d t}=D_{a} \frac{d^{2} n_{e}}{d x^{2}}-f\left(C_{N E}\right)-f\left(C_{E}\right)-f\left(A_{D}\right)-f\left(E_{D}\right)+f\left(e_{E}\right) \tag{3.5}
\end{equation*}
$$

On the right hand side, the first term represents the loss due to ambipolar diffusion, the second $\left(f\left(C_{N E}\right)\right)$ and third $\left(f\left(C_{E}\right)\right)$ terms are due to the loss resulting from nonequilibrium and thermal equilibrium chemical processes, where the next two terms ($f\left(A_{D}\right)$ and $f\left(E_{D}\right)$) are the loss resulting from neutral and positive dust absorption and eddy and turbulent diffusion. The last term $f\left(e_{E}\right)$ describes the linear production of electrons in that region of the atmosphere. The loss due to neutral and positively charged dust was discussed by Havnes and Sigernes (2005) and Younger et al. (2008), while Hall (2002) treated effects of the eddy diffusion and turbulence. The last four terms on the right can be neglected, as they are time dependent and have slow reaction rates so they
will not take place immediately upon the formation of the initial radius. At this point, suppose that the initial electron loss from a non-equilibrium process is solely related to ozone. Now, the goal is to find the total number of electrons lost to non-equilibrium process with the assumption that it will correspond to the ozone density at a particular height. If the distribution of electrons in the meteor train is assumed to be initially Gaussian, then accordingly one should consider Figure 3.13 below. The figure schematically represents the expansion of the initially formed meteor trail with an assumed Gaussian electron density distribution and subsequent onset of hyperthermal chemical reactions. The temporal evolution of the electron density distribution is denoted by t_{0}, t_{1} and t_{2} respectively. The growth of the trail radius as a function of time is denoted by $r_{0}+\left(4 \pi D t_{1}\right)^{0.5}$ at t_{1} and $r_{0}+\left(4 \pi D t_{2}\right)^{0.5}$ at time t_{2}. Consider now the total number of electrons that remains in the boundary region, just beyond the initial radius, due to ambipolar diffusion and removal as a result of hyperthermal chemistry. Then equation (3.5) can be rewritten without extra terms:

$$
\begin{equation*}
\frac{d n_{e}(r, t)}{d t}=D_{a} \frac{d^{2} n_{e}}{d x^{2}}-f\left(C_{N E}\right) \tag{3.6}
\end{equation*}
$$

Here, the goal is to solve for the total number of electrons consumed as a result of the hyperthermal chemistry. However, this equation is nonlinear and it is a classical form of reaction diffusion equation with no analytical solution (see for example Smoller, 1983; Fort and Mendez, 2002; Chen et al., 2006; Isern and Fort, 2009; Permikin and Zverev, 2013). Moreover, considering that the parameters of the hyperthermal chemistry are not known in this case, the new approach is needed to isolate the contribution of this regime. From looking at Figure 3.13, it is reasonable to assume that the number of diffused and chemically consumed electrons at the r_{0} boundary is the same, at least in the initial post adiabatic, "hot" meteor trail expansion.

Figure 3.13: Schematics of a meteor train expansion with assumed initial Gaussian electron density distribution, under the effects of ambipolar diffusion and (inset) pictorial representation of the outlined boundary region where ambipolarly diffused electrons are affected by hyperthermal chemistry process that takes place in that area.

Therefore, expressed mathematically for the boundary region, the total number of electrons diffused through the boundary is the same as the number of electrons consumed by hyperthermal chemistry on the other side of the boundary, is written as:

$$
\left.\left.\frac{d^{2} n_{e}}{d x^{2}}\right]_{\begin{array}{c}
\text { ambipolar diffusion } \tag{3.7}\\
\text { throught the boundary }
\end{array}}=f\left(C_{N E}\right)=\frac{d^{2} n_{e}}{d x^{2}}\right]_{\begin{array}{c}
\text { hyperthermaly removed just } \\
\text { outside of the boundary }
\end{array}}
$$

This is a critical observation which allows treatment of the contribution of hyperthermal chemistry (in terms of calculations) to be considered in the same manner as the mechanism of physical diffusion (or in this case here, ambipolar diffusion).

It must be emphasized at this moment that the hyperthermal chemistry will consume the same number of electrons as removed by ambipolar diffusion, just at a much faster rate. Accordingly, during a very short time $(t<1 \mathrm{~s})$, following the adiabatic formation of the meteor trail with initial radius r_{0}, that fast rate of the removal of meteor trail electrons by hyperthermal chemistry just outside of r_{0}, can be considered in terms of the hyperthermal chemistry diffusion coefficient, which can be now defined as D_{C}.

At this point, the impasse would be reached, at least in terms of further calculation, that cannot be overcome through any further simplification, were it not for the rather obscure theoretical treatment of the relationship between slope values of ambipolar and chemistry regime, derived by Manning $(1962,1963)$, and by extension used here in modified form. That relationship relates the ambipolar diffusion coefficient and the chemical removal of electrons to the exponential power of slopes of the ambipolar diffusion and chemistry regime shown in Figure 3.12, and can be simplified and expressed in the following way:

$$
\begin{equation*}
\frac{D_{a}}{D_{C}}=\left(\frac{s_{a}}{s_{C}}\right)^{p} \tag{3.8}
\end{equation*}
$$

where s_{a} and s_{C} are the slopes of the ambipolar and chemistry regimes, respectively. For the purpose of the investigation here, the value of the exponent p is taken to be $p \approx 1$.

Now it is possible to define the coefficient of the "hyperthermal chemistry diffusion" D_{C}, in terms of the ambipolar diffusion coefficient and the slopes of the diffusion and chemistry regimes which are already known quantities:

$$
\begin{equation*}
D_{C}=\frac{D_{a} s_{C}}{s_{a}} \tag{3.9}
\end{equation*}
$$

The advantage of the above approach is the elimination of the solutions in terms of chemical reaction rate constants, which are not known in the first place and the chemical removal of electrons is treated just like another form of diffusion calculation with the
known coefficient D_{C}, that has been shown in this study to vary with height. Therefore, the already familiar diffusion equation can be written as:

$$
\begin{equation*}
\frac{\partial n_{e C}(r, t)}{\partial t}=D_{C} \frac{\partial^{2} n_{e C}}{\partial x^{2}} \tag{3.10}
\end{equation*}
$$

This equation can now be rewritten in its proper cylindrical form that describes the meteor initial post-adiabatic train diffusion of electrons:

$$
\begin{equation*}
\frac{\partial n_{e C}(r, t)}{\partial t}=D_{C}\left[\frac{\partial^{2} n_{e C}}{\partial r^{2}}+\frac{1}{r}\left(\frac{\partial n_{e C}}{\partial r}\right)\right] \tag{3.11}
\end{equation*}
$$

The solution to this equation can be written in classical form (Crank, 1975; Baggaley in ch. 6 of Murad and Williams, 2002):

$$
\begin{equation*}
n(r, t)=\frac{\alpha}{\pi\left(r_{0}^{2}+4 D_{C} t\right)} \exp \left[\frac{-\left(r^{2}\right)}{r_{0}^{2}+4 D_{C} t}\right] \tag{3.12}
\end{equation*}
$$

where α is the electron line density and $r^{2}=\left(r_{0}^{2}+4 D_{a} t\right)$. The physical reason for defining r^{2} in terms of ambipolar diffusion is rather simple. The goal is to define the number of hyperthermally removed electrons within the volume of the meteor train defined by the boundary of initial radius and the small incremental increase in meteor trail radius expanded under the influence of ambipolar diffusion. Therefore, the final expression for the number of removed electrons under the influence of hyperthermal chemistry in the initial post-adiabatic expanding meteor train is:

$$
\begin{equation*}
n(r, t)=\frac{\alpha}{\pi\left(r_{0}^{2}+4 D_{C} t\right)} \exp \left[\frac{-\left(r_{0}^{2}+4 D_{a} t\right)}{r_{0}^{2}+4 D_{C} t}\right] \tag{3.13}
\end{equation*}
$$

It must be reiterated again that the hypothesis proposed here is that by solving for the number of electrons removed as a consequence of hyperthermal chemistry, it is possible to solve for the ozone density as the agent considered to be responsible for the initial chemical reactions with meteoric metal ion.

The laboratory value of ambipolar diffusion (Jones and Jones, 1990) is used in the calculations here, as the slope of the diffusion regime experimentally obtained in this work will appropriately correct the value of theoretical ambipolar diffusion for the temperature and pressure variations. If a direct measured value of ambipolar diffusion
determined from the meteor radar sites was used here, then it would be impossible to properly calculate the value of chemical diffusion coefficient as the values would be skewed (corrected for atmospheric temperature and pressure twice).

Furthermore, the analytical treatment for evaluation of number of electrons removed under hyperthermal chemistry is assumed not to have the same level of accuracy as the numerical approach in solving full reaction diffusion equation. Consequently that will be the focus of future studies.

However, as discussed in Chapter 2, the electron line density will not be constant, and will vary with the height of maximum ionization. To insure consistency and the quality of results, two approaches were taken to calculate the ionization and thus electron density as a function of height. The first one is based on work by Herlofson (1948) which was further developed by Kaiser (1953). The second approach is based on the empirical treatment by Kharchenko (2012).

Herlofson's (1948) and Kaser's (1953) treatment is given first, however as it will be seen later from the results, both approaches give almost the same numerical values of the adjusted electron line density. The equation for the electron line density along the ionization curve for the overdense meteors can be written as:

$$
\begin{equation*}
q(I)=\frac{9}{4} q_{\max } \frac{\rho}{\rho_{\max }}\left(1-\frac{1}{3} \frac{\rho}{\rho_{\max }}\right)^{2} \tag{3.14}
\end{equation*}
$$

where ρ and $\rho_{\max }$ are atmospheric densities at ionization height and at the height of the maximum ionization, respectively. Their ratio is expressed in terms of scale height H and atmospheric height h as:

$$
\begin{equation*}
\frac{\rho}{\rho_{\max }}=\exp \left[-\left(\frac{h-h_{\max }}{H}\right)\right] \tag{3.15}
\end{equation*}
$$

where $h_{\max }$ is the height of the maximum ionization. The electron density and the maximum electron density are denoted by q and $q_{\max }$ respectively.

Note that the form of the same equation, just with a different notation for electron line density was used in overdense meteors section in Chapter 2, for the preservation of historical accuracy. Here, however, the contemporary notation is deployed. Therefore,
equation (3.13) is modified to account for the variable electron line density as a function of ionization curve, and the expression is rewritten as:

$$
\begin{equation*}
n(r, t)=\frac{\alpha(I)}{\pi\left(r_{0}^{2}+4 D_{C} t\right)} \exp \left[\frac{-\left(r_{0}^{2}+4 D_{a} t\right)}{r_{0}^{2}+4 D_{c} t}\right] \tag{3.16}
\end{equation*}
$$

where the determination of the maximum ionization is trivial, and will be discussed shortly with the choice of the numerical value for the electron line density.

Kharchenko's (2012) empirical approach is to some extent more exhaustive, and it allows for employment of different masses and velocities of the meteor. The variation of the electron line density is written as:

$$
\begin{equation*}
q(h)=4.03 \cdot 10^{14} \frac{m(v-8.15)^{3}}{H} \cos \gamma \cdot z(t) \tag{3.17}
\end{equation*}
$$

where m and v are the mass and velocity of the meteoroid during the entry into meteor region, respectively. The limiting function $\mathrm{z}(\mathrm{t})$ which in its initial appearance resembles Herlofson's formula, is aimed at constraining the ionization curve, and it is stated as:

$$
\begin{equation*}
z(t)=\frac{9}{4} e^{-t}\left(1-\frac{1}{3} e^{-t}\right) \quad \text { when }-\ln 3 \leq t \leq 1.7 \tag{3.18}
\end{equation*}
$$

else $z(t)=0$, and t is defined as:

$$
\begin{equation*}
t=\frac{\left(h-h_{\max }\right)}{H} \tag{3.19}
\end{equation*}
$$

Where h is the atmospheric height and $h_{\max }$ is the height with the maximum linear electron density. H is the reduced atmospheric height, defined as:

$$
\begin{equation*}
H=6.4+0.09(h-95) \tag{3.20}
\end{equation*}
$$

The height of maximum ionization is given as:

$$
\begin{equation*}
h_{\max }=47.4+12.76 \ln v \tag{3.21}
\end{equation*}
$$

Finally, the maximum electron line density can be written as follows:

$$
\begin{equation*}
q_{\max }=4.03 \cdot 10^{14} \frac{m(v-8.15)^{3}}{H} \tag{3.22}
\end{equation*}
$$

3.5 Determinations of the Experimental Height of the Maximum Ionization

The height of maximum ionization was chosen as the height of maximum number of meteors (Figure 3.14). This corresponds well to the one calculated from Kharchenko's (2012) equation. The height of the maximum ionization corresponds to the height with maximum electron line density which has been determined by selecting the electron line density of the most common overdense meteor echoes (Manning, 1962).

Figure 3.14: Number of observed meteor echoes as a function of altitude (September, 2011, Socorro).

If the transitional value for electron density is taken to be $2.4 \cdot 10^{14}$ electrons m^{-1} (McKinley, 1961) and a typical metal cylinder behaviour for overdense meteors starts at 10^{16} electrons m^{-1} (Poulter and Baggaley, 1977, 1978), then it is reasonable to take the most common value of electron density somewhere in the middle. Cervera and Elford (2000) state that the meteor does not become fully overdense unless the electron line density is at least 10^{15} electrons m^{-1}. In addition to the above, a careful consideration of published meteor masses, visual magnitudes and their interpretation in terms of electron line density (Sugar, 1964) led to the selected value used throughout this thesis of $5.5 \cdot 10^{15}$ electrons m^{-1}. This is the mean value between various estimates of the transitional
electron line density and the true overdense meteor behaviour and its electron line density. Moreover, this value agrees well with the inferred sizes and masses of overdense events and agrees well for instance with the value for overdense meteor electron line densities published by Pallinen-Wannberg and Wannberg (1994). However, the author acknowledges that this value can be further refined in statistical terms, by relying on additional careful observational radio and visual data from overdense meteors.

3.6 Initial Radius and Hyperthermal Chemistry Duration Time

The most comprehensive treatment of the initial radius of visual and overdense meteors had been performed by Baggaley and Fisher (1980). They had found that the initial radius of overdense meteors is proportional to the atmospheric density in the following way: $r_{i} \propto \rho^{-0.63}$ with the exponent uncertainty of 10%. Thus, the values of initial radius in this work are taken based on the results obtained by Baggaley and Fisher (1980) and also tabulated in Ceplecha et al. (1998).

The determination of the hyperthermal chemistry duration time is different from the previous treatment (Jones et al., 1990). Initial consideration was given to the separation of the chemistry regime duration times identified from the logarithmic plots of cumulative number of meteor echoes versus echo duration times. The observed trend in chemistry duration times can be summarized as follows: between 75 and 80 km , the hyperthermal chemistry time increases sharply, after which it gets tapered around 80 km and has almost an exponential decrease. That type of behaviour is contrary to the previously observed and expected height dependent chemistry duration times (e.g. Baggaley, 1979), as the time for the chemical processes is supposed to increase as a function of the reduced atmospheric pressure and density. To overcome that contradiction, the combined duration times obtained from the logarithmic plots of cumulative number of events vs. echo duration times were used for each specific height in calculations here. The Matlab code was appropriately modified to be able to run the calculations with total duration times as a function of height, and also to accommodate the runs with mean (constant) time durations, while at the same time accounting for uncertainties. That aspect will be discussed in the next two sections. It should be noted that the mean echo duration time between 75 and 100 km is ~ 0.2 seconds. However, for
the future work that might expand on what was learned here, it would be interesting to utilize chemistry duration times measured at the point of the chemistry slope determination and examine the implications for the calculated values.

3.7 Comments and Considerations on Matlab Processing Code

The summary of a rather cumbersome computation procedure, including the initial approaches and considerations, is presented here. The goal was to define and quantify the ambipolar diffusion and chemistry diffusion regimes, determine the slope of each diffusion regime, determine the ambipolar diffusion duration time, calculate the transition time (intercept between ambipolar and chemistry diffusion regimes), and finally determine the combined duration times and use all this information to find the concentration of ozone as a function of height between 75 km and 100 km . Three main Matlab programs were made to process data and perform the analysis discussed in this chapter. These programs were designed to execute specific computations for the following steps: (i) processing raw data, (ii) initial data analysis and preparation for O_{3} concentration calculation, and (iii) determination of O_{3} concentration and measurement error. Overall, more than 10^{6} meteor events were individually processed for the five radar sites.

3.7.1 Processing raw data

Raw data are stored in text format. The quantities of interest in this study were the date, height, duration time (τ) and ambiguity, where the latter is a measure of certainty whether a given meteor echo is a properly located (ambiguity $=1$ means the data are unambiguous and aliasing is eliminated). On a side note, it should be mentioned that aliasing arises from the use of the pulsed repetition frequency (PRF), however, it is generally easy to deal with (see Hocking et al., 1997). A Matlab program was written to import all raw files, select and save only meteors with unambiguous location for further processing and then separate events by month and year. In total, 345 months of data of were processed.

3.7.2 Initial Processing

All events confined to the region between 75 km and 100 km were selected and divided into height increments of 1 km . The total number of meteors per each height increment
was produced for statistical purposes. The echo duration time cutoff ($\tau_{\text {cutoff }}$), which is mainly driven by the radar operational frequency, was set at 0.4 seconds for Resolute Bay and 0.7 seconds for all other sites (Figure 3.15).

Figure 3.15: The schematic plot of the observed ambipolar and hyperthermal chemistry regimes outlining their duration times, slopes, and the cut-off time selection criteria for the Resolute Bay radar and the other radar sites.

This means that all events with the echo duration time $\tau<\tau_{\text {cutoff }}$ were included in further processing, while those events with echo durations $\geq \tau_{\text {cutoff }}$ were discarded. It is useful to remember at this point that the wavelength of the Resolute Bay system is about 6 meters where for all other sites is about 10 m . At this point, a meteor echo duration time
distribution histogram for each height increment was generated (Figure 3.16), along with the number of meteors per given height increment.

Figure 3.16: Histogram of the number of events corresponding to the specific duration times for the Resolute Bay, May, 2006, for height between 86 and 87 km .

The next step was to obtain the cumulative number of meteors for each height range, binned over a select number of bins in log-log space. Several bin numbers ($10-50$) were experimented with first, before making the final selection of 20 (Figure 3.17). A number of 10 bins was too small, while a large number of bins (> 20) was not suitable either. First, there was not enough data to spread it over 30 or more bins. This unnecessarily introduced a 'tail' effect when the data drops down to very small cumulative numbers. Second, spreading the data over a number of points that is too large 'smears' out the ambipolar diffusion slope and introduces bias. In this case a bias would be introduced since the predetermined number of points for determination of ambipolar diffusion slope would not produce consistent results in the case of higher resolution binning. While experimentally determined to work the best, it is not completely clear at the moment why 20 bins gives the best and most reliable performance across the board. That being said, it
is suspected that in the case when a higher density of data is available, higher binning might produce equally consistent result.

Figure 3.17: Log cumulative number of overdense meteors (in 20 bins) as a function of duration time for May 2006 at Resolute Bay. The data covers the height increment between $86-87 \mathrm{~km}$.

Since there are a relatively small number of points along the cumulative number of meteors as a function of duration time, a fine increment interpolation was made to enable polynomial curve fitting in log-log space (Figure 3.17). After experimenting with various fits, it was determined that a $5^{\text {th }}$ degree polynomial provided the best fit and smallest residuals over the entire span of the data. The fitted curve, superimposed over the data is shown in Figure 3.18.

Figure 3.18: Log cumulative number of meteors (yellow diamonds) as a function of duration time for May 2006 at Resolute Bay. The black curve shown is the $5^{\text {th }}$ order polynomial fit. The data include the overdense meteors between $86-87 \mathrm{~km}$ altitudes.

The ambipolar diffusion region is characterized by the flat appearance of the curve, just before it 'bends' into the chemistry diffusion region. To find the ambipolar diffusion slope in a consistent manner for the entire dataset, the first two points were selected and then used for the calculation. The next step was to find the chemistry slope. This was done through finding the minima of the first derivative of the fitting function in the chemistry diffusion region. The minimum corresponds to a specific set of coordinates on the fitting function curve (log-log cumulative number vs. τ). Thus, using this set of coordinates, it is straightforward to find the slope at this point along the fitting function curve (Figure 3.19).

Figure 3.19: Left: plotted log-log curve of the number of cumulative events vs. duration, where the blue/magenta circle marks the intercept between the slopes of the diffusion and chemistry regimes. The red/green circle marks the point of the minima in the first derivative and the point where the slope of the chemistry regime is determined. Right: the upper figure is the first derivative of the fitting function and the lower figure is the second derivative of the same (used to confirm the minima in the first derivative).

The lines corresponding to the slope and intercept for both ambipolar diffusion and chemistry diffusion regimes are shown in Figure 3.20. The intercept of these lines represents the 'knee', which is a transition between the ambipolar and chemistry diffusion regimes. Therefore, the ambipolar diffusion time is the time measured from the left as seen in Figure 3.20 up to the 'knee'. Then the chemistry cut-off time is defined by the region from the 'knee' and to the right, up to the point where the chemistry slope line falls off into the 'tail' of the curve. However, due to the tail effects, a significant degree of uncertainty exists when the total duration time is determined (Figure 3.20). Consequently, the computation of the total duration time had to be manually and individually inspected and confirmed as precise. At this point, all parameters were saved and used for the next phase in data processing.

Figure 3.20: The slope intercept between the diffusion and hyperthermal chemistry regime (Resolute Bay, May, 2006, 86-87 km), with noticeable tail effect and tapering introduced by change in trend of experimentally obtained data.

All pertinent information listed below was stored in .mat format for further analysis:

- Site
- Month and year
- Height
- Number of meteors in each height increment
- Diffusion slope and intercept
- Chemistry slope and intercept
- Ambipolar diffusion duration
- Chemistry diffusion duration
- Knee time

3.7.3 Concentration Calculation

The electron line density function (α) was adopted from (Khacharenko, 2012) and (Herolfson, 1948; Kaiser, 1953). Since, by equations stated in both aforementioned references, α exhibits an abrupt and physically unrealistic jump at its minimum, a simple tapering cubic function was applied to smoothen out the transition (Figure 3.21).

Figure 3.21: The pre and post tapering in the ionization curve using a simple $5^{\text {th }}$ degree polynomial (i.e. the curve with maximum electron line density) is shown where the curve has been stabilized after tapering at 10^{15} electrons m^{-1} (e.g. definition of minimum electron line density in true overdense meteors (for the comment on overdense meteors see Cervera and Reid, 2000).

Moreover, the physical argument and reasoning behind the introduction of mild tapering in the ionization curve becomes apparent in consideration of Figure 3.22, where it is apparent that the overdense and visual meteor will not "completely burn up" immediately past the region of the maximum ionization.

Figure 3.22: An image of a bright Leonid meteor taken by the direct image camera from the ARIA aircraft. The inset shows the meteor three seconds later (Borovicka and Jenniskens, 2000). It is apparent from the pictures that the meteor did not burn up completely and continued leaving an ionized trail.

It is important to note that the event observed by Borovicka and Jenniskens (2000) had the visual magnitude of -13 and estimated mass of 1 kg which is the upper limit for overdense meteors that can be observed by radar (electron line density of about 10^{20} electrons m^{-1}) (Sugar, 1964). Furthermore, the effects of the hydrodynamic cap that formed in front of the meteor head when the meteor dimensions exceeded the mean free path of the atmosphere must be considered, as the effect of such phenomena is to taper and impede the intensity of the ablation process due to the absence of the direct atmospheric impact on the meteoroid (Rajchl, 1969; Popova et al., 2003). As could be expected, such an effect becomes important for overdense meteors below 80 km .

The peak of the electron density function occurs in the region of maximum ionization, which in the context of this work was determined by evaluating the height corresponding to the highest number of meteors (Figure 3.23). Therefore, the electron density function for a range of possible maximum ionization heights ($85-95 \mathrm{~km}$) was calculated, so it could be used as input in later steps.

Figure 3.23: Maximum ionization height is determined from the plot of the maximum number of meteors as function of specific height, where the height with the highest number of events is taken as the maximum height of ionization. This particular figure displays the histogram for the May, 2006, Resolute Bay.

The maximum ionization height for each site and for each month of year was calculated by taking the average of the heights corresponding to the highest number of meteors across the same month for each given site. For example, the average height for all months of May for Resolute Bay is $88 \pm 1 \mathrm{~km}$. Table 3.1 shows the maximum ionization heights as a function of month for Resolute Bay.

Table 3.1: Maximum ionization heights for determined for each month (Resolute Bay).

Resolute Bay			
Month	Count\#	Average Height $(\mathbf{k m})$	Standard Deviation $(\mathbf{k m})$
1	6	87	1
2	6	86	1
3	7	87	1
4	9	88	1
5	9	88	1
6	9	88	1
7	8	89	1
8	9	88	1
9	8	88	1
10	6	88	1
11	8	88	1
12	8	88	1

Having determined the electron line density, the maximum ionization height and total duration times, the finishing step was to calculate the O_{3} concentration as a function of height, smooth the data and apply error bars. To validate the computation process, in addition to the electron line density from Khacharenko (2012) and Herlofson (1948), the constant value of $\alpha\left(5.5 \cdot 10^{15}\right)$ across all heights was also used during the initial early stage of calculations to explore the validity of the approach. The Matlab program written to execute the concentration calculation was customized to take either mean or directly measured variable total duration times. It must be noted that while the actual "total duration time" was well constrained for some heights and some months, it was poorly constrained for others. Hence, to avoid bias, and for comparison purposes, both the variable total duration times as determined from the logarithmic plot of the diffusion and chemistry regimes, and a set time of $0.20 \mathrm{~s} \pm 0.10 \mathrm{~s}$ were used in the final calculations. The choice of $0.20 \mathrm{~s} \pm 0.10 \mathrm{~s}$ for the duration time comes from a careful investigation and analysis of overall duration times for well constrained months and heights. A built in Matlab Butterworth filtering function, as a part of signal processing toolbox, was used to smooth out the concentration data (Figure 3.24). This is similar to applying a moving average filter.

Figure 3.24: The example of calculated ozone profile data before and after smoothing using built-in filtering function in Matlab signal processing toolbox.

While the standard measurement in diffusion can be obtained from initial echo duration times plotted as a function of height, with the relatively small scatter obtained from the SKiYMET system relative to the earlier measurements, and error and height and the standard deviation of the scattered data can be resolved immediately, this work deals with cumulative statistical trends, that are based on the raw data. Therefore, the calculation of error and standard deviation in the results here must be approached differently. Moreover, the total number of processed and calculated iterations would not be practical if the error is propagated in a standard way (Bevington and Robinson, 1992) considering that the calculation would have to be made for 345 months individually with the use of exponential forms of solutions.

Finally, to determine the error as a function of height for each month in the data set, a numerical iterative method using the input variables ($\mathrm{D}_{\mathrm{a}}, \mathrm{r}_{0}$ and total duration time) with an assorted range of initial values lying within their minimum and maximum boundaries
was implemented. The values of considered parameters were randomly generated within the determined maxima and minima bounds. These upper/lower bounds are as follows: $\mathrm{D}_{\mathrm{a}}= \pm 10 \%, \mathrm{r}_{0}= \pm 25 \%$ and signal duration time $= \pm 50 \%$. This process produced as the output the O_{3} concentration with the maximum range of possible values as a function of height (Figure 3.25). The error bars are given by the standard deviation of concentration values as a function of height. This process, but with the varying initial values applied to each individual monthly data set, was performed for each processed month to produce error bars unique to that particular month. The explanation for this particular choice of error treatment is discussed in the next section.

Figure 3.25: The spread in values as the result of the random variables calculations (the range of maximum and minimum values for the quantities with uncertainties) where red points represent the mean value of the calculated set.

3.8 Comment on the Error and Uncertainty Treatment

At this stage of investigation, only absolute and random errors are considered. While systematic errors are possible but very rare for the type of instrument and available data used in this work, they will not be considered in the calculation of the final results.

For the purpose of this work, the value of electron line density at the point of maximum ionization is taken as constant $\left(5.5 \cdot 10^{15}\right.$ electrons $\left.\mathrm{m}^{-1}\right)$ at the height of maximum ionization. The main physical argument for settling on this particular value of electron line density can be understood in terms of statistical meteor trends and the behaviour of the logarithmic plot of cumulative number of echoes versus the duration time, where the point of the chemistry regime slope (overdense meteors) measurement corresponds to the most stable region of the curve, which in turn, according to Manning (1962, 1963) corresponds to the most common overdense line density. From various sources discussed earlier, that the value of electron line density was determined to be $5.5 \cdot 10^{15}$ electrons m^{-1}. While this approach is taken in these preliminary stages of the investigation, continued future studies may consider refining this value further and varying the maximum electron line density to additionally constrain uncertainties in final calculations.

The total error estimate (Baggaley and Fisher, 1980) in initial radius of overdense meteors of 50% is taken as reasonably reliable and is adopted in the uncertainty calculations here, without further adjustments. However, with the availability of the new technologies, computational power and SKiYMET systems, in addition to a better processing software, it would be desirable to conduct an expanded investigation and narrow the uncertainties in the measurements of the initial radius of overdense meteors in the future.

The error in duration times may seem unreasonably large (100\%), however a great caution must be exercised at this stage of investigation, as there are still significant uncertainties about the behaviour and time scales of hyperthermal chemistry processes with increasing altitude, noted earlier. For the normal local thermal equilibrium chemistry regime, time scales involving reactions between ozone and metal ion at lower altitudes ($\sim 80 \mathrm{~km}$) are in the order of seconds, while at 100 km that time gets extended to about 200 seconds (see Baggaley, 1979). It is reasonable to expect a similar trend in
hyperthermal chemistry, especially considering that thermalization of both ions and electrons and consequently meteor trail takes longer at increasing altitudes (Baggaley and Webb, 1977; Baggaley, 1980). However, the hyperthermal chemistry regime duration is observed not to exhibit same behaviour with increasing height. When the denser data sets are available (numbers obtained by Kim et al., 2013 for example), a statistical treatment of the slope obtained duration times will help reduce this rather significant uncertainty. However, for now the above noted error will be applied to calculations in this work.

Last but not the least, the question of uncertainty in ambipolar diffusion and consequently in chemical diffusion is addressed in the light of recent advances and the availability of the SKiYMET system, which has improved overall measurements of meteor parameters with far greater accuracy (Hocking, 1999; Hocking et al., 2001; Hocking et al., 2004; Holdsworth et al., 2006; Kim et al., 2013) in comparison with any previous measurements in the past. The advantage of SKiYMET is the ability to accurately resolve temporal variation in ambipolar diffusion (Figure 3.26).

Prior to the introduction SKiYMET, the best estimate of typical error in meteor trail diffusion measurement was $30-40 \%$, which was the width of the standard deviation and was considered reasonably acceptable (Tsutsumi et al., 1994). In general, the measurements of the ambipolar diffusion prior to the 1990s are not reliable due to the large scatter in data discussed in Chapter 2, which is induced by temperature and pressure variability, angular detection accuracy, pulse length, phase errors, plasma processes and variation in meteoroid metallic content. Those factors are discussed in detail by Hocking (2004). The main point to note here is that the observational error of meteor echo decay times from SKiYMET systems is generally smaller than the error of measured height (Kim et al., 2013) which can be directly applied to the value of ambipolar diffusion coefficient. If the value of height uncertainty is taken from Kim et al (2013) and Holdsworth et al. (2006) to be $\sim 1 \mathrm{~km}$, that translates into 15% error in ambipolar diffusion (Tsutsumi et al., 1994). Considering the very small error in subsequent MST temperature measurement using meteor radar decay times (Figure 3.27), which is much less than ± 7 K (e.g. Hocking et al., 1997; Hocking et al., 2007; Meek et al., 2013), the estimate of the error in slope adjusted theoretical diffusion (Jones and Jones, 1990) of
20% used in this work and carried over in calculation of the "chemical diffusion coefficient" may seem like an overestimate.

However, it can be reasoned that at least for the purpose of the calculations of the ozone density, the determined error in both diffusion and chemistry coefficient is reasonable in consideration that the new technique is being employed here. Moreover, the slopes of diffusion regime (Figure 3.28) which are instrumental in calculation of the chemical diffusion coefficient, have the purpose of correcting theoretical diffusion for the effects of the temperature and pressure variation. Considering that the effects of those corrections are still not completely defined, the 20% error applied to resulting calculations is sufficient to account for uncertainties.

Figure 3.26: Plots of the ambipolar diffusion coefficient measured at Esrange, Sweden, as a function of time for heights of $85,88,91$, and 94 km (Hocking et al., 2004). A particularly interesting feature of this plot of ambipolar diffusion coefficient obtained from underdense meteors is the local minima in April, which coincides with ozone maxima.

Figure 3.27: Screen shot of the live feed from the Tierra del Fuego, Argentina, which is a part of the SKiYMET network, given to illustrate accurate real time temperature determination from meteor radar diffusion times
(http://www.physics.uwo.ca/~whocking/axonmet/radarsites/tierradelfuego/).

Figure 3.28: Slopes of the ambipolar diffusion shown here for illustrative purpose, for Yellowknife (May, 2009) and Resolute (March, 2006) and determined from the plot of the cumulative number of events versus the echo duration times, obtained from experimental meteor data. The ambipolar diffusion slopes are used to correct theoretical ambipolar diffusion coefficient for the effects of pressure and temperature.

3.9 Chapter Graphical Flowchart Summary

Figure 3.29: Flowchart

Chapter 4

It's not that I'm so smart, it's just that I stay with problems longer.

- Albert Einstein

4. Results

The initial hypothesis stating that it was possible to evaluate ozone density in the MLT region using the backscatter radar observation of overdense meteor diffusion, which motivated the work in this thesis, has been proven correct. By evaluating the number of electrons consumed by the "hyperthermal chemistry regime" at the boundary of the meteor train, in the initial expansion phase of the "hot" meteor trail, it was possible to evaluate ozone density in the MLT region with reasonable accuracy. That was achieved by calculating the number of removed electrons for each height increment, using the ionization curve corrected electron line densities and duration times obtained from the logarithmic plot of the cumulative number of events and echo duration times for each specific altitude.

It was demonstrated that the proposed mechanism of ozone participation in the hyperthermal chemistry regime, where singlet oxygen formed by the photo dissociation and thermal decomposition of O_{3} by the meteor shock UV layer radiation and thermal shockwave, reacts with metallic ions at suitable temperatures and subsequently removes electron from the expanding meteor train. The results obtained for chemically removed electrons match the ozone vertical MLT density profile well, as it will be seen from the satellite measurements comparison, where the obtained results are within the margin of errors of satellite measurements. It should be noted here that the calculated profiles are mean monthly densities of ozone because there were not enough daily events for all locations to discriminate diurnal variations. For the purpose of this study, that presented a slight obstacle as diurnal variations which may be up to an order of magnitude, could not be investigated. However, a future study, with the availability of high density data will enable diurnal measurements and more refined seasonal trends. Despite the acknowledged difficulty in measuring ozone profile accurately above 70 km (Froidevaux et al., 2008) and inherent uncertainty in those measurements (Smith et al., 2013), the
initial results obtained here look very promising and confirm the supposition by Hajduk et al. (1999) that radar is a viable instrument to measure ozone density in the MLT region.

The problem, however, with the initial data was that only two sites (Resolute Bay and Socorro) had enough events to do calculations for more than one full year. At other sites, with the exception of Yellowknife, 2009, monthly data was either sparse, intermittent, or the number of meteors was too low for any meaningful data analysis. Correspondingly, it is important to note that if the number of meteors is below ~ 20000 per month in general, it is difficult to extract any usable results, because of an insufficient number of individual events for statistical logarithmic plotting.

The results of this study perform better in comparisons to previous mesospheric ozone determinations using forward scatter radar (Jones et al., 1990; Hajduk et al., 1999; Cevolani and Pupillo, 2003) on several different levels. First, in this study, the density as a result of altitude is obtained with vertical resolution of 1 km , which was not possible in the aforementioned investigations. Furthermore, the vertical profiles of ozone obtained in the MLT region, closely match the actual ozone density distribution as a function of height and are closely in line with satellite derived profiles. Additionally, no attempt was made here to identify specific meteor showers and their specific contribution as the initial data was considered on a cumulative basis.

The chapter is organized in the following way: First, the individual sites will be discussed and presented separately, with results presented and analysed in order to show how the data were obtained, concluding with brief statistical treatment and satellite comparisons. Because of the large amount of processed data and figures that resulted from this work, only one representative year or month for each site will be discussed in the main body of the thesis, while the part of the data tables and figures will be available in appendix, and the rest will be available upon request from Professor Wayne K. Hocking in the Department of Physics and Astronomy at Western University.

4.1. Resolute Bay

Table 4.1 summarizes the total number of meteors for each given month for Resolute Bay in the period between 2000 and 2012. The table cells were colour coded upon initial evaluation, to describe the quality and usability of data. It is apparent that only a limited continuity in meteor numbers as a function of season and year exists, therefore impeding the assessment of long term calculated trends in ozone. Moreover, the additional data from satellite ozone density measurements in the MLT region in very high latitudes such as for Resolute Bay are not readily available and that presents challenge in validation of the results obtained in this study.

Table 4.1: Number of total events for Resolute Bay, where colour coding indicating the quality of the data during the initial processing. The legend is below the table. While Resolute is the best performing in terms of data density and quality, it is still apparent that data does not exhibit required continuity to evaluate long term trends when ozone is calculated.

Figures $4.1-4.2(\mathrm{a}, \mathrm{b})$ show the calculated hyperthermal chemistry diffusion coefficient comparison with theoretical ambipolar diffusion coefficient (Jones and Jones, 1990) as a function of altitude. An interesting trend can be observed on all plots (e.g. Figure 4.2a,b) where the calculated hyperthermal chemical diffusion coefficient exhibits the highest magnitude in the region around 85 km in general and decreases at both below and above that height. This is closely in line with the known maxima in ozone density. At about 9295 km , the hyperthermal chemistry diffusion coefficient attains the same value of the
ambipolar diffusion coefficient which corresponds to the decreasing role of chemistry with altitude in the meteor trail and it accordingly also corresponds to the ozone decrease with altitude. Similar observations were noted by Jones and Jones (1990) where they investigated direct chemical reactions of ozone with meteor ions seconds (minutes) after an initial meteor train formation. Moreover, merging of the hyperthermal chemistry diffusion coefficients (herein referred to as HCDC) and theoretical ambipolar diffusion coefficient coincides with the same trend in behaviour of measured and theoretical diffusion coefficients from the early studies. This was discussed in Chapter 2 to some extent, but one might recall that the deviation of the measured diffusion coefficients in the early investigations was attributed to the role of chemical "attachment".

Figure 4.1: Typical profile of the calculated hyperthermal diffusion coefficient" compared with theoretical ambipolar diffusion coefficient as a function of height (September 2005, Resolute Bay).

Figure 4.2: (a) The behaviour of the calculated hyperthermal diffusion coefficient compared with theoretical diffusion coefficient calculated from Jones and Jones (1990).

Figure 4.2: (b) The behaviour of the calculated hyperthermal diffusion coefficient compared with theoretical diffusion coefficient calculated from Jones and Jones (1990).

Figure 4.3: The main figure: The theoretical and measured diffusion as a function of height as measured by Weiss (1955). Note that the altitudes are on the abscissa in this case. Inset: Relationship between diffusion coefficient and height from the AMOR data set. The solid line is diffusion coefficient obtained by Galligan et al. (2004) and dotted, dashed and blue dashed line are from Jones and Jones (1990) where blue line corresponds to theoretical value of ambipolar diffusion used in this work. The dot-dashed line is derived using temperature and pressure based on USAA (1976). Note that in both figures, theoretical and measured diffusion coefficients merge at altitudes around 95 km , which is a similar trend to that observed in the convergence of hyperthermal diffusion coefficient and theoretical diffusion coefficient obtained in this work and plotted in figure above.

From Figure 4.2 b, it can be also seen that there is a seasonal variation in shape and magnitude of HCDC which was expected based on already understood seasonal changes in ozone.

Furthermore, plotting the absolute slope values of ambipolar diffusion and HCD, the same trend can be observed where the "hyperthermal chemistry" dominates below 95 km (Figure 4.4a,b). Of importance is to note the behaviour of these slopes as a function of season, which implies they are sensitive to the changes in temperature and pressure and variations of ozone concentration.

Figure 4.4: (a) Slopes of ambipolar diffusion regime compared with hyperthermal chemistry regime as a function of height, for 2005, Resolute Bay (the blue line represents the ambipolar diffusion slope and the red line is hyperthermal chemistry slope).

Figure 4.4: (b) Slopes of ambipolar diffusion regime compared with hyperthermal chemistry regime as a function of height, for 2005, Resolute Bay (the blue line represents the ambipolar diffusion slope and the red line is hyperthermal chemistry slope).

The observation of the ambipolar diffusion regime times compared to the total echo duration times as a function of altitude (Figure 4.5) and their difference, suggests the decrease in hyperthermal chemistry duration times with height, which is contrary to the previously observed "equilibrium" chemistry lifetime of the reaction of ozone and meteoric metal ion. There is no immediate explanation for this and future investigation should address this behaviour in more detail.

Figure 4.5: The altitude vs. ambipolar diffusion time and total diffusion time derived from the logarithmic plot of the total number of events vs echo duration times for August 2004, Resolute Bay. The difference between two regimes is taken to be hyperthermal regime duration.

To resolve the height of the maximum ionisation and to apply it to the calculation of the ozone density, the height with the maximum number of events (e.g. Figure 4.6) was taken to be the height of the maximum ionization and hence height of the maximum electron line density. The application of the Herlofson (1948) formula or adaptation of the treatment by Kharchenko (2012) in the standard solution to the diffusion equation produces almost identical results (Figure 4.7 and Figure 4.8). Furthermore, the representative examples of the calculated ozone density using either variable time derived from the logarithmic plot of the cumulative number of events vs. duration time with error
bars are shown in Figure 4.9 - Figure 4.11. The application of the mean time in calculation will produce only slightly different shape of the ozone density profile (which is still within the margin of error of the results derived by using variable statistical-plotderived time). In Figure 4.12a below, it is only shown as an illustrative example. However, even as the calculated ozone density profiles here are only monthly means, using the mean time will still enable observation of significant seasonal variations, as it could have been expected.

Figure 4.6: Example how the maximum number of meteor events vs. altitude was used to determine the height of the maximum ionization and consequently maximum electron line density.

The use of both Herlofson (1948) and Kharchenko (2012) treatments for the ionization curve correction in the electron line density has been shown to be viable (Figure 4.7 and Figure 4.8), where both approaches are possible based on the preference, type of calculation and subsequent complexity level. While it is possible to obtain mass and a velocity dependent form of Herlofson's (1948) ionization curve treatment, the empirical treatment by Kharchenko (2012) appears to be reliable and can be easily exploited to contributions and effects of different masses and velocities.

Figure 4.7: The application of Herlofson's (1948) [α_{2}]and Kharchenko (2012) [α_{1}] formula lead to closely matching results in ozne density calculaton.

Figure 4.8: Height vs. log density of ozone for May, 2001, Resolute Bay.

The error bars reflect the initial uncertanites in primary data during the calculation. While the uncertanties are relatively large (Figures $4.9-4.11$), a consideration must be given to the fact that the mean monthly profiles are obtained here. Moreover, in consideration of
the large uncertainties that exist in satellite measurements (see Smith et al., 2013 for discussion), the assumed error in the results in this work seems reasonable.

Figure 4.9: Height vs. ozone density with error bars applied using (α_{1}) and the height dependent variable durationt time, for May 2001, Resolute Bay.

Figure 4.10: Height vs. ozone density with error bars applied using $\left(\alpha_{1}\right)$ and the mean duration time, for May 2001, Resolute Bay.

Figure 4.11: Log of ozone density as a function of height with error bars applied to resuts at incremental altitudes, for May, 2001, Resolute.

The full assessment of diurnal and to some extent seasonal variations of the ozone density in the MLT region has not been possible in this work, primarily due to insufficient density of data. The results reflect the mean monthly profiles of ozone in the MLT region between 78 and 100 km as it can be seen from the figures below (Figure 4.12a,b). Because of the diurnal averaging the high resolution in the vertical variation as well horizontal variations of the ozone profile as shown in Figure 4.13 is currently not accessible. However, that will be easily resolved when high density data is available on continuous basis from multiple sites in future studies. At the moment, this work can be considered just as a simple validation of the new successfully developed method that needs further refinement.

Figure 4.12: (a) The seasonal behaviour of the ozone density using mean time in calculations. Error bars are shown to illustrate uncertainty. Even with the use of the mean time in calculation results obtained for ozone density as a function of height and throughout year show considerable seasonal variations. The results are shown for 2005, Resolute Bay.

Figure 4.12: (b) The seasonal behaviour of the ozone density using mean time in calculations. Error bars are shown to illustrate uncertainty. Even with the use of the mean time in calculation results obtained for ozone density as a function of height and throughout year show considerable seasonal variations. The results are shown for 2005, Resolute Bay.

Figure 4.13: The seasonal variations in secondary ozone maxima in MLT region as a function of altitude as measured at $45^{\circ} \mathrm{N}$. What can be immediately observed is vertical variation of the secondary ozone maxima as a function of season. The ozone density is plotted in Figures a) and b). In January and July the secondary maxima is near 85 km . The ozone mixing ratio is plotted against pressure in Figure c), d), e) and f). While data in Figure a) and c) are the same, the relationship between altitudes and pressure changes from month to month and does not correspond to a horizontal displacement of the combined Figures. The data in figure e) are from $45^{\circ} \mathrm{S}$ (displaced 6 months) so it can match to data from Figure c). The same relationship exists between Figure b), d) and f) (Thomas, 1990).

It should be acknowledged that it is difficult to get access to reliable satellite data for polar latitudes. Thus when the seasonal trend in ozone density was analyzed for Resolute Bay, there was significant doubt in the validity of the obtained results as the seasonal trend radically deviated from the know trends that exist in mid-latitudes (see Thomas, 1990; Rogers et al., 2012 for analysis). However, upon comparing the seasonal ozone trend observed in Resolute with the seasonal variations in echo duration times, observed by Singer et al. (2008) at $69^{\circ} \mathrm{N}$, it was clear that calculated ozone densities above Resolute Bay are accurate as there is the well-known inverse relation between the echo duration time (Figure 4.14) and the ozone concentration (Figure 4.15).

Figure 4.14: Seasonal variations of the meteor decay times at 82 km altitude observed by meteor radars at 69 N and 22 S . Decay times of strong meteors echoes are shown in red and decay times of weak echoes are in blue. An important thing to note is that while there are no measurements of seasonal variation of ozone in the far northern latitudes (i.e. Resolute Bay), this plot is interesting as it shows maximum duration times where seasonal ozone densities for Resolute Bay are the lowest, thus implying inverse relationship and indirectly confirming unusual seasonal mesospheric ozone trends observed at Resolute Bay (Singer et al., 2008).

Figure 4.15: Seasonal variation of ozone density at altitude of 82 km , above Resolute Bay, obtained from the meteor radar observation of overdense meteor decay times. Error bars represent uncertainty in calculated results.

For the purpose of the assessment of annual trends, seasonal behaviour of ozone density is plotted as a function of altitude on the contour plot (Figure 4.16). The overall behaviour of ozone density observed from Resolute, above 84 km , starts to reasonably correspond to the trends observed at lower latitudes as observed by Thomas, (1990) and Rogers et al. (2012).

The comparison of ozone density with satellite measurements which show diurnal variation (Figure 4.17 and Figure 4.18) confirms the initial argument in this work, which suggested that only averaged monthly means of ozone density in the MLT region could be calculated with the available data resolution. This is indeed an additional validation of the work in this thesis and confirms again that with high data resolution, it will be possible to resolve diurnal ozone variations. The residuals plotted for comparison of nightly and daily variations of the satellite ozone data with the data obtained in this work (Figure $4.19(\mathrm{a}-\mathrm{g})$), show reasonably good behaviour considering that the extent of the diurnal variations can approach order of magnitude.

Figure 4.16: Seasonal density plot of ozone concentration as a function of altitude for 2001, Resolute Bay.

Figure 4.17: Ozone density profile measured in this work (black thick line) compared with satellite measurements for night density (lines on the far right) and daily densities (lines on the far left) as a function of height. The comparison agrees well with conclusion that this work was only able to evaluate monthly means in ozone density profile and could not account for diurnal variations. A note must be made at this point that diurnal satellite measurements are latitudinal averages, rather than region specific (for further details see Smith et al., 2013).

Figure 4.18: Left: Comparison of satellite and radar derived ozone profiles. Right: Residuals of the nightly and daily ozone values from satellite (MIPAS) compared to the values from this work for Resolute Bay.

Figure 4.19: $(\mathrm{a}-\mathrm{g})$ For comparison and data validation, the regression plots of the data obtained in this work with daily and nightly variations from different satellites are presented above.

Figure 4.19: (b)

Figure 4.19: (c)

Figure 4.19: (d)

Figure 4.19: (e)

Figure 4.19: (f)

Figure 4.19: (g)

4.2 Yellowknife

Overall, the tabulated number of monthly events and subsequent initial assessment quality and usability of data for Yellowknife in Table 4.2 indicates poor performance. That is primarily due to the relatively low data resolution (i.e. low overall number of monthly meteor events). It is also conceivable that there is an inherent noise in the Yellowknife data; however that discussion is beyond the scope of this thesis. In principle however, while the overall Yellowknife meteor data cannot be used beyond reasonable doubt to evaluate ozone MLT concentration except several months in 2008 and 2009, it can be used as a relative benchmark for the poor quality data, to establish which data should not be used in calculations. Thus, this particular section will be focused on showcasing the contrast of the poorly constrained data and the results with well behaving examples.

Table 4.2: Table with number of total events for Yellowknife, where colour coding indicating the quality of the data during the initial processing. The legend is below the table. Yellowknife data, for the most part, is not of sufficient resolution and overall performance is not sufficient for meaningful calculation of ozone density.

Yellowknife	2002	2003	2004	2005	2006	2007	2008	2009
Jan	n/a	0	15338	16226	17868	5995	n/a	30556
Feb	n/a	1418	10156	11131	15745	2503	n/a	21702
Mar	n/a	3541	10344	10402	19833	n/a	n/a	27948
Apr	n/a	10200	21274	17343	27567	n/a	12478	34943
May	n/a	14087	24219	29253	40483	1500	38497	37870
Jun	59141	26909	35150	59956	50730	1009	76669	56179
Jul	90675	29249	6872	5151	55336	n/a	51112	68497
Aug	69976	23907	21574	29597	35162	n/a	63289	85302
Sep	n/a	17277	18667	28850	7590	n/a	40762	55489
Oct	n/a	19494	23013	31968	547	32	34732	44190
Nov	n/a	8659	18143	27394	2884	699	21920	53122
Dec	n/a	20059	18869	38770	6177	2721	34721	9913
Colour/Symbol		Legend						
		Very Good Performing Data and Plots						
		Good Behaviour						
		Potentially Usable						
		Not Usable						
Bolded		Best Behaving Data						
*		Outlier(s) Present						

First, consider the well behaved duration time and noisy scattered time (Figure 4.20 and Figure 4.21) derived from the logarithmic plots of cumulative number of events versus echo duration times. The calculated ozone density from scattered time cannot be as reliable. While it is possible to statistically treat scattered time and apply a smoothing function of best fit, there will still be an unacceptable level of uncertainty in the derived results. In this work, a great effort was made to only calculate ozone from the well behaving profiles of duration times to ensure quality and repeatability of results.

For comparative purpose, the example of the initially calculated ozone profile, using a well behaved variable duration time compared with the noisy result derived from poorly constrained time is given below (Figure 4.22). The differences are apparent, especially when one considers that the well behaving ozone density results for the same months of different years exhibit virtually the same profile and densities (Figure 4.23). Such results, which clearly indicate that the number of removed electrons is seasonally matched in different years, further validate methods and results in this work.

Figure 4.20: The example of well-behaved total duration times as a function of height, obtained from the logarithmic plot of the cumulative number of events vs. total echo durations, contrasted against the example of scattered and poorly behaved duration time for the month of November for 2009 and 2006.

Figure 4.21: The scattered behaviour of the total duration plotted with reasonably behaved duration time for ambipolar diffusion regime as a function of height for February, 2006 (left) contrasted against the well behaved total and ambipolar diffusion duration times for August, 2009 (right).

Figure 4.22: The example of the initially calculated number of removed electrons by hyperthermal chemistry regime, where on the left, the result was obtained from well behaved monthly meteor data (May, 2009) and on the right is the example of the poorly behaved result obtained from the month with problematic data (May, 2006).

Figure 4. 23: The example of the matching quantitative and shape behaviour of the plots of the calculated hyperthermally removed electrons for the same moths of different years. (August, 2008 and 2009). Note that same behaviour is observed across all radar sites for the months which have well behaving data.

Furthermore, the primary reason for the rigorous use of only well constrained data, can be readily seen below (Figure 4.24), where the HCDC has been calculated from reasonably well behaving duration times and contrasted with the one calculated from scattered duration times profile.

Figure 4.24: Contrasting behaviour of well constrained calculated hyperthermal chemistry diffusion coefficient plotted along theoretical ambipolar coefficient as a function of height, for January, 2009 (left) with poorly constrained and scattered one calculated for the January, 2007 (right).

In principle, well constrained meteor echo duration times will give well behaved profiles of ozone density as it can be seen in Figure 4.25.

Figure 4.25: Representative examples of the obtained results calculated from the well behaved data. Upper figure: Ozone density calculated for November, 2009 using the mean time; Lower Figure: Log of calculated ozone density using variable time (from the $\log -\log$ plot) for July, 2009 (Yellowknife).

Comparing the calculated results for Yellowknife in this study (for well behaving months) closely matches the seasonally and latitudinally averaged satellite ozone profiles (Figure 4.26). However, it must be noted that the obtained results of ozone density from Yellowknife are in general greater than the averaged satellite profiles, which is reasonable considering high latitude of the radar site.

Figure 4.26: The calculated ozone density for the month of June, 2008, Yellowknife, compared with latitudinally and seasonally averaged data from different satellites. The immediate trend in all Yelloknife results suggests that calculated values for ozone density in the MLT region are higher than averaged satellite values.

The comparison of nightly and daily satellite ozone density profiles with ozone results obtained from the Yellowknife meteor radar shows reasonably good agreement, with notable observation that satellite nightly profiles are in general show much greater deviation from the mean monthly profiles obtained in this work, especially when compared with the daily satellite ozone values (Figure 4.27).

Figure 4.27: Daily and nightly ozone density profiles obtained from different satellites compares with the ozone density as a function of height, for May, 2009, Yellowknife.

The residual values between the satellites (SOFIE and MIPAS) daily and nightly profiles and the mean monthly profile calculated for January, 2009 and July, 2008, Yellowknife, are given below in (Figures 4.28 and Figure 4.29) for comparative purpose.

The regression plots comparing Yellowknife ozone density results with daily, nightly and averaged values obtained from different satellites generally exhibit reasonably good trend. The example can be seen in Figure 4.30a,b.

Figure 4.28: Left: Comparison of satellite and radar derived ozone profiles. Right: The residuals between SOFIE longitudinally and seasonally averaged ozone density values as a function of height and the ozone density profiles for January, 2009, Yellowknife.

Figure 4.29: Left: Comparison of satellite and radar derived ozone profiles. Right: Daily and nightly residuals between MIPAS ozone profiles and results obtained for July, 2008, Yellowknife.

Figure 4.30: (a) Regression plots of GOMOS (nightly) ozone density comparison with 2003 and 2009 Yellowknife ozone data. Reasonably good trend can be seen in both.

Figure 4.30: (b) Regression plots of HRDI (daily) ozone density comparison with 2003 and 2009 Yellowknife ozone data. Reasonably good trend can be seen in both.

4.3 CLOVAR

In terms of overall numbers, CLOVAR is the worst performing site in this study. However, considering CLOVAR's meteor radar intermittent operation over the period in which the data were collected for this study, it should be acknowledged that the overall performance of the "good" data, from the several selected well behaving months is very satisfactory. There is much less pronounced noise in obtained "good" data, relative to the Yellowknife radar, which strongly suggests that upon reconstruction, CLOVAR will be an excellent location for future meteor studies, at least in terms of reduced signal noise pollution.

From the plots of satellite daily and nightly ozone profiles compared with selected months for CLOVAR (Figure 4.31 and Figure 4.32), it can be seen that the overall results calculated here for well behaving months are satisfactory and in good agreement with satellite ozone values.

Table 4.3: Number of total events for CLOVAR, where colour coding indicating the quality of the data during the initial processing. The legend is below the table.

Clovar	2000	2001	2002	2003	2004	2005	2006	2007	2008
January	n/a	11848	12675	16651	n / a	n / a	n / a	n/a	2716
February	n/a	n/a	9763	10237	n/a	n/a	n/a	n/a	6346
March	n/a	n/a	8825	8060	n/a	n/a	n/a	n/a	10385
April	n/a	n/a	13038	12327	n/a	n/a	n/a	n/a	7036
May	n/a	n/a	14336	14406	n/a	n / a	n/a	n/a	706
June	n/a	n/a	7966	22595	n/a	n/a	n/a	n/a	11830
July	12693	n/a	12700	19985	n/a	n/a	n/a	n/a	5027
August	25311	n/a	13262	24278	n/a	n/a	n/a	n/a	6072
September	20877	n/a	6444	19538	n/a	n/a	n/a	n/a	9430
October	16436	n/a	6448	5585	n/a	n/a	n/a	n/a	13582
November	16916	10723	14491	n/a	n / a	n/a	n/a	n/a	n/a
December	13592	15221	17200	n/a	n/a	n/a	n/a	11008	n/a
Colour/Symbol		Legend							
		Very Good Performing Data and Plots							
		Good Behaviour							
		Potentially Usable							
		Not Usable							
Bolded		Best Behaving Data							
*		Outlier(s) Present							

Figure 4.31: Daily and nightly ozone density profiles from different satellites compared with the calculated values for Jun 2003, CLOVAR.

Figure 4. 32: Ozone density profile for July 2002, CLOVAR, compared with seasonally and latitudinally averaged satellite ozone density profiles.

4.4 Socorro

Socorro is the best performing radar site in this study in terms of number of monthly meteors and overall continuity of data (Table 4.4). Considering the number of meteor events recorded on a monthly basis, Socorro is among the best candidates, at least in terms of radar sites covered in this study, that can be utilized in the future for ongoing and continuous measurements of the MLT ozone density.

Table 4. 4: Number of total events for Socorro, where colour coding indicating the quality of the data during the initial processing. The legend is below the table.

Socorro	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
January	n/a	n/a	n/a	*178226	n/a	n/a	n/a	*123628	96484	*98773	*87998
February	n/a	n/a	n/a	*165082	n/a	n/a	n/a	*90408	*113728	40060	*65393
March	n/a	28039	n/a	*157749	n/a	n/a	n/a	97362	141192	*67999	*74121
April	14023	39308	n/a	181758	n/a	n/a	n/a	60773	142523	*81420	79456
May	*56287	n/a	n/a	199227	n/a	*135817	n/a	26692	173761	*40023	6417
June	39621	n/a	n/a	*156878	n/a	194117	*95756	*77572	179169	*49186	n/a
July	24792	n/a	n/a	*137236	n/a	*268842	*201491	226099	*221713	*80654	n/a
August	*75971	n/a	n/a	13314	n/a	1811	35037	223481	*206086	*96388	n/a
September	45049	n/a	n/a	n/a	n/a	n/a	n/a	220553	195605	*128871	n/a
October	*54472	n/a	n/a	n/a	n/a	87	n/a	212730	189781	*157468	n/a
November	7729	n/a	n/a	n/a	n/a	n/a	n/a	160076	144696	110808	n/a
December	n/a	n/a	n/a	n/a	n/a	n/a	*110706	112954	112653	*119223	n/a
Colour/Symbol		Legend									
		Very Good Performing Data and Plots									
		Good Behaviour									
		Potentially Usable									
		Not Usable									
Bolded		Best Behaving Data									
*		Outlier(s) Present									

For the most part, the obtained and calculated parameters from the Socorro meteor radar are well constrained and well behaved, without too much scatter or noise (Figure 4.33). That allows a high level of confidence in the final ozone density calculation. Furthermore, the method of obtaining duration time from the logarithmic plot of cumulative number of events vs. echo duration times for the each specific height increment enables more straight forward determination of echo duration times and gives more constrained values relative to the statistical averaging based on the number density of observed meteor events and their duration times as shown in Figure 4.34.

Figure 4.33: Right: The well behaved duration time for July, 2011, Socorro derived from the logarithmic plot of cumulative number of events versus echo duration times for specific height increments. Left: The ambipolar diffusion coefficient compared with calculated hyperthermal chemistry diffusion coefficient as a function of height for April 2003, Socorro.

Figure 4.34: Decay time versus height of all meteors during 2005 from Ballinger et al. (2008). Color shading indicates the number of meteors, n (per $500 \mathrm{~m} \times 5 \mathrm{~ms}$ window). The solid line indicates the mean decay time (Ballinger et al., 2008).

Further validation of the quality of the ozone density calculation comes from comparison of seasonal trends with the already known and proven values for similar geographical coordinates (Figures 4.35). The seasonal trend in ozone density obtained in this study by
using meteor radar and overdense echo durations closely matches the results obtained by Rogers et al. (2012) (Figure 4.36).

Figure 4.35: Ozone seasonal density profiles for 78 and 81 km altitude determined for Socorro.

Figure 4.36: Seasonal variation of mesospheric ozone concentration above 80 km for a region centered at $38^{\circ} \mathrm{N}$ (Rogers et al., 2012).

Further comparison of the ozone density profiles obtained by backscatter meteor radar with the available satellite data for daily and nightly variations, along with comparison with seasonally and latitudinally averaged values, show excellent agreement (Figure 4.37 and Figure 4.38).

Figure 4.37: Daily and nightly ozone density profiles compared with the results obtained in this work for June, 2002, Socorro.

Figure 4.38: Seasonally and latitudinally averaged satellite ozone density profiles compared with calculated values for May, 2002, Socorro.

For illustrative purpose the residuals between ozone density profiles obtained for October, 2002, Socorro, and the daily and nightly values profiles from MIPAS are presented in Figure 4.39. The surface plot of the seasonal ozone density variation for Socorro (Figure 4.40) is in line with already known trends (Rogers et al., 2012).

Figure 4.39: Left: Comparison of satellite and radar derived ozone profiles. Right: Residuals for MIPAS daily and nightly ozone profiles compared with the ozone values obtained in this work for October, 2002, Socorro.

Figure 4.40: Seasonal density plot of ozone concentration as a function of altitude for for 2011 Socorro.

4.5 Costa Rica

In terms of overall data performance, Costa Rica can be considered satisfactory. While the monthly meteor data rate was sporadic for the most part, those months with a sufficient number of meteor events show reasonably good behaviour in terms of data quality (Table 4.5).

Table 4.5: Number of total events for Costa Rica, where colour coding indicating the quality of the data during the initial processing. The legend is below the table.

Costa Rica	2005	2006	2007	2008	2009	2010
Jan	n/a	74354	n/a	*77957	n/a	1165
Feb	n/a	n/a	n/a	50555	n/a	8470
Mar	n/a	n/a	n/a	51677	9468	*32239
Apr	33444	n/a	34964	*47494	28	23412
May	81261	n/a	*87644	*75746	52	1090
Jun	76981	n/a	*89015	*69158	n/a	*20495
Jul	93820	n/a	89271	66958	38	10387
Aug	80685	n/a	70725	26254	3368	19616
Sep	59694	n/a	51515	*44488	7444	24072
Oct	73872	n/a	*58349	36351	*55201	*25871
Nov	38731	n/a	33025	27848	430	8336
Dec	*52619	n/a	*33024	1371	n/a	1
Colour/Symbol		Legend				
	-Very Good Performing Data and Plots				
		Good Behaviour				
		Potentially Usable				
		Not Usable				
Bolded		Best Behaving Data				
*		Outlier(s) Present				

From looking at the Costa Rica meteor radar derived ozone data and its relative comparison to values obtained at the rest of radar locations in this study, it can be concluded that the overall ozone density is decreasing with decreasing latitude, and is lowest in the MLT above Costa Rica. That is an important observation and it agrees well with an already known ozone geographical trends where ozone density is lowest in the regions around the equator. Figure 4.41 and Figure 4.42 show ozone comparison between daily and nightly satellite derived values with ozone density from this study confirm that trend.

Figure 4.41: Satellite observed diurnal variation of ozone density compared with the ozone profile from this work for April 2008, Costa Rica.

Figure 4.42: Left: Comparison of satellite and radar derived ozone profiles. Right: Residual values between daily and nightly satellite (MIPAS) profiles and calculated ozone density profile for April 2008, Costa Rica.

4.6 Chapter Summary and Concluding Remarks

The results of calculated ozone density profiles in the MLT region, using meteor radar observation of overdense meteors, for the five radar sites stretching from polar to equatorial region have been presented here. The results obtained in this study agree well with observations from different satellites. Additionally, the global trend of ozone decrease from maximum values in Polar Regions to minimum in the vicinity of the equator has been observed and is in line with known trends. Moreover, the seasonal variations in ozone density observed in this work (i.e. Socorro) match well with published seasonal ozone behaviour. In conclusion, the method proposed in this thesis has been validated where calculated results withstand scrutiny when compared with published literature.

Chapter 5

The pessimist complains about the wind; the optimist expects it to change;
the realist adjusts the sails.

- William Arthur Ward

5. Discussion and Concluding Remarks

5.1 Summary and Discussion

Several significant milestones were accomplished as a result of the work in this thesis.
i) It has been shown that it is possible to measure ozone density in the MLT region using the SKiYMET backscatter meteor radar and observation of overdense meteor echo decay times as a function of height.
ii) It was demonstrated that the backscatter radar can "see" hyperthermal chemistry during the post-adiabatic initial meteor train expansion.
iii) The role of the UV radiation from the overdense meteor shock layer has been shown to be a significant factor in the hyperthermal chemistry regime, and knowledge of its effects enabled the ozone density determination.
iv) Identified the hyperthermal chemical reaction that involves indirect ozone contribution in the electron removal from the meteor train:

1) Ozone gets photo dissociated by the UV radiation from the meteor shock front.

$$
O_{3}+h v \rightarrow O_{2}\left(a^{1} \Delta_{g}\right)+O(1 D)
$$

2) Singlet oxygen reacts with meteoric metal ion:

$$
M^{+}+O_{2}\left(a^{1} \Delta_{g}\right) \rightarrow M O^{+}+O
$$

3) Ionic oxide removes an electron from the radially expanding "hot" meteor train:

$$
\mathrm{MO}^{+}+e \rightarrow M+O
$$

v) It was demonstrated that the use of slopes of ambipolar and hyperthermal chemistry regimes, derived from the logarithmic plot of cumulative number of events vs. echo duration times, which change with height, can be viably used in the calculation of the "hyperthermal chemistry diffusion coefficient". Subsequently, the value of the
"hyperthermal chemistry diffusion coefficient" is applied in the final ozone density determination.
vi) Modified diffusion equation to treat the chemical removal of electrons in terms of physical diffusion.
vii) Consequently, a comparison of the obtained values of ozone density profile is in line with the results obtained from different satellite observations.
viii) Finally, it was shown that there are two mechanisms of ozone dissociation resulting from the overdense meteor passage through the ambient atmosphere and those are:

1) Thermal dissociation stemming from the initial high temperature meteor train, and
2) Photo-dissociation as a result of meteor shock layer UV radiation.

Some important implications are discussed next.
In the past, due to the inherent challenges in interpretation and observation of overdense meteors by radar in terms of diffusion, electron density, echo duration times and (incompletely understood) effects of chemistry, overdense meteors have received much less scientific attention than underdense meteors. This is perhaps because of greater usability and applicability of the underdense meteor data in studies of ambipolar diffusion and temperature variations in the MLT region. The expectation here is that such a trend can be overturned, as the significance of overdense meteor echoes is clearly established in this work.

Consequently, it is evident that more research needs to be conducted with the specific focus on overdense radio meteors, to define, for example, their electron densities in terms of their masses, velocities and composition, since these are still poorly constrained. For instance, consider the ordinary chondritic overdense meteor with a visual magnitude M_{V} $=0$ and corresponding electron density of $\sim 10^{16}$ electron m^{-1} (Sugar, 1964). If the meteor velocity is $15 \mathrm{~km} \mathrm{~s}^{-1}$, its diameter will be $2.0 \cdot 10^{-2} \mathrm{~m}$, where if the velocity is $60 \mathrm{~km} \mathrm{~s}^{-1}$, the size of the meteoroid is $0.5 \cdot 10^{-2} \mathrm{~m}$ (Ceplecha et al., 1998). Correspondingly, the visual magnitude for the same value of aforementioned electron line density, at least according to Baggaley (1972), deviates significantly and is given as $M_{V} \approx-5$.Thus, the knowledge of the distribution of visual magnitude ranges, masses, velocities and fluxes of overdense meteors is important in several ways. In this work, based on all the available and relevant published literature, it was determined that the most common electron line
density of overdense trains is $5.5 \cdot 10^{15}$ electron m^{-1}. It must be noted that such values of electron line density may need to be further refined. However, the diameter of meteoroids that produce overdense meteors, for the purpose of this study, was taken to be in the range of $200 \mathrm{~mm} \geq \mathrm{d} \geq 2 \mathrm{~mm}$ with the particular emphasis that the overdense meteors which approach the fireball size are very infrequent. This is well in line with other observations (Dressler, 2001). Furthermore, theoretical work performed by Manning (1962, 1963) should be expanded and further experimentally explored beyond the application in this thesis.

In general, the physics of meteoric phenomena can be divided into three basic components (Dressler, 2001). The first one, which is the dynamics of the meteoroid motion in the atmosphere, had received a great deal of attention since early days and had been reinvigorated in recent decades by the availability of the computational power which permits computer modeling and validation of the theoretical and observational studies (e.g. Boyd, 2000). The second component, also well studied both in the past and recently (e.g. Plane, 2012) is concerned with the chemical and plasma kinetics induced by thermalized atoms and molecules deposited in the ambient atmosphere by meteor ablation. The third component, which has not received enough attention to date, is concerned with the small scale physical and chemical processes occurring in and on the boundary of the extreme environment of the "hot" meteor trail in the initial stages of the expansion, just after the adiabatic formation of initial radius. The goal of this thesis, at least in part, was to illuminate this often ignored aspect of meteor physics and chemistry, and furthermore illustrate its importance through the practical applicability. An example of such a pragmatic application is the measurement of ozone density in the MLT, as discussed in the previous chapter. This goal, which also encompassed the measurement of ozone density in the upper atmosphere using backscatter meteor radar, was successfully completed. However, it must be noted that this investigation only scratched the surface and presented the validity and the need for more extensive research.

The overdense meteor shock front production of the UV radiation and its full effect on the ambient atmosphere needs to be illuminated further, as it became obvious that the UV alteration of the atmospheric constituents will subsequently impact the local physical and
chemical processes even some time after thermal equilibration and diffusion of the meteor train. What was learned in this work however, is the importance of ablation processes and their contribution to the formation of the shock layer in the front of the overdense meteor trains and the subsequent UV emission (Figure 5.1 and 5.2).

Figure 5.1: Translational temperature field from a rarefied flow model of a -1 magnitude Leonid meteor at 95 km altitude shown without ablation (a), and with ablation of Mg atoms (b) (Jenniskens et al., 1998b).

Figure 5.2: Popular depictions of the physical processes that lead to meteors. Left: air molecules hit vapor cloud products to expand into a 2 m diameter air plasma volume (1 cm Leonid at 95 km altitude). Right: UV light generated in this process is absorbed in the ambient atmosphere, causing an optical glow and "shock" (Jenniskens, 2004).

The final point that needs to be addressed is a comparison between forward and backscatter meteor radar and the difference in detection of the hyperthermal chemistry regime involving meteor ion and singlet oxygen and why this was not discovered in earlier investigations (Figure 5.3).

Figure 5.3: The mass index of the Draconids on October 8, 2011 determined with selected echoes in the overdense dataset. The turnover from diffusion-limited to chemistry-limited duration can be seen at $t_{c}=2.7 \mathrm{~s}$. The mass distribution index determined by fitting the diffusion-limited portion is 1.72 ± 0.01 (Ye et al., 2013). Note that this plot shows the effects of the chemistry regime occurring in thermal equilibrium and not the hyperthermal chemistry. The arrow points at the hyperthermal regime investigated in the work performed in this thesis using the backscatter meteor radar system. Any anomaly observed in the logarithmic plot of cumulative number of events vs. echo duration times derived from the forward scatter data would be considered just a statistical noise which is primarily due to the low temporal resolution.

In that context, it should be noted that a significant percentage of the meteor studies in the past utilized forward scatter radar. While the use of forward scatter radar allows the observation of a diffusing meteor train on significantly longer time scales, it is not conducive to the observation of the meteor train dynamics on a small time scale. When the logarithmic plot of the cumulative number of events vs. echo duration times would have been plotted (see for example Ye et al., 2013), from the observed behaviour it would be unlikely to discriminate between the longer duration thermal equilibrium chemistry and the hyperthermal chemistry regime observed in this work using backscatter meteor
radar. In fact, a hyperthermal chemistry observed with backscatter meteor radar would be dismissed and considered as just a statistical artifact due to low temporal resolution if observed by forward scatter system.

5.2 Conclusions

The primary motivation behind this work was to explore the potential for measurement of ozone density in the region of the upper mesosphere and lower thermosphere (MLT) using backscatter meteor radar. In order to accomplish that, the anomalous behaviour of the ambipolar diffusion in overdense meteor trains has been studied with the SKiYMET meteor radar system at five latitudinally distinct geographical locations, beginning with Resolute Bay located within the arctic circle, and extending all the way to Costa Rica $\left(10.29^{\circ} \mathrm{N}, 85.59^{\circ} \mathrm{W}\right)$.
The two primary mechanisms of the ozone destruction in the ambient atmosphere around the overdense meteor train as a consequence of meteor transit through the upper atmosphere have been identified. The first mechanism is the photo dissociation of ozone by the UV radiation from the overdense meteor shock front. The second mechanism involves the thermal decomposition of ozone by the thermal shock wave propagating orthogonally relative to the meteor train axis. Consequently, it is a singlet oxygen, which is the product of ozone photo-dissociation and thermal decomposition that reacts hyperthermally with the meteoric metal ions in the initial stages of post adiabatic "hot" meteor train expansion. The product, an ionic metal oxide, is what consumes electrons rapidly from the meteor trail. In this study, this indeed has been identified as the cause of the observed anomalous behaviour of ambipolar diffusion in the initial stages of the "hot" meteor trail expansion, and subsequently observed by meteor radar. Using this mechanism, it was demonstrated that the MLT ozone density profile can be measured using VHF meteor backscatter radar, thus confirming the initial hypothesis in this thesis. The ozone density profiles between $78-100 \mathrm{~km}$ are in good agreement with satellite measurements of ozone density. Furthermore, in consideration of the global network of SKiYMET meteor radars, this methodology has a great potential for commercial exploit and for global coverage of ozone density in the MLT region. It is expected that future
investigations will provide ozone density results with more accuracy and with reduced uncertainties, as a result of the availability of higher density data and more precisely constrained parameters such as height specific echo duration times and temperature and pressure dependent ambipolar diffusion. Additional reduction in uncertainties can be accomplished by deployment of numerical solutions to reaction-diffusion equation and utilized to calculate ozone MLT density. These results should be further validated by other investigators and in more comprehensive and encompassing studies. In conclusion, the observation of overdense meteors echo duration times with SKiYMET meteor radar has been demonstrated as a viable method for the determination of the ozone density in the MLT region with the significant potential for the development of the global meteor radar based secondary ozone maxima monitoring system.

5.3 Future Work

As a consequence of the newly identified hyperthermal chemistry reaction involving the singlet molecular oxygen and the meteoric metal ion, it is potentially possible to evaluate ozone density in the region of MLT by considering the metal oxide spectra from the overdense meteor train within the first 0.3 s following the formation of the initial meteor trail. That can be achieved by spectrally measuring the number of photons in the particular spectral range corresponding to the metal oxides. The number of neutral oxides will correspond to the number of removed electrons, which will in turn correspond to the ozone volume density in that region of the atmosphere. A potential collaborative project should be considered as a part of a broader investigation of overdense meteors and MLT ozone density.

It is important to note, that by using meteor radar, it is possible to determine ozone for the particular height from the ionization of single overdense meteor echo duration, and this might be an interesting project during the dense meteor showers such as the Leonids. The disadvantage of this approach is the ability to measure ozone density just for one specific height, and many individual measurements are needed to obtain the ozone profile compared to the method demonstrated in this thesis.

Moreover, now that it is understood that hyperthermal chemistry consumes a large number of electrons from the meteor train, corresponding to the ambient ozone density,
the new investigation of the ionization parameter β would be advisable, especially when it is known that it depends on the both velocity and meteor height (discussed in Chapter 2). This work has indirectly pointed out that the contribution of β to the overall meteor ionization and the consequent electron line density might be much less than previously considered.

This method for ozone density determination, demonstrated here, can be improved further by the availability of the high density data, and the numerical approach in further calculations. The analytical approach was employed here to simplify the actual reaction diffusion equation. However, the method used here lacks the level of refinement that can only be obtained if the full non-isothermal reaction diffusion equation is solved numerically. While not trivial, that can be accomplished fairly easy, as the reaction diffusion systems are familiar on many levels as they control the behaviour of many transport and rate processes in physical, chemical and biological systems. The primary reason for the numerical approach is the ability to model the hyperthermal chemistry dynamics of the meteor trail system and its interaction with UV and thermally perturbed ambient atmosphere.

Finally, this work might have potentially proven the hypothesis of McKinley and Millman (1949) which suggested that the meteor head phenomena is formed by the UV radiation, initiated by the overdense meteor collision with the upper atmosphere. Further discussion however, will have to await additional investigation. It should be noted that the presence of the $\mathrm{O}(1 \mathrm{~S})$ emissions from the meteor head region seems to confirm the aforementioned statement.

Concluding the future work prospects, it must be remarked that the determination of the actual rates of hyperthermal chemical reactions would be desirable, as it would allow further constraining of the time scales at which ionic metal oxides are formed and refinement of the timescales that it takes for subsequent electron removal from the meteor train. This should be hopefully a collaborative project with Dr. Plane as he had performed experimental work in the past involving neutral meteoric metals reactions with singlet
oxygen. The outcome of such study would be expected to further validate the results from this thesis.

Bibliography

Abe, S., Ebizuka, N., Yano, H., Watanabe, J. I., and Borovička, J. (2007) Search for OH ($\mathrm{A}-\mathrm{X}$) and detection of $(\mathrm{B}-\mathrm{X})$ in ultraviolet meteor spectrum. Advances in Space Research, 39(4), 538-543.

Allen, M., Lunine, J. I., and Yung, Y. L. (1984) The vertical distribution of ozone in the mesosphere and lower thermosphere. Journal of Geophysical Research: Atmospheres (1984-2012), 89(D3), 4841-4872.

Allen, M., Yung, Y. L., and Waters, J. W. (1981) Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere ($50-120 \mathrm{~km}$). Journal of Geophysical Research, 86(A5), 3617-3627.

Andersen, H. H., and Bay, H. L. (1981) Sputtering yield measurements. In Sputtering by particle bombardment I (pp. 145-218). Springer Berlin Heidelberg.

Anderson, J. D. JR. (1969) An engineering survey of radiating shock layers. AIAA Journal, Vol. 7, No. 9, pp. 1665-1675.

Appleton, E., and Naismith, R. (1947) The radio detection of meteor trails and allied phenomena. Proceedings of the Physical Society, 59(3), 461.

Armentrout, P. B., Halle, L. F., and Beauchamp, J. L. (1982) Reaction of Cr, Mn, Fe, Co, and Ni with O and NO. Examination of the translational energy dependence of the cross sections of endothermic reactions. The Journal of Chemical Physics, 76, 2449.

Badger, D. (2002) Fine Structure in Radio Meteor Showers, PhD Thesis, Department of Physics and Mathematical Physics, The University of Adelaide, Adelaide, Austrialia.

Baggaley, W. J. (1970) The determination of the initial radii of meteor trains. Monthly Notices of the Royal Astronomical Society, 147, 231

Baggaley, W. J. (1972) The effect of meteoric ion processes on radio studies of meteoroids. Monthly Notices of the Royal Astronomical Society, 159, 203.

Baggaley, W. J. (1975a) Meteor trains and chemiluminescent processes. Monthly Notices of the Royal Astronomical Society, 173, 497-512.

Baggaley, W. J. (1975b) Enduring meteor trains and chemiluminescence. Bulletin of the Astronomical Institutes of Czechoslovakia, 26, 273-275.

Baggaley, W. J. (1975c) Sodium emission from long enduring meteor trains. Nature, 257, 567.

Baggaley, W. J. (1975d) Meteor trains and chemiluminescent processes. Monthly Notices of the Royal Astronomical Society, 173, 497-512.

Baggaley, W. J. (1976a) The chemical reduction of meteoric metal oxides as a source of meteor train emission. Bulletin of the Astronomical Institutes of Czechoslovakia, 27, 244246.

Baggaley, W. J. (1976b) The role of the oxides of meteoric species as a source of meteor train luminosity. Monthly Notices of the Royal Astronomical Society, 174, 617-620.

Baggaley, W. J. (1976c) The excitation of the oxygen metastable OI/1S/state in meteors. Bulletin of the Astronomical Institutes of Czechoslovakia, 27, 173-181.

Baggaley, W. J. (1976d) The quenching of meteoric OI forbidden radiation. Bulletin of the Astronomical Institutes of Czechoslovakia, 27, 296-300.

Baggaley, W. J. (1977a) The red afterglow in meteor wakes. Bulletin of the Astronomical Institutes of Czechoslovakia, 28, 356-359.

Baggaley, W. J. (1977b) The velocity dependence of meteoric green line emission. Bulletin of the Astronomical Institutes of Czechoslovakia, 28, 277-280.

Baggaley, W. J. (1978) The de-ionization of dense meteor trains. Planetary and Space Science, 26(10), 979-981.

Baggaley, W. J. (1979) The interpretation of overdense radio meteor echo duration characteristics. Bulletin of the Astronomical Institutes of Czechoslovakia, 30, 184-189.

Baggaley, W. J. (1980) Measurements of the velocity dependence of the initial radii of meteor trains. Bulletin of the Astronomical Institutes of Czechoslovakia, 31, 308-311.

Baggaley, W. J. (1980b) Meteors and atmospheres. In Solid Particles in the Solar System.Vol. 90, pp. 85-100

Baggaley, W. J. (1981) Single wavelength measurements of the initial radii of radio meteor ionization columns. Bulletin of the Astronomical Institutes of Czechoslovakia, 32, 345-349

Baggaley, W. J. (2002) In Murad, E., and Williams, I. P. (Eds.) Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere. Cambridge University Press. Ch.6.

Baggaley, W. J., and Cummack, C. H. (1974) Meteor train ion chemistry. Journal of Atmospheric and Terrestrial Physics, 36(11), 1759-1773

Baggaley, W. J., and Cummack, C. H. (1977) The behaviour of the meteoric OI 5577 Å emission. Canadian Journal of Physics, 55(15), 1379-1383.

Baggaley, W. J., and Cummack, C. H. (1979) The duration of long-lived meteor trains. Bulletin of the Astronomical Institutes of Czechoslovakia, 30, 180-183.

Baggaley, W. J., and Fisher, G. W. (1980) Measurements of the initial radii of the ionization columns of bright meteors. Planetary and Space Science, 28(6), 575-580

Baggaley, W. J., and Grant, J. (2005) Techniques for measuring radar meteor speeds. In Modern Meteor Science An Interdisciplinary View (pp. 601-615) Springer Netherlands.

Baggaley, W. J., and Webb, T. H. (1977) The thermalization of meteoric ionization. Journal of Atmospheric and Terrestrial Physics, 39(11), 1399-1403

Baggaley, W. J., and Webb, T. H. (1980) Measurements of the ionization heights of sporadic radio-meteors. Monthly Notices of the Royal Astronomical Society, 191, 829-839

Baggaley, W. J., and C. H. Cummack. (1974) Meteor train ion chemistry, Journal of Atmospheric and Terrestrial Physics 36.11 (1974): 1759-1773.

Baggaley, W. J., Bennett, R. G. T., Steel, D. I., and Taylor, A. D. (1994) The advanced meteor orbit radar facility-AMOR. Quarterly Journal of the Royal Astronomical Society, 35, 293.

Baggaley, W. J.: Radar observations, in: Murad, E., and Williams, I. P. (Eds.) (2002) Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere. Cambridge University Press. 123-148.

Balanis, C. A. (2005) Antenna Theory, Hoboken. New Jersey: John Wiley and Sons, Inc, 8, 21-31.

Ballinger, A. P., Chilson, P. B., Palmer, R. D., and Mitchell, N. J. (2008) On the validity of the ambipolar diffusion assumption in the polar mesopause region. In Annales Geophysicae (Vol. 26, No. 11, pp. 3439-3443) Copernicus GmbH

Bayrachenko, I. V. (1965) Measurements of the Initial Radii of Ionized Meteor Trails from Simultaneous Observations of Radio Meteors on two Wavelengths. Geomagn. Aeron, 5, 353.

Berezhnoy, A. A., and Borovička, J. (2010) Formation of molecules in bright meteors. Icarus, 210(1), 150-157.

Bevington, P. R., and Robinson, D. K. (1992) Data reduction and error analysis for the physical sciences ($2^{\text {nd }}$ ed.) New York: McGraw-Hill.

Blake, A. J., and Carver, J. H. (1977) The evolutionary role of atmospheric ozone. Journal of the Atmospheric Sciences, 34(5), 720-728.

Bohdansky, J. (1984) A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2(1), 587-591.

Borovicka, J. (1993) A fireball spectrum analysis. Astronomy and Astrophysics, 279, 627645.

Borovička, J. (1994) Two components in meteor spectra. Planetary and Space Science, 42(2), 145-150.

Borovička, J., and Jenniskens, P. (1998) Time resolved spectroscopy of a Leonid fireball afterglow. Earth, Moon, and Planets, 82, 399-428.

Borovička, J., and Spurný, P. (1996) Radiation study of two very bright terrestrial bolides and an application to the comet S-L 9 collision with Jupiter. Icarus, 121(2), 484-510.

Borovička, J., and Zamorano, J. (1995) The spectrum of fireball light taken with a 2-m telescope. Earth, Moon, and Planets, 68(1-3), 217-222.

Borovička, J., Koten, P., Spurný, P., Boček, J., and Štork, R. (2005) A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids. Icarus, 174(1), 15-30.

Borovicka, J., Stork, R., and Bocek, J. (1999) First results from video spectroscopy of 1998 Leonid meteors. Meteoritics \& Planetary Science, 34(6), 987-994.

Boyd, I. D. (1998) Computation of atmospheric entry flow about a Leonid meteoroid. Earth, Moon, and Planets, 82, 93-108.
Bronshten, V. A. (1983) Physics of meteoric phenomena. D. Reidel Publishing Company
Brosch, N., Schijvarg, L. S., Podolak, M., and Rosenkrantz, M. R. (2001, November) Meteor observations from Israel. In Meteoroids 2001 Conference (Vol. 495, pp. 165-173)

Brown, P., Ceplecha, Z., Hawkes, R. L., Wetherill, G., Beech, M., and Mossman, K. (1994) The orbit and atmospheric trajectory of the Peekskill meteorite from video records. Nature, 367(6464), 624-626.

Browne, I. C. and Kaiser, T. R. (1953) The radio echo from the head of meteor trails. Journal of Atmospheric and Terrestrial Physics, 4(1), 1-4.

Brownlee, D. E. (1985) Cosmic dust: collection and research. Annual Review of Earth and Planetary Physics, 13:147-173

Buderi, R. (1996) The invention that changed the world: how a small group of radar pioneers won the Second World War and launched a technological revolution. Simon \& Schuster.

Burke, J. G. (1991) Cosmic debris: meteorites in history. Univ of California Press.
Campbell, L., and Elford, W. G. (2006) Accuracy of meteoroid speeds determined using a Fresnel transform procedure. Planetary and Space Science, 54(3), 317-323.

Campbell-Brown, M. D., and Koschny, D. (2004) Model of the ablation of faint meteors. ASTRONOMY AND ASTROPHYSICS-BERLIN THEN LES ULIS, 418(2), 751-758.

Campbell-Brown, M., and Jones, J. (2003) Determining the initial radius of meteor trains: fragmentation. Monthly Notices of the Royal Astronomical Society, 343(3), 775-780.

Ceplecha, Z. (1968) Meteor spectra (survey paper) In Physics and Dynamics of Meteors (Vol. 33, p. 73)

Ceplecha, Z. (1971) Spectral data on terminal flare and wake of double-station meteor No. 38421 (Ondrejov, April 21, 1963) Bulletin of the Astronomical Institutes of Czechoslovakia, 22, 219.

Ceplecha, Z., Borovicka, J., and Spurný, P. (2000) Dynamical behavior of meteoroids in the atmosphere derived from very precise photographic records. Astronomy and Astrophysics, 357, 1115-1122.

Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., and Šimek, M. (1998) Meteor phenomena and bodies. Space Science Reviews, 84(3-4), 327-471.

Cervera, M. (1996) Meteor Observation With a Narrow Beam VHF Radar, Department of Physics and Mathematical Physics, The University of Adelaide, Adelaide, Austrialia.

Cervera, M. A., and Elford, W. G. (2004) The meteor radar response function: Theory and application to narrow beam MST radar. Planetary and Space Science, 52(7), 591602.

Cervera, M. A., and Reid, I. M. (2000) Comparison of atmospheric parameters derived from meteor observations with CIRA. Radio Science, 35(3), 833-843.

Cevolani, G., and Gabucci, M. F. (1996) Mass distribution of meteoroids obtained by a meteor forward-scatter (MFS) radar method. Il Nuovo Cimento C, 19(2), 271-282.

Cevolani, G., and Pupillo, G. (2003) Ground-based radio observations to probe the ozone content in the meteor region. Annals of Geophysics.

Cevolani, G., Hajduk, A., Hajdukova, M., Porubčan, V., and Trivellone, G. (1999) Ozone concentration at meteor heights determined from forward-scatter radar echoes. Journal of atmospheric and solar-terrestrial physics, 61(7), 539-543.

Chen, X., Guo, J. S., and Ninomiya, H. (2006) Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 136(6), 1207-1237.

Chilson, P. B., Czechowsky, P., and Schmidt, G. (1996) A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar. Geophysical research letters, 23(20), 2745-2748

Chorley, R., and Barry, R. G. (1998) Atmosphere, Weather and Climate. Taylor \& Francis.

Close, S., Oppenheim, M., Hunt, S., and Coster, A. (2004) A technique for calculating meteor plasma density and meteoroid mass from radar head echo scattering. Icarus, 168(1), 43-52.

Close, S., Oppenheim, M., Hunt, S., and Dyrud, L. (2002) Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies. Journal of Geophysical Research: Space Physics (1978-2012), 107(A10), SIA-9.

Cook, A. F., and Hawkins, G. S. (1960) The meteoric head echo. Smithsonian Contributions to Astrophysics, 5, 1.

Coulson, S. G., and Wickramasinghe, N. C. (2003) Frictional and radiation heating of micron-sized meteoroids in the Earth's upper atmosphere. Monthly Notices of the Royal Astronomical Society, 343(4), 1123-1130.

Crank, J. (1975) The Mathematics of Diffusion: $2 d$ Ed. Clarendon Press.
Crank, J. (1979) The mathematics of diffusion. Oxford university press.
Crutzen, P. J. (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. Journal of Geophysical Research, 76(30), 7311-7327.

Davis, J. A., Greenhow, J. S., and Hall, J. E. (1959) The effect of attachment on radio echo observations of meteors. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253(1272), 130-139.

Davis, J., and Hall, J. E. (1963) Meteor luminosity and ionization. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 271(1344), 120128.

Delov, I. A. (1975) On non-isothermicity of meteoric trails. Astronomicheskii Vestnik, 9, 232-236

Derbeneva, A. D. (1968) The Luminous Flux and Ionizing Power of Meteor Trails. Soviet Astronomy, 11, 688.

Dimant, Y. S., and Oppenheim, M. M. (2006) Meteor trail diffusion and fields: 1. Simulations. Journal of Geophysical Research: Space Physics (1978-2012), 111(A12)

Dressler, R. (Ed.) (2001) Chemical dynamics in extreme environments (Vol. 11). World Scientific.

Dyrud, L. P., Oppenheim, M. M., and vom Endt, A. F. (2001) The anomalous diffusion of meteor trails. Geophysical Research Letters, 28(14), 2775-2778

Elford, W. G. (1964) Calculation of the response function of the Harvard radio meteor project radar system. Harvard College Observatory.

Elford, W. G. (2001) Novel applications of MST radars in meteor studies. Journal of Atmospheric and Solar-Terrestrial Physics, 63(2), 143-153

Elford, W. G. (2004) Radar observations of meteor trails, and their interpretation using Fresnel holography: a new tool in meteor science. Atmospheric Chemistry and Physics, 4(4), 911-921.

Elford, W. G., and Taylor, A. D. (1997) Measurement of Faraday rotation of radar meteor echoes for the modelling of electron densities in the lower ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 59(9), 1021-1024

Elford, W. G., and M. T. Elford. The effective diffusion coefficient of meteor trails above 100 km. Meteoroids 2001 Conference. Vol. 495. 2001

Erdman, P. W., Zipf, E. C., Espy, P., Howlett, C., Levin, D. A., Loda, R., et al. (1993) Flight measurements of low-velocity bow shock ultraviolet radiation. Journal of Thermophysics and Heat Transfer, 7(1), 37-41.

Eshelman, V. R., (1959), Short Wave Length Radio Reflections From Meteoric Ionization. I. Theory for Low Density Trails. Stanford University, Contract no. AF 19(604)-1031, Rep. No. 5 .

Eshleman, V. R., and Mlodnosky, R. F. (1957) Directional characteristics of meteor propagation derived from radar measurements. Proceedings of the IRE, 45(12), 17151723.

Eshleman,Von, R. (1957) The theoretical length distribution of ionized meteor trails. Journal of Atmospheric and Terrestrial Physics, 10(2), 57-72.

Evans, W. F. J., and Llewellyn, E. J. (1972) Measurements of Mesospheric Ozone from Observations of the 1.27. μ Band. Radio Science, 7(1), 45-50.

Ferguson, E. E., and Fehsenfeld, F. C. (1968) Some aspects of the metal ion chemistry of the earth's atmosphere. Journal of Geophysical Research, 73(19), 6215-6223.

Fialko, E. I. (1959) An Approximate Estimation of the Probability of Meteoric Ionization. Soviet Astronomy, 3, 479.

Finlayson-Pitts, B. J., and Pitts Jr, J. N. (1999) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Elsevier.

Foote, C. S., Valentine, J. S., and Greenberg, A. (1995) Active oxygen in chemistry. Structure energetics and reactivity in chemistry (SEARCH) series, 2.

Fort, J., and Méndez, V. (2002) Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment. Reports on Progress in Physics, 65(6), 895.

Foschini, L. (1997) On forward scatter of radio waves from meteor trails. arXiv preprint astro-ph/9804279.

Foschini, L. (1999) On the interaction of radio waves with meteoric plasma. Astron. Astrophys, 341, 634-639.

Francey, J. L. A. (1963) Ambipolar diffusion in meteor trails. Australian Journal of Physics, 16(4), 500-506

Francey, J. L. A. (1964) Diffusion of meteor trails in the Earth's magnetic field. Australian Journal of Physics, 17(3), 315-322

Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., ... and Wagner, P. A. (2008) Validation of Aura microwave limb sounder HCl measurements. Journal of geophysical research, 113(D15), D15S25.

Furman, A. M. (1961) A Theory of Ionization of Meteor Trails. II. The Role of Ionization Phenomena at the Surface of a Meteoroid in the Ionization of the Meteor Trail. Soviet Astronomy 4: 705.

Furman, A. M. (1960) The Theory of Ionization in Meteor Trails. I. Kinetics of the Variation of Ionization Parameters for Meteoroids Heated by Motion in the Earth's Atmosphere. Soviet Astronomy, 4, 489.

Furman, A. M. (1964) Notes on the Theory of Ionization of Meteor Trails. III. Ionization Due to Air Molecules and Atoms Reflected from a Meteoroid. Soviet Astronomy, 7, 559.

Furman, A. M. (1967) Meteor-Trail Ionization Theory. IV. Ionization Efficiency through Collision of Vaporized Meteoroid Particles with Air Molecules. Soviet Astronomy, 10, 844.

Galligan, D. P., Thomas, G. E., and Baggaley, W. J. (2004) On the relationship between meteor height and ambipolar diffusion. Journal of atmospheric and solar-terrestrial physics, 66(11), 899-906.

Gaydon, A. G. (1968) Dissociation Energies: And Spectra of Diatomic Molecules. Chapman and Hall.

Green, B. D., Rawlins, W. T., and Nadile, R. M. (1986) Diurnal variability of vibrationally excited mesospheric ozone as observed during the SPIRE mission. Journal of Geophysical Research: Space Physics (1978-2012), 91(A1), 311-320.

Greenhow, J. S. (1952) Characteristics of radio echoes from meteor trails: III The behaviour of the electron trails after formation. Proceedings of the Physical Society. Section B, 65(3), 169

Greenhow, J. S. (1961) Head echoes from meteor trails. Journal of Atmospheric and Terrestrial Physics, 22(1), 64-73

Greenhow, J. S. (1963) Limitations of radar techniques for the study of meteors. Smithsonian contributions to astrophysics, 7, 5.

Greenhow, J. S., and Hall, J. E. (1960a) The importance of initial trail radius on the apparent height and number distributions of meteor echoes. Monthly Notices of the Royal Astronomical Society, 121, 183.

Greenhow, J. S., and Hall, J. E. (1960b) The variation of meteor heights with velocity and magnitude. Monthly Notices of the Royal Astronomical Society, 121, 174.

Greenhow, J. S., and Hall, J. E. (1961) Attachment processes in meteor trails. Journal of Atmospheric and Terrestrial Physics, 21(4), 261-271.

Greenhow, J. S., and Hawkins, G. S. (1952) Ionizing and luminous efficiencies of meteors.

Greenhow, J. S., and Neufeld, E. L. (1957) The variation of ionization along a meteor trail. Monthly Notices of the Royal Astronomical Society, 117, 359.

Greenhow, J. S., and Watkins, C. D. (1964) The characteristics of meteor trails observed at a frequency of $300 \mathrm{Mc} / \mathrm{s}$. Journal of Atmospheric and Terrestrial Physics, 26(5), 539558

Hajduk, A., Hajduková, M., Porubcan, V., Cevolani, G., and Grassi, G. (1999). The ozone concentration in the meteor zone. In Meteroids 1998 (Vol. 1, p. 91).

Halliday, I. (1960) Auroral Green Line in Meteor Wakes. The Astrophysical Journal, 131, 25.

Havnes, O., and Sigernes, F. (2005) On the influence of background dust on radar scattering from meteor trails. Journal of atmospheric and solar-terrestrial physics, 67(6), 659-664

Hawkes, R. L., and Jones, J. (1978) MNRAS, 185, 727
Hawkins, G. S. (1963) The initial diameter of meteor trails. Smithsonian Contributions to Astrophysics, 7, 23

Hays, P. B., and Roble, R. G. (1973) Observation of mesospheric ozone at low latitudes. Planetary and Space Science, 21(2), 273-279.

Hecht, E., and Zajac, A. (1974) Optics. San Francisco, CA: Addison Wesley.

Helmer, M., Plane, J., Qian, J., and Gardner, C. S. (1998) A model of meteoric iron in the upper atmosphere. Journal of Geophysical Research: Atmospheres (1984-2012), 103(D9), 10913-10925.

Henry, R. J., Burke, P. G., and Sinfailam, A. L. (1969) Scattering of Electrons by C, N, $\mathrm{O}, \mathrm{N}^{\wedge}\{+\}, \mathrm{O}^{\wedge}\{+\}$, and $\mathrm{O}^{\wedge}\{++\}$. Physical Review, 178(1), 218.

Herlofson, N. (1951) Plasma resonance in ionospheric irregularities. Ark. Fys, 3, 247297.

Herlofson, N. (1951) Radio Echoes from Meteor Trails and Ionospheric Scattering Centres (Doctoral dissertation, University of Stockholm)

Herlofson, N.: (1948) The Theory of Meteor Ionization, Rep. Prog. Phys. 11, 444-454
Hewitt, C. N., and Jackson, A. V. (Eds.) (2008) Handbook of atmospheric science: Principles and applications.

Hey, J. S., and Stewart, G. S. (1947) Radar observations of meteors. Proceedings of the Physical Society, 59(5), 858.

Hey, J.S., Parsons, S.J. Stewart, G.S.. (1947) Radar Observations of the Giacobinid Meteor Shower Mon. Not. R. Astron. Soc., 107, pp. 176-183.

Hill, K. A., Rogers, L. A., and Hawkes, R. L. (2004) Sputtering and high altitude meteors. Earth, Moon, and Planets, 95(1-4), 403-412.

Hippler, H., Rahn, R., and Troe, J. (1990) Temperature and pressure dependence of ozone formation rates in the range $1-1000$ bar and $90-370$ K. The Journal of chemical physics, 93, 6560.

Hocking, W. K. (1997) System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar. Radio Science, 32(2), 687-706.

Hocking, W. K. (1999) Temperatures using radar-meteor decay times. Geophysical research letters, 26(21), 3297-3300.

Hocking, W. K. (2000) Real-time meteor entrance speed determinations made with interferometric meteor radars. Radio Science, 35(5), 1205-1220.

Hocking, W. K. (2004) Radar meteor decay rate variability and atmospheric consequences. In Annales Geophysicae (Vol. 22, No. 11, pp. 3805-3814)

Hocking, W. K. (2005) Experimental radar studies of anisotropic diffusion of high altitude meteor trails. In Modern Meteor Science An Interdisciplinary View, pp. 671-679. Springer Netherlands.

Hocking, W. K. (2011) A review of Mesosphere-Stratosphere-Troposphere (MST) radar developments and studies, circa 1997-2008. Journal of Atmospheric and SolarTerrestrial Physics, 73(9), 848-882.

Hocking, W. K., Fuller, B., and Vandepeer, B. (2001a) Real-time determination of meteor-related parameters utilizing modern digital technology. Journal of Atmospheric and Solar-Terrestrial Physics, 63(2), 155-169.

Hocking, W. K., Kelley, M., Rogers, R., Brown, W. O. J., Moorcroft, D., and St Maurice, J. P. (2001b) Resolute Bay VHF radar: A multipurpose tool for studies of tropospheric motions, middle atmosphere dynamics, meteor physics, and ionospheric physics. Radio Science, 36(6), 1839-1857.

Hocking, W. K., Singer, W., Bremer, J., Mitchell, N. J., Batista, P., Clemesha, B., and Donner, M. (2004) Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH , rocket and lidar measurements. Journal of atmospheric and solar-terrestrial physics, 66(6), 585-593.

Hocking, W. K., Thayaparan, T., and Jones, J. (1997) Meteor decay times and their use in determining a diagnostic mesospheric Temperature-pressure parameter: Methodology and one year of data. Geophysical research letters, 24(23), 2977-2980

Holway Jr, L. H. (1965) Ambipolar diffusion in the geomagnetic field. Journal of Geophysical Research, 70(15), 3635-3645

Hughes, D. W. (1978) Meteors. Cosmic dust, 1, 123-185.
Hughes, D. W. (1992) The meteorite flux. Space science reviews, 61(3-4), 275-299.
Hughes, D. W. (1997) Meteors and cosmic dust. Endeavour, 21(1), 31-35.
Hunten, D. M., and Strobel, D. F. (1974) Production and Escape of Terrestrial Hydrogen. Journal of Atmospheric Sciences, 31, 305-317.

Isern, N., and Fort, J. (2009) Time-delayed reaction-diffusion fronts. Physical Review E, 80(5), 057103.

Jacob, D. (1999) Introduction to atmospheric chemistry. Princeton University Press.
Janches, D., Dyrud, L. P., Broadley, S. L., and Plane, J. M. C. (2009) First observation of micrometeoroid differential ablation in the atmosphere. Geophysical Research Letters, 36(6), L06101.

Jenniskens, P. (2004) Meteor induced chemistry, ablation products, and dust in the middle and upper atmosphere from optical spectroscopy of meteors. Advances in Space Research, 33(9), 1444-1454.

Jenniskens, P., and Stenbaek-Nielsen, H. C. (2004) Meteor wake in high frame-rate images-implications for the chemistry of ablated organic compounds. Astrobiology, 4(1), 95-108.

Jenniskens, P., Lacey, M., Allan, B. J., Self, D. E., and Plane, J. M. (1998) FeO" Orange Arc" emission detected in optical spectrum of Leonid persistent train. Earth, Moon, and Planets, 82, 429-438.

Jenniskens, P., Laux, C. O., Wilson, M. A., and Schaller, E. L. (2004) The mass and speed dependence of meteor air plasma temperatures. Astrobiology, 4(1), 81-94.

Jenniskens, P., Nugent, D., and Plane, J. M. (1998) The dynamical evolution of a tubular Leonid persistent train. Earth, Moon, and Planets, 82, 471-488.

Jenniskens, P., Wilson, M. A., Packan, D., Laux, C. O., Krüger, C. H., Boyd, I. D., et al. (1998b) Meteors: A delivery mechanism of organic matter to the early Earth. Earth, Moon, and Planets, 82, 57-70.

Jones, J. (1975) On the decay of underdense radio meteor echoes. Monthly Notices of the Royal Astronomical Society, 173, 637-648.

Jones, J., \& Campbell-Brown, M. (2005) The initial train radius of sporadic meteors. Monthly Notices of the Royal Astronomical Society, 359(3), 1131-1136.

Jones, J., and Collins, J. G. (1974) On the validity of certain approximations in radio meteor echo theory. Monthly Notices of the Royal Astronomical Society, 168, 433.

Jones, J., and Jones, W. (1990b) Oblique-scatter of radio waves from meteor trains: Iong wavelength approximation. Planetary and Space Science, 38(7), 925-932.

Jones, J., and Jones, W. (1991) Oblique-scatter of radio waves from meteor trains: Fullwave calculations. Planetary and space science, 39(9), 1289-1296.

Jones, J., and Morton, J. D. (1977) The determination of meteor stream radiants from single station observations. Bulletin of the Astronomical Institutes of Czechoslovakia, 28, 267-272.

Jones, J., and Simek, M. (1995) A note on the determination of ozone concentrations from radio-meteor duration distributions. Earth, Moon, and Planets, 68(1-3), 329-338.

Jones, J., A. R. Webster, and W. K. Hocking (1998), An improved interferometer design for use with meteor radars, Radio Sci., 33, 55-65.

Jones, J., McIntosh, B. A., and Simek, M. (1990) Ozone and the duration of overdense radio meteors. Journal of Atmospheric and Terrestrial Physics, 52(4), 253-258.

Jones, W. (1991) Theory of diffusion of meteor trains in the geomagnetic field. Planetary and space science, 39(9), 1283-1288

Jones, W. (1995) Theory of the initial radius of meteor trains. Monthly Notices of the Royal Astronomical Society, 275, 812-818

Jones, W. (1997) Theoretical and observational determinations of the ionization coefficient of meteors. Monthly Notices of the Royal Astronomical Society, 288(4), 9951003.

Jones, W. M., and Davidson, N. (1962) The thermal decomposition of ozone in a shock tube. Journal of the American Chemical Society, 84(15), 2868-2878.

Jones, W., and Halliday, I. (2001) Effects of excitation and ionization in meteor trains. Monthly Notices of the Royal Astronomical Society, 320(4), 417-423.

Jones, W., and Jones, J. (1990) Ionic diffusion in meteor trains. Journal of Atmospheric and Terrestrial Physics, 52(3), 185-191

Jones, W., and Jones, J. (1990a) Oblique scattering of radio waves from meteor trains: theory. Planetary and space science, 38(1), 55-66.

Kaiser, T. R. (1953) Radio echo studies of meteor ionization. Advances in Physics, 2(8), 495-544

Kaiser, T. R. (1961) The determination of the incident flux of radio-meteors. Monthly Notices of the Royal Astronomical Society, 123, 265.

Kaiser, T. R. (1968) Diffusion of meteor trains in the geomagnetic field. In Physics and Dynamics of Meteors (Vol. 33, p. 161)

Kaiser, T. R., and Closs, R. L. (1952) I. Theory of radio reflections from meteor trails: I. Philosophical Magazine, 43(336), 1-32.

Kaiser, T. R., and Greenhow, J. S. (1953) On the decay of radio echoes from meteor trails. Proceedings of the Physical Society. Section B, 66(2), 150.

Kalashnikova, O., Horanyi, M., Thomas, G. E., and Toon, O. B. (2000) Meteoric smoke production in the atmosphere. Geophysical research letters, 27(20), 3293-3296.

Kashcheyev, B. L., and Lebedinets, V. N. (1963) The initial radius of ionized meteor trails. Smithsonian Contributions to Astrophysics, 7, 19

Kasuga, T., Watanabe, J., and Ebizuka, N. (2005) A 2004 Geminid meteor spectrum in the visible-ultraviolet region. Astronomy and Astrophysics-Les Ulis, 438(2), L17.

Keck, J. C., Camm, J. C., Kivel, B., and Wentink Jr, T. (1959) Radiation from hot air: Part II. Shock tube study of absolute intensities. Annals of Physics, 7(1), 1-38.

Kelley, M. C. (2009) The Earth's Ionosphere: Plasma Physics and Electrodynamics (Vol. 96) Access Online via Elsevier.

Kemp N. H., (1959) Laminar Heat Transfer Around Blunt Bodies in Dissociated Air", Journal of the Aerospace Sciences, Vol. 26, No. 7, pp. 421-430.

Kero, J. (2008) High-resolution meteor exploration with tristatic radar methods (Doctoral dissertation, Umeå University).

Khabibrakhmanov, I. K., Degenstein, D. A., and Llewellyn, E. J. (2002) Mesospheric ozone: Determination from orbit with the OSIRIS instrument on Odin. Canadian journal of physics, 80(4), 493-504.

Kharchenko, H. V. (2012) Calculation of the Areas Most Likely to Appear Suitable for Communication Meteor Trails. International Journal of Electronics and Telecommunications, 58(2), 105-110.

Kim, J. H., Ha Kim, Y., Jee, G., and Lee, C. (2012) Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails. Journal of Atmospheric and Solar-Terrestrial Physics.

Kivel, B. (1961) Radiation From Hot Air and Its Effect on Stagnation-Point Heating. Journal of the Aerospace Sciences, Vol. 28, No. 2, pp. 96-102.

Koda, S., and Sugimoto, K. (2003) Pressure effect on the absorption and photodissociation of O_{2} near the dissociation threshold. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(3), 215-226.

Krinov, E. L. (1960) Principles of meteoritics. Oxford, New York, Pergamon Press, 1960., 1.

Kumar, K. K., and Subrahmanyam, K. V. (2012) A discussion on the assumption of ambipolar diffusion of meteor trails in the Earth's upper atmosphere. Monthly Notices of the Royal Astronomical Society: Letters, 425(1), L1-L5

Lebedinets, V.N., Shushkova, V.B., 1970. Micrometeorite sputtering in the Ionosphere. Planet.Space Sci. 18, 1653-1659.

Lee, C. S., Younger, J. P., Reid, I. M., Kim, Y. H., and Kim, J. H. (2013) The effect of recombination and attachment on meteor radar diffusion coefficient profiles. Journal of Geophysical Research: Atmospheres.

Levien, R. (2008) The Euler spiral: a mathematical history. Technical Report UCB/EECS-2008-111, EECS Department, University of California, Berkeley.

Levin, D. A., Loda, R. T., Candler, G. V., and Park, C. (1993) Theory of radiation from low velocity shock heated air. Journal of thermophysics and heat transfer, 7(2), 269-276.

Liller, W., and Whipple, F. L. (1954) High-altitude winds by meteor-train photography. In Rocket exploration of the upper atmosphere (Vol. 1, p. 112)

Lindblad, B. A. (1963) The relations between visual magnitudes of meteors and the durations of radar echoes. Smithsonian Contributions to Astrophysics, 7, 27.

Liu, V. C. (1970) Fluid mechanics of meteor trails. Physics of Fluids, 13, 62-65
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B. (1978) Atmospheric chemistry: Response to human influence. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290(1367), 187-234.

London, J. (1980) Radiative energy sources and sinks in the stratosphere and mesosphere. In Atmospheric Ozone and its Variation and Human Influences (Vol. 1, p. 703)

Love, S. G., and Brownlee, D. E. (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262(5133), 550-553.

Manning, L. A. (1958) The initial radius of meteoric ionization trails. Journal of Geophysical Research, 63(1), 181-196

Manning, L. A. (1962) The Theoretical Heights and Durations of Echoes from Large Meteors DTIC Document (No. 62 137) STANFORD UNIVSITY, California, Stanford Electronics Labs.

Manning, L. A. (1963) The Experimental Determination of Meteoric Line Densities and Attachment Rates DTIC Document (No. 63 093) STANFORD UNIVSITY, California, Stanford Electronics Labs

Manning, L. A., and Eshleman, V. R. (1959) Meteors in the Ionosphere. Proceedings of the IRE, 47(2), 186-199.

Markova, O. M., Yakovlev, O. I., Semenov, G. A., and Belov, A. N.: Evaporation of natural melts in a Knudsen chamber, Geokhimia, 11, 1559-1568, 1986.

Marsh, S. H., and Baggaley, W. J. (2001, November) Meteor trains as a probe for measuring the dynamics of the upper atmosphere. In Meteoroids 2001 Conference (Vol. 495, pp. 381-384).

Mathews, J. D. (2004) Radio science issues surrounding HF/VHF/UHF radar meteor studies. Journal of atmospheric and solar-terrestrial physics, 66(3), 285-299.

Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyagawa, S., et al. (1981) A semiempirical formula for the energy dependence of the sputtering yield. Radiation Effects, 57(1-2), 15-21.

McBride, N., Green, S. F., and McDonnell, J. A. M. (1999) Meteoroids and small sized debris in Low Earth Orbit and at 1 au: Results of recent modelling. Advances in Space Research, 23(1), 73-82.

McCrosky, R. E., and Posen, A. (1961) Orbital elements of photographic meteors. Smithsonian Contributions to Astrophysics, 4, 15-84.

McIntosh, B. A. (1962) The meteoric head echo. Journal of Atmospheric and Terrestrial Physics, 24(4), 311-315.

McIntosh, B. A. (1963) Experimental study of the amplitude of radar meteor-head echoes. Canadian Journal of Physics, 41(2), 355-371.

McIntosh, B. A. (1966) The determination of meteor mass distribution from radar echo counts. Canadian Journal of Physics, 44(11), 2729-2748.

McKinley, D. W. (1955) The meteoric head echo, J. Atmos. Terr. Phys., 2, 65-73.
McKinley, D. W. R. (1961) Meteor science and engineering. New York, McGraw-Hill.
McKinley, D. W. R., and Millman, P. M. (1949) A phenomenological theory of radar echoes from meteors. Proceedings of the IRE, 37(4), 364-375.

McNeil, W. J., Lai, S. T., and Murad, E. (1998) Differential ablation of cosmic dust and implications for the relative abundances of atmospheric metals. Journal of Geophysical Research: Atmospheres (1984-2012), 103(D9), 10899-10911.

Meek, C. E., Manson, A. H., Hocking, W. K., and Drummond, J. R. (2013, July) Eureka, $80^{\circ} \mathrm{N}$, SKiYMET meteor radar temperatures compared with Aura MLS values. In Annales Geophysicae (Vol. 31, No. 7, pp. 1267-1277) Copernicus GmbH.

Meisel, D. D., and Richardson, J. E. (1998) Statistical properties of meteors from a simple, passive forward scatter system. Planetary and space science, 47(1), 107-124.

Menees, G. P., and Park, C. (1976) Nitric oxide formation by meteoroids in the upper atmosphere. Atmospheric Environment (1967), 10(7), 535-545.

Michael, J. V. (1971) Thermal decomposition of ozone. The Journal of Chemical Physics, 54, 4455.

Miller, D. E., and Ryder, P. (1973) Measurement of the ozone concentration from 55 to 95 km at sunset. Planetary and Space Science, 21(6), 963-970.

Millman, P. M. (1952) Meteor News (Photographic Meteor Spectra), Journal of the Royal Astronomical Society of Canada, 46, 121.

Millman, P. M. (1960) Meteor News (The Auroral Green Line in a Leonid Spectrum). Journal of the Royal Astronomical Society of Canada, 54, 189.

Millman, P. M. (1963) A general survey of meteor spectra. Smithsonian Contributions to Astrophysics, 7, 119.

Millman, P. M., and McKinley, D. W. R. (1956) Meteor echo durations and visual magnitudes. Canadian Journal of Physics, 34(1), 50-61.

Mirtov, B. A. (1960) The mechanism of formation of a meteor trail. Soviet Astronomy, 4, 485

Mitchner, M., and Kruger, C. H. (1973) Partially ionized gases (Vol. 8). New York: Wiley.

Morton, J. D., and Jones, J. (1982) A method for imaging radio meteor radiant distributions. Monthly Notices of the Royal Astronomical Society, 198, 737-746.

Murad, E., and Williams, I. P. (Eds.) (2002) Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere. Cambridge University Press.

Murray, E. L. (1959) Ambipolar diffusion of a meteor trail and its relation with height. Planetary and Space Science, 1(2), 125-129

Nagaoka, H. (1929) Possibility of disturbance of radio transmissions by meteoric showers. Proceedings of the Imperial Academy, Tokyo, 5:233.

NASA-JPL, (1979) Chemical Kinetic and Photochemical Data for Use in Stratospheric Modelling, JPL Publications, 79-27, Jet Propulsion Laboratory, Pasedena, California.

Nerem, R. M., and Stickford, G. H. (1965) Shock-tube studies of equilibrium air radiation. AIAA Journal, 3(6), 1011-1018.

Nicholson, T. F., and Poole, L. M. G. (1974) The observed characteristics of radio-echoes from overdense meteor trains. Planetary and Space Science, 22(12), 1669-1689.

Novotny, V. (1978) The height dependence of the error in ambipolar diffusion coefficient measurement. Bulletin of the Astronomical Institutes of Czechoslovakia, 29, 155-158

Öpik, E. J. (1958) Physics of meteor flight in the atmosphere. New York, Interscience Publishers.

Oppenheim, M. M., Dyrud, L. P., and Vom Endt, A. F. (2003) Plasma instabilities in meteor trails: 2-D simulation studies. Journal of geophysical research, 108(A2), 1064

Oppenheim, M. M., vom Endt, A. F., and Dyrud, L. P. (2000) Electrodynamics of meteor trail evolution in the equatorial E-region ionosphere. Geophysical research letters, 27(19), 3173-3176

Park, C., and Menees, G. P. (1978) Odd nitrogen production by meteoroids. Journal of Geophysical Research: Oceans (1978-2012), 83(C8), 4029-4035.

Parkinson, T. D., and Zipf, E. C. (1970) Energy transfer from N2 (A3Sigmau+) as a source of O (1S) in the aurora. Planetary and Space Science, 18, 895.

Pavlov, A. V. (2012) Ion Chemistry of the Ionosphere at E-and F-Region Altitudes: A Review. Surveys in geophysics, 33(5), 1133-1172.

Pecinová, D., and P. Pecina. "Radar meteors range distribution model. IV. Ionization coefficient." Contributions of the Astronomical Observatory Skalnate Pleso 38 (2008): 12-20.

Pellinen-Wannberg, A. (2005, January) Meteor head echoes-observations and models. In Annales geophysicae (Vol. 23, No. 1, pp. 201-205)

Pellinen-Wannberg, A., and Wannberg, G. (1994) Meteor observations with the European incoherent scatter UHF radar. Journal of Geophysical Research: Space Physics (1978-2012), 99(A6), 11379-11390.

Pellinen-Wannberg, A., Westman, A., Wannberg, G., and Kaila, K. (1998, November) Meteor fluxes and visual magnitudes from EISCAT radar event rates: a comparison with cross-section based magnitude estimates and optical data. In Annales Geophysicae (Vol. 16, No. 11, pp. 1475-1485) Springer-Verlag.

Permikin, D. V., and Zverev, V. S. (2013) Mathematical model on surface reaction diffusion in the presence of front chemical reaction. International Journal of Heat and Mass Transfer, 57(1), 215-221.

Peukert, S. L., Sivaramakrishnan, R., and Michael, J. V. (2013) High Temperature Shock Tube Studies on the Thermal Decomposition of O3 and the Reaction of Dimethyl Carbonate with O-Atoms. The Journal of Physical Chemistry A, 117(18), 3729-3738.

Pickering, W. M., and Windle, D. W. (1970) The diffusion of meteor trains. Planetary and Space Science, 18(8), 1153-1161

Plane, J. M. (1991) The chemistry of meteoric metals in the Earth's upper atmosphere. International Reviews in Physical Chemistry, 10(1), 55-106.

Plane, J. M. (2003) Atmospheric chemistry of meteoric metals. Chemical reviews, 103(12), 4963-4984.

Plane, J. M. (2012) Cosmic dust in the earth's atmosphere. Chemical Society Reviews, 41(19), 6507-6518.

Plane, J. M. C., Cox, R. M., and Rollason, R. J. (1999) Metallic layers in the mesopause and lower thermosphere region. Advances in Space Research, 24(11), 1559-1570.

Plane, J. M., and Whalley, C. L. (2012) A new model for magnesium chemistry in the upper atmosphere. The Journal of Physical Chemistry A, 116(24), 6240-6252.

Polyanin, A. D., and Manzhirov, A. V. (2008) Handbook of integral equations. CRC press.

Poole, L. M. G. (1978) The decay of luminosity in the trains of moderately bright meteors. Planetary and Space Science, 26(7), 697-701.

Poole, L. M. G. (1979) The excitation of spectral lines in faint meteor trains. Journal of Atmospheric and Terrestrial Physics, 41(1), 53-64.

Poole, L. M. G. (2004) A simplified interferometer design for use with meteor radars. Radio Science, 39(2), RS2027.

Poole, L. M. G., and Kaiser, T. R. (1967) The duration distribution of radio-echoes obtained from underdense shower-meteor trains. Planetary and Space Science, 15(7), 1131-1134.

Poole, L. M. G., and Nicholson, T. F. (1975) The effect of ionic processes on the characteristics of radio-echoes from meteor trains. Planetary and Space Science, 23(9), 1261-1277.

Popova, O. (2004) Meteoroid ablation models. Earth, Moon, and Planets, 95(1-4), 303319.

Popova, O. P., Sidneva, S. N., Shuvalov, V. V., and Strelkov, A. S. (1998) Screening of meteoroids by ablation vapor in high-velocity meteors. Earth, Moon, and Planets, 82, 109-128.

Popova, O. P., Sidneva, S. N., Strelkov, A. S., and Shuvalov, V. V. (2001) Formation of disturbed area around fast meteor body. In Meteoroids 2001 Conference. Meteor science and engineering. Vol. 495, pp. 237-245

Poulter, E. M., and Baggaley, W. I. (1978) The applications of radio-wave scattering theory to radio-meteor observations. Planetary and Space Science, 26(10), 969-977.

Poulter, E. M., and Baggaley, W. J. (1977) Radiowave scattering from meteoric ionization. Journal of Atmospheric and Terrestrial Physics, 39(7), 757-768.

Prather, M. J. (1981) Ozone in the upper stratosphere and mesosphere. Journal of Geophysical Research: Oceans (1978-2012), 86(C6), 5325-5338.

Pshezhetskiy, S. Y., Kamenetskaya, S. A., Gribova, Y. I., Pankratov, A. V., and Morozov, N. M. (1959) Kinetics of Ozone Decomposition and Explosion-USSR.

Rajchl, J. (1969) On the interaction layer in front of a meteor body. Bulletin of the Astronomical Institutes of Czechoslovakia, 20, 363.

Reis, V. H. (1967) Chemiluminescent radiation from the far wake of hypersonic spheres. AIAA Journal, 5(11), 1928-1933.

Robertson, D. S., Liddy, D. T., and Elford, W. G. (1953) Measurements of winds in the upper atmosphere by means of drifting meteor trails I. Journal of Atmospheric and Terrestrial Physics, 4(4), 255-270.

Robson, R. E. (2001) Dispersion of meteor trails in the geomagnetic field. Physical Review E, 63(2), 026404

Rogers, A. E. E., Lekberg, M., and Pratap, P. (2009) Seasonal and diurnal variations of ozone near the mesopause from observations of the $11.072-\mathrm{GHz}$ line. Journal of Atmospheric and Oceanic Technology, 26(10), 2192-2199.

Rogers, A. E., Erickson, P., Fish, V. L., Kittredge, J., Danford, S., Marr, J. M., et al. (2012) Repeatability of the Seasonal Variations of Ozone near the Mesopause from Observations of the $11.072-\mathrm{GHz}$ Line. Journal of Atmospheric and Oceanic Technology, 29(10), 1492-1504.

Rogers, L. A., Hill, K. A., and Hawkes, R. L. (2005) Mass loss due to sputtering and thermal processes in meteoroid ablation. Planetary and Space Science, 53(13), 13411354.

Romig, M. (1964) The Physics of Meteor Entry. The RAND Corporation, Santa Monica, California (declassified)

Rumi, G. C. (1979) Detection of the height of maximum ionization in a meteor trail. Il Nuovo Cimento C, 2(2), 235-245.

Rutherford, J. A., and Vroom, D. (1976) Ion-neutral reactions of Al with N, O, and NO. The Journal of Chemical Physics, 65, 4445.

Salby, M. L. (1996) Fundamentals of atmospheric physics (Vol. 61) Access Online via Elsevier.

Seinfeld, J. H., and Pandis, S. N. (2012) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley \& Sons.

Sida, D. W. (1969) The production of ions and electrons by meteoritic processes.
Monthly Notices of the Royal Astronomical Society, 143, 37.
Singer, W., Bremer, J., Weiß, J., Hocking, W. K., Höffner, J., Donner, M., and Espy, P. (2004) Meteor radar observations at middle and Arctic latitudes Part 1: mean temperatures. Journal of atmospheric and solar-terrestrial physics, 66(6), 607-616.

Singer, W., Latteck, R., Millan, L. F., Mitchell, N. J., and Fiedler, J. (2008) Radar backscatter from underdense meteors and diffusion rates. Earth, Moon, and Planets, 102(1-4), 403-409.

Smith, A. K. (2004) Physics and chemistry of the mesopause region. Journal of atmospheric and solar-terrestrial physics, 66(10), 839-857.

Smith, A. K. (2012) Interactions between the lower, middle and upper atmosphere. Space science reviews, 168(1-4), 1-21.

Smith, A. K., and Marsh, D. R. (2005) Processes that account for the ozone maximum at the mesopause. Journal of Geophysical Research: Atmospheres (1984-2012), 110(D23)

Smith, A. K., Harvey, V. L., Mlynczak, M. G., Funke, B., García-Comas, M., Hervig, M., et al. (2013) Satellite observations of ozone in the upper mesosphere. Journal of Geophysical Research: Atmospheres.

Smoller, J. (1983) Shock waves and reaction-diffusion equations. In Research supported by the US Air Force and National Science Foundation. New York and Heidelberg, Springer-Verlag (Grundlehren der Mathematischen Wissenschaften. Volume 258), 1983, 600 p. (Vol. 258)

Snelling, D. R. (1974) The Ultraviolet Flash Photolysis of Ozone and the Reactions of O (1D) and O2 (15g+). Canadian Journal of Chemistry, 52(2), 257-270.

Steel, D. I., and Elford, W. G. (1991) The height distribution of radio meteors: Comparison of observations at different frequencies on the basis of standard echo theory. Journal of Atmospheric and Terrestrial Physics, 53(5), 409-417.

Stenbaek-Nielsen, H. C., and Jenniskens, P. (2004) A "shocking" Leonid meteor at 1000 fps. Advances in Space Research, 33(9), 1459-1465.

Stickland, A. C. (1972) CIRA 1972: COSPAR international reference atmosphere 1972. Berlin, East Germany, Akademie-Verlag GmbH, 1972. 460 p.

Strack, S. L., (1962) Radiant heat transfer around re-entry bodies. ARS Journal, 32(5), 744-748.

Sugar, G. R. (1964) Radio propagation by reflection from meteor trails. Proceedings of the IEEE, 52(2), 116-136.

Swords, S. S. (1986) Technical History of the Beginnings of RADAR. P. Peregrinus.
Thomas, R. J. (1990) Seasonal ozone variations in the upper mesosphere. Journal of Geophysical Research: Atmospheres (1984-2012), 95(D6), 7395-7401.

Tielens, A. G. G. M., McKee, C. F., Seab, C. G., and Hollenbach, D. J. (1994) The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks. The Astrophysical Journal, 431, 321-340.

Tsutsumi, M., Tsuda, T., Nakamura, T., and Fukao, S. (1994) Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar. Radio science, 29(3), 599-610.

United States Committee on Extension to the Standard Atmosphere, (1976) U.S. Standard Atmosphere. NOAA, NASA, USAF, Washington, DC.

Upadhyay, S. K. (Ed.) (2006) Chemical kinetics and reaction dynamics. Springer.
Valentic, T. A., Avery, J. P., Avery, S. K., Cervera, M. A., Elford, W. G., Vincent, R. A., and Reid, I. M. (1996) A comparison of meteor radar systems at Buckland Park. Radio Science, 31(6), 1313-1329.

Vaughan, G. (1982) Diurnal variation of mesospheric ozone. Nature, 296(5853), 133135.

Verniani, F. (1965) On the luminous efficiency of meteors. Smithsonian Contributions to Astrophysics, 8, 141.

Verniani, F., and Hawkins, G. S. (1964) On the Ionizing Efficiency of Meteors. The Astrophysical Journal, 140, 1590.

Verronen, P. T., Seppälä, A., Clilverd, M. A., Rodger, C. J., Kyrölä, E., Enell, C. F., et al. (2005) Diurnal variation of ozone depletion during the October-November 2003 solar proton events. Journal of Geophysical Research: Space Physics (1978-2012), 110(A9)

Vondrak, T., Plane, J. M. C., Broadley, S., and Janches, D. (2008) A chemical model of meteoric ablation. Atmospheric Chemistry and Physics, 8(23), 7015-7031.

Wannberg, G., Westman, A., and Pellinen-Wannberg, A. (2011) Meteor head echo polarization at 930 mhz studied with the eiscat uhf hpla radar. In Annales geophysicae (Vol. 29, No. 6, pp. 1197-1208) Copernicus.

Watson, R. C. (2009) Radar Origins Worldwide: History of Its Evolution in 13 Nations Through World War II. Trafford Publishing.

Wayne, R. P., and White, I. F. (1968) Photolysis of Ozone at Low Pressures. Berichte der Bunsengesellschaft für physikalische Chemie, 72(2), 131-134.

Weiss, A. A. (1955) Diffusion coefficients from the rate of decay of meteor trails. Australian Journal of Physics, 8(2), 279-288

Weiss, A. A. (1961) The distribution of meteor masses for sporadic meteors and three showers. Australian Journal of Physics, 14(1), 102-119.

Weiss, A. A., and Elford, W. G. (1963) An equipment for combined geophysical and astronomical measurements of meteors. Proc. IRE Australia, 24, 197-203.

Weitzen, J. A., and Ralston, W. T. (1988) Meteor scatter: An overview. Antennas and Propagation, IEEE Transactions on, 36(12), 1813-1819.

Weryk, R. J., and Brown, P. G. (2012a) Simultaneous radar and video meteors-I: Metric comparisons. Planetary and Space Science, 62(1), 132-152.

Weryk, R. J., and Brown, P. G. (2013b) Simultaneous radar and video meteors-II: Photometry and ionisation. Planetary and Space Science.

Whalley, C. L., Martín, J. C. G., Wright, T. G., and Plane, J. M. (2011) A kinetic study of $\mathrm{Mg}+$ and Mg -containing ions reacting with $\mathrm{O} 3, \mathrm{O} 2, \mathrm{~N} 2, \mathrm{CO} 2, \mathrm{~N} 2 \mathrm{O}$ and H 2 O : implications for magnesium ion chemistry in the upper atmosphere. Physical Chemistry Chemical Physics, 13(13), 6352-6364.

Whipple, F. L. (1943) Meteors and the Earth's upper atmosphere, Review of Modern Physics 15, 246-264.

Whipple, F. L. (1955) The Physical Theory of Meteors. VII. on Meteor Luminosity and Ionization. The Astrophysical Journal, 121, 241.

William, J., and Murad, E. (2002) Models of meteoric metals in the atmosphere. Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere, 265.

Wulf, O. R., and Tolman, R. C. (1927) The thermal decomposition of ozone. Proceedings of the National Academy of Sciences of the United States of America, 13(5), 272.

Wyatt, S. P., and Whipple, F. L. (1950) The Poynting-Robertson effect on meteor orbits. The Astrophysical Journal, 111, 134-141.

Yee, J., and Close, S. (2011) Diffusion of Plasmas from Ablating Meteoroids in the Ionosphere. 3rd AIAA Atmospheric Space Environments Conference, 27 - 30 June 2011, Honolulu, Hawaii

Younger, J. P., Reid, I. M., Vincent, R. A., and Holdsworth, D. A. (2008) Modeling and observing the effect of aerosols on meteor radar measurements of the atmosphere. Geophysical Research Letters, 35(15)

Zinn, J., Judd, O. D. P., and ReVelle, D. O. (2004) Leonid meteor ablation, energy exchange, and trail morphology. Advances in Space Research, 33(9), 1466-1474.

Zinn, J., Wren, J., Whitaker, R., Szymanski, J., ReVelle, D. O., Priedhorsky, W., et al. (1999) Coordinated observations of two large Leonid meteor fireballs over northern New Mexico, and computer model comparisons. Meteoritics \& Planetary Science, 34(6), 1007-1015.

Appendix 1

This appendix contains the results for most relevant quantities for all viable months and years from each sites.

Table A.1: CLOVAR number of meteors

気茴

Table A．2：Costa Rica number of meteors

す

 ※

刃
人

Table A.3: Resolute Bay number of meteors (part 1)

Table A.4: Resolute Bay number of meteors (part 2)

』

毋

$\stackrel{\circ}{\circ}$

흘

Table A.5: Socorro number of meteors (part 1)

ォ

Table A.6: Socorro number of meteors (part 2)

Table A.7: Yellowknife number of meteors (part 1)

』

통

Table A.8: Yellowknife number of meteors (part 2)

Table A.9: CLOVAR ambipolar diffusion slope

Table A.10: Costa Rica ambipolar diffusion slope

Table A.11: Resolute Bay ambipolar diffusion slope (part 1)

Table A.12: Resolute Bay ambipolar diffusion slope (part 2)

Table A.13: Socorro ambipolar diffusion slope (part 1)

Table A.14: Socorro ambipolar diffusion slope (part 2)

Table A.15: Yellowknife ambipolar diffusion slope (part 1)

Table A. 16: Yellowknife ambipolar diffusion slope (part 2)

Table A.17: CLOVAR hyperthermal chemistry slope

Table A.18: Costa Rica hyperthermal chemistry slope

Table A．19：Resolute Bay hyperthermal chemistry slope（part 1）
 ת

国芘

発
骨茨
$\stackrel{\text { \％}}{\substack{2}}$

훌

Table A.20: Resolute Bay hyperthermal chemistry slope (part 2)

Table A．21：Socorro hyperthermal chemistry slope（part 1）

	윤
	\％
	葛
	$\stackrel{\because \circ}{\square}$
	気気言

Table A.22: Socorro hyperthermal chemistry slope (part 2)

	- 5

Table A.23: Yellowknife hyperthermal chemistry slope (part 1)

Table A. 24: Yellowknife hyperthermal chemistry slope (part 2)

Table A.25: CLOVAR hyperthermal chemistry diffusion coefficient

Table A.26: Costa Rica hyperthermal chemistry diffusion coefficient

Table A.27: Resolute Bay hyperthermal chemistry diffusion coefficient (part 1)

Table A.28: Resolute Bay hyperthermal chemistry diffusion coefficient (part 2)

Table A.29: Socorro hyperthermal chemistry diffusion coefficient (part 1)

Table A.30: Socorro hyperthermal chemistry diffusion coefficient (part 2)

Table A.31: Yellowknife hyperthermal chemistry diffusion coefficient (part 1)

			km)	(km)	km)	(km)	(km)	km)	(km)	(km)	km)	(km)	${ }^{\text {km) }}$	km)	km)		(km)										
				18.07		4.880	4.593		4.127	4.008		10.815	,	3.994	4.94	3.973	4.629	3.860	4.06	4.830	5.376		\% 1.03		83.313		
				1.270	0.708		9.998					5.525									529						
									10.76	5.751	11.164	6.873		9.505		4.10	3.24	3.54	4.088	4.70		181	7.671	20.	10.32	22.73	13.48
						46.928	26.410	23.454	4.746	9.574	69.938	89.62		9.55		26.2	7.96	8.67	4.74		9.174	7.066	9.824	26.45			
				9.222	3.571	11.567	15.905	24.046	72234	61.135	41.088			148810			8.808	15.123					16.424	9.391			
							22,42	9.289	30.437	12.0		12453		13.17		10.00	6.15	5.11	5.14	4.75	. 792	10.83	2288	23.10	1238	14.2	31.57
					1.07	5484	2363	2.625	15.665	13.022								4.51		617			14.0		18.8		
			0.46			53.128	3281	${ }^{6.353}$	5.4			12857					6.75										
					14.939	2469	5490	4.331	36.825	13,685	7.907	${ }_{9.458}$		6.778		54,4	6.58	5.2	6.92	4.89	11.06	8.8	129	9.81	15.7	11.2	
	203		20.068	0.986		13237	11.683	12.359																			
				4.008	10.08	10.450	8214	10.85	16.375			6.2			4.664			5770				13.0	11.5	10.1	34.830	18.719	
	203				7.682	20.0	9.9	36.44				5.	6.74	17.336	5.104		7.413	12.81				9.15	1211	n/a	2.5	19.0	98.5
	203	1.586	1.852	4.199	3.824		24.39	12.175																1788			
			9.98	7.12	21.264	225	9763	6873			118	5.412		3.7			1030						1263		39.96	4628	24.9
		10.33			9.380			7.242											25.9								
	2004			7.50	23.041		4.308	84.289										315				10.54			56.15		
				2.09			5.558		11.519									8.119						1029			1959
			2.254	2806			2732	5.387	5.235							7.18	-287						8.051	12.6			
		2397	6.622	4.065			6.657	6.598	8.993	10.78	4.936	6.0				4.8	4.287					. 5	228.1				
	204				6.515		10.58		31.8		22203		5.3			54.01	4.353	24.0				1828		25809			
		53.9		4.982			302	6.318										4.239									
				6.28	5.473		12.789	16.037																			
10				2.80																							
				${ }^{9.326}$				25.365				O		${ }^{5.153}$													
					5.513																						
				10.5								dor	5.														
				${ }^{36.366}$			7.688		20.829			21.264							20.0								
				1.809			7.659																				
				10.5	96.906		82.15		1220	55.10	O.4		1.0														
									5.844		${ }^{9.813}$	13.	6.944		11.886		8.236	8.019		7.846		14.988	14.796	15.194			
		5.18	1.3	0.55	5.9		3.540		5.532		5.79	6.639												9.034			
						2096	11.458		5. 1	10.967	8.329	,	7.	. 1		.	3.4	3.22		7.30		8.47					
						1.57			8.538		5.43	8.807	4.930	5.512			4.049	4.364				6.76	15.16		18.83		
	2005			2.44	23.47	1.916			18.530		12.0	10.168	8.784	9.078											2.097		
				5.297					208	19.020	6.8	5954	${ }^{3.861}$	4.959	4.816	5.883	. 1035	5.492	8.03	${ }^{4.956}$	${ }_{5}^{5486}$	7.723	8.729	10.679			
			3.232	9.279		5.026	6.670	14.09	9.268	6.794	13.6	${ }^{5.954}$		31.506	9.825	3.95	10.576	4.783	4.2	5.091	5.946	6.162	9.884	8.591			

Table A.32: Yellowknife hyperthermal chemistry diffusion coefficient (part 2)

Table A.33: CLOVAR ozone concentration $\left(\mathrm{m}^{-3}\right)$

Table A.34: Costa Rica ozone concentration $\left(\mathrm{m}^{-3}\right)$

Table A.35: Resolute Bay ozone concentration (m^{-3}) (part 1)

Table A. 36: Resolute Bay ozone concentration (m^{-3}) (part 2)

Table A.37: Socorro ozone concentration $\left(\mathrm{m}^{-3}\right)$ (part 1)

Table A.38: Socorro ozone concentration (m^{-3}) (part 2)

,

Table A.39: Yellowknife ozone concentration (m^{-3}) (part 1)

Table A.40: Yellowknife ozone concentration (m^{-3}) (part 2)

Curriculum Vita

Name	Reynold E. Sukara		
Education	MSc. Physics, expected 2013 University of Western Ontario London, Ontario		
	MSc. Geophysics, 2011		
University of Western Ontario			
London, Ontario		\quad	Hon. BSc. Geology, 2009
:---			
The University of Western Ontario			
Awards			
London, Ontario			
Integrating Atmospheric Chemistry and Physics from Earth to Space			
(IACPES) NSERC CREATE Scholarship (issuing institution: York			
University), 2011-2013			
Northern Scientific Training Program, Indian and Northern Affairs			
Canada, 2011			
Graduate Thesis Research Award, 2009, 2011, 2012			

Refereed Journal Articles

Sukara, R. E., Secco, R. E. (2012) Viscosity of liquid sulfur at 4.5 GPa in the L and L, regions, High Pressure Research: An International Journal, 32 (4), 451-456

Non-refereed Publications

Sukara, R. E. (2011) Viscosity of Sulfur at 4.5 GPa and in the L and L'Liquid Regions, MSc Thesis, The School of Graduate and Postdoctoral Studies, Western University, pp. 144

Sukara, R. E. (2010) The Geodynamo: Origin of Earth's Magnetic Field, Western Graduate Geoscience Reviews, Western University

Sukara, R. E. (2009) Petrography and geochemistry of suevites from the Popigai Impact structure (Russia), Undergraduate Honours Thesis, Earth Science Department, Western University, pp. 102

Conference Proceedings

Sukara, R. E. and Hocking, W.K. (2013) Mesospheric Ozone Determination from the Radar Meteor Echo Duration, IACPES Symposium, York University, Toronto, Jun 1014, 2013

Sukara, R. E. and Hocking, W.K. (2013) Mesospheric Ozone Determination from the Radar Meteor Echo Duration, DASP Conference, Kingston, Feb 17-20, 2013

Secco*, R. A., Sukara, R. E. (2012) Viscosity of liquid sulfur at 4.5 GPa in the L and L ' regions, 50th EHPRG Meeting, September 16-21, 2012, Thessaloniki, Greece

Sukara, R. E. (2012) Study of Overdense Meteors and the Secondary Ozone Layer Using VHF Meteor Radars, IACPES Symposium, York University, Toronto, Aug 10, 2012

Osinski, G.R., Sukara, R.E., Grieve, R.A.F. (2010) "Suevites" of the Popigai Impact Structure, Russia: (Mis)understood?, 41st Lunar and Planetary Science Conference, held March 1-5, 2010 in The Woodlands, Texas. LPI Contribution No. 1533, p. 2171

Sukara R. E. and Osinski G. R. (2009) Origin of suevites at the Popigai impact structure, Russia (abstract \#GA32B-03), Eos, Transactions, American Geophysical Union, 90(22), Joint Assembly Supplement, Toronto, Ontario, May 272009

[^0]: ${ }^{1}$ For instance see "The mathematics of diffusion", Crank, J. (1979)

[^1]: * Two body reaction rate unit is $\mathrm{cm}^{\mathbf{3}} \mathrm{s}^{-1}$; three body reaction rate unit is $\mathrm{cm}^{\mathbf{6}} \mathrm{s}^{-1}$; photoprocesses have a rate unit of s^{-1}.

