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Abstract 

Pre-diabetes is associated with impairments in cardiovascular health that manifest 

prior to the onset of overt type 2 diabetes. Characterized by hyperinsulinemia and insulin 

resistance, pre-diabetes has been associated with increases in sympathetic nerve activity, 

which may result in augmented sympathetic control of the peripheral vasculature within 

skeletal muscle. Currently however, there are no studies investigating the impact of pre-

diabetes on sympathetically-mediated vascular control. The primary study of this thesis 

investigated the effects of pre-diabetes on baseline sympathetic neuropeptide Y Y1 receptor 

(NPY Y1R) and alpha 1 adrenergic receptor (α1R) control of hindlimb vascular tone. 

Experiments were carried out in anesthetized pre-diabetic Zucker Diabetic Fatty (ZDF) rats 

and control lean ZDF rats during drug delivery of sympathetic antagonists while measuring 

femoral artery blood flow (Qfem) and calculated vascular conductance (VC). Despite similar 

baseline Qfem and VC, Y1R, α1R and dual Y1R+α1R blockade (via BIBP3226 and 

prazosin) elicited increases in Qfem and VC that were greater in pre-diabetic rats compared 

to controls, demonstrating heightened Y1R and α1R control of baseline vascular tone. These 

results were also supported by increased Y1R, α1R and NPY expression in hindlimb tissue 

of pre-diabetic rats. In effort to determine whether pre-diabetes effects microvascular 

network function in contracting skeletal muscle, intravital microscopy was used to evaluate 

arteriolar rapid onset vasodilation (ROV) and steady-state vasodilation and blood flow 

responses to tetanic and rhythmic contraction of the gluteus maximus muscle in pre-diabetic 

(The Pound Mouse, c57bl6 background) and control mice (c57bl6). Baseline diameter and 

blood flow of arterioles were similar between groups; however, contraction-evoked 

vasodilatory and blood flow responses were blunted in pre-diabetic compared to control 
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mice. In addition, the magnitude of contraction-evoked dilation was greater in distal 

arterioles (3A and 4A) compared to proximal arterioles (2A) in GM arteriolar networks of 

control mice; however, such spatially-dependent differences in contraction-evoked dilation 

was disrupted in pre-diabetic mice. Blockade of Y1R and α1R (via BIBP3226 and prazosin) 

restored ROV and steady-state vasodilation to tetanic and rhythmic contractions in pre-

diabetic mice to levels similar to controls. Blockade of arteriolar sympathetic receptors also 

restored dilatory magnitude of distal arterioles in pre-diabetic mice. In conclusion, the results 

presented in this dissertation provide evidence that peripheral arteriolar Y1R and α1R 

activation are enhanced in pre-diabetes, resulting in augmented sympathetic modulation of 

basal skeletal muscle blood flow and VC, as well as deficits in arteriolar vasodilation to 

skeletal muscle contraction. 
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Chapter 1 : Introduction 

1.1. General introduction 

Pre-diabetes is characterized by elevated blood glucose and insulin resistance, 

over-production of insulin and resultant hyperinsulinemia, affecting approximately 22% 

of the Canadian population (Canadian Diabetes Association, 2011). Cardiovascular 

disease, the most common diabetes-related co-morbidity, is prevalent in the pre-diabetic 

state prior to the onset of overt type 2 diabetes (Faeh, William, Yerly, Paccaud, & Bovet, 

2007; Haffner, Stern, Hazuda, Mitchell, & Patterson, 1990). In the peripheral vasculature, 

specifically within skeletal muscle, compromised red blood cell (RBC) velocity and RBC 

supply rates in capillaries have been demonstrated under basal conditions (Ellis et al., 

2010), suggesting functional deficits of upstream microvasculature. Skeletal muscle 

comprises approximately 30-40% of total body mass (Janssen, Heymsfield, Baumgartner, 

& Ross, 2000) and contains the largest proportion of the microvasculature responsible for 

tissue blood flow distribution, i.e. arterioles. However little is known of the impact of 

pre-diabetes on microvascular function within skeletal muscle.   

Skeletal muscle microvasculature is comprised of arterioles, capillaries and 

venules. The arterioles are arranged in a network spanning the tissue, and are integral to 

distributing blood flow to the capillaries of active muscle fibers (via vasodilation) in an 

effort to meet metabolic demand (Fronek & Zweifach, 1975; Mackie & Terjung, 1983; 

Welsh & Segal, 1996). In contrast, concomitant arteriolar constriction in inactive tissues 

occurs to maintain resistance throughout the arteriolar network and redirect blood flow to 

sites of highest metabolic activity. Arteriolar constriction is achieved by the activation of 
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peripheral sympathetic nerve fibers innervating skeletal muscle arterioles through the 

release of sympathetic neurotransmitters (NT): norepinephrine (NE), neuropeptide Y 

(NPY) and adenosine triphosphate (ATP). These neurotransmitters interact with their 

respective sympathetic receptors (discussed in detail below) located on the arterioles to 

elicit vasoconstriction.  

Changes in sympathetic outflow are mediated by the arterial baroreflexes in an 

effort to maintain overall systemic blood pressure on a moment-by-moment basis. The 

arterial baroreceptors are mechanoreceptors or ‘stretch’ receptors located in the aortic 

arch and carotid sinuses. Sudden increases or decreases in blood pressure deviating from 

the ‘operating point’, activate or inhibit baroreceptor activity. For example, a decrease in 

blood pressure elicits reciprocal increases in peripheral sympathetic outflow, causing 

vasoconstriction of the resistance vasculature, increasing peripheral resistance, and 

increasing blood pressure (Mosqueda-Garcia, 1996; Rowell, 1993). Under conditions of 

work or exercise however, arteriolar vasodilation in response to skeletal muscle 

contraction must occur to increase blood flow to the tissue, despite tonic arteriolar 

sympathetic activation. Thus, any dysregulation of arteriolar sympathetic control could 

deleteriously impact muscle microvascular supply at rest and under working conditions.  

Although many diabetes-related vascular complications exist as a result of 

hyperglycemia, hyperinsulinemia in pre-diabetes may contribute to microvascular 

dysregulation, as insulin is known to stimulate sympathetic nerve activity (SNA). For 

example, elevated SNA recordings using microneurography have been shown to correlate 

with the degree of insulin resistance (E. A. Anderson, Balon, Hoffman, Sinkey, & Mark, 

1992; DeFronzo & Ferrannini, 1991). Moreover, intracerebroventricular administration 
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of insulin elicits increases in peripheral SNA (Muntzel, Anderson, Johnson, & Mark, 

1995). Insulin has also been shown to stimulate muscle sympathetic nerve activity, and in 

insulin resistant states, increased basal SNA has been reported (E. A. Anderson et al., 

1992; Berne, Fagius, Pollare, & Hjemdahl, 1992; Scherrer & Sartori, 1997). Interestingly, 

insulin exerts its sympathoexcitatory effects selectively. In humans, insulin stimulates 

increased SNA to skeletal muscle, but not to the skin, and in rats, insulin increases 

lumbar sympathetic outflow, but not adrenal SNA (Berne et al., 1992; Morgan, Balon, 

Ginsberg, & Mark, 1993). These findings may provide implications for peripheral 

sympathetic dysregulation of arterioles within limb skeletal muscle in pre-diabetes. 

 The regulation of sympathetic receptor activation at the arterial level is integral in 

maintaining resistance, tissue perfusion and blood pressure regulation at rest as well as 

during periods of physical activity. Enhanced activation in diseased states, such as pre-

diabetes, could lead to impairments in sufficient skeletal muscle perfusion. This could 

occur via ‘hypersympathomodulation’ of skeletal muscle vasculature, where one or more 

of the components involved in sympathetic vascular regulation are increased. This may 

manifest as an increase in SNA, increased vascular sympathetic receptor expression, or 

greater sympathetic neurotransmitter production and release. Studies investigating basal 

sympathetic neurovascular control in the metabolic syndrome and obesity (conditions 

possessing overlapping characteristics to pre-diabetes) have demonstrated heightened 

alpha-adrenergic receptor (αR) contribution to basal vascular tone compared to lean 

controls. It was shown that blockade of αR caused greater increases in iliac and femoral 

vascular conductance (Frisbee, 2003; Naik, Xiang, Hodnett, & Hester, 2008), and that αR 

activation of hindlimb arteries and cremasteric arterioles elicited greater vasoconstrictor 
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responsiveness to adrenergic agonists (Naik et al., 2008; Stepp & Frisbee, 2002). 

Although these past studies illustrate augmented adrenergic vascular regulation under 

metabolic disease conditions, there is a paucity of studies that have investigated the 

independent and/or interactive role of NPY under such conditions.  

NPY is a 36 amino acid peptide that is co-stored with NE within peripheral 

sympathetic nerves innervating skeletal muscle vasculature. It promotes potent and 

prolonged arteriolar constriction through activation of the NPY Y1 receptor (Y1R). Past 

studies have demonstrated that NPY is equally as important as NE in maintaining 

arteriolar blood flow and vascular conductance under baseline conditions in male 

Sprague Dawley rats (Jackson, Milne, Noble, & Shoemaker, 2005; Jackson, Noble, & 

Shoemaker, 2004). The effects of NPY on microvascular tone were shown to be both 

independent (via Y1R activation) (Jackson et al., 2004), and synergistic under conditions 

of Y1R and alpha 1 adrenergic receptor (α1R) activation (Jackson et al., 2005). Neuronal 

NPY release and its effects on arteriolar constriction become even more apparent under 

conditions of elevated SNA (Bartfai, Iverfeldt, Fisone, & Serfozo, 1988; De Camilli & 

Jahn, 1990; Lundberg, Franco-Cereceda, Lou, Modin, & Pernow, 1994). Thus, it is 

reasonable to suspect that, under conditions of hyperinsulinemia and heightened baseline 

SNA (i.e., in pre-diabetes), NPY and NE would promote vascular dysregulation under 

baseline conditions, at the onset of exercise, and during steady state exercise. 

Remarkably, there have been no studies investigating the roles of NPY and NE on 

microvascular dysregulation pre-diabetes.  

Under basal conditions, skeletal muscle is perfused with approximately 15% of 

cardiac output. In contrast however, under high intensity exercise conditions, the 
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proportion of cardiac output to working skeletal muscle can increase up to approximately 

85% (Rowell, 1993), as increases in arteriolar diameter occur to increase blood flow to 

the tissue.  Chronic sympathetic hyperactivity, occurring with hyperinsulinemia in pre-

diabetes, could therefore compromise blood flow to exercising muscle. Deficits in 

skeletal muscle blood flow during exercise have indeed been reported in overt type 2 

diabetes, metabolic syndrome and obesity in human and animal studies (Blain, Limberg, 

Mortensen, & Schrage, 2012; Frisbee, 2004; Karpoff et al., 2009; Kingwell, Formosa, 

Muhlmann, Bradley, & McConell, 2003; MacAnaney, Reilly, O'Shea, Egana, & Green, 

2011; Vinet et al., 2011). Furthermore, enhanced arterial αR activation has been shown to 

compromise contraction-evoked blood flow responses in the metabolic syndrome 

(Frisbee, 2004). Such conclusions however, have been made based on hemodynamic 

changes measured at large conduit arteries (e.g. brachial and femoral arteries) with the 

use of Doppler ultrasound, venous occlusion plethysmography, transonic flow probes and 

thermodilution, providing a summation of arterial responses downstream in the muscle 

microvasculature. The large hyperemic response however is primarily encountered at the 

level of the arterioles within the muscle itself, therefore inferences regarding sympathetic 

vascular regulation, as well as dynamic changes of arteriolar diameter and blood flow in 

response to muscle contraction must be made. In an effort to deduce where potential 

sympathetic dysregulation within the arteriolar network occurs in the case of pre-

diabetes, more invasive studies using animal models are needed.  

Intravital studies of skeletal muscle microvasculature using animal models 

provide the ability to directly observe the microcirculation and determine regulatory 

mechanisms of blood flow within skeletal muscle. Stimulation of peripheral SNA has 
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shown to elicit variable vasoconstriction responses of arterioles depending on where they 

lie within the arteriolar network (J. M. Marshall, 1982), where constriction responses of 

smaller arterioles occurs to a greater extent compared to larger upstream arterioles 

(Boegehold & Johnson, 1988; Folkow, Sonnenschein, & Wright, 1971; VanTeeffelen & 

Segal, 2003). In an effort to drive capillary perfusion, distal arterioles have additionally 

demonstrated a greater ability to ‘overcome’ sympathetic constrictor restraint via 

vasodilation not only in resting, but also in active muscle (Folkow et al., 1971). Under 

circumstances of heightened SNA however, skeletal muscle arterioles may be affected 

differently depending on their location in the network. Therefore, in an effort to 

investigate whether pre-diabetes affects sympathetic skeletal muscle vascular function at 

the arteriolar level, an appropriate pre-diabetic model and skeletal muscle model for 

microvascular investigation is needed. 

 

1.2. Skeletal muscle microvasculature: The role of arterioles 

The skeletal muscle microcirculation is arranged in a network of blood vessels in 

order to continuously distribute blood flow throughout the tissue. Skeletal muscle blood 

flow is closely matched to metabolic demand of the tissue, where local changes in blood 

flow have been shown to occur specifically to fibers activated during muscle contraction 

(Mackie & Terjung, 1983). Dynamic changes in blood flow, based on metabolic need, 

occur as a result of changes in vessel diameter, particularly at the level of the arterioles. 

The arteriolar network is initiated at the feed artery entering the tissue, which bifurcates 

into daughter arterioles (termed first-order arterioles), giving rise to a branching arteriolar 

network (second order, third order arterioles, etc.) prior to reaching the terminal 
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arterioles, ultimately distributing RBCs and plasma to the capillaries. Arteriolar networks 

provide the greatest resistance to blood flow and, due to their branching architecture 

throughout the muscle and large capacity to constrict and dilate (Bevan, Halpern, & 

Mulvany, 1991; Tuma, Duran, & Ley, 2008), are essential to blood flow regulation and 

distribution of cardiac output.  

The outer wall of arterioles consist of a layer of vascular smooth muscle cells 

(VSMC) surrounded by the external lamina or adventitia (Rhodin, 1967). The VSMCs 

are responsible for arteriolar contractility and can spatially control blood flow to capillary 

units supplying skeletal muscle fibers (Fuglevand & Segal, 1997). In resting skeletal 

muscle oxygen consumption is low, as is blood flow throughout the tissue. Reduced 

muscle perfusion under basal conditions occurs as a result of partial constriction of the 

resistance arterioles. The contractile properties of VSMCs maintaining basal arteriolar 

diameter are under a variable state of active shortening, referred to as “vascular tone” 

(Bevan et al., 1991; Rhodin, 1967). The contractile state of VSMCs is regulated by a 

balance of both vasodilator and vasoconstrictor control mechanisms. At rest, the need for 

vasodilation of skeletal muscle arterioles is rather low, however basal levels of putative 

dilators are necessary to negate increases in arteriolar resistance and preserve tissue 

perfusion in the face of partial arteriolar constriction. For example, nitric oxide (NO) and 

prostanoids, i.e., prostacyclin and prostaglandin E2, have been implicated in the 

regulation of basal vascular tone within skeletal muscle (de Wit, von Bismarck, & Pohl, 

1993; Radegran & Saltin, 1999).  

In contrast to vasodilator mechanisms maintaining basal skeletal muscle blood 

flow, there are also vasoconstrictor influences maintaining the contractile state of 
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VSMCs, or “basal vascular tone”. A large contributor to maintaining partial constriction 

of arterioles is the sympathetic nervous system (SNS). The VSMC layer surrounding 

skeletal muscle arterioles is densely innervated with perivascular sympathetic nerve 

fibers that provide a constant outflow of sympathetic NTs. Sympathetic NTs interact with 

respective sympathetic receptors located on VSMCs, eliciting constitutive 

vasoconstrictive restraint on the arterioles and therefore maintaining resistance 

throughout the arteriolar network. Skeletal muscle is considered to have a high level of 

basal ‘vascular tone’ as it comprises a large proportion of the body, housing a substantial 

amount of the microvasculature, and therefore greatly influences basal blood pressure 

maintenance. In instances where metabolic demand of skeletal muscle increases however, 

such as during exercise, arterioles dilate to increase blood flow and support contractile 

activity of skeletal muscle. 

 

1.3. The sympathetic nervous system: Peripheral neurovascular 
regulation 

1.3.1. Sympathetic neurotransmission 

The SNS plays an essential role in blood pressure maintenance and redistribution 

of blood flow during stress or exercise (Robertson, Biaggioni, Burnstock, Low, & Paton, 

2012). Initiation of sympathetic outflow has been associated with central nervous system 

areas within the brain/brainstem such as the ventromedial and rostral ventrolateral 

medulla, caudal raphe nuclei, and paraventricular nucleus (Strack, Sawyer, Hughes, Platt, 

& Loewy, 1989). From the brain, supraspinal neurons project to cell bodies within the 

lateral horn of the spinal gray matter in the thoracolumbar spinal cord (T1-L2). 
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Sympathetic cell bodies give rise to pre-ganglionic neurons that innervate post-

sympathetic neurons residing within the sympathetic ganglia (Robertson et al., 2012). 

Activation (or deactivation) of sympathetic outflow from supraspinal brain centers occurs 

on a moment-by-moment basis, entrained with the baroreflex (as discussed below), where 

neuronal impulses are stimulated and traverse to pre-ganglionic neurons. Upon activation, 

acetylcholine (ACh) is released from the pre-ganglionic neuron terminal, then binds to 

and activates nicotinic receptors of the post-ganglionic neurons at the sympathetic 

ganglion. Post-ganglionic neurons are unmyelinated and travel long distances, especially 

to the vasculature of the lower limbs, from the presynaptic ganglia to reach target organs. 

Excitatory impulses initiated by nicotinic receptor activation propagate along post-

ganglionic nerve fibers to elicit exocytosis of vesicles containing NTs (Robertson et al., 

2012). Post-ganglionic fibers supplying the vasculature of the lower body (pertaining to 

this thesis) originate from the lumbar and sacral paravertebral ganglia. These fibers come 

together into small bundles, forming a plexus within the adventitia of arterioles. This 

plexus then gives rise to a secondary plexus of fibers termed the terminal effector plexus, 

that resides on the surface of the medial layer of the vessel, where nerve fibres are then 

adjacent to the VSMCs (Robertson et al., 2012). The terminal effector plexus possesses 

varicosities, which contain small and large-dense cored vesicles (SDCV and LDCV) 

containing sympathetic NTs. These vesicles are generated near the golgi apparatus in the 

cell bodies and move by axonal transport within the axons to the nerve terminals of the 

terminal effector plexus. Sympathetic NT release from the vesicles is initiated by the 

release of pre-ganglionic ACh from nerve terminals that interacts with post-ganglionic 

nicotinic receptors, causing an increase in axon permeability to sodium. The increase in 
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sodium causes the opening of voltage-gated calcium channels, causing an influx of 

calcium, resulting in the fusion of vesicular and axonal membranes. The vesicle is then 

able to release its contents into the extracellular space close to the VSMCs, where NTs 

then interact with respective receptors located on the VSMCs, ultimately causing 

vasoconstriction (Robertson et al., 2012). For the purposes of this thesis, NE and NPY-

mediated regulation of skeletal muscle vasculature will be addressed. 

1.3.2. Norepinephrine 

NE is the classically studied catecholamine involved in sympathetic vascular 

regulation. NE is found within adrenergic neurons, as well as in the chromaffin cells of 

the adrenal gland. Catecholamine synthesis begins with the uptake of the amino acid 

tyrosine into the cytoplasm of sympathetic neurons. Tyrosine hydroxylase, the rate 

limiting enzyme in the production of NE, then catalyses the conversion of tyrosine to 

dihydroxyphenyl-alanine. Dihydroxylphenyl-alanine is then converted to dopamine by 

the enzyme dopamine-decarboxylase. The aforementioned steps occur in the cytoplasm 

of the neuron, however dopamine-beta-hydroxylase catalyzes the conversion of dopamine 

to NE within the vesicles themselves. Once vesicles release NE into the extracellular 

space, NE interacts with respective αR and beta-adrenergic receptors (βR) located on the 

VSMCs. Binding of NE to the α1R and alpha 2 adrenergic receptor (α2R) causes 

calcium release from the sarcoplasmic reticulum within VSMCs, as well as increases 

VSMC membrane permeability to calcium. Increased intracellular calcium activates the 

calcium-calmodulin complex to cause VSMC constriction (Webb, 2003). Beta 2 

adrenergic receptors (β2R) are also present along VSMCs within skeletal muscle, which 

when activated by agonists such as isoproteranol, cause arteriolar vasodilation. Once the 
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β2R is activated, production of intracellular cyclic adenosine monophosphate (cAMP) 

can inhibit calcium release from the sarcoplasmic reticulum and calcium entry into the 

cell, causing VSMC relaxation (Johnson, 2006). The effects of NE on β2R activation are 

not resolvable unless the vasoconstrictor effects of α1R and α2R are blocked (Cowley & 

Franchini, 1996), demonstrating the predominant effect of NE on αR activation. Once 

NE disassociates from the respective receptor, it is inactivated by re-uptake via the 

Uptake-1 transporter into the axoplasm of the neuron where it can be stored into vesicles 

for future release or metabolized (Robertson et al., 2012). For the purposes of this thesis, 

focus will be on the α1R.  

1.3.2.1. Alpha 1 adrenergic receptor 

  Alpha 1 adrenergic receptors are long single-chain membrane-integrated 

glycoproteins and members of the G protein-coupled receptor superfamily. The receptor 

contains seven transmembrane alpha-helical domains, possessing three intracellular and 

three extracellular loops, and an intracellular juxtamembranous portion forming the 

eighth alpha-helix. The N-terminus of the receptor lies on the extracellular surface, where 

the C-terminus is located on the intracellular surface. Upon binding of NE to the receptor, 

Gαq-protein activation then activates second messenger protein pathways that contribute 

to increasing intracellular VSMC calcium levels (Robertson et al., 2012). Gαq-protein 

activation stimulates the activity of phospholipase C to hydrolyze phosphatidylinositol-

bis-phosphate into inositol 1,4,5-triphosphate (IP3) and diacylglycerol. IP3 can directly 

initiate calcium signaling, as it interacts with calcium release channels on the 

sarcoplasmcic reticulum (SR) (Somlyo & Somlyo, 2000). Increased calcium in the 

VSMC cytoplasm can also elicit calcium-induced calcium release from the SR, as well as 
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activate extracellular calcium entry through L-type calcium channels on the cell 

membrane (Hawrylyshyn, Michelotti, Coge, Guenin, & Schwinn, 2004; Wier & Morgan, 

2003). Calcium binds to calmodulin, creating the calcium-calmodulin complex. This then 

activates myosin light chain kinase which phosphorylates myosin light chain, causing 

myosin cross-bridge activation and VSMC contraction (Wier & Morgan, 2003). 

 Endogenous α1R regulation of the vasculature in this thesis was determined with 

the highly selective α1R antagonist prazosin (2-[4-(2-furoyl)- piperazin-l-yl]-4-amino-

6,7-dimethoxyquinazolhinyedrochloride). Prazosin elicits hypotensive and vasodilatory 

effects by blocking the interaction between NE and the α1R, and therefore interfering 

with sympathetically-activated VSMC contraction (Graham, Oates, Stoker, & Stokes, 

1977; Oates, Graham, Stoker, & Stokes, 1976). Interestingly, the actions of prazosin have 

been predominantly identified at the level of the peripheral vasculature, where tissue 

distribution studies have also confirmed the majority of drug localization to the arterioles 

(Hess, 1975).  

1.3.3. Neuropeptide Y 

NPY is a 36 amino acid peptide that is co-stored and released with NE from 

peripheral sympathetic neurons (Ekblad et al., 1984). NPY was first isolated from the 

porcine brain (Tatemoto, Carlquist, & Mutt, 1982), and occurs abundantly in the 

mammalian central nervous system, as well as in the peripheral nervous system 

(Wahlestedt et al., 1990). Its composition is well conserved and is part of a family that 

includes peptide YY and pancreatic polypeptide. It is originally derived from a 97 amino 

acid precursor, pre-pro-NPY. Four post-translational enzymatic modifications follow in 
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order to synthesize the biologically active NPY1-36. Prohormone convertase 1/3 cleaves 

proNPY, releasing a 30 amino acid c-flanking peptide of pre-proNPY and NPY 1-39 

(Alfalah & Michel, 2004). Two amino acids of NPY1-39 are then cleaved by a 

carboxypeptidase-like enzyme to form NPY1-37. Finally, NPY1-37 is amidated at its C-

terminal by peptidyl-glycine-α-amidating monooxygenase to form the final biologically 

active peptide NPY1-36. In the peripheral SNS, it is stored in post-ganglionic sympathetic 

neurons that innervate blood vessels, however NPY-containing neurons have been shown 

to be more abundant around resistance arterioles and proceed to innervate vessels in 

higher density as the arteriolar tree diverges into terminal branches (Sundler, Bottcher, 

Ekblad, & Hakanson, 1993). Although NPY is co-stored with NE, NPY is contained 

within LDCV of post-ganglionic sympathetic neurons, as opposed to SDCV that 

generally house NE. NPY release from these vesicles has been shown to occur to a 

greater extent under higher neuronal stimulation frequencies, however studies have 

confirmed that NPY is also released under lower stimulation frequencies (De Potter, 

Partoens, Schoups, Llona, & Coen, 1997), and is able to elicit vasoconstrictive effects 

under resting basal conditions (Bartfai et al., 1988; Jackson et al., 2004; Lundberg et al., 

1994). When NPY is released from these neurons, it acts on its respective Y1R to cause 

potent and prolonged vasoconstriction, a phenomenon initially discovered in cat skeletal 

muscle (Ekelund & Erlinge, 1997). NPY is degraded by enzymes dipeptidyl peptidase IV 

(DPPIV) to generate NPY3-36, and amino peptidase P (APP) to generate NPY2-36. DPPIV 

is a membrane-bound protease found on the cells of kidneys, liver, ileum, and also on 

endothelial cells, epithelial cells, astrocytes and T and B lymphocytes (Stange, Kettmann, 

& Holzhausen, 1996). It cleaves proline at the penultimate position, removing the tyr-pro 
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dipeptide from the N-terminus of NPY1-36, generating NPY3-36, which has less affinity for 

the Y1R (Grandt et al., 1993; Hopsu-Havu & Glenner, 1966). APP is found on astrocytes, 

endothelial cells, epithelial cells, neuronal cells and lung cells, and cleaves residues at the 

N-terminal to create NPY2-36, also decreasing the affinity to Y1R binding.  

1.3.3.1. Neuropeptide Y Y1 receptor  

The NPY Y1R was the first NPY receptor identified and cloned from the rat 

cDNA library, having 90-96% overall identity across mammals (Eva, Keinanen, Monyer, 

Seeburg, & Sprengel, 1990; Larhammar et al., 1992). NPY Y1R expression has been 

detected in the brain, heart, kidneys, the gastrointestinal tract and skeletal muscle. 

Importantly, Y1Rs are located peripherally on arterioles where they mediate 

vasoconstrictive responses (Grundemar & Bloom, 1994). NPY Y1R is a G-protein 

coupled receptor. It is characterized by 7 trans-membrane spanning domains linked to a 

heterotrimeric Gi/o-protein. Activation of Y1R is specific to the full NPY1-36 peptide. 

Truncated analogues of NPY at the N- and C-terminus, as well as modifications of 

central segments of the peptide result in significant decreases in NPY Y1R receptor 

affinity (Beck-Sickinger & Jung, 1995; Danho et al., 1988). The C-terminal region of 

NPY plays a main role in Y1R recognition as modifications to this end results in the 

greatest reductions in receptor affinity (Hoffmann, Rist, Videnov, Jung, & Beck-

Sickinger, 1996). When NPY Y1R is activated, increases in intracellular calcium causes 

slow and long lasting depolarization of smooth muscle cells to elicit vasoconstriction 

(Dumont, Martel, Fournier, St-Pierre, & Quirion, 1992). Studies have reported that NPY 

can increase intracellular calcium via inhibition of ATP-sensitive potassium channels, 

activation of voltage-gated calcium channels and the inhibition of cAMP (Edvinsson, 
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1985; Edvinsson, Emson, McCulloch, Tatemoto, & Uddman, 1983; Motulsky & Michel, 

1988; Tanaka et al., 1995). In support, NPY-induced vascular smooth muscle cell 

contraction can be inhibited by calcium channel antagonists (Lundberg et al., 1985).  

In order to determine the endogenous Y1R-mediated effects of NPY on the 

vasculature, N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-D-arginine amide 

(BIBP3226) was used in the studies described in this thesis. BIBP3226 is a highly potent 

and selective non-peptide Y1R antagonist, sharing similar Y1R molecular binding sites to 

NPY (Grundemar & Bloom, 1994). Past in vivo work in the rat has confirmed the ability 

of BIBP3226 to block the hypertensive response elicited by intravenous administration of 

NPY (Doods et al., 1995) and NPY induced vasoconstriction in rat skeletal muscle 

(Jackson et al., 2005).  

1.3.4. Interactions between NPY and NE 

Sympathetic postganglionic neurons release NE, NPY and ATP (Kasakov, Ellis, 

Kirkpatrick, Milner, & Burnstock, 1988). The release of each of these NTs can be 

modified as levels of SNA changes, allowing for a number of biological effects and 

interactions (e.g. slow, intermediary, and quick signaling) (Lundberg, 1996). For 

example, NPY produces a slow acting, potent and persistent increase in vascular tone. In 

contrast, NE-induced vasoconstriction occurs quickly and decays at a similar rate. 

Moreover, ATP induced vasoconstriction has been shown to be immediate and very short 

acting. It has been postulated that the duration of each transmitter’s effects relies on the 

mode of deactivation/removal. For example, NE’s vascular effects are removed quickly 

(NE reuptake via Uptake-1) compared to the prolonged duration of NPY induced 

vasoconstriction that is eliminated by enzymatic degradation of “free” NPY by DPPIV 



16 

 

and APP (Lundberg, 1996). In several investigations, NPY has been shown to potentiate 

α-adrenergic vasoconstriction in vivo (Dahlof, Dahlof, & Lundberg, 1985; Jackson et al., 

2005; Linder, Lautenschlager, & Haefeli, 1996; Revington & McCloskey, 1988), as well 

as in vitro (Edvinsson, Ekblad, Hakanson, & Wahlestedt, 1984; Ekblad et al., 1984; 

Glover, 1985; Wahlestedt, Edvinsson, Ekblad, & Hakanson, 1985). The synergistic 

interaction between NPY and NE is receptor-mediated, as NPY has also been shown to 

enhance the vasoconstrictive response to sympathetic nerve stimulation and 

phenylephrine- (specific α1R agonist) induced vasoconstriction (Dahlof et al., 1985). 

Additionally, NPYs endogenous contribution to basal vascular tone has been shown to 

act synergistically with endogenous NE. Upon simultaneous blockade of Y1R and α1R 

of the hindlimb vasculature in male Sprague-Dawley rats, the increase in femoral artery 

vascular conductance was greater then the additive response elicited by independent 

blockade of each receptor (Jackson et al., 2004). It has been hypothesized that the 

interactive effects between Y1R and α1R are due to consequent modification of specific 

receptor properties and/or second messengers (Franco-Cereceda & Liska, 1998). Both 

Y1R and α1R are G-protein coupled receptors; therefore, cross talk between receptor-

mediated changes in downstream signaling events may occur. Interestingly, the 

potentiating effects of NPY requires increased phospholipase C activity, which may 

further mobilize intracellular calcium (Wahlestedt et al., 1985; Wahlestedt et al., 1990). 

In addition, NPY may also inhibit adenyl cyclase upon Y1R activation, decreasing 

downstream levels of cAMP (Kassis, Olasmaa, Terenius, & Fishman, 1987), thus 

reducing the relaxing effects of cAMP. Exact mechanisms behind potentiating efffects of 

NPY however are not completely understood. 



17 

 

1.4. Skeletal muscle contraction, functional hyperemia and 
sympatholysis 

Under basal conditions, there is a constant balance between arteriolar sympathetic 

activation and local vasodilator mechanisms (vascular tone). Increases in metabolic 

demand however elicits vasodilation of arterioles to increase blood flow to the working 

tissue and throughout the downstream capillary network – termed functional or exercise 

hyperemia (Bevan et al., 1991; Laughlin, Korthuis, Duncker, & Bache, 1996). Dilation of 

distal or terminal arterioles serving capillary units closest to activated muscle fibers 

initiates increases in blood supply, where modest adjustments of feed artery and proximal 

arteriole diameter occur. However in cases of intense exercise, muscle blood flow can 

increase up to 100-fold, constituting up to 90% of cardiac output (Saltin, Radegran, 

Koskolou, & Roach, 1998). High-intensity exercise elicits large vasodilatory responses 

within skeletal muscle, therefore providing an opportunity for large drops in arterial 

blood pressure (R. J. Marshall, Schirger, & Shepherd, 1961). To prevent a fall in blood 

pressure, SNA is increased (Rowell, 1993) as a result of the baroreflex. Heightened 

peripheral SNA therefore increases vasoconstrictor activity of the feed artery, proximal 

arterioles, and dilated terminal arterioles to maintain resistance throughout the arteriolar 

network of working tissue, as well as increase vasoconstriction to inactive tissues 

(Thomas & Segal, 2004). Increases in perivascular SNA has also been shown to 

suppresses conducted vasodilatory responses along skeletal muscle arterioles (Haug & 

Segal, 2005). The ability of arterioles to dilate, regardless of increased sympathetic 

neurovascular activation during exercise however, is termed ‘functional sympatholysis’ 

(Hansen, Sander, & Thomas, 2000; Remensnyder, Mitchell, & Sarnoff, 1962). 

Sympathetically-mediated skeletal muscle arteriolar constriction is greater at smaller 
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terminal arterioles feeding capillary units (J. M. Marshall, 1982); however, these 

arterioles have also been shown to undergo sympatholysis more readily compared to 

upstream vasculature during exercise (Folkow et al., 1971). Under such conditions, 

functional sympatholysis promotes distal arteriolar dilation to maximize perfusion of 

capillary networks supplying active muscle fibres (Folkow et al., 1971; Segal & Jackson, 

2005). In diseased states where hypersympathomodulation of skeletal muscle vasculature 

occurs, such as pre-diabetes (Novielli, Al-Khazraji, Medeiros, Goldman, & Jackson, 

2012), skeletal muscle arteriolar perfusion may become compromised as sympatholysis 

may occur to a lesser extent, especially in distal arterioles experiencing pronounced 

sympathetic vasoconstriction. Increased SNA has been confirmed in aged humans, and 

has been shown to reduce muscle blood flow at rest and during exercise (Dinenno, Jones, 

Seals, & Tanaka, 1999). More recently, this deficit in muscle blood flow has been 

attributed to hyperactivation of adrenergic receptors in aged animal models and humans 

(Casey & Joyner, 2012; Jackson, Moore, & Segal, 2010). Whether greater activation of 

sympathetic receptors (adrenergic and non-adrenergic) compromises arteriolar function 

and muscle blood flow in pre-diabetes remains to be investigated. 

 

1.5. Pre-diabetes and vascular dysregulation 

Pre-diabetes represents the initial stage of type 2 diabetic disease development, 

characterized by insulin resistance and elevated circulating insulin and glucose levels. As 

insulin resistance decreases tissue sensitivity to insulin, an overproduction of insulin 

results to promote glucose uptake and maintain near-normal blood glucose levels. Pre-

diabetic disease progression to overt type 2 diabetes occurs when pancreatic beta cells 
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can no produce insulin to overcome insulin resistance, resulting in further hyperglycemia 

(Bock et al., 2006; Dinneen et al., 1998; Kanauchi, Kanauchi, Inoue, Kimura, & Saito, 

2007; Meigs, Muller, Nathan, Blake, & Andres, 2003; Tirosh et al., 2005). Such 

pathological metabolic characteristics of pre-diabetes play a role in the initiation of 

cardiovascular complications that manifest prior to the onset of overt type 2 diabetes 

(Faeh et al., 2007; Gupta et al., 2012; Haffner et al., 1990; Schaefer et al., 2010; Shin, 

Lee, & Lee, 2011). Increased femoral intima media thickness, elevated blood pressure, 

augmented brachial-ankle pulse wave velocity, and impaired reperfusion hyperemia of 

the fingers have been reported in pre-diabetic humans, however there is a dearth of 

knowledge regarding the effects of pre-diabetes on microvascular function within skeletal 

muscle.  

Although few, past studies have addressed modifications in arteriolar function as 

well as skeletal muscle capillary perfusion in pre-diabetic rats. Lesniewski et al. reported 

increases in vasoconstrictor responsiveness to NE and endothelin-1 in first order 

arterioles isolated from the gastrocnemius of normotensive pre-diabetic Zucker Diabetic 

Fatty (ZDF) rats (Lesniewski et al., 2008). In addition to pro-constrictor phenotypes of 

skeletal muscle arterioles, Ellis et al. demonstrated decreased RBC supply rate and 

decreased RBC velocity in capillary networks of the extensor digitorum longus muscle of 

the pre-diabetic ZDF rat (Ellis et al., 2010). These studies have demonstrated augmented 

arteriolar function of proximal arterioles and impaired capillary perfusion of skeletal 

muscle in early pre-diabetes; thus, it is reasonable to postulate that compromised 

arteriolar function occurs throughout the skeletal muscle microvascular network.  
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Studies directly investigating the impact of pre-diabetes on skeletal muscle 

microvascular control during exercise are limited. Certainly, human and animal studies 

have illustrated compromised blood flow regulation during exercise/muscle contraction 

in overt type 2 diabetes, the metabolic syndrome, and obesity (Blain et al., 2012, Vinet et 

al., 2011, Karpoff et al., 2009, Frisbee, 2003, Frisbee, 2004, MacAnaney et al., 2011, 

Kingwell et al., 2003). However, differences in the experimental models and 

methodological limitations constrain the current understanding of vascular control in 

metabolic diseases to bulk blood flow measures, i.e. femoral or brachial artery blood 

flow. Measures of bulk blood flow limits information on the site or nature of arteriolar 

dysregulation. Intravital techniques would be advantageous for directly addressing the 

microvascular network. Furthermore, models of overt type 2 diabetes, metabolic 

syndrome, and obesity are accompanied by chronic states of cardiovascular compromise 

and overt vascular disease; where early pre-diabetes represents the primary stage of 

diabetic disease, where vascular complications may not be as pronounced.  

 

1.6. Animal models of pre-diabetes 

1.6.1. The Zucker Diabetic Fatty rat 

The ability to directly assess the effects of pre-diabetes on skeletal muscle 

vasculature can be performed using pre-diabetic animal models. The ZDF rat represents a 

model of progressive type 2 diabetes development. The ZDF rat has a genetic mutation of 

the leptin receptor, interrupting the interaction of leptin with its respective receptor. 

Leptin, a small adipose-derived hormone, is involved in the regulation of food intake via 
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a negative feedback loop upon binding to the leptin receptor (Clement et al., 1998; 

Lyssenko et al., 2005). Because of the dysfunctional leptin receptor in the ZDF rat, leptin 

is unable to signal cessation of food intake. When fed a high fat diet, the ZDF rat 

progressively develops programmed and consistent type 2 diabetes by the age of 8-9 

weeks old. During the period prior overt type 2 diabetes development and pancreatic 

failure, the rat is considered to be in the pre-diabetic state. At 7-weeks-old, the ZDF rat 

demonstrates similar characteristics to the human condition of pre-diabetes; obesity, 

hyperinsulinemia, insulin resistance and elevated blood glucose –(Kim & Reaven, 2008; 

Lyssenko et al., 2005). 

1.6.2. The Pound Mouse 

Similar to the ZDF rat, the pound mouse also expresses a dysfunctional leptin 

receptor, in turn causing hyperphagia. The pound mouse is of the c57blk background and 

occurred as a spontaneous mutation at a Charles River facility. When fed a high fat diet, 

these mice exhibit obesity, hyperinsulinemia, insulin resistance and elevated blood 

glucose, similar to the pre-diabetic characteristics outlined for the human pre-diabetic 

condition. Unlike the ZDF rat however, the pound mouse does not go on to develop type 

2 diabetes and pancreatic failure, rather it remains in a pre-diabetic state. 

 

1.7. Rationale 

Sympathetic neurovascular control is essential to the regulation of blood pressure 

and tissue perfusion due to its ability to modulate peripheral vascular resistance. It is 

especially important throughout skeletal muscle microvasculature, as skeletal muscle 
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makes up approximately 40% of body mass and comprises approximately 20% of total 

peripheral resistance under baseline conditions. NTs such as NE and NPY are released 

from perivascular nerve terminals and act post-junctionally on VSMC α1Rs and Y1Rs to 

produce vasoconstriction. In states where peripheral sympathetic activation may be 

elevated, such as pre-diabetes, heightened sympathetic neurovascular modulation may 

result, leading to compromised skeletal muscle vascular control. 

In pre-diabetes, SNA is suggested to be elevated, as hyperinsulinemia 

accompanying the disease is known to be sympathoexcitatory (E. A. Anderson et al., 

1992; E. A. Anderson, Hoffman, Balon, Sinkey, & Mark, 1991; Rowe et al., 1981). In 

humans, hyperinsulinemia is associated with elevated SNA and correlates with the degree 

of insulin resistance (E. A. Anderson et al., 1992; DeFronzo & Ferrannini, 1991; Huggett, 

Hogarth, Mackintosh, & Mary, 2006). Moreover, systemic infusion of insulin in rats has 

been shown to preferentially increase lumbar SNA (Epstein & Sowers, 1992; Esler et al., 

2001; Muntzel et al., 1995; Scherrer & Sartori, 1997). Increases in peripheral SNA 

accompanying pre-diabetes may therefore compromise skeletal muscle microvascular 

regulation under resting and active conditions via over-activation of arteriolar 

sympathetic receptors, however this is yet to be investigated.  

Indeed studies investigating skeletal muscle vascular function under conditions of 

ageing, the metabolic syndrome and obesity have demonstrated increased basal vascular 

tone and compromised vasodilation of skeletal muscle vasculature as a result of 

heightened sympathetic vascular control (Casey & Joyner, 2012; Frisbee, 2004; Jackson 

et al., 2010; Naik et al., 2008). Such studies have only evaluated the contribution of αR 
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activation to sympathetically-mediated changes in vascular function; however, 

peptidergic NPY Y1R vascular control has not been considered. Under conditions of 

elevated SNA, sympathetic vascular modulation becomes more pronounced not only by 

NE-, but also NPY (Bartfai et al., 1988; De Camilli & Jahn, 1990; Lundberg et al., 1994). 

This provides implications for heightened adrenergic and peptidergic modulation of the 

vasculature in pre-diabetes, which may affect basal sympathetic vascular tone, as well as 

impinge on dilatory responses to skeletal muscle contraction.  

Microvascular responses to skeletal muscle contraction are non-uniform 

throughout the arteriolar network, with greater (relative) arteriolar dilation occurring in 

distal versus proximal regions (Davis, Hill, & Kuo, 2008; Dodd & Johnson, 1991; J. M. 

Marshall & Tandon, 1984; VanTeeffelen & Segal, 2006). Distal arterioles are also able to 

dilate and overcome sympathetic activation (sympatholysis) more readily than proximal 

arterioles within the muscle (K. M. Anderson & Faber, 1991). Interestingly, studies have 

demonstrated differential distribution of sympathetic receptors at different arteriolar 

branch orders of arteriolar networks (K. M. Anderson & Faber, 1991; Moore et al., 2010). 

Furthermore, NPY-containing perivascular neurons have been shown to be more 

abundant around resistance arterioles and innervate distal arterioles of the microvascular 

network in higher density (Sundler et al., 1993). Under conditions of heightened SNA, 

i.e. in pre-diabetes, such distinct spatial sympathetic arteriolar control may be lost, where 

vasodilatory responses to skeletal muscle contraction may be compromised. Therefore, 

direct investigation of both adrenergic and peptidergic-mediated arteriolar network 

control is needed to address whether elevated SNA contributes to decrements in skeletal 

muscle microvascular function in pre-diabetes. 
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1.8. Specific thesis objectives 

The overall objectives of this thesis research are the following: 

Objective 1 – Manuscript 1: Chapter 2 

To address whether basal endogenous Y1R and α1R regulation of hindlimb vasculature is 

modified in pre-diabetic ZDF rats. 

Objective 2 – Manuscript 2: Chapter 3 

To establish and characterize the Pound mouse (pre-diabetic mouse model) and gluteus 

maximus muscle preparation as appropriate in vivo models to study skeletal muscle 

arteriolar function in pre-diabetes. 

Objective 3 – Manuscript 2: Chapter 3    

To determine whether pre-diabetes affects arteriolar vasodilation and blood flow 

responses to skeletal muscle contraction across arteriolar branches throughout the gluteus 

maximus microvascular network. 

Objective 4 – Manuscript 3: Chapter 4 

To determine if enhanced activation of sympathetic Y1R and α1R affects arteriolar 

vasodilatory responses to muscle contraction in pre-diabetes. 
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1.9. Hypotheses 

Overall hypothesis: Sympathetic vascular modulation is elevated in pre-diabetes. 

Hypothesis 1: Endogenous Y1R and α1R basal regulation of skeletal muscle vascular 

tone is greater in pre-diabetes compared to healthy controls. 

Hypothesis 2: Arteriolar vasodilation and blood flow responses elicited by contraction of 

the gluteus maximus will be compromised in pre-diabetes compared to responses of 

healthy controls, where the greatest decrements in contraction-evoked vasodilation will 

occur in distal pre-capillary arterioles versus proximal arterioles.  

Hypothesis 3: Blunted vasodilatory responses to gluteus maximus contraction observed in 

pre-diabetes are a result of an elevation in basal arteriolar smooth muscle cell activation 

of sympathetic arteriolar Y1R and α1R.   
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2.1. Introduction 

In the peripheral vasculature, sympathetic neurons regulate arteriolar tone through 

the release of norepinephrine (NE) and neuropeptide Y (NPY). NE has been considered 

the primary neurotransmitter in maintenance of baseline arteriolar tone (Z. Zukowska-

Grojec, 1995) through its interaction with alpha-adrenergic receptors (αR) located on 

vascular smooth muscle cells, causing vasoconstriction. NPY is co-stored and co-released 

with NE and acts on neuropeptide Y1 receptors (Y1R), to cause potent and prolonged 

vasoconstriction (Ekelund & Erlinge, 1997; Malmstrom, 1997; Z. Zukowska-Grojec & 

Wahlestedt, 1993). Interestingly, post-synaptic co-activation of Y1R and α1R by NPY 

and NE leads to synergistic vasoconstrictive effects (Z. Zukowska-Grojec & Wahlestedt, 

1993). Although recent evidence has shown that NPY contributes modestly to baseline 

vascular tone in skeletal muscle of male rats (Jackson, Noble, & Shoemaker, 2004), its 

effects are suggested to predominate under conditions of elevated sympathetic nerve 

activity (Bartfai, Iverfeldt, Fisone, & Serfozo, 1988; De Camilli & Jahn, 1990; Lundberg, 

Franco-Cereceda, Lou, Modin, & Pernow, 1994).  

A large proportion of the body’s resistance vasculature lies within skeletal 

muscle, which is highly regulated by sympathetic nerve activity (SNA) to maintain blood 

pressure and blood flow distribution under healthy conditions. However, in type 2 

diabetes, sympathetic regulation of vascular tone can become augmented, leading to 

alterations in normal blood flow control. Type 2 diabetes is commonly associated with 

vascular disease; however, recent findings indicate that cardiovascular complications may 

be initiated in the pre-diabetic state, before the diagnosis of type 2 diabetes (Faeh, 
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William, Yerly, Paccaud, & Bovet, 2007; Haffner, Stern, Hazuda, Mitchell, & Patterson, 

1990). Pre-diabetes is characterized by the concomitant presence of hyperinsulinemia, 

impaired glucose tolerance and insulin resistance and occurs prior to overt pancreatic β-

cell failure. Of note, hyperinsulinemia stimulates SNA and may play a role in autonomic 

and vascular dysfunction associated with the disease (Mancia, Grassi, Giannattasio, & 

Seravalle, 1999). In humans, hyperinsulinemia is associated with elevated SNA and 

correlates with the degree of insulin resistance (Anderson, Balon, Hoffman, Sinkey, & 

Mark, 1992; DeFronzo & Ferrannini, 1991; Huggett, Hogarth, Mackintosh, & Mary, 

2006). Moreover, systemic infusion of insulin in rats has been shown to preferentially 

increase lumbar SNA (Epstein & Sowers, 1992; Esler et al., 2001; Muntzel, Anderson, 

Johnson, & Mark, 1995; Scherrer & Sartori, 1997). Studies using animal models of pre-

diabetes and the metabolic syndrome have reported augmented α-adrenergic vascular 

responsiveness to adrenergic agonists in isolated vascular preparations (Lesniewski et al., 

2008; Okon, Szado, Laher, McManus, & van Breemen, 2003). As noted above, NPY-

mediated vascular modulation becomes more pronounced under conditions of elevated 

SNA (Bartfai et al., 1988; De Camilli & Jahn, 1990; Lundberg et al., 1994); however, to 

date, studies addressing NPY/Y1R-mediated vascular control in pre-diabetes are lacking. 

Furthermore, there have been no studies investigating NPY and α-adrenergic co-

modulation of vascular control in pre-diabetes. 

The overall aim of the present study was to investigate if pre-diabetes modifies 

sympathetic Y1R and α1R control of basal skeletal muscle blood flow (Qfem) and 

vascular conductance (VC). Thus, we tested the independent and dependent (synergistic) 

functional contributions of endogenous Y1R and α1R activation on Qfem and VC in vivo 
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and hypothesized that pre-diabetes augments Y1R and α1R vascular modulation. 

Concurrently, we hypothesized that skeletal muscle NPY concentration and Y1R and 

α1R expression would be upregulated in pre-diabetic rats. 

 

2.2. Materials and methods 

All animal procedures were approved by the Council on Animal Care at The 

University of Western Ontario (protocol number: 2008-066). All invasive procedures 

were performed under α-chloralose and urethane anesthetic, and all efforts were made to 

minimize animal suffering. 

2.2.1. Animals 

Nine seven-week-old male ZDF rats (PD) and 8 age-matched lean controls 

(CTRL) (Charles River Laboratories, Saint-Constant, Quebec, Canada) were used in this 

study. The inbred ZDF rat is affected by a homozygous mutation of the leptin receptor 

(fa/fa), therefore leptin is unable to suppress appetite (Leonard, Watson, Loomes, 

Phillips, & Cooper, 2005). When fed a high fat diet (i.e., Purina 5008 rat chow), these 

animals become obese, hyperinsulinemic, insulin resistant and hyperglycemic by 7 weeks 

of age (Leonard et al., 2005; Lesniewski et al., 2008), characteristic of the pre-diabetic 

condition in humans (Kim & Reaven, 2008a, 2008b). This phenotype is absent in the 

ZDF lean rats heterozygous for the leptin receptor mutation (fa/+), and thus served as the 

control group in this study. Animals were housed in animal care facilities in a 

temperature (24°C) and light (12-hour cycle)-controlled room, fed Purina 5008 rat chow 
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(Ralston Purina, St. Louis, MO, USA) and allowed to eat and drink water ad libitum. 

Prior to surgery, animals were anesthetized with an intraperitoneal injection of α-

chloralose (80 mg/kg) and urethane (500 mg/kg). This anesthetic was ideal for this study 

as it leaves autonomic, cardiovascular and respiratory function intact (Soma, 1983). 

Internal body temperature was monitored via a rectal temperature probe and maintained 

at 37°C with the use of a thermally controlled water-perfused heating pad. 

2.2.2. Surgery 

A mid-neck incision was made and a tracheal cannula was introduced to facilitate 

spontaneous respiration. End-tidal CO2 and O2 measures were made from expired air 

between pharmacological perturbations throughout the experiment using a breath-by-

breath gas analyzer (ADInstruments, Colorado Springs, CO, USA). The left common 

carotid artery was cannulated (PE-50 tubing) to allow for recording of arterial blood 

pressure via the amplified signal of a pressure transducer using a PowerLab system 

(model ML118 PowerLab Quad Bridge Amplifier; model MLT0699 BP Transducer, 

ADInstruments, Colorado Springs, CO, USA). The right jugular vein was cannulated to 

maintain a constant infusion of anesthetic to the animal (α-chloralose: 8-16 mg/kg/hr, 

urethane: 50-100 mg/kg/hr). 

Through a midline abdominal incision, gut contents were carefully moved aside 

within the abdominal cavity and covered with sterile gauze moistened with sterile saline 

(0.9% NaCl). Sterile cotton swabs were then used to expose the descending aorta and 

right iliac artery, isolating it from the right iliac vein and its surrounding fat. The right 

iliac artery was cannulated (PE-50 tubing) and the cannula was advanced to the 
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bifurcation of the descending aorta. This cannula was used for localized drug delivery to 

the left hindlimb. Following cannulation, gauze was removed and care was taken to 

reposition the gut. Incisions were closed with sterile wound clips (9 mm stainless steel 

wound clips). A blood sample was then taken from the carotid cannula in order to 

evaluate blood glucose levels, lactate levels, and pH using an iSTAT portable clinical 

analyzer (Abbott Laboratories, Abbott Park, IL, USA).  

Using microscopic assistance, the left femoral artery was carefully isolated from 

surrounding nerves and vessels. Qfem was measured beat-by-beat using a Transonic flow 

probe (0.7 PSB) and flowmeter (model TS420 Perivascular Flowmeter Module; 

Transonic Systems, Ithica, NY, USA). The flow probe was placed around the left femoral 

artery ~3 mm from the femoral triangle and innocuous water-soluble ultrasound gel was 

applied over the opened area of the left hindlimb to keep tissue hydrated and to maintain 

adequate flow signal. 

2.2.3. Experimental protocol 

Once surgery was completed, animals recovered for 1 hour. Prior to drug 

treatments, vehicle (160 µl of 0.9% saline) was delivered, followed by a 15-minute 

recovery period. Baseline data were recorded for 5 minutes followed by five separate 

drug infusions (Jackson, Ellis, & Shoemaker, 2010; Jackson, Milne, Noble, & 

Shoemaker, 2005a, 2005b; Jackson et al., 2004). Using a repeated measures design, drug 

infusions were delivered at a rate of 16 µl/sec in the following order: 1) 250 µl of 0.2 

µg/kg acetylcholine chloride (ACh, Sigma-Aldrich, St. Louis, MO, USA), 2) 160 µl of 

100 µg/kg BIBP3226, a specific Y1R antagonist (TOCRIS, Ellisville, MO, USA), 3) 160 
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µl of 20 µg/kg prazosin, a specific α1R antagonist (Sigma-Aldrich, St. Louis, MO, USA), 

4) combined 100 µg/kg BIBP3226 + 20 µg/kg prazosin, and 5) 160 µl of 5 µg/kg sodium 

nitroprusside (SNP, i.v., sodium nitroprussiate dihydrate, Sigma-Aldrich, St. Louis, MO, 

USA). Since the hemodynamic effects of prazosin are long lasting, BIBP3226 (Y1R 

antagonist) was administered first in all experiments. When hemodynamic variables 

returned to baseline (30-40 minutes), prazosin (α1R antagonist) was infused. Once 

responses to prazosin peaked and stabilized (~5 minutes), combined blockade (Y1R + 

α1R antagonist) was achieved by a subsequent infusion of BIBP3226 (100 µg/kg). In a 

previous study (using a similar protocol), we addressed the effects of randomized versus 

fixed delivery of BIBP3226 and prazosin and reported no effect of randomization 

(Jackson et al., 2005a). 

2.2.4. Insulin immunoassay 

Insulin levels were determined from plasma samples using an ELISA and by 

following manufacturer’s instruction (ALPCO Immunoassays, Salem, NH, USA). All 

samples and standards (10 µl) were distributed in duplicate in the provided 96-well 

immunoplate. Seventy-five microliters of horseradish peroxidase (HRP)-labeled 

monoclonal anti-insulin antibody was added to each well and incubated at room 

temperature for 2 hours. The immunoplate was then washed 6 times with assay wash 

buffer. Following washing, 100 µl of tetramethylbenzidine (TMB) peroxidase substrate 

solution was added to each well and incubated for 15 minutes at room temperature. The 

reaction was then terminated with 100 µl of stop solution, and the optical absorbance of 

each well was read at 450 nm (Bio-Rad iMark Microplate Reader, Bio-Rad, Hercules, 

CA, USA). 
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2.2.5. NPY immunoassay and Western blotting 

Analyses were carried out on two different skeletal muscle groups known to 

contain differing expression of slow-twitch oxidative (SO), fast-twitch glycolytic (FG), 

and fast-twitch oxidative-glycolytic (FOG) fiber types. The use of skeletal muscle groups 

expressing differing ratios of fiber types was based on early work by others showing that 

blood flow to such muscles is distributed differently at rest (Terjung & Engbretson, 1988) 

and during exercise (Armstrong & Laughlin, 1984; Terjung & Engbretson, 1988). We 

chose to analyze vastus muscle, as it comprises the bulk of muscle tissue in the hindlimb 

and plays a major role in locomotion. With the animal under deep surgical anesthesia, 

skeletal muscle samples were taken from red vastus (RV; expressing FOG > FG > SO 

fibers) and white vastus (WV; expressing FG > FOG) (Armstrong & Phelps, 1984; 

Laughlin & Armstrong, 1983) and were flash-frozen in liquid nitrogen. Animals were 

euthanized after tissue harvesting by an overdose of anesthetic. The same muscle tissue 

samples were used in all assays (NPY immunoassay and Western blot). 

NPY concentration was determined in whole muscle tissue homogenates (from 

white and red vastus; see below for preparation of homogenate and total protein 

determination) and standards (50 µl duplicate samples) using a competitive immunoassay 

(Bachem Bioscience, King of Prussia, PA, USA). All samples were incubated at room 

temperature for 2 hours. The immunoplate was then washed 5 times with 300 µl per well 

of assay buffer. Wells were incubated at room temperature with 100 µl of streptavidin-

HRP for 1 hour. The immunoplate was washed again 5 times with 300 µl per well of 

assay buffer. Following washing, 100 µl of a TMB peroxidase substrate solution was 

added to all wells. After a 40 minute incubation at room temperature the reaction was 
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terminated by the addition of 100 µl 2 N HCl. Finally, the optical absorbance of each 

well was read at 450 nm (Bio-Rad Ultramark Microplate Imaging System, Bio-Rad, 

Hercules, CA, USA). Absorbance measures were converted to NPY concentration by 

comparison with the 10-point standard curve. Results are given as a ratio of pg NPY (per 

µg tissue), relative to protein concentration, as computed from amount of total protein 

loaded per well. The assay has a minimum detectable concentration of 0.04–0.06 ng per 

ml or 2–3 pg per well (manufacturer's data). 

White and red vastus skeletal muscle tissue was removed from the hindlimb and 

flash frozen in liquid nitrogen. Approximately 100 mg of tissue was cut from the whole 

muscle and homogenized in 2 mL of radioimmunoprecipitation assay lysis buffer (50 

mM Tris-HCl pH 7.4, 150 mM NaCl, 1% IGEPAL, 1% Sodium deoxycholate, 0.1% 

SDS, 100 mM EDTA) containing protease inhibitor cocktail (104 mM AEBSF, 80 mM 

aprotinin, 2.1 mM leupeptin, 3.6 mM betastatin, 1.5 mM pepstatin A, 1.4 mM ME-64, 

Sigma-Aldrich, St. Louis, MO, USA). Samples were then centrifuged at 4°C for 25 

minutes at 14000 rpm and supernatant was collected and then stored at -80°C until ready 

for use. Protein concentration was determined using the Bradford protein assay 

(Bradford, 1976). Fifty micrograms of protein from each sample was loaded on a 4% to 

12% gradient gel and separated by SDS-PAGE. After electrophoresis, proteins were 

transferred at a constant voltage to polyvinylidene fluoride membranes. Membranes were 

blocked in 5% milk in tris-buffered saline + Tween20 (0.5%) (TTBS) at 4°C for 5 hours. 

Membranes were washed in TTBS and incubated overnight at 4°C in one of two primary 

antibodies in 5% milk in TTBS, specific to rat, human or mouse: 1) Y1R (rabbit 

polyclonal to NPY1R, Cat no. ab73897, Abcam, Cambridge, MA, USA), and 2) α1R 
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(rabbit polyclonal to alpha 1 adrenergic receptor, Cat no. ab3462, Abcam, Cambridge, 

MA, USA). After incubation, membranes were washed in TTBS then incubated in 

secondary antibody conjugated to HRP (goat anti-rabbit IgG, Cat no. A0545, Sigma 

Aldrich, St Louis, MO, USA) in 5% milk in TTBS for 1 hour at room temperature. 

Membranes were washed and bands were detected using Immun-Star WesternC© 

chemiluminescent kit (Bio-Rad, Hercules, CA, USA) and imaged with a ChemiDoc XRS 

System (Bio-Rad, Hercules, CA, USA). Membranes were immediately washed, stripped, 

and blocked in 5% bovine serum albumin for 1 hour at room temperature. Membranes 

were washed and incubated in primary antibody specific to β-actin (loading control, anti-

beta actin, rabbit polyclonal, Cat no. ab16039, Abcam, Cambridge, MA, USA) for 1 hour 

at room temperature. Membranes were then washed, incubated in secondary antibody and 

imaged (as above). Densitometric band analysis was performed with Quantity One 1-D 

Analysis Software (Bio-Rad, Hercules, CA, USA). Quantified protein expression values 

were normalized to β-actin. 

2.2.6. Data acquisition and statistical analyses 

All data were collected at 1 kHz with the use of the PowerLab data acquisition 

system (AD Instruments, Colorado Springs, CO, USA) coupled to a computer. Heart rate 

(HR) and mean arterial pressure (MAP) were calculated from arterial blood pressure 

recordings. VC was calculated as a ratio of Qfem/MAP. For all conditions, Qfem, VC, MAP 

and HR were calculated as a 5 minute stable average during baseline (Baseline) and as a 

1 minute average at the peak of drug response (Drug). 

Statistical analyses were performed using Prism (version 4, GraphPad Software 

Inc, La Jolla, CA, USA) and differences were accepted as statistically significant when p 
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< 0.05. Effect of treatment on MAP and HR within each group was analyzed using a 

paired t-test, and between groups at baseline and drug using an unpaired t-test with a 

Bonferroni correction (2 comparisons; p < 0.025). Effects of each drug perturbation on 

Qfem and VC between CTRL and PD were analyzed using unpaired t-tests. The potential 

synergy between Y1R and α1R activation was assessed by comparing the sum of the 

drug responses from the BIBP3226 and prazosin conditions against those of the 

BIBP3226 + prazosin condition using a paired t-test. Unpaired t-tests were used to 

compare cellular data (from Western blot and immunoassay) between groups. Pearson’s 

Correlation was used to assess correlation between body mass and Qfem or VC. Data are 

presented as mean values ± standard error (SE). 

 

2.3. Results 

Body mass, blood glucose, insulin, lactate, mean end tidal CO2 and respiratory 

rate were significantly greater in PD versus CTRL (p < 0.001, Table 2.1); however, 

expired O2 and blood pH were similar between groups (Table 2.1). At baseline, both 

groups displayed similar MAP (85-95 mmHg); however, HR was greater in PD versus 

CTRL (p < 0.025, Table 2.2).  

Baseline Qfem and VC were similar between groups and similar before each drug 

perturbation (Table 2.3). This observation was independent of body mass, as there was no 

correlation between body mass and Qfem or VC  (r = 0.11, p = 0.65). Vehicle infusion of 

saline had no effect on MAP, HR, Qfem or VC in either group. 

The magnitude of vascular responses to bolus infusions of ACh and SNP were 

similar between groups, indicating that endothelial and smooth muscle cell functionality 
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were preserved in PD (Table 2.4). Representative tracings of mean hindlimb vascular 

conductance to pharmacologic interventions are shown for a CTRL and PD rat in Figure 

2.1. 
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Table 2.1: Physical and physiological characteristics of CTRL and PD rats. 

       CTRL                PD 

Body mass (g) 196 ± 4 253 ± 5* 
Blood glucose 
(mmol/L) 

9.3 ± 0.6 14.1 ± 0.9* 

Insulin (nmol/L) 0.1 ± 0.03 5.6 ± 0.7* 

Blood lactate 
(mmol/L) 

1 ± 0.1 2 ± 0.1* 

Expired CO2 
(mmHg) 

35 ± 0.5 39 ± 0.5* 

Expired O2 (%) 17 ± 0.1 17 ± 0.1 
Respiratory rate 
(breaths/min) 

68 ± 2 82 ± 2* 

Blood pH  7.4 ± 0.01 7.4 ± 0.01  
Values are mean ± SE. CTRL, control, n=7-8; PD, pre-diabetic, n=7-9. *p < 0.001 vs. 
CTRL. 
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Table 2.2: Blood pressure and heart rate responses associated with each condition. 

  BIBP3226 Prazosin BIBP3226+Prazosin 

    CTRL             PD CTRL PD CTRL PD 

Mean arterial 
pressure 
(mmHg) 

Baseline 95 ± 2 102 ± 6 88 ± 4 102 ± 5 88 ± 4 102 ± 5  

Drug 89 ± 4 94 ± 8 72 ±5* 76 ± 6* 71 ± 3* 71 ± 6* 

Heart rate 
(beats/min) 

Baseline 375 ± 7 414 ± 7† 371 ± 6 409 ± 8† 371 ± 6  409 ± 8† 

Drug 379 ± 6 430 ± 11*† 368 ± 7 413 ± 10† 368 ± 8 406 ± 7† 
Values are mean ± SE. CTRL, control, n=8; PD, pre-diabetic, n=9. *p < 0.05 vs. 
Baseline. †p < 0.025 vs. CTRL. 

 

 

 

 



54 

 

Table 2.3: Baseline values of hindlimb blood flow and vascular conductance before 
pharmacological treatments. 
 BIBP3226 Prazosin BIBP3226+Prazosin 

      CTRL             PD CTRL              PD CTRL                PD 

Hindlimb blood flow 
(µl/min) 

385 ± 69 364 ± 42 364 ± 61 358 ± 34 364 ± 61 358 ± 34 

Vascular conductance 
(µl/min/mmHg) 

4.0 ± 0.6 3.7 ± 0.5 4.1 ± 0.6 3.6 ± 0.4 4.1 ± 0.6 3.6 ± 0.4  

Values are mean ± SE. CTRL, control, n=8; PD, pre-diabetic, n=9. 
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Table 2.4: Hindlimb blood flow and vascular conductance at baseline and following 
acetylcholine and sodium nitroprusside interventions. 
  Acetylcholine Sodium Nitroprusside 

  CTRL PD CTRL PD 

Hindlimb blood flow  

(µl/min) 

Baseline 380 ± 50 395 ± 30 385 ± 66 377 ± 47 

Drug 708 ± 66* 760 ± 93* 503 ± 72* 582 ± 53* 

Vascular conductance 
(µl/min/mmHg) 

Baseline 4.2 ± 0.6 3.7 ± 0.5   4.2 ± 0.7  3.6 ± 0.6 

Drug 10 ± 1* 10 ± 1* 12 ± 2* 11 ± 2* 
Values are mean ± SE. CTRL, control, n=6-8; PD, pre-diabetic, n=6-8. *p < 0.05 vs. 
Baseline. 
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Figure 2.1: Representative hindlimb vascular conductance.   

Representative mean vascular conductance (0.1 second averaging of 1 kHz beat-by-beat 

tracing) over 50 seconds for BIBP3226, prazosin and BIBP3226 + prazosin treatments in 

CTRL (top) and PD (bottom). 
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2.3.1. Functional effects of local Y1R and α1R blockade 

2.3.1.1. Effect of local Y1R blockade (BIBP3226) 

Following Y1R antagonism, MAP was unchanged for both groups, however HR 

increased from baseline in PD  (p < 0.05, Table 2.2). Qfem and VC increased from 

baseline in CTRL (ΔQfem = 70 ± 17 µl/min; ΔVC = 1.0 ± 0.2 µl/min/mmHg-1) and PD 

(ΔQfem = 190 ± 45 µl/min; ΔVC = 2.8 ± 0.8 µl/min/mmHg) (p < 0.05), however the 

increase in Qfem and VC following Y1R blockade was greater in PD compared to CTRL 

(p < 0.05, Figure 2.2). Percent change in VC was greater in PD (75 ± 13%) versus CTRL 

(31 ± 12%) (p < 0.05, Figure 2.3). 

2.3.1.2. Effect of local α1R blockade (prazosin) 

Following α1R antagonism, MAP decreased 15 ± 2 and 26 ± 5 mmHg, for CTRL 

and PD respectively (p < 0.05, Table 2.2) and HR was unchanged from baseline (Table 

2.2). Qfem and VC increased from baseline in CTRL (ΔQfem = 39 ± 13 µl/min; ΔVC = 1.5 

± 0.3 µl/min/mmHg) and PD (ΔQfem = 149 ± 37 µl/min; ΔVC = 3.2 ± 0.4 µl/min/mmHg), 

where the increase in Qfem and VC was greater in PD compared to CTRL (p < 0.05, 

Figure 2.2). Percent change in VC was greater in PD (94 ± 11%) versus CTRL (41 ± 9%) 

(p < 0.05, Figure 2.3). 
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Figure 2.2. Sympathetic receptor blockade elicits greater vascular responses in PD.  

Panel a: Change in hindlimb blood flow (Qfem) and Panel b: vascular conductance (VC) 

from baseline following Y1R and α1R blockade. With Y1R blockade, the increase in 

Qfem and VC was greater in PD (n=9) versus CTRL (n=8) (p < 0.05). α1R blockade 

elicited an increase in Qfem, as well as an increase in VC that was greater in PD 

compared to CTRL (p < 0.05).  * Indicates different from CTRL (p < 0.05). 
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Figure 2.3: Percent change in hindlimb vascular conductance following Y1R and 

α1R blockade.  

The percent increase in VC following BIBP3226, prazosin and BIBP3226 + prazosin 

treatments was greater in PD (n=9) compared to CTRL (n=8). *Indicates different from 

CTRL (p < 0.05). 
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2.3.1.3. Effect of simultaneous Y1R and α1R blockade (BIBP3226 + 
prazosin) 

Following combined Y1R and α1R antagonism, MAP decreased 17 ± 3 and 31 ± 

6 mmHg, for CTRL and PD respectively (p < 0.05, Table 2.2), whereas HR remained 

unchanged. Qfem and VC increased from baseline in CTRL (ΔQfem = 191 ± 39 µl/min; 

ΔVC = 3.8 ± 0.7 µl/min/mmHg) and PD (ΔQfem = 279 ± 44 µl/min; ΔVC = 5.8 ± 0.6 

µl/min/mmHg) (p < 0.05), however the increase in Qfem and VC following combined Y1R 

and α1R blockade was greater in PD compared to CTRL (p < 0.05, Figure 2.2). Percent 

change in VC was greater in PD (170 ± 20%) versus CTRL (109 ± 24%) (p < 0.05, 

Figure 2.3).  

 To determine the potential synergistic interaction between endogenous Y1R and 

α1R activation, the sum of the VC responses from the BIBP3226 and prazosin conditions 

was compared to the VC responses elicited by combined Y1R and α1R blockade within 

each group. Compared to the sum of the independent effects of BIBP3226 and prazosin 

infusion, combined blockade resulted in a similar increase in VC within groups (Figure 

2.4).
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Figure 2.4. Y1R and α1R synergism is not observed in CTRL and PD.  

Comparison of the change in hindlimb vascular conductance between CTRL (n=8) and 

PD (n=9) for the sum of responses from BIBP3226 and prazosin conditions and the 

BIBP3226 + prazosin condition. * Indicates different from CTRL (p < 0.05). 
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2.3.2. Tissue NPY concentration and Y1R and α1R expression 

2.3.2.1. Tissue NPY concentration 

NPY concentration was 155 ± 32% and 68 ± 32% greater in white and red vastus 

respectively in PD compared to CTRL (p < 0.05, Figure 2.5). 

2.3.2.2. Tissue Y1R and α1R  

Compared to CTRL, Y1R protein expression was 43 ± 15% and 30 ± 9% greater 

in PD white and red vastus muscle respectively (p < 0.05, Figure 2.6). α1R expression 

was 94 ± 43% greater in PD compared to CTRL in red vastus muscle (p < 0.05), however 

expression in white vastus muscle was similar between groups (Figure 2.7). 
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Figure 2.5. Skeletal muscle NPY concentration is elevated in PD.  

NPY concentration normalized to total protein for whole muscle homogenate of white 

vastus (WV) and red vastus (RV). PD (n=6 per muscle group) tissue had greater NPY 

concentration compared to CTRL (n=6 per muscle group). * Indicates different from 

CTRL (p < 0.05). 
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Figure 2.6. Y1R expression is augmented in PD.  

Western blot analysis of Y1R expression (~43 kDa) in hindlimb muscle homogenate of 

CTRL (n=6 per muscle group) and PD (n=6 per muscle group). PD had greater overall 

expression of Y1R in both white and red vastus muscles. * Indicates different from 

CTRL (p < 0.05). 
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Figure 2.7. α1R expression is augmented in PD.  

Western blot analysis of α1R expression (~42 kDa) in hindlimb muscle homogenate of 

CTRL (n=6 per muscle group) and PD (n=6 per muscle group).  PD had greater α1R 

expression in red vastus muscle, compared to CTRL. * Indicates different from CTRL (p 

< 0.05). 
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2.4. Discussion 

As hypothesized, we observed heightened sympathetic influences on baseline 

vascular control in pre-diabetes, as blockade of sympathetic receptors elicited greater 

Qfem and VC responses in PD compared to CTRL. This is the first study to report that 

pre-diabetes promotes an overall increase in Y1R and α1R vascular control under 

baseline conditions. Accordingly, increases in skeletal muscle NPY concentration and 

Y1R expression were observed in PD. However, in contrast to our hypothesis, we did not 

unmask Y1R and α1R synergistic effects on VC with combined receptor blockade.  

In the current study we demonstrated that modifications in sympathetic vascular 

control occur before the manifestation of endothelial and/or vascular smooth muscle 

dysfunction generally observed in overt type 2 diabetes. Our current data are supported 

by past studies (using the same model of pre-diabetes) showing no differences in 

responses to ACh or SNP in PD versus CTRL (Ellis et al., 2010; Lesniewski et al., 2008). 

These data indicate that endothelium dependent and independent responses to such 

pharmacological stimuli (ACh and SNP) are intact in PD, supporting the hypothesis that 

vascular dysregulation in early pre-diabetes is mainly due to modifications in sympathetic 

control. 

Past work from our group suggests that sympathetic vascular control involves 

interactions between Y1R and α1R (Jackson et al., 2005a). Until presently, there was a 

lack of research investigating the role of NPY in pre-diabetic vascular dysfunction. In 

fact, past investigations addressing augmented sympathetic vascular control in pre-

diabetes have relied predominantly on the functional responses to infusion/application of 

α-adrenergic agonists in vivo, or responses of isolated vascular preparations treated with 



67 

 

these agents (Frisbee, 2004; Lesniewski et al., 2008). Although essential for determining 

the existence of receptors and their independent function(s) within physiological systems, 

the infusion of agonists does not address autogenous ligand–receptor interactions. In the 

current investigation highly selective Y1R and α1R antagonists (BIBP3226 and prazosin 

respectively) were delivered alone and in combination to address endogenous 

independent and synergistic Y1R/α1R control under baseline conditions. Although 

responses to Y1R, α1R, and combined blockade were markedly augmented in PD, we did 

not unmask endogenous Y1R and α1R synergism in either CTRL or PD (Figure 3.3). 

This was surprising, as we have previously reported endogenous synergy between Y1R 

and α1R in adult male Sprague Dawley rats (Jackson et al., 2005a). Thus, it seems that 

such receptor interactions are not present in the young ZDF rat or they were not robust 

enough to resolve in the current study.  

Despite similar baseline Qfem and VC among groups, we observed that both Y1R 

and α1R sympathetic antagonist treatments resulted in greater vascular responses in PD. 

Under conditions of heightened sympathetic influence, it seems unexpected that 

similarities in baseline Qfem and VC would exist. However, our observations are 

supported by other work where isolated vessels from pre-diabetic rats (with similar 

baseline tone) demonstrated greater responses to sympathetic agonists compared to 

controls (Lesniewski et al., 2008). Thus, in the current study, it appears that 

compensatory dilatory mechanisms served to maintain normal blood flow under baseline 

conditions in PD. The presence of high blood lactate (a potent vasodilator, (Chen, Wolin, 

& Messina, 1996)) in PD likely contributed to buffering the effects of augmented 

sympathetic vascular modulation. In support of our data, others have shown that insulin 
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resistance (Lovejoy, Newby, Gebhart, & DiGirolamo, 1992) and type 2 diabetes 

(Crawford et al., 2010) are associated with heightened lactate levels.  

Our observations of augmented baseline Y1R and α1R activation in PD are 

complemented by our findings that PD had greater NPY concentration and Y1R and α1R 

expression in hindlimb skeletal muscle. Neuropeptide Y is produced in sympathetic 

neuronal cell soma and packaged into secretory large dense-cored vesicles and undergoes 

axonal transport (the rate of which is SNA level dependent) to the axon terminal where it 

is released and eventually degraded by enzymes in the synaptic cleft (Lundberg, 1996). 

This is in contrast to NE, which is produced in sympathetic nerve terminal, released, and 

eventually taken back up into the nerve terminal (Eisenhofer, Goldstein, & Kopin, 1989). 

Based on the unique origin and fate of NPY, it can be reasonably inferred that increased 

skeletal muscle NPY concentration measured in PD was a result of one or a combination 

of the following: i) augmented sympathetic neuronal density; ii) increased production and 

axonal transport of NPY; and/or iii) increased NPY release into skeletal muscle 

interstitium. This line of reasoning falls in line with work by others who reported 

sympathetic nerve hyperactivity in insulin resistant and type 2 diabetic subjects, as well 

as heightened plasma NPY levels in type 2 diabetic patients (Huggett et al., 2003; Matyal 

et al., 2011). Beyond this, in vivo studies investigating NPY levels and Y1R/α1R 

expression in pre-diabetes are limited; however, increased Y1R mRNA expression has 

been reported in cardiac tissue of diabetic rats (Chottova Dvorakova et al., 2008) and it 

was shown that rat vascular smooth muscle cells treated with high levels of insulin 

resulted in upregulation of α1R (Hu, Shi, & Hoffman, 1996). 
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2.4.1. Limitations 

We used hindlimb muscle homogenate in order to quantify the receptors located 

along downstream resistance arterioles, as these vessels are responsible for modulating 

flow at the level of the femoral artery. Previous work indicates that peripheral Y1Rs are 

predominantly associated with vasculature (Franco-Cereceda & Liska, 1998). In contrast, 

α1Rs have been identified on skeletal muscle fibers in rats; however, the density of those 

located in muscle fibers is negligible compared to α1R expression on resistance arterioles 

(Martin, Tolley, & Saffitz, 1990). Based on past reports and the internal consistency 

between our functional and cellular data, we are confident that our reported differences in 

ligand concentration and receptor expression reasonably reflect what is occurring at the 

level of the vasculature.  

We measured skeletal muscle tissue NPY concentration instead of plasma NPY 

levels for several reasons. Indeed, repeated blood sampling poses the risk of evoking 

hypotension and increases in sympathetic nerve activity. As well, plasma NPY levels 

represent a mixed sample originating from several sources throughout the body. In 

contrast, the skeletal muscle samples used in this study were promptly harvested from 

anesthetized animals (with minimal hemodynamic stress) under the same conditions that 

functional data were acquired. Thus, we feel that our reported NPY levels are an accurate 

representation of the local skeletal muscle environment under baseline conditions.  

Due to limitations in detection, NE levels were not measured in the current study. 

However, this investigation and previous from our group (Jackson et al., 2010; Jackson et 

al., 2005a) used a sensitive enzyme immunoassay optimized to detect NPY in skeletal 
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muscle homogenates. NPY is co-released and co-stored with NE (Zofia. Zukowska-

Grojec & Wahlestedt, 1993) and plasma NPY release correlates with NE release (Z. 

Zukowska-Grojec, Konarska, & McCarty, 1988), especially under conditions of elevated 

sympathetic nerve activity; thus, it is reasonable to postulate that our measures of 

increased skeletal muscle NPY concentration in PD reflect a concomitant increase in 

skeletal muscle NE. 

 

2.5. Conclusions 

In conclusion, we provide the first report that Y1R and α1R vascular regulation is 

augmented in the hindlimb of pre-diabetic ZDF rats. Our findings are supported by 

increased skeletal muscle NPY concentration and Y1R/α1R expression in PD versus 

CTRL. Future studies are required to ascertain the long-term cardiovascular 

consequences of our findings and their functional significance in contracting skeletal 

muscle.  
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Chapter 3 : Contraction-evoked vasodilation and functional 
hyperemia are compromised in branching skeletal muscle 

arterioles of young pre-diabetic mice 
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3.1. Introduction 

Pre-diabetes affects approximately 25% of North Americans, and its prevalence 

continues to rise with increased cases of obesity and sedentary lifestyle (Canadian 

Diabetes Association, 2011, Disease Control and Prevention, 2011). Inherently, pre-

diabetes is associated with impairments in cardiovascular health that manifest prior to the 

onset of overt type 2 diabetes (Faeh, William, Yerly, Paccaud, & Bovet, 2007; Haffner, 

Stern, Hazuda, Mitchell, & Patterson, 1990; Shin, Lee, & Lee, 2011). Characterized by 

hyperinsulinemia, insulin resistance, elevated blood glucose and frequently accompanied 

by obesity, the pathological metabolic characteristics of pre-diabetes play a role in the 

initiation of cardiovascular complications centrally and peripherally (DeFronzo & Abdul-

Ghani, 2011; Gupta et al., 2012; Schaefer et al., 2010); however, our knowledge 

regarding the effects of pre-diabetes on skeletal muscle arteriolar function is limited.  

Skeletal muscle makes up approximately 40% of body mass and contains the 

greatest proportion of arterioles than any other organ (Janssen et al., 2000). Comprising 

approximately 20% of the body’s total baseline systemic vascular resistance, skeletal 

muscle arterioles play a key role in blood pressure regulation at rest and blood flow 

redistribution during exercise. A hallmark of musculoskeletal health is ability to rapidly 

match skeletal muscle blood supply to metabolic demand at rest and during physical 

activity and research in the past decade provides evidence of arteriolar dysregulation in 

pre-diabetes (Gorczynski et al., 1978, Laughlin and Armstrong, 1982, Fuglevand and 

Segal, 1997, Lesniewski et al., 2008, Ellis et al., 2010). In 2008, Lesniewski et al. 

reported increases in vasoconstrictor responsiveness to norepinephrine and endothelin-1 

in 1st order arterioles isolated from the gastrocnemius of normotensive pre-diabetic 
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Zucker Diabetic Fatty (ZDF) rats (Lesniewski et al., 2008). In congruence, we have 

shown that, despite having normal resting blood flow, sympathetic influences on baseline 

vascular control are augmented in normotensive pre-diabetic ZDF rats in vivo (Novielli, 

Al-Khazraji, Medeiros, Goldman & Jackson, 2012). Taken together, it is reasonable to 

conclude that skeletal muscle arteriolar dysregulation in early pre-diabetes has little to no 

effect on systemic blood pressure or bulk blood flow to skeletal muscle under resting 

conditions. However, the conditions described above may render skeletal muscle 

microcirculation opposable to arteriolar dilation under exercise conditions, leading to 

microvascular perfusion deficits. 

Studies directly investigating the impact of pre-diabetes on skeletal muscle 

microvascular control during exercise are limited. Certainly, human and animal studies 

have illustrated impaired skeletal muscle perfusion and O2 delivery/uptake, and 

compromised blood flow regulation at rest and during exercise/muscle contraction in 

overt type 2 diabetes, the metabolic syndrome, and obesity (Padilla et al., 2006a, Padilla 

et al., 2006b, Musa, Torrens & Clough, 2014, Blain, Limberg, Mortensen & Schrage, 

2012, Vinet et al., 2011, Karpoff et al., 2009, Frisbee, 2003, Frisbee, 2004, MacAnaney, 

Reilly, O’Shea, Egana & Green, 2011, Kingwell, Formosa, Muhlmann, Bradley & 

McConell, 2003). However, differences in the experimental models and methodological 

limitations generally constrain the current understanding of vascular control in metabolic 

diseases to bulk blood flow measures. Although such studies have merit, measures of 

bulk blood flow provide no information on the site or nature of arteriolar dysregulation. 

Furthermore, models of overt type 2 diabetes, metabolic syndrome, and obesity are 

accompanied by chronic states of cardiovascular compromise and overt vascular disease; 
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where early pre-diabetes represents the primary stage of diabetic disease progression, 

where vascular complications may not be as clear-cut.  

Direct observations of arteriolar networks using intravital video microscopy 

(IVVM) illustrate that healthy microvascular responses to contraction are non-uniform, 

with greater (relative) arteriolar dilation occurring in distal versus proximal regions 

(Dodd & Johnson, 1991; Marshall & Tandon, 1984; VanTeeffelen & Segal, 2006). As 

well, it has been shown that arterioles respond differently to vasoactive substances 

associated with muscle contraction [(e.g. potassium (M. L. Armstrong, Dua, & Murrant, 

2007), adenosine (Murrant & Sarelius, 2002), acetylcholine (VanTeeffelen & Segal, 

2006), lactate (Chen, Wolin, & Messina, 1996), nitric oxide (Silveira, Pereira-Da-Silva, 

Juel, & Hellsten, 2003)] depending on where they reside in the network. Distal arterioles 

closest to the capillaries are the first to dilate, as the sensitivity of these vessels to 

metabolic vasoactive substances has been shown to be greater than proximal arterioles 

(Davis, Hill, & Kuo, 2008). Furthermore, distal arterioles are able to dilate and overcome 

sympathetic activation more readily than proximal arterioles within the muscle (Anderson 

& Faber, 1991). Finally, studies demonstrate that sympathetic receptors located on 

arterioles (responsible for vasoconstriction and maintaining arteriolar tone) are 

differentially distributed at different branch orders of arteriolar networks, indicating 

distinct spatial sympathetic arteriolar control (Anderson & Faber, 1991; Moore, Jackson, 

& Segal, 2010). Since these studies illustrate heterogeneous arteriolar regulation in 

skeletal muscle under healthy conditions, then it would be ideal to investigate arteriolar 

function at different levels of continuously branching arteriolar networks in pre-diabetes. 

Interestingly, deficits in post-exercise capillary perfusion have been demonstrated in 
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overt type 2 diabetic subjects, where blood flow in the supplying conduit artery was not 

compromised (Womack et al., 2009). These findings suggest that deficiencies in 

arteriolar regulation may be apparent in the distal microcirculation before impairments of 

exercise-evoked blood flow can be detected in large vessels (Kingwell et al., 2003; 

MacAnaney et al., 2011). However, in an effort to determine the effects of early pre-

diabetes on the onset of skeletal muscle microvascular dysregulation, an appropriate 

model enabling concurrent observation of multiple arteriolar orders is needed. 

The gluteus maximus (GM) preparation, developed by Bearden et al. (Bearden, 

Payne, Chisty, & Segal, 2004), provides a unique model for investigating skeletal muscle 

arteriolar control using IVVM. Unlike many other experimental skeletal muscle models, 

the GM is common to both sexes, is found in all mammalian species, and is recruited 

during locomotion (Bearden et al., 2004). Furthermore, due to its planar arrangement of 

microvessels and uniform tissue thinness it is optically ideal for IVVM. These properties 

enable comprehensive evaluation of complete arteriolar networks within a single focal 

plane.  

In an effort to understand the impact of early pre-diabetes on arteriolar network 

regulation in skeletal muscle, our lab has refined and adapted the GM preparation in a 

novel murine model of pre-diabetes, The Pound Mouse. Using this model we investigated 

the effects of pre-diabetes on GM muscle branching arteriolar network function in 

response to muscle contraction. Herein, we tested the hypothesis that arteriolar dilation 

and blood flow in response to single tetanic and rhythmic (steady state) muscle 

contractions would be blunted in pre-diabetes. Furthermore, we predicted that the greatest 
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decrements in contraction-evoked vasodilation would occur in distal pre-capillary 

arterioles versus proximal arterioles. 

3.2. Materials and methods 

All animal procedures were approved by the Council on Animal Care at The 

University of Western Ontario (protocol number: 2012-018). All invasive procedures 

were performed under α-chloralose and urethane anesthetic, and all efforts were made to 

minimize animal suffering. 

3.2.1. Animals 

Experiments were performed on male C57BL/6NCrl (CTRL, 7-8 weeks old) and 

Pound mice (PD, C57BL/6NCrl-Leprdb-lb/Crl, 7-8 weeks old). The Pound Mouse (Charles 

River, Saint-Constant, QC, Canada) is a model of pre-diabetes, where these mice exhibit 

a novel mutation Leprdb-lb in the leptin receptor gene. When fed a high fat diet (i.e. Purina 

5008 chow), by 7 weeks of age these mice become obese, hyperinsulinemic, and have 

elevated blood glucose, characteristic of the pre-diabetic condition in humans (Kim & 

Reaven, 2008a, 2008b). As these mice are of C57BL/6 background, the male C57BL/6 

mouse served as the control group in this study.  

Mice were housed in animal care facilities in a temperature (24°C) and light (12 

hour cycle)-controlled room and allowed to eat and drink water ad libitum. All mice were 

obtained from Charles River Laboratories (Saint-Constant, QC, Canada) and housed in 

animal care facilities for at least one week after arrival prior experimentation. Mice were 

weighted prior to each experiment. After experimentation (in 5 PD and 4 CTRL), GM 

muscles were excised and weighed (wet muscle mass), then dried in a laboratory oven at 
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70°C for 3 hours and re-weighed (dry muscle mass). Upon completion of experimental 

procedures each day, the anesthetized mouse was euthanized with an overdose of α-

chloralose and urethane cocktail mix (intraperitoneal injection), and cervical dislocation. 

3.2.2. Measurement of blood insulin and glucose levels 

Blood insulin values were not determined in this study, as the amount of blood 

sample necessary to perform the appropriate assay exceeds the ethical amount without 

sacrificing the animal as specified by Western University Council on Animal Care. Blood 

insulin values were instead obtained from animal characteristic data reported by Charles 

River. In order to determine fasting blood glucose, mice were fasted for eight hours and 

blood glucose was measured from a tail vein blood sample (~10 µl) using a Bayer 

Contour® blood glucose analyzer (Bayer, Toronto, ON, Canada). Prior to 

experimentation, mice were fed ad libitum for at least two days following fasting blood 

glucose measurement. 

3.2.3. Anesthesia and muscle preparation 

Using an intraperitoneal injection, the mouse was anesthetized with a cocktail of 

α-chloralose (50 mg/kg) and urethane (750 mg/kg), which was supplemented as needed. 

This anesthetic was ideal for these experiments as it leaves autonomic, cardiovascular 

and respiratory function intact (Soma, 1983).  Internal body temperature was monitored 

via a rectal temperature probe and maintained at 37°C with the use of a custom made 

heated surgical platform. Surgical procedures were viewed through a stereomicroscope. 

The neck and backside of the mouse was shaved to remove excess fur. The mouse was 

placed on its back and a mid-neck incision was made. A tracheal cannula (PE-60) was 
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introduced to facilitate spontaneous respiration and (for experiments involving blood 

flow measures) the right jugular vein was cannulated (PE-10 tubing) to inject fluorescent 

RBCs. The neck opening was then closed using sterile stainless steel wound clips 

(Autoclip 9 mm, Becton Dickinson, Franklin Lakes, NJ, USA). The mouse was then 

placed in the prone position on a custom built heated stage to prepare the GM for IVVM. 

Under stereomicroscopic guidance the GM muscle was cut from its origin along the spine 

and along its rostral and caudal borders (Bearden et al., 2004; Jackson, Moore, & Segal, 

2010). With great care taken to preserve its neurovascular supply, the muscle flap was 

gently reflected away from the mouse, spread evenly onto a transparent Sylgard® 

(Sylgard 184; Dow Corning, Midland, MI, USA) pedestal to approximate in situ 

dimensions and pinned to secure edges. The exposed tissue was superfused continuously 

(4–5 ml/min) with bicarbonate-buffered physiological salt solution (PSS, 35°C at tissue, 

pH 7.4) of the following composition (mM): NaCl 137, KCl 4.7, MgSO4 1.2, CaCl2 2, 

NaHCO3 18, and equilibrated with 5% CO2 ⁄ 95% N2. 

3.2.4. Fluorescent labeling of red blood cells 

The red blood cell (RBC) staining protocol was adapted from Al-Khazraji et al. 

2012 (Al-Khazraji, Novielli, Goldman, Medeiros, & Jackson, 2012). One day prior to 

experimentation, blood was drawn from an anesthetized donor animal via cardiac 

puncture into a vial containing heparin. Sample was centrifuged at 1300 g for 5 minutes, 

and the plasma layer and buffy coat were discarded. Red blood cells were then washed in 

Tris-buffered Ringer’s solution (room temperature, pH = 7.4), and incubated in a freshly 

prepared fluorescein isothiocyanate (FITC, 0.4 mg/mL; Research Organics, Inc., 

Cleveland, OH, USA) dye solution (FITC mixed into dimethyl sulfoxide and Tris-
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buffered Ringer’s Albumin [biotechnology grade bovine albumin, 0.005 g/mL; Bioshop® 

Canada Inc., Burlington, ON, Canada] solution, room temperature, pH = 7.4) for 2 hours. 

Cells were washed in Tris-buffered Ringer’s Albumin solution and stored overnight at 

4°C. On the day of experiment, excess dye was removed by washing cells in Tris-

buffered Ringer’s Albumin solution, and hematocrit was adjusted to ~30–35% with 

buffer. Prior to injection, fluorescent RBCs were imaged on a microscope and 

qualitatively evaluated for fluorescence signal and cellular integrity. Prior to IVVM, cells 

were injected (1% of total animal blood volume) into the animal via the jugular vein and 

the line was slowly flushed with saline. It has been previously shown that FITC-labeled 

fresh RBCs (one day or less) do not exhibit adherent or undeformable characteristics in 

the circulation (Chin-Yee, Gray-Statchuk, Milkovich, & Ellis, 2009). In our experiments, 

no plugging of capillaries with FITC-labeled RBCs was observed in the muscle 

preparation. 

3.2.5. Intravital video microscopy 

Upon completion of microsurgical procedures, the preparation was transferred to 

the fixed stage of the intravital microscope (Olympus BX51, Olympus, Tokyo, Japan). 

The preparation was equilibrated with PSS for ~30 minutes. Microvessels were observed 

under Kohler illumination using a long working distance condenser (NA = 0.80) and long 

working distance water immersion objectives (Olympus UMPlanFW: 10× NA = 0.30, 

Olympus UMPlanFW: 20 x NA = 0.50) with illumination from a 100-Watt halogen light 

source. To enhance contrast of the RBC column, a 450-nm ⁄ 20-nm band-pass filter 

(450BP20; Omega Optical, Brattleboro, VT, USA) was placed in the light path. In an 

effort to assess microvascular RBC velocities, fluorescent RBCs were epi-illuminated 
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using a 120-Watt Mercury Vapor Short Arc light source (EXFO, X-Cite 120PC Q, 

Photonic Solutions Inc., Mississauga, ON, Canada) in line with a FITC (450–490 nm) 

filter. The optical image was coupled to a front-illuminated interline CCD camera 

(Qimaging Rolera E=MC2™, Qimaging©, Surrey, BC, Canada) and viewed ⁄ stored to a 

hard drive using specialized imaging software (MetaMorph® 7.6, Molecular Devices 

Inc., Sunnyvale, CA, USA). Transition between bright-field and fluorescent imaging was 

performed prior muscle stimulation (to obtain baseline measures) and immediately 

following stimulation. Bright-field video (.tiff) images were collected (15-17 frames per 

second [fps]) under Kohler bright-field illumination for off-line analysis of RBC column 

diameters. Video (.tiff) images were collected (15-17 fps) under epi-illumination for off-

line analysis of RBC velocities, and blood flow. 

Because second-order arterioles are positioned to control the distribution of blood 

flow within the GM (Bearden et al., 2004) and terminal (pre-capillary) arterioles play the 

greatest role in red blood cell distribution to capillaries (Pries, Ley, Claassen, & 

Gaehtgens, 1989), we chose to study bifurcations at second-order arterioles (2A) to third-

order (3A) arterioles and 3A to fourth order (pre-capillary) arterioles (4A). One arteriolar 

tree (2A-4A) was studied per animal (Figure 3.1). To evaluate the viability of 

experimental preparations, arterioles were tested for oxygen sensitivity by elevating 

superfusate O2 from 0% to 21% (5% CO2, balance N2) for 5-8 minutes to elicit 

vasoconstriction. Upon confirmation of constriction, experiments proceeded and 

equilibration with 5% CO2–95% N2 was restored for the duration of experimental 

procedures. Following equilibration, a video of the resting (baseline) diameter and 

fluorescent RBCs was taken. Changes in arteriolar diameter (and blood flow in a subset 
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of experiments; see Arteriolar and hemodynamic measurements) were evaluated in 

response to brief maximal tetanic contractions at 100 Hz, as well as 30 seconds of 

rhythmic muscle contractions (see Skeletal muscle contractions below). For these 

experiments, each muscle preparation underwent both contraction protocols with the 

order randomized across experiments. 
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Figure 3.1. Gluteus maximus 2A to 4A arteriolar segments.  

Representative tracings of CTRL (a) and PD (b) branching arteriolar segments within the 

GM demonstrating location of second-order arterioles (2A), third-order arterioles (3A) 

and fourth-order arterioles (3A). Data was collected from regions of interest at 2A-3A 

and 3A-4A bifurcations, and are indicated by dotted line. Representative tracings not to 

scale. 
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3.2.6. Skeletal muscle contractions 

Contractions of the GM were evoked using electrical field stimulation (EFS). For 

this purpose, wire electrodes (90% Pt–10% Ir; diameter, 250 µM) were positioned in the 

superfusion solution on either side of the exposed muscle. Monophasic pulses (0.1 ms) 

were delivered at 10 V through a stimulus isolation unit (SIU5; Grass Technologies; 

Quincy, MA, USA) driven by a square wave stimulator (S48, Grass Technologies; 

Quincy, MA, USA). Our experiments and previous work has shown that this voltage 

elicits reproducible contractions of the GM and of arteriolar responses for the duration of 

an experiment (Jackson et al., 2010). In control experiments, addition of 10 µM d-

tubocurarine (nicotinic cholinergic receptor antagonist) inhibited muscle contraction to 

EFS, confirming that muscle contraction was a result of motor nerve activation and not 

depolarization of skeletal muscle cells (Jackson et al., 2010). 

3.2.6.1. Tetanic contraction and rapid onset vasodilation 

A brief maximal tetanic contraction at 100 Hz was used to evoke ROV in each 

experimental group. Arteriolar dilations were evoked across stimulus train durations of 

200, 400, and 800 ms with the order randomized within experiments. Arterioles 

consistently returned to the initial resting baseline with 2–3 minutes of recovery between 

contractions. As tissue displacement occurred during tetanic contraction, diameter was 

measured preceding each stimulus (resting baseline) and immediately following 

contraction with a delay of ~2-3 seconds that reflected the time the muscle is contracted 

and field of view out of focus, and the time required to refocus the field of view. Blood 

flow was calculated from the frames captured under fluorescent excitation prior each 
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stimulus and immediately following contraction. Diameter of a 2A was tracked per 

second throughout the video prior and after stimulation to demonstrate a typical arteriolar 

response to tetanic muscle contraction (Figure 3.2). 

3.2.6.2. Rhythmic contraction and steady-state vasodilation 

As the nature of vasodilatation can vary with the pattern of muscle fiber activation 

(Murrant, 2005; VanTeeffelen & Segal, 2000), vasomotor responses to 30 seconds of 

rhythmic contractions at 2 and 8 Hz (in randomized order) were also evaluated in each 

experimental group. Stimulation at these frequencies evokes unfused twitch contractions 

(Bearden et al., 2004). Following each 30 second period of rhythmic twitch contractions, 

resting baseline was re-established consistently within 5 minutes. Arteriolar diameter was 

determined preceding contractile activity, throughout the contraction period, and 

following contractions throughout recovery to demonstrate the typical arteriolar response 

to rhythmic contraction (Figure 3.3). Blood flow was calculated from the frames captured 

under fluorescent excitation prior each stimulus and immediately following 30 seconds of 

rhythmic contraction. 
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Figure 3.2. Second order arteriolar response to 800 ms tetanic contraction.  

Representative 2A diameter tracing of ROV in response to 800 ms single tetanic 

contraction in CTRL and PD. Dotted line indicates where diameter cannot be resolved 

due to displacement of the tissue at contraction and refocusing of the field of view. 

CTRL, control; PD, pre-diabetic. 



93 

 

 

Figure 3.3. Second order arteriolar response to 8 Hz rhythmic contraction.  

Representative 2A diameter tracing of steady-state vasodilation in response to 30 seconds 

of 8 Hz contraction in CTRL and PD. CTRL, control; PD, pre-diabetic. 
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3.2.7. Arteriolar and hemodynamic measurements 

Diameters of 2A, 3A and 4A arterioles were measured manually off-line using 

ImageJ software (1.43 u; National Institute of Health, Bethesda, MD, USA). Fluorescent 

frames of 2A and 3A videos were analyzed to determine centerline RBC velocity (VRBC), 

using the RBC “streak-length method” described in Al-Khazraji et al. 2012 (Al-Khazraji 

et al., 2012). Red blood cell velocity and calculated blood flow were not determined in 

4A, as making consistent measurements of ‘centerline streaks’ in 4A (using proper 

measurement criteria) without moving the field of view and interrupting RCB imaging at 

2A and 3A was not possible. Based on exposure times of 10-15 ms for frame rates of 15-

17 fps, fluorescent RBCs formed streaks in each frame. Single RBC velocities were 

calculated using the equation: VRBC = (RCB streak length – RBC length)/exposure time. 

Mean velocity (Vm) was then calculated using the equation: Vm = VRBC/velocity ratio. 

Because velocity ratio has been shown to vary with diameter (Al-Khazraji et al., 2012), 

the following equation was used to calculate diameter-specific velocity ratios of the 

vessel the RBC streak is obtained from: 0.0071 x D + 1.15, where D is diameter. Blood 

flow was then calculated as = π(D/2)2Vm. 

3.2.8. Statistical analyses and data presentation 

Data were analyzed using SigmaStat (version 4, GraphPad Software Inc, La Jolla, 

CA, USA) and considered significantly different at p < 0.05. For ROV data (diameter and 

blood flow), comparisons of responses between CTRL and PD were made within each 

stimulus using unpaired t-tests with a Bonferroni correction (3 comparisons) to maintain 

total p < 0.05 over all comparisons. Linear regression was performed to evaluate the 

correlation between the duration of tetanic contraction and the magnitude of ROV for 
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each animal group. Slopes of the regression lines determined for responses at 200, 400 

and 800 ms represented an index of the sensitivity of ROV responses for each animal 

group (Jackson et al., 2010). Slopes of these responses were compared between groups 

using an unpaired t-test. The effect of rhythmic contractions on diameter and blood flow 

between CTRL and PD was also determined for each stimulus frequency using unpaired 

t-tests with a Bonferroni correction (2 comparisons) to maintain total p < 0.05 over all 

comparisons. To determine the effect of arteriolar order and animal group on percent 

change of diameter following tetanic and rhythmic muscle contraction, a two-way 

analysis of variance was used, followed by Tukey’s post-hoc comparison test to 

determine where differences were significant. Differences between CTRL and PD in 

tabular data were analyzed using unpaired t-tests. Summary data are presented as mean 

values ± standard error, unless otherwise stated.  

 

3.3. Results 

3.3.1. Animal characteristics between CTRL and PD 

Body mass and fasting blood glucose were approximately 2- and 2.4-fold greater 

in PD versus CTRL (Table 3.1, p < 0.05). Gluteus maximus dry/wet mass ratios were 

similar among groups (0.2 ± 0.02 g, Table 3.1). 
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Table 3.1. Body mass, fasting blood glucose and gluteus maximus dry/wet ratio for 
CTRL and PD. 

 CTRL PD 

Body mass (g) 22 ± 0.3 41 ± 0.7* 
Fasting blood glucose (mM/L) 5 ± 1 12 ± 1* 
Dry/wet muscle mass ratio 0.2 ± 0.02 0.2 ± 0.02 
Values are mean ± SEM. CTRL, control, n = 5-14; PD, pre-diabetic, n = 5-10.  
* Different from CTRL, p <0.05. 



97 

 

3.3.2. Baseline arteriolar diameter, hemodynamic characteristics and 
arteriolar O2 responses of CTRL and PD 

Baseline 2A, 3A, and 4A diameters and 2A and 3A blood flows were similar 

between CTRL and PD (Table 3.2). Arteriolar constriction in response to elevating PSS 

O2 to 21% was also similar between groups for all arteriolar orders (Table 3.2). 

3.3.3. Rapid onset vasodilation, blood flow and spatial arteriolar 
reactivity following single tetanic contractions 

In PD, ROV (arteriolar diameter) responses to 200, 400, and 800 ms stimulations 

were attenuated by 45 ± 8%, 53 ± 8%, and 48 ± 7% respectively in 2A and 36 ± 11%, 49 

± 7%, and 53 ± 7% respectively in 3A; however, responses in 4A were attenuated only 

under 400 and 800 ms conditions by 49 ± 7% and 49 ± 6% respectively (Figure 3.4 a, b, 

c, p < 0.05). Blood flow responses in PD to 200, 400, and 800 ms stimulations were 

attenuated by 68 ± 8%, 77 ± 8%, and 81 ± 6% respectively in 2A. Responses in 3A were 

attenuated only following 400 and 800 ms stimulations by 60 ± 11% and 67 ± 7% 

respectively in PD versus CTRL (Figure 3.4 d and e, p < 0.05).  

The slope of the regression line determined for mean peak vasodilatory responses 

across the range of contraction durations was interpreted as an index of the ROV 

sensitivity for each experimental group. There was a strong positive correlation between 

increasing contraction duration on diameter change in 2A, 3A and 4A for both groups; 

however, ROV sensitivity across arteriolar orders was blunted in PD  (Figure 3.5, p < 

0.05).  



98 

 

In an effort to compare spatial ROV reactivity across arteriolar branch orders, 

changes in diameter were normalized to respective baselines and presented as % diameter 

change. In CTRL, relative changes in diameter following 200 and 400 ms single tetanic 

contractions were greatest in 4A (Figure 3.6 a and b, p < 0.05). After 800 ms stimulation, 

CTRL 3A and 4A were equally reactive, where their responses were greater than CTRL 

2A (Figure 3.6 c, p < 0.05). As expected, relative changes in diameter following 200, 

400, and 800ms tetanic contraction were blunted at all arteriolar orders in PD versus 

CTRL (Figure 3.6, p < 0.05). However, in PD, greater ROV reactivity was only observed 

in 4A versus 2A, and only after 400 and 800 ms stimulations (Figure 3.6 b and c, p < 

0.05). 
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Table 3.2. Gluteus maximus arteriolar baseline diameter, blood flow and responses 
to elevated O2 (21%). 

 2A 3A 4A 

 CTRL PD CTRL PD CTRL PD 

Diameter (µm) 19 ± 1 20 ± 1 14 ± 1 13 ± 1 8 ± 1 9 ± 1 

Blood flow (nl/sec) 1 ± 0.1 1 ± 0.1 0.5 ± 0.07 0.4 ± 0.04 ---  --- 

O2 response (µm) -5 ± 1 -5 ± 1 -3 ± 1 -4 ± 1 -2.4 ± 0.2 -2.2 ± 0.2 

Values are mean ± SEM. CTRL, control, n = 6-14; PD, pre-diabetic, n = 5-10. 
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Figure 3.4. Rapid onset vasodilation and blood flow responses of arterioles following 

tetanic muscle contraction are blunted in PD.  

Diameter changes of 2A (a), 3A (b) and 4A (c) following tetanic contraction. Rapid onset 

vasodilation was blunted in PD (n=5-10) compared to CTRL (n=6-14) following 200, 

400 and 800 ms contractions for 2A and 3A, and 400 and 800 ms contractions for 4A. 

The magnitude of blood flow responses of 2A (d) and 3A (e) following tetanic 

contractions was also attenuated in PD (n=5-7) compared to CTRL (n=6-7). * Different 

vs. CTRL, p < 0.05. CTRL, control; PD, pre-diabetic. 
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Figure 3.5. Sensitivity of ROV responses to increasing tetanic contraction duration.  

For both CTRL and PD, duration of tetanic muscle contraction correlated with the 

increase in 2A (a), 3A (b) and 4A (c) diameter. The slope of diameter change to 

increasing tetanic contraction duration was less steep in PD (n = 5-10) compared to 

CTRL (6-14), demonstrating a decreased sensitivity to increasing duration of tetanic 

contraction. * Slope different from CTRL, p < 0.05. CTRL, control; PD, pre-diabetic. 



102 

 

 

Figure 3.6. Percent diameter change of ROV at arteriolar orders.  

Percent change in diameter following brief 200 ms (a), 400 ms (b) and 800 ms (c) tetanic 

contractions. Across the range of tetanic contractions, the percent change in diameter was 

attenuated in PD (n= 5-10) compared to CTRL (n=6-14) at 2A, 3A and 4A. Within 

CTRL, the relative change of 4A diameter was greater compared to 2A and 3A following 

200 ms and 400 ms tetanic contractions. Following 800 ms tetanic contraction, the 

relative change of both 3A and 4A ROV responses were greater than 2A. In contrast, 

arteriolar order did not have an effect on PD ROV responses following 200 ms tetanic 

contraction. Following 400 ms and 800 ms tetanic contractions, the relative change in 4A 

diameter was only greater than 2A. * Different vs. CTRL, p < 0.05; # different vs. 

responses of other arterioles within CTRL, p < 0.05; � Different vs. 2A response within 

PD, p < 0.05. CTRL, control; PD, pre-diabetic. 
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3.3.4. Steady-state vasodilation, blood flow and spatial arteriolar 
reactivity following rhythmic contractions 

In PD, the steady-state arteriolar response to 30 seconds of 2 and 8 Hz rhythmic 

contractions was attenuated by 45 ± 9% and 33 ± 8% respectively in 2A, 48 ± 6% and 47 

± 7% respectively in 3A, and 38 ± 8% and 53 ± 9% respectively in 4A (Figure 3.7 a, b 

and c, p < 0.05).  

Although steady-state blood flow responses in 2A to 2 Hz stimulation were 

similar between groups, the steady-state blood flow response in 2A to 8 Hz stimulation 

was attenuated by 61 ± 9% in PD. In 3A, steady-state blood flow responses were blunted 

following 2 and 8 Hz stimulation by 70 ± 7% and 71 ± 8% respectively (Figure 3.7 d and 

e, p < 0.05).  

In an effort to compare spatial reactivity to rhythmic contractions across arteriolar 

branch orders changes in diameters were normalized to respective baselines and 

presented as % diameter change. In CTRL, relative changes in diameter following 2 Hz 

rhythmic contractions were greatest in 3A and 4A (Figure 3.8 a, p < 0.05) and reactivity 

to 8 Hz stimulation was greatest in 4A (Figure 3.8 b, p < 0.05). As expected, relative 

changes in diameter following 2 and 8 Hz rhythmic contractions were blunted at all 

arteriolar orders in PD versus CTRL (Figure 3.8, p < 0.05). In PD, greater reactivity was 

observed in 4A versus 2A and 3A under 2 Hz stimulation (Figure 3.8 a, p < 0.05), but 

there were no differences among arteriolar orders with 8 Hz stimulation (Figure 3.8 b). 
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Figure 3.7. Arteriolar dilation and blood flow responses are compromised in PD 

following rhythmic contraction.  

Diameter change of 2A (a), 3A (b) and 4A (c) following 30 seconds of rhythmic 

contraction. The magnitude of dilation was blunted in PD (n = 5-10) compared to CTRL 

(n = 5-14) following 2 Hz and 8 Hz rhythmic contractions. 2A (d) and 3A (e) blood flow 

changes in response to steady-state contraction were also blunted in PD (n = 5-6) 

compared to CTRL (n = 5-6). * Different vs. CTRL, p < 0.05. CTRL, control; PD, pre-

diabetic. 
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Figure 3.8. Percent diameter change to rhythmic contraction at arteriolar orders.  

Percent change in diameter following 30 seconds of 2 Hz (a) and 8 Hz (b) rhythmic 

contractions. Following 2 and 8 Hz contractions, the percent change in diameter was 

blunted at 2A, 3A and 4A in PD (n=5-10) compared to CTRL (n=5-14). Within groups, 

dilatory responses to 2 Hz contraction elicited greater responses at 3A and 4A compared 

to 2A for CTRL, and greater responses of 4A compared to 3A and 2A for PD. 8 Hz 

contraction elicited a greater vasodilatory response at 4A compared to 2A and 3A in 

CTRL. In contrast, the magnitude of PD vasodilatory responses following 8 Hz 

contraction did not differ between 2A, 3A and 4A. * Different vs. CTRL p < 0.05; # 

different vs. responses of other arterioles within CTRL, p < 0.05; ¥ different vs. 

responses of other arterioles within PD, p < 0.05. CTRL, control; PD, pre-diabetic. 
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3.4. Discussion 

Using a novel pre-diabetic murine model (i.e., The Pound Mouse) and an innovative 

experimental approach, we investigated whether pre-diabetes may modify arteriolar 

responses to skeletal muscle contraction in branching arteriolar networks. For the first 

time, we report that pre-diabetes leads to attenuation of vasodilation and blood flow 

responses in branching arterioles by up to 50% and 80% respectively following single 

tetanic and rhythmic muscle contraction. Furthermore, as predicted, we observed that the 

greatest decrements in contraction-evoked vasodilation in pre-diabetes occur in distal 

versus proximal arterioles. 

3.4.1. Pre-diabetes modifies arteriolar responses to muscle contraction 

3.4.1.1. Rapid onset vasodilation and blood flow 

A rapid increase in blood flow to active muscle fibers is a key determinant of 

work/exercise tolerance. Upon the initiation of muscle contraction in humans, ROV has 

been shown to occur almost instantaneously (i.e., within the first few cardiac cycles), 

eliciting an immediate increase in muscle blood flow (Tschakovsky et al., 2004, Kirby, 

Carlson, Markwald, Voyles & Dinneno, 2007, Corcondilas, Koroxenidis & Shepherd, 

1964, Carlson et al., 2008, Tschakovsky and Sheriff, 2004, Casey and Joyner, 2012). The 

robust increase in muscle blood flow during ROV serves to initiate a rest-to-exercise 

transition, such that blood flow can thereafter be maintained at a steady-state level 

proportional to metabolic demand.  In contrast to sustained or repeated muscle 

contraction, single brief tetanic contraction elicits ROV too quickly to be a result of the 

accumulation of vasoactive metabolites (Wunsch et al., 2000). Recently, however, studies 
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using the hamster cremaster muscle have confirmed that the production of both potassium 

and adenosine occurs rapidly enough following initial contraction to contribute to rapid 

onset vasodilation (Armstrong et al., 2007, Ross, Mihok & Murrant, 2013). Additionally, 

cell-to-cell coupling via gap junction channels provides an electrical pathway for rapid 

coordination of smooth muscle cell relaxation that ascends arteriolar networks (i.e., from 

terminal to proximal arterioles), known as ascending conducted vasodilation. Ascending 

conducted vasodilation occurs in normal healthy skeletal muscle microvessels and is 

necessary for blood flow to quickly meet metabolic demand (Segal, 2005). With the use 

of animal models, direct observation of the resistance vasculature in cremaster, check 

pouch retractor and GM muscles have also demonstrated ROV to single brief whole 

muscle and muscle fiber bundle contraction (VanTeeffelen and Segal, 2006, Jackson et 

al., 2010, Mihok and Murrant, 2004, Armstrong et al., 2007).  

To date, there is a dearth of human and animal studies investigating ROV 

responses in pre-diabetes. In fact, the only other study to address ROV in metabolic 

disease was conducted by Blain et al. in 2012, where they examined ROV responses 

(presented as changes in brachial artery vascular conductance) in obese humans (Blain et 

al., 2012). Our data are in congruence with Blain et al., where they reported deficits in 

ROV of approximately 40% in obese versus lean adults. As well, they reported that 

impairments in ROV became greater with increased workloads in obese subjects, which 

coincides with our finding that the sensitivity of ROV to increasing contraction duration 

was decreased in PD versus CTRL. The correspondence between data presented by Blain 

et al. in obese humans and the current findings in The Pound Mouse highlights the 

translational merit of our experimental preparation. 
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  In the current study we used a novel approach to directly measure blood flow at 

2A and 3A, where we observed that attenuated ROV in PD resulted in notable decreases 

in functional hyperemia. The global blunting of ROV and blood flow responses in PD 

suggests that overall arteriolar network resistance is augmented in this model. 

Interestingly however, despite observing contraction-duration-dependent increases in 

arteriolar dilation in PD (Figure 3.4 a, b and c, and Figure 3.5), increasing contraction 

duration did not result in concomitant increases in arteriolar blood flow (Figure 3.4 d and 

e). These data suggest that upstream arteriolar resistance restrains overall network blood 

flow in this model. Such modifications in overall network resistance/control in pre-

diabetes may be due to alterations in mechanisms that coordinate (e.g., connexin 40, 

calcium-activated potassium channels, inward rectifying potassium channels) or restrict 

(e.g. heightened sympathetic nervous system activity) ascending conducted dilation 

(Haug & Segal, 2005; Twynstra, Ruiz & Murrant, 2012; VanTeeffelen & Segal, 2003). 

Indeed, all of the aforementioned modifications in vascular “machinery” may be 

modified in metabolic diseases (Haddock et al., 2001; Novielli et al., 2012; Young, Hill, 

Wiehler, Triggle, & Reid, 2008). 

3.4.1.2. Steady-state vasodilation and blood flow 

In contrast to brief tetanic contraction, sustained rhythmic muscle contraction 

elicits a gradual and steady-state dilatory response, where muscle blood flow increases 

and is maintained based on the metabolic demands of the tissue (R. B. Armstrong & 

Laughlin, 1985; Bockman, 1983; Mohrman & Regal, 1988). This sustained vasodilatory 

effect is understood to occur due to accumulation of vasoactive metabolites (Clifford & 

Hellsten, 2004). In the current study, rhythmic contractions elicited robust vasodilation in 
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2A, 3A and 4A in CTRL; however, responses were attenuated up to 53% in PD. 

Additionally, 2A and 3A blood flow responses were blunted up to 71% in PD. Although 

there is a paucity of studies investigating steady-state vasodilation in pre-diabetes, the 

effects of overt type 2 diabetes on steady-state vasodilation have been relatively well 

defined and are in congruence with our findings. For example, in type 2 diabetic humans, 

leg blood flow and forearm capillary perfusion was reported to be attenuated up to 65% 

following steady-state exercise (Kingwell et al., 2003; Menon et al., 1992; Womack et 

al., 2009), effects that likely contribute to impaired exercise capacity in this cohort 

(Seyoum, Estacio, Berhanu, & Schrier, 2006). Decrements in steady-state vasodilation 

noted in the current study may be due to attenuated nitric oxide-mediated vasodilation 

(Lesniewski et al., 2008) and/or augmented sympathetic regulation (Novielli et al., 2012), 

both of which have been reported using in vitro and in vivo rodent models of pre-

diabetes. Indeed, impairments in endothelial function (Bakker, Eringa, Sipkema, & van 

Hinsbergh, 2009; McVeigh et al., 1992) can contribute to attenuated vasodilatory 

responses to muscle contraction in overt type 2 diabetes (Kingwell et al., 2003). 

However, the impact of pre-diabetes on endothelial function remains equivocal (likely 

due to experimental and temporal differences across studies), as it has been reported that 

acetylcholine-mediated vascular responses are conserved in these conditions (Ellis et al., 

2010; Lesniewski et al., 2008; Novielli et al., 2012). These data highlight the need for 

future studies which aim to elucidate the mechanisms involved in arteriolar dysregulation 

in early pre-diabetes.  
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3.4.2. Pre-diabetes modifies spatial reactivity of vasodilation during 
contraction 

As discussed above, arteriolar responses to muscle contraction are coordinated 

such that dilation ascends the network from terminal to proximal arterioles. Along the 

same line, the magnitude of arteriolar vasodilation differs based on the location of the 

arteriole within the microvascular network where proportional increases in vasodilation 

are greatest in smaller distal arterioles compared to proximal larger arterioles (Dodd & 

Johnson, 1991; Marshall & Tandon, 1984; VanTeeffelen & Segal, 2006).  

Building on the aforementioned notion of spatially-dependent arteriolar reactivity 

during muscle contraction, in CTRL we observed that proportional changes in arteriolar 

dilation increase with contraction duration and frequency, as well as increasing arteriolar 

order (Figures 3.6 and 3.8). However, as hypothesized, the magnitude and spatially-

dependent pattern of arteriolar vasodilation was minimized in PD, where there was little 

to no delineation between responses across arteriolar orders in either contraction 

paradigm. As such, the reactivity of terminal arterioles (4A) seems to be affected most in 

PD, which would have the greatest impact on RBC distribution to capillaries (Pries et al., 

1989). Our data are in support of an earlier human study where contraction-evoked 

increases in forearm capillary blood flow were impaired in type 2 diabetics, despite 

having normal brachial artery blood flow responses (Womack et al., 2009). 
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3.5. Conclusions 

In conclusion, our data illustrate network-wide arteriolar dysregulation in response to 

muscle contraction in pre-diabetes, a condition that results in severe decrements in 

functional hyperemia. Arteriolar dysregulation observed in PD was demonstrated as 

compromised ROV and steady state vasodilation, as well as blood flow responses, 

following single tetanic and sustained rhythmic contractions in branching 2A, 3A and 4A. 

Furthermore, spatial reactivity of PD vasodilatory responses was disrupted compared to 

CTRL, where distal arterioles were most affected. These data may suggest a spatial and 

temporal progression of diabetic vascular disease, where impairments in distal 

microvasculature likely occur before dysfunction can be detected in large conduit vessels. 

For future studies, the current data underscore the importance of studying multiple levels 

of the skeletal muscle microcirculation in an effort to elucidate the mechanisms involved 

in early pre-diabetic arteriolar dysregulation during muscle contraction. 
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contraction-evoked vasodilation in branching skeletal muscle 

arterioles of young pre-diabetic mice 
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4.1. Introduction 

Peripheral vascular complications associated with type 2 diabetes (Creager, 

Luscher, Cosentino, & Beckman, 2003) are initiated well before manifestation of chronic 

diabetic disease, but rather in the pre-diabetic state (Ellis et al., 2010; Gupta et al., 2012; 

Lesniewski et al., 2008; Milman & Crandall, 2011; Reusch, Bridenstine, & Regensteiner, 

2013; Schaefer et al., 2010; Tooke & Goh, 1999; Wiernsperger, 1994). Pre-diabetes is a 

condition of elevated blood glucose, insulin resistance, and hyperinsulinemia that occurs 

prior to pancreatic β-cell failure and overt type 2 diabetes. Notably, the severity of insulin 

resistance and elevated plasma insulin has been shown to correlate with the degree of 

microvascular dysfunction (Jaap, Hammersley, Shore, & Tooke, 1994; Jaap, Shore, & 

Tooke, 1997). The microvasculature plays an integral role in regulating blood flow 

distribution throughout tissues, especially skeletal muscle due to its dynamic range of 

metabolic demand. In exercising muscle, the arterioles play an integral role in modulating 

tissue blood flow and thereby directing flow to capillary units supplying active skeletal 

muscle fibers (Fuglevand & Segal, 1997). Most recently, our group has demonstrated 

blunted rapid onset vasodilation (ROV) and blood flow to brief tetanic contraction, as 

well as blunted steady-state vasodilation and blood flow to sustained rhythmic twitch 

contractions in skeletal muscle arterioles of pre-diabetic mice (currently in review). 

However the mechanisms governing decrements in contraction-evoked arteriolar 

responses in pre-diabetes are not well defined. 

Only few studies have investigated potential contributors to skeletal muscle 

microvascular dysregulation in pre-diabetes. Earlier studies using isolated arterioles from 
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the hindlimb of young pre-diabetic Zucker Diabetic Fatty (ZDF) rats demonstrated that 

vasoconstrictor responsiveness to norepinphrine and endothelin-1 is enhanced 

(Lesniewski et al., 2008). Additionally, previous work from our group has demonstrated 

heightened sympathetic neuropeptide Y1 receptor (NPY Y1R) and alpha 1 adrenergic 

receptor (α1R) modulation of resting vascular tone in the hindlimb of pre-diabetic ZDF 

rats, where Y1R, α1R and NPY expression were upregulated in hindlimb tissue (Novielli 

et al., 2012).  Collectively, these findings provide evidence of elevated sympathetic 

nervous system influences on vascular control in pre-diabetes. Elevated sympathetic 

vascular control in pre-diabetes may compromise arteriolar modulation of skeletal muscle 

blood flow, which may play a role in the reductions of capillary red blood cell supply 

rate, velocity and oxygen saturations observed in skeletal muscle of pre-diabetic ZDF rats 

(Ellis et al., 2010). Until recently however, no studies have directly assayed arteriolar 

function (in vivo) throughout microvascular networks in response to skeletal muscle 

contraction in pre-diabetes. 

Physical activity is accompanied by increases in sympathetic nerve activity 

(SNA), which modifies the distribution of cardiac output to sites of highest metabolic 

activity (Rowell, 1993). Heightened SNA can limit skeletal muscle arteriolar vasodilation 

and concomitant increases in blood flow (Thomas & Segal, 2004). In contracting skeletal 

muscle, direct observations of arterioles confirm that vasodilatory and hyperemic 

responses override elevated sympathetic activation (Remensnyder, Mitchell, & Sarnoff, 

1962). The ability to overcome this effect is termed ‘functional sympatholysis’, which 

enables arterioles to increase blood flow to active muscle fibers (Strandell & Shepherd, 

1967). With the use of microneurography and quantification of plasma catecholamines, 
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studies have demonstrated that hyperinsulinemia, a result of insulin resistance in pre-

diabetes, correlates with elevated SNA (Anderson, Balon, Hoffman, Sinkey, & Mark, 

1992; Berne, Fagius, Pollare, & Hjemdahl, 1992; DeFronzo & Ferrannini, 1991; Scherrer 

& Sartori, 1997). As such, heightened sympathetic activity to skeletal muscle arterioles 

and decreased symptholysis may contribute to decrements in contraction-evoked 

vasodilation and hyperemic responses in pre-diabetes (McDaid, Monaghan, Parker, 

Hayes, & Allen, 1994).  

In conditions where heightened SNA is commonly observed, such as aging and 

the metabolic syndrome, impaired skeletal muscle blood flow has been attributed to 

enhanced sympathetic α-adrenergic modulation of the vasculature (Casey & Joyner, 

2012; Frisbee, 2004; Jackson, Moore, & Segal, 2010). However, it is well established that 

sympathetic NPY activation of Y1R plays an important role in skeletal muscle 

microvascular regulation (Jackson, Milne, Noble, & Shoemaker, 2005; Jackson, Noble, & 

Shoemaker, 2004), where our previous work has demonstrated that heightened Y1R and 

α1R modulation of vascular conductance and blood flow in pre-diabetic ZDF rats under 

resting conditions (Novielli et al., 2012). Thus, it is possible that such conditions may be 

responsible for blunted contraction-evoked arteriolar responses we recently observed in 

skeletal muscle (gluteus maximus; GM) arteriolar networks of pre-diabetic mice. 

A recent study by our group investigated the effect of pre-diabetes on arteriolar 

function in contracting skeletal muscle. In pre-diabetic mice, we demonstrated that 

arteriolar dilation and blood flow responses of GM microvasculature were compromised 

following both tetanic and steady-state muscle contraction. Evaluating contraction-
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evoked vasodilatory responses at multiple locations in the GM arteriolar network 

revealed that relative changes in arteriolar diameter (relative to baseline diameter) were 

not identical throughout the network. We found that smaller distal arterioles of healthy 

control mice dilated to a greater extent compared to larger proximal arterioles, a result 

corresponding with previous work characterizing vasomotor responses of skeletal muscle 

microvasculature (Dodd and Johnson, 1991, Marshall and Tandon, 1984, VanTeeffelen 

and Segal, 2006). In contrast, spatially-dependent arteriolar reactivity to muscle 

contraction was disrupted in pre-diabetic mice. Interestingly, distal arterioles have been 

shown to overcome sympatholysis more readily than upstream vasculature (Dodd and 

Johnson, 1991). Under conditions of heightened sympathetic vascular modulation 

however, as we have previously demonstrated in pre-diabetic rats, sympatholysis may 

occur to a lesser extent, and lead to impairments in distinct spatial arteriolar responses to 

muscle contraction. 

Therefore, the purpose of this study was to investigate if attenuated arteriolar 

dilation in response to brief tetanic and sustained rhythmic muscle contraction in pre-

diabetes is a result of heightened arteriolar sympathetic Y1R and α1R activation. We 

hypothesized that Y1R and α1R blockade would restore contraction-evoked arteriolar 

dilatory responses in pre-diabetic mice (PD) to levels observed in control mice (CTRL). 

We also hypothesized that impaired spatially-dependent arteriolar responses would be 

restored via sympathetic Y1R and α1R blockade. Additionally, we hypothesized that 

arteriolar vasoconstrictor reactivity to sympathetic agonists phenylephrine (PE) and NPY 

would be greater in PD compared to CTRL.  
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4.2. Materials and methods 

All animal procedures were approved by the Council on Animal Care at The 

University of Western Ontario (protocol number: 2008-066). All invasive procedures 

were performed under α-chloralose and urethane anesthetic, and all efforts were made to 

minimize animal suffering. 

4.2.1. Animal care and use 

Experiments were performed on male C57BL/6NCrl (7-8 weeks old) and Pound 

mice (C57BL/6NCrl-Leprdb-lb/Crl, 7-8 weeks old). The Pound mouse is a model of pre-

diabetes, where these mice exhibit a novel mutation Leprdb-lb in the leptin receptor gene. 

When fed a high fat diet (i.e. Purina 5008 chow), mice become obese by 7 weeks of age, 

exhibiting hyperinsulinemia, and elevated blood glucose, characteristic of the pre-

diabetic condition in humans (Kim & Reaven, 2008a, 2008b). As these mice are of 

C57BLK6 background, the male C57BLK6 mouse served as the control group in this 

study. Mice were housed in animal care facilities in a temperature (24°C) and light (12 

hour cycle)-controlled room and allowed to eat and drink water ad libitum. All mice were 

obtained from Charles River Laboratories (Saint-Constant, QC, Canada) and housed in 

animal care facilities for at least one week after arrival prior experimentation. Mice were 

weighted prior to each experiment. Upon completion of experimental procedures each 

day, the anesthetized mouse was euthanized with an overdose of α-chloralose and 

urethane cocktail mix (intraperitoneal injection), and cervical dislocation. 
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4.2.2. Measurement of serum insulin levels and blood glucose levels 

Blood insulin values were not determined from mice used in this study, as the 

amount of blood sample necessary to perform the appropriate assay exceeds the ethical 

amount without sacrificing the animal as specified by the Animal Care Council. Blood 

insulin values were instead obtained from animal characteristic data reported by Charles 

River. Fasting blood glucose was sampled from animals no later than two days before 

experimentation. Mice were fasted for eight hours and blood glucose was sampled from 

the tail vein (~10µl) and determined with a Bayer Contour® blood glucose analyzer 

(Bayer, Toronto, ON, Canada). 

4.2.3. Anesthesia and skeletal muscle preparation 

Using an intraperitoneal injection, the mouse was anesthetized with a cocktail of 

α-chloralose (50 mg/kg) and urethane (750 mg/kg), which was supplemented throughout 

the experiment as needed. This anesthetic was ideal for these experiments as it leaves 

autonomic, cardiovascular and respiratory function intact (Soma, 1983).  Internal body 

temperature was monitored via a rectal temperature probe and maintained at 37°C with 

the use of a heating platform. Surgical procedures were viewed through a 

stereomicroscope. The neck and backside of the mouse was shaved to remove excess fur. 

The mouse was placed on its back and a mid-neck incision was made. A tracheal cannula 

(PE-60) was introduced to facilitate spontaneous breathing. The neck opening was then 

closed using wound clips (Autoclip 9 mm, Becton Dickinson, Franklin Lakes, NJ, USA). 

The mouse was then placed in the prone position on the heated platform to prepare the 

GM for intravital microscopy. Under stereomicroscopic guidance the GM muscle was cut 
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from its origin along the spine and along its rostral and caudal borders (Bearden, Payne, 

Chisty, & Segal, 2004; Jackson et al., 2010). With great care taken to preserve its 

neurovascular supply, the muscle flap was gently reflected away from the mouse, spread 

evenly onto a transparent Sylgard® (Sylgard 184; Dow Corning, Midland, MI, USA) 

pedestal to approximate in situ dimensions and pinned to secure edges. The exposed 

tissue was superfused continuously (4–5 mL⁄min) with bicarbonate-buffered 

physiological salt solution (PSS, 35°C at tissue, pH 7.4) of the following composition 

(mM): NaCl 137, KCl 4.7, MgSO4 1.2, CaCl2 2, NaHCO3 18, and equilibrated with 5% 

CO2 ⁄ 95% N2. 

4.2.4. Intravital video microscopy 

Upon completion of microsurgical procedures, the preparation was transferred to 

the stage of the intravital microscope (Olympus BX51, Olympus, Tokyo, Japan). The 

preparation was equilibrated with PSS for ~30 minutes. Microvessels were observed 

under Kohler illumination using a long working distance condenser (NA = 0.80) and long 

working distance water immersion objectives (Olympus UMPlanFW: 10× NA = 0.30) 

with illumination from a 100-Watt halogen light source. To enhance contrast of the RBC 

column, a 450-nm ⁄ 20-nm band-pass filter (450BP20; Omega Optical, Brattleboro, VT, 

USA) was placed in the light path. The optical image was coupled to a front-illuminated 

interline CCD camera (Qimaging Rolera E=MC2™, Qimaging©, Surrey, BC, Canada) and 

viewed ⁄ stored to a hard drive using specialized imaging software (MetaMorph® 7.6, 

Molecular Devices Inc., Sunnyvale, CA, USA). Bright-field video (.tiff) images were 

collected (15-17 fps) under Kohler bright-field illumination for off-line analysis of RBC 

column diameters.  
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Bifurcations at second-order arterioles (2A) to third-order (3A) arterioles and 3A 

to fourth order arterioles (4A) were chosen for study, as these resistance microvessels are 

positioned to control the distribution of blood flow within the GM and to the capillaries 

(Bearden et al., 2004; Pries, Ley, Claassen, & Gaehtgens, 1989). One arteriolar tree (2A-

4A) was studied per animal. Following equilibration, a video of the resting (baseline) 

diameter was taken. Arterioles were then tested for oxygen sensitivity by elevating 

superfusate O2 from 0% to 21% (5% CO2, balance N2) for 5-8 minutes to elicit 

vasoconstriction. Equilibration with 5% CO2–95% N2 was restored for the duration of 

experimental procedures. Changes in arteriolar diameter were evaluated in response to 

brief maximal tetanic contractions at 100 Hz as well as 30 seconds of rhythmic muscle 

contractions (see Skeletal muscle contractions). For these experiments, each muscle 

preparation underwent both contraction protocols with the order randomized across 

experiments. At the end of each day’s procedures, maximum arteriolar diameter was 

recorded by adding sodium nitroprusside (SNP, 10 µM) to the superfusate (Bearden et 

al., 2004; Jackson et al., 2010; VanTeeffelen & Segal, 2006). It was determined however, 

that vasodilation of PD 2A and 3A to SNP was less than that of CTRL arterioles. 

Responses of PD arterioles to SNP were then tested with 100nM BIBP3226 (Y1R 

antagonist) and 100nM prazosin (α1R antagonist) within the PSS. This was performed in 

an effort to determine if enhanced arteriolar sympathetic receptor activation contributes 

to decreased vasodilation to SNP in PD. 

4.2.5. Skeletal muscle contractions 

Contractions of the GM were evoked using electrical field stimulation (EFS). For 

this purpose, wire electrodes (90% Pt–10% Ir; diameter, 250 µm) were positioned in the 
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superfusion solution on either side of the exposed muscle. Monophasic pulses (0.1 ms) 

were delivered at 10 V through a stimulus isolation unit (SIU5; Grass Technologies; 

Quincy, MA, USA) driven by a square wave stimulator (S48, Grass). Our experiments 

and previous work has shown that this voltage elicited reproducible contractions of the 

GM and of arteriolar responses for the duration of an experiment (Jackson et al., 2010). 

4.2.5.1. Tetanic contraction and rapid onset vasodilation 

A brief maximal tetanic contraction at 100 Hz was used to evoke ROV in each 

experimental group. Arteriolar dilations were evoked for stimulus train durations of 400 

and 800 ms, with the order randomized across experiments. The arteriole consistently 

returned to the initial resting baseline with 2–3 minutes of recovery between contractions. 

As tissue displacement occurred during tetanic contraction, diameter was measured 

preceding each stimulus (resting baseline) and immediately following contraction with a 

delay of ~2 seconds that reflected the time the muscle is contracted and field of view out 

of focus, and the time required to refocus the field of view. 

4.2.5.2. Rhythmic contraction and steady-state vasodilation 

As the nature of vasodilatation can vary with the pattern of muscle fiber activation 

(Murrant, 2005; VanTeeffelen & Segal, 2000), vasomotor responses to 30 seconds of 

rhythmic contractions at 2 and 8Hz (in randomized order) were also evaluated in each 

experimental group. Stimulation at these frequencies evoked unfused twitch contractions 

(Bearden et al., 2004). Following each 30-second period of rhythmic twitch contractions, 

resting baseline was re-established consistently within 5 minutes. Arteriolar diameter was 

determined preceding contractile activity and following contraction period. 
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4.2.6. Muscle contraction experimental conditions 

Arteriolar vasodilatory responses to tetanic and rhythmic contraction were first 

evaluated under control conditions, where PSS was superfused over the GM. Upon 

establishing differences in vasodilatory responses between CTRL and PD, we sought to 

determine whether this difference was attributed to alterations in peripheral sympathetic 

Y1R and α1R arteriolar activation. In an effort to recover PD dilatory responses to those 

of CTRL, i) Y1R, ii) α1R and iii) Y1R+α1R were blocked using BIBP3226 (100nM) and 

prazosin (100nM) (TOCRIS, Bristol, United Kingdom). Concentrations did not affect 

resting baseline diameter. Sympathetic antagonist concentrations used were determined 

based on the ability to reduce arteriolar constriction elicited by supersusion of 10-8 M 

NPY and 10-5 M PE (data not shown).  In a similar fashion, experiments were performed 

in CTRL to blunt contraction-evoked arteriolar vasodilation to responses similar to PD. 

Sympathetic i) Y1R, ii) α1R and iii) Y1R+α1R were activated using neuropeptide Y 

(100pM) and PE (10nM). Agonist concentrations were determined from concentrations 

eliciting low arteriolar reactivity, while blunting vasodilatory responses to skeletal 

muscle contraction. Agents were added to superfusion solution to working concentrations 

and allowed to equilibrate with the tissue, having little effect on resting baseline arteriolar 

diameter. The order of drug perturbations per animal group was performed in random 

order. 

4.2.7. Arteriolar reactivity to sympathetic receptor agonists 

Vasoconstrictor responses of CTRL and PD 2A, 3A and 4A to sympathetic Y1R 

and α1R agonists NPY (Y1R agonist, 10-13-10-8 M) and PE (α1R agonist, 10-9-10-5 M) 

were investigated. The order of NPY and PE perturbations were performed in random 
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order for each experiment, where resting diameter was allowed to recover in between 

each set of drug perturbations. Baseline diameter prior to the addition of drug to PSS was 

recorded. At each concentration of NPY or PE, arteriolar diameter was allowed to 

equilibrate for 5 minutes and a video was recorded before the next increment in drug 

dose. Working concentrations of drugs were prepared fresh on day of experiment, and 

diluted in PSS. Arteriolar vasoconstrictor responses were determined from the difference 

between measures taken prior drug addition to the PSS (baseline diameter) and at each 

drug concentration. 

4.2.8. Statistical analyses and data presentation 

Data were analyzed using Sigmastat (Systat Software Inc, San Jose, CA, USA) 

and differences were accepted as significantly different at p < 0.05. In order to compare 

the effect of sympathetic antagonists on PD arteriolar responses to GM tetanic and 

steady-state contractions, one way analysis of variance within each stimulus level was 

performed using a Dunnett post test to compare all conditions to the CTRL condition. In 

order to compare the effect of sympathetic agonists on CTRL arteriolar responses to GM 

tetanic and steady-state contractions, one way analysis of variance within each stimulus 

level was performed using a Dunnett post test to compare all conditions to the PD 

condition. To determine the effect of arteriolar order on percent change of diameter 

following tetanic and rhythmic muscle contraction, a one-way analysis of variance was 

used within each condition (i.e., CTRL, PD, PD BIBP3226, PD prazosin and PD 

BIBP3226+prazosin) followed by Tukey’s post-hoc comparison test. Differences 

between CTRL and PD responses within each concentration of NPY or PE were 

compared using unpaired t-tests. Tabular data was also analyzed using unpaired t-tests. 
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Summary data are presented as mean values ± standard error (S.E.), unless otherwise 

stated. 

 

4.3. Results 

4.3.1. Characteristics of control and pre-diabetic mice 

Body mass and measured fasting blood glucose were greater for PD (42 ± 1 g, 12 

± 1 mmol/L) compared to CTRL (23 ± 1 g, 6 ± 1 mmol/L., p < 0.05). Additionally, 

reported blood insulin levels were also elevated in PD (~120 ng/mL) compared to CTRL 

(<10 ng/mL, Charles River Laboratories, 2006). 

4.3.2. Baseline arteriolar diameter, O2 response and vasodilatory 
response to sodium nitroprusside in control and pre-diabetic mice 

Baseline 2A, 3A, and 4A diameters were similar between CTRL and PD (Table 

4.1). Arteriolar constriction in response to elevating PSS O2 to 21% was also similar 

between groups for all arteriolar orders (Table 4.1). Maximal arteriolar diameter elicited 

by 10 µM SNP was decreased by 20 ± 3% and 24 ± 4% in PD 2A and 3A respectively, 

versus CTRL (Table 4.2, p < 0.05). Maximal dilation at 4A was similar between groups. 

Upon adding both sympathetic antagonists BIBP3226 (100 nM) and prazosin (100 nM) to 

10 µM SNP superfusion solution, maximal vasodilatory responses of PD 2A and 3A were 

no longer different than CTRL arteriolar responses to SNP (Table 4.2). 
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Table 4.1. Gluteus maximus arteriolar baseline diameter and responses to elevated 
O2 (21%). 

 2A 3A 4A 

 CTRL PD CTRL PD CTRL PD 

Baseline 
diameter (µm) 

21 ± 1 22 ± 1 12 ± 1 13 ± 1 7 ± 1 7 ± 1 

O2 response 
(µm) 

-6 ± 1 -5 ± 1 -3 ± 1 -4 ± 1 -2.4 ± 0.2 -2.2 ± 0.2 

Baseline values were recorded under control conditions (superfusate equilibrated with 5% 
CO2–95% N2). O2 response indicates the change in diameter in response to elevating 
superfusate O2 from 0 to 21%. Values are mean ± SEM. CTRL, control, n = 6-13; PD, 
pre-diabetic, n = 5-12. * p < 0.05 versus CTRL. 
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Table 4.2. Maximal diameter responses of gluteus maximus arterioles to sodium 
nitroprusside with and without sympathetic receptor blockade (10µM). 

 Maximal Dilation CTRL  

(SNP; 10 µm) 

Maximal Dilation PD 

(SNP; 10 µm) 

Maximal Dilation PD 

with sympathetic blockade 

(SNP; 10 µm, and 
BIBP3226+prazosin; 100µm) 

2A 41 ± 1 33 ± 1* 38 ± 2 

3A 29 ± 1 22 ± 1* 27 ± 2 

4A 18 ± 1 17 ± 1 19 ± 1 

Values are mean ± SEM. CTRL, control, n = 6-13; PD, pre-diabetic, n = 3-12. * p < 0.05 
versus CTRL.  
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4.3.3. Sympathetic receptor blockade and rapid onset vasodilation in pre-
diabetic mice 

Following 400 and 800 ms tetanic contractions, ROV responses of PD were 

blunted by 51 ± 6% and 47 ± 6% respectively in 2A, 52 ± 6 % and 62 ± 6% respectively 

in 3A, and 58 ± 9% and 59 ± 6% respectively in 4A (Figure 4.1 a, b and c, p <0.05). In 

response to 400 ms tetanic contraction, addition of BIBP3226 (Y1R antagonist), prazosin 

(α1R antagonist) and BIBP3226 + prazosin to the superfusion solution caused ROV 

responses of 2A, 3A and 4A to increase such that responses were no longer different from 

CTRL (Figure 4.1 a, b, c). Following 800 ms tetanic contraction, dual sympathetic Y1R 

and α1R blockade (BIBP3226 + prazosin) restored 2A ROV responses of PD to that of 

CTRL (Figure 4.1 a). Y1R blockade (BIBP3226) and α1R blockade (prazosin) alone 

only partially recovered 2A ROV responses of PD (Figure 4.1 a, p < 0.05). For 3A, 

prazosin and BIBP3226+prazosin superfusion conditions increased ROV responses of PD 

to responses similar to CTRL (Figure 4.1 b); however, BIBP3226 partially recovered the 

attenuated vasodilatory response of PD (Figure 4.1 b, p < 0.05). Alternatively in 4A, 

BIBP3226 and BIBP3226+prazosin restored ROV to that of CTRL (Figure 4.1 c), where 

prazosin alone partially recovered the blunted response (Figure 4.1 c, p < 0.05). 

4.3.4. Sympathetic receptor activation and rapid onset vasodilation in 
control mice 

In addition to testing the effects of sympathetic receptor blockade on ROV in PD, 

we also tested the effects of sympathetic receptor activation on ROV in CTRL. Following 

both 400 and 800 ms tetanic contractions, addition of sympathetic agonists NPY (Y1R 
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agonist), PE (α1R agonist) or NPY+PE to the superfusion solution decreased ROV 

responses of CTRL 2A, 3A and 4A to those of PD (Figure 4.2 a, b, c). 

4.3.5. Sympathetic receptor blockade and spatial arteriolar reactivity in 
pre-diabetic mice in response to brief tetanic contraction 

Spatial reactivity of ROV responses were investigated based on arteriolar order. 

Changes in diameter were normalized to respective baselines and presented as percent 

diameter change. As expected, relative ROV responses to 400 and 800 ms tetanic 

contractions were attenuated in PD at all arteriolar orders compared to CTRL. 

Superfusion of sympathetic antagonists restored relative increases in diameter, so they 

were no longer different from CTRL (Figure 4.3). 

4.3.5.1. Effects of sympathetic receptor blockade on relative ROV 
responses of 2A, 3A and 4A following 400 ms tetanic contraction 

In CTRL, relative increases in diameter were greatest in 4A versus 3A and 2A 

(Figure 4.3 a, p < 0.05). In PD, ROV reactivity was also greatest in 4A, but only in 

comparison to 2A (Figure 4.3 a, p < 0.05). In PD, BIBP3226 increased relative change in 

diameter of 4A specifically, so that 4A responses of PD were different from both 3A and 

2A, as demonstrated in CTRL (Figure 4.3 a, p < 0.05).  Prazosin also increased ROV 

reactivity; however, α1R blockade increased both 3A and 4A responses compared to 

responses of 2A (Figure 4.3 a, p < 0.05). Similar to CTRL and effects of BIBP3226, 

combination Y1R and α1R blockade (BIBP3226+prazosin condition) caused an increase 

in ROV reactivity in PD that was greatest at 4A compared to both 3A and 2A (Figure 4.3 

a, p <0.05). 
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4.3.5.2. Effects of sympathetic receptor blockade on relative ROV 
responses of 2A, 3A and 4A following 800ms tetanic contraction 

In CTRL, 800ms tetanic contraction elicited robust increases in relative ROV 

responses that were greatest in 3A and 4A compared to 2A (Figure 4.3 b, p < 0.05). In 

PD, greatest ROV reactivity was only observed at 4A versus 3A and 2A, demonstrating 

compromised dilatory reactivity of 3A in PD (Figure 4.3 b, p < 0.05). BIBP3226 

increased ROV responses of PD, so that relative increases in diameter were greatest in 

both 3A and 4A compared to 2A, as demonstrated in CTRL (Figure 4.3 b, p < 0.05). Both 

prazosin and BIBP3226+prazosin conditions caused increases in relative ROV reactivity 

of PD that was greatest in 4A versus 3A and 2A, illustrating a greater effect of 

sympathetic receptor blockade in most distal arterioles in PD (Figure 4.3 b, p < 0.05). 
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Figure 4.1. Sympathetic Y1R and α1R blockade restores ROV in PD.  

Data are ROV responses of 2A (a), 3A (b) and 4A (c) following brief tetanic contraction 

in CTRL (n=6-12) and PD (n=6-11). BIBP3226 (Y1R antagonist), prazosin (α1R 

antagonist) and BIBP3226+prazosin (dual Y1R and α1R blockade) were added to the 

superfusion of PD. Sympathetic receptor blockade enhanced ROV of PD to responses 

similar to CTRL. * different from CTRL, p < 0.05. CTRL, control; PD, pre-diabetic. 
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Figure 4.2. Sympathetic Y1R and α1R activation attenuates ROV in CTRL.  

ROV responses of 2A (a), 3A (b) and 4A (c) following brief tetanic contraction in CTRL 

(n=6-12) and PD (n=6-11). NPY (Y1R agonist), PE (α1R agonist) and NPY+PE (dual 

Y1R and α1R activation) were added to the superfusion of PD. Sympathetic receptor 

activation decreased ROV of CTRL to responses similar to PD. * different from PD, p < 

0.05. CTRL, control; PD, pre-diabetic. 
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Figure 4.3. Effects of Y1R and α1R blockade on arteriolar branch order ROV 

responses following tetanic contraction in PD.  

Percent change in diameter following brief 400 ms (a) and 800 ms (b) tetanic 

contractions. Following both contractions, the percent change in diameter was attenuated 

in PD (n= 5-11) compared to CTRL (n=6-12) at 2A, 3A and 4A. Superfusion of 

sympathetic receptor antagonists BIBP3226 and prazosin caused increases in percent 

diameter change in PD, affecting relative changes of contraction-evoked dilation in distal 

arterioles the greatest. * Different vs. CTRL, p < 0.05; # different vs. responses of other 

arterioles within condition, p < 0.05; � Different vs. 2A response within condition, p < 

0.05. CTRL, control; PD, pre-diabetic. 
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4.3.6. Sympathetic receptor blockade and steady-state vasodilation to 
rhythmic contraction in pre-diabetic mice 

Following 2 and 8Hz rhythmic contractions, vasodilatory responses of PD were 

blunted by 46 ± 9% and 47 ± 7% respectively in 2A, 60 ± 7% and 44 ± 9% respectively 

in 3A, and 32 ± 11% and 53 ± 11% respectively in 4A (Figure 4.4 a, b and c, p <0.05). In 

response to 2 Hz rhythmic contraction, vasodilation of 2A in PD was moderately 

increased with the addition of BIBP3226 to the superfusion (Figure 4.4 a, p < 0.05), 

however prazosin and BIBP3226 + prazosin superfusion conditions increased 2A 

vasodilation such that responses were no longer different from CTRL (Figure 4.4 a). For 

3A, addition of BIBP3226+prazosin to the superfusion also caused an increase in 

vasodilatory responses to 2 Hz contraction in PD, where diameter change was no longer 

different to that of CTRL (Figure 4.4 b). BIBP3226 and prazosin alone caused a modest 

increase in diameter change, however responses were not similar to that of CTRL (Figure 

4.4 b, p < 0.05). For 4A, superfusion of BIBP3226, prazosin and BIBP3226+prazosin 

increased PD vasodilatory responses to 2 Hz rhythmic contraction to that of CTRL 

(Figure 4.4 c). Following 8 Hz rhythmic contraction, vasodilation of PD 2A, 3A and 4A 

were increased with all three superfusion conditions (BIBP3226, prazosin, 

BIBP3226+prazosin), where diameter changes were similar to CTRL (Figure 4. 4 a, b 

and c). 

4.3.7. Sympathetic receptor activation and steady-state vasodilation to 
rhythmic contraction in control mice 

Sympathetic Y1R and α1R agonists were also added to the superfusion of CTRL 

experiments to attenuate CTRL arteriolar vasodilatory responses to rhythmic contractions 
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(Figure 4.5). Superfusion of NPY, PE and NPY+PE in CTRL decreased vasodilation of 

2A, 3A and 4A to 2 and 8 Hz rhythmic contractions so that diameter changes were 

similar to PD (Figure 4.5 a, b and c). 

4.3.8. Sympathetic receptor blockade and spatial arteriolar reactivity in 
pre-diabetic mice in response to rhythmic contraction 

Spatial reactivity of steady-state vasodilatory responses to rhythmic contraction 

was also investigated based on arteriolar order. Changes in diameter were normalized to 

respective baselines and presented as percent diameter change. Following 2 Hz rhythmic 

contraction, relative diameter change was decreased in 2A and 3A of PD, where 4A 

responses were similar to CTRL. Sympathetic blockade of Y1R, α1R, and both Y1R and 

α1R increased relative dilatory responses of PD in 2A, however only dual Y1R and α1R 

blockade increased relative vasodilatory reactivity of 3A (Figure 4.6 a). Following 8 Hz 

rhythmic contraction however, attenuated dilatory reactivity observed in PD was 

increased to dilatory responses similar to CTRL in all arterioles, for all conditions of 

sympathetic receptor blockade (Figure 4.6). 

4.3.8.1. Effects of sympathetic receptor blockade on relative dilatory 
responses of 2A, 3A and 4A following 2 Hz rhythmic contraction 

In CTRL, relative increases in diameter were greatest in 4A and 3A compared to 

2A (Figure 4.6 a, p < 0.05). In PD, only 4A responses were greatest compared to 3A and 

2A, demonstrating compromised dilatory reactivity of 3A in PD (Figure 4.6 a, p < 0.05). 

BIBP3226 increased relative vasodilatory responses of PD so that responses of both 4A 

and 3A were greater than 2A (Figure 4.6 a, p < 0.05). Prazosin elicited increases in 4A 

vasodilatory responses in PD, where relative increases in diameter were greater than 3A 
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and 2A (Figure 4.6 a, p < 0.05). Similar to the effects of BIBP3226 and responses of 

CTRL, dual Y1R and α1R blockade increased relative dilatory responses of PD in both 

3A and 4A compared to 2A (Figure 4.6 a, p < 0.05). 

4.3.8.2. Effects of sympathetic receptor blockade on relative dilatory 
responses of 2A, 3A and 4A following 8Hz rhythmic contraction 

In CTRL, relative increases in diameter were greatest in 4A compared to 2A 

(Figure 4.6 a, p < 0.05). Similarly in PD, although reduced in magnitude, 4A responses 

were greatest compared to 2A (Figure 4.6 b, p < 0.05). BIBP3226 and prazosin 

conditions increased the magnitude of relative dilatory responses of PD, where effects of 

Y1R and α1R blockade evoked greatest relative changes in diameter in 4A versus 2A 

(Figure 4.6 b, p < 0.05). Dual sympathetic Y1R and α1R blockade elicited increases in 

relative vasodilatory responses in PD that were greater in 3A and 4A compared to 2A, 

demonstrating a greater contribution of both Y1R and α1R activation to attenuated 

dilatory responses of 3A and 4A in PD  (Figure 4.6 b, p < 0.05). 
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Figure 4.4. Sympathetic Y1R and α1R blockade restores steady-state vasodilation in 

PD.  

Data are maximal dilatory responses of 2A (a), 3A (b) and 4A (c) following 30 seconds 

of rhythmic twitch contractions in CTRL (n=7-12) and PD (n=6-11). BIBP3226 (Y1R 

antagonist), prazosin (α1R antagonist) and BIBP3226+prazosin (dual Y1R and α1R 

blockade) were added to superfusion of PD. Sympathetic receptor blockade enhanced 

dilatory responses to rhythmic contractions of PD to responses similar to CTRL. * 

different from CTRL, p < 0.05. CTRL, control; PD, pre-diabetic. 
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Figure 4.5. Sympathetic Y1R and α1R activation attenuates steady-state 

vasodilation in CTRL.  

Data are maximal dilatory responses of 2A (a), 3A (b) and 4A (c) following 30 seconds 

of rhythmic twitch contractions in CTRL (n=7-12) and PD (n=6-11). NPY (Y1R agonist), 

PE (α1R agonist) and (dual Y1R and α1R activation) were added to the superfusion of 

PD. Sympathetic receptor activation decreased ROV of CTRL to responses similar to PD 

compared to CTRL. * different from PD, p < 0.05. CTRL, control; PD, pre-diabetic. 
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Figure 4.6. Effects of Y1R and α1R blockade on arteriolar branch order dilatory 

responses following sustained rhythmic contraction in PD.  

Percent change in diameter following 30 seconds of sustained rhythmic contraction at 2 

Hz (a) and 8 Hz (b) tetanic contractions. The percent change in diameter was attenuated 

in PD (n= 6-11) compared to CTRL (n=7-12) at 2A, 3A and 4A, however not in 4A 

following 2 Hz contraction. Superfusion of sympathetic receptor antagonists BIBP3226 

and prazosin caused increases in percent diameter change in PD, affecting relative 

changes of contraction-evoked dilation in distal arterioles the greatest. * Different vs. 

CTRL, p < 0.05; # different vs. responses of other arterioles within condition, p < 0.05; � 

Different vs. 2A response within condition, p < 0.05. CTRL, control; PD, pre-diabetic. 
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4.3.9. Arteriolar reactivity to sympathetic Y1R and α1R activation 

Increasing concentrations of Y1R agonist NPY (10-13-10-8 M) within the 

superfusion led to decreases in arteriolar diameter in both CTRL and PD groups (Figure 

4.7). Vasoconstrictor responses of 2A to NPY doses were greater in PD versus CTRL, 

especially at NPY 10-11 M (Figure 4.7 a, p < 0.05). For 3A, vasoconstrictor responses 

were also greater in PD versus CTRL, especially for NPY doses of 10-11 – 10-8 M (Figure 

4.7 b, p < 0.05). For 4A, vasoconstrictor responses were similar between groups, however 

at the highest dose of NPY (10-8 M), PD vasoconstrictor responses were greater than 

those of CTRL (Figure 4.7 c, p < 0.05). 

Increasing concentrations of α1R agonist PE (10-9-10-5 M) in the superfusion also 

led to decreases in arteriolar diameter in both CTRL and PD groups (Figure 4.8). 

Vasoconstrictor responses of 2A were similar between groups for all PE doses. For 3A 

and 4A however, vasoconstrictor responses of CTRL and PD were similar for PE doses 

10-9-10-6 M, however at 10-5 M, vasoconstrictor responses of PD were greater than CTRL 

(Figure 4.8 b and c, p < 0.05). 
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Figure 4.7. Vasoconstriction of gluteus maximus arterioles to NPY.  

2A (a), 3A (b) and 4A (c) vasoconstrictor responses to increasing doses of NPY (Y1R 

agonist) in CTRL (n=7-8) and PD (n=5-7). * different from CTRL within drug dose, p < 

0.05. CTRL, control; PD, pre-diabetic. 
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Figure 4.8. Vasoconstriction of gluteus maximus arterioles to PE.  

2A (a), 3A (b) and 4A (c) vasoconstrictor responses to increasing doses of PE (α1R 

agonist) in CTRL (n=5-9) and PD (n=5-7). * different from CTRL within drug dose, p < 

0.05. CTRL, control; PD, pre-diabetic. 
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4.4. Discussion 

Our group has recently demonstrated that pre-diabetes compromises contraction-

evoked vasodilation of skeletal muscle arterioles. Prior to this study, we also identified 

heightened sympathetic regulation of basal vascular tone in pre-diabetic ZDF rats 

(Novielli et al., 2012). Therefore, in this study, we sought to determine whether enhanced 

sympathetic Y1R and α1R receptor activation of skeletal muscle arterioles contributes to 

decrements in contraction-evoked vasodilation in pre-diabetes. Congruent with our 

hypotheses, we demonstrated that inhibition of Y1Rs and α1Rs with BIBP3226 and 

prazosin increased contraction-evoked vasodilatory responses to levels similar to CTRL. 

Conversely, blunted contraction-evoked vasodilation observed in PD was reproduced in 

CTRL via activation of Y1Rs and α1Rs with NPY and PE. Sympathetic receptor 

blockade also restored spatially-dependent differences in contraction-evoked vasodilation 

between arteriolar orders in PD, increasing relative dilatory responses of distal 

vasculature. In addition, arteriolar vasoconstrictor responsiveness to sympathetic receptor 

agonists (NPY and PE) appeared to be greater at in PD compared to CTRL, especially at 

higher concentrations. These findings suggest that Y1R and α1R activation are enhanced 

in pre-diabetes, resulting in deficits in arteriolar vasodilation to skeletal muscle 

contraction. 

4.4.1. Sympathetic Y1R- and α1R-mediated effects on contraction-
evoked arteriolar vasodilation in pre-diabetic mice 

Rapid onset vasodilation results in the immediate hyperemic response elicited 

within seconds of muscle contraction at exercise onset. This almost-instantaneous 

vascular response has been well established in humans and within animal 
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microcirculatory models (M. L. Armstrong, Dua, & Murrant, 2007; Corcondilas, 

Koroxenidis, & Shepherd, 1964; Jackson et al., 2010; Kirby, Carlson, Markwald, Voyles, 

& Dinenno, 2007; Marshall & Tandon, 1984; Mihok & Murrant, 2004; Shoemaker, 

Tschakovsky, & Hughson, 1998; Tschakovsky et al., 2004; VanTeeffelen & Segal, 

2006), and thus is a conserved response in initiating rest-to-exercise transitions to 

metabolic demand. Until recently, no studies have investigated ROV responses in pre-

diabetes. In our most recent study, as well as in the current study, we consistently 

demonstrated blunted arteriolar ROV responses of 50% or greater following brief tetanic 

muscle contraction in the GM of pre-diabetic mice, with no differences in baseline 

arteriolar diameter. When GM arterioles of PD were superfused with sympathetic Y1R 

antagonist BIBP3226, and α1R antagonist prazosin, attenuated ROV responses were 

restored to levels observed in CTRL. Increased ROV responses of PD arterioles 

following sympathetic blockade prompted experiments testing whether sympathetic 

activation could do the opposite in CTRL. Without modification of baseline arteriolar 

diameter, modest activation of Y1R and α1R with NPY and PE reduced ROV responses 

of CTRL arterioles following tetanic contraction similar to attenuated responses observed 

in PD. These novel findings indicate a constitutively higher level of arteriolar smooth 

muscle cell Y1R and α1R activation in skeletal muscle microvasculature of pre-diabetic 

mice, which likely impinge on existing dilatory mechanisms. Past studies of the 

microcirculation in the hamster cremaster muscle have demonstrated a contributing role 

of potassium and adenosine to rapid vasodilatory responses elicited by brief tetanic 

contractions (M. L. Armstrong et al., 2007, Ross, Mihok & Murrant, 2013). In pre-

diabetic mice, increased levels of Y1R and α1R activation, may restrict potassium- 
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and/or adenosine- mediated VSMC hyperpolarization, thus attenuating ROV to brief 

tetanic muscle contraction.  

Contrary to brief tetanic contraction, sustained rhythmic muscle contraction 

evokes a progressive increase in arteriolar diameter and blood flow based on the 

metabolic demands of the tissue (R. B. Armstrong & Laughlin, 1985; Bockman, 1983; 

Mohrman & Regal, 1988). Studies investigating mechanisms contributing to sustained 

vasodilation throughout bouts of muscle contraction have identified that the production of 

local vasoactive metabolites from skeletal muscle tissue and the vasculature contribute to 

this response (Clifford & Hellsten, 2004). As these signaling events differ from those 

involved in ROV (Clifford & Hellsten, 2004; Haddy & Scott, 1975; Wunsch, Muller-

Delp, & Delp, 2000), it was not known whether decrements in contraction-evoked 

steady-state dilation, previously demonstrated in PD, was a result of sympathetically-

mediated vasoconstriction. In the current study, up to a 60% reduction in steady-state 

dilation following 30 seconds of rhythmic twitch contractions was observed in PD. Upon 

sympathetic Y1R and α1R blockade, arteriolar vasodilatory responses of PD were again 

restored to levels of CTRL. All sympathetic antagonist conditions were especially 

effective in restoring PD vasodilatory responses following the greatest contraction 

frequency (8 Hz). Contrasting experiments determined that activation of arteriolar Y1R 

and α1R in CTRL caused decreases in contraction-evoked vasodilatory responses, in turn 

resembling responses of PD. These findings further demonstrate that increased levels of 

arteriolar Y1R and α1R activation in pre-diabetes can restrain vasodilatory responses 

regardless of the nature of contractile activity.  
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Blockade of arteriolar Y1R and α1R activation consistently increased ROV and 

steady-state vasodilatory responses to respective tetanic and rhythmic contractions across 

arterioles. Despite the observed ‘gain of function’, blockade of Y1R or α1R 

independently was not always successful in completely restoring contraction-evoked 

dilatory responses so that they were no longer different than CTRL. ROV responses 

following 400 ms tetanic contractions were fully restored at all arteriolar orders for all 

sympathetic antagonist conditions. For longer tetanic contractions (800 ms), evoking 

greater dilatory responses, 2A ROV could not be restored via independent receptor 

blockade in PD, where α1R blockade alone restored ROV of 3A, and Y1R blockade 

alone restored ROV responses of 4A. Following low frequency rhythmic contractions, 

2A dilation of PD was not fully restored via independent Y1R blockade, and 3A dilation 

was not fully restored via independent blockade of both Y1R and α1R. Inability to 

increase ROV or steady-state dilation by blocking sympathetic receptors independently 

may be due to the vasoconstrictive effects of the outstanding active sympathetic receptor. 

Interestingly, PD demonstrated elevated arteriolar vasoconstrictor responsiveness to 

increasing doses of Y1R and α1R agonists, NPY and PE. These data may suggest greater 

vasoconstrictive effects of sympathetic receptor activation themselves, or greater vascular 

expression of sympathetic receptors, as demonstrated previously in the hindlimb of pre-

diabetic ZDF rats (Novielli et al., 2012). A potential increase in arteriolar sympathetic 

receptor density along with reported increases in SNA associated with pre-diabetes may 

impinge on contraction-evoked dilatory responses in PD, despite blockade of sympathetic 

receptors independently. Following 8 Hz tetanic contraction, however, all sympathetic 

antagonist conditions (independent and dual blockade) elicited robust increases in steady-
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state vasodilation in PD, similar to levels of CTRL. In conjunction with sympathetic 

receptor blockade, large accumulation of vasoactive metabolites in response to high 

frequency muscle contraction likely contributes to the significant increase of arteriolar 

diameter in PD. As expected however, dual receptor blockade recovered ROV and 

steady-state vasodilatory responses of PD following all tetanic and rhythmic contractions, 

at all arteriolar orders studied. Interaction between Y1R and α1R activation has been 

established, where NPY and NE can act together to cause greater vasoconstriction 

compared to responses elicited alone, especially under conditions of increased 

sympathetic activation (Dahlof, Dahlof, & Lundberg, 1985; Jackson et al., 2005; 

Revington & McCloskey, 1988). Independent of exercise, we also investigated maximal 

arteriolar vasodilatory responses elicited by GM superfusion of SNP. We demonstrated 

decreased arteriolar dilation to SNP in PD, however this response was restored following 

dual blockade of Y1R and α1R in the presence of SNP. These findings suggest that 

endogenous vasodilatory mechanisms contributing to dilation during muscle contraction, 

as well as direct smooth muscle cell relaxation, can be disrupted by constitutively 

enhanced dual Y1R and α1R activation in pre-diabetes.  

4.4.2. Emphasis on NPY-mediated neurovascular modulation in pre-
diabetes 

This is the first study to demonstrate sympathetically-mediated reductions of both 

ROV and steady-state dilation of arterioles in pre-diabetes. In conditions such as aging 

and the metabolic syndrome, studies investigated whether decrements in functional 

hyperemia and vasodilatory responses following muscle contraction was a result of 

enhanced α-adrenergic modulation of vascular responses (Casey & Joyner, 2012; 
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Dinenno, Masuki, & Joyner, 2005; Frisbee, 2004; Jackson et al., 2010; Naik, Xiang, 

Hodnett, & Hester, 2008). In accordance with findings of the current study, α-adrenergic 

receptor blockade resulted in increased contraction-evoked vasodilation in aged and 

obese groups. Conversely, peptidergic-mediated modulation of contraction-evoked 

vasodilation was not considered. In addition to NE, it is well recognized that NPY 

contributes to sympathetically-mediated vascular regulation at rest, as well as during 

muscle contraction (Buckwalter, Hamann, & Clifford, 2005; Buckwalter, Hamann, 

Kluess, & Clifford, 2004; DeLorey et al.; Evanson et al.; Jackson et al., 2005; Jackson et 

al., 2004; Novielli et al., 2012). Under conditions of greater SNA, neuronal NPY release 

and its effects on arteriolar constriction become more apparent (Bartfai, Iverfeldt, Fisone, 

& Serfozo, 1988; De Camilli & Jahn, 1990; Lundberg, Franco-Cereceda, Lou, Modin, & 

Pernow, 1994). Therefore greater NPY-mediated Y1R vasoconstrictor restraint on 

contraction-evoked vasodilatory responses was anticipated in pre-diabetic mice of the 

present study.  

 

4.4.3. Spatially-dependent arteriolar dilation and sympathetic receptor 
blockade 

Skeletal muscle contraction elicits vasodilatory responses that differ based on the 

location of the arteriole within the microvascular network, where proportional increases 

in vasodilation are greatest in smaller distal arterioles compared to proximal larger 

arterioles (Dodd & Johnson, 1991; Marshall & Tandon, 1984; VanTeeffelen & Segal, 

2006). This was demonstrated in the current study, where in CTRL, ROV and steady-

state dilatory reactivity to tetanic and rhythmic muscle contraction was greatest in distal 
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arterioles (4A and 3A). In PD, however, spatially-dependent arteriolar responses were 

almost indistinguishable, where relative diameter changes of only 4A were affected by 

both types of muscle contraction. In turn, sympathetic receptor antagonist conditions 

elicited increases in relative diameter responses, restoring appropriate arteriolar reactivity 

from distal to proximal arterioles. Interestingly, effects of each sympathetic antagonist 

condition differed between arteriolar orders. Within-condition differences between 

arterioles in PD may suggest heterogeneous Y1R and α1R-mediated attenuation of 

contraction-evoked dilation throughout the arteriolar network. This may be a result of 

differences in sympathetic receptor distribution or differences in neural innervation 

density at the distal microvasculature (Cowley & Franchini, 1996). It has been confirmed 

that α-adrenergic receptor subtype distribution in arteriolar networks in the mouse GM 

varies with vessel branch order, where α1Rs are located more distally (Moore, Jackson, 

& Segal, 2010). Additionally, studies of feline skeletal muscle microvasculature 

demonstrated that NPYs vasoconstrictor effects are greatest at distal arterioles (Ekelund 

& Erlinge, 1997). Thus we expected sympathetic receptor blockade to affect vasodilatory 

responses of distal arterioles in PD.  

4.4.4. Experimental considerations 

 In the current study, we investigated whether constitutively enhanced arteriolar 

Y1R and α1R activation contributed to decrements in contraction-evoked vasodilation in 

pre-diabetic mice. The use of BIBP3226 and prazosin allowed us to specifically block 

Y1R and α1R, therefore the effects of endogenous NPY and norepinephrine (NE) on 

arteriolar modulation of dilatory responses could be resolved in pre-diabetes. Although α 

2-adrenergic receptors (α2R) and NPY Y2 receptors (Y2R) are present post-junctionally 
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on the vasculature and contribute to sympathetically-mediated vasoconstriction (Jie, van 

Brummelen, Vermey, Timmermans, & van Zwieten, 1984; Kiowski, Hulthen, Ritz, & 

Buhler, 1983), they are also located pre-junctionally and modulate NE and NPY release 

via a negative feedback mechanism (Ruffolo, Nichols, Stadel, & Hieble, 1991; 

Wahlestedt et al., 1990). In order to reduce potentially confounding effects of pre- and 

post- junstional α2R and Y2R activity on sympathetic vascular modulation in pre-

diabetes, we investigated α1R- and Y1R- mediated effects, as it is understood that they 

are located post-junctionally on VSMCs. In addition, a recent study has demonstrated 

heterogeneous distribution of α-adrenergic receptor subtypes throughout the arteriolar 

network of the mouse GM. It was observed that distal arterioles (e.g. 3As) exhibited the 

greatest vasoconstrictor responses to α1R agonist PE, confirming a greater contribution 

of α1Rs to sympathetic vascular control in the arterioles examined in the current study. 

Vasoconstriction elicited by the α2R agonist UK14304 was greatest in 1As, an area of 

the arteriolar tree we did not directly examine in the current study. Although there are no 

studies characterizing NPY Y receptor distribution throughout microvascular networks, 

past experiments have demonstrated greater affects of Y1R-mediated vasoconstriction 

compared to Y2Rs in distal vasculature of cat hindlimb skeletal muscle (Ekelund & 

Erlinge, 1997). Therefore we feel that increased sympathetic activity at the level of 

skeletal muscle arterioles in pre-diabetic mice is predominantly an affect of enhanced 

Y1R and α1R activation. 
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4.5. Conclusions 

 In the current study, we demonstrated that ROV and steady-state vasodilation in 

response to tetanic and rhythmic muscle contraction were blunted in branching arterioles 

of the GM in pre-diabetic mice. Since Y1R and α1R blockade restored contraction-

evoked vasodilatory responses in PD, and Y1R and α1R activation attenuated 

contraction-evoked vasodilatory responses in CTRL, our data suggest that pre-diabetes is 

associated with greater sympathetic modulation of arteriolar function via elevated levels 

of Y1R and α1R activation. Furthermore, disrupted spatial reactivity of PD vasodilatory 

responses to muscle contraction was also restored following superfusion of sympathetic 

Y1R and α1R antagonists, increasing relative diameter changes of distal arterioles. In 

addition, VSMC relaxation elicited by superfusion of SNP was also attenuated in 

arterioles of PD, where dual Y1R and α1R blockade in the presence of SNP increased 

maximal arteriolar dilatory responses of PD to levels similar to CTRL. The present study 

provides evidence that pre-diabetes is associated with microvascular impairments related 

to increased sympathetic receptor activation throughout skeletal muscle branching 

arteriolar networks. 



159 

 

4.6. References 
Anderson, E. A., Balon, T. W., Hoffman, R. P., Sinkey, C. A., & Mark, A. L. (1992). 

Insulin increases sympathetic activity but not blood pressure in borderline 

hypertensive humans. Hypertension, 19(6 Pt 2), 621-627. 

Armstrong, M. L., Dua, A. K., & Murrant, C. L. (2007). Potassium initiates 

vasodilatation induced by a single skeletal muscle contraction in hamster 

cremaster muscle. J Physiol, 581(Pt 2), 841-852. 

Armstrong, R. B., & Laughlin, M. H. (1985). Rat muscle blood flows during high-speed 

locomotion. J Appl Physiol, 59(4), 1322-1328. 

Bartfai, T., Iverfeldt, K., Fisone, G., & Serfozo, P. (1988). Regulation of the release of 

coexisting neurotransmitters. Annu Rev Pharmacol Toxicol, 28, 285-310. 

Bearden, S. E., Payne, G. W., Chisty, A., & Segal, S. S. (2004). Arteriolar network 

architecture and vasomotor function with ageing in mouse gluteus maximus 

muscle. J Physiol, 561(Pt 2), 535-545. 

Berne, C., Fagius, J., Pollare, T., & Hjemdahl, P. (1992). The sympathetic response to 

euglycaemic hyperinsulinaemia. Evidence from microelectrode nerve recordings 

in healthy subjects. Diabetologia, 35(9), 873-879. 

Bockman, E. L. (1983). Blood flow and oxygen consumption in active soleus and gracilis 

muscles in cats. Am J Physiol, 244(4), H546-551. 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 

72, 248-254. 

Buckwalter, J. B., Hamann, J. J., & Clifford, P. S. (2005). Neuropeptide Y1 receptor 

vasoconstriction in exercising canine skeletal muscles. J Appl Physiol (1985), 

99(6), 2115-2120. 

Buckwalter, J. B., Hamann, J. J., Kluess, H. A., & Clifford, P. S. (2004). 

Vasoconstriction in exercising skeletal muscles: a potential role for neuropeptide 

Y? Am J Physiol Heart Circ Physiol, 287(1), H144-149. 



160 

 

Casey, D. P., & Joyner, M. J. (2012). Influence of alpha-adrenergic vasoconstriction on 

the blunted skeletal muscle contraction-induced rapid vasodilation with aging. J 

Appl Physiol, 113(8), 1201-1212.  

Charles River Laboratories (2006). Comparison of insulin levels for c57BL/6NCrl-

Lepr(db-lb)/Crl (THE POUND MOUSE™). Technical resources; Baseline data. 

Charles River, USA. 

Clifford, P. S., & Hellsten, Y. (2004). Vasodilatory mechanisms in contracting skeletal 

muscle. J Appl Physiol, 97(1), 393-403. 

Corcondilas, A., Koroxenidis, G. T., & Shepherd, J. T. (1964). Effect of a Brief 

Contraction of Forearm Muscles on Forearm Blood Flow. J Appl Physiol, 19, 

142-146. 

Cowley, A. W., & Franchini, K. G. (1996). Neurogenic control of blood vessels. In D. 

Robertson, P. A. Low & R. J. Polinsky (Eds.), Primer on the Autonomic Nervous 

System (Vol. 1, pp. 49-58). San Diego: Academic Press Inc. 

Creager, M. A., Luscher, T. F., Cosentino, F., & Beckman, J. A. (2003). Diabetes and 

vascular disease: pathophysiology, clinical consequences, and medical therapy: 

Part I. Circulation, 108(12), 1527-1532. 

Dahlof, C., Dahlof, P., & Lundberg, J. M. (1985). Neuropeptide Y (NPY): enhancement 

of blood pressure increase upon alpha-adrenoceptor activation and direct pressor 

effects in pithed rats. Eur J Pharmacol, 109(2), 289-292. 

De Camilli, P., & Jahn, R. (1990). Pathways to regulated exocytosis in neurons. Annu 

Rev Physiol, 52, 625-645. 

DeFronzo, R. A., & Ferrannini, E. (1991). Insulin resistance. A multifaceted syndrome 

responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic 

cardiovascular disease. Diabetes Care, 14(3), 173-194. 

DeLorey, D. S., Buckwalter, J. B., Mittelstadt, S. W., Anton, M. M., Kluess, H. A., & 

Clifford, P. S. Is tonic sympathetic vasoconstriction increased in the skeletal 



161 

 

muscle vasculature of aged canines? Am J Physiol Regul Integr Comp Physiol, 

299(5), R1342-1349. 

Dinenno, F. A., Masuki, S., & Joyner, M. J. (2005). Impaired modulation of sympathetic 

alpha-adrenergic vasoconstriction in contracting forearm muscle of ageing men. J 

Physiol, 567(Pt 1), 311-321. 

Dodd, L. R., & Johnson, P. C. (1991). Diameter changes in arteriolar networks of 

contracting skeletal muscle. Am J Physiol, 260(3 Pt 2), H662-670. 

Ekelund, U., & Erlinge, D. (1997). In vivo receptor characterization of neuropeptide Y-

induced effects in consecutive vascular sections of cat skeletal muscle. Br J 

Pharmacol, 120(3), 387-392. 

Ellis, C. G., Goldman, D., Hanson, M., Stephenson, A. H., Milkovich, S., Benlamri, A., 

et al. (2010). Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats. 

Am J Physiol Heart Circ Physiol, 298(6), H1661-1670. 

Evanson, K. W., Stone, A. J., Samraj, E., Benson, T., Prisby, R., & Kluess, H. A. 

Influence of estradiol supplementation on neuropeptide Y neurotransmission in 

skeletal muscle arterioles of F344 rats. Am J Physiol Regul Integr Comp Physiol, 

303(6), R651-657. 

Frisbee, J. C. (2004). Enhanced arteriolar alpha-adrenergic constriction impairs dilator 

responses and skeletal muscle perfusion in obese Zucker rats. J Appl Physiol, 

97(2), 764-772. 

Fuglevand, A. J., & Segal, S. S. (1997). Simulation of motor unit recruitment and 

microvascular unit perfusion: spatial considerations. J Appl Physiol, 83(4), 1223-

1234. 

Gupta, A. K., Ravussin, E., Johannsen, D. L., Stull, A. J., Cefalu, W. T., & Johnson, W. 

D. (2012). Endothelial Dysfunction: An Early Cardiovascular Risk Marker in 

Asymptomatic Obese Individuals with Prediabetes. Br J Med Med Res, 2(3), 413-

423. 

Haddy, F. J., & Scott, J. B. (1975). Metabolic factors in peripheral circulatory regulation. 

Fed Proc, 34(11), 2006-2011. 



162 

 

Jaap, A. J., Hammersley, M. S., Shore, A. C., & Tooke, J. E. (1994). Reduced 

microvascular hyperaemia in subjects at risk of developing type 2 (non-insulin-

dependent) diabetes mellitus. Diabetologia, 37(2), 214-216. 

Jaap, A. J., Shore, A. C., & Tooke, J. E. (1997). Relationship of insulin resistance to 

microvascular dysfunction in subjects with fasting hyperglycaemia. Diabetologia, 

40(2), 238-243. 

Jackson, D. N., Milne, K. J., Noble, E. G., & Shoemaker, J. K. (2005). Gender-modulated 

endogenous baseline neuropeptide Y Y1-receptor activation in the hindlimb of 

Sprague-Dawley rats. J Physiol, 562(Pt 1), 285-294. 

Jackson, D. N., Moore, A. W., & Segal, S. S. (2010). Blunting of rapid onset 

vasodilatation and blood flow restriction in arterioles of exercising skeletal 

muscle with ageing in male mice. J Physiol, 588(Pt 12), 2269-2282. 

Jackson, D. N., Noble, E. G., & Shoemaker, J. K. (2004). Y1- and alpha1-receptor 

control of basal hindlimb vascular tone. Am J Physiol Regul Integr Comp Physiol, 

287(1), R228-233. 

Jie, K., van Brummelen, P., Vermey, P., Timmermans, P. B., & van Zwieten, P. A. 

(1984). Identification of vascular postsynaptic alpha 1- and alpha 2-adrenoceptors 

in man. Circ Res, 54(4), 447-452. 

Kim, S. H., & Reaven, G. M. (2008a). Insulin resistance and hyperinsulinemia: you can't 

have one without the other. Diabetes Care, 31(7), 1433-1438. 

Kim, S. H., & Reaven, G. M. (2008b). Isolated impaired fasting glucose and peripheral 

insulin sensitivity: not a simple relationship. Diabetes Care, 31(2), 347-352. 

Kiowski, W., Hulthen, U. L., Ritz, R., & Buhler, F. R. (1983). Alpha 2 adrenoceptor-

mediated vasoconstriction of arteries. Clin Pharmacol Ther, 34(5), 565-569. 

Kirby, B. S., Carlson, R. E., Markwald, R. R., Voyles, W. F., & Dinenno, F. A. (2007). 

Mechanical influences on skeletal muscle vascular tone in humans: insight into 

contraction-induced rapid vasodilatation. J Physiol, 583(Pt 3), 861-874. 



163 

 

Lesniewski, L. A., Donato, A. J., Behnke, B. J., Woodman, C. R., Laughlin, M. H., Ray, 

C. A., et al. (2008). Decreased NO signaling leads to enhanced vasoconstrictor 

responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes 

and hypertension. Am J Physiol Heart Circ Physiol, 294(4), H1840-1850. 

Lundberg, J. M., Franco-Cereceda, A., Lou, Y. P., Modin, A., & Pernow, J. (1994). 

Differential release of classical transmitters and peptides. Adv Second Messenger 

Phosphoprotein Res, 29, 223-234. 

Marshall, J. M., & Tandon, H. C. (1984). Direct observations of muscle arterioles and 

venules following contraction of skeletal muscle fibres in the rat. J Physiol, 350, 

447-459. 

McDaid, E. A., Monaghan, B., Parker, A. I., Hayes, J. R., & Allen, J. A. (1994). 

Peripheral autonomic impairment in patients newly diagnosed with type II 

diabetes. Diabetes Care, 17(12), 1422-1427. 

Mihok, M. L., & Murrant, C. L. (2004). Rapid biphasic arteriolar dilations induced by 

skeletal muscle contraction are dependent on stimulation characteristics. Can J 

Physiol Pharmacol, 82(4), 282-287. 

Milman, S., & Crandall, J. P. (2011). Mechanisms of vascular complications in 

prediabetes. Med Clin North Am, 95(2), 309-325, vii. 

Mohrman, D. E., & Regal, R. R. (1988). Relation of blood flow to VO2, PO2, and PCO2 

in dog gastrocnemius muscle. Am J Physiol, 255(5 Pt 2), H1004-1010. 

Moore, A. W., Jackson, W. F., & Segal, S. S. (2010). Regional heterogeneity of alpha-

adrenoreceptor subtypes in arteriolar networks of mouse skeletal muscle. J 

Physiol, 588(Pt 21), 4261-4274. 

Murrant, C. L. (2005). Stimulation characteristics that determine arteriolar dilation in 

skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 289(2), R505-R513. 

Naik, J. S., Xiang, L., Hodnett, B. L., & Hester, R. L. (2008). Alpha-adrenoceptor-

mediated vasoconstriction is not involved in impaired functional vasodilation in 

the obese Zucker rat. Clin Exp Pharmacol Physiol, 35(5-6), 611-616. 



164 

 

Novielli, N. M., Al-Khazraji, B. K., Medeiros, P. J., Goldman, D., & Jackson, D. N. 

(2012). Pre-Diabetes Augments Neuropeptide Y(1)- and alpha(1)-Receptor 

Control of Basal Hindlimb Vascular Tone in Young ZDF Rats. PLoS One, 7(10), 

e46659. 

Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at 

microvascular bifurcations. Microvasc Res, 38(1), 81-101. 

Remensnyder, J. P., Mitchell, J. H., & Sarnoff, S. J. (1962). Functional sympatholysis 

during muscular activity. Observations on influence of carotid sinus on oxygen 

uptake. Circ Res, 11, 370-380. 

Reusch, J. E., Bridenstine, M., & Regensteiner, J. G. (2013). Type 2 diabetes mellitus and 

exercise impairment. Rev Endocr Metab Disord, 14(1), 77-86. 

Revington, M., & McCloskey, D. I. (1988). Neuropeptide Y and control of vascular 

resistance in skeletal muscle. Regul Pept, 23(3), 331-342. 

Ross, G. A., Mihok, M. L., & Murrant, C. L. 2013. Extracellular adenosine initiates rapid 

arteriolar vasodilation induced by a single skeletal muscle contraction in hamster 

cremaster muscle. Acta Physiol (Oxf), 208(1):74-87. 

Rowell, L. B. (1993). Human Cardiovascular Control. New York: Oxford University 

Press. 

Ruffolo, R. R., Jr., Nichols, A. J., Stadel, J. M., & Hieble, J. P. (1991). Structure and 

function of alpha-adrenoceptors. Pharmacol Rev, 43(4), 475-505. 

Schaefer, C., Biermann, T., Schroeder, M., Fuhrhop, I., Niemeier, A., Ruther, W., et al. 

(2010). Early microvascular complications of prediabetes in mice with impaired 

glucose tolerance and dyslipidemia. Acta Diabetol, 47(Suppl 1), 19-27. 

Scherrer, U., & Sartori, C. (1997). Insulin as a vascular and sympathoexcitatory hormone: 

implications for blood pressure regulation, insulin sensitivity, and cardiovascular 

morbidity. Circulation, 96(11), 4104-4113. 



165 

 

Shoemaker, J. K., Tschakovsky, M. E., & Hughson, R. L. (1998). Vasodilation 

contributes to the rapid hyperemia with rhythmic contractions in humans. Can J 

Physiol Pharmacol, 76(4), 418-427. 

Soma, L. R. (1983). Anesthetic and analgesic considerations in the experimental animal. 

Ann N Y Acad Sci, 406, 32-47. 

Strandell, T., & Shepherd, J. T. (1967). The effect in humans of increased sympathetic 

activity on the blood flow to active muscles. Acta Med Scand Suppl, 472, 146-

167. 

Thomas, G. D., & Segal, S. S. (2004). Neural control of muscle blood flow during 

exercise. J Appl Physiol, 97(2), 731-738. 

Tooke, J. E., & Goh, K. L. (1999). Vascular function in Type 2 diabetes mellitus and pre-

diabetes: the case for intrinsic endotheiopathy. Diabet Med, 16(9), 710-715. 

Tschakovsky, M. E., Rogers, A. M., Pyke, K. E., Saunders, N. R., Glenn, N., Lee, S. J., et 

al. (2004). Immediate exercise hyperemia in humans is contraction intensity 

dependent: evidence for rapid vasodilation. J Appl Physiol, 96(2), 639-644. 

VanTeeffelen, J. W., & Segal, S. S. (2000). Effect of motor unit recruitment on functional 

vasodilatation in hamster retractor muscle. J Physiol, 524 Pt 1, 267-278. 

VanTeeffelen, J. W., & Segal, S. S. (2006). Rapid dilation of arterioles with single 

contraction of hamster skeletal muscle. Am J Physiol Heart Circ Physiol, 290(1), 

H119-127. 

Wahlestedt, C., Grundemar, L., Hakanson, R., Heilig, M., Shen, G. H., Zukowska-

Grojec, Z., et al. (1990). Neuropeptide Y receptor subtypes, Y1 and Y2. Ann N Y 

Acad Sci, 611, 7-26. 

Wiernsperger, N. (1994). Vascular defects in the aetiology of peripheral insulin resistance 

in diabetes. A critical review of hypotheses and facts. Diabetes Metab Rev, 10(3), 

287-307. 



166 

 

Wunsch, S. A., Muller-Delp, J., & Delp, M. D. (2000). Time course of vasodilatory 

responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. Am 

J Physiol Heart Circ Physiol, 279(4), H1715-1723. 



167 

 

Chapter 5 : Conclusions 

5.1. Summary 

The novel findings presented in this thesis contribute to the understanding of vascular 

dysfunction associated with type 2 diabetic disease progression. Specifically, in pre-

diabetes, elevated sympathetic microvascular modulation leads to compromised blood 

flow regulation in skeletal muscle. The presented studies demonstrate that pre-diabetes 

promotes an overall increase in basal Y1R and α1R vascular control in skeletal muscle 

under resting and active conditions.  These studies are also the first to address the impact 

of augmented peptidergic (neuropeptide Y, NPY) contribution, in addition to 

noradrenergic contribution, to skeletal muscle vascular dysfunction under resting and 

active conditions in pre-diabetes. In support of hypothesis 1, it was shown that chronic 

basal activation of NPY Y1 receptor (Y1R) and α1 adrenergic receptor (α1R) was 

elevated in hindlimb vasculature of pre-diabetic Zucker diabetic fatty (ZDF) rats. In 

addition, expression of hindlimb tissue NPY and vascular Y1R and α1R was greater in 

pre-diabetic compared to control rats, demonstrating changes in sympathetic control 

system components involved in vascular modulation. These data support heightened 

sympathetic nerve activity (SNA) associated with pre-diabetes, thus providing impetus 

for subsequent studies investigating the impact of pre-diabetes and elevated sympathetic 

receptor activation on skeletal muscle microvascular function.  

In contrast to experiments carried out under basal conditions in chapter 2, the 

experiments of chapter 3 investigated the impact of pre-diabetes on microvascular 

function in contracting muscle. Using a murine model of pre-diabetes, an adaptation of 
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the previously established gluteus maximus preparation, and intravital microscopy 

techniques, experiments from chapter 3 supported hypothesis 2, where arteriolar dilation 

and blood flow in response to skeletal muscle contraction was blunted in pre-diabetic 

mice, compared to healthy controls. Analysis of contraction-evoked arteriolar responses 

throughout continuous branching arterioles also uncovered spatially-dependent changes 

in arteriolar diameter, where relative dilation of distal arterioles was greater than that of 

proximal arterioles. In pre-diabetic mice however, this pattern of dilation was disrupted 

compared to control. In chapter 4, we determined whether elevated sympathetic 

modulation of vascular control contributed to impaired contraction evoked dilation in 

pre-diabetic mice. Findings from chapter 4 supported hypothesis 3, as we found that 

attenuated arteriolar responses to skeletal muscle contraction were a result of enhanced 

constitutive activation of arteriolar Y1R and α1R in pre-diabetic mice. Additionally, 

arteriolar vasoconstrictor responsiveness to sympathetic Y1R and α1R activation was 

greater in pre-diabetic mice. 

 

5.2. Merit 

The findings of this thesis contribute to further understanding cardiovascular co-

morbidities associated with diabetic disease progression. Past research has generally 

focused on microvascular disease as a result of prolonged chronic diabetic conditions. 

Few studies however, have examined the impact of early pre-diabetes on microvascular 

function within skeletal muscle. The studies presented herein demonstrate that pre-
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diabetes is accompanied by augmented peripheral sympathetic vascular modulation of 

basal vascular tone and vasodilatory responses to muscle contraction.  

 Prior to studies performed in this thesis, no previous studies have examined 

peptidergic vascular control in pre-diabetes, overt type 2 diabetes or any other metabolic 

condition (i.e., obesity, hypertension, the metabolic syndrome). Sympathetic modulation 

of skeletal muscle vasculature in health and disease is often examined in light of 

noradrenergic mechanisms (Frisbee, 2003, 2004; Hodnett, Xiang, Dearman, Carter, & 

Hester, 2008; Lesniewski et al., 2008; Naik, Xiang, & Hester, 2006; Naik, Xiang, 

Hodnett, & Hester, 2008; Okon, Szado, Laher, McManus, & van Breemen, 2003; 

Romanko, Ali, Mintz, & Stepp, 2009; Stepp & Frisbee, 2002). Notably, NPYs role in 

sympathetic vascular regulation within skeletal muscle has been demonstrated under 

basal resting and active conditions (Buckwalter, Hamann, & Clifford, 2005; Buckwalter, 

Hamann, Kluess, & Clifford, 2004; DeLorey et al., 2010; Evanson et al., 2012; Jackson, 

Milne, Noble, & Shoemaker, 2005a; Jackson, Noble, & Shoemaker, 2004; Novielli, Al-

Khazraji, Medeiros, Goldman, & Jackson, 2012). Increased SNA accompanying pre-

diabetes supports a greater role of NPY in sympathetic vascular modulation. NPY release 

is understood to increase under such conditions [in conjunction with norepinephrine 

(NE)], and its influence on sympathetic vasoconstrictor effects of arterioles become 

greater (Bartfai, Iverfeldt, Fisone, & Serfozo, 1988; De Camilli & Jahn, 1990; Lundberg, 

Franco-Cereceda, Lou, Modin, & Pernow, 1994). Experimental findings from chapters 2 

and 4 highlight the role of NPY in augmented skeletal muscle vascular control, whereby 

NPYs contribution to sympathetic regulation of skeletal muscle blood flow and arteriolar 

diameter was increased in pre-diabetic rats and mice. Therefore, studies examining 



170 

 

sympathetic vascular control mechanisms should consider consequences of NPY-Y1R 

activation in addition to α-adrenergic mechanisms.  

Functional experiments conducted in chapters 2, 3 and 4 were performed in vivo 

with the use of rat and mouse models of pre-diabetes. Using an in vivo approach provided 

the ability to evaluate vascular function within the animal itself, leaving endogenous 

neural and vascular control mechanisms intact. In chapter 2, in vivo blood flow 

measurements were evaluated at the level of the femoral artery in pre-diabetic ZDF and 

control rats. Under basal conditions, changes in resting blood flow that were evoked by 

sympathetic receptor blockade provided a summation of the modifications in downstream 

resistance within branching microvascular networks of hindlimb skeletal muscle. In 

chapters 3 and 4 however, the in vivo experimental approach was extended into the 

skeletal muscle microvasculture of the gluteus maximus (GM) in pre-diabetic and healthy 

mice. Intravital microscopy served to directly assess functional responses of arterioles 

themselves, where physiological interactions between microvessels, muscle fibers and 

perivascular neural control could be resolved. The planar geometry and uniform thinness 

of the GM enables access to its entire microvascular network for imaging and 

experimental perturbations, where diameter and blood flow measurements (Al-Khazraji, 

Novielli, Goldman, Medeiros, & Jackson, 2012) can be made within one focal plane. As 

such, arteriolar responses to both tetanic and rhythmic muscle contraction were evaluated 

at multiple orders of arterioles. Development of this model was ideal for investigating the 

impact of early pre-diabetes on arteriolar network regulation in skeletal muscle. This 

model can be used to address additional regulatory events of the microvasculature that 

may be compromised in early pre-diabetes.  



171 

 

The use of experimental preparations used in chapters 2, and 3 and 4 allowed for 

in situ evaluation of sympathetic Y1R and α1R effects on vascular control. With the use 

of specific Y1R and α1R antagonists, BIBP3226 and prazosin, autogenous sympathetic 

receptor-ligand mediated effects were uncovered in chapters 2 and 4. In a contrasting 

manner, the use of Y1R and α1R agonists (chapter 4) may determine the existence of 

receptors and outcomes of receptor activation (i.e. induce vasoconstriction), or activate 

sympathetic receptors to modify physiological outcomes (i.e. blunting of contraction-

evoked arteriolar dilation in control mice). Targeting Y1R and α1R pharmacologically 

with the use of antagonists and agonists therefore provided the ability to discern 

differences in sympathetic vascular control between pre-diabetic and control groups that 

may have thereby been overlooked, as resting cardiovascular and hemodynamic 

characteristics were similar between experimental groups. 

 

5.3. Limitations and assumptions 

The experiments presented in this thesis have been conducted using rodent models of 

pre-diabetes, thus limitations may arise when translating results to pre-diabetic humans. 

Heightened SNA has been observed in pre-diabetic individuals affected by insulin 

resistance and hyperinsulinemia, however sympathetically-mediated modulation of 

vascular function remains to be investigated in pre-diabetic humans. Nevertheless, animal 

models are essential to answering research questions pertaining to physiological 

processes in health and disease. The ZDF rat expresses a dysfunctional leptin receptor, 

thus leptin cannot interact with its respective receptor to suppress appetite. When male 
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ZDF rats are fed a high-fat diet, they develop obesity, insulin resistance, and 

hyperinsulinemia, and ultimately become full blown diabetic (Lesniewski et al., 2008; 

Oltman et al., 2006). The ZDF rat represents a model of type 2 diabetic disease 

progression, where it exhibits a pre-diabetic period, followed by genetically predisposed 

development of overt type 2 diabetes and pancreatic failure (Etgen & Oldham, 2000). 

The rat model used in chapter 2 represented the pre-diabetic condition at 7 weeks of age, 

sharing similar pathological metabolic characteristics to pre-diabetic humans e.g. marked 

increases in circulating plasma insulin, insulin resistance, elevated blood glucose, obesity 

(Kim & Reaven, 2008a, 2008b; Lyssenko et al., 2005).  Additionally, the rat is the most 

commonly used species in cardiovascular research, and is characterized by sympathetic 

nervous system responses and components similar to humans (Montano, Furlan, Guzzetti, 

McAllen, & Julien, 2009). The pre-diabetic ZDF rat model used in chapter 2 was 

therefore appropriate to study the impact of pre-diabetes on basal sympathetic vascular 

modulation of skeletal muscle blood flow.  

In chapters 3 and 4, studies were performed using a mouse model of pre-diabetes 

(the Pound Mouse) of the c57bl6 background, exhibiting the same leptin receptor 

mutation as the pre-diabetic ZDF rat, as well as similar pathological metabolic 

characteristics to the pre-diabetic rat and human condition (Lee & Cox, 2011). 

Conversely however, the pre-diabetic Pound Mouse is not genetically predisposed to 

developing type 2 diabetes, and therefore does not pose an age restriction on 

experimental procedures. Previous studies have used the c57bl6 mouse to evaluate 

sympathetic control mechanisms of arteriolar function in the gluteus maximus (Bearden, 

Payne, Chisty, & Segal, 2004; Jackson, Moore, & Segal, 2010; Moore, Bearden, & Segal, 
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2010; Moore, Jackson, & Segal, 2010), thus we adapted this skeletal muscle preparation 

to the pre-diabetic model used in chapters 3 and 4. Although not demonstrated in pre-

diabetes, mouse versus human comparisons of vascular function have been highlighted in 

ageing studies. In aged mice, impaired hemodynamic and arteriolar dilatory responses to 

contraction of the gluteus maximus muscle was a result of enhanced sympathetic receptor 

activation (Jackson et al., 2010). Accordingly, aged humans demonstrate elevated SNA, 

which has also been demonstrated to restrict blood flow responses to exercising limbs 

(Casey & Joyner, 2012; Dinenno & Joyner, 2006; Proctor & Parker, 2006). Findings of 

chapter 4 demonstrated that enhanced sympathetic receptor activation throughout the 

microvasculature of the GM results in blunted dilatory responses to muscle contraction in 

pre-diabetic mice, however this has not been confirmed in humans. Humans affected by 

insulin resistance or pre-diabetes have indeed demonstrated instances of heightened SNA 

and impaired functional hyperemic responses to muscle contraction on separate accounts. 

Based on the findings of this thesis, increased SNA likely contributes to attenuated 

vascular responses to muscle contraction in pre-diabetic humans, however this remains to 

be elucidated.  

 Although it was not measured directly, sympathetic activity was assumed to be 

elevated in pre-diabetic animals used in studies of this thesis. Experiments were 

conducted in anesthetized animals, and therefore concerns may be raised regarding the 

effects of anesthesia on cardiovascular and sympathetic systems. Barbiturates are often 

used for rodent anesthesia for invasive non-recovery procedures, however prolonged 

anesthesia and supplemental doses may induce respiratory and cardiovascular depression. 

The majority of experimental variables within this thesis concerned cardiovascular 
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measurements. Therefore the appropriate anesthetic that was used for all animals was a 

cocktail of α-chloralose and urethane. Both α-chloralose and urethane are able to produce 

long periods of anesthesia, without jeopardizing cardiopulmonary reflexes. Additionally, 

blood pressure and respiration are not affected, and spinal and baroreceptor reflexes 

remain intact (Jackson, Milne, Noble, & Shoemaker, 2005b; Jackson et al., 2004; Killip, 

1963; Soma, 1983). Experimental outcomes of experiments were therefore determined 

with confidence that the anesthetic did not confound the validity of cardiovascular 

measurements obtained in studies of chapters 2, 3, and 4. 

 

5.4. Future Directions 

As pre-diabetes affects one quarter of the North American population, dietary 

modification and increased activity level have become the primary first line of defense 

against diabetic disease progression. Compliance to such lifestyle changes, specifically 

increased physical activity, may be low as a result of compromised perfusion of 

contracting muscle. Insufficient blood flow distribution and supply to working tissues 

may interfere with muscle performance and may even become painful in extreme 

conditions. Further investigations using animal models to address microvascular function 

in pre-diabetes may uncover additional functional mechanisms that may be compromised.  

In contracting skeletal muscle, vasodilation can ascend the arteriolar network 

(Hilton, 1959). Vasodilation is generally initiated at distal arterioles and travels 

proximally past intramuscular arterioles, decreasing vascular resistance and increasing 

blood supply to arteriolar networks of working muscle (Folkow, Sonnenschein, & 
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Wright, 1971; Segal & Jacobs, 2001). Increased SNA has been shown to inhibit the 

spread of dilation along arterioles and feed arteries (Haug & Segal, 2005; Haug, Welsh, 

& Segal, 2003; Kurjiaka & Segal, 1995), and thus attenuates conducted vasodilatory 

responses within arteriolar networks (VanTeeffelen & Segal, 2003). Increased SNA in 

the pre-diabetic condition may therefore compromise conducted vasodilatory responses, 

in addition to maximal arteriolar dilatory responses to exercise. Future studies can utilize 

the arteriolar network of the GM to evaluate the spread of dilation initiated at distal pre-

capillary arterioles and propagated upstream. Micropipette pressure pulse ejection of 

vasoactive substances can be delivered to arterioles locally to evoke conducted dilatory 

responses. Measurements such as arteriolar dilation, distance of the conducted response 

and conduction speed could therefore be quantified. Using sympathetic antagonists, 

potential sympathetically-mediated restrictions of conducted responses can be 

determined.  

In addition to proposed sympathetically-mediated inhibition of conducted 

vasodilation, the cellular components involved in the conducted dilatory response may 

also be effected in pre-diabetes. The upward spread of dilation from distal arterioles is an 

electrical event mediated by cell-to-cell coupling. Activation of endothelial potassium 

channels leads to hyperpolarization of endothelial cells that is conducted along the vessel 

and traverses into vascular smooth muscle cells via myoendothelial gap junctions 

(Bagher & Segal, 2011). Interestingly, previous work has demonstrated that the activity 

of ATP-sensitive potassium channels of gracilis feed arteries is augmented in obese 

Zucker rats (Hodnett et al., 2008). These findings may be translated to the pre-diabetic 

state, as obesity is commonly associated with pre-diabetes. This may cause impairments 



176 

 

in the ability to initiate and sustain conducted dilatory responses throughout arteriolar 

skeletal muscle networks. Whether expression and/or function of ion channels involved 

in initiating vasodilatory hyperpolarization is augmented in pre-diabetes remains to be 

investigated. 

In chapter 2, expression of NPY was greater in hindlimb tissue of pre-diabetic rats 

compared to control rats. Increased neurotransmitter (NT) expression of NPY supports an 

increase in NT release and increased SNA reported to accompany hyperinsulinemia and 

insulin resistance in pre-diabetes. Interestingly however, expression of hindlimb tissue 

Y1R and α1R was also elevated. Conventionally, an increase in ligand causes 

internalization and down regulation of receptors, but findings from chapter 2 

demonstrated the opposite. Thus modification of sympathetic Y1R and α1R expression in 

pre-diabetes may occur via epigenetic influences, despite the increased presence of NTs. 

Pilot experiments were performed to investigate whether pre-diabetic conditions modify 

receptor expression of vascular smooth muscle cell (VSMC) Y1R and α1R. Vascular 

smooth muscle cells were isolated from aortas of both control and pre-diabetic mice and 

cultured in vitro (see Appendix A for methods). Cultured VSMCs from control and pre-

diabetic mice were then treated with media supplemented with glucose, insulin and leptin 

at concentrations similar to physiological levels observed in pre-diabetic mice. Upon 

Western blot analysis of Y1R and α1R VSMC protein expression, novel results indicated 

that media mimicking ‘pre-diabetic conditions’ (high glucose, insulin and leptin) could 

modify sympathetic receptor expression in VSMC of control mice and pre-diabetic mice 

(Figure 5.1). Although data are preliminary, these novel findings may provide 
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implications for initiation of sympathetic vascular dysregulation initiated early in pre-

diabetes, as a result of pre-diabetic pathological characteristics. 

  In addition to the aforementioned directions of study, other factors contributing to 

microvascular dysregulation in pre-diabetes may be considered. Investigation of 

sympathetic vascular control mechanisms can be extended, where future experiments 

may address β-adrenergic, as well as purinergic vascular modulation in pre-diabetes. 

Also, studies may aim to determine whether increased sympathetic receptor expression 

may be resolved spatially, where heterogeneous receptor distribution may be modified 

along individual arteriolar segments within skeletal muscle. Furthermore, long-term 

effects of heightened SNA may be reflected in changes of microvascular morphology, as 

NPY possesses potent vascular mitogenic properties (Shigeri & Fujimoto, 1993). 

Nonetheless, the ability to visualize the microvasculature is a powerful tool for 

investigating modifications in vascular function in pre-diabetes. At this early stage in 

diabetic disease progression, pathological modifications of vascular control mechanisms 

can be resolved at the level of the resistance vasculature, and may translate to 

microvascular complications in the human condition, which may not be resolved.  
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Figure 5.1. Glucose, insulin and leptin modifies vascular smooth muscle cell Y1R 

and α1R expression in CTRL and PD.  

Protein expression of Y1R and α1R in aortic VSMCs isolated from control (CTRL n=2-

6) and pre-diabetic (PD, n=2-6) mice. VSMCs were exposed to high glucose media (17 

mM), low glucose media (5 mM), high insulin media (100 ng/mL), high leptin media (50 

ng/mL), and high glucose, insulin and leptin DMEM (mimicking pre-diabetic 

conditions). * different from PD high glucose, insulin and leptin condition; ** different 

from PD high leptin condition, 1-way ANOVA. Data represent mean values of Western 

blot band densities normalized to β-actin ± SEM. 
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Appendices 

Appendix A  

i) Isolation and culture of vascular smooth muscle cells 

 At the end of a subset of experiments (n=4-6), the CTRL or PD animal was 

euthanized and placed in the supine position. Under stereomicroscopic guidance and 

using sterile surgical instruments, a midline incision of the chest was made through the 

sternum to expose the chest cavity. Cardiac puncture was performed to remove blood 

volume, followed by cardiac perfusion of 1 mL sterile Hanks buffered saline solution 

(HBSS 1X, Invitrogen Canada Inc., Burlington, ON, Canada) through the apex of the 

heart. The lungs were then removed to clearly visualize the heart and aorta. Excess fat 

surrounding the proximal aorta was also removed. Two incisions were then made to 

remove the aorta, one below the aortic arch and one above the diaphragm. The isolated 

aorta was rinsed in HBSS and placed in enzymatic digestion solution (5% collagenase 

type II [Worthington Biochemical, Lakewood, NJ, USA], 5% soybean trypsin inhibitor 

[Invitrogen Canada Inc., Burlington, ON, Canada], 0.8 units/mL elastase [Worthington 

Biochemical, Lakewood, NJ, USA], suspended in HBSS) at 37°C for 10 minutes. The 

aorta was then moved to and rinsed in a petri dish containing warmed high glucose 

Dulbecco’s minimal essential medium (DMEM), supplemented with 20% fetal bovine 

serum (FBS) and 1% penicillin-streptomycin (Invitrogen Canada Inc., Burlington, ON, 

Canada). The outer adventitial layer was carefully removed and the aorta was cut open 

longitudinally. All remaining blood clots were removed and the endothelial layer was 

removed by gently scraping the inside of the aorta with forceps. The aorta was then 

moved to a dish containing fresh warmed DMEM and cut horizontally into pieces, then 
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placed into enzymatic digestion solution for up to 2 hours, incubated at 37°C and 5% 

carbon dioxide. Once the pieces of aorta were dissolved, the vascular smooth muscle cell 

(VSMC) suspension was triturated with a glass pipette and equal volume of warmed 

DMEM was added to the dish. Cells were collected at 1500 rpm, washed twice, plated 

and left undisturbed for 5-7 days at 37°C and 5% carbon dioxide. Cells were washed with 

HBSS and passaged using 0.25% trypsin-EDTA treatment for dissociation. After passage 

3-5, cells were weaned to 10% FBS supplemented DMEM. 

ii) Experimental conditions and Western Blot analysis of cultured VSMC 

At passage 8, approximately 1 million cells from each group (i.e. CTRL and PD) 

were plated into each well of a six well plate. Cells were cultured to approximately 90% 

confluence, serum starved for 24 hours, and re-incubated with the following media 

conditions for 48 hours (media was changed every 12 hours): high glucose DMEM (17 

mM), low glucose DMEM (5 mM), high insulin DMEM (100 ng/mL), High leptin 

DMEM (50 ng/mL), High glucose, insulin and leptin DMEM (mimicking pre-diabetic 

conditions). After 48 hours, media was removed and cells were washed in ice cold HBSS 

and then lysed in lysis buffer (T-PER Tissue Protein Extraction Reagent, Fisher Scientific 

Company, Ottawa, ON, Canada) containing protease (104 mM AEBSF, 80 lM aprotinin, 

2.1mM leupeptin, 3.6 mM bestatin, 1.5 mM pepstatin A and 1.4 mM E-64) and 

phosphatase (Halt Phosphatase Inhibitor Cocktail) inhibitors. Cells were scraped and then 

triturated with a pipette. Cell lysates were centrifuged for 15 min at 14,000 rpm at 4°C. 

Supernatant was collected and stored at -80°C until protein concentration was 

determined.  
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A Bradford assay was performed to determine total protein concentration of 

samples. Ten micrograms of protein from CTRL or PD samples were loaded on a 4–12% 

gradient gel and separated by SDS-PAGE. After electrophoresis, proteins were 

transferred at a constant voltage to polyvinylidene fluoride membranes. To determine 

Y1R VSMC protein expression, membranes were blocked for 1 hour in 5% bovine serum 

albumin (BSA) in Tris-Buffered Saline + Tween-20 (0.5%) (TTBS) at room temperature. 

Membranes were then incubated in primary antibody specific to mouse NPY Y1R 

(AbCam Inc., Cambridge, MA, USA) in 5% BSA in TTBS at a concentration of 1:1000 

at 4°C overnight. Membranes were washed in TTBS then incubated in secondary 

antibody conjugated to horseradish peroxidase (goat anti-rabbit IgG, 1:20000) in 2.5% 

BSA in TTBS for 1 hr. To determine VSMC α1R protein expression, membranes were 

blocked for 1 hour in 5% non-fat skim milk powder in TTBS at room temperature. 

Membranes were incubated in primary antibody specific to mouse α1R (AbCam Inc., 

Cambridge, MA, USA) in 5% non-fat skim milk powder and Tris buffered saline (TBS) 

for 1 hour at room temperature. Membranes were washed in TBS and incubated in 

secondary antibody conjugated to horseradish peroxidase (goat anti-rabbit IgG, 1:20000) 

in 2.5% BSA in TTBS for 1 hour. Y1R and α1R membranes were washed three times 

and bands were detected using an Immun-Star WesternCVC chemiluminescent kit (Bio-

Rad, Hercules, CA, USA) and imaged with the ChemiDoc XRS System (Bio-Rad, 

Hercules, CA, USA). Following imaging, membranes were immediately washed in 

TTBS, stripped, and blocked in 5% BSA in TTBS for 1 hour at room temperature. 

Membranes were washed in TTBS and incubated in primary antibody specific to β-actin 

(loading control, anti-beta actin, rabbit polyclonal, Abcam, Cambridge, MA, USA) for 1 
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hour at room temperature. Membranes were then washed in TTBS, incubated in 

secondary antibody and imaged (as above). Densitometric band analysis was performed 

with Quantity One 1-D Analysis Software (Bio-Rad, Hercules, CA, USA). Quantified 

protein expression values were normalized to β-actin. 
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Appendix B  

  

 

AUP Number: 2012-018 PI Name: Jackson, Dwayne AUP Title: Microvascular 
Function In Skeletal Muscle Approval Date: 08/08/2012 

Official Notice of Animal Use Subcommittee (AUS) Approval: Your new Animal Use 
Protocol (AUP) entitled "Microvascular Function In Skeletal Muscle" has been 
APPROVED by the Animal Use Subcommittee of the University Council on Animal 
Care. This approval, although valid for four years, and is subject to annual Protocol 
Renewal.2012-018::1 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through the ACVS 

office. Health certificates will be required. 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with 
institutional safety standards and have received all necessary approvals. Please consult 
directly with your institutional safety officers. 

Submitted by: Copeman, Laura  on behalf of the Animal Use 

Subcommittee University Council on Animal Care 
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