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Abstract 

Responses of annular and planar flows to the introduction of grooves on the bounding 

surfaces have been analyzed. The required spectral algorithms based on Fourier and 

Chebyshev expansions have been developed. The difficulties associated with the 

irregularities of the physical domain have been overcome using either the immersed 

boundary conditions (IBC) concept or the domain transformation method (DT).  

Steady flows in annuli bounded by walls with longitudinal grooves have been studied. 

Analysis of pressure losses showed that the groove-induced changes can be represented as a 

superposition of a pressure drop due to a change in the average position of the bounding 

cylinders and a pressure drop due to the flow modulations induced by the shape of the 

grooves. The former effect can be evaluated analytically while the latter requires explicit 

computations. It has been shown that the reduced-order model is an effective tool for 

extraction of features of the groove geometry that lead to flow modulations relevant to drag 

generation. It has been shown that the presence of the longitudinal grooves may lead to a 

reduction of the pressure loss in spite of an increase of the wetted surface area. The form of 

the optimal grooves from the point of view of the maximization of the drag reduction has 

been determined. 

When mixing augmentation is not available, heat can be transported across micro-channels 

by conduction only. A method to increase this heat flow has been proposed. The method 

relies on the use of grooves parallel to the flow direction. It has been shown that it is possible 

to find grooves that can increase the heat flow and, at the same time, can decrease the 

pressure losses. The optimal groove shape that maximizes the overall system performance 

has been determined. Since it has been assumed that the flow must be laminar, it is of interest 

to determine the maximum Reynolds number for which this assumption remains valid. 

The stability characteristics of flow in a grooved channel have been studied. Only 

disturbances corresponding to the travelling waves in the limit of zero groove amplitude have 

been found. It has been shown that disturbances corresponding to two-dimensional waves in 

a smooth channel play the critical role in the grooved channel. The highly three-dimensional 

disturbance flow topology at the onset of the instability has been described. It has been 

demonstrated that the presence of the grooves leads to flow stabilization for groove wave 
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numbers � < ����� ≈ 4.22 and flow destabilization for larger �. The stabilizing/destabilizing 

effects increase with the groove amplitude. Variations of the critical Reynolds number over 

the whole range of groove wave numbers and groove amplitudes of interest have been 

determined. Special attention has been paid to the effects of long wavelength, drag reducing 

grooves. It has been shown that such grooves lead to a small increase of the critical Reynolds 

number compared with the smooth channel.  

Keywords 

Annular flow, domain transformation, drag reduction, flow control, grooves, heat transfer 

enhancement, immersed boundary conditions, linear stability analysis, longitudinal grooves, 

micro-channel, Navier–Stokes equations, optimization, planar flow, pressure losses, riblets, 

spectral methods, surface roughness, transverse grooves. 
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Chapter 1  

1 Introduction 

1.1 Objective 

The main objective of this dissertation is to study the effects of different forms of surface 

topographies on fluid flow and heat transfer in conduits. It includes analysis of the effects 

of axisymmetric and longitudinal grooves in annular Poiseuille flow (APF), and effects of 

longitudinal grooves in planar Poiseuille flow (PPF). The first reference flow, i.e. APF, is 

defined as the flow driven by a constant axial pressure gradient in an annulus formed by 

two co-axial circular cylinders. The second reference flow, i.e. PPF, is defined as the 

flow between two parallel plates driven by a constant streamwise pressure gradient. We 

are interested in the determination of the effects of the surface topography on the friction 

factor, the laminar-turbulent transition, and the heat transfer.  

1.2 Motivations 

Boundary irregularities are found in many biological systems and are encountered in 

many practical engineering problems. It is known that such irregularities affect the flow 

characteristics as well as the heat transfer. In particular, it is well known that grooved 

surfaces have effects on the skin friction drag (McLean 1983; Croce & D’Agaro 2005), 

heat transfer rate (Ligrani et al. 2003; Croce & D’Agaro 2005), the form of turbulence 

(Jimenez 2004), and the laminar-turbulent transition (Floryan 2003; Floryan 2007).  

Different types of surface topographies have been widely used in many heat transfer 

augmentation techniques (Ligrani et al. 2003) and in the development of flow control 

strategies (Gad-el-Hak et al. 1997). Performance improvements can be achieved through 

the use of properly selected surface structures, assuming that one can attain a complete 

understanding of how these structures affect the flow. 

Surface topographies may have an uncountable number of geometric forms with each of 

them leading to a potentially different response. The multitude of possible geometries 

prevents formulation of a general conclusion that would correlate geometric features of 
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the bounding surfaces with changes in the flow and heat transfer characteristics. 

Therefore, achieving the complete understanding of the possible system responses to the 

presence of grooves represents a significant challenge. This challenge forms the main 

motivation for the present work. The aim of this dissertation is to explore effects of 

surface topographies on APF, PPF and the heat transfer. Since proper selection of surface 

topography may lead to an overall improvement in the performance of the heat and flow 

systems, the optimal shapes of the grooved surfaces subject to suitable constraints are 

also sought. 

1.3 Literature review 

The existing literature on the effects of surface structures on the heat and fluid flows is 

very diverse. Thus, this review is limited a few examples of many possible application 

areas with focus on the effects of surface topography on the drag generation, the laminar-

turbulent transition and the heat transfer.  

1.3.1 Grooved surfaces 

Variations in the structure of surface topography offers potential for improving the 

performance of flow systems, following examples found in biology (Jung & Bhushan 

2010). The leaves of the lotus plant provide an example of a super-hydrophobic and low 

drag surface. The special properties of this surface are associated with wax tubules that 

create a certain surface topography. Shark skin represents another good example of a low 

drag surface. The skin is covered with very small tooth-like scales ribbed with 

longitudinal grooves which reduce the formation of vortices present on a smooth surface. 

The relationship between the surface topography and the form of movement of the 

adjacent fluid has been studied primarily in the context of analysis of surface roughness 

effects. This is one of the classical but, nevertheless, still not well understood topics in 

fluid dynamics. A large variety of possible responses, which depend on the details of 

roughness shape as well as on the flow conditions, prevents the lack of closure. The 

direct response can be measured in terms of resistance experienced by a flow. It has been 

thought, since the original experiments of Hagen (1854) and Darcy (1857), that 

roughness always increases this resistance. Nikuradse (1933) and Moody (1944) 
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introduced the concept friction factor to quantify the drag and carried out extensive 

measurements. Their results demonstrate that roughness does not affect the laminar drag 

or, at least, the effect is too small to be measured using the techniques available at that 

time, and it always increases turbulent flow drag, with the increases being a function of 

the form of the roughness.  

Surface roughness can affect fluid flow indirectly by changing the flow regime from 

laminar to turbulent. This subject was first studied experimentally with a focus on Hagen-

Poiseuille flow (HPF), i.e., flow in a pipe with constant cross-sectional area driven by a 

constant streamwise pressure gradient, by Hagen, Poiseuille, and Reynolds (Eckhardt et 

al. 2007). Reynolds showed that for a range of flow velocities, pipe diameters, and 

viscosities, the transition from the laminar to the turbulent regime happened at almost the 

same value of the dimensionless parameter that today bears his name, Reynolds number. 

He mentioned that the critical value of the Reynolds number was not unique and strongly 

depends on the level of background disturbances (Jackson & Launder 2007). Theoretical 

work on the laminar-turbulent transition was started based on the linear hydrodynamic 

stability at the same time being pioneered by Rayleigh, Kelvin, and Helmholtz (Bayly et 

al. 1988). General linear stability theory for inviscid plane-parallel shear flows was 

developed by Lord Rayleigh (1880). His theory successfully described the instability 

associated with inflectional shear flow, but failed in the case of wall-bounded flows such 

as PPF. 

Most of the recent work dealing with surface corrugations has been conducted in the 

context of PPF. Kleinstreuer & Koo (2004) determined pressure losses in laminar flow by 

modeling corrugations as layers of porous material. Kandlikar et al. (2005) introduced a 

set of roughness parameters. Wibel & Ehrhard (2006) measured pressure losses in 

grooved channels with grooves produced by a milling process. Wang (2003) analyzed 

flow over rectangular grooves while Thomas et al. (2001) worked with sinusoidal 

grooves. Wibel & Ehrhard (2007) studied the effects of grooves on the laminar-turbulent 

transition in rectangular micro-channels. Ligrani et al. (2003) reviewed flow 

characteristics and mechanisms that are responsible for the heat transfer enhancement and 

friction factor augmentations produced by different types of grooved surfaces.  
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Hydrophobic surfaces represent a fairly new area where surface grooves play an 

important role. Maynes et al. 2007 studied laminar flow with micro-ribs oriented in the 

flow direction. Cheng et al. 2009 carried out detailed studies of slip performance and 

correlated them with groove patterns. Davis & Lauga (2009) studied friction associated 

with mesh-like surfaces. Ng & Wang (2009) focused their attention on the Stokes flow 

over gratings.  

The recent use of the reduced-order method (Floryan 1997) offers the potential for 

extraction of geometric features that are relevant for flow dynamics and elimination of 

the irrelevant details that clutter the analysis and mask the relevant mechanisms. Use of 

such techniques may lead to general conclusions regarding the effects of roughness 

shape. The global shape properties can be extracted using a projection of the surface 

geometry onto a convenient functional space, e.g. Fourier space, with the expectation that 

only a few leading Fourier modes matter. Such spectral models of surface geometry 

(Floryan 1997) have proved very successful as it has been demonstrated that, in many 

instances, it is sufficient to use only the leading Fourier mode to capture the main 

physical processes with accuracy sufficient for most applications (Floryan 2007).  

1.3.2 Drag generation / reduction  

The mechanisms of drag generation associated with surface corrugations have been 

clearly delineated only recently (Mohammadi & Floryan 2012). The shear drag is 

associated with surface-corrugation-induced changes in the wall shear, as well as an 

increase of the wetted area. The pressure form drag is associated with the mean pressure 

gradient driving the flow and the pressure interaction drag is generated by projection of 

the corrugation-modulated part of the pressure field on the surface geometry. The 

importance of pressure effects increases rapidly with the corrugation amplitude. 

Information about the types of drag and their dependence on the corrugation shape offers 

potential for identification of surface topographies that may result in a lower drag. 

The reduction of pressure losses associated with the movement of fluids through conduits 

has been of continuous interest from the very beginning of modern fluid mechanics. It 

has attracted even more attention in recent times due to an increase in the cost of energy 
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and an interest in the reduction of environmental impact. Most of the fundamental work 

has been devoted to classical canonical flows, e.g. pressure driven flow either through a 

plane channel or through a circular pipe, kinematically driven flows (Couette flow) and 

various forms of boundary layers (the Blasius and the Falkner-Skan boundary layers).  

One particular form of surface topography, i.e. longitudinal grooves, commonly referred 

to as riblets, have attracted attention due to their drag reducing capabilities in turbulent 

flow regimes (Walsh 1980, 1983; Seong-Ryong & Wallace, 1994). Such grooves have a 

wavelength of the order of the viscous scale and lead to reduced shear drag through an 

interference with the turbulence production (Tullis & Pollard, 1993). The viscous regime 

of vanishing riblet spacing is well understood (Bechert & Bartenwerfer 1989; Lucini et 

al. 1991) and detailed measurements of the drag reduction for various shapes have been 

carried out by Bechert et al. (1997) and Frohnapfel et al. (2007). For larger riblets, the 

minimum drag is related to the breakdown of the viscous regime and this process is less 

well understood (Garcia-Mayoral & Jimenez 2011).  

Laminar riblets have attracted less attention. Mohammadi & Floryan (2013) considered 

pressure-driven laminar flows and demonstrated that the drag reducing abilities of long 

wavelength grooves was associated with a redistribution of the bulk flow. They showed 

that the presence of the grooves may lead to a reduction of pressure loss in spite of an 

increase of the wetted surface area. The drag-decreasing grooves are characterized by the 

groove wave number.  

1.3.3 Laminar-turbulent transition 

Surface roughness can affect the flow dynamics indirectly by promoting or delaying the 

laminar-turbulent transition. Reynolds (1883) demonstrated that the presence of 

roughness always promotes transition but recent evidence (Saric et al. 1998) 

demonstrates that roughness may play a stabilizing role. There is a large amount of 

relevant experimental data (Schlichting 1979) but a meaningful progress in the 

understanding of the mechanics of flow response has been achieved only recently 

(Floryan 2007). A frequently used criterion (Morkovin 1990) for determination of the 

critical roughness size is that the roughness Reynolds number �2y = zy� {⁄ < 25, where 
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zy is the undisturbed velocity at height k (the top of the roughness). This criterion does 

not account for the effect of roughness patterns when several roughness elements are 

present. A formal criterion for hydraulic smoothness in the case of distributed roughness 

states that such roughness is hydraulically active only when it is able to induce flow 

bifurcation (Floryan 2007); the relevant critical conditions can be identified using linear 

stability theory. 

The two-dimensional distributed roughness destabilizes travelling wave disturbances 

(Floryan 2005; Asai & Floryan 2006) and the two-dimensional waves remain critical 

(Floryan 2007). The same roughness can amplify disturbances in the form of streamwise 

vortices (Floryan 2007). The first bifurcation can lead either to the onset of travelling 

waves or streamwise vortices, depending on the roughness amplitude and wave number 

and on the flow Reynolds number. Similar flow responses have been found in the Couette 

flow (Floryan 2002) and in the pressure driven flow in a converging-diverging channel 

(Floryan 2003; Floryan & Floryan 2009). Roughness has been found to increase transient 

growth, with the streamwise vortices playing the role of the optimal disturbances 

(Szumbarski & Floryan 2006). The effect of roughness patterns on the flow stability has 

been analyzed by Floryan & Asai (2011). 

1.3.4 Heat transfer enhancement 

With the increasing emphasis on energy savings, heat transfer enhancement (HTE) 

becomes crucial in many industrial applications. The available HTE techniques are 

primarily focused on the heat transfer between a solid body and a fluid with the fluid 

acting as the source/sink of energy. These methods may be classified as active, passive or 

compound, with the latter being a combination of the first two (Bergles 1998; Bergles 

2001; Siddique et al. 2010). In active methods, the heat transport is increased by 

inputting additional energy to the system, e.g. surface vibration, suction or injection, 

mechanical mixing of the fluid, utilizing electrostatic fields, etc. (Marcello et al. 1992; 

Nesis et al. 1994; Allen & Karayiannis 1995). In passive methods, the improvement can 

be achieved without providing additional energy. Pin fins, dimples, eddy promoters, swirl 

chambers and rib turbulators are examples of such methods (Dewan et al. 2004). The 
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mechanisms responsible for various HTE techniques were reviewed by Jacobi et al. 

(1998); Ligrani et al. (2003); and Fiebig (1995).  

There is a large volume of work focused on the understanding of flow mixing in systems 

with geometrical inhomogenities. Heat flow is increased by 100-200% in laminar flows 

(Bergles 2001) and by 250-450% (Chang et al. 2008) in turbulent flows through 

activation of different mechanisms, with all of them inevitably leading to an increase of 

the flow resistance (Xia et al. 2011). For example, the average Nusselt number is 

enhanced by as much as 200-400% depending on the pin-fin shapes but the friction factor 

is increased at the same time by 400%-7500% compared to the smooth-channel value 

(Ligrani et al. 2003). The mechanisms of the HTE and the pressure loss for a single 

protruding element with different shapes were studied by Chyu & Natarjan (1996). They 

showed that the upstream horseshoe vortex system, as well as the wake vortices 

downstream of the element, was responsible for the HTE and the pressure loss. In a 

channel with one smooth and one dimpled wall, the average Nusselt number can be 

elevated by as much as 160-350%, while the friction factor increases at the same time in 

the range of 120%-450% (Ligrani et al. 2003). The range of the HTE for turbulators in 

the form of ribs is about 1.7-5.9 times the reference smooth-channel value at the cost of a 

friction factor increase in the range of 2-70 times of the reference smooth-channel value 

(Ligrani et al. 2003). The mechanisms for the HTE and the pressure drop increase in such 

channels rely on the generation of recirculation zones followed by formation of 

secondary flow downstream of the ribs (Cho et al. 2000). The strength of the secondary 

flow can be intensified by using angled ribs and this leads to higher HTE but at the cost 

of a still higher pressure loss.  

Heat transfer can also be intensified by reducing the size of the system. It is well known 

that in the laminar flow regime and for the constant heat transfer rate, the convective heat 

transfer coefficient is inversely proportional to the hydraulic diameter (Cheng et al. 

2008). Hence, smaller channels are capable of providing higher heat removal rates. 

Because of that, micro-channels are widely used for thermal management in many 

industrial applications, e.g. consumer electronics, robotics and the process industry, to 

mention just a few. Analysis of their performance has attracted considerable attention 
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starting with the work of Tuckerman & Pease (1981). Some of the existing studies 

showed deviations in the heat transfer rates from those predicted by the classical 

correlations developed for macro-channels (Judy et al. 2002; Sobhan & Garimella 2001). 

More recent studies confirmed that there is no evidence that the continuum assumption is 

violated and, thus, conventional correlations apply to micro-channels, and the Navier-

Stokes equations along with the energy equation are sufficient to predict the system 

behavior (Judy et al. 2002; Sobhan & Garimella 2001; Liu & Garimella 2004). 

Obviously, geometrical inhomogenities can be added to further increase the HTE. While 

smaller channels lead to higher heat transfer coefficients, the pressure loss greatly 

increases at the same time as the relevant Reynolds number becomes very small. The 

pressure drop depends strongly on the geometry of the micro-channels and, thus, is likely 

to be strongly affected by the presence of surface inhomogenities. 

The design of the surface inhomogenities for HTE purposes should be based on detailed 

knowledge of the flow structures as additional flow resistance is the inevitable 

consequence. The best surface shape should be capable of maximizing the heat transfer 

and minimizing the flow resistance and, thus, the search for its form can be posed as a 

multi-objective optimization problem. There have been many studies using optimum 

design methodologies to determine the dimensions of the surface inhomogenities for 

optimal system performance. For example, Kim & Kim (2002) searched for the optimum 

shape of a single rib in a two-dimensional channel using gradient-based optimization 

techniques. They determined the width-to-height and pitch-to-height ratios which 

optimized the linear combination of the heat transfer and the friction drag coefficients. 

Fabri (1997; 1998a; 1998b; 1998c) studied the optimum shape of fins attached to planar 

surfaces using a genetic algorithm. He approximated the fin surface by a polynomial and 

concluded that the thermal effectiveness of the fin depended on the order of the 

polynomial. He further observed that fins with either undulated or rippled forms provided 

the best performance. Nobilo et al. (2006) studied the heat transfer in two-dimensional 

periodic wavy channels and performed an optimization using a multi-objective genetic 

algorithm. They approximated the shape of the channel, using either linear-piecewise 

profiles or non-uniform rational B-splines (NURBS), and concluded that the latter 
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provided better performance. They noted that the optimal shapes were not unique when 

NURBS were used and that different shapes may have the same thermal performance. 

The mechanics of system response is somewhat different when one considers the heat 

flow between solid bodies kept at different temperatures and separated by a fluid. The 

fluid does not act as a source/sink of energy but as a transfer medium. Two horizontal 

plane walls separated by a fluid layer represent the simplest geometric configuration. The 

problem goes back to the work of Bénard (1900) who observed secondary flows in such 

systems. Rayleigh (1916) demonstrated that the heat is transported by conduction under 

subcritical conditions, and the transport is augmented by convection under the 

supercritical conditions. A recent review can be found in Bodenschatz et al. (2000). 

When the fluid is forced to move along the walls, its movement mitigates the heat 

transport by affecting the critical conditions. This problem was dealt for the first time by 

Gage & Reid (1968) and a recent bibliography can be found in Nicolas (2002). 

One of the major goals of the present work is to seek improvements of the heat transport 

in the above system under the subcritical conditions without negatively affecting the fluid 

flow characteristics. We shall not attempt to create a secondary flow but, rather, we shall 

look for means that will lead to an increase of the effectiveness of conduction. Change of 

the mean distance between the walls is obviously not acceptable. It may, however, be 

possible to identify surface inhomogenities which modulate both the heat flow and the 

fluid flow in such a way that leads to an improvement of the overall system performance.  

Since surface inhomogenities are likely to affect the drag experienced by the fluid, we 

shall focus our attention on a special class of grooves, i.e., riblets, which are known to 

able to reduce pressure losses. Walsh (1983) found that riblets were able to reduce the 

friction drag in turbulent flows despite the increase of the wetted surface area. This 

remarkable property makes riblet-covered walls a potential candidate for effective heat 

transfer applications. Riblets are formed by streamwise ridges of different cross-section. 

In the turbulent regime, riblets have a wavelength of the order of the viscous scale and 

lead to a reduced shear drag through an interference with the turbulence production. In 

heat transfer applications it is still unclear whether it is possible to identify surface 
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geometry that decreases the skin friction while, at the same time, increasing the heat 

transfer coefficient. Walsh & Weinstein (1980) found that the heat transfer coefficient in 

the turbulent regime was 10% larger than the smooth-wall value for a specific range of 

riblet widths. Lindemann (1985) found, experimentally, that triangular riblets were able 

to increase the heat transfer coefficient by as much as 36% of the smooth-wall value. 

Stalio & Nobile (2003) conducted direct numerical simulation of three dimensional, time 

dependent laminar and turbulent flows. Their results contradicted some of the 

experimental results and led to the conclusion that riblets were ineffective in reducing the 

skin friction and improving the heat transfer in the laminar regime (Choi & Orchard 

1997). It has been recently shown that there exists a class of longitudinal grooves that 

leads to a reduction of the pressure losses for laminar flows in straight channels 

(Mohammadi & Floryan 2013). The use of such grooves provides the potential for 

improvement of the thermal performance of micro-channel. 

1.3.5 Roughness modeling 

There are an uncountable number of geometric roughness forms and, thus, their modeling 

represents a challenge. Most of the experimental investigations used artificially created 

roughness forms, e.g. sets of cones, spheres, prisms, parallelepipeds, etc., with different 

spatial distributions (Schlichting 1979). Sand paper with various grain sizes is an 

especially popular roughness representation due to the belief that it accounts for the 

"uncountability"/randomness of roughness forms. Roughness properties have been most 

commonly measured using the equivalent sand roughness (Moody 1944). A recent 

discussion of this and similar concepts is given in Herwig et al. (2008). The finite number 

of configurations that can be studied leads to an uncertainty regarding the generality of 

the conclusions. 

Numerical simulations require the use of a well-defined geometry (Gamrat et al. 2008; 

Herwig et al. 2008). In most conventional numerical algorithms, discretization of the 

field equations on a number of finite points, volumes, or elements, results in a system of 

algebraic equations. Methods based on finite difference, finite volume, and finite element 

represent examples of discretization procedure. Typically these standard methods are 

based on a low-order discretization scheme which leads to a low spatial accuracy. Using 
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very fine grids can improve the absolute accuracy in the cost of unreasonable 

computational overhead while the use of higher-order schemes generally necessitates a 

substantial increase in effort associated with formulation, grid construction and 

programming implementations (Jiang & Floryan 2005). Additionally, the computational 

efficiency of all aforementioned methods drops significantly when a large array of 

boundary geometries is of concern, caused by the significant cost of generating the 

coefficient matrices associated with different boundary shapes. 

The immersed boundary (IB) method proposed by Peskin (1982) presented a remedy for 

solving flow problems associated with irregular boundaries. The basic idea relies on the 

use of a computational rectangular box instead of an irregular physical domain. The 

physical domain is submerged into the computational rectangular box by extending the 

computational domain beyond the edges of the physical domain. In the IB method, the 

physical boundary conditions are imposed by using additional forcing. Different variants 

of IB method have been proposed by different researchers on the basis of the nature of 

the additional forcing required for enforcement of the boundary conditions (Mittal & 

Iaccarino 2005). The elimination of the cost of generating body conforming grids make 

the IB methods computationally very efficient as compared to methods that rely on 

constructing body conforming grids discussed above. However, most of the IB methods 

are based on the low-order finite-difference, finite-volume or finite-element techniques 

(Mittal & Iaccarino 2005) and as a result, suffer from a common issue of low spatial 

accuracy. Moreover, the physical concept of local forcing along the immersed boundaries 

used to enforce the no-slip and no-penetration conditions adds another level of 

uncertainty to these algorithms. The local flow physics around the boundaries can be 

affected by this local forcing along the boundaries which are submerged into the 

computational domain. This leads to contamination of local wall shear as well as other 

derivatives of the flow quantities. Furthermore, it results in an inaccurate prediction of 

the second derivative of the mean flow which can significantly affect the hydrodynamic 

stability analysis. This particular aspect of uncertainty associated with the IB methods has 

not been studied thoroughly and requires systematic investigation. 
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Spectral methods provide the lowest error for spatial discretization of the field equations 

but are generally limited to solution domains with regular geometries. The first spectrally 

accurate implementation of the immersed boundary concept was developed by 

Szumbarski & Floryan (1999) and is referred to as the Immersed Boundary Conditions 

(IBC) method. This method relies on a purely formal construction of boundary 

constraints in order to generate the required closing relations. The construction relies on 

the representation of the physical boundaries in the spectral space and nullifying the 

relevant Fourier modes. The IBC method does not depend on any fictitious forcing to 

impose the physical boundary conditions, rather transforms the original boundary value 

problem into an internal value problem. The discretized boundary conditions, therefore, 

enter the algorithm in the form of internal constraints. Such implementation is limited to 

geometries that can be represented by Fourier expansions but results in a gridless 

algorithm as all possible variations of boundary geometries are described in terms of the 

Fourier coefficients only. The programming effort associated with modeling the changes 

of geometry is minimal as the only information required for specification of geometry is 

limited to a set of Fourier coefficients. IBC method has been successfully extended to 

unsteady problems (Husain & Floryan 2007; Del Rey Fernandez et al. 2010), moving 

boundary problems involving Laplace, biharmonic and Navier-Stokes operators (Husain 

& Floryan, 2008a; Husain & Floryan 2008b; Husain & Floryan 2010), and also non-

Newtonian fluid problems (Mohammadi et al. 2011; Fazel Bakhsheshi et al. 2011). This 

method has been successfully implemented to study hydrodynamic instabilities induced 

by corrugated surfaces (Floryan 2002; Floryan 2003; Szumbarski & Floryan 2006; 

Floryan 2007; Floryan & Floryan 2009) and determination of the effects of the grooves of 

an arbitrary shape in grooved channel (Mohammadi & Floryan 2013a).  

IBC method is limited to the surface structures with moderate level of irregularities, i.e. 

grooves with small amplitudes and wave numbers. By increasing the level of complexity 

of the grooves, the inherent error associated with the enforcement of the boundary 

conditions unintentionally is increased which may defile the physical results (Szumbarski 

& Floryan 1999; Husain & Floryan 2007). Domain transformation (DT) method is an 

alternative to IBC method (Husain & Floryan 2010; Mohammadi & Floryan 2013a). This 

method relies on analytical mapping of the irregular physical domain onto a regular 
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computational domain allowing exact enforcement of flow boundary conditions. DT 

method coupled with spectral discretization of the transformed spatial coordinates is 

capable of delivering high spatial accuracy (Angelis et al. 1997; Husain & Floryan 2007). 

However, analytical mapping contributes to substantial complication in the transformed 

field equations resulting in a significant cost for generating the coefficient matrix. 

Therefore, spectral implementation of the DT method is recommendable for solving flow 

problems with high degree of irregularities only (Husain & Floryan 2007). 

1.4 Overview of the present work 

The present work is focused on the analysis of the effects of surface topography on the 

heat and fluid flows that are yet to be studied. In particular, we are interested in studying 

responses of APF and PPF to the introduction of grooves in different forms through 

evaluations of the friction factors as well as the critical conditions leading to the onset of 

instabilities. Additionally, we focus attention on the grooves that are able to reduce drag; 

we determine their optimal shapes and their effect on the heat transfer in micro-channels. 

The main interest is in the grooves with small amplitudes including their effect on the 

flow stability. Accordingly, one must develop proper numerical techniques that are able 

to capture accurately effects of such grooves and can be efficiently applied to analysis of 

as wide class of geometries as possible. Spectral methods for analysis of steady flows in 

annuli bounded by walls with either axisymmetric or longitudinal ribs have been 

developed. The physical boundary conditions are enforced using the immersed boundary 

conditions (IBC) concept. The axisymmetric ribs are assumed to be periodic in the axial 

direction and this permits representation of the solution in terms of a Fourier expansion. 

The modal functions, which are functions of the radial coordinate, are represented using 

Chebyshev expansions. The problem formulations are closed using either a fixed volume 

flow rate constraint or a fixed pressure gradient constraint. 

It has been shown that selection of the proper groove geometry may lead to drag 

reduction. Detailed analysis of pressure losses in flows through annuli fitted with 

longitudinal grooves has been carried out. It has been demonstrated that a reduced order 

model is an effective tool for extraction of features of geometry that lead to the flow 
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modulations relevant to the drag generation. It is shown that the presence of the grooves 

may lead to a reduction of pressure loss in spite of an increase of the wetted surface area. 

The drag decreasing grooves are characterized by the groove wave number @ ��⁄  being 

smaller than a certain critical value, where M denotes the number of grooves being used 

and �� stands for the radius of the annulus. The form of the optimal grooves from the 

point of view of the maximum drag reduction has been determined. 

A method to increase the heat flow across a micro-channel has been proposed based on 

the use of longitudinal grooves. It has been shown that it is possible to find grooves that 

can increase the heat flow and, at the same, can decrease the flow pressure losses. The 

shape of the grooves that would produce the best improvement in the overall system 

performance has been determined. The system performance was measured using the 

thermal enhancement factor whose reduction measures the performance gains. 

Stability analysis of the flow in a channel modified by longitudinal grooves has been 

carried out. It has been shown that disturbances corresponding to two-dimensional waves 

in the limit of zero groove amplitude play the critical role in the grooved channel. It has 

been demonstrated that presence of grooves leads to the flow stabilization for groove 

wave numbers � < ����� ≈ 4.22 and the flow destabilization for larger �s. It has been 

shown that presence of the drag reducing grooves leads to a small increase of the critical 

Reynolds number compared with the smooth channel. 

1.5 Outline of the dissertation 

This dissertation is organized into six chapters. The objectives and motivation as well as 

the review of the relevant literature are presented in  Chapter 1. Development of the 

spectrally accurate IBC algorithms suitable for the determination of flows in annuli fitted 

with ribs is discussed in  Chapter 2.  Chapter 3 is devoted to the analysis of flows in an 

annulus fitted with longitudinal grooves. Detailed analysis of flow features as well as 

determination of the optimal grooves are discussed in this chapter. The heat transfer 

enhancement resulting from the use of longitudinal grooves is analyzed in  Chapter 4, 

including determination of the best groove shape that simultaneously reduces the flow 

drag and increases the heat transfer.  Chapter 5 is focused on the analysis of stability of 
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flow in a channel fitted with longitudinal grooves. Chapter  6 summarizes the main 

conclusions together with suggestions for the future work. 
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Chapter 2  

2 Algorithm for Analysis of Flows in Ribbed Annuli1 

2.1 Introduction 

This chapter is focused on the development of a spectrally accurate IBC algorithm 

suitable for accurate and computationally efficient analysis of flows in geometries 

described in terms of the cylindrical coordinate system. The problem is posed as the 

problem of determination of flows in annuli fitted with either transverse or longitudinal 

ribs with arbitrary cross-sections. Section  2.2 discusses algorithm suitable for transverse 

ribs. In particular, Section  2.2.1 gives problem formulation, Section  2.2.2 discusses the 

reference flow, i.e., flow in an annulus without ribs, Section  2.2.3 provides description of 

the discretization of the field equations, the boundary conditions and the flow constraints, 

Section  2.2.4 is devoted to post-processing of the results, Section  2.2.5 discusses solution 

strategy used in the iterative solution of the non-linear algebraic system, Section  2.2.6 

presents an efficient linear solver, and Section  2.2.7 discusses results of various tests 

carried out in order to validate the accuracy of the algorithm. Section  2.3 discusses 

algorithm suitable for analysis of flows in the presence of longitudinal ribs. In particular, 

Section  2.3.1 provides problem formulation, Section  2.3.2 discusses discretization 

procedures applied to the field equation, the boundary conditions and the flow 

constraints, and Section  2.3.3 describes results of various tests. Section  2.4 provides a 

short summary of the main conclusions. 

                                                 

1
 A version of this chapter has been published as – 

Moradi, H. V. & Floryan, J. M. 2012 Algorithm for analysis of flows in ribbed annuli, International 

Journal for Numerical Methods in Fluids, 68, 805-838. 
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2.2 Annulus with transverse grooves 

2.2.1 Problem formulation 

Consider steady flow of a viscous incompressible fluid in an annulus extending to ±∞ in 

the axial z-direction and fitted with transverse ribs. The flow is driven by an axial 

pressure gradient. The ribs are axisymmetric with geometry described by the following 

relations (see Figure  2-1) 

 

J#��,� = �� + ¨ x#����2#�©&ª«
�¬Uª«

, J/0��,� = 1 + �� + ¨ x/0���� 2#�©&ª«
�¬Uª«

 ( 2.2.1a, b) 

 

where x#���� = x#��U��∗ and x/0���� = x/0��U��∗ are the reality conditions, stars denote the 

complex conjugate, �� stands for the average radius of the inner annulus, subscripts “out” 

and “in” denote the outer and inner cylinders, respectively, and �A is the number of 

Fourier modes required for description of the geometry. The ribs are periodic in the axial 

z-direction with the wavelength - = 2. �⁄ , where � denotes the ribs' wave number. 

 

 
Figure  2-1: Sketch of the flow geometry - axisymmetric annulus with transverse ribs of arbitrary 

cross-section. 
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The velocity vector has �%& , %� , 0� components in the z- (axial), r-(radial) and θ- 

(circumferential) directions, and thus the field equations can be reduced to the continuity, 

and axial and radial momentum equations in the form 

 1J (�J%��(J + (%&(, = 0, ( 2.2.2) (�%&%&�(, + (�%&%��(J + �%&%��J = − (3(, + 1�2 ®1J (%&(J + (�%&(J� + (�%&(,� ¯, ( 2.2.3) 

(�%�%&�(, + (�%�%��(J + �%�%��J = − (3(J + 1�2 ®1J (%�(J + (�%�(J� + (�%�(,� − %�J�¯, ( 2.2.4) 

 

where � � denotes velocity products and p denotes the pressure. These equations have 

been scaled using the average annulus opening  L as the length scale, the maximum of the 

axial velocity component of the reference flow zN�O as the velocity scale, and }zN�O�  as 

the pressure scale, where } stands for the density. The Reynolds number is defined as �2 = zN�O� {⁄  where { stands for the kinematic viscosity. The reader may note that �� → ∞ corresponds to a plane channel flow (difference between cylinders` radii 

becomes small as compared to the average radius). There is a limit on the physically 

acceptable amplitude of the ribs at the inner cylinder when �� → 0. 

The no-slip and no-penetration conditions at the walls have the form 

 %�I,, J#��,�L = 0, %&I,, J#��,�L = 0, %�I,, J/0��,�L = 0, %&I,, J/0��,�L = 0. ( 2.2.5a-d) 
 

The problem requires an additional closing condition. Typically one chooses this 

condition to be either in the form of the fixed flow rate constraint 

 

X = ° 2.%&�J�GJ�¬�±�²
�¬�² = Constant, ( 2.2.6) 

 

where  Q denotes the known flow rate, or the fixed pressure gradient constraint 

 (3(, = Constant. ( 2.2.7) 
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Introduction of the Stokes stream function, ), defined by 

 %& = −1J ()(J , %� = 1J ()(,  ( 2.2.8a, b) 

 

permits elimination of pressure and transformation of the momentum equations into a 

single fourth-order partial differential equation in the form 

 vt)J = �2 ¹ ((, º(�%�%��(J + (�%�%&�(, » − ((J º(�%�%&�(J + (�%&%&�(, » + 1J (�%�%��(,
+ �%�%&�J� − 1J (�%�%&�(, ¼, ( 2.2.9) 

 
Where the v� operator is defined as 
 

v� = (�(J� + (�(,� − 1J ((J. ( 2.2.10) 

 

The boundary conditions expressed in terms of the stream function take the form 

 −1J ()(J = 0, 1J ()(, = 0    at J = J#��,� and J = J/0��,�. ( 2.2.11a-b) 

 

Introduction of the stream function requires selection of an arbitrary normalization 

condition. This condition has been selected in the present study by assuming that the 

stream function takes zero value at the inner cylinder, i.e.,  

 )I,, J#��,�L = 0. ( 2.2.12) 
 

The fixed flow rate constraint can be expressed in terms of the stream function as 

 )I,, J/0��,�L = − X 2.⁄ . ( 2.2.13) 
 

The specification of the fixed pressure gradient constraint follows from ( 2.2.3), ( 2.2.7), 

and ( 2.2.8a, b). 
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2.2.2 Reference flow 

Flow in a smooth annulus represents the reference flow. The flow is parallel to the z-axis 

with the axial velocity distribution in the form 

 

%&�J� = ����� ®1 − ¾ J��¿�¯ + ���� À� ¾ J��¿, ( 2.2.14) 

 

where �� = ��� − ��À��� + �� 2⁄ IÀ���� 2⁄ � − 1L and �� =�1 + 2��� À�I�1 + ��� ��⁄ L⁄ . Its maximum zN�O used as the velocity scale occurs at 

J = Á�� 2⁄ . This flow is driven by the axial pressure gradient in the form 

 G3G, = −4���2, ( 2.2.15) 

leading to the flow rate  

 

X = 2.�� ®�1 + ����4 ���� − 2�� − 1 − ��� + ���1 + ����2 À� ¾1 + ���� ¿
+ ���4 ��� − 1�¯. ( 2.2.16) 

2.2.3 Discretization 

This section describes discretization of the field equation, the boundary conditions, the 

normalization condition and the most common flow constraint conditions. Our interest is 

in the use of spectral discretization based on the Fourier expansions in the axial direction 

and the Chebyshev expansions in the radial direction. Since the shape of the solution 

domain is irregular (see Figure  2-1), we intend to utilize the immersed boundary 

conditions (IBC) method for the enforcement of the flow boundary conditions. In the IBC 

method the flow domain must be completely immersed inside a regular computational 

domain. Figure  2-1 shows that the flow domain is bounded in the radial direction by −�#� + �� from below and by 1 + �� + �/0� from above, where �#� and �/0� denote 

locations of the ribs’ extremities. In order to use the standard definition of the Chebyshev 

polynomials, this domain has to be mapped into I−1, 1L. A convenient transformation 

used in this study has the form 
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* = ΓJ + D, Γ = 21 + �#� + �/0� , D = �#� − �/0� − 2�� − 11 + �#� + �/0� . ( 2.2.17) 

 

The wall geometries can be expressed in terms of ξ variable as 

 

*#��,� = ¨ [#����2#�©&ª«
�¬Uª«

, */0��,� = ¨ [/0���� 2#�©&ª«
�¬Uª«

, ( 2.2.18a, b) 

 

where [#���� = D + Γ�� + Γx#����
 for � = 0 and [#���� = Γx#����

 for |�| ≥ 1,  [/0���� = D +
Γ�1 + ��� + Γx/0����

  for � = 0  and [/0���� = Γx/0����
 for |�| ≥ 1. The field equation in the �,, *� coordinate system takes the form 

 

�2U� ®ℎV º(t)(,t + 2Γ� (t)(,�(*� + Γt (t)(*t » − 2ℎ� Γ��
(V)(,�(* − 3 Γ��V

()(* Ä 
Ä+3ℎ Γ����

(�)(*� − 2ℎ� ΓV��
(V)(*V ¯ = ℎV (�%�%��(, + ℎ� �%�%&��� − ℎVΓ (�%�%&�(*  

+ℎt�� ® ((, ºΓ (�%�%��(* + (�%�%&�(, » − Γ ((* ºΓ (�%�%&�(* + (�%&%&�(, »¯, 
( 2.2.19) 

 

where ℎ = 1 + *�Γ���U� + �1 + �/0� − �#���2���U�. Boundary conditions in the new 

coordinate systems can be written in the form 

 −Γ��ξ − c�U� ()(* = 0, Γ�ξ − c�U� ()(, = 0  BÇ * = *#��,�  B�G * = */0��,�. ( 2.2.20) 

 

2.2.3.1 Discretization of field equation 

The flow is periodic in the z-direction and thus all flow quantities can be expressed in 

terms of Fourier expansions in the form 

 

)�,, *� ≈ ¨ �����*�2#�©&ªÈ
�¬UªÈ

, �%�%���,, *� ≈ ¨ %������*�2#�©&ªÈ
�¬UªÈ

, ( 2.2.21a-d) 



22 

 

�%&%���,, *� ≈ ¨ %&�����*�2#�©&ªÈ
�¬UªÈ

, �%&%&��,, *� ≈ ¨ %&&����*�2#�©&ªÈ
�¬UªÈ

, 
 

where ���� = ��U��∗, %����� = %���U��∗, %&���� = %&��U��∗, %&&��� = %&&�U��∗ and the series are 

truncated at � = �	 ��	 > �A�. Substitution of the above expansions into the field 

equation and separation of Fourier modes lead to a system of 2�	 + 1 fourth-order, 

ordinary differential equations for the modal functions ���� in the form 

 �2U�I�t�v�*V + v�*� + vV* + vt� + ���vÉ*� + vÊ* + 2vË�� − 3vÌ�Ä −���vÉ*V + 6vÊ*� + 6vË* + vÍ��� + �3vÌ* + v�<��� − 2�vÌ*� Ä Ä+2v�<*Ä+2v����V + �vÌ*V + 3v�<*� + v��* + v����tL�����*� = −���v�V*t + 4v�t*V�%&�����*� + �v�É*V%������*� + I�v�Ì − 6��v�Ê�Ä%&�����*� Ä+3�v�Ë%������*�Î*� + Ï2�v�� − 2��v�Í�%&�����*� + 3�v�<%������*�Î* +Ï�v�t − ��v���%&�����*� + �v�V%������*�Î + v�É*tÏ�%������*� − �%&&����*�Î + Ð4v�ËÏ�%������*� − �%&&����*�Î − v�Ì�%&�����*�Ñ *V + Ð6v�<Ï�%������*�ÄÄ ÄÄ−�%&&����*�Î − 3v���%&�����*�Ñ *� + Ð4v�V Ï�%������*�Ä−�%&&����*�ÎÄÄ Ä−3v�t�%&�����*�Ñ* + Ðv�ÉÏ�%������*� − �%&&����*�Î − v�Ê�%&�����*�Ñ −�v�Ì*t + 4v��*V + 6v�t*� + 4v�Ê* + v�Ë���%&�����*�, 

( 2.2.22) 

 

where v� = �t�Γ���UV, v� = 3�tD��Γ���U�, vV = 3�tD���Γ���U�, vt = �tD�V, vÉ =2��ΓU���UV, vÊ = ��D���U�, vË = Γ��D�����U�, vÌ = Γ��UV, vÍ = 2�Γ���D�V, v�< =�Γ��U���D�, v�� = ΓVD����U�, v�� = ΓtD�V, v�V = ��ΓUt��UV, v�t = ��D�ΓUV��U�, v�É = ?��Γ���UV, v�Ê = �αD�ΓU�����U�, v�Ë = ?�D��Γ���U�, v�Ì = ΓU���UV, v�Í =��D�VΓU�, v�< = ?�D���Γ���U�, v�� = D�ΓU���U�, v�� = ��D�t��, v�V = ?�D�V, v�t =D����U�, v�É = Γ?���D�t, v�Ê = ΓD�V, v�Ë = Γ���D�t, �t = Gy G*y⁄ , k = 1, 2, 3, 4, � ∈ �−�	, �	�, D� = D�Γ���U� and the nonlinear coupling terms (velocity products), 

which will be treated as known quantities during iterative solution, have been placed on 

the right hand side of the above equations. The modal functions �����*�, %�����
, %&����

, %&&���
 

can be expressed in terms of Chebyshev expansions in the form 

 



23 

 

�����*� ≈ ¨ �y���|y�*�ªÓ
y¬< , ( 2.2.23) 

%������*� ≈ ¨ ���,y��� |y�*�ªÓ
y¬< , %&�����*� ≈ ¨ �&�,y��� |y�*�ªÓ

y¬< , %&&����*� ≈ ¨ �&&,y��� |y�*�ªÓ
y¬< , ( 2.2.24) 

 

where |y denotes Chebyshev polynomial of the k
th

 order, �y���
, ���,y���

, �&�,y���
 and �&&,y���

 

stand for the unknown coefficients of the expansions which have been truncated at �� + 1 terms. Substitution of the above relations into Eq. ( 2.2.22) and application of the 

Galerkin procedure lead to a set of algebraic equations for the unknown coefficients �y���
 

whose explicit form is given in  Appendix A. The Galerkin procedure uses the inner 

product in the form 〈;, n〉 = Ô ;�*�n�*���*�G*�U�  where ��*� = �1 − *��U� �⁄  denotes 

the weight function; these products are evaluated using the orthogonality properties of 

Chebyshev polynomials. The Galerkin process leads to �� + 1  algebraic equations for 

each Fourier modes without any coupling between these modes. Four equations 

corresponding to the highest Chebyshev polynomials are dropped for each Fourier mode 

to make space for the imposition of boundary conditions and constraints in the Tau-like 

manner.  

2.2.3.2 Discretization of the boundary conditions 

We shall limit the following discussion to description of numerical implementation of 

boundary conditions at the inner cylinder. Conditions ( 2.2.20) have to be enforced along 

the line *#��,� defined by Eq. (2.2.18a) and can be re-written as  

 Γ;#��,� ()(, = 0, −Γ�;#��,� ()(* = 0  at * = *#��,�, ( 2.2.25) 

 

where ;#��,� = I*#��,� − DLU�. Method to be used for the enforcement of boundary 

conditions at the outer wall is identical to that used for the inner wall with the subscript 

“in” replaced by the subscript “out”. 
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Expressing the stream function in ( 2.2.25) in terms of Fourier and Chebyshev expansions 

(( 2.2.21a-d) , ( 2.2.23)) leads to 

 

Γ;#��,� ¨ ¨ ?���y���|y�*�2#�©&ªÓ
y¬<

ªÈ
�¬UªÈ

= 0,  
−Γ�;#��,� ¨ ¨ �y��� G|y�*� G*⁄ 2#�©&ªÓ

y¬<
ªÈ

�¬UªÈ
= 0. ( 2.2.26) 

 

The values of the Chebyshev polynomials |y and their derivatives G|y G*⁄  evaluated 

along the inner cylinder represent periodic functions and can be expressed in terms of 

Fourier series in the form 

 

|y�*� ≈ ¨ �#�,y�N�2#N©&ªÕ
N¬UªÕ

, G|y�*� G*⁄ ≈ ¨ G#�,y�N�2#N©&ªÕ
N¬UªÕ

 at * = *#��,�, ( 2.2.27) 

 

where �� = �� × �A. The method for evaluation of the coefficients �#�,y�N�
 and G#�,y�N�

 is 

presented in  Appendix B. The function ;#��,� in Eq. ( 2.2.25) is periodic in z and thus can 

be expressed in terms of a Fourier expansion in the form 

 

;#��,� ≈ ¨ �#��e�2#e©&ªÖ
e¬UªÖ

. ( 2.2.28) 

 

Coefficients of this expansion are evaluated numerically using Fast Fourier transform. 

This expansion is truncated after �� terms. The exact value of �� depends on the 

geometry, however numerical experiments show that �� = �	 is most often sufficient. 

Substitution of ( 2.2.27) and ( 2.2.28) into ( 2.2.26) results in 

 

¨ ¨ ¨ ¨ ?o��y����#�,y�eUN��#���Ue�2#�©&ªÓ
y¬<

ªÈ
N¬UªÈ

ªÈ±ªÕ
e¬UªÈUªÕ

ªÈ±ªÕ±ªÖ
�¬UªÈUªÕUªÖ

= 0, ( 2.2.29) 
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¨ ¨ ¨ ¨ �y���G#�,y�eUN��#���Ue�2#�©&ªÓ
y¬<

ªÈ
N¬UªÈ

ªÈ±ªÕ
e¬UªÈUªÕ

ªÈ±ªÕ±ªÖ
�¬UªÈUªÕUªÖ

= 0. ( 2.2.30) 

 

Re-arrangement of the above relations leads to boundary relations (that need to be 

enforced of order to satisfy the flow boundary conditions) in the form 

 

¨ ¨ ?o��y�N� ¨ �#���Ue��#�,y�eUN�ªÈ±ªÕ
e¬UªÈUªÕ

ªÓ
y¬<

ªÈ
N¬UªÈ

= 0, ( 2.2.31) 

¨ ¨ �y�N� ¨ �#���Ue�G#�,y�eUN�ªÈ±ªÕ
e¬UªÈUªÕ

ªÓ
y¬<

ªÈ
N¬UªÈ

= 0. ( 2.2.32) 

 

In general the total number of the available boundary relations is �	 + ���A + ��. 

Since �	 Fourier modes are used in the solution, one can enforce only �	 of these 

conditions. The remaining conditions can be used aposteriori as a convenient test for 

consistency of the algorithm. Use of a larger number of such conditions leads to an over-

determined formulation of the IBC method (Husain et al. 2009) which expands 

applicability of the method to more extreme geometries. The number of boundary 

relations used in this study was always equal to the number of Fourier modes used to 

represent the flow field resulting in a well posed algebraic problem. 

2.2.3.3 Discretization of the normalization condition 

The normalization condition ( 2.2.12) can be written using ( 2.2.21a-d) and ( 2.2.23) in the 

form 

)I,, ;#��,�L ≈ ¨ ¨ �y���|yI;#��,�L2#�©&ªÓ
y¬<

ªÈ
�¬UªÈ

= 0. ( 2.2.33) 

 

Values of the Chebyshev polynomials evaluated along the periodic boundary represent 

periodic functions and can be expressed by Fourier expansions of type ( 2.2.27). Their 

substitution into ( 2.2.33) leads, after some re-arrangements and extraction of mode zero, 

to the following form of the normalization condition 
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¨ ¨ �y�N��#�,y�UN�ªÓ
y¬<

ªÈ
N¬UªÈ

= 0. ( 2.2.34) 

 

2.2.3.4 Discretization of the flow constraints 

We shall begin discussion with the description of the discretization of the mass flow rate 

constraint. The total mass flow rate in the annulus can be expressed as a superposition of 

the volume flow rate of the reference flow X�9S given by Eq. ( 2.2.16) and a change in the 

flow rate due to the presence of the ribs XN/�, i.e.,  

 X�/��R = X�9S + XN/�. ( 2.2.35) 
 

Substitution of the above relation into ( 2.2.13), where the value of the stream function at 

the outer cylinder is expressed in a manner analogous to that used in Section  2.2.3.3, lead 

to the following form of the flow constraint 

 

¨ ¨ �y�N��/0�,y�UN�ªÓ
y¬<

ªÈ
N¬UªÈ

= X�9S + XN/�2. . ( 2.2.36) 

 

It had been assumed in all tests discussed in this study that addition of the ribs did not 

alter the mass flow through the annulus, i.e., XN/� = 0. 

Discretization of the fixed pressure gradient constraint begins with the z-momentum 

equation expressed in the �,, *� coordinate system, i.e.,  

 (�%&%&�(, + Γ (�%&%��(* + Γ �%&%��* − D = − (3(, + 

+ 1�2 ® −Γt�* − D�V ()(* + Γt�* − D�� (�)(*� − Γ�* − D (V)(*V − Γ�* − D (V)(,�(*¯. ( 2.2.37) 

 

Pressure can be expressed as Fourier expansion in the form 
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3�,, *� = [, + ¨ �����*�2#�©&ªÈ
�¬UªÈ

. ( 2.2.38) 

 

where the known constant A denotes the pressure gradient driving the flow. Substitution 

of ( 2.2.21a-d) and ( 2.2.38) into ( 2.2.37) and separation of Fourier modes lead to 

 

?�������*� = −?��%&&����*� − Γ�%&�����*� − Γ %&�����*�* − D + 1�2 ®−Γt ������*��* − D�V Ä 
Ä+Γt �������*��* − D�� − Γt �V�����*�* − D + �Γ���� ������*�* − D ¯ 

( 2.2.39) 

 

when � ≠ 0 and  

 

[ + Γ�%&��<��*� + Γ %&��<��*�* − D = −Γt�2 ®���<��*��* − D�V − ����<��*��* − D�� + �V��<��*�* − D ¯ ( 2.2.40) 

 

when � = 0. Substitution of the relevant Chebyshev expansions into Eq. ( 2.2.40) and 

enforcement of the resulting relation at any *-location provides form of the fixed pressure 

gradient constraint suitable for computations, e.g.,  

 

¨ ® �|y�*��* − D�V − ��|y�*��* − D�� + �V|y�*�* − D ¯ªÓ
y¬< �y�<�

= −�2ΓUt Ø[ + Γ�%&��<��*� + Γ%&��<��*�* − D Ù 

( 2.2.41) 

 

2.2.4 Post-processing of Results 

Solution of the discretized system leads to determination of the flow field. We shall now 

discuss evaluation of the pressure field. 

We begin with the z-momentum equation ( 2.2.37). Substitution of ( 2.2.21a-d) and 

( 2.2.38) and separation of Fourier modes lead to Eq. ( 2.2.40) for evaluation of the 

constant A in the case of the fixed volume flow rate constraint. Equation ( 2.2.39) permits 
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evaluation of the remaining modal function ����, � ≠ 0. The r-momentum equation has 

to be used for evaluation of ��<��*�. This equation can be written in the form 

 (�%&%��(, + Γ (�%�%��(* + Γ �%�%��* − D = −Γ (3(* + 

+ 1�2 ® −ΓV�* − D�� (�)(,(* + ΓV* − D (V)(,(*� + Γ* − D (V)(,V ¯. ( 2.2.42) 

 

Substitution of ( 2.2.21a-d), ( 2.2.38) and extraction of mode zero results in 

 

���<��*� = −�%���<��*� − %���<��*�* − D . ( 2.2.43) 

 

Integration of the above relation gives an explicit formula for evaluation of ��<��*�, i.e.,  

 

��<��*� = −%���<��*� − ° %���<��*�* − D G* + H. ( 2.2.44) 

 

where C can be integrated into the pressure normalization constant. 

Evaluation of the mass flow rate in the case of flow subject to a fixed pressure gradient 

constraint follows from Eqs. ( 2.2.35) and ( 2.2.36). 

2.2.5 Solution strategy 

The problem to be solved consists of a system of nonlinear algebraic equations (field 

equations) shown in Appendix A, boundary relations of type ( 2.2.31)-( 2.2.32), 

normalization condition ( 2.2.34) and either constraint ( 2.2.36) or ( 2.2.41). All equations 

and supplementary conditions can be expressed in matrix notation in the form 

 ÚÛ = Ü ( 2.2.45) 
 

where L denotes the coefficient matrix of size 3 × 3 with 3 = �2�	 + 1� × ��� + 1�, x 

is a p-dimensional vector of the unknown Chebyshev coefficients �y���
 and R stands for 

the p-dimensional right hand side vector which accounts for nonlinearities. 
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 The solution process relies on iterations where the unknown x is corrected in a sequence 

of steps until a convergence criterion is satisfied. The iteration process begins with 

solution of ( 2.2.45) with nonlinear terms omitted from R to determine the first 

approximation of x denoted here as x0. The first approximation of R denoted as R0 is 

computed using x0. This process is now repeated in the form 

 ÛÝ±� = ÚU�ÜÝ, ( 2.2.46) 
 

where j denotes iteration number, until convergence criterion in the form 

 aÞÛÝ±� − ÛÝÞ ÞÛÝ±�Þc b < 10U�t. ( 2.2.47) 
 

has been satisfied. In the above, ÞÛÝ±�Þ is the L2-norm of the current vector of Chebyshev 

coefficients and ÞÛÝ±� − ÛÝÞ is the L
2-norm of the difference between the coefficients’ 

vectors computed at two consecutive iterations. The rate of convergence of the iterative 

process can be controlled using the under/over-relaxation. The relaxation process has 

been implemented using the following formula 

 ÛÝ±� = ÛÝ + ��ÞÛ7/Ne − ÛÝÞ, ( 2.2.48) 
 

where Û7/Ne denotes the current solution, ÛÝ±� stands for the accepted value of the next 

iterate and RF denotes the relaxation factor. 

The nonlinear terms are updated based on the information available from the previous 

iteration. The velocity components %� and %& are computed by transferring data into the 

physical space using the known modal functions �����*�, i.e.,  

 

%&�,, *� = −Γ��* − D�U� ¨ ������*�2#�©&ªÈ
�¬UªÈ

,  
%��,, *� = ?�Γ�* − D�U� ¨ ������*�2#�©&ªÈ

�¬UªÈ
. ( 2.2.49a, b) 
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The multiplications are carried out in physical space and the Fourier expansions 

expressing velocity products are determined using FFT procedure. At each *-location, %� 

and %& are evaluated at equidistant points along the z-axis and the last point is discarded 

due to periodicity. 2@	 + 2 locations (where @	 = 3�	 2⁄ ) are used, i.e., advantage is 

taken of the 3/2 rule to control the aliasing error. The velocity products �%&%&�, �%�%�� 

and �%&%�� are evaluated at this location and values of the modal functions of their 

Fourier expansions, i.e., %&&���
, %�����

 and %&����
 are computed using FFT. Only modes from −�	 to �	 are retained. The final step consists of determination of Chebyshev 

expansions of the modal functions, i.e., evaluation of coefficients �&&,y���
, ���,y���

 and �&�,y���
 in 

Eq. ( 2.2.24). 

2.2.6 Efficient linear solver 

Applicability of the algorithm depends on the computational efficiency and on the storage 

requirements. Computational cost depends on the efficiency of linear solver used to solve 

( 2.2.45), on the efficiency of data storage strategy used to retain data required by ( 2.2.45) 

and on the efficiency of the FFT algorithm required to update the right side of ( 2.2.45). 

The latter one has been optimized while the efficiencies of the former ones strongly 

depend on the ability to take advantage of the special structure of matrix L. This structure 

is illustrated in Figure  2-2A where the nonzero components have been marked in black 

and the unknowns have been organized according to the mode number -�	, ..., 0, ..., �	. 

The upper triangular blocks correspond to the modal equations, which are uncoupled, and 

black horizontal lines correspond to the boundary relations (four relations per block) 

which provide coupling between different modal equations. When a large number of 

Fourier modes needs to be used, the size of matrix L could be excessive resulting in the 

processing and storage requirements which might make the method impractical. We 

develop a special solution and storage strategy following concepts described in Husain & 

Floryan (2013).  
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(A) (B) 

Figure  2-2: Structure of the coefficient matrix for �	 = 5 and �� = 40. The nonzero 

elements are marked in black. The total number of elements, the number of nonzero 

elements and the sparsity (ratio of the number of the zero elements to the total number of 

the elements) for this matrix are (440)2= 193600, 27780 and 0.86, respectively. Figure 

 2-2A - the structure of the coefficient matrix before the re-arrangement, Figure  2-2B - 

the structure of the coefficient matrix after the re-arrangement (see Section  2.2.6 for a 

discussion). 

In the first step L is re-organized by moving entries corresponding to boundary relations 

to the bottom forming a block diagonal matrix L1 of size ß × 3, where ß = �2�	 + 1� ×��� − 3�, and a full matrix L2 (which contains all boundary relations) of size J × 3, 

where J = 4 × �2�	 + 1�. The largest possible square matrix A (of size ß × ß) is 

extracted from L1 by moving the unknown Chebyshev coefficients corresponding to the 

four lowest polynomials to the end of the vector of unknowns resulting in the structure 

illustrated in Figure  2-2B. The resultant square matrix A of size ß × ß has a block 

diagonal structure with each block of size ��� − 3� × ��� − 3�, the rectangular matrix B 

of size ß × J also has a block diagonal form with blocks of size ��� − 3� × 4, the full 

rectangular matrix C has size J × ß and the full square matrix D has size J × J. Matrices 

B and D contain coefficients corresponding to �<���
, �����

, �����
and �V���

, while 

information associated with the remaining coefficients is stored in matrices A and C 

(Figure  2-2B). Equation ( 2.2.45) takes the from 
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àÛ� + áÛ� = Ü�,    âÛ� + ãÛ� = Ü�, ( 2.2.50a, b) 

where vector x1 contains unknowns �y���
 for � ∈ 〈−�	, �	〉, � ∈ 〈4, ��〉, and vector x2 

contains unknowns �y���
 for � ∈ 〈−�	, �	〉, � ∈ 〈0,3〉. Solution of ( 2.2.50a, b) can be 

written as 

 Û� = Iã − âàU�áLU��Ü� − âàU�Ü��,    Û� = àU��Ü� − áÛ��. ( 2.2.51) 
 

The reader may note that the above procedure requires storage of the diagonal blocks of 

matrices A and B rather than complete matrices and thus leads to significant reduction of 

storage requirements. The processing efficiency is improved as one may construct àU�, âàU�, âàU�á, àU�Ü� and àU�á block by block rather than carrying operations on 

complete matrices. Additional savings result from the fact that only some of these 

matrices need to be re-computed at each iteration. Use of complex conjugate properties of 

the modal functions provides further efficiencies. 

 The effective acceleration of computations, when compared with standard solvers that do 

not take advantage of this specific matrix structure, is O(100) and the effective memory 

requirements reduction, when compared with full matrices, is at least O(100). 

2.2.7 Testing of the algorithm 

This section presents discussion of various tests carried out in order to demonstrate the 

spectral accuracy of the algorithm and to illustrate the effects of numerical and physical 

parameters on the accuracy of the solution. In order to focus discussion, most of the tests 

to be presented have been carried out for the model geometry consisting of a smooth 

outer cylinder and the inner cylinder fitted with ribs with a simple geometry described by 

one Fourier mode, i.e.,  

 J#��,� = �� +  Dä>��,�,   J/0��,� = 1 + ��, ( 2.2.52) 
 

where S denotes the amplitude and α stands for the wave number of the ribs. 
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Three aspects of the approximation should be considered. In the radial direction, the 

Chebyshev expansions ( 2.2.23) with coefficients calculated using Galerkin procedure 

( A-1) are guaranteed to be spectrally accurate with the increasing number of terms �� 

(Manson 2003) and thus this aspect of accuracy does not need to be tested. The 

convergence is very rapid and in most cases 60-70 Chebyshev polynomials provide 

machine accuracy. The number of polynomials needs however to be increased when � → ∞ (corrugation with shorter wavelength), especially when higher Fourier modes 

begin to play a role. The need for more polynomials occurs because of the formation of 

boundary layers in the distributions of the modal functions �����*� around the ribbed 

walls which need to be properly resolved. These layers become extremely thin for larger 

values of � and for higher Fourier modes (see Figure  2-3).  

 

(A) (B) 
Figure  2-3: Distribution of the real part of ����� as a function of r for higher Fourier modes �� > 15� for ribs placed either at the inner cylinder (Figure  2-3A) or at the outer cylinder 

(Figure  2-3B). The geometry of the ribs' is given by Eq. ( 2.2.52) with the ribs' wave number � = 5, the ribs' amplitude S = 0.05 and the average radius on the inner cylinder �� = 1. 

Computations have been carried out for the flow Reynolds number Re = 50 using �	 = 20 

Fourier modes and �� = 70 Chebyshev polynomials. 

Results displayed in Figure  2-3 demonstrate that placement of the same ribs either at the 

inner or at the outer cylinder results in more extreme boundary layers in the former case. 

Most of the tests to be reported have been therefore carried out with the ribs placed at the 

inner cylinder, as described by Eq. ( 2.2.52). 
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The second aspect of the spectral accuracy involves convergence of the truncated Fourier 

series ( 2.2.21a-d). In all tests dealing with this issue, the number of Chebyshev 

polynomials TN  was kept sufficiently large (�� = 70) so that the associated error was 

reduced to machine accuracy. The "magnitude" of modal functions is measured using 

Chebyshev norm defined as 

 

�������� = ®° ������*������∗�*���*�G*�
U� ¯� �⁄ , ( 2.2.53) 

 

where ��*� = �1 − *��U� �⁄ . Results displayed in Figure  2-4 demonstrate exponential 

decrease of ��������with the mode number n and thus confirm the spectral accuracy of 

the z-discretization.  

  

  
(A) (B) 

Figure  2-4: Variations of the Chebyshev norm �������� defined by Eq. ( 2.2.53) as a function 

of the Fourier mode number n for the model geometry described by Eq. ( 2.2.52) with the ribs' 

wave number � = 2 for selected values of the ribs' amplitude S (Figure  2-4A) and with the ribs' 

amplitude S = 0.04 for selected values of the ribs' wave numbers � (Figure  2-4B). Calculations 

have been carried out for the flow Reynolds number Re = 50 and the average radius of the inner 

cylinder �� = 1.5 using �	 = 20 Fourier modes and �� = 70 Chebyshev polynomials. 

The rate of convergence is a function of the ribs' wave number � and the ribs' amplitude 

S, and increases with reduction of both of them. Results displayed in Figure  2-5 
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demonstrate that the rate of convergence does not depend on the value of the Reynolds 

number Re as long as Re is not too large. 

 

 
 

Figure  2-5: Variations of the Chebyshev norm �������� defined by Eq. ( 2.2.53) as a function 

of the Fourier mode number n for the model geometry described by Eq. ( 2.2.52) with the ribs' 

amplitude  = 0.04, the ribs' wave number � = 2  and the average radius of the inner cylinder �� = 1.5  for selected values of the flow Reynolds number Re. Calculations have been carried out 

using �	 = 20 Fourier modes and �� = 70 Chebyshev polynomials. 

The third aspect of accuracy involves enforcement of the flow boundary conditions using 

the IBC concept. For convenience, we introduce the �$ norm defined as 

 ‖"#�‖$ = >f3<å&å�æ ©⁄ Þ�%&�I,, J#��,�L + %��I,, J#��,�L�� �⁄ Þ, ( 2.2.54) 
 

which provides a measure of error in the enforcement of boundary conditions at the inner 

cylinder. A similar norm can be defined for the outer cylinder. Results displayed in 

Figure  2-6 demonstrate exponential reduction of the error with an increase of the number 

of Fourier modes used in the discretization and thus confirm spectral accuracy of this part 

of discretization. The convergence rate increases with a decrease of both the amplitude 
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and the wave number of the ribs. The absolute accuracy may be improved by using the 

over-determined formulation of the IBC method (Husain et al. 2009).  

 

  
(A) (B) 

Figure  2-6: Variations of the norm ‖"#�‖$ defined by Eq. ( 2.2.54) as a function of the number 

of Fourier modes NM used in the computations for the model problem described by Eq. ( 2.2.52) 

with the ribs' wave number � = 5  for selected values of the ribs' amplitude S (Figure  2-6A) and 

with the ribs' amplitude S = 0.04 for selected values of the ribs' wave number � (Figure  2-6B). 

Calculations have been carried out for the flow Reynolds number Re = 50 and the average radius 

of the inner cylinder �� = 1 using�� = 70 Chebyshev polynomials. 

Variations of %&I,, J#��,�L and %�I,, J#��,�L, which represent error of the IBC method, 

over a single period are displayed in Figure  2-7. Both errors have spatially oscillatory 

character with the amplitudes' maxima occurring in the region corresponding to the 

widest opening of the annuli. The modal functions ���� reach their maxima around the 

extremes of the solution domain (see Figure  2-3) where omission of higher modes 

increases the absolute error and thus determines location of the error maxima. 

Implementation of boundary conditions ( 2.2.31)-( 2.2.32) using the IBC method 

guarantees that Fourier modes in the error spectrum of %& and %& at the flow domain 

boundaries do not contain harmonics of order lower than �	. This property provides a 

test for accuracy and consistency of the method. Results shown in Figure  2-8A 

demonstrate that the numerical solution does have this property. 
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Figure  2-7: Distributions of the velocity components %& and %� evaluated along the inner 

cylinder for the model geometry described by Eq. ( 2.2.52) with the ribs' wave number � = 3, the 

ribs' amplitude S = 0.05 and the average radius of the inner cylinder �� = 1. Calculations have 

been carried out for the flow Reynolds number Re = 50 using �	 = 10 Fourier modes and �� = 40 Chebyshev polynomials. 

The form of boundary conditions ( 2.2.25) suggests that the factor I*#��,� − DLU�could be 

eliminated from the numerical implementation. The resulting boundary relations would 

be based on the elimination of the first �	 of the leading Fourier modes from () (*⁄   

and () (,⁄ . The eliminated factor represents a z-periodic function and its product with 

the derivatives of the stream function produces different periodic functions. Thus use of 

boundary relations based on the "primitive" form of boundary conditions represented by 

( 2.2.25) results in slightly different boundary relations as compared with those based on 

the derivatives of the stream function. The full boundary conditions ( 2.2.25) have been 

implemented in the current work. Fourier spectra of the derivatives of the stream function 

computed at the ribbed wall on the basis of such boundary conditions are displayed in 

Figure  2-8B. Presence of a small error in modes with � < �	 can be observed, however 

its magnitude makes this error irrelevant for practical applications. 
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(A) (B) 

Figure  2-8: Fourier spectra of the velocity components %& and %� (Figure  2-8A) and of the 

stream function derivatives () (*⁄  and () (,⁄  (Figure  2-8B) evaluated at the surface of the 

inner cylinder. Other conditions as in Figure  2-7. 

Tests have been carried out in order to determine if the IBC method produces spurious 

spatial oscillations. Figure  2-9 illustrates results for the wall with the ribs' wave number � = 3 and the ribs' amplitude 05.0=S . In case A, the shape of the ribs was assumed to 

be represented by the principal Fourier mode and the calculations were carried out with �	 = 10 Fourier modes. In case B, the same shape was assumed to be represented by the 

second Fourier mode (the principal mode had the wave number � = 1.5), while in case C 

it was represented by the third Fourier mode (the principal mode had the wave 

number � = 1). In order to have fully equivalent representations, the number of Fourier 

modes used in cases B and C was �	 = 20  and 30, respectively, and thus sub harmonics 

of the 21  type in case B and the 31  type in case C were admitted. The Fourier spectra 

of boundary error shown in Figure  2-10 demonstrate the equivalency of the results for all 

three cases. No subharmonics have been produced during the solution process and the 

modes expected to produce zero contributions in cases B and C behaved as expected. 
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Figure  2-9: Fourier spectra of the axial velocity component %& evaluated at the surface of the 

inner cylinder for ribs with the wavelength - = 2. 3⁄ . Other conditions as in Figure  2-7.  

Solution have been obtained with � = 3 and �	 = 10 in case A, � = 1.5 and �	 = 20  in case 

B, and � = 1  and  �	 = 30 in case C. 

 

 
 

Figure  2-10: Variations of the norms ‖"#�‖$ and ‖"/0�‖$ defined by Eq. ( 2.2.54) as a function 

of the radius of the inner cylinder ��. The former one corresponds to an annulus with geometry 

described by Eq. ( 2.2.52) with the ribs' wave number � = 4  and the ribs' amplitude S = 0.06. 

The latter one corresponds to the same ribs but placed at the outer cylinder. Computations were 

carried out for the flow Reynolds number Re = 10 using �	 = 20 Fourier modes and �� = 70  

Chebyshev polynomials. 
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Variations of the boundary error as a function of the average radius of the inner cylinder �� are illustrated in Figure  2-10. It can be seen that the error is bigger if the ribs are 

placed at the inner cylinder as long as �� is sufficiently small. An increase of �� 

equilibrates errors associated with placements of the ribs at either cylinder and the 

magnitudes of these errors approach the error determined for a two-dimensional channel 

using algorithm described in Szumbarski & Floryan (1999). It can be seen that the 

curvature effects are important only for  �� < ~2. 

 

 
 

Figure  2-11: Variation of the norm ‖"#�‖$  defined by Eq. ( 2.2.54) as a function of the flow 

Reynolds number Re for an annulus with geometry defined by Eq. ( 2.2.52) with the ribs' wave 

number � = 4, the ribs' amplitude S = 0.04 and the average radius of the inner cylinder �� = 1 

determined using different number of Fourier modes �	  and  �� = 70   Chebyshev polynomials. 

The absolute error of the method depends on the flow Reynolds number and on the 

geometry of the ribs. Variations of ‖"#�‖$ as a function of the flow Reynolds number are 

illustrated in Figure  2-11. The error remains approximately constant as Re increases as 

long as Re remains smaller then ~50. Further increase of Re results in an increase of the 

error as nonlinear terms begin to play a larger role. The error can be reduced by 

increasing the number of Fourier modes �	 used in the computations.  

Variations of ‖"#�‖$  as a function of the ribs' geometry, i.e., their wave number � and 

amplitude S, are illustrated in Figure  2-12. It can be seen that the error remains at 

machine level if S and � are sufficiently small. Increase of both S and � beyond certain 
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critical values causes the error to increase rapidly. The magnitude of this error can be 

reduced by increasing the number of Fourier modes used in the computations (see Figure 

 2-12) and by using the over-determined formulation of the IBC method (Husain et al. 

2009). 

 

  
(A) (B) 

Figure  2-12: Variations of the norm ‖"#�‖$ defined by Eq. ( 2.2.54) as a function of the ribs' 

amplitude S for selected values of the ribs'  wave numbers � (Figure  2-12A) and as a function of 

the ribs' wave number � for selected values of the ribs' amplitude S (Figure  2-12B) for the model 

configuration described by Eq. ( 2.2.52). Calculations have been carried out for the flow Reynolds 

number Re =  50 and the average radius of the inner cylinder �� = 1  using �	 = 20 (solid 

lines) and �	 = 15 (dashed line) Fourier modes, and �� = 70 Chebyshev polynomials. 

The proposed algorithm can be used for analysis of various effects associated with the 

presence of the ribs for various ribs' geometries. Figure  2-13 illustrates variations of the 

additional pressure loss induced by the ribs as a function of the amplitude S and the wave 

number � for the geometry described by Eq. ( 2.2.52). The required computation can be 

carried out very efficiently as modeling of changes of geometry is completely automatic 

and limited to specification of the range of variations of S and �. Figure  2-14 illustrates 

another possible study where one investigates variations of the additional pressure loss as 

a function of the flow Reynolds number Re and the average radius of the inner cylinder ��. 
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Figure  2-13: Variations of the additional pressure loss generated by the ribs with geometry 

defined by Eq. ( 2.2.52)  as a function of the rib’s amplitude S and the ribs' wave number � for the 

flow Reynolds number Re = 10 and the average radius of the inner cylinder �� = 1. 

 

 
 

Figure  2-14: Variations of the additional pressure loss generated by the ribs with geometry 

given by Eq. ( 2.2.52) as a function of the flow Reynolds number Re and the average  radius of the 

inner cylinder R1 for ribs with the wave number � = 2 and the amplitude S = 0.04. 

Figure  2-15 illustrates flow pattern computed for a complex geometry where shape of the 

ribs at the inner cylinder is described by the following relation 

 J#��,� = 1 + 0.032#& + 0.015?2V#& + 0.012t#& + D. D. ,   J/0��,� = 1 + ��, ( 2.2.55) 
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This figure illustrates flexibility of the algorithm for simulation of flows modified by ribs 

with complex geometries. 

 

 
 

Figure  2-15: Streamlines of a flow in an annulus with geometry defined by Eq. ( 2.2.55)  for the 

flow Reynolds number Re = 10. 

2.3 Annulus with longitudinal grooves 

2.3.1 Formulation of the problem 

Consider the same annulus as in Section  2.2 but fitted with axial ribs, as illustrated in 

Figure  2-16. The geometry of the inner and outer cylinders is described by the following 

relations 

 

J#��1� = �� + ¨ x#����2#��ª«
�¬Uª«

, J/0��1� = 1 + �� + ¨ x/0���� 2#��ª«
�¬Uª«

 ( 2.3.1a, b) 

 

where x#���� = x#��U��∗ and x/0���� = x/0��U��∗ are the reality conditions, stars denote the 

complex conjugate, �� stands for the average radius of the inner annulus, subscripts “out” 

and “in” denote the outer and inner annuli, respectively, and �A is the number of Fourier 

modes required for description of geometry. The wave number does not appear as a 

parameter as 1 ∈ �0,2.�. 
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Figure  2-16: Sketch of the flow geometry - annulus with axial ribs of arbitrary form. Shaded 

area represents computational domain. 

The velocity vector has components �%& , 0, 0� in the �,, J, 1� directions and thus the field 

equations reduce to the axial momentum equation in the form 

 (3(, = 1�2 º1J (%&(J + (�%&(J� + 1J� (�%&(1� » ( 2.3.2) 

 

The above equation has been scaled using the same scales as described in Section  2.2. 

Flow quantities can be split into a sum of the reference flow and flow modification due to 

the presence of the ribs, i.e.,  

 %&�J, 1� = %&è�J� + %&²�J, 1�, 3�,� = 3<�,� + 3��,� ( 2.3.3a, b) 

where subscripts 0 and 1 refer to the reference and the modification quantities, 

respectively. The reference flow has been discussed in Section  2.2.2. Equation governing 

flow modifications has the same form as ( 2.3.4), i.e.,  

 

* = −1 

J/0��1� 

J#��1� 

* = 1 

�/0� 

�#� 

�� 1 + �� 
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(3�(, = 1�2 º1J (%&²(J + (�%&²(J� + 1J� (�%&²(1� » ( 2.3.4) 

 

and it is linear, as opposed to Eq. ( 2.2.9) considered in Section  2.2. Re does appear as a 

separate parameter as it can be incorporated into the pressure gradient. The no-slip 

conditions at the walls expressed in term of the flow modifications have the form 

 %&²�J, 1� = −%&è�J, 1�, at J = J#��1� and J = J/0��1�. ( 2.3.5a, b) 
 

Pressure gradient modification �2 (3� (,⁄  is specified in the case of the fixed pressure 

gradient constraint. This pressure gradient is not known in the case of the fixed flow rate 

constraint, but can be determined by enforcing additional condition in the form  

 

X = X�9S + XN/� = ° %&G[A = ° ° J�éêë���
�ìí���

�æ
< %&GJG1. ( 2.3.6) 

 

where X�9S and XN/� denote the flow rate of the reference flow and the prescribed flow 

rate modification associated with the presence of the ribs. It has been assumed in all tests 

discussed in this study that the ribs did not alter the mass flow rate, i.e., XN/� = 0. 

2.3.2 Discretization 

This section describes discretization of the above problem. Transformation ( 2.2.17) maps 

the computational domain from J ∈ I−�#� + ��, 1 + �/0� + ��L to * ∈ I−1,1L in order 

to permit the use of the standard definition of Chebyshev polynomials. Shapes of the 

boundaries are given in terms of * as 

 

*#��1� = ¨ [#����2#��ª«
�¬Uª«

, */0��1� = ¨ [/0���� 2#��ª«
�¬Uª«

, ( 2.3.7a, b) 

 

where [#��<� = D + Γ�� + Γx#��<�
, [#���� = Γx#����

 for � ≠ 0,  [/0��<� = D + Γ�1 + ��� + Γx/0��<�
   

and [/0���� = Γx/0����
 for � ≠ 0. The field equation in the �*, 1� coordinate system takes the 

form 
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�2Γ� (3�(, = ® 1* − D (%&²(* + (�%&²(*� + 1�* − D�� (�%&²(1� ¯ ( 2.3.8) 

 

and the boundary conditions can be expressed as 

 %&²�*, 1� = −%&è�*, 1�, at * = *#��1� and * = */0��1�. ( 2.3.9a, b) 
 

2.3.2.1 Discretization of the field equation  

The unknown %&²  can be expressed in terms of Fourier series in the form 

 

%&²�*, 1� ≈ ¨ �����*�2#��ªÈ
�¬UªÈ

. ( 2.3.10) 

 

Substitution of ( 2.3.10) into ( 2.3.8) and separation of Fourier modes result in the 

following modal equations 

 

îïð
ïñ������*�* − D + �������*� − �������*��* − D�� = 0, � ≠ 0

������*�* − D + �������*� = �2Γ� (3�(, , � = 0 Ä. ( 2.3.11) 

 

The above system is complete in the case of the fixed pressure gradient constraint, but 

must be supplemented by an additional condition when the pressure gradient correction is 

not known. The fixed flow rate constraint ( 2.3.6) represents such a supplementary 

condition and its discretization is described in Section  2.3.2.3. 

Modal functions are discretized using Chebyshev expansions in the form 

 

�����*� ≈ ¨ �y���|y�*�ªÓ
y¬< . ( 2.3.12) 

 

Substitution of ( 2.3.12) into ( 2.3.11), multiplications by the largest power of * found in 

the denominators and application of the Galerkin procedure bring equations to the form 
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¨_〈|Ý, *�|y〉 − D〈|Ý , �|y〉 + 〈|Ý , *���|y〉 − 2D〈|Ý , *��|y〉 + D�〈|Ý , ��|y〉ÄªÓ
y¬<  

Ä−��〈|Ý, |y〉`�y��� = 0, � ≠ 0 

( 2.3.13a) 

¨_〈|Ý, �|y〉 + 〈|Ý , *��|y〉 − D〈|Ý , ��|y〉`ªÓ
y¬< �y�<� = �2Γ� (3�(, 〈|Ý , *〉 

− D�2Γ� (3�(, 〈|Ý, 1〉, � = 0 

( 2.3.10b) 

 

for ò ∈ I0, �� − 2L leaving space for the imposition of two boundary conditions for each 

modal function in the Tau-like manner. Discretization of the flow rate constraint is 

discussed in Section  2.3.2.3. 

2.3.2.2 Discretization of the boundary conditions 

Boundary conditions ( 2.3.9a, b) have to be enforced along the lines *#��1� and */0��1� 

whose locations are given by Eqs ( 2.3.7a, b). While the numerical implementation of 

these conditions is similar to that described in Section  2.2.3.2, changes associated with 

the use of the flow modification as unknown warrant a separate explanation. We shall 

limit the following discussion to description of boundary condition at the inner cylinder 

while similar condition for the outer cylinder can be obtained by simple replacing 

subscript "in" with subscript "out".  

Boundary condition at the inner cylinder has the form 

 %&²�*#�, 1� = −%&è�*#�, 1�. ( 2.3.14) 
 

The reference flow evaluated at this wall represents a periodic function which can be 

expressed using Fourier series, i.e.,  

 

%&è�*#�, 1� = ����� ®1 − ¾*#� − DΓ�� ¿�¯ + ���� À� ¾*#� − DΓ�� ¿ = ¨ ����2#��ªó
�¬Uªó

 ( 2.3.15) 
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where the coefficients ���� are known and can be explicitly evaluated using FFT 

algorithm. The discretized form of the velocity correction evaluated at the inner cylinder 

takes the form 

 

%&²�*#�, 1� = ¨ ¨ �y���|y�*#��2#��ªÓ
y¬<

ªÈ
�¬UªÈ

 ( 2.3.16) 

 

where |y�*#�� are periodic functions of 1 and can be expressed in terms of Fourier series 

in the form 

 

|y�*#�� = ¨ �#�,y�N�2#N�ªÕ
N¬UªÕ

. ( 2.3.17) 

Algorithm for computing �#�,y�N�
 is presented in  Appendix B. Substitution of  ( 2.3.17) into 

( 2.3.16) results in 

 

%&²�*#�, 1� = ¨ ¨ ¨ �y����#�,y�N�2#��±N��ªÓ
y¬<

ªÈ
�¬UªÈ

ªÕ
N¬UªÕ

. ( 2.3.18) 

 

Re-arrangement of indices and comparison of ( 2.3.15) and ( 2.3.18) lead to boundary 

condition in the form 

 

¨ ¨ ¨ �y�N��#�,y��UN�2#��ªÓ
y¬<

ªÈ
N¬UªÈ

ªÕ±ªÈ
�¬UªÕUªÈ

= − ¨ ����2#��ªó
�¬Uªó

. ( 2.3.19) 

 

Separation of Fourier modes results in individual boundary relations in the form 

 

¨ ¨ �y�N��#�,y��UN�ªÓ
y¬<

ªÈ
N¬UªÈ

= −����. ( 2.3.20) 

 

that need to be enforced during the solution process. 
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In general the total number of the available boundary relations is �	 + ���A. Since �	 

Fourier modes are used in the solution, one can enforce only �	 of these conditions. The 

remaining conditions can be used aposteriori as a convenient test for consistency of the 

algorithm. Use of a larger number of such conditions leads to an over-determined 

formulation of the IBC method (Husain et al. 2009) which expands applicability of the 

method to more extreme geometries. As mentioned before, the number of boundary 

relations used in this study was always equal to the number of Fourier modes used to 

represent the flow field resulting in a well posed algebraic problem. 

2.3.2.3 Discretization of the flow constraints  

The fixed pressure gradient constraint enters the field equations directly and does need 

any special treatment. The fixed flow rate constraint represents an additional condition 

which needs to be discretized explicitly.  

The fixed flow rate constraint ( 2.3.6) expressed in terms of the flow modification takes 

the form 

 

X�9S + XN/� = ΓU� ° ° �* − D�¢éêë���
¢ìí���

�æ
< _%&è�*� + %&²�*, 1�`G*G1 = ô< + ô�. ( 2.3.21) 

 

where ô< and ô� specify contributions of the reference flow and flow modifications, 

respectively. ô< can be written explicitly as 

 

 

ô< = 1��Γ� ° ° ®ºDVΓ� − D���» + º��� − 3D�Γ� » * + 3DΓ� *� − *VΓ� Ä¢éêë���
¢ìí���

�æ
<  

Ä−��DÀ� ¾* − DΓ�� ¿ + ��À� ¾* − DΓ�� ¿õ G*G1. ( 2.3.22) 

 

 

Analytical evaluation of the inner integral results in 
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ô< = 1��Γ� ° ®ºDVΓ� − D��� + ��D2 » �*/0� − *#�� +Ä�æ
< º���2 − 3D�2Γ� − ��4 » 

�*/0�� − *#�� � + DΓ� �*/0�V − *#�V � + 14Γ� �*/0�t − *#�t � + ��D�2 À��*/0� − D� 

− ��D�2 À��*#� − D� − ��D*/0�À� ¾*/0� − DΓ�� ¿ + ��D*#�À� ¾*#� − DΓ�� ¿ 

Ä+ ��*/0��2 À� ¾*/0� − DΓ�� ¿ − ��*#��2 À� ¾*#� − DΓ�� ¿¯ G1 

( 2.3.23) 

 

Polynomials in * are expressed in terms of Chebyshev expansions (see  Appendix A) 

resulting in 

 

ô< = 1��Γ� ° ®º���4 − 3D�4Γ� − ��8 − 332Γ�» I|<�*/0�� − |<�*#��LÄ�æ
<  

+ ºDVΓ� − D��� + ��D2 + 3D4Γ�» I|��*/0�� − |��*#��L + º���4 − 3D�4Γ� − ��8 − 18Γ�» 

I|��*/0�� − |��*#��L + D4Γ� I|V�*/0�� − |V�*#��L − 132Γ� I|t�*/0�� − |t�*#��L 
+ ��D�2 À��*/0� − D� − ��D�2 À��*#� − D� − ��D*/0�À� ¾*/0� − DΓ�� ¿ 

Ä+��D*#�À� ¾*#� − DΓ�� ¿ + ��*/0��2 À� ¾*/0� − DΓ�� ¿ − ��*#��2 À� ¾*#� − DΓ�� ¿¯ G1 

( 2.3.24) 

 

The following functions of 1 appearing in the above relation are expressed in terms of 

suitable Fourier series in the form  

 ��D�2 À��*/0� − D� = ¨ ;�,/0���� 2#��ªÕ
�¬UªÕ

, ��D�2 À��*#� − D� = ¨ ;�,#����2#��ªÕ
�¬UªÕ

, 
��D*/0�À� ¾*/0� − DΓ�� ¿ = ¨ ;�,/0���� 2#��ªÕ

�¬UªÕ
, ��D*#�À� ¾*#� − DΓ�� ¿ = ¨ ;�,#����2#��ªÕ

�¬UªÕ
 

��*/0��2 À� ¾*/0� − DΓ�� ¿ = ¨ ;V,/0���� 2#��ªÕ
�¬UªÕ

, ��*#��2 À� ¾*#� − DΓ�� ¿ = ¨ ;V,#����2#��ªÕ
�¬UªÕ

 

 
 
 
 
 

( 2.3.25) 

 

where coefficients ;�,/0����
, ;�,#����

, ;�,/0����
, ;�,#����

, ;V,/0����
, and ;V,#����

 are evaluated numerically 

using FFT algorithm. Values of Chebyshev polynomials at the inner and outer cylinders 
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are expressed using Fourier expansions of type ( 2.3.17). Substitution of the resulting 

expressions as well as ( 2.3.25) into Eq. ( 2.3.24) result in 

 

ô< = 1��Γ� ¨ ¹º���4 − 3D�4Γ� − ��8 − 332Γ�»Ä Ï�/0�,<��� − �#�,<��� ÎªÕ
�¬UªÕ

 

+ ºDVΓ� − D��� + ��D2 + 3D4Γ�» Ï�/0�,���� − �#�,���� Î + º���4 − 3D�4Γ� − ��8 − 18Γ�» 

Ï�/0�,���� − �#�,���� Î + D4Γ� Ï�/0�,V��� − �#�,V��� Î − 132Γ� Ï�/0�,t��� − �#�,t��� Î 
Ä+;�,/0���� − ;�,#���� + ;�,/0���� − ;�,#���� + ;V,/0���� − ;V,#����Ñ ° 2#��G1�æ

< . 
( 2.3.26) 

Integrals in the above relation are nonzero only for n = 0 which reduces ( 2.3.26) to the 

final form used in the computations, i.e.,  

 

ô< = 2.��Γ� ®º���4 − 3D�4Γ� − ��8 − 332Γ�» ö�/0�,<�<� − �#�,<�<� ÷ +Ä 
ºDVΓ� − D��� + ��D2 + 3D4Γ�» ö�/0�,��<� − �#�,��<� ÷ + º���4 − 3D�4Γ� − ��8 − 18Γ�» 

ö�/0�,��<� − �#�,��<� ÷ + D4Γ� ö�/0�,V�<� − �#�,V�<� ÷ − 132Γ� ö�/0�,t�<� − �#�,t�<� ÷ Ä+;�,/0��<� − ;�,#��<� + ;�,/0��<� − ;�,#��<� + ;V,/0��<� − ;V,#��<�Î. 
( 2.3.27) 

Evaluation of the second integral in ( 2.3.21) begins with expressing axial velocity using 

discretized variables, i.e.,  

 

ô� = 1Γ� ° ° �* − D� ¨ ¨ �y���|y�*�2#��ªÓ
y¬<

ªÈ
�¬UªÈ

G*G1¢éêë���
¢ìí���

�æ
<  

= 1Γ� ° ¨ ¨ �y��� ° *|y�*�¢éêë���
¢ìí��� 2#��ªÓ

y¬<
ªÈ

�¬UªÈ
G*G1�æ

<  

+ 1Γ� ° ¨ ¨ �y��� ° |y�*�¢éêë���
¢ìí��� 2#��ªÓ

y¬<
ªÈ

�¬UªÈ
G*G1�æ

<  

( 2.3.28) 

All functions of * are expressed using Chebyshev expansions and the resulting products 

of Chebyshev polynomials are expressed using sums of such polynomials (see  Appendix 

A). This process brings expression for ô� to the form  
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ô� = 12Γ� ¨ ¨ �y���_ôy±��1� + ô|yU�|�1� − 2Dôy�1�`2#��ªÓ
y¬<

ªÈ
�¬UªÈ

 ( 2.3.29) 

where 

 

ôy�1� = ° |y�*�G*¢éêë���
¢ìí��� = 12�� + 1� I|y±��*/0�� − |y±��*/0��L 

− �1 − i�y�2�� − 1� I|yU��*/0�� − |yU��*/0��L. ( 2.3.30) 

ôy�1�'s are known periodic functions of 1 and can be expressed in terms of Fourier series 

in the form 

 

ôy�1� = ¨ ôøy�N�2#N�$
N¬U$ . ( 2.3.31) 

Evaluations of coefficients ôøy�N�
 of these expansions begins with substitution of Eq. 

( 2.3.17) into ( 2.3.30), i.e.,  

 

ôy�1� = 12�� + 1� ¨ ö�/0�,y±���� − �#�,y±���� ÷2#��ªÕ
�¬UªÕ

 

− �1 − i�y�2�� − 1� ¨ ö�/0�,|yU�|��� − �#�,|yU�|��� ÷2#��ªÕ
�¬UªÕ

. ( 2.3.32) 

It is simple to deduce that  

 

ôøy��� = �/0�,y±���� − �#�,y±����
2�� + 1� − �1 − i�y�2�� − 1� ö�/0�,|yU�|��� − �#�,|yU�|��� ÷. ( 2.3.33) 

Substitution of ( 2.3.33) into ( 2.3.30) leads to 

 

ô� = 12Γ� ¨ ¨ ¨ �y�N�Ïôøy±���UN� + ôø|yU�|��UN� − 2Dôøy��UN�Î ° 2#��G1.�æ
<

ªÓ
y¬<

ªÈ
N¬UªÈ

$
�¬U$  ( 2.3.34) 

Integrals in the above relation are nonzero only for � = 0 which leads to 
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ô� = .Γ� ¨ ¨ �y�N�öôøy±��UN� + ôø|yU�|�UN� − 2Dôøy�UN�÷.ªÓ
y¬<

ªÈ
N¬UªÈ

 ( 2.3.35) 

Substitution of ( 2.3.27) and ( 2.3.35) into ( 2.3.21) provides the final form of the 

discretized fixed flow rate constraint 

 

¨ ¨ �y�N�öôøy±��UN� + ôø|yU�|�UN� − 2Dôøy�UN�÷ªÓ
y¬<

ªÈ
N¬UªÈ= −2�� ®º���4 − 3D�4Γ� − ��8 − 332Γ�» ö�/0�,<�<� − �#�,<�<� ÷ +Ä 

ºDVΓ� − D��� + ��D2 + 3D4Γ�» ö�/0�,��<� − �#�,��<� ÷ + º���4 − 3D�4Γ� − ��8 − 18Γ�» 

ö�/0�,��<� − �#�,��<� ÷ + D4Γ� ö�/0�,V�<� − �#�,V�<� ÷ − 132Γ� ö�/0�,t�<� − �#�,t�<� ÷ 

Ä+;�,/0��<� − ;�,#��<� + ;�,/0��<� − ;�,#��<� + ;V,/0��<� − ;V,#��<�Î + Γ�. aX�9S + XN/�b. 

( 2.3.36) 

which needs to be enforced numerically. 

2.3.3 Testing of the algorithm 

This section presents results of various tests carried out in order to demonstrate the 

spectral accuracy of the algorithm. Model geometry described by one Fourier mode, i.e.,  

 J#��1� = �� +  #�Dä>1, J/0��1� = 1 + �� +  /0�Dä>1, ( 2.3.37) 

has been used in most of the tests. The algorithm incorporates three elements of spectral 

discretization, i.e., discretizations in the r and 1 directions and discretization of the 

boundary conditions. Since Galerkin procedure guarantees spectral convergence of the 

Chebyshev expansions (Manson 2003), it is sufficient to test only the absolute accuracy 

of this part of discretization. It had been found that convergence was very rapid in all 

cases considered and 60-70 polynomials would provide machines level accuracy. 

Formation of boundary layers in the distribution of modal functions has been observed 

when higher Fourier modes have to be included in the solution, similarly as in the case of 

the algorithm discussed in Section  2.2 (compare Figure  2-3 and Figure  2-17).  The reader 
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may note formation of more extreme boundary layers at the surface of the inner cylinder 

(Figure  2-17A) as compared with the outer cylinder (Figure  2-17B). 

 

  
(A) (B) 

Figure  2-17: Distribution of the real part of ���� as a function of r for higher Fourier modes �� > 13� in the region close to the surfaces of the inner (Figure  2-17A) and outer (Figure 

 2-17B) cylinders. The ribs' geometry is given by Eq. ( 2.3.37) with the inner and outer amplitudes  #� = 0.4 and  /0� = 0.4, respectively,  and the average radius on the inner cylinder �� = 2. 

Computations have been carried out using �	 = 20 Fourier modes and �� = 70 Chebyshev 

polynomials. 

Figure  2-18 demonstrates spectral convergence of the discretization in the θ-direction. 

The rate of convergence depends weakly on the amplitude of the ribs; a very good 

convergence is observed even for ribs with the amplitude as high as  #� = 0.2. 
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Figure  2-18: Variations of the Chebyshev norm ������� as a function of the Fourier mode 

number n for the model geometry described by Eq. ( 2.3.37) for selected values of the inner ribs' 

amplitude  #�.  Calculations have been carried out for the smooth outer cylinder � /0� = 0� and 

the average radius of the inner cylinder �� = 2 using �	 = 20 Fourier modes and �� = 70 

Chebyshev polynomials. 

A suitable �$ norm that measures the accuracy in the enforcement of the flow boundary 

conditions is defined as 

 ‖"#�‖$ = >f3<å�å�æ|%&IJ#��1�L, 1|, ( 2.3.38) 
 

and a similar norm can be defined for the outer cylinder. Figure  2-19 demonstrates 

spectral convergence of the error in the enforcement of the flow boundary conditions 

using the IBC method, even for ribs' amplitudes as high as  #� = 0.2. Results displayed 

in Figure  2-20 show that this accuracy could be significantly improved by increasing the 

number of Fourier modes �	 used in the computations.  
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Figure  2-19: Variations of the norm ‖"#�‖$ defined by Eq. ( 2.3.38) as a function of the number 

of Fourier modes �	 used in the computations for the model problem described by Eq. ( 2.3.37) 

for selected values of the inner ribs' amplitude  #�. Calculations have been carried out for the 

smooth outer cylinder � /0� = 0� and the average radius of the inner cylinder �� = 1  using �� = 70  Chebyshev polynomials. 

 

 
 

Figure  2-20: Variations of the norm ‖"#�‖$  defined by Eq. ( 2.3.38) as a function of the ribs' 

inner amplitude  #� for the model configuration described by Eq. ( 2.3.37). Calculations have 

been carried out for the smooth outer cylinder � /0� = 0� and the average radius of the inner 

cylinder �� = 1  using �� = 70   Chebyshev polynomials and selected number of the Fourier 

modes �	. 
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Figure  2-21 illustrates distribution of the axial velocity component %& along the surfaces 

of both cylinders. This quantity represents an error in the enforcement of the flow 

boundary conditions. The error has an oscillatory distribution and locations of its 

minima/maxima at the inner cylinder correlate with the maximum/minimum of the 

diameter of the inner cylinder while an opposite correlation is observed at the outer 

cylinder.  

 

 
 

Figure  2-21: Distributions of the axial velocity component %& evaluated along the inner and 

outer cylinders for the model geometry described by Eq. ( 2.3.37) with the ribs' inner and outer 

amplitudes  #� = 0.05 and  /0� = 0.1, respectively, and 1  replaced by 31. Calculations have 

been carried out for the average radius of the inner cylinder �� = 1 using �	 = 20  Fourier 

modes and �� = 70 Chebyshev polynomials. 

Figure  2-22 displays Fourier spectra of the error distribution displayed in Figure  2-21. It 

can be seen that the first twenty modes are absent, in agreement with the construction of 

the boundary relations explained in Section  2.3.2.2.  
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Figure  2-22: Fourier spectra of the axial velocity component %& evaluated along the inner and 

outer cylinders for the model geometry described by Eq. ( 2.3.37). Other conditions as in Figure 

 2-21. 

Figure  2-23 illustrates variations of the boundary error as a function of the average radius 

of the inner cylinder ��. It can be seen that the error is larger when the ribs are placed at 

the inner cylinder. An increase of �� causes the error on both cylinders to equilibrate and 

to approach the error found in the case of a two-dimensional channel. 

Figure  2-24 shows variations of the additional pressure drop �2 (3� (,⁄  associated with 

the presence of the ribs as a function of the ribs' amplitude  #� and the average radius of 

the inner cylinder ��, i.e., it illustrates potential use of the algorithm. This particular 

study requires analysis of many geometries but can be done very efficiently using the 

IBC method. Specification of geometry requires specification of coefficients of Fourier 

expansions only, the coefficient matrix is the same for each geometry and can be 

computed once and pre-inverted at the beginning of the analysis, and the boundary 

relations need to be adjusted for each geometry but the associated computational cost is 

minimal. 
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Figure  2-23: Variations of the norms ‖"#�‖$ and ‖"/0�‖$ defined by Eq. ( 2.3.38) as a function 

of the radius of the inner cylinder ��. The former one corresponds to an annulus with geometry 

described by Eq. ( 2.3.37) with the inner ribs' amplitude  #� = 0.15 and smooth outer cylinder � /0� = 0�, and 1  replaced by 51 The latter one corresponds to the same annulus with the same 

ribs placed at the outer cylinder. Computations were carried out using �	 = 20 Fourier modes 

and �� = 70 Chebyshev polynomials. 

 

 
 

Figure  2-24: Variations of the additional pressure loss �2 (3� (,⁄  associated with the presence 

of the ribs at the inner cylinder while the outer cylinder is kept smooth � /0� = 0� as a function 

of the ribs' amplitude  #� and the average radius of the inner cylinder ��. The ribs' geometry is 

defined by Eq. ( 2.3.37). Computations were carried out using �	 = 20 Fourier modes and �� = 70 Chebyshev polynomials. 
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Figure  2-25 illustrates flexibility of the algorithm in dealing with complex ribs' 

geometries. In this particular case the shape of the annulus is described by the following 

relations 

 J#��1� = 1 + 0.05Dä>�31�, J/0��1� = 2 + 0.1Dä>�41�. ( 2.3.39) 
 

   
 

Figure  2-25: Velocity contours for the model problem defined by Eq. ( 2.3.39). 

2.4 Summary 

Spectral methods for analyses of steady flows in annuli bounded by walls with either 

axisymmetric or longitudinal ribs are developed. The physical boundary conditions are 

enforced using the immersed boundary conditions (IBC) concept. In the former case, the 

Stokes stream function is used to eliminate pressure and to reduce system of field 

equations to a single forth-order partial differential equation. The ribs are assumed to be 
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periodic in the axial direction and this permits representation of the solution in terms of 

Fourier expansion. In the latter case, the problem is reduced to the Laplace equations for 

the flow modifications which can be expressed in terms of Fourier expansions. The 

modal functions, which are functions of the radial coordinate, are discretized using 

Chebyshev polynomials. The problem formulations are closed using either the fixed 

volume flow rate constraint or the fixed pressure gradient constraint. Various tests have 

been carried out in order to demonstrate the spectral accuracy of the discretizations, as 

well as the spectral accuracy of the enforcement of the flow boundary conditions at the 

ribbed walls using the IBC concept. Special linear solver that takes advantage of the 

matrix structure has been implemented in order to reduce computational time and 

memory requirements. It is shown that the algorithm has superior performance when one 

is interested in the analysis of a large number of geometries, as the part of the coefficient 

matrix that corresponds to the field equation is always the same and one needs to change 

only the part of the matrix that corresponds to the boundary relations when changing 

geometry of the flow domain. 

 

 

 

 

  



62 

 

Chapter 3  

3 Flows in Annuli with Longitudinal Grooves1 

3.1 Introduction 

It has been shown in  Chapter 2 that introduction of surface topography in the form of 

longitudinal grooves may reduce flow resistance (Figure  2-24). Thus this chapter is 

devoted to complete analysis of laminar, pressure driven flows in annuli fitted with 

longitudinal grooves of arbitrary shape and on the systematic search for the forms of such 

grooves that are able to reduce drag. The drag-reducing abilities are assessed by 

determining the additional pressure gradient required to maintain the same mass flow rate 

through the groove-fitted as well as through the smooth annuli. The problem formulation 

is given in Section  3.2. Curvature effects are discussed in Section  3.3, together with the 

form of the flow found in annuli with large radii. A spectrally accurate method of 

solution of the field equations for arbitrary geometric parameters is discussed in Section 

 3.4. The groove-induced flow modifications are described in Section  3.5. In particular, 

Section  3.5.1 discusses the effects of changing the mean position of the cylinders, Section 

 3.5.2 discusses the shape representation for arbitrary grooves and the reduced geometry 

models, Section  3.5.3 describes the effects of the dominant parameters and Section  3.5.4 

discusses the mechanics of drag formation. Section  3.6 is focused on the identification of 

the optimal forms of the grooves which produce the maximum possible drag reduction. In 

particular, Section  3.6.1 discusses the shapes determined with the equal-depth constraint 

(equal-depth grooves) and Section  3.6.2 presents the shapes determined with the unequal-

depth constraint (unequal-depth grooves). Section  3.7 provides a short summary of the 

main conclusions. 

                                                 

1
 A version of this chapter has been published as – 

Moradi, H. V. & Floryan, J. M. 2013 Flows in Annuli with Longitudinal Grooves, Journal of Fluid 

Mechanics, 716, 280-315. 



63 

 

3.2 Problem formulation 

Consider steady axial flow in an annulus bounded by two co-axial cylinders fitted with 

longitudinal grooves (Figure  3-1). There are M identical grooves of an arbitrary shape 

over the circumference and thus wall geometries can be expressed as 

J#��1� = �� + ¨ x#����2#�	�ª«
�¬Uª«

, J/0��1� = 1 + �� + ¨ x/0���� 2#�	�ª«
�¬Uª«

 ( 3.2.1a, b) 

where �� and 1 + �� are the radii of the smooth reference inner and outer cylinders, 

x#���� = x#��U��∗, x/0���� = x/0��U��∗ are the reality conditions, stars denote the complex 

conjugates, �A is the number of Fourier modes required for description of the shape of 

the grooves, and all quantities have been scaled with the gap L between the reference 

cylinders as the length scale. 

 

 
Figure  3-1: Sketch of the flow geometry - annulus with longitudinal grooves with an arbitrary 

geometry. 

The flow is driven by a constant axial pressure gradient and this leads to a velocity field 

with the velocity vector having components �%, 0, 0� in the �,, J, 1� directions. This field 

is completely described by the axial momentum equation in the form 

 

º1J (%(J + (�%(J� + 1J� (�%(1�» = �2 (3(, ( 3.2.2) 
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which has been scaled using the maximum of the axial velocity of the reference flow zN�O as the velocity scale and }zN�O�  as the pressure scale where } stands for the 

density. The Reynolds number is defined as �2 = zN�O� {⁄  where { stands for the 

kinematic viscosity. The boundary conditions have the form  

 %�J, 1� = 0 at J = J#��1� and J = J/0��1�. ( 3.2.3a, b) 
 

The problem of determination of the effects of the grooves is posed as the problem of 

determination of an additional pressure gradient required in order to maintain the same 

flow rate in the grooved annulus as in the reference smooth annulus. This necessitates 

introduction of the flow rate constraint in the form  

 

X = @ ° ° J%GJG1�éêë���
�ìí���

�æ 	⁄
<  ( 3.2.4) 

 

where Q is the known flow rate; this flow rate is equal to the flow rate in the 

corresponding smooth annulus. 

The reference flow, i.e. flow in a smooth annulus, has the velocity distribution, the 

pressure gradient and the flow rate expressed as (Tasos et al. 1999) 

 %<�J� = ���I1 − �J ��⁄ ��L ��⁄ + ��À��J ��⁄ � ��⁄ ,    G3< G,⁄ = −4 ���2⁄  
( 3.2.5) 
( 3.2.6)  X< = 2.I�1 + �������� − 2�� − 1 − ��� 4⁄ +Ä Ä���1 + ����À���1 + ��� ��⁄ � 2⁄ + ������ − 1� 4⁄ L ��⁄  ( 3.2.7) 

 

where �� = ��� − ��À��� + �� 2⁄ IÀ���� 2⁄ � − 1L and �� =
�1 + 2��� À�I�1 + ��� ��⁄ L⁄ . The maximum of %< occurs at J = Á�� 2⁄  and this defines 

the velocity scale zN�O.  

3.3 Curvature effects 

The magnitude of the annulus curvature is expressed in terms of its radius ��. It is more 

convenient to analyze the relative importance of curvature effects by expressing the 
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model equations using boundary oriented coordinate system �T, Ç�, where y denotes the 

distance measured outward from the inner cylinder, i.e. T = J − ��, and t stands for the 

arc length measured along the inner cylinder, i.e. 1 = Ç ��⁄ . Problem ( 3.2.2)-( 3.2.4) takes 

the form 

 

® ��U�1 + T��U� (%(T + (�%(T� + 1�1 + T��U��� (�%(Ç� ¯ = �2 (3(,, ( 3.3.1) 

%�T, Ç� = 0   at       T = T#��Ç�  and     T = T/0��Ç� , ( 3.3.2) 

X = ��� ° ° �T/�� + 1�%GTGÇpéêë���
pìí���

�æ ©⁄
< , ( 3.3.3) 

 

where 

T#��Ç� = ¨ x#����2#�©�ª«
�¬Uª«

,    T/0��Ç� = 1 + ¨ x/0���� 2#�©�ª«
�¬Uª«

, 
and � = @ ��⁄  will be referred to as the groove wave number. The problems associated 

with the treatment of the boundary conditions on grooved surfaces are eliminated by 

introducing a transformation of the form 

 * = �Ç, � = 1 + 2IT − T/0��Ç�LIT/0��Ç� − T#��Ç�LU� ( 3.3.4) 
 

which maps the solution domain into a strip η ∈[-1,1]. The coordinate * is defined in 

such a way that it can play the role of a slow scale when � → 0. The problem expressed 

in the new coordinates takes the form 

 

�A,� (%(� + �A,� (�%(�� + �A,V (�%(�(* + �A,t (�%(*� = �2 (3(,, 
( 3.3.5) %�*, �� = 0 at � = ∓1  , 

X = 0.5�� ° ° I1 + ��U����, *�L%��, *��
U�

�æ
< ;�*�G�G* 

 

where the coefficients are presented in  Appendix C. It is convenient to carry out further 

discussion in the context of sinusoidal grooves placed at the inner cylinder, i.e. 

 T#��Ç� = 0.5 #�Dä>�@Ç ��⁄ �,        T/0��Ç� = 1. ( 3.3.6) 
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In the case of large �� it is possible to express the solution as asymptotic expansions of 

the form 

 % = %�< + ��U�%�� + ú���U��,         3 = 3̂< + ��U�3̂� + ú���U��. 
 

( 3.3.7) 

It is further assumed that the number of grooves increases with �� so that the wave 

number @ ��⁄  remains O(1). This process is not continuous, as only integer numbers of 

grooves are permitted. However, it is still possible to consider the limit �� → ∞. The 

flow rate can be expressed as 

 X 2.��⁄ = X�< + ��U�X�� + ú���U�� = 23 + 13 ��U� + ú���U��. ( 3.3.8) 

 

Expanding the coefficients, substituting Eq. ( 3.3.7) into Eq. ( 3.3.5) and retaining the 

terms of the two highest orders of magnitude results in the following problems: 

 

ú�1�:      xV��, *� (%�<(� + Ix����, *� + x����, *�L (�%�<(�� + 2�x���, *� (�%�<(�(*
+ �� (�%�<(*� = �2 (3̂<(, . 

                 X�< = 14. ° ° %�<���;�*�G�G*�
U�

�æ
< , 

 %�<��� = 0 at � = ±1, 
 

( 3.3.9) 

ú���U��:     Ix���, *� − 2xV��, *����, *�L (%�<(� + xV��, *� (%��(�+ Ix����, *� + x����, *�L (�%��(�� − 2x����, *����, *� (�%�<(��
+ 2�x���, *� (�%��(�(* − 4�x���, *����, *� (�%�<(�(* + �� (�%��(*�
− 2�����, *� (�%�<(*� = �2 (3̂�(, . 

                      X�� = 14. ° ° I%�<������, *� + %�����L;�*�G�G*�
U�

�æ
< , 

 %����� = 0 at = ±1 . 

( 3.3.10) 
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Problem ( 3.3.9) describes the flow in a straight grooved channel studied by Mohammadi 

& Floryan (2013a). Curvature enters solution at ú���U��. The effects of the grooves 

disappear in the limit  #� → 0 and the above problems yield analytical solution of the 

form 

 %�<��� = 1 − �� ,         (3̂<(, = − 8�2, ( 3.3.11) 

%����� = − ��1 − ��� 6⁄ ,      (3̂�(, = 0 ( 3.3.12) 

 

where ( 3.3.11) and ( 3.3.12) are identical to the two-term expansion of the reference flow 

( 3.2.5)-( 3.2.7). Problem ( 3.3.10)-( 3.3.11) can be further simplified by assuming that the 

number of grooves M remains the same while taking the limit �� → ∞. This leads to  � = @ ��⁄ → 0, *  becomes a slow scale and additional simplifications lead to  

               

ú�1�:      x����, *� (�%�<(�� = �2 (3̂<(, , X�< = 14. ° ° %�<���;�*�G�G*�
U�

�æ
< ,%�<��� = 0 at � = ±1 

( 3.3.13a-c) 

ú���U��:    x����, *� (�%��(�� = �2 (3̂�(, − x���, *� (%�<(� , X��
= 14. ° ° I%�<������, *� + %�����L;�*�G�G*�

U�
�æ

<                       %����� = 0 at � = ±1 

( 3.3.14a-c) 

 

Problem ú�1� is identical to the small wave number approximation of the flow in a 

straight grooved channel (Mohammadi & Floryan, 2013a) and problem ú���U�� 

combines contributions coming from the curvature (2nd term on the RHS of 3-14a) as 

well as from the small wave number approximation (LHS of 3-14a). Additional 

contributions from the curvature can be found in the flow rate constraint; X�� = 1 3⁄  in the 

case of an annulus but X��=0 in the case of a straight channel. Equations ( 3.3.13a-c) and 

( 3.3.14a-c) yield an analytical solution of the form 

 %�<��� = �1 + 3 #�� 8⁄ �U�;��*��1 − ���, ( 3.3.15) (3̂<(, = − 8�2 �1 + 3 #�� 8⁄ �U�, ( 3.3.16) 
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%����� = ;��*��1 + 3 #�� 8⁄ �U��1 − ��� 3 #�� �1 + 3 #�� 8⁄ �U��1 +  #�� 16⁄ � 16⁄− ;��*��1 + 3 #�� 8⁄ �U��1 − ��� �;�*� 6⁄ . ( 3.3.17) (3̂�(, = −3 #��2�2 �1 + 3 #�� 8⁄ �U��1 +  #�� 16⁄ �. ( 3.3.18) 

 

Solution for the same grooves but placed at the outer cylinder is given in  Appendix D. 

Figure  3-2 illustrates variations of the error Er in the evaluation of the pressure gradient 

using the above approximation. This error is defined as  

 vJ = ü(3(, − (3̂<(, − ��U� (3̂�(, ü ( 3.3.19) 

 

where the actual (3 (,⁄  has been determined by solving the complete field equations 

using a spectrally accurate algorithm to be described in Section  3.4.  

 

 
Figure  3-2: Variations of the error of the asymptotic approximation for �� → ∞. Solid lines 

correspond to grooves placed at the inner cylinder (Eq. 3-6) with M = 8 and  #� = 0.15 and 

dashed lines correspond to the same grooves placed at the outer cylinder (see Eq. B-1). 

 

It can be seen that the two-term approximation provides accuracy O(10-7) at �� = 10. 

Since the first order approximation is identical to the flow in a straight grooved channel, 

the difference between this approximation and the full solution provides a means for 

quantifying the effects of curvature. 
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3.4 Numerical solution 

This section describes a spectral algorithm used to solve the complete problem ( 3.2.2)-

( 3.2.4). The algorithm relies on a mapping that transforms the complex geometry into a 

straight strip suitable for implementation of spectral discretization. An alternative 

method, i.e. IBC method, proposed in  Chapter 2, uses the physical domain and enforces 

boundary conditions on the corrugated boundaries using the concept of immersed 

boundary conditions. The former method provides better access to configurations with 

extreme geometries. 

3.4.1 Discretization of the field equation 

The corrugated annuli in the physical domain �J, 1� is mapped into a smooth annuli in the 

computational domain ��, *� using mapping of the form 

 * = 1, � = 2IJ −  J/0��1�LIJ/0��1� − J#��1�LU� + 1. ( 3.4.1) 
 

The governing equation ( 3.2.2) is transformed into 

 

P��*, �� (%(� + P��*, �� (�%(�� + PV�*, �� (�%(�(* + (�%(*� = Pt�*, ���2 (3(,, ( 3.4.2) 

 

where the coefficients 

 P��*, �� = �V��, *� + I[�*� + ý�*��L ý�*�⁄ ,  P��*, �� = �����, *� + �����, *�I[�*� + ý�*��L� PV�*, �� = 2����, *�,  Pt�*, �� = I[��*� + 2[�*�ý�*�� + ý��*���L ( 3.4.3) 

 

contain information about the groove geometry. In the above 

 [�*� = 0.5IJ/0��*� + J#��*�L,                ý�*� = 0.5IJ/0��*� − J#��*�L, ( 3.4.4) ����, *� = ýU��*�, ����, *� = −_[¢�*� + �ý¢�*�`ýU��*�, �V��, *� = −_[¢¢�*� + �ý¢¢�*� + 2����, *�ý¢�*�`ýU��*� 
( 3.4.5) 

 

and J#� and J/0� are given by Eq. ( 3.2.1a, b). The boundary conditions take the form  
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%�*, 1� = 0, %�*, −1� = 0 ( 3.4.6) 
 

and the flow constraint will be discussed in Section  3.4.2. Solution of ( 3.4.2) is periodic 

in the *-direction and thus can be represented in terms of Fourier expansions as 

 

%�*, �� = ¨ Φ
������2#�	¢±∞

�¬U∞ ≈ ¨ Φ
������2#�	¢ªÈ

�¬UªÈ
 ( 3.4.7) 

 

where Φ��� = Φ
�U��∗. All the known coefficients need to be represented using Fourier 

expansions, i.e.  

 

P��*, �� = ¨ ��������2#�	¢�ªÈ
�¬U�ªÈ

, P��*, �� = ¨ ��������2#�	¢�ªÈ
�¬U�ªÈ

, 
PV�*, �� = ¨ �V������2#�	¢�ªÈ

�¬U�ªÈ
 ,  

Pt�*, �� = ¨ ö[���� + 2�[���� + ��[V���÷2#�	¢�ªÈ
�¬U�ªÈ

, 
( 3.4.8) 

 

where [����,  [����
, and [V���

have the form 

 

[���� = ¨ [±�N�[±��UN�ª«
N¬Uª«

, [±��� = þ ö1 + 2�� + x#��<� + x/0��<� ÷ 2⁄ , � = 0
öx#���� + x/0���� ÷ 2,                       � ≠ 0c Ä 

[���� = ¨ [±�N�[U��UN�ª«
N¬Uª«

, [U��� = þö1 + x/0��<� − x#��<�÷ 2⁄ , � = 0
öx/0���� − x#����÷ 2,                 � ≠ 0c Ä 

[V��� = ¨ [U�N�[U��UN�ª«
N¬Uª«

. 
( 3.4.9) 

Substitution of  Eqs. ( 3.4.7)-( 3.4.9) into ( 3.4.2) and separation of the Fourier modes leads 

to 
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−��@��
Φ

������ + ¨ ÐÏ����UN���� + ?o@�V��UN����Î�Φ�N����ÄªÈ
N¬UªÈ

 

Ä+����UN������
Φ

�N����Ñ −  ö[���� + 2�[���� + ��[V���÷�2 (3 (,⁄ = 0. ( 3.4.10) 

 

where � = G G�⁄ , −�	 < � < �	. The ordinary differential equations ( 3.4.10) form a 

system coupled through the variable coefficients. 

The boundary conditions for the modal functions can be written in the form 

 Φ����1� = 0,       Φ����−1� = 0. ( 3.4.11) 
 

Equations ( 3.4.10) are discretized using Chebyshev expansions. The unknown Φ������ 

and known ��������, ��������, �V������ and �t������ functions are expressed using 

Chebyshev expansions of the form 

 

Φ
������ = ¨ �y���|y���ªÓ

y¬< , �������� = ¨ �R,����� |R���ªÓ
R¬< , �������� = ¨ �R,����� |R���ªÓ

R¬<  

 �V������ = ¨ �R,�V��� |R���ªÓ
R¬< , 

   �t������ = ö[���� + [V��� 2⁄ ÷|<��� + 2[����|���� + [V���|���� 2⁄  

( 3.4.12) 

 

Substituting Eq. ( 3.4.12) into Eq. ( 3.4.10) leads to 

 

¨ þ−��@���y���|y��� + ¨ ¨ Ïö�R,����UN� + ?o@�R.�V��UN�÷|R����|y���ÄªÓ
R¬<

ªÈ
N¬UªÈ

ÄªÓ
y¬<  

ÄÄ+�R,����UN�|R�����|y���Î�y�N�Ñ −�2 (3 (,⁄ Ïö[���� + [V��� 2⁄ ÷|<��� + 2[����|���� + [V���|���� 2⁄ Î = 0 

( 3.4.13) 

 

Application of the Galerkin procedure to ( 3.4.13) leads to �� − 1 algebraic equations for 

the unknown coefficients �y���
for each Fourier mode of the form  
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¨ þ−��@��〈|Ý, |y〉�y��� + ¨ ¨ Ïö�R,����UN� + ?o@�R.�V��UN�÷〈|Ý , |R�|y〉ÄªÓ
R¬<

ªÈ
N¬UªÈ

ÄªÓ
y¬<  

ÄÄ+�R,����UN�〈|Ý , |R��|y〉Î�y�N�Ñ −�2 (3 (,⁄ Ïö[���� + [V��� 2⁄ ÷〈|Ý , |<〉 + 2[����〈|Ý , |�〉 + [V���〈|Ý , |�〉 2⁄ Î = 0 

( 3.4.14) 

 

Substitution of ( 3.4.12) into ( 3.4.11) leads to boundary conditions expressed in terms of 

coefficients of Chebyshev expansions of the form  

 

¨ �y���ªÓ
y¬< = 0, ¨�−1�y�y���ªÓ

y¬< = 0. ( 3.4.15) 

 

These conditions are enforced by replacing equations of type ( 3.4.14) for the two largest 

coefficients of Chebyshev expansions with ( 3.4.15), i.e. the tau method. 

3.4.2 Flow constraint 

The pressure gradient (3 (,⁄  needs to be determined as a part of the solution process and 

the fixed flow rate constraint provides the required closing condition. Evaluation of the 

fixed flow rate constraint begins with expressing the axial velocity in terms of the 

discretized variables, i.e. 

 

X�9S@ = ° ° þI[�*�ý�*� + ý��*��L ¨ ¨ �y���|y���2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

�w¬�
w¬U� G�G*�æ 	⁄

< . ( 3.4.16) 

 

Substituting ( 3.4.9) into ( 3.4.16), expressing � in terms of Chebyshev expansion and 

evaluating the inner integral leads to 

 X�9S@ = 0.5 ¨ ¨ ¨ �y�N�ªÓ
y¬<

ªÈ
N¬UªÈ

�ªÈ
�¬U�ªÈ

Ï2ôøy[���UN� + aôøy±� + ôø|yU�|b[V��UN�Î × 

° 2#�	¢G*�æ 	⁄
< . ( 3.4.17) 
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where 

ôø< = 2, ôø� = 0, ôøy = ° |y���G�w¬�
w¬U� = 12 ®1 − �−1�y±�� + 1 − 1 − �−1�yU�� − 1 ¯ , � ≥ 2, ( 3.4.18) 

 

The integrals in Eq. ( 3.4.17) have the property 

 

° 2#�	¢G*�æ 	⁄
< = �2. @⁄ , � = 00,         � ≠ 0 Ä. ( 3.4.19) 

 

which leads to the form of the constant volume flow rate constraint suitable for 

computations, i.e. 

 

¨ ¨ �y�N�Ï2ôøy[��UN� + aôøy±� + ôø|yU�|b[V�UN�ÎªÓ
y¬<

ªÈ
N¬UªÈ

=  X�9S .⁄ . ( 3.4.20) 

 

3.4.3 Evaluation of surface stress 

This section describes the procedure used for the evaluation of the shear stresses acting 

on the inner cylinder. A similar procedure can be easily developed for the outer 

cylinder. The nonzero elements of the stress tensor are 

 ��& = −1�2 (%(J ,   ��& = −1J�2 (%(1. ( 3.4.21) 

 

The component of the shear stress acting on the wall in the z-direction has the form 

 G��/��R,& = ����& + ����& ( 3.4.22) 
 

where � = ���, �� ,  �&� is the normal unit vector pointing outward, �� = −�U�, �� = �J#���U�GJ#�/G1, �& = 0,    � = I1 + J#�U��GJ#� G1⁄ ��L�/�. The total force acting 

on the wall can be computed as 

 

��/��R,& = ° G��/��R,&G #��ìí  ( 3.4.23) 
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where G #� = J#��G1. The components of the stress tensor expressed in terms of the 

discretized variables are given in  Appendix E. 

3.5 Groove-induced flow modifications 

A constant pressure gradient needs to be applied along the annulus in order to produce a 

desired flow rate. We shall refer to this pressure gradient as a pressure loss. The 

introduction of grooves may increase/decrease this pressure loss depending on the groove 

geometry and the flow conditions. The main objective of this analysis is the 

determination of the role played by all these factors in the creation of the pressure loss 

and identification of the forms of the grooves that may reduce drag. The additional 

pressure gradient required to maintain the same flow rate in the grooved annulus as in the 

smooth reference (i.e. with the same flow cross-sectional area) annulus is adopted as the 

principal measure of the groove effects.  

The pressure gradient is expressed, for convenience, in terms of a friction factor 

 ; = −2 (3(, = −2 (3<(, − 2 (3�(, = ;< + ;� ( 3.5.1) 

 

where f denotes the total friction factor, ;< = 8 ����2�⁄  denotes the friction factor for the 

smooth annulus (we shall refer to it as the reference friction factor), ;� stands for the 

modification friction factor associated with the presence of the grooves and ;� ;<⁄  will be 

referred to as the normalized modification friction factor. 

There is an uncountable number of possible groove shapes and positions. In order to 

provide a systematic presentation, this discussion begins with the demonstration that the 

complete effect can be decomposed into (i) the effect due to a change in the average 

position of each cylinder (i.e. change of the flow cross-sectional area) and (ii) the effect 

due to spatial flow modulations created by the grooves. 

3.5.1 Effect of the average position of the bounding cylinders 

Changing the cross-sectional flow area has a very strong effect on the pressure losses and 

is unrelated to any flow modulations created by the grooves. This change can be 
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introduced intentionally through the direct specification of the coefficients of the 0th 

modes in Eq. ( 3.2.1a, b), i.e. x#��<�
 and  x/0��<�

. Specification of the remaining coefficients 

in Eq. ( 3.2.1a, b) produces inadvertent change in the cross-sectional area due to the radial 

effects. In order to provide a correct physical interpretation of the results, this change 

needs to be properly compensated for so that one can separate the pressure losses 

associated with the flow modulations from those associated with the change in the flow 

cross-sectional area. Evaluation of the required correction factor �#�,7 for the inner 

cylinder is explained below.  

The cross-sectional area of the reference (smooth) cylinder is [�N//�Q = .���. The cross-

sectional area of the grooved cylinder is expressed as 

 

[��//89� = .a�� + �#�,7b� + 2.a�� + �#�,7bx#��<� + . ¨ rx#��N�r�ª«
N¬<  

 

where �#�,7 denotes the correction that must be applied in order to have the same cross-

sectional areas for the smooth and the grooved cylinders. Since [�N//�Q = [��//89�, the 

correction factor becomes 

 

�#�,7 = ���� + x#��<��� − �2��x#��<� + ¨ rx#��N�r�ª«
N¬� � − ��� + x#��<��. ( 3.5.2) 

 

A similar procedure can be used to evaluate the correction factor �/0�,7 for the outer 

cylinder. Variations of  �#�,7 and �/0�,7 as functions of �� are illustrated in Figure  3-3 for 

the groove geometry specified as  

 J#��1� = �� +  �89,#� + 0.5 #�Dä>�@1�,    J/0��1� = 1 + �� +  �89,/0� + 0.5 /0�cos I@�1 + :�L ( 3.5.3) 

with  �89,#� =  �89,/0� = : = 0. It can be observed that both �#�,7 and �/0�,7 become 

negligible when �� > 10. The same grooves produce a larger correction when placed on 

the inner rather than on the outer cylinder. 
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Figure  3-3: Variations of the geometric correction factors �#�,7 and �/0�,7 as functions of �� 

for the groove geometry described by Eq. ( 3.5.3) with  �89,#� =  �89,/0� = : = 0 with the same 

grooves placed either at the inner cylinder (solid lines,  #� = 0.1,  /0� = 0) or at the outer 

cylinder (dashed lines,  #� = 0,  /0� = 0.1). 

 

Flow modulation effects can be separated from the effects associated with the change of 

the average position of the wall by writing ( 3.2.1a, b) as 

 

J#��1� = þ�� + �#�,7 + ¨ x#����2#�	�ª«
�¬Uª«,��< � − �#�,7 + x#��<�, 

 

J/0��1� = þ�� + �/0�,7 + ¨ x/0���� 2#�	�ª«
�¬Uª«,��< � − �/0�,7 + x/0��<�

 

 

where the curly brackets capture the effects of spatial modulations and the remaining 

terms account for the change in the flow cross-sectional area. 

In order to assess the effects of changes in the average position of the cylinders, consider 

an annulus with geometry given by Eq. ( 3.5.3) with  #� =  /0� = : = 0. To maintain the 

same flow rate as in the reference annulus, the following pressure gradient has to be 

imposed 
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G3G, = −4��2���U�_���� − ��/2��1 + 2��� + ���1 + ����À�a�1 + �����U�b− �1 + ���t/2 + ��t/2` �−�2�t − 2�t�/2 + G�2��À�2� − G�2��À�2� + �G� − G�/2��2�� − 2����U� 
 

( 3.5.4) 

where 

G� = 2�� − 2��À��2� 2�⁄ � ( 3.5.5) 

G� = 2��À�2� − 2��À�2�À��2� 2�⁄ �  ( 3.5.6) 

 

and 2� = 1 + �� +  /0�,�89 ,  2� = �� +  #�,�89. The change in the pressure gradient due 

the change in the average wall position can be easily determined by comparing ( 3.5.4) 

and ( 3.2.6). 

Now consider the annulus sketched in Figure  3-4 with the geometry described by Eq. 

( 3.5.3) with  /0� = 0,  �89,/0� = 0. Variations of the additional pressure loss as a 

function of the amplitude  #� are depicted in Figure  3-5 for three different average 

positions  �89,#�. Cases A, B, C correspond to  �89,#� = 0.05, 0, -0.05, respectively. 

Equation ( 3.5.4) gives the additional friction factors for the limit  #� = 0 (smooth 

annulus) as ;��2 = 2.3442, 0, −1.9355 for cases A, B, and C, respectively. 

Friction factors for the corrugated annuli have been determined numerically using the 

methodology described in Section  3.4. The results displayed in Figure  3-5 show that 

changes of the friction factor as a function of the grooves' amplitude are identical in all 

cases when the shift defined by Eq. ( 3.5.4) is accounted for. This demonstrates that the 

total modification friction factors can be represented as a superposition of the effects 

associated with the change in the mean position of the cylinders and the effects of the 

shape-induced spatial flow modulation. The former effects can be determined 

analytically, e.g., Eq. ( 3.5.4). 
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Figure  3-4: Sketch of the test configuration used to demonstrate the effect of the average 

position  �89,#� of the grooves. Four grooves (M = 4) with the shape defined by Eq. ( 3.5.3) with  #� = 0.3,  /0� = 0,  �89,/0� = 0 are placed at three different average locations: Case A –  �89,#�  = 0.3; Case B –   �89,#� = 0; Case C –  �89,#�= −0.3. See text for details. 

 

 
 

Figure  3-5: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

groove amplitude  #� for �� = 1. Four grooves (M = 4) are placed at the inner cylinder with 

their geometry described by Eq. ( 3.5.3) with  �89,/0� =  /0� = 0 and  �89,#� = 0.05, 0, −0.05 in 

Cases A, B, C, respectively. 
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3.5.2 Reduced order representation of groove shape 

We shall now focus attention on the assessment of flow modulations created by the 

grooves. There is an uncountable number of possible shapes and general conclusions may 

not be possible as it is not possible to check all possible shapes. In order to overcome this 

difficulty, the "primitive" form of the specification of groove shape, e.g., the left side of 

Eqs ( 3.2.1a, b), is replaced with its projection onto a Fourier space, e.g., the right hand 

side of Eqs ( 3.2.1a, b), producing a reduced order geometry model.  It has been shown by 

Floryan (2007) that use of the leading Fourier mode in the shape specification is 

sufficient for prediction of the critical stability conditions with an accuracy acceptable for 

most applications. The same conclusion has been reached by Mohammadi & Floryan 

(2013a) who studied pressure losses in grooved channels. We shall now determine if the 

same procedure provides acceptable accuracy for prediction of pressure losses in grooved 

annuli and determine the level of accuracy obtained by replacing the actual groove with 

the first term of its representation in the Fourier space. 

Figure  3-6 depicts four shapes selected for this study, i.e. rectangular, trapezoidal, 

triangular and rectified. Tests have been carried out for cylinders with the same radius �� 

equipped with M identical grooves. The results displayed in Figure  3-7 demonstrate that 

the modification friction factor converges very rapidly to the actual value as the number 

of Fourier modes �A used for representation of groove geometry increases (values 

computed with �A = 100 were taken as representing the actual values). The use of just 

one Fourier mode for the geometry representation leads to an under prediction of losses 

by about 10%, which is most likely acceptable in the majority of applications. The 

convergence is noticeably slower in the case of the rectangular groove where the Gibb’s 

phenomenon affects the convergence of the Fourier series for the shape representation. 

The reader should note that the one-Fourier-mode model is able to capture the properties 

of grooves that have the same maximum depth and height, but has to be supplemented by 

additional Fourier modes when depth and height are not the same. This issue will be 

discussed in Section  3.6. 
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3.5.3 Effect of the dominant geometric parameters 

The dominant effects created by flow modulations can be captured by replacing the 

actual groove geometry with the leading Fourier mode from its Fourier representation, as 

shown in Section  3.5.2. The reference geometry is therefore given by Eq. ( 3.5.3) with  �89,#� =  �89,/0� = 0, with  #�,  /0�, :, M and �� being the main parameters. 

Evaluation of the friction factor for any geometry can be reduced to the determination of 

its leading Fourier mode and use of data to be presented later in this Section. More 

complete reference tables can be easily created. The accuracy of this procedure can be 

improved by taking advantage of the fact that the use of the leading Fourier mode always 

under predicts pressure losses (as discussed in Section 3.4.2). The reader should note that 

the number of Fourier modes required for an accurate description of the flow field is 
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Figure  3-6: Shapes of the grooves used in this study: A- rectangular groove, B- trapezoidal 

groove, C- triangular groove, D- rectified groove �|>?�@1|). λ denotes the length of one groove 

segment. 
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larger than the number of Fourier modes required for description of the geometry; this 

number needs to be established through numerical experiments. 

 

 
 

Figure  3-7: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

number of Fourier modes NA used to describe the groove geometry. Four grooves (M = 4) with 

shapes described in Figure  3-6 and the same amplitude  #� = 0.1 are placed at the inner 

cylinder with the average radius �� = 1 in such a way that mode zero of their Fourier expansion 

is zero. For grooves A:  B = C = . @⁄ ; for grooves B: B = C = . 3@⁄ , D = 2. 3@⁄ . Dotted 

lines show the normalized modification friction factor asymptote for �A = 100. 

We shall begin discussion with an annulus fitted with grooves placed on only one of the 

cylinders. Figure  3-8 demonstrates that the most rapid changes of pressure gradient due to 

increase of �� occur for small values of ��; the rate of change rapidly decreases and the 

pressure gradient approaches the asymptotic limit corresponding to a two-dimensional 

grooved channel. An increase in the number of grooves along the circumference 

increases losses. Grooves placed at the inner cylinder produce a greater change in the 

pressure gradient than the same grooves placed at the outer cylinder.  
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Figure  3-8: Variation of the normalized modification friction factor ;� ;<⁄  as a function of �� 

for the geometry described by ( 3.5.3) with  �89,/0� =  /0� = 0 and @ = 2, 5 and 10. Solid 

(dashed) lines correspond to the same grooves placed only on the inner (outer) cylinder with  #� = 0.3,  /0� = 0  ( /0� = 0.3,  #� = 0). Dotted line shows the normalized modification 

friction factor asymptote for �� → ∞. 

It is remarkable that the presence of grooves leads to the reduction of the pressure loss 

(negative ;�) for large enough ��. Since increase in the number of grooves (larger M) 

increases the pressure loss, larger �� is required to effect drag reduction under such 

conditions. Figure  3-9 illustrates variations of the modification friction factor as a 

function of the amplitudes  #�,  /0� and the radius �� for annuli equipped with different 

numbers of grooves placed either at the inner or at the outer cylinder. Increase of both  #� 

and  /0� increases losses for small �� but decreases losses for larger ��; the border 

between the drag reduction and the drag increase marginally depends on the magnitudes 

of  #� and  /0� and shifts towards larger values of �� when M increases. There is only 

drag reduction when the annulus is equipped with a small number of grooves, e.g., Figure 

 3-9A for M = 2. An increase of M always increases drag. This can be counteracted by an 

increase of �� which eventually changes this trend and leads to drag reduction regardless 

of the value of M. 
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(A) (B) 

 
(C) 

 
(D) 

 

Figure  3-9: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

groove amplitudes  #� and  /0� and the radius of the inner cylinder �� for the geometry 

described by Eq. ( 3.5.3) with  �89,/0� =  �89,#� = 0. Results for M = 2, 4, 10, 15 grooves are 

displayed in Figure  3-9A, B, C, D, respectively. Solid (dashed) lines correspond to grooves 

placed only at the inner (outer) cylinder. Dotted lines show the normalized modification friction 

factor asymptote for �� → ∞. 

The results displayed in Figure  3-10 demonstrate that the conditions leading to the drag 

reduction correlate well with the groove wave number � = @ ��⁄ . Drag reduction is 

observed for @ ��⁄  smaller than the critical value �7  , where �7 does not depend on Re as 

change of Re cannot affect sign of the pressure loss (see Eq. ( 3.3.2)). The magnitude of 

the drag reduction increases proportionally to   � with S denoting the amplitude of the 

corrugation; S =  #� when the corrugation is placed at the inner cylinder and S =  /0� 

when the roughness is placed at the outer cylinder.  
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Figure  3-10: Variations of the normalized modification friction factor ;� ;<⁄  induced by the 

grooves placed at the inner cylinder with the shape defined by Eq. ( 3.5.3) with  �89,/0� = �89,#� =  /0� = 0 and M = 4, as a function of the amplitude  #� (solid lines) and as a function of 

the wave number � = @/�� (dashed lines). 

The opposite occurs when @ ��⁄  is larger than �7. The value of αc depends on the 

number of grooves and approaches �7≈1.92 when M increases, as documented in Figure 

 3-11. The friction factor does not depend on �� when the radius becomes large enough 

(see Figure  3-9) as the effects of curvature become negligible and the flow behavior is 

very similar to flow in a two-dimensional grooved channel (see Section  3.3). The friction 

factor also loses its dependence on the groove wave number when @ ��⁄  becomes small 

enough (see Figure  3-10) and rapidly approaches the limiting value given by the small 

wave number approximation of flow in a two-dimensional grooved channel (see Section 

3.2). 
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Figure  3-11: Variations of the critical groove wave number �7 as a function of the number of 

grooves M for an annulus with geometry described by Eq. ( 3.5.3) with  �89,/0� =  �89,#� = 0. 

Solid (dashed) line corresponds to the grooves placed only at the inner (outer) cylinder with  #� = 0.1 and 0.8,  /0� = 0 ( #� = 0,  /0� = 0.1 B�G 0.8). 
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(B) 

 

Figure  3-12: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

groove phase difference : and the radius of the inner cylinder ��  for the grooves described by 

Eq. ( 3.5.3) with  #� =  /0� = 0.3 and  �89,/0� =  �89,#� = 0. Results for M = 5, 10 grooves are 

displayed in Figure  3-12A and Figure  3-12B, respectively. 
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Figure  3-12 displays variations of the modification friction factor as a function of the 

phase difference : between the grooves on both cylinders and the cylinder radius ��. It 

can be seen that the largest drag corresponds to : = 0, i.e. grooves are in phase and the 

annular opening has a wavy pattern in the circumferential direction, and the smallest drag 

corresponds to grooves being out of phase (: = . @�⁄  and the converging-diverging 

pattern. Drag reduction can be induced for a sufficiently large �� for grooves with all 

possible phase differences, but this reduction is the largest and occurs for the smallest �� 

when grooves are out of phase. 

3.5.4 Drag reduction mechanism 

It is of interest to identify the processes that lead to the observed drag reduction. The 

distribution of the shear stress acting on the fluid displayed in Figure  3-13 shows a 

remarkable difference in the drag reducing and the drag increasing cases. In the former 

case the magnitude of the shear at the grooved cylinder (inner cylinder in the case shown 

in Figure  3-13) reaches a minimum at locations corresponding to the minima of the 

annulus opening and reaches a maximum in locations corresponding to the maxima of the 

annulus opening. In the latter case, the distribution is reversed with the shear stress 

maxima occurring at locations corresponding to the minima of the annulus opening. The 

distribution of the shear stress at the outer (smooth) cylinder remains qualitatively the 

same under the drag reducing and the drag increasing conditions, with the maxima 

occurring at the locations corresponding to the minima of the annulus opening.  

The difference between of the minimum and the maximum of the shear stress (amplitude 

of the shear stress variations) decreases as M increases in the drag reducing configuration. 

This amplitude passes through the value of smooth annulus for M corresponding to its 

critical value, and starts to increase again with further increase of M. The shear stress 

distribution has qualitatively different form in the drag increasing configuration as the 

stress maxima now correspond to the maxima of the annulus opening (see Figure  3-13). 
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(A) (B) 
 

Figure  3-13: Distribution of the axial component of shear stress acting on the fluid at the inner 

(Figure  3-13A) and outer (Figure  3-13B) cylinders for grooves with the geometry defined by Eq. 

( 3.5.3) with  #� = 0.3,   /0� = 0, ��=5, and  �89,/0� =  �89,#� = 0. Dashed lines provide 

reference values for the smooth cylinders. 
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Figure  3-14: Distribution of the axial velocity component in an annulus with the geometry 

defined by Eq. ( 3.5.3) with  #� = 0.3, �� = 5,  �89,/0� =  �89,#� =  /0� = 0 and M = 5 (Figure 

 3-14A) and M = 15 (Figure  3-14B). 
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(A) 

 
(B) 

 

Figure  3-15: Distribution of the axial velocity component in an annulus with the geometry 

defined by Eq. ( 3.5.3) with  #� =   /0� = 0.3, �� = 5,  �89,/0� =  �89,#� = 0, M = 5, and : = 0 

(Figure  3-15A) and : = . (Figure  3-15B). 

Figure  3-14 displays constant velocity lines. It can be seen that presence of grooves leads 

to a re-arrangement of the bulk flow, with stream tubes of high velocity fluid forming in 

the area of the largest annulus opening under drag reducing conditions (Figure  3-14A). 

Changes in the groove geometry leading to a drag increase result in the reduction of the 

high-velocity stream tubes; this is demonstrated in Figure  3-14B through the increase of 

M while keeping the remaining parameters the same. A similar reduction of these stream 

tubes can be observed when the phase difference between the grooves on both walls 

decreases to zero (see Figure  3-15) which leads to a drag increase. It can be concluded 

that it is the re-arrangement of the bulk flow that is responsible for the drag reduction in 

spite of an increase of the wetted surface area.  

3.6 Groove optimization for drag reduction 

It has been shown is Sections  3.5.3 and  3.5.4 that presence of grooves may lead to a 

reduction of pressure losses. This section is focused on finding the groove shape that 

leads to the largest possible drag reduction in the case of an annulus with radius �� fitted 

with M grooves. It has been argued in Section  3.5.2 that a good approximation of the 

pressure loss can be found by replacing the actual grooves with the first mode of their 

Fourier representation (reduced order model). The optimization requires access to a wider 
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range of information about the geometry and thus one needs to include higher Fourier 

modes. 

It is simpler to discuss the optimization by describing the groove geometry in terms of 

real variables, i.e. 

 J#��1� = �� + [�,#�Dä>�@1� + [�,#�cos a2@1 + :�,#�b + ⋯+ [�,#�Dä>a�@1 + :�,#�b, J/0��1� = 1 + �� + [�,/0�Dä>a@1 + :�,/0�b + [�,/0�Dä>a2@1 + :�,/0�b + ⋯+[N,/0�Dä>ao@1 + :N,/0�b. 

( 3.6.1) 

 

The optimization problem involves finding the minimum of  

 ;��2 = ��[�,#�, … , [�,#�, :�,#�, … , :�,#�, [�,/0�, … , [N,/0�, :�,/0�, … , :N,/0�� ( 3.6.2) 
 

subject to suitable constraints. It can be shown, on the basis of symmetry arguments as 

well as direct evaluations of pressure losses, e.g. Figure  3-12, that the maximum drag 

reduction corresponds to either zero or . phase shift. Thus the optimization is reduced to 

finding the minimum of 

 ;��2 = ��[�,#�, … , [�,#�, [�,/0�, … , [N,/0��. ( 3.6.3) 
 

The optimization is focused on the effects of flow modulations and thus the flow cross 

sectional area has to be kept constant during the search process. This leads to a nonlinear 

constrained optimization problem which is solved using the trust-region-reflective 

optimization algorithm (Coleman & Li, 1994,1996). Details related to the actual 

implementation of this algorithm are discussed in the next section.  

The optimization requires specification of the range of acceptable geometries. In the 

present analysis, one needs to specify the constraints imposed on the maximum 

permissible depths and heights of the grooves measured from the reference cylinders. The 

depth and the height can be treated as unknowns to be determined by the optimization 

process. If this is the case and M is in the region of drag increase (see Figure  3-11), the 
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optimization always results in the removal of the grooves. In the case of M corresponding 

to drag reduction, the results of the optimization depend on the type of the imposed 

constraint. The following discussion addresses this particular issue. 

3.6.1 The equal-depth grooves 

As the first case, consider grooves placed only at the inner cylinder. It is assumed that the 

maximum depth and the maximum height of these grooves are the same. We shall refer to 

such geometry as the equal-depth grooves. The relevant constraints can be expressed as 

 max�|J#��1�| = �� +  #�,/,   min�|J#��1�| = �� −  #�,#,     #�,# =  #�,/ , ( 3.6.4a-c) max�|J/0��1�| = min�|J/0��1�| = 1 + �� ( 3.6.4d) 
 

where  #�,# and  #�,/ stand for the height and the depth of the groove, respectively. 

Constraints (3.6.4a-d) need to be supplemented by the constraint expressing conservation 

of the flow cross-sectional area. One may pose a constraint where the depth and the 

height of the groove cannot exceed certain threshold, i.e.   

 max�|J#��1�| ≤ �� +  #�,/,   min�|J#��1�| ≤ �� −  #�,#,     #�,# =  #�,/ , ( 3.6.5a-c) max�|J/0��1�| = min�|J/0��1�| = 1 + ��. ( 3.6.5d) 
 

Such constraints need not be considered as the minimum drag always correspond to the 

maximum permitted height and depth. 

The shapes of the optimal grooves are expressed by Fourier expansions with an unknown 

number of terms. The results displayed in Figure  3-16 for typical conditions of interest 

demonstrate that these expansions are fairly rapidly convergent. Use of just three Fourier 

modes allows approximation of the optimal shape with less than a 10% error for the 

pressure loss. The error can be reduced by using additional modes (see Figure  3-16). 

These results, as well as those from many other similar tests (not reported), lead to a 

conclusion that the reduced order models based on 3-4 Fourier modes can capture the 

optimal shapes with an accuracy that is sufficient for most applications.   
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Figure  3-16: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

number of Fourier modes used for description of the optimal shape of the equal-depth grooves 

placed at the inner cylinder. 

The insensitivity of the pressure loss to details of the geometry expressed by higher 

Fourier modes should not be surprising as the action of viscosity is expected to smooth 

out such details. This, however, creates computational problems as gradients of the cost 

function with respect to higher Fourier modes that need to be computed by the optimizer 

become very small. These gradients are determined using low-order finite-difference 

quotients. Use of strict convergence criteria is able, however, to overcome these 

difficulties but at a considerable computational cost. Once the convergence of a Fourier 

series has been established, as illustrated in Figure  3-16, the actual computations can be 

carried out using fewer Fourier modes and less strict convergence criteria. All of the 

results presented in this paper have been obtained with the convergence criteria set at 10-6 

and the use of 10 Fourier modes depending of the form of the optimal grooves.   

We shall now discuss the form of the optimal grooves. Evolution of the optimal shape 

when the inner cylinder is fitted with M = 2, 10 grooves with amplitudes   #�,# =  #�,/= S 

= 0.2, 0.5, 0.8, is illustrated in Figure  3-17. Variations of the shape are fairly minor and, 

thus, it is possible to propose a universal shape that well approximates the optimal 

grooves over a wide range of parameters. This universal shape has the form of a trapezoid 

1 5 10

0.3

0.6

N
A

f 1
 /

 f
0

= (2, 8, 0.8)(M, R
1
, S

in,i
 )

(5, 8, 0.8)

(10, 10, 0.8)

(2, 4, 0.5)

(5, 6, 0.5)



92 

 

characterized by B = C = -/6 and D = G = -/3 (see Figure  3-6 for definition of 

parameters). The deviations from the universal shape increase with an increase of the 

depth of the cut and reduction of ��. The largest deviations correspond to the wave 

number α = @ ��⁄  approaching its critical value (see Figure  3-11) where the grooves 

begin to generate additional drag. Availability of the universal shape provides a general 

answer to the optimization problem which eliminates the need for detailed analysis if the 

associated error is viewed as acceptable.  

 

 
(A) 

 
(B) 

 

Figure  3-17: Evolution of the optimal shape of M = 2, 10 equal-depth grooves placed at the 

inner cylinder as a function of the wall curvature ��. Solid, dashed and dotted lines correspond 

to the depth of the grooves  #�,# =  #�,/= S = 0.2, 0.5, 0.8, respectively. All these lines overlap for �� = ∞. The other values of �� shown correspond to values close to those that cause a change 

from drag reduction to a drag increase (see Figure  3-11). Thick lines describe the universal 

shape, i.e. trapezoid  with B = C = -/6 and D = G =  -/3 (see text for details). 

 

Replacement of the optimal shape by the universal trapezoid may lead to an error in the 

determination of the modification friction factor. Comparisons of the actual optimal 

modification friction factor and the modification friction factor for the universal trapezoid 

displayed in Figure  3-18 demonstrate that this error is negligible in most practical 

applications. This error may become excessive when �� becomes small as the difference 
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to the wave number � = @ ��⁄  approaching its critical value and, thus, produce marginal 

reductions of pressure loss.  

 

 
(A) 

 
(B) 

 

Figure  3-18: Variations of the normalized modification friction factor ;� ;<⁄  for M = 2 equal-

depth optimal grooves (Figure  3-18A) and M = 10 similar grooves (Figure  3-18B) placed at the 

inner cylinder (solid lines). Modification friction factors for the same grooves approximated 

using the universal trapezoid are marked using dashed lines. See text for details. 

Figure  3-19 illustrates variations of the modification friction factor for the optimal 

grooves approximated using the universal trapezoid over the whole range of groove 

amplitudes S and wall curvature �� of practical interest. These data provide information 

regarding the maximum potential drag reduction that can be produced by the grooves. 

The same figure also displays results for grooves described by one Fourier mode. The 

difference illustrates the potential gains due to the replacement of the simple sinusoidal 

grooves by the optimal grooves. It can be seen that this difference is generally smaller 

than 10% which supports the conclusions discussed in Section  3.5.2 and illustrates the 

power of the reduced order model. 

Consider similar grooves added to the outer cylinder while the inner cylinder is kept 

smooth. Constraint (3.6.4a-d) is replaced by 

 max�|J#��1�| = min�|J#��1�| = ��, ( 3.6.6a, b) max�|J/0��1�| = 1 + �� +  /0�,/,   min�|J/0��1�| = 1 + �� −  /0�,#,     /0�,# =  /0�,/ 
( 3.6.6c-e) 
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where  /0�,# and  /0�,/ stand for the height and the depth of the groove, respectively. An 

analysis similar to that carried out in the case of grooves placed at the inner cylinder 

results in similar conclusions. Deviations from the universal shape (not shown) are, 

however, much smaller as the effective wave number � = @ �1 + ���⁄  is smaller. 

 

 
(A) 

 
(B) 

 

Figure  3-19: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

wall curvature �� and the groove amplitude  #�,# =  #�,/= S  for M = 2 universal equal-depth 

trapezoidal grooves (Figure  3-19A) and M = 10 similar grooves (Figure  3-19B) placed at the 

inner cylinder (see text for discussion). Dashed lines are for the sinusoidal grooves defined by 

Eq. ( 3.5.3) with  �89,/0� =  �89,#� = 0. 

The general case corresponds to grooves placed on both cylinders, i.e. the constraints take 

the form 

 max�|J#��1�| = �� +  #�,/, min�|J#��1�| = �� −  #�,#,   #�,# =  #�,/ , ( 3.6.7a-c) max�|J/0��1�| = 1 + �� +  /0�,/, min�|J/0��1�| = 1 + �� −  /0�,#,   /0�,# =  /0�,/  . 
( 3.6.7d-e) 

 

The results displayed in Figure  3-20 demonstrate that the shapes of the optimal grooves 

are nearly the same as the shapes of the grooves determined for each cylinder separately, 

and the grooves on the outer cylinder are shifted with respect to those at the inner 

cylinder by a half wavelength in the circumferential direction.  
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(A)  (B) 
Figure  3-20: Optimal shapes of the equal-depth grooves placed at both cylinders. H�1� is 

defined as IJ/0��1� − 1 − ��L  /0�,#⁄ , IJ#��1� − ��L  #�,#⁄ . Figure  3-20A displays results for M = 

2 grooves; the solid lines are for �� = 3,   #�,/ =  #�,# =  /0�,/ =  /0�,/ = 0.2, the dotted lines 

are for �� = 5,  #�,/ =  #�,# =  /0�,/ =  /0�,/ = 0.4, and the dash lines are for �� = 10,  #�,/ =  #�,# =  /0�,/ =  /0�,/ = 0.4. Figure  3-20B displays results for M = 10 grooves; the 

solid lines are for  �� = 8,  #�,/ =  #�,# =  /0�,/ =  /0�,/ = 0.2, and the dashed lines are for �� = 10 and  #�,/ =  #�,# =  /0�,/ =  /0�,/ = 0.4. 

The results displayed in Figure  3-21 show that the drag reduction produced by these 

grooves, with shapes approximated using the universal trapezoid, is approximately equal 

to the drag reduction produced by grooves placed only at one cylinder but with a double 

amplitude (compare Figure  3-19 and Figure  3-21). Figure  3-21 also presents results for 

simple sinusoidal grooves placed at both cylinders. It can be seen that such grooves 

produce about 10% less drag reduction than the optimal grooves. The reader should 

recall, when reviewing these results, that predictions based on the universal trapezoid are 

not accurate when the groove wave number is close to its critical value.  

3.6.2 The unequal-depth grooves 

Consider grooves with unequal depth which are initially placed only at the outer cylinder. 

The maximum depth and the maximum height of the groove are not the same but, as 

before, they are specified by the user. Such grooves correspond to constraints in the form 

 max�|J/0��1�| = 1 + �� +  /0�,/,     min�|J/0��1�| = 1 + �� −  /0�,# ( 3.6.8a, b) 
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where the values of  /0�,/ and  /0�,# are different and known. The constraints ( 3.6.8a, b) 

needs to be supplemented by the constraint expressing the need to maintain the constant 

flow cross-sectional area.  

 

 
(A) 

 
 (B) 

Figure  3-21: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

wall curvature �� and the groove amplitude  #�,# =  #�,/ =  /0�,# =  /0�,/= S for M = 2 

universal equal-depth trapezoidal grooves (Figure  3-21A) and M = 10 similar grooves (Figure 

 3-21B) placed at both cylinders  (see text for discussion). Dashed lines are for the sinusoidal 

grooves defined by Eq. ( 3.5.3) with  �89,/0� =  �89,#� = 0. The reader should note that the 

universal trapezoid does not offer a good approximation for the optimal grooves under conditions 

close to transition between the drag increasing and the drag decreasing geometries. 

Variations of the modification friction factor, when the height of the groove is fixed at  /0�,# = 0.5 while the depth   /0�,/ is varied, are displayed in Figure  3-22. It can be seen 

that there exists a depth that leads to the largest drag reduction. We shall refer to this 

depth as the optimal depth �/e� which, together with the corresponding shape, 

determines the optimal geometry. 
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Figure  3-22: Variations of the normalized modification friction factor ;� ;<⁄  as a function of the 

depth of the grooves, i.e.  /0�,/, for the unequal-depth grooves. The grooves are placed at the 

outer cylinder and have the same maximum height set at  /0�,# = 0.5. Solid and dashed lines 

correspond to the use of @ = 2 and @ = 10 grooves, respectively. The dotted (@ = 2) and 

dashed-dotted (@ = 10) lines identify the depth of the grooves that leads to the maximum drag 

reduction. 

 

 
(A) 

 
 (B) 

Figure  3-23: Evolution of the optimal shape of the unequal-depth grooves placed at the outer 

cylinder as a function of the depth of the groove  /0�,/. The height of the groove is set at   /0�,# =0.5. The results presented in Figure  3-23A are for M = 2, �� = 1, and in  Figure  3-23B for  M = 

10, �� = 20. Dashed lines illustrate shapes corresponding to the optimal depth. 
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Variations of the shape of the optimal grooves as a function of  /0�,/ are illustrated in 

Figure  3-23. For small enough  /0�,/ this shape looks like the universal trapezoid 

discussed in the previous section.  

 

 
(A) 

 
 (B) 

 
(C) 

 
(D) 

Figure  3-24: Shapes of the unequal-depth optimal grooves corresponding to the optimal depth, 

i.e. the optimal geometry, for grooves placed at the outer cylinder for selected values of the wall 

curvature ��. H�1� is defined as IJ/0��1� − �J/0��N#�L I�J/0��N�O − �J/0��N#�L⁄ . The height of 

the groove is set at  /0�,# = 0.5. Figure  3-24A-B present results for M = 2 and M = 10, 

respectively. The same shapes, but normalized with the width at half height PQ�RS are presented 

in Figure  3-24C-D. The universal shape has the form of a Gaussian function defined by T =
2UV.�OW

 and is illustrated using solid lines. 

A sufficient increase of  /0�,/ leads to a shape that resembles a Gaussian function. The 

shape that gives the largest drag reduction can be approximated by the Gaussian function 

which underlines the universality of the optimal geometry. 
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The optimal geometry can be determined directly by limiting the constraint to the 

following form min�|J/0��1�| = 1 + �� −  /0�,# ( 3.6.9) 
 

and treating the depth of the groove  /0�,/ as an unknown. Evolution of the optimal 

geometry is illustrated in Figure  3-24A-B where the groove height has been scaled with 

its maximum. Rescaling of the width of the groove with its width at half height PQ�RS 

leads to universal shapes displayed in Figure  3-24C-D. These shapes are well 

approximated by the Gaussian function in the form T = 2UV.�OW
.  The complete 

information about the optimal geometry consists of the universal Gaussian function, and 

the values of  PQ�RS  and �/e� displayed in Figure  3-25. The same figure provides 

information about the drag reduction that can be produced by the optimal geometry. In 

general, an increase in the number of grooves M reduces the drag reduction as well as the 

optimal depth and the width of the grooves. While it is difficult to make direct 

comparisons between the optimal geometry and the simple sinusoidal grooves, the former 

generate a drag reduction that is up 50% higher than the latter. 

Analysis of the same grooves placed at the inner cylinder leads to very similar 

conclusions regarding the optimal shape, the optimal depth and the optimal geometry. 

These results are, therefore, not presented. Figure  3-26 illustrates the properties of the 

optimal geometry made of grooves placed at both cylinders as well as the resulting drag 

reduction. Grooves at the outer cylinder are shifted by a half wavelength in the axial 

direction with respect to those at the inner cylinder. The grooves have shapes similar to 

those found in the case of only one grooved cylinder. The drag reduction is 

approximately twice the drag reduction obtained using grooves with the same height 

placed on only one cylinder. 
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(A) 

 
 (B) 

 
(C) 

Figure  3-25: Variations of the normalized modification friction factor (Figure  3-25A), the 

optimal depth (Figure  3-25B) and the half width of the optimal groove (Figure  3-25C) as a 

function of the wall curvature ��  for an annulus with the smooth inner cylinder and the optimal 

geometry of the outer cylinder. The maximum heights of the grooves are set as  /0�,# = 0.8 

(dashed-dotted lines),  /0�,# = 0.5 (solid lines) and  /0�,# = 0.2 (dashed lines). Dotted lines 

correspond to the asymptotic solution, i.e. �� → ∞. 

 

10
1

10
2

0.2

0.8

R
1

f 1
 /

 f
0

5
10

M = 2

10
1

10
2

1

4

R
1

D
o

p
t

 

 

M = 2
5

10

10
1

10
2

4

10

R
1

W
h

a
lf

M = 2

5 10



101 

 

 
(A) 

 
 (B) 

 
(C) 

Figure  3-26: Variations of the normalized modification friction factor (Figure  3-26A), the 

optimal depth (Figure  3-26B) and the half width of the optimal groove (Figure  3-26C) as a 

function of the wall curvature ��  for an annulus with the optimal geometries of the inner and 

outer cylinders. The maximum heights of the grooves at the inner and outer cylinders are the 

same and set at the level of  /0�,# = 0.4 (dashed lines) and  /0�,# = 0.2 (solid lines). Dotted lines 

correspond to the asymptotic solution, i.e. �� → ∞. 
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Analysis of pressure losses in laminar flows through annuli fitted with longitudinal 

grooves has been carried out. An additional pressure gradient required in order to 
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bounding cylinders and a pressure drop due to flow modulations induced by the shape of 

the grooves. The former effect can be evaluated analytically while the latter requires 

explicit computations. It has been demonstrated that a reduced order model is an effective 

tool for extraction of the features of groove geometry that lead to flow modulations 

relevant to drag generation. One Fourier mode from the Fourier expansion representing 

the annulus geometry is sufficient to predict pressure losses with an accuracy sufficient 

for most applications in the case of equal-depth grooves. It is shown that the presence of 

the grooves may lead to a reduction of pressure loss in spite of an increase of the surface 

wetted area. The drag decreasing grooves are characterized by the groove wave number @ ��⁄  being smaller than a certain critical value, where M denotes the number of grooves 

being used and �� stands for the radius of the annulus. This number marginally depends 

on the groove amplitude and does not depend on the flow Reynolds number. It is shown 

that the drag reduction mechanism relies on the re-arrangement of the bulk flow that 

leads to the largest mass flow taking place in the area of the largest annulus opening. The 

form of the optimal grooves from the point of view of the maximum drag reduction has 

been determined. This form depends on the type of constraints imposed. In general, the 

optimal shape can be described using the reduced order model involving only a few 

Fourier modes. It is shown that in the case of the equal-depth grooves, the optimal shape 

can be approximated using a special form of trapezoid. In the case of the unequal-depth 

grooves, where the groove depth needs to be determined as a part of the optimization 

procedure, the optimal geometry, consisting of the optimal depth and the corresponding 

optimal shape, can be approximated using a Gaussian function. The maximum possible 

drag reduction, corresponding to the optimal geometry, has been determined. 
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Chapter 4  

4 Maximization of Heat Transfer Across Micro-Channels 1 

4.1 Introduction 

In spite of the widespread use of micro-channels, there is a limited literature dealing with 

their optimization from the point of view of maximization of the heat transfer and 

minimizing pressure losses. It has been shown in  Chapter 3 that there exists a class of 

longitudinal grooves that leads to a reduction of the pressure losses for laminar flows 

despite the increase of the wetted surface area. In this chapter, the heat transfer 

enhancement resulting from the introduction of longitudinal grooves (riblets) of arbitrary 

shape is analyzed, with the determination of the groove shape that simultaneously leads 

to the maximum drag reduction and the maximum heat transfer enhancement being the 

main objective. The problem formulation and definition of the thermal enhancement 

factor are given in Section  4.2. The methods used for evaluation of the thermal 

enhancement factor are described in Section  4.3, with Section  4.3.1 devoted to arbitrary 

grooves and Section  4.3.2 focused on the long wavelength grooves. Section  4.4 describes 

the heat transport and drag generation mechanisms active in the presence of the grooves. 

The best groove shape, the optimal shape, is determined through minimization of the 

thermal enhancement factor and the optimization process is discussed in Section  4.5. 

Section  4.6 describes the optimal shapes and discuses the performance of the optimal 

grooves determined with various additional constraints. In particular, Section  4.6.1 

provides information about the performance of the equal depth grooves and Section  4.6.2 

discusses the performance of the unequal-depth grooves. A short summary of the main 

conclusions is given in Section  4.7. 

                                                 

1
 A version of this chapter has been published as – 

Moradi, H. V. & Floryan, J. M. 2013 Maximization of Heat Transfer Across Micro-Channels, International 

Journal of Heat and Mass Transfer, 66, 517-530 
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4.2 Problem formulation 

Heat transfer across a channel fitted with longitudinal grooves (see Figure  4-1) is 

considered. The walls are subject to a differential heating, resulting in a heat flow across 

the channel. The steady laminar flow is driven through the channel in the z-direction by a 

constant pressure gradient. We wish to determine the form of the grooves that maximizes 

the heat transfer and minimizes the flow losses. The study is carried out under the 

subcritical flow conditions, i.e., the flow remains laminar with no secondary structures 

after introduction of grooves. Such situation occurs in small Reynolds number flows and, 

as a result, the heat is carried across the channel by conduction only. While it is not 

known how the grooves affect conduction, it is known how they affect flow losses (see 

 Chapter 3 for annular flow and Mohammadi & Floryan 2013a for planar flow). The 

optimum groove shape must result from a compromise between the groove-induced 

changes in the heat transport and the groove-induced flow losses.  

 

 
Figure  4-1: Sketch of the heat transfer system. 

 

It is assumed that the grooves have an arbitrary but identical shape and extend to ±∞ in 

the x- and z-directions. The channel entry and exit effects as well as effects of the side 
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walls are neglected. The channel geometry can be described using Fourier expansions in 

the form 

TY�Z� = −1 + ¨ xY���2#�©Oª«
�¬Uª«

, T]�Z� = 1 + ¨ x]���2#�©Oª«
�¬Uª«

 ( 4.2.1a, b) 

 

where - = 2. �⁄  denotes the groove wavelength, � stands for the wave number, TY�Z� 

and T]�Z� describe locations of the lower and upper walls, respectively, �A is the number 

of Fourier modes requires to describe the geometry, and xY��� = xY∗�U��
 and x]��� =

x]∗�U��
 are the reality conditions where stars denote complex conjugates. All quantities 

have been scaled with the half channel height L as the length scale. The choice of xY���
 

and x]���
 is restricted by the no-contact condition between the walls.  

The system performance is a function of two independent transport mechanisms and this 

leads to a multi-objective optimization problem, which is replaced in this analysis by 

minimization of a single performance function, the thermal enhancement factor Ω (Gee & 

Webb 1980), defined as 

 Ω = 1X X<⁄ + ��; ;<⁄ �� V⁄  ( 4.2.2) 

 

Here Q stands for the heat transfer per unit length, f  is the friction factor, subscript 0 

identifies the reference smooth-channel quantities and � is the weighting factor selected 

by the user. The smooth channel corresponds to Ω = 1 + �. An increase of heat flow and 

a decrease of flow losses both result in the reduction of Ω. We define the optimum shape 

as the shape that minimizes Ω. The objective of the study can, therefore, be stated as 

finding the minimum of Ω over all possible x]���
 and xY���

 subject to suitable constraints, 

i.e., the minimum of 

 Ω = Ω ö�2, �J, xY�<�, xY���, … , xY�ª«�, x]�<�, x]���, … , x]�ª«�, �÷. ( 4.2.3) 
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The channel performance can be easily affected through a change of the average channel 

opening but this effect can be readily accounted for analytically (Mohammadi & Floryan 

2013a) and is of no interest in this study. The focus of this study is, therefore, on the 

system performance enhancement associated with the flow and heat transfer modulations 

created by the grooves. Accordingly, the cross-sectional area of the channel is kept 

constant and equal to the flow cross-sectional area of the reference smooth channel, 

i.e. x]�<�
 = xY�<� = 0. Practical applications may impose constraints associated with the 

maximum permitted depth and height of the grooves. This issue will be discussed later in 

Section  4.5. The minimization of Ω represents a constrained nonlinear optimization 

problem. The interior-point algorithm (Coleman & Li 1994; 1996) is used for its solution. 

The derivatives of the cost function are determined using the central finite-difference 

quotients. The evaluation of the cost function, i.e. Ω, is discussed in the next section. The 

implementation of the optimization algorithm is discussed in the subsequent section. 

4.3 Cost function evaluation 

The cost function is evaluated through the solution of the field equations. The continuity, 

momentum, and energy equations have the form 

 ��. "�� = 0, ( 4.3.1) a"��.��b"�� = �2U��"�� − ��3, ( 4.3.2) a"��.��b1 = ��2�J�U��1, ( 4.3.3) 
 

where "�� stands for the velocity vector with components �f, %, �� in the �Z, T, ,� 

directions, respectively, the maximum of the reference z-velocity �N�O is used as the 

velocity scale and }�N�O�  is used as the pressure scale where } is the density. The 

reference quantities are defined later in the text. The Reynolds number is defined as �2 = �N�O� {⁄  where { stands for the kinematic viscosity, and the Prandtl number is 

defined as �J = Dej �⁄  where De is specific heat, j stands for the dynamic viscosity and 

k denotes the thermal conductivity. The dimensionless temperature 1 is defined as 

  1 = | − |�|  − |�  ( 4.3.4) 
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where |  and |� are the temperatures of the hot and cold plates, respectively. Because of 

the special form of the grooves, the governing equations assume simpler forms 

 �� = �2U� G3 G,⁄ , ( 4.3.5) �1 = 0. ( 4.3.6) 
 

where ( 4.3.5) and ( 4.3.6) correspond to the z-momentum and energy equations, 

respectively, and are decoupled. The boundary conditions have the form 

 � = 1 = 0  at   T = TY�Z� , ( 4.3.7) � = 0,   1 = 1  BÇ  T = T]�Z�, ( 4.3.8) 
 

with the shape of the grooves providing coupling between the heat and flow problems. In 

the case of the smooth (reference) channel, the solution has a simple form 

 "��< = �f<, %<, �<� = �0, 0, 1 − T��, 3<�,� = −2�2U�, + D,  
@ = -OU� ° ° �<�T�GTGZp¬�

p¬U�
O¬��

O¬< = 43,  
;< = −2 G3<G, = 4�2U� 

 

( 4.3.9) 

1<�T� = 0.5�1 + T�, X<-OU� = 0.5. ( 4.3.10) 
 

where c denotes an arbitrary constant, M is the flow rate per unit width of the channel in 

the x-direction, and X<-OU� denotes the heat transfer per unit length. 

In the case of the grooved channel, the solution of ( 4.3.6) and ( 4.3.8) determines the 

temperature 1 and leads to the determination of the local heat flux entering the channel at 

the lower wall in the form 

 ßIZ, TY�Z�L = (1(Z �O + (1(T �p ( 4.3.11) 

 

where ��� = a�O, �p , 0b is the unit normal vector pointing outwards with components of 

the form 
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�O =  GT GZ⁄Á1 + �GT GZ⁄ ��  , �p =  −1Á1 + �GT GZ⁄ ��  BÇ T = TY�Z�. 
 

( 4.3.12) 

Similar expressions can be developed for the upper wall. 

The change in the wetted surface area can be expressed as 

 [[< = þ1- ° �1 + ¾GTGZ¿� GZO¬�
O¬< �

p¬p��O�
. 

 

( 4.3.13) 

where A and [< denote the total surface area of the grooved and smooth walls, 

respectively. The overall change in the heat flow across the channel per unit length, 

which is due to changes of the local heat flux and of the wetted area, can be expressed in 

terms of the ratio of the actual heat flow and the heat flow for the smooth channel X X<⁄  

can be evaluated by integrating the local heat flux and takes the form 

 XX< = þ 2-O ° ß�Z, T��1 + ¾GTGZ¿� GZO¬��
O¬< �

p¬p��O� 
. ( 4.3.14) 

 

The solution of the flow problem requires introduction of an additional closing condition 

as the pressure gradient G3 G,⁄  is not known. Since the addition of grooves changes the 

flow resistance, it is assumed in this analysis that the mass flow rate must remain the 

same in the smooth as well as in the grooved channel and this requires an appropriate 

adjustment of the pressure gradient. The preservation of the flow rate is expressed in 

terms of a constraint of the form 

 

@ = -OU� ° ° ��Z, T�GZGTp¬p��O�
p¬p��O�

O¬��
O¬< = 43. ( 4.3.15) 

 

The solution of ( 4.3.5) with boundary conditions ( 4.3.7) and constraint ( 4.3.15) results in 

the determination of the velocity field and the pressure gradient. The component of the 
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shear stress acting on the wall in the z-direction, which is responsible for the drag 

generation, has the form 

 G�& = �O&�O + �p&�p , 
        

( 4.3.16) 

where the relevant components of the stress tensor have the form 

 �O& = −1�2 (�(Z , �p& = −1�2 (�(T . ( 4.3.17) 

 

The integration of the shear stress over the wetted area gives the total drag. The same 

drag can be computed using the pressure gradient which is evaluated directly as a part of 

the solution process. Changes in the drag are expressed as the ratio of the friction factors 

in the grooved and reference smooth channels, i.e. 

 ;;< = −0.5�2 G3G,. ( 4.3.18) 

 

The reader may note that ; ;< < 1⁄  corresponds to a drag reduction. 

4.3.1 Arbitrary grooves 

The cost function evaluation requires determination of both the heat transfer per unit 

length and the friction factor. We wish to determine both quantities with spectral 

accuracy and, since the solution domain is irregular, we need to use either the immersed 

boundary condition method (IBC) (see  Chapter 2) or the domain transformation method 

(DT) (Husain & Floryan 2007). The former method uses the physical domain and 

enforces the flow and temperature boundary conditions as internal constraints. The DT 

method relies on a transformation that maps the complex geometry onto a rectangular 

strip with the boundary conditions applied in a classical manner on the edges of this strip. 

The IBC method is computationally faster but the DT method permits analysis of limiting 

cases and, thus, is selected for use in the present study. The spatial discretization uses a 

Fourier expansion in the x-direction and Chebyshev expansions in the transverse 

direction.    
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The corrugated channel in the physical domain �Z, T� is mapped into a smooth channel in 

the computational domain ��, *� using a mapping of the form 

 * = ¡Z, � = 2IT − T0�Z�LT0�Z� − TY�Z� + 1 ( 4.3.19) 

 

where ¡ is the adjustment factor. This factor is set to ¡ = 1 for the numerical solution but 

is set to ¡ = � for the analysis of the limit � → 0 where * plays the role of a slow scale. 

The governing equations in ��, *� coordinates have the form  

 

����, *� (��(�� + ����, *� (��(�(* + �V��, *� (�(� + �t��, *� (��(*� − [ = 0. ( 4.3.20) 

 

where � could represent either the longitudinal velocity component � or the temperature 1. A =  �2U� G3 G,⁄  in the former case and A = 0 in the latter case. The coefficients �# 
contain information about the geometry of the grooves and have the form 

 ����, *� = �O� + �p� , ����, *� = 2¡�O , �V��, *� = �OO, �t��, *� = ¡� ( 4.3.21a-c) 

where 

 �p = 2IT0�*� − TY�*�LU�,  ( 4.3.22a) �O = −IT0�*� − TY�*�LU��T]� �*� + TY��*� + �IT]� �*� − TY��*�L�, ( 4.3.22b) �OO = −IT0�*� − TY�*�LU��T]���*� + TY���*� + �IT]���*� − TY���*�L+ 2�OIT]� �*� − TY��*�L�. ( 4.3.22c) 

 

In the above, the single and double superscripts denote the first and second derivatives 

with respect to *, respectively. 

The boundary conditions and the volume flow rate constraint expressed in the ��, *� 

coordinate system assume the form 

 ��1, *� = ��−1, *� = 0, ( 4.3.23a, b) 1�1, *� = 1, 1�−1, *� = 0, ( 4.3.24a, b) 

@ = 12-O ° ° ���, *�IT]�*� − TY�*�LG�G*w¬�
w¬U�

¢¬��
¢¬< = 43. ( 4.3.25) 
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The solution of ( 4.3.20) is periodic in the *-direction and can be represented in terms of a 

Fourier expansion. The modal functions are discretized using Chebyshev expansions. A 

system of algebraic equations is developed using separation of modes and the Galerkin 

projection method. The equations for the two largest coefficients of the Chebyshev 

expansions for each modal function are replaced with the boundary conditions, i.e. the tau 

method. The resulting algebraic system is solved using standard solvers. 

4.3.2 Long wavelength grooves 

The temperature field and the friction factor can be evaluated analytically for the long 

wavelength grooves. Analytical expressions significantly reduce the cost of optimization 

and provide an accuracy test for the general solver. 

Determination of the solution for the temperature field starts with a transformation in the 

form of Eq. ( 4.3.19) with ¡ = �. Assume representation of the temperature in the form of 

an asymptotic expansion 

 1��, *� = 1�<��, *� + �1����, *� + ��1����, *� + �V1�V��, *� + ú��t�. ( 4.3.26) 
 

Substitution of ( 4.3.26) into ( 4.3.20) and ( 4.3.24a, b) and retention of the four leading-

order terms results in the following systems: 

 

ú�1�: �T2 (21�0(�2 = 0, 1�0�1� = 1, 1�0�−1� = 0. ( 4.3.27) 

ú���: �T2 (21�1(�2 = 0, 1�1�1� = 1�1�−1� = 0. ( 4.3.28) 

úa�2b: �T2 (21�2(�2 = − �Z2�2 (21�0(�2 − �ZZ�2 (1�0(� − 2�Z� (21�0(�(* − (21�0(*2 , 1�2�1� = 1�2�−1� = 0. ( 4.3.29) 

úa�3b: �T2 (21�3(�2 = − �Z2�2 (21�1(�2 − �ZZ�2 (1�1(� − 2�Z� (21�1(�(* − (21�1(*2 , 1�3�1� = 1�3�−1� = 0. ( 4.3.30) 

 

The solutions of Eqs. ( 4.3.27)-( 4.3.30) have the form 

 1�0��� = 12 �� + 1�. ( 4.3.31) 1�1��� = 0. ( 4.3.32) 
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1�2��, *� = − a�2 − 1b48 ¨ ¨ Ðo Ï� öxz�o� − x��o�÷ + 3 öxz�o� + x��o�÷ÎÄ�[
o=−�[

2�[
�=−2�[

 

ÄÏox��UN� − 2�� − o�öx]��UN� − xY��UN�÷ÎÑ 2#�¢  

( 4.3.33) 

1�3��, ¥� = 0. ( 4.3.34) 

where 

x��� = �x]��� − xY��� + 2, � = 0x]��� − xY���,        � ≠ 0Ä. ( 4.3.35) 

 

A similar solution can be developed for the flow problem ( 4.3.5), ( 4.3.7) and ( 4.3.15) 

(Mohammadi & Floryan 2013b), resulting in 

 f<��� = ô�U��pU��1 − ���, G3<GZ = −2�2U�ô�U� ( 4.3.36a, b) 

f1��� = 0, G31GZ = 0 ( 4.3.37a, b) 

f2��� = −ô1−1�T−2TźT�́a1 − �2b − ô1−1�T−32 a�2 − 1b × 

ÏT]�� ö�3 + 1÷ + TY�� ö�3 − 1÷Î − ô�U��pU� ¾−ô� + ôV2 − ôt2¿ �1 − ���,G3�GZ = 2�2U�ô�U� ¾−ô� + ôV2 − ôt2¿  
( 4.3.38a, b) 

f3��� = 0, G33GZ = 0 ( 4.3.39a, b) 

where 

ô� = 12. ° �pUVG*¢¬�æ
¢¬< , ô� =  12. ° �pUVT]� TY�G*¢¬�æ

¢¬< , 
 ôV =  12. ° �pUtT]��G*¢¬�æ

¢¬< , ôt =  12. ° �pUtTY��G*.¢¬�æ
¢¬<  

( 4.3.40) 

 

The friction factor can be evaluated as 

 ;;< = ô�U�I1 + 0.5��ô�U��2ô� − ôV + ôt�L. ( 4.3.41) 
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The above solutions provide acceptable accuracy for � < 0.6 as shown in Mohammadi & 

Floryan (2013b) and confirmed by comparisons with the numerical solutions determined 

using method described in Section  4.3.1 (Figure  4-2 and Figure  4-7).  

 

 
 

Figure  4-2: Variation of X X<⁄  as a function of the groove amplitude  Y and the wave number � 

for the geometry described by Eq. ( 4.4.1). Dashed lines identify asymptotic values for � → 0. 

 

4.4 Transport mechanisms 

Conduction is the only transport mechanism available for energy transfer across the 

channel. As the first step, we shall assess how the presence of the grooves affects this 

process. Consider a channel with sinusoidal grooves at the lower wall and a smooth upper 

wall. The geometry is described as 

 TY�Z� = −1 +  YDä>��Z�, T]�Z� = 1 ( 4.4.1) 
 

where  Y and � denote the groove amplitude and the wave number, respectively. 

Variations of X X<⁄  as a function of  Y and � displayed in Figure  4-2 demonstrate that an 

increase of both  Y and � lead to the enhancements of the heat flow. For small � the heat 

flow can be approximated analytically as 

 XX< = 6 + 2�� Y� − 8��
3Á�2 −  Y��2 +  Y� + 4��3  ( 4.4.2) 
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where the range of applicability of ( 4.4.2) can be judged from the data presented in 

Figure  4-2. 

 

(A) (B) 
Figure  4-3: Temperature distribution inside the channel for the grooves described by Eq. 

( 4.4.1) with the amplitude  � = 1 and the wave number � = 0.5 (Figure  4-3A) and � = 30 

(Figure  4-3B). 

The form of the temperature field is illustrated in Figure  4-3 for two extreme values of 

the wave number, i.e. � = 0.5 and � = 30. The isotherms fill in the slot uniformly for 

small � (Figure  4-3A) but the troughs become nearly isothermal for large � (Figure 

 4-3B). This effect is well illustrated in Figure  4-4 which displays the temperature 

variations across the channel at its widest opening. The formation of an isothermal zone 

in the trough as � increases is clearly visible.  

The heat flow pattern can be deduced from distributions of the local heat flux q along the 

walls displayed in Figure  4-5 as well as from changes of the wetted area displayed in 

Figure  4-6. For small � the heat flux at the grooved wall increases above the smooth-wall 

value around the groove tips and decreases around the troughs; the increase is more 

pronounced than the decrease (see Figure  4-5A) resulting in an overall increase of the 

heat flow. A similar process takes place at the upper wall (see Figure  4-5B). An increase 

of � makes the differences between q at the groove tip and q at groove trough more 

pronounced at the grooved wall. 
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Figure  4-4: Temperature profiles at Z = -Z 2⁄  for the grooves described by Eq. ( 4.4.1) with the 

amplitude  � = 1. 

 For a large enough � the heat flux disappears altogether at the troughs, with the width of 

the thermally inactive zone (measured by % of the wavelength) increasing with �. Peaks 

of q form at the groove tips, with their magnitude rapidly increasing with �. The process 

of re-arrangement of q at the upper wall is qualitatively different, with q becoming nearly 

constant for a large enough �. The overall increase of the heat flow can be easily deduced 

from Figure  4-5B, in agreement with the data presented in Figure  4-2.  

 

 
(A) 

 
(B) 

Figure  4-5: Distributions of the local heat flux at the lower (Figure  4-5A) and upper (Figure 

 4-5B) walls for grooves described by Eq. ( 4.4.1) with the amplitude  � = 1. 

Comparison of Figure  4-2, Figure  4-5 and Figure  4-6 demonstrates that the heat flow 

increase occurs primarily due to a high concentration of the heat flux around the groove 
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tips and reduction of distance between the tips and the opposite wall; this heat flow 

becomes uniformly distributed when it reaches the smooth wall. Changes in the wetted 

surface area contribute marginally to the increase of the heat flow for small � and are 

irrelevant for large �. 

 

 
 

Figure  4-6: Variations of the wetted surface area [ [<⁄  (see Eq. ( 4.3.13)) as a function of the 

groove amplitude  Y and the wave number � for the groove geometry described by Eq. ( 4.4.1). 

 

The presence of grooves affects the flow characteristics and this question has been 

studied for annular and planar flows in detail in  Chapter 3 and Mohammadi & Floryan 

(2013a), respectively. It is useful to summarize the main observations before proceeding 

with the optimization question. The following discussion is carried out in the context of 

the same grooves as those used for discussion of conduction, i.e. the channel geometry is 

described by Eq. ( 4.4.1). Variation of ; ;<⁄  as a function of � and  Y is illustrated in Fig. 

7. For small � this variation is captured analytically (see Mohammadi & Floryan 2013b) 

in the form 

 ;;< = ¾1 + 38  Y�¿U� ®1 +  Y�2 ¾�� + 34¿ + 3��32  Yt¯. ( 4.4.3) 

 

The range of validity of this expression can be determined from the data presented in 
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drag. The reduction occurs for � < �7 ≈ 1 where �7 is referred to as the critical wave 

number. The magnitude of �7 depends marginally on the groove amplitude while the 

magnitude of ; ;<⁄  increases with an increase of the amplitude. 

 

 
 

Figure  4-7: Variation of  ; ;0c  as a function of the groove amplitude  � and the wave number � 

for the geometry described by Eq. ( 4.4.1). Dashed lines identify asymptotic values for � → 0. 

 

The form of the velocity field shown in Figure  4-8 demonstrates that for small enough � 

the bulk of the flow takes place in the area corresponding to the widest channel opening, 

where formation of a flow tube with � > 1 is observed. This flow tube becomes 

elongated as � increases, its strength decreases and it completely disappears for � > 5. 
 

 

 
(A) 

 
(B) 

Figure  4-8: Distribution of the w - velocity component for grooves described by Eq. ( 4.4.1) with 

amplitude  � = 2 and the wave numbers � = 0.5 (Figure  4-8A) and � = 5 (Figure  4-8B). 
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Figure  4-9 shows distributions of the shear stress along the walls. When � ≤ �7, the 

maximum of the stress at the grooved wall occurs at locations corresponding to the 

maximum channel opening and its magnitude decreases when � → �7 from below (see 

Figure  4-9A). A further increase of � changes the qualitative character of the distribution, 

with the maxima occurring at the groove tips and their magnitude increasing with �. The 

distribution of the stress at the smooth wall is approximately sinusoidal, with the 

maximum always occurring above the trough. Increase of � results in a decrease of the 

stress’ amplitude (see Figure  4-9B); the stress becomes nearly constant for high enough � 

with its magnitude being larger than in the smooth channel. 

 
 

 
(A) 

 
(B) 

Figure  4-9: Distribution of the z-component of shear acting at the lower (Figure  4-9A) and 

upper (Figure  4-9B) walls for grooves described by Eq. ( 4.4.1) with amplitude  � = 1. 
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friction factor are more pronounced, e.g. ; ;<⁄ ≈ 7 but X X<⁄ ≈ 1.8 when � = 30. This 

observation is important for interpretation of the optimization results. 
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An arbitrary shape is expressed by Eq. ( 4.2.1a, b), which permits assessment of the role 

played by geometry details described by higher Fourier modes.  

 
 

 
 

Figure  4-10: Variations of the ; ;0c  and X X0⁄  for a channel with geometry described by Eq. 

( 4.4.1) as a function of the groove wave number �. 

 

It has been shown in  Chapter 3 that the reduced geometry model, where the actual shape 

is replaced by the leading Fourier mode from the corresponding Fourier expansion, 

captures flow losses with accuracy sufficient for most applications. The results described 

above apply, therefore, to prediction of flow losses for grooves with arbitrary shapes as 

long as such shapes can be expressed using Fourier expansions. The analysis of heat 

transfer, discussed above, demonstrates that the same concept does not apply to 

conduction. The heat transfer increases with an increase of � and, thus, inclusion of 

geometry details described by higher Fourier modes significantly alters the heat flow. As 

a result, the geometry cannot be simplified and the effect of the actual groove shape has 

to be analyzed on a case-by-case basis. The determination of the shape that provides the 

best overall system performance is discussed in the next section.  
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which may depend on the weighting factor �. Large � favors the minimization of flow 

losses, small � favors the maximization of heat transport. We shall discuss the suitable 

selection of � later in this Section.  

It is instructive to explain geometry optimization using the real variables, i.e. 

 

TY�Z� = −1 +  ¨ [�,YDä>a��Z + :�,Ybª«
�¬�  ,  

T]�Z� = 1 +  ¨ [�,]Dä>a��Z + :�,]bª«
�¬� . ( 4.5.1a, b) 

 

The optimization yields the amplitudes [�,Y, [�,] and phase differences :�,Y, :�,]. The 

symmetry arguments as well as the direct evaluations of Ω permit elimination of the 

effects of phase differences, i.e. the optimal shapes always correspond to the zero phase 

difference. The problem is, thus, reduced to finding the minimum of 

 Ω = Ωa[�,Y , … , [ª«,Y , [�,], … , [ª«,], �b. ( 4.5.2) 
 

Since Eq. ( 4.5.1a, b) defines an uncountable number of geometries, the optimization is 

carried out by selecting classes of geometries that are of practical interest.  This is done 

by imposing constraints in the form of the maximum permissible depths and the 

maximum permissible heights of the grooves, as measured from the reference smooth 

wall position. These constraints have the form 

 

max�¨ [�,�Dä>���Z��[
�=1 � ≤  �, min�¨ [�,�Dä>���Z��[

�=1 � ≥ − �, ( 4.5.3a) 

max�¨ [�,zDä>���Z��[
�=1 � ≤  z, min�¨ [�,zDä>���Z��[

�=1 � ≥ − z. ( 4.5.3b) 

 

The solution of the optimization problem assumes that the optimal shape can be 

expressed in terms of Fourier expansions ( 4.5.1a, b) which need to have a sufficient rate 

of convergence in order to yield a practical solution. This fact brings in the importance of 
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the weighting factor �. The results discussed in the previous section demonstrate that the 

largest heat transport corresponds to the highest Fourier mode admitted in the solution. 

The use of small � gives preference to the heat transport and this leads to the divergence 

of the Fourier series. It may be concluded immediately that under such conditions the 

highest Fourier mode admitted in the solution defines the optimal shape. The use of large � gives preference to flow losses. Numerical experiments indicate that the optimal shape 

does not depend on � if � > 0.15, which corresponds to the elimination of the 

dominance of the heat transport process. All of the results reported in the remainder of 

this paper have been, therefore, obtained with � = 1 which provides a balance between 

the heat transport and the flow losses. Ω = 2 corresponds to a smooth channel and 

improvements is system performance are signaled by Ω < 2. 

 

 
 

Figure  4-11: Variations of the thermal enhancement factor � for a channel with geometry 

described by Eq. ( 4.4.1) as a function of the groove wave number �. 

 

Figure  4-11 displays variations of Ω for the simple geometry defined by Eq. ( 4.4.1). The 

asymptote for small �  has the form 

 � = ® 6 + 2�� Y� − 8��
3Á�2 −  Y��2 +  Y� + 4��3 ¯U�

+ ¾1 + 38  Y�¿U� V⁄ ®1 +  Y�2 ¾�� + 34¿ + 3��32  Yt¯� V⁄ . ( 4.5.4) 
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The best system performance (smallest Ω) can be found for � < 1, which corresponds to 

the drag reducing grooves. Such grooves represent the focus of the shape optimization. Ω 

quickly rises when the wave number increases above � = 1 and it increases above the 

reference values of Ω = 2  for � > 3. The system performance significantly improves 

with an increase of the amplitude  Y but only when � < 3 since the trend is reversed for 

larger �. 

The convergence properties of the Fourier series defining the optimal shape are illustrated 

using a channel with the geometry of the lower wall represented by ( 4.5.1a, b) while 

keeping the upper wall smooth. The results for the friction factor presented in Figure 

 4-12A demonstrate a rapid convergence of the expansion. A reduced order model based 

on 3-4 Fourier modes can capture the optimal shape with an accuracy sufficient for most 

applications. The results for the heat transfer show divergence of the Fourier expansions 

(not shown), as discussed above.  

The results of tests for the thermal enhancement factor displayed in Figure  4-12B 

demonstrate a rapid convergence of the Fourier series. The use of five Fourier modes 

allows approximation of the optimal shape with less than 5% error for the thermal 

enhancement factor. It may be concluded that the reduced geometry model based on the 

Fourier expansions can be used for determination of the optimal groove shape. The 

computational cost of optimization rapidly increases with an increase in the number of 

parameters. The optimizer minimizes a scalar multivariable cost function subject to a set 

of constraints starting at a given initial guess. The search method is gradient-based and, 

therefore, requires the cost and constraint functions to both be continuous and to have 

continuous first derivatives. The ‘interior-point’ optimization algorithm tries to satisfy 

bounds at every iterations (Byrd et al. 1999; 2000; Waltz et al. 2006) but it cannot 

guarantee identification of the global minimum. In order to minimize the probability of 

becoming trapped in a local minimum, one should start optimization with a small number 

of Fourier coefficients, say 3 or 4.  
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(A) 

 
(B) 

Figure  4-12: Variations of  the normalized friction factor ; ;0c  and the thermal enhancement 

factor � for the equal-depth grooves with amplitude  � = 1  as a function of the number of 

Fourier modes �[ used in the description of the groove geometry. 

 

When the solution converges, the number of Fourier coefficients is increased by one and 

the search is restarted using the most recent solution as the initial approximation and zero 

for the additional mode. This process is continued until a satisfactory approximation of 

the optimal shape is determined. This permits determination of the optimal shape even 

when the direct optimization fails. The question of identification of the global minimum 

has been confirmed by computing Ω directly for a number of test cases without the use of 

the optimization algorithm. Most of the results presented in this paper have been obtained 

with the convergence criteria set at 10−6 and using ten Fourier modes for geometry 

description as a precaution. 

4.6 Results 

Two classes of shapes have been considered, i.e. the equal-depth grooves and the 

unequal-depth grooves. In the former case, the grooves have the same maximum depth 
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4.6.1 The equal-depth grooves 

The equal-depth constraints are expressed by Eq. (4.5.3). The optimal configuration 

always corresponds to the largest admissible amplitude and, thus, the inequalities in 

(4.5.3) can be replaced by the equalities. We start the discussion with the grooves placed 

on the lower wall only (the upper wall is smooth). The evolution of the optimal shape as a 

function of the groove depth  Y is illustrated in Figure  4-13. There are no significant 

differences between the shapes obtained for different �'s and  Y's. All these shapes can be 

approximated by a universal trapezoid characterized by B = C = - 11⁄  and D = G =4.5- 11⁄  (see Figure  4-13 for definitions of the symbols). 

 

 
 

Figure  4-13: The optimal shapes of the equal-depth grooves. Solid line identifies a groove with  Y = 0.4 and � = 0.1, whilst dotted line is for  Y = 1.6 and � = 1. The y-coordinate is scaled 

using the groove depth. Thick line illustrates the best-fitted trapezoid characterized by B = C =- 11⁄  and D = G = 4.5- 11⁄ . 
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sinusoidal grooves. This leads to smaller velocity gradients at the walls and, thus, smaller 
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of its mean value for the optimal grooves compared with the sinusoidal grooves. 
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Variations of X X0⁄ , ; ;0⁄  and Ω for the optimal grooves approximated by the universal 

trapezoid as a function of � and  � are illustrated in Figure  4-15, and the corresponding 

changes of the wetted surface area are illustrated in Figure  4-16. The heat transfer is 

enhanced by increasing  � and is nearly independent of � (Figure  4-15A); this correlates 

with the increase of the wetted area associated with increase of  � but does not correlate 

with the increase of the wetted area due to increase of � (see Figure  4-16). The critical 

wave number �7 required to achieve drag reduction depends on the groove amplitude 

(Figure  4-15B).  

 

  
(A) (B) 

 

Figure  4-14: Velocity isolines for the equal-depth optimal grooves (thick lines) and for the 

sinusoidal grooves (thin lines) with  Y = 0.4, � = 0.1 are shown in Figure  4-14A. Distributions 

of the shear stress acting on the fluid at the lower wall for the same grooves are shown in Figure 

 4-14B. Solid, dashed and dotted lines in Figure  4-14B correspond to the optimal groove, the 

sinusoidal groove and the reference smooth wall. The corresponding total shear forces are            

-1.8173, -1.8878 and −2. 

The flow losses are reduced by decreasing � below �7 and by increasing  Y. Increase of 

the wetted area actually decreases pressure losses. The overall system performance 

becomes better for smaller � and larger  Y and a significant reduction of Ω below the 

smooth-channel value can be readily achieved. Increase of Ω correlates with increase of 

the wetted area due to increase of  Y but changes of the wetted area due to variations of �  

have almost no effect on Ω. The same figure displays performance improvements for the 

simple sinusoidal grooves. The optimized grooves offer about 30% advantage over 

sinusoidal grooves, with the gain increasing for higher groove depths.   
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Replacing the actual optimal shape by the universal trapezoid can produce an error. 

Figure  4-17 shows that this error is negligible for most of applications and, thus, the 

universal trapezoid can be assumed to represent the optimal shape. This conclusion 

underlines the generality of the results as there is no need to carry out any additional 

optimization studies. 

 

 
(A) 

 
(B) 

 
(C) 

 

Figure  4-15: Variations of the normalized heat transfer per unit length X X0⁄  (Figure  4-15A), 

the normalized friction factor ; ;0c  (Figure  4-15B) and the thermal enhancement factor � 

(Figure  4-15C) as a function of the groove wave number � and the groove depth  � for a 

channel with the lower wall fitted with the equal-depth grooves approximated by a trapezoid with B = C = - 11⁄ , D = G = 4.5- 11⁄  and a smooth upper wall. Dashed lines identify results for 

the simple sinusoidal grooves. 
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described by the universal trapezoid with B = C = 1.25- 11⁄ , D = G = 4.25- 11⁄ , i.e. they 

are nearly the same as in the case of grooves placed on one wall. Grooves on the opposite 

walls are shifted by a half wavelength with respect to each other.  

 

 
 

Figure  4-16: Variations of the wetted surface area [ [<⁄  (see Eq.( 4.3.13)) as a function of the 

groove wave number � for the same grooves as used in Figure  4-15. Dashed lines identify 

results for the simple sinusoidal grooves. 

 
 

 
 

Figure  4-17: Variations of the thermal enhancement factor as a function of the groove wave 

number � for the equal-depth grooves located on the lower wall. Solid and dashed lines 

correspond to grooves with the optimal and trapezoidal shapes, respectively. 
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(A) 

 
(B) 

Figure  4-18: The optimal shapes for the equal depth grooves placed on both walls. Solid line 

identifies  Y =  ] = 0.2 and � = 0.1, whilst dotted line is for  Y =  ] = 0.5 and � = 1 . Thick 

lines illustrate the best-fitted trapezoids with B = C = 1.25- 11⁄  and D = G = 4.25- 11⁄ . 

 

 
 

Figure  4-19: Variations of the thermal enhancement factor Ω as a function of the groove wave 

number � and the groove depth  L for a channel with the lower and upper walls fitted with the 

equal-depth grooves approximated by a trapezoid with B = C = 1.25- 11⁄  and D = G =4.25- 11⁄ . Both sets of grooves have identical geometries with the upper grooves moved by a half 

wavelength with respect to the lower grooves. Results for the simple sinusoidal grooves are 

illustrated using dashed lines. 

The variations of Ω as a function of  Y and � for grooves approximated by the trapezoid 

are shown in Figure  4-19. It can be seen that the same Ω can be achieved either by 

working with the grooves placed on one wall or by working with the grooves with the 
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grooves displayed in the same figure illustrate the gains associated with the use of 

optimized grooves.  

4.6.2 The unequal-depth grooves 

Unequal-depth grooves may have different depth and height, and the relevant constraints 

have the form 

 

max�¨ [�,�Dä>���Z��[
�=1 � ≤  �,oBZ, min�¨ [�,�Dä>���Z��[

�=1 � ≥ − �,o?�, 
 

( 4.6.1a, b) 

max�¨ [�,zDä>���Z��[
�=1 � ≤  z,oBZ, min�¨ [�,zDä>���Z��[

�=1 � ≥ − z,o?�. 
 

( 4.6.2a, b) 

 

The optimal shape always corresponds to the largest permitted groove height and depth 

and, thus, the inequalities in ( 4.6.1a, b) and ( 4.6.2a, b) can be replaced by equalities. We 

begin the discussion by considering grooves placed only on one wall, i.e.  ],N�O = ],N#� = 0. Figure  4-20 shows variations of the thermal enhancement factor for grooves 

with the height  Y,N�O = 1 and different depths. It can be seen that Ω decreases 

monotonically for the range of  Y,N#� considered when � ≤ 0.2. Ω changes in a non-

monotonic manner for larger values of � and this documents the existence of a depth that 

gives the rise to the smallest Ω, i.e. the optimal depth �/e�. The optimal depth decreases 

when � increases. 

Figure  4-21 illustrates the evolution of shape of the optimal grooves as a function of 

depth for a fixed height. It can be seen that for  Y,N#� <  Y,N�O the optimal shape looks 

like a trapezoid but with a longer base than the universal trapezoid for the equal-depth 

grooves. The increase of  Y,N#� above  Y,N�O leads to the trapezoid morphing into a 

qualitatively different form. The same figure shows shapes corresponding to the optimal 

depth. 
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Figure  4-20: Variations of the thermal enhancement factor Ω for a channel with the smooth 

upper wall and the optimal grooves with height  �,oBZ = 1 placed at the lower wall as a function 

of the depth of the grooves  �,o?�. 

 

The combination of the optimal depth and the corresponding optimal shape is referred to 

as the optimal geometry. The evolution of the optimal geometry is illustrated in Figure 

 4-22. The same shapes rescaled using the groove width at half height PQ�RS are displayed 

in Figure  4-23A. It can be seen that all the shapes nearly overlap and can be 

approximated by a Gaussian function in the form T�Z� = −2Z3�−3.5Z�� which defines 

the universal shape. The variations of �/e� and PQ�RS required to relate the universal 

shape to the channel size are shown in Figure  4-23B. The magnitude of the thermal 

enhancement factor that can be achieved using the optimal geometry is illustrated in 

Figure  4-24.  
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(A) 
(B) 

 
(C) 

 

Figure  4-21: Evolution of the shape of the optimal, unequal-depth grooves with height  �,oBZ =1 placed on the lower wall as a function of the groove depth  �,o?�. Results for � = 0.1, 0.5, 1 

are displayed in Figure  4-21A, B and C, respectively. Dashed lines identify shapes 

corresponding to the optimal depth. 
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Figure  4-22: Shapes of the unequal-depth grooves with height  Y,N�O corresponding to the 

optimal depth placed at the lower wall. The y-coordinate is scaled using the groove peak-to-

bottom distance T̂Y�Z� = _T��Z� −  �,o?�` a �,oBZ −  �,o?�bc − 1. Solid, dashed, dash-dotted, 

and dotted lines correspond to � = 0.1, 0.5, 0.8, 1.0, respectively. 

 

 
(A) 

 
(B) 

 

Figure  4-23: Shapes of the grooves displayed in Figure  4-22 scaled in the x-direction with the 

groove width at half height PℎBÀ; (Figure  4-23A). Solid, dashed, dash-dotted, and dotted lines 

correspond to � = 0.1, 0.5, 0.8, 1.0, respectively. Thick dashed line identifies the universal 

shape T��Z�� = −2Z3a−3.5Z�2b. Variations of the optimal depth �ä3Ç and the corresponding 

width at half height PℎBÀ; as a function of the groove wave number α are displayed in Figure 

 4-23B. 
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Figure  4-24: Variations of the thermal enhancement factor Ω for the optimal geometry with 

grooves placed on only one wall. 

 

 
(A) 

 
(B) 

 

Figure  4-25: Variations of the thermal enhancement factor Ω (Figure  4-25A) and the 

corresponding optimal depth �ä3Ç and the width at half height PℎBÀ;  (Figure  4-25B) as a 

function of the groove wave number � for the optimal geometry with grooves placed on both 

walls and moved by half wavelength with respect to each other. 

 

The results displayed in Figure  4-25 correspond to grooves placed at both walls and 

moved by half wavelength with respect to each other. The constraints ( 4.6.1a, b) and 

( 4.6.2a, b) have fixed  ],N#�= Y,N�O while  Y,N#� and  ],N�O are determined by the 

optimization process and, thus, correspond to the optimal depth. The optimal depth and 
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the corresponding groove shape for grooves at both walls are nearly the same as for 

grooves placed at only one wall.  The placement of grooves at both walls produces nearly 

the same change in the thermal enhancement factor as placement of grooves at one wall 

only but with a double height (compare Figure  4-24 and Figure  4-25A). The optimal 

depth �/e� and the width at half height PQ�RS are nearly the same regardless of whether 

one or both walls are grooved (compare Figure  4-23B and Figure  4-25B). 

4.7 Summary 

When mixing augmentation is not available, heat can be transported across micro-

channels by conduction only. A method to increase this heat flow has been proposed. The 

method relies on the use of grooves parallel to the flow direction. It has been shown that 

it is possible to find grooves that can increase the heat flow and, at the same, can decrease 

the flow pressure losses.  

The optimal groove shape that maximizes the overall system performance has been 

determined under suitable imposed constraints. Two types of constraints have been used. 

The first enforces the same groove height and depth and leads to equal-depth grooves. 

The second keeps a fixed groove height but the groove depth is treated as an unknown 

that must be determined as a part of the optimization process leading to unequal-depth 

grooves. The optimization process was focused on the groove wave numbers that lead to 

reduced flow losses because such grooves produced superior gains for the overall system 

performance. It has been shown that the equal-depth optimal grooves can be closely 

approximated by a universal trapezoid. In the case of the unequal-depth groove, there 

exists a certain depth that leads to the best system performance. This depth, the optimal 

depth, and the corresponding groove shape define the optimal geometry. It has been 

shown that the groove shape in the optimal geometry can be approximated by a Gaussian 

function. 
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Chapter 5  

5 Stability of Flow in a Channel with Longitudinal Grooves 

5.1 Introduction 

It has been shown in  Chapter 4 that there exists a class of longitudinal grooves that can 

enhance heat transfer across the channel and at the same time reduce flow resistance, and 

the optimal forms of these grooves have been identified. These conclusions are valid as 

long as the flow remains laminar. Stability analysis is required in order to determine the 

range of Reynolds numbers where the laminar flows may exist. 

This section is focused on the linear stability analysis of flows in a channel modified by 

longitudinal grooves. The main goal is to establish a relation between the critical stability 

conditions and the channel geometry. It is also of interest to identify the form of 

instability associated with the presence of the groove geometry. The analysis assumes a 

low disturbance environment and thus any processes associated with the transient growth 

are not considered. The reader is referred to the work of Szumbarski & Floryan (2006) 

for discussion of transient effects.  

This chapter is organized as follows. Section  5.2 provides description of the flow in a 

channel modified by longitudinal grooves. In particular, Section  5.2.1 provides problem 

formulation, Sections  5.2.2 and  5.2.3 present the numerical solution and analytical 

approximation for the small wave number grooves, Description of the stationary state is 

given in Section  5.2.4. Linear stability analysis is discussed in Section  5.3; formulation 

and numerical solution are discussed in Sections  5.3.1 and  5.3.2, respectively. Section  5.4 

discusses results for grooves of simple sinusoidal, arbitrary and optimal shapes. Short 

summary of the main conclusions is given in Section  5.5. 
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5.2 Flow in a channel with longitudinal grooves 

5.2.1 Problem formulation 

Consider flow along a straight channel extending to ∓∞ in the x-direction. The flow is 

driven by a constant pressure gradient and has the form  

 "<�����Z�� = If<�Z��, %<�Z��L = If<�T�, 0L = I1 − T�, 0L, 3<�Z�� = −2Z �2⁄  )<�Z�� = − TV 3⁄ + T + 2 3⁄ , X< = 4 3,⁄  ( 5.2.1) 

 

where the fluid movement is directed towards the positive x-axis, the Reynolds number 

Re is defined on the basis of the maximum x-velocity and the channel half height, Z� = �Z��+ T���, the velocity vector is defined as "<���� = �f<��+ %<���, )< stands for the 

stream function and X< denotes the flow rate. 

We modify this channel by placing longitudinal grooves of arbitrary shape on both walls 

(see Figure  5-1). Geometry of the grooves is expressed in terms of Fourier series of the 

form 

 

TY�,� = −1 + ¨ xY���2#��&ª«
�¬Uª«

, T]�,� = 1 + ¨ x]���2#��&ª«
�¬Uª«

 ( 5.2.2) 

 

where TY�,� and T]�,� are locations of the lower and upper walls, respectively, �A is the 

number of Fourier modes required to describe the geometry, � stands for the wave 

number, and xY��� = xY∗�U��
 and x]��� = x]∗�U��

 are the reality conditions where stars 

denote complex conjugates. The choice of  xY���
 and x]���

 is restricted by the no-contact 

condition between the walls. Our interest is only in grooves that do not change the mean 

channel opening and, thus, xY�<� = x]�<� = 0. 
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Figure  5-1: Sketch of the flow system problem. 

The velocity field in the grooved channel is described by the axial momentum equation of 

the form (�fg(,� + (�fg(T� = �2 G3gGZ  ( 5.2.3) 

 

where the velocity vector has components �fg, 0, 0� in the �Z, T, ,� directions, and is 

supplemented by the boundary conditions of the form  

 fg�TY , ,� = 0 ,  fg�T], ,� = 0 . ( 5.2.4) 
 

In the above, subscript B is used to denote flow quantities in the grooved channel. The 

fixed flow rate constraint of the form 

 

X = 12./� ° ° fg�T, ,�GTG,p¬p��&�
p¬p��&�

&¬�æ/�
&¬< = 43 ( 5.2.5) 

 

is used as the closing condition. This constraint states that the flow rates in the smooth 

and grooved channels are identical. Addition of grooves changes the wall shear stress 
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distribution as well as the wetted surface area and, thus, necessitates use of a different 

pressure gradient in order to maintain the same flow rate. The magnitude of the pressure 

gradient modification provides a quantitative measure of drag changes induced by the 

grooves. 

Flow in the grooved channel is represented as a superposition of the smooth-channel-flow 

and the grooved-induced modifications, i.e. 

 "g������Z�� = Ifg�T, ,�, 0,0L = "<�����Z�� + "������Z��= If<�T�, 0,0L + If��T, ,�, 0,0L, 3g�Z�� = 3<�Z�� + 3��Z�� ( 5.2.6) 

 

where subscript 1 identifies modifications. The resulting field equation, the boundary 

conditions and the constraint have the form 

 (�f�(,� + (�f�(T� = �2 G3�GZ , ( 5.2.7) f<�,, TY� + f��,, TY� = 0,      f<�,, T]� + f��,, T]� = 0, ( 5.2.8) 

X = 12./� ° ° If<�T� + f��T, ,�LGTG,p¬p��&�
p¬p��&�

&¬�æ/�
&¬< = 43. ( 5.2.9) 

 

5.2.2 Numerical solution 

Spectrally accurate solution is desired. Two methods for dealing with the irregularities of 

the boundaries have been used, i.e., the immersed boundary condition method (IBC) 

(Mohammadi & Floryan 2012) and the domain transformation (DT) (see  Chapter 4). The 

former method is more computationally efficient and, thus, has been used in the majority 

of the investigation, while the latter one has been used to investigate limiting cases and to 

provide accuracy check for the IBC method. The IBC method uses a regular solution 

domain with the flow domain placed in its interior and enforces the flow boundary 

conditions as internal constraints. The spatial discretization of the field equation uses 

Fourier expansion in the z-direction, i.e.  

 

f��T, ,� = ¨ f�����T�2#��&�¬±$
�¬U$ , ( 5.2.10) 
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where f���� = f��U��∗ is the reality condition and star denotes the complex conjugate. The 

modal functions are discretized using Chebyshev expansions. The algebraic equations are 

constructed using the Galerkin projection method. The construction of the boundary 

constraints uses Fourier expansions for all boundary variables. Extraction of the lowest 

modes leads to the explicit form of the boundary constraints which are imposed using the 

tau concept. The flow rate constraint is discretized directly and is used as the condition 

required for the direct evaluation of the pressure correction simultaneously with the flow 

field. The number of Chebyshev polynomials and Fourier modes used in the solution 

were arrived at through numerical experimentation and had been selected to assure a 

minimum of six digits accuracy. Details of the algorithm can be found in Mohammadi & 

Floryan (2012). The DT method uses the same spatial discretization as the IBC method 

with the boundary conditions imposed in a classical manner using the tau concept. Details 

can be found in  Chapter 4. 

5.2.3 Small wave number approximation 

The flow field can be evaluated analytically for the long wavelength grooves 

(Mohammadi & Floryan, 2013b). The solution domain is regularized using 

transformation of the form 

 ¦ = �,, � = 2IT − T0�,�LT0�,� − TY�,� + 1, ( 5.2.11) 

 

which maps the grooved channel into a straight strip in the ��, ¦� plane and the ¦-

coordinate plays the role of a slow scale. The field equation assumes the form 

 (�fg(�� + n��¦, �� (fg(� + n��¦, �� (�fg(¦(� + nV�¦, �� (�fg(¦� − nt�¦, ���2 G3gG, = 0, ( 5.2.12) 

 

where the known coefficients of the form 

 n��¦, �� = �&& a�&� + �p�b⁄ , n��¦, �� = 2��& a�&� + �p�b⁄ , nV�¦, ��= �� a�&� + �p�bc  nt�¦, �� = 1 a�&� + �p�b⁄  ( 5.2.13) 
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contain information about the groove geometry. In the above 

 �& = −�xU�a�� + �x�b, �&& = −��xU�a2�U��&�� + ��� + �x��b,  �p = xU�, � = �T] + TY� 2⁄ , x = �T] − TY� 2⁄ . ( 5.2.14) 

 

The boundary conditions and flow rate constraint take the form 

 

fg�¦, ∓1� = 0,   X = 12. ° ° xfg�¦, ��G�G¦ = 43 ¬±�
 ¬U�

�¬�æ
�¬< . ( 5.2.15)- ( 5.2.16) 

 

Assume solution in the form 

 fg = z< + �z� + ��z� + �VzV + ú��t�, ( 5.2.17) 3g�Z� = ¾G�<GZ + � G��GZ + �� G��GZ + �V G�VGZ ¿ Z + D + ú��t� ( 5.2.18) 

 

where c is an arbitrary constant, substitute into the field equations, the boundary 

conditions and the constraint and retain the four leading-order terms. The resulting 

systems are given in  Appendix F and their solutions have the form 

 z< = ô�U��1 − ���x�, G�< GZ⁄ = −2�2U�ô�U�, ( 5.2.19) z� = 0, G�� GZ⁄ = 0,  z� = −ô�U��1 − ���x�a��� − x�� − xx�� − �x��� 3⁄ − ô�U�ô�b, G�� GZ⁄= −2�2U�ô�U�ô�,  zV = 0, G�V GZ⁄ = 0,  
 

where 

 

ô� = 12. ° xVG¦�¬�æ
�¬< , ô� = 12. ° xVa��� − x�� − xx��bG¦�¬�æ

�¬< . ( 5.2.20) 

 

In the case of grooves of sinusoidal shape placed at the lower wall, i.e. 

 TY�,� = −1 +  YDä>��,�, T]�,� = 1, ( 5.2.21) 
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where  � and � denote the groove amplitude and the wave number, respectively, the 

above expressions simplify to the following form 

 z<�¦, �� = �1 + 3 Y� 8⁄ �U��1 − 0.5 YDä>¦���1 − ���, G�< GZ⁄ = −2�2U��1 + 3 Y� 8⁄ �U�, z��¦, �� = 0, G�� GZ⁄ = 0,  z��¦, �� = 0.5�1 + 3 Y� 8⁄ �U��1 − ����1 − 0.5 YDä>¦�� I �Dä>¦ − 0.5 YDä>�¦��1 − � 3⁄ �ÄÄ+�1 + 3 Y� 8⁄ �U�� Y� + 3 Yt 16⁄ �L,   G�� GZ⁄ = − Y��2U��1 + 3 Y� 8⁄ �U��1 + 3 Y� 16⁄ �, zV�¦, �� = 0, G�V GZ⁄ = 0. 
( 5.2.22) 

 

The range of validity of the above solution can be determined by comparing the pressure 

losses determined using the complete solution discussed in Section  5.2.2, i.e. 

 ¾�2 G3gGZ ¿9�� = ü¾�2 G3gGZ ¿7 − ¾�2 G3gGZ ¿�ü, ( 5.2.23) 

 

where subscripts a and c denote the asymptotic and the complete solutions, respectively. 

The results displayed in Figure  5-2 demonstrate that the asymptotic solution can be used 

up to � = 0.5 for the range of S of interest in this analysis. 

5.2.4 Description of the flow 

Introduction of grooves increases the wetted surface area and changes distribution of the 

wall shear stress, with both these effects contributing to changes in the drag experienced 

by the fluid. Results presented in Figure  5-3 for simple sinusoidal grooves given by Eq. 

( 5.2.21) demonstrate that grooves with the wave number � < ~0.965 reduce the overall 

drag. This effect is associated with acceleration of the flow in the widest channel opening 

resulting in the formation of stream tubes of high velocity fluid; see (Mohammadi & 

Floryan 2013a) for detailed discussion. The pressure gradient reduction is well captured 

by the asymptotic solution ( 5.2.22) for � < ~0.6 (see Figure  5-2). The magnitude of this 

reduction can be increased through the use of grooves with optimized shape ( Chapter 3, 

Mohammadi & Floryan, 2013b). 
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Figure  5-2: Variations of the error �G3 GZ⁄ �9�� of the small wave number approximation of the 

stationary state (see Eq. ( 5.2.23)) and variations of the pressure gradient correction �2 G3� GZ⁄  

for grooves with geometry described Eq. ( 5.2.21) with  Y = 0.05 . Dotted lines show the 

pressure-gradient asymptote for � → 0 and the lower bound for the pressure gradient for � → ∞. 

 

 
 

Figure  5-3: Variations of the pressure gradient correction �2 G3� GZ⁄  as a function of the 

groove wave number � and the groove height  Y for groove geometry described by Eq. ( 5.2.21). 

 

Flow topology becomes very simple when � → 0 as the flow becomes nearly 

independent of the spanwise coordinate. Topology changes in a different manner for 

10
0

10
3

-0.12

0

β

R
e 

d
p

1
/d

x

10
-1

10
0

10
1

10
-4

10
-9

β

(R
e 

d
p

B
/d

x)
er

r

β 
4
 

-0.001578

β

S
L

0.0001

0.001

0.
00

25

0.005

0

-0.0025
-0.01

-0.025
-0.05

-0.075
-0.1

10
-1

10
0

10
1

0

0.05

0.1



143 

 

� → ∞ as the grooves become narrower and viscous friction prevents the fluid from 

moving inside the grooves (see Figure  5-4) forcing the flow to lift up above the grooves. 

The mean geometric channel opening remains the same but the effective hydraulic 

channel opening decreases forcing the flow to accelerate above the grooves; nevertheless, 

the Reynolds number remains the same due to the fixed flow rate constraint. The flow 

topology can be described as consisting of nearly rectilinear flow above the grooves with 

a boundary layer of complex structure adjacent to the grooves. The lower bound on the 

pressure gradient correction can be determined by ignoring the boundary layer and 

approximating the flow with flow in a channel with height reduced by  Y 2⁄ , i.e. 

 

�2 G3�GZ = 2 ®1 − ¾1 −  Y2 ¿UV¯. ( 5.2.24) 

 

The above relation provides a good approximation for � = ú�10��, as documented by 

the results displayed in Figure  5-2.  

 

 
 

Figure  5-4: Distributions of the streamwise velocity fg in the middle of the groove with 

geometry described by Eq. ( 5.2.21) with  Y = 0.05. 
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5.3 Linear stability analysis 

The stability properties of the flow described above are of interest due to the drag 

reducing abilities of the long wavelength grooves; it is of interest to determine the 

maximum Re for which such flow remains laminar. The same grooves, especially 

grooves with short wavelengths, represent a special category of distributed surface 

roughness and, thus, it is of interest to determine how such roughness affects the onset of 

the laminar-turbulent transition. Both questions can be addressed with the help of the 

linear stability theory. It is assumed that the flow system has a low disturbance level and, 

thus, the stability question can be addressed using the asymptotic stability concept. In the 

case of noisy environment one would need to analyze transient disturbance growth 

(Szumbarski & Floryan, 2006). 

5.3.1 Problem formulation 

The stability analysis begins with the governing equations expressed in terms of the 

vorticity transport and continuity equations, i.e. 

 (���� (Ç⁄ − a����.∇���b"�� + a"��.∇���b���� = �2U�∇�����, ( 5.3.1a) ∇���. "�� = 0, ( 5.3.1b) ���� = ∇��� × "��, ( 5.3.1c) 

 

where ���� and "�� denote the vorticity and the velocity vectors, respectively. Three-

dimensional disturbances are superposed on the base flow in the form 

 ���� = �g�������T, ,� + �"�������Z, T, ,, Ç�, "�� = "g������T, ,� + ""������Z, T, ,, Ç� ( 5-2) 

 

where subscript D refers to the disturbance field. The flow quantities (3-2) are substituted 

into (3-1), the mean parts are subtracted and the equations are linearized. The resulting 

disturbance equations have the form  

 (*"(Ç − �g (f"(T − (fg(T �" − :g (f"(, − (fg(, :" + fg (*"(Z
= 1�2 º(�*"(Z� + (�*"(T� + (�*"(,� », ( 5.3.3a) 
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(�"(Ç − �g (%"(T − :g (%"(, + fg (�"(Z + (�g(T %" + (�g(, �"
= 1�2 º(��"(Z� + (��"(T� + (��"(,� », ( 5.3.3b) 

(:"(Ç − �g (�"(T − :g (�"(, + fg (:"(Z + (:g(T %" + (:g(, �"
= 1�2 º(�:"(Z� + (�:"(T� + (�:"(,� », ( 5.3.3c) 

(f"(Z + (%"(T + (�"(, = 0, ( 5.3.3d) 

where �g������ = �0, �g , :g�, ""����� = �f" , %" , �"�, �"������ = �*" , �" , :"�. The homogeneous 

boundary conditions of the form 

 "��"�Z, T, ,, Ç� = 0 at T = TY�,� and T = T]�,� ( 5.3.4) 

complete the formulation. Equations (5.3.3a-d) have coefficients that are functions of y 

and z and, thus, the solution can be written in the form 

 ""������Z, T, ,, Ç� = �"�������T, ,�2#�#O±$&U%�� + D. D. ( 5.3.5a) �"�������Z, T, ,, Ç� = Ω"�������T, ,�2#�#O±$&U%�� + D. D. ( 5.3.5b) 

 

where i and j are the real wave numbers, k = k� + ?k#, k# describes the rate of growth 

of disturbances, k� describes their frequency and c.c. stands for complex conjugate, i.e., 

the stability problem is posed as the temporal stability. ��"�T, ,� and Ω���"�T, ,� are the z-

periodic amplitude functions and, thus, they can be expressed in terms of the Fourier 

series of the form 

 

��"�T, ,� = ¨ Ïn0�N��T�, n8�N��T�, n��N��T�Î2#N�&N¬±$
N¬U$ + D. D. ( 5.3.6a) 

Ω���"�T, ,� = ¨ Ïn¢�N��T�, ?nw�N��T�, n£�N��T�Î 2#N�&N¬±$
N¬U$ + D. D. ( 5.3.6b) 

 

Substitution of Eq. (5.3.6) into Eq. (5.3.5) leads to the disturbance velocity and vorticity 

components of the form 
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"��"�Z, T, ,, Ç� = ¨ Ïn0�N��T�, n8�N��T�, n��N��T�Î2#I#O±�$±N��&U%�LN¬±$
N¬U$ + D. D. ( 5.3.7a) 

����"�Z, T, ,, Ç� = ¨ Ïn¢�N��T�, ?nw�N��T�, n£�N��T�Î 2#I#O±�$±N��&U%�LN¬±$
N¬U$ + D. D. ( 5.3.7b) 

 

Substitution of (5.3.7) and ( 5.2.10) into (5.3.3) and separation of Fourier modes leads to, 

after a rather lengthy algebra, a system of linear ordinary differential equations for 

nw�N��T� and n8�N��T� of the form 

 

|�N��T�n8�N��T� = ¨ Ïx8�N,���T�n8�NU���T� + xw�N,���T�nw�NU���T�Î�¬±$
�¬U$ , ( 5.3.8a) 

 �N��T�nw�N��T� + H�N��T�n8�N��T�
= ¨ Ïv8�N,���T�n8�NU���T� + vw�N,���T�nw�NU���T�Î�¬±$

�¬U$  
( 5.3.8b) 

 

where −∞ < o < +∞ and the explicit forms of the operators T, S, C, v8, vw, x8, xw are 

given in  Appendix G. The above formulation is similar to the Bloch theory (Bloch, 1928) 

for systems with spatially periodic coefficients and to the Floquet theory (Coddington and 

Levinson, 1965) for systems with time periodic coefficients. Groove effects are contained 

in the right-hand-side (RHS) of (5.3.8) and in the boundary conditions ( 5.3.4). When the 

groove amplitude approaches zero, the RHS becomes zero and the modal equations 

decouple. In this limit, Eqs. (5.3.8) describe a system of oblique Tollmien-Schlichting 

(TS) waves propagating independently of each other. In analogy to the stability of 

parallel flows, we shall refer to the T, S and C operators as the Tollmien-Schlichting, 

Squire and coupling operators, respectively (Floryan, 1997). 

Equations (5.3.8) together with the homogeneous boundary conditions ( 5.3.4) form an 

eigenvalue problem and have a nontrivial solution only for certain combinations of �i, j, k� for the specified flow conditions (Re) and for the specified groove geometry (β, 

xY���
, x]���

). The required dispersion relation has to be determined numerically and the 

relevant methodology is described in the next section. 
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5.3.2 Numerical solution 

The problem to be solved consists of an infinite system of ordinary differential equations 

(5.3.8) with the homogeneous boundary conditions ( 5.3.4). The Fourier expansions 

(5.3.7) are truncated after term �ª and the modal functions are discretized using the 

Chebyshev expansions of order �� of the form 

 

Ïn8�N��T�, nw�N��T�Î = ¨Ï�y,8�N�, �y,w�N�Î|y�T�±$
y¬< ≈ ¨Ï�y,8�N�, �y,w�N�Î|y�T�ªÓ

y¬< , ( 5.3.9) 

 

where |y denotes the Chebyshev polynomial of the kth order, and �y,8���
 and �y,w���

 stand for 

the unknown coefficients of the expansions. The Galerkin projection method is used to 

form a system of linear algebraic equations. Details of the discretization process are 

presented in  Appendix H. 

The homogeneous boundary conditions are enforced using the IBC method (Szumbarski 

& Floryan 1999).  Appendix I provides details of the implementation process. Four 

equations for �y,8���
 and two equations for �y,w���

 corresponding to the highest Chebyshev 

polynomials are eliminated for each Fourier mode providing space for the imposition of 

the boundary relations (tau method). 

The resulting homogeneous algebraic system can be posed in various ways. For the 

global solution the system is posed as a general eigenvalue problem of the form  

 [v = kýv, ( 5.3.10) 
 

where E denotes the eigenvectors and the k-spectrum is determined numerically. These 

solutions are expensive numerically and suffer accuracy problems when large matrices 

are involved. Efficiencies can be found by using the Arnoldi method (Saad, 2003) which 

permits evaluation of only selected part of the spectrum. Local solutions are still more 

computationally efficient and more accurate but produce limited number of eigenvalues, 

mostly just one eigenvalue. These solutions are used for tracing selected eigenvalues 
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through the parameter space. The process starts with an initial guess either for the 

eigenvalue or for the eigenvector and iterations are used to converge to the true 

eigenvalue and/or eigenvector.  

Three methods for eigenvalue tracing have been used. In the first method, one of the 

homogeneous boundary conditions is replaced by an inhomogeneous boundary condition 

imposed on a different quantity resulting in an inhomogeneous system which can be 

easily solved. The true eigenvalue is found if the solution of the inhomogeneous system 

happens to satisfy the eliminated boundary condition. Since this is not true in general, the 

eigenvalue is searched for by looking for the zero of the replaced boundary condition 

using the Newton-Raphson procedure. Boundary condition for the vertical velocity 

component at the lower wall has been replaced in this study with condition for the second 

derivative of the vertical velocity component. Good initial guess for k significantly 

accelerates convergence. In the second method the eigenvalue is searched for by looking 

for zeros of determinant of �[ − ký� where the system is posed as 

 �[ − ký�v = 0 ( 5.3.11) 
 

In the third method, the inverse iterations method, we compute an approximation for the 

eigenvector v� corresponding to the unknown eigenvalue k� using an iterative process in 

the form 

 �[ − k<ý�v��±�� = ýv�, ( 5.3.12) 
 

where k< and v< are the eigenvalue and the eigenvector (an eigenpair) corresponding to 

the unaltered flow. If k� is the eigenvalue closest to k<, v� converges to v�. The 

eigenvalue k� is evaluated using formula 

 k� = v��[v� v��ýv�⁄ , ( 5.3.13) 
 

where T denotes the complex conjugate transpose. The inverse iterations method was 

found to be generally more efficient compared with the Newton-Raphson method. The 

tracing of eigenvalues has been extended over several Brillouin zones (Bloch, 1928) in 
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the µ-direction in order to demonstrate how the leading eigenvalue is affected by the 

groove wavelength. The tracing process needs to be carefully implemented for small β’s 

as width of the Brillouin zones decreases rapidly and the eigenvalues become tightly 

spaced. 

The accuracy and cost of the discretization depend on the rate of convergence of 

expansions (3-7) as well as Fourier expansions used in the construction of the boundary 

constraints (see  Appendix I). Convergence can be assessed using energy of Fourier 

modes which is measured using the Chebyshev norm for the x-component of the 

disturbance velocity, i.e. n0�N��T�, defined as 

 

�Φ����T��� = ¹° n0�N��T�n0�N�∗�T���T�GT�
U� ¼� �⁄ , ( 5.3.14) 

 

where ��T� = 1 Á1 − T�⁄  and star denotes complex conjugate. Results presented in 

Figure  5-5 demonstrate that the rate of convergence of these expansions strongly depends 

on �.  

 

 
 

Figure  5-5: Variations of the Chebyshev norm �Φ����T��� (see Eq. ( 5.3.14)) as a function of 

the Fourier mode number � for the groove geometry described by Eq. ( 5.2.21) with  Y = 0.05, 

for flow Reynolds number �2 = 6500 and disturbance wave numbers i = 1.02, j = 0. 
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The convergence is very good for � ≥ 0.1 and use of ten Fourier modes guarantees a 

minimum of six digits accuracy. Decrease of � leads to a significant reduction of the 

convergence rate and achieving the same accuracy with � = 0.01 requires use of around 

70 Fourier modes. Evaluation of the eigenvalues requires fewer modes as illustrated in 

Fig. 7, e.g. use of just five modes gives the six-digit accuracy when  � ≥ 0.1  but around 

30 modes are required for  � = 0.01. 

 

 
 

Figure  5-6: Variations of the growth rate k# × 10V of disturbances with the wave numbers i = 1.02 and j = 0 as a function of the number of Fourier modes used in the numerical solution 

of the stability problem for flow with the Reynolds number Re=6500 in the grooved channel with 

the groove geometry described by Eq. ( 5.2.21) with  Y = 0.05. 

5.4 Results 

It is known that flow in a smooth channel becomes unstable at �2 = 5772 with the two-

dimensional (Tollmien-Schlichting, TS) waves with the wave number i = 1.0205 

travelling in the downstream direction playing the critical role (Orszag, 1971).  Once 

these waves reach sufficient amplitude, the disturbance growth becomes dominated by a 

three-dimensional secondary instability driven by a parametric resonance (Orszag and 

Patera, 1983). The instability has a subcritical character and an increase of the level of 
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1977). For a sufficiently high level of environmental disturbances the instability process 

can be dominated by the transient growth of disturbances with the optimal disturbances 

rather than the TS waves playing the critical role (Szumbarski & Floryan, 2006). 

Addition of grooves is expected to modify travelling waves but, at the same time, it might 

create new disturbance structures at the onset.   

The role of the grooves in the instability process depends on their shape and amplitude. 

We begin discussion with the simple sinusoidal grooves placed at the lower wall only. 

The channel geometry is described by Eq. ( 5.2.21) with the amplitude  Y and the wave 

number � being the only geometrical parameters. This geometry corresponds to the 

leading Fourier mode in the Fourier expansion ( 5.2.2) representing an arbitrary shape. 

We shall limit our interests to small grooves, i.e.  Y ≤ 0.05. 

5.4.1 Sinusoidal grooves 

Investigation of spectra under a variety of conditions lead to conclusion that there is only 

one class of unstable disturbances; these disturbances connect to the classical travelling 

waves in the limit of  Y → 0. No sign of any instability that may lead to the formation of 

streamwise vortices has been found. This should not be surprising as longitudinal grooves 

do not generate centrifugal force field which is responsible for the formation of such 

vortices in the case of transverse grooves (Floryan, 2003). 

The transition between the characteristics of disturbances in the grooved and smooth 

channels is illustrated in Figure  5-7 for a wide range of �’s. It can be seen that 

disturbances in grooved channel evolve towards the same travelling wave as  Y is 

reduced. Figure  5-8 displays variations of the critical Reynolds number as a function of 

the orientation of the disturbance wave vector. The wave vector is defined as m = �i, j�, 

it has magnitude |m| = �i� + j��� �⁄  and its orientation is expressed in term of the 

inclination angled defined as 1 = ±tanU��i j⁄ �. During test computations the magnitude 

of the wave vector was kept constant while its orientation was varied. It can be seen that 

disturbances with the wave vector aligned with the flow direction have the smallest �27 . 

Although the Squire theorem (Squire, 1933) does not apply to flows in grooved channels, 

these results lead to conclusion equivalent to the Squire theorem. The reader may note 
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that the critical disturbances are not two-dimensional in the grooved channel due to the 

modulating effect of geometry. We shall, nevertheless, refer to these disturbances as 

“two-dimensional” waves based on their properties in the limit  Y → 0. The rest of this 

discussion will be focused on the “two-dimensional” waves unless otherwise explicitly 

noted.   

 

 
 

Figure  5-7: Variation of the growth rate k# × 10V of disturbances with the wave numbers i = 1.02 and j = 0 as a function of the groove amplitude  Y for the groove geometry described 

by Eq. ( 5.2.21) for flow with the Reynolds number �2 = 6500. 

 

Results displayed in Figure  5-7 demonstrate that grooves may either stabilize or 

destabilize the flow depending on the groove wave number, with transition occurring at � = ����� ≈ 4.22 and being independent of the groove amplitude. Grooves with shorter 

wavelengths destabilize the flow with the growth rate increasing rapidly with an increase 

of  Y. Long wavelength grooves stabilize the flow but the decrease of the amplification 

rate is much weaker than the increase observed for the short wavelength grooves. The 

qualitatively different effects of � are well illustrated in Figure  5-9 which displays 

variations of the amplification rate as function of � for fixed  Y.   
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Figure  5-8: Variations of the critical Reynolds number of disturbances with the wave vector m = �i, j� of constant magnitude as a function of its inclination angle θ  for the groove geometry 

described by Eq. ( 5.2.21) with the amplitude  Y = 0.05. Solid lines correspond to  |m| = 1.02 and 

dotted lines to |m| =1.0. 

 

 
 

Figure  5-9: Variations of the growth rate k# × 10V of disturbances with the wave number i = 1.02 as a function of the groove wave number β for the groove geometry described by Eq. 

( 5.2.21) for flow with the Reynolds number �2 = 6500. Dotted-line indicates the wave number 

that separates the drag reducing and drag increasing zones. 
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Rapid destabilization in zone I (large �) as well as gradual stabilization in zone II (� = 

0(1)) are clearly visible. The groove wave number that corresponds to the transition 

between the drag reducing and the drag increasing grooves, i.e. �7�, lies deep inside zone 

II and does not have any significance as far as stability properties of the flow are 

concerned. 

Eigenfunctions n0����T� corresponding to the onset conditions displayed in Figure  5-10 

for a wide range of �’s permit description of the disturbance flow topology. The 

eigenfunctions are normalized with the maximum of n0�<��T� in the upper half of the 

channel, i.e. oBZp∈I<,�Lrn0�<��T�r = 1. It can be seen that near the upper (smooth) wall 

and for large � the dominant eigenfunctions, i.e. eigenfunctions with index 0, are very 

similar to the eigenfunction in a smooth channel; higher eigenfunctions are negligible in 

this zone. Significant differences appear when � is reduced below ����� ≈ 4.22 with the 

magnitudes of the higher eigenfunctions reaching the level of about 80% of the dominant 

eigenfunction. The reader may note appearance of large differences between the phase of 

the dominant, “grooved” eigenfunction and the “smooth” eigenfunction.  

Analysis of the lower part of the channel shows that higher eigenfunctions are always 

important close to the grooved wall; their magnitudes increase from about 20% of the 

dominant eigenfunction at large � to about 80% at small �. Noticeable differences in the 

phase distribution of the “smooth” and the dominant “grooved” eigenfunctions can be 

seen already at large �; these differences increase significantly as � decreases. 

The topology of the disturbance velocity field at the onset is complex, highly three-

dimensional and dependent on �, as illustrated in Figure  5-11 and Figure  5-12. Pathlines 

in the y-z plane displayed in Figure  5-11 demonstrate simple structure of flow in the 

upper part of the channel for large enough � (see Figure  5-11A, Figure  5-11B) to be 

replaced by progressively more complex, three-dimensional topology as � decreases (see 

Figure  5-11C , Figure  5-11D). At small enough � the topology corresponds to appearance 

of a sink at the wall in the narrowest channel opening (Figure  5-11C) and, for a still 

smaller �, it is supplemented by a source at a small distance away from the wall in the 
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widest channel opening (Figure  5-11D) giving appearance of formation of a separation 

bubble. 

 

 
(A) (B) 

(C) 
 

(D) 

 

Figure  5-10: Eigenfunctions n0����T�, � = 0, 1, 2, describing two-dimensional travelling wave 

disturbances with the wave number i =1.02 in a channel with grooves whose geometry is 

described by Eq. ( 5.2.21) with  Y = 0.05. Results displayed in Figs. 5-10A, B, C, and D 

correspond to the onset conditions for the groove wave numbers � =10, 4.22, 1.0, and 0.2, i.e. �27� = 5028.5, 5773.5, 5886, and 6227.5, respectively. The normalization condition 

oBZp∈I<,�L rn0�<��T�r = 1 has been used for the presentation purposes. Solid and dash lines 

identify the real and imaginary parts. Thin dashed-dotted and dotted lines identify the real and 

imaginary parts of the eigenfunction for the smooth channel with the same Reynolds number. 

Flow topology close to the lower wall is more complex. At large � (Figure  5-11A), 

source appears at the trough producing structure similar to a separation bubble. Decrease 

of � eliminates this bubble (Figure  5-11B). Further decrease of � increases strength of 
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this source resulting in an unusual structure displayed in Figure  5-11C. At � = 0.2 

(Figure  5-11D) the topology corresponds to that created by a line source parallel to the 

wall with the wall acting like a sink resulting in the formation of a distinct layer of 

trapped fluid adjacent to the wall. High level of three-dimensionality of the flow field is 

underscored by form of the pathlines in the (x,z)-plane at a fixed y. Figure  5-12 displays 

such pathlines at y = 0 for several values of � at the onset. Pathlines look like spirals for � ≈ ����� ≈ 4.22 (see Figure  5-12C and Figure  5-12D), they look like closed loops for 

smaller � (see Figure  5-12E and Figure  5-12F) but appear to correspond to sets of 

point/line sinks for larger � (see Figure  5-12A and Figure  5-12B). 

 

 
 

 
(A) 

 
 

 
(B) 
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(C) 

 

 
(D) 

 

Figure  5-11: Pathlines in the y-z plane for the disturbance flow field corresponding to “two-

dimensional” disturbances with the wave number i = 1.02  at the onset for flow in a channel 

with grooves described by Eq. ( 5.2.21) with  Y = 0.05. Figures 5-11A, B, C and D display results 

for ��, �27� = (10, 5028.5), (4.22, 5773.5), (1.0, 5886), (0.2, 6227.5), respectively. 

 

 
(A) 

 
(B) 
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(C) 

 
(D) 

 
(E) 

 
(F) 

 

Figure  5-12: Pathlines in the x-z plane at y = 0 for the disturbance flow field corresponding to 

“two-dimensional” disturbances with the wave number i = 1.02  at the onset for flow in a 

channel with grooves described by Eq. ( 5.2.21) with  Y = 0.05. Figures 5-12A, B, C, D, E and F 

display results for ��, �27� = (10, 5028.5), (5, 5652.4), (4.35, 5755), (4.22, 5773.5), (1.0, 5886), 

(0.5, 6073.1), respectively. 

 

The neutral curves for the “two-dimensional” waves in the �i, �2�-plane are fairly 

similar to the analogous curves for the smooth channel, as illustrated in Figure  5-13. At 

small � the critical Reynolds number decreases as the groove amplitude increases while 

the critical disturbance wave number i7� remains nearly unchanged (Figure  5-13A). At � 

= ����� both �27 and i7� are marginally affected by variations of  Y (Figure  5-13B). At 
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large � the critical Reynolds numbers decrease as  Y increases while i7� marginally 

increases (Figure  5-13C).     

 

(A) (B) 

 
(C) 

 

Figure  5-13: Neutral curves in the ��2, i�-plane for the “two-disturbances” with the wave 

numbers i = 1.02 in a channel with grooves whose geometry is described by Eq. ( 5.2.21). 

Figures 5-13A, B and C display results for the groove wave numbers � = 0.2, 4.22, 10, 

respectively. 

 

The stabilizing/destabilizing effects of the grooves are well illustrated by the neutral 

curves in the ��, i� plane. Figure  5-14A displays results for the nominally subcritical 

Reynolds number Re = 5500. The flow is stable for small enough �’s but becomes 

unstable once � reaches a certain minimum value; further increase of � results in a large 

expansion of the range of the unstable i’s. The minimum value of � required for the 
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onset of the instability decreases with an increase of  Y. A similar process can be 

observed for the nominally critical Reynolds number Re = 5772.25 (see Figure  5-14B) 

where there is only one unstable i for small enough �, but its range expands once � 

reaches a certain minimum,  Y-dependent value. Figure  5-14C corresponds to the 

nominally supercritical Reynolds number Re = 6000. It can be seen that an increase of  Y 

decreases the range of unstable i’s for small �’s, even leading to the complete flow 

stabilization. The process is opposite for � > ����� ≈ 4.22 where a large expansion of 

the unstable i’s is observed. 

 

(A) (B) 

 
(C) 

 

Figure  5-14: Neutral curves in the ��, i�-plane for the “two-dimensional” disturbances in a 

channel with grooves whose geometry is described by Eq. ( 5.2.21). Figures 5-14A, B and C 

display results for flow with �2 = 5500, 5772.25, 6000, respectively. 
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Figure  5-15 illustrates variations of the critical Reynolds number �27 as a function of � 

and  Y  and provides basis for a compact summary of the main results. The flow stability 

is not affected by the grooves with � = ����� ≈ 4.22 regardless of their amplitude. The 

flow is destabilized for larger �’s with �27 decreasing with as an increase of � and this 

destabilization is more effective for larger  Y’s. The smallest critical Reynolds number of �27 = 4955 is achieved for � = 10 and  Y= 0.05 which are the largest values of these 

parameters considered in the present study; further reduction of �27 might be achieved 

with larger groove amplitudes and wave numbers. The flow is stabilized for � < ����� ≈ 

4.22 as �27 increases with and a decrease of �; the stabilization is more effective for 

larger  Y’s. The largest critical Reynolds number of �27= 6138 is achieved for � = 0.4 

and  Y= 0.05 which define the limits of the present investigation. 

 

 
 

Figure  5-15: Variations of the critical Reynolds number �27 as a function of the groove wave 

number � and the groove amplitude  Y for channel with geometry described by Eq. ( 5.2.21). 

Dotted-line corresponds to �2 G3� GZ⁄ = 0. 
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Section  5.4.1 provides a detailed discussion of the instability in a channel with sinusoidal 
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for the analysis. Each shape has been represented using a Fourier expansion, e.g. Eq. 

( 5.2.2), which has been truncated after a finite number of terms.  

 
 
 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 
 

(B) 
 
 
 
 
 
 
 
 
 

(C) 
 

Figure  5-16: Groove shapes used in this study: A- triangular groove, B- trapezoidal groove, C- 

rectangular groove. λ denotes the groove wavelength. 

 

Neutral stability curves of the type displayed in Figure  5-17 have been computed for each 

shape represented by different numbers of Fourier terms. It can be seen that the critical 

Reynolds numbers determined for the triangular grooves represented using either the 

leading term from the Fourier expansion, or the first two terms, or the first three terms are 

nearly identical. The same conclusion applies to the trapezoidal grooves; in this case the 

difference between shapes represented by either three or five Fourier modes is negligible. 

It can be concluded that the difference between �27  determined either on the basis of 

shape represented by the leading Fourier mode from its Fourier representation or using 

the complete shape is at the most 0.05%. Rectangular grooves pose a challenge due to the 

existence of the Gibb’s phenomenon (Wilbraham, 1848; Gibbs, 1898, 1899). In this case, 
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results displayed in Figure  5-17 demonstrate that one needs to use up to seven Fourier 

modes in the shape representation for the accurate determination of �27. 

 

 
 

Figure  5-17: The neutral curves in the ��2, i�-plane for flow in channels with triangular 

grooves (solid lines), trapezoidal grooves (dashed lines; B = C = - 6⁄ , D = G = - 3⁄ , see Figure 

 5-16B for notation), and rectangular grooves (dashed-dotted lines: B = C = - 2⁄ , see Figure 

 5-16C for notation). All grooves have the same amplitude  Y = 0.05 and the same wave number � = 1. Their shapes are described using 1, 3, 5, 7 leading Fourier modes from the complete 

Fourier expansion describing geometry. 

 

Use of only the leading Fourier mode results in the error of �27 of the order of 0.5%. 

This demonstrates the generality of the results discussed in the previous section as the 

sinusoidal groove can be interpreted as representing an arbitrary groove replaced by the 

leading Fourier mode from its Fourier representation. Results illustrated in Figure  5-17 

form basis of the reduced geometry model which significantly simplifies the analysis of 

effects of grooves on the flow stability. There is no need to study all possible shapes as 

results based on the leading Fourier mode provide accuracy sufficient for most 

applications. The stability characteristics can be determined only once and then made 

available in the tabulated/graphical form, i.e. see Section  5.4.1. The above discussion also 

demonstrates that the stability response of the flow is insensitive to details of the groove 

geometry. 
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5.4.3 Optimal grooves 

It is known that longitudinal grooves are able to significantly reduce the laminar drag if 

the groove wave number is sufficiently small; this effect occurs only for grooves with � < �7� ≈ 0.965 (see Section  5.2.4). The best groove shape for the maximization of the 

drag reduction has been determined in  Chapter 3 for the annular flow and by Mohammadi 

& Floryan (2013b) for the planar flow.  

 

 
(A) 

 
(B) 

Figure  5-18: The optimal shapes for � = 0.2, 0.5 for the equal-depth (Figure  5-18A) and the 

unequal-depth grooves (Figure  5-18B) with  Y= 0.01, 0.03, 0.05 in the former case and  Y,]= 

0.01, 0.03, 0.05 in the latter case. The best-fitted trapezoid (B = C = - 8⁄ , D = G = 3- 8⁄ ) 

overlaps within resolution of this figure with all grooves in Figure  5-18A after shapes had been 

rescaled with the groove amplitude. The universal Gaussian function  T̂ = −2Ut&̅W
 overlaps 

within resolution of this figure with all grooves in Figure  5-18B; shapes have been rescaled with 

the peak-to-bottom distance as the vertical length scale, i.e. T̂Y = aTY + 1 −  Y,0b a�/e� +  Y,0bc , 

and width at half height PQ�RS as the horizontal length scale, i.e. ,̅ = �, − ,<� PQ�RS⁄ . 

 

The shape of the optimal groove depends on the type of constraint. In the case of the 

equal-depth grooves both height and depth are subject to the same constraint. In the case 

of the unequal-depth grooves the height is set while the most efficient depth is 

determined through the optimization. In the former case, the optimal grooves are well 

approximated by a certain universal trapezoid (see Figure  5-18A; B = C = - 8⁄  and D = G = 3- 8⁄ ). In the latter case, they are well approximated by a Gaussian function 

(see Figure  5-18B; T̂ = 2Ut&̅W
).  It is of interest to determine effects of such grooves on 
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the flow stability as this would provide a limit on their applicability. The optimization 

process requires access to more information about the groove geometry; the number of 

Fourier modes that has to be used increased to about 5-7 (Mohammadi & Floryan, 2013b) 

and forms basis for the reduced geometry model for optimization. In the stability analysis 

the optimal shapes were represented using at least ten Fourier modes in order to reduce 

the potential error margin. 

 

(A) (B) 

 
(C) 

Figure  5-19: Neutral curves in the ��2, i�-plane for channel fitted with optimal, equal-depths 

grooves at the lower wall. Groove geometry is represented by the universal trapezoid with B = C = - 8⁄  and D = G = 3- 8⁄  (see Figure  5-18A for notation). Results for sinusoidal grooves 

are given for reference (dashed lines). Figure  5-19A, Figure  5-19B and Figure  5-19C provide 

results for the groove wave numbers � = 0.2, 0.5, and 0.8, respectively. 

 

Neutral curves in the ��2, i�-plane for the equal-depth grooves represented using the 

universal trapezoid are displayed in Figure  5-19. It can be seen that such grooves stabilize 
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the flow beyond what is possible with the sinusoidal grooves, however, the corresponding 

increase of �27 is fairly small. Figure  5-20 displays neutral curves for the unequal-depth 

grooves at the lower wall with heights fixed at  Y,] = 0.01, 0.03, 0.05 and depths 

determined by the optimization process. There are no reference curves as a single Fourier 

mode cannot capture such geometries. Since the optimal depth increases significantly 

with reduction of �and increase of  Y,], results are presented only for those cases where 

the depth did not breach the limit of 0.05 used throughout this analysis. It can be seen that 

the range of stabilization achieved with these grooves is similar to that found in the case 

of the equal-depth grooves (compare Figure  5-19 and Figure  5-20). 

 

 

Figure  5-20: Neutral curves in the ��2, i�-plane for channel fitted with the optimal unequal-

depth grooves at the lower wall. Groove geometry is represented using the universal Gaussian 

function. Solid, dashed and dashed-dotted lines correspond to grooves with the amplitudes  Y,] = 0.01, 0.03 and 0.05, respectively. Results are presented only for these cases where the 

optimal depth has not breached the limit of 0.05 used throughout this analysis. Three curves are 

given for � = 0.8 ( Y,] = 0.01, 0.03, 0.05), two curves are given for � = 0.5 ( Y,] = 0.01, 0.03) 

and one curve is given for � = 0.2 ( Y,] = 0.01). 

5.5 Summary 

Analysis of stability of flow in a channel fitted with longitudinal grooves has been carried 

out. Only grooves with amplitude less than 0.05 were considered. Grooves may have an 

arbitrary but Fourier transformable form. As there is an uncountable number of possible 
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groove shapes, the applicability of the reduced geometry concept has been investigated; it 

has been shown that such model applies to the analysis of flow stability in the presence of 

longitudinal grooves.  

Detailed analysis has been carried out for sinusoidal grooves, i.e., grooves represented by 

a single Fourier mode. Only disturbances corresponding to travelling waves in the limit 

of zero groove amplitude have been found. It has been shown that disturbances 

corresponding to the two-dimensional waves in the limit of zero groove amplitude play 

the critical role in the grooved channel. 

Presence of grooves leads to flow stabilization for groove wave numbers � < ����� ≈ 

4.22 and flow destabilization for larger �’s. The destabilization is quite strong as the 

critical Reynolds number increases fairly rapidly with an increase of �, but stabilization 

associated with the reduction of � is mild. 

The topology of the disturbance velocity field at the onset is highly three-dimensional. Its 

structure is rather simple for large �’s with groove effects limited to the neighborhood of 

the grooved wall. Reduction of � below ����� leads to large changes and increased 

complexity of the flow structure with groove effects visible in the whole domain. 

Special attention has been paid to the effects of long wavelength, drag reducing grooves. 

It has been shown that such grooves lead to a small increase of the critical Reynolds 

number compared with the smooth channel. The stabilizing effect has been found in the 

case of the optimal equal-depth grooves as well as in the case of the optimal unequal-

depth grooves. 
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6 Conclusions and Recommendations 

6.1 Conclusions 

Responses of the annular and planar flows to the presence of grooves have been studied. 

The analysis started with the development of the required methodology, i.e., spectrally 

accurate algorithms capable of capturing effects of grooves. New algorithms suitable for 

analysis of flows in annuli bounded by walls with either axisymmetric or longitudinal 

grooves have been developed. The algorithms use Fourier expansions in the azimuthal 

and axial directions and Chebyshev expansions in the radial direction. The computational 

domain has a regular form with the boundaries of the flow domain immersed inside the 

computational domain. The flow boundary conditions are enforced using the immersed 

boundary conditions concept (IBC). The field equations are converted into algebraic 

equations using Galerkin projection method. The complete discretization process for the 

field equations is independent of geometry of the flow domain and can be done once 

regardless of the groove shape being of interest. Information about the groove geometry 

enters discretization process in the form of boundary relations. These relations need to be 

changed as a function of geometry being of interest but the associated cost represents a 

minimal fraction of the overall cost of the computations. The proposed algorithms are 

therefore well suited for analyses that involve geometry optimization. The complete 

matrix of coefficient includes contributions from the field equations, which remains the 

same regardless of geometry being of interest, and contributions from the boundary 

relations. A special linear solver that takes advantage of the structure of this matrix has 

been developed. This solver increases computational speed by a factor O(100) and 

reduces storage requirement by a factor of O(100) as compared to methods that do not 

take advantage of the matrix structure. Various tests have been carried out in order to 

demonstrate the spectral accuracy of the discretization process and the spectral accuracy 

of the enforcement of the boundary conditions using the IBC concept. 

A systematic analysis of variations of the pressure gradient required to maintain laminar 

flows through an annuli fitted with longitudinal grooves has been carried out. The main 

objective of the analysis was the identification of the forms of the grooves that result in 

the reduction of the pressure gradient below the level needed to maintain the same flow  
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in the smooth annuli. It has been demonstrated that the groove-induced changes in the 

pressure drop can be represented as a superposition of a pressure drop due to a change in 

the average position of the bounding cylinders and a pressure drop due to the flow 

modulations induced by the shape of the grooves. The former effect can be evaluated 

analytically while the latter requires explicit computations.  

Detailed analysis of the modulation effects has been carried out. It has been demonstrated 

that a reduced order model is an effective tool for the extraction of features of groove 

geometry that are relevant to the drag generation. In the case of the equal-depth grooves, 

one Fourier mode from the Fourier expansion representing the annulus geometry is 

sufficient to predict pressure losses with accuracy sufficient for most applications. The 

maximum depth and the maximum height are the same for such grooves. It is shown that 

the presence of the grooves may lead to a reduction of the pressure loss in spite of an 

increase of the surface wetted area. The drag decreasing grooves are characterized by the 

groove wave number @ ��⁄  smaller than a certain critical value, where M denotes the 

number of grooves being used and �� stands for the radius of the annulus; this number 

marginally depends on the groove amplitude and does not depend on the flow Reynolds 

number. It has been shown that the drag reduction mechanism relies on the re-

arrangement of the bulk flow that leads to the largest mass flow taking place in the area 

of the largest annulus opening. 

A search for the form of the grooves that results in the largest drag decrease, i.e. the 

optimal shape, has been carried out. It has been shown that the reduced order model 

involving 3-4 Fourier modes is able to capture drag reducing characteristics of such 

grooves with accuracy sufficient for most applications. It has been shown that the shape 

of the optimal grooves depends on the constraints. Detailed analysis has been carried out 

for two classes of constraints, i.e. the equal-depth grooves and the un-equal-depth 

grooves. 

It has been found that in the case of the equal-depth grooves the optimal shape changes 

vary little as a function of the flow and geometry parameters and can be approximated 

using a special form of trapezoid. The error of such an approximation is generally 
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negligible unless the geometry parameters place the groove closed to the border that 

separates the drag-reducing grooves from the drag increasing grooves. The optimal 

grooves have nearly the same form regardless of whether they are placed at the inner or at 

the outer cylinders. The most effective placement of the grooves at both cylinders 

corresponds to the half wavelength shift in the circumferential direction between both 

sets of grooves with their shapes being nearly identical to those found in the case of 

annuli with only one grooved cylinder. Approximately the same drag reduction is 

produced by fitting one cylinder with grooves as fitting both cylinders but with the 

grooves with half amplitude. 

Drag reduction is a non-monotonic function of the groove depth in the case of the 

unequal-depth grooves. In this case, the maximum height and the maximum depth are not 

the same. The depth that gives the largest drag reduction for a given height, the optimal 

depth, as well as the corresponding groove shape define the optimal geometry. The 

properties of the optimal geometry can be determined directly through the optimization 

process. It has been shown that the optimal shape forming the optimal geometry can be 

approximated using a Gaussian function. The maximum possible drag reduction, 

corresponding to the optimal geometry, has been determined for a range of parameters of 

practical interest. It has been shown that this reduction is significantly larger than the 

reduction associated with the equal-depth grooves. The optimal geometry is nearly the 

same for the outer and inner cylinders. Placement of grooves on both cylinders produces 

the largest drag reduction when they are shifted with respect to each other by a half 

wavelength in the circumferential direction. 

Analysis of the heat transport in a channel with differentially heated walls has been 

carried out. The analysis has been carried out under the subcritical conditions when no 

secondary flow structures may appear in a natural manner. A method has been sought for 

maximization of the heat flow across the channel through the improvement of the 

conductive heat transport rather than through the creation of additional flow mixing. The 

increase of the heat transport needs to occur in a manner that does not increase but, 

preferably, decreases the flow losses. The channel was modified by fitting either one or 

both walls with grooves parallel to the flow direction. The shape of the grooves that 
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would produce the best improvement in the overall system performance has been sought. 

The system performance was measured using the thermal enhancement factor whose 

reduction measures the performance gains. 

Grooves with arbitrary shapes have been considered. It has been demonstrated that a 

reduced geometry model, where the actual shape of the groove is replaced by the 

dominant Fourier mode from the Fourier expansion representing this geometry, can be 

used to approximate the flow losses with an acceptable accuracy. This means that fine 

geometry details are irrelevant as far as the flow losses are concerned. The overall 

parameterization of the flow losses in terms of the groove wave number and the 

amplitude has been given. The available results show that the presence of grooves 

reduces the flow losses when grooves with a sufficiently long wavelength are used.  The 

reduced geometry model cannot be used to approximate the heat flow as fine details of 

groove geometry contribute significantly to the overall heat flow. The overall 

parameterization of the heat flow in terms of the groove wave number and the amplitude 

shows an increase of the heat flow, regardless of the groove wave number, compared to 

the smooth channel, with the magnitude of the heat flow gain significantly increasing 

with an increase of the groove wave number. 

It is possible to use the reduced geometry model when a balanced approach is considered, 

i.e. an increase of the heat flow is as important as a decrease of the flow losses. The 

groove shape optimization has been carried out under such conditions. It has been shown 

that the use of 4-5 Fourier modes was sufficient to capture the optimal shapes. Two types 

of constraints have been used. The first enforces the same groove height and depth and 

leads to the equal-depth grooves. The second keeps a fixed groove height but the groove 

depth is treated as an unknown that must be determined as a part of the optimization 

process leading to the unequal-depth grooves. The optimization process has been focused 

on the groove wave numbers that lead to reduced flow losses because such grooves 

produce superior gains for the overall system performance. It has been shown that the 

equal-depth optimal grooves can be closely approximated by a universal trapezoid. In the 

case of the unequal-depth groove, there exists a certain depth that leads to the best system 

performance. This depth, the optimal depth, and the corresponding groove shape define 
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the optimal geometry. It has been shown that the groove shape in the optimal geometry 

can be approximated by a Gaussian function. 

Use of the optimized grooves improves system performance by about 20-30% compared 

to simple sinusoidal grooves. When both walls are grooved, the best performance 

corresponds to grooves shifted with respect to each other by half wavelength. Similar 

performance is achieved either by placing grooves on one wall or by placing them on 

both walls but with amplitude reduced by 50%.  

The above predictions apply to laminar flows only. The range of the Reynolds numbers 

where laminar flows may exist can be determined using stability analysis. 

Analysis of stability of flow in a channel fitted with longitudinal grooves has been carried 

out. Only grooves with amplitude less than 0.05 were considered. It is known that, in 

general, effects of grooves can be divided into effects associated with the change in the 

mean position of the wall and the effects associated with the shape-induced modulations. 

This analysis has been focused on the modulation effects. Grooves may have an arbitrary 

but Fourier transformable form. As there is an uncountable number of possible groove 

shapes, the applicability of the reduced geometry concept has been investigated; it has 

been shown that such model applies to the analysis of flow stability in the presence of 

longitudinal grooves. This model permits replacement of an arbitrary groove with the 

leading term from the Fourier expansion describing its geometry. The difference between 

the critical Reynolds numbers determined using either the complete groove geometry or 

just the leading Fourier term from its Fourier representation is below 1% for the system 

parameters used in this study.  

Detailed analysis has been carried out for sinusoidal grooves, i.e., grooves represented by 

a single Fourier mode. Only disturbances corresponding to the travelling waves in the 

limit of zero groove amplitude have been found. It is known that the two-dimensional 

waves play a critical role in a smooth channel. It has been shown that disturbances 

corresponding to the two-dimensional waves in the limit of zero groove amplitude play 

the critical role in the grooved channel. 
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Presence of grooves leads to the flow stabilization for the groove wave numbers � <����� ≈ 4.22 and the flow destabilization for larger �. The destabilization is quite strong 

as the critical Reynolds number increases fairly rapidly with an increase of �, but 

stabilization associated with the reduction of � is mild. The stabilizing/destabilizing 

effects increase with an increase of the groove amplitude. Variations of the critical 

Reynolds number over the whole range of the groove wave numbers and the groove 

amplitudes of interest have been given. There results permit assessment of the stability 

properties of grooves of an arbitrary shape through invocation of the reduced geometry 

model. 

The topology of the disturbance velocity field at the onset is highly three-dimensional. Its 

structure is rather simple for large �’s with groove effects limited to the neighborhood of 

the grooved wall. Reduction of � below ����� leads to large changes and increased 

complexity of the flow structure with groove effects visible in the whole flow domain.  

Special attention has been paid to the effects of long wavelength, drag reducing grooves. 

It has been shown that such grooves lead to a small increase of the critical Reynolds 

number compared with the smooth channel. The stabilizing effect has been found in the 

case of the optimal equal-depth grooves as well as in the case of the optimal unequal-

depth grooves. It can be concluded that the use of the drag reducing grooves does not 

lead to an early breakdown into turbulence and, thus, the flow should remain laminar 

over the same range of Reynolds numbers as found in the case of smooth channel. 

6.2 Recommendations for future work 

Effects of a certain class of surface topographies on the heat and fluid flow characteristics 

have been presented in this dissertation. In order to further advance knowledge in this 

area, the following directions may be considered for the future work: 

i) In this dissertation, the effects of longitudinal grooves on annular flows have been 

investigated. A similar analysis can be extended to transverse grooves. The 

required algorithm, which can deal with flows in annuli bounded by transverse 

grooves, has already been developed as a part of this dissertation. The analysis 
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can also be extended to three-dimensional grooves. There should be no conceptual 

difficulties associated with the development of the necessary tools as the 

methodology used in this dissertation is in principle capable of dealing with 

arbitrary three-dimensional grooves. It may necessary to develop efficient solvers 

that would permit to solve the flow problem with a reasonable computational cost. 

Development of such tools provides flexibility required to study all possible 

groove shapes that are of practical interest in various engineering fields. 

ii) Time-dependent surface topographies are encountered in many practical 

applications. The algorithms proposed in this research can be extended to solve 

problems involving time-dependent geometries. 

iii) Presence of grooves changes the stability characteristics of annular flows. 

Studying the stability behavior of annular flow in the presence of different classes 

of surface grooves is of great interest and can represent an avenue for further 

research. For that purpose, the linear stability equations should be developed in 

such a way that they can account for three-dimensional disturbances. These 

equations can be solved to determine the stability properties of different forms of 

grooves. 

iv) Although a vast amount of work has been devoted to studying the effects of 

surface irregularities in the fully turbulent flow regime, the conclusions regarding 

their effects are not complete and thus there still exists many opportunities for 

research to be conducted in this field. A systematic analysis of the effects of 

different features of surface geometries on turbulent flow response is of special 

interest. 

v) Natural convection is driven by buoyancy force, which was not included in the 

analysis carried out as a part of this research. Contribution of buoyancy can be 

considered in the further analysis of heat transfer. 

vi) With the knowledge of the findings presented in this dissertation, new research in 

the area of the experimental fluid dynamics can be proposed. It is worthwhile to 
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set up experiments to verify the current predictions and to use this knowledge for 

the development of new, energy efficient devices. 
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Appendices 

Appendix A  

 

Appendix A: Final discretized form of the field equation for the flow in annulus 

with transverse grooves 

 �2U�&�t_v�〈|Ý, *V|y〉 + v�〈|Ý , *�|y〉 + vV〈|Ý , *|y〉 + vt〈|Ý , |y〉`Ä +��_vÉ〈|Ý, *��|y〉 + vÊ〈|Ý , *�|y〉 + 2vË〈|Ý , �|y〉` − 3vÌ〈|Ý , �|y〉 −��_vÉ〈|Ý , *V��|y〉 + 6vÊ〈|Ý , *���|y〉 + 6vË〈|Ý , *��|y〉 + vÍ〈|Ý , ��|y〉` +3vÌ〈|Ý , *��|y〉 + v�<〈|Ý , ��|y〉 −2_vÌ〈|Ý , *��V|y〉 + 2v�<〈|Ý, *�V|y〉 + 2v��〈|Ý , �V|y〉` Ä+vÌ〈|Ý, *V�t|y〉 + 3v�<〈|Ý , *��t|y〉 + v��〈|Ý , *�t|y〉 + v��〈|Ý , �t|y〉'�y���
 = −��_v�V〈|Ý , *t|y〉 + 4v�t〈|Ý , *V|y〉`�&�,y��� + �v�É〈|Ý , *V|y〉���,y���

 +�v�Ì − 6��v�Ê�〈|Ý, *�|y〉�&�,y��� + 3�v�Ë〈|Ý , *�|y〉���,y���
 2�v�� − 2��v�Í�〈|Ý , *|y〉�&�,y��� + 3�v�<〈|Ý , *|y〉���,y���

 +Ï�v�t − ��v���〈|Ý, |y〉�&�,y��� + �v�V〈|Ý , |y〉���,y��� Î +v�É〈|Ý , *t�|y〉Ï���,y��� − �&&,y��� Î + Ð4v�ËÏ���,y��� − �&&,y��� Î − v�Ì�&�,y��� Ñ 〈|Ý , *V�|y〉 + Ð6v�<Ï���,y��� − �&&,y��� Î − 3v���&�,y��� Ñ 〈|Ý , *��|y〉 + Ð4v�VÏ���,y��� − �&&,y��� Î − 3v�t�&�,y��� Ñ 〈|Ý , *�|y〉 + Ðv�ÉÏ���,y��� − �&&,y��� Î − v�Ê�&�,y��� Ñ 〈|Ý , *�|y〉 −_v�Ì〈|Ý , *t��|y〉 + 4v��〈|Ý , *V��|y〉 + 6v�t〈|Ý , *���|y〉+ 4v�Ê〈|Ý , *��|y〉 + v�Ë〈|Ý, ��|y〉`�&�,y��� , 

( A-1) 

 

where ò ∈ I0, ��L, � ∈ I−�	, �	L and the coefficients v#’s are defined in Section  2.2.3.1. 

Equation ( A-1) contains inner products of the type 〈|Ý , *R�N|y〉 where 0 ≤ À ≤ 4 and 0 ≤ o ≤ 4. Description of the method used for efficient evaluation of these products 

begins with the simplest products first. 

Inner product of two Chebyshev polynomials is evaluated using their orthogonality 

properties, i.e.,  
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 〈|Ý , |y〉 = .2 HyiÝ,y, ( A-2) 

 

where iÝ,y denotes the Kronecker delta function and  

 Hy = �2, � = 01, � ≥ 1.Ä ( A-3) 

 

Evaluation of products involving the first derivative of a Chebyshev polynomial begins 

with expressing this derivative in terms of Chebyshev polynomials, i.e.,  

 

�|y = 2 ¨ �|OHO
yU�
O¬< , � − Z = odd, � ≥ Z + 1. ( A-4) 

 

The inner product of this derivative and |Ý can be evaluated as 

 

〈|Ý , �|y〉 = 2 ¨ 〈|Ý , |O〉HO
yU�
O¬< , � − Z = odd, � ≥ Z + 1. ( A-5) 

 

Substitution of ( A-2) into ( A-5) brings the inner product to a simple form suitable for 

efficient evaluation, i.e.,  

 〈|Ý, �|y〉 = �., � − ò = odd, � ≥ ò + 1. ( A-6) 
 

Evaluation of products involving the second derivative of a Chebyshev polynomial 

begins with expressing this derivative in terms of Chebyshev polynomials, i.e.,  

 

��|y = ¨ ���� − Z��|OHO
yU�
O¬< , � − Z = even, � ≥ Z + 2. ( A-7) 

 

The same procedure as used before brings the product to the form suitable for efficient 

evaluation, i.e.,  
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 〈|Ý , ��|y〉 = ���� − ò��. 2⁄ , � − ò = even, � ≥ ò + 2. ( A-8) 
 

Differentiation of ( A-7) with respect to * leads to an expression for the third derivative of 

a Chebyshev polynomial 

 

�V|y = ¨ ���� − Z���|OHO
yU�
O¬< , � − Z = even, � ≥ Z + 2. ( A-9) 

 

Substitution of ( A-4) into ( A-9) and use of ( A-2) result in 

 

〈|Ý , �V|y〉 = ¨ ���� − Z��.ZHO
yU�
O¬< , � − Z = even, � ≥ Z + 2, Z − ò = odd,  

Z ≥ ò + 1. ( A-10) 

 

Product involving the forth derivative can be evaluated using the same procedure as used 

in the case of 〈|Ý , �V|y〉. The final expression suitable for efficient evaluation has the 

form 

 

〈|Ý , �t|y〉 = ¨ ���� − Z��HO ®Z�Z� − ò��.2 ¯yU�
O¬< , � − Z = even, � ≥ Z + 2 ≥ ò + 4,  

Z − ò = even. ( A-11) 

 

Evaluation of products of type 〈|Ý , *R�N|y〉 begins with expressing *R in terms of 

Chebyshev polynomials, i.e.,  

 

* = ¨ [N|N�*��
N¬< , *� = ¨ ýN|N�*��

N¬< , *V = ¨ HN|N�*�V
N¬< ,  

*t = ¨ �N|N�*�t
N¬< , ( A-12) 
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where [N = I0 1L, ýN = I1 2⁄  0 1 2⁄ L, HN = I0 3 4⁄  0 1 4⁄ L and �N = I3 8⁄  0 1 2⁄  0 1 8⁄ L. This leads to the appearance of products of Chebyshev 

polynomials, which need to be expressed in terms of Chebyshev polynomials. This is 

accomplished using the following relation 

 |N�*�|��*� = 12 _|N±��*� + ||NU�|�*�` ( A-13) 

 

Substitution of  ( A-12) and ( A-13) into definition of the scalar product brings this product 

into a form that can be arranged for the final computation using formulae presented 

above. Product 〈|Ý , *R�N|y〉 for À = 2 is written explicitly in order to assist the reader 

interested in the implementation of this method. This product has the form 

 

〈|Ý , *��N|y〉 = ° |Ý�*�*��N|y�*�Á1 − *�
¢¬�

¢¬U� G* 

= 12 ° |Ý�*��N|y�*�Á1 − *�
¢¬�

¢¬U� G* + 14 ° |Ý±��*��N|y�*�Á1 − *�
¢¬�

¢¬U� G*
+ 14 ° ||ÝU�|�*��N|y�*�Á1 − *�

¢¬�
¢¬U� G* 

= 〈|Ý , �N|y〉2 + 〈|Ý±�, �N|y〉4 + 〈||ÝU�|, �N|y〉4 . 
( A-14) 

 

where method for evaluation of each individual product on the right hand side has been 

explained before. 
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Appendix B  

Appendix B: Evaluation of Fourier coefficients of the Chebyshev polynomials 

evaluated at the inner and outer cylinder 

Evaluation of Fourier Coefficients in Expansions ( 2.2.27) begins with the expansions for 

lowest order Chebyshev polynomial, i.e., �#�,y�N�
 with � = 0 and � = 1.  

 

|< = 1 ⟹ ¨ �#�,<�N�2#�©&±$
N¬U$ = 1 ⟹ � �#�,<�<� = 1�#�,<�N� = 0, o ≠ 0,Ä ( B-1) 

|�I*#��,�L = *#��,� ⟹ ¨ �#�,��N�2#�©&±$
N¬U$ = ¨ [#��N�2#�©&±$

N¬U$ ⟹ �#�,��N� = [#��N�. ( B-2) 

 
 

The remaining coefficients �#�,y�N� �� ≥ 2� can be computed using the following recursion 

relation 

 |y±�I*#��,�L = 2*#��,�|yI*#��,�L − |yU�I*#��,�L ⟹ 

�#�,y±��N� = 2 ¨ [#�����#�,y�NU��ª«
�¬Uª«

− �#�,yU��N� , � ≥ 2. ( B-3) 

 

Evaluation of coefficients of the expansions of derivatives of the Chebyshev polynomials 

also begins with the polynomials of the lowest order, i.e., 

 

�|< = 0 ⟹ ¨ G#�,<�N�2#�©&±$
N¬U$ = 0 ⟹ G#�,<�<� = 0, ( B-4) 

�|� = 1 ⟹ ¨ G#�,<�N�2#�©&±$
N¬U$ = 1 ⟹ � G#�,<�<� = 1G#�,<�N� = 0, o ≠ 0,Ä ( B-5) 

�|�I*#��,�L = 4*#��,� ⟹ ¨ G#�,��N�2#�©&±$
N¬U$ = ¨ 4[#��N�2#�©&±$

N¬U$  

⟹ G#�,��N� = 4[#��N�. ( B-6) 
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The remaining coefficients G#�,y�N� , � ≥ 3 can be computed using the following recursive 

formula 

 �|y±�I*#��,�L = 2|yI*#��,�L + 2*#��,��|yI*#��,�L − �|yU�I*#��,�L ⟹ 

G#�,y±��N� = 2 ¨ [#����G#�,y�NU��ª«
�¬Uª«

− G#�,yU��N� − �#�,y�N�, � ≥ 3. ( B-7) 
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Appendix C  

Appendix C: Explicit form of geometrical coefficients of asymptotic solution 

(Ü� → ∞). 

 

�A,� = ��U�x���, *�1 + ���, *� ��⁄ + xV��, *�I1 + ���, *� ��⁄ L�,  
�A,� = x����, *� + x����, *�I1 + ���, *� ��⁄ L� , �A,V = 2�x���, *�I1 + ���, *� ��⁄ L�,  

�A,t = ��I1 + ���, *� ��⁄ L�, 
( C-1) 

x���, *� = 2;U��*� ( C-2) x���, *� = −�&IT/0��*� + T#��*�L¢ + �;¢�*�';U��*� ( C-3) xV��, *� = −��&IT/0��*� + T#��*�L¢¢ + �;¢¢�*� + 2�U�x���, *�;¢�*�';U��*� ( C-4) ���, *� = I�;�*� + T/0��*� + T#��*�L/2 , ;�*� = T/0��*� − T#��*�. ( C-5) 
 

Coefficients ( C-2)-( C-5) simplify in the case of geometry described by Eq. ( 3.3.6) 

(sinusoidal grooves placed at the inner cylinder) to the form 

 ���, *� = 1 + 0.5�� − 1�;�*�,        ;�*� = 1 − 0.5 #�Dä>*, ( C-6) x���, *� = 2;U��*�,       x���, *� = −0.5� #�>?�*�� − 1�;U��*�, ( C-7) xV��, *� = 0.25���� − 1�;U��*�I #�� �1 + >?��*� − 2 #�Dä>*L  . ( C-8) 
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Appendix D  

Appendix D: Asymptotic solution (Ü� → ∞) for annulus with sinusoidal grooves 

placed at the outer cylinder 

Shape of the annulus is given as 

 J#��1� = ��, J/0��1� = 1 + �� + 0.5 /0�cos �@1�, ( D-1) 
 

and solution has the form 

 %�<��� = �1 + 3 /0�� 8⁄ �U�n��*��1 − ���, ( D-2) (3̂<(, = − 8�2 �1 + 3 /0�� 8⁄ �U�, ( D-3) %����� = n��*��1 + 3 /0�� 8⁄ �U��1 − ���I�n�*� 6⁄+ 3 /0�� �1 + 3 /0�� 8⁄ �U��1 +  /0�� 16⁄ � 16⁄ L, ( D-4) (3̂�(, = 3 /0��2�2 �1 + 3 /0�� 8⁄ �U��1 +  /0�� 16⁄ � ( D-5) 

 

where 

 n�*� = 1 + 0.5 /0�cos �*�. ( D-6) 
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Appendix E  

Appendix E: Evaluation of the axial force and stress tensor components at the inner 

and outer cylinders of the annulus fitted with longitudinal grooves 

 

��& = −�2U�ý�*�U� ¨ ¨ �y����|y�−1�2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

, 
 

( E-1) 

��& = −�2U�J#��*�U� +���*, −1� ¨ ¨ �y����|y�−1�2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

+ ¨ ¨ ?�@�y����−1�y2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

,. 
( E-2) 

 

Expression for the shear stress along the surface of the cylinder takes the form 

 

G��/��R,& = -1 + +� ¨ ?�@x#����2#�	¢ª«
�¬Uª«

� J#��*�U�,�.U� �⁄
 

þ−�2U�J#��*�U� +���*, −1� ¨ ¨ �y����|y�−1�2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

+ ¨ ¨ ?�@�y����−1�y2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

, ¨ ?�@x#����2#�	¢ª«
�¬Uª«

+ �2U�ý�*�U� ¨ ¨ �y����|y�−1�2#�	¢ªÓ
y¬<

ªÈ
�¬UªÈ

�. 

( E-3) 
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Appendix F  

Appendix F: The small wave number limit solution for the basic state of the flow in 

a channel with longitudinal grooves 

The governing equations, the boundary conditions and the constraints forming the four 

leading order systems resulting from the small wave number approximation (see Section 

2.3): 

ú��<�: (�z<(�� − �2x� G�<GZ = 0, z<�¦, ±1� = 0, 12. ° ° xz<G�G¦ ¬�
 ¬U�

�¬�æ
�¬< = 43, ( F-1) 

ú����: (�z�(�� − �2x� G��GZ = 0, z��¦, ±1� = 0, ° ° xz�G�G¦ ¬�
 ¬U�

�¬�æ
�¬< = 0, ( F-2) 

ú����: (�z�(�� − �2x� G��GZ + _2x��� + 2�x�� − xa��� + �x��b` (z<(�− 2xa�� + �x�b (�z<(�(¦ + x� (�z<(¦� + �2x�a�� + �x�b G�<GZ
= 0, z��¦, ±1� = 0, ° ° xz�G�G¦ ¬�

 ¬U�
�¬�æ

�¬< = 0, 
( F-3) 

ú��V�: (�zV(�� − �2x� G�VGZ = 0, zV�¦, ±1� = 0, ° ° xzVG�G¦ ¬�
 ¬U�

�¬�æ
�¬< = 0, ( F-4) 
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Appendix G  

Appendix G: Definitions of operators T, S, C, /0, /1, 20, 21 appearing in the linear 

disturbance equations of flow in a channel with longitudinal grooves 

|�N��T� = �2U���� − �N� �� + ?��� − �N� �Ik − if<�T�L + ?i��f<�T� ( G-1)  �N��T� = �2U�I�� − �N� − ?i�2f<�T� + ?kL, ( G-2) H�N��T� = ÇN�f<�T� ( G-3) x8�N,���T� = −?i��� + �N� �f�����T� + 2?��ÇNU��NU�� �f�����T��
+ ?i�NU�� I�N� − �����Lf�����T���, ( G-4) 

xw�N,���T� = 2��i��NU�� Ï�f�����T� + f�����T��Î, ( G-5) 

v8�N,���T� = 3−ÇN�f�����T� + �� ¾1 + ��ÇNU��NU�� ¿ f�����T��õ, ( G-6) 

vw�N,���T� = ?i º1 − �����NU�� » f�����T�, ( G-7) ÇN = j + o�, �N� = i� + ÇN� , 
( G-8) 

where �� = G� GT�⁄ . 
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Appendix H  

Appendix H: Discretization of the disturbance equations of flow in a channel with 

longitudinal grooves 

The flow domain is contained between (−1 − T¤� and (1 + T��, where T¤ and T� denote 

locations of the groove extremities. In order to use the standard definition of the 

Chebyshev polynomials, this domain is mapped into (-1,1) using transformation of the 

form 

T� = IT − �1 + T��LΓ + 1, Γ = 2�2 + T� + T¤�U�. ( H-1) 

The T, S, C, v8, vw, x8, xw operators in the new coordinates system take the form 

 |�N��T�� = �2U��4��� − �N� �� + ?�4��� − �N� �Ik − if<�T��L+ ?i4���f<�T�� ( H-2)   �N��T�� = �2U�I4��� − �N� − ?i�2f<�T�� + ?kL, 
( H-3) H�N��T�� = ÇN4�f<�T�� 
( H-4) 

x8�N,���T�� = −?i�4��� + �N� �f�����T�� + 2?��ÇNU�Γ��NU�� �f�����T���
+ ?iΓ��NU�� I�N� − �����Lf�����T����, ( H-5) 

xw�N,���T�� = 2��i�Γ�NU�� Ï�f�����T�� + f�����T���Î, ( H-6) 

v8�N,���T�� = Γ 3−ÇN�f�����T�� + �� ¾1 + ��ÇNU��NU�� ¿ f�����T���õ ( H-7) 

vw�N,���T�� = ?i ö1 − �W�Wy56íW ÷ f�����T��. 
( H-8) 

The unknown modal functions are expressed as Chebyshev expansions ( 5.3.9) and the 

mean flow and the reference flow quantities are expressed in term of the relevant 

Chebyshev expansions of the form 

 

f�����T�� = ¨ �R,g���|y�T��ªÓ
y¬< , ( H-9) 
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f<�T�� = − |��T�� �2Γ��⁄ − 2�1 + T� − 1 Γ⁄ �|��T�� Γ⁄+ I1 − �1 + T� − 1 Γ⁄ �� − 1 �2Γ��⁄ L|<�T��, �f<�T�� = −2 |��T�� �Γ��⁄ − 2�1 + T� − 1 Γ⁄ �|<�T�� Γ⁄ , ��f<�T��= − 2|<�T�� Γ�⁄  

( H-10) 

 

Substitution of (C-9)-(C-10) into (C-2)-(C8) results in an algebraic system of the form 

 

¨��2U�Γt�t|y − Γ��2�2U��N� + ?if<���|y
ªÓ

y¬< + I�2U��Nt + ?i�Γ���f< + �N� f<�L|y� �y,8�N�
 

− ¨ ¨Ïx8�N,��|y�y,8�NU�� + xw�N,��|y�y,w�NU��Î±ªÓ
y¬<

±ª7
�¬Uª7

= −?k ¨�Γ���|y − �N� |y��y,8�N�±ªÓ
y¬< , 

( H-11a) 

¨I�2U�Γ���|y − ��2U��N� + ?if<�|yL�y,w�N� + ÇNΓ�f<|y�y,8�N�ªÓ
y¬<  

− ¨ ¨Ïv8�N,��|y�y,8�NU�� + vw�N,��|y�y,w�NU��Î±ªÓ
y¬<

±ª7
�¬Uª7

= −?k ¨ |y�y,w�N�±ªÓ
y¬< . 

 

( H-10b) 

Application of the Galerkin projection method leads to a linear system for the expansion 

coefficients of the form 

 

¨_�2U�Γt〈|Ý , �t|y〉 − 2�2U��N� Γ�〈|Ý, ��|y〉 +Ä�2U��Nt 〈|Ý, |y〉ªÓ
y¬< − ?iΓ�〈|Ý , f<��|y〉 + ?i�N� 〈|Ý , f<|y〉 

Ä+?iΓ�〈|Ý, ��f<|y〉`�y,8�N� + ¨ ¨_?i�N� 〈|Ý , |R|y〉 + ?iÄªÓ
R¬<

ª7
�¬Uª7

Γ�〈|Ý , ��|R|y〉
− 2?��iÇNU�Γ��NU�� 〈|Ý , �|R�|y〉 

Ä− ?iΓ���N� − ������NU�� 〈|Ý , |R��|y〉¯ �R,g����y,8�NU��

− ¨ ¨ 2��i�Γ�NU�� a〈|Ý , �|R|y〉 + 〈|Ý, |R�|y〉b�R,g����y,w�NU��ªÓ
R¬<

ª7
�¬Uª7

 

( H-12a) 
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= −?kaΓ�〈|Ý, ��|y〉 − �N� 〈|Ý, |y〉b�y,8�N�, 
¨_�2U�Γ�〈|Ý, ��|y〉 − �2U��N� 〈|Ý , |y〉 − ?i〈|Ý , f<|y〉`ªÓ
y¬< �y,w�N�

+ ÇNΓ〈|Ý, �f<|y〉�y,8�N�
 

+ ¨ ¨ 3ÇNΓ〈|Ý , �|R|y〉 − ��Γ ¾1 + ��ÇNU��NU�� ¿ 〈|Ý , |R�|y〉õ �R,g����y,8�NU��ªÓ
R¬<

ª7
�¬Uª7

 

+ ¨ ¨ ?i º�����NU�� − 1» 〈|Ý , |R|y〉ªÓ
R¬<

ª7
�¬Uª7

�R,g����y,w�NU�� = −?k〈|Ý , |y〉�y,w�N�. 
( H-11b) 

 

The inner product 〈|Ý, ��|R�N|y〉 is defined as 

 

〈|Ý , ��|R�N|y〉 = ° |Ý�T���
U� ��|R�T���N|y�T����T��GT�, ( H-13) 

 

 where ��T� = 1 Á1 − T�⁄ . Evaluation of these products can be simplified by taking 

advantage of the orthogonality properties of the Chebyshev polynomials (Moradi and 

Floryan, 2011). 
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Appendix I  

Appendix I: Description of boundary relations required to complete formulation of 

the linear stability problem. 

The homogeneous boundary conditions ( 5.3.4) need to be expressed in terms of ��N��T�� 

and n8�N��T��. They can be written for the lower wall in the form 

 

f"�Z, T�Y , ,, Ç� = ¨ 3?iΓ��� �n8����T�Y� − Ç���� �����T�Y�õ 2#I#O±�$±���&U%�L±ª7
�¬Uª7

= 0   , ( I-1) 

%"�Z, T�Y , ,, Ç� = ¨ n8����T�Y�2#I#O±�$±���&U%�L±ª7
�¬Uª7

= 0  , ( I-2) 

�"�Z, T�Y , ,, Ç� = ¨ 3?Ç�Γ��� �n8����T�Y� + i��� �����T�Y�õ 2#I#O±�$±���&U%�L =±ª7
�¬Uª7

0. ( I-3) 

 

Location of this wall is given as 

 

T�Y�,� = ¨ [Y���2#��&ª«
�¬Uª«

 ( I-4) 

 

where [Y��� = −Γö2 + T� − xY���÷ + 1 for � = 0 and [Y��� = ΓxY���
for � ≠ 0. As the first 

step, consider boundary condition (D-1). Substitution of ( 5.3.9) into ( I-1) leads to 

 

¨ ¨ ?iΓ��� �|yaT�Y�,�b�y,8���2#I#O±�$±���&U%�L±ªÓ
y¬<

±ª7
�¬Uª7

− ¨ ¨ Ç���� |yaT�Y�,�b�y,w���2#I#O±�$±���&U%�L±ªÓ
y¬<

±ª7
�¬Uª7

= 0. ( I-5) 

 

Values of Chebyshev polynomials and their first derivative along the wall appearing in 

the above relation, i.e. |yaT�Y�,�b and �|yaT�Y�,�b, represent periodic functions of z and, 

thus, can be expressed using Fourier expansions of the form 
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|yaT�Y�,�b = ¨ ��Y�y�N�2#N�&±$
N¬U$ , �|yaT�Y�,�b = ¨ �GY�y�N�2#N�&±$

N¬U$ . ( I-6) 

 

The reader may note that substitution of (D-6) into (D-5) leads to a certain Fourier 

expansion whose convergence rate affects the number of Fourier modes that have to be 

used in the solution. The expansion has, in general, a different convergence rate from 

expansion (3-7).  

Evaluation of coefficients ��Y�y�N�
 begins with the lowest order Chebyshev polynomial, 

i.e. 

 

|< = 1 ⟹ ¨ �Y,<�N�2#N�&±$
N¬U$ = 1 ⟹ � �Y,<�<� = 1�Y,<�N� = 0, o ≠ 0,Ä ( I-7) 

|�IT�Y�,�L = T�Y�,� ⟹ ¨ �Y,��N�2#N�&±$
N¬U$ = ¨ [Y�N�2#N�&±$

N¬U$ ⟹ �Y,��N�
= [Y�N�. ( I-8) 

 

The remaining coefficients �Y,y�N� �� ≥ 2� can be computed using the Chebyshev 

recursion relation which results in 

 

�Y,y±��N� = 2∑ [Y����Y,y�NU��ª«�¬Uª« − �Y,yU��N� , � ≥ 2. ( I-9) 

 

Evaluation of the coefficients �GY�y�N�
 also begins with the lowest order polynomial, i.e. 

 

�|< = 0 ⟹ ¨ GY,<�N�2#N�&±$
N¬U$ = 0 ⟹ GY,<�<� = 0, ( I-10) 

�|� = 1 ⟹ ¨ GY,<�N�2#N�&±$
N¬U$ = 1 ⟹ � GY,<�<� = 1GY,<�N� = 0, o ≠ 0,Ä ( I-11) 
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�|�IT�Y�,�L = 4T�Y�,� ⟹ ¨ GY,��N�2#N�&±$
N¬U$ = ¨ 4[Y�N�2#N�&±$

N¬U$ ⟹ G#�,��N�
= 4[#��N�. ( I-12) 

 

The remaining coefficients GY,y�N�, � ≥ 3 can be computed using the Chebyshev recursive 

formula and have the following form 

GY,y±��N� = 2 ¨ [Y���GY,y�NU��ª«
�¬Uª«

− GY,yU��N� − �Y,y�N�, � ≥ 3. ( I-13) 

 

Substitution of ( I-6) into ( I-5) and separation of Fourier modes lead to boundary relation 

of the form 

 

¨ ¨ ?iΓ�N� �GY�y��UN��y,8���±ªÓ
y¬<

±ª7
�¬Uª7

− ¨ ¨ ÇN�N� ��Y�y��UN��y,w���±ªÓ
y¬<

±ª7
�¬Uª7

= 0 ( I-14) 

 

which expresses condition (D-1). Following the same procedure, the boundary conditions 

for %" and �" can be written in the form 

 

¨ ¨��Y�y��UN��y,8���±ªÓ
y¬<

±ª7
�¬Uª7

= 0. ( I-15) 

¨ ¨ ?ÇNΓ�N� �GY�y��UN��y,8���±ªÓ
y¬<

±ª7
�¬Uª7

+ ¨ ¨ i�N� ��Y�y��UN��y,w���±ªÓ
y¬<

±ª7
�¬Uª7

= 0. ( I-16) 

 

Boundary relations for the upper wall can be obtained by simply changing subscript 'L' 

into 'U' in the above equations. These relations provide the groove-induced coupling 

between different Fourier modes. The other coupling is provided by the field equations 

(3-8). 
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In general, the total number of the available boundary relations is �ª + ���A, where �ª 

is the number of Fourier modes used in the discretization of the field equations, �� is the 

number of the Chebyshev polynomials used in the discretization of the modal functions 

and �A denotes the number of Fourier modes used to describe the groove geometry. Since 

only �ª modes are used in the numerical solution, one can enforce only �ª of these 

conditions. The remaining conditions can either be used a posteriori as a convenient test 

for the consistency of the algorithm or can be utilized directly leading to the over-

determined formulation (Husain, Floryan & Szumbarski 2009). 
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