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Abstract 

Substantial effort is devoted to improving neuroimaging data processing; this effort however, 

is typically from the algorithmic perspective only. I demonstrate that substantive running 

time performance improvements to neuroscientific data processing algorithms can be realized 

by considering their implementation. Focusing specifically on 3D sinc interpolation, an 

algorithm used for processing functional magnetic resonance imaging (fMRI) data, I compare 

the performance of Python, C and OpenCL implementations of this algorithm across multiple 

hardware platforms. I also benchmark the performance of a novel implementation of 3D sinc 

interpolation on a field programmable gate array (FPGA). Together, these comparisons 

demonstrate that the performance of a neuroimaging data processing algorithm is 

significantly impacted by its implementation. I also present a case study demonstrating the 

practical benefits of improving a neuroscientific data processing algorithm's implementation, 

then conclude by addressing threats to the validity of the study and discussing future 

directions. 
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Preface 

Within neuroscience, there is substantial effort devoted by researchers to the improvement of 

neuroimaging data processing. This effort however, is typically only from the algorithmic 

perspective with little attention paid to the hardware platform or programming language used 

for the implementation of any particular algorithm. In my thesis, I demonstrate that 

substantive improvements to the running time performance of a neuroscientific data 

processing algorithm can be realized by giving consideration to its implementation. 

I begin in Chapter 1 with a review of the physics underlying the functional magnetic 

resonance imaging (fMRI) technique, followed by an overview of fMRI motion correction. 

Motion correction is a preprocessing algorithm used to correct errors in fMRI data caused by 

motion in the subject of the scan. 

In Chapter 2, I provide a survey of several different interpolation methods used in the 

performance of fMRI motion correction. For each interpolation method, I provide an 

example of a popular software package which employs it in its motion correction utility.  

In Chapter 3, I focus my discussion on the 3D sinc interpolation method, providing a detailed 

description of the algorithm alongside a discussion of both serial and parallel 

conceptualizations of it. 3D sinc interpolation provides highly accurate interpolations of 

fMRI data, however its substantial running time limits its applicability; for these reasons, I 

chose 3D sinc interpolation for my demonstration of the performance improvements which 

can be realized by considering the hardware platform and programming language used to 

implement an algorithm.  

In Chapter 4, I quantify these improvements by benchmarking the performance of the 3D 

sinc interpolation algorithm in Python, C, OpenCL (Open Computing Language) for 

CPU/GPU across several different test bed hardware platforms. The benchmarking results 

demonstrate that parallel implementations can greatly improve the running time performance 

of the 3D sinc interpolation algorithm.  

In Chapter 5, I describe a novel implementation of 3D sinc interpolation on a field 

programmable gate array.  
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In Chapter 6, I present a case study demonstrating the ‘real world’ benefits of these 

performance improvements by showing the corresponding decrease in running time of an 

algorithm for robust fMRI motion correction developed by my collaborators. I first explain 

their algorithm in detail and then show the results of performance benchmarking 

demonstrating these benefits. 

In Chapter 7 I conclude by addressing threats to the validity of my results and discussing 

future directions for this research.
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Chapter 1  

1 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is one of the foremost neuroscientific 

imaging modalities in use today. This imaging technique uses the natural magnetic 

properties of the human body to capture both structural images of the brain's anatomy and 

functional images of its activity. fMRI is however vulnerable to errors introduced by even 

slight motion in the subject of the scan; as such, motion correction algorithms have been 

developed to correct for these errors. In this chapter a brief explanation of the physics 

behind Magnetic Resonance Imaging is provided alongside an outline of the structure of 

a general motion correction algorithm and an explanation of related concepts and 

terminology. 

1.1 Magnetic Resonance Imaging Physics 

Magnetic resonance imaging (MRI) is a medical imaging technique which works by 

taking advantage of the nuclear magnetic resonance (NMR) of the Hydrogen atoms inside 

the human body. During an MRI scan, the subject of the scan is placed into a very strong 

magnetic field imposed by a superconducting electromagnet which aligns the 

magnetization of the Hydrogen nuclei (protons) in the water molecules within her body. 

Secondary magnetic fields are then repeatedly applied to the subject by the scanner's 

magnetic gradient coils, combined with strong radio frequency (RF) pulses which alter 

the alignment of these magnetized protons; when the protons in the subject's tissues 

return to their previous alignment a response radio frequency signal detectable by the 

scanner's RF receivers is produced. These raw RF data recorded by the scanner’s 

receivers are in k-space. k-space data exist in the spatial frequency domain and so are not 

readily human readable. These data are converted into image space using an inverse 

Fourier transform after image acquisition in complete (Twieg, 1983). 

With the ability to detect both the location and type of the tissues in the subject's body in 

three dimensions, MRI scanners can be used to capture 3D images of the complex tissue 

structures within the human brain (Figure 1). A 3D MRI image of the brain is referred to 
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as a volume. Each volume is composed of a stack of 2D images called slices. The 

minimum discrete data unit within each MRI volume is referred to as a voxel (akin to a 

pixel in a 2D picture); these voxels are cubes containing only intensity data (i.e. the 

voxels appear only in gray scale).  

 

Figure 1: MRI brain image. 

Functional magnetic resonance imaging uses the same physical principles underlying 

structural MRI brain imaging to measure subjects' brain activity over time (hence the 

term functional). The human body uses hemoglobin, the primary constituent of red blood 

cells, to transport oxygen within the blood stream. Importantly, oxygenated hemoglobin 

is unaffected by magnetic fields however deoxygenated hemoglobin is paramagnetic and 

distorts magnetic fields. fMRI scanning measures brain activity by relying on the positive 

correlation between brain activity and the presence of oxygenated hemoglobin within the 

brain (Ogawa et al., 1992). 

When an area of the brain is active, after approximately two seconds there is a significant 

increase in the amount of oxygenated hemoglobin in the blood in that brain area, 

displacing deoxygenated hemoglobin. Because this oxygenated hemoglobin is unaffected 

by magnetic fields, the response RF signal returned to the fMRI scanner is stronger when 

there is more brain activity and therefore more oxygenated hemoglobin in that brain 

tissue; this is called the blood oxygen level dependent (BOLD) signal. The peak BOLD 

response to neuronal activation occurs approximately 5-6 seconds after the onset of 
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activity. In order to track neuronal activation in brain tissue over time, an entire brain 

volume is captured approximately every 1-2 seconds with a resolution of approximately 

27mm3/voxel in 3T (tesla) fMRI research scanners. The capture of a series of many 

fMRI brain volumes over time is referred to as a scanning session, with the complete 

dataset from one scanning session referred to as a time series. A time series might contain 

for example 800 volumes, if a brain volume is captured every 1.5 seconds and the 

scanning session lasts for 20 minutes. The time between the capture of each volume is 

called the time of repetition (TR) or sampling time of the scanning session; increasing the 

resolution of a scan is traded for an increase in TR. It is also important to note that fMRI 

scanners vary in the strength of the magnetic fields used, with 1.5-7T fields being 

common among modern research scanners. With a higher magnetic field strength, the 

scanner can capture brain volumes faster (i.e. with a smaller TR) or at a higher resolution. 

Before fMRI brain scan data can be reviewed or analyzed, they must first be subjected to 

several preprocessing steps. After the initial Fourier transform to convert raw k-space 

scanner data to image space, operations to remove anatomical artifacts, remove scanner 

noise and improve neuronal activation detection are typically applied (for more 

information see Strother’s 2006 review of BOLD fMRI preprocessing pipelines). The 

focus of the present chapter is on the processing of fMRI brain scan data to compensate 

for slight involuntary head movements in the subject during the scanning session, 

referred to as motion correction. 

1.2  fMRI Motion Correction: Overview 

Motion correction was first introduced by Jiang et al. (1995) to “reduce the effect of 

subject motion during the acquisition of image data in order to differentiate true brain 

activation from artifactual signal changes due to subject motion” (p. 224). Because the 

observable signal changes in fMRI scanning are small, even with head movements of less 

than 1mm, spurious clusters of task-related brain activation can appear (Field, Yen, 

Burdette & Elster, 2000). For example, if two neighbouring voxels differ in intensity by 

20%, then a motion of 10% of a voxel dimension can result in a 2% signal change, 

comparable to the BOLD signal in a 1.5T fMRI scanner (Bandettini et al., 1992). In the 

past, motion correction has received some criticism for potentially introducing spurious 
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activation artifacts itself. Freire and Mangin (2000) for example argued that some motion 

correction algorithms will actively misalign motion-free fMRI data if there is an unusual 

distribution of background noise or neuronal activation. Despite these criticisms however, 

motion correction is generally accepted as an integral component of any fMRI 

preprocessing pipeline (Lemieux et al., 2007; Lund et al., 2005). 

In actuality, motion correction is a special case of image registration. As it pertains to 

MRI and fMRI data, "to register two images means to align them, so that common 

features overlap" (Kostelec & Periaswamy, 2003, p. 161). One common application of 

image registration for fMRI data is aligning different subjects’ brain regions to a common 

anatomical template to enable comparisons between subjects in a study. In the context of 

motion correction, all of the volumes in one subject’s scanning session are aligned to a 

common positional template to enable comparisons between volumes across a scanning 

session. 

1.3 fMRI Motion Correction: General Algorithm 

In the general case, the image alignment responsible for correcting motion in fMRI is 

done by the iterative performance of three major steps on each volume in a scanning 

session time series: 

1.  Determination of the difference (error) between the current image and a template 

 image (e.g. the first image in a scanning session) using a cost function. 

2.  Application of an optimization algorithm to determine a spatial transformation to 

 move the current image closer to the template image. 

3.  Interpolation of the scan data based on the spatial transformation from step two to 

 create a new current image for the next iteration of the algorithm. 

These three steps will continue until the error determined in step one is below a threshold 

determined by the optimization algorithm in step two. The error function in step one, the 

optimization algorithm in step two and the interpolation method in step three are each 

dependent on the motion correction algorithm used. In addition to these three algorithmic 
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dimensions, outlined below are several other dimensions along which different motion 

correction algorithms can vary; examples of specific motion correction algorithms 

varying along these dimensions are provided in the next chapter. 

First, a motion correction algorithm can work either online or offline. An online 

algorithm corrects for subject motion while the scan is in progress and thus must be able 

to correct the motion of one volume in less time than the TR of the scanning session. This 

limits the complexity of these algorithms, however allows adjustments to the scanner 

parameters to be made ‘on the fly’ to improve scan accuracy and also enables researchers 

to use real time fMRI (rtfMRI) experimental and therapeutic paradigms such as 

biofeedback therapy (e.g. Weiskopf et al., 2007). Offline motion correction algorithms, 

conversely, are applied after the entire scanning session is complete. Because they are not 

required to execute within one time of repetition cycle, offline motion correction 

algorithms are able to employ much more complex, compute-intensive optimization and 

interpolation algorithms and can prioritize accuracy as opposed to speed. 

Another important distinction is between correcting for physiological motion versus 

random motion. Physiological motion refers to the cyclical motion of the head and blood 

vessels caused by respiration and pulse. Although these motions are relatively small, they 

can cause significant modulation of the BOLD signal (Noll & Schneider, 1994). Random 

motion refers to unintentional head movements caused by involuntary muscle twitches or 

an inability to maintain a stationary head position. The magnitude of these random 

movements is usually less than 1mm in normal subjects, but in certain special populations 

such as infants, the elderly, or the mentally ill these motions can be up to several 

millimeters (Friston et al., 1996). 

It is also important to draw a distinction between volume-by-volume and slice-by-slice 

motion correction. In traditional fMRI scanning, each slice of each volume is acquired in 

series over time. As such, there is a choice in how many slices to treat as a unit when 

registering them. In volume-by-volume motion correction, the time difference between 

capturing each slice is ignored and all of the slices composing the subject's entire brain 

volume are treated as a whole. In this case, head movement is corrected for by aligning 
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each successive brain volume to a reference volume. The reference volume is usually the 

first volume of the scanning session; an average of several volumes can however also 

serve as this reference (Friston et al., 2006). Slice-by-slice motion correction, however, 

operates at a finer temporal granularity. In this case, each slice (or a collection of several 

slices, referred to as a chunk) is treated as a discrete unit and is aligned to a reference 

slice or reference chunk. Volume-by-volume motion correction has the benefit of faster 

processing time, because fewer alignments must be carried out; slice-by-slice motion 

correction is however able to compensate for greater magnitudes of motion which cause 

significant changes in brain position during the capture of a single volume (e.g. Speck, 

Hennig & Zaitsev, 2006). 

In the case of volume-by-volume and slice-by-slice motion correction, the 3D imaging 

data being aligned are typically treated as a rigid body. Under the rigid body assumption, 

there are only six degrees of freedom (three rotational and three translational) along 

which an image can be transformed to align it with the template image. The rigid body 

assumption is generally valid because the brain and head move together during scanning; 

this assumption also serves to simplify the optimization step used in most motion 

correction algorithms. 

Finally, the spatial transformation that a motion correction algorithm produces to align a 

given image back to the template image can be linear or nonlinear. Linear spatial 

transformations include translation, rotation and zooming. Most linear transformations 

preserve the rigid body assumption and do not deform the 3D brain image. Nonlinear 

spatial transformations include affine transformations and warps; these are most often 

used when registering a subject's scan data to a reference anatomical template to facilitate 

between-subject comparisons. Because nonlinear spatial transformations violate the rigid 

body assumption, most motion correction algorithms provide linear spatial transformation 

solutions. 

 



7 

 

Chapter 2  

2 Interpolation Methods in fMRI Motion Correction 

The interpolation method used in a given motion correction algorithm has a significant 

impact on the algorithm's overall performance (Jenkinson, Bannister, Brady & Smith, 

2001). Interpolation is used in fMRI motion correction both to determine the values of 

voxels intermediate to the raw scan data during optimization of the spatial transformation 

(or motion estimate) and to produce the final scan session data once an accurate spatial 

transformation correcting for the subject motion in each volume has been determined.  

The interpolation step of an iterative motion correction algorithm is also often its most 

compute intensive component. Correspondingly, the speed of the interpolation method 

will tend to dominate the running time performance of a motion correction algorithm; this 

is especially so if the algorithm needs to perform many iterations (and therefore 

interpolations) when determining an optimal spatial transformation (or motion estimate). 

In this chapter, a review of several methods for the 3D interpolation of fMRI 

neuroimaging data is provided; for each interpolation method, the structure of the 

algorithm and a prominent software package employing it are described.  

2.1 Trilinear Interpolation 

Trilinear interpolation is a multivariate interpolation method which allows for the 

interpolation of intermediate points on a regular 3D grid by chaining together multiple 

linear interpolations. Trilinear interpolation is one of the fastest 3D interpolation methods 

however it is often criticized for its potential inaccuracy. 

2.1.1 Algorithm 

Trilinear interpolation is algorithmically the simplest method of interpolation presented in 

this chapter. Given a set of known points on a regular 3D grid, trilinear interpolation uses 

a chain of 7 individual linear interpolations to approximate the value of any intermediate 

point contained within a rectangular prism given by the grid. Although trilinear 

interpolation is relatively simple conceptually and fast computationally, it has the 
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disadvantage of relative inaccuracy compared to other interpolation methods (Tong & 

Cox, 1999). Trilinear interpolation has also been criticized for introducing spatial 

smoothing when applied to fMRI data (Oakes et al., 2005). 

 

Figure 2: Trilinear interpolation (Wikipedia). 

For a given intermediate point c whose value needs to be interpolated, the eight corners 

of a cube on the regular grid surrounding it are first found. Then, four intermediate points 

on the lines connecting those eight corners, referred to as c00 c01 c10 and c11, are calculated 

using one dimensional linear interpolation. Next, two intermediate points on the lines 

connecting c00 c01 c10 and c11 are interpolated, referred to as c1 and c0. Finally, c is given 

by the linear interpolation of c1 and c0. These steps are shown in Figure 2. 

2.1.2 AIR Software Package 

In their 1998 paper, Woods et al. describe their Automated Image Registration (AIR) 

software package. This package contains an image registration method which functions 

very similarly to the general motion correction algorithm described in the previous 

chapter. This registration algorithm serves as the foundation for the AIR software 

package's motion correction utility, because as stated previously motion correction is 

actually a special case of image registration. In the AIR registration algorithm an original 

scan is first interpolated based on a possible solution spatial transformation, then a cost 
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function is evaluated which provides the algorithm with a quantitative measure of how 

well the images are registered, then finally an optimization function determines a new 

spatial transformation to apply to the image for the next cycle of the registration 

algorithm. A schematic of the AIR registration algorithm is shown in Figure 3. 

 

Figure 3: AIR registration algorithm (Woods et al., 1998). 

To compare the images being registered, one of the images must be resampled according 

to the parameters of the current spatial transformation. This resampling requires that 

voxel intensities at locations in between the voxel locations represented in the original 

image be calculated. The AIR algorithm uses the trilinear interpolation method to 

perform this calculation. Once the final spatial transformation has been determined on the 

last iteration of the realignment algorithm, the AIR software package provides the option 

of using more advanced and accurate interpolation methods to produce the final image. 
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To determine the error for a given iteration of the realignment algorithm, the AIR 

software package uses the ratio image uniformity (RIU) cost function. To compute this 

cost function, a resampled image (given by a set of realignment parameters) is divided by 

the image to which it is being registered on a voxel-by-voxel basis to create a ratio image, 

with the uniformity of this image measured by its standard deviation. This standard 

deviation is then divided by the mean ratio to provide a normalized cost function value 

for the realignment parameters used to create the image. The minimization of this cost 

function therefore increases the uniformity of the ratio image independent of the global 

intensity scaling of the original images. The AIR software package also includes a second 

option for the cost function, namely a least squares approach similar to that used by 

Friston et al. (1996). The least squares cost function is given by the average voxel-by-

voxel difference between the resampled image and the reference image. The AIR least 

squares cost function also adds an intensity scaling step to compensate for global 

discrepancies in image intensity. 

To handle the iterative adjustment of the spatial transformation to find an optimal rigid 

body transformation of the brain image, the AIR software package uses a variation on the 

Powell optimization algorithm (Powell, 1964). This optimization is a conjugate direction 

method, searching through a 6D parameter space to find a local minimum of the error 

function used. Powell's method does not require that derivatives be taken (as does for 

example the Gauss-Newton method described below), but instead minimizes the error 

function using a bi-directional search along each vector in a set of search vectors, usually 

simply the normals of the search space aligned along each axis. As such, it is useful for 

calculating the local minimum of a continuous but complex non-differentiable function. 

2.2 Spline Interpolation 

Spline interpolation is a special case of polynomial interpolation, using a piecewise 

polynomial called a Basis spline. Splines were originally used to describe curves in 

shipbuilding and are now widely used in computer graphics. Spline interpolation is a 

special case of polynomial interpolation however it has several advantages over its more 

general progenitor. 
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2.2.1 Algorithm 

Given a set of n unique one dimensional points, the 1D polynomial interpolation problem 

is to find the polynomial function which goes exactly through those points. The search 

for this polynomial is equivalent to solving a linear system of equations; with a 

polynomial of at least degree n - 1, there exists a provably unique solution to this linear 

system. The 1D case of polynomial interpolation is shown in Figure 4. 

 

Figure 4: 1D Polynomial interpolation (Wikipedia). 

Spline interpolation is a special case of polynomial interpolation using a Basis spline 

function. A Basis spline or B-spline is a piecewise polynomial function continuous at 

each piece boundary, called a knot. Given a set s of n unique points, spline interpolation 

will produce a piecewise polynomial function which passes through each knot point in s 

while minimizing the amount of bending within the function as a whole (Webster & 

Oliver, 2001). Typically, third degree polynomials are used for each piece of the function 

(idem); these are referred to as cubic splines. First and second degree polynomials can 

also be used however; these are referred to as linear and quadratic splines respectively. 

An example of 3D cubic spline interpolation from the GNU Octave software package is 

shown in Figure 5. 
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Figure 5: 3D Cubic spline interpolation (GNU Octave). 

Spline interpolation is generally preferred over polynomial interpolation because of the 

low interpolation error which can be achieved even when using low degree polynomial 

functions for each piece of the function. Spline interpolation also avoids the problem of 

oscillation at the edges of the interval of interpolation, which can occur when fitting a 

high degree polynomial function to a set of equally spaced data points (also known as 

Runge's phenomenon; see Fornberg & Zuev, 2007). 

2.2.2 SPM2 Software Package 

Friston et al. present an "efficient, automatic, and general multidimensional nonlinear 

spatial transformation technique" (1995, p. 166). It was the authors' intention to create a 

general registration algorithm applicable for realigning variations and combinations of 

fMRI, structural MRI and positron emission tomography (PET) data. In order to 

accomplish this, the authors used two guiding principles in designing their algorithm.  

First, the authors wanted the constraints on the image transformations their algorithm 

would use to be reasonable, explicit and operationally specified. To this end, the authors 

decomposed the differences between two images into two components: intensity 

differences between two images which are in perfect physical alignment and differences 

in physical alignment or size and shape of the object being scanned. As such, the image 
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transformations produced by their algorithm are a nonlinear combination of rotational, 

translational and intensity transformations.  

The authors' second guiding principle was to develop a method with a single unique 

solution transformation for each volume to be aligned. To this end, the authors linearised 

the intensity transformation function using a low-order Taylor series approximation, 

ensuring that a single least squares solution exists for every image registration; a least 

squares solution uses an over-determined system of equations to minimize the sum of the 

squares of the errors (SSE) in the results of each equation. To minimize the sum of 

squared errors in the system of equations, the authors employed Gauss-Newton 

optimization. The Gauss-Newton optimization method iteratively finds the minimum SSE 

based on the first derivative of the sum of squared error function. This algorithm can 

produce general image registration solutions, however when used for fMRI motion 

correction the authors’ algorithm uses only translations, rotations and an identity intensity 

transformation. That is, the solution transformation produced still follows the rigid body 

assumption. 

This general nonlinear registration algorithm served as the foundation of the motion 

correction algorithm used in the neuroimaging data processing software package SPM2 

(Statistical Parametric Mapping 2), maintained by the Wellcome Trust Centre at 

University College London. SPM2 uses a registration algorithm closely based on that 

presented in Friston et al.’s 1995 paper to provide estimates of subject motion, then using 

those estimates determines a solution spatial transformation to correct for that motion. 

Once a solution transformation has been determined, the original scan data is interpolated 

using a 4D Basis spline to produce the final motion corrected scan data. 

2.3 Fourier Interpolation 

Fourier interpolation is lauded for combining speed and accuracy when interpolating 

fMRI data. Because it operates on data in the Fourier domain, the native k-space of raw 

scanner data, Fourier interpolation has seen wide use in medical imaging in general. 
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2.3.1 Algorithm 

Consider a spatial transformation which will rotate a slice from an fMRI volume. To 

determine the new voxel intensities for the slice given that spatial transformation, voxel 

intensity values intermediate to the existing image must be computed. Fourier 

interpolation computes these intermediate voxel intensities by first converting the spatial 

transformation from an image space transformation to a k-space transformation. This new 

transformation is then applied to the raw k-space data and the result is used to produce 

the new voxel intensities though the application of an inverse Fourier transform: 

                  
 

  

   

2.3.2 AFNI Software Package 

Cox and Jesmanowicz (1999) describe a fast and accurate method for shifting and 

rotating a 3D image using a shear factorization of the rotation matrix, as is used to handle 

motion correction in the AFNI (Analysis of Functional Neuroimages) software package 

(Cox, 1996). The authors based their method on the work of Eddy, Fitzgerald and Noll 

(1996) who proposed the combination of three 2D shearing operations and Fourier 

transform based shifting for 2D MRI rotation. The authors extended this previous work, 

relying on the principle that a 3D proper orthogonal matrix can be factored into three 2D 

rotations and so a general 3D image rotation can be accomplished with nine 2D shears. 

As such, a 3D shear factorization has the same advantage that a 2D shear does in that its 

elementary operations are coordinate shifts on 1D rows extracted from the image. In the 

authors' algorithm, when any particular row of the 3D image is shifted in this way, the 

row's data are interpolated using fast Fourier transforms (FFTs).  

To determine the correct rotation in order to register a given volume to a template image, 

the authors repeatedly linearised a weighted least squares penalty (or error) function with 

respect to a rigid body transformation of the brain. This error function is: 

                             

 

  



15 

 

Repeated linearization is equivalent to applying an iterative gradient descent algorithm to 

the least squares penalty function. Gradient descent works by stepping toward the next 

lowest point in the error space of the least squares penalty function at each iteration of the 

optimization algorithm. The size of the step taken at each iteration is based on the first 

derivative of the error function on that iteration. Gradient descent can work in an error 

space of any number of dimensions and is guaranteed to converge to a local minimum, 

however convergence can be slow close to minima because the first derivatives of the 

error function surrounding them are typically small. When the error function has been 

minimized, the corresponding 3D shear image rotation will align the current image to the 

template image and thereby correct for subject motion. 

2.3.3 PACE Motion Correction 

The PACE (Prospective Acquisition CorrEction) motion correction method presented by 

Thesen, Heid, Mueller and Schad (2000) departs from retrospective motion correction 

techniques, where motion is corrected for by processing the data after a full set of scan 

data have been acquired. PACE instead corrects for motion and updates the scanner 

parameters for slice orientation and position in real time after each volume is captured 

(the principle flow chart of the complete PACE real-time acquisition correction is shown 

in Figure 6). After each volume is acquired, the motion of that volume relative to a 

reference volume is detected, then those positional data are sent simultaneously to the 

scanner and to a Fourier interpolation algorithm (the authors refer to interpolation as 

regridding). 

To detect the motion in each volume during the scan, PACE uses as a similar technique 

to Friston et al. (1996). First, one volume is chosen as a reference to which all subsequent 

volumes will be aligned. To speed up computation, the PACE algorithm uses only a 

subset of voxels in the brain scan to perform the alignment, covering roughly the area 

containing brain tissue in the interior slices of the volume. Next, the rigid body 

transformation mapping the current volume being aligned to the reference volume is 

expanded as a first order Taylor series. This Taylor series is approximated and a least 

squares solution for its parameter function is obtained iteratively (with the motion 

parameters or spatial transformation resampled at each iteration). When complete, this 
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algorithm produces a rotation matrix and a shift vector describing the motion between the 

most recently acquired volume and the reference volume. The authors suggest that for 

typical fMRI scans, the motion in any given volume can be detected with only ten 

iterations of this function. 

 

Figure 6: PACE flowchart (Thesen, Heid, Mueller & Schad, 2000). 

This method of prospective motion correction feeds back the positional information 

calculated from a given volume to the next volume in the scanning session, however 

because of the 3-4 second delay in volume acquisition for the scanner the authors were 

using, their algorithm also includes a step to remove any residual motion not corrected 

for by the use of updated positional parameters during image acquisition. For each 

acquired volume, the transformation required to adjust the current image to the reference 

image are calculated, then this transformation is used to regrid (interpolate) the measured 

volume in order to eliminate residual volume to volume motion from the final session 

data. The authors chose to use Fourier interpolation, specifically the shearing method 

introduced by Eddy, Fitzgerald and Noll (1996) described above to accomplish this 

interpolation. 
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2.4 Sinc Interpolation 

Like spline interpolation, sinc interpolation is a special case of the more general 

polynomial interpolation. Sinc interpolation has the unique advantage of being able to 

provide an almost perfect reconstruction of band-limited data. Although it provides high 

quality results, sinc interpolation is very slow relative to other interpolation algorithms 

(Friston et al., 1996). 

2.4.1 Algorithm 

A detailed exploration of the 3D sinc interpolation method is provided in Chapter 3. 

2.4.2 FSL MCFLIRT Software Package 

Jenkinson, Bannister, Brady and Smith (2001) wanted to address the problem of the 

optimization method used in motion correction algorithms; a problem they argue had 

received little attention at the time. Specifically, the authors argue that most optimization 

algorithms in use at the time of their writing were susceptible to becoming trapped in 

local minima of the so-called error space of the optimization function. That is, the 

optimization algorithm might become caught in a ‘large scale basin’ or a ‘smalls scale 

dip’ and fail to reach a global minimum for the cost function.  

In the former case, an optimization algorithm would produce a large misregistration 

because the local minimum of a large scale basin is far from the global minimum. In the 

latter case, the optimization algorithm simply stops prematurely at a small scale dip, 

causing a large misregistration at low resolutions or a small registration at high 

resolutions. To combat these two types of local minimum optimization errors, the authors 

used a two-pronged approach; apodization of the cost function (that is, smoothing the 

function at its edges) to eliminate the ‘small dip’ error, combined with a hybrid global-

local optimization technique which utilizes prior knowledge about the transformation 

parameters and typical data size to avoid ‘large scale basin’ errors.  

The mathematical details of how the authors apodized the cost function are outside the 

scope of this paper, however their global-local hybrid optimization method warrants 

further explanation. This method is designed to provide a reliable estimate of the global 
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minimum of the cost function given some time restriction. The method uses four stages 

of search, each with the template and image to be aligned scaled to a different resolution 

(see Figure 7). At each stage, whenever the global-local hybrid optimization method is 

minimizing the cost function, Powell minimization is used.  

 

Figure 7: FSL global-local optimization  

(Jenkinson, Bannister, Brady & Smith, 2001). 

In the first stage, the images are pre-blurred with a Gaussian kernel and voxels are scaled 

to 8 x 8 x 8mm, preserving only the gross image features. The search for a minimum of 

the cost function at the 8mm stage is divided into three steps: step one, a coarse search 

over the rotation parameters with a full local optimization of translation and scale for 

each rotation tried; two, a finer search over rotation parameters but with only a single cost 

function evaluation at each rotation; three, a full local optimization (rotation, translation 

and global scale) for each local minimum detected from the previous stage (ibid., p. 831). 

Although it is unlikely that the first step will provide an accurate estimation of brain 
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motion, the progression of these steps provides several reasonable potential starting 

points in the error function for the next stage of the optimization. 

The second stage of the optimization is performed at 4 x 4 x 4mm scale (images are again 

pre-blurred with a Gaussian kernel). This stage takes the top three local minima 

candidates for the global minimum, then also generates six rotational and four scale 

perturbations of each of these minima, producing 33 candidate starting points for a multi-

start search of the error function space. After each of these candidate motion estimations 

have been minimized for error, the single best candidate is selected for further 

optimization in the next stage of the method. 

The third stage of the algorithm works with the images scaled to 2 x 2 x 2mm, where 

skews and anisotropic scalings begin to become significant. Consequently, the authors’ 

method progressively introduces these extra degrees of freedom (DOF) to the error 

minimization function by calling the local optimization method three times: first using 

only 7 DOF (rigid body and global scale), then with 9 DOF (rigid body and independent 

scalings), then with the full 12 DOF (rigid body with scales and skews). After the 

optimization has run with these additional degrees of freedom, the current motion 

estimate is passed to the next stage of the method. 

In the last stage of global-local hybrid optimization method, with the image scaled to 1 x 

1 x 1mm, the cost function evaluations take 8 times longer than at the 2 x 2 x 2mm scale 

and 512 times longer than at the 8 x 8 x 8mm scale. As such, during this stage only one 

pass of the Powell local optimization algorithm is performed, the result of which is the 

final registration solution. 

When the global-local hybrid optimization method is applied to the problem of motion 

correction, as in the FSL (fMRIB Software Library) software package’s MCFLIRT 

(Motion Correction fMRIB Linear Image Registration Tool) utility, the middle image of 

the scan series is taken as the template to which all other volumes are registered. 

Furthermore, the final two stages of optimization at the 2mm and 1mm scale are omitted. 

When the image registration transformation is computed, sinc interpolation is used to 

interpolate the final corrected data. 



20 

 

2.5 Other Motion Correction Techniques 

In this chapter several motion correction algorithms from the past 20 years have been 

discussed. Most of these algorithms rely on the iterative adjustment of an estimate of 

subject motion using an optimization algorithm alongside a cost function describing the 

error difference between an uncorrupted image and a template image (e.g. Jenkinson, 

Bannister, Brady & Smith, 2001; Thesen, Heid, Mueller & Schad, 2000; Woods et al., 

1998). Each of the algorithms relying on this optimization process to perform motion 

correction varies in its computation of the cost function, the optimization algorithm used 

and the nature of the estimation of the motion. Other approaches, such as predictive 

approaches using a priori estimates of physiological motion are also possible (e.g. 

Glover, Li & Ress, 2000; Hu, Le, Parrish & Erhard, 1995) and instead rely on removing 

trends in the raw data that are correlated with known periods of subject motion. 

A class of motion correction approaches which have not been reviewed here are those 

which use external markers to monitor the movement of the subject's head during 

scanning to provide the estimates for motion, then remove that estimated motion from the 

scan data. This can be done either retrospectively after data acquisition is complete (e.g. 

Tremblay, Tam & Graham, 2005) or prospectively while data is being acquired (e.g. 

Zaitsev et al., 2006). Furthermore, the modality of this positional monitoring can vary, 

from optical markers to track motion (as in the previous two examples) or radio 

frequency markers (Ooi et al., 2009). 
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Chapter 3  

3 Three Dimensional Sinc Interpolation 

As demonstrated in the previous chapter, several different 3D interpolation methods are 

currently in use for fMRI motion correction. Of these methods, sinc interpolation was 

selected to demonstrate the importance of the programming language and the hardware 

platform used for executing a neuroimaging data processing algorithm.  

Sinc interpolation was chosen for this demonstration for two reasons. It is considered 

among the best interpolation methods for 3D data interpolation (Tong & Cox, 1999) and 

as such the development of new and faster implementations will service the 

neuroscientific community. Secondly, other methods of 3D data interpolation such as 

trilinear interpolation and spline interpolation have sufficiently short running times that 

the differences between different implementations could be insubstantial; sinc 

interpolation however has a long running time (Friston et al., 1996) and therefore would 

best serve to demonstrate inter-implementation differences. 

3.1 Algorithm 

Sinc interpolation, also known as the Whittaker-Shannon interpolation method, is based 

on the unnormalized sinc function. The term sinc is a contraction of the Latin sinus 

cardinalis meaning cardinal sine, with the unnormalized sinc function is defined as 

        
      

   
 

for x ≠ 0, with sinc(0) = 1. Sinc interpolation is commonly employed in digital signal 

processing for the band-limited interpolation of discrete-time signals. Band-limiting is the 

limiting of a signal's Fourier transform to zero above a certain finite frequency. Band-

limiting is an important concept within the context of sinc interpolation, because a band-

limited signal can be fully reconstructed from its samples, provided that the sampling 

frequency exceeds twice the maximum frequency in the band-limited signal; the 

minimum sampling rate providing a full reconstruction of a band-limited signal is 
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referred to as the Nyquist frequency. In essence, with a band-limited signal sinc 

interpolation can be used to correctly compute signal values at arbitrary continuous times 

from a discrete set of samples provided they are sampled at a rate above the Nyquist 

frequency. The standard sinc interpolation formula is 

              
 

 
       

 

    

 

which can be expressed using only the sine function as 

         
    

 
 

       

 
 
 

       

 

    

 

where T is the sampling period used to determine xn and x(t) is the reconstructed signal. 

The above formula represents a linear convolution between the sequence and scaled and 

shifted samples of the function (Oppenheim & Schafer, 1975). 

Hajnal et al. (1995) describe an expansion of the standard sinc interpolation formula 

allowing for the 3D interpolation of neuroimaging data. This expansion is accomplished 

with a cosine Hann (Hanning) window using the normalized sinc function 

        
       

    
 

In this formulation, the intensity value for a given voxel is the multiplicative combination 

of three 1D sinc interpolations, with one interpolation for each dimension. The intensity 

value I for voxel at (x, y, z) is defined using a Hann sinc interpolation as 

                                                         

   

 

with HS(a,A,R) defined as 
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where X,Y,Z are the coordinates of the original data set and R is the size of the Hann 

window used. This Hann function eliminates problems with oscillatory effects at 

discontinuities in the function and guarantees that the convolution coefficients fall off to 

zero at the edge of the Hann window (Thacker, Jackson, Moriarty & Vokurka, 1999). A 

graph of the Hann window function as applied to audio samples is show in Figure 8 

(Wikipedia). Throughout this document the collection of voxels in a given volume 

covered by the Hann window is referred to as a sinc kernel and to the portion of the final 

interpolated intensity I given by one of the voxels in a sinc kernel as that voxel's sinc 

contribution. Throughout the remainder of this document, the size of a sinc kernel is 

referred to by its radius; that is, a sinc kernel of size 7 x 7 x 7 will have 7 voxels between 

the intermediate voxel v and an outer plane of the 3D kernel. Figure 8 below shows an 

illustration of a 4 x 4 x 4 sinc kernel. 

 

Figure 8: Illustration of a 4 x 4 x 4 sinc kernel. 

The asymptotic time complexity of the serial sinc interpolation function depends on 

whether the number of voxels to be interpolated or the size of the kernel is varied. In the 

case that the number of voxels is varied, the sinc interpolation function has a complexity 

of O(n). If the size of the sinc kernel is varied however, the complexity will be O(n
3
). 
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3.2 Serial Implementation 

As explained in Chapter 1, during motion correction new coordinates for each voxel in an 

fMRI volume are given by the solution spatial transformation computed by the 

optimization algorithm. Because these coordinates lie between the existing coordinate 

grid of the raw scan data, an estimate of the intensity value for each of these intermediate 

voxels must be calculated. In this section the structure and function of a serial algorithm 

for the 3D sinc interpolation of the intensity at an arbitrary point within a fMRI brain 

scan volume is presented, which for convenience is referred to as serialSinc. serialSinc is 

based on the AIR5 3D sinc interpolation algorithm (Woods, Cherry & Mazziotta, 1992). 

The serialSinc algorithm takes as input an array of coordinates, intermediate to the 

existing grid structure of the raw fMRI data, whose intensity values need to be 

interpolated; the input array of intermediate coordinates is referred to in serialSinc as a 

chunk. The number of voxels in a chunk can vary depending on whether the motion 

correction algorithm in question operates slice-by-slice, volume-by-volume, or 

somewhere in between. As such, serialSinc is designed to handle an arbitrary number of 

voxels per chunk. The number of voxels in the chunk is referred to as the chunk size.  

serialSinc uses the Hann windowed 3D sinc interpolation method described above to 

compute the new intensity value for each intermediate voxel coordinate. As explained in 

the previous section, the new intensity value for a given voxel v is the sum of the sinc 

contribution of each known voxel in its surrounding sinc kernel. The sinc contribution for 

a given voxel in the sinc kernel is computed by multiplying its one dimensional sinc 

contribution (given by the Hann windowed normalized sinc function) in each of the x, y 

and z directions by its intensity. In serialSinc, the sinc contribution of each voxel in the 

sinc kernel is computed serially and added to the total for the interpolated intensity of 

voxel v. This total is then stored in an array holding the new interpolated intensities for 

every voxel in the chunk. The size of the Hann window and therefore the size of the sinc 

kernel along the x, y and z dimensions is passed into serialSinc as a parameter. 

The serialSinc algorithm is shown in pseudocode below, alongside the sinc function, 

which in practice would simply replace the call to sincFunction in serialSinc. 
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// serialSinc Algorithm 
 
GET kernelSizeX 
GET kernelSizeY 
GET kernelSizeZ 
 
GET chunkXSize 
GET chunkYSize 
GET chunkZSize 
GET chunkCoordinates 
 
INIT interpolatedChunkIntensities 
 
FOR kernelCenterZ in chunkZSize 
 FOR kernelCenterY in chunkYSize 
  FOR kernelCenterX in chunkXSize 
 
   COMPUTE kernelBoundsX from kernelSizeX and kernelCenterX 
   COMPUTE kernelBoundsY from kernelSizeY and kernelCenterY 
   COMPUTE kernelBoundsZ from kernelSizeZ and kernelCenterZ 
 
   SET kernelTotal to 0 
 
   FOR currentVoxelPositionZ in kernelBoundsZ 
 
    COMPUTE sincz = sincFunction(currentVoxelPositionZ) 
  
    FOR currentVoxelPositionY in kernelBoundsY 
 
     COMPUTE sincy = sincFunction(currentVoxelPositionY) 
     SET sinczy to (sincy * sincz) 
      
     FOR currentVoxelPositionX in kernelBoundsX 
 
      COMPUTE sincx =  sincFunction(currentVoxelPositionX) 
      SET sinczyx to (sincx * sinczy) 
 
      GET currentVoxelIntensity 
      SET newVoxelIntensity to (currentVoxelIntensity * sinczyx) 
      ADD newVoxelIntensity to kernelTotal 
 
   STORE kernelTotal in interpolatedChunkIntensities 
 

// sincFunction 
 
GET voxelPosition 
GET kernelCenter 
GET kernelSize 
 
IF voxelPosition == kernelCenter 
 SET result as 1.0 
 
ELSE 
 SET result as sin(pi*voxelPosition)/(pi*voxelPosition) * \ 
       0.5*(1.0 + cos((pi*voxelPosition)/kernelSize)) 
   
RETURN result 
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3.3 Parallel Implementation 

Parallel computing in general is based on the principle that large computing problems can 

be divided into many smaller problems, all of which can be completed simultaneously. 

The two primary paradigms in parallel computing are data parallelism and task 

parallelism. Task parallelism achieves improvements in the execution time of an 

algorithm by running sections of it concurrently. A section of code which is designed to 

run in parallel with other copies of itself is called a kernel (referred to herein as a parallel 

kernel to avoid confusion with sinc interpolation kernels). Each copy of the kernel is 

executed in its own thread; a serial algorithm will run in only one thread executing a 

repeated section of code thousands of time in sequence, whereas a parallel algorithm 

could run thousands of copies of a kernel in hundreds of threads simultaneously, 

depending on the hardware architecture employed.  

 

Figure 9: Amdahl's Law for 50%, 75%, 90% and 95% parallelized algorithms. 

The process of converting a purely serial program to a logically equivalent parallel 

implementation is referred to as parallelization. Once parallelized, the remainder of the 

original program which executes in serial (and handles calls to execute the kernel) is 
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called the host code. Whether a given section of code in an algorithm can be parallelized 

depends on the logical structure of the algorithm; only subsections of an algorithm which 

are logically independent, meaning that they do not rely on each other's results and could 

be executed in any order, can be extracted into a parallel kernel and executed in parallel. 

Algorithms vary widely in the degree to which their logical structure can be executed in 

parallel, which affects the maximum performance benefits which can be achieved by 

parallelizing them. The relationship between the maximum expected improvement to an 

algorithm's overall running time for a given number of processors when some percentage 

of the algorithm is parallelized is referred to as Amdahl's Law (Amdahl, 1967). Figure 9 

above shows Amdahl's Law for algorithms with parallel portions of 50%, 75%, 90% and 

95%. 

Although significant speedups can be achieved by parallelizing an algorithm and running 

many copies of a kernel in multiple concurrent threads, there is an overhead introduced 

by running multiple threads referred to as the burden of parallelism. If each thread does 

not contain a sufficient computational load when the program is parallelized, then the 

burden of parallelism will outweigh the gains afforded by executing that code 

concurrently. The size of the burden of parallelism and how my threads can execute 

concurrently both depend on the hardware architecture used. How much computation 

there is in each thread compared to the communication between a thread and the host 

code is referred to as the granularity of the algorithm. Fine (or high) granularity refers to 

a smaller ratio between computation and communication; decreasing the granularity of a 

parallelized algorithm by increasing the computational load in one thread will typically 

decrease the burden of parallelism.  

The serialSinc algorithm presented in the previous section has a very high degree of task 

parallelism. Because the sinc kernel uses only the intensities of the raw data which do not 

change, the intensity for each intermediate voxel in a chunk can be computed in parallel 

with every other voxel in that chunk. Going further, within the calculation of an 

intermediate voxel's new interpolated intensity, the sinc contribution of each voxel in the 

sinc kernel can be computed in parallel; the sinc contribution of each voxel within a sinc 

kernel is independent and is simply added to the cumulative total for intensity of the 
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voxel at the center of the kernel. Finally, the determination of the 1D sinc function 

coefficient used to compute each voxel's sinc contribution can also be completed in 

parallel. 

The parallelized version of the serialSinc algorithm from the previous section is called 

parallelSinc. The parallelSinc algorithm computes the interpolated intensity for each 

intermediate voxel in the chunk in parallel; the calculation of each voxel's intensity 

however is still performed in serial. This design decision was made to ensure there would 

be enough computation performed in each thread, such that the burden of parallelism 

would not outweigh the benefits of parallelization. 

parallelSinc uses the same pseudocode to replace calls to sincFunction as shown above. 

The parallelSinc algorithm is shown in pseudocode below. 

 

// parellelSinc Algorithm 
 
GET kernelSizeX 
GET kernelSizeY 
GET kernelSizeZ 
 
GET kernelCenterX 
GET kernelCenterY 
GET kernelCenterZ 
  
COMPUTE kernelBoundsX from kernelSizeX and kernelCenterX 
COMPUTE kernelBoundsY from kernelSizeY and kernelCenterY 
COMPUTE kernelBoundsZ from kernelSizeZ and kernelCenterZ 
 
SET kernelTotal to 0 
 
FOR currentVoxelPositionZ in kernelBoundsZ 
 
 COMPUTE sincz = sincFunction(currentVoxelPositionZ) 
  
 FOR currentVoxelPositionY in kernelBoundsY 
 
  COMPUTE sincy = sincFunction(currentVoxelPositionY) 
  SET sinczy to (sincy * sincz) 
      
  FOR currentVoxelPositionX in kernelBoundsX 
 
   COMPUTE sincx = sincFunction(currentVoxelPositionX) 
   SET sinczyx to (sincx * sinczy) 
 
   GET currentVoxelIntensity 
   SET newVoxelIntensity to (currentVoxelIntensity * sinczyx) 
   ADD newVoxelIntensity to kernelTotal 
 
STORE kernelTotal in global memory 



29 

 

Chapter 4  

4 Performance Benchmarking 

To demonstrate the effects of the programming language and hardware platform used to 

implement the 3D sinc interpolation algorithm described in Chapter 3, the results of 

extensive benchmarking and performance testing are presented in this chapter. The data 

in this chapter are all presented graphically, however tables containing their exact values 

are provided in the appendices. 

4.1 Experimental Setup 

Consider the position of a neuroscience researcher who is trying to decide whether an 

algorithm will be suitable to include in her neuroimaging data analysis pipeline. In order 

to assess the viability of a given algorithm, this chapter demonstrates that the researcher 

must consider carefully both the programming language (and version thereof) used to 

implement it and the computer system or hardware platform used to run it. Each such 

computer system hardware platform is referred to as a test bed.  

For each of three different programming languages, the differences which can be seen in 

the running time performance of the same algorithm across multiple test beds and 

hardware platforms (the test beds are outlined in Section 4.2 below) are investigated. This 

investigation serves to underscore the idea that the differences between hardware 

architectures which are contemporary to one another can have a significant impact on an 

algorithm's running time performance even within one language. 

To conduct this investigation, the 3D sinc interpolation algorithms described in Chapter 3 

were implemented in Python, C and OpenCL (Open Computing Language). A Python 

host program was used to handle file I/O of the test neuroimaging data and benchmarking 

the performance of the algorithm for each language. The python implementation of 3D 

sinc interpolation ran natively within this host, while the code for the C implementation 

was extracted into its own Python extension module using Python's distutils library 

(default compiler flags). The OpenCL code was directly embedded in the Python host 
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script using PyOpenCL. A list of software packages and compilers used and the versions 

thereof is provided in Appendix A. 

For each programming language, the test bed hardware platform was compared over sinc 

kernel size because the size of the Hann window used for 3D sinc interpolation has a 

substantial effect on the accuracy of the interpolation. The so-called gold standard for 3D 

MRI data interpolation is a sinc kernel of size 13 x 13 x 13 (Jenkinson, Bannister, Brady 

& Smith, 2001), however sinc interpolation kernels of this size are very computationally 

expensive; therefore 4 different sized Hann windows (1, 3, 7, 13) were used to assess the 

performance of less accurate, however less expensive, sinc kernels. Throughout each of 

these comparisons, the number of interpolations was kept constant; 230400 interpolations 

were performed, corresponding to interpolating the voxel intensities on a regular grid 

intermediate to a raw data set for an entire fMRI brain volume of 80 x 80 x 36 voxels. 

The raw data for interpolations using smaller input (chunk) sizes are found in the 

appendices. 

4.2 Test Beds 

The first test bed is a powerful desktop workstation, described in Table 1. The second test 

bed is a GPGPU (general purpose graphics processing unit) laboratory desktop computer, 

shown in Table 2. The third test bed is a rack-mount server, shown in Table 3. The final 

test bed is an older laptop computer, included to show the relative performance of a 

legacy machine. The specifications for this test bed are shown in Table 4.  

Table 1: Workstation desktop test bed specifications. 

Operating System Windows 7 Professional 64bit 6.1 

  CPU Model AMD Phenom II Thuban 1090T Black Edition 

CPU Clock 4026Mhz 

CPU Cores / Threads 6 / 6 

GPU Chipset Radeon HD 6850 

GPU Core Clock 870Mhz 

GPU Architecture 960 Stream Processors 

GPU Memory 1GB GDDR5 @ 1050Mhz 
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Table 2: Laboratory desktop test bed specifications. 

Operating System Ubuntu 64bit 3.8.0 

  CPU Model Intel Xeon E5504, Intel Xeon E5504 

CPU Clock 1596Mhz 

CPU Cores / Threads 8 / 8 

GPU Chipset nVIDIA Tesla c2070 

GPU Core Clock 1150Mhz 

GPU Architecture 448 Stream Processors 

GPU Memory 6GB GDDR5 @ 1500Mhz 

 

Table 3: Rack-mount server test bed specifications. 

Operating System GNU Linux 64bit 2.6.32 

  CPU Model Intel Xeon E5603 

CPU Clock 1197Mhz 

CPU Cores / Threads 4 / 4 

 

Table 4: Legacy laptop test bed specifications. 

Operating System Windows 7 Professional 64bit 6.1 

  CPU Model AMD Turion x2 TL-56 

CPU Clock 1800Mhz 

CPU Cores / Threads 2 / 2 

 

4.3 Python 

The results of comparing the performance of a Python implementation of the serialSinc 

algorithm across the four test bed hardware platforms described above are shown in 

Figure 10. The raw data for this comparison are provided in Appendix C. Each running 

time presented is the mean of 5 trials of executing the algorithm. Because of the three 

nested FOR loops used to iterate through the voxels in a sinc kernel, as the size of sinc 

kernel along the three dimensions increases the running time increases as a cubic 

polynomial with a constant input size. 
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Figure 10: Python implementation running time comparison across test beds. 

This performance comparison shows several interesting differences between the four test 

beds when using a sinc kernel of size 7 x 7 x 7. Firstly, one might expect that the two 

Intel processors, being of similar model numbers and specifications, would have similar 

performance with the legacy laptop lagging behind. Instead, the AMD Turion TL-56 and 

the Intel E5603 perform quite similarly at 13147 seconds and 13647 seconds 

respectively, however still with a significant difference in performance between them 

(F(2,5) = 15700, p < 0.000001). These two processors both execute the algorithm much 

more slowly than the Intel Xeon E5504 at 9069 seconds (F(2,5) = 6888131, p < 

0.000001). Also notice that the AMD Turion TL-56, despite its faster clock speed, does 

not outperform the Intel Xeon E5504. This gap in performance could be explained by 

AMD Turion TL-56's small cache compared to the Intel Xeon E5504: 1024KB L2 cache 

versus 4096KB L2 cache respectively. The AMD Thuban 1090T, with a high clock speed 

and advanced architecture, outperforms the next fastest processor with a running time of 

4862 seconds (F(2,5) = 1015011, p < 0.000001).  
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Importantly, regardless of the test bed hardware platform, the Python implementation of 

the 3D sinc interpolation algorithm was not able to interpolate the voxel intensities for an 

entire fMRI time series with a sinc kernel size of 13 x 13 x 13 within a tractable length of 

time. Extrapolating based on the performance of the fastest hardware platform, the AMD 

Thuban 1090T, it would take an estimated 21195 seconds or 5.9 hours to complete the 

interpolation of one volume; extrapolating based on the performance of the slowest 

hardware platform, the Intel Xeon 5603, it would take an estimated 60577 seconds or 

16.8 hours to interpolate one volume. This means that at best, a Python implementation 

of the serialSinc algorithm could interpolate the data from an example 800 volume scan 

(20 minutes, TR = 1.5 seconds) in slightly over 6 months; surely an intractable length of 

time. 

4.4 C 

 

Figure 11: C implementation running time comparison across test beds. 
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The results of comparing the performance of a C implementation of the serialSinc 

algorithm across the four test bed hardware platforms described above are presented in 

Figure 11 above. The raw data for this comparison are provided in Appendix D. Each 

running time presented is the average of 10 trials of executing the algorithm. Once again, 

for all four test beds the running time increases as a cubic polynomial. 

These results show several interesting similarities and differences as compared to the 

results of the Python implementation. Once again, the AMD Thuban 1090T outperforms 

all of the other processors with a running time of 114 seconds for a sinc kernel of size 13 

x 13 x 13 when interpolating the voxel intensity values for a whole brain image (F(2,10) 

= 1032026, p < 0.000001). The AMD Turion TL-56 and the Intel E5603 again perform 

quite similarly at 292 and 310 seconds respectively, however still with a significant 

difference between them (F(2,10) = 376167, p < 0.000001); this implies that the 

similarities between these hardware platforms have a consistent impact on running time 

across different programming languages. Differing from the results of the Python 

implementation, the Intel Xeon E5504 performs substantially worse than the AMD 

Turion TL-56 and the Intel E5603, with a running time of 561 seconds (F(2,10) = 

104313253, p < 0.000001). 

The C implementation of serialSinc once again does not provide a tractable solution for 

performing 3D sinc interpolation with a kernel of size 13 x 13 x 13 for an entire fMRI 

time series, regardless of the hardware platform. When using the slowest test bed, the 

Intel Xeon E5504, interpolating an entire volume takes 561 seconds. It would therefore 

take approximately 125 hours or 5.2 days to interpolate an entire 800 volume time series. 

Using the fastest hardware platform, the AMD Thuban 1090T, it takes approximately 114 

seconds to complete the interpolation of one volume, translating to approximately 25 

hours for the interpolation of an entire time series. Although this computation time is 

much faster than that of the slowest test bed, more than a day is still too long to wait for 

the results of interpolating a single fMRI time series' data. 
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4.5 OpenCL 

OpenCL (Open Computing Language) is an open standard designed by the Khronos 

group for the cross-platform parallel programming of processors found in computers, 

servers and embedded devices. OpenCL is based on the C99 programming language and 

facilitates the acceleration of a wide range of algorithms and programming patterns. The 

kernel for the parallelSinc interpolation algorithm was implemented in C++. Given the 

cross-platform nature of OpenCL, its performance was assessed on the CPU and GPU 

(graphics processing unit) hardware platforms independently. 

4.5.1 OpenCL for CPU 

 

Figure 12: OpenCL CPU implementation running time comparison across enabled 

processor cores. 

The results of comparing the performance of the OpenCL implementation of the 

parallelSinc algorithm for the CPU across four test hardware configurations are presented 
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in Figure 12. The raw data for this comparison are provided in Appendix E. Each running 

time presented is the average of 10 trials of executing the algorithm. Once again, for all 

test beds the running time increases as a cubic polynomial. This comparison serves to 

demonstrate the differences in execution time which can be achieved within the same 

processor (AMD Thuban 1090T clocked at 3221Mhz) based upon how many cores are 

available to run concurrent copies of the parallel kernel and the effect of overheads. 

With a kernel size 13 x 13 x 13, running on two CPU cores the OpenCL parallelSinc 

implementation can interpolate the intensities of the 230400 voxels in an entire fMRI 

volume in approximately 142 seconds. Predictably, the best case performance is provided 

by running the CPU with all six cores enabled (F(2,10) = 451706, p < 0.000001); in this 

case, the same number of interpolations with the same sinc kernel size can be completed 

in 47 seconds. This is a speedup of approximately 3 times when the number of processor 

cores enabled is increased by a factor of 3. 

 

Figure 13: Running time as a function of enabled processor cores. 
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Figure 13 displays the power law relationship between running time and the number of 

enabled processor cores. Importantly, in concordance with Amdahl's law this relationship 

implies that the gains provided by an increasing number of CPU cores are asymptotic; 

that is to say, there is a limit to the improvement that can be provided by increasing the 

number of cores in a processor (given the same work load). 

A demonstration of the overheads introduced by OpenCL can be seen by adding the 

running times of the C implementation of serialSinc on one core of the AMD Thuban 

1090T clocked at 3221Mhz to Figure 12, shown in red with blue markers on Figure 14. 

 

Figure 14: OpenCL CPU implementation running time comparison across enabled 

processor cores with single-core C implementation. 

At 151 seconds, the performance of the serial C implementation is superior to the 

OpenCL implementation when there is only one processor core enabled (F(2,10) = 

52056, p < 0.000001). This can be explained by the burdens introduced by the OpenCL 
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runtime (to handle thread switching, etc.) which are absent from the pure C 

implementation of the serialSinc 3D sinc interpolation algorithm. With two cores 

enabled, the OpenCL implementation for the CPU performs approximately as well as the 

C implementation, however still with a significant difference in running time (F(2,10) = 

545, p < 0.000001). With four and six CPU cores enabled, the burden of parallelism is 

well compensated for by the concurrency provided by OpenCL and the OpenCL 

implementation outperforms the C implementation markedly. 

The OpenCL implementation of 3D sinc interpolation for CPU also does not provide a 

tractable solution for performing 3D sinc interpolation with a kernel of size 13 x 13 x 13 

for an entire fMRI time series. When using all six cores of the AMD Thuban 1090T 

processor, interpolating an entire volume takes 47 seconds and therefore it would take 

approximately 10.5 hours to interpolate an entire 800 volume time series; this is still not a 

desirable running time given that a single fMRI study could have more than 10 

participants with several scanning sessions per participant. 

4.5.2 OpenCL for GPU 

The performance of the OpenCL implementation of the parallelSinc algorithm for the 

GPU is shown in Figure 15. The raw data for this implementation are provided in 

Appendix F. Each running time presented is the average of 10 trials of executing the 

algorithm; the running time increases as a cubic polynomial once again.  

The OpenCL implementation of 3D sinc interpolation for the GPU finally provides a 

tractable solution for performing 3D sinc interpolation with a kernel of size 13 x 13 x 13 

for an entire fMRI time series. Interpolating an entire volume with a sinc kernel of this 

size takes 1.51 seconds and therefore an entire 800 volume time series for a 20 minute 

scanning session (TR = 1.5 seconds) could be interpolated almost in real time at 21 

minutes. 
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Figure 15: OpenCL GPU implementation running time performance. 

4.6 Overall Results 

Consider again the position of a neuroscience researcher who is trying to decide whether 

a given algorithm will be suitable to include in her neuroimaging data analysis pipeline, 

which is to run on her workstation desktop computer. In this section, the performance of 

the different languages explored previously is compared within the context of one 

computer system, test bed 1. 

Presented in Figure 16 below are the performance results of benchmarking the 3D sinc 

interpolation algorithms described in Chapter 3 across programming language and 

hardware platform, within test bed 1. The results of benchmarking the Python 

implementation have been excluded from the figure for the sake of scale however they 

are listed with the other raw data for this figure in Appendix B. 
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Figure 16: 3D sinc interpolation running time across programming language and 

hardware platform within test bed 1. 

As evidenced by its exclusion from Figure 16 due to its excessively long running times, 

the Python implementation of the 3D sinc interpolation was by far the slowest of those 

tested with an estimated running time of 21200 seconds or 5.9 hours for an entire 80 x 80 

x 36 voxel fMRI volume with a 13 x 13 x 13 sinc kernel. Python is an interpreted 

scripting language and does not benefit from the optimizations introduced by 

compilation, as do OpenCL and C. Specifically, the performance of an algorithm written 

in Python suffers severely when looping structures are used; the serialSinc algorithm uses 

6 layers of nested FOR loops and as such the Python implementation performs 

accordingly. 

The C implementation of the serialSinc algorithm was the next best in its running time 

performance, executing in approximately 114 seconds at an estimated 520 times faster 

rate than the Python implementation for the same sinc kernel with the same number of 
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interpolations. Although this version of the 3D sinc interpolation algorithm runs serially 

and only in a single thread, it is able to take advantage of the optimizations imbued by the 

C compiler when it is converted into a Python extension module by the distutils library. 

In general, the C programming language provides a high degree of performance for serial 

programs. 

The OpenCL implementation of 3D sinc interpolation for CPU provides the next lowest 

running time at 37.8 seconds, providing approximately 3 times better performance than 

the C implementation and an estimated 1500 times better performance than the Python 

implementation for the same sinc kernel with the same number of interpolations (F(2,10) 

= 185689, p < 0.000001). In this implementation, the parallelSinc kernel is built and run 

on the CPU by the Python PyOpenCL package, taking advantage of the AMD Thuban 

1090T processor's 6 cores to run 6 copies of the parallel kernel concurrently. Importantly, 

the PyOpenCL version of the algorithm does not run 6 times faster than the analogous C 

implementation, because of the overheads introduced by running the algorithm in 

parallel. 

The OpenCL implementation of 3D sinc interpolation is improved substantially when run 

on the GPU, executing in slightly over 1.51 seconds for a sinc kernel of size 13 x 13 x 13 

and vastly outperforming every other implementation: 39000 times faster than Python, 74 

times faster than C, and 25 times faster than OpenCL for the CPU at 37.8 seconds 

(F(2,10) = 1610875, p < 0.000001). Graphics processing units contain hundreds of small 

processors called stream processors, which are designed to perform the simple 

mathematical operations used in rendering 3D graphics. The Radeon 6850 GPU in test 

bed 1 has 960 stream processors for this purpose; the OpenCL for GPU implementation is 

therefore able to take advantage of this hardware platform to run many hundreds of 

copies of the parallelSinc parallel kernel simultaneously. As such, the OpenCL for GPU 

implementation is the best option for performing 3D sinc interpolation available on this 

test bed. 
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Chapter 5  

5 The Field Programmable Gate Array 

A field programmable gate array (FPGA) is a customizable integrated circuit and can be 

used to compute the result of a complex logical function by physically implementing it 

within large blocks of reconfigurable logic gates. In this chapter I present the results of a 

novel implementation of the 3D sinc interpolation algorithm using an FPGA, beginning 

with a discussion of the hardware architecture of the test bed FPGA. Specifically, I 

compare the performance of two distinct parallel kernels for a sinc kernel size 13 x 13 x 

13 and then assess the performance of an FPGA implementation of 3D sinc interpolation 

to the implementations described in Chapter 4. 

5.1 Hardware Platform 

Field programmable gate arrays are a specialized type of computer hardware which are 

reprogrammable and user customizable. FPGAs contain a combination of logic 

components and blocks of memory; these components can be used to implement digital 

computations in hardware within the FPGA. The hardware logic components are referred 

to as logic blocks and can be used to implement a wide range of combinational functions 

or serve as volatile memory elements.  

The particular FPGA used to implement the 3D sinc interpolation algorithm described in 

Chapter 3 was the Altera Stratix V GS D5, housed in a Nallatech 385N PCIe computing 

card. This device has 8GB of onboard memory and communicates with the host computer 

over an 8-lane PCIe Gen 3 bus. The Altera Stratix V GS FPGA is optimized for high-

performance, variable-precision digital signal processing (DSP) applications. This 

particular FPGA has 262400 adaptive logic modules, 3926 variable-precision DSP 

blocks, 2567 M20K memory blocks and 2 PCIe blocks, supporting a 14.1 Gbps host-

device data rate; a schematic of the Altera Stratix V FPGA architecture and features is 

shown in Figure 17 below. The rack-mount server test bed described in Chapter 4 was 

used to host this FPGA device for performance testing. 
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Figure 17: Altera Stratix V FPGA architecture and features (Altera Corporation). 

5.2 Implementation 

The same Python code to handle file I/O and performance testing as described in Chapter 

4 was used for the FPGA implementation of 3D sinc interpolation. OpenCL host code to 

handle data transfer and execution of the parallel kernel on the FPGA was compiled using 

distutils as an extension to Python. The OpenCL parallel kernel code was built into a Raw 

Binary File (RBF) for the FPGA with the IBM Altera OpenCL compiler. The Altera 

Configuration via Protocol (CvP) system was then used to transfer the RBF and configure 

the logic components of the Altera Stratix V FPGA over the PCIe interface. 

Two versions of the OpenCL parallelSinc kernel described in Chapter 3 were compiled 

for the FPGA. In the first version, the size of the sinc kernel used to perform the 

interpolation was dynamic and provided to the parallel kernel as a parameter. In the 

second version the size of the sinc kernel was static and fixed at 13 x 13 x 13, in an 

attempt to improve performance. The comparative utilization of the Altera Stratix V GS 

FPGA hardware components for these two versions is presented in Table 5 below. 
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Table 5: Dynamic versus static sinc kernel Altera Stratix V GS hardware utilization. 

Resource Dynamic Kernel Static Kernel 

Logic Utilization 31% 26% 

Adaptive Lookup Table 17% 16% 

Dedicated Logic Registers 14% 11% 

Memory Blocks 29% 23% 

DSP Blocks 54% 40% 

  
 

Best Case FLOP Throughput 2687.84 MFLOPS 9250.00 MFLOPS 

 

5.3 Performance Benchmarking 

The results of a performance comparison of the dynamic and static 3D sinc interpolation 

kernels across input sizes with a sinc kernel of size 13 x 13 x 13 are shown in Figure 18. 

The raw data for this comparison are provided in Appendix G.

 

Figure 18: FPGA dynamic and static sinc kernel running time performance 

comparison for kernel size 13 x 13 x 13. 
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 When interpolating the voxel intensities of an entire fMRI volume (230400 total 

interpolations), with a running time of 15.8 seconds the dynamic sinc kernel performed 

significantly worse than the static sinc kernel which had mean running time of 14.9 

seconds (F(2,10) = 78492.81, p < 0.000001). This difference in performance can be 

explained by the optimizations offered by the IBM Altera OpenCL compiler when the 

number of loop iterations is predetermined as in the static sinc kernel parallel kernel. 

As shown in Figure 19 below, to interpolate an entire 230400 voxel fMRI volume with a 

3D sinc kernel of size 13 x 13 x 13, at 15.8 seconds the dynamic FPGA implementation 

performed significantly better than the OpenCL implementation for CPU which took 37.8 

seconds (F(2,10) = 590851, p < 0.000001). The FPGA implementation however 

performed worse than the OpenCL GPU implementation of the parallelSinc kernel at 

1.51 seconds (F(2,10) = 62851220, p < 0.000001). 

 

Figure 19: 3D sinc interpolation running time across programming language and 

hardware platform within test bed 1, including the FPGA dynamic sinc kernel. 
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The FPGA is also a reasonable platform for performing 3D sinc interpolation with a 

kernel of size 13 x 13 x 13 for an entire fMRI series. Interpolating an entire volume with 

a sinc kernel of this size takes 15.8 seconds and so the example 800 volume fMRI time 

(20 minutes, TR = 1.5 seconds) series from Chapter 4 could be interpolated in 3.5 hours. 

5.4 Power Considerations 

Although running the 3D sinc interpolation on the FPGA cannot provide performance 

surpassing that of the GPU, an important consideration is the amount of power used to 

complete the computation. Under load, a powerful GPU might draw between 300-500W 

of power. The most power-hungry FPGA however, will draw at most 10W of power 

under load. Consider a large fMRI study, in which each of 20 participants has 1500 

volumes of scanner data. The energy required by the device to interpolate the raw data for 

this study with the 500W Radeon 6850 in test bed 1 is 

          

      
   

           

        
   

            

           
                            

whereas the energy required to interpolate the same dataset with the 4W Altera Stratix V 

FPGA housed in a Nallatech 385N card is 

        

      
   

            

        
   

            

           
                             

This is to say, the same fMRI preprocessing task could be completed with an FPGA using 

less than 10% of the power of a GPU implementation. Given that an average household 

consumes 30kWh of energy per day (U.S. Energy Information Administration), the 

energy savings afforded by the use of a FPGA are meaningful. 
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Chapter 6  

6 Case Study: Robust Motion Correction 

Current state of the art motion correction algorithms can adequately compensate for the 

head movements in a typical subject, however fail to correct for the greater head 

movements in special populations. Conor Wild and Rhodri Cusack developed a new 

motion correction algorithm which can compensate for these greater head movements 

(personal communication, May 15, 2013). In this chapter, I show the performance 

benefits which can be realized in Wild and Cusack's motion correction algorithm by 

improving the implementation of the interpolation step. 

6.1 Algorithm 

Traditional motion correction algorithms such as those outlined in Chapter 2 are designed 

to handle the small (e.g. 1mm) movements which occur in normal subjects. Special 

patient populations such as the elderly, mentally ill, or infants can however produce 

movements of up to several millimeters during a scanning session (Friston et al., 1996). 

Traditional motion correction algorithms can fail when applied to scanning data from 

subjects who display these greater magnitudes of motion; these failures would be due to 

an inability of the optimization algorithm to find a global minimum for the error function 

given the high degree of error present at the outset of optimization.  

As such, there is a need for more robust motion correction algorithms which can 

accommodate these populations if they are to be studied with traditional fMRI paradigms. 

In response to this need, Wild and Cusack (personal communication, May 15, 2013) 

developed a general motion correction algorithm which can provide for robust motion 

correction (i.e. correcting for subject movements greater than 1mm) as well as traditional 

motion correction (i.e. correcting for subject movements less than 1mm). This algorithm, 

henceforth referred to as RMC, is similar in structure to the FSL motion correction 

algorithm described in Chapter 2. A flowchart of the RMC algorithm is shown in Figure 

20 below. 
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Figure 20: Wild and Cusack's robust motion correction algorithm flowchart. 

The RMC algorithm uses a variation of the Global-Local optimization proposed by 

Jenkinson, Bannister, Brady and Smith (2001). For each level of smoothing (performed 

with a Gaussian smoothing kernel), for each chunk in the time series (a chunk is a 

collection of slices, up to an entire volume of slices), the RMC algorithm uses an 
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optimization algorithm to find a solution spatial transformation which reduces the 

difference between that chunk and the corresponding chunk in a template image. In this 

algorithm, the rigid body assumption for the entire brain is violated, however it is still 

preserved for each chunk of slices. 

The optimization algorithm begins its search for the solution spatial transformation of a 

given chunk with a linear combination of the solution transformation from the previous 

chunk at the current smoothing level and the solution transformation from the current 

chunk at the previous smoothing level. The total number of optimizations performed is 

therefore given by the number of smoothing levels multiplied by the number of chunks in 

the time series. Within each of these optimizations, for each new potential spatial 

transformation the voxel intensities for the entire chunk must be interpolated from the 

raw scan data in order to evaluate the cost (error) function. Once the spatial 

transformation for every chunk in the time series has been computed for the final 

smoothing level, these parameters are saved and the corrected time series data are 

interpolated from the raw scan data. 

6.2 Performance Benchmarking 

As suggested in the previous section, the RMC algorithm needs to perform many 3D 

interpolations to determine the realignment parameters for an entire fMRI time series 

(interpolation is shown in red on Figure 20). The number of interpolations necessary to 

determine the final solution spatial transformation for an entire time series is given by 

                                                                           

and therefore the performance of the interpolation method used in RMC is of central 

importance to its performance as a whole. For this reason, the RMC algorithm is an ideal 

practical example of the performance gain which can be realized by improving the 

implementation of the interpolation step. 

To demonstrate this performance gain, the running times to correct the motion in one 80 

x 80 x 36 voxel fMRI volume for two versions of the RMC algorithm were compared: 

one version of the RMC algorithm used the C implementation of the serialSinc algorithm 
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running on test bed one's AMD Thuban 1090T CPU; the other version used the OpenCL 

implementation of the parallelSinc algorithm running on test bed one's Radeon 6850 

GPU. In both of these versions of the RMC algorithm three smoothing levels were used 

(with Gaussian smoothing kernel sizes of 4, 2 and 1) and the chunk size was 6 slices, 

meaning there were 6 chunks in total. To perform the optimization step, Powell 

optimization was used with a sum of squared error cost function. The results of this 

comparison are presented in Figure 21 below. 

 

Figure 21: RMC robust motion correction algorithm performance comparison 

within test bed 1 for C and OpenCL for GPU. 

The version of the RMC algorithm using a C implementation of 3D sinc interpolation had 

a running time of 379 minutes, whereas the version of RMC using an OpenCL 

implementation had a running time of 22.6 minutes, one sixteenth that of the C 

implementation. 
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Chapter 7  

7 Conclusions 

The focus of the present thesis has been on comparing the performance of different 

implementations of 3D sinc interpolation across multiple hardware platforms and 

programming languages. The results of these comparisons indicate a progressive 

improvement in performance from Python, C, OpenCL for CPU and OpenCL for GPU. 

Although the asymptotic time complexity of the algorithm might be equal among several 

of these implementations, the relative performance of different implementations is 

important because for neuroimaging data processing algorithms there is a hard constraint 

on the input size imposed by the physical limitations of the fMRI scanner and the 

physiological limitations of the subject. 

Moreover, although the results of this performance comparison might seem easily 

predictable to an individual versed in parallel programming techniques specifically or 

software engineering generally, they do serve to illustrate an important point: before an 

accurate algorithm (in this case sinc interpolation) is dismissed as unfeasible for the 

solution of a particular problem (i.e. 3D fMRI data interpolation) because of long running 

times on one test bed, alternatives for the hardware platform and software language used 

in its implementation should be considered. 

In addition to these comparisons, in this thesis a novel implementation of 3D sinc 

interpolation on a field programmable gate array was presented. This implementation 

performed better than an OpenCL implementation running on a 6 core CPU, however it 

performed worse than an OpenCL implementation running on a GPU. Although the 

FPGA was unable to offer better performance than the existing GPU OpenCL 

implementation, it was shown to consume substantially less power in completing the 

same computations. 

Finally, the performance of an entire algorithm for robust fMRI motion correction 

employing an implementation of 3D sinc interpolation in C and an implementation using 

OpenCL for the GPU were compared. These results again showed the superiority of the 
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GPU implementation of the algorithm, however this time in the context of a practical 

fMRI data preprocessing algorithm. 

7.1 Threats to Validity 

One threat to the validity of the results presented herein is the difference in the Python 

clock utility used to measure running time across the multiple operating systems used on 

the four experimental test beds. On Windows, the Python clock() function returns as a 

floating point number the wall-clock seconds elapsed since the first call to the function 

based on the Win32 function QueryPerformanceCounter() with microsecond accuracy. 

On Unix, the python clock() function returns the current processor time as a floating 

point number expressed in seconds, with the precision depending on the eponymous C 

function. Despite these differences the Python documentation indicates that regardless of 

the operating system, clock() is the function to use for benchmarking Python or timing 

algorithms. 

Another general criticism of the results presented could stem from the differences in I/O 

handling, floating point number handling, or compiler optimization between the multiple 

test beds described in Chapter 4. A critic could argue that because of these differences, 

comparisons of the performance of the 3D sinc interpolation between these systems are 

invalid, because of the lack of consistency between the systems. The comparisons 

presented were however intended not to rigorously compare the performance of the 

different CPU hardware architectures in each test bed, but instead to highlight the 

differences between each test bed as a whole. 

Another criticism could stem from the repeated paired statistical comparisons presented 

to the exclusion of a stricter multiple comparisons test such as Tukey's Honestly 

Significant Difference test. Multiple comparison tests such as Tukey's, however, typically 

involve only setting a stricter threshold for the significance of the p value reported to 

produce a new 'effective value' which compensates for the higher probability of a type I 

error present when making multiple paired comparisons. The statistical significance of 

the difference between each pair of sample means presented was however so powerful 
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that even with an extremely strict threshold for significance, each comparison would 

certainly achieve significance and allow for the rejection of the null hypothesis. 

7.2 Future Directions 

There are several future directions for this research. Firstly, comparisons between 

different GPU and FPGA hardware platforms could be undertaken. At present, the 

performance of the 3D sinc interpolation kernel was only evaluated on one GPU (the 

Radeon 6850) and one FPGA device (the Altera Stratix V GS). Benchmarking the 

algorithm's performance on a GPU from a different manufacturer such as nVIDIA, or a 

FPGA from a different manufacturer such as Xilinx could provide interesting results. For 

example, a state of the art GPU like the nVIDIA Titan might be able to perform 3D sinc 

interpolation with a sinc kernel size 13 x 13 x 13 in real time for a scanner with a volume 

resolution of 80 x 80 x 36 voxels. 

As explained in Chapter 3, the 3D sinc interpolation algorithm was parallelized only at 

the level of the voxels in a given chunk. Parallelizing the sinc interpolation algorithm 

with a smaller granularity, such as to the level of computing the sinc contribution of each 

voxel in a sinc kernel concurrently, could enhance performance of the parallel version of 

the algorithm further.  

Finally, although the 3D sinc interpolation algorithm is an interesting and valuable 

example for comparing the relative performance of different combinations of 

programming language and hardware platform, there are several other 3D interpolation 

methods commonly used in fMRI motion correction which might be worthy of 

consideration. It could be interesting and fruitful to compare the performance of different 

combinations of programming language and hardware platform for Fourier interpolation 

as well as trilinear interpolation in a manner similar to that presented herein. 
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Appendices 

Appendix A: List of software packages and version numbers. 

Test Bed 1 - Workstation Desktop 

C Compiler Microsoft (R) C/C++ 15.00.21022.08 for x64 

Python 2.7 

PyOpenCL 2012.1 

Numpy 1.7.0 

Scipy 0.12.0b1 

Nibabel 1.3.0 

matplotlib 1.2.0 

AMD VISION Engine 13.4 

  Test Bed 2 - Laboratory Desktop 

C Compiler GCC 4.7.3 

Python 2.7.4 

Numpy 1.7.1 

Scipy 0.11.0 

  

Test Bed 3 - Rack-Mount Server 

C Compiler GCC 4.4.6 

Python 2.7.5 

Numpy 1.7.1 

Scipy 1.12.0 

  

Test Bed 4 - Legacy Laptop 

C Compiler (same as test bed 1) 

Python 2.7.3 

Numpy 1.7.0 

Scipy 0.11.0 

Nibabel 1.3.0 

matplotlib 1.3.0 
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Appendix B: 3D sinc interpolation mean running time across programming 

language and hardware platform within test bed 1 data table. 

Kernel 
Size 

Slices Per 
Chunk Voxels Python C 

OpenCL 
CPU 

OpenCL 
GPU 

1 1 6400 0.09905 0.00080 0.00197 0.00250 

3 1 6400 5.44586 0.02354 0.01024 0.00317 

7 1 6400 79.9558 0.32574 0.11669 0.00721 

13 1 6400 N/A 1.97805 0.70556 0.03045 

  
     

1 2 12800 0.18917 0.00113 0.00208 0.00226 

3 2 12800 12.6758 0.05455 0.02205 0.00365 

7 2 12800 171.779 0.69705 0.24651 0.01154 

13 2 12800 N/A 4.10875 1.47251 0.05827 

  
     

1 4 25600 0.37508 0.00199 0.00199 0.00258 

3 4 25600 31.0592 0.13195 0.05065 0.00442 

7 4 25600 385.869 1.58344 0.55282 0.02453 

13 4 25600 N/A 8.88442 3.15047 0.12450 

  
     

1 8 51200 0.75490 0.00403 0.00309 0.00303 

3 8 51200 68.1876 0.28854 0.10095 0.00681 

7 8 51200 936.254 3.87883 1.32138 0.06046 

13 8 51200 N/A 19.9882 6.97667 0.28417 

  
     

1 16 102400 1.47991 0.00741 0.00512 0.00449 

3 16 102400 140.685 0.59934 0.20391 0.01125 

7 16 102400 2120.19 8.69777 2.92332 0.10882 

13 16 102400 N/A 49.0161 16.4872 0.68811 

  
     

1 32 204800 2.96186 0.01533 0.00892 0.00735 

3 32 204800 290.354 1.22223 0.41207 0.02019 

7 32 204800 4435.09 18.2435 6.08879 0.21176 

13 32 204800 N/A 104.408 35.0277 1.34306 

       

1 36 230400 3.33900 0.01705 0.00975 0.00764 

3 36 230400 317.506 1.35719 0.45108 0.02197 

7 36 230400 4862.61 19.7572 6.60705 0.23935 

13 36 230400 N/A 113.635 37.8461 1.51343 
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Appendix C: Python implementation mean running time comparison across 

hardware architecture data table. 

Kernel 
Size 

Slices Per 
Chunk 

Chunk 
Size 

CPU: AMD 
Turion TL-56 

CPU: AMD 
Thuban 1090T 

CPU: Intel 
Xeon E5603 

CPU: Intel 
Xeon E5504 

1 1 6400 0.30799 0.09905 0.24420 0.14320 

3 1 6400 15.6981 5.44586 15.4500 10.1600 

7 1 6400 224.373 79.9558 225.480 149.180 

  
     

1 2 12800 0.54832 0.18917 0.46700 0.28080 

3 2 12800 35.0594 12.6758 36.5600 23.6300 

7 2 12800 475.025 171.779 481.920 320.550 

  
     

1 4 25600 1.07633 0.37508 0.94340 0.55240 

3 4 25600 85.3394 31.0592 88.5900 56.4500 

7 4 25600 1077.04 385.869 1093.40 724.920 

  
     

1 8 51200 2.13736 0.75490 1.86760 1.09800 

3 8 51200 186.212 68.1876 191.470 125.160 

7 8 51200 2621.09 936.254 2638.18 1770.90 

  
     

1 16 102400 4.27821 1.47991 3.72680 2.19160 

3 16 102400 389.879 140.685 394.600 260.300 

7 16 102400 5946.47 2120.19 6028.40 3995.17 

  
     

1 32 204800 8.46581 2.96186 7.40300 4.37940 

3 32 204800 789.531 290.354 815.000 521.650 

7 32 204800 12306.4 4435.09 12644.3 8387.59 

       

1 36 230400 9.29165 3.33900 8.19300 5.14100 

3 36 230400 858.706 317.506 898.255 581.038 

7 36 230400 13147.54 4862.61 13647.1 9069.40 
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Appendix D: C implementation mean running time comparison across hardware 

architecture data table. 

Kernel 
Size 

Slices Per 
Chunk Voxels 

CPU: AMD 
Turion TL-56 

CPU: AMD 
Thuban 1090T 

CPU: Intel 
Xeon E5603 

CPU: Intel 
Xeon E5504 

1 1 6400 0.00227 0.00080 0.00100 0.00060 

3 1 6400 0.05974 0.02354 0.05180 0.10400 

7 1 6400 0.81697 0.32574 0.82080 1.55460 

13 1 6400 5.14122 1.97805 5.58380 9.83620 

  
     

1 2 12800 0.00342 0.00113 0.00180 0.00120 

3 2 12800 0.13578 0.05455 0.12060 0.24200 

7 2 12800 1.74915 0.69705 1.75920 3.33060 

13 2 12800 10.6442 4.10875 11.5958 20.4360 

  
     

1 4 25600 0.00662 0.00199 0.00280 0.00200 

3 4 25600 0.32599 0.13195 0.29220 0.58580 

7 4 25600 3.95834 1.58344 3.98700 7.54860 

13 4 25600 22.8674 8.88442 24.9098 43.8206 

  
     

1 8 51200 0.01129 0.00403 0.00520 0.00460 

3 8 51200 0.70593 0.28854 0.63580 1.27660 

7 8 51200 9.66314 3.87883 9.73100 18.4126 

13 8 51200 52.0704 19.9882 56.6878 99.6924 

  
     

1 16 102400 0.02066 0.00741 0.00980 0.00680 

3 16 102400 1.46545 0.59934 1.32300 2.65460 

7 16 102400 21.7726 8.69777 21.9184 41.5054 

13 16 102400 126.938 49.0161 138.281 243.587 

  
     

1 32 204800 0.03912 0.01533 0.01940 0.01380 

3 32 204800 2.98630 1.22223 2.69700 5.41220 

7 32 204800 45.5416 18.2435 45.9606 87.1916 

13 32 204800 270.240 104.408 294.574 517.887 

       

1 36 230400 0.04332 0.01705 0.02200 0.01500 

3 36 230400 3.29573 1.35719 2.98300 6.03700 

7 36 230400 49.7613 19.7572 49.9390 93.5930 

13 36 230400 292.338 113.635 310.316 561.970 
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Appendix E: OpenCL CPU implementation mean running time comparison across 

enabled processor cores data table. 

Kernel 
Size 

Slices Per 
Chunk Voxels 

OpenCL 
CPUx1 

OpenCL 
CPUx2 

OpenCl 
CPUx4 

OpenCL 
CPUx6 

1 1 6400 0.00271 0.00214 0.00255 0.00213 

3 1 6400 0.06272 0.03051 0.01686 0.01252 

7 1 6400 0.81735 0.41134 0.21402 0.14394 

13 1 6400 4.97512 2.48294 1.27170 0.88373 

  
     

1 2 12800 0.00312 0.00239 0.00275 0.00220 

3 2 12800 0.13687 0.07001 0.03683 0.02771 

7 2 12800 1.75404 0.87296 0.45412 0.30744 

13 2 12800 10.3356 5.15059 2.63962 1.82183 

  
     

1 4 25600 0.00455 0.00364 0.00323 0.00310 

3 4 25600 0.32941 0.16878 0.08977 0.06260 

7 4 25600 3.98209 2.01137 1.02545 0.68966 

13 4 25600 22.4482 11.3126 5.82611 3.90900 

  
     

1 8 51200 0.00618 0.00429 0.00444 0.00406 

3 8 51200 0.71679 0.35707 0.18361 0.12534 

7 8 51200 9.67034 4.82574 2.45543 1.64566 

13 8 51200 50.5352 25.1750 12.8196 8.65828 

  
     

1 16 102400 0.01108 0.00804 0.00676 0.00638 

3 16 102400 1.49845 0.76739 0.37532 0.25248 

7 16 102400 21.7944 10.8645 5.43781 3.64330 

13 16 102400 123.317 61.4237 30.9508 20.5567 

  
     

1 32 204800 0.02002 0.01422 0.01193 0.01063 

3 32 204800 3.02729 1.51200 0.76098 0.51041 

7 32 204800 45.6608 22.7674 11.3818 7.62043 

13 32 204800 262.660 130.975 65.7338 43.6484 

       

1 36 230400 0.07806 0.01596 0.01324 0.01196 

3 36 230400 3.66452 1.67630 0.85550 0.56357 

7 36 230400 50.0662 24.7522 12.5119 8.24016 

13 36 230400 287.257 142.382 70.8652 47.2883 
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Appendix F: OpenCL GPU implementation mean running time performance data 

table. 

Kernel 
Size 

Slices Per 
Chunk Voxels 

Radeon 
6850 

1 1 6400 0.00250 

3 1 6400 0.00317 

7 1 6400 0.00721 

13 1 6400 0.03045 

  
  

1 2 12800 0.00226 

3 2 12800 0.00365 

7 2 12800 0.01154 

13 2 12800 0.05827 

  
  

1 4 25600 0.00258 

3 4 25600 0.00442 

7 4 25600 0.02453 

13 4 25600 0.12450 

  
  

1 8 51200 0.00303 

3 8 51200 0.00681 

7 8 51200 0.06046 

13 8 51200 0.28417 

  
  

1 16 102400 0.00449 

3 16 102400 0.01125 

7 16 102400 0.10882 

13 16 102400 0.68811 

  
  

1 32 204800 0.00735 

3 32 204800 0.02019 

7 32 204800 0.21176 

13 32 204800 1.34306 

    

1 36 230400 0.00764 

3 36 230400 0.02197 

7 36 230400 0.23935 

13 36 230400 1.51343 
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Appendix G: FPGA sinc interpolation mean running time raw data table for static 

and dynamic parallel sinc kernels data table. 

Kernel 
Size 

Slices Per 
Chunk Voxels 

Dynamic 
Kernel 

Static  
Kernel 

1 1 6400 0.030 N/A 

3 1 6400 0.009 N/A 

7 1 6400 0.049 N/A 

13 1 6400 0.283 0.293 

  
   

1 2 12800 0.008 N/A 

3 2 12800 0.013 N/A 

7 2 12800 0.100 N/A 

13 2 12800 0.579 0.552 

  
   

1 4 25600 0.008 N/A 

3 4 25600 0.024 N/A 

7 4 25600 0.219 N/A 

13 4 25600 1.239 1.175 

  
   

1 8 51200 0.011 N/A 

3 8 51200 0.044 N/A 

7 8 51200 0.524 N/A 

13 8 51200 2.809 2.661 

  
   

1 16 102400 0.014 N/A 

3 16 102400 0.086 N/A 

7 16 102400 1.173 N/A 

13 16 102400 6.841 6.472 

  
   

1 32 204800 0.023 N/A 

3 32 204800 0.168 N/A 

7 32 204800 2.451 N/A 

13 32 204800 14.56 13.78 

     

1 36 230400 0.025 N/A 

3 36 230400 0.192 N/A 

7 36 230400 2.670 N/A 

13 36 230400 15.80 14.94 
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