
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-13-2013 12:00 AM

Performance Comparison of 3D Sinc Interpolation for fMRI Performance Comparison of 3D Sinc Interpolation for fMRI

Motion Correction by Language of Implementation and Hardware Motion Correction by Language of Implementation and Hardware

Platform Platform

Andrew B. Kope
The University of Western Ontario

Supervisor

Mark Daley

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Andrew B. Kope 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kope, Andrew B., "Performance Comparison of 3D Sinc Interpolation for fMRI Motion Correction by
Language of Implementation and Hardware Platform" (2013). Electronic Thesis and Dissertation
Repository. 1836.
https://ir.lib.uwo.ca/etd/1836

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61641899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1836?utm_source=ir.lib.uwo.ca%2Fetd%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

PERFORMANCE COMPARISON OF 3D SINC INTERPOLATION
FOR fMRI MOTION CORRECTION BY

LANGUAGE OF IMPLEMENTATION AND HARDWARE PLATFORM

by

Andrew Kope

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Andrew Kope 2014

ii

Abstract

Substantial effort is devoted to improving neuroimaging data processing; this effort however,

is typically from the algorithmic perspective only. I demonstrate that substantive running

time performance improvements to neuroscientific data processing algorithms can be realized

by considering their implementation. Focusing specifically on 3D sinc interpolation, an

algorithm used for processing functional magnetic resonance imaging (fMRI) data, I compare

the performance of Python, C and OpenCL implementations of this algorithm across multiple

hardware platforms. I also benchmark the performance of a novel implementation of 3D sinc

interpolation on a field programmable gate array (FPGA). Together, these comparisons

demonstrate that the performance of a neuroimaging data processing algorithm is

significantly impacted by its implementation. I also present a case study demonstrating the

practical benefits of improving a neuroscientific data processing algorithm's implementation,

then conclude by addressing threats to the validity of the study and discussing future

directions.

Keywords

Functional Magnetic Resonance Imaging, 3D Sinc Interpolation, Benchmarking, Parallel

Programming, OpenCL, Graphics Processing Unit, Field Programmable Gate Array, Motion

Correction, fMRI, GPU, FPGA.

iii

Acknowledgments

I would like to thank my supervisor Mark Daley for his guidance and feedback throughout

my master’s degree, and acknowledge Conor Wild for his assistance with the evaluation of

my implementations of 3D sinc interpolation in the context of a practical motion correction

algorithm.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. viii

List of Appendices .. x

Preface.. xi

Chapter 1 ... 1

1 Functional Magnetic Resonance Imaging .. 1

1.1 Magnetic Resonance Imaging Physics .. 1

1.2 fMRI Motion Correction: Overview ... 3

1.3 fMRI Motion Correction: General Algorithm .. 4

Chapter 2 ... 7

2 Interpolation Methods in fMRI Motion Correction ... 7

2.1 Trilinear Interpolation ... 7

2.1.1 Algorithm .. 7

2.1.2 AIR Software Package .. 8

2.2 Spline Interpolation ... 10

2.2.1 Algorithm .. 11

2.2.2 SPM2 Software Package ... 12

2.3 Fourier Interpolation ... 13

2.3.1 Algorithm .. 14

2.3.2 AFNI Software Package ... 14

2.3.3 PACE Motion Correction ... 15

v

2.4 Sinc Interpolation .. 17

2.4.1 Algorithm .. 17

2.4.2 FSL MCFLIRT Software Package.. 17

2.5 Other Motion Correction Techniques ... 20

Chapter 3 ... 21

3 Three Dimensional Sinc Interpolation ... 21

3.1 Algorithm .. 21

3.2 Serial Implementation ... 24

3.3 Parallel Implementation .. 26

Chapter 4 ... 29

4 Performance Benchmarking ... 29

4.1 Experimental Setup ... 29

4.2 Test Beds ... 30

4.3 Python ... 31

4.4 C .. 33

4.5 OpenCL ... 35

4.5.1 OpenCL for CPU .. 35

4.5.2 OpenCL for GPU .. 38

4.6 Overall Results .. 39

Chapter 5 ... 42

5 The Field Programmable Gate Array ... 42

5.1 Hardware Platform .. 42

5.2 Implementation ... 43

5.3 Performance Benchmarking.. 44

5.4 Power Considerations ... 46

Chapter 6 ... 47

vi

6 Case Study: Robust Motion Correction ... 47

6.1 Algorithm .. 47

6.2 Performance Benchmarking.. 49

Chapter 7 ... 51

7 Conclusions .. 51

7.1 Threats to Validity .. 52

7.2 Future Directions .. 53

References ... 54

Appendices .. 59

Curriculum Vitae .. 66

vii

List of Tables

Table 1: Workstation desktop test bed specifications. .. 30

Table 2: Laboratory desktop test bed specifications. .. 31

Table 3: Rack-mount server test bed specifications. .. 31

Table 4: Legacy laptop test bed specifications. .. 31

Table 5: Dynamic versus static sinc kernel Altera Stratix V GS hardware utilization. 44

viii

List of Figures

Figure 1: MRI brain image. .. 2

Figure 2: Trilinear interpolation (Wikipedia). .. 8

Figure 3: AIR registration algorithm (Woods et al., 1998)... 9

Figure 4: 1D Polynomial interpolation (Wikipedia). .. 11

Figure 5: 3D Cubic spline interpolation (GNU Octave). .. 12

Figure 6: PACE flowchart (Thesen, Heid, Mueller & Schad, 2000). 16

Figure 7: FSL global-local optimization ... 18

Figure 8: Illustration of a 4 x 4 x 4 sinc kernel. .. 23

Figure 9: Amdahl's Law for 50%, 75%, 90% and 95% parallelized algorithms. 26

Figure 10: Python implementation running time comparison across test beds. 32

Figure 11: C implementation running time comparison across test beds. 33

Figure 12: OpenCL CPU implementation running time comparison across enabled processor

cores. ... 35

Figure 13: Running time as a function of enabled processor cores. 36

Figure 14: OpenCL CPU implementation running time comparison across enabled processor

cores with single-core C implementation. .. 37

Figure 15: OpenCL GPU implementation running time performance. 39

Figure 16: 3D sinc interpolation running time across programming language and hardware

platform within test bed 1. .. 40

Figure 17: Altera Stratix V FPGA architecture and features (Altera Corporation). 43

ix

Figure 18: FPGA dynamic and static sinc kernel running time performance comparison for

kernel size 13 x 13 x 13. ... 44

Figure 19: 3D sinc interpolation running time across programming language and hardware

platform within test bed 1, including the FPGA dynamic sinc kernel. 45

Figure 20: Wild and Cusack's robust motion correction algorithm flowchart. 48

Figure 21: RMC robust motion correction algorithm performance comparison within test bed

1 for C and OpenCL for GPU. .. 50

x

List of Appendices

Appendix A: List of software packages and version numbers. .. 59

Appendix B: 3D sinc interpolation mean running time across programming language and

hardware platform within test bed 1 data table. .. 60

Appendix C: Python implementation mean running time comparison across hardware

architecture data table. .. 61

Appendix D: C implementation mean running time comparison across hardware architecture

data table. .. 62

Appendix E: OpenCL CPU implementation mean running time comparison across enabled

processor cores data table. .. 63

Appendix F: OpenCL GPU implementation mean running time performance data table. 64

Appendix G: FPGA sinc interpolation mean running time raw data table for static and

dynamic parallel sinc kernels data table. .. 65

xi

Preface

Within neuroscience, there is substantial effort devoted by researchers to the improvement of

neuroimaging data processing. This effort however, is typically only from the algorithmic

perspective with little attention paid to the hardware platform or programming language used

for the implementation of any particular algorithm. In my thesis, I demonstrate that

substantive improvements to the running time performance of a neuroscientific data

processing algorithm can be realized by giving consideration to its implementation.

I begin in Chapter 1 with a review of the physics underlying the functional magnetic

resonance imaging (fMRI) technique, followed by an overview of fMRI motion correction.

Motion correction is a preprocessing algorithm used to correct errors in fMRI data caused by

motion in the subject of the scan.

In Chapter 2, I provide a survey of several different interpolation methods used in the

performance of fMRI motion correction. For each interpolation method, I provide an

example of a popular software package which employs it in its motion correction utility.

In Chapter 3, I focus my discussion on the 3D sinc interpolation method, providing a detailed

description of the algorithm alongside a discussion of both serial and parallel

conceptualizations of it. 3D sinc interpolation provides highly accurate interpolations of

fMRI data, however its substantial running time limits its applicability; for these reasons, I

chose 3D sinc interpolation for my demonstration of the performance improvements which

can be realized by considering the hardware platform and programming language used to

implement an algorithm.

In Chapter 4, I quantify these improvements by benchmarking the performance of the 3D

sinc interpolation algorithm in Python, C, OpenCL (Open Computing Language) for

CPU/GPU across several different test bed hardware platforms. The benchmarking results

demonstrate that parallel implementations can greatly improve the running time performance

of the 3D sinc interpolation algorithm.

In Chapter 5, I describe a novel implementation of 3D sinc interpolation on a field

programmable gate array.

xii

In Chapter 6, I present a case study demonstrating the ‘real world’ benefits of these

performance improvements by showing the corresponding decrease in running time of an

algorithm for robust fMRI motion correction developed by my collaborators. I first explain

their algorithm in detail and then show the results of performance benchmarking

demonstrating these benefits.

In Chapter 7 I conclude by addressing threats to the validity of my results and discussing

future directions for this research.

1

Chapter 1

1 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is one of the foremost neuroscientific

imaging modalities in use today. This imaging technique uses the natural magnetic

properties of the human body to capture both structural images of the brain's anatomy and

functional images of its activity. fMRI is however vulnerable to errors introduced by even

slight motion in the subject of the scan; as such, motion correction algorithms have been

developed to correct for these errors. In this chapter a brief explanation of the physics

behind Magnetic Resonance Imaging is provided alongside an outline of the structure of

a general motion correction algorithm and an explanation of related concepts and

terminology.

1.1 Magnetic Resonance Imaging Physics

Magnetic resonance imaging (MRI) is a medical imaging technique which works by

taking advantage of the nuclear magnetic resonance (NMR) of the Hydrogen atoms inside

the human body. During an MRI scan, the subject of the scan is placed into a very strong

magnetic field imposed by a superconducting electromagnet which aligns the

magnetization of the Hydrogen nuclei (protons) in the water molecules within her body.

Secondary magnetic fields are then repeatedly applied to the subject by the scanner's

magnetic gradient coils, combined with strong radio frequency (RF) pulses which alter

the alignment of these magnetized protons; when the protons in the subject's tissues

return to their previous alignment a response radio frequency signal detectable by the

scanner's RF receivers is produced. These raw RF data recorded by the scanner’s

receivers are in k-space. k-space data exist in the spatial frequency domain and so are not

readily human readable. These data are converted into image space using an inverse

Fourier transform after image acquisition in complete (Twieg, 1983).

With the ability to detect both the location and type of the tissues in the subject's body in

three dimensions, MRI scanners can be used to capture 3D images of the complex tissue

structures within the human brain (Figure 1). A 3D MRI image of the brain is referred to

2

as a volume. Each volume is composed of a stack of 2D images called slices. The

minimum discrete data unit within each MRI volume is referred to as a voxel (akin to a

pixel in a 2D picture); these voxels are cubes containing only intensity data (i.e. the

voxels appear only in gray scale).

Figure 1: MRI brain image.

Functional magnetic resonance imaging uses the same physical principles underlying

structural MRI brain imaging to measure subjects' brain activity over time (hence the

term functional). The human body uses hemoglobin, the primary constituent of red blood

cells, to transport oxygen within the blood stream. Importantly, oxygenated hemoglobin

is unaffected by magnetic fields however deoxygenated hemoglobin is paramagnetic and

distorts magnetic fields. fMRI scanning measures brain activity by relying on the positive

correlation between brain activity and the presence of oxygenated hemoglobin within the

brain (Ogawa et al., 1992).

When an area of the brain is active, after approximately two seconds there is a significant

increase in the amount of oxygenated hemoglobin in the blood in that brain area,

displacing deoxygenated hemoglobin. Because this oxygenated hemoglobin is unaffected

by magnetic fields, the response RF signal returned to the fMRI scanner is stronger when

there is more brain activity and therefore more oxygenated hemoglobin in that brain

tissue; this is called the blood oxygen level dependent (BOLD) signal. The peak BOLD

response to neuronal activation occurs approximately 5-6 seconds after the onset of

3

activity. In order to track neuronal activation in brain tissue over time, an entire brain

volume is captured approximately every 1-2 seconds with a resolution of approximately

27mm3/voxel in 3T (tesla) fMRI research scanners. The capture of a series of many

fMRI brain volumes over time is referred to as a scanning session, with the complete

dataset from one scanning session referred to as a time series. A time series might contain

for example 800 volumes, if a brain volume is captured every 1.5 seconds and the

scanning session lasts for 20 minutes. The time between the capture of each volume is

called the time of repetition (TR) or sampling time of the scanning session; increasing the

resolution of a scan is traded for an increase in TR. It is also important to note that fMRI

scanners vary in the strength of the magnetic fields used, with 1.5-7T fields being

common among modern research scanners. With a higher magnetic field strength, the

scanner can capture brain volumes faster (i.e. with a smaller TR) or at a higher resolution.

Before fMRI brain scan data can be reviewed or analyzed, they must first be subjected to

several preprocessing steps. After the initial Fourier transform to convert raw k-space

scanner data to image space, operations to remove anatomical artifacts, remove scanner

noise and improve neuronal activation detection are typically applied (for more

information see Strother’s 2006 review of BOLD fMRI preprocessing pipelines). The

focus of the present chapter is on the processing of fMRI brain scan data to compensate

for slight involuntary head movements in the subject during the scanning session,

referred to as motion correction.

1.2 fMRI Motion Correction: Overview

Motion correction was first introduced by Jiang et al. (1995) to “reduce the effect of

subject motion during the acquisition of image data in order to differentiate true brain

activation from artifactual signal changes due to subject motion” (p. 224). Because the

observable signal changes in fMRI scanning are small, even with head movements of less

than 1mm, spurious clusters of task-related brain activation can appear (Field, Yen,

Burdette & Elster, 2000). For example, if two neighbouring voxels differ in intensity by

20%, then a motion of 10% of a voxel dimension can result in a 2% signal change,

comparable to the BOLD signal in a 1.5T fMRI scanner (Bandettini et al., 1992). In the

past, motion correction has received some criticism for potentially introducing spurious

4

activation artifacts itself. Freire and Mangin (2000) for example argued that some motion

correction algorithms will actively misalign motion-free fMRI data if there is an unusual

distribution of background noise or neuronal activation. Despite these criticisms however,

motion correction is generally accepted as an integral component of any fMRI

preprocessing pipeline (Lemieux et al., 2007; Lund et al., 2005).

In actuality, motion correction is a special case of image registration. As it pertains to

MRI and fMRI data, "to register two images means to align them, so that common

features overlap" (Kostelec & Periaswamy, 2003, p. 161). One common application of

image registration for fMRI data is aligning different subjects’ brain regions to a common

anatomical template to enable comparisons between subjects in a study. In the context of

motion correction, all of the volumes in one subject’s scanning session are aligned to a

common positional template to enable comparisons between volumes across a scanning

session.

1.3 fMRI Motion Correction: General Algorithm

In the general case, the image alignment responsible for correcting motion in fMRI is

done by the iterative performance of three major steps on each volume in a scanning

session time series:

1. Determination of the difference (error) between the current image and a template

 image (e.g. the first image in a scanning session) using a cost function.

2. Application of an optimization algorithm to determine a spatial transformation to

 move the current image closer to the template image.

3. Interpolation of the scan data based on the spatial transformation from step two to

 create a new current image for the next iteration of the algorithm.

These three steps will continue until the error determined in step one is below a threshold

determined by the optimization algorithm in step two. The error function in step one, the

optimization algorithm in step two and the interpolation method in step three are each

dependent on the motion correction algorithm used. In addition to these three algorithmic

5

dimensions, outlined below are several other dimensions along which different motion

correction algorithms can vary; examples of specific motion correction algorithms

varying along these dimensions are provided in the next chapter.

First, a motion correction algorithm can work either online or offline. An online

algorithm corrects for subject motion while the scan is in progress and thus must be able

to correct the motion of one volume in less time than the TR of the scanning session. This

limits the complexity of these algorithms, however allows adjustments to the scanner

parameters to be made ‘on the fly’ to improve scan accuracy and also enables researchers

to use real time fMRI (rtfMRI) experimental and therapeutic paradigms such as

biofeedback therapy (e.g. Weiskopf et al., 2007). Offline motion correction algorithms,

conversely, are applied after the entire scanning session is complete. Because they are not

required to execute within one time of repetition cycle, offline motion correction

algorithms are able to employ much more complex, compute-intensive optimization and

interpolation algorithms and can prioritize accuracy as opposed to speed.

Another important distinction is between correcting for physiological motion versus

random motion. Physiological motion refers to the cyclical motion of the head and blood

vessels caused by respiration and pulse. Although these motions are relatively small, they

can cause significant modulation of the BOLD signal (Noll & Schneider, 1994). Random

motion refers to unintentional head movements caused by involuntary muscle twitches or

an inability to maintain a stationary head position. The magnitude of these random

movements is usually less than 1mm in normal subjects, but in certain special populations

such as infants, the elderly, or the mentally ill these motions can be up to several

millimeters (Friston et al., 1996).

It is also important to draw a distinction between volume-by-volume and slice-by-slice

motion correction. In traditional fMRI scanning, each slice of each volume is acquired in

series over time. As such, there is a choice in how many slices to treat as a unit when

registering them. In volume-by-volume motion correction, the time difference between

capturing each slice is ignored and all of the slices composing the subject's entire brain

volume are treated as a whole. In this case, head movement is corrected for by aligning

6

each successive brain volume to a reference volume. The reference volume is usually the

first volume of the scanning session; an average of several volumes can however also

serve as this reference (Friston et al., 2006). Slice-by-slice motion correction, however,

operates at a finer temporal granularity. In this case, each slice (or a collection of several

slices, referred to as a chunk) is treated as a discrete unit and is aligned to a reference

slice or reference chunk. Volume-by-volume motion correction has the benefit of faster

processing time, because fewer alignments must be carried out; slice-by-slice motion

correction is however able to compensate for greater magnitudes of motion which cause

significant changes in brain position during the capture of a single volume (e.g. Speck,

Hennig & Zaitsev, 2006).

In the case of volume-by-volume and slice-by-slice motion correction, the 3D imaging

data being aligned are typically treated as a rigid body. Under the rigid body assumption,

there are only six degrees of freedom (three rotational and three translational) along

which an image can be transformed to align it with the template image. The rigid body

assumption is generally valid because the brain and head move together during scanning;

this assumption also serves to simplify the optimization step used in most motion

correction algorithms.

Finally, the spatial transformation that a motion correction algorithm produces to align a

given image back to the template image can be linear or nonlinear. Linear spatial

transformations include translation, rotation and zooming. Most linear transformations

preserve the rigid body assumption and do not deform the 3D brain image. Nonlinear

spatial transformations include affine transformations and warps; these are most often

used when registering a subject's scan data to a reference anatomical template to facilitate

between-subject comparisons. Because nonlinear spatial transformations violate the rigid

body assumption, most motion correction algorithms provide linear spatial transformation

solutions.

7

Chapter 2

2 Interpolation Methods in fMRI Motion Correction

The interpolation method used in a given motion correction algorithm has a significant

impact on the algorithm's overall performance (Jenkinson, Bannister, Brady & Smith,

2001). Interpolation is used in fMRI motion correction both to determine the values of

voxels intermediate to the raw scan data during optimization of the spatial transformation

(or motion estimate) and to produce the final scan session data once an accurate spatial

transformation correcting for the subject motion in each volume has been determined.

The interpolation step of an iterative motion correction algorithm is also often its most

compute intensive component. Correspondingly, the speed of the interpolation method

will tend to dominate the running time performance of a motion correction algorithm; this

is especially so if the algorithm needs to perform many iterations (and therefore

interpolations) when determining an optimal spatial transformation (or motion estimate).

In this chapter, a review of several methods for the 3D interpolation of fMRI

neuroimaging data is provided; for each interpolation method, the structure of the

algorithm and a prominent software package employing it are described.

2.1 Trilinear Interpolation

Trilinear interpolation is a multivariate interpolation method which allows for the

interpolation of intermediate points on a regular 3D grid by chaining together multiple

linear interpolations. Trilinear interpolation is one of the fastest 3D interpolation methods

however it is often criticized for its potential inaccuracy.

2.1.1 Algorithm

Trilinear interpolation is algorithmically the simplest method of interpolation presented in

this chapter. Given a set of known points on a regular 3D grid, trilinear interpolation uses

a chain of 7 individual linear interpolations to approximate the value of any intermediate

point contained within a rectangular prism given by the grid. Although trilinear

interpolation is relatively simple conceptually and fast computationally, it has the

8

disadvantage of relative inaccuracy compared to other interpolation methods (Tong &

Cox, 1999). Trilinear interpolation has also been criticized for introducing spatial

smoothing when applied to fMRI data (Oakes et al., 2005).

Figure 2: Trilinear interpolation (Wikipedia).

For a given intermediate point c whose value needs to be interpolated, the eight corners

of a cube on the regular grid surrounding it are first found. Then, four intermediate points

on the lines connecting those eight corners, referred to as c00 c01 c10 and c11, are calculated

using one dimensional linear interpolation. Next, two intermediate points on the lines

connecting c00 c01 c10 and c11 are interpolated, referred to as c1 and c0. Finally, c is given

by the linear interpolation of c1 and c0. These steps are shown in Figure 2.

2.1.2 AIR Software Package

In their 1998 paper, Woods et al. describe their Automated Image Registration (AIR)

software package. This package contains an image registration method which functions

very similarly to the general motion correction algorithm described in the previous

chapter. This registration algorithm serves as the foundation for the AIR software

package's motion correction utility, because as stated previously motion correction is

actually a special case of image registration. In the AIR registration algorithm an original

scan is first interpolated based on a possible solution spatial transformation, then a cost

9

function is evaluated which provides the algorithm with a quantitative measure of how

well the images are registered, then finally an optimization function determines a new

spatial transformation to apply to the image for the next cycle of the registration

algorithm. A schematic of the AIR registration algorithm is shown in Figure 3.

Figure 3: AIR registration algorithm (Woods et al., 1998).

To compare the images being registered, one of the images must be resampled according

to the parameters of the current spatial transformation. This resampling requires that

voxel intensities at locations in between the voxel locations represented in the original

image be calculated. The AIR algorithm uses the trilinear interpolation method to

perform this calculation. Once the final spatial transformation has been determined on the

last iteration of the realignment algorithm, the AIR software package provides the option

of using more advanced and accurate interpolation methods to produce the final image.

10

To determine the error for a given iteration of the realignment algorithm, the AIR

software package uses the ratio image uniformity (RIU) cost function. To compute this

cost function, a resampled image (given by a set of realignment parameters) is divided by

the image to which it is being registered on a voxel-by-voxel basis to create a ratio image,

with the uniformity of this image measured by its standard deviation. This standard

deviation is then divided by the mean ratio to provide a normalized cost function value

for the realignment parameters used to create the image. The minimization of this cost

function therefore increases the uniformity of the ratio image independent of the global

intensity scaling of the original images. The AIR software package also includes a second

option for the cost function, namely a least squares approach similar to that used by

Friston et al. (1996). The least squares cost function is given by the average voxel-by-

voxel difference between the resampled image and the reference image. The AIR least

squares cost function also adds an intensity scaling step to compensate for global

discrepancies in image intensity.

To handle the iterative adjustment of the spatial transformation to find an optimal rigid

body transformation of the brain image, the AIR software package uses a variation on the

Powell optimization algorithm (Powell, 1964). This optimization is a conjugate direction

method, searching through a 6D parameter space to find a local minimum of the error

function used. Powell's method does not require that derivatives be taken (as does for

example the Gauss-Newton method described below), but instead minimizes the error

function using a bi-directional search along each vector in a set of search vectors, usually

simply the normals of the search space aligned along each axis. As such, it is useful for

calculating the local minimum of a continuous but complex non-differentiable function.

2.2 Spline Interpolation

Spline interpolation is a special case of polynomial interpolation, using a piecewise

polynomial called a Basis spline. Splines were originally used to describe curves in

shipbuilding and are now widely used in computer graphics. Spline interpolation is a

special case of polynomial interpolation however it has several advantages over its more

general progenitor.

11

2.2.1 Algorithm

Given a set of n unique one dimensional points, the 1D polynomial interpolation problem

is to find the polynomial function which goes exactly through those points. The search

for this polynomial is equivalent to solving a linear system of equations; with a

polynomial of at least degree n - 1, there exists a provably unique solution to this linear

system. The 1D case of polynomial interpolation is shown in Figure 4.

Figure 4: 1D Polynomial interpolation (Wikipedia).

Spline interpolation is a special case of polynomial interpolation using a Basis spline

function. A Basis spline or B-spline is a piecewise polynomial function continuous at

each piece boundary, called a knot. Given a set s of n unique points, spline interpolation

will produce a piecewise polynomial function which passes through each knot point in s

while minimizing the amount of bending within the function as a whole (Webster &

Oliver, 2001). Typically, third degree polynomials are used for each piece of the function

(idem); these are referred to as cubic splines. First and second degree polynomials can

also be used however; these are referred to as linear and quadratic splines respectively.

An example of 3D cubic spline interpolation from the GNU Octave software package is

shown in Figure 5.

12

Figure 5: 3D Cubic spline interpolation (GNU Octave).

Spline interpolation is generally preferred over polynomial interpolation because of the

low interpolation error which can be achieved even when using low degree polynomial

functions for each piece of the function. Spline interpolation also avoids the problem of

oscillation at the edges of the interval of interpolation, which can occur when fitting a

high degree polynomial function to a set of equally spaced data points (also known as

Runge's phenomenon; see Fornberg & Zuev, 2007).

2.2.2 SPM2 Software Package

Friston et al. present an "efficient, automatic, and general multidimensional nonlinear

spatial transformation technique" (1995, p. 166). It was the authors' intention to create a

general registration algorithm applicable for realigning variations and combinations of

fMRI, structural MRI and positron emission tomography (PET) data. In order to

accomplish this, the authors used two guiding principles in designing their algorithm.

First, the authors wanted the constraints on the image transformations their algorithm

would use to be reasonable, explicit and operationally specified. To this end, the authors

decomposed the differences between two images into two components: intensity

differences between two images which are in perfect physical alignment and differences

in physical alignment or size and shape of the object being scanned. As such, the image

13

transformations produced by their algorithm are a nonlinear combination of rotational,

translational and intensity transformations.

The authors' second guiding principle was to develop a method with a single unique

solution transformation for each volume to be aligned. To this end, the authors linearised

the intensity transformation function using a low-order Taylor series approximation,

ensuring that a single least squares solution exists for every image registration; a least

squares solution uses an over-determined system of equations to minimize the sum of the

squares of the errors (SSE) in the results of each equation. To minimize the sum of

squared errors in the system of equations, the authors employed Gauss-Newton

optimization. The Gauss-Newton optimization method iteratively finds the minimum SSE

based on the first derivative of the sum of squared error function. This algorithm can

produce general image registration solutions, however when used for fMRI motion

correction the authors’ algorithm uses only translations, rotations and an identity intensity

transformation. That is, the solution transformation produced still follows the rigid body

assumption.

This general nonlinear registration algorithm served as the foundation of the motion

correction algorithm used in the neuroimaging data processing software package SPM2

(Statistical Parametric Mapping 2), maintained by the Wellcome Trust Centre at

University College London. SPM2 uses a registration algorithm closely based on that

presented in Friston et al.’s 1995 paper to provide estimates of subject motion, then using

those estimates determines a solution spatial transformation to correct for that motion.

Once a solution transformation has been determined, the original scan data is interpolated

using a 4D Basis spline to produce the final motion corrected scan data.

2.3 Fourier Interpolation

Fourier interpolation is lauded for combining speed and accuracy when interpolating

fMRI data. Because it operates on data in the Fourier domain, the native k-space of raw

scanner data, Fourier interpolation has seen wide use in medical imaging in general.

14

2.3.1 Algorithm

Consider a spatial transformation which will rotate a slice from an fMRI volume. To

determine the new voxel intensities for the slice given that spatial transformation, voxel

intensity values intermediate to the existing image must be computed. Fourier

interpolation computes these intermediate voxel intensities by first converting the spatial

transformation from an image space transformation to a k-space transformation. This new

transformation is then applied to the raw k-space data and the result is used to produce

the new voxel intensities though the application of an inverse Fourier transform:

2.3.2 AFNI Software Package

Cox and Jesmanowicz (1999) describe a fast and accurate method for shifting and

rotating a 3D image using a shear factorization of the rotation matrix, as is used to handle

motion correction in the AFNI (Analysis of Functional Neuroimages) software package

(Cox, 1996). The authors based their method on the work of Eddy, Fitzgerald and Noll

(1996) who proposed the combination of three 2D shearing operations and Fourier

transform based shifting for 2D MRI rotation. The authors extended this previous work,

relying on the principle that a 3D proper orthogonal matrix can be factored into three 2D

rotations and so a general 3D image rotation can be accomplished with nine 2D shears.

As such, a 3D shear factorization has the same advantage that a 2D shear does in that its

elementary operations are coordinate shifts on 1D rows extracted from the image. In the

authors' algorithm, when any particular row of the 3D image is shifted in this way, the

row's data are interpolated using fast Fourier transforms (FFTs).

To determine the correct rotation in order to register a given volume to a template image,

the authors repeatedly linearised a weighted least squares penalty (or error) function with

respect to a rigid body transformation of the brain. This error function is:

15

Repeated linearization is equivalent to applying an iterative gradient descent algorithm to

the least squares penalty function. Gradient descent works by stepping toward the next

lowest point in the error space of the least squares penalty function at each iteration of the

optimization algorithm. The size of the step taken at each iteration is based on the first

derivative of the error function on that iteration. Gradient descent can work in an error

space of any number of dimensions and is guaranteed to converge to a local minimum,

however convergence can be slow close to minima because the first derivatives of the

error function surrounding them are typically small. When the error function has been

minimized, the corresponding 3D shear image rotation will align the current image to the

template image and thereby correct for subject motion.

2.3.3 PACE Motion Correction

The PACE (Prospective Acquisition CorrEction) motion correction method presented by

Thesen, Heid, Mueller and Schad (2000) departs from retrospective motion correction

techniques, where motion is corrected for by processing the data after a full set of scan

data have been acquired. PACE instead corrects for motion and updates the scanner

parameters for slice orientation and position in real time after each volume is captured

(the principle flow chart of the complete PACE real-time acquisition correction is shown

in Figure 6). After each volume is acquired, the motion of that volume relative to a

reference volume is detected, then those positional data are sent simultaneously to the

scanner and to a Fourier interpolation algorithm (the authors refer to interpolation as

regridding).

To detect the motion in each volume during the scan, PACE uses as a similar technique

to Friston et al. (1996). First, one volume is chosen as a reference to which all subsequent

volumes will be aligned. To speed up computation, the PACE algorithm uses only a

subset of voxels in the brain scan to perform the alignment, covering roughly the area

containing brain tissue in the interior slices of the volume. Next, the rigid body

transformation mapping the current volume being aligned to the reference volume is

expanded as a first order Taylor series. This Taylor series is approximated and a least

squares solution for its parameter function is obtained iteratively (with the motion

parameters or spatial transformation resampled at each iteration). When complete, this

16

algorithm produces a rotation matrix and a shift vector describing the motion between the

most recently acquired volume and the reference volume. The authors suggest that for

typical fMRI scans, the motion in any given volume can be detected with only ten

iterations of this function.

Figure 6: PACE flowchart (Thesen, Heid, Mueller & Schad, 2000).

This method of prospective motion correction feeds back the positional information

calculated from a given volume to the next volume in the scanning session, however

because of the 3-4 second delay in volume acquisition for the scanner the authors were

using, their algorithm also includes a step to remove any residual motion not corrected

for by the use of updated positional parameters during image acquisition. For each

acquired volume, the transformation required to adjust the current image to the reference

image are calculated, then this transformation is used to regrid (interpolate) the measured

volume in order to eliminate residual volume to volume motion from the final session

data. The authors chose to use Fourier interpolation, specifically the shearing method

introduced by Eddy, Fitzgerald and Noll (1996) described above to accomplish this

interpolation.

17

2.4 Sinc Interpolation

Like spline interpolation, sinc interpolation is a special case of the more general

polynomial interpolation. Sinc interpolation has the unique advantage of being able to

provide an almost perfect reconstruction of band-limited data. Although it provides high

quality results, sinc interpolation is very slow relative to other interpolation algorithms

(Friston et al., 1996).

2.4.1 Algorithm

A detailed exploration of the 3D sinc interpolation method is provided in Chapter 3.

2.4.2 FSL MCFLIRT Software Package

Jenkinson, Bannister, Brady and Smith (2001) wanted to address the problem of the

optimization method used in motion correction algorithms; a problem they argue had

received little attention at the time. Specifically, the authors argue that most optimization

algorithms in use at the time of their writing were susceptible to becoming trapped in

local minima of the so-called error space of the optimization function. That is, the

optimization algorithm might become caught in a ‘large scale basin’ or a ‘smalls scale

dip’ and fail to reach a global minimum for the cost function.

In the former case, an optimization algorithm would produce a large misregistration

because the local minimum of a large scale basin is far from the global minimum. In the

latter case, the optimization algorithm simply stops prematurely at a small scale dip,

causing a large misregistration at low resolutions or a small registration at high

resolutions. To combat these two types of local minimum optimization errors, the authors

used a two-pronged approach; apodization of the cost function (that is, smoothing the

function at its edges) to eliminate the ‘small dip’ error, combined with a hybrid global-

local optimization technique which utilizes prior knowledge about the transformation

parameters and typical data size to avoid ‘large scale basin’ errors.

The mathematical details of how the authors apodized the cost function are outside the

scope of this paper, however their global-local hybrid optimization method warrants

further explanation. This method is designed to provide a reliable estimate of the global

18

minimum of the cost function given some time restriction. The method uses four stages

of search, each with the template and image to be aligned scaled to a different resolution

(see Figure 7). At each stage, whenever the global-local hybrid optimization method is

minimizing the cost function, Powell minimization is used.

Figure 7: FSL global-local optimization

(Jenkinson, Bannister, Brady & Smith, 2001).

In the first stage, the images are pre-blurred with a Gaussian kernel and voxels are scaled

to 8 x 8 x 8mm, preserving only the gross image features. The search for a minimum of

the cost function at the 8mm stage is divided into three steps: step one, a coarse search

over the rotation parameters with a full local optimization of translation and scale for

each rotation tried; two, a finer search over rotation parameters but with only a single cost

function evaluation at each rotation; three, a full local optimization (rotation, translation

and global scale) for each local minimum detected from the previous stage (ibid., p. 831).

Although it is unlikely that the first step will provide an accurate estimation of brain

19

motion, the progression of these steps provides several reasonable potential starting

points in the error function for the next stage of the optimization.

The second stage of the optimization is performed at 4 x 4 x 4mm scale (images are again

pre-blurred with a Gaussian kernel). This stage takes the top three local minima

candidates for the global minimum, then also generates six rotational and four scale

perturbations of each of these minima, producing 33 candidate starting points for a multi-

start search of the error function space. After each of these candidate motion estimations

have been minimized for error, the single best candidate is selected for further

optimization in the next stage of the method.

The third stage of the algorithm works with the images scaled to 2 x 2 x 2mm, where

skews and anisotropic scalings begin to become significant. Consequently, the authors’

method progressively introduces these extra degrees of freedom (DOF) to the error

minimization function by calling the local optimization method three times: first using

only 7 DOF (rigid body and global scale), then with 9 DOF (rigid body and independent

scalings), then with the full 12 DOF (rigid body with scales and skews). After the

optimization has run with these additional degrees of freedom, the current motion

estimate is passed to the next stage of the method.

In the last stage of global-local hybrid optimization method, with the image scaled to 1 x

1 x 1mm, the cost function evaluations take 8 times longer than at the 2 x 2 x 2mm scale

and 512 times longer than at the 8 x 8 x 8mm scale. As such, during this stage only one

pass of the Powell local optimization algorithm is performed, the result of which is the

final registration solution.

When the global-local hybrid optimization method is applied to the problem of motion

correction, as in the FSL (fMRIB Software Library) software package’s MCFLIRT

(Motion Correction fMRIB Linear Image Registration Tool) utility, the middle image of

the scan series is taken as the template to which all other volumes are registered.

Furthermore, the final two stages of optimization at the 2mm and 1mm scale are omitted.

When the image registration transformation is computed, sinc interpolation is used to

interpolate the final corrected data.

20

2.5 Other Motion Correction Techniques

In this chapter several motion correction algorithms from the past 20 years have been

discussed. Most of these algorithms rely on the iterative adjustment of an estimate of

subject motion using an optimization algorithm alongside a cost function describing the

error difference between an uncorrupted image and a template image (e.g. Jenkinson,

Bannister, Brady & Smith, 2001; Thesen, Heid, Mueller & Schad, 2000; Woods et al.,

1998). Each of the algorithms relying on this optimization process to perform motion

correction varies in its computation of the cost function, the optimization algorithm used

and the nature of the estimation of the motion. Other approaches, such as predictive

approaches using a priori estimates of physiological motion are also possible (e.g.

Glover, Li & Ress, 2000; Hu, Le, Parrish & Erhard, 1995) and instead rely on removing

trends in the raw data that are correlated with known periods of subject motion.

A class of motion correction approaches which have not been reviewed here are those

which use external markers to monitor the movement of the subject's head during

scanning to provide the estimates for motion, then remove that estimated motion from the

scan data. This can be done either retrospectively after data acquisition is complete (e.g.

Tremblay, Tam & Graham, 2005) or prospectively while data is being acquired (e.g.

Zaitsev et al., 2006). Furthermore, the modality of this positional monitoring can vary,

from optical markers to track motion (as in the previous two examples) or radio

frequency markers (Ooi et al., 2009).

21

Chapter 3

3 Three Dimensional Sinc Interpolation

As demonstrated in the previous chapter, several different 3D interpolation methods are

currently in use for fMRI motion correction. Of these methods, sinc interpolation was

selected to demonstrate the importance of the programming language and the hardware

platform used for executing a neuroimaging data processing algorithm.

Sinc interpolation was chosen for this demonstration for two reasons. It is considered

among the best interpolation methods for 3D data interpolation (Tong & Cox, 1999) and

as such the development of new and faster implementations will service the

neuroscientific community. Secondly, other methods of 3D data interpolation such as

trilinear interpolation and spline interpolation have sufficiently short running times that

the differences between different implementations could be insubstantial; sinc

interpolation however has a long running time (Friston et al., 1996) and therefore would

best serve to demonstrate inter-implementation differences.

3.1 Algorithm

Sinc interpolation, also known as the Whittaker-Shannon interpolation method, is based

on the unnormalized sinc function. The term sinc is a contraction of the Latin sinus

cardinalis meaning cardinal sine, with the unnormalized sinc function is defined as

for x ≠ 0, with sinc(0) = 1. Sinc interpolation is commonly employed in digital signal

processing for the band-limited interpolation of discrete-time signals. Band-limiting is the

limiting of a signal's Fourier transform to zero above a certain finite frequency. Band-

limiting is an important concept within the context of sinc interpolation, because a band-

limited signal can be fully reconstructed from its samples, provided that the sampling

frequency exceeds twice the maximum frequency in the band-limited signal; the

minimum sampling rate providing a full reconstruction of a band-limited signal is

22

referred to as the Nyquist frequency. In essence, with a band-limited signal sinc

interpolation can be used to correctly compute signal values at arbitrary continuous times

from a discrete set of samples provided they are sampled at a rate above the Nyquist

frequency. The standard sinc interpolation formula is

which can be expressed using only the sine function as

where T is the sampling period used to determine xn and x(t) is the reconstructed signal.

The above formula represents a linear convolution between the sequence and scaled and

shifted samples of the function (Oppenheim & Schafer, 1975).

Hajnal et al. (1995) describe an expansion of the standard sinc interpolation formula

allowing for the 3D interpolation of neuroimaging data. This expansion is accomplished

with a cosine Hann (Hanning) window using the normalized sinc function

In this formulation, the intensity value for a given voxel is the multiplicative combination

of three 1D sinc interpolations, with one interpolation for each dimension. The intensity

value I for voxel at (x, y, z) is defined using a Hann sinc interpolation as

with HS(a,A,R) defined as

23

where X,Y,Z are the coordinates of the original data set and R is the size of the Hann

window used. This Hann function eliminates problems with oscillatory effects at

discontinuities in the function and guarantees that the convolution coefficients fall off to

zero at the edge of the Hann window (Thacker, Jackson, Moriarty & Vokurka, 1999). A

graph of the Hann window function as applied to audio samples is show in Figure 8

(Wikipedia). Throughout this document the collection of voxels in a given volume

covered by the Hann window is referred to as a sinc kernel and to the portion of the final

interpolated intensity I given by one of the voxels in a sinc kernel as that voxel's sinc

contribution. Throughout the remainder of this document, the size of a sinc kernel is

referred to by its radius; that is, a sinc kernel of size 7 x 7 x 7 will have 7 voxels between

the intermediate voxel v and an outer plane of the 3D kernel. Figure 8 below shows an

illustration of a 4 x 4 x 4 sinc kernel.

Figure 8: Illustration of a 4 x 4 x 4 sinc kernel.

The asymptotic time complexity of the serial sinc interpolation function depends on

whether the number of voxels to be interpolated or the size of the kernel is varied. In the

case that the number of voxels is varied, the sinc interpolation function has a complexity

of O(n). If the size of the sinc kernel is varied however, the complexity will be O(n
3
).

24

3.2 Serial Implementation

As explained in Chapter 1, during motion correction new coordinates for each voxel in an

fMRI volume are given by the solution spatial transformation computed by the

optimization algorithm. Because these coordinates lie between the existing coordinate

grid of the raw scan data, an estimate of the intensity value for each of these intermediate

voxels must be calculated. In this section the structure and function of a serial algorithm

for the 3D sinc interpolation of the intensity at an arbitrary point within a fMRI brain

scan volume is presented, which for convenience is referred to as serialSinc. serialSinc is

based on the AIR5 3D sinc interpolation algorithm (Woods, Cherry & Mazziotta, 1992).

The serialSinc algorithm takes as input an array of coordinates, intermediate to the

existing grid structure of the raw fMRI data, whose intensity values need to be

interpolated; the input array of intermediate coordinates is referred to in serialSinc as a

chunk. The number of voxels in a chunk can vary depending on whether the motion

correction algorithm in question operates slice-by-slice, volume-by-volume, or

somewhere in between. As such, serialSinc is designed to handle an arbitrary number of

voxels per chunk. The number of voxels in the chunk is referred to as the chunk size.

serialSinc uses the Hann windowed 3D sinc interpolation method described above to

compute the new intensity value for each intermediate voxel coordinate. As explained in

the previous section, the new intensity value for a given voxel v is the sum of the sinc

contribution of each known voxel in its surrounding sinc kernel. The sinc contribution for

a given voxel in the sinc kernel is computed by multiplying its one dimensional sinc

contribution (given by the Hann windowed normalized sinc function) in each of the x, y

and z directions by its intensity. In serialSinc, the sinc contribution of each voxel in the

sinc kernel is computed serially and added to the total for the interpolated intensity of

voxel v. This total is then stored in an array holding the new interpolated intensities for

every voxel in the chunk. The size of the Hann window and therefore the size of the sinc

kernel along the x, y and z dimensions is passed into serialSinc as a parameter.

The serialSinc algorithm is shown in pseudocode below, alongside the sinc function,

which in practice would simply replace the call to sincFunction in serialSinc.

25

// serialSinc Algorithm

GET kernelSizeX
GET kernelSizeY
GET kernelSizeZ

GET chunkXSize
GET chunkYSize
GET chunkZSize
GET chunkCoordinates

INIT interpolatedChunkIntensities

FOR kernelCenterZ in chunkZSize
 FOR kernelCenterY in chunkYSize
 FOR kernelCenterX in chunkXSize

 COMPUTE kernelBoundsX from kernelSizeX and kernelCenterX
 COMPUTE kernelBoundsY from kernelSizeY and kernelCenterY
 COMPUTE kernelBoundsZ from kernelSizeZ and kernelCenterZ

 SET kernelTotal to 0

 FOR currentVoxelPositionZ in kernelBoundsZ

 COMPUTE sincz = sincFunction(currentVoxelPositionZ)

 FOR currentVoxelPositionY in kernelBoundsY

 COMPUTE sincy = sincFunction(currentVoxelPositionY)
 SET sinczy to (sincy * sincz)

 FOR currentVoxelPositionX in kernelBoundsX

 COMPUTE sincx = sincFunction(currentVoxelPositionX)
 SET sinczyx to (sincx * sinczy)

 GET currentVoxelIntensity
 SET newVoxelIntensity to (currentVoxelIntensity * sinczyx)
 ADD newVoxelIntensity to kernelTotal

 STORE kernelTotal in interpolatedChunkIntensities

// sincFunction

GET voxelPosition
GET kernelCenter
GET kernelSize

IF voxelPosition == kernelCenter
 SET result as 1.0

ELSE
 SET result as sin(pi*voxelPosition)/(pi*voxelPosition) * \
 0.5*(1.0 + cos((pi*voxelPosition)/kernelSize))

RETURN result

26

3.3 Parallel Implementation

Parallel computing in general is based on the principle that large computing problems can

be divided into many smaller problems, all of which can be completed simultaneously.

The two primary paradigms in parallel computing are data parallelism and task

parallelism. Task parallelism achieves improvements in the execution time of an

algorithm by running sections of it concurrently. A section of code which is designed to

run in parallel with other copies of itself is called a kernel (referred to herein as a parallel

kernel to avoid confusion with sinc interpolation kernels). Each copy of the kernel is

executed in its own thread; a serial algorithm will run in only one thread executing a

repeated section of code thousands of time in sequence, whereas a parallel algorithm

could run thousands of copies of a kernel in hundreds of threads simultaneously,

depending on the hardware architecture employed.

Figure 9: Amdahl's Law for 50%, 75%, 90% and 95% parallelized algorithms.

The process of converting a purely serial program to a logically equivalent parallel

implementation is referred to as parallelization. Once parallelized, the remainder of the

original program which executes in serial (and handles calls to execute the kernel) is

27

called the host code. Whether a given section of code in an algorithm can be parallelized

depends on the logical structure of the algorithm; only subsections of an algorithm which

are logically independent, meaning that they do not rely on each other's results and could

be executed in any order, can be extracted into a parallel kernel and executed in parallel.

Algorithms vary widely in the degree to which their logical structure can be executed in

parallel, which affects the maximum performance benefits which can be achieved by

parallelizing them. The relationship between the maximum expected improvement to an

algorithm's overall running time for a given number of processors when some percentage

of the algorithm is parallelized is referred to as Amdahl's Law (Amdahl, 1967). Figure 9

above shows Amdahl's Law for algorithms with parallel portions of 50%, 75%, 90% and

95%.

Although significant speedups can be achieved by parallelizing an algorithm and running

many copies of a kernel in multiple concurrent threads, there is an overhead introduced

by running multiple threads referred to as the burden of parallelism. If each thread does

not contain a sufficient computational load when the program is parallelized, then the

burden of parallelism will outweigh the gains afforded by executing that code

concurrently. The size of the burden of parallelism and how my threads can execute

concurrently both depend on the hardware architecture used. How much computation

there is in each thread compared to the communication between a thread and the host

code is referred to as the granularity of the algorithm. Fine (or high) granularity refers to

a smaller ratio between computation and communication; decreasing the granularity of a

parallelized algorithm by increasing the computational load in one thread will typically

decrease the burden of parallelism.

The serialSinc algorithm presented in the previous section has a very high degree of task

parallelism. Because the sinc kernel uses only the intensities of the raw data which do not

change, the intensity for each intermediate voxel in a chunk can be computed in parallel

with every other voxel in that chunk. Going further, within the calculation of an

intermediate voxel's new interpolated intensity, the sinc contribution of each voxel in the

sinc kernel can be computed in parallel; the sinc contribution of each voxel within a sinc

kernel is independent and is simply added to the cumulative total for intensity of the

28

voxel at the center of the kernel. Finally, the determination of the 1D sinc function

coefficient used to compute each voxel's sinc contribution can also be completed in

parallel.

The parallelized version of the serialSinc algorithm from the previous section is called

parallelSinc. The parallelSinc algorithm computes the interpolated intensity for each

intermediate voxel in the chunk in parallel; the calculation of each voxel's intensity

however is still performed in serial. This design decision was made to ensure there would

be enough computation performed in each thread, such that the burden of parallelism

would not outweigh the benefits of parallelization.

parallelSinc uses the same pseudocode to replace calls to sincFunction as shown above.

The parallelSinc algorithm is shown in pseudocode below.

// parellelSinc Algorithm

GET kernelSizeX
GET kernelSizeY
GET kernelSizeZ

GET kernelCenterX
GET kernelCenterY
GET kernelCenterZ

COMPUTE kernelBoundsX from kernelSizeX and kernelCenterX
COMPUTE kernelBoundsY from kernelSizeY and kernelCenterY
COMPUTE kernelBoundsZ from kernelSizeZ and kernelCenterZ

SET kernelTotal to 0

FOR currentVoxelPositionZ in kernelBoundsZ

 COMPUTE sincz = sincFunction(currentVoxelPositionZ)

 FOR currentVoxelPositionY in kernelBoundsY

 COMPUTE sincy = sincFunction(currentVoxelPositionY)
 SET sinczy to (sincy * sincz)

 FOR currentVoxelPositionX in kernelBoundsX

 COMPUTE sincx = sincFunction(currentVoxelPositionX)
 SET sinczyx to (sincx * sinczy)

 GET currentVoxelIntensity
 SET newVoxelIntensity to (currentVoxelIntensity * sinczyx)
 ADD newVoxelIntensity to kernelTotal

STORE kernelTotal in global memory

29

Chapter 4

4 Performance Benchmarking

To demonstrate the effects of the programming language and hardware platform used to

implement the 3D sinc interpolation algorithm described in Chapter 3, the results of

extensive benchmarking and performance testing are presented in this chapter. The data

in this chapter are all presented graphically, however tables containing their exact values

are provided in the appendices.

4.1 Experimental Setup

Consider the position of a neuroscience researcher who is trying to decide whether an

algorithm will be suitable to include in her neuroimaging data analysis pipeline. In order

to assess the viability of a given algorithm, this chapter demonstrates that the researcher

must consider carefully both the programming language (and version thereof) used to

implement it and the computer system or hardware platform used to run it. Each such

computer system hardware platform is referred to as a test bed.

For each of three different programming languages, the differences which can be seen in

the running time performance of the same algorithm across multiple test beds and

hardware platforms (the test beds are outlined in Section 4.2 below) are investigated. This

investigation serves to underscore the idea that the differences between hardware

architectures which are contemporary to one another can have a significant impact on an

algorithm's running time performance even within one language.

To conduct this investigation, the 3D sinc interpolation algorithms described in Chapter 3

were implemented in Python, C and OpenCL (Open Computing Language). A Python

host program was used to handle file I/O of the test neuroimaging data and benchmarking

the performance of the algorithm for each language. The python implementation of 3D

sinc interpolation ran natively within this host, while the code for the C implementation

was extracted into its own Python extension module using Python's distutils library

(default compiler flags). The OpenCL code was directly embedded in the Python host

30

script using PyOpenCL. A list of software packages and compilers used and the versions

thereof is provided in Appendix A.

For each programming language, the test bed hardware platform was compared over sinc

kernel size because the size of the Hann window used for 3D sinc interpolation has a

substantial effect on the accuracy of the interpolation. The so-called gold standard for 3D

MRI data interpolation is a sinc kernel of size 13 x 13 x 13 (Jenkinson, Bannister, Brady

& Smith, 2001), however sinc interpolation kernels of this size are very computationally

expensive; therefore 4 different sized Hann windows (1, 3, 7, 13) were used to assess the

performance of less accurate, however less expensive, sinc kernels. Throughout each of

these comparisons, the number of interpolations was kept constant; 230400 interpolations

were performed, corresponding to interpolating the voxel intensities on a regular grid

intermediate to a raw data set for an entire fMRI brain volume of 80 x 80 x 36 voxels.

The raw data for interpolations using smaller input (chunk) sizes are found in the

appendices.

4.2 Test Beds

The first test bed is a powerful desktop workstation, described in Table 1. The second test

bed is a GPGPU (general purpose graphics processing unit) laboratory desktop computer,

shown in Table 2. The third test bed is a rack-mount server, shown in Table 3. The final

test bed is an older laptop computer, included to show the relative performance of a

legacy machine. The specifications for this test bed are shown in Table 4.

Table 1: Workstation desktop test bed specifications.

Operating System Windows 7 Professional 64bit 6.1

 CPU Model AMD Phenom II Thuban 1090T Black Edition

CPU Clock 4026Mhz

CPU Cores / Threads 6 / 6

GPU Chipset Radeon HD 6850

GPU Core Clock 870Mhz

GPU Architecture 960 Stream Processors

GPU Memory 1GB GDDR5 @ 1050Mhz

31

Table 2: Laboratory desktop test bed specifications.

Operating System Ubuntu 64bit 3.8.0

 CPU Model Intel Xeon E5504, Intel Xeon E5504

CPU Clock 1596Mhz

CPU Cores / Threads 8 / 8

GPU Chipset nVIDIA Tesla c2070

GPU Core Clock 1150Mhz

GPU Architecture 448 Stream Processors

GPU Memory 6GB GDDR5 @ 1500Mhz

Table 3: Rack-mount server test bed specifications.

Operating System GNU Linux 64bit 2.6.32

 CPU Model Intel Xeon E5603

CPU Clock 1197Mhz

CPU Cores / Threads 4 / 4

Table 4: Legacy laptop test bed specifications.

Operating System Windows 7 Professional 64bit 6.1

 CPU Model AMD Turion x2 TL-56

CPU Clock 1800Mhz

CPU Cores / Threads 2 / 2

4.3 Python

The results of comparing the performance of a Python implementation of the serialSinc

algorithm across the four test bed hardware platforms described above are shown in

Figure 10. The raw data for this comparison are provided in Appendix C. Each running

time presented is the mean of 5 trials of executing the algorithm. Because of the three

nested FOR loops used to iterate through the voxels in a sinc kernel, as the size of sinc

kernel along the three dimensions increases the running time increases as a cubic

polynomial with a constant input size.

32

Figure 10: Python implementation running time comparison across test beds.

This performance comparison shows several interesting differences between the four test

beds when using a sinc kernel of size 7 x 7 x 7. Firstly, one might expect that the two

Intel processors, being of similar model numbers and specifications, would have similar

performance with the legacy laptop lagging behind. Instead, the AMD Turion TL-56 and

the Intel E5603 perform quite similarly at 13147 seconds and 13647 seconds

respectively, however still with a significant difference in performance between them

(F(2,5) = 15700, p < 0.000001). These two processors both execute the algorithm much

more slowly than the Intel Xeon E5504 at 9069 seconds (F(2,5) = 6888131, p <

0.000001). Also notice that the AMD Turion TL-56, despite its faster clock speed, does

not outperform the Intel Xeon E5504. This gap in performance could be explained by

AMD Turion TL-56's small cache compared to the Intel Xeon E5504: 1024KB L2 cache

versus 4096KB L2 cache respectively. The AMD Thuban 1090T, with a high clock speed

and advanced architecture, outperforms the next fastest processor with a running time of

4862 seconds (F(2,5) = 1015011, p < 0.000001).

33

Importantly, regardless of the test bed hardware platform, the Python implementation of

the 3D sinc interpolation algorithm was not able to interpolate the voxel intensities for an

entire fMRI time series with a sinc kernel size of 13 x 13 x 13 within a tractable length of

time. Extrapolating based on the performance of the fastest hardware platform, the AMD

Thuban 1090T, it would take an estimated 21195 seconds or 5.9 hours to complete the

interpolation of one volume; extrapolating based on the performance of the slowest

hardware platform, the Intel Xeon 5603, it would take an estimated 60577 seconds or

16.8 hours to interpolate one volume. This means that at best, a Python implementation

of the serialSinc algorithm could interpolate the data from an example 800 volume scan

(20 minutes, TR = 1.5 seconds) in slightly over 6 months; surely an intractable length of

time.

4.4 C

Figure 11: C implementation running time comparison across test beds.

34

The results of comparing the performance of a C implementation of the serialSinc

algorithm across the four test bed hardware platforms described above are presented in

Figure 11 above. The raw data for this comparison are provided in Appendix D. Each

running time presented is the average of 10 trials of executing the algorithm. Once again,

for all four test beds the running time increases as a cubic polynomial.

These results show several interesting similarities and differences as compared to the

results of the Python implementation. Once again, the AMD Thuban 1090T outperforms

all of the other processors with a running time of 114 seconds for a sinc kernel of size 13

x 13 x 13 when interpolating the voxel intensity values for a whole brain image (F(2,10)

= 1032026, p < 0.000001). The AMD Turion TL-56 and the Intel E5603 again perform

quite similarly at 292 and 310 seconds respectively, however still with a significant

difference between them (F(2,10) = 376167, p < 0.000001); this implies that the

similarities between these hardware platforms have a consistent impact on running time

across different programming languages. Differing from the results of the Python

implementation, the Intel Xeon E5504 performs substantially worse than the AMD

Turion TL-56 and the Intel E5603, with a running time of 561 seconds (F(2,10) =

104313253, p < 0.000001).

The C implementation of serialSinc once again does not provide a tractable solution for

performing 3D sinc interpolation with a kernel of size 13 x 13 x 13 for an entire fMRI

time series, regardless of the hardware platform. When using the slowest test bed, the

Intel Xeon E5504, interpolating an entire volume takes 561 seconds. It would therefore

take approximately 125 hours or 5.2 days to interpolate an entire 800 volume time series.

Using the fastest hardware platform, the AMD Thuban 1090T, it takes approximately 114

seconds to complete the interpolation of one volume, translating to approximately 25

hours for the interpolation of an entire time series. Although this computation time is

much faster than that of the slowest test bed, more than a day is still too long to wait for

the results of interpolating a single fMRI time series' data.

35

4.5 OpenCL

OpenCL (Open Computing Language) is an open standard designed by the Khronos

group for the cross-platform parallel programming of processors found in computers,

servers and embedded devices. OpenCL is based on the C99 programming language and

facilitates the acceleration of a wide range of algorithms and programming patterns. The

kernel for the parallelSinc interpolation algorithm was implemented in C++. Given the

cross-platform nature of OpenCL, its performance was assessed on the CPU and GPU

(graphics processing unit) hardware platforms independently.

4.5.1 OpenCL for CPU

Figure 12: OpenCL CPU implementation running time comparison across enabled

processor cores.

The results of comparing the performance of the OpenCL implementation of the

parallelSinc algorithm for the CPU across four test hardware configurations are presented

36

in Figure 12. The raw data for this comparison are provided in Appendix E. Each running

time presented is the average of 10 trials of executing the algorithm. Once again, for all

test beds the running time increases as a cubic polynomial. This comparison serves to

demonstrate the differences in execution time which can be achieved within the same

processor (AMD Thuban 1090T clocked at 3221Mhz) based upon how many cores are

available to run concurrent copies of the parallel kernel and the effect of overheads.

With a kernel size 13 x 13 x 13, running on two CPU cores the OpenCL parallelSinc

implementation can interpolate the intensities of the 230400 voxels in an entire fMRI

volume in approximately 142 seconds. Predictably, the best case performance is provided

by running the CPU with all six cores enabled (F(2,10) = 451706, p < 0.000001); in this

case, the same number of interpolations with the same sinc kernel size can be completed

in 47 seconds. This is a speedup of approximately 3 times when the number of processor

cores enabled is increased by a factor of 3.

Figure 13: Running time as a function of enabled processor cores.

37

Figure 13 displays the power law relationship between running time and the number of

enabled processor cores. Importantly, in concordance with Amdahl's law this relationship

implies that the gains provided by an increasing number of CPU cores are asymptotic;

that is to say, there is a limit to the improvement that can be provided by increasing the

number of cores in a processor (given the same work load).

A demonstration of the overheads introduced by OpenCL can be seen by adding the

running times of the C implementation of serialSinc on one core of the AMD Thuban

1090T clocked at 3221Mhz to Figure 12, shown in red with blue markers on Figure 14.

Figure 14: OpenCL CPU implementation running time comparison across enabled

processor cores with single-core C implementation.

At 151 seconds, the performance of the serial C implementation is superior to the

OpenCL implementation when there is only one processor core enabled (F(2,10) =

52056, p < 0.000001). This can be explained by the burdens introduced by the OpenCL

38

runtime (to handle thread switching, etc.) which are absent from the pure C

implementation of the serialSinc 3D sinc interpolation algorithm. With two cores

enabled, the OpenCL implementation for the CPU performs approximately as well as the

C implementation, however still with a significant difference in running time (F(2,10) =

545, p < 0.000001). With four and six CPU cores enabled, the burden of parallelism is

well compensated for by the concurrency provided by OpenCL and the OpenCL

implementation outperforms the C implementation markedly.

The OpenCL implementation of 3D sinc interpolation for CPU also does not provide a

tractable solution for performing 3D sinc interpolation with a kernel of size 13 x 13 x 13

for an entire fMRI time series. When using all six cores of the AMD Thuban 1090T

processor, interpolating an entire volume takes 47 seconds and therefore it would take

approximately 10.5 hours to interpolate an entire 800 volume time series; this is still not a

desirable running time given that a single fMRI study could have more than 10

participants with several scanning sessions per participant.

4.5.2 OpenCL for GPU

The performance of the OpenCL implementation of the parallelSinc algorithm for the

GPU is shown in Figure 15. The raw data for this implementation are provided in

Appendix F. Each running time presented is the average of 10 trials of executing the

algorithm; the running time increases as a cubic polynomial once again.

The OpenCL implementation of 3D sinc interpolation for the GPU finally provides a

tractable solution for performing 3D sinc interpolation with a kernel of size 13 x 13 x 13

for an entire fMRI time series. Interpolating an entire volume with a sinc kernel of this

size takes 1.51 seconds and therefore an entire 800 volume time series for a 20 minute

scanning session (TR = 1.5 seconds) could be interpolated almost in real time at 21

minutes.

39

Figure 15: OpenCL GPU implementation running time performance.

4.6 Overall Results

Consider again the position of a neuroscience researcher who is trying to decide whether

a given algorithm will be suitable to include in her neuroimaging data analysis pipeline,

which is to run on her workstation desktop computer. In this section, the performance of

the different languages explored previously is compared within the context of one

computer system, test bed 1.

Presented in Figure 16 below are the performance results of benchmarking the 3D sinc

interpolation algorithms described in Chapter 3 across programming language and

hardware platform, within test bed 1. The results of benchmarking the Python

implementation have been excluded from the figure for the sake of scale however they

are listed with the other raw data for this figure in Appendix B.

40

Figure 16: 3D sinc interpolation running time across programming language and

hardware platform within test bed 1.

As evidenced by its exclusion from Figure 16 due to its excessively long running times,

the Python implementation of the 3D sinc interpolation was by far the slowest of those

tested with an estimated running time of 21200 seconds or 5.9 hours for an entire 80 x 80

x 36 voxel fMRI volume with a 13 x 13 x 13 sinc kernel. Python is an interpreted

scripting language and does not benefit from the optimizations introduced by

compilation, as do OpenCL and C. Specifically, the performance of an algorithm written

in Python suffers severely when looping structures are used; the serialSinc algorithm uses

6 layers of nested FOR loops and as such the Python implementation performs

accordingly.

The C implementation of the serialSinc algorithm was the next best in its running time

performance, executing in approximately 114 seconds at an estimated 520 times faster

rate than the Python implementation for the same sinc kernel with the same number of

41

interpolations. Although this version of the 3D sinc interpolation algorithm runs serially

and only in a single thread, it is able to take advantage of the optimizations imbued by the

C compiler when it is converted into a Python extension module by the distutils library.

In general, the C programming language provides a high degree of performance for serial

programs.

The OpenCL implementation of 3D sinc interpolation for CPU provides the next lowest

running time at 37.8 seconds, providing approximately 3 times better performance than

the C implementation and an estimated 1500 times better performance than the Python

implementation for the same sinc kernel with the same number of interpolations (F(2,10)

= 185689, p < 0.000001). In this implementation, the parallelSinc kernel is built and run

on the CPU by the Python PyOpenCL package, taking advantage of the AMD Thuban

1090T processor's 6 cores to run 6 copies of the parallel kernel concurrently. Importantly,

the PyOpenCL version of the algorithm does not run 6 times faster than the analogous C

implementation, because of the overheads introduced by running the algorithm in

parallel.

The OpenCL implementation of 3D sinc interpolation is improved substantially when run

on the GPU, executing in slightly over 1.51 seconds for a sinc kernel of size 13 x 13 x 13

and vastly outperforming every other implementation: 39000 times faster than Python, 74

times faster than C, and 25 times faster than OpenCL for the CPU at 37.8 seconds

(F(2,10) = 1610875, p < 0.000001). Graphics processing units contain hundreds of small

processors called stream processors, which are designed to perform the simple

mathematical operations used in rendering 3D graphics. The Radeon 6850 GPU in test

bed 1 has 960 stream processors for this purpose; the OpenCL for GPU implementation is

therefore able to take advantage of this hardware platform to run many hundreds of

copies of the parallelSinc parallel kernel simultaneously. As such, the OpenCL for GPU

implementation is the best option for performing 3D sinc interpolation available on this

test bed.

42

Chapter 5

5 The Field Programmable Gate Array

A field programmable gate array (FPGA) is a customizable integrated circuit and can be

used to compute the result of a complex logical function by physically implementing it

within large blocks of reconfigurable logic gates. In this chapter I present the results of a

novel implementation of the 3D sinc interpolation algorithm using an FPGA, beginning

with a discussion of the hardware architecture of the test bed FPGA. Specifically, I

compare the performance of two distinct parallel kernels for a sinc kernel size 13 x 13 x

13 and then assess the performance of an FPGA implementation of 3D sinc interpolation

to the implementations described in Chapter 4.

5.1 Hardware Platform

Field programmable gate arrays are a specialized type of computer hardware which are

reprogrammable and user customizable. FPGAs contain a combination of logic

components and blocks of memory; these components can be used to implement digital

computations in hardware within the FPGA. The hardware logic components are referred

to as logic blocks and can be used to implement a wide range of combinational functions

or serve as volatile memory elements.

The particular FPGA used to implement the 3D sinc interpolation algorithm described in

Chapter 3 was the Altera Stratix V GS D5, housed in a Nallatech 385N PCIe computing

card. This device has 8GB of onboard memory and communicates with the host computer

over an 8-lane PCIe Gen 3 bus. The Altera Stratix V GS FPGA is optimized for high-

performance, variable-precision digital signal processing (DSP) applications. This

particular FPGA has 262400 adaptive logic modules, 3926 variable-precision DSP

blocks, 2567 M20K memory blocks and 2 PCIe blocks, supporting a 14.1 Gbps host-

device data rate; a schematic of the Altera Stratix V FPGA architecture and features is

shown in Figure 17 below. The rack-mount server test bed described in Chapter 4 was

used to host this FPGA device for performance testing.

43

Figure 17: Altera Stratix V FPGA architecture and features (Altera Corporation).

5.2 Implementation

The same Python code to handle file I/O and performance testing as described in Chapter

4 was used for the FPGA implementation of 3D sinc interpolation. OpenCL host code to

handle data transfer and execution of the parallel kernel on the FPGA was compiled using

distutils as an extension to Python. The OpenCL parallel kernel code was built into a Raw

Binary File (RBF) for the FPGA with the IBM Altera OpenCL compiler. The Altera

Configuration via Protocol (CvP) system was then used to transfer the RBF and configure

the logic components of the Altera Stratix V FPGA over the PCIe interface.

Two versions of the OpenCL parallelSinc kernel described in Chapter 3 were compiled

for the FPGA. In the first version, the size of the sinc kernel used to perform the

interpolation was dynamic and provided to the parallel kernel as a parameter. In the

second version the size of the sinc kernel was static and fixed at 13 x 13 x 13, in an

attempt to improve performance. The comparative utilization of the Altera Stratix V GS

FPGA hardware components for these two versions is presented in Table 5 below.

44

Table 5: Dynamic versus static sinc kernel Altera Stratix V GS hardware utilization.

Resource Dynamic Kernel Static Kernel

Logic Utilization 31% 26%

Adaptive Lookup Table 17% 16%

Dedicated Logic Registers 14% 11%

Memory Blocks 29% 23%

DSP Blocks 54% 40%

Best Case FLOP Throughput 2687.84 MFLOPS 9250.00 MFLOPS

5.3 Performance Benchmarking

The results of a performance comparison of the dynamic and static 3D sinc interpolation

kernels across input sizes with a sinc kernel of size 13 x 13 x 13 are shown in Figure 18.

The raw data for this comparison are provided in Appendix G.

Figure 18: FPGA dynamic and static sinc kernel running time performance

comparison for kernel size 13 x 13 x 13.

45

 When interpolating the voxel intensities of an entire fMRI volume (230400 total

interpolations), with a running time of 15.8 seconds the dynamic sinc kernel performed

significantly worse than the static sinc kernel which had mean running time of 14.9

seconds (F(2,10) = 78492.81, p < 0.000001). This difference in performance can be

explained by the optimizations offered by the IBM Altera OpenCL compiler when the

number of loop iterations is predetermined as in the static sinc kernel parallel kernel.

As shown in Figure 19 below, to interpolate an entire 230400 voxel fMRI volume with a

3D sinc kernel of size 13 x 13 x 13, at 15.8 seconds the dynamic FPGA implementation

performed significantly better than the OpenCL implementation for CPU which took 37.8

seconds (F(2,10) = 590851, p < 0.000001). The FPGA implementation however

performed worse than the OpenCL GPU implementation of the parallelSinc kernel at

1.51 seconds (F(2,10) = 62851220, p < 0.000001).

Figure 19: 3D sinc interpolation running time across programming language and

hardware platform within test bed 1, including the FPGA dynamic sinc kernel.

46

The FPGA is also a reasonable platform for performing 3D sinc interpolation with a

kernel of size 13 x 13 x 13 for an entire fMRI series. Interpolating an entire volume with

a sinc kernel of this size takes 15.8 seconds and so the example 800 volume fMRI time

(20 minutes, TR = 1.5 seconds) series from Chapter 4 could be interpolated in 3.5 hours.

5.4 Power Considerations

Although running the 3D sinc interpolation on the FPGA cannot provide performance

surpassing that of the GPU, an important consideration is the amount of power used to

complete the computation. Under load, a powerful GPU might draw between 300-500W

of power. The most power-hungry FPGA however, will draw at most 10W of power

under load. Consider a large fMRI study, in which each of 20 participants has 1500

volumes of scanner data. The energy required by the device to interpolate the raw data for

this study with the 500W Radeon 6850 in test bed 1 is

whereas the energy required to interpolate the same dataset with the 4W Altera Stratix V

FPGA housed in a Nallatech 385N card is

This is to say, the same fMRI preprocessing task could be completed with an FPGA using

less than 10% of the power of a GPU implementation. Given that an average household

consumes 30kWh of energy per day (U.S. Energy Information Administration), the

energy savings afforded by the use of a FPGA are meaningful.

47

Chapter 6

6 Case Study: Robust Motion Correction

Current state of the art motion correction algorithms can adequately compensate for the

head movements in a typical subject, however fail to correct for the greater head

movements in special populations. Conor Wild and Rhodri Cusack developed a new

motion correction algorithm which can compensate for these greater head movements

(personal communication, May 15, 2013). In this chapter, I show the performance

benefits which can be realized in Wild and Cusack's motion correction algorithm by

improving the implementation of the interpolation step.

6.1 Algorithm

Traditional motion correction algorithms such as those outlined in Chapter 2 are designed

to handle the small (e.g. 1mm) movements which occur in normal subjects. Special

patient populations such as the elderly, mentally ill, or infants can however produce

movements of up to several millimeters during a scanning session (Friston et al., 1996).

Traditional motion correction algorithms can fail when applied to scanning data from

subjects who display these greater magnitudes of motion; these failures would be due to

an inability of the optimization algorithm to find a global minimum for the error function

given the high degree of error present at the outset of optimization.

As such, there is a need for more robust motion correction algorithms which can

accommodate these populations if they are to be studied with traditional fMRI paradigms.

In response to this need, Wild and Cusack (personal communication, May 15, 2013)

developed a general motion correction algorithm which can provide for robust motion

correction (i.e. correcting for subject movements greater than 1mm) as well as traditional

motion correction (i.e. correcting for subject movements less than 1mm). This algorithm,

henceforth referred to as RMC, is similar in structure to the FSL motion correction

algorithm described in Chapter 2. A flowchart of the RMC algorithm is shown in Figure

20 below.

48

Figure 20: Wild and Cusack's robust motion correction algorithm flowchart.

The RMC algorithm uses a variation of the Global-Local optimization proposed by

Jenkinson, Bannister, Brady and Smith (2001). For each level of smoothing (performed

with a Gaussian smoothing kernel), for each chunk in the time series (a chunk is a

collection of slices, up to an entire volume of slices), the RMC algorithm uses an

49

optimization algorithm to find a solution spatial transformation which reduces the

difference between that chunk and the corresponding chunk in a template image. In this

algorithm, the rigid body assumption for the entire brain is violated, however it is still

preserved for each chunk of slices.

The optimization algorithm begins its search for the solution spatial transformation of a

given chunk with a linear combination of the solution transformation from the previous

chunk at the current smoothing level and the solution transformation from the current

chunk at the previous smoothing level. The total number of optimizations performed is

therefore given by the number of smoothing levels multiplied by the number of chunks in

the time series. Within each of these optimizations, for each new potential spatial

transformation the voxel intensities for the entire chunk must be interpolated from the

raw scan data in order to evaluate the cost (error) function. Once the spatial

transformation for every chunk in the time series has been computed for the final

smoothing level, these parameters are saved and the corrected time series data are

interpolated from the raw scan data.

6.2 Performance Benchmarking

As suggested in the previous section, the RMC algorithm needs to perform many 3D

interpolations to determine the realignment parameters for an entire fMRI time series

(interpolation is shown in red on Figure 20). The number of interpolations necessary to

determine the final solution spatial transformation for an entire time series is given by

and therefore the performance of the interpolation method used in RMC is of central

importance to its performance as a whole. For this reason, the RMC algorithm is an ideal

practical example of the performance gain which can be realized by improving the

implementation of the interpolation step.

To demonstrate this performance gain, the running times to correct the motion in one 80

x 80 x 36 voxel fMRI volume for two versions of the RMC algorithm were compared:

one version of the RMC algorithm used the C implementation of the serialSinc algorithm

50

running on test bed one's AMD Thuban 1090T CPU; the other version used the OpenCL

implementation of the parallelSinc algorithm running on test bed one's Radeon 6850

GPU. In both of these versions of the RMC algorithm three smoothing levels were used

(with Gaussian smoothing kernel sizes of 4, 2 and 1) and the chunk size was 6 slices,

meaning there were 6 chunks in total. To perform the optimization step, Powell

optimization was used with a sum of squared error cost function. The results of this

comparison are presented in Figure 21 below.

Figure 21: RMC robust motion correction algorithm performance comparison

within test bed 1 for C and OpenCL for GPU.

The version of the RMC algorithm using a C implementation of 3D sinc interpolation had

a running time of 379 minutes, whereas the version of RMC using an OpenCL

implementation had a running time of 22.6 minutes, one sixteenth that of the C

implementation.

51

Chapter 7

7 Conclusions

The focus of the present thesis has been on comparing the performance of different

implementations of 3D sinc interpolation across multiple hardware platforms and

programming languages. The results of these comparisons indicate a progressive

improvement in performance from Python, C, OpenCL for CPU and OpenCL for GPU.

Although the asymptotic time complexity of the algorithm might be equal among several

of these implementations, the relative performance of different implementations is

important because for neuroimaging data processing algorithms there is a hard constraint

on the input size imposed by the physical limitations of the fMRI scanner and the

physiological limitations of the subject.

Moreover, although the results of this performance comparison might seem easily

predictable to an individual versed in parallel programming techniques specifically or

software engineering generally, they do serve to illustrate an important point: before an

accurate algorithm (in this case sinc interpolation) is dismissed as unfeasible for the

solution of a particular problem (i.e. 3D fMRI data interpolation) because of long running

times on one test bed, alternatives for the hardware platform and software language used

in its implementation should be considered.

In addition to these comparisons, in this thesis a novel implementation of 3D sinc

interpolation on a field programmable gate array was presented. This implementation

performed better than an OpenCL implementation running on a 6 core CPU, however it

performed worse than an OpenCL implementation running on a GPU. Although the

FPGA was unable to offer better performance than the existing GPU OpenCL

implementation, it was shown to consume substantially less power in completing the

same computations.

Finally, the performance of an entire algorithm for robust fMRI motion correction

employing an implementation of 3D sinc interpolation in C and an implementation using

OpenCL for the GPU were compared. These results again showed the superiority of the

52

GPU implementation of the algorithm, however this time in the context of a practical

fMRI data preprocessing algorithm.

7.1 Threats to Validity

One threat to the validity of the results presented herein is the difference in the Python

clock utility used to measure running time across the multiple operating systems used on

the four experimental test beds. On Windows, the Python clock() function returns as a

floating point number the wall-clock seconds elapsed since the first call to the function

based on the Win32 function QueryPerformanceCounter() with microsecond accuracy.

On Unix, the python clock() function returns the current processor time as a floating

point number expressed in seconds, with the precision depending on the eponymous C

function. Despite these differences the Python documentation indicates that regardless of

the operating system, clock() is the function to use for benchmarking Python or timing

algorithms.

Another general criticism of the results presented could stem from the differences in I/O

handling, floating point number handling, or compiler optimization between the multiple

test beds described in Chapter 4. A critic could argue that because of these differences,

comparisons of the performance of the 3D sinc interpolation between these systems are

invalid, because of the lack of consistency between the systems. The comparisons

presented were however intended not to rigorously compare the performance of the

different CPU hardware architectures in each test bed, but instead to highlight the

differences between each test bed as a whole.

Another criticism could stem from the repeated paired statistical comparisons presented

to the exclusion of a stricter multiple comparisons test such as Tukey's Honestly

Significant Difference test. Multiple comparison tests such as Tukey's, however, typically

involve only setting a stricter threshold for the significance of the p value reported to

produce a new 'effective value' which compensates for the higher probability of a type I

error present when making multiple paired comparisons. The statistical significance of

the difference between each pair of sample means presented was however so powerful

53

that even with an extremely strict threshold for significance, each comparison would

certainly achieve significance and allow for the rejection of the null hypothesis.

7.2 Future Directions

There are several future directions for this research. Firstly, comparisons between

different GPU and FPGA hardware platforms could be undertaken. At present, the

performance of the 3D sinc interpolation kernel was only evaluated on one GPU (the

Radeon 6850) and one FPGA device (the Altera Stratix V GS). Benchmarking the

algorithm's performance on a GPU from a different manufacturer such as nVIDIA, or a

FPGA from a different manufacturer such as Xilinx could provide interesting results. For

example, a state of the art GPU like the nVIDIA Titan might be able to perform 3D sinc

interpolation with a sinc kernel size 13 x 13 x 13 in real time for a scanner with a volume

resolution of 80 x 80 x 36 voxels.

As explained in Chapter 3, the 3D sinc interpolation algorithm was parallelized only at

the level of the voxels in a given chunk. Parallelizing the sinc interpolation algorithm

with a smaller granularity, such as to the level of computing the sinc contribution of each

voxel in a sinc kernel concurrently, could enhance performance of the parallel version of

the algorithm further.

Finally, although the 3D sinc interpolation algorithm is an interesting and valuable

example for comparing the relative performance of different combinations of

programming language and hardware platform, there are several other 3D interpolation

methods commonly used in fMRI motion correction which might be worthy of

consideration. It could be interesting and fruitful to compare the performance of different

combinations of programming language and hardware platform for Fourier interpolation

as well as trilinear interpolation in a manner similar to that presented herein.

54

References

Amdahl, G. M. (1967, April). Validity of the single processor approach to achieving large

 scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

 computer conference (pp. 483-485). ACM.

Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., Hyde J. S. (1992). Time

 course EPI of human brain function during task activation. Magnetic Resonance

 in Medicine, 25, 390-397.

Che, S., Li, J., Sheaffer, J. W., Skadron, K., & Lach, J. (2008, June). Accelerating

 compute-intensive applications with GPUs and FPGAs. In Application Specific

 Processors, 2008. SASP 2008. Symposium on (pp. 101-107). IEEE.

Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic

 resonance neuroimages. Computers and Biomedical Research, 29, 162-173.

Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional

 MRI. Magnetic Resonance in Medicine, 42, 1014-1018.

Eddy, W. F., Fitzgerald, M., & Noll, D. C. (1996). Improved imaged registration by using

 Fourier interpolation. Magnetic Resonance in Medicine, 36, 923-931.

Field, A. S., Yen, Y. F., Burdette, J. H., & Elster, A. D. (2000). False cerebral activation

 on BOLD functional MR images: Study of low-amplitude motion weakly

 correlated to stimulus. American Journal of Neuroradiology, 21, 1388-1396.

Fornberg, B., & Zuev, J. (2007). The Runge phenomenon and spatially variable shape

 parameters in RBF interpolation. Computers & Mathematics with Applications,

 54(3), 379-398.

Freire, L., & Mangin, J. F. (2000). Motion correction algorithms may create spurious

 brain activations in the absence of subject motion. NeuroImage, 14, 709-722. doi:

 10.1006/nimg.2001.0869

55

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D. (1995). Spatial

 normalization and registration of images, Human Brain Mapping, 3, 165-189.

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., Turner, R. (1996).

 Movement-related effects in fMRI time series. Magnetic Resonance in Medicine,

 35, 346-355.

Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., Henson, R. N. (2006). A critique of

 functional localisers. NeuroImage, 30, 1077-1087.

Glover, G. H., Li, T. Q., & Ress, D. (2000). Image‐based method for retrospective

correction of physiological motion effects in fMRI: RETROICOR. Magnetic

Resonance in Medicine, 44(1), 162-167.

Hajnal, J. V., Saeed, N., Soar, E. J., Oatridge, A., Young, I. R., & Bydder, G. M. (1995).

 A registration and interpolation procedure for subvoxel matching of serially

 acquired MR images. Journal of Computer Assisted Tomography, 19(2), 289-296.

Hu, X., Le, T. H., Parrish, T., & Erhard, P. (1995). Retrospective estimation and

correction of physiological fluctuation in functional MRI. Magnetic Resonance in

Medicine, 34, 201-212.

Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance

 imaging. Sinauer Associates.

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2001). Improved optimization for

 the robust and accurate linear registration and motion correction of brain images.

 NeuroImage, 17, 825-841. doi: 10.1006/nimg.2002.1132

Jiang, A., Kennedy, D. N., Baker, J. R., Weisskoff, R. M., Tootell, R. B. H., Woods, R.P.,

 Benson, R. R., Kwong, K. K., Brady, T. J., Rosen, B. R., Belliveau, J. W. (1995).

 Motion detection and correction in functional MR imaging. Human Brain

 Mapping, 3, 224–235. doi: 10.1002/hbm.460030306

56

Kostelec, P. J., & Periaswamy, S. (2003). Image registration for MRI. Modern Signal

 Processing, 46, 161-184.

Lemieux, L., Salek-Haddadi, A., Lund, T. E., Laufs, H., Carmichael, D. (2007).

 Modelling large motion events in fMRI studies of patients with epilepsy.

 Magnetic Resonance Imaging, 25, 894-901.

Lund, T. E., Nørgaard, M. D., Rostrup, E., Rowe, J. B., Paulson, O. B. (2005). Motion or

 activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage, 26,

 960-964.

Noll, D. C., & Schneider, W. (1994). Theory, simulation and compensation of

 physiological motion artifacts in functional MRI. Proceedings of IEEE

 International Conference on Image Processing, 40.

Oakes, T. R., Johnstone, T., Ores Walsh, K. S., Greischar, L. L., Alexander, A. L., Fox,

 A. S., & Davidson, R. J. (2005). Comparison of fMRI motion correction software

 tools. NeuroImage, 28(3), 529-543.

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J., Kim, S. G., Merkle, H., Ugurbil, K.

 (1992). Intrinsic signal changes accompanying sensory stimulation: Functional

 brain mapping with magnetic resonance imaging. Proceedings of the National

 Academy of Sciences, 89, 5951-5955.

Ooi, M. B., Krueger, S., Thomas, W. J., Swaminathan, S. V., & Brown, T. R. (2009).

Prospective real‐time correction for arbitrary head motion using active markers.

Magnetic Resonance in Medicine, 62(4), 943-954.

Oppenheim, A. V. (1975). RW Schafer ‘Digital Signal Processing’. Prentice-Hall,

Englewood Cliffs, New Jersey, 6, 125-136.

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of

several variables without calculating derivatives. Computer Journal, 7, 155-162.

doi: 10.1093/comjnl/7.2.155

57

Speck, O., Hennig, J., & Zaitsev, M. (2006). Prospective real-time slice-by-slice motion

correction for fMRI in freely moving subjects. Magnetic Resonance Materials in

Physics, Biology and Medicine, 19(2), 55-61.

Strother, S. C. (2006). Evaluating fMRI preprocessing pipelines: Review of

 preprocessing steps for BOLD fMRI. IEEE Engineering in Medicine and Biology

 Magazine, 27- 41. doi: 0739-5175

Thacker, N. A., Jackson, A., Moriarty, D., & Vokurka, E. (1999). Improved quality of re-

 sliced mr images using re-normalized sinc interpolation. Journal of Magnetic

 Resonance Imaging, 10, 582-588.

Thesen, S., Heid, O., Mueller, E., & Schad, L. R. (2000). Prospective acquisition

 correction for head motion with image-based tracking for real-time fMRI.

 Magnetic Resonance in Medicine, 44, 457-465.

Tong, R., & Cox, R. W. (1999). Rotation of NMR images using the 2D chirp-z transform.

 Magnetic Resonance in Medicine, 41(2), 253-256.

Tremblay, M., Tam, F., & Graham, S. J. (2005). Retrospective coregistration of

functional magnetic resonance imaging data using external monitoring. Magnetic

Resonance in Medicine, 53(1), 141-149.

Twieg, D. (1983). The k-trajectory formulation of the NMR imaging process with

 applications in analysis and synthesis of imaging methods. Medical Physics, 10,

 610-21. doi: 10.1118/1.595331

Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (statistics

 in practice).

Weiskopf, N., Sitaram, R., Josephs, O., Veit, R., Scharnowski, F., Goebel, R., ... &

 Mathiak, K. (2007). Real-time functional magnetic resonance imaging: methods

 and applications. Magnetic Resonance Imaging, 25(6), 989-1003.

58

Woods, R. P., Cherry, S. R., & Mazziotta, J. C. (1992). Rapid automated algorithm for

 aligning and reslicing PET images. Journal of Computer Assisted Tomography,

 16(4), 620-633.

Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998).

 Automated image registration: I. General methods and intrasubject, intramodality

 validation. Journal of Computer Assisted Tomography, 22(1), 139-152.

Zaitsev, M., Dold, C., Sakas, G., Hennig, J., & Speck, O. (2006). Magnetic resonance

imaging of freely moving objects: prospective real-time motion correction using

an external optical motion tracking system. Neuroimage, 31(3), 1038-1050.

59

Appendices

Appendix A: List of software packages and version numbers.

Test Bed 1 - Workstation Desktop

C Compiler Microsoft (R) C/C++ 15.00.21022.08 for x64

Python 2.7

PyOpenCL 2012.1

Numpy 1.7.0

Scipy 0.12.0b1

Nibabel 1.3.0

matplotlib 1.2.0

AMD VISION Engine 13.4

 Test Bed 2 - Laboratory Desktop

C Compiler GCC 4.7.3

Python 2.7.4

Numpy 1.7.1

Scipy 0.11.0

Test Bed 3 - Rack-Mount Server

C Compiler GCC 4.4.6

Python 2.7.5

Numpy 1.7.1

Scipy 1.12.0

Test Bed 4 - Legacy Laptop

C Compiler (same as test bed 1)

Python 2.7.3

Numpy 1.7.0

Scipy 0.11.0

Nibabel 1.3.0

matplotlib 1.3.0

60

Appendix B: 3D sinc interpolation mean running time across programming

language and hardware platform within test bed 1 data table.

Kernel
Size

Slices Per
Chunk Voxels Python C

OpenCL
CPU

OpenCL
GPU

1 1 6400 0.09905 0.00080 0.00197 0.00250

3 1 6400 5.44586 0.02354 0.01024 0.00317

7 1 6400 79.9558 0.32574 0.11669 0.00721

13 1 6400 N/A 1.97805 0.70556 0.03045

1 2 12800 0.18917 0.00113 0.00208 0.00226

3 2 12800 12.6758 0.05455 0.02205 0.00365

7 2 12800 171.779 0.69705 0.24651 0.01154

13 2 12800 N/A 4.10875 1.47251 0.05827

1 4 25600 0.37508 0.00199 0.00199 0.00258

3 4 25600 31.0592 0.13195 0.05065 0.00442

7 4 25600 385.869 1.58344 0.55282 0.02453

13 4 25600 N/A 8.88442 3.15047 0.12450

1 8 51200 0.75490 0.00403 0.00309 0.00303

3 8 51200 68.1876 0.28854 0.10095 0.00681

7 8 51200 936.254 3.87883 1.32138 0.06046

13 8 51200 N/A 19.9882 6.97667 0.28417

1 16 102400 1.47991 0.00741 0.00512 0.00449

3 16 102400 140.685 0.59934 0.20391 0.01125

7 16 102400 2120.19 8.69777 2.92332 0.10882

13 16 102400 N/A 49.0161 16.4872 0.68811

1 32 204800 2.96186 0.01533 0.00892 0.00735

3 32 204800 290.354 1.22223 0.41207 0.02019

7 32 204800 4435.09 18.2435 6.08879 0.21176

13 32 204800 N/A 104.408 35.0277 1.34306

1 36 230400 3.33900 0.01705 0.00975 0.00764

3 36 230400 317.506 1.35719 0.45108 0.02197

7 36 230400 4862.61 19.7572 6.60705 0.23935

13 36 230400 N/A 113.635 37.8461 1.51343

61

Appendix C: Python implementation mean running time comparison across

hardware architecture data table.

Kernel
Size

Slices Per
Chunk

Chunk
Size

CPU: AMD
Turion TL-56

CPU: AMD
Thuban 1090T

CPU: Intel
Xeon E5603

CPU: Intel
Xeon E5504

1 1 6400 0.30799 0.09905 0.24420 0.14320

3 1 6400 15.6981 5.44586 15.4500 10.1600

7 1 6400 224.373 79.9558 225.480 149.180

1 2 12800 0.54832 0.18917 0.46700 0.28080

3 2 12800 35.0594 12.6758 36.5600 23.6300

7 2 12800 475.025 171.779 481.920 320.550

1 4 25600 1.07633 0.37508 0.94340 0.55240

3 4 25600 85.3394 31.0592 88.5900 56.4500

7 4 25600 1077.04 385.869 1093.40 724.920

1 8 51200 2.13736 0.75490 1.86760 1.09800

3 8 51200 186.212 68.1876 191.470 125.160

7 8 51200 2621.09 936.254 2638.18 1770.90

1 16 102400 4.27821 1.47991 3.72680 2.19160

3 16 102400 389.879 140.685 394.600 260.300

7 16 102400 5946.47 2120.19 6028.40 3995.17

1 32 204800 8.46581 2.96186 7.40300 4.37940

3 32 204800 789.531 290.354 815.000 521.650

7 32 204800 12306.4 4435.09 12644.3 8387.59

1 36 230400 9.29165 3.33900 8.19300 5.14100

3 36 230400 858.706 317.506 898.255 581.038

7 36 230400 13147.54 4862.61 13647.1 9069.40

62

Appendix D: C implementation mean running time comparison across hardware

architecture data table.

Kernel
Size

Slices Per
Chunk Voxels

CPU: AMD
Turion TL-56

CPU: AMD
Thuban 1090T

CPU: Intel
Xeon E5603

CPU: Intel
Xeon E5504

1 1 6400 0.00227 0.00080 0.00100 0.00060

3 1 6400 0.05974 0.02354 0.05180 0.10400

7 1 6400 0.81697 0.32574 0.82080 1.55460

13 1 6400 5.14122 1.97805 5.58380 9.83620

1 2 12800 0.00342 0.00113 0.00180 0.00120

3 2 12800 0.13578 0.05455 0.12060 0.24200

7 2 12800 1.74915 0.69705 1.75920 3.33060

13 2 12800 10.6442 4.10875 11.5958 20.4360

1 4 25600 0.00662 0.00199 0.00280 0.00200

3 4 25600 0.32599 0.13195 0.29220 0.58580

7 4 25600 3.95834 1.58344 3.98700 7.54860

13 4 25600 22.8674 8.88442 24.9098 43.8206

1 8 51200 0.01129 0.00403 0.00520 0.00460

3 8 51200 0.70593 0.28854 0.63580 1.27660

7 8 51200 9.66314 3.87883 9.73100 18.4126

13 8 51200 52.0704 19.9882 56.6878 99.6924

1 16 102400 0.02066 0.00741 0.00980 0.00680

3 16 102400 1.46545 0.59934 1.32300 2.65460

7 16 102400 21.7726 8.69777 21.9184 41.5054

13 16 102400 126.938 49.0161 138.281 243.587

1 32 204800 0.03912 0.01533 0.01940 0.01380

3 32 204800 2.98630 1.22223 2.69700 5.41220

7 32 204800 45.5416 18.2435 45.9606 87.1916

13 32 204800 270.240 104.408 294.574 517.887

1 36 230400 0.04332 0.01705 0.02200 0.01500

3 36 230400 3.29573 1.35719 2.98300 6.03700

7 36 230400 49.7613 19.7572 49.9390 93.5930

13 36 230400 292.338 113.635 310.316 561.970

63

Appendix E: OpenCL CPU implementation mean running time comparison across

enabled processor cores data table.

Kernel
Size

Slices Per
Chunk Voxels

OpenCL
CPUx1

OpenCL
CPUx2

OpenCl
CPUx4

OpenCL
CPUx6

1 1 6400 0.00271 0.00214 0.00255 0.00213

3 1 6400 0.06272 0.03051 0.01686 0.01252

7 1 6400 0.81735 0.41134 0.21402 0.14394

13 1 6400 4.97512 2.48294 1.27170 0.88373

1 2 12800 0.00312 0.00239 0.00275 0.00220

3 2 12800 0.13687 0.07001 0.03683 0.02771

7 2 12800 1.75404 0.87296 0.45412 0.30744

13 2 12800 10.3356 5.15059 2.63962 1.82183

1 4 25600 0.00455 0.00364 0.00323 0.00310

3 4 25600 0.32941 0.16878 0.08977 0.06260

7 4 25600 3.98209 2.01137 1.02545 0.68966

13 4 25600 22.4482 11.3126 5.82611 3.90900

1 8 51200 0.00618 0.00429 0.00444 0.00406

3 8 51200 0.71679 0.35707 0.18361 0.12534

7 8 51200 9.67034 4.82574 2.45543 1.64566

13 8 51200 50.5352 25.1750 12.8196 8.65828

1 16 102400 0.01108 0.00804 0.00676 0.00638

3 16 102400 1.49845 0.76739 0.37532 0.25248

7 16 102400 21.7944 10.8645 5.43781 3.64330

13 16 102400 123.317 61.4237 30.9508 20.5567

1 32 204800 0.02002 0.01422 0.01193 0.01063

3 32 204800 3.02729 1.51200 0.76098 0.51041

7 32 204800 45.6608 22.7674 11.3818 7.62043

13 32 204800 262.660 130.975 65.7338 43.6484

1 36 230400 0.07806 0.01596 0.01324 0.01196

3 36 230400 3.66452 1.67630 0.85550 0.56357

7 36 230400 50.0662 24.7522 12.5119 8.24016

13 36 230400 287.257 142.382 70.8652 47.2883

64

Appendix F: OpenCL GPU implementation mean running time performance data

table.

Kernel
Size

Slices Per
Chunk Voxels

Radeon
6850

1 1 6400 0.00250

3 1 6400 0.00317

7 1 6400 0.00721

13 1 6400 0.03045

1 2 12800 0.00226

3 2 12800 0.00365

7 2 12800 0.01154

13 2 12800 0.05827

1 4 25600 0.00258

3 4 25600 0.00442

7 4 25600 0.02453

13 4 25600 0.12450

1 8 51200 0.00303

3 8 51200 0.00681

7 8 51200 0.06046

13 8 51200 0.28417

1 16 102400 0.00449

3 16 102400 0.01125

7 16 102400 0.10882

13 16 102400 0.68811

1 32 204800 0.00735

3 32 204800 0.02019

7 32 204800 0.21176

13 32 204800 1.34306

1 36 230400 0.00764

3 36 230400 0.02197

7 36 230400 0.23935

13 36 230400 1.51343

65

Appendix G: FPGA sinc interpolation mean running time raw data table for static

and dynamic parallel sinc kernels data table.

Kernel
Size

Slices Per
Chunk Voxels

Dynamic
Kernel

Static
Kernel

1 1 6400 0.030 N/A

3 1 6400 0.009 N/A

7 1 6400 0.049 N/A

13 1 6400 0.283 0.293

1 2 12800 0.008 N/A

3 2 12800 0.013 N/A

7 2 12800 0.100 N/A

13 2 12800 0.579 0.552

1 4 25600 0.008 N/A

3 4 25600 0.024 N/A

7 4 25600 0.219 N/A

13 4 25600 1.239 1.175

1 8 51200 0.011 N/A

3 8 51200 0.044 N/A

7 8 51200 0.524 N/A

13 8 51200 2.809 2.661

1 16 102400 0.014 N/A

3 16 102400 0.086 N/A

7 16 102400 1.173 N/A

13 16 102400 6.841 6.472

1 32 204800 0.023 N/A

3 32 204800 0.168 N/A

7 32 204800 2.451 N/A

13 32 204800 14.56 13.78

1 36 230400 0.025 N/A

3 36 230400 0.192 N/A

7 36 230400 2.670 N/A

13 36 230400 15.80 14.94

66

Curriculum Vitae

Name: Andrew Kope

Post-secondary University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2007-2011 Honors B.A.

 University of Western Ontario

 London, Ontario, Canada

 2011-2012 Post Degree Module

Honours and NSERC Undergraduate Summer Research Award

Awards: 2011

Related Work Teaching Assistant

Experience The University of Western Ontario

2012-2013

Publications:

Kope, Andrew B, Rose, Caroline C, Katchabaw, Michael. (2013). Modeling

Autobiographical Memory for Believable Agents. Proceedings of the 9
th

 AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment.

	Performance Comparison of 3D Sinc Interpolation for fMRI Motion Correction by Language of Implementation and Hardware Platform
	Recommended Citation

	Performance Comparison of 3D Sinc Interpolation for fMRI Motion Correction by Language of Implementation and Hardware Platform

