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Abstract

Image segmentation is a fundamental problem in computer vision that has drawn intensive

research attention during the past few decades, resulting in a variety of segmentation algo-

rithms. Segmentation is often formulated as a Markov random field (MRF) and the solution

corresponding to the maximum a posteriori probability (MAP) is found using energy minimiza-

tion framework. Many standard segmentation techniques rely on foreground and background

appearance models given a priori. In this case the corresponding energy can be efficiently op-

timized globally. If the appearance models are not known, the energy becomes NP-hard, and

many methods resort to iterative schemes that jointly optimize appearance and segmentation.

Such algorithms can only guarantee local minimum.

Here we propose a new energy term explicitly measuring the L1 distance between object and

background appearance models that can be globally maximized in one graph cut. Our method

directly tries to minimize the appearance overlap between the segments. We show that in many

applications including interactive segmentation, shape matching, segmentation from stereo

pairs and saliency segmentation our simple term makes NP-hard segmentation functionals un-

necessary and renders good segmentation performance both qualitatively and quantitatively.

Keywords: Image Segmentation, Appearance Model, Markov Random Fields, Color Sep-

aration, Submodular Function Minimization, Pesudo-boolean Function
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Chapter 1

Introduction

Image segmentation is the problem of partitioning the image into several segments. Pixels

in the same segment should have similar characteristics, such as intensity, color, texture, etc.

On the other hand, pixels in different segments should have distinct characteristic of the same

measure. Sometimes image segmentation is a goal in itself. A user might want to segment an

object from an image to paste in another image. Most often, segmentation is needed for other

vision or medical imaging applications. For example, for medical diagnosis and prognosis of

cancer patients, one often needs to accurately measure the tumor volume, which first requires

segmenting a tumor from a medical MRF volume. Another application where image segmen-

tation is useful is object detection. Segmentation is useful for feature extraction [53] and to

limit the number of image patches to examine for a possible presence of an object [39].

Simply stated, image segmentation can be viewed as a labeling problem where each pixel is

assigned a label. There are two labels for segmentation into two regions and multiple labels for

segmentation into multiple regions.

Image segmentation can be performed in a supervised or unsupervised fashion. In unsupervised

segmentation, no user assistance is available and typically, no additional knowledge about the

scene contents is assumed. In supervised segmentation, user specifies either a bounding box

containing the object of interest, or so called object and background ”seeds”, indicating some

pixels that belong to the object and background, respectively. We may have prior knowledge

of segments such as volume ratio of the segments, target distribution of segments learned from

a training dataset or shape of the segments. The prior knowledge or user interaction is often

incorporated into image segmentation algorithms.

Over the past few decades, numerous algorithms have been developed for image segmentation.

Commonly used methods include live-wire [46], deformable models [28], normalized-cut [52],

level sets [20, 43], graph cut [12, 14], etc. The focus of this thesis is energy minimization meth-

ods for image segmentation. We use the popular and well-known s-t mincut for optimization.

1



2 Chapter 1. Introduction

1.1 Markov Random Fields: Modeling and Inference

Markov Random Field (MRF) [10, 33] is a graphical model of joint probabilistic distribution

on a set of random variables which are inter-dependent, and their dependences can be modeled

with a graph. MRFs have been applied to a wide range of problems in computer vision such

as image segmentation, image restoration, 3D reconstruction and image & video Synthesis

[21, 38]. We often express a Markov Random Field as a graph G = {V,E} where V is the set

of vertexes and E is the set of edges. MRF satifisfies the Markov property that the state of one

node is independent of all other nodes given the states of its neighboring nodes. For example,

in Fig. 1.1, the state of the black node, when conditioned on the four gray neighboring nodes,

is independent of all the other graph nodes.

The simplest Markov model- Markov Chain- is defined on a sequence of random variables

X = {x1, x2, ...} over time where the conditional probability of variable xi only depends on xi−1:

P(xi|xi−1, xi−2, ..., x1) = P(xi|xi−1). (1.1)

A MRF can be seen as extension of a Markov Chain with higher-order clique (minimum set

of connected nodes) and larger connectivity dimension. We often treat each pixel as one node

and use 4 or 8 neighboring system as graph for Markov model in computer vision.

Figure 1.1: Markov Property: The state of the black node is conditionally independent of all
the white nodes, given the states of the gray nodes. This is called the Markov property.

A Markov Random Field encodes the long-range correlation between states of variables by

simply connecting nodes to a few neighboring nodes. By doing this we avoid densely con-

nected graph which needs computationally expensive inference algorithms and yet capture the

essential dependences between the pixels.

A typical 4-connected Hidden MRF Model (HMM) is shown in Fig. 1.2. Let us denote random
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Figure 1.2: Hidden Markov Model on a 4-connected graph. The upper layer represents ob-
served value of nodes and the lower layer represents hidden state variables of nodes.

variables by X and observations of nodes by Z for HMM. Applying Bayes’ theorem, we have

P (X | Z) ∝ P (Z | X) P (X). (1.2)

For the likelihood P(Z | X), each observed data zi only depends on the state of hidden variable

xi. The distribution P(X) is assumed to follow the Markov property.

The above posterior MRF is often expressed as energy by taking the log:

P (X | Z) =
1
Z exp (−E(X | Z)), (1.3)

E(X | Z) =
∑
c∈C
θc(X) +

∑
i

ϕ(xi, zi), (1.4)

whereZ is the normalization factor. Here C is the set of cliques.

Each θc(X) is called a clique potential. A clique contains fully connected subsets of nodes in

the graph. The degree of a clique is the number of nodes in the clique. If the degree of cliques

is more than three, we treat the MRF as high-order MRF and the corresponding optimization

problem is often more challenging. A typical high-order clique is the term defined over number

of pixels in segments, for example, term penalizing deviation of segment size from target size.

The simplest cliques include one-degree clique and two-degree clique which get involved only

one node or two nodes respectively in the clique.

A Conditional Random Field (CRF) directly models the conditional distribution P(X|Z) as

obeying the Markov property. In the context of CRF, a latent variable xi only depends on
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its neighboring nodes in the graph given the observed data Z, so the clique potential is of

the form θc(X,Z) rather than θc(X). A CRF can be seen as a MRF globally conditioned on the

observation. One application of CRF is binary image segmentation with edge-contrast sensitive

smoothness term which will be explained later.

Inferrence of posterior MRF is a Maximum A Posteriori (MAP) problem :

X = arg max P(X | Z) (1.5)

or equivalently we can minimize the energy E(X | Z).

The most commonly used MRF energy consists of an unary term and a pairwise term:

E(X | Z) =
∑
i∈V
ϕi(xi, zi) +

∑
(i, j)∈E

θi j(xi, x j), (1.6)

where variable xi takes value from label set L and zi is the observation of node i.

Generally, the MAP-MRF energy (1.6) optimization is NP-hard, even for binary case where

the variable xi can only take label 0 or 1. In the binary case, if the pairwise potential satisfies:

θi j(0, 0) + θi j(1, 1) ≤ θi j(0, 1) + θi j(1, 0),∀(i, j), (1.7)

then the energy (1.6) is submodular and can be optimized with a graph cut [36]. Intuitively

speaking, a submodular energy encourages nearby pixels to have same labels. Boykov and

Kolmogorov [14] have developed a min-cut/max-flow algorithm that is particularly efficient in

practice for graphs of small connectivity, that naturally arise in image segmentation problems.

MRF optimization methods have two important groups: those in discrete and those in contin-

uous domains. Graph cut is a popular discrete domain optimization method that can optimize

submodular energy functions. For binary MRF optimization of submodular energy, graph cut

gives global optimal solutions in polynomial time. For multi-label MRF when the pairwise ter-

m θi j(xi, x j) is metric or semi-metric, graph cut can find approximate solution by move-making

algorithms such as α−β swap and α expansion. In each iteration of α−β swap and α expansion,

the original multi-labeling problem reduces to a binary problem. For α − β swap, only nodes

with current labels α and β are allowed to change their labels. In particular, they are allowed

to change their labels to either α or β. This means that an α − β swap move finds an optimal

reassignment of labels α and β in the current solution. For α expansion, nodes are only allowed

to switch to label α or keep their current labels at each iteration. At each iteration of α − β
swap (or α expansion), an optimal move finding the maximum energy decrease is found. The



1.1. Markov Random Fields: Modeling and Inference 5

algorithm converges when there is no further α− β swap (or α-expansion) move that decreases

the energy.

Belief propagation [22, 48, 54, 63] is another important early discrete optimization method

for energy (1.6). BP can be seen as re-parameterization of the original energy and gives exact

solution on trees, but it gives local minima if there are loops in the graph and may not even

converge. BP usually returns an energy which is worse than that of a graph cut.

In the continues optimization domain [2, 18, 29, 37], the MRF optimization problem is written

as an integer program (IP). Denote the set of possible labels as L, by relaxing the integration

constraints of the integer program, the IP can be further written as the following Linear Pro-

gram (LP) and solved by LP solver such as interior point methods. However, the solution of LP

needs to be rounded and can be far from the optimal solution of IP and LP solver is relatively

slow in practice.

min
∑

i∈V,xi∈L
ui(xi)ϕi(xi) +

∑
(i, j)∈E,xi,x j∈L

ui j(xi, x j)ϕi j(xi, x j) (1.8)

subject to: ∑
xi,x j∈L

ui j(xi, x j) = 1, (1.9)

∑
xi∈L

ui j(xi, x j) = u j(x j), (1.10)

ui j(xi, x j), ui(xi) ∈ [0, 1]. (1.11)

(a) Energy (b) LP relaxation (c) Lower bound

Figure 1.3: Take LP relaxation of the original energy with discrete variables and maximize the
lower bound.

Tree-reweighted message passing (TRW) [34, 62] maximizes the upper bound of the LP relax-
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ation (Fig. 1.3). TRW represents the graph as convex combination of trees. The summation

of minimum of trees gives lower bound of the original energy. The two major steps of TRW

include performing BP on trees and averaging nodes selected by particular scheme. TRW iter-

ates between the two steps until convergence, which gives local maximum of lower bound. A

nice property of TRW-S [34] is that the lower bound never decreases.

1.2 Markov Random Fields for Image Segmentation

S-t maxflow/mincut is first used by Greig et al. [26] as optimization algorithm for comput-

er vision and image processing. There it is used for the task of binary image reconstruction

from noisy images. Then Boykov and Jolly first employed graph cut for image segmentation

[11, 12, 13, 14]. Bellow we show an example of graph cut for binary interactive image seg-

mentation.

We denote sp ∈ {0, 1} as binary indicator variables for pixel p, 1 for foreground and 0 for back-

ground. The most commonly used single-variable potential is log-likelihood term ln Pr(Ip|θsp)

for each pixel p, where θ1 and θ0 are fixed foreground and background appearance models,

usually based on color distributions. Ip is the color of pixel p. In the case of interactive seg-

mentation, we can estimate the initial appearance model through user input strokes. Sometimes

the appearance model of foreground and background are known a priori, for example from a

training set. Commonly used pairwise potential is edge-contrast sensitive smoothness penal-

ty. The higher the intensity contrast between two adjacent pixels, the smaller the smoothness

penalty.

The basic object segmentation energy [12, 57] combines boundary length regularization ∂S

with log-likelihood term

E(S |θ1, θ0) = −
∑
p∈Ω

ln Pr(Ip|θsp) + |∂S | (1.12)

where Ω is the set of all image pixels and S is the set of foreground pixels labelled as sp = 1.

The most commonly used boundary length regularization term is |∂S | = ∑{p,q}∈N ωpq|sp − sq|
and N is the set of all pairs of neighboring pixels. Ifωpq is constant, then the smoothness term is

data independent and the model is MRF. If ωpq is edge-contrast sensitive, then the smoothness

term depends on the observed data and the model becomes a CRF. The log-likelihood term,

or data term is a unary term, and the smoothness term is a pairwise term. A real example of

interactive image segmentation is shown in Fig. 1.5
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Example: Interactive image segmentation with graph cut (Fig. 1.4)

1. The user specifies hard-constrained pixels that have to be segmented as foreground or

background. For example, the user can put strokes on object and background. We can

estimate foreground and background appearance model (color histogram) accrording to

the strokes.

2. A four or eight connected graph is constructed with each node representing each pixel

and there are two additional terminal nodes in the graph: source node S and sink node

T .

3. Then we connect nodes in the graph through links. The links between pixels and ter-

minals are denoted by t-links and links between pixels themselves are denoted by n-

links. The hard-constrained pixels are linked to terminal nodes S or T with infinity

edge weights. Other pixels are linked to terminal nodes through soft-constrain t-link,

the weight of which will be explained later. One way of setting soft-constrain t-link is

through appearance model of foreground and background.

4. Adjacent pixels in neighboring system are connected through n-links. The weight of the

smoothness term can be edge-contrast sensitive.

5. After the graph is constructed, we can use any available maxflow/mincut optimization

algorithm and get the cut of minimum weight. The min cut specifies whether the pixels

belong to foreground and background.

1.3 Motivation of Color Separation Term for Image Segmen-
tation

Appearance models are critical for many image segmentation algorithms. One important prac-

tical advantage of this basic energy is that there are efficient methods for their global minimiza-

tion using graph cuts [14] or continuous relaxations [16, 50].

In many applications the appearance models may not be known a priori. Some well-known

approaches to segmentation [17, 51, 66] consider model parameters as extra optimization vari-

ables in their segmentation energies. E.g.,

E(S , θ1, θ0) = −
∑
p∈Ω

ln Pr(Ip|θsp) + |∂S |, (1.13)
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Figure 1.4: Graph Cut for Interactive Segmentation: (top-left) User specified seeds denoted by
blue and red pixels, (top-right) Graph with pixels as nodes and S, T terminals, (bottom-left)
Graph with t-links and n-links, (bottom-right) s/t mincut. [Image credit: Yuri Boykov]

which is known to be NP-hard for optimization [59], is used for interactive segmentation in

GrabCut [9, 51] where initial appearance models θ1, θ0 are computed from a given bounding

box. The most common approximation technique for minimizing (1.13) is a block-coordinate

descent [51] alternating the following two steps. First, they fix model parameters θ1, θ0 and

optimize over S , e.g. using a graph cut algorithm for energy (1.12) as in [12]. Second, they

fix segmentation S and then optimize over model parameters θ1 and θ0. Two well-known

alternatives, dual decomposition [59] and branch-and-mincut [40], sometimes find a global

minimum of energy (1.13), but these methods are too slow in practice. Please refer to Chapter
3 for detailed description on GrabCut, dual decomposition and branch-and-mincut.

We observe that when appearance models θ1, θ0 are represented by (non-parametric) color
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Figure 1.5: Interactive image segmentation: user provided strokes (Left) and result (right).

histograms, we can rewrite (1.13) as :

E(S , θ1, θ0) = −
∑
sp=1

ln Pr(Ip|θ1) −
∑
sp=0

ln Pr(Ip|θ0) + |∂S |

= −
∑

k

nS
k ln θ1k −

∑
k

nS̄
k ln θ0k + |∂S |

= −|S |
∑

k

θSk ln θ1k − |S̄ |
∑

k

θS̄k ln θ0k + |∂S |

= |S | · H(θS |θ1) + |S̄ | · H(θS̄ |θ0) + |∂S |, (1.14)

where nS
k is the number of pixels in kth color bin in foreground and nS̄

k in background. Here

θS and θS̄ are histograms inside object S and background S̄ = Ω \ S . H(θS |θ1) and H(θS̄ |θ0)

are cross entropies of probability distributions. According to well-known cross entropy in-

equality H(θS |θ1) ≥ H(θS ) where H(·) is the entropy functional for probability distributions,

minimization of (1.13) is equivalent to minimization of energy

E(S ) = |S | · H(θS ) + |S̄ | · H(θS̄ ) + |∂S | (1.15)

that depends on S only. Interestingly, the global minimum of segmentation energy (1.15) does

not depend on the initial color models provided by the user. Thus, the interactivity of GrabCut

algorithm is primarily due to the fact that its solution is a local minimum of (1.15) sensitive to

the initial bounding box.

If we ignore the smoothness term and use a sliding window to find the bounding box that

minimizes energy (1.15), we would get a box that splits the object of distinct appearance from

the background in the image. See Fig. 1.6 for example. We used integral image [60] which is

originally used for face detection to help accelerate the optimization.

Formulation (1.15) is useful for analyzing the properties of energy (1.13). The entropy
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Figure 1.6: If we only optimize the first two terms in (1.15) and restrict the foreground to be a
rectangle, we can get a rough bounding box of foreground and background in sliding-window
fashion. The foreground is indicated by red box.

terms of this energy prefer segments with more peaked color distributions that give lower en-

tropy. Intuitively, this should also imply that the optimal foreground and background distribu-

tions have a small overlap. For example, consider a simple case of black-&-white image when

color histograms θ1 and θ0 have only two bins (Fig. 1.7). Clearly, the lowest value (zero) for

the entropy terms in (1.15) is achieved when black and white pixels are completely separated

between the segments, e.g. all white pixels are inside the object and all black pixels are inside

the background.

(a) High entropy example (b) Low entropy example

Figure 1.7: Color separation gives segments with low entropy.

The intuitive observation that separating pixels of the same color into different segments ren-

ders segments with low entropy can also be derived by analytically rewriting the energy [59].
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We can further rewrite energy (1.15) as:

E(S ) = −|S |
∑

k

θSk ln θSk − |S̄ |
∑

k

θS̄k ln θS̄k + |∂S |

= −
∑

k

nS
k ln θSk −

∑
k

nS̄
k ln θS̄k + |∂S |

= −
∑

k

nS
k ln

nS
k

|S | −
∑

k

nS̄
k ln

nS̄
k

|S̄ |
+ |∂S |

= |S | ln S + |S̄ | ln |S̄ | −
∑

k

(nS
k ln nS

k + nS̄
k ln nS̄

k ) + |∂S | (1.16)

So the color separation bias in energy (1.15) is shown by equivalently rewriting its two entropy

terms as

hΩ(S ) −
∑

i

hΩi(S i) (1.17)

where hA(B) = |B|·ln |B|+|A\B|·ln |A\B| is standard Jensen-Shannon (JS) divergence functional

for subset B ⊂ A. We also use Ωi to denote the set of all pixels in color bin i (note Ω = ∪iΩi)

and S i = S ∩Ωi is a subset of pixels of color i inside object segment (note S = ∪iS i). The plots

for functions hΩ(S ) and −hΩi(S i) are illustrated in Fig.1.8.
GC volume 

balancing 

term 

JS separation

term

Our L1 separation

term

S

GC volume

balancing

term

i
S

i
S

(a) hΩ(S ) (b) −hΩi(S i) (c) −|S i − S̄ i|

Figure 1.8: Energy (1.15): volume balancing (a) and Jensen-Shannon color separation terms
(b). Our L1 color separation term (c).

The first term in (1.17) shows that energies (1.13) or (1.15) implicitly bias image segmentation

to two segments of equal size, see Fig.1.8(a). The remaining terms in (1.17) show bias to color

separation between the segments, see Fig.1.8(b). Note that a similar analysis in [59] is used to

motivate their convex-concave approximation algorithm for energy (1.13).

Relation with Normalized Cuts: The combination of color separation term and volume bal-

ancing term is analogous to Normalized Cuts [52]. In Normalized Cuts, the graph partition

criteria is given by:

Ncut (A, B) =
cut(A, B)

Vol(A)
+

cut(A, B)
Vol(B)

(1.18)
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where cut(A, B) is the sum of weights of connections between groups A and B and Vol(A) is

the total weight of the edges originating from group A and Vol(B) is similarly defined. The ter-

m cut(A, B) plays a similar role as smoothness term |∂S | that minimizes the boundary length.

If there’s only the term cut(A, B) in the energy, then trivial solutions of A = ∅ or B = ∅ would

be global optimal solutions. The volume terms Vol(A) and Vol(B) have the same effects as

volume balancing term here hΩ(S ) that prefers balanced foreground and background. Note that

normalized cut does not have a color separation term. The lack of color separation can lead to

significant artifacts in segmentation, where volume balancing plays too much of a role. This

often results in segments that are almost equal in volume, but perceptually not distinct.

Volume balancing hΩ(S ) is the only term in (1.17) and (1.13) that is not submodular and makes

optimization difficult. Our observation is that in many applications this volume balancing term

is simply unnecessary [55], see Sections 5.1.3, 5.2-5.3. In other applications we propose to

replace it by other easier to optimize terms.

Moreover, it is known that JS color separation term −hΩi(S i) is submodular (any concave func-

tion of cardinality (number of pixels in segment) is submodular [42]. This applies to JS, χ2,

Bhattacharyya, and our L1 color separation terms in Figs.1.8, 5.5.), so it can be optimized by

graph cuts [30, 31, 59]. We propose to replace it with a simpler L1 separation term [55] in

Fig.1.8(c). We show that it corresponds to a simpler construction with fewer auxiliary nodes

leading to higher efficiency while capturing the essence of a more general color separation ter-

m. Interestingly, it also gives better color separation effect in practice for some applications,

see Section 5.1.2. A Bhattacharyya gradient flow driven active contour can also maximize the

discrepency between distribution of regions inside and outside the active contour [45], but op-

timization of the level set energy is very slow.

We also observe one practical limitation of block-coordinate approach to (1.13), as in GrabCut

[9, 51], could be due to increased sensitivity to local minima when the number of color bins for

models θS and θS̄ is increased, see Section 3.1, Table 5.1 and Fig.5.1. The reason is that with

more color bins, the dimensionality of the histogram gets larger, and there are more local mini-

mums of the energy function. This is because there are more histogram-based color models for

foreground and background that result in a good color separation. In practice, however, finer

bins better capture the information contained in the full dynamic range of color images (8-bit

per channel or more). Our ROC curves show that even a difficult camouflage image in Figure

1.9 has a good separation of intensities between the object and background if larger number of

bins is used. With 163 bins, however, the overlap between the “fish” and the background is too

strong making it hard to segment. Since GrabCut algorithm is more likely to get stuck at weak

local minima for larger number of bins, it may not benefit from higher color resolution.
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Figure 1.9: Given appearance models θo, θb extracted from the ground truth object/background
segments (white contour, top-left), we can threshold log-likelihood ratios ln θ

o(Ip)
θb(Ip) at each pixel

p and compare the result with the same ground truth segmentation for different thresholds.
The corresponding ROC (top-left) curves and RPC curves (bottom-left) show that the color
separation between the object and background increases for finer bins. The same procedure
is repeated for an arbitrary chosen rectangle within the same image (top-right, bottom-right)
with far less pronounced improvement. It is clearly seen that using higher number of bins
to represent appearance can help separate objects from the background even in the case of
camouflage images.

1.4 Contribution of the Thesis

The contribution of the thesis is summarized as follows:

• We propose a simple energy term penalizing L1 measure of appearance overlap between

segments. While it can be seen as a special case of a high-order label consistency term

introduced by Kohli et al. [30, 31] we propose a simpler construction for our specific con-

straint. Unlike NP-hard multi-label problems discussed in [30, 31], we focus on binary

segmentation where such high-order constraints can be globally minimized. Moreover,

we show that our L1 term works better for separating colors than other concave separators

(including JS, Bhattacharyya, and χ2).
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• We are first to demonstrate fast globally optimal binary segmentation technique explicitly

minimizing overlap between un-normalized object/background color histograms. In one

graph cut we get similar or better results at faster running times w.r.t. earlier methods,

e.g. [19, 40, 51, 59].

• We show general usefulness of the proposed appearance overlap penalty by showing

different practical applications: binary segmentation, shape matching, etc.

1.5 Outline of the Thesis

The thesis is organized as follows: Chapter 2 is an overview of appearance models for seg-

ments, including non-parametric density estimation such as Parzen window and k-NN density

estimation and parametric density estimation Gaussian mixture model. In Chapter 3 realat-

ed work of GrabCut, branch-and-mincut, dual decompostion and active contour is analysed

and limitations of these approaches are shown. In Chapter 4 our proposed L1 color separa-

tion term is introduced, we also explain the relationship bettween L1 color separation term and

general color separation term. We show the graph construction for minimizing these color sep-

aration terms. Furthermore we explain the difference of our L1 color separation term from Pn

Potts model. Chapter 5 presents several applications of our color separation term. We apply

the color separation term to segmentation with bounding box or seeds, shape matching with

a simple template and salient object segmentation. Our algorithm based on color separation

term outperforms the state of the art. Chapter 6 concludes the thesis by pointing out several

promising directions of future work.
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Overview of Appearance Models

An appearance model is a model of distribution of intensity, color, texture, shape, etc. inside

a segment. In this thesis, we model appearance based on the color feature. In particular, we

use the RGB color space representation. The separation term for the color model can be easily

generalized to other appearance models. One simply has to quantize the features that are being

used into an appropriate number of bins. In this chapter we start with the simplest color model,

namely a color histogram and further introduce non-parametric techniques including Parzen

window and k-NN. Finally, we discuss the Gaussian Mixture Model (GMM).

2.1 Histogram

One way to view a histogram is as a graphical presentation of data distribution. First, the range

of all possible feature values is divided into ”bins”, usually at uniform intervals. A histogram

then simply counts how many pixels are in each bin. The simplest and most commonly used

color model is a histogram over all unique colors. That is, each color gets its own bin. Thus

in this case, a histogram simply counts how many pixels of each unique color are there in a

segment. In this thesis, we used the RGB color space, which is an additive color space based

on RGB color model. We can also have histograms for other color spaces such as LAB color

space, where L stands for intensities and A, B stand for color opponent dimensions. In the

RGB color space, each color is represented by a 3-dimensional the RGB feature vector. The

number of colors in RGB color space is commonly 2563.

Histograms of colors simply count the number of points in each color bin and normalize the

number by number of sample points (Fig. 2.1). In this thesis we experiment with dividing

each color channel (R, G or B) into 1, 2, 4, 8, 16, and 32 equal intervals. This gives us,

respectively, 1, 23, ..., 323 distinct bins in the histogram. The problem with color binning is

15
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Figure 2.1: Binning in RGB color space 1

that similar colors may fall into different color bins thus the affinity between similar colors is

not completely preserved. If we take a smaller bin size, the histogram may not have enough

samples per bin, resulting in an unreliable appearance model. To fix the problems of quantized

histograms, non-parametric density estimation and Guassian mixture models are often used.

These give a smoother distribution with no artifacts due to hard decisions made when deciding

how to bin a histogram.

2.2 Non-parametric Density Estimation

The goal of non-parametric density estimation is to estimate the probability distribution that

generated given training samples, given only a limited number of training samples n. Non-

parametric techniques can be used for estimation of samples coming from any distribution.

The probability density at sample point x is estimated as:

P(x) ≈ k/n
V

where n is the number of training samples, V is the volume of region R around point x and k

is the number of points inside region R. There are two commonly used non-parametric tech-

niques, Parzen window and k-Nearest Neighbor (k-NN).

For Parzen window, the region size V is fixed, so the number of points k differs for different x.

1https://www.clear.rice.edu/elec301/Projects02/artSpy/color.html
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Instead of counting the number of points inside region R, we can also apply a kernel function,

most often a Gaussian kernel, to weigh each sample in proportion to its distance from x. The

k-NN method takes an opposite approach, namely the number of neighboring points k is fixed

and what’s changing is region size V . Fig. (2.2) shows the windows for Parzen and k-NN.

Figure 2.2: Window size is fixed for Parzen window (left) and number of neighboring points is
fixed for k-NN(right). Window size or number of neighboring points should be chosen properly
to get a good density estimation. c⃝ Olga Veksler.

For Parzen window, if the window size is too small, the resulting density estimation is very

noisy, giving us similar undesirable results as histograms with small bin size. If the window

size is too large, each sample would affect many other samples’ density estimation and the dis-

tribution is over-smoothed. It’s not easy to select a proper window size for the Parzen window

technique.

Analogously, for k-NN density estimation, we have to choose the appropriate number of neigh-

boring pixels. What’s more, finding the k nearest neighbors such as via Voronoi diagram [3]

increases the computational cost. In general, if we have enough training samples and choose

a proper window size or number of neighboring pixels, non-parametric density estimation is

better than histograms because it can be shown to approach the true distribution of the samples.

2.3 Gaussian Mixture Model

The Gaussian Mixture Model [8, 9, 44] is a parametric probability density function based

on weighted sum of Gaussian components. It maximizes the likelihood of the training samples

given the model. Suppose we have K Gaussian components indexed by 1, 2, ...,K, the Gaussian

mixture model for 3-dimensional RGB color feature −→c = (r, g, b) can be represented as:

Pr(
−→
C = −→c ) ∝

K∑
k=1

wk · N(−→c | −→µ k,
−→σk), (2.2)
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where wk is the weight of the kth component, means are

−→µ k = (µr
k, µ

g
k , µ

b
k) (2.3)

standard deviations are
−→σk = (σr

k, σ
g
k , σ

b
k) (2.4)

and

N(−→c | −→µ k,
−→σk) = N(r | µr

k, σ
r
k) · N(g | µg

k , σ
g
k) · N(b | µb

k , σ
b
k)

N(i | µk, σk) =
1

√
2π σk

e
− (i−µk)2

2 σ2
k (2.5)

Note that we assume a diagonal covariance matrix in this section for simplicity, but the case

of the full covariance matrix is very similar. Suppose we have N pixels in the image domain

Ω. Given training samples, for example all the pixels in one segment, we wish to find the

parameters for GMM that maximize the following likelihood:

P(I | G) =
N∏

p=1

Pr(−→cp | G) (2.6)

where G is the set of parameters for Gaussian mixture modes including weights wk, means −→µ k

and standard deviations −→σk for k = 1, 2, ...,K. −→c p = (rp, gp, bp) is the color of pixel p. The

parameters can be estimated through Expectation-Maximization (EM) algorithm. We can get

the initial Gaussian mixture model through k-means algorithm [27]. Then we iterate between

E-step and M-step 10-20 times or until convergence.

Procedure: Iterate between E-step and M-step until convergence.

E-step: For each pixel p, compute the probability that its color −→c p belongs to the kth compo-

nent.

ϕk
p =

wk · N(−→cp | −→µ k,
−→σk)∑K

j=1 w j · N(−→cp | −→µ j,
−→σ j)

(2.7)

M-step: Simutaneourly update parameters wk, −→µ k = µ
r,g,b
k and −→σk = σ

r,g,b
k for all Gaussian
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components k = 1, 2, ...,K.

wk =
1
N

N∑
p=1

ϕk
p,

−→µ k =

∑N
p=1
−→cp · ϕk

p∑N
p=1 ϕ

k
p

,

(σr,g,b
k )2 =

∑N
p=1(cr,g,b

p − µr,g,b
k )2 · ϕk

p∑N
p=1 ϕ

k
p

. (2.8)

Here we assume the covariance matrix of the Guassian components to be diagonal, which

implies there is no correlation between the R,G and B channels of RGB color space. This

assumption is acceptable for the description of image appearance model. The major config-

uration of Gaussian mixture model is the number of components. Here we usually set 10-30

components for images. Fig. 2.3 gives an example of estimating a Gaussian mixture model

with 3 components in the RGB color space. The three components are denoted by ellipses

centered at the mean vectors. The scale of the ellipses represents the scale of covariance of

Gaussian components.

Figure 2.3: Gaussian Mixture Model in RGB color space. In this example we have three
Gaussian mixture components highlighted by three ellipses.
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Related Work

In this chapter we review segmentation methods that address the problem of joint optimization

E(S , θ1, θ0) in (1.13) over appearance models and segmentation. The following methods are

discussed in detail: GrabCut [9, 51], Branch-and-Mincut [40], Dual Decomposition [59] and

active contour [45]. We talk about the limitations of these works that motivate our approach.

3.1 GrabCut

GrabCut [9, 51] is a commonly used method for interactive foreground segmentation. An

extension of GrabCut has been shipped into Microsoft Office 2010. A traditional way of user

interaction is through bounding box provided by the user. The method is iterative where at each

iteration there are two steps: (1) Segmentation via maxflow algorithm given fixed appearance

models θ1 and θ0; (2) Re-estimation the appearance models based on current segmentation. Ap-

pearance can be modeled with either histograms or Gaussian mixture models (GMM). GrabCut

is an upper bound optimizer of the energy (1.13) because the following inequality holds:

E(S | θS 0 , θS̄ 0) ≥ E(S | θS , θS̄ ), ∀S 0 (3.1)

At iteration with current solution S 0, GrabCut takes the upper bound of the original energy.

The energy is guaranteed to decrease at each iteration.

The GrabCut method can be seen as a block-coordinate descend and as such is prone to local

minimum. This problem is especially prominent when the number of parameters used to model

appearance is high, which is confirmed empirically in our experiments (see Fig. 3.1). We

randomly select box as initial solution. Region inside the box is taken as foreground and outside

as background. We run block-coordinate descent until convergence and do this experiment for

20
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500 randomly generated boxes. For the 500 solutions we get, we compute their error rates and

energy. As we can see from the scatter plots, when the number of color bins increases, there

are more distinct solutions. This implies there are more local minima with more color bins and

GrabCut is more prone to getting stuck in local minima.

(a) Original Image (b) 16 bins per channel

(c) 32 bins per channel (d) 64 bins per channel

(e) 128 bins per channel (f) 256 bins per channel

Figure 3.1: Scatter plots of energies versus error rates for different number of bins per channel.
We randomly select box as initial solution and run block-coordinate descent until convergence.
We perform the experiment for 500 times and plot the energies versus error rates. The pink dot
shows the error rate and energy of ground-truth solution.
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3.2 Branch-and-Mincut

Branch-and-Mincut [40] combines two powerful techniques: Graph cut and Branch-and-Bound.

It can find global optimal of the energy (1.13), rather than local minima when using EM-style

GrabCut (Fig. 3.2). Branch-and-Bound is a popular optimization technique for combinatorial

optimization and discrete optimization. The basic idea of Branch-and-Bound is to divide the

space of all solutions into subsets and obtain a lower bound for each subset. Whenever the

lower bound of some subset is greater than the function value of current best solution, we can

prune those subsets and the search space is reduced. The search space is split, bounded and

pruned until only one solution is left, guaranteed to be the global optimum.

Figure 3.2: Branch-and-Mincut [40] can find smaller global energy while GrabCut gets stuck
in local minima with larger energy.

For image segmentation with Graph cut, the search space is divided into subsets based on the

parameters of the appearance models. The lower bound of the appearance model subset can be

computed using a single run of maxflow algorithm.

If we use K bin color histogram as appearance model, the size of the search space for fore-

ground and background appearance models would be 22K . The time complexity of Branch-

and-Mincut is exponential with respect to the number of color bins K. While finer color his-

tograms can better describe appearance models, Branch-and-MinCut method cannot be used

due to exponential complexity.

Note that Branch-and-Mincut is not limited to optimization acceleration for choosing better

appearance model. It can also be applied to a wider range of graph cut problems as long as the

graphs are parameterized and have similar structure. For example, the shape matching problem

with a simple binary shape template in Sec. 5.2 can also be accelerated by Branch-and-Mincut.
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3.3 Dual Decomposition

Vincente et al. [59] proposed dual decomposition method to optimize the energy (1.13). First,

the energy is rewritten as:

E(S ) = −
∑

i

hΩi(S i) + |∂S |− < y, S > +hΩ(S )+ < y, S > (3.2)

where y ∈ RN is a vector, N = |Ω| and < ·, · > is the dot product between two vectors. The

following Φ(y) gives a lower bound of E(S ):

Φ(y) = min
S

[−
∑

i

hΩi(S i) + |∂S |− < y, S >] +min
S

[hΩ(S )+ < y, S >]. (3.3)

It suffices to consider y = λ · 1 where λ is a scalar and 1 is a unit vector. So we can also rewrite

the original energy as

E(S ) = −
∑

i

hΩi(S i) + |∂S | − λ < 1, S > +hΩ(S ) + λ < 1, S > . (3.4)

We denote −∑i hΩi(S i)+ |∂S | −λ < 1, S > as E1(S , λ) and hΩ(S )+λ < 1, S > as E2(S , λ), then

we have

ϕ(λ) = arg min
S

E1(S , λ) + arg min
S

E2(S , λ) ≤ E(S ). (3.5)

ϕ(λ) renders a lower bound of E(S ) and is called the dual function of E(S). We can explore

all values of λ to get the tightest lower bound. In order to optimize over λ, Vicente et al. [59]

proposed using parametric maxflow, which is very slow in practice. If there is no discrepancy

between the lower bound at the optimal λ and the original energy for the corresponding S , we

obtain a global optimal solution. The final labeling is chosen among all solutions according

to the original energy. Dual decomposition is very slow in practice because to explore all

breakpoints via parametric-maxflow is slow.

3.4 Active Contour

Michailovich et al. in [45] proposed an active contour method that maximizes the Bhat-

tacharyya distance between foreground and background color distributions. The energy func-

tional is based on Bhattacharyya distance. Gradient flow of the energy is used to drive the
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Figure 3.3: (top row) Intensity-based segmentation of Zebra at each iteration. (bottom row)
Corresponding intensity distributions of Zebra and its background. Pin and Pout are intensity
distributions of regions inside and outside the contour. [45]

evolution of the active contours at each iteration. Fig. 3.3 illustrates intermediate active con-

tours at different iterations and the corresponding foreground and background distributions.

As we can see, the final segmentation yields large discrepancy between foreground and back-

ground appearance distributions. The level set based method does not guarantee global optimal

solution and is very slow in practice.



Chapter 4

Minimizing Appearance Overlap in
One-cut

In this chaper we introduce the L1 color separation term and show how it can be optimized

in one graph cut. We also talk about general color separation term that is not based on L1

metric. Particularly, we address the difference between our color separation term and Pn potts

model which was originally proposed for enforcing labeling consistency within superpixels.

Note that the color separation terms here are all used for color histogram appearance model.

In this chapter, color separation terms are formulated over color histograms. Chapter 6 shows

possible extensions to GMM appearance models.

4.1 L1 Color Separation Term

Let S ⊂ Ω be a segment of the image plane Ω and denote by θS and θS̄ the unnormalized

color histograms for the foreground and background appearance respectively. Let nk be the

number of pixels in the image that belong to bin k and let nS
k and nS̄

k be the according number

of the foreground and background pixels in bin k. Our appearance overlap term penalizes the

intersection between the foreground and background bin counts by incorporating the simple

yet effective high-order L1 term into the energy function:

EL1(θ
S , θS̄ ) = −∥θS − θS̄ ∥L1 , (4.1)

Theorem 4.1.1. The L1 color separation term we proposed here is submodular.

Below we explain how to incorporate and optimize the term EL1(θ
S , θS̄ ) using one graph

25
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Figure 4.1: Graph construction for EL1 in one color bin: nodes v1, v2, . . . , vnk corresponding to
the pixels in bin k are connected to the auxiliary node Ak using undirected links. The capacity
of these links is the weight of appearance overlap term β > 0.

cut. For clarity of explanation we rewrite the term as

EL1(θ
S , θS̄ ) =

K∑
k=1

min(nS
k , n

S̄
k ) − |Ω|

2
. (4.2)

It is easy to show that the two sides of (4.2) are equivalent. It’s obvious that the L1 color

separation term encourages labeling inconsistency among pixels in the same color bin. The

details of the graph construction for the above term over one color bin are shown in Fig. 4.1.

In the graph we ignore links for other terms such as smoothness term.

Figure 4.2: Overall graph construction for energy with L1 color separation term. We have three
color bins blue, green and orange in this example. Add one auxiliary node for each color bin
and connect the auxiliary node to all pixels of certain color.
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Fig. 4.2 gives the overall graph construction of energy with L1 color separation term. We add

K auxiliary nodes A1, A2, ..., AK into the graph and connect kth auxiliary node to all the pixels

that belong to the kth bin. In this way each pixel is connected to its corresponding auxiliary

node. The capacity of these links is set to β = 1. Assume that bin k is split into foreground and

background, resulting in nS
k and nS̄

k pixels accordingly. Then any cut separating the foreground

and background pixels must either cut nS
k or nS̄

k links that connect the pixels in bin k to the

auxiliary node Ak. The optimal cut must choose min(nS
k , n

S̄
k ) in (4.2).

4.2 Minimizing Higher-order Pseudo-boolean Function

The L1 color separation term can be seen as a special case of the following higher-order psudo-

boolean function:

f (Xc) = min{θ0 +
∑
i∈c

w0
i (1 − xi), θ1 +

∑
i∈c

w1
i xi, θmax} (4.3)

where xi ∈ {0, 1} are binary variables in clique c, w0
i > 0, w1

i > 0, and θ0, θ1 and θmax are

parameters satisfying the constraints θmax > θ0 and θmax > θ1. Consider each color bin as a

clique and set parameters w0
i = 1, w1

i = 1, θ0 = 0, θ1 = 0 and θmax = nk/2, where nk is the

number of pixels in bin k. Then f (Xc) reduces to EL1(θ
S , θS̄ ) + |Ω|/2.

Figure 4.3: Our graph for minimizing pseudo-boolean function (4.3), r = min{θ0, θ1}. Note
that nodes and links in the graph for other energy terms are not shown in this figure.
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We also propose graph construction (Fig. 4.3) for minimizing pseudo-boolean functions in

(4.3) using directed links. Note how the graph in Fig. 4.3 degenerates to the graph in Fig. 4.1:

If θmax = +∞ and θ0 = θ1 = 0, then the two nodes A1
k and A0

k emerge to one node, directed

link becomes undirected and the auxiliary nodes are disconnected from source or sink nodes

because θ1 − r = 0 and θ0 − r = 0.

To see how the graph in Fig. 4.3 works we consider four possible label assignments for the

auxiliary nodes A1
k and A0

k . Table 4.1 shows the cost of corresponding cuts. The minimum cut

renders optimization of the function (4.3).

(A1
k , A

0
k) the cost of cut

(0,0) θ1 +
∑

i|xi=1 w1
i − r

(0,1) θ0 +
∑

i|xi=0 w0
i + θ1 +

∑
i|xi=1 w1

i − 2r
(1,0) θmax − r
(1,1) θ0 +

∑
i|xi=0 w0

i − r

Table 4.1: Cut costs corresponding to four possible label assignments to the binary auxiliary n-
odes A1

k and A0
k . The optimal cut must choose the minimum of the above costs, thus minimizing

(4.3).

4.3 Relationship with Pn Potts Model

A similar graph construction with auxiliary nodes (Fig. 4.4) is proposed in [30, 31] to minimize

higher order pseudo-boolean functions (4.3).

Unlike our construction, the method in [30, 31] requires that the parameter θmax in f (Xc) should

satisfy the following constraint:

θmax 6 max(θ0 +
∑
i∈c

w0
i (1 − xi), θ1 +

∑
i∈c

w1
i xi). (4.4)

In contrast, we can optimize high-order functions in (4.3) with arbitrary θmax provided that

θmax > θ0 and θmax > θ1. Even though the constraint is not problematic for color separation

term as long as we set θmax to nk/2, but we believe eliminating the constrain is important for

some other applications when the constraint cannot be easily satisfied.

The graph construction in Fig. 4.4 can be used to minimize EL1 . However, the advantage of

our graph construction in Fig. 4.1 is that only one auxiliary node is needed for each color bin,

thus our graph construction renders faster inference.
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Figure 4.4: Graph for minimizing pseudo-boolean function (4.3) by Kohli et al. [30, 31]

4.4 General Color Separation Term

In general, color separation term does not have to be based on L1 distance. We can define color

separation term using other distance metric such as Jensen-Shannon distance, χ2 distance or

Bhattacharyya distance. For example, below we define four appearance overlap terms based on

the L1 norm, χ2 distance, Bhattacharyya coefficient and Jensen-Shannon divergence between

histograms.

DL1(θ
S , θS̄ ) =

K∑
k=1

min (nS
k , n

S̄
k ) (4.5)

Dχ2(θS , θS̄ ) =
K∑

k=1

(nk/2 − (nS
k − nS̄

k )2/(2nk)) (4.6)

DBha(θS , θS̄ ) =
K∑

k=1

√
nS

k nS̄
k (4.7)

DJS (θS , θS̄ ) =
K∑

k=1

nk log nk − nS
k log nS

k − nS̄
k log nS̄

k

2
(4.8)

where θS and θS̄ are unnormalized histograms of the foreground and background respectively.
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Figure 4.5: Appearance overlap terms based on different metrics: L1 norm, χ2 distance, Bhat-
tacharyya coefficient and Jensen-Shannon divergence

All four terms above are concave functions of ns
k attaining maximum at nk/2. See Fig. 4.5 for

the visualization of the terms and comparison with DL1 .

Similarly to [30] we observe that any concave function can be approximated as a piece-wise lin-

ear function by using a summation of specific (pyramid-like) truncated functions, each having

a general form as in (4.3). For example, Fig. 4.6 illustrates one possible approximation using

three components. These truncated components take the form of high-order psudo-boolean

function in (4.3) and thus can be incorporated into our graph using the construction shown in

Fig. 4.3. Note, DL1 is equivalent to Dχ2 , DBha or DJS when approximated using one truncated

component.

Figure 4.6: The original concave function (red) is approximated as a piece-wise linear function
(blue, left) using three truncated components (blue,middle). Approximation with ten compo-
nents (blue, right) is already very accurate.
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Applications

In this section we apply our appearance overlap penalty term in a number of different practi-

cal applications including interactive binary segmentation with bounding boxes or strokes in

Sec.5.1, shape matching with simple shape templates in Sec.5.2, saliency segmentation with

saliency maps in Sec.5.3 and segmentation from stereo pairs in Sec. 5.4. We show general

usefulness of our proposed color separation term.

5.1 Interactive segmentation

First, we discuss interactive segmentation with several standard user interfaces: bounding box

[51] in Section 5.1.1 and seeds [12] in Section 5.1.3. We compare different color separation

terms including L1, Jenson-Shannon, Bhattacharyya, χ2 and truncated L1 color separation terms

in Section 5.1.2.

5.1.1 Binary segmentation with bounding box

First, we use appearance overlap penalty in a binary segmentation experiment with the same

setting as GrabCut [9, 51]. For GrabCut GMM is used as appearance model but here color

histogram is the appearance model. A user provides a bounding box around an object of interest

and the goal is to perform binary image segmentation within the box. The pixels outside the

bounding box are assigned to the background using hard constraints. The hard constrain is

achieved by having infinity edge weights for links connecting these pixels and sink node. Let

R ⊆ Ω denote the binary mask corresponding to the bounding box, S GT ⊆ Ω be the ground

truth foreground and S ⊆ Ω be a segment. Denote by 1S = {sp|p ∈ Ω} the characteristic

31
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function of S . The segmentation energy function E(S ) used here is given by

E(S ) = |S̄ ∩ R| − β∥θS − θS̄ ∥L1 + λ|∂S |, (5.1)

where the first term is a standard ballooning term inside the bounding box R that favors larger

foreground, the second term is the appearance overlap penalty as in (4.1), and the last term is

a contrast-sensitive smoothness term. We use |∂S | = ∑ωpq|sp − sq| with ωpq =
1

∥p−q∥ · e
−∆I2

2σ2 and

σ2 set as average ∆I2 over the image. If we only have color separation term and smoothness

term, the trivial solution would be global minima. So we need balooning term to avoid trivial

solution. This energy can be optimized with one graph cut.

The energy parameters here are weight of ballooning term β and smoothness term λ. We

choose β according to heuristic trick. The input bounding box contains useful information

about the object to be segmented other than that it bounds the object. We use the measure

of appearance overlap between the box R and its background R̄ to automatically find image

specific relative weight β of the appearance overlap term w.r.t. the first (ballooning) term in

(5.1). In our experiments, we adaptively set an image specific parameter βImg based on the

information within the provided bounding box:

βImg =
|R|

−∥θR − θR̄∥L1 + |Ω|/2
· β′ . (5.2)

Here β
′

is a global parameter tuned for each application and dataset. It is common to tune the

relative weight of each energy term for a given dataset [59]. We found it to be more robust

compared to tuning β.

Consider the following two extreme cases. In the case of a trivial solution in which S = R, the

energy of the solution becomes

|S̄ ∩ R| + EL1(θ
S , θS̄ ) = βDL1(θ

R, θR̄). (5.3)

In the case of an ideal solution in which S = S GT , assuming the object is distinct from its

background, we have the energy

|S̄ ∩ R| + EL1(θ
S , θS̄ ) ≈ |R| − |S GT | (5.4)

assuming that the foreground appearance is separated well from the background appearance.

Therefore, to avoid the trivial solution S = R, we should enforce βDL1(θ
R, θR̄) > |R| − |S GT |.

Note that if β is too large, the appearance overlap term will dominant the energy and yield
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another trivial solution S = ∅. Therefore, in our experiments, we adaptively set an image

specific parameter βImg based on the information within the provided bounding box:

βImg =
|R|

DL1(θR, θR̄)
· β′ . (5.5)

Here β
′

is a global robust parameter, we set β
′
= 0.9 empirically in our experiments.

We experiment on the well known Grab-cut database [51]. There are 50 images in the dataset,

but we exclude the cross image for the sake of comparison with [59]. The error rate is defined

as the number of misclassified pixels within the bounding box R divided by the size of the box

|R|. We average error rates for all the images.

We test with different number of color bins and provide quantitative comparison with the grab-

cut method [51] (our implementation, modified to work with histograms as in [59]) and the

dual decomposition method [59] (results reported by the authors). The Table 5.1 and the plots

in Fig. 5.1 report the respective error rates and the average running times. The error rate for our

implementation of the GrabCut method is slightly different from 8.1% reported in [59], since

we use a different smoothness term and do not downscale images. We tune λ separately for

each method and number of bins by minimizing error rate.

Error rate Mean runtime
GrabCut (83 bins) 8.54% 2.48 s
GrabCut (163 bins) 7.1%1 1.78 s
GrabCut (323 bins) 8.78% 1.63s
GrabCut (643 bins) 9.31% 1.64s
GrabCut (1283 bins) 11.34% 1.45s
GrabCut (2563 bins) 13.59% 1.46s
DD (163 bins) 10.5% 576 s
One-Cut (83 bins) 9.98% 18 s
One-Cut (163 bins) 8.1% 5.8 s
One-Cut (323 bins) 6.99% 2.4 s
One-Cut (643 bins) 6.67% 1.3 s
One-Cut (1283 bins) 6.71% 0.8 s
One-Cut (2563 bins) 7.14% 0.8 s

Table 5.1: Error rates and mean runtime for GrabCut [9, 51], Dual Decomposition (DD) [59],
and our method, denoted by One-Cut.

With 163 bins, the GrabCut method is the most accurate and fast. However, it is important to see

the effect of working with larger number of bins, as some objects might only be distinguishable

from the background when using a higher dynamic rage. There is a dip of the error rates for
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GrabCut at 163 bins. The reason is that finer binning provides better appearance model but

GrabCut is more likely to get stuck in local minima. With more color bins, there are more

variables for appearance model and GrabCut is more prone to local minima.

As we increase the number of color bins from 163, the error rate for the GrabCut method

increases, while the error rate of One-Cut decreases. When using 1283 bins One-Cut runs

twice as fast, while obtaining much lower error rate. This is because with more bins, more

auxiliary nodes are used, but each auxiliary node is connected to less pixels. The connectivity

density decreases and the mincut/maxflow algorithm runs faster.

DD is hundreds of times slower, while its error rate is quite high. Note that in [59], images

are down-scaled to maximum side-length of 250 pixels while the method here deals with the

original image.
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Figure 5.1: Error-rates for different bin resolutions, as in Table 5.1.

Finally, Figures 5.2 - 5.4 show examples of input bounding boxes and segmentation results

with the GrabCut [9, 51], Dual Decomposition [59] and our One-Cut method.
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(a) (b) (c) (d)

Figure 5.2: Example of segmentation results. From left to right: (a) user input, (b) GrabCut
[9, 51], (c) Dual Decomposition (DD) [59], (d) our One-Cut. For these examples we used 163

bins.
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Figure 5.3: Example of segmentation results obtained with our One-Cut. For these examples
we used 1283 bins.
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Figure 5.4: Example of segmentation results obtained with our One-Cut. For these examples
we used 163 bins.
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5.1.2 Comparison of Appearance Overlap Terms

In this part we are trying to answer the question of whether our proposed L1 color separation

term is better than the original Jenson-Shannon color separation term. Below we discus ad-

ditional variants for appearance overlap penalty term. In Sec. 4.4 we’ve explained how they

all can be implemented with the construction proposed in Fig. 4.3. We compare their perfor-

mance in the task of binary segmentation applied to the GrabCut dataset [9, 51] with the same

bounding boxes. We consider four appearance overlap terms based on the L1 norm, χ2 distance,

Bhattacharyya coefficient and Jensen-Shannon divergence between histograms. The DL1 term

above is equivalent to −∥θS − θS̄ ∥L1 , but we use this notation for easiness of comparison with

other overlap terms.
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Figure 5.5: Comparison of appearance overlap terms: (top-left) shows the functions plotted
for one bin k, (top-right) shows segmentation error rates using the same βImg as in (5.5) for all
overlap terms and (bottom-left) shows segmentation results when using a term-specific βImg.
The running time is shown on (bottom-right).

All four appearance overlap terms above can be optimized with one graph cut. We can approxi-

mate these terms by their piece-wise linear approximation. Sec. 4.4 has shown how to optimize

these terms. We wish to find out which color separation term and what level of approximation
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accuracy are optimal for the task of binary segmentation. Therefore, for each color separation

term we vary the approximation accuracy with different number of breakpoints (the number of

truncated components used) and compare the performance of Dχ2 , DBha, DJS with that of DL1

color separation terms.

In the first experiment setting, we use an adaptive image specific weight βImg for the appearance

overlap term as in (5.5) and set β
′
= 0.9 which was found optimal for DL1 overlap term. As we

can see from Fig. 5.5 (top-right), as the approximation accuracy (the number of components

used) increases, the error rate goes up. Note that approximation of Dχ2 , DBha, DJS with one

component is the same as DL1 .

In the second experiment, we choose the optimal βImg separately for each appearance overlap

term by replacing the denominator of (5.5) with either Dχ2(θR, θR̄), DBha(θR, θR̄) or DJS (θR, θR̄)

according to the appearance overlap term used. We also tune parameter β
′

separately for each

appearance overlap term. As shown in Fig. 5.5, DL1 achieves the lowest error rate and has the

shortest running time than any other overlap term with any level of approximation accuracy.

The running time is almost proportional to the number of breakpoints used to approximate the

color separation terms.

In the third experiment we replace DL1 with the truncated version DLT
1
=
∑K

k=1 min(nS
k , n

S̄
k , t · nk/2)

where t ∈ [0, 1] is the truncation parameter. Our DL1 term can be seen as a special case of the

truncated DLT
1

where t = 1. Again, for each value of t we replace the denominator in (5.5) by

DLT
1
(θR, θR̄) and tune β

′
. Fig. 5.6 reports the error rates of the segmentation as a function of the

parameter t. It can be seen that the non-truncated version (t = 1) yields the best performance.

This further proves the benefit of our proposed DL1 appearance overlap term.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

6.5

7

7.5

8

8.5

9

9.5

10

t

E
rr

or
 R

at
e(

%
)

Figure 5.6: Left: Truncated appearance overlap term DLT
1

for a bin k. Right: Segmentation error
rate as a function of parameter t in DT

L1
. Best results are achieved for t = 1 (no truncation).
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Figure 5.7: Interactive segmentation with seeds

5.1.3 Interactive Segmentation with Seeds

Unlike interactive segmentation with a bounding box, using seeds a la Boykov-Jolly [12]

makes volumetric balancing unnecessary due to hard constraints enforced by the user. There-

fore, the segmentation energy is quite simple:

Eseeds(S ) = −β∥θS − θS̄ ∥L1 + λ|∂S |

subject to the hard constraints given by the seeds. Figure 5.7 shows several qualitative segmen-

tation results with user provided strokes. It is possible to generalize this approach to multilabel

interactive segmentation, where color separation terms are minimized between each pair of

labels in an αβ-swap move [15].
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5.2 Template Shape Matching

Below we discuss how appearance overlap penalty term can be used for template shape match-

ing [5, 6, 7, 56]. Several prior methods rely on graph-cut based segmentation with shape prior

[23, 40, 58, 61]. Most commonly, these methods use a binary template mask M and combine

the shape matching cue with contrast sensitive smoothness term via energy

E1(S ) = min
ρ∈Φ

ES hape(S ,Mρ) + λ|∂S |. (5.6)

where ρ denotes a transformation in parameter space Φ, translation for example, and Mρ is a

transformed binary mask. Possible transformation includes but is not limited to translation,

rotation and scaling. The term ES hape(S ,Mρ) measures the similarity between segment S and

the transformed binary mask Mρ. Possible metric include Hamming distance or L2 distance.

We further incorporate the appearance overlap into the energy:

E2(S ) = E1(S ) − β∥θS − θS̄ ∥L1 (5.7)

and compare the performance of E1(S ) and E2(S ) in the task of template shape matching.

Figure 5.8: Template shape matching examples, from left to right: Original images, contrast
sensitive edge weights, shape matching results without and with the appearance overlap penal-
ty. Input shape templates are shown as contours around the resulting segmentation.
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Fig. 5.8 shows few examples of input image, smoothness term, input template and matching

results. The templates used are polygon and ellipses. Without the appearance overlap term

shape matching yields erroneous segmentation due to the clutter edges in the background.

We experiment on Microsoft Research Cambridge Object Recognition Image Database2. There

are 282 side view images of cars, roughly of the same scale. We down-scaled all images to

320× 240 and used 1283 color bins per image. We generate ground truth segmentation by our-

selves. For this experiment, Φ is defined to be the set of all possible translations and horizontal

flip. For the template matching, we scan the image in a sliding-window fashion and compute

maxflow/mincut with dynamic graph cut [32]. Each time we shift the template by a little bit

minority of the graph edges are changed so we can reuse the maxflow via dynamic graph cut

[32]. Note that we did not skip any position when sliding the templates thus we are able to

get global minima of the energy. We use Hamming distance for the energy (5.6). In principle,

branch-and-mincut [40] can speed up optimization of both energies (5.6) and (5.7), but this is

outside the scope of our paper.

Figure 5.9: Template shape matching examples: shape (top left) and pairs of original images +
segmentations with E2(S ).

Energy TP FP Error pixels Runtime
E1(S ) 76.97% 6.96% 10106 4.1 s
E2(S ) 81.88% 3.86% 7480 13.0 s

Table 5.2: Template shape matching: comparing E1(S ) and E2(S ) in terms of TP, FP, mis-
classified pixels, and mean running time. We used λ = 5 for E1(S ) and (λ = 5, β = 1.1) for
E2(S ).

Fig. 5.9 shows the coarse car template used for this experiment and some qualitative results.

2http://research.microsoft.com/en-us/projects/objectclassrecognition



5.3. Salient object segmentation 43

Table 5.2 provides quantitative comparison of the results obtained with and without incorpo-

rating the appearance overlap term, namely using E2(S ) and E1(S ). The results are reported

with respect to manually outlined ground truth segmentations and clearly point to the benefit

of incorporating the overlap term EL1 into the segmentation energy. When using E2(S ) we

achieve higher true positive (TP) rate of 81.88%, lower false positive (FP) rate of 3.86% and

less misclassified pixels without compromising much the running time.

5.3 Salient object segmentation

(a) Input (b) CA (c) LC (d) HC (e) RC

Figure 5.10: Different saliency maps

Saliency is the measure of pixels by visual attention they attract. Salient region detec-

tion and segmentation is an important preprocessing step for object recognition and adaptive

compression. Salient objects usually have an appearance that is distinct from the background

[1, 19, 49, 65]. Fig. 5.10 shows saliency maps obtained by CA [24], LC [64], HC [19] and RC

[19]. A saliency map is a pixel-wise map whose intensity corresponds to the degree of saliency.

Below we show how our appearance overlap penalty term can be used for the task of salient

object segmentation. We use the saliency map provided by [49] because it yields the best pre-

cision/recall curve when thresholded and compared to the ground truth. Let A : Ω → [0, 1]
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Figure 5.11: Saliency segmentation results reported for dataset [1]: Precison-Recall and F-
measure bars for E3(S ), E4(S ) are compared to FT[1], CA[24], LC[64], HC[19] and RC[19].

denote the normalized saliency map and <A> be its mean value. Then let

ES alience(S ) =
∑
p∈Ω
<A> −(A(p)) · sp (5.8)

denote an energy term measuring the saliency of a given segment. We now define two seg-

mentation energies, with and without the appearance overlap term. Let E3(S ) be the energy

combining the saliency and smoothness terms

E3(S ) = ES alience(S ) + |∂S |, (5.9)

and E4(S ) be the energy with the appearance overlap term

E4(S ) = E3(S ) − β∥θS − θS̄ ∥L1 . (5.10)

E4(S ) can be optimized in one graph cut using the construction shown in Fig. 4.1. We use 1283

color bins, β = 0.3 and smoothness term ωpq = 3(e
−∂I2

2σ2 /||p − q|| + 0.1).

We experiment on publicly available dataset [1] which provides ground-truth segmentation of
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1000 images from MSRA salient object database [41]. Fig. 5.11 compares the performance

of E3(S ) and E4(S ) with that of FT [1], CA [24], LC [64], HC [19] and RC [19] in terms of

precision, recall and F-measure defined as

F =
1.3 · Precision · Recall
0.3 · Precision + Recall

. (5.11)

Optimizing E3(S ) results in precision = 91%, recall = 85% and F-measure = 86%, whereas in-

corporating the appearance term in E4(S ) yields precision = 89%, recall = 89% and F-measure

= 89%, which is comparable to the state-of-the-art results reported in literature [19](precision

= 90%, recall = 90%, F-measure = 90%). Note that our optimization requires one graph-cut

only, rather than the iterated EM-style grab-cut refinement in [19]. Assuming the saliency

map is precomputed, the average running time for optimizing E4(S ) is 0.43s and for optimiz-

ing E3(S ) is 0.39s. Fig. 5.12 shows qualitative results for our saliency segmentation with and

without the appearance overlap term.

5.4 Foreground Segmentation from Stereo

In the task of segmentation from stereo, we are given a stereo pair of left and right views of

the same scene. The goal is to segment the foreground that is closer to the camera. Below we

formulate the segmentation energy. Given two images denoted by I and I′, the energy consists

of photo-consistency term and spatial coherence term:

E5(S ) =
∑
i∈Ω

Dp(sp) + |∂S | (5.12)

where the photo-consistency term Dp(sp) can be defined as

Dp(sp = 1) = min
0≤d≤d1

|Ip − I′p⊕ d|,

Dp(sp = 0) = min
d2≤d≤d3

|Ip − I′p⊕ d|. (5.13)

Here d1, d2 and d3 are predefined disparities of foreground and background. p
⊕

d means to

shift pixel p to its left or right by d pixels. Dp(sp) tends to favor label 1 for foreground pixels

and label 0 for background pixels. If we optimize energy (5.12) with graph cut, we would

get result like (b) in Fig. 5.13 where the foreground and background is not well separated

because the photo-consistency term is noisy. We can refine the result with EM to have better

result like (c) in Fig. 5.13. At each iteration of EM we re-estimate foreground and background
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(a) (b) (c) (d) (e)

Figure 5.12: Saliency segmentation examples: (a) Original image, (b) Saliency map from [49]
with bright intensity denoting high saliency, (c-d) Graph cut segmentation without and with
appearance overlap penalty term, (e) Ground truth.
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appearance model and re-segment using log-likelihood term. It takes some iterations for EM

to converge. We propose to incorporate the L1 color separation term into the energy:

E6(S ) = E5(S ) − β∥θS − θS̄ ∥L1 (5.14)

The above color separation augmented energy can be optimized in one graph cut and we get

comparable results ((d) in Fig. 5.13) to the result (c) in Fig. 5.13.

(a) (b)

(c) (d)

Figure 5.13: Foreground segmentation from stereo pair (a) One of input stereo images, (b) Seg-
mentation result when optimizing energy E5(S ) (5.12) (c) Refine (b) with EM (d) Segmentation
with color separation augmented energy E6(S ) (5.14).



Chapter 6

Future Work and Conclusion

In this chapter we introduce several possible extensions of color separation term and conclude

our work.

6.1 Color Separation Term for GMM Appearance Model

One limitation of the L1 color separation term is that the appearance model is based on color

histograms. Using color histograms does not account for similarity between colors in differ-

ent bins. While distant colors are more likely to belong to different segments, similar colors

should be encouraged to group together, even when belonging to different bins. In this section

we explain how GMM can be used for color separation term. This is one of our future work.

We can relax the rigid color binning of the histograms by using GMM. Each mixture compo-

nent can be represented by an auxiliary node and each pixel is assigned to one of the mixture

components. The weight of the link between a pixel and an auxiliary node can be set using,

e.g., the likelihood that the pixel color is drawn from the corresponding component. Other

variants are also possible. Fig. 6.1 shows an example of color separation term with GMM. The

graph construction in Fig. 6.1 is very similar to that in 4.1 and have similar complexity. Sim-

ilarly Kyoungup et. al [47] defined high-order consistency potentials on mean-shift clusters.

6.2 Color Separation Term with Supermodular Term

The segmentation energy (1.15) consists of color separation term and volume balancing term

which is supermodular. In the interactive segmentation application (5.1), the supermodular

term is simply replaced by hard constraints or heuristic ballooning term to avoid trivial so-
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Figure 6.1: Color separation term for Gaussian Mixture Model. For each Gaussian Mixture
component, we add an auxiliary node to the graph. Each pixel is connected to the maximum
likelihood mixture component. The weight of the link can be the likelihood that the pixel was
generated by that particular mixture component.

lution. Future work may include combining submodular L1 color separation term with prob-

lematic non-submodular volume balancing terms like hΩ in (1.17). The resulting energy is

non-submodular and cannot be directly optimized using graph-cuts. However, recently pub-

lished optimization methods such as Fast Trust Region (FTR) [25] and Auxiliary Cuts [4] have

proven to work well for such energies.

Fast Trust Region is an iterative optimization algorithm. At each step the energy is approximat-

ed around the current solution. Since in general approximations are only accurate locally, the

approximated model is globally optimized within some (trust) region. The current solution is

updated and the trust region size is adjusted based on the quality of the approximation model.

Auxiliary cut is essentially an upper bound optimizer that tries to approximate the energy by

a submodular upper bound. The upper bound approximation and the actual energy agree on

the current solution. We believe that color separation term can be combined with other super-

modular terms and efficiently optimized using FTR or auxiliary cuts. This is one of the topics

in our future work.

In our interactive segmentation with bounding box application, we replace the volume balanc-

ing term with linear foreground ballooning term. There we heuristically choose the weight of

the ballooning term. We can also explore a range of linear ballooning terms parameterized

by their weight. Parametric maxflow [35] will give us solutions of all breakpoints and we

choose the solution according to the original energy with nonsubmodular volume prior term.
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We propose to efficiently explore a range of simple models for optimization of nonsubmodular

hard-to-inference models in the future.

6.3 Feature Separation Term for Multi-label Inference

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Combine color separation term with FTR for volume balancing term: (a) Image, (b)
Color separation term + volume balancing term (optimized with FTR, init from trivial solution)
(c) Initial solution 1 (d) Result with EM for initial solution 1, expansion move is used (e) Initial
solution 2 (f) Result with EM for initial solution 2, expansion move is used.

This thesis focused on binary image segmentation. In principle color separation term can

also be applied to multi-label segmentation where appearance overlap should be minimized
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between different segments. A straightforward way of incorporating color separation term for

multi-label segmentation is through α − β swap. During each swap move, only segments of

label α and β may change so the problem degenerates to binary segmentation problem and our

L1 color separation term can be incorporated trivially. We only need to replace color binning

with other feature binning, then we can minimize overlap of other features for a wide range of

applications.

Fig. 6.2 gives preliminary results of multilabel segmentation with color separation term. We

used Fast Trust Region (FTR) [25] to optimize the volume balancing term and started from

trivial solution where all pixels took the same label. Note that EM is sensitive to initialization.

Only good initialization can give good results for EM.

Finally, color separation term can be generalized to incorporate histograms or distribution of

other features. Consequently features overlap between different segments can be minimized

using similar techniques.

6.4 Conclusion

We proposed an appearance overlap term for graph-cut based image segmentation. This ter-

m is based on L1 distance between unnormalized histograms of foreground and background.

The optimization of this term is easier to implement as is shown in Fig. 4.1. What’s more,

the proposed term is more effective at separating colors compared to other concave (submodu-

lar) separators. We show a simpler graph construction than Pn-Potts model that can be easily

incorporated into any graph cut based segmentation method. In several applications including

interactive image segmentation, shape matching and saliency region detection we achieve com-

parable or better results with respect to the state-of-the-art. We show that our term is a good fit

for interactive segmentation (with bounding box or user seeds interfaces). In contrast to other

appearance adaptive methods (e.g. GrabCut) our approach finds guaranteed global minimum

in one cut. Our color separation term can be used for multi-label segmentation and easily gen-

eralized to other image features, e.g., texture. We hope this work would have an impact on

more applications in the future.
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Appendix A

Proofs of Theorems

Proof of Theorem 4.1.1. Suppose we have two labeling S 1 and S 2. To prove EL1(S 1 ∩ S 2) +

EL1(S 1∪S 2) ≤ EL1(S 1)+EL1(S 2), we only need to prove the color separation term is submodular

for each color bin. We denote A the number of pixels in kth color bin for set S 1 ∩ S 2, B for set

S 1 \ S 1 ∩ S 2, C for set S 2 \ S 1 ∩ S 2 and D for set Ωk \ S 1 ∪ S 2. We let:

t1 × A + (1 − t1) × (A + B +C) = A + B

t2 × A + (1 − t2) × (A + B +C) = A +C (A.1)

then we can see t1 + t2 = 1. The function f (x) = min(x, |Ωk| − x) is concave, so we have two

inequalities:

t1 × f (A) + (1 − t1) × f (A + B +C) ≤ f (A + B)

t2 × f (A) + (1 − t2) × f (A + B +C) ≤ f (A +C) (A.2)

the sum of which gives us:

min(A, B +C + D) +min(A + B +C,D) ≤ min(A + B,C + D) +min(A +C, B + D). (A.3)

Then Ek
L1

(S 1 ∩ S 2) + Ek
L1

(S 1 ∪ S 2) ≤ Ek
L1

(S 1) + Ek
L1

(S 2) is proved. �
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