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Abstract 

Background: Although gestational diabetes mellitus (GDM) has been linked to pediatric 

obesity, there is limited research on the impact of intrauterine exposure to GDM on 

trajectories of childhood growth. Objective: To assess the effect of prenatal GDM exposure 

on childhood body mass index (BMI) trajectories. Design: Analyses were conducted using 

data from cycles 2 to 6 (1994-2004; N=3412 children) of the National Longitudinal Survey 

of Children and Youth. Latent growth curve modelling (LGCM) was used to model BMI 

trajectories from age 2 to 10 years with prenatal exposure to GDM as a predictor. Effect 

modification by breastfeeding was assessed. Results: Among males, prenatal exposure to 

GDM was associated with significantly lower initial BMI. There were no other statistically 

significant effects of prenatal exposure to GDM.  Effect modification by breastfeeding was 

not statistically significant. Conclusions: Despite mainly non-significant findings, this study 

lays the groundwork for future pediatric obesity research using LGCM. 

 

Keywords 

Maternal-child health, pediatric obesity, gestational diabetes mellitus, prenatal exposure, 

obesity risk factors, body mass index, longitudinal studies, latent growth curve modelling, 
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Chapter 1  

1 Introduction and Literature Review 

1.1 Introduction 

Obesity is a morbid condition that is reducing the quality of life for increasing numbers 

of children and youth.
1
  Over the past few decades, the prevalence of childhood 

overweight and obesity has escalated in Canada and worldwide.
2 3

 These trends are 

important because of the social stigma and reduced quality of life associated with being 

overweight
4
 as well as the myriad of comorbidities linked to obesity.

4 5
  Indeed, as a 

result of the childhood obesity epidemic, children are experiencing earlier onset of 

chronic conditions once considered to be limited to adulthood.
6
 Obese children are also at 

greater risk for adult obesity
7
 and death in adulthood due to cardiovascular disease.

8 9
 

Strategies for prevention are becoming ever more important in light of these trends, not 

only to improve quality of life and reduce morbidity and mortality, but to conserve 

medical resources and lessen the overall burden of obesity on the Canadian health care 

system.   

One area of research that is important for the development of targeted prevention 

strategies for childhood obesity is that which examines the developmental origins of 

overweight. There is a growing body of literature that suggests certain prenatal exposures 

are associated with increased risk of overweight and obesity in childhood and even 

adulthood.  One such risk factor that has been extensively studied is prenatal exposure to 

maternal impaired glucose tolerance (IGT) during pregnancy, and in particular, to 

gestational diabetes mellitus (GDM). GDM is a state of glucose intolerance that arises or 

is first recognized during pregnancy.
10

 The principal theory for the biological mechanism 

linking GDM to childhood overweight, at its earliest stage of the mechanistic pathway, 

suggests that poor maternal glycemic control at critical stages in fetal development leads 

to fetal hyperglycemia, which triggers fetal hyperinsulinemia.
11

 Fetal hyperinsulinemia is 

theorized to promote offspring overweight by stimulating fetal growth, resulting in 

macrosomia or very high birth weight, and programming hormones that regulate appetite 



2 

 

and food intake, resulting in postnatal risk of obesity in offspring.
12-15

  

Despite recognition of this association, the evidence supporting GDM as a risk factor to 

target for childhood overweight and obesity prevention has been somewhat 

underwhelming. This may be due, in part, to inconsistency in study outcomes. The 

majority of studies that have examined the impact of maternal IGT during pregnancy on 

weight status at a single point in childhood have varied timing of outcome evaluation. 

Furthermore, studies use different standards for defining overweight and obesity in 

childhood. These are two common issues that make pooling of results across studies 

difficult and have likely lead to an overall weak body of evidence for the relationship 

between GDM and childhood overweight and obesity.  

Studies that examine this association cross-sectionally may be missing important aspects 

of the potentially complex relationship between GDM and the change in child weight 

occurring in the unobserved period.  Indeed, these studies may be erroneously concluding 

null associations between maternal IGT and childhood weight simply because of the 

limited timing of observation. A strategy to overcome these issues is to shift the focus of 

study outcomes from weight status at a single point in childhood to growth trajectories 

throughout childhood.  This will allow for observation of the onset of overweight or 

obesity at any point throughout childhood.  More importantly, childhood growth 

trajectories allow observation of growth patterns, which provide more insight into overall 

child health than weight status at a single point. Thus, an analysis of the impact of 

prenatal exposure to GDM on trajectories of childhood growth is a logical and important 

next step in determining the relationship between maternal IGT during pregnancy and 

childhood overweight and obesity. The current study takes this step by examining the 

association between prenatal exposure to GDM and early childhood BMI trajectories. 

In the sections that follow there will be a review of the literature on the prevalence, 

measurement, and etiology of childhood overweight and obesity. Section 1.2 will discuss 

the epidemic nature of child obesity by outlining the Canadian trends in prevalence of 

childhood overweight and obesity (Section 1.2.1) and obesity-related illness and chronic 

disease (Section 1.2.2). Section 1.3 will examine the various strategies used to measure 
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trends in childhood overweight and obesity at the population level, discussing current 

definitions of childhood overweight and obesity (Section 1.3.1) and the importance of 

analysing developmental patterns and growth trajectories (Section 1.3.2). The remainder 

of this chapter will cover the literature on early life risk factors for childhood overweight 

and obesity. Section 1.4 will provide an overview of perinatal contributions to pediatric 

obesity, focusing on maternal characteristics associated with childhood overweight and 

obesity (Section 1.4.1) as well as risks associated with fetal growth and early nutrition 

(Section 1.4.2). Section 1.5 presents a review of the literature on the current trends in 

GDM prevalence (Section 1.5.1), risk factors for GDM (Section 1.5.2), and issues related 

to the study of GDM in population research (Section 1.5.3).  Finally, Section 1.6 outlines 

the literature to date on the impact of exposure to GDM in utero on offspring weight, 

focusing on proposed biological mechanisms (Section 1.6.1) and the impact of GDM on 

birth weight (Section 1.6.2) and weight status throughout childhood (Section 1.6.3).  

1.2 The Epidemic of Childhood Obesity 

Worldwide, the prevalence of childhood overweight and obesity has been escalating. 

Indeed, due to the rate of increase in prevalence, childhood overweight and obesity is 

now widely recognized as an epidemic.
16

 Further, overweight and obesity in childhood 

are associated with illness and chronic disease that threaten health not only in childhood, 

but also in adulthood. The morbidity and mortality related to childhood overweight and 

obesity is detrimental both on the individual level, in terms of reduced quality of life, and 

community level, in terms of the burden on health care systems and loss of productivity.  

To evaluate the extent of the burden of this epidemic, it is important to examine recent 

trends in prevalence of pediatric obesity as well as to review the literature on obesity-

related illness and disease.  

1.2.1 Canadian Trends in Childhood Overweight and Obesity 

Trends in average weight among Canadian children over the past few decades indicate 

that, as in many other developed countries, childhood overweight and obesity is 

becoming increasingly more common. Indeed, it has been shown using three national 

databases  that between 1981 and 1996, the rate of increase in BMI was around 0.1 kg/m
2
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per year for Canadian children aged 7 to 13 years.
17

 That is, over this period average BMI 

for both male and female children in this age group increased by nearly 1.5 kg/m
2
.  

During this time, overweight and obesity, defined respectively by the 85
th

and 95
th 

percentiles for age- and sex-specific BMI, increased substantially.
17

 Indeed, both 

overweight and obesity approximately doubled for males and females over the 15 years.
17

 

More recently, using the 2004 Canadian Community Health Survey (CCHS), it was 

estimated that among all children and adolescents aged 2 to 17 years, 26% were either 

overweight or obese.
2
 These estimates were obtained using age- and sex-specific BMI 

cut-offs for overweight and obesity as per International Obesity TaskForce (IOTF) 

guidelines.
2
 Among 12 to 17 year-olds, the prevalence of overweight more than doubled 

from 1978 to 2004 while the prevalence of obesity tripled during the same time period.
2
 

These estimates were obtained using the 1978/1979 Canada Health Survey and the 2004 

CCHS, both of which collected direct measures of weight and height used to calculate 

BMI.
2
 

The most recent publication of The Chief Public Health Officer’s Report on the State of 

Public Health in Canada indicated that adolescent overweight and obesity is still on the 

rise.
1
 Among adolescents aged 12 to 19 years, it was estimated that 32% of males and 

27% of females were either overweight or obese, as per IOTF weight classifications for 

children.
1
 

These trends indicate that there is a pattern of increasing prevalence of overweight and 

obesity among Canadian children and adolescents that does not appear to have reached a 

plateau. This underscores the importance of identifying key determinants of childhood 

obesity as well as the urgent need for effective intervention and prevention strategies for 

childhood overweight and obesity in Canada.  

1.2.2 Obesity-Related Illness and Chronic Disease 

Perhaps the most insidious consequence of the increasing prevalence of childhood 

obesity is the myriad of diseases and other chronic health conditions associated with 

obesity that arise in childhood, adolescence, and adulthood.  Many of the comorbid health 
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conditions require lifelong care, thus creating a preventable burden on the health care 

system. Moreover, obesity-related physical health conditions that begin in childhood and 

persist throughout adulthood can cause premature death.
18

 Indeed, as suggested by 

Daniels,
19

 childhood obesity may be causing a decline in life expectancy in developed 

countries like Canada for the first time in recent history.  Hence, childhood obesity is a 

public health crisis that not only warrants attention, but immediate action to intervene and 

prevent excessive weight gain in children.  

Childhood overweight and obesity have been linked to a number of poor health outcomes 

that can present in childhood, adolescence, and adulthood.  These include type 2 

diabetes,
20 21

 hypertension,
4 22 23

 hyperlipidemia,
4 23

 fatty liver,
24

 asymptomatic 

atherosclorosis,
18 25

 and coronary heart disease (CHD).
18

 Although these were once 

considered diseases of adulthood, increasingly more children are being diagnosed with 

many of these health conditions.
19 21 26 27

 

Glucose tolerance disorders, such as type 2 diabetes, have long been associated with adult 

obesity. However, recent studies have shown an increase in type 2 diabetes diagnoses 

among overweight and obese children and youth.
4 19-21 26 27

 It has also been shown that 

among youth with type 2 diabetes, the majority are often overweight or obese, that is, 

with mean BMI ranging from ~33 kg/m
2
 to ~38 kg/m

2
 in adolescence and young 

adulthood.
26 27

 One study of a large group of 5 to 17 year-olds revealed that overweight 

individuals are 12.6 times more likely to exhibit insulin resistance than their normal 

weight counterparts.
23

 High levels of total body fat and, more specifically, abdominal fat 

have also been associated with insulin resistance among pre-pubertal children.
28

 

Abnormal levels of lipids and lipoproteins in the blood, or dyslipidemia, are associated 

with adult obesity and have been reported in pediatric populations among overweight and 

obese individuals.
4 23 29 30

 Obese adolescents exhibit increased levels of serum low-

density-lipoproteins (LDL) and triglycerides and diminished levels of serum high-

density-lipoproteins (HDL).
29

 This pattern of dyslipidemia is associated particularly with 

visceral, or abdominal, fat.
29

 It has been shown that overweight schoolchildren 5 to 17 

years of age are 2.4 times more likely to have high total cholesterol and 7.1 times more 
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likely to have high triglyceride levels than their normal weight counterparts.
23

 This trend 

in pediatric hyperlipidemia among overweight and obese children is particularly 

worrisome as hyperlipidemia in adulthood is a known risk factor for cardiovascular 

disease. It follows that obesity in childhood increases the risk of death in adulthood due 

to cardiovascular disease.
8 9

 

Although hypertension is relatively rare in pediatric populations, overweight and obesity 

in children has been linked to hypertension.
18 22 23 25 30

 Indeed, among children with 

consistently high blood pressure, the majority have been shown to be overweight or 

obese.
18 23

 It has been reported that overweight and obese individuals aged 5 to 18 years 

are 4.5 to 9 times more likely to have high blood pressure compared to normal weight 

individuals in the same age group.
4 23

 

Clustering of cardiovascular risk factors, including hypertension, insulin resistance and 

high cholesterol levels, has also been examined in pediatric populations.
23 25 30

 Studies 

have shown that the overwhelming majority of children and young adults that have more 

than two cardiovascular risk factors are overweight or obese.
23 30

 Indeed, one study 

reported that among children aged 5 to 10 years 41%, 75%, and 100% with 2, 3, or 4 

cardiovascular risk factors, respectively, were overweight.
23

 

The combination of a number of the aforementioned health conditions have been 

described together under the term "metabolic syndrome".
31

 In a report published by the 

American Heart Association, metabolic syndrome is described as a constellation of 

several cardiovascular risk factors including abdominal obesity, dyslipidemia, high blood 

pressure, and insulin resistance with or without glucose intolerance.
31

 In adults, the 

combination of these metabolic risk factors increases the risk of CHD.
31

 It has been 

estimated that the overall prevalence of metabolic syndrome in pediatric populations is 

4%, but among obese children, the prevalence is 30%.
19

   

Overweight and obesity in childhood and adolescence have a lasting impact on future 

health status. It was shown that, independent of adult weight status, overweight in 

adolescence was associated with various adverse health outcomes in adulthood, including 

all-cause mortality, disease-specific mortality, mortality due to CHD, morbidity due to 
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CHD and atherosclerosis, gout, arthritis, and colorectal cancer.
18

  

1.3 Measuring Population Trends in Childhood Obesity 

Examining trends in overweight and obesity in pediatric populations is more complex 

than in adult populations. The selection of measurement tools to determine weight status 

in children at the population level is complicated by several factors. Central to these 

factors is the issue that current definitions of pediatric overweight and obesity are not 

based on childhood morbidity. Rather, most studies examining obesity in pediatric 

populations use guidelines based on definitions for adult obesity and statistically extreme 

observations. As a result, it is unclear whether findings from studies using these 

techniques to define childhood overweight and obesity status are meaningful. It is 

therefore important to be aware of the shortcomings of current definitions of childhood 

overweight and obesity and to explore other measurement techniques that may yield more 

meaningful results.  

1.3.1 Defining Childhood Overweight and Obesity 

One of the most widely used measurement tools for defining overweight and obesity is 

the BMI, which serves to approximate body fatness by adjusting weight for height.
32

 In 

adults, definitions of overweight and obesity have been established using BMI cut points 

associated with increased risk of morbidity and mortality.
33

 Determining clinically 

relevant BMI cut points in pediatric populations is less straightforward since weight-

related health issues, such as metabolic and cardiovascular disease, present later in 

development and are generally rare in young people.
32

 Moreover, BMI throughout 

childhood is notably less consistent than in adulthood, which further complicates the task 

of defining specific cut points for overweight and obesity in children.  

Current recommendations indicate children or adolescents at the 85
th

 and 95
th

 percentiles 

for age- and sex-adjusted BMI of a particular reference pediatric population should be 

considered at risk for overweight and obesity, respectively.
34 35

 Studies examining the 

validity of these guidelines have reported generally high specificity but low sensitivity of 

these percentile cut-off values.
36-38

 Among children aged 8 to 12 years, individuals 

identified using cut points at the 85
th

 and 95
th

 percentiles for BMI were overweight and 
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obese 95% and 99% of the time, respectively.
38

 Thus, specificity of these cut points was 

high. However, these cut points failed to detect a large portion of truly overweight 

individuals, with sensitivity scores of 0.65 and 0.39 for the 85
th

 and 95
th

 percentiles for 

BMI, respectively.
38

 Such low sensitivity scores are particularly problematic for weight 

classification systems used for population surveillance or epidemiological purposes, as 

many cases of overweight and obesity are not captured.  

1.3.2 Assessing Developmental Patterns and Growth Trajectories 

In public health and medical practice, BMI cut-off values defining overweight and 

obesity in childhood are often used as screening tools rather than diagnostic tools. These 

BMI cut points flag individuals who may be at risk for weight-related health issues, but 

do not indicate per se the true level of risk for health issues in overweight and obese 

children.   

The shortcomings of current definitions of childhood overweight and obesity are 

highlighted in the findings of a study done by Bouhours-Nouet and colleagues.
39

 These 

researchers studied children aged 8 to 12 years who were obese, defined as 2 standard 

deviations above age- and sex-adjusted BMI, and collected information about birth 

weight, postnatal weight gain, and existing cardiovascular and metabolic risk factors.
39

 

Interestingly, obese children who had high weight at birth and increased weight gain in 

the first two years of life also had the highest insulin sensitivity and were thus 

metabolically healthier than obese children with low to moderate fetal and postnatal 

growth.
39

 Children with this particular growth pattern had higher insulin sensitivity even 

when compared to other high birth weight children who had less weight gain in the first 

two years of life.
39

 Moreover, obese children who had high birth weight had significantly 

lower concentrations of fat in the abdominal area as well as lower systolic blood pressure 

than obese children with low or average weight at birth.
39

  

The findings of the Bouhours-Nouet et al.
39

 study highlight two guiding concepts for 

childhood obesity research. The first is that biological processes leading to childhood 

overweight and obesity are likely active early in development.  Thus, research examining 

causes of obesity should shift focus to events occurring during prenatal and postnatal 
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growth. The second is that patterns of growth from birth throughout childhood convey 

more information about health than weight status at a single point. Consistent with this 

concept Legler and Rose
40

 discuss that from the perspective of physicians, weight status 

carries limited information about patient health. Indeed they suggest that although 

children may be at extreme ends of the BMI-for-age spectrum at various stages 

throughout development, growth that is gradual and consistent reflects good health while 

inconsistent or accelerated patterns of growth are often indicative of poor health.
40

 

Indeed, it is important to examine all aspects of early growth in order to obtain a more 

complete understanding of child health. 

Size at Birth 

A number of studies have suggested that size at birth plays an important role in later 

obesity.
41-53

 The majority of these studies’ findings indicate that high birth weight for 

gestational age, or macrosomia, is an important predictor of childhood obesity, although 

small size at birth has also been found to be associated with metabolic disease and 

obesity.
42

  

 It has been reported that high birth weight can predict overweight and obesity by as early 

as preschool age.
46 49

 Indeed, studies have shown that children born with high BMI are 

taller and heavier by the age of 3 years than their normal birth weight peers and that this 

discrepancy persists throughout early childhood.
43

  Some studies have indicated that 

children born large for gestational age (LGA) are at nearly twice the risk of being 

overweight compared to children born appropriate for gestational age (AGA).
44 48 51

 

Moreover it has been shown that among obese children, those born LGA have a much 

higher incidence of metabolic syndrome than children born AGA.
45

 Despite the fact that 

high birth weight may reflect maternal weight, its association with childhood obesity has 

been shown to be independent of maternal BMI.
46 48

 Thus, factors that affect birth weight 

independently likely play important roles in predicting childhood obesity. 

Rates of Postnatal and Childhood Growth 

Postnatal and early childhood growth rates also predict later childhood and adult obesity 
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as well as adult morbidity.
54-59

 Specifically, studies have reported that abnormally slow 

growth in height, or stunting,
54

 and abnormally rapid growth in weight resulting in 

adiposity,
55-57 59

 can increase later obesity risk.  

Children exposed to perinatal conditions that result in stunted height reportedly have 

increased risk of developing obesity in later childhood.
54

 Popkin and colleagues
54

 

examined data from several countries experiencing a “nutrition transition,” that is, a shift 

in economic conditions resulting in dietary changes that promote overweight and obesity 

in childhood. However, because of the transitional state of the countries studied, the data 

reflect pediatric populations that still experience stunted height as a result of poor 

perinatal care and infant feeding practices.
54

 After adjustment for income, stunted 

children were up to 7.8 times more likely to be overweight than non-stunted children.
54

 

The study of these low-income countries revealed that early height trajectories may be an 

important indicator of future overweight.
54

 This may be relevant and applicable to the 

childhood obesity problem in North America as these findings illustrate how the early 

nutritional conditions among low income families in general may contribute to the 

development of overweight and obesity. 

During infancy, rapid increases in weight but normal growth in length or height has been 

shown to be associated with obesity risk in childhood.
55-57

 The pertaining literature 

defines rapid infancy weight gain in various ways. A review of several papers examined 

the impact of rapid weight gain in the first two years of life on later obesity risk using 

standardized scores for change in weight over each year and defining rapid weight gain as 

any z-score change greater than 0.67.
55

  This review concluded a positive association 

between rapid weight gain in the first two years of life and childhood obesity, 

independent of weight at birth.
55

 Another study examined the impact of rapid weight gain 

in the first 4 months of life on overweight status at 7 years of age, measuring weight gain 

as a continuous rate of change in weight per 100 grams per month.
57

 This study found 

that independent of weight achieved by the first year, the rate of weight gain in the first 4 

months was positively associated with overweight at 7 years of age.
57

 In fact, it has been 

shown that regardless of the criteria for rapid growth, the age range in which rapid 

growth is measured, or the age at outcome evaluation, rapid weight gain during infancy is 
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a significant predictor of later overweight and obesity.
56

 

Rates of weight gain in early childhood have also been shown to predict later obesity.
59

  

The timing of accelerated weight gain that leads to adolescent obesity has been shown to 

differ between males and females.
59

 When weight gain trajectories were compared within 

a large group of adolescent girls, it was found that overweight individuals exhibited 

steeper weight gain between the ages of 3 and 4 years than their normal weight 

counterparts.
59

 A similar pattern was found among overweight adolescent boys, except 

accelerated weight gain occurred between the ages of 5 and 8 years.
59

  For both females 

and males, growth in height remained similar between overweight and normal weight 

individuals.
59

 This indicates that steep weight gain occurring during these early stages 

can serve as an early warning sign for later obesity. 

Early growth patterns also have important implications for adult morbidity.
58 60

 A large 

longitudinal study examined the impact of rates of weight gain in childhood on 

subsequent risk of coronary heart disease, type 2 diabetes, and hypertension in 

adulthood.
58

 It was found that individuals who were small at birth or at 1 year of age and 

subsequently experienced rapid weight gain between the ages of 3 and 11 years were at 

highest risk for all three chronic conditions.
58

 Another study found similar patterns of 

early growth that significantly increased risk of type 2 diabetes.
60

 High birth weight, 

defined as greater than 3.5 kilograms, followed by steep growth in weight but not height 

between the ages of 2 and 12 years was associated with type 2 diabetes in later life.
60

 

Additionally it was found that the highest incidence of type 2 diabetes at age 40 years 

occurred among individuals who had high birth weight and subsequent stunted growth in 

length during the first 3 months of life.
60

  

Timing of Adiposity Rebound 

As previously discussed, particular patterns of weight gain within the first few years of 

life are associated with risk of obesity and later morbidity.
61-67

  The timing of these early 

growth patterns also has important consequences for BMI in later childhood and early 

adulthood.
64-66

 In typical development, after an initial decline in body fatness in the first 

years of life, the body regains fat at a consistent rate throughout childhood and into 
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adulthood.
65

 The point at which the renewed incline in body fatness occurs has been 

termed the adiposity rebound (AR).
64

 Studies have shown that the timing of this 

developmental event is an important predictor of later obesity.
61 64-66

  

Earlier than average occurrence of AR is associated with increased risk of overweight 

and obesity in childhood,
66

 adolescence,
64

 and adulthood.
65

  In fact, individuals who 

experience early AR are reportedly 6 times more likely to be obese as adults than 

individuals who experience normal or late AR.
65

  This relationship has been shown to 

persist even after adjustment for BMI at the time of AR as well as adjustment for parental 

BMI.
65

 Even among infants who are obese by 1 year of age, those who experience later 

AR have been shown to attain normal BMI by the age of 16 years while individuals who 

have early AR remain overweight into adolescence and early adulthood.
64

   

Early AR has specifically been associated with increased fat mass.
66

 Indeed, one study 

combined measures of triceps and subscapular skinfolds into a fat mass index and found 

that early AR was significantly associated with higher fat mass index scores.
66

 The same 

study found that waist circumference at 26 years of age was also significantly associated 

with early AR.
66

 Among overweight and obese individuals, the relative risks of waist 

girth exceeding international cut-offs were 2.12 and 3.32, respectively, comparing 

individuals who experienced early AR to those who experienced late AR.
66

 These 

findings indicate the ability of the timing of AR to act as an even more sensitive indicator 

of unhealthy fat mass than BMI, which can only approximate overall body fat. 

It has been reported that early AR is associated with adult morbidity, specifically in terms 

of glucose tolerance.
67

 One study showed that among adults aged 26 to 32 years, those 

who experienced early AR were most likely to suffer from diabetes or other forms of 

IGT.
67

 This relationship was demonstrated despite the fact that BMI at the time of AR 

was within normal ranges and similar to individuals who had normal glucose tolerance in 

adulthood, suggesting that the timing of AR was the main predictor of later glucose 

tolerance disorders.
67

  

It is evident that childhood obesity is a complex health issue that requires a more nuanced 

approach to its analysis as a health outcome in epidemiological study. The purpose of 
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preventing overweight and obesity in childhood is to prevent childhood and adult disease. 

Thus, it is important to examine other weight-related phenomena that may act as more 

sensitive warning signs for later obesity-related metabolic disease, such as the adiposity 

rebound. Indeed, the importance of examining growth trajectories in order to properly 

capture the entire phenomenon of childhood obesity is indisputable.  

1.4 Early Influences on Childhood Weight Gain 

The question that has not yet been addressed in this discussion is, of course, what causes 

childhood obesity? This is particularly complicated to answer since causality can only be 

examined if a causal factor precedes a particular outcome. In the case of childhood 

obesity, it is often difficult to determine the exact timing of onset. Indeed, as previously 

discussed, the developmental processes that lead to childhood overweight and obesity are 

already evident in infant growth patterns. An emergent avenue of research on the etiology 

of childhood overweight and obesity is one that focuses on risk factors present in the 

perinatal environment. In terms of causality, risk factors present prior to or shortly after 

birth can indeed be concluded to precede the outcome. Hence, examining perinatal risk 

factors can reveal more clues about the causes and development of childhood overweight 

and obesity.  

1.4.1 Maternal Prenatal Characteristics, Behaviours, Diet, and 
Health 

It has been suggested that maternal age, particularly very young or advanced maternal 

age, is associated with extremes of neonatal weight.
68 69

 In terms of the low weight end of 

the spectrum, infants born to adolescent or advanced age mothers are at greater risk of 

low birth weight.
68 69

 There is also evidence that primiparity is associated with low birth 

weight.
70

 Interestingly, low weight babies born to primiparous mothers have been shown 

to demonstrate subsequent catch-up growth that results in children being heavier and 

taller than their peers.
70

   

A similar pattern of low birth weight and subsequent catch-up growth and childhood 

overweight has been demonstrated in cases where mothers smoked during pregnancy.
70-72

 

Children born to mothers who smoked during pregnancy have been shown to be 



14 

 

significantly smaller for gestational age, that is they have lower birth weight and birth 

length, than children born to non-smokers.
70

 However, smoking during pregnancy has 

also been associated with later childhood overweight and obesity despite causing initial 

low weight.
70-72

 Indeed, a dose-response relationship has been shown between number of 

cigarettes smoked during pregnancy and risk of overweight and obesity in childhood.
71 72

  

Several studies have reported that maternal diet during pregnancy, which directly impacts 

the prenatal nutritional environment, can impact later weight status of offspring.
5 73

  

Indeed, one retrospective cohort study showed that exposure to famine during pregnancy 

is linked to later obesity in children born to undernourished women.
73

 Similarly, animal 

studies have demonstrated that permanent programming of accelerated fat tissue growth 

occurs as a result of maternal nutrient imbalance during gestation.
5
 

Maternal health complications during pregnancy have been shown to impact later 

offspring weight and growth patterns. Gestational hypertension has been linked to an 

increased risk of high birth weight and large size for gestational age,
74

 both of which have 

been shown to predict subsequent childhood overweight and obesity.
44 46 48 49 51

 There is 

also strong evidence for the association between maternal glucose tolerance disorders 

during pregnancy and offspring weight at birth and childhood weight. Indeed, various 

forms of IGT during pregnancy have been shown to increase the risk of later adiposity in 

offspring.
15 75-93

  

1.4.2 Fetal Growth and Early Nutrition  

Fetal growth and postnatal nutrition have also been shown to impact later childhood 

weight status.  Birth weight for gestational age has been shown to be a more important 

indicator of later childhood growth patterns and health than absolute birth weight. In fact, 

it is when birth weight is abnormal for gestational age that effects on later childhood 

growth and weight are evident. Children who are born LGA often become heavier on 

average in childhood.
94

 Being born small for gestational age (SGA) has also been shown 

to have lasting effects on growth in early childhood. Indeed, it has been shown that 

children born SGA are smaller on average by the age of 4 years than their AGA peers.
94

 

There is also evidence that both advanced maternal age and primiparity are associated 
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with increased risk of SGA infants.
95-98

 

In terms of postnatal nutrition, many studies have demonstrated that whether infants are 

breastfed at all,
99-104

 duration and consistency of breastfeeding,
46 99 101 105-110

 and timing of 

the introduction of solid foods
111

 all have a significant impact on later obesity risk.  

Indeed, most studies examining the effect of breastfeeding on infant, childhood, and 

adolescent weight that have had significant findings report a reduced risk of obesity 

associated with breastfeeding. It has been suggested that longer duration of breastfeeding 

may protect high risk children, for example those born LGA, from developing obesity.
104 

108
 In particular, a few studies have found that the association between prolonged 

breastfeeding and lowered obesity risk is particularly pronounced among children born to 

overweight and obese mothers.
107 112

 One study further showed that prolonged 

breastfeeding coupled with delayed introduction of solid foods is associated with reduced 

odds of obesity and increased probability of healthy weight status at age 2 to 4 years.
111

  

1.5 Gestational Diabetes Mellitus 

The focus of the current study is the association between prenatal exposure to GDM and 

BMI trajectories in early childhood. This is particularly relevant since worldwide, the 

prevalence of GDM among women has reportedly been growing. Increasing trends in 

GDM prevalence raise many population health concerns. By definition, GDM may be a 

temporary state of glucose intolerance that resolves after delivery.  However, in some 

cases glucose intolerance may persist postpartum.  Indeed, many studies have reported a 

much higher risk of subsequent diabetes mellitus among women with GDM compared to 

women with a normal pregnancy.
113-118

 Thus, increasing trends in prevalence of GDM 

may predict similarly increasing trends in diabetes mellitus among parous women.   

Increasing GDM prevalence has important health implications for children, since 

offspring from pregnancies complicated by GDM often have poor health outcomes.  The 

association between forms of maternal IGT during pregnancy, including GDM, on 

offspring weight has been extensively studied. In particular, prenatal exposure to GDM is 

a known and common cause of fetal macrosomia,
119

 which has been shown to be an 

important predictor of childhood obesity.
45-53 120

  Overweight and obesity in childhood 
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and adolescence have also been linked to prenatal exposure to GDM.
76 83 121

 Although 

GDM is also associated with high maternal pre-pregnancy BMI, it has been found that 

the effects of GDM on offspring weight status may be independent of maternal pre-

pregnancy BMI.
80

 Thus, an increasing trend in GDM prevalence has important 

implications for the childhood obesity epidemic.   

1.5.1 Trends in Prevalence of Gestational Diabetes Mellitus 

An increasing prevalence of GDM among women in various populations worldwide has 

been documented by a number of studies.
122-129

  In regions across North America, the 

prevalence of GDM has increased by approximately 60–120% over two decades.
122 124

  

More recently, over the last ten years GDM prevalence has increased by approximately 

30–180% in different global populations.
125-127

  In Canada, there have also been 

indications of increasing trends in GDM prevalence.
122 127

 One study that investigated 

trends in GDM prevalence in Manitoba over a twenty-year period reported a 60% 

increase in GDM prevalence from 1985 to 2004.
122

 Another study by Davenport and 

colleagues
127

 observed GDM prevalence over a ten-year period in London, Ontario and 

reported a 45% increase in prevalence from 2000 to 2009.
127

 These trends suggest the 

possibility of increasing GDM prevalence across Canada.  

One important factor to consider when examining the trends in prevalence of GDM in 

Canada and around the world is changes in diagnostic criteria over time.  The Society of 

Obstetricians and Gynaecologists of Canada implemented the first national GDM 

screening guidelines in 1992.
122

 These new guidelines required universal GDM screening 

for all pregnant women in the 24th to 28th week of pregnancy.
122

  Following this, the 

only major changes to guidelines were made in 1998 by the Canadian Diabetes 

Association, which suggested different diagnostic criteria for glucose tolerance test 

results.
122

   

Due to these changes in screening guidelines and diagnostic criteria for GDM, increasing 

trends in GDM prevalence in Canada after 1992 may be attributable to the 

implementation of universal screening.  Similarly, trends before and after 1998 would 

need to be examined against changes in diagnostic criteria.  However, since 1998 there 
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have been no substantial changes in screening guidelines and diagnostic criteria.  Thus, 

trends in GDM prevalence in Canada during the past decade likely reflect true changes in 

GDM incidence over time.  Indeed, the 45% increase in GDM prevalence in London, 

Ontario reported by Davenport et al.
127

 occurred during a period when there were no 

changes in GDM screening guidelines or diagnostic criteria.   

1.5.2 Factors Associated with Gestational Diabetes Mellitus Risk 

Maternal Body Mass Index 

One risk factor for GDM that has been well established is high pre-pregnancy BMI.
130

 

Torloni and colleagues
130

 conducted a meta-analysis of 70 studies examining over 

600,000 women and found that risk of GDM is strongly positively correlated with high 

pre-pregnancy BMI.  Indeed, they found that the risk of GDM increased significantly 

with increasing pre-pregnancy weight, with overweight women being twice as likely and 

obese women being more than five times as likely to have GDM compared to women 

who had normal pre-pregnancy BMI.
130

  Further, they showed that women who were 

underweight were less likely to have GDM compared to women who had normal pre-

pregnancy BMI.
130

   

Maternal Ethnicity 

Previous studies have shown that trends in the increasing prevalence of GDM differ 

according to maternal ethnicity.
122 124 128 131-138

  In the United States, the prevalence of 

GDM over the past 20 years has been increasing at a significantly higher rate among 

black women compared to white women.
124

  Indeed, it was shown that the risk of 

developing GDM conferred by maternal BMI is higher in black women versus women of 

other ethnicities. Other studies in multiethnic populations have shown that there is an 

increased risk of GDM among other ethnic minorities, including Asian, Hispanic, and 

Middle Eastern women.
131 133 135

  Among Asian women, the trends in GDM prevalence 

also vary, with higher prevalence of GDM in women of Indian descent compared to 

women of Japanese or Korean descent.
134 137 138

  Other studies have compared prevalence 

of GDM in Aboriginal versus non-Aboriginal populations and found a higher risk of 
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GDM among Aboriginal women.
122 128

 
139 140

   

These trends in GDM among different ethnic groups may reflect other differences 

between the groups, such as socioeconomic conditions, diet composition, health 

practices, and habits that may affect general health. Nevertheless, it is important to note 

how stable differences between ethnic groups may be affecting observed trends.  Further, 

some studies have noted the independent effects of ethnicity on risk of GDM,
139 141

  

indicating that there may be genetic factors promoting differences in GDM prevalence 

between ethnic groups.  

Socioeconomic Factors 

Studies that have discussed the association of socioeconomic characteristics with risk and 

subsequent prevalence of GDM have considered education level, income and 

employment as potential predictors.
131 132 142-144

  One study found a higher risk of GDM 

among unemployed women as well as a difference in risk between blue-collar and white-

collar workers.
144

  The same study observed that education level was inversely correlated 

with risk of GDM.
144

  In most studies, socioeconomic level, defined for example by 

quartiles, has been identified as the strongest predictor of GDM.
132 143

  Indeed, a large, 

multiethnic study in Australia found that socioeconomic status was inversely correlated 

with risk of GDM consistently across ethnic groups.
132

   

Maternal age 

A large number of studies have shown that the risk of GDM is associated with advanced 

maternal age.
95 122 125 131 132 139 141 145-148

 Across studies, reported risks also appear to 

increase with increasing maternal age. One study that examined pregnant women with 

ages ranging from 19 to 27 years found that women aged 25 years or older were twice as 

likely to have GDM compared to all women under the age of 25 years.
145

 Another study 

that looked at older women reported that maternal age greater than 40 years was 

associated with 6 times the risk of GDM compared to women aged 20 years or 

younger.
132

  

 



19 

 

Parity 

Studies have shown that number of past pregnancies is also associated with increased risk 

of GDM.
149 150

 Multiparity was found to be a significant risk factor for GDM among 

women in a large study examining the epidemiology of GDM among Native 

Canadians.
149

 Another study showed that there is an increasing risk of GDM with the 

increasing number of past pregnancies complicated by GDM.
150

 Indeed, women with one 

previous pregnancy complicated by GDM were 13 times more likely to have GDM than 

women who had a normal past pregnancy.
150

  

1.5.3 Challenges in Examining Gestational Diabetes Mellitus in 
Population Studies 

There are arguments that epidemiological studies examining GDM at the population level 

are faced with important methodological issues.  The main issue is that determining the 

prevalence of GDM using population data is complicated by the clinical definition of 

GDM itself.
151

  Since GDM is defined as either the onset or first recognition of glucose 

intolerance during pregnancy,
10 

 it is possible that a number of cases of GDM from 

population data may truly reflect populations of women with undiagnosed diabetes 

mellitus existing prior to pregnancy.
151

  This is particularly true for younger women who 

are less likely to be screened for diabetes prior to pregnancy.
151

 This issue is addressed by 

highlighting that the motivation for this study is the potential impact of a prenatal 

hyperglycemic environment caused by GDM on BMI throughout childhood.  In this 

context, the current definition of GDM is acceptable given that the risk posed by GDM is 

through prenatal exposure to elevated maternal blood sugar levels due to the absence of 

previous diabetes diagnosis and thus the absence of treatment at initial stages of 

pregnancy.
80 81 88 93

 Thus, whether or not a GDM diagnosis reflects maternal glucose 

intolerance that manifested during pregnancy or was present prior to pregnancy does not 

alter the exposure as defined in the current study.    

1.6 Gestational Diabetes Mellitus and Child Weight 

The current study was motivated by a growing body of evidence for the association 

between maternal IGT during pregnancy, specifically GDM, and offspring overweight or 
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obesity in infancy,
75-77 89

 childhood,
15 75 78-87 92 93

 adolescence,
78 81 88 90

 and even 

adulthood.
85 86

 Past studies providing evidence for these associations are summarized in 

table format in Appendix A. The possibility that a prenatal environment altered by GDM 

can cause permanent metabolic changes that promote development of obesity suggests 

the potential for implementation of childhood obesity prevention strategies during the 

perinatal period.  

The biological mechanisms underlying the association between prenatal exposure to 

GDM and child weight are difficult to elucidate for a number of reasons. Arguably the 

most important barrier to understanding how maternal IGT may influence child obesity is 

the difficulty in producing evidence that this association exists independent of important 

confounding factors such as maternal pre-pregnancy BMI and genetic predisposition. 

However, a few studies offer compelling evidence that this association does exist.  

Indeed, studies of siblings with discordant intrauterine exposure to maternal IGT,
79

 

studies examining maternal versus paternal IGT,
79

 and studies of prenatal exposure to 

maternal IGT that control for other important risk factors for child obesity such as 

maternal BMI
80

 support the notion that the association between maternal IGT and child 

weight is likely due to environmental rather than genetic factors.   

One study strongly supports the role of intrauterine exposure to maternal IGT rather than 

genetic predisposition in subsequent risk of overweight and diabetes in offspring.  This 

was a study done by Dabelea and colleagues
79

 that examined siblings of the same parents 

who were discordant for prenatal exposure to maternal IGT, with at least one sibling born 

before and at least one sibling born after maternal diabetes diagnosis. Among families in 

which none of the children had diabetes, it was found that siblings born after their mother 

was diagnosed with diabetes had significantly higher BMI than their siblings born prior 

to the diagnosis at a similar age.
79

 Analyses controlling for sibship revealed that although 

siblings who were exposed to maternal diabetes in utero initially had lower BMI at the 

ages of 6 to 9 years, after 9 years of age these siblings had BMI that was on average 2.6 

kg/m
2
 higher than their siblings who were not exposed to maternal diabetes prenatally at 

a similar age.
79

 Further supporting the importance of intrauterine exposure to diabetes 

over genetic predisposition, this study showed that among families in which at least one 
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sibling had diabetes, the risk of diabetes was almost 4 times greater for siblings born after 

maternal diagnosis of diabetes. Even more compelling was the finding that the timing of 

paternal diabetes diagnosis had no significant effect on either BMI or the risk of diabetes 

among siblings.
79

 Taken together, these findings support the notion that, independent of 

genetic factors, maternal IGT exerts an important effect on the prenatal environment that 

has a lasting impact on later offspring growth and metabolism.  

The environmental or epigenetic mode of impact of maternal hyperglycemia during 

pregnancy has also been demonstrated in animal studies done by Dörner, Plagemann, and 

colleagues.
11 152 153

 These studies demonstrated that artificially induced gestational 

diabetic rat mothers gave birth to offspring who exhibited overweight, overeating, IGT, 

and hyperinsulinemia. Not only did offspring acquire these abnormal metabolic patterns 

through artificially induced changes to the prenatal environment, these changes were 

passed on epigenetically to the next generation through the female offspring, despite 

mating with healthy males.
11

 Indeed, unlike their mothers, the first generation of female 

offspring exhibited spontaneous (i.e., not artificially induced) gestational diabetes during 

their pregnancies that resulted in the same abnormal metabolic patterns as the original 

offspring.
11

 These studies provide a strong case for the environmental or epigenetic 

action of maternal IGT during pregnancy.  

1.6.1 Proposed Biological Mechanisms 

This assertion that maternal IGT during pregnancy can result in changes to the prenatal 

environment that alter offspring growth and metabolism is supported by biological 

theories. One popular theory explains that changes in offspring growth in response to a 

hyperglycemic prenatal environment occur through over-nutrition, which results in fetal 

overgrowth, macrosomia at birth, and subsequent overweight and obesity.
15

 This theory 

further goes on to suggest that intrauterine exposure to maternal hyperglycemia results in 

permanent changes in offspring metabolic response that increase postnatal risk of 

overweight and obesity.
12 13

 Thus, according to this theory, not only does intrauterine 

exposure to maternal hyperglycemia during pregnancy result in fetal overgrowth and 

overweight in neonatal life, it results in changes that maintain overweight throughout life. 
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The causal mechanisms linking maternal hyperglycemia to both fetal overgrowth and 

permanent changes in offspring metabolic response occur through fetal hyperinsulinemia. 

Exposure to maternal hyperglycemia in utero results in a fetal regulatory response to 

increase insulin production, thereby creating a state of fetal hyperinsulinemia. Insulin in 

the prenatal environment is known to have growth-promoting properties, and in high 

concentrations can cause teratogenic effects that result in macrosomia or enlargement of 

internal organs.
11 14

 The association between fetal hyperinsulinemia and permanent 

changes in offspring metabolic response has been demonstrated by Plagemann and 

colleagues
13

 through an animal model. In their study, rat mothers were either artificially 

induced to have GDM or given a placebo treatment. Plagemann and colleagues found that 

offspring of GDM rat mothers exhibited hyperinsulinemia, which was associated with 

elevated levels of two neurotransmitters that stimulate food intake, neuropeptide Y and 

galanin.
13

 Since insulin is able to cross the blood-brain barrier and alter the activity of 

these neurotransmitters,
154 155

 it is theorized that hyperinsulinemia occurring at critical 

stages in fetal development may permanently alter this neural regulatory system.
11 13

 A 

permanently altered neural system that normally regulates appetite and food intake has 

obvious consequences for postnatal weight gain. Indeed, Plagemann and colleagues have 

shown that hyperphagia, or overeating, and overweight were consequences of this 

observed causal mechanism among rat offspring.
11

 

The most compelling finding from the studies done by Plagemann and colleagues
11

 was 

that permanent malprogramming of the neural regulatory system for food intake caused 

by fetal hyperinsulinemia was entirely preventable through adequate control of maternal 

hyperglycemia during pregnancy in rat mothers. Thus, there is biological evidence that 

maternal IGT during pregnancy exerts effects on offspring that are directly associated 

with later weight and weight gain.  Further, these findings indicate that the mechanisms 

by which maternal IGT affect offspring growth and metabolism indeed act through 

maternal blood glucose concentration. 

1.6.2 GDM and Birth Weight  

In Section 1.3.2 the association between high birth weight or macrosomia and subsequent 

overweight and obesity in childhood was discussed. As the theories of the biological 
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mechanisms linking maternal IGT to offspring growth and metabolism suggest, prenatal 

exposure to maternal hyperglycemia can result in fetal overgrowth and high birth weight. 

Indeed, a number of studies have shown that high birth weight for gestational age is 

associated with prenatal exposure to various forms of maternal IGT during pregnancy.
76 

77 82 85 89
 Although high birth weight has been linked to maternal overweight, several of 

these studies clearly support the independent relationship between intrauterine exposure 

to maternal hyperglycemia and subsequent high birth weight.  

Buzinaro and colleagues
76

 found that women diagnosed with GDM gave birth to infants 

with significantly higher birth weight than women without a GDM diagnosis who either 

exhibited some gestational hyperglycemia or normal glucose tolerance. Notably, women 

in their study with GDM had significantly higher fasting and daily blood glucose 

concentrations than women with some hyperglycemia or normal glucose tolerance 

despite that the three groups of women did not differ in age, pre-pregnancy BMI, or 

weight gain during pregnancy.
76

 Another study that examined the risk of macrosomia 

according to maternal plasma glucose concentration during the third trimester of 

pregnancy found a significant linear trend between increasing plasma glucose 

concentration and increasing frequency of macrosomia, even after exclusion of women 

who had relative body weight in excess of 119% to normal body weight.
89

 Among 

women with mild GDM in an Australian study done by Gillman and colleagues,
82

 

random assignment to an intervention that involved monitoring and management of blood 

glucose through dietary counselling and insulin therapy when needed was associated with 

a decrease in prevalence of macrosomia by almost 75% compared to a routine care 

group.
82

  

1.6.3 GDM and Childhood Weight 

The body of evidence for the association between maternal IGT during pregnancy and 

childhood weight is vast and continues to grow as the current obesity epidemic generates 

more interest in the prenatal origins of childhood overweight and obesity.
15 75 76 78-88 90 92 93

 

Studies examining the impact of intrauterine exposure to maternal IGT on childhood 

adiposity between the ages of 1 and 3 years have shown evidence of increased adiposity 

associated with maternal IGT during pregnancy.
75 80 91 92

 However, some studies 
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examining very young children only found significant differences between those who 

were exposed to maternal IGT in utero and those who were unexposed when adiposity 

was measured by direct measures of body fat (i.e., skinfold thickness) rather than indirect 

measures (i.e., BMI),
92

 while others were able to show differences using both types of 

measures.
91

  

Evidence for the association between maternal IGT during pregnancy and childhood 

adiposity appears to become more complicated when studies examine weight outcomes in 

later childhood. In the previously mentioned Australian study done by Gillman and 

colleagues,
82

 in which mothers with mild GDM were randomly assigned to routine care 

or an intervention to manage blood glucose during pregnancy, recorded data on 

children’s height and weight at ages 4 to 5 years were also analysed. Although children 

born to mothers who were given routine care had higher incidence of macrosomia, by the 

ages of 4 to 5 years this study found no significant differences in BMI between the 

groups.
82

 A different study done by Lee and colleagues
84

 examined two groups of women 

with different levels of hyperglycemia during pregnancy, one group with diagnosed 

GDM and one group defined as having a milder form of IGT during pregnancy. Women 

in the study with diagnosed GDM exhibited higher blood glucose levels than women with 

IGT. Interestingly, the study found no significant differences in child BMI measured at 

the ages of 3 to 4 years. However after the age of 5 years, children of mothers with GDM 

had significantly higher BMI than children of mothers with mild IGT.
84

 These findings 

seem to suggest that the two studies were capturing different stages of the same 

phenomenon and that the impact of intrauterine exposure to maternal hyperglycemia may 

continue to have important effects on adiposity throughout childhood. 

Despite this large body of evidence, interpreting the literature as a whole is complicated 

as offspring weight outcomes are evaluated at many different stages in childhood, 

adolescence, and adulthood depending on the availability of data in any given study. As a 

result, different studies have reported associations between maternal IGT during 

pregnancy and offspring adiposity at 1 year of age
91

 up to 19 years of age
85

 as well as 

many increments in between. One can speculate about the phenomenon linking maternal 

IGT during pregnancy to adiposity throughout childhood by considering studies that 
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examine adiposity at adjacent time points in childhood together such as the Gillman et 

al.
82

 and Lee et al.
84

 studies. However differences in study design would inevitably result 

in erroneous conclusions. Further complicating the matter of summarizing the overall 

evidence for the association between maternal IGT during pregnancy and adiposity 

throughout childhood, different studies measure adiposity in various ways. These include 

different measures, such as direct and indirect measurements, as well as different cut 

points for defining overweight and obesity.  

1.7 Summary 

Determining the prenatal origins of childhood overweight and obesity is becoming ever 

more important in light of the increasing prevalence of childhood obesity in Canada and 

around the world. Although a number of studies have suggested that prenatal exposure to 

GDM is a predictor of obesity status in childhood, there is a lack of research dedicated to 

how GDM exposure may be impacting childhood growth trajectories. 
76 83 121

  

Furthermore, the few studies that have considered the impact of GDM exposure on BMI 

at different time points throughout childhood do not model growth data continuously 

from infancy throughout childhood.
75 156

 Later morbidity associated with overweight and 

obesity is not necessarily predicted by weight status at a single point in time,
39

 but rather 

by patterns of growth.  Thus when establishing whether risk factors such as GDM are 

causally related to overweight and obesity in childhood, it is important to examine the 

effects of these factors on trajectories of growth. 

This thesis takes the important next step for the research on the prenatal origins of 

childhood obesity by examining the effect of an important risk factor for childhood 

overweight and obesity on childhood BMI trajectories. The role of intrauterine exposure 

to GDM in shaping early childhood BMI trajectories may reveal the mechanisms by 

which this risk factor can lead to later childhood overweight and obesity and also guide 

early obesity prevention strategies.  
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Chapter 2  

2 Objectives and Hypothesis 

2.1 Objectives 

The main purpose of this thesis is to examine the association between prenatal exposure 

to GDM and early childhood BMI trajectories modelled continuously from infancy 

through early childhood. The study population was derived from the National 

Longitudinal Survey of Children and Youth (NLSCY), described in the next chapter. The 

three specific objectives are summarized below. The sub-sections that follow provide 

detailed rationale for each objective. 

Objective 1 

Examine the direct effect and indirect effect (through birth weight for gestational age) of 

prenatal exposure to GDM on BMI trajectories of Canadian children aged 2 to 10 years 

who participated in the NLSCY. 

Objective 2 

Assess whether the direct effect and indirect effect (through birth weight for gestational 

age) of prenatal exposure to GDM are partially explained by maternal demographic, 

lifestyle, and socioeconomic characteristics including age, parity, highest level of 

education achieved, smoking during pregnancy, and income adequacy for the household.  

Objective 3 

Assess whether the direct effect and part of the indirect effect (i.e., the pathway leading 

from birth weight for gestational age to childhood BMI trajectories) of prenatal exposure 

to GDM on childhood BMI trajectories differ between children who were not breast fed 

and children who were breast fed.  

2.1.1 Objective 1 

Based on the proposed theories of the biological mechanisms linking prenatal exposure to 

GDM with overweight and obesity in childhood,
12 13 15

 the first objective was to assess 
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both direct effects of GDM on early childhood BMI trajectories as well as the indirect 

effect through birth weight for gestational age. The indirect effect reflects the fetal over-

nutrition theory that maternal hyperglycemia during pregnancy, and subsequent fetal 

hyperinsulinemia, causes fetal overgrowth that leads to high birth weight and overweight 

and obesity in childhood.
15

 The direct effect reflects all other potential causal 

mechanisms linking prenatal exposure to GDM with childhood BMI trajectories. One 

theory that can account for this effect posits that exposure to maternal hyperglycemia in 

utero results in permanently reduced sensitivity to hormones that regulate appetite and fat 

cell growth, which increases the risk of later development of obesity.
12 13

 These 

hypothesized causal mechanisms are summarized in Figure 2.1.  
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Figure 2.1. Causal model for Objective 1. Hypothesized association between prenatal 

exposure to GDM and childhood BMI trajectories 

2.1.2 Objective 2 

A number of factors that are associated with GDM diagnosis are also causally related to 

birth weight for gestational age as well as childhood BMI trajectories. Thus, confounding 

by these other factors needs to be addressed. The most notable confounder for the 

association between prenatal exposure to GDM and childhood BMI trajectories is 

maternal pre-pregnancy BMI. However, questions regarding maternal weight prior to and 

during pregnancy were not asked in the NLSCY and thus the current study was unable to 

control for this important confounder. To approximate the conditions in which maternal 
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and childhood overweight and obesity may arise and to account for other factors 

associated with GDM risk, various lifestyle, demographic, and socioeconomic factors 

that were available in the NLSCY were included in this analysis. Thus the second 

objective was to assess whether maternal and lifestyle characteristics such as age, parity, 

highest level of education achieved, smoking during pregnancy, and household income 

adequacy partially explain the observed association between prenatal exposure to GDM 

and childhood BMI trajectories. The adjusted causal model for Objective 2 is shown in 

Figure 2.2 below. 
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Figure 2.2. Causal model for Objective 2. The direct and indirect effects of prenatal 

exposure to GDM on childhood BMI trajectories adjusted for maternal demographic (age, 

parity), lifestyle (smoking), and socioeconomic characteristics (highest level of education 

achieved, income adequacy for the household). 

 

2.1.3 Objective 3 

The final objective is to assess whether the nature of the direct effect and indirect effect 

(through birth weight for gestational age) of prenatal exposure to GDM on childhood 

BMI trajectories differ by breastfeeding initiation/non-initiation (Figure 2.3). 

Modification of the association between prenatal exposure to GDM and early childhood 

BMI trajectories by breastfeeding initiation/non-initation is of particular interest since 

studies have suggested that breastfeeding may be a protective factor against development 

of childhood obesity. Specifically, breastfeeding has been shown to reduce the risk of 

childhood obesity despite the presence of early life risk factors, for example macrosomia 
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at birth. Examining whether the effects of prenatal exposure to GDM on childhood BMI 

trajectories differ according to breastfeeding initiation/non-initiation is further justified as 

breastfeeding may be a potential avenue for the prevention of child overweight associated 

with prenatal exposure to GDM.  
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Figure 2.3. Causal model for Objective 3. The adjusted direct and indirect effects of 

prenatal exposure to GDM on childhood BMI trajectories are modified by breastfeeding.  

 

2.1.4 Stratifying Analyses by Sex 

Due to the a priori expectation that female and male children are essentially two distinct 

populations that have different patterns of growth throughout childhood, all analyses are 

stratified by sex. Since the indirect effect of prenatal exposure to GDM is mediated by 

birth weight, and on average males have higher birth weight than females,
157

 it is 

necessary to separate analyses by sex. The results of stratified analyses may reveal effect 

modification by sex of the direct effect and/or indirect effect of prenatal exposure to 

GDM on childhood BMI trajectories. However, there are no explicit hypotheses about the 

differences between females and males in terms of either the direct effect or indirect 

effect through birth weight for gestational age of prenatal exposure to GDM on childhood 

BMI trajectories.  
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2.2 Hypotheses 

Objective 1 

It is hypothesized that children who were exposed to GDM prenatally will have higher 

BMI at 2 years of age compared to their unexposed peers. It is also hypothesized that the 

rate of increase in BMI between the ages of 2 and 10 years will also be higher among 

children who were exposed to GDM prenatally than their unexposed peers. These two 

explicit hypotheses about the effects of prenatal exposure to GDM on initial BMI (at age 

2 years) and the rate of increase in BMI throughout childhood are contingent on the 

hypothesis that prenatal exposure to GDM acts through the direct and/or indirect 

pathways. Therefore, it is also expected that the results for either the direct pathway 

between prenatal exposure to GDM and childhood BMI trajectories or the indirect 

pathway through birth weight for gestational age, or both, will be significant.    

Objective 2 

Statistical control for maternal demographic, lifestyle, and socioeconomic factors is 

expected to attenuate the associations between prenatal exposure to GDM and childhood 

BMI trajectories. Taken together, maternal age, parity, highest level of education 

achieved, smoking during pregnancy, and household income adequacy are hypothesized 

to act in the mediated causal pathway by predicting GDM diagnosis and thus prenatal 

exposure to GDM, as well as birth weight for gestational age and childhood BMI 

trajectories. As previously discussed, maternal age and parity are associated with both the 

risk of GDM as well as child weight outcomes. Smoking is also correlated with GDM
148

 

and is a predictor of childhood overweight and obesity.
71 72

 Maternal education and 

household income adequacy are socioeconomic factors that are also associated with both 

risk of GDM and childhood weight status. Socioeconomic status is also a well established 

predictor of adult obesity, and thus maternal education and household income adequacy 

also act as proxy variables for maternal obesity.  
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Objective 3 

Breastfeeding is expected to modify the association between prenatal exposure to GDM 

and early childhood BMI trajectories. Specifically, it is hypothesized that the magnitude 

of the direct effect and the partial indirect effect (i.e., the pathway from birth weight for 

gestational age to childhood BMI trajectories) of prenatal exposure to GDM on childhood 

BMI trajectories from Objective 2 will be reduced for children who were breastfed 

compared to children who were never breastfed. Thus, it is expected that breastfeeding 

will attenuate the association between prenatal exposure to GDM and childhood BMI 

trajectories. 
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Chapter 3  

3 Methods 

This chapter outlines the secondary data analysis that was conducted in the current study, 

beginning with a description of the data source (Section 3.1) followed by a description 

and discussion of the treatment of measurement instruments used in analyses (Section 

3.2).  The next section gives an overview of the analytic technique used in the current 

study, latent growth curve modelling (Section 3.3). Section 3.4 discusses some model 

considerations, covering the issues of time scores (Section 3.4.1), model fit (Section 

3.4.2), and missing data (Section 3.4.3). The final section details the analyses that were 

done to address each of the research objectives (Section 3.5). 

3.1 Data Source 

This study analysed the longitudinal component of the National Longitudinal Survey of 

Children and Youth (NLSCY).  This dataset was accessed through the Statistics Canada 

Research Data Centre at Western University following approval of a peer-reviewed 

application for data access. The survey was designed by Human Resources Development 

Canada and conducted by Statistics Canada to measure child development and well-being 

with the intention of creating a national database of characteristics and experiences of 

Canadian children and youth from infancy to adulthood. The NLSCY sampling design 

involved both cross-sectional and longitudinal components. Beginning in 1994, data from 

a nationally representative longitudinal cohort of children, initially aged 0 to 11 years, 

were collected biennially. In addition to the longitudinal sample, cohorts of children aged 

0 to 1 year were added at each cycle.  Data were collected biennially from these children 

until the age of 5 years for the purpose of monitoring development in early childhood. 

This study used data exclusively from the longitudinal cohort, specifically from cycles 2 

through 6 for children who were 2 to 3 years of age in cycle 2. The description of the 

study population is elaborated in Section 3.1.3.  Cycle-specific data files were linked 

using unique child identification numbers and combined to form a single longitudinal 

dataset for analyses.  
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3.1.1 Content of the NLSCY 

The main objectives of the NLSCY were to collect data on the prevalence of biological, 

social, economic, and environmental factors that are predictive of child health outcomes 

and how these factors are involved in child development.  To obtain information 

pertaining to all of these objectives, data collection was administered in households and 

in schools. The household component of data collection consisted of survey instruments 

completed by the person most knowledgeable (PMK) about the child (usually the child’s 

biological mother) and when applicable, questionnaires completed by the child. 

Instruments completed by the PMK included the following: (1) a questionnaire on 

household contact information and demographic data, (2) the Parent Questionnaire, (3) 

the Child Questionnaire, and (4) the Informed Consent Questionnaire.  

The Parent Questionnaire collected information about the parent and spouse (if 

applicable) on health, maternal history, education, income, neighbourhood safety, family 

functioning, labour force, social support, and socio-demographic characteristics. The 

Child Questionnaire collected information about the child on a wide variety of subjects, 

notably health, medical and biological information, child development, temperament, 

activities, relationships, and behaviour.  The household component of data collection also 

included vocabulary tests for children who were 4 to 6 years old, reading and 

mathematical aptitude tests for children in grade 2 or higher, and self-completed 

questionnaires for children aged 10 to 13 years. The school component of the NLSCY 

included self-completed questionnaires for teachers and principals for children aged 4 to 

13 years and reading comprehension and mathematical skills tests for children in grade 2 

or higher. The current study used data collected through the Parent and Child 

Questionnaires, focusing specifically on survey questions related to maternal history, 

pregnancy characteristics, maternal health during pregnancy, and reported child weight 

and height at birth and throughout childhood.  

3.1.2 NLSCY Sampling Design 

The sampling frame for the NLSCY was the sample collected for the Labour Force 

Survey (LFS), and thus the sampling design was the stratified, multi-stage design used by 
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the LFS. The LFS aimed to collect information on a nationally representative target 

population of civilian, non-institutionalized Canadians aged 15 years or older living in 

the ten provinces. The NLSCY sample was subject to the exclusions of the LFS sampling 

design, which excluded populations living in the Yukon, Nunavut, or Northwest 

Territories as well as individuals living on First Nation reserves, full-time members of the 

Canadian Armed Forces, and inmates in institutions.   In total, individuals outside the 

LFS survey coverage represent 2% of the Canadian population aged 15 years or older. 

Furthermore, unrepresented individuals from institutions or First Nation reserves 

represent only 0.5% of children living in provinces aged 0 to 11 years. Thus the 

exclusions in the NLSCY sampling design are not a major limitation and the study results 

maintain generalizability to the Canadian population.  

The stratification design was the same for each province. The first stage of stratification 

was done by dividing each province by economic regions (ER) and employment 

insurance economic regions (EIER). The primary strata in the LFS were defined by the 

ER/EIER intersections. Within the primary strata, three types of areas were defined as 

urban, rural, and remote. Urban areas, which have the highest population densities and 

the largest census metropolitan areas were further stratified. This secondary stratification 

was done by dividing urban areas into apartment frames and area frames to account for 

representation of apartment dwellers and to minimize the impact of clusters. Urban areas 

were further divided into regular, high-income, and low density population strata and 

rural areas were stratified by population density. These formed the final strata, which 

were divided into clusters that were sampled within each stratum. Households or 

dwellings were then selected from the sampled clusters. Probability sampling was used at 

each stage of the study design. Depending on the size and type of stratum, different 

numbers of dwellings were selected. 

3.1.3 Study Population 

To model childhood BMI trajectories from age 2 to age 10 years, children included in the 

study population were required to have contributed longitudinal data and be 

approximately 2 years of age in the first cycle of data used. Longitudinal children were 

selected using assigned longitudinal flags used in the NLSCY. The study population also 
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had to consist of individuals who were asked questions about maternal health and 

pregnancy characteristics, as these questions were not mandatory for all respondents. 

Indeed, only PMK’s who were the biological mothers of children under the age of 2 years 

at the time of the interview were asked questions about the pregnancy with the child 

included in the survey. Thus the cohort of interest consisted of children who were 0 to 1 

year of age in cycle 1 (1994-1995) who entered the current study at cycle 2 (1996-1997) 

when they reached 2 to 3 years of age. Five cycles of data were used for individuals aged 

2 to 3 in 1996: cycle 2 (collected between 1996 and 1997), cycle 3 (collected between 

1998 and 1999), cycle 4 (collected between 2000 and 2001), cycle 5 (collected between 

2002 and 2003), and cycle 6 (collected between 2004 and 2005).  By cycle 6 in 2004, 

most of the children in the study population had reached 10 to 11 years of age.   

The vast majority (91.6%) of PMK’s for the study population were the biological mothers 

of the children included in the survey. The Child Questionnaire component of the 

NLSCY, from which data for the current analyses were derived, was completed by the 

PMK for the child included in the survey until children reached the age of 12 years.  

Thus, data on individuals 12 years and above were not included to ensure height and 

weight data were provided by the same respondent throughout cycles. Overall response 

rates for the NLSCY declined substantially from 1994 to 2004.  The response rates for 

children in the longitudinal cohort were 86.5% in cycle 1 in 1994 and only 57.6% by 

cycle 6 in 2004.   

3.2 Measurement Instruments 

The aim of the this study was to estimate the direct effect of prenatal exposure to GDM 

on early childhood BMI trajectories as well as the indirect effect through birth weight for 

gestational age.  A secondary focus was to determine the role of maternal age, parity, 

smoking during pregnancy, maternal education, household income adequacy, and 

breastfeeding initiation in attenuating or modifying the effects of prenatal exposure to 

GDM on childhood BMI trajectories. The following section outlines how these constructs 

were measured in the NLSCY or derived using existing variables in the NLSCY (if 

applicable) as well as how variables were used in the statistical analyses. 
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3.2.1 Prenatal Exposure to GDM 

The NLSCY captured prenatal exposure to GDM through the following question in the 

Child Component of the survey answered by the biological mother of the child included 

in the survey: “During the pregnancy with [this child] did you suffer from any of the 

following: ...Pregnancy diabetes?”  If the respondent answered “yes” to this question, the 

index child was considered to have been “exposed to GDM in utero”.  Similarly, if the 

respondent answered “no” to the above question, the index child was considered to have 

been “not exposed to GDM in utero”.  The variable for prenatal exposure to GDM was 

thus treated as a binary categorical variable in analyses.   

3.2.2 Body Mass Index 

Body mass index (BMI) at each cycle of follow-up was used to model BMI trajectories 

for children aged 2 to 10 years.  The NLSCY collected information on height and weight 

for children up to the age of 10 years at each cycle through maternal report. These 

measures were used to compute BMI scores by dividing weight in kilograms by height in 

metres squared. Prior to computing BMI, child height data were scanned for implausible 

changes in height (e.g. negative changes) and erroneous height values were corrected by 

imputing a complex average height value using surrounding data points and taking time 

of data collection into account. The imputed values were calculated as follows: 

                  
         
         

   

where hb was the height value to be corrected, ha and hc were the surrounding height 

values from which the imputed value was to be derived, ageb was the age in months at the 

time of the interview in which the erroneous height value (hb) was recorded, and agea and 

agec were the ages in months at the interviews in which the two surrounding correct 

height values (ha and hc) were recorded.  

Following computation of BMI using corrected child height data, BMI data were scanned 

for biologically implausible BMI-for-age-and-sex values using the Centers for Disease 

Control and Prevention (CDC) guidelines based on the 2000 CDC growth charts.
158
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Biologically implausible values for BMI were treated as missing values in analyses. 

3.2.3 Birth Weight for Gestational Age Z-Score 

A continuous variable for birth weight for gestational age z-score was derived using 

questions in the NLSCY about child birth weight and gestational age. PMK’s for the 

children included in the survey were asked to state the child’s birth weight in kilograms 

and grams and gestational age in days. Birth weight in kilograms and grams was 

converted to birth weight in grams. Gestational age in days was converted to gestational 

age in weeks. The z-scores were then calculated based on guidelines for birth weight for 

gestational age established by Kramer and colleagues.
159

 Briefly, Kramer et al. 
159

 used 

population-based Canadian data to derive means and standard deviations for birth weight 

in grams at each week of gestational age from 22 to 43 weeks for females and males, 

separately. These reference means and standard deviations were then used to calculate z-

scores for birth weight for gestational age through the following equation: 

   
                                       

                  
 

The z-scores were calculated for each child using the reference mean and standard 

deviation for birth weight associated with their gestational age in weeks.
159

 The birth 

weight for gestational age z-score was treated as a continuous variable in statistical 

analyses.  

3.2.4 Maternal Age 

A variable for maternal age at time of delivery was derived using questions asked in the 

NLSCY about the age of the biological mother at the time of interview as well as the 

child’s age at the time of interview.  Child’s age in years at the time of the interview was 

subtracted from the age of the biological mother in years at the time of interview to 

obtain maternal age at delivery. Maternal age was treated as a continuous variable in all 

statistical analyses.  

3.2.5 Parity 

The NLSCY includes the following question to determine parity: “How many babies 
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have you had?” Since there were no specific hypotheses regarding the number of past 

pregnancies, parity was dichotomized as primiparous (one past pregnancy) and 

multiparous (more than one past pregnancy).  Thus parity was treated as a binary variable 

in all statistical analyses.  

3.2.6 Maternal Education 

The NLSCY allocated a section in the Parent Questionnaire to collect information on 

education for the PMK.  As mentioned previously, the vast majority (91.6%) of PMK’s 

were the biological mothers of the children included in the survey. A variable for the 

highest level of education obtained by the PMK was derived in the NLSCY from the 

following questions: “Excluding kindergarten, how many years of elementary and high 

school [have you] successfully completed,” “[Have you] graduated from high school,” 

“[Have you] ever attended any other kind of school such as university, community 

college, business school, trade or vocational school, CEGEP or other post-secondary 

institution,” and “What is the highest level of education that [you have] attained?”  

The derived “recoded highest level of education obtained” variable contained information 

about years and type of schooling as well as obtained diplomas, certifications, and 

degrees.  This variable had 11 categories that were ranked in the following order:  

1. Elementary school (8 years of schooling or less) 

2. Some secondary school (9 years of schooling or more with no secondary school 

graduation) 

3. Secondary school graduation 

4. Other beyond high school 

5. Some trade school etc. 

6. Some community college etc. 

7. Some university 

8. Diploma/certificate trade school etc. 

9. Diploma/certificate community college etc. 

10. Bachelor degree (includes LLB) 

11. Masters, degree in medicine, doctorate 
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Since the categories were ranked in order of schooling level, this variable is considered to 

be ordinal. However, as the most important information for the purposes of the current 

study was contained in the ranking number, this variable was treated as a continuous 

variable in statistical analyses. 

3.2.7 Smoking During Pregnancy 

In the NLSCY smoking during pregnancy is captured in the following question: “Did you 

smoke during your pregnancy with…?” The response was binary and thus smoking 

during pregnancy was treated as a binary variable in analyses. 

3.2.8 Income Adequacy for the Household 

The variable for household income adequacy in the NLSCY was derived using 

information about total household income and number of individuals in the household. 

Level of household income adequacy was defined using five categories: lowest, lower 

middle, middle, upper middle, and highest. The lowest income adequacy category was for 

households of 1 to 4 individuals with a total income of less than $10,000 or households of 

5 or more individuals with a total income of less than $15,000. Lower middle income 

adequacy was defined as households of 1 to 2 individuals with a total income of $10,000 

to $14,999, households of 3 to 4 individuals with a total income of $10,000 to $19,999, or 

households of 5 or more individuals with a total income of $15,000 to $29,999. Middle 

income adequacy was defined as households of 1 to 2 individuals with a total income of 

$15,000 to $29,999, households of 3 to 4 individuals with a total income of $20,000 to 

$39,999, or households of 5 or more individuals with a total income of $30,000 to 

$59,999. Upper middle income adequacy was defined as households of 1 to 2 individuals 

with a total income of $30,000 to $59,999, households of 3 to 4 individuals with a total 

income of $40,000 to $79,999, or households of 5 or more individuals with a total income 

of $60,000 to $79,999. The highest income adequacy category was for households of 1 to 

2 individuals with a total income greater than or equal to $60,000 or households of 3 or 

more individuals with a total income greater than or equal to $80,000. These categories 

were used by both the General Social Survey and the National Population Health Survey. 

Since these categories were ranked in order of level of income adequacy, this variable is 
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considered to be ordinal. However, as the most important information for the purposes of 

the current study was contained in the ranking number, this variable was treated as a 

continuous variable in statistical analyses. 

3.2.9 Breastfeeding 

The NLSCY includes the following survey question for determining whether children 

were breastfed: “Did this child's mother ever breast-feed this child, even if only for a 

short time?” This question had a dichotomous response and thus breastfeeding was 

treated as a binary categorical variable in all analyses.  

3.3 Overview of Latent Growth Curve Modelling 

Latent growth curve modelling (LGCM) is an analytic technique for longitudinal data 

that allows the assessment of trajectories of change, growth, or development of a 

particular outcome over time.
160

 This type of analysis is particularly well suited for panel 

data, where repeated observations are collected at approximately the same intervals.
160

 

Specifically, LGCM is able to accomplish three tasks important for the analysis of 

longitudinal data.  First, it can be used to model and describe change or development of a 

particular outcome at the group level by producing estimated means of parameters of an 

overall trajectory. In the case of a linear trajectory involving three or more observations, 

LGCM can produce model-estimated means of the intercept and slope of the overall 

trajectory. Second, LGCM can describe differences between individuals by producing 

estimates of the variance of intercept and slope parameters. Thus, a single analysis using 

LGCM can describe change or development of a particular outcome at the group level as 

well as the level of individual variance in developmental trajectories. Finally, LGCM can 

be used to assess the effects of predictors on the variance in trajectories in order to 

determine their impact on initial levels and rates of change of an outcome.  

The main purpose of the current study was to assess whether prenatal exposure to GDM 

can explain individual differences in early childhood BMI trajectories in order to 

ascertain the impact of prenatal exposure to GDM on the starting point and rate of 

increase in BMI throughout early childhood. Achieving this aim first required estimation 

of the means of BMI trajectory parameters for all children. The next step required 
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variances in BMI trajectory parameters to be estimated in order to determine whether 

significant differences exist between individual BMI trajectories. The final step was to 

assess whether prenatal exposure to GDM could partially explain the existing differences 

between individual trajectories in order to ascertain its potential role as a risk factor for 

high childhood BMI. The main characteristics of LGCM, as previously described, 

dovetail the aims of the current study, and thus it was the most appropriate analytic 

technique. For a detailed explanation of latent growth curve modelling please see 

Appendix B. All preliminary analyses were completed using IBM SPSS Statistics 

Software Version 21.
161

 Latent growth curve analyses were conducted using MPlus 

Version 7 Software.
162

  

3.4 Model Considerations 

3.4.1 Time Scores 

Although the NLSCY cycles occurred at two-year intervals, in reality, data were 

collected over a span of two years for each cycle. This raised the issue of unequal 

intervals at the individual level, thus intervals needed to be adjusted for time of data 

collection. In Mplus, this is done using time scores, which account for individually 

varying times of observation in panel data by using variables containing information 

about individual times of observation to model trajectories over time. The use of time 

scores in the current study ensures that estimates for the parameters of individual BMI 

trajectories are based on data that reflect the correct timing of change in BMI rather than 

assuming changes in BMI consistently occurred over two years between data collection 

points.  

3.4.2 Model Fit 

Establishing model fit, that is, assessing how well a given model reflects the data is an 

important preliminary step in latent growth curve analyses. Several goodness of fit 

indices are available in Mplus
162

 that take into account differences between observed and 

implied variance-covariance matrices as well as degrees of freedom and model 

complexity to produce a measure of model fit.
160

 Some of these indices include the chi-

square test statistic, the comparative fit index (CFI), the Tucker-Lewis index (TLI), and 
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the root mean square error of approximation (RMSEA).
160

 These model fit indices 

produce absolute measures of goodness of fit, for example, the closer the RMSEA value 

is to zero the better the model fit.
160

  Other model fit indices produce values that must be 

compared between models to assess improvements in model fit, such as the Bayesian 

information criterion (BIC), Akaike’s information criterion (AIC), and the 

loglikelihood.
160

   

In the current study, the chi-square test statistic and other chi-square related model fit 

statistics (CFI, TLI, RMSEA) were unavailable due to the use of time scores. This is 

because the use of time scores requires LGCMs to be modelled with random slopes, 

which results in insufficient statistics (means, variances, and covariances) for model 

estimation using these model fit assessment tools. Model fit was therefore assessed using 

BIC value comparisons and loglikelihood differences for all LGCMs. Model suggestions 

produced by program outputs were only taken into consideration if they were 

theoretically sound and reduced BIC values by a large degree.  

3.4.3 Missing Data 

In Mplus, the issue of missing data is addressed in different ways depending on the type 

of data that are missing.
162

 First, Mplus does not allow missing data for any exogenous 

variables, that is, for variables that are not predicted by other variables in the model and 

are thus considered external to the model.
162

  Cases that have missing values for any 

exogenous variables are automatically excluded from all analyses.
162

 This is because 

models are conditional on the exogenous variables and cannot be estimated overall if 

there are any missing values in these predictor variables.
162

 In the current study missing 

data of this nature are a concern as there are a number of predictor variables included in 

analyses, which could result in many excluded cases due to missing values in any of the 

predictors. Since Mplus allows for missing data in endogenous variables,
162

 that is, 

variables that are predicted by others in the model, this problem is attenuated by 

specifying causal relationships between predictors and thus converting exogenous 

predictors into endogenous predictors. A description and justification of the added causal 

relationships between predictors is provided in Section 3.5.3 below in the description of 

analyses for Objective 2.  
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In the current study, missing data on child BMI was inevitable due to attrition throughout 

cycles of the NLSCY. Missing data of this nature are considered to be “missing at 

random” (MAR) since the reason for missingness is not related to the missing values 

themselves.
163 164

 In this case, missing data on child BMI are likely not explained by 

specific BMI values. Instead, probabilities of missingness in the MAR scenario may be a 

product of other observed variables included in the models,
163 164

 for example household 

income, maternal education, or other predictor variables included in analyses. However, 

this type of missingness is considered “ignorable” and does not require further 

consideration or adjustment.
163 164

 In Mplus, full-information maximum likelihood 

(FIML) is used to adjust for MAR data.
162

 FIML does not impute missing values, rather it 

calculates the maximized likelihood of MAR data given a set of observed values in order 

to produce parameter estimates.
165

 For cases with incomplete data, FIML uses all data 

available for each case to produce casewise likelihood functions that are summed across 

the study sample and maximized.
165

  

3.4.4 Power and Precision 

The use of Monte Carlo simulations has been recommended for calculating power and 

minimal sample size for growth analyses and analyses using structural equation 

modelling (SEM).
166

  However, this technique requires specification of a conceptual 

model with population values for all parameters using “best estimates” from previous 

studies.
166

 This is not feasible for the current study since no previous studies have used a 

structural equation-based model for the effect of GDM exposure on childhood growth 

trajectories.  Thus, the current study followed general sample size guidelines suggested in 

the literature for sufficient statistical power to conduct SEM-based analyses such as 

LGCM.
166

 
167

 These guidelines suggest a minimum of 200 subjects per group,
168

 
167

 

which in the case of the current study would suggest a minimum of 200 females and 200 

males for analyses. Indeed, Hoyle
167

 suggests that a sample of 300 subjects used for SEM 

analyses typically results in stable model estimates. 
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3.5 Statistical Analyses 

3.5.1 Preliminary Analyses 

Preliminary analyses were done to determine the characteristics of the study population. 

For the main outcome of interest, BMI, means and standard deviations of BMI scores at 

each time point were calculated.  Descriptive statistics for all other key variables in the 

analyses were also produced. For the categorical variables, parity, smoking during 

pregnancy, highest level of maternal education, income adequacy, prenatal exposure to 

GDM, and breastfeeding, frequencies and percentages were calculated. For the 

continuous variables, maternal age, and birth weight for gestational age z-score, means 

and standard deviations were calculated. All descriptive statistics were produced 

separately by child gender and weighted using cross-sectional weights from the first cycle 

of data collection to reflect initial sampling design.  

The following is the trajectory equation that summarizes all latent growth curve analyses. 

                 
                     (1) 

where BMIit represents the BMI score for the ith individual at time t; λt is a constant fixed 

to the values 0, 1, 2, 3, and 4 for the linear component of the slope of the trajectory; and 

λt
2
 are simply these values squared for the quadratic component of slope. The symbol ϵit 

indicates the random error for each individual observed measure (i) at each time point (t).  

After establishing model fit, the first step was to ensure that variances in overall BMI 

trajectories were statistically significant to justify subsequent conditional analyses with 

explanatory variables. This was done using the unconditional LGCM.  This model 

included specified latent variables for the intercept, the linear component of slope, and 

the quadratic component of slope as well as the observed variables for BMI at ages 2, 4, 

6, 8, and 10 years (Figure 3.1).  The unconditional latent growth curve analyses were 

done separately for females and males. 

To account for differences in child age at the first cycle used in the study, a new age 

correction variable was calculated by centring age in years at Cycle 2 on 2, since this was 

the expected age of children at this initial cycle. The intercept, the linear component of 
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slope, and the quadratic component of slope were then regressed on this age correction 

variable. This was done in all subsequent latent growth curve analyses. For simplicity, the 

age correction variable will not be shown in regression equations for the intercept or the 

linear and quadratic components of slope in the sections that follow.  
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Figure 3.1. Unconditional latent growth curve model for preliminary analyses, showing 

each of the fixed factor loadings for intercept and linear and quadratic slope for the 

theorized quadratic model. 

3.5.2 Analyses for Objective 1 

The first objective was to assess the direct effect and indirect effect, through birth weight 

for gestational age, of prenatal exposure to GDM on childhood BMI trajectories from 2 to 

10 years of age. This was done by converting the unconditional LGCM to a conditional 

LGCM by adding the variables for prenatal exposure to GDM and birth weight for 

gestational age to the model (Figure 3.2). The conditional LGCM in Figure 3.2 is 

summarized by the regression equations 1.1 – 1.4 below. The direct effect of prenatal 

exposure to GDM was modelled by regressing the intercept, the linear component of 
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slope, and the quadratic component of slope on the variable for prenatal exposure to 

GDM (     
 . The indirect effect was modelled first by regressing the variable for birth 

weight for gestational age (     
) on the variable for prenatal exposure to GDM (1.4) and 

subsequently regressing the intercept, the linear component of slope, and the quadratic 

component of slope on the variable for birth weight for gestational age (1.1-1.3). The 

conditional latent growth curve analyses for Objective 1 were done separately for females 

and males. 

Latent trajectory parameters

BMI at age 

2 years
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4 years

BMI at age 

6 years

BMI at age 

8 years

BMI at age 

10 years

Intercept
Slope 

(Linear)

Slope 

(Quadr.)

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

Birth weight for 

gestational age

PRENATAL 

EXPOSURE 

TO GDM

Centred age 

at first cycle

 

Figure 3.2. Conditional latent growth curve model for Objective 1. Direct and indirect 

effects of prenatal exposure to GDM on BMI trajectories. Note: Covariances are not 

shown. Latent variables are grouped in the diagram for simplicity.  

Intercept equation: 

          
     

    
     

            (1.1) 

Slope equation (linear component): 

        
     

     
     

     
           (1.2) 
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Slope equation (quadratic component): 

        
     

     
     

     
              (1.3) 

*Birth weight for gestational age equation: 

     
              

             (1.4) 

The use of time scores, explained in Section 3.4.1, to model BMI trajectories did not 

permit Mplus software to test indirect effects using the MODEL INDIRECT command. 

Therefore, the indirect effect of prenatal exposure to GDM on BMI trajectories through 

birth weight for gestational age was calculated manually using the Sobel test for indirect 

effects.
169-171

 Figure 3.3 is presented to conceptualize the Sobel test, in which the model 

with the mediator to be tested is pictured. The letters a and b represent the estimates of 

each pathway of the indirect effect, while the letter c represents the estimate of the 

pathway for the direct effect (Figure 3.3). The calculation of the test statistic for the Sobel 

test of indirect effects is presented in the equation below: 

             
      

             (2) 

where the denominator is the pooled standard error, in which   
  is the variance of the 

estimate b and   
  is the variance of the estimate a. This test statistic was calculated 

separately for each trajectory parameter to test the indirect effect on BMI trajectories. 
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Figure 3.3. Parameters of the Sobel test for indirect effects.  
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3.5.3 Analyses for Objective 2 

The second objective was to assess whether the effect of prenatal exposure to GDM could 

be partially explained by maternal demographic, lifestyle, and socioeconomic factors that 

are associated with GDM and that also predict birth weight for gestational age and 

childhood BMI trajectories. These potential confounders were maternal age, parity, 

smoking during pregnancy, maternal highest level of education, and income adequacy for 

the household, which were included in a new conditional LGCM (Figure 3.4).  

The conditional LGCM in Figure 3.4 is summarized by the regression equations 1.5 – 

1.14 below. This conditional LGCM differs from the conditional LGCM for Objective 1 

in several ways. First, the intercept, the linear component of slope, and the quadratic 

component of slope are now also regressed on the variables for maternal age (         
), 

parity (        
), smoking during pregnancy (       

), maternal highest level of 

education (           
), and income adequacy for the household (        

) (1.5 – 1.7). 

Birth weight for gestational age is also regressed on these variables in the new 

conditional LGCM (1.8). The variable for prenatal exposure to GDM becomes an 

endogenous variable in this conditional LGCM as it is regressed on maternal age, parity, 

smoking during pregnancy, maternal highest level of education, and income adequacy for 

the household (1.9).  

The variables for parity, smoking during pregnancy, maternal highest level of education, 

and income adequacy for the household were regressed on maternal age (1.10 – 1.14). 

These variables were modelled in this way to reduce the number of missing cases due to 

missing values on exogenous variables, as maternal age was the variable containing the 

fewest missing values. Maternal age is also a theoretically sound predictor of parity, 

smoking during pregnancy, maternal highest level of education, and income adequacy for 

the household. Other relationships between the predictor variables were not of 

substantive interest to the hypotheses under examination. However, the variables for 

parity, smoking during pregnancy, maternal highest level of education, and income 

adequacy for the household were correlated in the model. The conditional latent growth 

curve analyses for Objective 2 were done separately for females and males.  



49 

 

Latent trajectory parameters
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Figure 3.4. Conditional latent growth curve model for Objective 2. Direct and indirect effects of prenatal exposure to GDM on BMI 

trajectories adjusted for maternal age, parity, smoking during pregnancy, maternal highest level of education, and income adequacy 

for the household. Note: Covariances are not shown. Latent variables are grouped in the diagram for simplicity.   
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Intercept equation: 
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*Birth weight for gestational age equation: 
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(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 



51 

 

3.5.4 Analyses for Objective 3 

The third objective was to assess whether breastfeeding initiation modified the direct and 

indirect effects of prenatal exposure to GDM on childhood BMI trajectories. This was 

done by repeating the analyses done for Objective 2 separately by breastfeeding, that is, 

whether the child was breastfed or was not breastfed.  These analyses were thus 

conducted for 4 different groups: females who were not breastfed, females who were 

breastfed, males who were not breastfed, and males who were breastfed.  To examine 

differences by breastfeeding initiation/non-initiation within each sex-specified group, 

95% confidence intervals were produced for the following parameters: the estimated 

means and variances for the intercept, linear component of slope, and quadratic 

component of slope for BMI trajectories; the estimated coefficients for the effect of 

prenatal exposure to GDM on the intercept, linear component of slope and quadratic 

component of slope for BMI trajectories; and the estimated coefficient for the effect of 

prenatal exposure to GDM on birth weight for gestational age.  To compare overall 

differences in BMI trajectories between children who were breastfed and children who 

were not breastfed, 95% confidence intervals for the estimated means and variances for 

the intercept, linear component of slope, and quadratic component of slope were 

compared between breastfeeding groups. To examine modification of the effect of 

prenatal exposure to GDM on BMI trajectories by breastfeeding, 95% confidence 

intervals model-estimated coefficients for the effect of prenatal exposure to GDM on the 

intercept, linear component of slope, and quadratic component of slope were compared 

between breastfeeding groups.  

Conventional methods for testing differences between groups in Mplus, such as multi-

group analyses, were unavailable for the model used. This was due to the use of time 

scores, a technique that allows individual variation in observation times for panel data, 

which results in different variance/covariance matrices for each individual. As a result, 

Mplus software is unable to conduct multi-group analysis for models employing the use 

of time scores.  
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4 Results 

This chapter begins with an overview of the study population characteristics, including 

characteristics at baseline as well as throughout NLSCY cycles (Section 4.1). The 

remaining sections outline results of each of the latent growth curve models (LGCMs), 

beginning with the unconditional LGCM (Section 4.2), followed by the unadjusted 

conditional LGCM examining the direct and indirect effects of prenatal exposure to 

GDM on childhood BMI trajectories (Section 4.3.1), the conditional LGCM adjusted for 

important confounding variables (Section 4.3.2), and finally the stratified conditional 

LGCMs examining effect modification by breastfeeding (Section 4.3.3). For all statistical 

tests, a significance level of α = 0.05 is used.  

4.1 Characteristics of the Study Population  

The initial study population, which was defined as all children aged 0-1 year in cycle 1 

(1994-1995) who contributed longitudinal data, consisted of 3,619 children. After 

exclusion of 207 twins, the final study sample included 3,412 children. Further 

exclusions were made automatically during latent growth curve analyses, and were due to 

missing values in any exogenous   variables (i.e. missing values for exogenous 

predictors, in this case, maternal age) or missing values for all observed   variables (i.e. 

missing BMI trajectories). These excluded cases are further described in the sections 

below in the results of latent growth curve analyses.  

Of the 3,412 children in the study sample, 1651 (48.4%) are female and 1761 (51.6%) are 

male. Nearly twice as many male than female children were exposed to GDM prenatally 

in the study population, with 127 (7%) mothers of male children and 73 (4%) mothers of 

female children reporting GDM diagnosis during pregnancy. As all analyses are 

conducted separately by gender, study sample characteristics at baseline are also 

presented separately for females and males (Table 4.1). Mean age and mean BMI score at 

each cycle are presented in Table 4.2. Mean BMI score at each cycle by GDM exposure 

group is presented in Table 4.3. 

Almost 20% of children (306 females and 328 males) were born into households with 
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less than average income adequacy, that is, households in the lowest and lower-middle 

income adequacy categories. Around 30% of children (497 females and 514 males) were 

born into households that fell in the middle category for income adequacy. Of the 

remaining 51% of children, approximately 38% (640 females and 676 males) were born 

to households classified as upper-middle income adequacy and almost 13% (208 females 

and 223 males) were born into households with the highest level of income adequacy.  

For the vast majority (91-92%) of children included in the study, the PMK for the child 

was the biological mother. Average maternal age at the index pregnancy was 

approximately 30 ± 5 years for both females and males. For approximately 37% of 

mothers, the child included in the survey was their first child. Around 16% of mothers of 

both female and male children in the study sample were less than secondary school 

educated at the time of birth of the child included in the survey; 271 and 295 mothers of 

female and male children, respectively, did not complete secondary school graduation.  

Approximately 16% of mothers (257 mothers of female and 294 mothers of male 

children) in the study had completed secondary school graduation, while the remaining 

two-thirds of mothers completed some form of education beyond secondary school at the 

time of birth of the child included in the survey. Approximately 20% of mothers (338 

mothers of female and 367 mothers of male children) reported ever smoking during 

pregnancy with the child. Finally, 23% (397) of mothers of female children and 24% 

(408) of mothers of male children reported never having breastfed their child while the 

remaining 75% in each group reported having breastfed their child at least for a short 

while.   

4.2 Unconditional Latent Growth Curve Analysis 

Quadratic unconditional LGCMs for females (N=1611) and males (N=1691) were 

estimated using maximum likelihood estimation with robust standard errors to model 

BMI from age 2 to 10 years. Excluded cases were those that had missing data for all 

variables except  -variables, that is, cases with missing BMI trajectories (females: N=57, 

males: N=52). Model results for unconditional latent growth curve analyses are 

summarized in Table 4.4*. Model fit for the unconditional quadratic was assessed using 
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the BIC values (BIC, females = 30420.626; BIC, males = 29787.174), which were lower 

in the quadratic unconditional LGCM than in the linear unconditional LGCM (data not 

shown).  Significant inter-individual variability in childhood BMI trajectories was found 

for both females and males in terms of the intercept (females:        , S.E.       , 

       ; males:        , S.E.       ,        ), linear component of slope 

(females:         S.E.       ,        ; males:        , S.E.       , 

       ), and quadratic component of slope (females:         S.E.       , 

      ; males:        , S.E.       ,        ).  Significant covariance was 

found between the intercept and the linear component of slope (  ) for both males and 

females. Intercepts covaried significantly with the quadratic component of slope (  ) 

only for males. The average BMI trajectory for females in the study sample starts at a 

BMI score of 17.9 at 2 years of age, with adiposity rebound appearing to occur before the 

age of 6 years (Figure 4.1). The average BMI trajectory for males in the study sample has 

a similar starting point, with adiposity rebound occurring at around 6 years of age (Figure 

4.1).  

4.3 Conditional Latent Growth Curve Analyses 

4.3.1 Unadjusted Direct and Indirect Pathways 

Results of the conditional LGCM for the direct effect of prenatal exposure to GDM and 

the indirect effect through birth weight for gestational age for females (N=1555) and 

males (N=1619) are shown in Table 4.5 and Figure 4.2. The cases excluded from 

analyses were those that had missing data on predictor variables and missing BMI 

trajectories (females: N=113, males: N=124). For both females and males, BIC values 

increased from the unconditional model (BIC, females = 30420.626; BIC, males = 

29787.174) to the conditional model (BIC, females = 32779.035; BIC, males = 

32409.456).  

From the unconditional model to the conditional model, variance in the intercept ( ) of 

BMI trajectories for females was reduced by 12% (unconditional:   
      , S.E.  

     ,        ; conditional:   
      , S.E.       ,        ), while variances 

in the linear (  ) and quadratic (  ) components of slope remained the same.  For males, 
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variance of the intercept was reduced by 7% from the unconditional model to the 

conditional model (unconditional:   
      , S.E.       ,        ; conditional: 

  
      , S.E.       ,        ), while variances of the linear and quadratic 

components of slope remained approximately the same (Table 4.5).    

In this model prenatal exposure to GDM (     
) only has a significant effect on the 

intercept of BMI trajectories for males, reducing the model estimated BMI score at age 2 

by nearly 1 point (estimated effect on intercept       , S.E.       ,       ). The 

effects of prenatal exposure to GDM on the linear and quadratic components of slope for 

both males and females and on the intercept for females did not reach statistical 

significance (Table 4.5).   

The Sobel test for significance of a mediation effect did not reveal a statistically 

significant indirect effect (through birth weight for gestational age) of prenatal exposure 

to GDM on any BMI trajectory parameters for females or males (Table 4.6).  The p-

values for the tests of the indirect effect of prenatal exposure to GDM on the intercept, 

linear slope, and quadratic slope for females ranged from 0.25 to 0.34. The p-values for 

the tests of the indirect effect of prenatal exposure to GDM on the intercept, linear slope, 

and quadratic slope for males ranged from 0.67 to 0.70. 

4.3.2 Adjusted Effects of Prenatal Exposure to GDM on Childhood 
BMI Trajectories  

Model results for the conditional LGCM of the direct effect of prenatal exposure to GDM 

and the indirect effect through birth weight for gestational age, adjusted for maternal age, 

parity, maternal highest level of education, household income adequacy, and smoking 

during pregnancy are shown in Table 4.7. Model results for all other covariates are 

provided in Appendix C. Automatically excluded cases were those for which data on 

exogenous variables were missing (females: N=114, males: N=128). For both females 

and males, BIC values increased from the unadjusted conditional model (BIC, females = 

32779.035; BIC, males = 32409.456) to the adjusted conditional model (BIC, females = 

47769.572; BIC, males = 48603.247).  

Variance of the intercept of BMI trajectories for females was reduced by 9% from the 
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unadjusted to the adjusted conditional LGCM (unadjusted:   
      , S.E.       , 

       ; adjusted:   
      , S.E.       ,        ). Also for females, variance 

of the linear component of slope decreased by 5% from the unadjusted to the adjusted 

conditional LGCM (unadjusted:    
       , S.E.       ,       ; adjusted: 

   
       , S.E.       ,       ). The quadratic component of slope (  ) remained 

the same for females.  For males, variance of the intercept of BMI trajectories decreased 

by 7% from the unadjusted to the adjusted conditional LGCM (unadjusted:   
      , 

S.E.       ,        ; adjusted:   
      , S.E.       ,        ). Variance of 

the linear component of slope was reduced by 6% from the unadjusted to the adjusted 

conditional LGCM (unadjusted:    
       , S.E.       ,        ; adjusted: 

   
       , S.E.       ,        ). Variance of the quadratic component of slope 

also remained approximately the same for males (Table 4.6).   

The effect of prenatal exposure to GDM (     
) on the intercept of BMI trajectories for 

males in the study sample remains significant in the adjusted model. The effect of 

prenatal exposure to GDM on the linear and quadratic components of the slope of BMI 

trajectories did not reach statistical significance for males or females. There was also no 

statistically significant effect of prenatal exposure to GDM on the intercept of BMI 

trajectories for females (Table 4.7).  Adjusted childhood BMI trajectories for females and 

males with and without prenatal exposure to GDM are shown in Figure 4.2.  

4.3.3 Modification by Breastfeeding 

Effect modification of the association between prenatal exposure to GDM and childhood 

BMI trajectories by breastfeeding was examined using stratified conditional latent growth 

curve analyses adjusted for maternal age, parity, maternal highest level of education, 

household income adequacy, and smoking during pregnancy. Analyses were stratified by 

gender and breastfeeding history, resulting in four groups; females who were never 

breastfed, females who were breastfed, males who were never breastfed, and males who 

were breastfed. Model results for the adjusted conditional LGCM for each of the four 

groups are presented in Table 4.8 and Table 4.9. Additional model results are provided in 

Appendix C. The number of cases excluded in analyses due to missing data on exogenous 
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variables was 113 for females and 125 for males. BIC values decreased substantially with 

stratified models versus all previous models for both females (Never breastfed: BIC = 

11625.542; Breastfed: BIC = 35576.190; Table 4.8) and males (Never breastfed: BIC = 

13350.902; Breastfed: BIC = 34740.127; Table 4.9).  

Residual variances of trajectory parameters changed from the overall adjusted LGCMs to 

the adjusted LGCMs stratified by breastfeeding initiation/non-initiation. The exception 

for all models was residual variances of the quadratic components of slope, which 

remained relatively unchanged from overall adjusted to stratified adjusted models. 

Variances of all trajectory parameters remained statistically significant in all models 

stratified by breastfeeding initiation/non-initiation except among never breastfed females. 

For females, residual variance of the intercept of BMI trajectories decreased by almost 

32% from the overall adjusted LGCM to the adjusted LGCM for never breastfed females 

(overall females:   
      , S.E.       ,        ; never breastfed females: 

  
      , S.E.       ,       ). Residual variance for the linear component of 

slope decreased by 30% from the overall LGCM for females to the LGCM for never 

breastfed females (overall females:    
       , S.E.       ,       ; never 

breastfed females:    
       , S.E.       ,       ). In the adjusted LGCM for 

breastfed females, residual variance of the intercept of BMI trajectories increased by 10% 

from the overall adjusted LGCM (overall females:   
      , S.E.       ,        ; 

breastfed females:   
      , S.E.       ,        ). Residual variance of the linear 

component of slope also increased for breastfed females by 15% from the overall LGCM 

for females to the LGCM for breastfed females (overall females:    
       , S.E.  

     ,        ; breastfed females:    
       , S.E.       ,       ).  

In the adjusted LGCM for never breastfed males, residual variance of the intercept of 

BMI trajectories decreased by almost 12% from the overall adjusted LGCM (overall 

males:   
      , S.E.       ,        ; never breastfed males:   

      , 

S.E.       ,       ). Residual variances for the linear component of slope increased 

by almost 49% from the overall LGCM for males to the LGCM for never breastfed males 

(overall males:    
       , S.E.       ,        ; never breastfed males:    
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     , S.E.       ,       ). In the adjusted LGCM for breastfed males, residual 

variance of the intercept of BMI trajectories decreased by 8% from the overall adjusted 

LGCM (overall males:   
      , S.E.       ,        ; breastfed males:   

  

    , S.E.       ,        ). Residual variances for the linear component of slope 

also decreased for breastfed males by almost 24% from the overall LGCM for males to 

the LGCM for breastfed males (overall males:    
       , S.E.       ,        ; 

never breastfed males:    
       , S.E.       ,        ). 

BMI trajectories for children exposed and unexposed to GDM prenatally in each of the 

four groups are shown in Figure 4.3. Prenatal exposure to GDM (     
) only had a 

statistically significant effect on the intercept ( ) of BMI trajectories for males who were 

never breastfed (Table 4.9). The effect of prenatal exposure to GDM on other parameters 

of BMI trajectories for the three other groups did not reach statistical significance (Table 

4.8 and Table 4.9). Differences in the effect of prenatal exposure to GDM on BMI 

trajectories between children who were and were not breastfed were examined using 95% 

confidence intervals for model estimates of the effect of prenatal exposure to GDM on 

trajectory parameters (Table 4.10). Confidence intervals for each parameter estimate 

overlapped between breastfeeding groups, indicating no statistically significant 

modification of the effect of prenatal exposure to GDM on BMI trajectories by 

breastfeeding history. 

 

 

  



59 

 

Table 4.1. Baseline characteristics of study the population. 

Characteristic Females (N= 1651) Males (N=1761) 

   N  Value  N  Value  

Maternal              

Age at pregnancy – Yr (S.D.)  1517 30.6 (5.0) 1611 30.4 (5.0) 

Parity - %  
            Primiparous  608 36.8 658 37.4 

        Multiparous  920 55.7 932 52.9 

Highest level of education obtained - % 
            Elementary school 38 2.3 62 3.5 

        Some secondary school 233 14.1 233 13.2 

        Secondary school graduation 257 15.6 294 16.7 

        Other beyond high school 12 0.7 5 0.3 

        Some trade school 121 7.3 157 8.9 

        Some community college 273 16.5 207 11.8 

        Some university 93 5.6 85 4.8 

        Diploma/certificate trade school 147 8.9 194 11.0 

        Diploma/certificate community college 184 11.1 185 10.5 

        Bachelor degree 248 15.0 263 14.9 

        Masters, degree in medicine, doctorate 40 2.4 72 4.1 

Household 
    Income adequacy for household size - % 
            Lowest 67 4.1 73 4.1 

        Lower middle 239 14.5 275 15.6 

        Middle 497 29.7 514 29.2 

        Upper middle 640 38.8 676 38.4 

        Highest 208 12.6 223 12.7 

Pregnancy  
    GDM diagnosis - %  
            Yes  73 4.4 127 7.2 

        No  1441 87.3 1489 84.6 

Smoked during pregnancy - %  
            Yes  338 20.5 367 20.8 

        No  1177 72.3 1249 75.7 

At birth  
    Weight – kg (S.D.)  1636 3.36 (0.55) 1748 3.52 (0.56) 

Length – m (S.D.)  1496 0.51 (0.04) 1631 0.52 (0.04) 

Gestational age – wk (S.D.)  1638 39.1 (1.68) 1758 39.2 (1.73) 

Birth weight for gestational age z-score 1636 0.19 (1.10) 1748 0.26 (1.03) 

During infancy              

Breast fed - %  
   

   

        Yes  1238  75.0  1321  75.0  

        No  397  24.0  408  23.2   
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Table 4.2. Mean age in months and BMI score for each cycle. 

Characteristic Females  Males  

   N  Value  N  Value  

Age – months (S.D.)  
   

   

        Cycle 2  1651  35.7 (6.5)  1761  35.8 (6.5)   

        Cycle 3  1538  58.3 (6.6)  1615  58.3 (6.7)   

        Cycle 4  1400  84.7 (6.9)  1463 84.5 (7.2)   

        Cycle 5  1359  105.2 (6.6)  1412  105.3 (6.8)   

        Cycle 6 1249  133.3 (6.6)  1285 133.2 (6.7)   

     BMI – score (S.D.)  
   

   

        Cycle 2  1351  17.5 (2.77)  1408  17.6 (2.45)   

        Cycle 3  1267  16.8 (2.82)  1240  16.9 (2.50)   

        Cycle 4  1156  17.0 (3.34)  1142  16.9 (2.96)   

        Cycle 5  1152  17.6 (3.61)  1195  17.9 (3.64)   

        Cycle 6 1067  18.6 (3.46)  1077  19.2 (3.99)   

 

Table 4.3. Mean BMI score at each cycle by exposure group. 

Exposure Group Females  Males  

   N  BMI Score N  BMI Score 

GDM – “No”  
   

   

        Cycle 2  1210 17.6 1243  17.7 

        Cycle 3  1130 16.9 1083 16.9 

        Cycle 4  1028 17.0 1003 16.9 

        Cycle 5  1032 17.7 1032 17.8 

        Cycle 6 945 18.7 917 19.1 

     GDM – “Yes”  
   

   

        Cycle 2  65 16.5 96 16.8 

        Cycle 3  64 16.1 101 16.0 

        Cycle 4  63 16.3 89 16.8 

        Cycle 5  44 17.4 93 18.3 

        Cycle 6 48 18.5 86 19.8 
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Figure 4.1. Unconditional latent growth curve model of childhood BMI trajectories from 

age 2 to 10 years.  
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Table 4.4. Results of Unconditional LGCM by gender. 

 
Females (N= 1611) Males (N=1691) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Intercepts  
  

 
  

 

        (intercept) 17.91 (0.176) 101.81 0.000 17.97 (0.138) 129.95 0.000 

         (linear slope) -0.57 (0.103) -5.51 0.000 -0.61 (0.085) -7.14 0.000 

         (quadratic slope)  0.08 (0.013) 6.47 0.000 0.09 (0.010) 8.819 0.000 

   
 

  
 

Covariances 
  

 
  

 

        with    -0.99 (0.478) -2.07 0.039 -0.86 (0.348) -2.46 0.014 

        with    0.07 (0.049) 1.40 0.161 0.08 (0.037) 2.09 0.037 

         with    -0.08 (0.033) -2.48 0.013 -0.10 (0.020) -4.75 0.000 

   
 

  
 

Residual Variances 
  

 
  

 

        (intercept) 4.74 (0.932) 5.08 0.000 3.45 (0.681) 5.07 0.000 

         (linear slope) 0.85 (0.296) 2.88 0.004 0.87 (0.181) 4.80 0.000 

         (quadratic slope)  0.01 (0.004) 2.40 0.016 0.01 (0.003) 5.13 0.000 

      BMI at 2 Yr  2.85 (0.842) 3.38 0.001 2.46 (0.674) 3.65 0.000 

      BMI at 4 Yr 4.69 (0.472) 9.93 0.000 3.90 (0.321) 12.17 0.000 

      BMI at 6 Yr 6.17 (0.963) 6.41 0.000 4.41 (0.512) 8.61 0.000 

      BMI at 8 Yr 7.85 (0.747) 4.49 0.000 7.01 (1.187) 5.90 0.000 

      BMI at 10 Yr 4.57 (1.791) 2.55 0.011 3.90 (1.635) 2.39 0.017 

       

Model Fit Measures 
   

 

      Loglikelihood (Null Value) -15147.544 -14830.406 

      BIC 30420.626 29787.174 

      Sample-size adjusted BIC 30366.620 29733.167 
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Table 4.5. Conditional LGCM for the direct effect of prenatal exposure to GDM and indirect effect through birth weight for 

gestational age. Model results by gender. 

 
Females (N= 1555) Males (N=1619) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights 
  

 
  

 

        (intercept) ON        -0.855 (0.536) -1.594 0.111 -0.929 (0.354) -2.627 0.009 

        (intercept) ON        0.208 (0.106) 1.966 0.049 0.234 (0.089) 2.620 0.009 

         (linear slope) ON       0.042 (0.222) 0.188 0.851 0.199 (0.259) 0.769 0.442 

         (linear slope) ON       -0.075 (0.058) -1.289 0.197 -0.063 (0.060) -1.041 0.298 

         (quadratic slope) ON       0.005 (0.028) 0.195 0.845 0.000 (0.035) 0.005 0.996 

         (quadratic slope) ON       0.011 (0.007) 1.493 0.135 0.007 (0.008) 0.861 0.389 

            ON       0.294 (0.205) 1.437 0.151 0.082 (0.188) 0.433 0.665 

   
 

  
 

Residual Variances 
  

 
  

 

        (intercept) 4.181 (0.892) 4.689 0.000 3.216 (0.687) 4.683 0.000 

         (linear slope) 0.848 (0.314) 2.704 0.007 0.857 (0.184) 4.654 0.000 

         (quadratic slope)  0.011 (0.004) 2.450 0.014 0.013 (0.003) 5.055 0.000 

   
 

  
 

Model Fit Measures 
   

 

      Loglikelihood (Null Value) -16293.977 -16108.664 

      BIC 32779.035 32409.456 

      Sample-size adjusted BIC 32696.439 32326.859 
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Table 4.6. Results of the Sobel test for the indirect effect through birth weight for 

gestational age of prenatal exposure to GDM on childhood BMI trajectory parameters. 

Trajectory Parameter Females Males 

Intercept 
  

    Sobel test statistic 1.158 0.430 

    p-value 0.247 0.667 

Slope (Linear) 
  

    Sobel test statistic -0.960 -0.403 

    p-value 0.337 0.687 

Slope (Quadratic)   

    Sobel test statistic 1.059 0.390 

    p-value 0.289 0.696 
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Table 4.7. Conditional LGCM for the direct effect of prenatal exposure to GDM and indirect effect through birth weight for 

gestational age, adjusted for maternal age, parity, smoking during pregnancy, household income adequacy, and maternal highest level 

of education. Model results by gender 

 
Females (N= 1555) Males (N=1619) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights 
  

 
  

 

      (intercept) ON        -0.901 (0.471) -1.914 0.056 -0.933 (0.381) -2.449 0.014 

      (intercept) ON        0.213 (0.105) 2.025 0.043 0.259 (0.100) 2.573 0.010 

       (linear slope) ON       0.060 (0.218) 0.274 0.784 0.144 (0.258) 0.558 0.577 

       (linear slope) ON       -0.082 (0.060) -1.381 0.167 -0.045 (0.059) -0.769 0.442 

       (quadratic slope) ON       -0.002 (0.028) -0.074 0.941 -0.008 (0.033) -0.238 0.812 

       (quadratic slope) ON       0.013 (0.008) 1.767 0.077 0.007 (0.007) 0.883 0.377 

          ON       0.357 (0.162) 2.200 0.028 0.165 (0.164) 1.003 0.316 

       
  

 
  

 

Residual Variances 
  

 
  

 

        (intercept) 3.789 (0.875) 4.332 0.000 2.988 (0.653) 4.576 0.000 

         (linear slope) 0.808 (0.303) 2.667 0.008 0.805 (0.179) 4.491 0.000 

         (quadratic slope)  0.011 (0.004) 2.455 0.014 0.012 (0.003) 4.570 0.000 

   
 

  
 

Model Fit Measures 
   

 

      Loglikelihood (Null Value) -23623.888 -24039.382 

      BIC 47769.572 48603.247 

      Sample-size adjusted BIC 47544.022 48377.693 
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Figure 4.2. Results of analyses for Objectives 1 and 2. Unadjusted and adjusted latent growth curve models (LGCMs) of early 

childhood BMI trajectories for children with and without prenatal exposure to GDM. Model results by gender. Note: adjusted LGCMs 

are controlled for maternal age, parity, smoking during pregnancy, household income adequacy, and maternal education. 
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Table 4.8. Results of Objective 3 conditional LGCM by breastfeeding for females.  

 
Never Breastfed (N= 390) Breastfed (N=1152) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights 
  

 
  

 

      (intercept) ON        -0.627 (0.726) -0.864 0.388 -1.042 (0.586) -1.777 0.075 

      (intercept) ON        0.219 (0.222) 0.984 0.325 0.217 (0.117) 1.846 0.065 

       (linear slope) ON       0.171 (0.315) 0.542 0.588 0.154 (0.291) 0.528 0.597 

       (linear slope) ON       -0.130 (0.104) -1.249 0.212 -0.085 (0.070) -1.207 0.228 

       (quadratic slope) ON       -0.008 (0.041) -0.198 0.843 -0.016 (0.034) -0.482 0.630 

       (quadratic slope) ON       0.019 (0.012) 1.591 0.112 0.014 (0.009) 1.573 0.116 

          ON       0.589 (0.249) 2.364 0.018 0.317 (0.207) 1.527 0.127 

       
  

 
  

 

Residual Variances 
  

 
  

 

        (intercept) 2.592 (1.478) 1.754 0.079 4.181 (1.056) 3.959 0.000 

         (linear slope) 0.563 (0.414) 1.361 0.174 0.927 (0.374) 2.480 0.013 

         (quadratic slope)  0.010 (0.006) 1.636 0.102 0.012 (0.005) 2.150 0.032 

   
 

  
 

Model Fit Measures 
   

 

      Loglikelihood (Null Value) -5600.973 -17717.095 

      BIC 11625.542 35934.687 

      Sample-size adjusted BIC 11400.263 35709.169 
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Table 4.9. Results of Objective 3 conditional LGCM by breastfeeding for males. 

 
Never Breastfed (N= 428) Breastfed (N=1169) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights 
  

 
  

 

      (intercept) ON        -1.529 (0.534) -2.864 0.004 -0.510 (0.382) -1.333 0.183 

      (intercept) ON        0.199 (0.184) 1.077 0.281 0.247 (0.115) 2.154 0.031 

       (linear slope) ON       0.259 (0.338) 0.768 0.443 -0.080 (0.232) -0.345 0.730 

       (linear slope) ON       -0.229 (0.127) -1.797 0.072 0.027 (0.062) 0.439 0.660 

       (quadratic slope) ON       -0.010 (0.044) -0.238 0.812 0.009 (0.027) 0.330 0.741 

       (quadratic slope) ON       0.042 (0.017) 2.529 0.011 -0.006 (0.008) -0.798 0.425 

          ON       -0.125 (0.249) -0.503 0.615 0.416 (0.151) 2.765 0.006 

       
  

 
  

 

Residual Variances 
  

 
  

 

        (intercept) 2.637 (1.210) 2.180 0.029 2.741 (0.716) 3.826 0.000 

         (linear slope) 1.197 (0.438) 2.732 0.006 0.615 (0.181) 3.408 0.001 

         (quadratic slope)  0.020 (0.007) 2.823 0.005 0.009 (0.003) 3.541 0.000 

   
 

  
 

Model Fit Measures 
   

 

      Loglikelihood (Null Value) -6460.352 -17119.295 

      BIC 13350.902 34740.127 

      Sample-size adjusted BIC 13125.591 34514.607 

  



69 

 

Table 4.10. Confidence intervals of Objective 3 LGCM estimates for comparison between breastfeeding groups.  

 
Females - Est. (95% CI) Males - Est. (95% CI) 

   Never Breastfed Breastfed Never Breastfed Breastfed 

Intercepts  
    

        (intercept) 
18.438  

(17.910,18.966) 
17.699  

(17.326,18.072) 
18.356  

(17.867,18.846) 
17.910  

(17.564,18.256) 

         (linear slope) -0.528 (-0.842,-0.214) -0.561 (-0.810,-0.311) -0.712 (-1.076,-0.348) -0.600 (-0.795,-0.406) 

         (quadratic slope)  0.080 (0.043,0.118) 0.082 (0.050,0.115) 0.106 (0.057,0.155) 0.093 (0.071,0.115) 

     
Residual Variances 

    
        (intercept) 2.592 (-0.305,5.489) 4.181 (2.111,6.251) 2.637 (0.266,5.007) 2.741 (1.337,4.146) 

         (linear slope) 0.563 (-0.248,1.375) 0.927 (0.194,1.659) 1.197 (0.338,2.056) 0.615 (0.261,0.969) 

         (quadratic slope)  0.010 (-0.002,0.022) 0.012 (0.001,0.022) 0.020 (0.006,0.033) 0.009 (0.004,0.014) 

     
Regression Weights 

    
       (intercept) ON        -0.627 (-2.049,0.795) -1.042 (-2.191,0.107) -1.529 (-2.575,- 0.482) -0.510 (-1.259,0.240) 

        (linear slope) ON       0.171 (-0.447,0.789) 0.154 (-0.417,0.724) 0.259 (-0.402,0.921) -0.080 (-0.535,0.375) 

        (quadratic slope) ON       -0.008 (-0.089,0.072) -0.016 (-0.083,0.050) -0.010 (-0.096,0.075) 0.009 (-0.043,0.061) 

           ON       0.589 (0.100,1.077) 0.317 (-0.090,0.723) -0.125 (-0.613,0.363) 0.416 (0.121,0.711) 
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Figure 4.3. Results of analyses for Objective 3. Latent growth curve models (LGCMs) of early childhood BMI trajectories for 

children with and without prenatal exposure to GDM stratified by breastfeeding history. Model results by gender. Note: LGCMs are 

controlled for maternal age, parity, smoking during pregnancy, household income adequacy, and maternal education. 
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5 Discussion 

This chapter presents discussions of the findings of the current study. Section 5.1 outlines 

the main research findings, discussing the significance of study results in context of the 

research objectives and the overall body of literature examining the association between 

maternal IGT during pregnancy and childhood overweight and obesity. This is followed 

by Section 5.2, which presents a discussion of the possible reasons for the statistically 

non-significant findings in the study. Section 5.3 discusses the limitations of this study 

and Section 5.4 discusses the study strengths. Finally, Section 5.5 provides a summary of 

the conclusions of the study and recommendations for further research. 

This study’s aim was to examine the association between GDM and early childhood BMI 

trajectories. The main prediction was that prenatal exposure to GDM is associated with 

BMI trajectories that exhibit unhealthy changes in child weight for height and the 

potential for overweight and obesity risk. Specific objectives of the study were to model 

early childhood BMI trajectories and examine the direct and indirect effects of prenatal 

exposure to GDM, adjusting for important confounding factors, as well as to explore 

breastfeeding as a potential effect modifier and protective factor.  

5.1 Overview of Research Findings 

5.1.1 Early Childhood BMI Trajectories  

As expected, BMI data for both female and male children in the study population fit a 

quadratic model of growth from the ages of 2 to 10 years. Childhood BMI trajectories 

exhibited an initial decline from the age of 2 years before steadily inclining through the 

age of 10 years for both females and males.  The timing of adiposity rebound, that is the 

point of renewed incline in BMI, occurred earlier on average in females compared to 

males in the study sample (Figure 4.1). Overall, according to the model, adiposity 

rebound appeared to occur between the ages of 5 and 6 years for females and males in the 

sample. This is consistent with the literature on timing of adiposity rebound, which states 

that minimum BMI during childhood occurs at 5 to 6 years of age.
65

  Also according to 

the modelled trajectories, females on average had higher BMI between the ages of 6 and 
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10 years than males in the study population (Figure 4.1).  

5.1.2 Inter-Individual Variability 

An important post hoc consideration is how much inter-individual variation was seen in 

trajectories. The amount of residual variance in trajectory parameters comparing one 

model to the next reveals important information about how representative an average 

trajectory is for the population being described. Indeed, the main advantage of latent 

growth curve analyses is the ability to simultaneously consider individual- and group-

level patterns in longitudinal data. 

At the outset, the study population showed significant variance in all BMI trajectory 

parameters (intercept, linear slope, and quadratic slope), which provided justification for 

further analyses. The addition of prenatal exposure to GDM as a predictor of BMI 

trajectories explained 12% and 7% of the variance in the intercepts of BMI trajectories 

for females and males, respectively, and explained none of the variance in slopes. 

Significant residual variance in all trajectory parameters remained in this model. As this 

first model was unadjusted, the large residual variance is explained by the inter-

individual variability remaining due to the omission of other important predictors of 

childhood BMI trajectories. Some of these other predictors, considered to be confounding 

or control variables, were added in the second model. This second model explained a 

further 9% and 7% of the variance in the intercepts and an additional 5% and 6% of the 

variance in the linear component of slope of BMI trajectories for females and males, 

respectively. Since residual variances decreased from the first to the second model, it can 

be concluded that the proposed predictors accounted for some of the inter-individual 

variability in BMI trajectories. Still, residual variances in all trajectory parameters 

remained significant in the adjusted model, reflecting further unexplained inter-individual 

variability.  

In the third model, stratified for females and males by breastfeeding initiation/non-

initiation, interesting changes in variance of trajectory parameters occurred. Among never 

breastfed females, residual variances in the intercept and linear component of slope were 

reduced considerably, while residual variances were increased for the same parameters 



73 

 

among breastfed females comparing stratified to unstratified models. This suggests that 

the average adjusted BMI trajectory better represents never breastfed females than it does 

the overall study population of females. Conversely, the average adjusted BMI trajectory 

for females is less representative of the change in BMI among breastfed females in the 

study population.  Among males who were never breastfed, residual variance in the 

intercept is decreased while variance in the linear component of slope is dramatically 

increased. This indicates that while the starting point of the average adjusted BMI 

trajectory may well represent never breastfed males at age 2 years in the study 

population, the slope of the average trajectory is much less representative. The variances 

of the intercept and linear component of slope of BMI trajectories for breastfed males are 

reduced from the unstratified adjusted model, indicating the average adjusted BMI 

trajectory better represents breastfed males in the study population than overall study 

population of males.  

5.1.3 Effects of Prenatal Exposure to GDM on the Shape of Early 
Childhood BMI Trajectories 

5.1.3.1 Overall Effects 

Overall, the results of the current study do not support the existence of a statistically 

significant effect of prenatal exposure to GDM on early childhood BMI trajectories in the 

population studied. The one finding that did reach statistical significance was the effect of 

prenatal exposure to GDM on BMI at age 2 years among males. Exposure to GDM in 

utero was associated with a significant decrease in BMI at age 2 years among males. This 

opposes the original hypothesis that prenatal exposure to GDM is associated with higher 

initial BMI due to over-nutrition and fetal overgrowth. Although these results would 

seem to suggest a potential protective effect of prenatal exposure to GDM on early infant 

weight, the literature does not support such an association. Instead this finding may 

reflect adverse pregnancy outcomes associated with GDM that result in low early infancy 

weight gain, such as spontaneous preterm birth
172

 and gestational hypertension.
143

  

Despite that results were predominantly non-significant, a recurring pattern emerged 

from the model-estimated values of the effect of prenatal exposure to GDM on childhood 
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BMI trajectories. In both unadjusted and adjusted analyses, prenatal exposure to GDM 

appears to be associated with lower BMI at age 2 years followed by an increased rate of 

incline in BMI between the ages of 6 and 10 years for females and males (Figure 4.2). 

Although this overall pattern was neither statistically significant nor consistent with the 

hypothesized effect of intrauterine exposure to GDM on childhood BMI trajectories, it is 

a pattern that mirrors those described in the literature to be predictive of poor health 

outcomes.
8 58 59 61 64-67

 Indeed, this particular pattern mirrors that of catch-up growth, 

described in the literature as initially low weight followed by accelerated early weight 

gain associated with obesity risk and later metabolic disease.
8 58 59 67

  

The goal of studies attempting to identify early life risk factors for child obesity, such as 

intrauterine exposure to GDM, is ultimately to reveal predictors for patterns of childhood 

growth associated with increased risk of later metabolic disease. Indeed, this was the 

intent of the current study. Previous studies that have described patterns in childhood 

growth very similar to those seen in the current study have shown these growth patterns 

to be predictive of adolescent obesity,
59

 adult diabetes,
58 67

 and CHD.
8 58

 These studies all 

found that the greatest metabolic risk  was associated with early growth patterns that 

began with lower than average BMI at birth
8 58

 through age 2 years
58 59 67

 followed by 

higher than average BMI beyond the ages of 6 to 12 years.
8 58 59 67

 In all of these cases it 

is the combination of low initial BMI with a period of accelerated or catch-up growth 

resulting in higher than average BMI that is most strongly predictive of later obesity or 

metabolic disease. Indeed, Eriksson and colleagues
8
 demonstrated an interaction between 

the two factors, showing that lower than average BMI at birth plus rapid childhood 

weight gain is associated with higher risk of death from CHD than either low BMI at 

birth followed by normal weight gain or normal BMI at birth followed by rapid childhood 

weight gain. 

Despite the non-significant findings for the overall effect of prenatal exposure to GDM 

on the shape of childhood BMI trajectories in the current study, some studies suggest the 

patterns of infant and childhood weight gain described above can be seen among 

offspring of mothers with GDM. In terms of initial BMI, GDM is more often associated 

with higher and not lower than average birth weight.
119

 However, treatment for GDM has 
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been shown to reduce rates of high birth weight.
82

 One study even found that the 

offspring of mothers with obstetrically managed GDM had lower than average BMI 

during the first two years, which was followed by accelerated weight gain throughout 

early childhood.
84

 This study also compared mothers with GDM who were treated during 

pregnancy to mothers with untreated mild IGT and revealed steeper weight gain among 

offspring of mothers with GDM beyond the age of 5 years compared to offspring of 

mothers with mild IGT.
84

 Thus, it is theoretically possible that children born to mothers 

with well-managed GDM follow this pattern of low initial BMI and subsequent 

accelerated childhood weight gain. 

5.1.3.2 Indirect Effect through Birth Weight for Gestational Age 

The data do not support a causal model for the effect of intrauterine exposure to GDM on 

early childhood BMI trajectories in which birth weight is an important mediator.  Indeed, 

tests for the indirect effect of prenatal exposure to GDM through birth weight for 

gestational age on BMI trajectory parameters did not reach statistical significance. This 

goes against the hypothesis and suggests that the effect of prenatal exposure to GDM on 

early childhood BMI trajectories is not mediated by birth weight for gestational age. 

However, given that the current study did not reveal a statistically significant direct effect 

of prenatal exposure to GDM on childhood BMI trajectories, it is not surprising that the 

indirect effect was also not found to be statistically significant. A more detailed 

discussion of the reasons for this study’s non-significant findings is provided in Section 

5.2. 

One factor that may have influenced results of the indirect effect is the chosen measure of 

birth weight. The current study assessed the indirect effect of prenatal exposure to GDM 

on BMI trajectories through birth weight in grams adjusted for gestational age. Some 

studies have reported that BMI at birth, that is birth weight adjusted for birth length, is a 

better predictor of later risk of cardiovascular disease than birth weight, even when birth 

weight is adjusted for gestational age.
8 173

 Since BMI at birth can predict later 

cardiovascular health, it is possible that it may also predict the childhood growth patterns 

that are also predictive of cardiovascular and metabolic health. Thus, BMI at birth may 

have been a better choice as a mediator for the effect of prenatal exposure to GDM on 
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BMI trajectories than birth weight for gestational age. 

5.1.4 Effects of Breastfeeding 

Previous studies have suggested that breastfeeding may have protective effects against 

the development of childhood obesity.
46 99 102-108 110 174

  In this study, stratified analyses 

examining the potential modifying effects of breastfeeding revealed no statistically 

significant modification of the effects of prenatal exposure to GDM on early childhood 

BMI trajectories. Indeed, the differences in the model-estimated effect of prenatal 

exposure to GDM on BMI trajectories between breastfeeding groups were found to be 

non-significant. Possible reasons for these non-significant findings are discussed in 

Section 5.2. The remainder of the current subsection discusses the patterns that emerged 

from model-estimated values of the effects of prenatal exposure to GDM and 

breastfeeding on BMI trajectories in context of the pertaining literature. Although the 

results were not statistically significant, the shapes of modelled BMI trajectories in the 

stratified analyses reflect patterns in early childhood weight gain associated both with 

prenatal exposure to GDM and breastfeeding that mirror patterns predicted in initial 

hypotheses as well as those described in the literature. 

5.1.4.1 Breastfeeding as a Protective Factor against Childhood 
Obesity Risk 

Although there were no statistically significant differences between breastfeeding groups, 

the values of model estimates mirror patterns in past studies that have shown 

breastfeeding is associated with lower BMI in infancy,
99 101 106 174

 early childhood,
46 104 105 

108
 and later childhood.

102 103 110
 Overall, regardless of whether or not children were born 

to mothers who had GDM, breastfeeding appears to be associated with overall lower BMI 

throughout childhood. This is consistent with studies that have shown that breastfeeding 

is associated with less early infancy weight gain
99 101 106 174

 as well as reduced BMI 

throughout childhood.
46 102-105 108 110
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5.1.4.2 Breastfeeding as a Modifier for the Association between 
Intrauterine Exposure to GDM and Childhood BMI 
Trajectories 

The results of the current study do not support breastfeeding as a modifier of the effect of 

prenatal exposure to GDM on childhood BMI trajectories. However, it may be interesting 

to note that model-estimated values of the effect of intrauterine exposure to GDM on 

BMI trajectories appear markedly different depending on breastfeeding status. Never 

breastfed females who were exposed to GDM in utero have an estimated BMI trajectory 

that appears initially low with early and rapid catch-up growth resulting in a rate of 

incline in BMI that surpasses the rate of their non-exposed counterparts between the ages 

of 6 and 10 years (Figure 4.3; Top left). Conversely, ever breastfed females who were 

exposed to GDM in utero have a BMI trajectory that begins similarly low but rises more 

steadily between the ages of 4 and 10 years (Figure 4.3; Top right). In the breastfed 

group, females with prenatal exposure to GDM marginally surpass BMI of their non-

exposed counterparts only by the age of 10 years.  Thus, breastfeeding appears to be 

associated with an attenuation of the effects of prenatal exposure to GDM on the initial 

level and rate of incline of BMI trajectories among females. Other studies have reported 

an association between breastfeeding and slower infancy and early childhood weight 

gain.
101 106

 These studies have shown that never breastfed infants experience accelerated 

weight gain in the first few years of life while breastfed infants exhibit less weight gain 

during the same period.
101 106

 Although these studies describe very early weight gain 

(birth to age 2
106

 and birth to age 3 years
101

), there is reason to believe breastfeeding may 

have an important influence on later childhood weight trajectories. Indeed one study 

demonstrated that among 3 to 6 year-olds, breastfeeding was associated with better 

appetite regulation and higher responsiveness to satiation,
100

 which, continuing into later 

childhood, may explain more gradually inclining BMI. 

The pattern seen among males in the study sample appears even more pronounced. The 

estimated BMI trajectory for never breastfed males who were exposed to GDM in utero 

begins significantly lower than that of non-exposed males in the same group with very 

early and rapid catch-up growth between the ages of 4 and 10 years (Figure 4.3; Bottom 

left). Never breastfed males who were exposed to GDM prenatally eventually surpass 
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BMI of their non-exposed counterparts by the age of 10 years.  Although the pattern in 

BMI trajectories among never breastfed males shares similarities to the pattern seen 

among never breastfed females in the study, the pattern among breastfed males is 

markedly different. Comparing never breastfed to breastfed females, initial BMI is 

decreased among those exposed to GDM in utero and is followed by a steep incline in 

BMI until the age of 10 years. However, comparing never breastfed to breastfed males, 

initial BMI appears to increase among those exposed to GDM prenatally followed by a 

rate of incline in BMI throughout childhood similar to non-exposed breastfed males 

(Figure 4.3; Bottom right). Breastfed males who were exposed to GDM in utero also 

appear to experience later adiposity rebound (AR at 6 years) than both never breastfed 

males exposed to GDM (AR at 4 years) and breastfed males not exposed to GDM (AR 

between 4 and 6 years).   

Although these findings are not statistically significant and interpretations must be drawn 

with caution, they do follow a pattern consistent with studies that have shown both that 

breastfeeding is associated with lower childhood BMI
46 102-105 108 110 175

 and that it is most 

strongly associated with reduction of obesity risk among children with pre-existing risk 

factors.
107 108 112

 A study by Buyken and colleagues
107

 that examined the association 

between breastfeeding and percent body fat trajectories in early childhood found a 

significant protective effect of breastfeeding in males with overweight mothers but not in 

males with normal weight mothers. Furthermore, this study proposed an interaction effect 

between maternal overweight and breastfeeding. 
107

 This suggests that the particular risk 

profiles of children may modify and, in some cases, enhance the protective effect of 

breastfeeding. If this concept is applied to the interpretation of results in the current 

study, it would suggest that breastfeeding may be a particularly effective strategy to 

prevent adverse childhood weight outcomes associated with prenatal exposure to GDM 

for males.  

5.2 Non-Significant Study Findings 

The objective of the current study was to examine the impact of prenatal exposure to 

GDM on early childhood BMI trajectories with the hypotheses that exposure to GDM 

would be associated with initially high BMI as well as high rising BMI throughout 
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childhood. It was also hypothesized that breastfeeding would attenuate this association, 

as previous studies have shown that breastfeeding has protective effects against the 

development of overweight and obesity. However, the results of the analyses were mainly 

non-significant. Model results for the estimated effect of prenatal exposure to GDM on 

childhood BMI trajectories either did not reach statistical significance or did not support 

the hypotheses. Results of models examining effect modification by breastfeeding also 

did not reach statistical significance. There are a number of possible reasons that the 

study findings differed from expectations. This subsection focuses on issues related to the 

study design that may have contributed to these non-significant study findings.  

5.2.1 Identification of Exposure 

One issue that may have contributed to the overall non-significant study findings is the 

possibility of only partial identification of the exposure of interest. In the current study 

the exposure of interest was GDM, which was measured by maternal report of diabetes 

diagnosis during pregnancy. Although studies have reported GDM as a risk factor for 

various adverse child weight outcomes, many of these studies were able to identify GDM 

diagnosis through data from clinical measures such as oral glucose tolerance test (OGTT) 

results
75-77 83 84 91-93

 and average daily glycemia.
76

 While some studies have also used 

maternal report to identify GDM in study populations,
81 176

 this measure certainly 

contains less information about the actual exposure to the fetus than clinical measures. 

Indeed, self-reported GDM diagnosis does not per se provide information about the 

degree to which blood sugar levels are managed throughout pregnancy or the chosen 

method of blood sugar management. These variables undoubtedly alter the amount of 

fetal exposure to a hyperglycemic prenatal environment. In current clinical practice, 

patients with GDM are often given intensive treatment to manage blood sugar levels 

during pregnancy.
177-180

 Thus, it is possible that mothers in the NLSCY study population 

truly represented a group with well managed glycemia during pregnancy due to intensive 

obstetric care.  

A related issue to the insufficient identification of the exposure of interest due to the 

unavailable information on actual maternal glycemia during pregnancy is that the study 

population likely included those with undiagnosed gestational hyperglycemia. Indeed, 
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insulin resistance is common even in normal pregnancy,
180

 and many women experience 

levels of gestational hyperglycemia that do not meet diagnostic criteria for GDM.
181

 Few 

studies have examined the effect of treatment for mild gestational hyperglycemia
181

 and 

many women with mild hyperglycemia during pregnancy may not receive proper 

treatment to manage blood glucose levels.  

In the current study population, there may have been individuals that did not meet the 

criteria for GDM diagnosis, but nevertheless experienced a significant level of 

hyperglycemia during pregnancy. However, these cases would not have self reported 

pregnancy diabetes in the NLSCY because of a lack of clinical diagnosis. This group 

would thus represent a truly at-risk population of children exposed to a hyperglycemic 

prenatal environment due to potentially untreated maternal hyperglycemia during 

gestation. The data used in the current study did not contain any further measures of 

maternal glucose tolerance during pregnancy beyond the question of whether or not 

mothers were diagnosed with GDM. Therefore, an important portion of the population at 

risk was not captured in the current study. This may have contributed to the non-

significant study findings, as the unexposed population likely contained many cases in 

which children were in fact exposed to undiagnosed maternal hyperglycemia in utero. If 

this is the case, the model estimates of the impact of prenatal exposure to GDM on 

childhood BMI trajectories were based on differences between two groups that each 

contained similar cases, which would inevitably result in null findings. Furthermore, the 

finding that males exposed to GDM in utero had significantly lower initial BMI than 

unexposed males may only reflect the difference in outcomes of pregnancies that 

consistently involved treatment for blood glucose management versus pregnancies that 

did not. 

5.2.2 Obstetric Management of GDM  

To further complicate matters, the treatment of GDM is not necessarily standardized 

since management strategies used in practice are not all evidence-based in terms of both 

efficacy and minimization of adverse perinatal outcomes.
177-180

 For example, although 

dietary counselling is the first line of treatment for many cases of GDM,
177

 nutritional 

guidelines to achieve and maintain appropriate glycemic control are not evidence-based 
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due to limited research available on specific nutritional recommendations.
180

 

Furthermore, women diagnosed with GDM can range in level of hyperglycemia from 

levels that would constitute diabetes diagnosis outside of pregnancy to levels that do not 

cause symptoms but have adverse effects on the fetus.
180

 In clinical practice, treatment 

options for GDM vary according to blood glucose levels, but decisions are based more on 

expert opinion and usual practice rather than research evidence.
177

 Thus, there may be 

wide variation in terms of level and duration of hyperglycemia during pregnancy even 

among women diagnosed with GDM and receiving treatment.     

A Cochrane review
178

 of studies examining the perinatal outcomes associated with 

various GDM management strategies found that treatment with insulin is associated with 

a higher risk of labour induction and Caesarean section than treatment with oral 

hypoglycemic medication.
178

 Pregnancy complications such as these may explain why 

the current study found prenatal exposure to GDM to be associated with childhood BMI 

trajectories that are initially lower than those of children who were not exposed to GDM.  

In summary, the study findings for the association between prenatal exposure to GDM 

and childhood BMI trajectories differed from expectations due, in part, to the inability to 

define the exposure group in terms of the actual exposure. Indeed, data on maternal GDM 

diagnosis did not provide enough information about prenatal exposure to maternal 

hyperglycemia to conclude all children in the exposure group were similarly exposed. 

Further, intensive obstetric care and potentially tight control of blood glucose levels 

during pregnancy may have ensured that the group of children defined by GDM exposure 

actually had less exposure to maternal hyperglycemia in utero than others in the study 

population. 

5.3 Study Limitations 

5.3.1 Self-Reported Data 

The inherent limitations of self-reported data reflect one of the main drawbacks of the 

current study. Indeed, as previously discussed, self-reported GDM diagnosis does not 

contain enough information to comment on level of fetal exposure to maternal 

hyperglycemia. Information on child height and weight used to calculate BMI was also 
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reported and not measured directly in the NLSCY. Self-report of these physical measures 

limit the accuracy of analyses using these data. However, the focus of the current study 

was on the shape of childhood BMI trajectories. Assuming that inaccuracies in maternal 

report of child height and weight were relatively consistent throughout cycles, this 

limitation has minimal influence on the interpretation of study findings. The accuracy of 

maternal report of birth weight and gestational age may have influenced study results 

given that recall of these measures likely varied with the age of the child at the time of 

the interview.  

5.3.2 Sample Size and Attrition 

The inability to detect statistically significant effects of prenatal exposure to GDM on 

childhood BMI trajectories may be due, in part, to small sample sizes and attrition. 

Indeed, the numbers of females and males exposed to GDM in the study sample were 

small to begin with, only 73 and 127, respectively.  These numbers were further reduced 

in analyses stratified by breastfeeding history. The large rates of attrition in the 

longitudinal cohort of the NLSCY also limit the power to detect significant effects. 

Indeed, as cycles progressed there was greater attrition. Thus, estimates for the linear and 

quadratic components of slope of BMI trajectories were based on progressively fewer 

cases over time.  

5.3.3 Maternal Characteristics 

The current study is limited by the information available in the NLSCY on maternal 

characteristics.  One of the most important maternal characteristics that was not captured 

by the survey is maternal pre-pregnancy BMI. Indeed, studies have shown that maternal 

BMI is a strong predictor of birth weight as well as childhood weight status, with higher 

pre-pregnancy BMI being associated with higher risk of childhood overweight and 

obesity.
182 183

 Furthermore, as previously discussed, high pre-pregnancy BMI is 

associated with higher risk of GDM,
130

 and thus most studies examining the association 

between GDM and child weight status control for maternal BMI.  Although this 

information was unavailable for the current study, the NLSCY provides the only 

nationally representative Canadian data currently available to examine childhood BMI 
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longitudinally. While proxy variables for maternal overweight were used in adjusted 

analyses, there is nevertheless the possibility that patterns seen in the study results may 

reflect the impact of maternal BMI, and not prenatal exposure to GDM, on childhood 

BMI trajectories.   

As mentioned previously, GDM is difficult to ascertain in population studies using self-

reported diagnosis.  The methodological issue with self-reported GDM already discussed 

is that it may truly reflect previously undiagnosed diabetes mellitus (DM).
151

 Although 

this did not pose a threat to the current study for reasons already discussed, other 

methodological issues in assessing GDM diagnosis complicate the interpretation of study 

results.  In a review of studies on the prevalence of GDM, Ferrara
151

 discusses one 

prevailing issue with assessing GDM trends in populations which has been that OGTT 

for GDM that use different criteria for interpretation arrive at different diagnoses.  

Therefore, self-reported GDM diagnosis may not have captured all cases of GDM in the 

study population, as there may have been cases in which GDM was undiagnosed due to 

the use of different diagnostic criteria.   

Finally, in terms of the limitations in available maternal data, the NLSCY did not contain 

information to isolate those who did not have a GDM diagnosis but had DM prior to 

pregnancy. Therefore, the unexposed group in the study population may have contained 

individuals born to women with DM. This poses the problem that children born to 

women with DM are not likely to have the same level of obesity risk as children born to 

women with normal glucose tolerance. Indeed, many studies either treat offspring of 

diabetic mothers separately from offspring of nondiabetic mothers and offspring of 

mothers with GDM
75 78 87 88 93

 or exclude this group entirely when examining the effect of 

prenatal exposure to GDM on child weight status.
81 83 86 92

 

5.3.4 Breastfeeding and Early Nutrition 

Due to the small sample sizes, it was not feasible to divide breastfeeding categories any 

further than the two categories defined by breastfeeding initiation. However, many 

studies have shown that, once initiated, the duration and consistency of breastfeeding has 

important and varied effects on later childhood growth.
46 99 101 105-110

 Thus, group defined 
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in this study as having ever been breastfed is a less homogenous group than those who 

were never breastfed, which likely lead to the non-significant model results among 

breastfed children. Also the data did not contain information on early nutrition, and in 

particular, the timing of introduction of solid foods, which also has important impacts on 

child weight and weight gain.
111

  

5.4 Study Strengths 

The current study is one of the first to investigate the child obesity problem in Canada by 

assessing prenatal predictors of BMI trajectories for a large, nationally representative, 

longitudinal sample of Canadian children using LGCM. Robust population-level data 

produced through the strong sampling design of the NLSCY were analyzed in this study 

with an equally strong statistical technique designed to handle longitudinal data.  Despite 

non-significant findings, this thesis provides a framework for future research on 

childhood growth trajectories that can be used with improved datasets, variables, and 

theoretical models. This section details the strengths of the current study in terms of the 

analytic approach and dataset and discusses the importance of this study as a foundation 

for future pediatric overweight and obesity research.  

5.4.1 Analytic Approach 

One of the major strengths of this study is the analytic approach to assessing prenatal 

exposure to GDM as a predictor of child weight. While many studies have examined the 

relationship between exposure to GDM in utero and child weight status measured at a 

single point in time, the current study examined the impact of this exposure on 

trajectories of growth.  As discussed previously, the analysis of longitudinal patterns of 

growth provides greater insight into child health than analyses of weight status alone by 

revealing timing of developmental events, early growth patterns, and rates of growth.
8 61 

64-66
 Studies that examine weight status at a single point in childhood or adolescence omit 

important information on the patterns and rates of growth from infancy that have been 

shown to be predictive of future health status.  The current study allowed observation of 

the impact of prenatal exposure to GDM on BMI in infancy, timing of adiposity rebound, 

and the rate of incline in BMI throughout early childhood.  While each of these 
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characteristics of early growth has been shown to have important implications for later 

overweight and obesity, it is the combination of these characteristics that conveys the 

most meaning when evaluating the risk of obesity and future metabolic disease. Indeed, 

these observations, considered together as growth patterns, provide the very best insight 

into child health.  

The statistical technique chosen for this thesis is the best method currently available to 

analyze these complex growth patterns.  Indeed, LGCM is an advanced statistical 

technique that allows repeated observations to be treated not just as multiple related data 

points to be assessed on the individual and group levels, but as a single continuous 

phenomenon for each individual.  It is for this reason that this was the most appropriate 

analytic approach to address the research questions in this thesis. As LGCM is based in 

structural equation modelling (SEM), this permitted designing a causal model that could 

simultaneously address direct and indirect effects of the exposure of interest on BMI 

trajectories while also adjusting for other upstream predictors.  Indeed, SEM-based causal 

models take into account the timing of impact of different predictors as well as 

relationships between them, resulting in a more realistic theoretical framework.  

The explicit treatment of missing data in analyses reflects another one of this study’s 

analytical strengths.  Indeed, missing data is a persistent issue with panel data due to the 

inevitability of attrition in longitudinal data collection. The statistical software used to 

conduct analyses in this study, Mplus,
162

 was designed for longitudinal data analysis and 

offers a number of options for missing data adjustment. As described previously, missing 

data were adjusted using FIML estimation, which is a method that has been shown to 

outperform other missing data methods in terms of efficiency and bias.
165

  While other 

methods to deal with missing data in SEM-based analyses involve atheoretical deletion of 

cases with missing values (e.g. listwise deletion, pairwise deletion), FIML is based in 

theory and uses all available observed data to adjust for missing values and produce 

unbiased parameter estimates in MAR data conditions.
165

  

5.4.2 Dataset  

This study used a large dataset that contained population level data that was collected 
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using a strong, complex sampling design, as described in Section 3.1.2.  This sampling 

design resulted in a nationally representative sample population, and thus the use of this 

dataset in the current study ensured study results would be relevant and generalizable to 

the Canadian pediatric population.  

5.4.3 Groundwork for Future Research 

As more studies begin to utilize longitudinal data to assess early-life predictors of 

childhood overweight and obesity, there will likely be more research conducted with the 

objective of examining rates and patterns of childhood growth.  As more longitudinal 

childhood health data become available, there will also be more opportunities to conduct 

this type of analysis.  Currently, few studies have used LGCM in the context of pediatric 

obesity research.  However, the growing interest in how patterns of childhood growth 

predict later weight and health outcomes will necessitate more research using this 

analytic technique. Since the use of growth curve modelling using latent variables is 

relatively novel in epidemiological research, studies such as this one will help to lay the 

groundwork for future childhood obesity research.  Indeed, future studies can utilize the 

framework of the current study to address similar research questions by using new 

datasets, linking current datasets to hospital records containing more accurate maternal 

and child health information, and improving on the theoretical model as new variables 

become available.  

5.5 Conclusions and Recommendations  

This study took an analytic technique for longitudinal data not commonly used in child 

obesity research to assess important prenatal risk factors for childhood BMI.  With the 

epidemic of childhood obesity and the ever-growing prevalence of obesity-related 

metabolic disorders among children, the focus of pediatric obesity research has been 

shifting to causal mechanisms for obesity present earlier and earlier in development. The 

current study sought to examine prenatal contributions to the development of childhood 

overweight and obesity by looking at the effects of prenatal exposure to gestational 

diabetes mellitus on childhood BMI trajectories. Although the study findings did not 

reach statistical significance, interesting patterns emerged from the estimated models that 
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may warrant further investigation. Future research in this area must use data that contains 

complete maternal pre-pregnancy information and a study design that also accounts for 

postnatal factors in order to arrive at conclusions that have potential clinical and 

therapeutic value. Nevertheless, this study highlights the fact that early childhood growth 

is complex and studies that attempt to assess predictors of unhealthy childhood growth 

should examine child weight outcomes in context of this complexity.   
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Appendix A: Summary of previous studies examining the association between 
maternal impaired glucose tolerance (IGT) and weight status of offspring.  

 

Author(s)
/Year 

Study 
Information 

Population 
Characteristics 

Sample 
Size 

Measure of 
Maternal IGT 

Child Weight 
Outcome/ 
Measure 

Measure of 
Association 

Estimate of Association 
between Maternal IGT and 

Child Weight Outcome 

Boersch-
mann et 

al. 75 
/2010 

Germany – 
Prospective 

German GDM 
offspring study 

(GDM study) and 
BABYDIAB study 

(1989-2000) 

Children born to 
mothers with GDM 
(OGDM), mothers 

with type I diabetes 
(OT1D), and 

nondiabetic mothers 
(ONDM) followed 

from <1 to 14 years 
of age 

1,420 75-gram Oral 
Glucose 

Tolerance 
Test (OGTT; 
from GDM 

study)/ Type I 
diabetes 

status (from 
BABYDIAB 

study) 

Overweight at 
age 2, 8, and 
11 years (BMI 

≥ 90th 
percentile)/ 
weight and 

height 
measured by 
physicians at 

clinic visits 

Percent 
increase in 

obesity 
prevalence 

due to GDM 
exposure  

Increase in overweight at 
age 2, 8, 11 comparing 

OGDM to OT1D and 
ONDM: 31.1%, 15.8%, 

15.5% (p = 0.05) 

Buzinaro 
et al.76 
/2008 

Brazil - Obstetrics 
Hospital of the 

Faculty of 
Medicine of 

Botucatu 
(HCFMB) 

Obstetric Service 
(1988-1999) 

Pregnant women 
who participated in 

previous HCFMB 
studies and their 

children  

73 Normal, 
hyperglyc-

emic, or 
GDM defined 

by OGTT & 
daily 

glycemia 
(American 
Diabetes 
Society & 
Brazilian 

Guidelines on 
Dyslipidemia)  

Weight at 
birth and 

overweight in 
adolescence 
(BMI ≥ 85th 
percentile)/ 

Neonatal 
questionnaire 

and 
anthropomet-
ric measures  

Comparison 
between 

groups using 
ANOVA and 
Goodman 

test 

Birth weight: Higher in 
offspring of GDM mothers 

3667 ± 527 g) than 
hyperglycemic and control 
mothers (3282 ± 401 and 

3167 ± 565 g) p<0.05 
 

Overweight: More 
offspring of GDM mothers 
overweight compared to 
control (52.2% vs 14.8%) 

p<0.05  
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Catalano 
et al. 77 
/1995 

United States 
(Vermont) - 
Longitudinal 

study of 
carbohydrate 
metabolism 

before and during 
early and late 

gestation (1984-
1990) 

Healthy, non-obese, 
non-smoking 

women with either 
normal glucose 
levels prior to 
pregnancy and 
GDM/abnormal 

glucose tolerance 
during pregnancy or 
normal throughout 

16 GDM 
diagnosis or 
at least one 
abnormal 
glucose 

tolerance 
test score 

Neonatal 
growth/ birth 

weight, fat 
mass 

Coefficient of 
determin-
ation (R2) 
(Maternal 

insulin 
sensitivity 

before/ 
during 

pregnancy) 

Birth weight and insulin 
sensitivity during 

pregnancy: R2 = 0.48* 
 

Fat mass and insulin 
sensitivity before 

pregnancy: R2 = 0.46* 
 

*Adjusted for significant 
independent variables 

Cho et 
al.78 

/2000 

United States – 
The Diabetes in 

Pregnancy Center 
(Northwestern 

University) 
longitudinal study 

of maternal 
metabolism 
(1977-1983) 

Offspring of mothers 
with GDM or 

pregestational 
diabetes (PGDM) 
and offspring of 
control mothers 

with no abnormal 
glucose tolerance 
during pregnancy 

179 GDM or 
PGDM 

diagnosis 

BMI at ages 
10 to 16/  
measured 
height and 

weight 

Difference in 
average BMI 

score 
comparing 
offspring of 
GDM/PGDM 
mothers with 

control 
mothers 

Average BMI* in 
OGDM/OPGDM: 22.5 ± 5.6  
Average BMI* in offspring 
of control mothers: 20.5 ± 

4.0 
(p<0.005) 

*Controlled for age and 
sex 

Crume et 
al. 15 

/2011 

United States 
(Colorado) – 

Exploring 
Perinatal 

Outcomes in 
Children (EPOCH) 

Study (1992-
2002) 

Singleton children 
aged 6 to 13 

exposed to GDM 
and random sample 
not exposed to GDM 

461 GDM status 
(positive/ 
negative) 

from health 
insurance 
company 
perinatal 
database 

Adiposity, fat 
distribution/ 
BMI, waist 

girth, skinfold 
thickness, 

MRI 
measured by 
researchers 

Average 
difference 
(measures) 
comparing 
GDM to no 

GDM 

BMI: 1.3 kg/m2 higher 
(p=0.02) 

Waist: 4.2 cm larger 
(p=0.004) 

Visceral, subcutaneous, 
and central fat: higher 

(p=0.01) 
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Dabelea 
et al. 79 
/2000 

United States 
(Arizona) – 

Longitudinal 
study of diabetes 

and related 
complications 

(1965) 

Pima Indian families 
with two or more 

non-diabetic 
children; ≥1 child 

born prior to 
maternal diabetes 
diagnosis and ≥1 
child born after 
(same father)  

183 Diabetes 
diagnosed 

with 75-gram 
OGTT 

according to 
WHO (1985) 

criteria 
(Medical 
history) 

BMI at age 
13/ recorded 

height and 
weight  

Mean 
difference in 
BMI between 

siblings 
exposed to 

diabetes and 
unexposed 

BMI at age 13: 2.6 kg/m2 
(95% CI: 0.9-4.3 kg/m2) 

higher comparing siblings 
exposed to maternal 
diabetes to siblings 

unexposed to it 
(controlled for sibship) 

Deierlein 
et al.80 
/2011 

United States – 
Pregnancy 

Infection and 
Nutrition (PIN) 
study (2001-

2008) 

Pregnant women 
receiving prenatal 

care from University 
of North Carolina 

Hospitals who 
delivered live, 

singleton infants 

263 Blood 
glucose 

concentra-
tion 

categories: 
<100, 100-
<130, ≥130 

mg/dL 

Overweight at 
age 3 years 
(BMI≥85th 

percentile)/ 
height and 

weight 
measured by 

PIN staff 

Risk ratio for 
overweight 
comparing 
offspring of 

mothers with 
≥130 versus 
<100 mg/dL  

2.34 [95% CI: 1.25-4.38] 
adjusted for maternal 

education, race, prenatal 
smoking, prepregnancy 

BMI, and 
maternal height 

Gillman 
et al.81 
/2003 

United States – 
Growing Up 
Today Study 

(1996)/Nurses’ 
Health Study II  

Children of female 
registered nurses 
aged 9-14 years; 

Important 
exclusions: Mothers 

with pre-existing 
diabetes, children 

with diabetes 

14,881 Maternal 
report of 
diabetes 

diagnosed 
during index 
pregnancy 

(GDM) 

Overweight at 
age 9-14 

years (BMI > 
age- and sex-
specific 95th 
percentile)/ 

child self-
reported 

height, weight 

Odds Ratio of 
overweight 
comparing 
GDM to no 

GDM   

1.4 [95% CI 1.0–1.9] – 
unadjusted 

 
1.2 [95% CI 0.8–1.7] – 

adjusted for birth weight 
and maternal BMI 
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Gillman 
et al. 82 
/2010 

Australia – 
Australian 

Carbohydrate 
Intolerance 

Study in Pregnant 
Women 

(ACHOIS)/ 
Children, Youth 
and Women’s 
Health Service 

(CYWHS)  

Mothers with mild 
GDM who 

participated in 
ACHOIS trial and 
their singleton 

children aged 4-5 
years who were 
linked to CYWHS 
surveillance data 

199 Random 
assignment 
to Routine 
care versus 

treatment for 
mild GDM 
(through 

ACHOIS trial) 

Macrosomia 
at birth and 
BMI ≥ age- 

and sex-
specific 85th 
percentile at 

age 4-5 years/ 
recorded 

height and 
weight 

measures by 
CYWHS  

Percent/ BMI 
Z-score 

difference 
between 

routine and 
treatment 

groups 

Macrosomia at birth: 
21.9% in routine care 

group (n=105) and 5.3% in 
treatment group (n=94) 

 
BMI at age 4-5 years: no 

significant difference 
between groups 

Hillier et 
al. 83 

/2007 

United States –
Kaiser-

Permanente 
Hawaii (KPH) and 

Kaiser 
Permanente 
Northwest 

(KPNW) 
Membership 

databases 

Singleton births at 
KPH/KPNW between 

1995 and 2000; 
Important 

exclusions: Mothers 
with pre-existing 

diabetes 

9,439 Most recent 
GDM 

screening 
test result 

from 
KPH/KPNW 

medical 
records 

Overweight at 
age 5-7 years 
(weight ≥ 85th 
and 95th age- 

and sex-
specific 

percentiles) 
/measured 
weight in 
records 

Odds ratio of 
overweight 
comparing 

higher 3 
quartiles of 

glucose 
challenge 

test scores to 
lowest 

quartile 

1.28 (95% CI 1.02-1.60) 
comparing highest quartile 

of GCT score to lowest 

Lee et 
al.84 

/2007 

Korea –  
Il-Shin Christian 

General Hospital; 
Ajou, Seoul 

National, and 
Pochon Cha 
University 
Hospitals  

Women with 
diagnosed GDM or 
impaired glucose 

tolerance (IGT) and 
their children 

recruited in the 
hospital study 

298 GDM or IGT 
determined 

by 50 g 
glucose 

challenge 
test followed 
by 3h OGTT 

BMI from 
measured 
height and 
weight for 

children aged 
3 to 5 years 

Comparison 
of mean BMI 

between 
offspring of 
GDM versus 
IGT mothers 

BMI at age ≥5 years:  
OGDM: 16.9 kg/m2 (95% 

CI, 16.2–17.4) 
OIGT: 15.2 kg/m2 (95% CI, 

14.3–16.1) 
p<0.01 

No significant differences 
between groups at ages 3 

and 4 years 
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Lindsay 
et al.85 
/2000 

United States – 
(Arizona) 

Epidemiological 
survey of Gila 
River Indian 
Community 
(1955-1994) 

Pima and Tohono 
O’odham Indian 
women between 

with Type 2  
diabetes (DM), no 

diabetes (NDM), and 
prediabetes (PDM) 

2096 Pre-
pregnancy  
diabetes 
diagnosis 
(DM), or 
diabetes 

arising within 
10 years 
(PDM) 

Birth weight 
and BMI from 
5 to 30 years 

of age/ 
hospital 

records and 
research 

examinations 

Comparison 
of birth 

weight and 
age- and sex-
adjusted BMI 

between 
offspring of 
DM, NDM, 
and PDM  

Birth weight significantly 
higher in ODM: ODM 3724 
± 52 g, OPDM 3,541 ± 41 
g, ONDM 3,408 ± 11 g; p< 

0.05  
BMI significantly higher 
comparing ODM to both 
ONDM and OPDM from 

age 5 to 19 years  

Pettit et 
al. 86 

/1985 

United States – 
(Arizona) Gila 
River Indian 

Community of 
Arizona and 

Sacaton/Phoenix 
Indian Health 

Service hospitals 

Pima Indian women 
with no previous 

diabetes diagnosis 
and their offspring 

with recorded 
pregnancies 

between 1965 and 
1984 

1049 Pregestation-
al diabetes 

(PGDM), 
normal GT 

(<140 mg/dL 
blood 

glucose), or 
abnormal GT 
(≥140 mg/dL 

blood 
glucose) 

Percent 
desirable 

weight at age 
5-19 years/ 
child weight 

divided by the 
50th 

percentile 
sex- and age-

specific 
weight for 

height 

Comparison 
of percent 
desirable 

weight 
between 

offspring of 
mothers in 
three blood 

glucose 
groups 

Significantly higher 
percent desirable weight 

at ages 5-9 and 10-14 
years comparing offspring 
of mothers with abnormal 
GT or PGDM to offspring 
of mothers with normal 

GT, controlling for 
maternal obesity 

Plage-
mann et 

al. 41 
/1997 

Germany (Berlin) 
– Department of 
Neonatology of 

the Clinic of 
Obstetrics and 
Gynaecology in 
Berlin-Kaulsdorf 

Children born 
between 1980 and 

1990 to diabetic 
mothers with 

available 
developmental data 

317 Insulin 
dependent 

diabetes 
mellitus 

(IDM) and 
GDM 

Birth weight 
and size and 
BMI at age 1 
to 9 years/ 
recorded 

data, 
measures 

taken during 
study 

Percent SGA, 
AGA, LGA,  

overweight, 
and obese  

No significant differences 
between IDM and GDM 
groups, but both groups 

showed high frequency of 
high birth weight and LGA 
in infancy and overweight, 
and obesity in childhood 
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Silver-
man et 

al. 87 
/1993 

United States 
(Illinois) – 

Prospective 
longitudinal study 
using Diabetes in 
Pregnancy Center 

(1977-1983) 

Pregnant women 
with GDM, 

pregestational 
diabetes (PGDM), or 

no diabetes and  
their offspring  

242 GDM or 
pregestation-

al diabetes 
(PGDM) 

diagnosis 

Birth weight 
and BMI from 
age 3 months 

to 8 years/ 
measures 

taken during 
study 

Comparison 
of BMI 
growth 

curves to 
national 

standards 

Offspring of GDM/PGDM 
women higher BMI from 
age 6 to 9 compared to 
national standards with 

average BMI at 90th 
percentile of general 

population 

Silver-
man et 

al. 88 
/1998 

United States 
(Illinois) – 

Prospective 
longitudinal study 

Diabetes in 
Pregnancy Center 

(1977-1983) 

Pregnant women 
with GDM, 

pregestational 
diabetes (PGDM), or 

non-diabetic and  
their offspring 

? GDM or 
PGDM 

diagnosis and 
amniotic fluid 
insulin (AFI) 
concentra-

tion 

BMI from 
infancy to age 

17 years/ 
Yearly 

height/weight 
measures  

Mean BMI at 
age 14-17 in 
children of 

GDM/PGDM 
versus 
control 
women 

Mean BMI at age 14-17 
years in children of 

GDM/PGDM women: 24.6 
± 5.8 kg/m2 (versus 
control at 20.9 ± 3.4 

kg/m2; p<0.001) 

Tallarigo 
et al.89 
/1986 

Italy – National 
Research Council 

Clinical 
Physiology 
Institute, 

Obstetrical clinic 
(1981-1983) 

Pregnant women 
tested at the 

obstetrical clinic and 
given an oral glucose 

tolerance test 
(OGTT) 

249 Three levels 
of maternal 

plasma 
glucose at 

third 
trimester: 

<100 mg/dl, 
100-119 

mg/dl, and 
120-164 

mg/dl 

Macrosomia 
at birth 

Test for 
linear trend 

between 
maternal 
plasma 

glucose level 
and 

frequency of 
macrosomia 

Percent macrosomia: 
<100 mg/dl: 9.9%,  

100-119 mg/dl: 15.5%, 
120-164 mg/dl: 27.5% 

 
p<0.01 
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Tam et 
al. 90 

/2010 

China (Hong 
Kong) – 15-year 
follow-up study 

of cardio-
metabolic risks in 

adolescents 
(originally 

recruited in 1992-
1994) 

Adolescents aged 15 
years who were part 

of an cohort of 
children born to 

women with GDM 
and age-matched 

controls who were 
examined at 8 years 
of age in a previous 

study 

129 In utero 
hyperinsulin-

emia 
measured by 

C-peptide 
and insulin 

levels in 
umbilical 

cord blood 

Overweight 
(age- and sex-
specific BMI 

≥90th 
percentile)/ 
Height and 

weight at age 
15 measured 
during study 

Odds Ratio of 
overweight 
at age 15 

comparing 
those 

exposed/un-
exposed  to 

hyperinsulin-
emia in utero 

(measured 
two ways) 

In utero hyperinsulinemia 
measured by 

Cord blood insulin level: 
7.66 (95% CI 1.32-44.5)  
Cord blood C-peptide 

level: 10.8 (95% CI 1.69-
69.2) [both adjusting for 
birth weight, maternal 

BMI, maternal GDM status 
and Tanner stage] 

Villa-
Caballero 
et al. 176 
/2009 

United States 
(California) - 
Randomized 
community 

intervention for 
healthy eating 
and physical 

activity 

Children in grades K 
to 2 and their 

mothers recruited 
for healthy 

eating/physical 
activity study 

(predominantly 
Latino) 

725 Maternal 
report of 
diabetes 

diagnosis and 
GDM during 

index 
pregnancy 

Child BMI and 
overweight 
status (age- 

and sex-
specific BMI 
and CDC BMI 

cut-offs)/ 
Measured 
weight and 

height 
collected in 

original study 

Odds Ratio of 
normal 
weight 

comparing 
children 
whose 

mothers had 
GDM to 
children 
whose 

mothers did 
not have 

GDM 

Children of mothers with 
GDM had OR of 0.32 of 
being normal weight, 

adjusted for age, 
education, employment 

status, and marital status 
(p<0.05) 
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Vohr et 
al.91 

/1997 

United States 
(Rhode Island) - 

Prospective 
study, Women 

and Infants' 
Hospital (1991-

1993) 

Mothers diagnosed 
with GDM or not 
(control) during 

index pregnancy and 
their LGA and AGA 

infants seen at birth 
then at age 1 year 

192 GDM 
diagnosed 

with criteria: 
1-h 50-gram 
glucose test 
≥130mg/dl, 

then two 
abnormal 
100-gram 

OGTT 

Weight at age 
1 year/ 
weight 

measures 
based on 

gestational 
age and sex, 

anthropometr
-ic measures  

Multiple 
regression 

for 
independent 

effect  

LGA infants of GDM 
mothers compared to all 
other infants: BMI, waist 

girth, abdominal skin folds 
at age 1 higher than all 
other groups (p<0.001) 

Wright et 
al.92 

/2009 

United States 
(Massachusetts) – 

Project Viva, 
prospective 

prebirth cohort 
study (recruited 

1999-2002) Note: 
Only women with 

GDM received 
counselling to 
manage blood 

sugar 

Pregnant women 
(singleton 

pregnancy) and their 
children 

Exclusions: history of 
previous Type I or II 

DM or polycystic 
ovary syndrome 

with IGT 

1238 GDM, IGT, or 
normal 
glucose 

tolerance 
based on 

fasting and 
non-fasting 

OGTT results 

Adiposity at 
age 3/ age- 

and sex- 
specific BMI, 
subscapular 
and triceps  

skinfold 
thickness 

Multivariable 
linear 

regression of 
child BMI and 
skinfolds on 

maternal 
glucose 

tolerance 
during 

pregnancy 

Adiposity assessed by BMI: 
no statistically significant 

impact of maternal 
glucose tolerance 

 
Adiposity assessed by 

skinfolds: Children of GDM 
mothers had skinfolds 
1.31mm thicker than 
other groups (95% CI: 

0.08-2.55; p<0.04) 

Wroblew
ska-

Seniuk et 
al.93 

/2009 

Poland (Poznan) – 
Clinical Hospital 

of Obstetrics and 
Gynecology 

medical records 

Children born at the 
Clinical Hospital of 

Obstetrics and 
Gynecology with 
mothers who had 
PGDM, GDM, or 
normal glucose 

tolerance during 
pregnancy 

185 PGDM, GDM, 
or normal 

glucose 
tolerance 

during 
pregnancy 

from hospital 
records 

Obesity 
and/or 

overweight in 
childhood (3-
9 years)/ age- 

and sex-
specific BMI z-

score 
measured 

continuously 

Differences 
in BMI z-

scores 
between 
groups 

BMI z-scores higher in 
children born to mothers 
with GDM (0.81 ± 1.01) 
than to mothers with 

PGDM (-0.04 ± 1.42) and 
control mothers (0.07 ± 

1.28) 
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AppendixBB: Description of Latent Growth Curve Analysis.  

Latent Growth Curve Modelling: Explanation and Theory 

From a theoretical perspective, latent growth curve modelling (LGCM) is an analytic tool 

used to test hypotheses about unobserved phenomena that are manifest in observed 

measures. As previously mentioned, LGCM is most effective for the analysis of repeated 

measures from multiwave panel data.
160

 The underlying or “latent” phenomenon is 

theorized to have a similar shape to the curves produced by the repeated measures. 
160

 

However, the observed trajectories are limited by the number of recorded observations and 

thus only provide snapshots of the underlying continuous latent trajectories. 
160

 

Unconditional Models 

The first figure below depicts the LGCM used in the current study minus any explanatory 

variables and is therefore the unconditional version of the model (Figure B1). The boxes, y1 

through y5, represent the observed scores at each data collection point.  In the current study, 

these boxes reflect BMI at ages 2, 4, 6, 8, and 10 years. The circles represent the growth 

factors of the latent trajectory and indicate the intercept (α) and the linear slope (β1) and 

quadratic slope (β2) components of the latent trajectory. The intercept and slope growth 

factors are continuous latent variables that serve as the parameters of the latent group-level 

(average) trajectory to be estimated.  In the current study, there was an a priori expectation 

that trajectories would have a quadratic shape since BMI typically declines after the age of 

2 years before beginning a steady incline throughout childhood.
64

 Thus, two latent 

variables describe slope in the current model, whereas a linear model would only have a 

single latent variable for slope.  

In the unconditional model, the observed repeated measures (y1 through y5) are related to 

the continuous latent variables through the following trajectory equation: 

               
                     (1) 

where yit represents the value of the observed measure for the ith individual at time t, λt is a 

constant fixed to values 0, 1, 2, 3, and 4 for the linear component of the slope of the 
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trajectory, and λt
2
 are simply these values squared for the quadratic component of slope. 

The symbol ϵit indicates the random error for each individual observed measure (i) at each 

time point (t).  

The intercept αi is a constant for each individual and thus has a fixed effect on each of the 

measures yit, indicated by fixed factor “loadings” of 1.0 from the latent variable α to each 

of the observed measures y1 to y5 (Figure B1). The individually-varying linear and 

quadratic growth factors β1i and β2i also have fixed factor loadings, λt and λt
2 

respectively, 

since the model imposes a quadratic shape on the data (Figure B1). The three random latent 

variables αi, β1i, and β2i, can be further described by the following three expressions: 

                     (1.1) 

        
                (1.2) 

        
                (1.3) 

where μα, μβ1, and μβ2 are means of all individual intercept and slope variables and ζαi, ζβ1i, 

and ζβ2i are the individual disturbances or deviations from those means. It is these 

deviations that form the central focus of the analysis and upon which hypotheses are made.   
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y1 y2 y3 y4 y5 
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ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

 

Figure B1. Unconditional quadratic latent growth curve model. 
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The majority of the assumptions of the unconditional LGCM also hold true for the 

conditional model. The first is that the mean of the random errors for all individuals and 

time points, or E(ϵit), is equal to zero. Next, it is assumed that all the intercept and slope 

latent variables, αi, β1i, and β2i, are uncorrelated with the random error ϵit for all individuals. 

That is, these variables are assumed not to reflect the disturbance caused by random error. 

It is further assumed that errors within an individual are uncorrelated over time and that 

errors between individuals are also uncorrelated.   

Conditional Models 

In Figure B2 a time-invariant explanatory variable, or covariate, x1 has been added to the 

original model turning the unconditional LGCM into a conditional LGCM. The covariate is 

time-invariant since it is a variable whose effect on the latent trajectory does not vary with 

time. In the current study, the main time-invariant predictor of interest was prenatal 

exposure to GDM, however a more complex conditional model was also used to control for 

the effects of other time-invariant covariates described in Section 2.1.2 (Figure 2.2). In a 

conditional LGCM, added covariates predict the continuous latent trajectory variables and 

thus have a direct impact on the variables αi, β1i, and β2i and an indirect impact on the 

observed variables y1 to y5 (Figure B2). Therefore, the trajectory equation (1) remains the 

same for the conditional model, but the expressions (1.2, 1.3, and 1.4) for the latent 

variables αi, β1i, and β2i change as follows (for a simple conditional LGCM with covariate 

x1): 

          
   

           (1.4) 

        
    

   
           (1.5) 

        
    

   
           (1.6) 

where x1i is the value of the covariate for each individual and γα1, γβ1, and γβ2 are the 

coefficients for the covariate in each of the intercept and slope equations. The values of 

these coefficients are the primary outputs of interest from the conditional latent growth 

curve analysis.  
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Figure B2. Conditional quadratic latent growth curve model 

 

Advantages of Latent Growth Curve Modelling 

Latent growth curve modelling has a number of advantages. First, unlike other techniques 

for longitudinal data analysis, it does not make the assumption that there is no 

measurement error.
160

 Indeed, as pictured in Figures B1 and B2, latent growth curve 

analysis incorporates time-specific measurement error into the model (ϵn). Second, it 

provides group-level and individual-level information by producing estimates of the mean 

(group-level) and variance (individual variation) for all parameter estimates. Latent growth 

curve analysis also allows variances of the latent intercept (αi) and slope (β1 and β2) 

variables to be correlated, that is, it allows for covariance. This provides a more realistic 

representation of a longitudinal outcome, since initial levels are likely to correlate with the 

rate of change over time of the outcome.  
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AppendixCC: Additional Model Results.  

Table C1. Model results for the effects of all other covariates in the conditional LGCM by gender. 

 Females (N= 1555) Males (N=1619) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights       

        (intercept) ON          
 -0.075 (0.025) -3.038 0.002 -0.031 (0.020) -1.527 0.127 

        (intercept) ON          
0.872 (0.238) 3.658 0.000 0.236 (0.208) 1.136 0.256 

        (intercept) ON         
0.693 (0.272) 2.554 0.011 0.338 (0.268) 1.262 0.207 

        (intercept) ON          
0.211(0.125) 1.692 0.091 -0.005 (0.123) -0.041 0.967 

        (intercept) ON             
-0.029 (0.038) -0.775 0.438 -0.019 (0.034) -0.553 0.581 

       

         (linear slope) ON          
 0.017 (0.015) 1.120 0.263 0.013 (0.014) 0.933 0.351 

         (linear slope) ON          
-0.133 (0.164) -0.816 0.415 0.005 (0.128) 0.043 0.966 

         (linear slope) ON         
-0.170 (0.168) -1.011 0.312 0.079 (0.161) 0.490 0.624 

         (linear slope)  ON          
-0.144 (0.105) -1.366 0.172 -0.050 (0.073) -0.680 0.496 

         (linear slope)  ON             
-0.022 (0.026) -0.836 0.403 0.004 (0.024) 0.165 0.869 

       

         (quadratic slope) ON          
 -0.001 (0.002) -0.545 0.586 -0.002 (0.002) -1.010 0.313 

         (quadratic slope) ON          
0.011 (0.021) 0.554 0.580 0.002 (0.016) 0.104 0.917 

         (quadratic slope) ON         
0.028 (0.021) 1.341 0.180 -0.015 (0.021) -0.708 0.479 

         (quadratic slope) ON          
0.013 (0.014) 0.886 0.376 -0.002 (0.009) -0.247 0.805 

         (quadratic slope) ON             
0.002 (0.003) 0.517 0.605 -0.002 (0.003) -0.582 0.560 
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Table C2. Model results for the effects of all other covariates in the conditional LGCM by breastfeeding for females. 

 Never Breastfed (N= 390) Breastfed (N=1152) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights       

        (intercept) ON          
 -0.126 (0.048) -2.631 0.009 -0.061 (0.028) -2.185 0.029 

        (intercept) ON          
1.335 (0.463) 2.884 0.004 0.789 (0.275) 2.864 0.004 

        (intercept) ON         
1.128 (0.338) 0.768 0.443 0.445 (0.298) 1.495 0.135 

        (intercept) ON          
0.075 (0.271) 0.277 0.782 0.189 (0.142) 1.329 0.184 

        (intercept) ON             
0.078 (0.095) 0.826 0.409 -0.044 (0.043) -1.020 0.308 

       

         (linear slope) ON          
 0.066 (0.028) 2.391 0.017 0.003 (0.018) 0.165 0.869 

         (linear slope) ON          
-0.548 (0.271) -2.020 0.043 -0.016 (0.197) -0.083 0.933 

         (linear slope) ON         
-0.247 (0.266) -0.926 0.354 -0.084 (0.197) -0.425 0.671 

         (linear slope)  ON          
-0.220 (0.163) -1.346 0.178 -0.114 (0.125) -0.917 0.359 

         (linear slope)  ON             
0.014 (0.045) 0.299 0.765 -0.038 (0.032) -1.187 0.235 

       

         (quadratic slope) ON          
 -0.006 (0.003) -1.843 0.065 0.000 (0.002) 0.068 0.946 

         (quadratic slope) ON          
0.052 (0.030) 1.731 0.083 -0.002 (0.025) -0.065 0.948 

         (quadratic slope) ON         
0.035 (0.030) 1.181 0.238 0.017 (0.025) 0.698 0.485 

         (quadratic slope) ON          
0.023 (0.018) 1.336 0.182 0.009 (0.017) 0.532 0.595 

         (quadratic slope) ON             
-0.004 (0.005) -0.705 0.481 0.005 (0.004) 1.132 0.258 
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Table C3. Model results for the effects of all other covariates in the conditional LGCM by breastfeeding for males. 

 Never Breastfed (N= 428) Breastfed (N=1169) 

   Est. (S.E.) Est./S.E. p-value Est. (S.E.) Est./S.E. p-value 

Regression Weights       

        (intercept) ON          
 0.023 (0.035) 0.664 0.507 -0.056 (0.024) -2.368 0.018 

        (intercept) ON          
-0.245 (0.352) -0.697 0.486 0.451 (0.239) 1.885 0.059 

        (intercept) ON         
0.287 (0.389) 0.737 0.461 0.328 (0.349) 0.941 0.347 

        (intercept) ON          
-0.420 (0.194) -2.161 0.031 0.099 (0.145) 0.681 0.496 

        (intercept) ON             
0.082 (0.067) 1.228 0.220 -0.030 (0.041) -0.719 0.472 

       

         (linear slope) ON          
 -0.023 (0.028) -0.827 0.408 0.029 (0.016) 1.838 0.066 

         (linear slope) ON          
0.348 (0.256) 1.356 0.175 -0.139 (0.143) -0.976 0.329 

         (linear slope) ON         
-0.201 (0.277) -0.727 0.467 0.163 (0.182) 0.897 0.370 

         (linear slope)  ON          
0.196 (0.143) 1.369 0.171 -0.108 (0.081) -1.328 0.184 

         (linear slope)  ON             
-0.025 (0.047) -0.526 0.599 0.013 (0.029) 0.441 0.659 

       

         (quadratic slope) ON          
 0.004 (0.004) 1.113 0.266 -0.004 (0.002) -1.976 0.048 

         (quadratic slope) ON          
-0.037 (0.034) -1.084 0.278 0.020 (0.017) 1.194 0.232 

         (quadratic slope) ON         
0.012 (0.036)  0.333 0.739 -0.017 (0.022) -0.748 0.454 

         (quadratic slope) ON          
-0.027 (0.018) -1.515 0.130 0.004 (0.010) 0.427 0.670 

         (quadratic slope) ON             
0.000 (0.006) 0.075 0.941 -0.003 (0.003) -0.765 0.444 
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