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Abstract

The development of multicellular organisms is accompanied by the formation of tis-
sues of precise shapes, sizes and topologies. Remarkable similarities between tissue
topologies, in particular proliferating epithelial topologies, in various species suggest
that the mechanisms that govern the formation of tissues are conserved among species.
To understand these mechanisms various models have been developed.

In this thesis, we present a novel mechanical model for cell divisions and tissue for-
mation. The model accounts for cell mechanics and cell-cell adhesion. In our model,
each cell is treated individually, thus the changes in cell’s shape and its local rearrange-
ments occur naturally as a response to the evolving cellular environment and cell-cell
interactions. We introduce the processes of cell growth and divisions and numerically
simulate tissue proliferation. As tissue grows starting from few cells, we follow the
dynamics of the tissue growth and cell packing topologies. The outcomes are com-
pared with experimental observations in Drosophila wing growth. Our model accounts
for the exponential decay of the mitotic index and reproduces commonly observed cell
packing topologies in proliferating epithelia.

Next, we consider two biologically relevant division schemes, namely, division
through asymmetric division plane and division by Hertwig’s rule. We study the im-
pact of division planes on tissue growth and show that the division plane may affect cell
packing topologies. Development of the tissue is accompanied by cellular rearrange-
ments. We vary the extent of cellular rearrangements and analyse their effects on tissue
topology. We find that when cells are allowed to move freely, more organized packing
topologies emerge.

Keywords: Cell division; proliferation; tissue topology; tissue growth; sub-cellular
element model.
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Chapter 1

Introduction

Cells are the smallest structural and functional units of living organisms. They are often
called the “building blocks of life”. Each cell stores the necessary information for its
existence, is capable of getting energy from interactions with its environment and has
the ability to evolve, regenerate and replicate [1]. Some organisms, such as bacteria and
yeast, consist of a single cell, while others, called multicellular organisms, may contain
trillions of cells. For instance, humans consist of up to 100 trillion cells of varying
kinds and functionality [2].

One of the most fundamental properties of the cell is their ability to replicate. Cells
replicate through division (Fig. 1.1). The cell division cycle is a highly regulated mul-
tistage process, during which the parental cell gives rise to two daughter cells [4, 5]. It
is hard to overstate the importance of cell division. During the lifetime of the human
body, for example, about 10,000 trillion cell divisions occur [6]. Precise cell divisions
are necessary for proper tissue development, cell differentiation and renewal. Abnor-
malities in cell divisions result in various diseases, cancer among them [7, 8, 9]. Mitosis
has been studied since early 1880s, when Flemming first observed mitotic cells. Much
work has been done to understand the molecular machinery of cell divisions, their reg-
ulatory mechanisms and the proteins participating in mitosis [10]. Recent studies show
that cell divisions are not only governed by the signalling of molecules, but also depend
upon cell mechanics. Mechanical forces ensure mitotic cells have a rounded shape be-
fore the division [11]. They define the selection of the division plane [12, 13]. During
cytokinesis and cell migrations, cell shape changes rely on the mechanical properties
of the cell’s cortex [14, 4, 15]. Thus, cell divisions are complex processes that depend
on both molecular signals encoded in genes and cell mechanics.

Cell division is the mechanism by which multicellular organisms develop from a

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sand dollar zygote during first mitosis. Staining highlights microtubules
and chromosomes. Top panel: mitotic spindle segregates chromosomes. Bottom panel:
successive stages of cortical contraction during cytokinesis. Image is taken by George
von Dassow (adapted from [3] with the George von Dassow’s permission)

single fertilized egg cell. During development, a series of mitoses produces tissues
of various shapes and sizes. Tissue in its functional form has a specific shape, size
and topology. One example is the packing of cells in the vertebrate’s eye lens [16].
Fibre cells are tightly packed into a hexagonal structure. This structure minimizes light
scattering by cell membranes, which is essential for transparency of the lens. Another
example is the hexagonal packing of cells in the Drosophila fruit fly wing. Regular
spacing of wing cells define the regular spacing of wing hair, essential for air flow
guidance during flight [17]. Mechanisms that govern tissue growth and morphogenesis
are not completely understood [18]. They regulate tissue topology by means of a few
cellular processes, most importantly, through cell divisions [19]. Understanding the
processes involved in cells divisions, as well as their impact on tissue formation is one
of the challenges in developmental biology.

Computer simulations are often used to predict the behaviour of biological sys-
tems [20]. Simulations are run on model systems, which approximate real systems
with some degree of accuracy. The extent of details of the real system that should
be included in the model depends on the phenomenon of interest, its length and time
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scales [21]. For example, in studies of transportation through the cell membrane, the
latter is modelled as a bilayer of lipid molecules [22], whereas studies of red blood
cell shapes treat the membrane as an elastic sheet [23]. Cellular processes in tissue
have different time scales. Processes involving relaxation of cell shapes take several
minutes, cell divisions happen within hours and tissue morphogenesis may take sev-
eral days [24]. As for the length scales, they range from nanometres (various cellular
components) to micrometers (cells themselves) to millimetres and higher (tissues) [2].
These time and length scales exceed typical scales of all atom classical molecular dy-
namics simulations, and a coarse-grained modelling approach should be used.

Models with various degrees of coarse-graining have been used to address the ef-
fects of proliferation on tissue development [25, 26, 27, 28, 29, 30, 31, 32]. In par-
ticular, vertex models are a common choice to examinethe effects of cell divisions on
tissue growth and cell packing topology. Vertex models are inspired by the structure of
epithelial tissue, commonly used as a model system [27]. In epithelium, cells tightly ad-
here to their neighbors and display little rearrangement during tissue development [19].
Such tissue can be described as a polygonal network, where each polygon represents a
cell [27]. Vertex models have been used to study the effects of cell mechanics, prolif-
eration and growth control on tissue topology [28, 27, 33, 34]. Lack of extensive cell
rearrangements and tight packing justifies the modelling of cell shape and topology
through its neighbors. A more realistic approach is to model each cell independently.
Existing single cell based models have been used to study a wide range of processes
in multicellular systems [32, 35, 36, 37, 38, 39]. However, only a few recent works
address topological patterning [39].

In this thesis, we develop a novel mechanical single-cell based model to study the
dynamics of tissue growth and the emergence of cell packing topologies in epithelium-
like tissues. The advantages of using a model in which each cell is treated individually,
include a more realistic and detailed description of the cell shapes, a more natural re-
sponse of cell to external stimuli and the ability to incorporate cell migrations, that are
common in various biological processes [40, 9].

This thesis is organized as follows. In Chapter 2, background on biological aspects
of cell divisions, tissue formation and cell packing topologies are presented. Selected
models, previously used to explore tissue growth and formation, are discussed as well.
Chapter 3 introduces the physical and numerical background relevant to this work. We
present the details of our model in Chapter 4 along with the parametrization and sim-
ulation details. In Chapter 5 we follow the dynamics of epithelial tissue proliferation,
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when the proliferation mechanism is similar to the one observed experimentally in the
development of Drosophila wing epithelium [19]. Alternative proliferation schemes
are explored in Chapter 6. Finally, we present our conclusions in Chapter 7.



Chapter 2

Biological Background

2.1 Cell Structure

There are two classes of cells: prokaryotic and eukaryotic cells. Bacteria and archae
belong to prokaryotes, whereas all animal, plant and fungi are eukaryotes [2].

Prokaryotic cells have a relatively simple structure (Fig. 2.1). These are small cells,
with an average diameter of about 1 to 10 µm [41]. A prokaryotic cells are enclosed
in a cell envelope, consisting of a capsule, a rigid cell wall, and a plasma membrane.
Some bacteria also have an outer membrane, located between the cell wall and capsule.
Both the capsule and the cell wall provide structural support to the cell and protection
from the external environment [42]. The main difference between prokaryotes and eu-
karyotes is the lack of compartments in prokaryotic cells. The plasma membrane in
prokaryotes forms a single closed compartment filled with aqueous solution, or cyto-
plasm, where genetic material is dissolved along with other contents of the cell.

Eukaryotic cells are bigger, with an average diameter of 10 − 100 µm. Unlike
prokaryotic cells, the interior of an eukaryotic cell is divided into several compart-
ments, each with its specific function. These compartments are called organelles. Each
organelle is separated from the rest of the cell interior by a membrane, and the entire
cell itself is encapsulated in a plasma membrane.

Although animal and plant cells belong to the same class of eukaryotes, they are
structurally and functionally different. Plant cells have rigid cell walls, which define
their rectangular shapes. Animal cells, on the contrary, lack cell walls and have irregular
shapes. Due to the absence of rigid cell walls, animal cells are flexible and mobile,
whereas plant cells are immobile inside the tissue. Schematic structures of eukatyotic
animal and plant cells are shown in Figure 2.2.

5
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Figure 2.1: Prokaryotic Cell. Plasma membrane encapsulates cell, which is filled with
cytoplasm. Prokaryotic cells lack a nucleus. Source: wikipedia:prokaryote cell dia-
gram. This picture is available under the Creative Commons License.

In the following sections we briefly review organelles and structures of cell that are
related to the process of cell division.

2.1.1 Chromosomes and Nucleus

In both prokaryotic and eukaryotic cells, the genome is encoded in large macromolecules,
called DNA. Most prokaryotes have a single circular DNA molecule, while the genome
in eukaryotes is encoded in multiple DNA molecules [41]. The entire length of ex-
tended DNA molecules can achieve orders of millimetres for prokaryotes and meters for
eukaryotes [41]. For example, the total DNA length in a human cell is about 2 m [43].
In order to fit into small spaces, namely prokaryotic cells or nuclei with diameters of
µms, DNA undergoes compaction by forming complexes with proteins [43]. Below, we
describe the organization of DNA in eukaryotic cells based on the review of Ref. [43].
In eukaryotes, DNA first wraps about 2 turns around proteins called histones. This
DNA-histone complex is called the nucleosome. Linear chains of nucleosomes form a
fibre-like structure 10 nm in diameter, known as a chromatin. In the next organization
levels, chromatin can further fold on itself and form even denser structures, called chro-
mosomes. While a higher level of condensation makes chromatin more compact, it also
blocks access to genetic information. The compaction of chromatin varies throughout
the cell cycle in eukaryotes. It is relatively decondensed in the stages where the cell
grows and replicates its genetic material, and achieves its maximum condensation right
before the division.
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Figure 2.2: Eukaryotic Cell: Eukaryotic cell consists of different organelles with spe-
cific functions. Unlike prokaryotes, DNA is stored in the nucleus (a) Animal cell struc-
ture (b) Plant cell structure. Source: wikipedia:animal cell structure, plant cell struc-
ture. This picture is available under the Creative Commons License.
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The eukaryotic cell isolates the genome from the rest of the cell in the nucleus [41].
The nucleus has a diameter of 5-10 µm. The content of the nucleus is enclosed in
a nuclear envelope, which supports the structure of the nucleus and acts as a barrier
against the contents of cytoplasm. The nucleus not only stores the genome, but also
provides an environment for selective access to it. The prokaryotic cell lacks a nucleus.
Its chromosome is dissolved in the cytoplasm and is located in the central part of the
cell.

2.1.2 Plasma Membrane

Membranes play an important role in numerous biological processes. They define in-
tracellular compartments, isolate cell contents from the extracellular environment and
provide pathways for transporting molecules in and out of the compartments or cell.
The plasma membrane participates in cell-cell signalling [44] and in processes involv-
ing cell shape changes, such as cell movements and cell divisions [14, 45].

Lipids are the major components of membranes. The amount and type of lipids in
a membranes varies, depending on the type of membrane. Most cell membranes, the
plasma membrane in particular, consist of approximately 50% lipids and the remaining
50% are proteins [41].

Lipids are amphiphilic. They consist of hydrophobic hydrocarbon chains and a
polar head group. In aqueous solution, hydrophobic groups tend to minimize their un-
favourable contacts with water. Hydrophilic head groups, on the contrary, favour inter-
actions with water. As a result, when lipids are dissolved in water, they spontaneously
aggregate into complexes, where polar head groups are exposed to water, while hy-
drophobic chains are buried inside. These complexes are stabilized by hydrophobic
interactions, driving the aggregation of hydrophobic chains, Additional stabilization is
provided by hydrogen bonds, formed between polar head groups and surrounding water
molecules. The shape of lipid aggregates in aqueous solution depends on the geomet-
rical shapes of lipids. Lipids are assigned geometrical classes, based on the ratio of
surface area of head groups and cross-sectional area of hydrocarbon chains [44]. If
the ratio of head to tail is high, lipids are classified as cones. In water-like solutions,
such lipids tend to form spherical micelles. Lipids with approximately the same sizes
of heads and tails are cylindrical and form a bilayers in aqueous solution.

Lipids found in biomembranes have a cylindrical form [44]. When dissolved in
water, they aggregate into a bilayer with a thickness of 4− 5 nm (Fig. 2.3). Lipid tails
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Figure 2.3: The cell membrane consists of a lipid bilayer with embedded proteins.
Head groups of lipids are exposed to the aqueous solution, while tails are buried inside,
forming the hydrophobic core of the bilayer. Beneath the plasma membrane is the
cytoskeleton, a protein meshwork that supports cell structure and defines its shape.
Source: wikipedia:cell membrane detailed diagram. This picture is available under the
Creative Commons License.

are buried inside the bilayer. They assume directions perpendicular to the surface of
bilayer, and form a so-called hydrophobic core. The hydrophobic core acts as a barrier
against the diffusion of hydrophilic molecules across the membrane. Hydrophilic head
groups are exposed to the water.

Proteins are another major component of membranes. Their concentrations vary
from 20% to 80%, depending on the membrane type. Proteins either span the membrane
(transmembrane proteins), anchor the membrane by bonding covalently with the lipid
(lipid-anchored proteins), or form associations with the membrane through interactions
with the lipid head groups or transmembrane proteins (peripheral proteins) as seen in
Figure 2.3. While lipids provide the membrane with its sheet-like structure, proteins
are responsible for the functionality of membranes, including transportat through the
membrane or cell-cell communication [44].

In a pure phospholipid bilayer, lipids can rotate around their long axes and diffuse
in lateral directions with a 10−8 cm2/sec diffusion rate [2]; hence lipid bilayers behave
like a two-dimensional fluid. Similar diffusions in the lateral direction, but with smaller
rates, are observed for lipids and embedded proteins in biomembranes [44]. Based on
this observation, Singer et al. [46] proposed a fluid mosaic model for biomembranes,
where the membrane is presented as a fluid-like phospholipid bilayer with diffusing
proteins embedded in it. The fluid mosaic model predicts unrestricted diffusion and
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a random distribution of membrane components. However, recent data show that the
membranes have a dynamic, yet compartmentalized structure [47, 48], and the fluid
mosaic model should be refined. Vereb et al. [49] proposed a modified version of the
fluid mosaic model. In this model, known as the dynamically structured mosaic model,
non-randomly distributed components of the membrane form mosaic-like clusters, and
fluidity is interpreted as a continuous dynamic restructuring of clusters.

2.1.3 Cytoskeleton

Throughout its lifetime, the cell and its components are in constant motion. The de-
velopment of the organism is accompanied by collective cell migrations; migrations of
leukocytes participate in the immune response [40]. Small vesicles and even organelles,
such as mitochondria, are transported from one part of the cell to the other. During
cell division, duplicated chromosomes separate and move to the opposite poles of the
cell [50]. All these motions are regulated by the cytoskeleton, a protein network that
extends throughout the whole cell. The cytoskeleton not only governs cellular motions,
but also supports cell structure and defines its shape.

It was initially thought that only eukaryotic cells have a cytoskeleton, but recent
studies have found cytoskeletal structures in prokaryotic cells as well [51].

The eukaryotic cytoskeleton consists of three types of protein filaments: microfila-
ments, intermediate filaments and microtubules [2].

1. Microfilaments or actin filaments: Actin filaments support the cell membrane,
define cell shape and participate in cellular movements. The monomer of microfila-
ments is a globular protein, actin, which under physiological conditions, polymerizes
into a linear chain called the actin filament. The actin filament has a diameter of 7 nm.
Its contour length can achieve up to 30 − 100 µm in vitro and several micrometers in

vivo [52]. They are relatively stiff and have a persistence length lp ranging from 3− 17

µm, which is comparable to their length in vivo. Thus, actin filaments are semiflexible
polymers [53].

Actin filaments can further link into more complex structures stabilized by actin
cross-linking proteins. There are two types of structures that actin filaments can form,
namely bundles and networks [2]. Bundles (Fig. 2.4 (Left)) are formed when actin
filaments tightly pack parallel to each other. In particular, actin filaments along with
myosin filaments may form contractile bundles, which participate in cell division (ac-
tomyosin contractile ring), cell adhesion and locomotion (stress fibres) [54]. Actin fila-
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Figure 2.4: Structures formed by actin filaments. (Left) Tighly packed actin filaments
(black lines) form bundles. (Right) Orthogonally cross-linked actin filaments (black
lines) form loose semiflexible networks with an average distance lc between the cross-
linking proteins (gray circles).

ments also form networks (Fig. 2.4 (Right)), where they are cross-linked orthogonally,
forming isotropic meshworks [53]. A variety of actin binding proteins may participate
in the formation of the network, so the mean distance between cross-links can be as
small as 0.1 µm [55]. Actin filament networks display properties of viscoelastic ma-
terials under physiological conditions [56, 57]. An example of an actin network is a
layer beneath the plasma membrane known as the cell cortex (the network of filaments
in Fig. 2.3). The cell cortex is a relatively thin (100 nm) dynamic layer coupled to the
plasma membrane through a variety of linker proteins, in particular, the motor protein
myosins. Myosins are capable to exert contractile forces on actin filaments leading to
the contraction of the cortex. This attachment of the plasma membrane to the actin
cytoskeleton, known as membrane-to-cortex attachment (MCA), provides mechanical
support to the membrane and plays an important role in processes involving cell shape
changes [58].

2. Intermediate Filaments: Intermediate filaments exist in almost all animal cells,
but they are absent in plant and fungi cells [2]. In the absence of cell walls in ani-
mal cells, these filaments are responsible for the mechanical strength of the cell [59].
Unlike other filaments, various proteins can serve as subunits during intermediate fil-
ament assembly [59]. At the initial stage of filament formation, subunit proteins form
dimers. Dimers can be both homopolymeric and heteropolymeric. After dimers are
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formed, they associate into tetramers, which, in turn, associate into long protofila-
ment chains. The next stage includes lateral association of protofilaments into loose
rope-like protofibril. At the final stage the protofibril undergoes compaction and forms
10 nm thick intermediate filaments. Intermediate filaments are an order of magnitude
more flexible than actin filaments, with a persistence length ranging from 200 nm to 1
µm [53].

Like actin filaments, intermediate filaments can form bundles or networks with the
help of intermediate filament-associated proteins. These proteins also link interme-
diate filament structures to microfilaments, microtubules, plasma and nuclear mem-
branes. Similar to actin filament networks, networks of intermediate filaments exhibit
viscoelastic properties [60].

3. Microtubules: Microtubules are polymerized from tubulins. Tubulin is a het-
erodimer that binds to other tubulins, forming 5 nm thick linear chains of protofila-
ments. 13 protofilaments are then arranged side by side and form a hollow tube, the
microtubule, with a thickness of 25 nm and a length up to 100 µm [56].

There is a continuous association and dissociation of tubulins in existing micro-
tubules, which makes them dynamic structures [61]. If the association rate is higher
than the dissociation rate, the microtubule grows, otherwise it shortens. In cells, rates of
association and dissociation are controlled by microtubule-associated proteins, which
can stabilize or destabilize microtubules. This dynamic nature of microtubules plays an
important role in cells, where, for example, during cell divisions 100 µm long micro-
tubules should depolymerize and reorganize themselves in just several minutes [42]. In
contrast to microfilaments and intermediate filaments, microtubules do not form bun-
dles or networks. They behave like viscoelastic materials, but are much stiffer than
microfilaments, with a persistence length > 1 mm [62, 63, 53].

All eukaryotic cells have microtubule-organizing centers (MTOC) [2]. They serve
as nucleation sites for microtubule growth. In animal cells organelles called centro-
somes serve as MTOC. The centrosome is localized at the central part of the cell, close
to the nucleus. One end of the microtubule is bound to the centrosome, and the other
end is directed towards the cell periphery.

2.2 Cell Cycle

One of the most fundamental properties of cells is their ability to self-reproduce. All
cells reproduce through divisions during which parental cells divide into two daughter
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Figure 2.5: Cell cycle diagrams: (a) The cell cycle of a bacterium consists of three
stages: growth (B), replication (C) and division (D) (b) The cell cycle of an eukaryotic
cell consists of interphase (G1, S and G2) and mitosis (M) stages.

cells. Daughter cells further grow and divide themselves. By repeating this cycle over
and over again, a single fertilized egg cell develops into a multicellular organism dur-
ing embryonic development, and unicellular organisms, like bacteria, create colonies.
Cell divisions also take place when damaged or dead cells are replaced with new ones.
The cell division cycle consists of various stages, during which cells grow, their DNA
replicates and segregates, and finally, they split into two cells [5, 2].

Prokaryotes have a relatively simple cell cycle [5]. A typical prokaryotic cell cycle
consists of three stages: the period between the cell birth and the initiation of chromo-
some replication, known as stage B, the period required for chromosome replication,
known as stage C, and the time between completion of chromosome replication and
completion of division, known as stage D (see Fig. 2.5(a)). In the growth stage, the
cell grows and prepares for chromosome replication, which takes place at the replica-
tion stage [5]. For prokaryotes, the replication of chromosomes always starts at the site
called the “origin of replication” (oriC), and ends at the “terminus of replication” (ter).
Prokaryotic chromosomes segregate along with replication. Right after replication of
oriC, copies of chromosome push apart and move to the opposite poles of the cell.
Unlike eukaryotes, prokaryotes do not have special machinery to separate replicated
chromosomes, and the mechanisms of segregation are still unknown.
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Initiation of the division stage usually occurs when the cell has doubled in mass. It
is coordinated with completion of chromosome replication and segregation. At the ini-
tial stage of the cell division, protofilaments of the Filamenting Temperature-Sensitive
Mutant Z (FtsZ) proteins assemble in the plasma membrane and form a ring-like struc-
ture, known as a Z-ring [5]. FtsZ proteins are homologs of eukaryotic tubulin [51].
Similar to tubulin, they polymerize into linear protofilaments in a head-to-toe man-
ner, though do not form tube-like structures. For most bacteria, a Z-ring is assembled
mid-cell [42]. Osawa et al. [64] have shown that the Z-ring is capable of producing
membrane constriction by applying contractile forces on the membrane. Along with
the FtsZ protein, other proteins are recruited to stabilize and anchor the Z-ring to the
membrane, as well as control polymerization of FtsZ protofilaments. Together they
form a bacterial division apparatus, a divisome. Bacterial cells are split by different
mechanisms [42]. During division by constriction, the cell envelope layers contract,
pinching the cell. By the end of the constriction, the cell envelope layers close, and the
cell splits in two. The division mechanism by septation is accompanied by coordinated
synthesis of the transverse cell wall (septum) at the site of Z-ring assembly and invagi-
nation of plasma membrane. Lastly, some bacteria, for instance E. coli, divide through
coordinated constriction of membranes and septum formation [65].

The lengths of different division stages in bacteria depend on the rate of cell growth.
For fast growth rates, the length of replication and division stages stay constant regard-
less of the cell doubling time. This may induce disappearance of the growth stage,
when the cell doubling time is less than the time spent in replication and division stages
combined [66]. In nutrient-poor environments, bacterial growth is slow, and one can
observe distinct growth stages as well as prolonged times spent in chromosome repli-
cation and division [67].

The eukaryotic cell cycle is more complicated (Fig. 2.5 (b)). It consists of two major
parts, interphase and mitosis. During interphase, the cell grows and its chromosomes
replicate. Interphase is divided into three stages: G1 (Gap 1), S, and G2 (Gap 2). After
division, the newborn cell enters the G1 stage, where it grows and synthesises the nec-
essary components for DNA replication. Once the cell is ready for replication, it enters
the S stage. Each chromosome replicates, but both sister chromatids stay attached at
the centromere, forming the famous ’X’-shaped chromosomes. Microtubule organizing
organelles, the centrosomes, are also replicated at this stage. Once replication is over,
the cell enters the G2 stage, where it continues to grow and prepare for division.

Cell division takes place during mitosis (M stage in Fig. 2.5). At the initial stage of
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Figure 2.6: Mitotic spindle. Microtubules reorganize to form the mitotic spindle. Mi-
crotubules attach to chromosomes and pull them apart. Source: wikipedia:spindle ap-
paratus. This picture is available under the Creative Commons License.

mitosis, chromosomes condense. In order to segregate chromosomes, eukaryotic cells
assemble a mitotic spindle (Fig. 2.6).

In animal cells, the mitotic spindle starts to form when centrosomes separate and
move to the opposite poles of the cell. Two centrosomes serve as poles of the spindle.
At this stage microtubules undergo extensive reorganization: long microtubules which
were extended throughout the whole cell in interphase, are now replaced by shorter
ones. One end of the microtubules stays anchored to the centrosome, while the other
end rapidly grows and shrinks, exploring its environment, until it finds a chromosome
and attaches to it. Sister chromatids are attached to microtubules anchored to the op-
posite centrosomes, as shown in Figure 2.6. When the spindle formation is complete,
microtubules apply forces on chromosomes, pulling and pushing them. Chromosomes
move along the net force direction and align at the spindle equator, also known as the
metaphase plate, which is perpendicular to the spindle. Once all chromosomes are
aligned at the metaphase plate, chromatids are separated and pulled towards the spindle
poles.

The final stage of division is cytokinesis, when the parent cell divides into two
daughter cells. At the initial stage of cytokinesis, the contractile ring is formed be-
neath the plasma membrane, along the division plane (metaphase plate). It consists of
actin filaments bundled together by the protein myosin. Interactions between actin and
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myosin are capable of creating a contraction with the contractile force of 103 − 105

pN [4]. Contraction of the ring steadily decreases the opening between the two parts of
the cell until it is completely sealed.

In plant cells, the existence of the rigid wall prevents division by contraction. In-
stead, plant cells build new cell walls along the division plane. In contrast to animal
cells, the position of the new cell wall is not defined by the mitotic spindle in plant
cells. It begins to form at the G2 stage, during which cortical microtubules align in the
ring-like structure beneath the plasma membrane, called the preprophase band. A set
of microtubule and actin filaments extend from the band towards the nucleus, forming a
wheel-like structure in the place of the future cell wall. After the chromosomes are sep-
arated, a cell plate is formed in the center of the cell, at the location of the preprophase
band, by adding new plasma membrane and cell wall material. It continues to grow
until it meets the parental cell walls.

As discussed above, the cell division plane is defined by the position of the mi-
totic spindle (or peripheral band in plant cells) to ensure proper distribution of chromo-
somes after division. Based on the position of the division plane, cells divide symmetri-
cally, producing identical copies of themselves, or asymmetrically. The latter produces
daughter cells with different sizes and fates. Symmetric division was first observed in
the 19th century. Based on their observations of plant cells, Hofmeister and Errera de-
fined simple geometrical rules by which cells divide symmetrically [68]. According to
those rules, the choice of division plane depends on the geometrical shape of the cell.
The new cell wall is built perpendicular to the parental cell walls. Moreover, the divi-
sion plane is chosen such that it is oriented along the shortest path that divides cell vol-
ume in half. A similar division mechanism was observed in animal cells. Known as the
“long axis rule” or Hertwig’s rule, it defines the division plane as the one which passes
through the cell’s center of mass, perpendicular to its long axis [12]. To explain such
precise positioning of the division plane, it was proposed that microtubules responsible
for positioning mitotic spindle exert length-dependent forces on the spindle [69, 12].
Thus, long microtubules pull the spindle more strongly than short microtubules do,
which drives the spindle towards the positions where forces from opposite poles of cell
are balanced.

The aforementioned mechanism of symmetric positioning of mitotic spindle as-
sumes that pulling forces are the same for microtubules of the same length, regardless
of their position in the cell. Some cells may exhibit spatial differences in structure.
Such cells, known as polarized cells, might have an asymmetric distribution of pulling
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Figure 2.7: Cell packing topologies. (a) Hexagonally packed Drosophila ommatid-
ium. Adapted by permission from Macmillan Publishers Ltd: Nature ( [73]), copyright
(2004). (b) Irregulary packed cells in Drosophila wing. Adapted by permission from
Macmillan Publishers Ltd: Nature ( [19]), copyright (2006).

forces [70]. As a result, the net force positions the spindle off the cell’s center. Con-
sequently, the division plane is formed off-center, such that it bisects the mitotic spin-
dle at its current position and divides the cell asymmetrically. Recently, the spindle-
independent mechanism of asymmetric division plane selection in Drosophila neurob-
lasts was observed as well [71]. Asymmetric cell division is an essential mechanism for
creating different cell types during the development of multicellular organisms. Dur-
ing the asymmetric division, proteins are differentially segregated into daughter cells,
defining their different fates [72].

2.3 Structure and Development of Epithelial Tissue

In multicellular organisms, cells with similar functionality are assembled into tissues.
Several tissues are combined into organs, the functional units of organisms. Having
precise shape, size and topology is essential for proper functioning of tissue. For ex-
ample, hexagonal packing of Drosophila retina ommatidium aids the insect’s vision
(Fig. 2.7)

All tissues originate from single fertilized eggs during embryonic development.
Mechanisms that govern formation of tissues starting from a single cell and drive them
to their final size and shape are still not completely understood [18].

A commonly used model system for studies on tissue development is the epithelium.
Epithelial tissue consists of epithelial cell layers, forming sheet-like structures [2]. In
adult organisms, epithelial sheets line surfaces of organs and serve as protective sur-
faces (e.g., skin) or barriers with selective permeability (e.g., epithelium lining in-
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testines). A simple epithelium consists of a single layer of epithelial cells. It is an
attractive model system due to its simplicity. Multilayer epithelia are called stratified
and have more complex structure [2].

One of the better characterized epithelial tissues is Drosophila fruit fly simple ep-
ithelium [74]. The plasma membrane of an epithelial cell is subdivided into structurally
and functionally different apical and basolateral domains, meaning the cell is polarized.
Neighboring cells align their domains throughout the tissue, therefore epithelium dis-
plays global polarization in the direction perpendicular to the epithelial plane [75]. In
addition, epithelial cells have a secondary polarization in the plane of the epithelium,
known as planar cell polarity [76]. This planar cell polarity is an important feature of
cells that coordinates cellular events along the tissue [77, 78, 79].

Cells have the ability to adhere to substrates including other cells and the extracellu-
lar matrix with the help of special molecules, called cell adhesion molecules (CAMs) [2].
Adhesion is accompanied by remodelling of the cytoskeleton and the establishment of
localized sites of adhesion [54]. Remodelling of the cytoskeleton involves the formation
of actin assemblies capable of the generation of mechanical forces at the cell-material
interface [54]. Epithelial cells in tissues are held together with the help of cell adhe-
sion molecules of the cadherin family [80]. Candherins are transmembrane proteins.
Their cytoplasmic domain binds to the actin cytoskeleton, while extracellular domains
interlock with cadherins emerging from the neighbor cell surface [79]. In epithelium,
cadherins are the main adhesive molecules in adhesion junctions, which are believed to
represent the stronger interaction regions between neighboring cells [80]. During tissue
development, these junctions are constantly remodelled as a response to various cellular
events such as cell divisions, rearrangements, migrations and death. Adhesive junctions
are considered to be a two-dimensional network that defines cell packing geometries in
tissue. Indeed, cells in a cross-section of a Drosophila wing resemble polygons defined
by adhesive junctions (Fig. 2.7). This resemblance serves as a basis for several models,
where each cell is assumed to be a polygon in junctional network, formed by adhesive
junctions [28, 27].

Epithelial tissue growth is particularly well characterized in the Drosophila wing.
Here we briefly discuss tissue growth based on growth of the Drosophila wing. Similar
principles of growth, however, seem to be applicable to other systems as well [81].

The fruit fly Drosophila starts its developments from a single egg, which within 24
hours of being laid at 25 ◦C hatches into larva. After about 4 days of development, the
larva becomes a pupa, after which it undergoes metamorphosis and turns into an adult
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Figure 2.8: The Drosophila wings disc is divided into anterior (A)-posterior (P) and
dorsal (D)-ventral (V) compartments. Two morphogens Dpp and Wg form morphogen
gradients along anterior-posterior and dorsal-ventral axes of wing disc.

fly [82]. At the larval stage, Drosophila does not have wings, however structures that
eventually turn into wings can be identified. These structures, known as wing imaginal
discs, are epithelial sheets of about 30-40 cells [82]. During larval development, these
patches of cells undergo rapid proliferation (cell divisions). The number of cells in wing
discs increase up to 50, 000 by the end of the fourth day of larval development. At the
initial stage of development proliferation is faster, indicating faster growth of tissue.
As time progresses, the proliferation rate decreases [18]. Cells in the proliferating
wing disc have asynchronous yet homogeneous growth rates, with about 8.5 hours of
average cell doubling time, regardless of their relative position in the disc. Mitotic cells
compose, on average, 1.7% of all the cell population and can be found throughout the
entire disc [24].

During development, the Drosophila wing disc is subdivided into anterior (A)-
posterior (P) and dorsal (D)-ventral (V) compartments by two compartment boundaries
(Fig. 2.8) [2]. Cells that belong to different compartments express different genes.
Drosophila wing disc growth and patterning is controlled by morphogens. The mor-
phogen Decapentaplegic (Dpp) is expressed in the central stripe of the disc, along
the axis that divides the wing into anterior and posterior compartments (Fig. 2.8).
Concentration gradually decreases towards the periphery [83]. Another morphogen,
Wingless (Wg), is expressed along the dorsal-ventral axis of the wing, perpendicu-
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lar to the anterior-posterior morphogen gradient [84, 85]. Several other proteins are
linked to the growth and patterning in the wing as well [84]. It has been shown that the
concentration gradient of Dpp induces and regulates wing growth [83]. How exactly
morphogen gradients generate homogeneous growth is still unknown. Several models
have been proposed to explain growth control by morphogen gradient, including me-
chanical feedback models [86, 87]. In the model proposed by Aegerter-Wilmsen et

al. [87], it is assumed that growth is not only controlled by growth factor morphogens,
but by mechanical forces as well. Two growth factors that are expressed along the per-
pendicular directions create a net growth factor that has highest activity at the center of
the wing disc. Closer to the periphery, the activities of growth factors decrease. Such
gradients of net growth factor may lead to homogeneous growth with the assumption
that compression inhibits growth. Cells in the central part of the wing disc are subject
to compression from proliferating cells in the periphery. They require a higher level
of morphogen activity to initiate growth, whereas cells in the periphery are under less
stress and can grow even at low levels of growth factors. Compression inside the disc
increases along with the growth of the disc, and once the stimulatory effects of growth
factors are inhibited by compression, growth is terminated. Experimentally observed
distributions of stresses in wing discs support this model [88]. Compression is found
to have a maximum in the central part of the disc and to grow along with the wing’s
growth. It is unclear, however, whether compression forces are big enough to halt
growth [18].

2.4 Cell Packing in Proliferating Epithelia

Predominantly hexagonal packing of simple epithelial tissues was observed as early as
the 1800s [89]. This packing was believed to reflect the tendency of cells to form op-
timal space-filling structures and minimize their surface energy [90]. However, while
hexagonal cells prevail in non-proliferation tissues, the packing topology of proliferat-
ing epithelia is significantly different. In 1926, Lewis [91] studied cell packing topolo-
gies and geometries in proliferating cucumber epidermis and found that a large amount
of non-hexagonal cells also exist in the proliferating epithelium with frequencies that
are highly reproducible. The distribution of cell polygon types in proliferating epithe-
lium has a peak at hexagonal cells and an asymmetric distribution of pentagons and
heptagons. Four-sided as well as eight- and more sided cells were observed as well,
but they are relatively rare (they compose less than 5% of total cells). Interestingly,
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Figure 2.9: Distribution of cell polygon types in animal and plant proliferating ep-
ithelial tissues. Various species have similar characteristic distribution with peak
at hexagons and asymmetric distribution of pentagons and heptagons. Data for
Drosophila, Hydra, Xenopus is taken from Gibson et al. [19], data for Cucumber is
taken from Lewis [92] and data for Volvox is taken from Korn et al. [93]

this topology is conserved among species [19]. Figure 2.9 displays the frequencies of
cell polygon types for proliferating epithelia taken from various species of animal and
plant kingdoms. As Figure 2.9 shows, for a majority of epithelial tissues, around 45%

of cells have hexagonal shapes, and the frequencies of heptagons and pentagons are
around 30% and 20% correspondingly.

Recently, Gibson et al. [19] showed that this “default” packing topology is a direct
consequence of uniform proliferation in the absence of cell rearrangements. In the
model suggested by Gibson and colleagues, each cell is presented as a polygon with s
sides in a two-dimensional planar network. Since no three sided-cells were observed in
epithelial proliferation, s ≥ 4. The state of tissue at a given generation t is described
by a vector pt = [p4p5p6 · · · ], where pi is the frequency of i-sided cells. The evolution
of the system is described as a Markov process, so that pt = pt+1PS, where Pij and
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Sij define the probability of an i-sided cell to become j-sided at the next generation.
The matrix Pij defines the probability of an i-sided parental cell to divide into a

j-sided daughter cell. To calculate the probability, one needs to consider the way an
i-sided cell distributes its vertices to two daughter cells. Since no three-sided cells
were observed, each daughter cell has to receive at least 2 junctions from parental cells,
leaving i − 4 parental junctions to be distributed. A daughter cell that ends up with j
sides after division receives a minimum of 4 junctions (minimum 2 from parent and 2
from the cleavage plane), thus the probability Pij is equal to the number of ways an
i− 4-sided cell can pass j − 4 sides to one of the daughters. For a division line that is
chosen uniformly at random, the probability is binomial, with n = i− 4, k = j− 4 and
p = 1/2. The probability matrix is then given as

Pij =



1

1/2 1/2

1/4 1/2 1/4

1/8 3/8 3/8 1/8

1/16 1/4 3/8 1/4 1/16

· · ·


. (2.1)

The matrix Sij defines the probability of an i-sided cell to become j-sided solely due to
divisions on neighbor cells. The matrix can be derived from the following considera-
tions. During mitosis a new side is added. This newly generated side adds a junction to
each of its two neighbor cells. A round of divisions generates 2N cells from N previ-
ously existing cells adding, on average, 2N junctions. Hence, on average, the number
of sides gained during one round of division is 1 per cell. The matrix Sij now can be
presented as

Sij =


0 1

0 1

0 1

· · ·

 . (2.2)

The transition matrix T = PS in the time evolution of the system is now defined,
and the equilibrium state of the system can be calculated. It is found to be approxi-
mately 28.9% pentagons, 46.6% hexagons and 20.8% heptagons [19].

Although most of the tissues presented in Figure 2.9 exhibit packing topologies
similar to the one obtained by Gibson et al., there are exceptions. For example, the
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number of hexagons in Volvox reaches up to 60%, which is a significant difference
compared to other cases (Fig. 2.9). The model described above considers the case
of uniform proliferation with no cell rearrangements. Mechanical properties of cells,
which are known to affect cell shapes and packing topologies [73, 26] are not taken into
account. The example of Volvox indicates that biological physical mechanisms may
generate variations in proliferation and, consequently, in cell packing topologies [74].

2.5 Models For Tissue Growth and Morphology

The simplest models for studying cell packing topologies and geometries in tissues are
the so-called topological models [74]. Topological models reconstruct a network of cel-
lular connectivity. In growing tissue, this network might be altered by various cellular
processes such as cell divisions, rearrangements and death. An example of a topologi-
cal model for epithelial tissue is the one presented by Gibson et al. [19], where tissue is
modelled as a two-dimensional planar network of epithelial junctions. Mathematically,
such a network is described through faces, edges and vertices representing cells, their
sides and junctions correspondingly. The model proposed by Gibson et al. incorpo-
rates one of the basic cellular processes, proliferation, as a Markov chain of system
state transitions through adding randomly distributed junctions to an already existing
network (see Sect. 2.4 for a detailed description of the model). The extension of this
model, known as the cleavage plane regulation model [94], allows variations in the ori-
entation of the division plane. Topological models have been used to study the effects
of proliferation and the division plane orientation on tissue topology. These models,
however, have their limitations. In particular, they do not account for cell mechanics,
which may alter cell geometries and cell packing topologies [95].

Physical properties of cells and inter-cellular interactions are incorporated in several
models [25, 26, 27, 28, 29, 30, 31, 32]. We discuss a few of them in detail below.
Extensive reviews can be found in Refs. [74, 96].

In the model proposed by Farhadifar et al. [27], epithelium-like tissue is character-
ized by a network of cell adhesive junctions. Cells are presented as polygons with sides
(cell edges) as straight lines connecting vertices (Fig. 2.10). This choice of model is
inspired by the fact that cell shapes in a cross-section of epithelial tissue resemble poly-
gons, and that cells have little or no rearrangements during tissue growth. To account
for cell mechanics, the network at the given configuration {Ri} is assigned an energy
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Figure 2.10: In vertex models (see eg. [27, 28, 33]), each cell is presented as a polygon
inside the junctional network. Proliferatiion introduces new edges and verticies, thus
cell packings remodel throughout development.

functional of the form

E(Ri) =
∑
α

Kα

2
(Aα − A(0)

α )2 +
∑
ij

Λijlij +
∑
α

Γα
2
L2
α. (2.3)

The first term describes cell area elasticity. Kα is the elastic coefficient and A
(0)
α is

cell’s preferred area. The second term accounts for cell-cell interaction. Here Λij is
the line tension between i and j vertices and lij is the length of corresponding edge
(cell boundary). It reflects both cell-cell adhesion and the cotractile nature of cell’s
cortex. Finally, the third term represents contractility of the cell perimeter Lα with
the coefficient Γα. Stable configurations of epithelial tissues correspond to minima
of an energy functional. Vertex-like models were used to explore the impact of cell
mechanics, rearrangements and growth rate on proliferating epithelium topology [28,
27, 33, 34]. They do not account for cell migration.

Collective cell migration is common in various biological processes [40, 9] and is
an essential part of embryonic morphogenesis [97, 98]. Directed cell migration in-
volves coordinated cycles of protrusion, contraction and adhesion regulated by the ac-
tomyosin cortex [14, 99]. As in the case of cell division, migration also depends on
the mechanics of the cell [100] and, in fact, cell motility can be achieved by cortical
contraction alone [101, 102]. Moreover, comparison between cell morphogenesis and
the associated mechanical properties for cell division and migrations suggests common
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Figure 2.11: In the viscoelastic cell model proposed by Rejniak et al. [32], the cell is
treated as an elastic membrane surrounding cytoplasm and a nucleus. Elastic bound-
aries consist of adjacent springs. Adhesive interactions between neighbor cells are
modelled through attractive-repulsive forces.

regulatory mechanisms that govern cortex remodelling in both cases [15].
A more realistic way to model cell shapes and their mechanical properties requires

an individual treatment of cells. Individually modelled cells do not carry pre-existing
shape and topology and respond to mechanical forces in more natural ways. In the
model suggested by Rejniak et al. [32], each cell is modelled as an elastic membrane
that surrounds a viscoelastic cytoplasm and a point nucleus. (Fig. 2.11). Membranes
form a closed elastic boundary immersed in an incompressible viscous fluid [103].
Time evolution of the system is defined by fluid motion with the boundary that moves
along with the fluid. Mathematically, the boundary is modelled as a collection of points
Xi(l, t), where l is the position of points along the boundary of i-th cell. To reflect the
elastic properties of the membrane, boundary points Xi are connected through adja-
cent linear springs. Adhesive interactions between two neighbor cells in the tissue are
mimicked through adhesive-repulsive springs, connecting boundary points of different
cells. In addition to cellular forces along the boundary, sinks and sources are embedded
into fluid. They are used to model cellular processes. An example is the process of
cell growth. Cell growth is initiated by coupled source-sink pairs. Sources are located
inside the cells and sinks are placed at the boundary. Such a distribution of sources and
sinks creates fluid flow that pushes the boundary outwards and increases cell area. Thus,
with the help of external cellular forces and the distribution of sources and sinks, one
can extend the model to account for various cellular events. The growth of trophoblast
bilayers, tumor development and the development of epithelial acini were among the
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Figure 2.12: The model of Newman [31] treats each cell as a cloud of mass points.
Here, black and white circles belong to two separate cells. Strong intra-cellular in-
teraction potentials (solid lines) hold mass points of same cell together, while weak
inter-cellular interaction potentials (dashed lines) model cell-cell adhesion in tissue.

applications of the model [32, 35, 36].
Another sub-cellular element model is the model developed by Newman [31]. In

this model each cell is considered as a cloud of mass points (Fig. 2.12). Strong intra-
cellular potentials bind mass points of the same cell to each other. Additional weak
inter-cellular potentials are used to model cell-cell adhesion in tissue. Generalized
Morse potentials are good candidates for both intra- and inter-cellular interactions.
When the distance between two interacting particles is r they have the form: V (r) =

V0 exp(−r2/ζ12) − U0 exp(−r2/ζ22) where parameters V0, U0, ζ1 and ζ2 are chosen
such that the adhesion defined by the intra-cellular potential is stronger than the one
defined by inter-cellular potential. Such a system evolves according to the overdamped
Langevin equations

ṙαi
=
∑
αi 6=βi

Fintra(αi, βj) +
∑
αi

∑
βj

Finter(αi, βj) + ηαi
, (2.4)

where αi is the α-th mass point of i-th cell, βj is the β-th mass point of j-th cell, Finter
and Fintra represent inter- and intracellular interaction forces correspondingly, and ηαi

is the noise term which has a Gaussian distribution with zero mean and correlator

< ηmαi
(t)ηnβj(t

′) >= 2Dδi,jδαi,βjδ
mnδ(t− t′). (2.5)
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Here D is the diffusion coefficient and δ is the Dirac delta function. This model was
used to simulate cell growth and division in two- and three-dimensional systems in
order to study the dynamics of multicellular systems [37, 38, 39].



Chapter 3

Physical and Numerical Background

3.1 Physical Background

Cell shapes and packing topologies are tightly controlled by the mechanics of the cell
cortex. The mechanical properties of the cell cortex influence processes that require
changes of cell shape, such as divisions or migrations. Indeed, Stewart et al. [11]
showed that the rounding of a mitotic cell is determined by the interplay between the
hydrostatic pressure inside the cell and its cortex’s contractility. Another example is
the contractile ring, which assembles at the cortex along the perimeter of the cell’s
division plane. The mechanical forces created by the contractile ring pinch the cell and
ultimately lead to the division of the cell. Cell packing topologies are also influenced
by its cortex. For example, Käfer et al. [26] showed that cortex contractility has a
contribution to observed cell packing topologies in Drosophila retina ommatidium. It
balances cell-cell adhesion and is necessary to achieve correct packing topologies and
geometries of cells in the retina. As we discussed in Chapter 2, the cell cortex is formed
by elastic actin filaments that are cross-linked into network-like structures. The cell
cortex itself behaves as an elastic material [11, 104].

When considering the motion of a cell and its sub-cellular components, one needs
to take into account the cellular environment. The intracellular space is filled with the
cytoplasm, which displays properties of an incompressible viscous fluid [104].

In this section we give a brief background on elastic materials and viscous flu-
ids (Sect. 3.1.1 and Sect. 3.1.2). A more detailed background on these topics can be
found in references [105, 106, 107, 108]. Inter-cellular interactions are discussed in
Section 3.1.3.

28
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Figure 3.1: During deformation, two body points P0 an P with the radius-vectors r0
and r are displaced to new positions P ′0 and P ′ with radius-vectors r′0 and r′. The
displacement vectors u0 and u are defined as the difference of the radius-vectors before
and after deformation.

3.1.1 Elasticity

Let us consider points P0 and P in the body, with radius-vectors r0 and r correspond-
ingly (Fig. 3.1). During deformation of the body, points are displaced to new posi-
tions P ′0 and P ′ with radius-vectors r′0 and r′. Displacement vectors are defined as
u0 = r′0 − r0 and u = r′ − r. For a small deformation and infinitesimally close points
P0 and P ,

dr′ = dr + du ≈ dr +
∂u

∂r
dr. (3.1)

The tensor ∂u
∂r

is called the displacement gradient tensor.
For small deformations, the distance between two points changes according to

|dr′|2 = |dr|2 + 2
∑
ij

εijdridrj, (3.2)

where εij = 1
2
(∂ui
∂rj

+
∂uj
∂ri

) is the symmetric strain tensor.
In the two-dimensional case, the strain tensor has the form

εij =

(
εx εxy

εyx εy

)
.

εx and εy are known as the normal strains, and εxy and εyx are called shear strains.
Geometrical interpretations of the normal and shear strains for the two-dimensional
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Figure 3.2: Two-dimensional normal and shear strains. (a) The normal strain in the
direction n is characterized by the extension ε of the body in that direction. (b) The
shear strain is defined as the change in the angle α between two initially orthogonal
lines.

case are shown in Figure 3.2.
When a body is subjected to an external force, it deforms, which gives rise to in-

ternal forces. For a given surface with an area A, the ratio of the internal force to area,
T(r,n) = F/A, is called the stress. Stress depends not only on the applied force and
surface area, but also on the orientation of the surface. If n is a vector normal to the
surface area, then stress is related to n as

T = σn, (3.3)

where σ is the stress tensor [105].
The two-dimensional stress tensor has the form

σ =

(
σx σxy

σyx σy

)
.

The diagonal elements of the stress tensor are called normal stresses. Normal stress
is directed along the normal vector of the surface. Off-diagonal elements of the stress
tensor are called shear stresses and lie in the plane perpendicular to the surface normal.

Materials are characterized by their stress-strain relations. In this work, we deal
with elastic materials. They resist applied external forces by finite strains and restore
their original state after forces are removed. Under low stresses most elastic materials
have a linear stress-strain relation, which is given by

σij =
∑
kl

Cijklεkl. (3.4)

The coefficients Cijkl are called elastic moduli. For homogeneous isotropic materials,
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the elastic moduli satisfy

Cijkl = αδijδkl + βδikδji + γδilδjk, (3.5)

where α, β and γ are constants, and δij is the Dirac delta function [109]. Equation 3.5
along with Equation 3.4 gives

σij = λδij
∑
k

εk + 2µεij. (3.6)

The constant λ is Lamé’s coefficient, and µ is called the shear modulus or modulus of
rigidity. Relation 3.6 is the generalized Hooke’s law. Hence, the behaviour of a homo-
geneous isotropic elastic material is characterized by two independent elastic constants.

Alternatively, strain can be expressed through stress from 3.4 as

εij =
1

2µ

(
σij −

λ

3λ+ 2µ
δij
∑
k

σk

)
. (3.7)

or, equivalently

εij =
1 + ν

Y

(
σij −

ν

Y
δij
∑
k

σk

)
. (3.8)

Here, Y = µ3λ+2µ
λ+µ

is called the modulus of elasticity or Young’s modulus and ν =
λ

2(µ+λ)
is called Poisson’s ratio.

To understand the physical meaning of the elastic moduli, one can look at stress-
strain relations for simple cases. Suppose tension is applied to a two-dimensional body
along the x direction. Then the stress tensor can be written as

σ =

(
σ 0

0 0

)
and the corresponding strain tensor will be

ε =

(
σ
Y

0

0 −ν
Y
σ

)
.

Therefore, Young’s modulus characterizes the ratio of stress along the axes to the
strain along the same axes. For the one-dimensional case, Equation 3.8 is reduced
to Hooke’s law for springs εx = 1

Y
σx, and Young’s modulus coincides with the spring

constant. This example also shows that tension, along with the stretching of the material
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in the applied direction, also results in the compression of the material in the transverse
direction. Poisson’s ratio defines the ratio of transverse strain to axial strain.

Next, suppose a two-dimensional body is subjected to a shearing stress with stress
tensor

σ =

(
0 τ

τ 0

)
.

Then, from Equation 3.6,

ε =

(
0 τ

2µ
τ
2µ

0

)
.

The shear modulus shows the ratio of the shear stress to shear strain.
Finally, consider a two-dimensional body subjected to an external pressure p, re-

sulting in hydrostatic compression. The stress tensor has the form

σ =

(
−p 0

0 −p

)
with the corresponding strain tensor

σ =

(
−1−2ν

Y
p 0

0 −1−2ν
Y
p

)
.

Compression results in a volume change ∆V = Tr(ε) = −2(1 − 2ν)p/E [105],
so the relation between the applied pressure and the volume change can be written as
p = −k∆V , where k = Y

2(1−2ν) is called the bulk modulus of elasticity.

3.1.2 Viscosity

Based on the response to stress, materials are categorized as solids or fluids. If shear
stresses are induced in a solid material, it undergoes a finite shear deformation. On
the contrary, under a shear stress, fluids display continuous shear deformation, or flow.
Examples of fluids are liquids and gases. In this work we consider incompressible
liquids, meaning that the density of the fluid stays constant.

Suppose a fluid is placed between two plates (Fig.3.3). The bottom plate is kept
motionless, and the top plate is pulled with a low velocity v. The resulting motion
can be described as a flow of adjacent fluid layers, with the velocity gradient shown in
Figure 3.3 [107]. Each layer moves along the neighboring layer with non-zero relative
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Figure 3.3: Velocity gradient in a fluid under shear flow. The bottom plate (shown
in gray) is kept motionless and the top plate is pulled with the velocity v. The fluid
between the plates moves with the velocity gradient (shown as arrows).

velocity, and experiences internal friction forces resisting the flow. The amount of the
resistance depends on the type of fluid, and is called viscosity.

Let the displacement of the layer at height y during the flow be x(y, t). Then the
shear strain in the fluid is defined as

γ(y, t) =
∂x

∂y
(3.9)

and shear strain rate is defined as

γ̇(y, t) =
∂v

∂y
, (3.10)

In the general case, for incompressible fluids [107]

γ̇ik =
∂vi
∂xk

+
∂vk
∂xi

. (3.11)

Shear stress due to internal friction forces depends on the shear strain rate. For
Newtonian fluids, the relation is linear

τ = µ
∂v

∂y
. (3.12)
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In a general case, for Newtonian fluids,

τik = µ

(
∂vi
∂xk

+
∂vk
∂xi

)
(3.13)

where µ is the dynamic viscosity. For the fluids with the density ρ, the kinematic
viscosity is defined as

ν =
µ

ρ
. (3.14)

Consider a solid body moving with velocity v in a viscous fluid. While moving, the
body experiences a drag force which opposes the motion and depends on the velocity
of the body, as well as on the properties of the fluid. For such motion, one can define a
dimensionless quantity called the Reynold’s number

R =
vλ

ν
, (3.15)

where v and λ are the speed and length of the body, and ν is the kinematic viscosity
of fluid. The Reynold’s number shows an interplay between inertia and viscous forces.
Depending on the Reynold’s number, the drag force has different dependence on the
velocity of the body. Small R (low velocities) shows that viscosity dominates, and the
drag force is defined by Stoke’s law

Fdrag = −bv, (3.16)

where b is a constant, which depends on fluid viscosity and the geometry of the body.
For high R (high velocities), inertia dominates, and the drag force is proportional to the
square of velocity

Fdrag = −cv2, (3.17)

where c is a constant depending on fluid density and the geometry of the body. Typ-
ically, Reynold’s number is small for the cellular environment, thus the drag force is
defined by Stoke’s law.

3.1.3 Inter-membrane adhesion

The adhesive interactions between two cells in contact are mediated by their plasma
membranes. Interaction forces between biomembranes are non-trivial due to the com-
plex structure of the latter. Lipid composition of the plasma membrane, types of em-
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bedded proteins, the extracellular matrix and the aqueous solution surrounding cells, all
have their contributions. At large separations, inter-membrane forces include van der
Waals attractive forces and, if membranes consist of lipids with charged head groups,
electrostatic forces. At shorter distances, steric effects of extracellular matrices and
thermal undulations of membranes lead to a repulsive interaction between two cells. In
addition to non-specific interactions mentioned above, two membranes in contact may
adhere with the help of specific, protein mediated interactions. Here, we briefly re-
view just a few of all possible membrane-membrane interactions relevant to our work.
Extensive reviews can be found in references [110, 111].

1. Van der Waals interactions. Attractive van der Waals (VDW) interactions are
non-specific interactions that exist between all atoms and molecules. These forces have
a quantum mechanical origin and arise from the interactions between permanent dipole
moments of atoms, permanent induced dipole moments and two induced dipole mo-
ments defined by the instantaneous positions of electrons in atoms. The aforementioned
interactions are attractive with a potential energy proportional to 1/r6ij [111], where rij
is the distance between i and j interacting atoms. The complete potential that describes
the interaction between two atoms should include the Pauli exclusion principle at short
distances, hence a short-range repulsive force should be added to the attractive VDW
potential. Typically, a positive term proportional to 1/r12ij is added to complete the
VDW interaction potential. The potential (see Fig. 3.4), known as the Lennard-Jones
potential (LJ), describes the VDW interactions between two atoms i and j and has the
form

VLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (3.18)

Here, ε is the depth of the potential well and σ is the the diameter of the interacting
particles. The VDW forces between two macroscopic bodies of various geometries are
derived from atomistic interactions based on the Lifshitz theory [112]. Geometrically,
two membranes separated by distance smaller than their thickness d can be thought of
as two slabs. If the distance between the slabs is Ds [110], then the VDW potential
energy per unit area is

VV DW (Ds) = − A

12πD2
s

. (3.19)

The constant A is called the Hamaker constant which depends on the properties of the
interacting substances as well as the surrounding medium. Two lipid bilayers interact-
ing in liquid medium, such as water, have a Hamaker constant of A ∼ 10−20 J [111].
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Figure 3.4: The dependence of the Lennard-Jones potential VLJ on the distance rij
between interacting particles i and j. ε is the depth of potential well and σ is the
diameter of interacting particles.

Equation 3.19 holds only if the thicknesses of the slabs exceed the distance between
them. When Ds is larger than d, i.e., for the case of interacting thin sheets, the potential
energy density decreases much faster, proportional to ∼ 1/D4

s [113].
The Lifshitz theory considers interacting objects to be macroscopic. Strictly speak-

ing, the formulas for VDW interactions and the Hamaker constants, calculated with the
help of the Lifshitz theory, should be used only for macroscopic bodies at separations
exceeding molecular dimensions. Still, even applied to small molecules in contact,
they give a sufficiently accurate approximation for the VDW energies [110]. Thus, the
Lifshitz theory can be applied to estimate the binding energies and adhesion forces be-
tween two particles in contact. To do so, one needs to identify the contact distance for
the interacting substances. Commonly, the contact distance D0 is taken to be within
0.2 − 0.4 nm. It can, however, exceed the typical range depending on the nature of
the short-range repulsive forces [110]. Adhesion energies for several pure lipid bilay-
ers have been measured under various experimental conditions. They range from 10−5

J/m2 to 10−4 J/m2 [114].
2. Site-specific adhesion. When the plasma membranes of two cells are in contact,

non-covalent bonds may form between proteins embedded into membranes. Interac-
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tions between these proteins, known as cell adhesion molecules (CAMs) are specific.
They are sensitive to the type and geometric configuration of CAMs. Therefore, these
specific interactions are sometimes referred to as ‘lock and key’ or ‘ligand-receptor’
interactions [110].

CAMs mediate adhesive interactions between two cells through their extracellu-
lar domains [2]. The CAM of one cell can bind to the CAM of another, forming a
homophilic bond. For instance, the CAMs of the cadherin family, discussed in Sec-
tion 2.3, form mainly homophilic bonds [115]. Another type of binding that CAMs
form is called heterophilic, where the two bound CAMs have different types [116].
Finally, cells may adhere to each other indirectly by interactions between cell surface
receptors and the extracellular matrix [114]. The binding energies for different protein-
ligand pairs vary, but on average, they are at the order of ∼ 10kBT per bond [114]. For
comparison, the covalent energy between two carbon atoms is of order ∼ 100kBT .

CAMs can be found spread over cell surfaces or concentrated in special spots, called
cell junctions. The strength of adhesion depends on the distribution and the number
density of adhesive receptors on the cell surface [117, 118]. The contribution of spe-
cific adhesion to the total cell adhesion energy is estimated to be 10−17 J energy per
µm2 [114]. It is comparable to the non-specific interaction contribution. Thus, both
non-specific and specific adhesion mechanisms contribute to cell-cell adhesion with
adhesion energy density of order 10−17 J/µm2 [114].

3.2 Numerical Methods

3.2.1 Introduction

An analytical approach which characterizes the time evolution of complex molecular
systems is often impossible. In such cases computer simulations may help to gain in-
sight into the behaviour of the system. Molecular Dynamics (MD) is a computational
technique aimed at numerically studying both equilibrium properties and dynamical
processes. The idea behind MD is to follow the system’s dynamics by following the
time evolution of each particle in the system. To do that, one needs to model individual
particles of the system, define the interactions between them, and finally find the tra-
jectories of all particles by solving their equations of motions. In this section we give a
brief overview of classical and coarse-grained MD methods. The latter is used to solve
the equations of motion in our model in Section 4.2.



CHAPTER 3. PHYSICAL AND NUMERICAL BACKGROUND 38

Perhaps the most challenging part in MD is the proper modelling of the individual
particles of the system and their interactions. Well-defined models omit unnecessary
structural details, saving computational time, yet are sufficient to describe the phenom-
ena of interest [21]. The choice of the model depends on the type of the problem, its
time and length scales.

In classical MD, the internal structure of the atoms is ignored. Atoms are mod-
elled as spheres, placed at the positions corresponding to their nuclei. Although the
electronic structure of an atom is not modelled explicitly, its existence is incorporated
into effective atom-atom interactions. Negligence of the structural details of atoms in
classical MD makes it suitable for nano-scale problems, with typical time and length
scales of 1-100 ns and 10 nm correspondingly.

Most biological processes have time and length scales that far exceed the nano-
scale. Sizes of biological membranes or polymer filaments reach micrometers, and
time scales can reach hours or even days. Moreover, biological processes often occur
at different time scales. For example, the dynamics of Drosophila wing growth has
three different time scales: The relaxation time due to local perturbations takes several
seconds, cell divisions take several hours and the formation and morphogenesis of the
wing lasts several days [24]. Such length and time scales are beyond the accessibility
of classical MD. To extend the simulation times and lengths, atomistic models can be
‘coarse-grained’. The discussion of coarse-graining below is based on Ref. [21]. In
the process of coarse-graining, variables that have dynamics faster than the time scales
of interest are eliminated, which reduces the system’s degrees of freedom, and conse-
quently reduces time required for simulation. The dynamics of the system are defined
by the time evolution of the slow, coarse-grained variables. Eliminated degrees of free-
dom are incorporated into effective interactions between the coarse-grained variables.
These effective interactions should be carefully calibrated to match atomistic simula-
tions or experimental data. The dynamics of the coarse-grained system is followed
by means of coarse-grained MD, where interacting particles are no longer atoms or
molecules. Different levels of coarse-graining may be applied to the system, depending
on the time and length scale of the phenomenon of interest.

Once the model is established and the effective interactions defined, one can find
the trajectories of all particles by solving their equations of motion numerically. A
typical numerical integration algorithms consist of the following steps: The integrator
breaks down continuous time t into discrete time steps tn with time interval ∆t. At
each time step, interaction forces are calculated based on the positions of the particles
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at the previous time step. These forces are then used to calculate the positions for the
next time step based on the equations of motion. As a result, one obtains trajectories
for all particles as a set of positions at the consecutive time steps.

In the following sections, we describe the equations of motions for all-atom and
coarse-grained systems, as well as describe several numerical integrators.

3.2.2 Equations of Motion

Newton’s Equations of Motion: In classical all-atom MD, the equations of motion are
Newton’s laws. For a system of N atoms, the set of equations can be written as

mi
d2ri
dt2

= Fi, i = 1 · · ·N, (3.20)

where mi is the mass of i-th atom, ri is its position and Fi is the net force acting on
it. A three dimensional system of N particles with no constraints has 3N degrees of
freedom (3 degrees of freedom per particle). Hence, Equation 3.20 is equivalent to a
system of 3N second order differential equations.

In order to solve Equation 3.20, one should identify the net force acting on each
particle. For a system of N particles interacting through a potential U(r1, r2, · · · , rN),
the force acting on the i-th particle is given by

Fi = −∂U
∂ri

. (3.21)

It can be written as

Fi = Fext
i +

∑
i 6=j

Fij(ri, rj)) +
∑
i 6=j 6=k

Fijk(ri, rj), rk)) + · · · . (3.22)

The first term is the force due to external fields. The second term is the interaction
between particle pairs. The third term is the three-body interaction force, etc. Many-
body interaction effects should be taken into account when dealing with lattice systems
or interactions between large particles and surfaces [111]. The pairwise interaction
approximation is sufficient for the purposes of this work. In a closed system, Fext

i = 0,
and the force in Equation 3.22 is approximated with the sum of pairwise interaction
forces,

Fi =
∑
i 6=j

Fij(ri, rj)). (3.23)



CHAPTER 3. PHYSICAL AND NUMERICAL BACKGROUND 40

Langevin Dynamics: In 1908 Langevin presented a coarse-graining approach to
Brownian motion, where large heavy particles are suspended in the liquid of lighter
fast moving particles. In the coarse-grained description, the molecules in the liquid
are eliminated. The omitted degrees of freedom are replaced by friction and noise
terms [119]. The friction term presents the effect of motion in a viscous medium and
the noise term replaces the random collisions of the particle with the solvent molecules.
This approach has been widely used in biophysical models as a way to eliminate explicit
solvent molecules [120], or to sample the system [121, 122].

The Langevin’s equation of motion is given as

mi
d2ri
dt2

= Fi + Ffric
i + Ri(t). (3.24)

Here,

Ffric
i = −γi

dri
dt

(3.25)

is the friction force with friction coefficient γi and Ri(t) is the stochastic noise term. For
Brownian particles that are much heavier than the solvent particles, Ri(t) is Gaussian
noise, uncorrelated in time and space. Therefore, < Ri >= 0 and < Ri(t1)Rj(t2) >∼
δijδ(t1 − t2).

The friction and random terms are related according to the fluctuation-dissipation
theorem [123].

< Ri(t1)Rj(t2) >= 2kBTγiδijδ(t1 − t2), (3.26)

where T is the temperature of the system.
For an overdamped system |γiṙ| >> |mir̈|, and the acceleration term can be ne-

glected. This non-inertia regime of Langevin dynamics is known as Brownian dynam-
ics [119] with the equation of motion

0 ≈ Fi − γiṙ + Ri(t)

γiṙ = Fi + Ri(t)
(3.27)

with Ri(t) satisfying relation 3.26.

3.2.3 Numerical Integration

Equations 3.20 and 3.24 are second order ordinary differential equations. Various inte-
grators have been designed to solve them numerically [124]. From the numerical point
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of view, a good algorithm should be accurate and efficient. Numerical integration is al-
ways an approximate method. Typically, the analytical solution is approximated with a
finite sum during the numerical integration. The difference between the infinite sum and
the finite approximation is called truncation error. Numerical integrators with smaller
truncation errors have better accuracy. Truncation errors scale as ∼ O(∆tn) [124], so
smaller time steps increase the accuracy of the method. Additionally, smaller time steps
lead to numerically more stable algorithms.

Efficiency is another property to consider. The most time consuming part in solv-
ing the equations of motion is the calculation of forces. For a system of N particles
with pairwise additive interactions, the algorithm needs to evaluate N(N − 1)/2 dis-
tances. Hence, the force calculation time scales as N2 [20]. Therefore, more efficient
algorithms have less force calculations. One can achieve efficiency by increasing the
integration time step, which on the other hand decreases accuracy. Well-designed al-
gorithms have higher accuracy for the larger time steps, which allows one to increase
efficiency without sacrificing accuracy.

There are also other requirements that should be taken into account. First, Newton’s
equations of motion are time reversible, so they are invariant under t → −t transfor-
mation. Therefore, the integration algorithm should be time reversible as well. Next,
Newton’s equations of motion are symplectic, so the algorithm should be symplectic
as well [125]. Suppose a system with energy E occupies volume V in the phase space
(r, ṙ). Newton’s equations of motion transform any given point from V to another point
of phase space. Symplecticity of Newton’s equations of motion implies that the trans-
formation preserves the volume of phase space. If volume is not preserved, the transfor-
mation violates energy conservation. Time reversibility and symplecticity requirements
preclude some common algorithms such as the original Euler or Runge-Kutta methods.

Below we describe the Verlet algorithm, which is used as an integrator in our sim-
ulations. They are time reversible, symplectic and show little long-time energy drifts.

Verlet algorithm: The Verlet algorithm [126] is derived from Taylor’s expansion
for the position of the particle. Let the position of the i-th particle at time t be ri(t).
Taylor’s expansion around time t will be

ri(t+ ∆t) = ri(t) +
dri
dt
·∆t+

1

2

d2ri
dt2
·∆t2 +O(∆t3). (3.28)
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Similarly,

ri(t−∆t) = ri(t)−
dri
dt
·∆t+

1

2

d2ri
dt2
·∆t2 −O(∆t3). (3.29)

Adding Equations 3.28 and 3.29 gives

ri(t+ ∆t) + ri(t−∆t) = 2ri(t) +
d2ri
dt2
·∆t2 +O(∆t4). (3.30)

From Equation 3.20 d2ri
dt2

= Fi(t)
mi

, hence

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)

mi

·∆t2 +O(∆t4). (3.31)

The algorithm relies on the positions from the previous two time steps for evaluation of
the new positions.

In the Verlet algorithm, velocities are not calculated explicitly, but they can be ob-
tained by subtracting Equation 3.28 from Equation 3.29:

ri(t+ ∆t)− ri(t−∆t) = 2
dri
dt
·∆t+O(∆t3), (3.32)

leading to

v(t) =
ri(t+ ∆t)− ri(t−∆t)

2∆t
+O(∆t2). (3.33)

Truncation error in the calculation of positions during one integration step has the
order ∆t4. Velocities are less accurate, with truncation error of order ∆t2.

Modifications of the Verlet algorithm evaluate both positions and velocities and are
used to calculate the new positions [127, 128]. If better velocity accuracy is needed,
one can use the Beeman or velocity-corrected Verlet algorithms (described in [20]).

3.2.4 Initial and Boundary Conditions

Initial Conditions: In order to solve the system of second order ordinary differential
Equations 3.20, one needs to specify initial positions and velocities for each particle.

The initial positions are usually chosen based on the compatibility with the structure
of the system. Particles can be placed at the sites of various lattices or they can be
randomly distributed throughout the system [127]. Initial positions should be chosen
carefully, so particles do not overlap. This is especially true for randomly generated
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initial positions. Overlapping will generate strong repulsive forces, which, in turn, will
destabilize the system.

The initial velocities can be taken randomly from the velocity distribution function
of the system equilibrated at temperature T , The Maxwell-Boltzmann distribution [129]

p(vi) =

√
mi

2πkBT
exp(−miv

2
i

2kBT
). (3.34)

Since the properties of the system in equilibrium do not depend on the initial condi-
tions, the precise choice of the initial conditions is not necessary. The positions of the
particles and their velocity distributions will readjust during the equilibration process.
However, a reasonable choice of initial conditions speeds up equilibration.

Boundary Conditions: When simulating a system, one should take care of its
boundaries. In this section we give a brief overview of commonly used boundary con-
ditions.

Free boundary conditions do not assume any boundaries, and particles are not re-
stricted to occupy a specific region in space. This type of the boundary is suitable for
studying isolated molecules or clusters in the vacuum [129].

To mimic the motion of particles within a limited volume, one can use rigid bound-
aries as the walls. Rigid boundaries in an MD simulation introduce particle distribution
artifacts near the walls. In a system of N particles, approximately ∼ N2/3 are located
at the surface. For a macroscopic system of 1023 particles only a small fraction of about
1015 molecules are adjacent to the surface, However, in an MD simulation, which is
typically run for a few hundred to a few thousand molecules, a large portion of parti-
cles is adjacent to the walls and their contribution to the state of the system cannot be
neglected [20]. Thus, rigid boundaries should be avoided when the bulk properties of
the system are examined.

The most common boundary conditions, periodic boundary conditions (PBC), are
used to study system properties in the bulk, away from any surfaces. PBC eliminate
surfaces by surrounding the system with its identical copies (Fig. 3.5). This way, PBC
mimic an infinite bulk around the system. In a system with PBC, each particle i in the
central computational box has its images i′ in surrounding boxes. Once a particle leaves
the simulation box from one side, it enters the same box from the opposite side with
identical velocity, as shown in Figure 3.5.

Due to its simplicity, rectangular boxes are often used; however, that is not a re-
quirement. The computational box can have a shape of any space-filling polyhedra.
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Figure 3.5: Periodic Boundary Condition. Simulation box is surrounded by infinite
copies of itself. As a result, when particle leaves the box from one face, an identical
particle with the same velocity enters the box from the opposite cell.

Examples are rhombic dodecahedron [130] or truncated octahedron. Usage of alterna-
tive simulation boxes can reduce the size of the system.

PBCs bring periodicity into the system, which is characteristic to only crystal-like
structures. When liquid or gaseous systems are simulated, one needs to make sure
that artefacts due to periodicity are minimized. This can be achieved by applying the
minimum image convention [20]. In a system that satisfies the minimum image crite-
rion, every particle interacts with only the nearest image of each of the other particles
(Fig. 3.6). This condition holds if the size of the simulation box is no less than twice the
cutoff distance of interaction forces. Another limitation of PBC is the absence of fluc-
tuations with long wavelengths. Since artificial periodicity is introduced to the system,
fluctuations are limited to the ones whose wavelengths are multiples of the simulation
box size. Any fluctuations with wavelength longer than the length of the box are not
present.

Boundary conditions mentioned above are just a few of the available boundary con-
ditions. More sophisticated boundary conditions or a combination of boundary condi-
tions can be applied to treat boundaries when needed.
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Figure 3.6: Minimum image convention. To minimize atificial periodicity, each particle
interacts only with the nearest image of the other particle.

3.2.5 Packing of particles: Voronoi Diagram

The topology of cells in tissue is characterised by the number of nearest cells. One
can characterize the position of each cell in the space by the position of its center of
mass. Thus cells in tissue can be characterized by the set of points corresponding to
the cells’ centers of mass. The identification of the nearest cells to the given cell is
then equivalent to to the finding of the set of points closest to the given point. To solve
this problem, one might consider construct called the Voronoi diagrams. The concept
of a Voronoi diagram or Dirichlet tessellation was introduced and studied by Dirichlet
in 1850 and Voronoi in 1908 [131]. For a given set of distinct points in space, called
sites, the Voronoi diagram divides the space into as many regions as there are sites.
Each site is assigned a region such that all the points inside that region are closer to
the associated site than to any other site. An illustration of a Voronoi diagram for a
random set of points in two dimensions is shown in Figure 3.7. This construct is used
in various disciplines and often has different names: Wigner-Seitz zones in condensed
matter physics [132], domains of action in crystallography [131] and Thiessen polygons

in geography [133] are built based on the same principle.
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Figure 3.7: A two dimensional Voronoi diagram for a random set of points. The
Voronoi cell (shown in grey) associated with the site p is the region which is closest
to the site. It is defined by the intersection of bisectors (red dashed line) of p and any
other site q.

A mathematical definition of the Voronoi diagram is given as follows [131]: Let S
be the set of n points (sites) in Euclidean plane R2, and let p and q be two distinct sites
from set S (Fig. 3.7). A portion of the plane R2 in which all the plane points are closer
to p than to q is called the dominance of p over q.

dom(p, q) = {x ∈ R2, if d(x, p) ≤ d(x, q)},

where d(x1, x2) is the Euclidean distance between points x1 and x2. The Voronoi region
or Voronoi cell of the site p is the intersection of dominances of p over all other sites in
the set S (grey region in Fig. 3.7).

Voronoi region(p) =
⋂

q∈S,q 6=p
dom(p, q).

In order to find the dominance of p over q, one should construct a perpendicular
bisector of p and q (dashed red line in Fig. 3.7). The perpendicular bisector divides
the plane R2 into two half planes. All the points of the half plane that contains p are
closer to p than to q. Thus, the half plane that contains p is the dominance of p over q.
The intersection of all dominance half planes that arise from constructing bisectors of
p and any other site is the Voronoi region of p. Collectively, the Voronoi regions for all
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sites divide the plane into n parts. That partition is called the Voronoi diagram. In the
two dimensional case, the Voronoi regions are polygons with maximum of n− 1 edges
and vertices. The Voronoi diagram can be generalized for n-dimensional spaces. The
Voronoi diagram has its dual structure, called Delaunay triangulation. It is constructed
by connecting two sites in a Voronoi diagram that share a common edge [131].

Physical systems consist of discrete particles. The spatial distribution of particles
describes the state of the system and its equilibrium properties. One way to obtain
information about the local organization of particles in the system is to consider each
particle as a distinct site in three dimensional space and to construct a Voronoi diagram
for the set of particles [127]. The Voronoi subdivision partitions space into polyhedra
associated with the particles. Two particles are considered to be nearest neighbors if
they share a common face. Thus, each polyhedron characterizes the local neighborhood
of the associated particle, and all polyhedra combined provide information about the
spatial structure of the system.



Chapter 4

Model and Methods

Having a precise topology is essential for the proper functioning of tissue. During tissue
development, various cellular processes, such as cell division, rearrangement, migration
and cell death alter tissue topology, and the cellular packing may significantly differ at
the various stages of tissue development. For example, the Drosophila wing has an
irregular topology throughout most of its growth and formation; however, at the last
stage of development, cells are repacked into a mostly hexagonal structure [77]. Cell
mechanics also affects topology, as changes in mechanical properties of the cell reflect
on its shape and connectivity [73, 26, 27].

Recently, a lot of attention has been drawn towards understanding the mechanisms
that drive cell packing in epithelium. In particular, mechanical vertex models [27]
are widely used to investigate the impact of cell mechanics and cellular processes on
epithelial tissue topology. However, vertex models have their limitations. Cells have a
pre-existing shape and topology, and vertex models do not account for cell migration.

Individual treatment of cells allows a for more realistic and detailed description of
cellular shapes and topology. In these models, cells respond to the changes in external
environment in a more natural way. Single cell based models were extensively used
to study the dynamics of multicellular structures (a brief review of selected single cell
based models is presented in Chapter 2). However, only a few works have addressed
cell packing topologies.

In this work, we present a new single-cell based model which accounts for cell-cell
adhesion and the cell cortex’s contractility. The processes of cell growth and divisions
are included in the model, which makes it suitable for studies of tissue growth. We
discuss the details of the model in Section 4.1. The parametrization and the algorithm
of tissue growth are presented in Section 4.2.

48
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4.1 Model

A model for an isolated cell is developed first. That cell is then embedded in a tissue
where it interacts with its neighboring cells. These interactions are modelled through
repulsion, adhesion, and viscous damping. Importantly, the cells are also able to grow,
divide and migrate. All the quantities and their numerical values are presented in di-
mensionless units.

4.1.1 Isolated Cell

A single cell is modelled as a closed loop of mass points connected through springs.
This model was proposed by Åström and Karttunen in their studies on cell aggregation
in a confined space [134]. We use this model as the basis and extend it to include
cell-cell interactions and cell division. Each mass point experiences tension forces
from two neighbor springs as shown in Figure 4.1A. These tension forces define the
cell actomyosin cortex’s contractility that favours a rounded structure for an isolated
cell [11, 95]. Each cell is also assigned an internal pressure P independent of cell area.
This is motivated by experimental observations from dividing cells [11]. The force due
to the internal pressure (in this work referred as pressure force) is opposed by the spring
tension forces of the two nearest neighbor mass points. An increase in internal pressure
results in an increase in the size of the cell. With the above, the net force acting on mass
point i belonging to an isolated cell is given as

Fcell
i = σiηi − σi+1ηi+1 +

Pl

2
(νi + νi+1), (4.1)

where ηi and νi are the tangential and normal vectors, σi is the tension force and Pl
represents pressure force, as shown in Figure 4.1A. For a linear elastic spring, tension
is given as σi = Kspr

i (l − l0), where l0 and l are equilibrium and instantaneous length
of springs, respectively. For simplicity, we assume that all cells are identical and ho-
mogeneous: i.e., all springs have the same spring constant Kspr

i ≡ Kspr.

4.1.2 Cell in tissue

Next, we place the cell as described above in a tissue. Inside the tissue, each mass point
is subject to additional forces that arise due to cell-cell interactions. We model them
using three terms: 1) repulsion, 2) adhesion, and 3) viscous damping.
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Figure 4.1: Mass-spring model of the cell. (A) Forces acting on mass point i in an
isolated cell are spring tension forces (σi and σi+1) and the pressure force ((Pl)i and
(Pl)i+1). The cell grows by gradually increasing the pressure force. (B) The cell
divides through random division line (dashed blue line). During division, new mass
points (red) are added along the division line.

1. Repulsion: In order to prevent the cells from penetrating into each other, we use
spring-like repulsion forces

Frep
ij =

{
−Krep(Rrep

c −Rij)R̂ij if Rij < Rrep
c

0 otherwise.
(4.2)

Here Krep is the repulsion spring constant, Rij is the length between two mass points
i and j, and R̂ij is the unit vector. Two mass points are considered to be in contact if
they are within a distance Rrep

c from each other.
The repulsion force should be strong enough to counteract the pressure force Pl

pushing the mass points of one cell into the interior of one (or more) of its neigboring
cells. In addition, cell rigidity needs to be taken into account for the estimation of the
repulsion force. Rigidity may vary at different stages of the cell cycle [135], and since
the displacement of the mass points depends on the strength of the spring forces, more
rigid cells require stronger repulsion forces.

Taking the two above factors into account, we can estimate the numerical value for
the repulsion force coefficient required to be

Krep ∼ KsprPl. (4.3)
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2. Adhesion: Tissue integrity is maintained by adhesion between the neighboring cells.
Cells adhere to each other tightly through adhesive molecules, often located in specific
areas known as cell junctions [80]. In our model, each mass point acts as a potential site
for adhesive interaction. When two mass points i and j that belong to different cells are
within the interaction distance Radh

c , they attract each other through linear spring-like
forces,

Fadh
ij =

{
Kadh
ij (Radh

c −Rij)R̂ij if Rij < Radh
c

0 otherwise.
(4.4)

Cells adhere through several mechanisms with different associated binding free ener-
gies. A realistic treatment of cell-cell adhesion should consider the differences between
the adhesion sites, andKadh

ij should be different for different mass points pairs. For sim-
plicity, however, in this work we assume that all adhesive sites are identical with the
adhesion spring constant Kadh

ij ≡ Kadh.
Adhesion favours cell-cell contacts and tends to flatten the neighboring cell sur-

faces, whereas cell cortex contractility favours a rounded cell structure [95]. We can
estimate the relation between the adhesion and contractility spring constants by using
the preferred cell shapes inside a tissue. The majority of cells in a proliferating epithe-
lium assume hexagonal shapes [19]. The change of shape from circular to hexagonal
is accompanied by work done against the contractile springs. In the absence of internal
pressure forces, this work is compensated by the energy stored in the adhesive springs
W spr ∼ W adh. To estimate the work W spr required to deform the cell, we assume that
the cell has the shape of a regular hexagon with an incircle of radius r. The total change
in the perimeter can then be estimated as ∆L = Lhex − Lcir = 12/

√
3r − 2πr. The

total deformation is the result of the deformation of N springs. Hence, the deformation
of each spring is equal to ∆x = ∆L/N . The total energy associated with the defor-
mation of springs can be estimated as W spr ∼ NKspr · (∆L/N)2 ∼ 10−1Ksprr2/N

. For a hexagonal shape, all mass points are in contact with the mass points of the
neighboring cells and participate in cell-cell adhesion with the total energy of W adh ∼
NKadh · (Radh

c −Rrep
c )2. Thus

Kadh ∼ 10−1Ksprr2

N2 · (Radh
c −Rrep

c )2
. (4.5)

This estimate does not include the effects of the internal pressure force on cellular
shapes, and hence the final calibration of Kadh is done during the simulations where
we methodically vary numerical values for the adhesion constant and compare resulting
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tissue topology with the experimental data.
3. Viscous Damping: Cells can undergo local rearrangements as well as large-

scale migrations during tissue formation. The extent of these rearrangements depends
on the interactions of cells with their exteriors. We can control the amount of cell
rearrangements through a viscous damping force that acts between two neighboring
cells. Let i and j be two mass points that belong to two different cells that are in
contact. When the cells move along each other, the mass point i slides along mass
point j with the relative velocity vij = vi − vj. If vij

τ is the tangential component of
the relative velocity, then the damping force acting on mass point i can be given as

Ffric
ij = −γivij

τ . (4.6)

Furthermore, since we do not consider the cellular environment explicitly, the effect
of motion on the viscous cytoplasm is mimicked through an additional viscous damping
force with a coefficient c that acts on all mass points.

4.1.3 Cellular processes

Our model can account for cell polarity and several cellular processes including cell
growth and division, and cell migrations. We discuss the modelling of those processes
below.

1. Cell Growth and Division: The cell grows by gradually increasing internal pres-
sure P . The growth through internal pressure is inspired by the fact that animal cells
modulate their internal hydrostatic pressure before mitosis [11]. The current imple-
mentation of the model assumes that all cells have the same pressure which grows at
the same constant rate, but the model can be easily extended to assume various growth
mechanisms as well. The individual modelling of cells allows one to vary the internal
pressure and the growth rate for each cell independently.

Once the cell area reaches a threshold value Adiv, the cell divides into two daughter
cells. The model is scale invariant, and without loss of generality we can choose the
numerical value for Adiv to be unity. This sets the length scale in our model. The in-
crease in the internal pressure for mitotic cells observed by Stewart et al. [11] serves as
a basis for the growth control through pressure in our model. To ensure that daughter
cells grow similarly to the mother cell, both cells are assigned a pressure identical to
the parental cell. During the division, new mass points are added along the division
line so that the resulting two cells form closed loops and have the same number of mass
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points as the initial cell. We consider three division mechanisms: random, divisions
by the ‘longest axis rule’ or Hertwig’s rule and asymmetric cell division (Fig. 4.2). In

Figure 4.2: Three mechanisms of cell division. A random (AB) division line passes
through the cell’s center of mass and has random orientation. Division based on Her-
twig’s rule (CD) has a division line that is perpendicular perpendicular to the cell’s
longest axis. An asymmetric division line (AE) splits the cell into two unequal sizes
and has random orientation.

random division scheme, the division line passes through cell’s center of mass and has
random orientation. This division line divides the cell into two roughly identical cells.
Here we assume homogeneous cells, with all mass points having the same mass and all
spring constants being the same. With that assumption, we consider a random division
line to be one that connects a randomly chosen mass point to its diagonally opposite
mass point (line AB in Fig. 4.2). Two other division mechanisms are chosen based
on biological relevance. More than a century ago Hertwig proposed a division rule
based on his observations on mitotic cells. For most cells the mitotic spindle aligns
along the longest axis of the cell. Hence, the cell division plane is oriented perpen-
dicular to the longest axis. This division scheme is known as the ‘longest axis rule’
or ‘Hertwig’s rule’. We implement the division according to the ‘longest axis rule’ by
searching for the cell’s longest axis and then choosing the division line closest to the
line that is perpendicular to the longest axis (line CD). Finally, in some cases, cells
divide asymmetrically. During asymmetric division, two daughter cells end up with
different sizes [69]. Numerically, we construct the asymmetric division line by consid-
ering the line which connects a randomly selected mass point with another one that is
not diagonally opposite to the first mass point (Fig. 4.2 (AE)).

2. Cell Polarity and Migration: The model can account for cell polarity and migra-
tion (not included in this work). Polar cells are characterized by differences in shape,
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structure or functionality of spatially different regions of the cell. An epithelial cell is
an example of a polar cell, where an individual cell is divided into two distinct regions,
apical and basolateral. The apical region faces the lumen or outer surface, while the
basolateral region is in contact with the basal lamina or other cells. Exposure to dif-
ferent environments requires having different structure and functionality of apical and
basolateral membranes of epithelial cell. Since our model the cell is presented as a
collection of sub-cellular mass points, we can model cell polarity by varying properties
of mass points that belong to distinct parts of the cell.

Collective cell migrations during the an embryonic development are an essential
part of morphogenesis [97, 98]. Cell polarity plays an important role in cell migrations.
For a cell to move in a specific direction, it should have defined front and rear parts.
As a cell migrates, the leading edge extends towards the direction of motion, while
the opposite edge retracts [136]. We can model the migration through modulation of
the pressure forces acting on mass points that belong to the leading and the retracting
edges of cell. If the mass points that belong to the leading edge are assigned a higher
internal pressure P than the mass points of the neighbor cells, the leading edge extends
outwards. Similarly, if the internal pressure of the mass points that belong to the rear
edge of the cell is set to be lower than that of the internal pressure of the neighboring
cell mass points, the rear edge retracts. Consequently, the cell moves generally in the
direction of the motion of the leading edge.

4.2 Numerical Implementation

The system of cell mass points evolves according to the following set of equations of
motion.

mr̈i = Fcell
i +

∑
j

Fadh
ij +

∑
j

Frep
ij +

∑
j

Ffric
ij − cvi, (4.7)

where m and ri are the mass and position of mass point i and c is the damping coef-
ficient. The forces are given by Equations. 4.1, 4.4, 4.2 and 4.6. The first four terms
characterise the physical properties of the cell and the cell-cell interactions as described
above. The cellular environment is taken into account implicitly through viscous damp-
ing with the damping coefficient c (see above). We use the Verlet algorithm for numer-
ical integration of Equation 4.7, where positions and velocities at each time step are
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obtained though equations

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)

mi

·∆t2 (4.8)

and
vi(t+ ∆t) =

ri(t+ ∆t)− ri(t)

∆t
. (4.9)

4.2.1 Simulation of Tissue Growth

We start the simulation of tissue growth from a few cells. As the system evolves ac-
cording to Equation (4.7), the cell changes its shape due to the interactions with the
external environment. At the beginning of the simulation the cell is assigned an initial
pressure Pinit, such that the resulting cell area is about the same as the threshold area
Adiv. Cell growth is achieved by increasing the internal pressure at a constant rate. All
cells have the same internal pressure and the same pressure growth rate. Different pres-
sures and growth rates can be used, but for simplicity and to demonstrate the model,
we used same pressures and growth rates. After a fixed amount of time T div we check
the areas of all cells and the ones that have an area exceeding a threshold value divide
according the the procedure described in Section 4.1.3. We discuss the choice of T div

in Section 4.2.2. Following the procedure above, we grow tissues up to 1500 cells.
We use open boundary conditions to mimic tissue growth in a natural environment.

To study the properties of the growing tissue, data are typically collected from the
central part, which we define as the disc with the radius R = 0.6Rmax, where Rmax is
the largest distance of cells from the center of mass of the system at the given time, as
shown in Figure 4.3. We estimated the effects of the boundary to be less than 10%.

All simulations are carried out for four samples in which we applied different ini-
tial configurations as follows: a single cell, and clusters of five, ten and twenty cells
(Fig. 4.4). The initial configurations of cell clusters were generated by grouping cells
together in a tissue-like structure. The systems were equilibrated at the constant pres-
sure P prior the production simulations. We considered systems to be properly equili-
brated when there were no noticeable changes in cell shapes. All results are averaged
over those four samples and are reported in dimensionless units. Error bars correspond
to the standard deviation over all four samples. Conversion between dimensionless and
real units is discussed in the following section.
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Figure 4.3: Data are collected from the central part of the tissue to avoid boundary
effects.

Figure 4.4: Initial configuration of four simulation samples. Cells are grouped in tissue-
like structures and equilibrated prior to the beginning of the production simulations.

4.2.2 Parametrization

Each cell was constructed from 76 mass points resulting in smooth cellular shapes.
All mass points have the same mass M . Numerical values for the mass should be large
enough to prevent rapid oscillations of the model springs in the system. At the same
time in the regime of quasi-equilibrium tissue growth, the mass should be small enough
so that M r̈i << 1. We found that M = 0.1 with damping coefficient c = 1 satisfies
both conditions.

Next, we set the threshold area for cell division to unity so the distances between
neighboring mass points is roughly∼ 0.1. The distance at which cells are considered to
be in contact or Rrep

c is set to the same value. The cutoff distance for cell-cell adhesion
Radh
c is twice of the contact distance.

Division times for individual cells are characterized by the parameter T div. The
choice of T div sets the time scale in our model. Typical cell division time has the
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order of ∼ 1 h, while the characteristic time for tissue development is ∼ 10 h [11, 18].
Thus, cell division times are roughly 10 times shorter than the time scale of tissue
morphogenesis. We pick T div such that the characteristic time for tissue growth and
formation in our model has the order of ∼ 1 in reduced units. This leads to T div of
order ∼ 10−1.

The initial pressure force Pinitl and cell cortex contractility were chosen such that
the resulting cell area is close to the threshold area Adiv. Krep and Kadh are first es-
timated with the help of Equations 4.3 and 4.5. We then calibrate these coefficients,
along with the pressure force growth rate ∆(Pl) and damping coefficient for cellular
rearrangements γ, by methodically varying these parameters and comparing resulting
tissue topologies with experimental data. The list of computational parameters and their
numerical values in dimensionless units is presented in Table 4.1

Table 4.1: List of simulations parameters and their values in dimensionless units
Parameter Notation Numerical Value
Mass points per cell N 76
Mass M 0.1
Damping of the system c 1
Equilibrium spring length l0 0.1
Cell cortex contractility Kspr 1400
Cell-cell adhesion coefficient Kadh 56
Damping of cellular rearrangements γ 20
Threshold area Adiv 1
Initial pressure force Pinitl 15
Pressure force growth rate ∆(Pl) 5 · 10−5

Repulsion cutoff distance Rrepc 0.1
Adhesion cutoff distance Radhc 0.2
Simulation time step ∆t 0.0001
Division checkpoints T div 0.2

We compare parameters in our model with experimentally observed physical prop-
erties of the cell. The parameters in our model are in reduced units, and to define
the base for conversion to real units we match model cell mass, diameter and internal
pressure force with the experimental values.

The average cell diameter is about 10 µm. The diameter of the cell is of the order
of unity in reduced units. Thus, the unit length has the real value of [l] = 10−5 m.
Cells were chosen to have the mass of an average human cell, or 10−12 kg [2]. The
number of mass points per cell is ∼ 100, and in reduced units, the total mass of the
cell is approximately 10, leading to the mass unit value of [m] = 10−13 kg. To estimate
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the real value of the unit force, we use the experimental value of the pressure force in
the mitotic cell based on the work of Stewart et al. [11] The experimental pressure has
the order of ∼ 0.1 nN/µm2. The reduced pressure force throughout all simulations is
of the order Pl ∼ 10 ⇒ P ∼ 10/l ∼ 100[F ]/[l] in two dimensions. Similarly, three
dimensional pressure in reduced units has the numerical value of P ∼ 100[F ]/[l]2.
Substitution of the real value for the length unit and comparison with the real mitotic
pressure leads to the force unit of [F ] = 10−10 N. The time unit can be derived as well,
[t] =

√
[m][l]/[F ] ∼ 10−4 s. To summarize: the conversions of base units are given as

[m] = 10−13 kg, [l] = 10−5 m and [t] = 10−4 s. With these definitions, we can compare
the physical properties of our model cell with the experimentally observed cell cortex
contractility and cell-cell adhesion.

In their experiments with single mitotic cells, Stewart et al. evaluated the Young’s
modulus of mitotic HeLa cells to have the order of Y ∼ 1 nN/µm2 [11], Y ∼ 103 [F ] / [l]

in dimensionless units. The three dimensional Young’s modulus is related to the two di-
mensional Young’s modulus as Y2D ∼ 4Y3D ∼ 103 [F ] / [l]. At the same time, Young’s
modulus estimate for our model cells can be expressed through the spring constantKspr

as Y = Ksprl/d, where l is the spring length and d is the cortex thickness. We set the
cortex thickness to be 100 nm [137], or 10−2 in reduced units. The numerical value for
Young’s modulus estimated with our model then will be Y ∼ 104 [F ] / [l], roughly 10
times higher than the experimentally observed stiffness for the HeLa cell cortex. This
difference of order of magnitude can be explained by the fact that our model is two
dimensional, whereas experimental data are obtained for three dimensional cells.

Cell-cell adhesion is mediated by adhesion proteins. Depending on the type of
adhesion proteins, protein-ligand binding can have varying binding free energy. In
particular, Sarda et al. [118] estimated the binding energy density for biotin-streptavidin
to be ∼ 105kBT/µm2 = 10−16 J/µm2. The adhesion energy per single bond in our
model is W adh ∼ Kadh · (Radh

c −Rrep
c )2 ∼ 0.56 [F ] / [l]. The unit length has 10 bonds,

thus the binding energy density in our model is proportional to 1 [F ] / [l] ∼ 10−15 J. We
conclude that our binding energy is roughly 10 times higher than the experimentally
observed one. As in the case of Young’s modulus, the order of magnitude difference
can be explained by the two dimensionality of our model.

Finally, we compare the time scale in our model with the time scale of tissue growth
in Drosophila imaginal wing disc. The time scale that characterizes tissue growth in
our model can be estimated as the simulation time necessary to form a relatively stable
configuration of cell nearest neighbors. It takes roughly 25 division cycles, or 5 reduced
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time units, for the number of cell neighbors to stabilize. Our model is scale invariant,
with the time and viscous damping coefficient scaling as c/t. In model units, both
damping and time units are set to one. At the same time, Drosophila wing disc growth
and formation has the characteristic time of ∼ 10 h [18], and the cytoplasmic viscosity,
which corresponds to c is about 103 Pa·s [104]. Rescaling model parameters reveals
that we, for computational efficiency, speed up the growth rate by roughly a factor 10

compared to Drosophila wing disc.

4.3 Summary

In this chapter, we presented a framework for proliferation of two-dimensional tissue,
such as simple epithelium. Each cell is modelled individually, as a collection of sub-
cellular mass points. Cell-cell adhesion and cortex contractility are considered in the
model. Hydrostatic pressure is used to control the cell growth. To keep our model
simple, we use linear spring forces to model cell mechanics and cell-cell interactions.
With the assumption of identical cells, two parameters Kspr and Kadh describe the cell
cortex’s contractility and cell-cell adhesion. The cytoplasmic cellular environment is
taken into account implicitly, as a viscous damping.

We introduced tissue proliferation as a repeating cycle of cellular growths and di-
visions and presented the numerical implementation of both processes. The possible
extensions of the model to account for differential growth, cell polarity and migrations
were discussed.

We discussed the parametrization of our model (the list of parameters in reduced
units is presented in Table 4.1) and compared the physical properties of the cells in our
model with the experimental measurements. Our comparison shows that the Young’s
modulus of the cell and cell-cell adhesion are roughly 10 times higher than the cor-
responding experimental values, which is a consequence of the two-dimensionality of
our model. Comparison of model time scales with the time scales of epithelial growth
showed that we have roughly 10 times faster growth.



Chapter 5

The Dynamics of Proliferating
Epithelium

Epithelia are often used as model system to study tissue growth and morphogene-
sis. Proliferating epithelium is particularly well characterized in the Drosophila wing
disc [74]. The wing primordium (wing imaginal disc) is singled out at the early stages
of embryonic development, when it consists of just a few cells. As the wing undergoes
proliferation, the number of cells increases more than ∼ 1000-fold in just 4 days to
form an adult fly wing [138].

Proliferation is characterized by the mitotic index, which defines the fraction of
cells in mitosis. On average, the mitotic index in the proliferating wing disc has a
value of ∼ 1.7% [24]. It, however, varies throughout tissue development [83]. The
mitotic index is higher at the initial stages of development, when the growth is faster,
and gradually decreases with time, as shown on Figure 5.1. The proliferation of the
wing disc is spatially homogeneous, and mitotic cells are found throughout the entire
tissue [24].

Despite the disorder introduced by cell division and rearrangement during tissue
growth, cell packing topologies in proliferating epithalia are conserved among species [19].
The characteristic topology has a peak for hexagonal cells, and an asymmetric distribu-
tion of pentagons and heptagons. In particular, Gibson et al. [19] reported that 45.8%

of cells in proliferating Drosophila wing disc have a hexagonal shape, 27.2% are pen-
tagons and 20.3% are heptagons. The remaining 4.2% cells consists of tetragons and
octagons.

In this chapter, we simulate tissue growth starting from a few cells and investigate
several aspects of proliferation in our model as detailed in Chapter 4. The procedure
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Figure 5.1: Mitotic index of Drosophila wing disc determined by PH3-staining. Raw
data are displayed as blue points, black points correspond to the mitotic index averaged
over tissue samples, and the black line is an exponential fit to averaged mitotic index,
weighted with 1/SE2, where SE is the standard error of averaging. The figure is adapted
from [83] and reprinted with permission from AAAS.

of the tissue growth is detailed in Section 4.1.3 and the simulation parameters can be
found in Table 4.1. Here we give just a brief overview of the growth process, focusing
on the details of simulations relevant to this chapter.

5.1 Time evolution of mitotic index

Tissue growth starts from a few cells that start to grow and divide. Periodically, every
T div steps, the areas of all cells were evaluated to establish their eligibility to divide.
Cells with areas exceeding the threshold area Adiv were divided through randomly ori-
ented division planes. Figure 5.2 shows snapshots of the simulated tissue growth. To
characterize proliferation in the model tissue, we follow the time evolution of the mi-
totic index for four simulation samples (the choice of samples is discussed Sect. 4.2.1).
Since we use open boundary conditions, data are collected from the central part of the
tissue, which we define as a disc with radius 0.6Rmax. Here, Rmax is the maximum
distance of cells from the center of mass of the tissue at the given time.

Every 10T div steps, starting from the time step when the examined tissue samples
had at least 10 cells, we calculated the mitotic index as the ratio of cells that went
through division to the total number of examined cells. Time evolutions of the mitotic
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Figure 5.2: Snapshots of tissue growth in our model. Tissue starts its growth from a
few cells which grow and divide through randomly oriented division planes. Snapshots
show topological changes in tissue throughout simulation.

indices for all four simulation samples are shown in Figure 5.3 (blue points). Similar
to the experimental procedure described by Wartlick et al. [83], data are averaged over
simulation samples. The averaged data are then fitted to an exponential function using
weighted least square fitting. We found that

frand(t) = 6.087 exp(−0.2811t)

approximated the decay of simulated mitotic index (R2 = 0.90). Thus, the mitotic
index of growing tissue in our model decays exponentially.

On average, the experimental value of the mitotic index of proliferating epithelium
has a value of 1.7% [24]. To identify the proliferation regime as defined by experiments,
we choose the time interval in our simulations, where simulated mitotic index has the
value close to the experimentally observed one. For example, the vertical dashed lines
in Figure 5.3 highlight the time interval that corresponds to the average mitotic index of
1.69% with standard deviation of 0.62%. We consider it to be the proliferation interval,
or the interval of active growth state, for the model tissue.

We next examined the spatial distribution of mitotic cells. We sectioned the tissue
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Figure 5.3: Time evolution of simulated mitotic index. Raw data are shown in blue.
Similar to the experimental procedure described by Wartlick et al. [83] data are aver-
aged over simulation samples (black points) and fitted to an exponential function (black
curve). Dashed lines highlight the time intervals where average mitotic index has the
value of 1.69%(±0.62%).

into concentric rings, each with a thickness of 0.1Rmax. We then calculated the density
of dividing cells in each ring. The time evolution of mitotic cell densities is shown in
Figure 5.4. The time interval considered in Figure 5.4 corresponds to the proliferation
regime. As we see from Figure 5.4, mitotic cells are found throughout the entire tissue.
Divisions, however, are more frequent at the outer cell layers as seen on Figure 5.4.
Therefore, on average, the distribution of dividing cells has a higher number of mitotic
cells at the edges of tissue (Fig. 5.5).

5.2 Cell packing topology

Cell topology is characterised by the number of nearest neighbors. One can assign each
cell a polygon type based on the number of its nearest neighbors. For instance, a cell
with n nearest neighbors can be considered as an n-sided polygon. In this approxima-
tion, tissue is considered to be a polygonal network. In fact, cells in tightly connected
tissues assume polygonal shapes, and representation of cells through polygons looks
quite realistic. This resemblance serves as the basis for vertex models [28, 27]. Sta-
ble configurations of the epithelial junctional network throughout its proliferation, and
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Figure 5.4: Spatial distribution of mitotic cells for proliferation time interval. In all
four simulation samples mitotic cells are found throughout the entire tissue.
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Figure 5.5: Spatial distribution of mitotic indices averaged over the proliferation time
interval and simulation samples.

the ability to incorporate cell mechanics and proliferation into the vertex models make
them attractive choice for studying tissue topology. However, cellular shapes are less
realistic in these models.

We start to grow the tissue from several cells and follow the evolution of cell pack-
ing topologies. During tissue growth, cells assume polygonal shapes in our model
(Fig. 5.6 (Left)), but, in contrast to vertex models, cell polygonal shapes arise naturally.
To characterize cell polygon types in our model, we determine centers of mass of all

Figure 5.6: Two examples of cells in tissue at the end of two separate simulations.
Left: Snapshot of a simulated tissue. Right: Cells shown as polygons through Voronoi
diagram. Different colours indicate different polygon types. Pentagons, hexagons and
heptagons are coloured as green, red and blue, correspondingly. Different polygons
arise naturally due to cell-cell interactions.

cells and use them to construct a Voronoi diagram of the tissue (see Sect. 3.2.5). Figure
5.6 (Right) shows an example.
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We calculated the fraction of n-sided polygons and recorded cell topology distri-
bution every 500 time steps. The time evolution of cell polygonal types is shown in
Figure 5.7. Cell polygon types change dramatically at the early stages of tissue devel-
opment. After about 25 division cycles, the distribution of polygons stabilizes. As we
can see from Figure 5.7, most of the cells assume shapes of 4- to 8-sided polygons,
but small fractions of 3- and 9-sided polygons also exist (not shown on the graph). We
found them to be less than 1%. Hexagonal shapes are the most frequent, followed by
pentagons and heptagons as the next frequent shapes.

To compare the polygon distribution with that of experimentally observed Drosophila

wing disc topology [19], we estimate the average number of cell polygon types during
the proliferation regime. Proliferation time intervals for each simulation sample are
calculated based on the mitotic index as described in the previous section. They are
highlighted with the dashed vertical lines in Fig. 5.7. Figure 5.8 displays the simulated
distribution cell polygonal shapes during proliferation, averaged over four samples. For
comparison, the polygon distribution in proliferating Drosophila wing disc [19] is pre-
sented as well. Numerical values of cell polygon type frequencies for both simulations
and experiments can be found in Table 5.1.

Table 5.1: Comparison of simulated and experimental fractions of cell polygon types
Tetragons Pentagons Hexagons Heptagons Octagons

Simulation 1.9± 0.7% 27.6± 2.1% 47.9± 3.0% 20.1± 1.9% 2.4± 0.8%
Experiments 2.8± 1.6% 27.2± 1.8% 45.8± 2.4% 20.3± 2.5% 1.15%

As we can see, our model captures the main characteristics of experimentally ob-
served tissue topology. The distribution has a peak for hexagonal cells and an asymmet-
ric distribution of pentagons and heptagons. Numerical values are in good agreement
with Drosophila wing topology.

5.3 Summary

Epithelial sheets are often used as a model system for studies of tissue growth and
morphogenesis due to their simplicity. In particular, tissue proliferation has been exten-
sively studied on epithelium of Drosophila fruit fly wing imaginal disc. Several features
of proliferating epithelium include spatial homogeneity of growth, relatively constant
fraction of cells in mitotic stage and the characteristic tissue topology [138, 24, 19].
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Figure 5.7: Time evolution of the polygon type distribution for four simulation samples.
Blue dashed lines indicate the proliferation time intervals for each sample.
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Figure 5.8: Polygon type distribution compared with experimentally observed topol-
ogy of Drosophila wing epithelium topology. Simulation data are averaged for four
samples. Error bars indicate the standard deviation over all four samples. Experimental
data are taken from the work by Gibson et al. [19].

We examined the growth and the cellular packing topologies of proliferating tissue
using the new mechanical model developed in this thesis (Chapt. 4). Time evolution
of the mitotic index and the cell packing topologies in our model were compared with
the experimentally obtained mitotic index and the topology of proliferating Drosophila

wing disc [83, 19].
The mitotic index in simulated tissue decreases exponentially, similar to the ex-

periments [83]. Dividing cells are found throughout the entire simulated tissue. It is,
however, more likely to find mitotic cells closer to the tissue edges. Therefore, the
density of dividing cells is higher at outer layers of tissue.

Several hypothesis have been suggested to explain tissue growth control [18]. Among
them is the mechanical model for regulation of tissue growth [87]. According to the
model proposed by Aegerter-Wilsmen et al. [87], peripheral regions of Drosophila wing
disc compress its center, which inhibits the growth at the center. The larger size of the
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disk leads to stronger compression, and that eventually ceases the growth. We believe
that the decay of the mitotic index in our model is determined by the same mechanism.
The growth rate of cells is defined by the growth rate of internal pressure assigned to
each cell. Currently, we keep the growth rate of the internal pressure constant through-
out the simulation, but as the tissue grows larger, the compression inside the tissue
defined by the internal pressure grows as well. Increase in the compression gradually
decreases the number of dividing cells, until the growth stops completely. That also
explains the higher number of mitotic cells further from the tissue center.

Finally, we compared cellular packing in proliferating model tissue with the char-
acteristic epithelial topology. Cellular packing topologies in our simulations are in a
good agreement with experimentally observed epithelial packing topologies.

We conclude that our model can account for the main attributes of the epithelial
growth, such as the time evolution of the mitotic index and the cell packing topologies.



Chapter 6

The Influence of Division Plane and
Cellular Rearrangements on Cell
Packing Topologies

Cell divisions are among the processes that alter tissue topology during its formation. In
the previous chapter, we explored tissue growth and cell packing topologies when cells
divide through randomly oriented symmetric division planes. In this chapter, we exam-
ine proliferation through two alternative biologically relevant division schemes. First,
we consider division with a randomly oriented asymmetric division planes, which is
an essential part of the cell differentiation process [69]. When a parental cell divides
asymmetrically, two daughters may differ in cellular content or size, and consequently
inherit different fates [2]. In this work we consider asymmetric divisions that gener-
ate daughter cells of different sizes. Another division plane of biological importance,
which we consider here, is the division plane defined by the cell’s geometry. Initially
described by Hertwig in 1893, division based on the ‘longest axis rule’ or Hertwig’s
rule is influenced by the geometry of the cell: the cell division plane is directed along
the line perpendicular to the cell’s longest axis. In Section 6.1, we discuss tissue growth
through asymmetric and Hertwig’s division planes and compare results with the case
of the random division scheme discussed in the previous chapter.

One of the benefits of single cell based models is the ability to account for cell re-
arrangements. As we discussed in Section 4.1.2, such rearrangements in our model are
influenced by viscous damping. In Section 6.2 we examine the effects of rearrange-
ments, influenced by viscous damping, on the tissue topology.

70



CHAPTER 6. INFLUENCE OF DIVISION PLANE AND CELLULAR REARRANGEMENTS 71

6.1 The effect of asymmetric division and division by
Hertwig’s rule on tissue topology

To analyse the impact of the division plane on tissue growth and topology, we grow
tissues starting from a few cells, where each cell divides based on a specific division
scheme. We first consider the asymmetric division scheme. The asymmetric division
plane is chosen such that it has a random orientation and divides the cell into two un-
equal parts with areasAlarge andAsmall. We presented a general algorithm for construc-
tion of an asymmetric division plane in Section 4.1.3. Here, we choose the asymmetric
division plane such that the ratio of Asmall to Alarge is roughly 0.5 for all instances of
cell divisions. Instantaneous values of Asmall/Alarge ratio throughout the entire simu-
lation are presented in Figure 6.1. On average, the ratio is about 0.45 with a standard

Figure 6.1: The ratio of small and large cell areas during the asymmteric division. On
average, the larger cell is twice as big as the smaller cell.

deviation of 0.05. Thus, the larger cell is roughly twice as big as the the smaller cell.
The second division scheme we consider is division by Hertwig’s rule [12]. The

division plane is chosen perpendicular to the cell’s longest axis as described in Sec-
tion 4.1.3.

Figures 6.2 and 6.3 show snapshots of tissue development for both division schemes.
Snapshots of tissue proliferating through random division planes were presented in

Figure 5.2.
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Figure 6.2: Snapshots from a simulation of tissue growth through asymmetric cell di-
vision.

To further investigate the impact of division planes on tissue proliferation, we ex-
amine the time evolutions of mitotic indices for asymmetric and Hertwig’s division
schemes (shown in Figs. 6.4 and 6.5), and compare them to the mitotic index of tissue
growth through the random division scheme (Fig. 5.3).

Mitotic indices for both random (Fig. 5.3) and asymmetric (Fig. 6.4) division planes
behave similarly. In both cases, mitotic indices are fitted to exponential functions of
similar forms, using weighted least-squares fitting. The exponential fit to the mitotic
index of the random division scheme is found to be

frand(t) = 6.087 exp(−0.2811t)

withR2 = 0.90, while the exponential fit to the mitotic index of the asymmetric division
scheme is

fasymm(t) = 3.349 exp(−0.213t)

with R2 = 0.75.
The time evolution of the mitotic index for division based on Hertwig’s rule differs
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Figure 6.3: Snapshots from a simulation of tissue growth through Hertwig’s division
rule.

Figure 6.4: Mitotic index for asymmetric division plane. Raw data are shown in blue.
Similar to the experimental procedure described by Wartlick et al. data are averaged
over simulation samples (black points) and fitted to an exponential function (black
curve) [83]. Dashed lines highlight time intervals where the average mitotic index
has the value of 1.67% with a standard deviation of 0.74%.

from that of the division schemes mentioned above. The mitotic index decreases rapidly
at the early stages of the growth. We were unable to find a single exponential fit to data
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Figure 6.5: Mitotic index for longest axis division plane. Raw data are shown in blue.
Similar to the experimental procedure described by Wartlick et al. [83] data are aver-
aged over simulation samples (black points) and fitted to the sum of two exponential
functions (black curve). Dashed lines highlight time intervals where average mitotic
index has the value of 1.63%(±1.21%).

points, so we approximated mitotic index with the sum of two exponential functions,
namely

fhertwig(t) = 13.4 exp(−1.581t) + 0.54 exp(0.115t)

with R2 = 0.94. For comparison, all three mitotic indices are presented in Figure 6.6 .
Figure 6.6 shows that the mitotic index for Hetwig’s division scheme is consistently

lower compared to that for random symmetric or asymmetric division schemes, sug-
gesting slower growth in the former case. Hertwig’s division rule is based on cellular
geometry. Division perpendicular to cell’s longest axis generates more compact daugh-
ter cells and favours optimal cellular packing. In optimally packed tissues the growth of
central cells is suppressed by the surrounding cells, resulting in a lower mitotic index.

We further examine cell packing topologies for asymmetric and Hertwig’s division
planes and compare them with the packing topologies for the random division scheme.
We first identify time intervals where average mitotic indices are close to the exper-
imental value of 1.7% (highlighted with dashed lines in Figs. 6.4, 6.5 and 5.3 corre-
spondingly). As in the case of the random division plane, we follow the time evolution
of cell polygonal types and collect statistics for the time intervals that correspond to
proliferation. The time evolution of cell polygonal shapes generated by asymmetric
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Figure 6.6: Functions fitted to mitotic indices for three division schemes: random (red),
asymmetric (green) and Hertwig’s rule (blue).

and orthogonal division schemes are shown in Figures 6.7 and 6.8 .
Average fractions of different polygons are then calculated over proliferation time

intervals for four simulation samples. Although averaging does not reflect the dynamics
of topology, it allows us to compare the distribution of cell shapes for various division
schemes. Polygon type distributions for random, asymmetric and Hertwig’s division
schemes, along with the experimentally observed topology of fruit fly wing disc, are
presented in Figure 6.9. Numerical values of cell polygon types are presented in Ta-
ble 6.1.

Table 6.1: Comparison of fractions of cell polygon types for random, asymmetric and
Hertwig’s division schemes.

Tetragons Pentagons Hexagons Heptagons Octagons
Random 1.9± 0.7% 27.6± 2.1% 47.9± 3.0% 20.1± 1.9% 2.4± 0.8%
Asymmetric 2.8± 1.5% 27.8± 3.4% 46.9± 5.3% 19.7± 2.4% 2.6%± 1.2%
Herwig’s rule 1.1± 1.22% 26.7± 3.3% 52.3± 5.8% 18.5± 3.8% 1.3%± 1.2%
Experiments 2.8± 1.6% 27.2± 1.8% 45.8± 2.4% 20.3± 2.5% 1.15%
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Figure 6.7: Time evolution of the polygon type distribution for the asymmetric division
scheme. Blue dashed lines indicate the proliferation time intervals for each sample.
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Figure 6.8: Time evolution of the polygon type distribution for Hertwig’s division
scheme. Blue dashed lines indicate the proliferation time intervals for each sample.

6.2 The effect of cellular rearrangements influenced by
viscous damping on tissue topology

As we discussed in Section 4.1.2, the extent of cellular rearrangements due to cellular
movements along each other is controlled by viscous damping. Damping is defined
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Figure 6.9: Cell polygon type distributions for three division schemes: Hertwig’s,
asymmetrc and random. For comparison, distribution of cellular polygons in
Drosophila wing is presented as well. All three cases lead to the characteristic dis-
tribution for proliferating epithelium.

by the coefficient γ, which is a free parameter in our model (see Sect. 4.1.2). Dur-
ing calibration, we found that a damping coefficient γ = 20 leads to cell packing of
proliferating tissue similar to those of observed experimentally in epithelium (Fig. 5.8).

In this section we consider two other growth mechanisms, with lower damping
coefficients γ = 10 and γ = 0. A damping coefficient γ = 10 only partially restricts
cellular rearrangements, whereas in the case of γ = 0 cells are free to move along each
other. Figures 6.10 and 6.11 show snapshots of tissue development for γ = 10 and
γ = 0, correspondingly.



CHAPTER 6. INFLUENCE OF DIVISION PLANE AND CELLULAR REARRANGEMENTS 79

Figure 6.10: Snapshots of simulated tissue growth for damping coefficient γ = 10.

Visual inspection of the snapshots reveals that during tissue growth with free cel-
lular rearrangements (the γ = 0 case), cells are packed in more ordered structures.
Indeed, Figure 5.6 shows snapshots of simulated tissues with three different values of
γ parameter. All three systems had the same initial conditions and the three snapshots
were taken at the same time. As Figure 6.12 shows, γ = 0 leads to more ordered
packing than does γ = 20.

To understand the differences in tissue growth and cell packing topologies for the
three different damping coefficients, we consider the time evolution of mitotic indices
for those three cases (see Figs. 6.13, 6.14 and 5.3).

To estimate time dependency of mitotic indices, data points are averaged over sim-
ulation samples and are fitted to exponential functions. The γ = 10 case is fitted to

fγ=10(t) = 12.23 exp(−0.809t) + 0.2041 exp(−0.6302t)

with R2 = 0.98 and the γ = 0 case is fitted to

fγ=0 = 12.3 exp(−1.013t)
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Figure 6.11: Snapshots of simulated tissue growth for damping coefficient γ = 0.

Figure 6.12: Snapshots of the Voronoi diagrams of the tissue for three different scenar-
ios of cellular rearrangements. Cell polygon types coloured as green for pentagons, red
for hexagons and blue for heptagons correspondingly. Left to Right: γ = 0, γ = 10,
γ = 20. For the γ = 0 case, cellular rearrangements are not suppressed. Cellular
packing is shifted towards hexagons, compared to the γ = 10 and γ = 20 cases, where
the amount of cellular rearrangements is restricted. All snapshots are taken at the same
time with the same initial condition.

with R2 = 0.95. In comparison with the γ = 20 case, mitotic indices of both the
γ = 10 and γ = 0 cases decrease faster (Fig. 6.15).
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Figure 6.13: Mitotic index for the case of unrestricted cellular rearrangements defined
by the absence of viscous damping γ = 0. Raw data are shown in blue. Data are
averaged over simulation samples (black points) and fitted to the exponential (black
curve). Dashed lines highlight time intervals where the average mitotic index has the
value of 1.69% with a standard deviation of 1.63%.

Figure 6.14: Mitotic index for the case of cellular rearrangements defined by viscous
damping with the coefficient γ = 10. Raw data are shown in blue. Data are averaged
over simulation samples (black points) and fitted to the sum of two exponential func-
tions (black curve). Dashed lines highlight time intervals where the average mitotic
index has the value of 1.63% with a standard deviation of 0.90%.

As Figure 6.15 shows, tissue growth with less restricted cellular rearrangements
displays a more rapid decrease of mitotic index. The overall decrease in mitotic index
results in more ordered packing of cells in tissues (see Figs 6.16 and 6.17).

Next, we identify proliferation time intervals and compare cell packing topologies
of proliferation tissues for the cases of γ = 0, γ = 10 and γ = 20. The average dis-
tributions of polygonal cells for all three simulations as well as the packing topology
in Drosophila wing discs are shown in Figure 6.18. Numerical values of cell polygon
type frequencies are presented in Table 6.2. All three cases reproduce the characteristic
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Figure 6.15: Functions fitted to mitotic indices for three various amounts of cellular
rearrangements defined by the viscous damping coefficient γ.

Table 6.2: Comparison of fractions of cell polygon types for cellular rearrangements
defined by viscous damping with γ = 20, γ = 10 and γ = 0.

Tetragons Pentagons Hexagons Heptagons Octagons
γ = 20 1.9± 0.7% 27.6± 2.1% 47.9± 3.0% 20.1± 1.9% 2.4± 0.8%
γ = 10 2.3± 1.4% 25.3± 2.6% 51.3± 3.7% 18.7± 2.1% 1.8%± 0.9%
γ = 0 1.7± 1.8% 23.7± 4.6% 57.4± 8.0% 16.3± 3.4% 0.8%± 1.1%
Experiments 2.8± 1.6% 27.2± 1.8% 45.8± 2.4% 20.3± 2.5% 1.15%

distribution, however, growth accompanied with free cellular rearrangements displays
more optimally packed topologies. Unrestricted cellular rearrangements drive the pack-
ing of cells towards the optimal configuration at the initial stages of proliferation. The
growth of the central part of the tissue is then restricted by surrounding cells, and overall
tissue growth is quickly ceased.

6.3 Summary

In this chapter we considered the influence of two factors on proliferating tissue topol-
ogy: the choice of the division plane, and the amount of cellular rearrangement defined
by viscous damping.

We first considered cell packing topologies for various division planes. We found
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Figure 6.16: Time evolution of the polygon type distribution for the γ = 10 case. Blue
dashed lines indicate the proliferation time intervals for each sample.

that randomly oriented symmetric and asymmetric division planes lead to similar dy-
namics of tissue growth and cellular packing in proliferating tissue. Hence, the differ-
ences in sizes of daughter cells do not alter cell packing topology significantly. Cell
packing topologies in tissues are influenced by cell mechanics [73, 26, 27]. Cell divi-
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Figure 6.17: Time evolution of the polygon type distribution for the γ = 0 case. Blue
dashed lines indicate the proliferation time intervals for each sample.

sion introduces an imbalance in forces acting on mass points. Imbalance in net forces
defines changes in cell shapes and topologies, and drives tissue towards its equilibrium
state. Since during cell division, both daughter cells are assigned the same physical
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Figure 6.18: Polygon type distribution for various amount of cell rearrangements. All
three cases reproduce characteristic distribution of polygon types in proliferating tissue.
Growth mechanism associated unrestricted cellular rearrangements are characterized
with more ordered packing of cells.

properties, forces arising during division tend to minimize size differences between
two daughter cells, which explains cellular topologies being similar to a random divi-
sion scheme.

Tissue growth based on Hertwig’s division scheme differs from the two cases men-
tioned above. In this case, the mitotic index is lower compared to random and asym-
metric division schemes, indicating slower growth of tissue. Division perpendicular to
the cell’s longest axis favours more compact optimal packing of cell in tissues starting
from early development stages. The growth of the central part of the tissue is then
suppressed due to surrounding cells, which decreases the average mitotic index. All
three division schemes are characterised by cell packing topologies similar to the ones
observed in Drosophila wing disc [19]. However, mean frequencies of hexagonal cells
are slightly higher for Hertwig’s division rule.

We also considered the effects of cellular rearrangement defined by viscous damp-
ing with the coefficient γ on tissue growth. We considered two values of the damping
coefficient, where cell movements along each other are partially penalized (γ = 10) or
not penalized at all (γ = 0). We compared those two cases with the case of γ = 20,
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which was examined in the previous chapter. We found that the case where cellular re-
arrangements are not suppressed displays a different growth mechanism. When γ = 0,
the cells were able to move freely and rearrange themselves to form structures close
to optimal packing at the early stages of growth. The growth of the central part of the
tissue is then restricted by the surrounding cells and overall tissue growth is mainly lo-
calized within a few outer cell layers. This inhomogeneous growth quickly terminates
cell divisions inside the tissue and the absence of proliferation leads to optimal hexago-
nal packing. All three cases lead to similar tissue topologies in the proliferation regime,
however unrestricted cell rearrangements favour cell packing topologies with a higher
percentage of hexagons.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

During the development of multicellular organisms, various tissues and organs develop
from a single fertilized egg by means of cell growth and division. Properly functioning
tissues have precise shapes, sizes and topologies; thus various cellular processes that
alter tissue topology must be highly coordinated. The mechanisms that govern tissue
growth and morphogenesis are not completely understood [18]. To address this issue,
numerical methods have been extensively used [25, 26, 27, 28, 29, 30, 31, 32].

In this work, we have developed a novel mechanical model for cell divisions and tis-
sue formation, suitable to study growth and cell packing topologies in two-dimensional
tissues, like epithelium. In contrast to vertex models [27], where polygonal cells are
defined as part of the existing network, we treat each cell in a more realistic manner,
independent of its neighbors. In our model, we consider the cell’s cortex contractility
and cell-cell adhesion. Viscous damping is used to take into account the cytoplasmic
cellular environment.

We introduced proliferation as a repeated cycle of cellular growth and division. To
control cell growth, we used osmotic-like internal pressure. This particular choice of
growth mechanism is inspired by observations on mitotic cells according to which cells
modulate their internal hydrostatic pressure before divisions [11]. In our model, inter-
play between cortex contractility, adhesion, and internal pressure defines cell shapes
and packing topologies in tissues. Both growth and division introduce an imbalance of
net forces acting on each cell that governs changes in cell shapes and their local rear-
rangements. We used this model to numerically study the dynamics of growth and cell
packing topologies in proliferating two-dimensional tissues and compared outcomes
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with proliferating Drosophila wing disc.
Drosophila wing growth can be characterized by the mitotic index. The mitotic

index changes throughout the wing development. It is higher at the initial stages of
development, when growth is faster, and decreases over the time [83]. We examined
the time dependency of the mitotic index in our model and found that the mitotic in-
dex decreases exponentially, similar to experiments [83]. We then studied cell packing
topologies. Cell shapes in tightly packed epithelial tissues resemble polygons, there-
fore cell packing in epithelium can be characterized by the fraction of cells of different
polygon types. We showed that our model reproduces commonly observed cell packing
topology in proliferating epithelial tissues, with a peak at hexagons and an asymmet-
ric distribution of heptagons and pentagons [19]. We established a parameter set that
matches well with the experimentally observed Drosophila wing epithelium topology.

In addition to a randomly oriented symmetric division plane, we considered two
alternative biologically relevant division schemes. First, we considered a randomly ori-
ented asymmetric division planes producing daughter cells with different sizes. The
plane was chosen such that consistently the larger daughter cell had an area twice as
large as the area of the smaller daughter cell. We found that the size difference in two
newly generated cells does not have a significant impact on tissue growth or cell pack-
ing topologies. Since both daughter cells are assigned the same mechanical properties
and same internal pressure, the force imbalance introduced by the division tends to
minimize the size difference, and cells obtain similar shapes and topologies in tissue.
The second division scheme we considered is division based on Hertwig’s rule. Here,
the division plane is chosen perpendicular to cell’s longest axis. We found that division
based on Hertwig’s rule induces tissue growth that differs from growth mediated by the
other two schemes mentioned above. The mitotic index is overall lower compared to
mitotic indices of random symmetric and asymmetric division schemes. This indicates
slower growth. Hertwig’s division scheme favours more compact, close to optimal,
packing of cells in tissues starting from the early developmental stages. The growth of
the central part of the tissue is then suppressed by surrounding cells, resulting in overall
an lower mitotic index.

We investigated the effects of cellular rearrangements defined by viscous damping
in our model. As we mentioned above, cells change their shapes and rearrange them-
selves in response to an imbalance in forces introduced by growth and divisions. The
amount of cellular rearrangement is controlled by viscous damping with the coefficient
γ. We considered two values of γ: γ = 10 (partially restricted rearrangements) and
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γ = 0 (unrestricted cellular rearrangements). When cell rearrangements were not pe-
nalized by damping (γ = 0), the growth mechanism of the tissue was different from
the case when a penalty was applied (e.g., the γ = 10 and γ = 20 cases). A damping
coefficient of γ = 0 leads to a more ordered packing structure starting from the early
development stages. Then, the growth is suppressed and limited to mainly outer layers
of tissue. As expected, the absence of proliferation is reflected in a low mitotic index
as well as optimal hexagonal packing.

7.2 Future Work

Drosophila wing growth and patterning is controlled by the concentration gradient of
morphogens, such as Decapentaplegic and Wingless [83, 85]. Decapentaplegic and
Wingless are expressed along the anterior-posterior and dorsal-ventral axes of the wing
correspondingly. Combined, both morphogens create a graded concentration profile.
The concentrations and signalling levels of morphogens are higher at the central part
of the tissue and gradually decrease towards the edges. In our model, cell growth is
controlled by the internal pressure. All cells are assigned the same pressure which in-
creases at a constant rate. Individual treatment of cells allows the growth mechanisms
to be altered on a single cell level. In particular, one can assign different internal pres-
sures to cells based on their positions in tissue in an attempt to mimic concentration
gradient of morphogens. Such distributions of internal pressures correspond to a more
realistic growth of the tissue.

In this thesis, we presented a two-dimensional model for cell divisions for tissues
that effectively behave as two-dimensional sheets, such as epithelium. Our model can
be extended to the three-dimensional case in a straightforward manner. Equations of
motion that govern the time evolution of the system have the same form in three dimen-
sions, as they do in two dimensions. However, a more complex network of springs is
needed to model elastic three-dimensional spheroid-like structures that represent cells
in three dimensions. The algorithm for cell growth may be transferred to the three-
dimensional case without any changes. As for the division algorithm, a division plane
consisting of an elastic spring network should replace the previously used division line.
A three-dimensional extension of our model will provide better insight into the growth
of real three-dimensional tissues.
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