
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-13-2013 12:00 AM

Missing Requirements Information and its Impact on Software Missing Requirements Information and its Impact on Software

Architectures: A Case Study Architectures: A Case Study

Md Rounok Salehin
The University of Western Ontario

Supervisor

Dr. Nazim Madhavji

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Md Rounok Salehin 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Salehin, Md Rounok, "Missing Requirements Information and its Impact on Software Architectures: A
Case Study" (2013). Electronic Thesis and Dissertation Repository. 1811.
https://ir.lib.uwo.ca/etd/1811

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61641754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1811?utm_source=ir.lib.uwo.ca%2Fetd%2F1811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Missing Requirements Information and its Impact on
Software Architectures:

A Case Study

 (Thesis format: Monograph)

 by

 Md Rounok Salehin

 Graduate Program in Computer Science

 A thesis submitted in partial fulfillment
 of the requirements for the degree of
 Master of Science

 The School of Graduate and Postdoctoral Studies
 The University of Western Ontario
 London, Ontario, Canada

 © Md Rounok Salehin 2013

i

Abstract:

[Context & motivation] In the development of large, software-intensive systems, the

system’s requirements are seldom, if ever, concluded upon prior to commencing with

systems architecting. Research shows that, in order to manage development and domain

complexities, instances of requirements engineering (RE) and systems architecting (SA)

processes tend to inter-weave. [Question/problem] However, missing requirements

information can cause one to create (or recreate) the needed information during different

SA activities. While backtracking in the software development process is known to be

costly, the costs associated with missing requirements in the SA process have not been

investigated empirically. [Principal ideas/results] We thus conducted a case study where we

investigated to what extent requirements or requirements attributes’ information found

missing during the SA process and impact of that missing information on SA in terms of

effort. The study involved five architecting teams that involve final year undergraduate

and graduate students enrolled in the university course on SA, working on architecting a

system falling under the “banking” domain. Our result shows that, architects did find

requirements and requirements attributes’ information missing while architecting. Among

requirements information, architects found that, system functionality information,

constraints information and system interaction (users/systems) information are missing in

requirements at higher percentages. Within requirements’ attributes, architects found

requirements priority, dependency and rationale missing at higher percentages. It is also

found that, out of total time spent on architecting the system, effort given to recreate

missing requirements information is higher for group3 (21.5%), group1 (18%), and

group2 (17%) than group4 (12.37%) and group5(10.18%). [Contribution] The anticipated

benefits of the findings are, it can motivate researchers to venture into other areas of

software engineering (such as coding, testing, maintenance, etc.) from the view point of

missing requirements information and its impact on those areas. This knowledge could

ii

help software practitioners to decide what kind of information needs to be taken care of,

during RE process, that could possibly ease SA process and later development phases. To

the best of my knowledge, this is the first work which focuses on, to what extent

requirements and requirements’ attributes information found missing during SA;

characteristics and impact of those requirements missing information on SA process in

terms of effort.

Keywords: software engineering, requirements engineering, software architecting,

requirements attributes, requirements document, missing information, empirical study.

iii

Acknowledgements

First and foremost, I would like to thank Dr. Nazim Madhavji for his constant

guidance and supervision. Without his strong motivation, valuable inspiration and

support, this work could not have been completed. Your passion for education and

research are admirable.

I would like to thank all the members in my research team. Special thanks go to

Md. Rashed Iqbal Nekvi who has suggested many valuable ideas for conducting the

research.

I would like to thank Muhammad Iftekher Chowdhury and Dr. Remo N. Ferrari

as there research works helped me a lot with diverse ideas to conduct my research.

I would also like to thank Dr. Shahedul Islam and Rafiqul Islam for giving

suggestions on statistical analysis with their diverse knowledge in Statistics.

I would like to thank the participants of the study; I greatly appreciate the effort

that was expended in the research, and hope that the research output will be of good value

to everyone.

Last, but not the least, I would like to thank my parents back home, Md Mosharraf

Hossain, Mrs. Sayma Hossain and my little sister Shoria Sharmin for their continuous

source of support. I am grateful for their love, patience and trust that acted as a driving

force for the completion of the work.

iv

Glossary of terms and definitions

Requirement:

A requirement is a statement of what a system is required to do and the

constraints under which it is required to operate.

Requirements document:

The requirements document is the official collection of all the requirements of a

system for different stakeholders (e.g., customers, end users, developers etc.).

Software architecture:

Architecture is a description of system structures. It is the first artifact that can be

analyzed to identify how well quality attributes are achieved, and it also acts as the

blueprint of the project.

Requirement attributes:

 It refers to different properties of requirement that describes definition,

importance of the requirement, and also describes impact of the requirement on overall

system development process. In our thesis we have considered following requirement

attributes:

 Source of requirement: It refers to the origin of a requirement where it is elicited

 from.

 Priority: It refers to the relative importance of one requirement to others.

 Dependency: It refers to the set of requirements on which a given requirement is

 dependent.

 Rationale: Rationale captures the information about the intent behind a

 requirement.

v

 Assumption: It refers to any proposition regarding a requirement, which has been

 considered to be true during specification of the requirement.

Missing requirements:

It refers to requirements information that is not found in requirements from

architects’ point of view. We have considered following information in requirements:

 Functionality information: It describes the behaviour and functionalities of the

 system i.e., how a system should function against different set of inputs (i.e.,

 technical details, data manipulation and processing etc.).

 Data information: It describes how the system deals with user’s information or

 system information.

 Constraint information: It describes information relevant to technical aspects of

 the system (i.e., capacity, speed, memory etc.).

 System interaction (users/systems) information: It describes information about

 how the system should interact with different users and other systems.

Missing requirements attributes:

It refers to requirements attributes information that is not found in requirements,

from architects’ point of view. We have considered all requirements attributes as

described above.

Architecturally significant requirement: Architecturally significant

requirements are a subset of the requirements that need to be satisfied before the

architecture can be considered "stable". Typically, these are requirements that are

technically challenging, technically constraining, or central to the system's purpose.

Crosscutting requirement: It refers to requirement that depends on one or more

requirements and cannot be satisfied until other requirements are taken into account.

Quality requirement: It refers to requirement (non-functional) that deals with

“Quality Characteristics” of the system (i.e., performance, usability, reliability etc.)

vi

List of Contents

Abstract: .. i

Acknowledgements.. iii

Glossary of terms and definitions ... iv

List of Contents .. vi

List of Tables .. ix

List of Figures .. x

List of Abbreviations .. xi

Appendix .. xii

Chapter 1: Introduction... 1

1.1 Problem description .. 1

1.2 Focus of research and motivation .. 2

1.3 Originality.. 3

1.4 Research approach .. 3

1.5 Research contributions .. 4

1.6 Implications of the findings ... 4

1.7 Thesis organization .. 5

Chapter 2: Literatures Review ... 6

2.1 Requirements Engineering (RE) process .. 6

2.2 Software architecture ... 8

2.3 What is a requirements document .. 9

2.4 Attribute Driven Design (ADD) ... 9

2.5 Why requirements information goes missing in RE documents .. 11

2.6 Empirical research on: ... 12

2.6.1 Importance of software documentation.. 12

2.6.2 Knowledge gap between software development phases ... 13

2.6.3 Requirements problems and its impact of on SA ... 14

2.6.4 Impact of missing/incomplete requirements in industries... 16

vii

2.7 Importance of different characteristics of requirement in SA ... 17

2.8 Importance of requirement attributes information.. 19

2.9 Analysis of research gap .. 20

Chapter 3: The Empirical Study ... 22

3.1 Goal, Questions and Metrics .. 22

3.1.1 The Goal ... 22

3.1.2 Research Questions and Associated Metrics ... 23

3.2 Requirements document ... 34

3.3 Architecting process .. 35

3.4 Research Procedures.. 36

3.4.1 Participants .. 37

3.4.2 Data collection.. 38

3.4.3 Data analysis .. 39

3.5 Threats to Validity ... 39

3.5.1 Internal Validity .. 39

3.5.2 Qualitative Validity ... 40

3.5.3 External Validity.. 42

3.5.4 Construct Validity ... 43

3.5.5 Conclusion Validity ... 44

Chapter 4: Results and Interpretations .. 45

4.1 Missing requirements and requirements’ attributes found during SA 45

4.1.1 Missing requirements found while architecting .. 45

4.1.2 Requirements’ attributes found missing, while architecting 47

4.2 Number of changes made in requirements and requirements’ attributes during SA 49

4.2.1 Number of changes made in requirements ... 50

4.2.2 Number of changes made in requirements’ attributes: ... 51

4.3 Characteristics of the changed requirements: .. 53

4.4 Impact on rework of requirements missing information, in terms of effort while
architecting ... 58

Chapter 5: Implications ... 59

5.1 Implications on Practice .. 60

5.2 Implication on Tools .. 61

viii

5.3 Implication on Empirical research .. 61

Chapter 6: Limitations, Conclusions, Ongoing and Future Work .. 64

6.1: Limitations ... 64

6.2 Conclusions ... 65

6.3 Ongoing and future works ... 66

References: ... 68

Curriculum Vitae ... 81

ix

List of Tables

Table 1: Types of requirements information ... 24

Table 2: Metric M1. – Number of requirements missing, found while architecting

the system .. 24

Table 3: Description of different types of requirement attributes 25

Table 4: Metric M2- Number of requirements attributes, found missing 26

Table 5: Metric M3- Number of changes on requirements ... 27

Table 6: Metric M4- Number of changes on requirement attributes 28

Table 7: Definition of different characteristics of a requirement 29

Table 8: Metric M5: Number of architecturally significant requirements 30

Table 9: Metric M6: Number of crosscutting requirement .. 30

Table 10: Metric M7: Number of quality requirements .. 31

Table 11: Metric M8: (Person/hours) spent on requirements missing information, while

architecting ... 32

Table 12: Possible substances of interest to satisfy the goal and their corresponding

research questions, metrics .. 33

Table 13: Distribution of participants’ background knowledge and experience for

different groups ... 37

Table 14: Description of different data collection templates .. 38

Table 15: Number of requirements found missing, while architecting the system 46

Table 16: Number of requirements attributes, found missing ... 48

Table 17: Number of changes in requirements ... 50

Table 18: Number of changes in requirements attributes ... 52

Table 19: Frequency of different characteristics of the changed requirements 53

Table 20: Effort spent (person-hours) on recreating missing information 58

x

List of Figures

Figure 1: The common RE process ...7

Figure 2: Common software architecture structure ..8

Figure 3: Relationships between the goal, questions and metrics 34

Figure 4: Number of requirements missing, while architecting the system 47

Figure 5: Number of requirements attributes’ missing, while architecting 49

Figure 6: Number of changes made to requirements, while architecting 51

Figure 7: Number of changes to requirements attributes, while architecting 53

Figure 8: Number of architecturally significant requirements .. 55

Figure 9: Number of crosscutting requirements ... 56

Figure 10: Number of quality requirements ... 57

Figure 11: Effort spent on missing information while architecting 59

xi

List of Abbreviations

SE: Software engineering

RE: Requirements engineering

SA: Software architecture

SRS: Software requirements specification

ASR: Architecturally significant requirement

GQM: Goal, question and metric

QR: Quality requirement

ADD: Attribute driven design

xii

Appendix

 Instruments design (Templates questionnaires)

1

 Chapter 1: Introduction

1.1 Problem description

Requirements engineering (RE) and software architecting (SA) are two front end

activities in the Software development lifecycle which greatly impact the overall success

of a software project. The flow of “authoritative information” and control in

requirements within RE and SA are maintained through software requirements

specification (SRS) [25]. SRS plays an important role in software development projects.

SRS contains all relevant and “official” information that is required to implement a

software system. It is also considered as one of the “main sources” of information for

software architects [25]. To achieve a successful design approach of any system,

specifications of quality attribute requirements are very important and there should be a

linkage between requirements specification and design approaches [5]. SA activities (i.e.,

defining quality attribute scenarios, tactics, patterns, views, etc.) while architecting any

system, depend “heavily” on requirements and mostly on quality attribute requirements

[38]. There is a systematic relationship between general scenarios, concrete scenarios,

architectural tactics, and design fragments while architecting a system [38]. Besides,

tactics are also dependent on the relationship between design decisions and quality

attribute requirements [5][3] and it is an oversimplification, that architecture can be

derived from requirements in a single instance [10]. On other note, there is one to many

relations between requirements to design [24] and the translation from requirement to

design sometimes results in misconception due to the lack of information [24], that could

be requirements or requirements attributes’ information as well. This requirements’

missing information found while architecting could force architects to recreate those

information, which would require additional effort on their part. Even though textbooks

(e.g., [5], [36], etc.) and standards (i.e., [31], [32]) suggest recording all the artefacts and

necessary related information as part of the SRS, it is impossible in reality because

keeping track of all the information goes beyond the ability of the temporal nature of

2

human mind in acquiring knowledge. These requirements’ missing information cause

problems in different software development phases in the form of errors,

misunderstandings and parallel work [51] and affect the actual product in the form of

architectural drifts and incorrect design [24] leading to software defects [23][8]. Standish

Group report [57] found a striking 28% of projects were cancelled completely. Top

factors of failure were lack of a clear statement of requirements in SRS, and incomplete

and changing requirements. In a Siemens project the root cause analysis done by Siemens

Corporate Research(SCR) showed that 40% of the defects were caused by incomplete or

not at all recorded requirements information in SRS [23] [28].

 Even though requirements missing information affects other software

development phases like product quality [28], product management [28][14][8], software

maintenance [28][14] and software quality [42][9], for time and resource constraints our

work focuses on finding the extent to which requirements and requirements’ attributes

are found missing during SA process and its impact in terms of effort on requirements

while architecting a system.

1.2 Focus of research and motivation

Research shows evidence about the impact of missing requirements’ information

on architectural design decisions [25] [39]. Requirements to design transition is defined

as the most severe among different software information leaks between development

phases [24]. Relative expense for fixing defects, introduced in requirements, are three

times higher if found during architecture phase and five to ten times higher if found

during construction phase of development of the system [27]. But we could not find any

empirical evidence of the extent of missing requirements and requirements’ attributes and

its impact on SA, in terms of effort. This motivates us to look into the extent of missing

requirements and requirements’ attributes’ information during SA and its impact on SA.

Our research is focused on identifying the extent to which requirements and

requirements’ attributes found missing during SA and its impact on SA process in terms

3

of effort. Our research also focused to identify the extent of different types of changes

made to requirements and requirements’ attributes, and different characteristics of

changed requirements that are important from architects’ points of view.

1.3 Originality

To the best of my knowledge, characterisation of different requirements and

requirements’ attributes, found missing during SA activities has not been carried out by

any other researcher. Even though there is mention of “information leaks” in different

development phases [24], there is no scientific research that I am aware of that is

engaging this study. While there is some evidence in the literature of the knowledge gap

between architecture and coding [19] and architects’ assumptions on requirements [1], it

is not known to what extent, requirements and requirements attributes’ information are

found missing during SA and how frequently it introduces rework in missing

requirements information in terms of effort.

1.4 Research approach

We have used the case study approach as it allows for an empirical investigation

of a contemporary phenomenon within its natural context using multiple sources of

evidence [60]. The type of study conducted was a multiple-case study design [15] where

we had five parallel cases (i.e., one case per architecting team). Despite this, it was an

exploratory study in that we had no initial hypothesis, and we did not know which

phenomena were important (i.e., impact of missing information on architecture in terms

of effort). This is because, to our knowledge, there was not much background literature

on related research questions. Details of the study design are described in section 3.1 and

section 3.2.

4

1.5 Research contributions

From our findings we found that, constraints information and system functionality

information are found missing in requirements at higher numbers for different groups.

Among different missing requirements’ attributes, priority, dependency and rationale of

requirements, have higher percentages for different groups. Our findings also state the

extent of different changes made to requirements and requirements’ attributes. Among

them modification of requirements and requirements’ attributes are having higher

percentages for all the groups. Our results also state whether the changed requirements

have certain characteristics (i.e., architecturally significant requirement, crosscutting

requirement, and quality requirement) that are important from architecture’s point of

view. Our findings also show the evidence about the impact of missing information on

SA, in terms of effort. Among them group 3 spent more time on missing information; that

is, 21.5% of total time was spent on the project. Details of our findings are described in

Chapter 4.

1.6 Implications of the findings

To the best of my knowledge, there is no empirical evidence that shows, to what

extent requirements and requirements attributes’ information is found missing and impact

of this missing information on SA, in terms of effort. This work could motivate the

practitioners to use RE process in a way so that minimal requirements’ and requirements

attributes’ information goes missing. This work could also motivate researchers to

venture into other areas of software engineering (i.e., coding, testing, maintenance, etc.)

to find out the impact of requirements missing information on different development

phases. For example, knowing what kind of requirements and requirements attributes’

information are missing and how much it is affecting SA in terms of effort could help

5

software practitioners to decide which medium or approach to avoid and to use with

caution in RE and SA processes.

There are already some research tools (e.g., [23] and EGRET [51]) and tools used

in industry (e.g., Rational Team Concert [46]), which provide traceability between

software artefacts and communication artefacts (e.g., meeting videos, email, chat, etc.).

Researchers could improve features of different tools or try to develop new tools if

needed by keeping our findings in mind so information goes missing as infrequently

possible. Details of implications of our findings are described in chapter 5.

 1.7 Thesis organization

Chapter 2 discusses the relevant background literature and research gap. Chapter

3 explains the research questions, metrics, experiment design and threats to validity.

Chapter 4 presents the data analysis, results and interpretations. Chapter 5 explores the

implications of the findings and Chapter 6 closes this thesis with limitations of this study,

conclusions, and future work of this research.

6

 Chapter 2: Literatures Review

The review of the literature culminated into broad areas discussed in Section 2.1,

2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8. Section 2.1 describes about the RE process and

Section 2.2 shows the commonly used architecture structure. Section 2.3 describes what

is meant by requirements document in this thesis and Section 2.4 describes the attribute

driven design (ADD) approach that is used by architects in this thesis for architecting the

system. Section 2.5 describes, why in current practices, requirements’ information go

missing in RE documents. Section 2.6 discusses key empirical research on importance of

software documentation, knowledge gap between development phases, requirements

problems and its impact on SA, and impact of missing/incomplete requirements in

industries. Section 2.7 describes importance of requirements characteristics in SA.

Section 2.8 describes importance of requirements’ attributes. Section 2.9 describes the

overall research gap based on sections 2.5, 2.6, 2.7, and 2.8.

2.1 Requirements Engineering (RE) process [36]

There are different RE processes that vary based on application domain, people

involved and the organization developing the requirements. The common RE process is

given in Figure 1. Generic activities that are common to all processes are:

 Requirements elicitation: It involves the task of working with customers to find

out about the application domain, different services that the system should

provide and system’s operational constraints. It can also involve different

stakeholders (i.e., technical staff, end-users, managers, engineers etc.). It is also

named as “requirements discovery”.

7

 Requirements analysis: It involves the tasks that should be implied on elicited

requirements.

o Requirements classification and organization: it refers to group related

requirements and organizing them accordingly.

o Prioritization and negotiation: Prioritizing requirements and resolving

requirements conflicts.

o Requirements documentation: All requirements are documented and input

into the next round of the process.

 Requirements validation: It involves the task of identifying whether the

requirements define the system that the customer really wants. It checks for

different requirements concerns (i.e., validity, consistency, completeness, realism

etc.).

 Requirements management: It involves the task of managing existing

requirements and changing requirements during the RE process and system

development.

Figure 1: The common RE process [36]

8

2.2 Software architecture [5]

Architecture is a description of system structures. It is known as the first artifact

that can be analyzed to identify how well quality attributes are achieved, and it also acts

as the blueprint of the project. It serves as the communication vehicle that can be

transferred to new systems. Common software architecture structure will be most likely

as given in Figure 2. As architecture acts as a backbone of the project’s design, it must be

communicated clearly without any ambiguity to all of the stakeholders (i.e., customer,

user, project manager, coder, tester, etc.). All stakeholders need to understand it in a

better way as:

 Developers must understand the work architecture requires of

them.

 Testers must understand the task structure it imposes on them.

 Management must understand the scheduling implications that the

architecture suggests, and so forth.

 Towards the end the architecture documentation should be

informative, unambiguous, and readable by many people of

various backgrounds.

 Figure 2: Common software architecture structure [5]

9

2.3 What is a requirements document

A requirement is a statement of what a system is required to do and the

constraints under which it is required to operate. The requirements document is the

official collection of all the requirements of a system for different stakeholders (e.g.,

customers, end users, developers etc.). A requirements document is also known as

‘functional specification’, ‘requirements definition’, ‘software requirements specification

(SRS)’ etc [36]. Requirements can be written in different formats like natural language

description [36], formal specification [36], user story [2] etc. There are various tools

varying from simple word files [4] to complex multitier data base management systems

[22] are also used for storing requirements documents. In this thesis, we refer to

requirements document using the terminology ‘requirements document’ and “SRS”

respectively.

2.4 Attribute Driven Design (ADD) [5]

ADD is a design approach to define software architecture. It is based on the

decomposition process on the quality attributes the software has to fulfill. It is a recursive

decomposition process where, at each stage, tactics and architectural patterns are chosen

to satisfy a set of quality scenarios and then functionality is allocated to instantiate the

module types provided by the pattern. In our thesis, for architecting the system, architects

have used this approach.

ADD steps [5]:

 First, architects need to choose a module to decompose. The module to start with

is usually the whole system. All required inputs for this module should be

available (constraints, functional requirements, quality requirements).

10

Then they need to refine the module according to these steps:

o Choosing architectural drivers from the set of concrete quality

scenarios and functional requirements. This step determines what

is important for this decomposition.

o Choosing an architectural pattern that satisfies the architectural

drivers. Create (or select) the pattern based on the tactics that can

be used to achieve the drivers. It helps to identify child modules

required to implement the tactics.

o Instantiate the modules and allocate functionality from the use

cases and represent using multiple views.

o Define interfaces of the child modules. The decomposition

provides modules and constraints on the types of module

interactions.

 Architects need to verify and refine the use cases and quality scenarios and make

them constraints for the child modules. This step verifies that nothing important

was forgotten and prepares the child modules for further decomposition or

implementation.

They need to repeat the steps above for every module that needs further

decomposition.

11

2.5 Why requirements information goes missing in RE documents

Different types of communication channels (e.g., face to face, e-mail, chat, etc.)

are used in RE. Because of their highly communication intensive nature all types of

information are not possible to document. Besides, requirements document is considered

as the “main source” of information for later development phases [25]. Here are some of

the reasons why requirements or attributes of requirements could go missing during RE:

 In current documentation practice one of the stakeholders present in the

meeting takes the role of the scribe [53]. It is seen that sometimes different

stakeholders involved in the process may not share a common language or

project knowledge, and due to that the notes of the scribe can be

incomplete, inconsistent or incorrect [53]. For example, the scribe may

misinterpret a statement, note something incorrectly or partially, or omit

important statements made by a stakeholder [53]. This might cause

missing information from the overall documentation.

 Sometimes important information is discussed outside formal

documentation [51] [12]. Fluid information (such as meetings and oral

communications, blogs, chats, informal wikis, and phone calls, etc.)

usually get ignored from explicit documentation [51].

 Documentation is effort consuming [51] but quickly becomes outdated

[12] [16]. Often it takes few weeks to months for the documentation to be

updated [40]. This delay in update might result in information missing in

documents.

 Sometimes there is lack of integration between software artifacts and

communication environment (e.g., e-mail client, instant messenger, video

12

conferencing tools, etc.), information gets fragmented across several

media (e.g., documentation tools or databases, bug repository, e-mail, text

chats, etc.) which leads to frequent context switching (e.g., rechecking old

email, chat sessions, meeting minutes) during work and results in a lack of

common understanding and awareness [51]. Important domain

information is personalized (i.e., “at best retained in the team member’s

mind”) and gets missing when the team member leaves the project [51].

 Sometime, requirements engineers who are inadequately trained, have

inadequate access to stakeholders and other sources of the requirements.

They are given inadequate resources or authority to properly engineer the

requirements [21].

2.6 Empirical research on:

We have discussed some key research here but it is important to note that the

actual research focus for some of the studies mentioned below spans a broader area.

Because of our scope, we only discuss issues and findings that are related to the

importance of software documentation, knowledge gap between development phases,

requirements problems and its impact on SA, the importance of different characteristics

and attributes of requirements in SA, and the impact of missing/incomplete requirements

in industries.

2.6.1 Importance of software documentation

Lethbridge et al. reported three studies on the use of software documentation [40].

For their study they have used methods like interviews, surveys and observing

individuals’ work. Their study showed that documentation other than testing and quality

documentation (such as test cases and plans) are rarely updated. Even if the changes are

13

made to the documentation it usually takes several weeks for the documents to reflect

actual system changes. They also found that the out-dated documentation might remain

useful in some cases, particularly if the high level abstractions remain valid. They also

mentioned the necessity of simple and powerful documentation tools and formats.

Beecham et al. conducted a study in 12 software companies ranging from CMM

level 1 to 4 to find their software process improvement problems [6]. In their study they

divided 200 employees from these companies into 45 groups and used focus group

techniques to collect data. Their result shows that documentation issue (i.e., coordination

and document management, feedback, post-mortems and data collection) is one of the

major problems reported by developers, project managers and senior managers. Amongst

the project issues, documentation was ranked number 2 and amongst the top 6 problems

identified from all the areas (i.e., organizational issues, project issues and software

development lifecycle process), documentation was ranked number 3.

2.6.2 Knowledge gap between software development phases

George et al. described relevant information that is lost during different

development phases and termed it as “Software Information Leaks (SIL)” [24].

Definition of SIL is given as, “relevant information once known, but not incorporated in

later stages and thereby lost in software evolution”. They developed a software security

impact analysis model and tried to find key dependencies between information. SIL is

identified to occur in technology level, domain level, requirement level, architectural

level, design level and code level. Improper documentation is mentioned as one of the

major causes of architectural drift. SIL that occurs during transition of requirements to

design is defined to be the most severe leaks of software development.

Feilkas et al. conducted a case study about loss of architectural knowledge in three

industrial projects [19]. They answered questions like: i) to what degree is the

architectural documentation kept in conformance with the code; and ii) how well does the

documentation reflect the intended architecture, by analyzing architecture documentation,

14

and by interviewing developers. It is found that, between 9% and 19% of all

dependencies contained in implementation, could not be identified in architecture

documentation, and between 72% and 90% of the differences between documented and

implemented architecture is due to lack of proper documentation information. Lessons

learnt in this study are: architectural knowledge gets lost due to the gap between

architectural specification and implementation; significant amount of effort is needed for

reverse engineering the architecting process.

Albayrak et al. conducted an empirical study with 251 software engineers from

eight companies, and 39 projects to show how software engineers responded to an

incomplete requirement and how it is having impact on the number of explicit

assumption they made [1]. They have suggested as per their findings that, implicit

assumptions should be avoided and explicit assumptions should be preferred so engineers

do know explicitly that which gap to fill and how to fill. They have shown by using

statistical ANOVA method that, preferred response of engineers to given incomplete

requirements have impact on the number of explicit assumptions they made, and on

average, non-computer-background engineers made more explicit assumptions other then

computer background graduates.

2.6.3 Requirements problems and its impact of on SA

Gross and Doerr described the results of explorative studies conducted on two

academic practical courses having a total of 13 students [25]. They discussed about

architects information need that should be fulfilled in SRS. SRS documents are

mentioned as “official” information that is required for implementing the system and

considered as main sources of information for architects. It also described about negative

impacts of over-documented and less-documented SRSs on architects, that in the worst

case sometimes they could neglect or even ignore the SRSs. They have investigated to

find best-practice artifacts types and their representations from the viewpoint of software

architects. Results show that, artifact types, documenting information about system

15

responsibilities, data, system functionalities, interactions, and technical constraints are

found very important from architects’ points of view.

Lee and Rine described a methodology named “Proxy viewpoints Model-based

Requirements Discovery (PVRD)” that provides a framework to construct a viewpoints

model from requirements and supports requirements discovery for efficient management

[39]. They discussed incomplete SRS with “missing, not available and hard-to-locate

requirements” and mentioned manual discovery of missing requirements and

relationships between them as a “highly labor intensive” task. They have applied their

model to study a finance application system domain and showed the process for

identifying missing requirements and the relationship chain between requirements.

Gumuskaya described the core issues that are affecting the architecture in

enterprise projects where complex business, management and technical problems exist

[27]. He stated that, requirements information problems in documents have more

potential to cause longer system defects and found them to be more expensive as well. As

per the results, it is found that, the relative expense for fixing defects, introduced in

requirements, are three times higher if found during the architecture phase and five to ten

times higher if found during the construction phase of development of the system.

Ferrari and Madhavji described an exploratory case study to determine different

types of requirements oriented problems that architects faced while architecting the

system [20]. They designed a multiple case study design that includes 16 architecting

teams (i.e., one case per architecting team). Architects faced 35% problems due to

requirements. Their results also found severe problematic technical areas within

requirements oriented problems like, quality satisfaction (22%), requirements

understanding (18%). quality drivers determination (15%), abstraction (14%), and

modelling quality requirements (scenarios) (12%).

16

Firesmith has summarized the 12 “worst” of the most common requirements

problems from his working experience with real projects as a requirements engineer,

consultant, and evaluator [21]. Poor requirements quality in requirements specifications

was one of them. He described from practice that, too many requirements in real

specifications are found ambiguous, incomplete, inconsistent, incorrect, out-of-date. They

do not follow the terminology of the user or business/application domain. He also

specified that, in practice, architecturally-significant requirements are accidentally

overlooked many times and those are usually non-functional requirements, most

commonly quality requirements. This problem happens most of the time because the

stakeholders often assume that such requirements are obvious and go without saying.

Kamsties et al. summarized the results of a workshop on requirements

engineering held with practitioners from 10 small and medium enterprises (SMEs) [34].

It is found that, they were organized around issues like, product and project

characteristics, requirements sources and elicitation activities, requirements engineering

products (i.e., the software requirements specification (SRS)), requirements validation

activities, and system evolution (i.e., further development activities). As per their

findings, SMEs that do produce SRS face subtle problems during the evolution of the

system. Among the top problems implicit domain knowledge in SRS is one of them as it

is difficult to understand vague requirements for them. Besides, these vague requirements

are causing problems in testing as requirements are not traceable enough.

2.6.4 Impact of missing/incomplete requirements in industries

Here is some empirical evidence from existing literature which shows the severity

of the problems caused by missing or incomplete requirements in industries:

 A study conducted by the Standish Group [57] found a striking 74%

project failure rate, while 28% of projects were cancelled completely and

top reasons of failure was lack of user input, lack of a clear statement of

requirements in specifications.

17

 In a Siemens project the root cause analysis done by Siemens Corporate

Research(SCR) showed that 40% of the defects were caused by

incomplete or not at all recorded requirements in documents[23][8].

 In a study [53], a survey was conducted in 63 software companies in

Malaysia. The companies cited problems like incomplete requirements

(79.4%), misplaced requirements in a requirements document (37.1%) as

some of the reasons behind late delivery of products (76.2%), budget over-

runs (58.7%) and poor quality products (44.4%).

 In June 1991 to September 1991, three surveys on 39, 41 and 44 software

maintenance professionals (with overlapping participants) were conducted

and 19 major problems in software maintenance were identified [17].

Incomplete information in system documentation was ranked number 3

amongst them.

 As per the report [59], industry data suggests that approximately 50% of

product defects originate in the requirements. Perhaps 80% of the rework

effort on a development project can be traced to requirements defects.

These defects are the cause of over 40% of accidents involving safety-

critical systems.

2.7 Importance of different characteristics of requirement in SA

 2.7.1 Architecturally Significant Requirement (ASR)

In a study [14], the authors described the importance of identifying architecturally

significant requirements (ASR) in SRS. They have presented the use of “Architecturally

Savvy Personas (ASP-lite)”, a method to analyze stakeholders’ quality concerns and

18

validate the architectural design. ASRs are mentioned as the “driving force” to

architectural design of a software intensive system. It is also used as the selection criteria

for deciding between alternate architectural options. It is therefore suggested that, it will

be beneficial for a project if we could elicit and analyze these requirements in the early

phases and document them as that could help in considering the architectural design of

the system.

In early project stages, requirements and architecture are expressed as “highly

informal” [58] and due to that, often ASRs are overlooked in the beginning of a project

[13]. The hints those are uncovering them are sometimes found not well documented as

well [29]. In consequence, also the decision knowledge tends to remain implicit

sometimes. When requirements and architecture evolve, this informality eventually leads

to a loss of decision knowledge. Due to the vague or changing ASRs in documents,

sometimes it may not be reflected in the architecture, which results in high costs for later

changes [13].

2.7.2 Quality requirement:

Quality (non-functional) requirements (QR) for a system represent a special

subset of architecturally significant requirements (ASRs) and describe the non-behavioral

constraints on the system [14]. It has the “biggest” role in the architectural design [44].

These requirements define the overall qualities and attributes of the resulting system like

(i.e., safety, security, usability, reliability, performance etc.). But in practice, sometimes,

interdependencies and trade-offs among QRs remain unclear. Sometimes they are not

appropriately defined and prioritized in documents. This unusual missing information in

documents causes problems during architecting the system and other development

activities as well [37].

2.7.3 Crosscutting requirement:

In a study [48], the author defined requirements that crosscut other requirements;

known as crosscutting requirements. For example, requirement X crosscuts requirement

Y if a software decomposition has been chosen in which Y cannot be satisfied without

19

taking X into account. So X in this case will be crosscutting requirement. In reality,

semantic relationships between requirements could not be identified and they are

explicitly recorded in specifications [48]. If some of the relationships among

requirements (such as crosscutting influences) remain obscure, developers have the risk

of forgetting about them. In the worst case, it is found that those relationships are

discovered indirectly by users while requirements are not totally fulfilled by the software

after deployment. In both cases increased costs are the result of the requirements

deficiencies and it can rise to other troubles such as loss of faith in the developers or even

the failure of critical system components [48].

2.8 Importance of requirement attributes information

In a study [41], the authors surveyed the state of practice on rationale

management, usage, and challenges of integrating rationale management in RE activities.

They stated that, traditional requirements specification only specifies what the

requirements are, but not why these requirements are specified. This causes problem in

later phases of development, where requirements get involved due to stakeholders’

change of mind when the system is being updated. As a result of their findings, it is

defined that rationales in specification should include every decision, its alternative

decisions, and underlying arguments leading to that decision (e.g., influence factors,

criteria, and negotiations). These decisions also help in prioritizing the requirements as

rationale helps to make decisions about what requirements to be implemented first or

should be given most resources from architects’ points of view [11].

Traceability is another important requirements attribute that defines the ability to

follow and describe the life cycle of a requirement, in both forward and backward

direction [35]. Traceability has a positive effect on project management (simplifying

project estimates), process visibility (accessibility to contextual information about

requirements become easier), and maintenance of the system as well.

20

Assumptions in RE are sometimes found “too ideal” and some of them cannot be

satisfied in the running system due to unexpected agent behavior [38]. This lack of

anticipation results in unrealistic and incomplete requirements that result in poor

performance or failures. Improper documenting of assumptions about requirements

sometimes results in run time inconsistencies between specification of the system and

actual behavior of the system [38]. Sometimes there is “invalidity” in assumptions and

requirements and that is a source of problems for software developers and users. For an

operational system, this problem may imply from a diminishing value the system to a

software failure as well [43].

2.9 Analysis of research gap

Studies show (section 2.5) several reasons for why requirements information is

found missing during RE includes: (i) use of different communication language [23], (ii)

lack of project knowledge between stakeholders [23], (iii) omitting statements made by

stakeholders [23], (v) misinterpreting any statement and note something incorrectly or

partially [23] and (vi) absence of integration between software artifacts and

communication artifacts [51]. But the types of requirements or requirements attributes’

information goes missing are not stated within any study.

Studies show evidence of the importance of complete SRS in architecting and

other phases [25][9] but rarely discuss anything about what types of information were not

there in the SRS or impact of this missing information on architecture or other

development phases. In a study [24], the authors describe design decision recording

problems that include partial documentation, lack of information relating requirements to

rationales, while architecting the system, but did not mention anything about to what

extent, requirements were missing in SRS and its impact on architecture and other phases

of development.

Research also depicts that, missing requirements information affect software

development phases like architecture [24] [28], product quality [53], product

management [28] [8], software maintenance [53] [56] and software quality [42] [9]. But

21

none of them discussed anything about the impact of incomplete information on different

phases in terms of effort on this missing information.

In (section 2.7), studies refer to different characteristics of requirements (i.e., ASR

[14] [58], quality requirement [14] [44] and crosscutting requirement [48]), that are

important from a system development perspective, but none of them really state anything

about the extent to which missing requirements or missing requirements’ attributes are

having this characteristic and how it could affect the architecture or other development.

Section 2.8 gives evidence about the importance of different requirements’ attributes, but

studies did not discuss to what extent they are going missing or its impact on

development phases.

In (section 2.6.2), we found a study [24] concerning the occurrence of missing

information in different software development phases. The software information leak, at

the transition from requirements to design is mentioned as the most severe leak [24] but

the study did not mention anything about to what extent, requirements information was

missing from requirements to architecture and other development phases. In another

study [20] the authors described requirements problems found during architecture but did

not state anything about the extent to which requirements or requirements’ attributes are

found missing during SA or the impact of this missing information on SA, in terms of

effort. Studies also have evidence about knowledge loss in architecture and its impact on

coding [19], designers implicit assumptions while they cannot avoid getting incomplete

SRS when designing the system [1], architects’ expectation from SRS [25], but none

them explore to what extent requirements information has gone missing or what impact it

has on architecture or other development phases in terms of effort and quality.

However, there is a significant research gap in finding to what extent

requirements or requirements’ attributes are found missing; its impact in terms of effort

on this missing information during the software architecting process; and characteristics

of changed requirements; impact of this missing information on overall software

development life cycle and other development phases (i.e., product management, project

management, risk analysis, software quality etc.), that motivate empirical investigation in

this area.

22

 Chapter 3: The Empirical Study

This chapter describes the details of the study and the research procedures that

were carried out. Section 3.1 defines the overall research goal, specific research questions

and associated metrics. Section 3.2 describes the RE document that is given to all the

groups and section 3.3 describes the architecting process that all the groups have

followed. Section 3.4 describes the research procedures in terms of participants, data

collection and data analysis. Section 3.5 describes the threats to validity of our study.

3.1 Goal, Questions and Metrics

We used the Goal Question Metric (GQM) [4] to formulate the goal of the study,

pertinent research questions and associated metrics to gather appropriate data. In the

following, we first define goal of the study, then we describe our research questions and

associated metrics.

3.1.1 The Goal

Purpose: To determine and analyze

Issue: Characteristics and extent of requirements and their attributes that are found

missing during SA, and impact of these missing information on SA in terms of effort.

Object: Requirements information and requirements attributes information

Viewpoint: From the viewpoint of software architects

Context: In the context of software development project with particular focus on (RE)

and (SA)

23

3.1.2 Research Questions and Associated Metrics

The goal of the study has two dimensions: (i) characteristics of requirements

information; and (ii) impact of missing requirements on software architecting efforts. Our

research goal has led us to formulate following research questions.

Q1: To what extent, (i) requirements and (ii) their attributes found missing, for

architecting the system?

Q1 can be decomposed into two separate questions i.e., Q.1.1 and Q.1.2 as follows:

 Q1.1: To what extent, requirements found missing while architecting.

 Q1.2: To what extent, requirements attributes found missing while

architecting.

Q 1.1: To what extent, requirements, found missing while architecting?

Description:

There are various types of requirements information that could be missed while

doing the RE works. To categorize the missing requirements information we used the

classification of requirements information as suggested by Gross and Doerr in [25]. In

[25], the authors presented the types of requirements information including functional

information, data information, constraint information, etc. (see Table 1) that the architects

usually expect to be specified in the requirements documents. With reference to Q.1.1,

we sought to investigate the extent to which these types of information that were found

missing according to the architects. In our thesis we have considered missing

requirements information (Table 1) by using the term missing requirements.

24

 Table 1: Types of requirements information

Types of Requirements information Description

Functionality information It describes the behaviour and functionalities of

the system i.e., how a system should function

against different set of inputs (i.e, technical

details, data manipulation and processing etc.)

Data information It describes how the system deals with users’

information or system information.

Constraint information It describes information relevant to technical

aspects of the system (i.e., capacity, speed,

memory etc.)

System interaction (users/systems)

information

It describes information about how the system

should interact with different users and other

systems.

From Q1.1, we have one theoretical “construct” i.e., extent of requirements found

missing while architecting. Thus, we define the following metric (M1) for data gathering

(Table 2).

M1: Number of requirements missing, found while architecting the system.

 Table 2: Metric M1. – Number of requirements missing, found while architecting
 the system

Types of requirements

information

Number of missing requirements

 Frequency (n) Percentage ((n/total)*100)%

Total

System functionality

information

25

System data information

Constraint information

System interaction

(users/systems) information

other

Q1.2 To what extent, requirements attributes found missing while architecting?

Description:

Here, we sought to investigate the extent of the missing information concerning

various requirements attributes, which are later discovered by the software architects

team. We have used existing literature [4] for the set of requirements attributes. Table 3

depicts the list of requirements attributes (see the 1st column) and associated brief

descriptions (see the last column) which have been considered in the study.

 Table 3: Description of different types of requirement attributes

Types of requirements attributes Description

Source of requirement It refers to the origin of a requirement where it

is elicited from.

Priority It refers to the relative importance of one

requirement to others.

Dependency It refers to the set of requirements on which a

given requirement is dependent.

Rationale Rationale captures the information about the

intent behind a requirement.

Assumption It refers to any proposition regarding a

requirement, which has been considered to be

true during specification of the requirement.

26

From Q.1.2, we have one theoretical “construct” i.e., extent of requirement attributes

found missing while architecting. Thus, we define the following metric (M2) and

definition of the metric is given in Table 4.

M2: Number of requirements attributes, found missing, for architecting the system.

 Table 4: Metric M2- Number of requirements attributes, found missing

Types of requirements

attributes

Number of requirements attributes, found missing

Frequency (n) Percentage (n/total)*100%

Total

Source of requirement

Priority

Dependency

Rationale

Assumption

Other

Q2: To what extent, changes are required in the requirements and requirement attributes,

while architecting the system?

Description:

This question was asked to have information about what kind of changes

architects made to the given requirements. We defined three possible types of changes

that architects’ can do in requirements document.

 Add: Adding one or more new requirements.

 Delete: Deleting one or more requirements.

27

 Modify1: Modifying specific requirement

 Q2 can be decomposed into two separate questions i.e., Q.2.1 and Q.2.2 as follows:

 Q.2.1: To what extent, changes are required in the requirements?

 Q.2.2: To what extent, changes are required in the requirements attributes?

With reference to Q.2.1, we have considered different requirements information

described in [25] (see Table 1). There is one theoretical “construct”: extent of changes to

requirements while architecting. Thus, we define the following metric (M3) (Table 5).

M3: Number of changes on requirements, while architecting.

 Table 5: Metric M3- Number of changes on requirements

Requiremen

ts

information

 Number of changes on requirements, while architecting

 Add Delete Modify

Frequency

(n)

Percentage

(n/(n+total))*100

Frequency

(n)

Percentage

(n/total))*100

Frequency

(n)

Percentage

(n/total)*100

System

functionality

information

System data

information

Constraint

information

System

interaction

(users/syste

ms)

information

Total

1 In our thesis, we have considered modification to requirements or requirements attributes as missing
information as well. Any individual information of any requirement is itself a requirement.

28

With reference to Q.2.2, we have considered different requirement attributes

described in Table 2. There is one theoretical “construct”: extent of changes to

requirement attributes while architecting. Thus, we define the following metric (M4)

(Table 6).

M4: Number of changes on requirement attributes, while architecting

 Table 6: Metric M4- Number of changes on requirement attributes

Requirements

information

Number of changes on requirement attributes, while architecting

 Add Delete Modify
Frequency

(n)

Percentage

(n/(n+total))*100

Frequency

(n)

Percentage

(n/total))*100

Frequency

(n)

Percentage

(n/total)*100

Source of

requirement

Priority

Dependency

Rationale

Assumption

Other

Total

 Q3: What are the characteristics of the changed requirement?

Description:

In Table 7, we have described different requirement characteristics, those are

important software architecting [14][48]. Definition of different characteristics of a

requirement is given in Table 6. Q3 can be decomposed into three separate questions i.e.,

Q.3.1, Q.3.2, and Q3.3 as follows:

29

Q.3.1: How many of the changed requirements are architecturally

significant?

Q.3.2: How many of the changed requirements are cross-cutting

requirements?

Q.3.3: How many of the changed requirements are quality requirements?

 Table 7: Definition of different characteristics of a requirement

Requirement

characteristics

Description

Architecturally

significant

requirement (ASR)

Architecturally significant requirements are a subset of the

requirements that need to be satisfied before the

architecture can be considered "stable". Typically, these are

requirements that are technically challenging, technically

constraining, or central to the system's purpose [14].

Crosscutting

requirement

It refers to requirement that depends on one or more

requirements and cannot be satisfied until other

requirements are taken into account [40].

Quality

requirement

It refers to requirement (non-functional) that deals with

“Quality Characteristics” of the system (i.e., performance,

usability, reliability etc.) [14]

With reference to Q.3.1, there is one theoretical “construct”: how many of the changed

requirements are architecturally significant. Thus, we define the following metric (M5)

(Table 8).

M5: Number of architecturally significant requirements.

30

 Table 8: Metric M5: Number of architecturally significant requirements

With reference to Q.3.2, there is one theoretical “construct”: how many of the changed

requirements are crosscutting requirements. Thus, we define the following metric

(M6)(Table 9).

M6: Number of crosscutting requirements.

 Table 9: Metric M6: Number of crosscutting requirement

With reference to Q.3.3, there is one theoretical “construct”: how many of the changed

requirements are quality requirements. Thus, we define the following metric (M7)(Table

10).

M7: Number of quality requirements.

Requirement

characteristic

Number of architecturally significant requirements

 Frequency(n) Percentage ((n/total)*100)%

Total

Architecturally

significant requirement

Requirement

characteristic

Number of crosscutting requirements

 Frequency(n) Percentage ((n/total)*100)%

Total

Crosscutting

requirement

31

Table 10: Metric M7: Number of quality requirements

Q4. What is the impact of missing requirements information on SA, in terms of effort?

Description:

This question was asked to find out how much effort was spent by different

groups to recreate the missing requirements information. We define effort as, how much

time architects’ spent on recreating the missing information that includes, time to identify

the problem and time to address the problem. To calculate effort, we took the time

(person-hours.), spent on recreating different missing information.

For individual groups, we compared the effort spent on requirements missing

information with total time they spent on architecting the system. We have calculated the

total time from time log template (TLT) (see Table 12). It includes the time they have

spent on group meetings. There were lag times in group meetings that are specified in

TLT. We excluded those times from the total time. Then we did percentage distribution

to find out, how much effort they have given on recreating requirements missing

information in compare to total time spent on the project.

With reference to Q4, there is one theoretical “construct”: effort spent on requirements

missing information. Thus, we define the following metric (M8) (Table 11).

Requirement

characteristic

Number of crosscutting requirements

 Frequency(n) Percentage ((n/total)*100)%

Total

Quality requirement

32

M8: (Person-hours) spent on requirements missing information, while architecting

 Table 11: Metric M8: (Person/hours) spent on requirements missing information,
 while architecting

Participant group (Person/hours) spent on requirements missing information

 Total time spent on the

project (person/hours)

Total time spent on

recreating requirements

missing information

(person/hours)

We have formulated the questions stated above by mapping different question

formats mentioned by Yin in [60] and the possible substances of interest from these two

dimensions. This will compliant our research questions with the goal of our study. Table

12 shows the possible substances of interest and their corresponding form of questions.

We have also given the IDs of research questions and their associated metrics in Table 12

to demonstrate that the research questions do satisfy the goal.

It is important to mention that the metrics selected to satisfy the questions were

limited to the scope of the study. For example, the impact of requirements missing

information, on other project parameters such as costs (e.g., documentation costs,

development costs, rework costs, etc.), product quality, product maintenance, RE-Success

factors (e.g., the clarity of the business process in the architecture, the extent of user

consensus on the recommended solution, the completeness of coverage of the

cost/benefits analysis, etc.) [18], etc. has not been investigated in the current work and we

intend to examine it in our future works.

33

Table 12: Possible substances of interest to satisfy the goal and their corresponding research
questions, metrics

Parts of goal Question

format

Substance of

interest

Research

questions ID

Metrics ID

Missing

information

 What extent Requirements

(e.g., data,

constraint,

functionality etc),

and requirements

attributes (e.g.,

priority,

dependency etc.)

 Q1 M1, M2

 What extent Types of changes

(e.g., add, delete,

modify)

 Q2 M3, M4

 What Characteristics of

changed

requirement (see

)

 Q3 M5, M6, M7

Impact of

requirements

and its attributes

found missing

 What On software

architecture in

terms of effort

 Q4 M8

34

 Figure 3: Relationships between the goal, questions and metrics

3.2 Requirements document

 The system was in the “banking” domain that was given for architecting.

The application included three different modes of banking for the clients: ATM, internet

banking and telephone banking services; client and financial database; various quality

35

drivers, such as security, availability, performance, usability, maintainability, and others.

In total, there were some eighty nine high-level requirements to contend with, which is

sizeable. The requirements followed the organisational structure as found in [54]. The

requirements section was split into different sub-sections each detailing requirements for

a given subsystem. Different properties of requirements are also defined like; different

requirements’ attributes information that the overall system should have. Prior to the start

of the project, the architects were given sessions where the project was described,

including the application domain and structure of the requirements, and any questions or

concerns were addressed. Prior to conducting the study, these requirements were

validated by two people for acceptability in general, and the semantic content of the

document was not altered. The result of this process is that a few grammatical fixes were

made, along with the clarification of certain requirements.

The validators had requirements, architecture, and software engineering

experience ranging from 3 to 27 years. We did this in order to reduce researcher bias in

the study. In a real world setting, requirements documents given for architecting or

development of a system are not always perfect. We also did not want to “fix” the

document to the point where it was considered perfect. By doing this, we intended to

emulate this by delivering an acceptable document to the participants.

3.3 Architecting process

Given these requirements document, as mentioned in section 3.2, each of the five

groups developed architecture from the same requirements using the ADD method [5].

The project was conducted at UWO. The key steps of the ADD method include:

understanding the requirements, developing the quality scenarios; iteratively

decomposing a selected module, choosing architectural drivers from the scenarios and

functional requirements, choosing or creating an architectural pattern (by using

appropriate tactics) that satisfies the architectural drivers, identifying child modules to

36

implement the tactics, defining interfaces, verifying and refining use cases and quality

scenarios and making them constraints for the child modules.

Each team had to develop and document the system architecture. Besides, they

had to fill out templates that captured data regarding requirements and requirements’

attributes they found missing, characteristics of those missing information, impact in

terms of effort spent on those missing information etc. In addition, each team had the

freedom to seek help on any difficulties they faced during their project.

In the architecting projects the participants’ architectures produced were

conceptual. That is, there was not any implementation and so certain static properties

(such as fitness between the architecture’s structure and allocation of code components)

and dynamic properties (such as delivery of performance, security, availability, etc.)

couldn’t be checked through actual implementation of the system. Due to that, there were

no end-user consequences of the architectural decisions being made. The only possible

consequences were academic-performance-related consequences.

3.4 Research Procedures

The type of study conducted was a multiple-case study design [15]. There were

five parallel cases (i.e., one case per architecting team) in our study. Despite that, it was

an exploratory study in that we had no initial hypothesis, and we did not know which

phenomena were important (i.e., impact of missing information on architecture in terms

of effort). This is because, to our knowledge, there wasn’t much background literature

related to the posed research questions. The exploratory nature of the case study allows

for analysing the commonality and differences across cases that have similar traits [15]. It

helps to do comparison between different groups’ data for specific research questions.

37

3.4.1 Participants

We have used convenience sampling [33] to involve 20 students; undergraduate

and graduate students in the study. In order to conduct the study involving students we

received consent from the ethics board at The University of Western Ontario. The threat

of using students as participants is discussed in the external threats to validity section (see

section 3.5). The participants were randomly assigned to groups of four, making a total of

five groups.

To ensure that the participants had sufficient knowledge to conduct the project,

they were given theory knowledge in RE and assignments that allowed them to learn and

familiarize themselves with RE practices such as elicitation, analysis, negotiation,

validation, and prioritisation. We did not do analysis of participant backgrounds impact

on our findings. Distributions of participants of different groups are given in Table 13.

Table 13: Distribution of participants’ background knowledge and experience for different
groups

Participant group Total persons in each group (4) Number of

participants taken

SE courses before

Number of

participants had

professional SE

experience from

industry
Undergraduate

students

Graduate students

Group 1 3 1 1 1

Group 2 3 1 1 2

Group 3
3 1 2 1

Group 4
2 2 2 2

Group 5
3 1 2 2

38

3.4.2 Data collection

Each group was given two templates named Requirements Missing Information

Template (RMIT) and Updated Requirements Template (URT) in addition to collecting

data related to our research goal. The other two templates Time Log Template (TLT) and

Decisions, Issues, Rationale Template (DIRT) were given to keep time and design

decisions related information. In all the templates, possible terminologies were defined

and the questions such as “Who should fill out the templates and when”, were mentioned

at the start of the templates itself. Descriptions of the templates are given in Table 14.

 Table 14: Description of different data collection templates

Template Name

User Purpose and Summary of

Instrument
Requirement Missing

Information Template (RMIT)
Participant groups RMIT has questions about

missing requirements

information, their criticalities,

architectural relevance etc.

Updated Requirements Template

(URT)
Participant groups URT has questions regarding

different types of changes made

in requirements information,

characteristics of that

information, effort in terms of

rework on missing requirements

information etc.

Time Log

Template (TLT)
Participant groups The participants filled the time

spent on any project related

activity in this form on an

ongoing basis.

Decisions, Issues, Rationale

Template (DIRT)
Participant groups Each team had a team DIRT and

each individual member of the

team had their own DIRT. The

DIRT was used so that

39

participants could enter more

qualitative data: all their

design decisions, project issues

and rationale relating to the

project. They filled this d

document on an ongoing basis

during the project.

3.4.3 Data analysis

Our data collection templates include both nominal and ordinal scale data and

they are mostly qualitative in nature. To calculate all atomic metrics, we have used

percentage and frequency distribution [45]. Frequency distribution shows how frequently

each value of a variable occurs in a set of scores and instead of showing actual number

of occurrences of values within an interval, percentage distribution shows the occurrence

in that interval as a percentage of total number of occurrences in the set [45] [55]. We

have calculated metrics M1, M2, M3, M4, M5, M6, M7, and M8 (see Table 12) by using

frequency and percentage distribution.

3.5 Threats to Validity

3.5.1 Internal Validity

Internal validity deals with whether we can infer that a relationship between two

variables is causal, and not due to any confounding factors [33]. There is no cause and

effect relation between variables that is applicable to our study. So we did not discuss this

issue in internal validity. There are other numerous specific types of internal validity

threats [33], we discuss here only the threats that applied to our study and the procedures

we employed to contain the threat.

40

 3.5.1.1 Differential selection:

 It is possible when characteristics of the subjects by chance, differ between the

two types of groups and possibly affect the quality of the data. In our study, such a

characteristic is the participants’ software engineering educational and industrial-

experience backgrounds. Participants with differing SE background could possibly

perform differently in the project. We have contained this threat by ensuring participants

background and experience defined in section 3.4.1 (Table 13).

 3.5.1.2 Differential mortality:

 It occurs when a physical or mental change occurs to participants during study

that is not “equal” between the two types of study groups. This threat existed in our study

because of the duration of the participants’ project, which lasted approximately two

months. To contain this threat, the researchers assessed weekly submissions of work and

collected data. At the conclusion of the study, all initial participants remained in the study

and no effects of the differential mortality threat were observed.

 3.5.1.3 Researcher bias:

 It occurs when the researcher, knowingly or unknowingly, influences the outcome

of the study. This threat exists in our study because of the subjective nature of the

requirements definitions in the templates. To mitigate this threat, multiple researchers

were used in the study processes. This is quite recognized technique for dealing with

researcher bias [33].

3.5.2 Qualitative Validity

 In qualitative studies, a validation technique, called triangulation [26], is used to

ensure validity in the study. Triangulation is a method of establishing the accuracy of a

41

study’s findings by comparing three or more types of independent points of view on a

given aspect of the research process (methodology, data, etc.) [26]. There are different

types of triangulation that can be used together to form a strong basis of validity. In this

section, we will discuss how we used three different types of triangulation to ensure

validity in our study. The triangulations used were: data triangulation, methodological

triangulation, and investigator triangulation.

 3.5.2.1 Data Triangulation

 Data triangulation is the use of different sources of data/information on which the

study results are based. If there is consistency in the data/information provided across the

various data sources that are used, then this suggests that the data is valid. In our study, as

mentioned in section 3.4.2 (Data Collection), our data-set came from various data

collection templates that the participants had to complete. The proportions of the found

requirements missing information were having some similarities in each of the sources.

 3.5.2.2 Methodological Triangulation

 Methodological triangulation is the use of different methodological techniques

(that could be either quantitative or qualitative) in the study and, if the conclusions from

each method are consistent, then validity is increased. In our study, we used various

qualitative methods such as document analysis, as well as quantitative content analysis.

The resultant data from these various methods, and its subsequent analysis, showed

similar conclusions, that architects experienced problems with different missing

requirements and requirements attributes when architecting the system (see chapter 4).

This consistency establishes methodological validity in our study.

42

 3.5.2.3 Investigator Triangulation

 Investigator triangulation uses several investigators/researchers in the conduct of

the study and all its processes. In our study, at every stage in the process (e.g., data

collection, data analysis, research question validation, etc.), multiple researchers were

involved to actually perform the processes as well as validate them. The findings

observed to ensure that the conclusions are similar and therefore we conclude validity

was reached.

 3.5.2.4 Ecological Triangulation

 Another type of triangulation that exists, but which we could not attain, is

Ecological Triangulation. This is when the study is conducted at many different settings

and places, and then the findings from each of these settings/places are compared to see if

they are similar. This type of triangulation can be attained for this study through

replication of this study in other contexts (e.g., in industry). Without first replicating this

study, it is difficult to generalise the results to other contexts. However, this research

provides a necessary groundwork for further studies of this kind.

3.5.3 External Validity

External validity is the degree to which any findings from the study can be

“generalised to and across populations of persons, settings, and time” [15]. Using

students as participants in our study is a threat that is directly imposed on the

generalisability of the findings to industrial contexts.

 3.5.3.1 Population validity

 Using students as participants in our study is a threat that is directly imposed on

the generalisability of the findings to industrial contexts. This is a common risk in

ethnography based studies. Recent research in software engineering [30][50][49] has

43

shown that senior-level students perform similarly to “novice” software engineers with

one-two years industry experience. Also, in [7], the use of students is promoted when

conducting an investigation that has not been studied much before, such as in our case.

Studies with students can provide early indications of trends, and preliminary evidence

prior to committing to conducting studies in industry.

We did not include temporal validity threat here because there is little reason to

believe that the results of this study could not be generalised over time given the current

set of requirements methods, tools, processes, etc. that requirements engineers use.

3.5.4 Construct Validity

 For construct validity, correct operational measures need to be established based

on theoretical constructs for the concept being studied [60].We have constructs for

different research questions defined in section 3.2 .Two types of construct validity which

are applicable to our research are given as follows:

3.5.4.1 Content validity:

 It is concerned with whether the research instrument (in our case the data template

questionnaires) properly represents the specific intended domain of content [47].All the

constructs and metrics related to research questions (i.e., M1, M2, M3, M4, M5, M6, M7,

M8) are derived from information from books [36][5]. Requirements information is

gathered from [25]. So, all the contents of the parameters are rooted in literature.

44

3.5.4.2 Face validity:

 It is concerned with whether any contents (in our case the questionnaires) used for

conducting the study are appropriately translated from the construct [47]. All data are

captured based on constructs defined with each research questions (see section 3.2) and

all the constructs are represented in the questionnaires as well. So there is nothing more

and nothing less. This is validated in our study by involving two researchers for

reviewing the questionnaire, in terms of both contents and its structure.

3.5.5 Conclusion Validity

 Conclusion validity is about whether the conclusions we make, based on the

findings, are reasonable [47]. To ensure conclusion validity is contained, two accepted

principles that were applied to the study were ensuring reliability of data measurements

and adequate implementation of study processes. To ensure the reliability of data

measurements, we utilized data-collection instruments (see Table 14) that were validated

by multiple experts. To ensure adequate implementation of study processes, sessions

were held with the participants to explain the templates and study processes to them. In

chapter 4, we have demonstrated that all our conclusions are rooted in the results and our

findings are tested using statistical analysis, thereby maintaining the conclusion validity.

Thus we can claim our conclusions are traceable through data analysis all the way to the

research questions.

45

 Chapter 4: Results and Interpretations

4.1 Missing requirements and requirements’ attributes found during SA

We have considered both requirements and requirements attributes’ information

which are found missing while architecting. Requirements information are discussed in

section 3.1 (see Table 1) and requirements’ attributes are also defined in section 3.1 (see

Table 3). We have discussed findings about each one of them as follows:

4.1.1 Missing requirements found while architecting

Table 15 shows the numbers of requirements information that are found missing

while architecting the system for different groups. The first column includes different

types of requirements’ information defined in the study [25] (see section 3.1) (Table 1).

For individual groups, frequency counts and percentage values, both are given, that are

found missing while architecting.

With reference to Table 15, the top three types of missing requirements’ information

that are found missing in requirements while architecting are:

 Constraint information

 System functionality information

 System interaction (users/systems) information

46

 Table 15: Number of requirements found missing, while architecting the system

Types of
requirements
information

Group 1 Group 2 Group 3 Group 4 Group 5

n (%) n (%) n (%) n (%) n (%)

Total 11 12 15 14 13

System
functionality
information

2(18.18) 3(25) 5(33.33) 4(28.57) 4(30.76)

Data
information

2(18.18) 4(33.33) 2(13.33) 2(14.28) 1(7.69)

Constraint
information

5(45.45) 4(33.33) 5(33.33) 5(35.71) 5(38.46)

System
Interaction
Users/Systems)
information

2(18.18) 1(8.33) 3(20) 3(21.42) 3(23.07)

Number of requirements found missing by different groups:

From Figure 3, we can see that, constraint information was mostly found missing

in requirements for all the groups. For group 1, they have found a total of 11 missing

requirements and among them 45.45% are related to constraints of the system. For group

3, group 4 and group 5, all of them have found constraint information missing in

requirements at higher percentages; that are, 33.33%, 35.71%, and 38.46% respectively.

Other than constraint information, system functionality information is also found missing

in requirements for most of the groups. Out of 15 missing requirements, group 3 has

found 33.33% of missing requirements due to missing system functionality information.

Group 4 has found a total of 14 missing requirements and among them 4 are related to

system functionality information; that is, 28.57% of the total missing requirements. On

the other hand, group 5 has found 4 missing requirements out of a total of 13 missing

requirements; that is, 30.76% of the total missing requirements. System data information

47

was found missing less frequently among all the groups except group 2, that is 33.33% of

total missing requirements.

 Figure 42: Number of requirements missing, while architecting the system

4.1.2 Requirements’ attributes found missing, while architecting

In Table 16 numbers of different requirements attributes are given, which are

found missing while architecting. The first column lists different requirements attributes

as defined in section 3.1 (see Table 3). For individual groups we have given both the

frequency counts and the percentage values.

Table 16 indicates that, the top three requirements attributes that are found missing while

architecting are:

2 For each of the groups, total number of missing requirements found by them is given within braces. For
example, group 1(11) means they have found in total 12 missing requirements

0 20 40 60

Group 1 (11)

Group 2 (12)

Group 3(15)

Group 4(14)

Group 5(13)

18.18

25

33.33

28.57

30.76

18.18

33.33

13.33

14.28

7.69

45.45

33.33

33.33

35.71

38.46

18.18

8.33

20

21.42

23.07

System Interaction
Users/Systems) information

Constraint information

Data information

System functionality
information

Number of requirements found missing (%)

48

 Priority

 Rationale

 Dependency

 Table 16: Number of requirements attributes, found missing

Requirements
attributes

Group 1 Group 2 Group 3 Group 4 Group 5

n (%) n (%) n (%) n (%) n (%)

Total 12 17 20 18 15

Source of
requirement

 2(10) 1(6.66)

Priority 3(25) 6(35.29) 9(45) 6(33.33) 5(33.33)
Dependency 4(33.33) 4(23.52) 5(25) 5(27.77) 4(26.66)
Rationale 4(33.33) 7(41.18) 4(20) 6(33.33) 5(33.33)
Assumption 1(8.33) 1(12.5)

Number of requirements’ attributes found missing by different groups:

It is found that (Figure 5), all the groups more or less found requirements’

attributes missing that were needed while architecting the system. Among them, priority

was missing at higher percentages for group 3 (45%), group 2 (35.29%), group 4

(33.33%), and group 5 (33.33%). Group 4 has found 6 missing attributes related to

priority, out of 18 total missing requirements attributes and group 5 has found 5 missing

requirements attributes related to priority out of 15 missing requirements attributes. If we

interpret the findings for group 4 and group 5, both of them found one priority related

information missing in every three missing requirements attributes. For group 2, out of

total 17 missing requirements attributes found 7 are related to rational; that is, 41.18% of

the total. Rationale is also found missing at a higher percentage for group 4 (33.33%) and

group 5 (33.33%), out of total missing requirements attributes they have found.

Requirements dependency was also found missing for all the groups to some extent.

49

Among them, group 1 found it at a higher percentage that is 33.33% of the total; that is, 4

out of 12 missing requirements attributes. Requirements assumption and source of

requirements are found missing at a lower percentages for some of the groups. Group 3

and group 5 have found source of requirements missing at a percentage of 10% and

6.66%, out of their total number of missing requirements attributes respectively.

 Figure 53: Number of requirements attributes’ missing, while architecting

4.2 Number of changes made in requirements and requirements’

attributes during SA

We have considered three types of changes (i.e., add, delete, modify) in order to

categorize different changes made to requirements and requirements’ attributes. Both are

described as follows:

3 For each of the groups, total number of missing requirements attributes found by them is given within
braces. For example, group 1(12) means they have found in total of 12 missing requirements attributes.

0 20 40 60

Group 1(12)

Group 2(17)

Group 3(20)

Group 4(18)

Group 5(15)

10

6.66

25

35.29

45

33.33

33.33

33.33

23.52

25

27.77

26.66

33.33

41.18

20

33.33

33.33

8.33

12.5

Assumption

Rationale

Dependency

Priority

Source of requirement

Number of missing requirements attributes (%)

50

4.2.1 Number of changes made in requirements

In Table 17 numbers of changes that architects did on requirements are given.

For individual group, frequency counts and percentage values, both are given. It is found

that other than adding or deleting requirements, all the groups modified requirements the

most. Number of changes were higher for group 3 (15) and group 4 (14), out of total

number of requirements.

 Table 17: Number of changes in requirements

Types of

changes

Group 1 Group 2 Group 3 Group 4 Group 5

 n (%) n (%) n (%) n (%) n (%)

Add 1(1.11) 2(2.19) 4(4.30) 2(2.19)

Delete 2(2.24) 3(3.37) 2(2.24) 3(3.37) 3(3.37)

Modify 9(10.11) 8(8.99) 11(12.35) 7(7.87) 8(8.99)

Total number
of
requirements

89 89 89 89 89

Total number
of changes in
requirements

11 12 15 14 13

Number of changes made to requirements by different groups:

Figure 6 depicts different types of changes made in requirements by architects’ of

different groups. Among different groups, modifications of requirements are found the

most. Group 3 had the highest number of modifications to requirements that is 12.35% of

total requirements given to them. In every eight requirements, given to them, they have

modified one requirement. After group 3, group 1 had a higher number of modifications

of 10.11% out of total requirements. Among all, group 4 did least number of

modifications that is 7.87% of total requirements. In the case of deleting requirements,

group 2, group 4, and group 5 had the same numbers of deletions that is 3.37% of the

total requirements. Among all the groups, additions of new requirements are less

51

frequent. Group 4 had a higher numbers of additions than other groups that is 4.30% of

total requirements. It is found only in case of group 1 that they did not add any new

requirements.

 Figure 64: Number of changes made to requirements, while architecting

4.2.2 Number of changes made in requirements’ attributes:

In Table 18 the numbers of different types of changes that architects’ made on

requirements attributes are given. For individual group, frequency counts and percentage

values, both are given. It is seen that other than adding or deleting requirements, all the

groups modified requirements attributes the most. The number of changes are higher for

group 3 (13) and group 2 (12), out of a total number of requirements given to them.

4 Percentages are calculated in compare to total requirements given to each group that is 89. In case any
group added any new requirement, percentages are calculated based on the formula ((n/(n+ total
number of requirements))*100 %), where n is the number of new requirements.

1.11

2.19

4.3

2.19

2.24

3.37

2.24

3.37

3.37

10.11

8.99

12.35

7.87

8.99

0 5 10 15

Group 1(89)

Group 2(89)

Group 3(89)

Group 4(89)

Group 5(89)

Modify

Delete

Add

Number of changes to requirements (%)

52

 Table 18: Number of changes in requirements attributes

Types of

changes

Group 1 Group 2 Group 3 Group 4 Group 5

 n (%) n (%) n (%) n (%) n (%)

Add 1(1.11) 4(4.30) 4(4.30) 4(4.30) 3(3.26)

Delete 1(1.12) 3(3.37) 3(3.37) 3(3.37)

Modify 11(12.35) 12(13.48) 13(14.60) 11(12.35) 9(10.11)

Total number
of
requirements

89 89 89 89 89

Total number
of changes in
requirements
attributes

12 17 20 18 15

 Number of changes made to requirements’ attributes by different groups:

Figure 7 shows the different types of changes made by architects of different

groups on requirements attributes. Among the different groups, modifications of

requirements attributes are found the most. Group 3 made the highest number of

modifications to requirements attributes; that is, 14.60% of total requirements given

to them. In every seven requirements they have made one modification to

requirement attribute. After group 3, group 2 made a higher number of modifications;

that is, 13.48% out of total requirements. Among all, group 5 did least number of

modifications that is 10.11% of the total requirements. In case of deleting

requirements attributes, group 2, group 4, and group 5 had the same numbers of

deletions; that is, 3.37% of the total requirements. As an exception, group 1 did not

have any deletion on requirements attributes. Among all the groups, additions of new

requirements attributes have been made to some extent. Group 3, group 4, and group

5 made the same numbers of additions; that is, 4.30% of the total requirements.

Group 1 did only 1.11% addition of requirement attributes out of total requirements.

53

 Figure 7: Number of changes to requirements attributes, while architecting

4.3 Characteristics of the changed requirements

In Table 19, numbers of positive responses to different characteristics questions of

the changed requirements (see section 3.1) (Table 6) are given, from the architects’ points

of view. The first column includes the characteristics of the changed requirements that we

have considered for our research are given. For individual group both their frequency

counts and percentage values are given in Table 19.

 Table 19: Frequency of different characteristics of the changed requirements

Requirement
characteristic

Group 1 Group 2 Group 3 Group 4 Group 5

 n(%) n(%) n(%) n(%) n(%)
Architecturally
significant
requirement

9(60) 8(44.44) 8(38.09) 7(35) 8(44.44)

Crosscutting
requirement

8(53.33) 10(55.55) 12(57.14) 10(50) 9(50)

Quality
requirement

9(60) 10(55.55) 11(52.38) 9(45) 8(44.44)

0 5 10 15

Group 1(89)

Group 2(89)

Group 3(89)

Group 4(89)

Group 5(89)

1.11

4.3

4.3

4.3

3.26

1.12

3.37

3.37

3.37

12.35

13.48

14.6

12.35

10.11

Modify

Delete

Add

Number of changes to requirements attributes (%)

54

Total number of
changed
requirements5

15 18 21 20 18

Number of architecturally significant requirements found by different groups:

With reference to Figure 8 we found that, all the groups, more or less, found

changed requirements as architecturally significant. Among them group 1 defined 9 out

of 15 changed requirements as architecturally significant; that is, 60% of total changed

requirements. That means in every one or two changed requirements, one was

architecturally significant from their point of view. Group 4 found the least number of

changed requirements as architecturally significant; that is, 21.8% of the total changed

requirements.

As an example, there was a requirement that said,

 “The system should respond faster to any request”

Architects could not deal with the word “faster” so they thought of a standard response

time for any request and changed the requirement to

 “The system should respond within 5-10 seconds for any request”

If we look at the instance level of this requirement, it deals with both performance

and security aspect of the system. So from an architectural point of view, it will touch

different components of the architecture and based on that different hardware resources

will be allocated to it. So from architects’ points of view they defined this changed

requirement as an architecturally significant requirement.

5 For individual group, if we sum up the frequencies of different characteristics of changed requirements,
it will differ with total number of changed requirements because one requirement may satisfy one or
more characteristics at a time. For example, a requirement can be crosscutting and quality requirement at
the same time.

55

 Figure 8: Number of architecturally significant requirements

Number of crosscutting requirements found by different groups:

Figure 9 depicts that, all the groups to some extent found changed requirements

are crosscutting requirements. Among them group 3 has found 12 changed requirements

as crosscutting requirements out of 21 changed requirements; that is, 57.14% of total

changed requirement. If we interpret this in another way, in every three changed

requirements they have found one as a crosscutting requirement. After them, group 2 and

group 3 have found 55.55% and 53.33% of their individual total changed requirements as

crosscutting requirements.

As an example, there was a requirement that said,

 “A customer must be able to access their account by using 5 digits PIN”

The priority was given to this requirement as “medium”. But architects’ found

this feature very important from architecture’s perspective as other requirements are

dependent on it like:

0

10

20

30

40

50

60

Group
1 (15)

Group
2 (18)

Group
3 (21)

Group
4 (20)

Group
5 (18)

60

44.44

38.09
35

44.44

Architecturally
significant (%)

56

 “A customer must be able to pay a bill using the ATM”

 “A customer must be able to withdraw funds from his/her account(s) using the

ATM”

So it is found that, architects changed the priority of the requirement to “very

high” as from the architects’ points of view this requirement is crosscutting other

requirements and if any problem occurs with this requirement other security features of

the system could be affected as well.

 Figure 9: Number of crosscutting requirements

Number of quality requirements found by different groups:

From figure 9.we found that, all the groups found to some extent changed

requirements as quality requirements. Among them group 1 has found 60% of total

changed requirements as quality requirements. They have found 9 changed requirements

as quality requirements out of 15 changed requirements; that is, in every two to three

changed requirements one is a quality requirement. Group 2 and group 3 have found

46

48

50

52

54

56

58

Group 1
(15)

Group 2
(18)

Group 3
(21)

Group 4
(20)

Group 5
(18)

53.33

55.55

57.14

50 50

Crosscutting
requirement (%)

57

55.55% and 52.38% of changed requirements as quality requirements out of their

individual total of changed requirements.

As an example, there is a requirement that says,

 “Backups should be taken regularly”

Architects’ have modified this requirement as,

 “Backups should be taken in every 12 hours”

This is an important security feature and it also deals with reliability of the system

as well as different banking domains (i.e., ATM, internet banking etc.) are interrelated

with each other. That will help architects’ to allocate resources to it in a more efficient

way and it will increase both the security and reliability aspect of the system. Both of

these qualities security and reliability are considered as quality attributes of a system. So

architects’ defined this changed requirement as a quality requirement.

 Figure 10: Number of quality requirements

0

10

20

30

40

50

60

Group 1
(15)

Group 2
(18)

Group 3
(21)

Group 4
(20)

Group 5
(18)

60
55.55

52.38

45 44.44

Quality
requirement (%)

58

4.4 Impact on rework of requirements missing information, in terms of

effort while architecting

Effort spent on different missing requirements and requirements’ attributes

 Table 20 depicts effort spent on recreating different requirements and

requirements attributes’ missing information. We have calculated the overall time from

the time log template (TLT) (see section 3.4.2) (Table 14) and compared the effort spent

on recreating the missing information with that. It is found from Table 7 that all groups

did spend certain portion of the total time only in recreating missing requirements and

requirements attributes’ information, while architecting. Among them group 3 spent the

most that is 21.5% of the total time they spent on the project. They took this amount of

time for making around 35 different changes that includes both requirements and

requirements attributes’ missing information. Whereas, group 4 spent 12.37% of time for

making a total of 32 changes to requirements and requirements attributes missing

information. Group 1 has spent 18% and group 2 spent 17% of the total time in

recreating missing information while architecting. Group 5 spent the least amount of time

among all the groups; that is, 10.18% of total time they spent on the project. It seems

from the findings (see Table 20) that identified missing requirements information has

impact on different groups in terms of effort spent on recreating that information

 Table 20: Effort spent (person-hours) on recreating missing information

Participants Total number
of changes
made to
requirements
and
requirements
attributes6

Overall Time
spent on
architecting the
system (hours)

Time spent on
rework on
documents
(hours)

Proportion of
entire project (%)

Group 1 23 24 4.33 18
Group 2 29 31.8 5.46 17
Group 3 35 29.66 6.4 21.5
Group 4 32 35 4.33 12.37
Group 5 28 32 3.26 10.18

6 To calculate total number of changes to requirements, we have counted requirements change and
requirements attributes’ changes separately so that will differ with total number of changed
requirements.

59

 Figure 117: Effort spent on missing information while architecting

7 For individual group, total number of changes is given within braces.

0 5 10 15 20 25

Group 1 (23)

Group 2 (29)

Group 3 (35)

Group 4 (32)

Group 5 (28)

18

17

21.5

12.37

10.18

Effort spent on missing
information out of total
time (%)

60

 Chapter 5: Implications

This chapter discusses implications of our results. Sections 5.1, 5.2 and 5.3

discuss the implications on practice, tools and empirical research.

5.1 Implications on practice

Our investigation finds different missing requirements and their attributes, and to

what extent they are found missing during SA. Even though the requirements are elicited

by following standard RE process (i.e., elicitation, analysis, validation etc.), there is

missing information found by architects that is important from architects’ points of view.

Besides, in practice, requirements engineering methods are inconsistently followed [21]

and sometimes they are based on a single technique (i.e., use case modeling) and are used

for all types of requirements information [21] that ends up with poor products. The

knowledge about what requirements information and requirements attributes are

important (see sections 4.1.1 and 4.1.2) for the architecting purpose will help

practitioners to follow RE processes properly so that minimal information goes missing.

Our findings also show the effect of this missing information on SA in terms of

effort (see section 4.4).In practice, missing requirements are often missed until the system

is integrated or in the worst case after deployment [21]. So our findings will help

practitioners at the early phase of development by providing an idea about what kinds of

information about requirements are important and what affect it could have on

architecture,. Eventually it will help in the “handover” process, from requirements

engineers to the architects in a more structured way and emphasis should be placed on

ensuring that the architects not only understand the requirements as documented, but

have comprehended them in terms of architecting different types of projects. For

example, during the development of a safety critical system, or a system which includes

regulatory requirements from the customer, the requirements should be documented

61

carefully, keeping in mind the different requirements and requirements attributes’

missing information from our findings that could help the architects of the system.

5.2 Implication on Tools

There are already some research tools that are available (e.g., [23] and EGRET

[51]) and tools used in industry (e.g., Rational Team Concert [46]), which provide

traceability between software artefacts and communication artefacts (e.g., meeting

videos, email, chat, etc.). In practice, there is inadequate tool support for engineering

requirements[21] and that makes the task of maintaining requirements and other artifacts

extremely labor-intensive [21][30]. In reality, simple and powerful documentation tools

and formats are needed [40]. Our findings could be useful in developing a tool or

prototype of a tool that will eventually try to mitigate certain problems from our findings

with requirements and requirements attributes or improving features of different tools.

5.3 Implication on empirical research

Based on the findings of this study, we propose the following hypotheses which

might be tested through further empirical investigation.

H1: Requirements attributes’ information is missing more than requirements themselves,

in requirements documents.

Rationale: With reference to chapter 2 (section 2.6), we could see requirements

information goes missing in RE documents and it has impact on SA. Section 4.1.1

(Tables 15) shows the extent to which requirements information found missing and

section 4.1.2 (Table 16) shows the extent to which requirements attributes are found

missing. Even though requirements information is found missing to certain numbers for

all the groups, requirements attributes’ information is found missing for all the groups at

62

higher numbers. For example, group 2 found a total of 12 requirements information

missing but they found a total of 17 missing requirements attributes’ information. It is

similar for all the groups more or less. These findings motivate us to state the above

hypothesis.

H2. Software architects modify requirements and requirements attributes more than

adding or deleting requirements.

Rationale: Section 4.2.1(Table 17) shows the extent of different changes made to

requirements and section 4.2.2 (Table 18) shows the extent of different changes made to

requirements attributes’ information. It is found for all the groups that architects did

modify the requirements and requirements attributes’ information at higher numbers. For

all the groups, they less frequently added or deleted requirements or requirements

attributes’ information. For example, group 3 modified 11 requirements out of 15

changed requirements and they also modified 13 requirements attributes out of 20

changed requirements attributes. These findings motivate us to state the above

hypothesis.

H3. Missing requirements and requirements attributes have impact on SA, in terms of

effort on recreating missing information.

Rationale: Section 4.4.1 (Table 20) shows the effort spent by different groups on

recreating missing information while architecting out of total time they spent on the

project. For all the groups they spent a certain amount of time in just recreating missing

information out of total time they spent on the project. Even though for all the groups we

could not prove it by any analysis that the time they spent was a significant amount of

63

time, but these values certainly cannot be ignored as well. These findings motivate us to

state the above hypothesis.

To test these hypotheses, further empirical investigations would need to be

conducted (i.e., case study, controlled study, survey, replicated study etc.). Also, our

questionnaire and data analysis method can be considered as a primary template for

investigating the impact of missing information on other areas of software engineering

(i.e., coding, testing, maintenance, etc.)

64

Chapter 6: Limitations, Conclusions, Ongoing
and Future Work

This chapter discusses the limitations of the study, and conclusions in Sections 6.1

and 6.2 respectively. Finally section 6.3 describes the ongoing and future work of our

thesis.

6.1: Limitations

To best of our knowledge, the following is a list of the limitations of the study:

 As a research strategy, the case study has some inherent limitations. For example,

data collected through the study reflects the participants’ perception of the

situation rather than the actual situation in practice. Because we used case study

as our research strategy our study has the limitations of case study research.

 While measuring the impact of missing requirements and requirements attributes

on SA, we only focused on impact on SA, in terms of effort and excluded other

aspects such as cost, quality etc.

 Our research was only specified to the banking domain, so we could not

generalize our finding for other domains.

 We did not classify our findings based on different quality attributes (i.e.,

performance, security etc.) rather we have considered the overall aspect by using

the term quality requirement.

65

 We did not do the qualitative analysis of the data at the architectural level for

different groups.

 We could not obtain the perception of the participants and other practitioners

towards the findings of this study.

 We could not make a comparison between the values of our metrics in the back

drop of contextual information such as RE process models followed, participants’

background or experience etc.

All these limitations are mainly due to resource and time constraints. We intend to

overcome these limitations in our future work. We also encourage other researchers to

conduct confirmatory and complementary studies in other domains and contexts to help

and build grounded theory on the characteristics of missing requirements and impact of

this missing requirements and requirements attributes on SA.

6.2 Conclusions

Even though research evidences about missing information between the phases of

RE and SA can be found in the literature (i.e., [24][25]), no scientific studies have been

found on identifying the extent to which requirements and requirements attributes

information is found missing during SA, characteristics and impact of those missing

information in SA in terms of effort . In this thesis, we have described a case study on a

classroom project, involving five groups in total. Our study investigated the extent of

missing requirements and requirements attributes’ information that is found while

architecting; characteristics of changed requirements and impact of missing information

on SA, in terms of effort.

We found constraint information and system functionality information was

missing at higher numbers for different groups (see section 4.1.1) in requirements.

Section 4.1.2 depicts different missing requirements’ attributes and priority, dependency

66

and rationale have higher percentages among them. Section 4.2 (Tables 15 and 16)

describes the extent of different changes made to requirements and requirements

attributes. Among them modification has higher percentages for almost all the groups.

Section 4.3 describes the characteristics (i.e., architecturally significant requirement,

crosscutting requirement, and quality requirement) of the changed requirements for

different groups. Section 4.4 shows the evidence of impact of missing information on SA,

in terms of effort. Among all the groups, group 3 spent more time on missing

information; that is, 21.5% of total time that was spent on the project.

Our results have implications in the industry as it could help the practitioners to

understand the importance of the RE process. It also could help them to keep in mind

different kinds of requirements information that should be taken care of during the RE

process (see section 5.1). But we advise caution when making a business decisions based

on the results of this fundamental study alone.

Our results also have implications for research as a numbers of new hypotheses

emerge from it (see section 5.3). We encourage other researchers to conduct confirmatory

and complementary studies in other domains and contexts to help build a grounded

theory on different characteristics of requirement and impact of missing requirements

information on SA, in terms of effort.

6.3 Ongoing and Future works

In this case study our findings are limited to missing requirements and

requirements attributes and these results data are mostly quantitative in nature. We have

shown here to what extent this information was missing but did not explain the details of

the findings at the architectural level for different groups. We have presented findings

about different characteristics of the changed requirements but could not analyse our data

at the architectural level. That would possibly give a better insight about the rationales

behind different changes and how these changes actually affecting the architecture.

67

Section 4.4.2 (Tables 21 and 22) shows that there is significance difference between

groups in terms of effort spent on rework. This motivates us to investigate further on our

data as well. These things will be done as an ongoing basis. From the data we have

collected, the following emerging questions we will analyze further.

Q1. How are different SA activities affected by missing requirements and requirements

attributes?

Q2. How are different missing requirements and requirements attributes relevant to SA

attributes, from architecture’s point of view?

Q3. What is the impact of requirements and requirements attributes’ missing information

on SA, in terms of architectural quality?

In addition, we will further explore this impact in other development phases to

see, other than SA, to see how other development phases (i.e., coding, testing, product

management etc.) are affected by missing requirements and requirements attributes’

related information in terms of quality.

We do have a proof-of-concept prototype tool that was initially developed by one

other student two years back. It provides traceability between meeting videos and

software artefacts (i.e., requirements and architectural artefacts) based on the developer’s

(whoever was using the tool during meeting) action in the tool. The tool also provides the

facility to develop traceability between different software artefacts through tagging (e.g.,

image tagging). Further enhancement of the tool will be done based on the findings of the

analysis of project data mentioned above. The comparison of return on investment in

terms of cost, quality and effort of using the tool for projects, through further empirical

investigation is also part of future research plans.

68

References:

[1] Albayrak, O., Kurtoglu, H., & Biaki, M. (2009). Incomplete Software Requirements

and Assumptions Made by Software Engineers. 16th Asia-Pacific Software Engineering

Conference, IEEE Software, pp. (333-339).

[2] Ambler, S. W. (n.d.). Introduction to User Stories. Retrieved November 2009, from

Agile Modeling: http://www.agilemodeling.com/artifacts/userStory.htm.

[3] Bachmann, F., Bass, L., & Klein, M. (2003). Deriving Architectural Tactics: A Step

Toward Methodical Architectural Design. Software Engineering Institute, pp. (35-45).

CMU.

[4] Basili, V. R., Caldiera, G., & Rombach, H. (1994). The Goal Question Metric

Approach. In J. J. Marciniak (Ed.), Encyclopedia of Software Engineering (2nd ed), Vol.

2, pp. (528-532). John Wiley & Sons, Inc.

[5] Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd

ed.). Addison Wesley.

[6] Beecham, S., Hall, T., & Rainer, A. (2003). Software Process Improvement Problems

in Twelve Software Companies: An Empirical Analysis. Empirical Software Engineering,

8 (1), pp. (7-42).

[7] Berander, P. (2004). Using Students as Subjects in Requirements Prioritization.

Proceedings of the 7th International Conference on Empirical Assessment & Evaluation

in Software Engineering, pp. (95-102).

[8] Berenbach, B. (2006). Impact of Organizational Structure on Distributed

Requirements Engineering Processes: Lessons Learned. International workshop on

Global software development for the practitioner, 28th International Conference on

Software Engineering (ICSE 06), pp. (15-19). Shanghai, China: ACM.

69

[9] Bjarnason, E., Wnuk, K., Regnell, B. (2011). Requirements are Slipping Through

the Gaps – A Case Study on Cause & Effects of Communication Gaps in Large-Scale

Software Development. 19th IEEE International Requirements Engineering Conference,

pp. (37–46).

[10] Boehm, B., & Bose, P. (1994). A collaborative spiral software process model based

on Theory W. Third International Conference on the Software Process, pp. (59-68).

[11] Burge, J.E., Carroll, J.M., McCall, R., Mistrík, I. (2008). Rationale and

Requirements Engineering (3rd ed.), pp. (139-153). Springer.

[12] Cao, L., & Ramesh, B. (2008). Agile Requirements Engineering Practices: An

Empirical Study. IEEE Software, 25 (1), pp. (60-67).

[13] Chen, L., Ali Babar, M., & Nuseibeh, B. (2013). Characterizing Architecturally

Significant Requirements. IEEE Software, 30(2), pp. (38–45).

[14] Cleland-Huang, J., Czauderna, A., & Keenan, Ed. (2013). A persona-based

approach for exploring architecturally significant requirements in agile projects.19th

international conference on Requirements Engineering: Foundation for Software Quality,

REFSQ ’13, pp. (18-33). Berlin, Heidelberg.

[15] Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. Thousand Oaks, CA: Sage Publications.

[16] Damian, D., Izquierdo, L., Singer, J., & Kwan, I. (2007). Awareness in the Wild:

Why Communication Breakdowns Occur. International Conference on Global Software

Engineering pp. (81-90). Munich: IEEE Computer Society.

[17] Dekleva, S. (1992). Delphi Study of Software Maintenance Problems. IEEE

Conference on Software Maintenance, ICSM 1992, pp. (10-17). Orlando, Florida, USA.

70

[18] El Emam, K., & Madhavji, N.H. (1995). Measuring the success of requirements

engineering processes. In Requirements Engineering, Proceedings of the Second IEEE

International Symposium, pp. (204-211).

[19] Feilkas, M., Ratiu, D., & Jurgens, E. (2009). The loss of architectural knowledge

during system evolution: An industrial case study. 17th International Conference on
Program comprehension, ICPC ’09, pp. (188-197).

[20] Ferrari, R., & Madhavji, N.H. (2008). Architecting-problems rooted in requirements.

ACM journal of Information and Software Technology archive, 50(1-2), pp. (53-66).

[21] Firesmith, D. (2007). Common Requirements Problems, Their Negative

Consequences, and the Industry Best Practices to Help Solve Them. Journal Of Object

Technology, 6(1), pp. (17-33).

[22] Forward, A., & Lethbridge, T. C. (2002). The Relevance of Software Documentation,

Tools and Technologies: A Survey. The ACM Symposium on Document Engineering, pp.

(26-33). McLean, Vancouver, Canada.

[23] Gall, M., Bruegge, B., & Berenbach, B. (2006). Towards a Framework for Real

Time Requirements Elicitation. First International Workshop on Multimedia

Requirements Engineering, 2006. MERE '06, pp.(4-4). Minneapolis/St. Paul, Minnesota:

IEEE Computer Society. 9

[24] George, B., Bohner, S. A., & Prieto-Diaz, R. (2004). Software information leaks: A

complexity perspective. Ninth IEEE International Conference on Engineering Complex

Computer Systems (ICECCS'04), pp. (239-248). Florence, Italy: IEEE Computer Society.

[25] Gross, A., Doerr, J. (2012). What do software architects expect from requirements

specifications? results of initial explorative studies. IEEE First International

Workshop on Twin Peaks of Requirements and Architecture, IEEE Software, pp. (41-

45).

71

[26] Guion, L. (2002). Triangulation: Establishing the Validity of Qualitative Studies.

University of Florida Extension: Institute of Food and Agricultural Sciences.

[27] Gumuskaya, H. (2005). Core Issues Affecting Software Architecture in Enterprise

Projects. Proceedings of World Academy of Science, Engineering And Technology,

volume 9, pp. (35-41)

[28] Hamilton, F., & Johnson, H. (1995). An empirical study in using linked

documentation to assist software maintenance. International conference on Human-

Computer Interaction, 1995, pp. (219-224).

 [29] Hesse, M., & Paech, B. (2013). Supporting the Collaborative Development of

Requirements and Architecture Documentation. IEEE Second International Workshop on

Twin Peaks of Requirements and Architecture, IEEE Software, pp. (22-26). Rio de

janeiro, Brazil.

[30] Host, M., Regnell, B., & Wohlin, C. (2000). Using Students as Subjects – A

Comparative Study of Students and Professionals in Lead-Time Impact Assessment.

Empirical Software Engineering, pp. (201-214).

[31] IEEE-std-1471-2000: Recommended Practice for Architectural Description of

Software-Intensive Systems. IEEE, http://standards.ieee.org/.

[32] IEEE-std-830-1998: Recommended practice for software requirements

specifications. IEEE, http://standards.ieee.org/.

[33] Johnson, R. B., and Christensan, L. (2004). Educational Research: Quantitative,

Qualitative and Mixed Approaches. Allyn & Bacon (2nd Ed.).

[34] Kamsties, E., Hormann, K., & Schlich, M. (1998). Requirements Engineering in

Small and Medium Enterprises: State-of-the-Practice, Problems, Solutions, and

Technology Transfer. International conference on European Industrial Requirements

Engineering (CEIRE’98), pp. (30 41). London,UK.

72

[35] Kannenberg, A., Saiedian, H. (2009). Why Software Requirements Traceability

Remains a Challenge. The Journal of Defense Software Engineering, pp (14-19).

[36] Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and

Techniques. John Wiley & Sons.

[37] Koziolek, A. (2012). Architecture-driven quality requirements prioritization. IEEE

First International Workshop on Twin Peaks of Requirements and Architecture, IEEE

Software, pp. (15-19). Chicago, IL.

[38] Lamsweerde, A. (2000). Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Transactions on Software Engineering, 26(10), pp. (978-1004)

[39] Lee, S., & Rine, D. (2004). Missing Requirements and Relationship Discovery

through Proxy Viewpoints Model. 19th annual ACM Symposium on Applied Computing,

pp. (1513-1518). Nicosia, Cyprus.

[40] Lethbridge, T. C., Singer, J., & Forward, A. (2003). How Software Engineers Use

Documentation: The State of the Practice. IEEE Software, 20 (6), pp. (35-39).

[41] Liang, P. , Avgeriou, P., & Keqing He. (2010). Rationale management challenges in

requirements engineering. Third International Workshop on Managing Requirements

Knowledge (MARK), pp. (16-21). Sydney, NSW.

[42] Menten, A., Scheibmayr, S., & Klimpke, L. (2010). Using audio and collaboration

technologies for distributed requirements elicitation and documentation. Third

international workshop on managing requirements knowledge (MaRK'10), pp. (51 – 59).

Sydney, Australia.

73

[43] Miranskyy, A., Madhavji, N., Davison, M., & Reesor, M. (2005). Modelling

Assumptions and Requirements in the Context of Project Risk. 13th IEEE International

Conference on Requirements Engineering, IEEE software, pp. (471-472).

[44] Poort, E.R., Key, A., de With, P.H.N., & van Vliet, H. (2012). Issues Dealing with

Non Functional Requirements across the Contractual Divide. International Conference

on Software Architecture (WICSA) and European Conference on Software Architecture

(ECSA), pp. (315 319). Helsinki, Finland.

[45] Ralph, B., Lisa, M., & Alexa, S., (2006), Introduction to Applied Biostatistics,

Thompson.

[46] Requirements Tools. (n.d.). Retrieved November 2009, from Volere Requirements

Resources: http://www.volere.co.uk/tools.htm.

[47] Research Methods Knowledge Base. (n.d.). Retrieved November 2009, from Social

Research Methods: http://www.socialresearchmethods.net/kb/.

[48] Rosenhainer, L. (2004). Identifying Crosscutting Concerns in Requirements

Specifications, International journal of Softwaretechnik-Trends, 24(1), pp. (15-25).

[49] Runeson, P., (2003). Using Students as Experiment Subjects – An Analysis on

Graduate and Freshman Student Data. Proceedings 7th International Conference on

Empirical Assessment & Evaluation in Software Engineering, EASE’03.

[50] Thelin, Thomas, (2004). Team-based fault content estimation in the software

inspection process. 26th International Conference on Software Engineering (ICSE 2004),

pp. (263-272).

[51] Schneider, K., Stapel, K., & Knauss, E. (2008). Beyond Documents: Visualizing

Informal Communication. Requirements Engineering Visualization, 2008, REV'08, pp. (

31-40). Barcelona, Spain: IEEE Computer Society.

[52] Sinha, V., Sengupta, B., & Chandra, S. (2006). Enabling Collaboration in

Distributed Requirements Management. IEEE Software , 23 (5), pp. (52-61).

74

[53] Solemon, B., Sahibuddin, S., & Ghani, A. A. (2008). Requirements engineering

problems in 63 software companies in Malaysia. International Symposium on

Information Technology, 2008. ITSim 2008, 4, pp. (1-6). Kuala Lumpur, Malaysia.

[54] Sommerville, I and Sawyer, P. (2000). Requirements Engineering: A Good Practice

Guide, John Wiley & Sons Ltd.

[55] StatisticalHelp from StatsDirect. (n.d.). Retrieved November 2009, from Stats

Direct: Software to improve statistical practice: http://www.statsdirect.com/help/.

[56] Su, Chao-Tung., Dowming Yeh. (2012). Software Architecture Recovery and

Redocumentation Tool of a Hospital Information System. International Conference on

Computer and Communication Engineering (ICCCE), 2012, pp. (143-147).

[57] The Standish Group Report (CHAOS). (2003). Retrieved November 2013, from

:http://www.projectsmart.co.uk/docs/chaos-report.pdf.

 [58] Whalen, M. W., Murugesan, A., & Heimdahl, M. P. E. (2012). Your What is My

How: Why Requirements and Architectural Design Should Be Iterative. First IEEE

International Workshop on the Twin Peaks of Requirements and Architecture

(TwinPeaks), pp. (36–40).

[59] Wiegers, K. (2001). “Inspecting Requirements,” StickyMinds.com Weekly Column,

30 July, 2001. Retrieved from: http://www.stickyminds.com.

[60] Yin, R. K. (2003). Case Study Research: Design and Methods (3rd Ed.). Sage

Publications.

75

Appendix

Instruments design (Templates questionnaires)

We have used excel sheets to create different templates that we have used for data collection.

We did ask several questions and there are around 23 columns in our excel sheet. Due to that

we cannot represent it here as a tabular format, rather we are giving the sample questions that

we have asked in different templates.

Updated requirements template (URT):

Purpose: The purpose of this template is to record updates to the original requirements.

Group Number: ___________

Template Author: ONLY Entire group working together (names not needed).

Instructions: There are 17 columns in the template below.

Column B – Requirement ID.

Column C– The scope of the system to which the requirement applies.

Column D– Description for the requirement.

Column E– Priority of the requirement. (VH-very high,H-high,M-medium,L-low,VL-very low)

Column F– If any requirement depends on other(one/more) requirements then write down

requirements ids on which it depends on.

Column G: Source of the requirement

Column H: Assumption, rationale behind the requirement

Column I – Different change types (add/delete/modify). Choose one option. List was given as

follows:

Add one or more requirements
Delete one or more requirements

Modify specific requirement
Modify ATTRIBUTES of a requirement

76

Column J – Which architectural activity were you conducting when the need for the requirement-

change occurred. Choose one option. List was given as follows:

Requirements Understanding

Feature Identification
Domain_analysis-Context diagram
Domain_analysis-Use case diagram
Domain_analysis-User scenarios
Modelling Quality Attribute Scenarios
Determine Architectural drivers
Determine Architectural patterns
Determine Architectural tactics
Overall_system_Architecting-Module level view
Overall_system_Architecting-Deployment view
Overall_system_Architecting-Component & Connector view

Overall_system_Architecting-Decomposition view

Module Interface definition
Documenting the architecture
Other

Column K – Write the requirement.

 (NEW: write one or more requirements each with a unique Id;

 DELETE: Insert the term "DELETE" in column 8 and colour the original requirement RED;

MODIFY: Insert the modified requirement in column 8 and colour the original requirement RED).

Column L– Rationale behind the change (application domain/requirements related issue/other).

Choose an option.

Column M– Give details for the option selected in column 9.

Column N– If requirement is not changed but its attribute is changed (Priority, Rationale,

Assumption etc.) then choose the changed attribute name from the list. List options was as follows:

Source of requirement
Priority

Dependency
Rationale

Assumption
Other

Column O– Give details reasoning for the attribute change.

Column P – Time spent in making the change to the requirement (includes discussing the idea of

77

change, drafting rough cut (preliminary) requirement, refining the requirement, etc.)

Column Q – Changed requirement was architecturally significant or not.(Yes/No)

 Column R – Write details of the significance.

Column S–Changed requirement was Cross-cutting or not? Choose an option. (If a requirement is

applicable to multiple components of the system then that requirement is known as a cross-cutting

requirement).

Column T– Write details of the Cross-cutting.

Column U –If a NEW requirement is ADDED, indicate whether the requirement was IMPLICIT in the

original document or was it completely NON-EXISTANT in the original document. (An IMPLICIT

requirement is one that is ASSUMED but not documented in the original document; A NON-

EXISTANT requirement simply did not exist --even IMPLICITLY-- in the original document). Choose an

option.

Column V– A Non-functional requirement is the same thing as Quality requirement. Choose an

option.

Requirements Missing Information Template (RMIT)

 Purpose: The purpose of this template is to record the requirements-related MISSING information.
If, during architecting, you recognise the need for requirements information that is not in the
requirements document then such information must be captured in this template.

Group Name: ___

Template Author: (write "X" --choose one)

_____Individual working alone (name): ________
 ____Subgroup working jointly (member names): __
_____Entire group working together (names not needed)

Who should use it and WHEN:
For EVERY session:
• Every individual in the group must have his/her own RMIT template.
• Any subgroup working jointly should have its own RMIT template.
• The entire group working together should have its own RMIT template.

78

Instructions: There are 11 columns in the template below.

Column B – Fill in the date and time for the identified missing information

Column C – Is there any information you were expecting in the requirements document but did not

find it there? Choose an option.

Column D – What kind of information was you looking for and did not find it in the requirements

document? Explain details for column C.

Column E – Why did you expect that this information should be in the requirements document?

Give reason.

Column F– In which architecting activity was the need felt for the missing requirements

information? Choose an option. We have following SA activities listed:

Requirement Understanding

Identifying features
Domain_analysis-context diagram
Domain_analysis-Use case diagram
Domain_analysis-User scenarios
System_decomposition-Quality Scenario
System_decomposition-Architectural drivers
System_decomposition-Architectural patterns
System_decomposition-Architectural tactics
Overall_system_Architecting-Module level view
Overall_system_Architecting-Deployment view
Overall_system_Architecting-Component & Connector view

Module Interface definition
Documenting the architecture-artefact
Documenting the architecture-Textual description
Documenting the architecture-Architecture background analysis
Other

Column G – In which way was the missing information relevant to the chosen architecting activity?

Choose one or more items. We have given the following options:

Help in the choice of architecturally sensitive requirements
Help in modelling Quality Attribute Scenarios

79

Help in the choice or design of Tactics
Help in the choice or design of Architectural patterns

Help in the analysis of sensitivity points

Help in the analysis of trade off points
Help in modelling architectural views

Help in specifying component interfaces
Help in creating context diagrams
Help in deploying the architecture on hardware elements
Help in analysing the quality of the architecture

Other

Column H– If you created the missing information (during architecting) then identify all the

Requirement Engineering activities you conducted to create that information. Choose one or more

items. The list was given as follows:

Elicitation & Negotiation

Analysis of requirements
Modelling requirements

Prioritising requirements

Documenting requirements

Column I–If you did not create any information then give explanation for the work around.

Column J –Time in Minutes; Number of people.

Column K– How critical is the missing information for architecting purposes? (Very Critical-5,

Medium Critical-4,Low critical -3,Very low-2,Not critical-1). Choose an option.

Column L- Explain details for column K.

TLT (Time log template):

Purpose: The purpose of this template is to record time spent on tasks.

Group Number: __________

Template Author: (Please place an ‘X’ next to one)
 ____ Individual working alone (name): _________________________________
 ___ Subgroup working jointly (member names): ________
 ____ Entire group working together (names not needed).

80

Who should use it and WHEN:

For EVERY working session there must be a TLT template capturing time log for this
session.

● Every individual in the group must have his/her own TLT template.
● Any subgroup working jointly should have its own TLT template.
● The entire group working together should have its own TLT template.

Instructions: There are six columns in the template below.

1st column – This is where the date on which a given task begins or continues.
2nd column – The start time for the task is recorded.
3rd column – The stop time for the task is recorded.
4th column – Any interruptions, in minutes, are recorded.
5th column – A brief summary of the task that is being carried out is recorded here.
6th column – Precise references to all documents (e.g., reports, section in the report, Figure
number, book chapter, etc.) that were involved in this task.

Date Start
Time

Stop
Time

Interruption
Time (min.)

Task summary Ref.

81

Curriculum Vitae

Name: Md Rounok Salehin

Post-Secondary The University of Western Ontario
Education and Degree: London, Ontario, Canada
 2012-13
 M.Sc., Computer Science

 Islamic University of Technology
 Dhaka, Bangladesh
 2007-2010
 B.Sc in Computer Science

Related Working Teaching and Research Assistant
Experience: The University of Western Ontario
 September 2012- December 2013

 Lecturer
 Stamford University Bangladesh
 March 2011-August 2012

 Software developer (Team member)
 British American Tobacco, Bangladesh
 November 2010- February 2011

 System Engineer (Intern)
 Networks division
 Grameenphone Ltd
 October 2009-January 2010

	Missing Requirements Information and its Impact on Software Architectures: A Case Study
	Recommended Citation

	Missing Requirements Information and its Impact on Software Architectures: A Case Study

