
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-12-2013 12:00 AM 

Flexible Partially Linear Single Index Regression Models for Flexible Partially Linear Single Index Regression Models for 

Multivariate Survival Data Multivariate Survival Data 

Na Lei 
The University of Western Ontario 

Supervisor 

Wenqing He 

The University of Western Ontario 

Graduate Program in Statistics and Actuarial Sciences 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Na Lei 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biostatistics Commons, Multivariate Analysis Commons, and the Survival Analysis 

Commons 

Recommended Citation Recommended Citation 
Lei, Na, "Flexible Partially Linear Single Index Regression Models for Multivariate Survival Data" (2013). 
Electronic Thesis and Dissertation Repository. 1802. 
https://ir.lib.uwo.ca/etd/1802 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61641712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/825?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/825?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1802?utm_source=ir.lib.uwo.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


FLEXIBLE PARTIALLY LINEAR SINGLE INDEX REGRESSION

MODELS FOR MULTIVARIATE SURVIVAL DATA

(Thesis format: Monograph)

by

Na Lei

Graduate Program in Statistical and Actuarial Sciences

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Na Lei 2013



Abstract

Survival regression models usually assume that covariate effects have a linear form.

In many circumstances, however, the assumption of linearity may be violated. The

present work addresses this limitation by adding nonlinear covariate effects to survival

models. Nonlinear covariates are handled using a single index structure, which allows

high-dimensional nonlinear effects to be reduced to a scalar term. The nonlinear single

index approach is applied to modeling of survival data with multivariate responses, in

three popular models: the proportional hazards (PH) model, the proportional odds

(PO) model, and the generalized transformation model. Another extension of the

PH and PO model is the handling of the baseline function. Instead of modeling it in

a parametric way, which is fairly restrictive, or leaving it unspecified, which makes

it impossible to calculate the survival and hazard functions, a weakly parametric

approach is used here. As a result, the full likelihood can be applied for inference.

The new developments are realized by adding a number of weakly parametric

elements to the standard parametric regression models. The marginal baseline haz-

ard functions are modeled using piecewise constants. Marginal survival functions are

combined in using copula models, such as the Clayton model, to incorporate associa-

tion among the multivariate responses. The nonlinear covariate effect is brought into

the model through a smooth function with the single-index structure as the input.

The smooth function is modeled using a spline.

The performance of the PH, PO, and transformation models with the proposed

extensions is evaluated through extensive simulation studies. The PH and PO mod-

els are also applied to a real-world data set. The results suggest that the proposed

methods can capture the nonlinear covariate effects well, and that there is benefit to

modeling the association between the correlated responses. Individual-level survival

or hazard function estimates also provide information of interest to researchers. The

proposed transformation model in particular is very promising. Some discussion of

ii



how this model may be further developed is provided.

Keywords: Proportional hazard model, proportional odds model, linear transfor-

mation model, spline function, partially linear single index model, Clayton model.
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Chapter 1

Introduction

Multivariate survival data arise frequently in health and medical studies. Examples

include epidemiological cohort studies, in which members from the same family can

have the same disease, and the ages at disease occurrence are collected; and clinical

trials, in which multiple event times are recorded for each individual. A common

characteristic of these data is that the survival times are correlated and it is not

appropriate to model them as independent events. To extract the scientifically use-

ful information from such data, it is appropriate to use multivariate, rather than

univariate, survival analysis techniques. On many occasions, the collected survival

times arise together with some other health related information, such as the gender,

age, smoking status etc., which are called covariates. One important motivation of

multivariate survival analysis is to investigate the covariate effects on the survival

times.

A variety of survival regression models have been developed over time to study

the covariate effects. A large body of literature exists for univariate survival data,

while the amount of work on the multivariate case is relatively smaller. The existing

multivariate regression models often assume linear relationships when exploring co-

variate effects. But the linearity assumption may be violated in many circumstances.

1



Chapter 1 2

We work to loosen this assumption and apply weakly parametric methods in mul-

tivariate regression models to explore nonlinear covariate relationships and to allow

more flexibility to the modeling.

In Section 1.1, real data examples are introduced to motivate the problems of

interest considered in this thesis. In Section 1.2, background literature and related

work are reviewed.

1.1 Motivation and Problem Description

Approaches used with multiple survival data vary according to different settings. If

the survival times are observed in some specified order, it is referred to as the longi-

tudinal or sequential setting. If the multiple survival times have no prior ordering,

it is called the parallel setting. In this thesis, we focus on the parallel setting. In

the following two sections, examples of sequential data and parallel data are intro-

duced. In Section 1.1.3, the problems of interest, that will be studied in this thesis,

are summarized.

1.1.1 Colon Cancer Data

Moertel et al. (1990) conducted a clinical trial on patients with Duke’s stage C

colon cancer, a cancer stage at which disease recurrence is common after treatment.

The trial evaluated the efficacy of two treatments (a particular drug therapy and a

placebo). Two times were measured for each patient: time to cancer recurrence and

time from cancer recurrence to death. Because the two times are ordered—recurrence

must occur before death—this is an example of sequential data. Also, association can

be expected between the two responses, since each pair of times is measured on the

same individual.
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1.1.2 Busselton Health Study Data

The Busselton Health Study (Knuiman et al., 1994) was a repeated cross-sectional

survey that was conducted in the Busselton community in West Australia. From

1966 to 1981 a survey was conducted on adults in the community every three years.

Various health-related information was collected, such as demographic variables, gen-

eral health and lifestyle variables, health history variables, and physical, biochemical,

haematological and immunological measurements.

This data set includes the health information from 2306 couples who are adults

over 18 years old. The survival experience of the individuals, with survival time

defined as age at death, is considered here. This is an example of parallel multivariate

survival data, as the survival times of the husband and wife are likely to be associated

(because of their similar lifestyles), and there is no prior ordering associated with the

times. The censoring rate for female is 80%, and 67% for male. Excluding the censored

data, the average survival times for female and male are 75.2 and 74.2 respectively.

The data set has over ten health-related covariates, such as age at the beginning of

survey (AGE), body mass index (BMI), total cholesterol (CHOL), alcohol consump-

tion level (DRINKING), smoking status (SMOKE), and history of coronary heart

disease (CHD). A very brief look at a portion of the data set is found in Table 1.1.

The survival time is variable SURVTIME, and the censoring is recorded using the

death indicator DTHCENS.

1.1.3 Problem Description

Parallel multivariate survival data can be roughly classified into two groups. The

data can arise from different individuals. For example in the Busselton Health Study

data, the survival times of two members of a married couple tend to be associated, as

one family likely shares a similar diet and lifestyle. Alternatively, correlated data may

come from the same individual. For example, in one population, the ith person can
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Table 1.1: Example data set

No. PAIR SEX SURVTIME DTHCENS AGE BMI CHOL SMOKE ...
1 1 F 76.3 1 50.4 24.61 6.32 1 ...
2 1 M 80.4 0 52.3 27.37 6.13 1 ...
3 2 F 65.4 0 40.3 26.39 5.13 0 ...
4 2 M 65.6 0 40.5 29.54 5.79 1 ...
5 3 F 79.9 1 56.5 39.66 6.92 0 ...
6 3 M 78.5 1 66.8 23.63 7.11 1 ...
... ...

have different event times Ti1, . . . , Tik corresponding to different diseases. These times

can be associated, as they are influenced by the person’s health characteristics. Both

groups of data can be viewed as the same type of multivariate data. The subjects

that are correlated with each other, such as the people from the same family and

the diseases from the same individual, can be viewed as one cluster. Both types of

parallel data can be dealt with using similar statistical approaches.

In most studies, survival data are collected along with some covariates. Re-

searchers are interested in finding the effects of the covariates on the survival time.

Another statistical question of interest is how to include the association of the data

in the modeling. In addition, being able to calculate the estimated survival function

or hazard function, after including the covariate effect in the model, is often required

in research. Regression models can be applied to solve these problems.

Many researchers have worked with various regression models for univariate sur-

vival data. Two regression models have drawn a lot of attention. One is the pro-

portional hazards (PH) model, and the other is the proportional odds (PO) model.

Letting T be the survival time and x = (x1, . . . , xp)
T be the covariate, a PH model is

written as:

λ(t|x) = λ0(t)exp(βTx),

where λ(t|x) is the hazard function given the effects of covariate x, β is a p×1 vector
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of unknown parameters, and λ0(t) is the baseline hazard function when x = 0 (Cox,

1972). PH models assume the covariates have a linear effect on the log hazards ratio.

This assumption is mainly for mathematical convenience, and it may be violated in

many situations. Such a linear structure also appears in the PO model. PO models

assume that the covariates have a linear effect on the log survival odds ratio:

S(t|x)

1 − S(t|x)
= exp{βTx}

S0(t)

1 − S0(t)
,

where S(t|x) is the survival function given the effects of covariate x, β is the covariate

coefficient with dimension p× 1, and S0 is the baseline survival function when x = 0

(Bennett, 1983).

Various ways have been explored to loosen the linearity assumption. One approach

is to assume the covariate effect can be described by a flexible smooth function, rather

than a rigid log linear relation. To fit the smooth function, nonparametric methods

can be applied. In the application of the nonparametric methods there is one problem

that often occurs: the so-called curse of dimensionality. This term describes the

phenomenon where the volume of the covariate space becomes too large to sample

thoroughly with any practical number of observations. In this case, the accuracy of

the estimation is often poor. To solve such a problem, a single index model may be

used to reduce the dimensions of the covariates. Hardle et al. (1993) generalize the

linear covariate effect βTx into ψ(βTx), where ψ is an unknown univariate function.

This is called a single-index model. The single-index model uses the structure βTx

as the input of a smooth function, to reduce the high-dimensional variable x into a

scalar, and the curse of dimensionality problem can be avoided.

In this thesis, the above ideas are applied to the modeling of multivariate survival

data. Three survival regression models are proposed and explored: the PH model, the

PO model and the generalized transformation model (see Section 1.2.2). Nonlinear
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covariate effects are added in the model by a smooth single index function, to loosen

the linearity assumption while reducing the high dimensions of the nonlinear covariate.

Spline functions are used to construct the nonlinear smooth function. Piecewise

constants are applied to model the baseline hazard function.

1.2 Literature Review

This section reviews regression methods for modeling multivariate survival data.

First, methods for incorporating the association among multivariate survival re-

sponses are introduced. Then a literature review on survival regression models is

given. Extensions on regression models, such as nonparametric approaches, are sum-

marized at the end.

1.2.1 Modeling Association in Multivariate Survival Data

One important question in multivariate survival data modeling is how to incorporate

the association. The common approaches may be distinguished as: marginal models,

frailty models and copula models.

The marginal model approach makes inferences about the marginal distributions

while treating the dependence among the subjects within one cluster as unspecified.

Indeed, it takes into account the dependence only while looking at the variance esti-

mates of the parameters. Therefore, parameters can be estimated from the marginal

model using the likelihood by assuming independence among all subjects, which is

the product of all the marginal likelihoods over all subjects. This likelihood is called

the Independence Working Model (IWM) (Huster et al., 1989).

There are two main issues arising from the IWM. One problem is the consistency

of the parameter estimates. It can be demonstrated that under certain conditions

the maximum likelihood estimate of the parameters obtained from the IWM is a
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consistent estimate in spite of the fact that observations are correlated. The other

one is for the appropriate variance estimators of parameters. The variance-covariance

structure of the data needs to be taken into account to arrive at good estimators for

the variances of the estimated parameters.

Cox proportional hazards model have been considered in the marginal model ap-

proach by many researchers. Wei, Lin, and Weissfeld (1989) and Lee, Wei, and Amato

(1992) have done such related work. The former allows the baseline hazard functions

to be different among the marginal models while the latter assumes a common base-

line hazard function. Lin (1994) summarizes and continues the work of both of the

previous two methods, and develops simple estimating equations which yield con-

sistent and asymptotically normally distributed estimators. The work also includes

robust variance-covariance estimators to account for the intra-class correlation. In

recent years, nonparametric methods have been explored in the marginal model. Yu

and Lin (2008) use kernel estimating equations to estimate nonparametric covariate

effects. They show the nonparametric kernel estimator is consistent for any arbitrary

working correlation matrix and its asymptotic variance is minimized by assuming

working independence.

The second approach to multivariate modeling is frailty models. Frailty models

are random effect models, which account for heterogeneity caused by unmeasured

covariates. The term frailty is introduced by Vaupel et al. (1979) in univariate survival

models and the model is substantially promoted by its application to multivariate

survival data by Clayton (1978) in a study of chronic disease incidence in families.

Hougaard (2000) provides broad discussions on this topic. Following the definition

from Lawless (2003), the common approach in frailty models is to define a random

vector αi associated with the ith subject, and to assume that (1) given αi and
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covariate xi, the survival times Ti1, . . . , Tik are independent, with the survival function

Sij(tj) = Pr(Tij ≥ tj|xi, αi) j = 1, . . . , k;

and (2) the αi are independent and identically distributed across all subjects i =

1, . . . , n. Assuming αi has distribution function G(αi; φ), the joint survival function

for Ti1, . . . , Tik is

S(t1, . . . , tk|xi) =

∫ [ k∏

j=1

Pr(Tij ≥ tj|xi, αi)

]

dG(αi; φ),

where φ measures the dependence within the cluster. A common choice of the dis-

tribution of αi is the gamma distribution. More general choices for this distribution

are discussed by Hougaard (2000).

Another approach to multivariate modeling is copula models. For simplicity, the

bivariate case is used as an example. A copula function is defined as a bivariate

function C: [0, 1]2 → [0, 1], which satisfies the following three properties (Shemyakin

and Youn, 2006):

1. C(u, 0) = C(0, u) = 0 for any u ∈ [0, 1].

2. C(u, 1) = C(1, u) = u for any u ∈ [0, 1].

3. For all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1,

C([u1, v1] × [u2, v2]) = C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0.

Therefore, when the arguments of the copula function are univariate survival functions

S1(t1) = P (T1 > t1) and S2(t2) = P (T2 > t2), the copula function C(S1, S2) is a

bivariate survival function S(t1, t2) = P (T1 > t1, T2 > t2), with marginal survival

functions S1(t1) and S2(t2).
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Development of the joint survival function can be done through the specification

of a parametric copula function C(u, v; φ) and the specification of the marginal distri-

butions. Parameter φ determines the association structure of the data. The marginal

survival functions S1(t1) and S2(t2) can have parametric or semiparametric forms.

One such family of copula models is introduced by Clayton (1978). It has the

form

S(t1, t2) =
[
S1(t1)

−φ−1

+ S2(t2)
−φ−1

− 1
]−φ

. (1.1)

where φ ∈ (0,∞). The larger the value of φ is, the smaller the association among the

data is. When φ = ∞, the two survival times are independent. The range of φ can

be extended to -1 to accommodate some negative association (Lawless, 2003).

Note that for copula models the parameter φ only controls the association but

does not enter into the marginal distributions, while in frailty models φ not only

controls the association, but also affects the marginal distributions. A frailty model

is more appropriate for designed studies where different treatments or covariate factor

levels are assigned to individuals within a cluster.

1.2.2 Univariate Regression Models for Survival Data

The widely used survival regression models are the proportional hazards (PH) model,

the accelerated failure time (AFT) model, and the proportional odds (PO) model.

In recent years, the linear transformation model has also drawn many researchers’

attention. We will discuss each of these models in turn.

Cox (1972) proposes the Cox proportional hazards function with the following

form:

λ(t|x) = λ0(t)exp(βTx), (1.2)

where λ0(t) is the baseline hazard function, x = (x1, x2, . . . , xp)
T is the vector of

explanatory variables for a particular individual, and β = (β1, β2, . . . , βp)
T is the
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vector of regression coefficients. The model makes no assumptions on the baseline

hazard function λ0(t), but assumes a parametric form for the effect of the predictors

on the hazard. Therefore, it is referred to as a semi-parametric model. To make

inference, the partial likelihood approach (Cox, 1975) can be applied. The beauty of

this model is that the vagueness of the baseline hazard function creates no problem

for estimation.

Note that covariates act multiplicatively on the hazard function in the Cox PH

model. One assumption of the Cox model is that the hazard of the event in one

group is proportional to the hazard in any other. To apply this model properly the

proportionality assumption needs to be satisfied.

The PH model can be generalized to have the form

λ(t|x) = λ0(t)r(ψ(x)),

where r(∙) is a positive function, and ψ(x) is usually assumed to be of linear regres-

sion form ψ(x) = βTx. Conventionally, r(∙) = exp(∙) can be applied to satisfy the

positivity constraint. When λ0(t) is unspecified, it is referred to as the Cox model.

When λ0(t) is assumed to follow a specific distribution, it is called a parametric PH

model. More generally, λ0(t) can be specified as a piecewise constants or a spline

function (He and Lawless, 2003), in which case the full likelihood approach can be

applied.

Another popular model for survival data is the Accelerated Failure Time (AFT)

model. The AFT model usually can be written as a log-linear model for failure time

T according to:

logT = μ + α1x1 + α2x2 + ∙ ∙ ∙ + αpxp + σε.

where μ is the intercept, σ is the scale parameter, and ε is a random variable assumed

to have a particular distribution. The survival function of T can be expressed through
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the survival function of ε:

S(t) = P (T ≥ t)

= P (logT ≥ logt)

= P (μ + α1x1 + α2x2 + ∙ ∙ ∙ + αpxp + σε ≥ logt)

= P

(

ε ≥
logt − μ − αTx

σ

)

= Sε

(
logt − μ − αTx

σ

)

Another way of expressing the AFT model is

S(t|x) = S0(η(x)t),

where S0(∙) is the baseline survival function, and η(∙) is an “acceleration factor” which

depends on the covariates x = (x1, x2, . . . , xp)
T through the formula:

η(x) = exp(α1x1 + α2x2 + ∙ ∙ ∙ + αpxp).

In this model the effect of a covariate is to stretch or shrink the survival curve along

the time axis by a constant relative amount η(x).

In AFT models, it is often necessary to specify the distribution of failure time.

The common distributions used for this purpose are Weibull, Log-normal, Log-logistic,

and Gamma. Some other approaches have also been discussed by researchers. Wei

(1992) reviews some estimation methods applied to the AFT model. For example,

an estimation procedure based on rank test statistics, and an approach using least

squares principle proposed by Buckley and James (1979) are discussed. Recently, Jin,

Lin, Wei, and Ying (2003) and Jin, Lin, and Ying (2006) develop approximations to

the rank based estimator and least squares estimator through linear programming.
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Resampling procedures are applied for the estimation of the limiting covariance ma-

trix.

A third popular approach for survival data modeling is the Proportional Odds

(PO) model, which is introduced by Bennett (1983). This model uses the survival

odds ratio as a measure of relative risk in the regression model. It can be expressed

as:

S(t|x)

1 − S(t|x)
= exp(βTx)

S0(t)

1 − S0(t)
, (1.3)

where x = (x1, x2, . . . , xp)
T is the vector of explanatory variables for an individual,

β = (β1, β2, . . . , βp)
T is the vector of regression coefficients, and S0(t), the baseline

survival function, is the survival function for an individual whose explanatory vari-

ables all take the value zero.

One important property of PO model is that the hazards ratio converges from the

value exp(−βTx) at time t = 0, to unity at t = ∞. It can be shown that (Collett,

2003)

λ(t|x)

λ0(t)
= [1 + (exp(βTx) − 1)S0(t)]

−1.

Therefore, when t = 0, S0(t) = 1, and λ(t|x)
λ0(t)

= exp(−βTx); when t = ∞, S0(t) = 0,

and λ(t|x)
λ0(t)

= 1. As a contrast, in the PH model, the hazards ratio remains constant

at t. Recall that for the PH model,

λ(t|x)

λ0(t)
= exp(βTx),

but this assumption can be unreasonable in certain circumstances. For example,

initial effects such as differences in the stage of disease or in treatment can disappear

with time. In this case, the property of PO model that the hazards ratio converges

to 1 as t increases to ∞ makes more sense.

Bennett (1983) describes how the PO model can be fitted using maximum likeli-

hood estimation. Kirmani and Gupta (2001) explores the structure, implications and
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properties of the PO model. Many researchers have discussed various approaches for

making inferences on PO model. Cheng et al. (1995) propose a modified V statistic

for parameter estimation. Murphy et al. (1997) show the profile likelihood approach

of Bennett (1983) results in an asymptotically efficient regression estimator. Yang and

Prentice (1999) introduce some weighted empirical odds functions. Several classes of

regression estimators such as the psedo-maximum likelihood estimator, martingale

residual-based estimators, and minimum distance estimators are derived.

The final model considered here is the linear transformation model. Let T be the

survival time and x be the covariate with dimension p×1. The linear transformation

model assumes that

H(T ) = −βTx + ε, (1.4)

where H is an increasing transformation function, ε is a random variable with a

known distribution, and β is the covariate coefficient with dimension p × 1. The

proportional hazards model and the proportional odds model are special cases of (1.4)

with ε following the extreme-value distribution and the standard logistic distribution,

respectively.

An alternative way to show that the PH and PO models are the special cases of

the transformation model is though the hazard function of ε. If we let the hazard

function of ε have the form

λ(ε) =
exp(ε)

1 + rexp(ε)
,

then r = 0 corresponds to a PH model, and r = 1 corresponds to a PO model. More

discussion related to this topic is given in Section 4.1.

Some inference procedures for this model have been proposed by various re-

searchers. Cheng et al. (1995) study a class of generalised estimating equations to

examine the covariate effects with censored observations. This method is further

developed in Cheng et al. (1997), Fine et al. (1998) and Cai et al. (2000). A key
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assumption in their approach is that the censoring variable is independent of the

covariates, which makes it possible to use the Kaplan-Meier method to estimate the

survival function. Chen et al. (2002) relax this assumption and propose an estimating

equation approach to make inference. Zeng and Lin (2006) study nonparametric max-

imum likelihood estimation in a class of semiparametric transformation models which

considers time dependent covariates. More recently, Lu and Zhang (2010) propose

a partially linear transformation model by incorporating nonlinear covariate effects,

and studied a martingale-based estimating equation approach to make inference.

1.2.3 Extensions on Regression Models

A lot of work has been done on extensions of regression models. As mentioned pre-

viously, one of the traditional assumptions of regression models is that the covariates

have a linear effect on the log hazards ratio, log survival odds ratio, or other quantity

of interest. However, this linearity assumption is mainly for mathematical conve-

nience, and might not be valid in many circumstances. A smooth function ψ(∙) has

been proposed to generalize the linearity assumption βTx. In the exploration of the

smooth function, nonparametric or the weakly parametric methods have drawn much

attention. Tibshirani and Hastie (1987) use the linear regression method on a defined

local neighborhood of each x. This local likelihood estimation approach is applied

to find the optimal estimator of the local regression coefficients. Note that this local

linear regression model can also be replaced by some other smooth function. Fan,

Gijbels, and King (1997) discuss the estimation of the nonparametric covaritate effect

in the PH model when the baseline function is parametric and nonparametric. When

the baseline function and the covariate effect are both unspecified, nonuniform kernel

methods are applied to fit the covariate effect and the inference is based on a local

version of partial likelihood. Spline functions have also been considered by some re-

searchers. Kooperberg et al. (1995) explore polynomial spline functions to study the
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nonparametric covariate effect in PH models. An automatic procedure involving the

maximum likelihood method, stepwise addition, stepwise deletion and BIC is used to

select the final model.

A considerable amount of work has been done to address the curse of dimensional-

ity problem under the univariate data modeling framework when the covariates have

high dimension. One approach is to use additive models. Hastie and Tibshirani (1990)

propose to use a sum of smooth functions over the components of covariates. That

is, instead of using the linear model
∑p

j=1 xijβj , they suggest using an additive term
∑p

j=1 fj(xij), where xi1, . . . , xip are covariate values for the ith individual. The fj(∙)

are unspecified smooth functions that are estimated using scatter plot smoothers.

The other approach that has drawn a lot of attention is the single index model. Har-

dle et al. (1993) generalize the linear covariate effect βTx into ψ(βTx), where x is a

p × 1 vector of covariates, β is a p × 1 vector of parameters, and ψ is an unknown

univariate function. This single index model reduces the p× 1 vector of covariates x

from higher dimensions to a scalar βTx, and then treats the smooth function ψ(∙) as

a univariate function of βTx. Note the scale of βTx in ψ(βTx) may be determined

arbitrarily, so β may be replaced by the unit vector α = β‖β‖−1, where ‖ ∙ ‖ denotes

the Euclidean metric. Then we can estimate both ψ(∙) and α in the model.

Because of the useful characteristic of the single index model that it can reduce the

the high dimension of covariates to a scalar, it has drawn a lot of attention from many

researchers. Carroll, Fan, Gijbels, and Wand (1997) apply it to the generalized linear

model and introduces a more general model which is called “Generalized Partially

Linear Single Index Model (GPLSIM)”. In this model a response Y is to be predicted

by covariates (X, V ), where X (of length p) is to enter the model linearly and V (of

length q) is to enter it nonlinearly. GPLSIM has the following form:

g{μ(x, v)} = βTx + ψ(αTv), with ‖α‖ = 1,
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where μ(x, v) = E(Y ), g is the link function, ψ is an unknown smooth function, and

α and β are coefficients of dimensions q and p. The single index structure ψ(αTv) is

added to extend the linear term βTx which the generalized linear model normally has,

and makes it more flexible to describe a nonlinear relationship between the covariate

(x, v) and g{μ(x, v)}. Kernel methods are used to explore the shape of the smooth

function ψ nonparametrically.

In recent years, structures similar to GPLSIM have been applied in some sur-

vival models. For example, Lu, Chen, Singh, and Song (2006) introduce the partially

linear single index structure under the proportional hazards regression model frame-

work, and define a “Partially Linear Single-Index Survival Model (PLSISM)”. More

information about this model can be seen in Section 2.1.

The above work mainly focuses on the extensions of regression models for univari-

ate survival data. There is still limited work for regression modeling of multivariate

survival data, however, especially on the exploration of nonparametric methods ap-

plied in regression models. He and Lawless (2003) use piecewise constant or spline

functions to fit the baseline hazard function in either marginal or conditional propor-

tional hazards models. The copula model is proposed to incorporate the association

among the multivariate survival data. As the baseline hazard function has a specified

form through the parametric approach, full likelihood can be applied to make infer-

ence. Yu and Lin (2008) study multivariate survival data through the marginal model

approach. They propose the marginal proportional hazards function and use kernel

methods in the regression model. They show that the nonparametric kernel estimator

is consistent for any arbitrary working correlation matrix and its asymptotic variance

is minimized by assuming working independence. These works have given inspiring

ideas and thoughts for multivariate survival data modeling.
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1.3 Overview of the Thesis

The focus of this thesis is on multivariate survival data regression modeling. Cop-

ula functions are proposed to include the association among the multivariate sur-

vival data, with covariate effects incorporated through the marginal model. For the

marginal distributions, three types of regression models are discussed: (i) the pro-

portional hazards function, (ii) the proportional odds model, (iii) the generalized

transformation model. Traditionally, these models assume the covariates have linear

effects in the regression part of the model. We relax the linearity assumption and

allow both the linear and the nonlinear relationships in the model. A smooth func-

tion is used to explore the nonlinear relationship. The single index model is added to

reduce the dimensions of the nonlinear covariates into a scalar. Weakly parametric

methods are applied to explore the smooth function. In the marginal hazard func-

tion, piecewise constants are used to estimate the baseline hazard function. Based

on the above setup of the model, the full likelihood function can be applied to make

inference.

The remaining chapters of the thesis are organized as follows. In Chapter 2 the

partially linear single index proportional hazards regression model for multivariate

survival data is investigated. The proposed model is assessed by simulation studies.

The model is applied to the real data example, Busselton Health Study, for illustra-

tion. In Chapter 3 the partially linear single index proportional odds regression model

is explored. Simulation studies and real data analysis are also provided. Chapter 4

examines the partially linear single index generalized transformation model. As the

PH model and the PO model are two special cases of the generalized transformation

model, the third proposed model is a generalization of the first two. Simulation stud-

ies are provided. Some conclusions are discussed at the end of Chapter 4. Discussions

and future work are given in Chapter 5.
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Flexible Partially Linear Single

Index Proportional Hazard

Regression Model for Multivariate

Survival Data

2.1 Introduction

The proportional hazards model (1.2) has been a very popular survival model since

it was proposed by Cox (1972). One of the assumptions of the PH model is that the

covariate x has a linear effect on the log hazards ratio. This assumption is mainly for

mathematical convenience, however, may not hold in many situations. Many methods

have been proposed to add a smooth function ψ(∙) to relax the linearity assumption,

letting the covariate effect be written as βTx + ψ(v). In this expression x is a vector

of covariates that enter the model linearly, and v is a vector of covariates that enter

in a nonlinear fashion. This is called a partially linear model.

In the specification of the smooth function ψ(∙), nonparametric methods have

18
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drawn much attention. However, if v is high-dimensional covariate vector, the curse of

dimensionality problem (described in Section 1.1.3) makes it hard to achieve accurate

estimation for covariate effect ψ(v) using nonparametric methods.

One approach to solve this issue is through the use of single index models (Hardle

et al., 1993). In this approach, a new parameter vector α is introduced, and the

inner product αTv is taken to reduce the covariate effects to a scalar, to summarize

covariates first. The smooth function ψ(∙) is then taken to be a function of this scalar

argument. This particular type of partially linear model, with the covariate effect

taking the form βTx + ψ(αTv), is known as a partially linear single index model.

Partially linear single index models have been explored in the literature. For

example, Lu, Chen, Singh, and Song (2006) propose the Partially Linear Single-Index

Survival Model (PLSISM). The hazard function has the form:

λ(t|x, v) = λ0(t)exp{βTx + ψ(αTv)}, with ‖α‖ = 1,

where λ0(t) is the baseline hazard function, ψ(∙) is the unknown smooth function, x

is the linear covariate with dimension p, v is the nonlinear covariate with dimension

q, and β and α are their corresponding coefficients. The authors use kernel methods

to model the smooth function. The profile quasi-likelihood approach is applied to

make inference. Sun, Kopciuk, and Lu (2008) also apply a similar partially single

index structure in proportional hazards regression. They use spline functions to

approximate the smooth function. In their model, the baseline hazard function is not

specified, and the partial likelihood approach is applied for inference.

The above work has been done under the univariate response framework. We

propose to apply the partially linear single index structure in the marginal hazard

function for multivariate data. As has been introduced in Section 1.2.1, a copula

model can be used to incorporate the data association among multivariate survival
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data. Without loss of generality, a special case of multivariate data–bivariate data–is

considered here. Specifically, the Clayton model (Clayton, 1978) is employed to link

the marginal survival functions for illustration.

To make inference, two parts of the model still need to be specified. One is the

baseline hazard function, and the other one is the smooth function in the single

index structure. The objective we consider here is to model these functions without

making overly strong parametric assumptions, while also choosing a form that is

flexible enough. To do this, two weakly parametric approaches, piecewise constants

(He and Lawless, 2003) and spline functions, are proposed to model the baseline

hazard functions and the smooth function respectively. This model structure has

finite number of parameters, and therefore the full likelihood method can be invoked

for inference.

The details of the proposed model framework is introduced in Section 2.2. Simu-

lation studies are conducted in Section 2.3, to assess the performance of the proposed

method, to compare the proposed model to the model where the nonlinear covariate

effect is ignored, and to evaluate the impact of other factors on the estimation un-

der various scenarios. The Busselton health study is used as an illustrative example.

Some conclusions about the proposed model are summarized at the end.

2.2 The Proposed Model

Assume the survival data sample has m clusters. Let Tij and Cij be the failure and

censoring times of the jth observation in the ith cluster (j = 1, . . . , k, i = 1, . . . ,m).

The observed data (yij , xij , vij , δij) are realizations of the variables (Yij , X ij , V ij , Δij),

where Yij = min(Tij , Cij) is the observed time, and Δij = I(Tij ≤ Cij) is the censor-

ing indicator. The covariates are X ij and V ij , which are assumed to have linear and

nonlinear effects, respectively. The survival times Tij within each cluster are assumed
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correlated, while the observations from different clusters are assumed to be indepen-

dent. For illustration purpose, we assume k = 2, to limit the survival distribution to

be bivariate. The proposed marginal PH function is written as:

λj(tj|xj , vj) = λ0j(tj)exp{βTxj + ψ(αTvj)}, j = 1, 2,

where β is the linear covariate coefficient with dimension p and α is the nonlinear

covariate coefficient with dimension q, ψ(∙) is a smooth function, and ψ(αTvj) is the

single index model.

To incorporate the association in the model, a copula model is used for multivariate

modeling (see Section 1.2.1). More specifically, the Clayton model (Clayton, 1978) is

used, and the joint survival function is given by (1.1).

Let f(t1, t2) denote the joint density function. The likelihood contributed from

the ith cluster is,

Li = f(ti1, ti2)
δi1δi2

[
−∂S(ti1, ti2)

∂ti1

]δi1(1−δi2)

×

[
−∂S(ti1, ti2)

∂ti2

](1−δi1)δi2

S(ti1, ti2)
(1−δi1)(1−δi2), (2.1)

which is also shown in Lawless (2003).

To make inference from the model, we need to write this likelihood explicitly as

a function of the parameters. To do this, the estimation approaches for the baseline

hazard functions λ0j(tj) and the smooth function ψ(∙) need to be specified. We

propose to use piecewise constant approach (He and Lawless, 2003) to approximate

the baseline hazard functions, and to use a spline function approach to approximate

the smooth function ψ(∙). These details will be given in the following two subsections.
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2.2.1 Piecewise Constant Approach for Baseline Function

In modelling the baseline hazard function λ0j(tj), we follow He and Lawless (2003),

to have a piecewise constant function approximation. Compared with the parametric

PH model, which assumes that the baseline hazard function has a known parametric

form, this method relaxes the parametric assumption of λ0j(tj) to allow flexibility in

its shape.

Assume that the marginal baseline hazard functions λ0j(tj), j = 1, 2, have piece-

wise constant forms as follows:

λ01(t1) = ρk, where t1 ∈ Ak = (ak−1, ak], k = 1, . . . , r,

and

λ02(t2) = τl, where y2 ∈ Bl = (bl−1, bl], l = 1, . . . , s,

where 0 = a0 < a1 < . . . < ar = ∞ and 0 = b0 < b1 < . . . < bs = ∞ are pre-

chosen sequences of constants, which are also called cut points. ρ = (ρ1, . . . , ρr)
T and

τ = (τ1, . . . , τs)
T are unknown positive constants to be estimated. Ak and Bl are the

intervals defined by the sequence of cut points. Therefore, the corresponding marginal

cumulative hazard functions are the integration over the piecewise constants, which

can be written as:

Λ01(t1) =
r∑

k=1

ρkuk(t1)

Λ02(t2) =
s∑

l=1

τlwl(t2),

where uk(t1) = max(0, min(ak, t1) − ak−1) are the length of the intersection of the

interval (0, t1) with the interval Ak, and wl(t2) = max(0, min(bl, t2) − bl−1) are the

length of the intersection of the interval (0, t2) with the interval Bl.
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How to choose the cut points is an important question. Normally they are chosen

based on prior assumptions about the marginal distributions of the survival time. If

we know the hazard function slope changes at some points, these points can be set as

the cut points. If such changes can not be detected clearly, one can start from a small

number of cut points, say 2 or 3, and increase the number to observe their effect.

Normally it is desirable to keep roughly the same number of failures within each

interval. For data with a high censoring rate, one useful way to choose the cut points

is based on the Kaplan-Meier survival probability without considering the covariate

effects. That is, use the cut points that give roughly the same survival probability

in each interval. In our simulation study and real data analysis, since the censoring

rate can be high, we use the strategy based on survival probability. We choose to use

four intervals (r = s = 4) to approximate the baseline hazard function, which can

give reasonably good estimation (Lawless and Zhan, 1998), and keep the number of

parameters in the model to a manageable level.

2.2.2 Spline Function Approximation

Spline methods are used to estimate the smooth function ψ(∙). M-spline functions and

I-spline functions (Ramsay, 1988) are proposed to approximate ψ(∙), because of their

convenient characteristics. By definition, M-spline basis functions are nonnegative

functions. I-spline basis functions are defined as the integration of the corresponding

M-spline basis functions, and have the property of being monotone increasing. In the

proposed model we would like to model the smooth function ψ(∙) and its derivative

ψ′(∙). Therefore, it is very natural to use M-spline functions to approximate the

derivative ψ′(∙), and use I-spline functions to approximate the smooth function ψ(∙).

Note that while the I-spline basis functions are monotone, the I-spline itself will not

be monotone unless the coefficients are restricted to be positive. In the proposed

model no such restriction is included, because we desire the function ψ(∙) to have a
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flexible shape.

A spline function is a series of polynomials joined smoothly at some break points.

Given an interval [L,U ] and the breakpoints η = {η0, . . . , ηk}, where L = η0 < ∙ ∙ ∙ <

ηk = U , there is one corresponding polynomial function Pj of order m or degree m-

1 on each subinterval [ηj , ηj+1) called a basis spline function. The spline function is

defined as f(x) =
∑k

j=1 cjPj(x), where cj is the corresponding coefficient for each basis

spline function. At the boundaries of the intervals, a certain degree of smoothness

is required. The smoothness is defined by the equality of the derivatives of Pj . A

popular choice is to let the derivatives be continuous up to order two at the break

points, as our human eyes are capable to detect the discontinuity no higher than the

second order.

The M-spline and I-spline functions are both defined based on a sequence of

“knots”. Once the breakpoints for the interval [L,U ] are given, η = {η0, . . . , ηk},

the sequence of knots c = {c1, . . . , ck+2m−1} are constructed as

c1 = . . . = cm = η0, ck+m = . . . = ck+2m−1 = ηk,

and

cm+j = ηj , j = 1, 2, . . . , k − 1.

Let Mi(x|1, c) be the ith M-spline basis function of order m with knot sequence c.

These basis functions are defined recursively:

Mi(x|1, c) =






1
ci+1−ci

if ci ≤ x < ci+1,

0 otherwise,
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and for m > 1, :

Mi(x|m, t) =
m[(x − ci)Mi(x|m − 1, c) + (ci+m − x)Mi+1(x|m − 1, c)]

(m − 1)(ci+m − ci)
.

One main characteristic of M-spline function is that the basis spline functions

are positive within the interval (ci, ci+m) and zero otherwise. In total there are k +

m − 1 of them for spline function of order m. Figure (2.1a) gives one example of a

group of cubic M-spline basis function on the interval of (0,1), and the breakpoints

(0.3,0.5,0.6). The basis spline functions are M1, M2, . . . , and M6. The function

f(x) = 1.2M1 + 2.0M2 + 1.2M3 + 1.2M4 + 3.0M5 + 0.0M6, is represented by the top

dotted line.

I-spline functions are defined based on the M-spline functions. The basis functions

are the integration of the corresponding M-spline basis functions:

Ii(x|m, c) =

∫ x

L

Mi(u|m, c)du.

The definition can be expressed in the following form:

Ii(x|m, c) =






0 i > j,

∑j
n=i (cn+m+1 − cn) Mn (x|m + 1, c) /(m + 1), j − m + 1 ≤ i ≤ j,

1 i < j − m + 1.

Figure (2.1b) shows the I-spline function corresponding to Figure (2.1a). The I-

spline basis functions I1, . . . , I6 are shown as dashed lines. They are the integrations

of the corresponding M-spline basis functions M1, . . . , M6. The I-spline function

g(x) = (1.2I1 + 2.0I2 + 1.2I3 + 1.2I4 + 3.0I5 + 0.0I6)/6, is represented by the dotted

line.

We propose to use M-spline functions to fit the derivative of ψ(∙), ψ′(∙). Let
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Figure 2.1: Spline functions

Mj , j = 1, . . . , d, be the M-spline basis functions, and M(u) = (M1(u), . . . ,Md(u))T .

Then ψ′(αTv) can be written as:

ψ′(αTv) =
d∑

j=1

γjMj(α
Tv) = γTM(αTv),

where γj is the coefficient for the jth basis function.

By definition, I-spline functions can be used to fit ψ(∙), as the basis function

is the integration of the corresponding M-spline basis function. Note that ψ(0) is

constrained to be 0. This is because in the regression model βT x+ψ(αT v), we want

the intercept to be 0, which implies βT x = 0 for x = 0 and ψ(0) = 0. Using this

constraint, ψ(αT v) can be modeled by
∫αTv

0
ψ′(x)dx, therefore we have:
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ψ(αTv) =

∫ αTv

0

ψ′(x)dx

=

∫ αTv

0

d∑

j=1

γjMj(x)dx

=
d∑

j=1

γj

∫ αTv

0

Mj(x)dx

=
d∑

j=1

γj

∫ αTv

L

Mj(x)dx −
d∑

j=1

γj

∫ 0

L

Mj(x)dx

=
d∑

j=1

γj [Ij(α
Tv) − Ij(0)]

= γT [I(αTv) − I(0)]

Note there are another two constraints in the marginal PH model, and both are

related to parameter identifiability. One constraint is, for ψ(αTv) we need ‖ α ‖= 1.

If the norm of α is not specified, the sets of solutions for α are not unique, and the

solutions for γ are also not unique. But only with this one constraint, we are still

not able to find the unique solution for γ and α. The other constraint is to let one

particular component of α (for example, its last element) be positive. This is because

ψ∗(−α) = ψ(α), therefore for ψ∗, −α is the solution, and for ψ, α is the solution.

That is, both (α, γ) and (−α,−γ) are solutions for the smooth function. With these

two additional constraints, it is possible to find unique solutions for γ and α.

Regarding the strategy of choosing the number of breakpoints, we follow the

advice given by Lawless and Zhan (1998), who suggest to use 4-10 intervals. In the

simulation study and the real data analysis, in order to satisfy the goal of having

good model performance and not too long of a simulation time, 4 intervals (i.e.,3

breakpoints) are chosen in spline functions. Each interval contains roughly the same

number of data points.
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2.2.3 The Likelihood

Now that the baseline hazard function λ0j(tj) and the smooth function ψ(∙) have

been fully specified, the likelihood as given in equation (2.1) can be worked out.

Using the relationship between the survival function and the hazard function, the

marginal survival functions can be written as shown below. Note that in the following

expressions we write Sij(tij) rather than Sij(tij|xij , vij) for notational simplicity. In

the remainder of the thesis we will use these two notations for the survival function

interchangeably.

Si1(ti1) = exp
[
− Λ01(ti1)exp{βTxi1 + ψ(αTvi1)}

]
,

Si2(ti2) = exp
[
− Λ02(ti2)exp{βTxi2 + ψ(αTvi2)}

]
,

where Λ01(ti1) =
∑r

k=1 ρkuk(ti1), Λ02(ti2) =
∑r

l=s τlwl(ti2), and

ψ(αTvi1) = γT [I(αTvi1) − I(0)] ,

ψ(αTvi2) = γT [I(αTvi2) − I(0)] .

Note, in the proposed model, the linear covariate coefficients and the nonlinear co-

variate coefficients are assumed to be same for the two members of the same cluster

(that is, coefficients β, α, and γ are the same for j = 1 and j = 2). The reason for

this is to control the list of the parameters to a manageable level and to avoid long

run times in simulations. The natural extension is to assume the linear and nonlinear

covariate coefficients are different for the two variates. This extension poses no diffi-

culties if computation time is not a concern, as estimation and inference procedures

are unaffected.

If the Clayton bivariate model is assumed, the joint survival function has the form
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given in Formula 1.1. The log likelihood is written as:

l =
n∑

i=1

logLi

=
n∑

i=1

{

δi1δi2logf(ti1, ti2)

+δi1(1 − δi2)log
[
−

∂S(ti1, ti2)

∂ti1

]

+(1 − δi1)δi2log
[
−

∂S(ti1, ti2)

∂ti2

]

+(1 − δi1)(1 − δi2)logS(ti1, ti2)

}

(2.2)

The entries of the log likelihood function −∂S(ti1,ti2)
∂ti1

, −∂S(ti1,ti2)
∂ti2

, and f(ti1, ti2) are

given as follows:

−∂S(ti1, ti2)

∂ti1
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti1

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si1(ti1)
−φ−1

]

×exp{βTxi1 + ψ(αTvi1)}
∂[−Λ01(ti1)]

∂ti1

−∂S(ti1, ti2)

∂ti2
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti2

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si2(ti2)
−φ−1

]

×exp{βTxi2 + ψ(αTvi2)}
∂[−Λ02(ti2)]

∂ti2
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f(ti1, ti2) =
∂S(ti1, ti2)

∂ti1∂ti2

=
[
Si1(ti1)

−φ−1
][

Si2(ti2)
−φ−1

]
exp{βTxi1 + ψ(αTvi1)}

×exp{βTxi2 + ψ(αTvi2)}
∂[−Λ01(ti1)]

∂ti1

×
∂[−Λ02(ti2)]

∂ti2

[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−2

(1 + φ−1)

2.2.4 Parameter Estimates

The likelihood function involves the following parameters:

θ = (φ, ρT , τ T , αT , βT , γT )T ,

where φ is the association parameter; ρ and τ are the parameters for the piecewise

constants, and ρ = (ρ1, . . . , ρr)
T , τ = (τ1, . . . , τs)

T ; α are the nonlinear covariate

parameters with α = (α1, . . . , αq)
T ; β are the linear covariate parameters with β =

(β1, . . . , βp)
T ; and γ are the parameters for spline functions with γ = (γ1, . . . , γd)

T .

Recall, some of the parameters have constraints required by the model, which are

summarized as follows:

ρ1, . . . , ρr > 0,

τ1, . . . , τs > 0,

φ > 0,

‖ α ‖= 1, and αq > 0,

ψ(0) = 0.

The question now is how to find the maximum likelihood estimates of the param-

eters, which actually becomes an optimization problem. The constraints will bring

some difficulties in finding the maximum likelihood estimators for the parameters in
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the process of optimizing the solutions. To avoid such problem, we introduce some

new parameters which are transformed from the original parameters. Through the

transformation, the new parameters will have no constraints.

For positive parameters ρk, τl, and φ, a log transformation is applied. New pa-

rameters ξk, ζl and % are introduced as given below:

ξk = log ρk, k = 1, . . . , r.

ζl = log τl, l = 1, . . . , s,

% = log φ.

For α, the transformation takes two steps. First we use the trigonometric trans-

formation on α for the constraint ‖ α ‖= 1, and make sure the last component of α

is positive. Parameter ω is introduced with ω = (ω1, . . . , ωq−1)
T . That is:

α1 = sin ω1 sin ω2 ∙ ∙ ∙ sin ωq−2 sin ωq−1

α2 = sin ω1 sin ω2 ∙ ∙ ∙ sin ωq−2 cos ωq−1

. . . (2.3)

αq−1 = sin ω1 cos ω2

αq = cos ω1

where ω1, . . . , ωq−1 ∈ [−π
2
, π

2
] and ω1 ∈ [−π

2
, π

2
] can satisfy αq > 0.

Then the second step of the transformation is to avoid the constraints on ω. A
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new parameter ϕ is introduced, where ϕ = (ϕ1, . . . , ϕq−1)
T :

ϕ1 = log
π
2

+ ω1

π
2
− ω1

⇒ ω1 =
eϕ1 − 1

eϕ1 + 1

π

2

ϕ2 = log
π
2

+ ω2

π
2
− ω2

⇒ ω2 =
eϕ2 − 1

eϕ2 + 1

π

2
(2.4)

. . .

ϕq−1 = log
π
2

+ ωq−1

π
2
− ωq−1

⇒ ωq−1 =
eϕq−1 − 1

eϕq−1 + 1

π

2

Through the two steps of transformation the relationship between α and ϕ are

as follows:

α1 = sin
[eϕ1 − 1

eϕ1 + 1

π

2

]
sin
[eϕ2 − 1

eϕ2 + 1

π

2

]
∙ ∙ ∙ sin

[eϕq−1 − 1

eϕq−1 + 1

π

2

]

α2 = sin
[eϕ1 − 1

eϕ1 + 1

π

2

]
sin
[eϕ2 − 1

eϕ2 + 1

π

2

]
∙ ∙ ∙ cos

[eϕq−1 − 1

eϕq−1 + 1

π

2

]

. . .

αq = cos
[eϕ1 − 1

eϕ1 + 1

π

2

]

As a summary, the new parameters to estimate without constraints are:

θ∗ = (%, ξT , ζT , ϕT , βT , γT )T ,

where ξ = (ξ1, . . . , ξr)
T , and ζ = (ζ1, . . . , ζs)

T , ϕ = (ϕ1, . . . , ϕq−1)
T , β = (β1, . . . , βp)

T ,

and γ = (γ1, . . . , γd)
T . For these unconstrained parameters, a standard optimization

algorithm such as Newton-Raphson method can be applied to find the maximum

likelihood estimators.

For the purpose of making inference, the variance estimate of the maximum likeli-

hood estimator θ̂
∗
can be obtained from the inverse of the observed information matrix

I(θ̂
∗
). If the second derivatives are inconvenient to get, one can use (He and Lawless,
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2003)

v̂ar(θ̂
∗
) =

[
n∑

i=1

(∂logLi

∂θ∗

)
∙
(∂logLi

∂θ∗

)′
]−1

θ∗
=

ˆθ
∗
. (2.5)

In the simulation study and real data analysis, we use this formula to obtain the

variance estimate of θ̂
∗
.

Once the variance estimate for θ̂
∗
, v̂ar(θ̂

∗
), is found, the delta method can be

applied to calculate the variance estimate for θ̂. If we call the map G: θ∗ → θ, that

is θ = G(θ∗), by the delta method, θ̂ is asymptotically normal with an estimated

asymptotic variance-covariance matrix:

var(θ̂) = var(G(θ̂
∗
))

= G′(θ̂
∗
)var(θ̂

∗
)G′(θ̂

∗
)T , (2.6)

where G′ denotes the derivative of G with respect to θ̂
∗
. Based on the relationship

between θ and θ∗, G′ can be worked out analytically. In the above formula, we

substitute v̂ar(θ̂
∗
) for var(θ̂

∗
), and then the estimate of var(θ̂) can be obtained.

2.3 Simulation Studies

In this section, the performance of the proposed model is assessed through three sim-

ulation studies. The first simulation study gives the estimates of the parameters of

interest, such as the linear covariate parameter β, the nonlinear covariate parameter

α and the association parameter φ. The estimate of the cumulative baseline hazard

function Λ0(∙) and the nonlinear function ψ(∙) are also given. The second simulation

study compares the proposed model with what is referred to as the PH linear model

here. The PH linear model is the one that has the same structure as the proposed

model except that the covariates are all assumed to have linear effects on the log haz-

ards ratio. That is, the single index structure is dropped. Through the comparison,
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the advantage of the proposed model that can capture the nonlinear pattern will be

shown. The third simulation study assesses the impacts of other factors on the pa-

rameter estimates under various scenarios. For example, when some settings change,

such as the sample size, censoring rate, and the association among the observed data,

the performance of the model can be observed.

The data were generated as follows. The baseline hazard function was set to be

a Weibull hazard with scale parameter 1 and shape parameter p = 1.5. The true

marginal log relative hazards ratio for the survival time Tj conditional on covariates

(Xj , V j) is given by

λj(tj|xj, vj) = λ0j(tj)exp {βxj + 3sin(2αTvj)} , j = 1, 2,

where the trigonometric function 3sin(2αTvj) is used as the nonlinear smooth function

ψ(∙), as has been used previously in the literature (Sun et al., 2008). Figure 2.2b shows

that the function ψ(∙) has a nonlinear “S” shape. The association parameter φ was set

to be 0.5 which corresponds to relatively strong dependence between T1 and T2. The

censoring time Cj was assumed to be independent of the survival time Tj , conditional

on (Xj , V j). It was set at 1.2 and the corresponding censoring rates were about 45%

for both variates.

We used the uniform distribution to generate the nonlinear covariates V 1, V 2,

Vk1 ∼ U(−1, 1), Vk2 ∼ U(−1, 1), k = 1, 2, 3. The linear covariates (x1, x2) were

chosen from four sets of combinations (0,0), (0,1), (1,0), (1,1), each with probability

one quarter. The nonlinear regression coefficients are α = (1, 1, 1, )T/
√

3 and the

linear regression coefficient is β = 1.

The bivariate survival times (ti1, ti2), i = 1, . . . , n were generated through the

inverse transform sampling method:

ti1 =
[
− log(ui1)exp{−(βxi1 + 3sin(2(αT vi1)))}

]1/p

,
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ti2 =
[
φ log(1 − u

−1/φ
i1 + u

−1/φ
i1 u

−1/(1+φ)
i2 )exp{−(βxi2 + 3sin(2(αT vi2)))}

]1/p

,

where ui1 ∼ U [0, 1], ui2 ∼ U [0, 1], and p = 1.5 for Weibull margins.

For the estimate of the baseline function, each variate uses a piecewise constant

estimate with four pieces. The cut points are chosen to give approximately equal

survival probabilities in each interval.

2.3.1 Evaluate the Performance of the Proposed Model

Based on the above settings, the sample size n = 200 was considered, and 200 simula-

tion runs were conducted. Table 2.1 gives the estimates for the covariate coefficients

ϕ and % (after transformation), and for the original parameters α, β and φ (before

transformation). The notations in the tables are as follows: Bias is the bias of the

parameters, SD(̂∙) is the sample standard deviation of the estimates, A{SE(̂∙)} is the

average of the model based standard errors (using Equation 2.5), and Cov.prob. is

the coverage probability of the 95% confidence interval. From the outputs we can

see that the estimates are fairly close to the true values. SD( ∙̂) and A{SE(̂∙)} values

are similar which shows that the asymptotic variances are reasonable. The coverage

probabilities also show the overall performance is reasonably good.

Table 2.1: Estimates for the covariate coefficients ϕ and % (after transformation), and
α, β and φ (before transformation) based on 200 runs

After transformation Before transformation
ϕ1 ϕ2 % α1 α2 α3 β φ

True 1.412 1.099 -0.693 0.577 0.577 0.577 1.000 0.500
Bias 0.003 -0.005 -0.118 -0.002 0.002 -0.001 -0.008 -0.045
SD(̂∙) 0.044 0.040 0.212 0.016 0.017 0.018 0.118 0.100
A{SE(̂∙)} 0.042 0.043 0.235 0.017 0.017 0.017 0.128 0.109
Cov.prob. 0.930 0.950 0.910 0.950 0.950 0.930 0.965 0.850

Table 2.2 gives the average estimates over 200 simulation runs for the cumulative
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baseline hazard function Λ01(∙) at the points (0.02,0.2,0.5), and for the nonlinear

function ψ(∙) at the points (-0.9,-0.8,-0.7,0.2). The latter four points are not collinear

on the true sine function, and therefore are useful to test the model’s ability to capture

nonlinearity. The estimate are fairly close to the true values. Figure 2.2 gives a visual

display of these estimates. The black line represents the true value of Λ 01(∙) and ψ(∙),

and the red dots are the average estimates at the chosen points over 200 runs. The

figures also show the estimate follow the true curve fairly well. Note the estimate

for ψ(x) at x = 0 is zero based on one of the constraints of the model, which is also

shown in the figure. Since the estimate for the cumulative baseline hazard function

of the second variate Λ02 has similar performance, it is not shown here.

Table 2.2: The estimates for Λ01(∙) and ψ(∙) of one variate based on 200 runs

x True Estimate SD
0.020 0.003 0.006 0.002

Λ01(x) 0.200 0.089 0.095 0.024
0.500 0.354 0.368 0.061
-0.900 -2.922 -3.016 0.828
-0.800 -2.999 -3.030 0.712

ψ(x) -0.700 -3.002 -2.943 0.572
0.200 1.168 1.172 0.111

2.3.2 Compare the Proposed Model with PH Linear Model

In this section, the proposed model is compared with the PH linear model. As we

have explained before, PH linear model assumes all the covariates have linear effects

on the log hazards ratio, while the rest of the model is the same as the proposed

model. In order to make it easily comparable with the proposed model, the marginal

hazard function of the linear model has the following form:

λj(tj|xj , vj) = λ0j(tj)exp{βxj + α̃Tvj}, j = 1, 2,
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Figure 2.2: Cumulative baseline hazard function Λ01 and nonlinear smooth function
ψ(∙) with their estimates at the chosen points. Black line represents the true values,
and red dots represents the estimates.

where β is the coefficient for linear covariate xj and α̃ is the coefficient for nonlinear

covariate vj . Note that α̃ is not subject to the same unit norm constraint enforced

on the α parameters in the proposed model. To make the estimates of α̃ comparable

with the estimates from the proposed model, we factor each estimate as ˆ̃α = b̂α̂,

where ‖ α̂ ‖= 1 and b̂ is interpreted as the slope for linear regression on α̂Tv.

In this simulation study the same settings were used as in the first simulation

study. The parameter estimates are the average of the estimates of 200 simulation

runs. The results from both models for α, β and φ are listed in Table 2.3.

We can see that comparing with the linear model, the parameter estimates of the

proposed model are generally closer to the true values, and the standard deviations are

smaller than those of the linear model. Similar results also appear in the estimation

of the cumulative baseline hazard function Λ01 and the nonlinear smooth function

ψ(∙). In Table 2.4, the estimation performance of the proposed model is better than

the linear model. Such comparison gets much clearer in the graph. Figure 2.3 gives
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the estimates for Λ01 and ψ(∙) from both models. In Figure 2.3a, the estimation of

Λ01 from the linear model at (0.02, 0.2, 0.5), represented by the blue dots, are farther

from the true value, the black line, than the proposed model, represented by the red

dots. In Figure 2.3b, the black line represents the true nonlinear function ψ(αTv).

The linear model can be thought of as a restricted case of the single index model,

where ψ(∙) is a line passing through the origin. The blue line shows the mean estimate

of this line based on the simulation runs. Its slope is equal to the average estimate of

b̂. The linear model completely misses the “S” curvature while the proposed model

can handle the nonlinear pattern quite well as proved by the estimation at (-0.9,-0.8,-

0.7,0.2).

Table 2.3: The estimates comparison of two models for the covariate coefficients α,
β and φ based on 200 runs

α1 α2 α3 β φ
True 0.577 0.577 0.577 1.000 0.500

Estimate (proposed) 0.575 0.577 0.579 0.971 0.455
SD(̂∙)(proposed) 0.017 0.018 0.017 0.100 0.128

Estimate (linear) 0.571 0.576 0.581 0.709 3.060
SD(̂∙) (linear) 0.041 0.042 0.041 0.178 2.226

Table 2.4: The estimates comparison of two models for Λ01(∙) and ψ(∙) based on 200
runs

Proposed Linear
x True Estimate SD Estimate SD

0.020 0.003 0.006 0.002 0.014 0.004
Λ(x) 0.200 0.089 0.097 0.024 0.185 0.037

0.500 0.354 0.375 0.062 0.479 0.069
-0.900 -2.922 -3.094 0.905 -1.924 0.284
-0.800 -2.999 -3.071 0.720 -1.710 0.252

ψ(x) -0.700 -3.002 -2.963 0.590 -1.496 0.221
0.200 1.168 1.158 0.112 0.428 0.063
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Figure 2.3: Compare the proposed model and the PH linear model on cumulative
baseline hazard function Λ01 and nonlinear smooth function ψ(∙). Black line represents
the true curve, blue line and dots are the estimates from the PH linear model, and
the red line and dots are the estimates from the proposed model.

2.3.3 Assess the Proposed Model Under Various Scenarios

In this section, the proposed model is assessed under different scenarios. The following

settings of the models are changed. The shape parameter p of the Weibull baseline

function is set as 0.5 and 1.5. The sample size is used as 80 and 200. The censoring

rate of 20% and 50% are applied. The strength of the association changes from strong

to weak, that is the association parameter φ takes values 0.5, 1 and 4.

Table 2.5 and Table 2.6 give the simulation result of 200 runs for α, β and φ

when the Weibull shape parameter p is 0.5 and 1.5 respectively. For both tables,

the standard deviations and the average of the standard errors are generally close

to each other. In each of the two tables, we can grasp the following patterns. In

general, the estimate of sample size 200 is better than sample size 80. The bias of the

parameters at the larger sample size is smaller and the standard deviations are also

smaller. When the censoring rate increases, the estimation performance decreases
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as the standard deviations are increasing. As the strength of association decreases,

the estimation performance for φ decreases. The bias increases and the standard

deviations increases. Especially when φ = 4, we can see the standard deviations and

the average standard errors of φ are not very close, and some bias appears. It is

believed that the poor performance at this setting is due to the likelihood becoming

very flat for large φ values.

2.4 Real data analysis

2.4.1 Introduction

In this section, the proposed PH model is applied on a real data set collected from

the Busselton Health Study (Knuiman et al., 1994). The background information of

this data set can be seen in Section 1.1.2.

The response survival times are the time to death (SURVTIME) (tij , j = 1, 2),

where j = 1 indicates wife, and j = 2 denotes husband. The death indicator is

DTHCENS (δij , j = 1, 2). The risk factors of interest to mortality are age at survey

(AGE) (vi1j , j = 1, 2), body mass index (BMI) (vi2j , j = 1, 2), cholesterol level

(CHOL) (vi3j , j = 1, 2), and the smoking status (SMOKE) (xij , j = 1, 2), where

xij = 1 indicates an individual is a smoker, and xij = 0 indicates an individual

never smoked. Among the four risk factors of interest, SMOKE is a discrete variable,

which is regarded as the linear effect covariate in the proposed model. The other three

factors are continuous variables and are regarded as the nonlinear effect covariates. To

avoid the difficulties of the optimization caused by the extreme value of the covariates,

standardized continuous covariates are used.

The analysis, described in detail below, shows there is mild association existing

between the female and the male. The estimate of the baseline cumulative hazard

function is very similar with the Nelson-Aalen estimator (N-A estimator). The N-A
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estimator is a non-parametric estimator of the cumulative hazard function. It has the

form (Lawless, 2003):

Ĥ(t) =
∑

j:tj≤t

dj

nj

,

where t1, . . . , tk represent the distinct times at which failures are observed, dj =
∑

I(t′i = tj , δj = 1) represents the number of deaths at tj , and nj =
∑

I(t′i ≥ tj) is

the number of individuals at risk at tj . The covariate effect of each individual on the

cumulative hazard function is also clearly shown in the proposed model, compared

with N-A estimator which does not consider the covariate effect. From the shape

of the smooth function ψ(∙) we can see a nonlinear pattern. If we fix two of the

nonlinear covariates at their medians and change the third nonlinear covariate, a

nonlinear changing pattern of the smooth function ψ(∙) can also be observed.

2.4.2 Analysis

Before starting to analyze the data by the proposed model, the assumption of pro-

portional hazards is tested. Using R function cox.zph (Therneau, 2013), it is seen

that the assumption is reasonable.

To find the interior cut points for the piecewise approach of the baseline hazard

function estimation, we use the strategy that is based on the Kaplan-Meier survival

probability estimates. The cut points are selected to let the four intervals give roughly

the same survival probability differences. As a result the chosen interior cut points

are (78.1, 85.2, 90.9) for female and (74.4, 81.5, 87.4) for male. The breakpoints

applied in the spline function for the nonlinear function ψ(αTv) estimation divide

the survival time range of each variate into four intervals, and each interval contains

roughly an equal number of data points.

The parameters to be estimated are, as before, φ, ρ, τ , α, β, γ. In this case the

baseline hazard functions have four constant pieces, so the parameter vectors ρ (for
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females) and τ (for males) have length four each. Parameter γ has six elements as

required by the spline estimate of the nonlinear component. There are three nonlinear

predictors: AGE, BMI, and CHOL, with coefficients α1, α2 and α3, respectively. The

single linear predictor is SMOKE, with coefficient β.

Table 2.7 gives the summary of the parameter estimates. Among the three con-

tinuous covariates, age has a dominating influence on survival time. The statistically

significant covariates are AGE and SMOKE. The association parameter φ is also

significant, with the value 4.955, which shows a mild degree of association between

female and male.

Table 2.7: The estimates for the covariate coefficients α, β and φ of the data analysis

α1 α2 α3 β φ
Estimate 0.999 0.029 0.044 0.356 4.955
SE(̂∙) 0.003 0.051 0.065 0.076 2.017

In Figure 2.4, the baseline cumulative hazard function from the proposed model is

compared with N-A estimator. Figure 2.4a gives the comparison for female, and Fig-

ure 2.4b gives the comparison for male. Both the proposed model and N-A estimator

give similar convex shape of the cumulative hazard function.

In Figure 2.5, the N-A estimator of the cumulative hazard function, which does not

consider the covariate effect, is compared with the estimate from the proposed model

that considers the covariate effect. The lines in the graph represent the N-A estimator,

while each point represent the cumulative hazard function for each individual, which

are the estimate from the proposed model. Since the covariate effect is not included

for N-A estimator, it forms a non-decreasing line. For the proposed model estimate,

after adding the covariate effect, the cumulative hazard function is changed by the

covariate effect, and the effect is different for each individual. Therefore it can not

form a non-decreasing line any more.
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Figure 2.4: Compare the cumulative baseline hazard function Λ0 with N-A estimator
for female and male.
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N−A estimator Λ02

(b) Male

Figure 2.5: Compare the cumulative hazard function Λ considering covariate effects
with N-A estimator of Λ0 for female and male. Dots represent Λ for individuals of
the proposed model, and the lines represent N-A estimator of Λ0.

Figure 2.6 shows the nonlinear function ψ(∙) for females. The figure clearly shows

the nonlinear relationship between ψ(∙) and αTv. As the proposed model assumes the
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same parameters of the nonlinear functions for both female and male, the nonlinear

function for male has the same shape.
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Figure 2.6: Nonlinear function ψ(∙) for females

Figure 2.7 to Figure 2.9 show how the nonlinear function ψ(∙) changes when one

covariate changes while the other two covariates are fixed at their medians, for both

females and males. The differences between the females and males are due to the

different medians of the fixed covariates for different genders. In Figure 2.7, as age

increases, ψ(∙) experiences a steeper increasing stage in the beginning and then a

relatively more mild decreasing stage roughly after age 50 for female and 54 for

male. From the relationship of the death hazard and the nonlinear function ψ(∙) in

the proposed model, it can be found that the monotonicity of the death hazard is

consistent with the nonlinear function ψ(∙). Therefore roughly from age 18 to 50 the

death hazard is getting bigger, and after 50 the death hazard maintains a fairly high

level. For Figure 2.8, as the body mass index increases, ψ(∙) increases, which also

indicates the death hazard increases. Similarly for Figure 2.9, as the cholesterol level

increases, the death hazard increases.
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Figure 2.7: Nonlinear function ψ(∙) as the covariate age changes
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Figure 2.8: Nonlinear function ψ(∙) as the covariate body mass index changes

2.5 Conclusion

In this chapter, the PH model is extended by adding a nonlinear covariate effect

to the log hazards ratio. Spline functions are applied to explore the pattern of the
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Figure 2.9: Nonlinear function ψ(∙) as the covariate cholesterol level changes

smooth function which is used to model the nonlinear effect. A piecewise constant

estimator is applied to estimate the baseline hazard function. A copula model is

used to accommodate the association in the multivariate data. Therefore, the full

likelihood approach can be applied to find the maximized likelihood estimate of the

parameters. The major advantage of this proposed model is the ability to flexibly

model the covariate effect, either linear or nonlinear. Additionally, it is possible to

calculate the survival function and hazard function for each individual.

Through the simulation it was found that the proposed model is able to capture

the nonlinear relationship well. When a nonlinear effect exists, this is a clear ad-

vantage over the model that only includes linear covariate effects. In the real data

analysis, mild association was found to be existing between husbands and wives. The

hazard function considering the covariate effects can be estimated for each individual.

Nonlinear patterns are clearly shown in the shape of the smooth function ψ(∙).
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Flexible Partially Linear Single

Index Proportional Odds

Regression Model for Multivariate

Survival Data

3.1 Introduction

Bennett (1983) introduces the proportional odds model with the following form:

S(t|x)

1 − S(t|x)
= exp(βTx)

S0(t)

1 − S0(t)
,

where S(t|x) is the survival function for an individual given covariate x, β is the

covariate coefficient with dimension p×1, x is the p×1 vector of explanatory variables

for an individual, and S0(t) is the baseline survival function when x = 0. This model

has an important property involving the ratio of the hazard function for an individual

49
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to the baseline hazard function. It can be shown that (Collett, 2003),

λ(t|x)

λ0(t)
= [1 + (exp(βTx) − 1)S0(t)]

−1.

That is, when t = 0, λ(t|x)
λ0(t)

= exp(−βTx), and when t = ∞, λ(t|x)
λ0(t)

= 1. This is

different from the PH model for which the hazards ratio is constant over time, with

form

λ(t|x)

λ0(t)
= exp(βTx).

In some situations, such assumption that the hazards ratio is constant in t can be

unreasonable. For example, initial effects such as differences in the stage of disease

or in treatment can disappear with time. In this case, the property of PO model that

the hazards ratio converges to 1 as t increases to infinity makes more sense. Another

advantage of the PO model over the PH model is, there is no assumption needed

about the proportionality of the hazards ratio, while the latter requires to check it in

order to use the model properly.

The PO model has drawn many researchers’ attention. Various approaches to

inference have been explored. Bennett (1983) describes how the PO model can be fit-

ted using maximum likelihood estimation. Murphy et al. (1997) further demonstrate

that the profile likelihood approach of Bennett (1983) results in an asymptotically

efficient regression estimator. Cheng et al. (1995) propose a modified V statistic for

parameter estimation. Yang and Prentice (1999) introduce weighted empirical odds

functions which are solutions of self-consistency equations. From these functions,

several classes of new regression estimators, such as the pseudo-maximum likelihood

estimator, martingale residual-based estimators, and minimum distance estimators

are derived. Some researchers have studied methods that can be applied to both the

PH and PO models. Royston and Parmar (2002) talk about the advantages of using

parametric assumptions with the PH model and PO model under certain conditions.
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Another important topic in this area is generalized transformation models, in which

the PH model and the PO model are two special cases in a more general framework.

This will be discussed in Chapter 4.

In this chapter, the PO model is applied to the multivariate survival data frame-

work with some extensions. As has been done in Chapter 2, the linearity assumption

of the covariate effect on the log survival odds ratio is relaxed by adding a nonlinear

relationship through a smooth function. Single index model is applied to reduce the

high dimensional covariates to a scalar. Piecewise constants are used to fit the base-

line hazard function. A spline function is applied to explore the nonlinear shape of

the smooth function.

In section 3.2, the proposed PO model is introduced. Simulation studies are

provided in section 3.3. The real data analysis on the Busselton study data is given

in section 3.4. Some concluding remarks are noted in last section.

3.2 The Proposed Model

The proposed marginal PO function is written as:

Sj(tj|xj , vj)

1 − Sj(tj|xj , vj)
= exp{βTxj + ψ(αTvj)}

S0j(tj)

1 − S0j(tj)
, j = 1, 2,

where S0j is the marginal baseline survival function, xj enters as a linear covariate

with the coefficient β (dimension p × 1), vj enters as a nonlinear covariate with the

coefficient α (dimension q × 1), and ψ(αTvj) is the single index model. Constraints

of ‖ α ‖= 1 and αq > 0 are required for identifiability purpose.

Details of the model set up such as piecewise constants for the baseline hazard

function and a spline function for the smooth function ψ(∙) are described in the

following section.
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3.2.1 Piecewise Constant Baseline Hazard Function and Spline

Functions

The baseline hazard functions λ0j(tj), j = 1, 2, are modeled weakly parametrically

by piecewise constant functions. The piecewise constant model is identical to the one

used in the previous chapter for the PH baseline function, but it is repeated here

for the sake of completeness. Assume that the baseline hazard functions have the

following forms:

λ01(t1) = ρk, where t1 ∈ Ak = (ak−1, ak], k = 1, . . . , r,

and

λ02(t2) = τl, where t2 ∈ Bl = (bl−1, bl], l = 1, . . . , s,

where 0 = a0 < a1 < . . . < ar = ∞ and 0 = b0 < b1 < . . . < bs = ∞ are pre-specified

cut points, and ρ = (ρ1, . . . , ρr)
T , τ = (τ1, . . . , τs)

T are unknown positive constants.

Therefore, the corresponding cumulative hazard functions can be written as:

Λ01(t1) =
r∑

k=1

ρkuk(t1),

Λ02(t2) =
s∑

l=1

τlwl(t2),

where uk(t1) = max(0, min(ak, t1) − ak−1) are the length of the intersection of the

interval (0, t1) with the interval Ak, and wl(t2) = max(0, min(bl, t2) − bl−1) are the

length of the intersection of the interval (0, t2) with the interval Bl.

A spline is used to model the smooth function ψ(∙). Similar to the methods used in

the proposed PH model, M-spline and I-spline functions are applied to estimate ψ′(∙)

and ψ(∙) respectively. To review the definitions of M-spline functions and I-spline

functions, see Section 2.2.2.
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Let Mj , j = 1, . . . , d, be the M-spline basis functions, and M(u) = (M1(u), . . . ,

Md(u))T . Then ψ′(αTv) can be written as:

ψ′(αTv) =
d∑

j=1

γjMj(α
Tv) = γTM(αTv),

where γj is the coefficient for the jth basis function.

As I-spline basis functions are defined as the integration of the corresponding M-

spline basis function, I-spline functions are naturally used to fit ψ(∙). Note that ψ(0)

is constrained to be 0, because the intercept in the regression model is set to be 0,

that is, βTx + ψ(αTv) = 0 when x = v = 0. Using this constraint, ψ(αT v) can be

modeled by
∫αTv

0
ψ′(x)dx. As a result,

ψ(αTv) =

∫ αTv

0

ψ′(x)dx

=

∫ αTv

0

d∑

j=1

γjMj(x)dx

= γT [I(αTv) − I(0)]

3.2.2 The Likelihood Function

Based on the above model set up, the full likelihood approach can be applied to obtain

parameter estimates. From the marginal PO model, the marginal survival function

can be written as:

Si1(ti1) =
exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)}

exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)} + 1 − exp{−Λ01(ti1)}
,

Si1(ti2) =
exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)}

exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)} + 1 − exp{−Λ02(ti2)}
.

The joint survival function is still set up according to the Clayton model as in

(1.1). Let f(t1, t2) denote the joint density function. The general form of the log-
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likelihood function can be worked out following (2.2). Each entry of the log likelihood

function, f(ti1, ti2), −
∂S(ti1,ti2)

∂ti1
, and −∂S(ti1,ti2)

∂ti2
, are given as below:

−∂S(ti1, ti2)

∂ti1
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti1

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si1(ti1)
−φ−1−1

]∂Si1(ti1)

∂ti1
,

where

∂Si1(ti1)

∂ti1
=

exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)}
[
−∂Λ01(ti1)

∂ti1

]

[
exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)} + 1 − exp{−Λ01(ti1)}

]2 ,

and

−∂S(ti1, ti2)

∂ti2
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti2

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si2(ti2)
−φ−1−1

]∂Si2(ti2)

∂ti2
,

where

∂Si2(ti2)

∂ti2
=

exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)}
[
−∂Λ02(ti2)

∂ti2

]

[
exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)} + 1 − exp{−Λ02(ti2)}

]2 .
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The resulting joint density is

f(ti1, ti2) =
∂S(ti1, ti2)

∂ti1∂ti2

= (1 + φ−1)
[
Si1(ti1)

−φ−1
][

Si2(ti2)
−φ−1

]

×
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−2

×
exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)}

[
−∂Λ01(ti1)

∂ti1

]

[
exp{βTxi1 + ψ(αTvi1) − Λ01(ti1)} + 1 − exp{−Λ01(ti1)}

]2

×
exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)}

[
−∂Λ02(ti2)

∂ti2

]

[
exp{βTxi2 + ψ(αTvi2) − Λ02(ti2)} + 1 − exp{−Λ02(ti2)}

]2 .

3.2.3 Parameter Estimates

In this section, the parameters to be estimated are summarized and maximum likeli-

hood method is used to make inference. The parameters to be estimated are:

θ = (φ, ρT , τ T , αT , βT , γT )T ,

where φ is the association parameter; ρ = (ρ1, . . . , ρr)
T and τ = (τ1, . . . , τs)

T are the

parameters for the piecewise constant functions; α = (α1, . . . , αq)
T are the nonlinear

covariate parameters; β = (β1, . . . , βp)
T are the linear covariate parameters; and

γ = (γ1, . . . , γd)
T are the parameters for the spline basis functions.

As in the proposed PH model, some parameters have constraints required by the

proposed PO model. Parameter transformations are applied for those parameters

to avoid difficulties finding the maximum likelihood estimates in the optimization

process. The parameter constraints are the same as applied in the previous chapter

with the proposed PH model.
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In summary, the parameter constraints are:

ρ1, . . . , ρr > 0,

τ1, . . . , τs > 0,

φ > 0,

‖ α ‖= 1, and αq > 0,

ψ(0) = 0.

For parameter ρ, τ and φ, a logorithmic transformation is applied. That is, let

ξk = log ρk, k = 1, . . . , r.

ζl = log τl, l = 1, . . . , s,

% = log φ.

For α, two steps of transformation are applied. Details about the intermediate

steps can be seen in Formulas (2.3) and (2.4). After the transformation, the relation-

ship between α and the new parameter ϕ is:

α1 = sin
[eϕ1 − 1

eϕ1 + 1

π

2

]
sin
[eϕ2 − 1

eϕ2 + 1

π

2

]
∙ ∙ ∙ sin

[eϕq−1 − 1

eϕq−1 + 1

π

2

]

α2 = sin
[eϕ1 − 1

eϕ1 + 1

π

2

]
sin
[eϕ2 − 1

eϕ2 + 1

π

2

]
∙ ∙ ∙ cos

[eϕq−1 − 1

eϕq−1 + 1

π

2

]

. . .

αq = cos
[eϕ1 − 1

eϕ1 + 1

π

2

]
(3.1)

After these transformations, the new parameters to estimate with no constraints
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are:

θ∗ = (%, ξT , ζT , ϕT , βT , γT )T ,

where ξ = (ξ1, . . . , ξr)
T , ζ = (ζ1, . . . , ζs)

T , ϕ = (ϕ1, . . . , ϕq−1)
T , β = (β1, . . . , βp)

T ,

and γ = (γ1, . . . , γd)
T .

As an unconstrained problem, standard optimization algorithms, such as Newton-

Raphson method, can be used to find the the maximum likelihood estimators of θ∗.

Similar to the PH case, for the simulation studies and real data analysis, Formula

(2.5) is used to calculate the variance estimate of θ̂
∗
.

After the variance estimate for θ̂
∗
, v̂ar(θ̂

∗
), is found, the delta method is applied

to calculate the variance estimate for θ̂. That is, let θ = G(θ∗), then by the delta

method, θ̂ is asymptotically normal with an estimated asymptotic variance-covariance

matrix given in Formula (2.6). Then the estimate of var(θ̂
∗
) can be obtained accord-

ingly.

3.3 Simulation Studies

In this section, three simulation studies are conducted to evaluate the performance

of the proposed PO model. The first simulation study gives the estimates of the

parameters of interest: nonlinear covariate coefficients α, linear covariate coefficient

β and the association parameter φ. The results show that the estimates of these pa-

rameters are fairly close to the true values. The estimates of the baseline cumulative

hazard function Λ01(∙) and the smooth function ψ(∙) are also given. In the second

simulation study the proposed PO model is compared with the PO linear model. The

PO linear model refers to the model which has the same structure as the proposed

PO model, but with only linear effect assumed between log S
1−S

and log S0

1−S0
. Results

show that the parameter estimates of the PO linear model are not as good as that

of the proposed PO model when nonlinear structure exists. The estimates of the
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covariate effect from the linear model completely miss the “S” shape of the true non-

linear function while the proposed model can grasp the nonlinear pattern. The third

simulation study assesses the proposed model under various scenarios. The summary

of the model performance when some parameters change, such as the censoring rate,

sample size, and association degree, is given.

In the simulation study, the true marginal function is assumed to have the follow-

ing proportional odds form:

Sj(tj|xj , vj)

1 − Sj(tj|xj , vj)
= exp{βxj + 3sin(2αTvj)}

S0j(tj)

1 − S0j(tj)
, j = 1, 2,

where the trigonometric function 3sin(2αTvj) is used as the nonlinear smooth function

ψ(∙). A Weibull distribution with unit scale parameter and shape parameter p = 1.5

was used for the baseline survival function. The association parameter φ was set to

0.5, corresponding to fairly strong correlation between survival time T1 and T2.

The nonlinear covariates V 1, V 2 were generated by the uniform distribution. That

is, Vk1 ∼ U(−1, 1), Vk2 ∼ U(−1, 1), k = 1, 2, 3. The linear covariates (x1, x2) were

chosen from four sets of combinations (0,0), (0,1), (1,0), (1,1), each with probability

one quarter. The nonlinear regression coefficients were set to α = (1, 1, 1, )T/
√

3 and

the linear regression coefficient is β = 1.

Using the Clayton model the bivariate survival times can be simulated. Times

(ti1, ti2), i = 1, . . . , n, were generated through the inverse transform sampling method,

and have the form:

ti1 = − log
ui1

(1 − ui1)exp{βxi1 + 3sin(2αTvi1)} + ui1

,

ti2 = − log
A

(1 − A)exp{βxi2 + 3sin(2αTvi2)} + A
,
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where

A =
[
uφ−1

i1 u
(φ+1)−1

i2 + 1 − uφ−1

i1

]−φ
,

and ui1 ∼ U [0, 1], ui2 ∼ U [0, 1]. The censoring time Cj was set to be 1.2 and the

corresponding censoring rate were about 45% for both of the two variates.

The strategies for choosing the cut points for the piecewise constants and the

breakpoints for the spline function are the same as for the proposed PH model. See

Section 2.2.1 and Section 2.2.2 for details. We take r = s = 4, and d = 6. That is,

four piecewise constants are used and the spline uses three breakpoints and six basis

functions.

3.3.1 Evaluate the Performance of the Proposed Model

Based on the above settings, 200 simulation runs were conducted with sample size

200. The average estimates of the parameters ϕ and % (after transformation) and

the original parameters α, β and φ (before transformation) are given in Table 3.1.

It shows that the performance of the proposed model is quite good. The bias of the

parameters is small. The standard deviation is similar to the average of the standard

errors. The coverage probability is close to the nominal of 95%.

Table 3.1: The estimates for the covariate coefficients ϕ and % (after transformation),
and α, β and φ (before transformation) based on 200 runs

After transformation Before transformation
ϕ1 ϕ2 % α1 α2 α3 β φ

True 1.412 1.099 -0.693 0.577 0.577 0.577 1.000 0.500
Bias -0.008 -0.001 -0.110 -0.003 -0.002 0.003 -0.035 -0.042
SD(̂∙) 0.057 0.075 0.210 0.027 0.029 0.023 0.178 0.099
A{SE(̂∙)} 0.062 0.065 0.221 0.025 0.025 0.025 0.183 0.103
Cov.prob. 0.950 0.905 0.940 0.940 0.895 0.950 0.940 0.875

Table 3.2 gives the simulation-average estimates for the cumulative baseline hazard

function at the points (0.02, 0.2, 0.5), and for the nonlinear function ψ(∙) at the points
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(-0.9, -0.8, -0.7, 0.2). The average estimates are fairly close to the true values. Figure

3.1 gives a more direct display of the above observations. The red dots represent the

estimates at the chosen points. The black lines are the true values of functions Λ 01

and ψ(∙). Clearly, the red dots follow the curve of both functions very well which

verifies the good performance of the model. Note that ψ(x) is set to be 0 at x = 0

by the model constraints, which is also shown in the figure.

Table 3.2: The estimates for Λ01(∙) and ψ(∙) of one variate based on 200 runs

x True Estimate SD
0.020 0.003 0.009 0.002

Λ01(x) 0.200 0.089 0.095 0.025
0.500 0.354 0.368 0.072
-0.900 -2.922 -2.774 0.362
-0.800 -2.999 -2.842 0.342

ψ(x) -0.700 -3.002 -2.802 0.330
0.200 1.168 1.163 0.198
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Figure 3.1: Cumulative baseline hazard function Λ01 and nonlinear smooth function
ψ(∙) with the estimates at the chosen points. Black lines represent the true values,
and red dots represent the average estimates of selected points.
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3.3.2 Compare the Proposed Model with PO Linear Model

In this section, the proposed PO model is compared with the PO linear model. The

marginal function of the PO linear model has the following form:

Sj(tj|xj , vj)

1 − Sj(tj|xj , vj)
= exp{βTxj + α̃Tvj}

S0j(tj)

1 − S0j(tj)
, j = 1, 2,

where β is the coefficient for linear covariate xj and α̃ is the coefficient for nonlinear

covariate vj . As with the proposed PH model, ˆ̃α is factored into b̂α̂, where α̂ has

unit norm.

In this simulation study, the same parameter settings were used as in the first

simulation study. The sample size and simulation runs were set as 200. Table 3.3

lists the estimates of parameters α, β and φ from both models. The proposed PO

model has an overall better performance compared to the PO linear model. The

parameter average estimates of the proposed model for 200 runs are generally close

to the true values, and the standard deviations are also small. As a contrast, the

estimates of parameter β and φ of the linear model are further away from the true

values, and the standard deviations are relatively large. Table 3.4 compares the two

models at chosen points for Λ01 and ψ(∙). Results indicate that the proposed model

has better estimates at the chosen points. Figure 3.2 shows these comparisons more

clearly. In Figure 3.2b the linear model (the blue line) completely misses the “S” curve

of the smooth function from the true model (the black line), while the proposed model

(the red dots) can capture the nonlinear pattern. Compared to the PH linear model,

however, this linear model chooses a line that approximates the nonlinear function

better.
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Table 3.3: The estimates comparison of two models for the covariate coefficients α,
β and φ based on 200 runs

α1 α2 α3 β φ
True 0.577 0.577 0.577 1.000 0.500

Estimate(proposed) 0.574 0.581 0.575 0.964 0.442
SD(̂∙)(proposed) 0.028 0.026 0.027 0.168 0.100

Estimate(linear) 0.573 0.579 0.576 0.852 0.853
SD(̂∙)(linear) 0.036 0.037 0.037 0.175 0.287

Table 3.4: The estimates comparison of two models for Λ01(∙) and ψ(∙) based on 200
runs

Proposed Linear
x True Estimate SD Estimate SD

0.020 0.003 0.009 0.002 0.010 0.002
Λ(x) 0.200 0.089 0.096 0.026 0.112 0.026

0.500 0.354 0.368 0.067 0.398 0.058
-0.900 -2.922 -2.758 0.374 -2.786 0.258
-0.800 -2.999 -2.817 0.355 -2.476 0.229

ψ(x) -0.700 -3.002 -2.776 0.338 -2.166 0.200
0.200 1.168 1.176 0.179 0.619 0.057

3.3.3 Assess the Proposed Model Under Various Scenarios

In this section, the proposed model is assessed when changing the parameter settings.

The shape parameter p of the Weibull baseline function is set to be 1.5. The model

is assessed when the following parameters change. The sample size is set as 80 and

200. The censoring rate of 20% and 50% are applied. The association parameter

takes values 0.5, 1 and 4, representing the association varying from relatively strong

to weak.

Table 3.5 gives the summary of the result of 200 runs. From the results the follow-

ing patterns are observed. As the sample size increases from 80 to 200, the estimation

performance improves. The standard deviations decrease. Censoring rate 20% has
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Figure 3.2: Compare the proposed model and PO linear model on cumulative baseline
hazard function Λ01 and nonlinear smooth function ψ(∙). Black line represents the
true curve, blue line and dot are the estimates from the PH linear model, and the red
line and dots are the estimates from the proposed model.

a generally better result than censoring rate 45%. As the censoring rate increases,

the standard deviations increase. When the value of the association parameter φ

increases, that is, the association degree drops from strong to weak, the estimation

performance of φ̂ decreases. The bias increases and the standard deviations increase

as well. When φ = 4, the standard deviations and the average standard errors of φ

are not so close to each other, and there appears to be some bias. The reason for the

poor performance for φ = 4 might be, when the association is weak, the likelihood

function is too flat to find a good local optimum for φ.

The results for p = 0.5 are not shown here. It was found that when the shape

parameter of the Weibull baseline function is p = 0.5, the estimation performance is

not good. The poor performance in this case is likely due to too few pieces being

used in the piecewise constant baseline function. It has been observed that when the

baseline function is known, the estimation performance is good, even for p = 0.5.
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Increasing the number of the piecewise constants might solve this problem, although

due to time constraints this possibility was not explored.

3.4 Real Data Analysis

3.4.1 Introduction

The proposed PO model is applied on the Busselton Health Study (Knuiman et al.,

1994) data. Background on this data set has been reviewed in Sections 1.1.2. As with

the analysis in Section 2.4.1, four health-related covariates are included in the model:

age (AGE), body mass index (BMI), cholesterol level (CHOL) and smoking status

(SMOKE). The first three covariates are continuous variables which are regarded as

the nonlinear covariates. The fourth covariate is a discrete variable which is regarded

as the linear covariate. Standardization is applied to the covariates to avoid extreme

values.

3.4.2 Analysis

The strategy of choosing the cut points for the piecewise constants and the breakpoints

of the spline function is the same as used in the proposed PH model (Section 2.2.1

and 2.2.2). The interior cut points are (78.1, 85.2, 90.9) for female and (74.4, 81.5,

87.4) for male. The breakpoints are chosen to divide the survival time range of each

variate into four intervals, with each interval containing a roughly equal number of

data points.

The parameters to be estimated are φ, ρ, τ , α, β and γ. The baseline hazard

functions have four constant pieces, so the parameter vectors ρ (for females) and τ

(for males) have length four each. The Spline function parameter γ has six elements.

There are three nonlinear covariates: AGE, BMI and CHOL, with coefficients α1, α2

and α3 respectively. The single linear covariate is SMOKE, with coefficient β.
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Table 3.6 gives a summary of the parameter estimates. Among the three contin-

uous covariates, AGE plays a dominating role on the time to death, while BMI has

almost no effect. The significant covariates are AGE and SMOKE. The association

parameter φ is significant, with value 5.004, which shows mild association between

females and males. These discoveries are consistent with the ones from the proposed

PH model.

Table 3.6: The estimates for the covariate coefficients α, β and φ of the data analysis

α1 α2 α3 β φ
Estimate 1.000 0.000 0.031 -0.188 5.004
SE(̂∙) 0.001 0.036 0.042 0.099 2.050

In Figure 3.3, the baseline cumulative hazard function from the proposed model

is compared with N-A estimator. The two estimates have very similar shapes. It

is noticed that the model estimates seem generally above the N-A line in the flat

part. This is because the flat part comes from the first constant piece of the baseline

estimate. Figure 3.4 shows the cumulative hazard function after adding the covariate

effect, and is compared with N-A estimator of the baseline cumulative hazard function.

The cumulative hazard function value for each individual is represented by each dot

that are scattered around N-A estimator curve. Note in Figure 3.3, the cumulative

baseline hazard function is a non-decreasing line. After including the covariate effect

in Figure 3.4, each individual’s cumulative hazard function is different, so the points

no longer lie on a non-decreasing curve.

Figure 3.5 gives the curve of the nonlinear function ψ(∙) for females. The nonlinear

relationship between ψ(∙) and αTv is clearly shown by the graph. As the proposed

model assumes the same parameters of the nonlinear functions for both female and

male, the nonlinear function for males has similar patterns. Therefore it is not shown

here.
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Figure 3.3: Compare the cumulative baseline hazard function Λ0 of the proposed
model with N-A estimator for female and male
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Figure 3.4: Compare the cumulative hazard function Λ considering covariate effects
with N-A estimator of Λ0 for female and male. Dots represent Λ for individuals of
the proposed model, and lines represent N-A estimator of Λ0.

Figure 3.6 to 3.8 show how the nonlinear function ψ(∙) changes when one covariate

changes, while the other two covariates are fixed at their medians. The differences
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between the females and males are due to the different medians of the fixed covariates

for different genders. For Figure 3.6, as age increases, ψ(∙) experiences a decreasing

stage first and then turns to increase roughly after 49 for female and 52 for male. In

Figure 3.7, as body mass index increases, ψ(∙) decreases. Similarly in Figure 3.8, as

cholesterol level increases, ψ(∙) decreases.

Recall the marginal survival function of the proposed model can, after some ma-

nipulation, be written as follows, taking females as the example:

Si1(yi1) = 1 −
1 − exp{−Λ01(yi1)}

exp{βTxi1 + ψ(αTvi1) − Λ01(yi1)} + 1 − exp{−Λ01(yi1)}
.

The right hand side of this function has the form 1 − a
x+a

, where a > 0 (because

1 − exp{−Λ01(yi1)} > 0) and x is a monotone increasing function of the single index

structure. Note that 1 − a
x+a

is itself an increasing function of x, x > 0. Hence,

when ψ(αTvi1) increases, Si1(yi1) increases, and when ψ(αTvi1) decreases, Si1(yi1)

decreases. The same relationship holds for Si2(yi2) when ψ(αTvi2) changes.

Based on the above discussion, Figures 3.6 to 3.8 reveal the following information.

In Figure 3.6, when age increases, survival function Si1(yi1) decreases roughly before

age 50, and increases but stays in relatively low value after age 50. For Figure 3.7,

as body mass index increases, Si1(yi1) decreases. For Figure 3.8, as cholesterol level

increases, Si1(yi1) decreases.

3.5 Conclusion

This chapter proposes extensions to the PO model for the regression analysis of

multivariate survival data. A single index structure is added to model the nonlinear

covariate effect and a spline function is used to estimate the nonlinear relationship in

the marginal survival function. The baseline hazard function is modeled by a weakly

parametric method. One major advantage of this model is its ability to flexibly model
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Figure 3.6: Nonlinear function ψ(∙) as the covariate age changes

the covariate effect, either linear or nonlinear. The other advantage of this model is

the ability to use the full likelihood, making estimation and inference convenient.

The proposed PO model was shown through simulation studies to have better

overall performance than the PO linear model when a nonlinear covariate structure

exists. The model is able to capture the nonlinear covariate relationship and give good
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Figure 3.8: Nonlinear function ψ(∙) as the covariate cholesterol level changes

estimates of the parameters. In the real data analysis, it was found that there is mild

association existing between husbands and wives. The estimated baseline cumulative

hazard function from the proposed model has a very similar shape with N-A estimator,

and the covariate effects can be estimated for each individual. Nonlinear patterns are
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clearly shown in the shape of the smooth function ψ(∙).

All of these observations indicate that the proposed PO model is a flexible and

effective way to deal with multivariate survival data.



Chapter 4

Flexible Partially Linear Single

Index Generalized Transformation

Regression Model for Multivariate

Survival Data

4.1 Introduction

The linear transformation model has gained a lot of attention in recent years due

to its flexibility. The two popularly used survival models, the proportional hazards

model and the proportional odds model, are special cases of the linear transformation

model.

Cheng et al. (1995) provide a nice summary of how the two models are special

cases of the transformation model, in the univariate case. Let S be the survival

function of T given the covariates X. Then the PH model can be written as

log[−log{S(t|x)}] = H(t) + βTx, (4.1)

72
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where H(t) is an unknown increasing function, and β is the coefficients with di-

mension p × 1. One can show that (4.1) is in fact a PH model by deriving the

hazard function corresponding to survival function S(t) by using the relationship

λ(t|x) = − d
dt
{logS(t|x)}; it has the PH form of equation (1.2). Similarly, the PO

model can be written as

− logit{S(t|x)} = H(t) + βTx, (4.2)

where logit(x) = log{x/(1 − x)}. It can be easily shown that the survival odds ratio

computed from (4.2) has the form of the PO model as in (1.3).

Equation (4.1) and (4.2) can be unified as

g{S(t|x)} = H(t) + βTx, (4.3)

where g(∙) is a known decreasing function. Moreover, it can be shown that (4.3) is

equivalent to the linear transformation model:

H(T ) = −βTx + ε, (4.4)

where ε is random error which has the distribution function F = 1 − g−1. The PH

model and the PO model are special cases of (4.4) when ε follows the extreme-value

distribution and the standard logistic distribution, respectively.

Equivalently, one can specify the hazard function of ε such that the PH and PO

models are special cases of the transformation model (Chen et al., 2002). Let ε have

hazard function parameterized by r, with the form λ(ε) = exp(ε)/{1 + rexp(ε)}. The

PH and PO models correspond to r = 0 (extreme-value hazard) and r = 1 (logistic

hazard), respectively.



Chapter 4 74

When r = 0, it can be shown that the hazard function of t is

λ(t|x) = exp(H(t))H ′(t)exp(βTx),

which has the form of a PH model with the baseline hazard function

λ0(t) = exp(H(t))H ′(t).

When r = 1, one can show the survival odds of t is

S(t|x)

1 − S(t|x)
= exp(−βTx)exp(−H(t)),

which has the form of a PO model with the baseline survival function

S0(t) = exp(−H(t))/(1 + exp(−H(t))).

Many inference procedures for the transformation model have been introduced in

the recent literature. Cheng et al. (1995) propose a general estimation method for

linear transformation models with censored data. Their method is further developed

in Cheng et al. (1997), Fine et al. (1998) and Cai et al. (2000). A key assumption in

their approach is that the censoring variable is independent of the covariates, which

makes it possible to use the Kaplan-Meier method to estimate the survival func-

tion. Chen et al. (2002) relax this assumption and proposed an estimating equation

approach. More recently, the articles by Zeng and Lin (2006, 2007) both consider

nonparametric maximum likelihood estimation in a class of semiparametric transfor-

mation models. The first article allows time-dependent covariates, while the second

one handles recurrent-event data with random effects. Moreover, Lu and Zhang (2010)

propose a partially linear transformation model by incorporating nonlinear covariate
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effects, and study a martingale estimating equation approach.

We propose to use a partially linear single index transformation model as the

marginal function to study multivariate survival data. A smooth function ψ(∙) is

added to handle the nonlinear covariate effect. The single index model ψ(αTv) is

applied to reduce the high dimensional nonlinear covariate v into a scalar. One

type of copula model, the Clayton model (Clayton, 1978), is used to incorporate the

association among the variates. A spline function approach is applied to model the

unknown smooth function.

The transformation model places a restriction on the unknown function H(t),

that is, H(0) = −∞ (Chen et al., 2002). It is difficult to satisfy this constraint with

the weakly parametric approaches such as the splines used in the previous chapters.

Therefore, while the likelihood is worked out in the general case, H(t) is fixed to be

log(t) in the simulation study for simplicity. Section 4.2 introduces the details of the

proposed model. Simulation studies are provided in Section 4.3. At the end, some

conclusions are summarized.

4.2 The Proposed Model

The proposed marginal transformation model is written as:

Hj(Tj|xj , vj) = −βTxj − ψ(αTvj) + εj , j = 1, 2,

where H is an unknown increasing transformation function with H(0) = −∞, and xj

is a linear covariate with the coefficient β (dimension p× 1). The single index model

ψ(αTvj) is applied to model nonlinear effects with the nonlinear covariate vj and its

coefficient α (dimension q × 1). In the general case, the random variable εj can take

any fixed distribution independent of xj and vj . As discussed above, in this work the

distribution of ε is parametrized such that λ(ε) = exp(ε)
1+rexp(ε)

.
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A spline is used to model the smooth function ψ(∙). Similar to the methods used

in the proposed PH model and PO model, M-spline and I-spline functions are used

to estimate ψ′(∙) and ψ(∙) respectively. To review the details of the spline functions,

see Section 2.2.2.

4.2.1 The Likelihood Function

Using the hazard function of ε, λ(ε) = exp(ε)
1+rexp(ε)

, the survival function and density

function of ε can be calculated. The transformation model gives the relationship

between εj and Tj , and the marginal survival function of tj can be found as follows:

Si1(ti1) = 1 +
{

1 + rexp
[
H(ti1) + βTxi1 + ψ(αTvi1)

]}− 1
r

−
{

1 + rexp
[
H(0) + βTxi1 + ψ(αTvi1)

]}− 1
r
,

Si2(ti2) = 1 +
{

1 + rexp
[
H(ti2) + βTxi2 + ψ(αTvi2)

]}− 1
r

−
{

1 + rexp
[
H(0) + βTxi2 + ψ(αTvi2)

]}− 1
r
.

The log likelihood function (equation 2.2) can be calculated using the Clayton

bivariate model (equation 1.1). The entries of the log likelihood function are written

as follows:

−∂S(ti1, ti2)

∂ti1
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti1

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si1(ti1)
−φ−1−1

]∂Si1(ti1)

∂ti1
,
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where

∂Si1(ti1)

∂ti1
= −

{
1 + rexp

[
H(ti1) + βTxi1 + ψ(αTvi1)

]}− 1
r
−1

×exp
[
H(ti1) + βTxi1 + ψ(αTvi1)

]
H ′(ti1),

and

−∂S(ti1, ti2)

∂ti2
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti2

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si2(ti2)
−φ−1−1

]∂Si2(ti2)

∂ti2
,

where

∂Si2(ti2)

∂ti1
= −

{
1 + rexp

[
H(ti2) + βTxi2 + ψ(αTvi2)

]}− 1
r
−1

×exp
[
H(ti2) + βTxi2 + ψ(αTvi2)

]
H ′(ti2).

Thus the joint density of ti1 and ti2 is

f(ti1, ti2) =
∂S(ti1, ti2)

∂ti1∂ti2

=
[
Si1(ti1)

−φ−1
][

Si2(ti2)
−φ−1

]
(1 + φ−1)

×
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−2

×
{

1 + rexp
[
H(ti1) + βTxi1 + ψ(αTvi1)

]}− 1
r
−1

×exp
[
H(ti1) + βTxi1 + ψ(αTvi1)

]
H ′(ti1)

×
{

1 + rexp
[
H(ti2) + βTxi2 + ψ(αTvi2)

]}− 1
r
−1

×exp
[
H(ti2) + βTxi2 + ψ(αTvi2)

]
H ′(ti2).

The log likelihood function for the case H(t) = log(t), which the simulation study

is based on, is given as the following. Given λ(ε) = exp(ε)
1+rexp(ε)

, the marginal survival
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functions can be worked out:

Si1(ti1) =
{

1 + rti1exp
[
βTxi1 + ψ(αTvi1)

]}− 1
r
,

Si2(ti2) =
{

1 + rti2exp
[
βTxi2 + ψ(αTvi2)

]}− 1
r
.

The entries of the log likelihood function (equation 2.2) are written as follows:

−∂S(ti1, ti2)

∂ti1
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti1

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si1(ti1)
−φ−1−1

]∂Si1(ti1)

∂ti1
,

where

∂Si1(ti1)

∂ti1
= −

{
1 + rti1exp

[
βTxi1 + ψ(αTvi1)

]}− 1
r
−1

×exp
[
βTxi1 + ψ(αTvi1)

]
,

and

−∂S(ti1, ti2)

∂ti2
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti2

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si2(ti2)
−φ−1−1

]∂Si2(ti2)

∂ti2
,

where

∂Si2(ti2)

∂ti1
= −

{
1 + rti2exp

[
βTxi2 + ψ(αTvi2)

]}− 1
r
−1

×exp
[
βTxi2 + ψ(αTvi2)

]
.
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Then the joint density of ti1 and ti2 is

f(ti1, ti2) =
∂S(ti1, ti2)

∂ti1∂ti2

=
[
Si1(ti1)

−φ−1
][

Si2(ti2)
−φ−1

]
(1 + φ−1)

×
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−2

×
{

1 + rti1exp
[
βTxi1 + ψ(αTvi1)

]}− 1
r
−1

×exp
[
βTxi1 + ψ(αTvi1)

]

×
{

1 + rti2exp
[
βTxi2 + ψ(αTvi2)

]}− 1
r
−1

×exp
[
βTxi2 + ψ(αTvi2)

]
.

It should be noted that, the parameter r appears in the denominator of several

parts of the log likelihood function. This will cause some computation difficulty during

the optimization search when the true r is zero. This will be able to be detected in

the simulation study “Assess model on the generated data from PH and PO model”

given in Section 4.3.5. Note that the likelihood is still well defined when r = 0, but

it has to be worked out separately. This likelihood function is given below. The

marginal survival functions are:

Si1(ti1) = exp
{
− ti1exp

[
βTxi1 + ψ(αTvi1)

]}
,

Si2(ti2) = exp
{
− ti2exp

[
βTxi2 + ψ(αTvi2)

]}
,

The entries of the log likelihood function for the parallel setting are written as:

−∂S(ti1, ti2)

∂ti1
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti1

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si1(ti1)
−φ−1−1

]∂Si1(ti1)

∂ti1
,
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where

∂Si1(ti1)

∂ti1
= −exp

{
− ti1exp

[
βTxi1 + ψ(αTvi1)

]
+ βTxi1 + ψ(αTvi1)

}
,

and

−∂S(ti1, ti2)

∂ti2
=

−∂
[
Si1(ti1)

−φ−1
+ Si2(ti2)

−φ−1
− 1
]−φ

∂ti2

= −
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−1[

Si2(ti2)
−φ−1−1

]∂Si2(ti2)

∂ti2
,

where

∂Si2(ti2)

∂ti2
= −exp

{
− ti2exp

[
βTxi2 + ψ(αTvi2)

]
+ βTxi2 + ψ(αTvi2)

}
.

The joint density of ti1 and ti2 is

f(ti1, ti2) =
∂S(ti1, ti2)

∂ti1∂ti2

=
[
Si1(ti1)

−φ−1
][

Si2(ti2)
−φ−1

]
(1 + φ−1)

×
[
Si1(ti1)

−φ−1

+ Si2(ti2)
−φ−1

− 1
]−φ−2

×exp
{
− ti1exp

[
βTxi1 + ψ(αTvi1)

]
+ βTxi1 + ψ(αTvi1)

}

×exp
{
− ti2exp

[
βTxi2 + ψ(αTvi2)

]
+ βTxi2 + ψ(αTvi2)

}
.

4.2.2 Parameter Estimates

The parameters to be estimated are:

θ = (φ, αT , βT , γT , r)T ,
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where φ is the association parameter, α = (α1, . . . , αq)
T are the nonlinear covariate

parameters, β = (β1, . . . , βp)
T are the linear covariate parameters, γ = (γ1, . . . , γd)

T

are the parameters for spline basis functions, and r is the parameter in the hazard

function λ(ε) = exp(ε)
1+rexp(ε)

.

Parameters φ, α and the smooth function ψ(∙) have the same constraints as in the

previous two models. The interpretations of the constraints can be found in Section

2.2.4. For the parameter r, since λ(ε) ≥ 0 (that is, exp(ε)
1+rexp(ε)

≥ 0), it is required that

r ≥ 0.

In a summary, the parameter constraints of the proposed transformation model

are:

φ > 0,

‖ α ‖= 1, and αq > 0,

ψ(0) = 0,

r ≥ 0.

In order to make the optimization search easier, these parameters are transformed

into ones without constraints. For parameter φ and r, “log” transformation is applied.

That is, let

% = log(φ),

κ = log(r).

For α, similarly as what have been done before with the previous two proposed

models, two steps of transformation are applied. The relationship between α and the

new parameter ϕ is given in (3.1).

After these transformations, the new parameters to estimate with no constraints



Chapter 4 82

are:

θ∗ = (%, ϕT , βT , γT , κ)T ,

where ϕ = (ϕ1, . . . , ϕq−1)
T , β = (β1, . . . , βp)

T , and γ = (γ1, . . . , γd)
T . For the un-

constrained parameters, Newton-Raphson method is applied to find the maximum

likelihood estimators. Similar to the previous proposed models, in the simulation

studies, Formula 2.5 and 2.6 are used to calculate the estimate of var( θ̂
∗
).

4.3 Simulation Studies

The results of five different simulation studies are discussed in this section. In all of

the simulations, the transformation function is assumed to be H(t) = log(t). With

this specification, r = 0 corresponds to a PH model with baseline hazard function

λ0(t) = 1, which is the exponential distribution. When r = 1, the model corresponds

to a PO model with the baseline survival function S0(t) = 1/(t + 1), which is the

Lomax distribution (or Pareto type II distribution).

The five simulations are arranged as follows. The first simulation study gives

the estimates of the parameters of interest: nonlinear covariate coefficients α, linear

covariate coefficient β, association parameter φ and the parameter r. In the second

simulation study the proposed transformation model is compared with the transfor-

mation linear model. The transformation linear model refers to the model which has

the same structure as the proposed model, but assumes only linear covariate effects.

Results show that the proposed transformation model can capture the nonlinear pat-

tern better than the transformation linear model, although the transformation linear

model gives a good approximation of the nonlinear relationship under the assumption

of linearity. The third simulation study summarizes the model performance when

some parameters, such as the censoring rate, sample size, and association degree,

change. The fourth simulation study assesses the proposed model when parameter
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r changes. It finds that the model performs well and stably generally, but when r

approaches zero, the model encounters some computational instability. The last sim-

ulation study assesses the proposed model on data generated from the nonlinear PH

and PO models (that is, using the same data generating processes as in the previous

two chapters). Two scenarios are assessed for each of these two cases: one with the

true baseline distribution corresponding to H(t) = log(t), and the other with the

baseline distribution misspecified. Results show that misspecification of the function

H(t) has a noticeable impact on the model performance.

In all of the simulations, the true marginal function has the following form:

log(Tj|xj, vj) = −βxj − 3sin(2αTvj) + εj, j = 1, 2,

where the trigonometric function 3sin(2αTvj) is used as the nonlinear function ψ(∙),

β is the linear covariate coefficient and α is the nonlinear covariate coefficient. The

association parameter φ in the Clayton model is set to 0.5, corresponding to fairly

strong association between survival times T1 and T2.

The nonlinear covariates V 1 and V 2 are generated by the uniform distribution.

That is, Vk1 ∼ U(−1, 1), Vk2 ∼ U(−1, 1), k = 1, 2, 3. The linear covariates (x1, x2) are

chosen from four sets of combinations (0,0), (0,1), (1,0), (1,1), each with probability

one quarter. The nonlinear regression coefficients are set α = (1, 1, 1, )T/
√

3 and the

linear regression coefficient is β = 1.

Using the relationship between εj and survival time tj , and the structure of the

Clayton model, the joint distribution of the bivariate survival times can be worked

out as a product of the marginal distribution of t1 and the conditional distribution of

t2|t1. This makes it possible to generate survival times ti1, ti2, i = 1, . . . , n using the

following relations:

ti1 =
u−r

i1 − 1

rexp
{

βxi1 + ψ(αTvi1)
} ,
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ti2 =

{[

1 + (u
− 1

φ+1

i2 u
− 1

φ

i1 ) − u
1
φ

i1

]rφ

− 1

}

rexp
{

βxi2 + ψ(αTvi2)
} ,

where ui1 ∼ U [0, 1], ui2 ∼ U [0, 1]. The censoring time Cj is set to 1 and the corre-

sponding censoring rate is about 45% for both variates.

In the application of spline functions to fit the smooth function, three breakpoints

are applied. For how to choose the breakpoints in a spline function see Section 2.2.2.

4.3.1 Evaluate the Performance of the Proposed Model

The parameter r was set to be 1 and 2 and the simulation was conducted for 200

replications for both cases. The estimates for the parameters ϕ, % and κ (after

transformation) and the original parameters α, β, φ and r (before transformation)

for r = 1 and r = 2 are given in Table 4.1 and Table 4.2, respectively. We see that,

the bias is fairly small for all the parameters, and the sample standard deviations are

similar to the average of the model based standard errors. The coverage probabilities

of the 95% confidence intervals are all close to the nominal coverage.

Table 4.3 and Table 4.4 give the average estimates over 200 runs for the nonlinear

function ψ(∙) at the chosen points (-0.9, -0.8, -0.7, 0.2) for r = 1 and r = 2. The

average estimates of the five points are very close to the true values. Figure 4.1a

and 4.1b show these results clearly. The black lines represent the true pattern of

the nonlinear function ψ(∙), and the red dots represent the average estimates at the

chosen points. The red dots follow the curve of the function very well which verifies

the good performance of the model. Note that ψ(x) is set to be 0 at x = 0 by the

model constraints and is shown in the figure.
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Table 4.1: The estimates for the covariate coefficients ϕ, % and κ (after transforma-
tion), α, β, φ and r (before transformation) based on 200 runs (r = 1)

After transformation
ϕ1 ϕ2 % κ

True 1.412 1.099 -0.693 0.000
Bias -0.001 0.004 -0.021 -0.029
SD(̂∙) 0.063 0.070 0.229 0.176
A{SE(̂∙)} 0.058 0.060 0.217 0.184
Cov.prob. 0.905 0.890 0.920 0.950

Before transformation
α1 α2 α3 β φ r

True 0.577 0.577 0.577 1.000 0.500 1.000
Bias 0.000 -0.002 -0.001 -0.021 0.003 -0.013
SD(̂∙) 0.027 0.026 0.026 0.149 0.117 0.172
A{SE(̂∙)} 0.023 0.023 0.023 0.151 0.111 0.179
Cov.prob. 0.900 0.915 0.910 0.955 0.905 0.935

Table 4.2: The estimates for the covariate coefficients ϕ, % and κ (after transforma-
tion), α, β, φ and r (before transformation) based on 200 runs (r = 2)

After transformation
ϕ1 ϕ2 % κ

True 1.412 1.099 -0.693 0.000
Bias 0.002 0.003 -0.031 -0.009
SD(̂∙) 0.081 0.082 0.198 0.131
A{SE(̂∙)} 0.074 0.075 0.205 0.135
Cov.prob. 0.925 0.940 0.950 0.945

Before transformation
α1 α2 α3 β φ r

True 0.577 0.577 0.577 1.000 0.500 2.000
Bias 0.000 -0.002 0.000 0.007 -0.006 -0.002
SD(̂∙) 0.033 0.031 0.032 0.189 0.101 0.262
A{SE(̂∙)} 0.029 0.029 0.030 0.193 0.102 0.269
Cov.prob. 0.910 0.910 0.930 0.945 0.935 0.940
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Table 4.3: The estimates for ψ(∙) of one variate based on 200 runs (r = 1)

x True Estimate SD
-0.900 -2.922 -3.052 0.966

ψ(x) -0.800 -2.999 -3.060 0.643
-0.700 -3.002 -2.973 0.493
0.200 1.168 1.167 0.109

Table 4.4: The estimates for ψ(∙) of one variate based on 200 runs (r = 2)

x True Estimate SD
-0.900 -2.922 -2.963 0.509

ψ(x) -0.800 -2.999 -3.012 0.450
-0.700 -3.002 -2.951 0.391
0.200 1.168 1.156 0.129
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Figure 4.1: Nonlinear smooth function ψ(∙). Black lines represent the true pattern
of the nonlinear function, and red dots represent the average estimates of selected
points from the proposed transformation model.

4.3.2 Compare the Proposed Model with Transformation Lin-

ear Model

The proposed transformation model is compared with the transformation linear model.

The marginal function of the transformation linear model has the following form which
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does not have the single index structure:

log(Tj|xj , vj) = −βxj − α̃Tvj + εj , j = 1, 2,

where β is the coefficient for the covariate xj and α̃ is the coefficient for nonlinear

covariate vj . As in the previous analyses, estimates of α̃ are expressed as b̂α̂ with

‖ α̂ ‖= 1. This makes it easier to compare α̂ to the nonlinear coefficient from the

proposed transformation model.

The same parameter settings are used as in the first simulation study. The com-

parison results for two cases r = 1 and r = 2 are given. Table 4.5 and Table 4.6

give the comparison of the parameters of interest for the proposed model and the

transformation linear model when r = 1 and r = 2 respectively. Tables show the

average estimates of the parameters from the proposed model are generally closer to

the true values than the linear model, and the standard deviations are smaller as

well. Considering the association parameter φ, the estimate from the linear model is

farther from the truth when r = 1 than it is when r = 2. Table 4.7 and Table 4.8

show the summary of the average estimates of ψ(∙) for the chosen points (-0.9, -0.8,

-0.7, 0.2) for r = 1 and r = 2. Generally the average estimates of the proposed model

are closer to the true values. Figure 4.2 gives the clear view of this comparison in the

graph. The red dots, the estimates from the proposed model, follow the “S” curve

well. The blue line (the linear model) does not follow the “S” curve well, but it does

represent a good fit to the curve under the restriction of linearity. In fact, the fit

of this line is noticeably better than the fits of the corresponding PO and PH linear

models. Further discussion of this observation is given in the Conclusion section.
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Table 4.5: The estimates comparison of two models for α, β, φ and r based on 200
runs (r = 1)

α1 α2 α3 β φ r
True 0.577 0.577 0.577 1.000 0.500 1.000

Estimate(TR) 0.575 0.577 0.578 0.976 0.517 0.972
SD(̂∙)(TR) 0.026 0.024 0.025 0.146 0.125 0.164

Estimate(linear) 0.574 0.578 0.577 1.093 0.948 1.290
SD(̂∙)(linear) 0.033 0.033 0.034 0.156 0.375 0.201

Table 4.6: The estimates comparison of two models for α, β, φ and r based on 200
runs (r = 2)

α1 α2 α3 β φ r
True 0.577 0.577 0.577 1.000 0.500 2.000

Estimate(TR) 0.576 0.573 0.580 1.007 0.491 1.996
SD(̂∙)(TR) 0.031 0.031 0.031 0.180 0.116 0.273

Estimate(linear) 0.573 0.571 0.583 1.085 0.681 2.262
SD(̂∙)(linear) 0.044 0.042 0.044 0.177 0.181 0.295

Table 4.7: The estimates comparison of two models for ψ(∙) based on 200 runs (r = 1)

Proposed Linear
x True Estimate SD Estimate SD

-0.900 -2.922 -3.041 0.585 -3.242 0.215
-0.800 -2.999 -3.068 0.510 -2.882 0.191

ψ(x) -0.700 -3.002 -2.983 0.429 -2.521 0.167
0.200 1.168 1.167 0.117 0.720 0.048

4.3.3 Assessment of the Proposed Model Under Various Sce-

narios

The proposed transformation model is assessed when changing the parameter set-

tings, such as sample size, censoring rate and association parameter φ. Sample size

is set to either 80 or 200. Censoring rates of 20% and 50% are used. The association
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Table 4.8: The estimates comparison of two models for ψ(∙) based on 200 runs (r = 2)

Proposed Linear
x True Estimate SD Estimate SD

-0.900 -2.922 -2.901 0.556 -3.171 0.243
-0.800 -2.999 -2.955 0.460 -2.819 0.216

ψ(x) -0.700 -3.002 -2.905 0.383 -2.467 0.189
0.200 1.168 1.156 0.137 0.705 0.054
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Figure 4.2: Compare the proposed transformation model and the transformation
linear model on the nonlinear smooth function ψ(∙). Black line represents the true
pattern of ψ(∙), blue line represents the estimate for the linear model, and red dots
represent the average estimates for the chosen points.

parameter values of 0.5, 1 and 4 are applied, representing the association decreasing

from relatively strong to weak. Table 4.9 gives a summary of the simulation results

for 200 runs. As the sample size changes from 80 to 200, the standard deviations of

the parameters decreases, which shows the estimates’ precision improves. Standard

deviations increase when the censoring rate is raised from 20% to 50%, reflecting the

loss of information associated with greater censoring. When the association param-

eter φ changes, there is no clear pattern of the estimate for parameters α, β and r,
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and the estimates all seem very good. But the estimates of φ itself differ in quality.

As φ increases, the estimation performance goes down. Generally φ = 1 has a bigger

standard deviations than φ = 0.5. For φ = 4, bias appears, and the standard devi-

ations are relatively big. The values of SD( ∙̂) and A{SE(̂∙)} also do not agree with

each other. As with proposed PH and PO model, this issue might be caused by the

likelihood function being flat when the association among the data is weak.

Table 4.9: Simulation result for different settings of censoring rate, sample size, asso-
ciation parameter φ

α1 α2 α3

φ P(%) n Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)}
0.5 20% 80 0.003 0.034 0.032 -0.004 0.035 0.032 -0.002 0.037 0.032

200 -0.002 0.021 0.019 0.001 0.021 0.019 0.000 0.020 0.019
50% 80 -0.005 0.048 0.041 0.005 0.046 0.041 -0.005 0.046 0.041

200 0.001 0.026 0.025 -0.002 0.030 0.025 -0.002 0.029 0.025
1 20% 80 0.004 0.043 0.037 0.001 0.042 0.037 -0.010 0.046 0.038

200 0.001 0.026 0.023 0.003 0.026 0.023 -0.005 0.026 0.023
50% 80 -0.009 0.057 0.046 0.002 0.052 0.045 -0.001 0.058 0.046

200 -0.005 0.034 0.028 0.004 0.030 0.028 -0.001 0.032 0.028
4 20% 80 -0.005 0.048 0.042 0.009 0.048 0.042 -0.010 0.046 0.042

200 -0.002 0.029 0.026 -0.003 0.031 0.026 0.002 0.034 0.026
50% 80 0.003 0.052 0.047 -0.004 0.051 0.048 -0.006 0.051 0.047

200 0.000 0.034 0.029 -0.003 0.032 0.030 0.000 0.033 0.030

β φ r

φ P(%) n Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)}
0.5 20% 80 0.005 0.213 0.211 0.040 0.219 0.163 -0.047 0.247 0.234

200 -0.015 0.122 0.125 -0.002 0.086 0.081 -0.005 0.142 0.142
50% 80 -0.003 0.256 0.265 0.004 0.254 0.235 -0.098 0.302 0.316

200 -0.002 0.165 0.159 -0.003 0.118 0.117 -0.006 0.192 0.195
1 20% 80 -0.013 0.237 0.247 0.060 0.421 0.435 -0.050 0.225 0.234

200 -0.015 0.141 0.149 -0.003 0.221 0.218 -0.016 0.143 0.140
50% 80 -0.041 0.297 0.302 0.015 0.607 0.677 -0.007 0.302 0.330

200 0.001 0.172 0.177 0.033 0.351 0.349 -0.042 0.174 0.190
4 20% 80 0.028 0.264 0.276 -0.385 2.059 3.727 -0.042 0.219 0.227

200 -0.002 0.170 0.167 0.129 1.844 2.479 -0.015 0.130 0.134
50% 80 -0.011 0.294 0.315 -0.705 2.050 5.401 -0.089 0.324 0.311

200 -0.025 0.195 0.189 -0.303 1.927 3.198 -0.026 0.191 0.186



Chapter 4 91

4.3.4 Assessment of the Proposed Method with Various r

Values

In this section, the goal is to see how the model performs when the parameter r

takes different values. The value of r is set to be 0.1, 0.5 and 5. In order to make

the comparison clearer, r = 1 and 2 are also included. Other than r, the simulation

settings are all the same as those of Section 4.3.1. Table 4.10 gives the summary of

the parameter estimate over 200 simulation runs.

For all but the smallest r value, that is when r is 0.5, 1, 2 and 5, the estimate

of the parameters are all satisfactory. Recall, the case r = 1 corresponds to the PO

model.

When r = 0.1, 10 out of 200 runs of the simulation has the estimate for r very

small (for example, the estimate of one run is approximately 10−47), and the variance

matrix is numerically singular. It is likely that in these runs the optimization search

encountered difficulty, and did not converge to a local maximum. Experience fitting

the model with even smaller values of r showed that as r gets closer to zero, this

problem becomes more prevalent. Figure 4.3 shows the log likelihood profile of r for

a data set exhibiting this problem. It supports the claim that optimization becomes

difficult when r approaches zero. When r is less than 0.01, the log likelihood function

becomes very flat, which makes it very difficult to achieve a unique local maximum

for r. Note that in the figure r is plotted on a logarithmic scale.

4.3.5 Assessment of Model on the Generated Data from the

Nonlinear PH and PO model

Recall that the PH model and PO model are the special cases of the transformation

model. That is, in the hazard function of ε, λ(ε) = exp(ε)/{1 + rexp(ε)}, r = 0

corresponds to PH model, and r = 1 corresponds to PO model. It is interesting
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Figure 4.3: The log likelihood profile of r

Table 4.10: Simulation result for different r

α1 α2 α3

True r Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)}
0.1 0.002 0.017 0.017 0.000 0.020 0.017 -0.003 0.020 0.017
0.5 -0.002 0.023 0.020 0.000 0.024 0.020 0.001 0.024 0.020
1 -0.001 0.025 0.023 -0.002 0.028 0.023 0.001 0.025 0.023
2 0.003 0.030 0.029 -0.002 0.030 0.029 -0.004 0.031 0.029
5 -0.002 0.047 0.044 0.001 0.044 0.044 -0.004 0.044 0.044

β φ r

True r Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)}
0.1 0.000 0.101 0.106 0.027 0.116 0.124 0.007 0.078 0.106
0.5 -0.014 0.129 0.127 0.009 0.111 0.112 -0.004 0.125 0.132
1 -0.005 0.174 0.153 0.000 0.108 0.110 0.000 0.191 0.182
2 0.006 0.185 0.191 -0.005 0.094 0.102 -0.008 0.260 0.267
5 0.006 0.301 0.282 0.003 0.101 0.101 -0.038 0.523 0.536

to see how the proposed model performs when it is fit to data generated from the

nonlinear PH and PO models (data generated in the same manner as in Sections 2.3

and 3.3). Here, we design a simulation study to assess the following four models:

• Model 1: Data is generated from a nonlinear PH model with baseline exponen-

tial distribution.

• Model 2: Data is generated from a nonlinear PH model with baseline Weibull
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distribution, the scale parameter is 1, and the shape parameter is p = 1.5.

• Model 3: Data is generated from a nonlinear PO model with baseline Lomax

distribution (or Pareto type II distribution), the shape parameter is 1, and the

location parameter is 1.

• Model 4: Data is generated from a nonlinear PO model with baseline Weibull

distribution, the scale parameter is 1, and the shape parameter is p = 1.5.

The first two models assess the proposed transformation model using the generated

data from nonlinear PH model, and the last two models assess the proposed model

using the generated data from nonlinear PO model. The difference between Model

1 and Model 2 is the baseline function. Model 1 uses the exponential distribution,

which is the correct baseline distribution for the transformation model with H(t) =

log(t) when r = 0, and Model 2 uses a Weibull distribution, a misspecified baseline

function for the transformation model when r = 0. Similarly, the difference between

Model 3 and Model 4 is also the baseline function. Model 3 has the Lomax baseline

function, which is the correct baseline distribution for the transformation model when

r = 1, and Model 4 has a Weibull distribution, a misspecified baseline function for

the transformation model when r = 1. The parameter settings are the same as in

Section 4.3.1.

It should be pointed out here that, as discussed in Section 4.2.1, the proposed

transformation model has difficulty handling data generated from the PH model,

where r = 0. This is due to the fact that the parameter r occurs in the denominator

of several parts in the log likelihood function, which causes computation problems

during the optimization search.

Table 4.11 summarizes the performance of the proposed model after fitting the

data generated from the four different true models. For Model 1, the average estimate

of r is 0.04, close to zero and indicates the data might come from a PH model. The
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Table 4.11: Simulation result for assessing the proposed transformation model on the
generated data from nonlinear PH or PO model

α1 α2 α3

Model Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)}
Model 1 0.000 0.020 0.015 0.001 0.019 0.016 -0.001 0.018 0.016
Model 2 -0.015 0.138 - -0.006 0.066 - -0.002 0.055 -
Model 3 0.001 0.023 0.023 -0.001 0.025 0.024 -0.001 0.025 0.024
Model 4 0.001 0.030 0.027 0.002 0.027 0.027 -0.006 0.029 0.027

β φ r

Model Bias SD(̂∙) A{SE(̂∙)} Bias SD(̂∙) A{SE(̂∙)} Mean SD(̂∙) A{SE(̂∙)}
Model 1 0.009 0.088 0.098 0.009 0.112 0.113 0.040 0.049 0.094
Model 2 -0.021 0.667 - -0.159 0.099 - 0.000 0.000 -
Model 3 -0.002 0.146 0.152 -0.001 0.100 0.109 0.979 0.168 0.179
Model 4 -1.574 0.100 0.103 -0.098 0.086 0.085 0.039 0.060 0.095

estimates of the rest of the parameters are reasonably good. For Model 2, the majority

of the runs have numerical problems when calculating the variance estimate. In those

runs, the estimate of r is very small, for example, on the scale of 10−300. This causes

the matrices in the variance calculation to be computationally singular. Therefore

only the Bias and SD(̂∙) can be reported. The estimates of the covariates, α and β,

are reasonable. The average estimate of r is approximately 0, which gives a good

indication that the data might come from a PH model. Model 3 corresponds to

a correctly-specified transformation model (with PO structure and r = 1). The

estimates of the parameters are very good. The mean of r, 0.979, strongly suggests

the data come from a PO model. As a contrast, the result of Model 4 is not as

good. The estimates of α and φ are good, but β has a bias. More importantly, the

estimate of r, 0.039, would not suggest that the model has a PO structure. It seems

the estimate of r is changing to compensate for the wrong choice of the function H(t)

in the model, and gives a confusing result. In this case, the estimate of r is somewhat

meaningless and fails to provide clear evidence of what model the data come from.

Comparing Model 1 and 2, Model 3 and 4, it is found that, misspecification of the

function H(t) has a noticeable impact on the model performance.
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4.4 Conclusion

In this chapter we propose to use the partially linear single index transformation

model as the marginal function to model multivariate survival data. The proposed

transformation model has the flexibility to include nonlinear covariate effects, and

nonlinear patterns are well displayed by the estimates. The model can accommodate

a large class of survival relationships, including both the PH and PO models as special

cases.

Besides the advantage of the proposed model, the transformation linear model

gives a good estimate of the nonlinear covariate effects, within the limited class of

linear relationships. It has better performance than the PH linear model or the

PO linear model when nonlinear structure exists. The reason for this improvement

is likely additional flexibility introduced by the extra parameter r, which does not

appear in the PH or PO linear models. This parameter allows the transformation

linear model to adapt itself better to the true nonlinear form.

The model performance was assessed for different values of r, and it was found

that when r is greater than approximately 0.5, the model estimates are good. As

r approaches zero, the optimization search is more likely to have difficulty finding a

good solution. This has been shown through Figure 4.3. Experience suggests that

this problem becomes worse as r gets closer to zero.

Fixing H(t) = log(t) is one restriction of the model as it is presented in the sim-

ulation here. The simulation study found that misspecification of the function H(t)

can have a noticeable impact on the model performance. To make the model more

flexible, it is of interest to try some nonparametric or weakly parametric approaches

for estimating H(t). More discussion of this issue is given Section 5.2.



Chapter 5

Discussion and Future Work

The preceding chapters have presented three proposed models. The main findings

about these models are summarized in Section 5.1, along with some discussion of

computational issues that were encountered. Section 5.2 describes some avenues for

future work.

5.1 Discussion

This thesis considers three survival regression models for the marginal distributions of

multivariate survival data: a proportional hazards model, a proportional odds model

and a transformation model. The traditional linear covariate effect assumption is

relaxed by adding nonlinear covariate effects through a smooth single index function.

Splines are used to model the single index function in a weakly parametric way. One

type of copula model, the Clayton model, is applied to incorporate the association

among the variates as an illustration. While only the bivariate case was considered

here, it is not difficult to extend the model to higher dimensional survival data. In the

proposed PH and PO model, piecewise constants are applied to estimate the baseline

hazard function. As a result, inference can be conducted based on the full likelihood.

For the proposed transformation model, the unknown increasing function H(t) is fixed

96



Chapter 5 97

to be known and set as log(t) in the simulation, therefore, full likelihood approach

can be applied as well. In simulation studies, the proposed models demonstrated the

advantage of capturing the nonlinear covariate effects over the linear models when

such nonlinearities exist.

It was also found that the transformation linear model has better performance

than the PH or PO linear models. In the simulation study comparing the transfor-

mation linear model with the proposed transformation model, despite the advantage

of the proposed model to capture the nonlinear covariate effect, the linear model gives

a good estimate under the linearity restriction. For PH and PO linear models, the

advantage handling nonlinearity through the proposed PH and PO models is more

dramatic. The reasons for this phenomenon might be the flexibility introduced by

r in the transformation model. It is suspected that r can adjust its own value to

compensate for the misspecification of the linear relationship in the regression model.

While working through the simulation studies and the real data analyses, some

computational issues were encountered:

• Various optimization methods available in R have been explored, such as R

function optim (R Core Team, 2013) which includes a Nelder-Mead method,

a quasi-Newton method, and a variant of simulated annealing, among others.

Ultimately, the R function nlm (which uses the Newton-Raphson method) was

found to be more stable and reliable and was therefore used throughout.

• The simulation can be sensitive to the starting values of the parameters for the

three proposed models while searching for the maximum likelihood estimates.

To address this problem, the corresponding linear models are used to find the

estimates first, and these estimates are used as the starting values.
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5.2 Future Work

There are some issues inherent in the models considered here. Exploring these issues

could become interesting future work.

For modeling of the baseline hazard function using the piecewise constant ap-

proach, the effect of changing the number of pieces has not been explored. Increasing

the number of the pieces could possibly make the baseline hazard function estimate

more accurate, at the cost of more computing time. How to balance these two factors

and find a best result is an interesting topic.

One limitation in the linear transformation model is that, under the assumption

H(t) = log(t) and λ(ε) = exp(ε)
1+rexp(ε)

, r = 0 corresponds to the PH model with the

baseline exponential distribution, which is a fairly small family of distributions. To

make a linear transformation model that can correspond to a larger class of PH

models, the transformation can be generalized into the form

H(T ) = −βTx + σε, (5.1)

instead of the form (4.4). In this case, r = 0 corresponds to the PH model with the

baseline Weibull distribution, which has more flexibility. Similarly, r = 1 corresponds

to the PO model with the baseline Dagum distribution.

Another limitation of the work is that the unknown increasing function H(t) in

the transformation model is fixed to be log(t) in the numerical implementation. The

main reason for this is that H(0) is required to be −∞ (Chen et al., 2002), and

typical spline functions have difficulty to satisfy such a restriction. An interesting

topic to pursue is to explore more approaches to relax H(t) from a fixed parametric

form. Including a weakly parametric estimator of H(t) would greatly improve the

flexibility and adaptability of the transformation model. Another possible equivalent

way is to model the hazard function of ε through some nonparametric or weakly
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parametric approach. While these ideas still require refinement, this extension of the

transformation model is viewed as a most promising avenue for future research.
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