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Abstract 

Continued intensification of agriculture and combustion of fossil fuels will increase rates of 

atmospheric nitrogen (N) deposition over the next century. N is typically a limiting resource 

for terrestrial plants, and many species are adapted to low-N conditions. Increased N 

availability can affect both plant biomass and species composition, often favouring N-

demanding, adventive species. These effects can be adverse in the context of ecological 

restoration projects, where the aim is to establish a particular species composition. I used a 

field experiment in Norfolk County, Ontario, to examine how N addition affects species 

composition and plant productivity of a tallgrass prairie restoration. I predicted that N 

addition would increase the abundance of plant species not included in the original seeding. 

Contrary to my prediction, relative abundance of native, rather than adventive species, 

increased with N addition, although the latter species were scarce at the site, possibly as a 

result of dispersal limitation. I conclude that increased N availability can enhance the 

growth of tallgrass prairie species in the first few years of restoration. 
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Chapter 1 - Introduction 

 

1.1. Atmospheric nitrogen deposition 

1.1.1. N in the environment 

N is required for the formation of DNA, chlorophyll, and amino acids, and is thus required 

in high quantities relative to other mineral nutrients for plant growth and reproduction 

(Graham et al. 2006). However, the supply of N available for plant use is limited (Galloway 

et al. 2004). Earth’s atmosphere is 78% N, yet, less than one percent of this N is available 

for use by most plants (Freedman, 2006; Galloway et al., 2004). For plants to be able to use 

N, it must first be converted from un-reactive N2 gas to reactive forms of N (Bobbink et al. 

2010). The triple bond holding the two atoms of N2 gas together is very strong, therefore a 

large energy expenditure is needed to separate them (Driscoll 1997). The separation of these 

two atoms is called N fixation. Natural N fixation can be caused by the high temperatures of 

lightning or by N fixing microorganisms (Dentener et al. 2006). N can also be fixed via 

anthropogenic activities such as the combustion of fossil fuels, or by the Haber-Bosch 

process (Galloway et al., 2008). Once two N atoms are separated, H or O atoms can 

combine with these N atoms to make reactive N compounds such as ammonia (NH3) or N 

oxides (NOx), including nitrous oxide (N20), and nitrate (NO3
−) (Vitousek et al. 1997; 

Freedman 2006).  

Synthetic ammonia produced using the Haber-Bosch process is used in the fabrication of 

many products (e.g. nylon, plastics, explosives, and fertilizers), and the processes used in 

the creation of these products give off harmful NOx and NH3 gases (Galloway et al. 2008). 

The addition of synthetic fertilizer to agricultural fields has substantially increased food 

production, but has also increased N pollution in the process (Galloway et al. 2008). The 

combined effects of agricultural intensification and increased release of reactive N, caused 

by fossil fuel combustion for transportation and industry, has increased emissions of N 

pollution into the atmosphere over the last century to above that of natural inputs (Galloway 

et al. 2004). Atmospheric N deposition occurs most heavily around industrial and 
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agricultural areas (Dentener et al. 2006), but N pollution can also travel thousands of 

kilometers once it enters the stratosphere (Bobbink et al. 2010). Typically, NH3 makes up 

the majority of atmospherically-deposited N near agricultural areas, while NO3
- is typically 

deposited near industrial areas (Galloway et al. 2004).  

Increased emissions of N pollution have increased the rate at which N is being deposited 

across the landscape in the form of NH3 and NO3
− compounds in dust or precipitation 

(Vitousek et al. 1997). Prior to widespread anthropogenic N pollution, natural atmospheric 

N deposition was not a significant input into ecosystems, biological N fixation being the 

main contributor (Galloway et al. 2008). However, this is no longer the case, and 

anthropogenic N fixation is now one of the most dominant sources of N for terrestrial 

ecosystems at 268 Tg N y-1 globally, while natural N fixation accounts for about 112 Tg N 

y-1 (Galloway et al. 2008). Global atmospheric N deposition rates have more than tripled 

from 1860 to the early 1990’s, from 31.6 to 103 Tg N y-1, and are projected to almost 

double again by 2050, to 195 Tg N y-1 (Galloway 2005). This is more than four times higher 

than the natural rate of N deposition (< 50 Tg N y-1 on average) (Galloway et al. 2008). In 

southern Ontario, the current atmospheric N deposition rate is approximately 1 to 2 g N m-2 

y-1, and this rate is expected to increase to between 2 and 5 g N m-2 y-1 over the next 40 

years (Galloway et al. 2004; Aherne & Posch 2013). 

1.1.2. Plant species composition responses to increased 

atmospheric N deposition 

Due to post-industrial increases in N pollution, atmospheric N deposition is now one of the 

most critical threats to ecosystem health (Payne et al. 2013), especially in areas that have 

experienced elevated deposition rates for several decades (Phoenix et al. 2006). In field 

experiments examining the combined effects of global change factors, atmospheric N 

deposition is consistently among the strongest factors altering plant productivity and 

community composition (Torok et al. 2000; Miles & Knops 2009). Understanding how 

atmospheric N deposition affects plant species composition is especially important in N 

limited systems, where plants are adapted to low N availability (Tilman 1985). Plant species 

that are adapted to low N availability are efficient at N sequestration, which intensifies N 

limitation in the system and limits the establishment of faster growing species that have 



 

 

3 

higher N demands (Aber & Nadelhoffer 1989; McLendon & Redente 1992). Dentener et al. 

(2006) found that atmospheric N deposition levels have already surpassed the critical N 

threshold, the exposure level at which significant detrimental effects will begin to occur, in 

approximately 10% of all naturally occurring vegetation, indicating that ecosystem 

functions in these systems may already be altered.  

When N inputs increase, plants initially responds with increased productivity and biomass 

(Aerts et al. 1999; An et al. 2005; Morford et al. 2011) and some species are better able to 

utilize the added N for rapid increases in productivity than others (McLendon & Redente 

1992; An et al. 2005). Since increased N deposition increases plant productivity in many 

systems, it can also significantly alter plant species composition (Carson & Barrett 1988; 

Wedin & Tilman 1990; Torok et al. 2000), often in favor of fast-growing adventive species 

(Miles & Knops 2009). On soils with historically high N availability, which are able to 

support rapid plant growth, the effects of competition can be intensified (Wilson & Tilman 

1991). Once fast-growing species begin to out compete slower growing species for 

remaining resources, there can be reductions in species diversity and richness (Carson & 

Barrett 1988; Wedin & Tilman 1990; Torok et al. 2000). 

 

1.2. Restoration of plant communities in the context of 

increased atmospheric N deposition 

In the context of global environmental change, the question has arisen as to whether plant 

communities are best restored to their historical species composition or whether an attempt 

should be made to develop restoration goals under anticipated future environmental 

conditions (Temperton et al. 2004). The addition of N to an ecosystem often has a greater 

effect on plant species composition than the addition of phosphorus, potassium, calcium, 

magnesium, sulfur or trace metals (Tilman 1987). Increases in other factors such as CO2, 

drought, temperature and the interactions between these factors can also affect how species 

react to increased N deposition (Turner & Knapp 1996; Bond 2008). Alteration of plant 

competition outcomes due to increased atmospheric N deposition could alter the 

establishment and persistence of species targeted for restoration under traditional strategies. 
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Despite these general insights into the effects of N addition on plant communities, the 

specific effects of increased atmospheric N deposition on the outcome of restoration 

projects have not been widely studied. By recognizing the key factors involved, property 

managers are able to make more effective decisions about how to restore habitats (Torok et 

al. 2000). 

 

1.3. N deposition and tallgrass prairie restoration  

Tallgrass prairies are grassland ecosystems native to central North America that were 

historically regulated by a fire disturbance regime, as well as by grazing of large mammals 

(Axelrod 1985; Stephen Packard & Mutel 1997).  Prairie grasslands are generally 

dominated by between one and three grass species that cover more area than all other 

species combined (Miles & Knops 2009). The dominant species present at a site help 

determine the species trajectory, at a site by competitively excluding some species and not 

others (Wedin & Tilman 1992; Nyamai et al. 2011). The dominant or matrix species for 

tallgrass prairies are big bluestem (Andropogon gerardii), little bluestem (Schizachyrium 

scoparium), yellow indiangrass (Sorghastrum nutans) and switchgrass (Panicum virgatum) 

(Miles & Knops 2009). These grasses are all native to the central regions of North America 

(Stephen Packard & Mutel 1997). The majority of grass species in the tallgrass prairies are 

C4 photosynthetic bunchgrasses, including S. scoparium and S. nutans; however, A. gerardii 

can act as either a bunchgrass or a sod-forming grass with very short stolons, depending on 

the amount of competition it has from other species (McGregor et al. 1991; Emery & Gross 

2007). Tallgrass prairies also feature an enormous diversity of forbs and woody shrubs. 

Over 150 plant species are found in tallgrass prairies in southern Ontario, 12 of which are 

endangered, six are threatened, and two are of special concern for extinction either 

provincially or nationally (Delaney et al. 2000; COSEWIC 2007). Tallgrass prairies farther 

south have higher species diversity with over 350 species, two thirds of which are forb 

species (Howe 1994). In southern Ontario, some animal species of concern that are typically 

found in tallgrass prairies include the Eastern fox snake (Pantherophis gloydi Conant), 

Northern bobwhite (Colinus virginianus L.), mottled dusky wing (Erynnis martialis 
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Scudder), American badger (Taxidea taxus Schreber) and Henslow's sparrow (Ammodramus 

henslowii Audubon) (COSEWIC 2007). 

Due to the extensive habitat loss since the 19th century, tallgrass prairies are now one of the 

most severely degraded ecosystems in North America (Stephen Packard & Mutel 1997). In 

1830, there were about 162 million ha of tallgrass prairie in North America, since then there 

has been an estimated 82-99% decline in the area cover by this ecosystem (Samson & 

Knopf 1994). In southern Ontario, the majority of tallgrass prairies have been converted to 

cropland, and as a result have been reduced from about 1000 km2 to only 21 km2 after the 

arrival of European settlers (Bakowsky & Riley 1994; Figure 1.1). This rapid conversion 

was due to the fact that prairies have deep, productive soils well suited for agricultural use 

(Curtis 1959; Camill et al. 2004). In recent decades, tallgrass prairie restoration efforts have 

been attempted (Delaney et al. 2000), particularly in areas of marginal agricultural potential, 

such as sandplains. 

Tallgrass prairies are useful systems for testing the influence of increased N availability on 

restoration efforts, in part because “restored” prairie can be established in a relatively short 

time frame (3-20 years), and also because tallgrass systems have characteristically low soil 

nutrient availability (Schramm 1990; Seastedt et al. 1991). The species found in these 

prairies are adapted to low nutrient soils, and as a result are likely to be especially 

susceptible to the effects of increased N deposition (Nyamai et al. 2011). On sites with 

increased N availability of as little as 1-2 g N m-2 y-1 above natural levels, non-tallgrass 

species can eliminate native tallgrass species (Tilman 1990; Wedin & Tilman 1992). After a 

disturbance, such as that of restoration procedures in an area, there may be increased 

competition intensity associated with increased resource availability, for example light and 

space (Baer et al. 2003). Increased competition intensity in the initial establishment phase of 

restoration projects may cause this phase to be the most sensitive to changes in soil nutrient 

content, which would also cause soil conditions to be more important to in determining 

what species become dominant (Baer et al. 2003). Therefore, the first few years after the 

restoration process has begun are most critical for determining the success of the restoration 

process because, once tallgrass prairies mature and the species become well established, 

fast-growing adventive species may no longer able to successfully colonize the area without 

a disturbance (Gartshore 2011). 
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Figure 1.1. Range of historic and current locations of tallgrass prairie and savanna vegetation in southern Ontario, Canada. Re-production 
permission granted by Tallgrass Ontario (Appendix 1). Source: Tallgrass Ontario (2013) [map] “Grassland ID: What are tallgrass 

communities”. Physiographic region: southern Ontario < http://www.tallgrassontario.org/ID_grassland.html> 

Existing Remnants  

Historically, tallgrass prairie and savanna 
occurred in patches throughout this shaded 
region. Prairie creation projects may be 
considered within this region 

Map modified from: 
Bakowsky 1993. A Review and Assessment of Prairie, Oak Savannah 
and Woodland in Regions 7 and 6 (Southern Region).  
Environment Canada 2000. Planting the Seed: A Guide to Establishing 
Prairie and Meadow Communities in Southern Ontario. 
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1.3.1. Competitive roles of tallgrass prairie species 

The majority of tallgrass prairie grasses use the C4 photosynthetic pathway, yet most of the 

adventive grasses that threaten to outcompete tallgrass species use the C3 pathway. There 

are several key differences between these two plant groups that influence their ability to 

survive in prairie ecosystems. C4 photosynthetic grasses in tallgrass prairies can grow as tall 

as three metres, with roots that can reach four metres deep (Ladd & Oberle 2005) , as 

opposed to C3 grasses, which do not grow as tall and have mostly horizontal root growth 

(Barbour et al. 1999). The near vertical root growth in tallgrass species allows them to 

acquire moisture and nutrients deep into soil (Barbour et al. 1999; Wedin 2004; Miles & 

Knops 2009). This high allocation to belowground biomass makes tallgrass C4 species more 

resistant to drought, fire, and nutrient limitation than C3 species (Wilson & Tilman 1991; 

Ladd & Oberle 2005). C4 grasses also have high water and N use efficiency, meaning they 

generally use less N and moisture per unit of biomass compared to C3 species (Wedin 2004; 

Miles & Knops 2009). Therefore, in natural, N-limiting conditions, the high N and water 

use efficiency of C4 grasses, in conjunction with their deep root system, gives them a 

competitive advantage over the rapidly growing C3 species (Wilson & Tilman 1991). 

C4 photosynthetic tallgrass species also differ from C3, non-tallgrass species in that they 

have different growth requirements. For example, the photosynthetic temperature optima of 

C4 grasses are higher than those of C3 species (Wedin 2004). In addition, C3 species have 

their peak abundance in the cooler part of the growing season, from late spring to early 

summer (Kemp & Williams 1980; McLendon & Redente 1992), while C4 species have their 

peak abundance later in the season, from mid-June to late- August, at a time when the C3 

plants have begun to senesce (Kemp & Williams 1980; Miles & Knops 2009). Because of 

this temporal separation in peak abundances, the ability of C3 species to compete with C4 

grasses early in the year is high (Kemp & Williams 1980). Ephemeral species also have an 

opportunity to establish before the C4 species out compete them for light, which increases 

the biodiversity of these communities (Kemp & Williams 1980). C4 species have higher 

light use efficiency (Monteith 1978), but they also have a higher light requirement and 

lower shade tolerance than C3 species (Kephart et al. 1992). The competitive advantage of 

C4 species is reduced if the limiting resource switches from N or moisture to light (Wedin & 
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Tilman 1990).Therefore, they may lose some of their competitive advantage if they become 

shaded by a thick litter layer, or by C3 species earlier in the growing season (Wedin 2004). 

Increased atmospheric N deposition on tallgrass prairies could increase the competitive 

advantage of non-tallgrass species relative to tallgrass species, and ultimately decrease the 

biodiversity of these systems (Clark & Tilman 2008; Miles & Knops 2009). Under low N 

availability, the combination of high N use efficiency, poor quality litter and large 

belowground root biomass for nutrient uptake, will result in a positive feedback loop that 

internally reinforces the dominance of tallgrass C4 species by keeping N availability low 

(Wedin & Tilman 1992; Mack et al. 2001; Fargione & Tilman 2005). However, increased N 

availability may facilitate invasion of these communities by C3 grasses such as Kentucky 

bluegrass (Poa pratensis), quackgrass (Elymus repens), and smooth brome (Bromus 

inermis), which are effective at exploiting high N availability (Bakker & Berendse 1999; 

Vinton & Goergen 2006; Miles & Knops 2009). Most C3 grasses, especially P. pratensis, 

can reproduce vegetatively by extending aboveground stolons or belowground roots and 

rhizomes that interweave to form a dense mat, making it difficult for other species to 

compete for space (McGregor et al. 1991). Also, most of the root growth in non-tallgrass 

species is horizontal rather than vertical, which makes it difficult for other species to 

compete for nutrients and moisture (Barbour et al. 1999). Turf-forming C3 grasses that 

exhibit aggressive vegetative spread inhibit the establishment of other species and reduce 

biodiversity (Miles & Knops 2009), whereas most C4 tallgrasses form clumps that allow 

other species to grow in between these patches (McGregor et al. 1991). C4 grasses facilitate 

higher biodiversity because the space between bunches allows forb, shrub and tree species 

to co-exist with the grasses. 

Site quality and site history affect species composition in both tallgrass prairie (Stephen 

Packard & Mutel 1997; Fargione & Tilman 2005; Thorne & Cardina 2007), and non-

tallgrass communities (Tilman 1987; Bakker & Berendse 1999; Vinton & Goergen 2006; 

Payne et al. 2013) by influencing the dominant vegetation at the site (Miles & Knops 2009). 

However, increased atmospheric N deposition can have an influence on species composition 

by changing the competition dynamics between tallgrass and non-tallgrass species (Wedin 

& Tilman 1990, 1992, 1993; Tilman & Wedin 1991; Wedin 2004; Clark & Tilman 2008). 
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Nevertheless, little is known about how the effects of increased atmospheric N deposition 

on the dominant tallgrass vegetation will alter the trajectory of species composition in the 

context of tallgrass restoration, especially in the early stages of restoration. It is important to 

understand how N deposition will effect tallgrass prairie restoration, because tallgrass 

prairies are so well adapted to low N conditions that any changes in soil N concentrations 

may give an advantage to the highly competitive, N demanding, non-tallgrass species in 

early stages of restoration. This could have detrimental effects both ecologically and 

economically for tallgrass restoration programs. 

 

1.4. Objectives and Hypothesis 

I hypothesized that increased atmospheric N deposition will increase the abundance of non-

tallgrass herbaceous species in newly restored tallgrass prairies. In order to test this 

hypothesis, the objective of my research project was to evaluate how N addition at a newly 

established tallgrass prairie restoration site would alter both plant productivity and species 

percent composition. I conducted a two-year vegetation survey in a recently established N 

addition experiment located in a tallgrass prairie restoration site and recorded changes in 

species composition, abundance, and biomass on a monthly basis. I predicted that N 

addition would increase plant productivity (i.e. increased rate of biomass production) of 

species that were not part of the initial tallgrass restoration seeding, and thus shift the 

species composition away from what was intended.
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Chapter 2 - Methods and Materials 

 

2.1. Study Site 

My experiment was conducted in Norfolk County, Ontario at a tallgrass prairie restoration 

site (42.687078, -80.466565) that was established by the Nature Conservancy of Canada. 

The site is located on a sandplain that would have historically been a mix of tallgrass 

prairies and deciduous forest (Goodban et al. 1997). The restoration site is 20.9 ha in area, 

and was used as a tobacco farm until the early 2000’s. St. William’s Nursery was contracted 

to restore the site in the spring of 2010, at which point seeds were sown from a mix of a 

tallgrass prairie species, along with several native Carolinian tree species (Appendix 2). The 

tallgrass prairie seed mix contained only local genotypes, and would represent 

current/historic species composition that would be expected in local tallgrass prairie 

communities. The woody species were avoided when plots were selected for the 

experiment.  

In June 2010, N addition plots were established at the site. These plots were arranged in 

eight experimental blocks at 25 m intervals along a transect. One block consisted of a set of 

three 2 m × 2 m plots spaced at least 1.5 m apart (Fig. 2.1). N treatments (0, 2, or 6 g N m-2 

y-1) were randomly assigned to the plots within each block, and N was added every year in 

early May. These rates were chosen to represent current deposition rates, as well as low and 

high projections for N deposition rates in this region by the year 2050 (Galloway et al. 

2004). N was added in the form of slow release Osmocote©
 pellets containing ammonium 

nitrate. A 10 cm buffer zone of N was added around the plots to minimize edge effects. 
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Figure 2.1. Overhead depiction of one of eight experimental blocks spaced 25 m apart 
along a transect. Each of the three 2 m × 2 m plots within each block were randomly 
assigned 0, 2, or 6 g N m-2 y-1 of added N. 
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2.2. Data Collection 

I conducted vegetation cover estimates at one-month intervals from May through October in 

both 2012 and 2013 to document changes in species composition and percent cover from 

within 1 m × 1 m subplots of each plot. I used the Domin-Krajina cover-abundance scale 

(Mueller-Dombois & Ellenberg 1974) to obtain cover percentage estimates on a per species 

basis. Due to the nature of the Domin-Krajina scale, using the mid-point of a range of 

percentages, mean percent cover may be higher than 100%. The total cover percentages 

could also exceed 100% in plots with more than one leaf layer per unit ground area. I 

identified species in the field, if possible, and collected representative specimens from 

outside of the plots.  If identification was not possible in the field, I completed the 

identification of specimens in the herbarium at Western University, Canada. 

I collected standing aboveground biomass samples from each plot in 2012, first in the 

middle of July (peak biomass for many of the species) and again at the beginning of 

September (peak biomass for tallgrass). I clipped the biomass samples from 25 cm × 25 cm 

subplots to the soil level, kept them cool, then separated the shoots by species when 

possible, keeping litter separate. I then dried all of the plant material for at least 48 hours at 

65 °C and weighed it.  

Belowground biomass samples were collected at the beginning and end of each of the two 

field seasons. I collected the samples using a 2 cm diameter corer to a depth of 15 cm deep 

at two uniform locations within each plot for each of the four soil sampling periods. I stored 

the soil in a refrigerator until further analysis, and then washed the soil from the roots using 

a series of sieves and reverse osmosis water. I then separated the roots from other organic 

material and the remaining soil using tweezers, dried the roots at 65°C for at least 48 hours, 

and weighed them. 
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2.3. Data analyses 

I used the maximum cover percentage (i.e. peak cover from May to October) to represent 

the abundance of each plant species for each plot during both 2012 and 2013. These values 

were then used to calculate the total percent cover for various categories, for example 

functional group, native or adventive (non-native). Data from Rodger (1998) was used to 

classify species into prairie indicator indictor or non-prairie indicator, while the rest of the 

floristic quality information was acquired from  Total aboveground biomass was also 

calculated for the same categories. Because there were many species only present in a 

subset of plots, the plot by species matrix contained many zeros, and in many cases the data 

did not fit the assumption of normality. In these cases I used Wilcoxon/Kruskal-Wallis tests 

for Rank Sums, with block as a factor, to analyze treatment effects. For data pooled over 

species that fit the normality assumption I used an Analysis of Variance (ANOVA) with a 

randomized block design with N treatment and year as factors. Community diversity was 

calculated using the Shannon diversity index (H’). The formula to calculate H’ is: 

H’=  

where  is the relative proportion of total percent cover for the ith species in each plot, 

Species diversity was calculated for each of the N treatments then averaged across N 

treatments.   

Detrended Correspondence Analysis (DCA) was used to identify clusters of similar plots in 

ordination space based on how the N addition treatments related to species abundance. The 

plots that are most similar to each other cluster together in the ordination. I used Analysis of 

Similarities (ANOSIM), in conjunction with a DCA, to assess treatment effects on relative 

species abundance at the community level. I conducted all data analysis using JMP 10.0 

(SAS Institute Inc., Cary, NC, USA), with the exception of the ANOSIM and DCA, for 

which I used PAST (Hammer et al. 2001). 
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Chapter 3 - Results 

 

3.1. Interannual weather variability  

In the winter of November 2011 through April 2012 the study site experienced relatively 

dry conditions, with a mean winter temperature 2.7 °C higher than the 1971-2000 normal 

for the region, and mean monthly winter precipitation 52% less than normal (thus low snow 

accumulation) (Table 3.1). The mean temperature over the 2012 plant growing season (May 

to October) was very similar to the climate normal, however there was 37% less 

precipitation than normal at this time (Table 3.1). The following winter from November 

2012 to April 2013, was close to normal with respect to temperature and precipitation, and 

while the mean temperature for the 2013 growing season (May to October) was 2.2 °C 

higher than the climate normal, precipitation at this time was only 10% less than normal 

(Table 3.1). 
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: Environment Canada, National Climate Data and Information Archive. 

<http://climate.weather.gc.ca/data_index_e.html> 

 

 

 
 

 

Mean Monthly Temperature (°C) 1971-2000 2012 2013 

Winter -0.6 2.2 -1.0 

Growing season 16.3 16.1 17.62 

    

Mean Monthly Precipitation 

(mm) 
   

Winter 81.5 39.2 84.9 

Growing season 86.8 54.3 78.16 

Table 3.1. Mean monthly temperatures and mean precipitation for winter 2012 (Nov. 
2011 to Apr. 2012), growing season 2012 (May 2012 to Oct. 2012), winter 2013 (Nov 
2012 to Apr. 2013), and growing season 2013 (May 2013 to Oct. 2013) for Delhi, 
Ontario, ≈ 26 km from the field site, as well as climate normal from 1971 to 2000.  
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3.2. Percent cover estimates 

There were no significant effects of N addition on mean total percent cover (i.e. the sum of 

percent cover values for all species) in 2012, but in 2013 mean total percent cover was 

significantly higher in the N addition plots than in the ambient plots (P=0.019; Fig. 3.1). 

Averaged among treatments, mean total percent cover was also significantly higher in 2013 

than it was in 2012 (P<0.001; Fig. 3.1). The percentage of bare ground did not differ 

significantly among treatments (Fig. 3.2), but overall it was significantly lower in 2013 than 

it was in 2012 (P<0.001; Fig.3.2).  

Of the 61 species chosen for the tallgrass prairie restoration seed mix, 100% of the species 

were native, and 41% of the species were also indicative of tallgrass prairies (Appendix 2). 

Out off the 61 species originally sown, 22 of these seeded species were recorded in the plots 

by the third year (Appendix 3). Although only 41% of the species planted as part of the 

prairie restoration mix were tallgrass species, 65% of the seeded species that were present in 

the plots were tallgrass prairie species (Appendix 3). Of the 17 species found in the plots 

that were not originally seeded, 41% were native, and 0% were tallgrass indicators 

(Appendix 3). 

In both years, mean total percent native species cover was higher than that of adventive 

species (P<0.001; Fig. 3.3). The mean total percent cover of native species increased 

significantly with N addition in both 2012 (P=0.022) and 2013 (P=0.019), and there were no 

significant effects of N addition on the mean total percent cover of adventive species in 

either year (Fig. 3.3). There were no adventive grasses present in any of the sub-plots used 

for cover sampling. Elymus trachycaulus was the only grass species present that was not 

indicative of tallgrass prairies, and it occurred with the lowest cover values in the 0 g N m-2 

y-1 plots in both years (2012, P=0.049; 2013, P=0.013; data not shown). 
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Figure 3.1. Log transformed data for mean total percent cover ±1 SE by N treatments for 
the 2012 and 2013 growing seasons (n=8). P-values obtained using Wilcoxon/Kruskal-
Wallis tests. Statisically significant values are bolded (P<0.05). Data for comparison across 
years were pooled over N treatments. 
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Figure 3.2. Mean total percent of bare ground ±1 SE by N treatments for the 2012 and 2013 
growing seasons (n=8). P-values obtained using a one-way ANOVA. Statisically significant 
values are bolded (P<0.05). Data for comparison across years were pooled over N 
treatments. 
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Figure 3.3. Log transformed data for mean total percent cover ±1 SE separated by N 
treatments for both native or adventive species for the 2012 and 2013 growing seasons 
(n=8). P-values obtained using Wilcoxon/Kruskal-Wallis tests. Statistically significant 
values are bolded (P<0.05). Data for comparison between native and adventive species were 
pooled over N treatments. 



 

 

20 

In 2012, there were no significant differences in mean total percent cover between seeded 

and non-seeded species, nor were there any significant treatment effects on these categories 

(Fig. 3.4).  However, in 2013, species that were seeded as part of the original restoration 

seed mix followed a trend similar to that of native flora, in that they had significantly larger 

mean total percent cover than that of non-seeded species (P<0.001). The mean total percent 

cover of seeded species also increased significantly with N addition (P=0.027), whereas 

there was no significant effect of N addition on the mean total percent cover of non-seeded 

species (Fig. 3.4).  

The mean total percent cover of tallgrass prairie indicator species was not significantly 

different than that of non-prairie indicator species in 2012, whereas prairie species had a 

higher mean total cover in 2013 (P<0.001; Fig. 3.5). In 2012, the mean total percent cover 

did not significantly increase with N addition for prairie indicator species (Fig. 3.5). 

However, in 2013, the mean total percent cover of prairie indicator species increased in 

response to N addition (P=0.035). The mean total percent cover of non-prairie indicator 

species was also significantly higher in the 2 g N m-2 y-1 than the 0 g N m-2 y-1 treatment in 

2012, yet there was no significant increase in response to 6 g N m-2 y-1 relative to 0 g N m-2 

y-1 or 2 g N m-2 y-1 (P=0.0224; Fig. 3.5) 

Mean total percent cover differed significantly among life history strategies between 2012 

and 2013. In 2012, the mean total percent cover of biennials increased in response to N 

addition (P=0.031), but there was no significant N addition effect in 2013 (Fig. 3.6). 

Conversely, in 2012 the mean total percent cover of perennials was not significantly 

affected by N addition, whereas in 2013 it increased significantly in response to N 

(P=0.041; Fig. 3.6). 

In 2012 by functional group, 68% of the mean total percent cover was represented by forbs, 

followed by 28% by grasses, 4 % by legumes and less than 1% of by horsetail. In 2013, the 

mean total percent cover of forbs decreased to 58%, while the percent cover of grasses 

(35%), legumes (5%) and horsetails (3%) increased.  
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Figure 3.4. Log transformed data for mean total percent cover ±1 SE separated by N 
treatments for both seeded and non-seeded for the 2012 and 2013 growing seasons (n=8). P-
values obtained using Wilcoxon/Kruskal-Wallis tests. Statisically significant values are 
bolded (P<0.05). Data for comparison between seeded and non-seeded species were pooled 
over N treatments. 
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Figure 3.5. Mean total percent cover ±1 SE separated by N treatments for prairie indicator 
species and non-prairie indicator species for the 2012 and 2013 growing seasons (n=8). P-

values obtained using a one-way ANOVA. Statisically significant values are bolded 
(P<0.05). Data for comparison between prairie and non-prairie species were pooled over N 

treatments.
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Figure 3.6. Log transformed data for mean total percent cover ±1 SE separated by N 
treatments for each growth habit for the 2012 and 2013 growing seasons (n=8). P-values 
obtained using Wilcoxon/Kruskal-Wallis tests. Statisically significant values are bolded 
(P<0.05). Data for comparison between growth habits were pooled over N treatments. 
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Among functional groups, the results for both 2012 and 2013 were similar with respect to N 

response. In both years the mean total percent cover was highest for non-leguminous forbs 

and grasses, and there was approximately half as much percent cover for legumes and 

horsetails (Fig. 3.7). The mean total percent cover of forbs was lowest in the 0 g N m-2 y-1 

plots (2012, P=0.020; 2013, P=0.003), while the mean total percent cover of legumes was 

highest in the ambient N plots for 2013, but not 2012 (2013, P=0.019; Fig. 3.7). Although 

there was a trend of horsetail decreasing with increasing N in 2013, there were no 

significant effects of N on the mean total percent cover of grasses or horsetails (Fig. 3.7). 

Prior to my research, a preliminary vegetation survey was completed in 2011 during the first 

year of growth after seeding (Borden 2012). Vegetative sampling was completed in both 

August and September to catch the peak biomass of both the cool season and warm season 

species. The main finding from Borden (2012) was that Canadian horseweed (Erigeron 

canadensis) increased in cover with added N in 2011 (P=0.010). However, unlike 2011, 

there were no effects of N addition in subsequent years (2012, P=0.144; 2013, P=0.191; Fig. 

3.8). Although there were no effects of cover in 2012 or 2013 with N addition, there was a 

significant decrease in each year (P<0.001; Fig 3.8). Total cover of E. canadensis was 87% 

lower in 2012 than it was 2011, and by 2013 cover was 92% lower than in 2011. 

When analyzed by native and adventive species categorized by functional group, the effects 

of N addition on mean total percent cover were driven by native species. When mean total 

percent forb cover was divided into native and adventive species, mean total percent cover 

was lowest for native forbs in ambient N plots for both 2012 (P=0.015) and 2013 (P=0.006), 

but there were no significant effects of N addition on adventive species in either year (Fig. 

3.9). Although, native legumes also covered significantly more of the plot area than 

adventive species (P<0.001), the mean total percent cover of native legumes decreased, 

rather than increased, with N addition in 2013 (P=0.006; Fig. 3.10). In 2013, native legumes 

also had much higher mean total percent cover under ambient N than the adventive species 

(P=0.021; Fig. 3.10). All species in the grass and horsetail categories were native (Appendix 

3).  
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Figure 3.7. Log transformed data for mean total percent cover ±1 SE separated by 
functional group for each N treatments for the 2012 and 2013 growing seasons (n=8). P-
values obtained using Wilcoxon/Kruskal-Wallis tests. Statisicially significant values are 
bolded (P<0.05). Data for comparison between functional groups were pooled over N 
treatments. 



 

 

26 

2011 2012 2013

L
o

g
(P

e
rc

e
n

t 
c

o
v
e

r 
fo

r 
E

ri
g

e
ro

n
 c

a
n

a
d

e
n

s
is

)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 g N m
-2

 y
-1

2 g N m
-2

 y
-1

6 g N m
-2

 y
-1

2011:
PN=0.0102

2012:
PN=0.1443

2013:
PN=0.1909

2011 vs. 2012 vs. 2013:
P<0.0001

 

Figure 3.8. Log transformed data for mean Erigeron canadensis percent cover ±1 SE by N 
treatments for the 2011, 2012, and 2013 growing seasons (n=8). P-values obtained using 
Wilcoxon/Kruskal-Wallis tests. Data for 2011 was obtained from Borden (2012). 
Statisically significant values are bolded (P<0.05). Data for comparison across years were 
pooled over N treatments. 
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Figure 3.9. Log transformed data for mean total percent cover ±1 SE separated by N 
treatments for both native and adventive forbs for the 2012 and 2013 growing seasons 
(n=8). P-values obtained using Wilcoxon/Kruskal-Wallis tests. Statisically significant 
values are bolded (P<0.05). Data for comparison between native and adventive forbs were 
pooled over N treatments. 



 

 

28 

Legumes - Native Legumes - Adventive

L
o

g
(T

o
ta

l 
p

e
rc

e
n

t 
c
o

v
e

r)

0.0

0.2

0.4

0.6

0.8

1.0

2013 Native Legume:
PN=0.0064

Adv. Legume:
PN=0.2636

Nat. vs. Adv.:
P=0.0003

L
o

g
(T

o
ta

l 
p

e
rc

e
n

t 
c

o
v
e
r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 g N m
-2

 y
-1

2 g N m
-2

 y
-1

6 g N m
-2

 y
-1

2012

Native Legume:
PN=0.4413

Adv. Legume:
PN=0.5243

Nat. vs. Adv.:
P=0.0925

 

Figure 3.10. Log transformed data for mean total percent cover ±1 SE separated by N 
treatments for both native and adventive legumes for the 2012 and 2013 growing seasons 
(n=8). P-values were obtained using Wilcoxon/Kruskal-Wallis tests. Statisically significant 
values are bolded (P<0.05). Data for comparison between native and adventive legumes 
were pooled over N treatments. 
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3.2.2 Community structure analysis  

An ANOSIM test showed that there were significant differences in community structure 

between plots given 0 g N m-2 y-1, and 6 g N m-2 y-1 for both 2012 (P=0.002) and 2013 

(P=0.035), however the R-values denoting the percentages of variance explained were not 

large in either year (Table 3.2). Although the ANOSIM showed a difference between the 0 g 

N m-2 y-1 and the 6 g N m-2 y-1 treatments for 2013, the difference in clusters with respect to 

the N addition treatments was not clearly evident on the DCA (Fig. 3.11). For 2012, the first 

two DCA axes also showed that plots from the 0 g N m-2 y-1 treatment had an assemblage 

structure more closely related to the 2 g N m-2 y-1 treatment than the 6 g N m-2 y-1 treatment 

(Fig. 3.11). Block 6 was removed from both an ANOSIM test and a DCA because plot 6.3 

had an abundance of jagged chickweed (Holosteum umbellatum) and very little of any other 

species in 2012, and thus it was not representative of the rest of the site. 
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Figure 3.11. Results of the Detrended Correspondence Analysis (DCA) for both 2012 and 
2013, showing separation between mean total percent coverage of plant species for N 
addition treatments (0, 2, and 6 g N m-2 y-1) along the first two axes (n=7).  
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Table 3.2. Values derived from Analysis of Similarity (ANOSIM) pairwise 
comparisons of plant cover percentages using Bray-Curtis values (n=7). The values 
highlighted in bold are statistically significant (P<0.05). P-values are Bonferroni-
corrected.  

  Structure - Bray-Curtis distance 

2012  R-values  P-values 

0 vs. 2 g N m-2 y-

1 

 
-0.0058  1 

0 vs. 6 g N m-2 y-

1 

 
0.4956  0.0021 

2 vs. 6 g N m-2 y-

1 

 
0.1429  0.3576 

     

2013  R-values  P-values 

0 vs. 2 g N m-2 y-

1 

 
0.1098  0.1361 

0 vs. 6 g N m-2 y-

1 

 
0.2551  0.0346 

2 vs. 6 g N m-2 y-

1 

 
0.0418  0.2896 
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3.3  Standing aboveground biomass 

There was no significant effect of N addition on total biomass (Fig. 3.12). The biomass of 

species that were originally seeded as part of the restoration seed mixture were 37% greater 

than that of non-seeded species (P<0.001; Fig. 3.13). However, N addition did not 

significantly affect the total biomass of either the seeded or non-seeded species (Fig. 3.13). 

The biomass of tallgrass indicator species was greater than that of non-indicator species 

(P<0.001), but there were no significant effects of N addition on the total biomass of either 

group (Fig. 3.14). Similarly, there was significantly more native than adventive biomass 

(P<0.001), but there were no significant differences in biomass for either native or 

adventive species with the addition of N (Fig. 3.15). 

When biomass was analyzed by functional group, only horsetails showed a significant 

response (a decrease) to N addition (Fig. 3.16). However, horsetails biomass was very low 

in general (Fig. 3.16). Overall, forbs made up the highest percentage of aboveground 

biomass at 54%, followed by grasses at 40%, then legumes with 5%, and finally horsetails 

with only 1%.  

Litter was removed from the biomass calculations and was treated separately. However, 

there was no effect of N treatment on litter accumulation (Fig. 3.17). 



 

 

33 

Nitrogen Added (g m
-2 

y
-1
)

0 2 6

L
o

g
(T

o
ta

l 
b

io
m

a
s

s
 (

g
)+

1
)

0

2

4

6

8

PN=0.9827

 

Figure 3.12. Log transformed data for mean total aboveground plant biomass (0.25 m-2) 
with litter removed ±1 SE by N treatments for the 2012 growing season (n=8). P-values 
obtained using a one-way ANOVA. Statisically significant values are bolded (P<0.05).  
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Figure 3.13. Log transformed data for mean total seeded and non-seeded aboveground plant 
biomass (0.25 m-2) with litter removed ±1 SE by N treatments for the 2012 growing season 
(n=8). P-values obtained using a one-way ANOVA. Statisically significant values are 
bolded (P<0.05). Data for comparison between seeded and non-seeded species were pooled 
over N treatments. 
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Figure 3.14. Log transformed data for mean total prairie and non-prairie aboveground plant 
biomass (0.25 m-2) with litter removed ±1 SE by N treatments for the 2012 growing season 
(n=8). P-values obtained using a one-way ANOVA. Statisically significant values are 
bolded (P<0.05). Data for comparison between prairie and non-prairie species were pooled 
over N treatments. 
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Figure 3.15. Log transformed data for mean total native and adventive aboveground plant 
biomass (0.25 m-2) with litter removed ±1 SE by N treatments for the 2012 growing season 
(n=8). P-values obtained using a one-way ANOVA. Statistically significant values are 
bolded (P<0.05). Data for comparison between native and non-native species were pooled 
over N treatments. 
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Figure 3.16. Log transformed data for mean total aboveground plant biomass (0.25 m-2) by 
functional group with litter removed ±1 SE by N treatments for the 2012 growing season 
(n=8). P-values obtained using Wilcoxon/Kruskal-Wallis tests.  Statisically significant 
values are bolded (P<0.05). Data for comparison between functional groups were pooled 
over N treatments. 
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Figure 3.17. Log transformed data for mean total litter biomass (0.25 m-2)  ±1 SE by N 
treatments for the 2012 growing season (n=8). P-values obtained using a one-way ANOVA. 
Statisically significant values are bolded (P<0.05). 
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3.4 Species Diversity 

The Shannon diversity index did not show differences in species diversity between 

treatments in either year. However, total diversity was higher in 2012 than it was in 2013 

(P=0.032; Fig. 3.18). Species that were found in 2012, but not 2013, included stinking 

chamomile (Anthemis cotula), common milkweed (Asclepias syriaca), smooth hawkweed 

(Crepis capillaris), narrow-leaved hawkweed (Crepis tectorum), evening primrose 

(Oenothera biennis), and sundial lupine (Lupinus perennis) while E. canadensis and H. 

umbellatum were severely reduced. None of these species were prairie indicators with the 

exception of L. perennis. In contrast, Kalm’s brome (Bromus kalmi), wild bergamot  

(Monarda fistulosa), alsike clover (Trifolium hybridum), and one-sided grass (Elymus 

trachycaulus) increased in abundance between 2012 and 2013, and with the exception of T. 

hybridum, all of these species are prairie indicator species. 
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Figure 3.18. Shannon diversity index values ±1 SE by N treatments for the 2012 and 2013 
growing seasons (n=8). P-values obtained using a one-way ANOVA. Statistically 
significant values are bolded (P<0.05). 
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3.5  Belowground biomass 

Belowground biomass was not significantly affected by N addition in 2012 or 2013 (Fig. 

3.19). Root biomass was significantly higher in September than in June for both years 

(P<0.001; data not shown). However, 2013 did not have significantly different root biomass 

than 2012 (Fig. 3.19). 
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Figure 3.19. Square root transformed data for mean total root biomass ±1 SE by N 
treatment for the 2012 and 2013 growing seasons (n=8). P-values obtained using 
Wilcoxon/Kruskal-Wallis tests. Statistially significant vvalues are bolded (P<0.05). 
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Chapter 4 - Discussion 

 

I used a N addition experiment in a restored tallgrass prairie, to test the hypothesis that 

increased atmospheric N deposition will increase the abundance of adventive herbaceous 

species that are not typically associated with tallgrass prairie. Contrary to my initial 

prediction, N addition did not significantly increase the relative biomass or abundance of 

adventive species. Instead, the native species that were part of the restoration seeding 

showed substantial increases in cover in response to N addition. Non-tallgrass species (some 

of which were non-adventive, native species, but not part of the restoration seed mix) also 

increased in response to N in 2012, but this effect was no longer present in 2013. 

When cool-season (non-tallgrass) grasses become established at a restoration site, native 

warm-season grasses often do not respond to N addition (Doll et al. 2011), yet they respond 

positively to the reduced N availability that occurs via C addition (Blumenthal et al. 2003; 

Averett et al. 2004). Likewise, there have been studies where neither seed competitive 

ability or competition between native and adventive perennial prairie species changed with 

added N (Thomsen et al. 2006; Biondini 2007). However, my results were consistent with 

previous studies where warm-season grass species have responded positively to added N in 

the absence of competition from other species (Tilman 1987; Baer et al. 2003). Therefore, 

although tallgrass species are effective competitors under N limited conditions, and they 

may be less effective than some non-tallgrass species at exploiting high N availability, they 

nevertheless can benefit from added N.  

The control of non-seeded species through the combination of seedbank exhaustion (Bakker 

& Poschlod 1996) and seed dispersal limitation (Bragg & Hulbert 2006) can give an 

advantage to seeds that are directly sown in restoration projects. Seed limitation can 

decrease both productivity and species richness by reducing establishment of some species 

and altering species composition (Tilman 1997; Foster & Tilman 2003; MacDougall & 

Turkington 2006; Zeiter et al. 2006). The dominance of native tallgrass species I observed 

may have been influenced by the relative availabilities of seeds that were sown versus those 
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that remained in the seedbank or reached the site through dispersal.  In particular, when 

comparing the list of seeded species (Appendix 2) versus species percent cover(s) 

(Appendix 3), there were no grasses found within the plots that were not planted as part of 

the restoration seed mixture. Because the restoration site had been used for agriculture prior 

to the restoration, and it was tilled and treated with herbicide as part of the restoration 

process, the presence of both native and adventive species in the seedbank may have been 

severely reduced. In addition, adventive species were actively controlled outside of the 

study area at the restoration site with herbicide, which would have limited dispersal into the 

plots. 

 

4.1 Mean total percent cover 

Mean total percent cover (i.e. the sum of species percent cover values) increased with added 

N in 2013, but there was no effect of treatment on cover in 2012. This difference between 

2012 and 2013 was associated with drought conditions in 2012 and normal precipitation in 

2013 (Table 3.1). In particular, in grass-dominated systems, drought conditions can become 

the most influential factor limiting plant growth, diminishing the effects of N addition on 

plant growth (Hutchison & Henry 2010). In addition, N conservation increases in periods of 

drought in the C4 photosynthetic, tallgrass species big bluestem (Andropogon gerardii), 

which may limit the N response of this dominant species in drought years (Hayes 1985).  

The rate of N addition also appeared to be important in determining plant cover responses. 

In 2012, the DCA and ANOSIM results revealed that the relative species abundances in the 

0 g N m-2 y-1 and 2 g N m-2 y-1 plots were more similar to each other than the abundances in 

the 6 g N m-2 y-1 plots. This result suggests that significant responses may only occur at high 

addition rates, which has been observed elsewhere in N addition experiments (Bobbink et 

al., 1998), although the chronic effects of lower addition rates may also result in species 

changes over time (Tilman 1990; Wedin & Tilman 1993; Stevens et al. 2010). 
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4.2  Total plant biomass 

Native species accounted for a large proportion of the total aboveground biomass relative to 

their cover, and likewise, seeded, and prairie indicator species were present at high biomass 

across all treatments. Although percent cover is typically a good predictor of variation in 

biomass (MacDonald & Burke 2012), biomass sampling in my study was not effective for 

discerning differences among N addition treatments. However, biomass clipping typically 

requires more replicates, larger quadrats, and a greater time commitment than non-

destructive methods such as percent cover estimation (Heidelbaugh & Nelson 1996). The 

size of my biomass quadrats (0.25 m × 0.25m) were consistent with those described 

elsewhere in the literature for prairie communities (Seastedt et al. 1991; Tilman & Wedin 

1991; Biondini 2007; Dickson & Busby 2009; Socher et al. 2012; Seabloom et al. 2013), 

but it appears that due to the high diversity and spatial heterogeneity in our plots, the 

biomass quadrats were not large enough to be representative of the overall plot species 

composition.  

To properly represent the plot biomass I may have needed quadrats of at least 1 m × 1 m 

(Camill et al. 2004), but  this would have consumed too much of the 2 m × 2 m plot area 

since the plots are intended to be monitored over the long term (i.e. many years). Similar to 

the aboveground biomass estimates, the belowground biomass estimates, which relied on 2 

cm diameter soils cores, may not have been representative of the high heterogeneity in the 

plots, which featured high root densities directly beneath the established bunchgrasses.  

4.2.1 Litter biomass  

 High N litter typically breaks down faster than low N litter, which can result in low litter 

accumulation in high N addition plots (Wedin & Tilman 1990; Lü et al. 2013). Likewise, 

changes in the relative abundances of species in response to N addition can affect overall 

litter quality, and when a high percentage of non-tallgrass species are present it should result 

in less litter accumulation than when a high percentage of tallgrass species are present, 

because of the high N concentration in litter from non-tallgrass species (Pastor et al. 1987). 

However, correlations between litter decomposition and N addition are not ubiquitous 

(Pastor et al. 1987; Tilman 1987), and likewise I did not observe an effect of N addition on 
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the accumulation of litter biomass. Aside from considering potential litter quality effects, 

the latter result was not surprising given that total biomass was not significantly affected by 

N addition.  

Litter accumulation has been suggested to reduce species richness, independent of N 

addition effects (Foster & Gross 1998; Török et al. 2010). Reduction of species richness due 

to a dense litter layer may be of special concern to field sites like the one used for this 

experiment that are not frequently burned to remove litter accumulation (Knapp & Seastedt 

1986). Litter decreases temperature, irradiance, and moisture loss at the soil surface, which 

may be beneficial to some species, yet detrimental to others (Knapp & Seastedt 1986; 

Boeken & Orenstein 2001; Török et al. 2010). For example, C4 tallgrass species require 

high temperatures to germinate and grow, and early successional species are not shade 

tolerant, therefore, both C4 tallgrass species and early successional species can exhibit 

reduced germination, reduced productivity, and increased mortality when a thick litter layer 

is present (Foster & Gross 1998; Török et al. 2010).  

 

4.3 Species specific and functional group responses  

4.3.1  Tallgrass prairie and native species 

Tallgrass prairie restorations are typically seed limited, and most rare species need to be 

seeded in order for them to become established (Martin & Wilsey 2006). The majority of 

species recorded in the plots were native, prairie species that were part of the original 

restoration seed mix; although only 41% of the original restoration seed mix were tallgrass 

prairie species, 65% of the seeded species that were recorded as growing in the plot three 

years later were tallgrass prairie species  (Appendix 3). With respect to N addition 

responses, total cover for tallgrass prairie indicator species followed my prediction in 2012, 

when the total cover of non-prairie species increased in response to N, and the cover of 

prairie indicator species was not affected by N addition. However, contrary to my 

prediction, the abundance of tallgrass indicator species was higher than non-tallgrass 

indicator species in 2013, and there was no longer a significant effect of N addition on non-
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prairie indicator species. This change in composition was accounted for by an increased 

abundance of native forbs and grass in 2013.  

The restoration project in which my experiment was located was unlike other tallgrass 

prairie restorations because it will not be routinely burned as part of the restoration plan. 

Instead, the ultimate goal of this particular restoration project was to facilitate forest 

regeneration in the long term, and burning would be counterproductive because it would 

discourage the growth of woody species. Three years after the seeding, woody plants 

contributed very little to percentage of cover in the plots (Appendix 3). However, the lack of 

burning will likely slow the rate of vegetative reproduction of tallgrass prairie species 

(Benson & Hartnett 2006). Without frequent burning, N levels may be even more important 

to tallgrass species, because they will have more competition from non-tallgrass species, 

and thus more difficulty maintaining dominance (Norris et al. 2007). 

4.3.2  Pioneer weeds 

The first few years after a disturbance are critical for establishing tallgrass species 

dominance, because of the rapid growth of pioneer species under the high light, low nutrient 

conditions (Wedin 2004). The first year after seeding, the aboveground biomass of E. 

canadensis, a native species not present in the seeding mix, increased significantly in 

response to N addition in the experimental plots (Borden 2012). E. canadensis was also the 

main driver of the increased mean percent cover of biennials in response to N addition in 

2012. However, when the aboveground biomass of grass and native forb increased in 2013, 

there was a corresponding decrease in both the aboveground biomass and cover of E. 

canadensis, and there were no longer significant effects of N addition on E. canadensis 

cover. These responses were consistent with the colonization patterns of E. canadensis, 

which is a fast-growing, weedy species that is successful on high N soil, but is not able to 

compete effectively with tallgrasses for light over time (Tilman 1987; Thébaud et al. 1996; 

Prieur-Richard et al. 2000).  

In addition to the increased aboveground competition, pioneer weed species such as, E. 

canadensis also would have been influenced by increased belowground competition from 

tallgrass species. Because tallgrass species allocate such a large proportion of biomass to 
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belowground growth, they may outcompete weedy species for soil nutrients (Pärtel & 

Wilson 2002). Tallgrass species may also inhibit the establishment of pioneer weeds, 

because their deep, near vertical root growth can create a physical barrier to block lateral 

root growth by other plants, and thus impede colonization (Delaney et al. 2000). 

4.3.3  Functional groups 

Although the total biomass and cover of forbs were higher than those of grasses, the 

dominant species in each plot was most often a grass species, because the ratio of forb 

species to grass species was high. In this experiment there were no significant N addition 

effects on the ratio of grasses to forbs, whereas in other experiments N addition has been 

shown to decreases this ratio (Stevens et al. 2006; Lu et al. 2010). Functional group 

membership was also important for interpreting trends in the establishment of native versus 

adventive species; for example, only forbs and legumes were represented by species that 

were adventive, and the increases in total cover with added N in 2013 were due mostly to 

increases in native forbs. Elsewhere, increased invasion of non-prairie species has been 

observed in the presence of N fixing legumes, due to increased soil N, whereas there is 

often decreased invasion when tallgrass species dominate, as a result of decreased soil N 

(Prieur-Richard et al. 2000; Fargione & Tilman 2005). At my site, N fixers such as legumes 

and field horsetail (Equisetum arvense) (Fuji et al. 1984) thrived in the low N plots, but an 

increase in invasion by adventive species was not observed in these plots. Legumes had 

higher percent cover in low N plots than in high N plots in both 2012 and 2013, and there 

was a marginally significant trend of increased E. arvense cover in low N plots, and E. 

arvense biomass increased significantly in the low N plots. Legumes typically have higher 

seed invasability than perennial grasses; therefore, with the reduced vegetative cover in the 

low N plots, adventive leguminous species had higher establishment rates, as compared to 

adventive perennial grasses (Tilman 1997). 

Both biennial and annual total cover decreased over time, whereas perennial cover 

increased, which is consistent with the literature (e.g. Camil et al. 2004). With respect to the 

effect of N addition on species composition, biennials increased with added N for 2012, 

whereas perennials increased with added N for 2013.  
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4.4 Species diversity 

Although species diversity increased between 2012 and 2013, it did not respond 

significantly to N addition. Since our study revealed increases in mean percent cover of 

native species that were already found throughout the site with added N, rather than large 

increases in cover of adventive species, added N did not affect species diversity. This result 

is not consistent with diversity responses to the manipulation of N availability in other 

experiments. A N reduction study by Baer et al. (2003) suggested that in the early years of a 

tallgrass prairie restoration project, decreased productivity coupled with low N availability 

increased light availability, and hence increased species diversity by increasing the 

abundance of light-demanding pioneer species. The opposite has been observed in other 

early successional tallgrass prairie N addition experiments, where the diversity of pioneer 

species decreased (Tilman 1987). Likewise, when sites mature and species become better 

established over time, species diversity often decreases with N addition (Tilman 1987; 

Wedin & Tilman 1990; Pyšek & Lepš 1991; Tilman & Pacala 1993; Reich et al. 2001; 

Fargione & Tilman 2005; Clark & Tilman 2008; Bobbink et al. 2010). Although the species 

richness and diversity in a plant community can be an important determinant of invasability 

(Tilman 1997), the dominant cover at a site may be a better invasibility indicator (Smith et 

al. 2004).  

 

4.5 Future directions 

Future studies could add N at a rates higher than projected rates of atmospheric N 

deposition for 2050 in order to get a better understanding of what would happen to species 

composition at restoration sites under extremely high deposition conditions. For example, N 

treatments of 5 to 56 g N m-2 y-1 have been used in old-field (Foster & Gross 1998), 

semiarid grassland (Lü et al. 2013) and forest community experiments (Lu et al. 2010). At 

very high N levels there can be a decrease in productivity due to sensitivities to toxicity of 

soil by mobilization of Al, Fe, and Mn and acidification, which can also change species 

composition (Bakker & Berendse 1999; Stevens et al. 2004, 2011; Horswill et al. 2008). 

The effect of increased N on productivity is compounded by the presence of N fixing 



 

 

50 

bacteria, because the soil pH is decreased when N fixing bacteria oxidize NH3 into two 

protons (Bakker & Berendse 1999). When N accumulates you can also see a greater 

disparity in biomass between low and high N addition sites (Tilman 1987).  

Terrestrial plant communities containing rare species can be especially susceptible to 

increased rates of N addition (Vandenberg et al. 2011; Stevens et al. 2011), yet as tallgrass 

prairies mature, they may be less susceptible to invasive species because the dominant 

native species have time to establish, and are consequently better able to compete with 

incoming species (Gartshore 2011). Thus, understanding invasion dynamics in the early 

stages of tallgrass prairie restoration, as it relates to increasing atmospheric N deposition, is 

important to help the tallgrass prairie reach maturity and become able to self-regulate. The 

importance of seed limitation was not monitored in this study, but may have had an effect 

on the invasion of adventive species. It would have been interesting to monitor how much 

the seedbank and seed rain attributed to species composition in context of the N addition 

treatments. 

In addition to increased rates of atmospheric N deposition, other global change factors such 

as CO2, warming, or precipitation regime alteration (Alley et al. 2013) may interact to affect 

community composition and invasability in restored tallgrass prairie. Future studies could 

explore interactions between these factors and N in the context of tallgrass prairie 

restoration, and it is anticipated that C4, tallgrass species may react differently than C3 non-

tallgrass species to these factors (An et al. 2005; Lattanzi 2010). Both climate warming and 

increased concentrations of atmospheric CO2 may shift the competitive advantage towards 

C4 tallgrasses, since their already high N and CO2 use efficiencies may be further enhanced 

by increased temperatures, while the corresponding efficiencies of non-tallgrass, C3 species 

do not seem to be affected by increased temperatures (Ward et al. 1999; An et al. 2005). As 

for anthropogenic alteration of the precipitation cycle, this is expected to result in more 

extreme droughts and flooding in the future (Alley et al. 2013) Compared to non-tallgrass 

C3 species, the increased water-use efficiency allowed by decreased stomatal opening, and 

deep root system make C4 tallgrass species superior competitors under low soil moisture 

conditions (Ward et al. 1999; Wedin 2004). Therefore, C4, tallgrass species may have a 

competitive advantage over non-tallgrass species in future tallgrass prairie restorations if 
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interactions with N deposition and other global change factors have additive effects on 

tallgrass productivity. 

In my study, I looked exclusively at the effects of N addition on species composition in 

tallgrass prairie restoration, however, using C addition to lower N levels as a means of 

combating atmospheric N deposition has also been suggested (Baer et al. 2002, 2003; 

Blumenthal et al. 2003). The addition of C, usually in the form of sawdust or sucrose, may 

help reduce weedy species in tallgrass sites, but it has had limited success in field trials 

(Blumenthal et al. 2003). There have been decreases in the productivity of tallgrass species 

associated with C addition, which would leave them vulnerable to shading, and decrease 

belowground nutrient storage reserves for growth after a fire (Blumenthal et al. 2003). C 

addition can also alter seed germination, which may also influence community composition 

(Kabouw et al. 2010). 

 

4.6 Conclusions 

I had predicted that increases in the rate of atmospheric N deposition, consistent with levels 

projected for southern Ontario over the next 40 years, would jeopardize the establishment 

and success of tallgrass prairie species by increasing the ability of non-tallgrass prairie 

species to invade restoration sites. However, after three years of N addition, tallgrass prairie 

species were able to maintain and even increase in dominance at the restoration site. 

Nevertheless, because the study site had been previously used for agriculture, and the area 

surrounding the restoration site was actively controlled for adventive species, the study site 

may have had a very low residual seedbank, and a low amount of seed rain of adventive 

species. The dominance of native species may also have resulted from the resilience of the 

native species to invasion at increased N levels. Therefore, although the site did not show a 

lasting effect of increased N levels on invasive species, less intensive restorations that have 

a large residual source of perennial adventive species may experience greater increases in 

the abundance of adventive species. Based on the increased dominance of both native and 

tallgrass prairie species with added N in the time scale in the study, it appears that with 

thorough restoration procedures, which reduce the abundance of adventive seed 
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establishment, it will be economically and ecologically feasible to plant tallgrass prairies 

based on past species compositions. However, early successional species composition can 

be drastically different from that of mature tallgrass prairies (Kindscher & Tieszen 1998; 

Baer et al. 2002). Due to the long-term nature of this study, future monitoring of the 

vegetation will allow a better determination of whether chronic N addition will influence the 

species trajectory of the tallgrass prairie restoration.



 

 

53

References  

 

Aber J, Nadelhoffer K (1989) Nitrogen saturation in northern forest ecosystems. 

BioScience, 39, 378–386. 

Aerts R, III FC, Chapin FI (1999) The mineral nutrition of wild plants revisited: a re-

evaluation of processes and patterns. Advances in Ecological Research, 30, 1393. 

Aherne J, Posch M (2013) Impacts of nitrogen and sulphur deposition on forest ecosystem 

services in Canada. Current Opinion in Environmental Sustainability, 5, 108–115. 

Alley R, Hewitson B, Hoskins B, Joos F (2013) Summary for policymakers. In: Climate 

Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the 

Fifth Assessment Report of the IPCC pp. 1–36. Stockholm, Sweden, 

Intergovernmental Panel on Climate Change. 

An Y, Wan S, Zhou X, Subedar AA, Wallace LL, Luo Y (2005) Plant nitrogen 

concentration, use efficiency, and contents in a tallgrass prairie ecosystem under 

experimental warming. Global Change Biology, 11, 1733–1744. 

Averett JM, Klips RA, Nave LE, Frey SD, Curtis PS (2004) Effects of soil carbon 

amendment on nitrogen availability and plant growth in an experimental tallgrass 

prairie restoration. Restoration Ecology, 12, 568–574. 

Axelrod DI (1985) Rise of the grassland biome, central North America. The Botanical 

Review, 51, 163–201. 

Baer SG, Blair JM, Collins SL, Knapp AK (2003) Soil resources regulate productivity and 

diversity in newly established tallgrass prairie. Ecology, 84, 724–735. 



 

 

54

Baer SG, Kitchen DJ, Blair JM, Rice CW (2002) Changes in ecosystem structure and 

function along a chronosequence of restored grasslands. Ecological Applications, 12, 

1688–1701. 

Bakker J, Berendse F (1999) Constraints in the restoration of ecological diversity in 

grassland and heathland communities. Trends in Ecology & Evolution, 14, 63–68. 

Bakker J, Poschlod P (1996) Seed banks and dispersal important topics in restoration 

ecology. Acta Botanica Neerlandica, 4, 461–490. 

Bakowsky W, Riley JL (1994) A survey of the prairies and savannas of southern Ontario. 

In: Proceedings of the Thirteenth North American Prairie Conference: Spirit of the 

Land, Our Prairie (eds: Wickett R, Lewis PD, Woodliffe A, Pratt P), pp. 7–16. 

Barbour MG, Burk JH, Pitts WD, Gilliam FS, Schwartz MW (1999) Terrestrial Plant 

Ecology. Menlo Park, CA., Benjamin/Cummings. 

Benson EJ, Hartnett DC (2006) The role of seed and vegetative reproduction in plant 

recruitment and demography in tallgrass prairie. Plant Ecology, 187, 163–178. 

Biondini M (2007) Plant diversity, production, stability, and susceptibility to invasion in 

restored northern tallgrass prairies (United States). Restoration Ecology, 15, 77–87. 

Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and 

facilitates prairie restoration. Ecological Applications, 13, 605–615. 

Bobbink R, Hicks K, Galloway J, et al. (2010) Global assessment of nitrogen deposition 

effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59. 

Boeken B, Orenstein D (2001) The effect of plant litter on ecosystem properties in a 

Mediterranean semi�arid shrubland. Journal of Vegetation Science, 12, 825–832. 

Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annual Review of 

Ecology, Evolution, and Systematics, 39, 641–659. 



 

 

55

Borden L (2012) Tallgrass prairie restoration in a changing environment: the influence of 

nitrogen deposition. Undergraduate Thesis. Department of Biology, Western 

University, Canada, 1-31. 

Bragg T, Hulbert L (2006) Woody plant invasion of unburned Kansas bluestem prairie. 

Journal of Range Management, 29, 19–24. 

Camill P, McKone MJ, Sturges ST, et al. (2004) Community and ecosystem level changes 

in a species-rich tallgrass prairie restoration. Ecological Applications, 14, 1689–1694. 

Carson WP, Barrett GW (1988) Succession in Old-Field Plant Communities: Effects of 

Contrasting Types of Nutrient Enrichment. Ecology, 69, 984–994. 

Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen 

deposition to prairie grasslands. Nature, 451, 712–715. 

COSEWIC (2007) Canadian species at risk, Sepember 2007. Committee on the Status of 

Endangered Wildlife in Canada, 1-84. 

Curtis JT (1959) The Vegetation of Wisconsin: An Ordination of Plant Communities. 

Madison, Wisconsin, USA, University of Wisconsin Press. 

Delaney K, Rodger L, Woodliffe PA, Rhynard G, Morris P (2000) Planting the seed: A 

guide to establishing prairie and meadow communities in southern Ontario. London, 

Ontario, Minister of the Environment. 

Dentener F, Drevet J, Lamarque JF, et al. (2006) Nitrogen and sulfur deposition on regional 

and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, 1–21. 

Dickson TL, Busby WH (2009) Forb species establishment increases with decreased grass 

seeding density and with increased forb seeding density in a Northeast Kansas, U.S.A., 

experimental prairie restoration. Restoration Ecology, 17, 597–605. 



 

 

56

Doll JE, Haubensak KA, Bouressa EL, Jackson RD (2011) Testing disturbance, seeding 

time, and soil amendments for establishing native warm-season grasses in non-native 

cool-season pasture. Restoration Ecology, 19, 1–8. 

Driscoll J (1997) Acid rain demonstration: the formation of nitrogen oxides as a by-product 

of high-temperature flames in connection with internal combustion engines. Journal of 

Chemical Education, 74, 1424–1425. 

Emery S, Gross K (2007) Dominant species identity, not community evenness, regulates 

invasion in experimental grassland plant communities. Ecology, 88, 954–964. 

Fargione JE, Tilman D (2005) Diversity decreases invasion via both sampling and 

complementarity effects. Ecology Letters, 8, 604–611. 

Foster B, Gross K (1998) Species richness in a successional grassland: effects of nitrogen 

enrichment and plant litter. Ecology, 79, 2593–2602. 

Foster BL, Tilman D (2003) Seed limitation and the regulation of community structure in 

oak savanna grassland. Journal Of Ecology, 91, 999–1007. 

Freedman B (2006) Flows and cycles of nutrients. In: Environmental Science: a Canadian 

Perspective pp. 60–72. Toronto, Ontario, Canada, Pearson Education Canada Inc. 

Fuji U, Toru H, Michihiko Y (1984) Nitrogen-fixing activities associated with rhizomes 

and roots of Equisetum species. Soil Biology and Biochemistry, 16, 663–667. 

Galloway J (2005) Global nitrogen cycles: past, present, and future. Science in China 

Series C: Life Sciences, 48, 669–677. 

Galloway J, Dentener F, Capone D (2004) Nitrogen cycles: past, present, and future. 

Biogeochemistry, 70, 153–226. 

Galloway JN, Townsend AR, Erisman JW, et al. (2008) Transformation of the nitrogen 

cycle: recent trends, questions, and potential solutions. Science, 320, 889–92. 



 

 

57

Gartshore M (2011) Ecological restoration in Norfolk County, Ontario. In: Native Plant 

Resources Guide Ontario: 6th Edition pp13 – 15. Waterloo, Ontario, Society for 

Ecological Restoration of Ontario. 

Goodban A, Bakowsky WD, Bricker BD (1997) The historical and present extent and 

floristic compostion of prairie and savanna vegetation in the vicinity of Hamilton, 

Ontario. In: Fifteenth North American Prairie Conference pp. 88–103. 

Graham LE, Graham JM, Wilcox LW (2006) Plant Biology. Upper Saddle River, NJ, USA, 

Pearson Education, Inc. 

Hammer Ÿ, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software 

package for education and data analysis. Palaeontologia Electronica, 4, 9. 

Hayes D (1985) Seasonal nitrogen translocation in big bluestem during drought conditions. 

Journal of Range Management, 38, 406–410. 

Heidelbaugh WS, Nelson W (1996) A power analysis of methods for assessment of change 

in seagrass cover. Aquatic Botany, 53, 227–233. 

Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, 

eutrophication and acidification of species-rich grasslands in response to long-term 

simulated nitrogen deposition. Environmental Pollution, 155, 336–349. 

Howe HF (1994) Managing species diversity in tallgrass prairie: assumptions and 

implications. Conservation Biology, 8, 691–704. 

Hutchison JS, Henry HA (2010) Additive effects of warming and increased nitrogen 

deposition in a temperate old field: plant productivity and the importance of winter. 

Ecosystems, 13, 661–672. 

Kabouw P, Nab M, Van Dam NM (2010) Activated carbon addition affects substrate pH 

and germination of six plant species. Soil Biology and Biochemistry, 42, 1165–1167. 



 

 

58

Kemp P, Williams G (1980) A physiological basis for niche separation between Agropyron 

smithii (C3) and Bouteloua gracilis (C4). Ecology, 61, 846–858. 

Kephart KD, Buxton DR, Taylor ES (1992) Growth of C3 and C4 perennial grasses under 

reduced irradiance. Crop Science, 32, 1033–1038. 

Kindscher K, Tieszen LL (1998) Floristic and soil organic matter changes after five and 

thirty-five years of native tallgrass prairie restoration. Restoration Ecology, 6, 181–

196. 

Knapp A, Seastedt T (1986) Detritus accumulation limits productivity of tallgrass prairie. 

BioScience, 36, 662–668. 

Ladd D, Oberle F (2005) Tallgrass Prairie Wildflowers 2: A Field Guide to Common 

Wildflowers and Plants of the Prairie Midwest. Morris Book Publishing, LLC, China. 

Lattanzi FA (2010) C3/C4 grasslands and climate change. In: Grassland Science in Europe 

Volume 15 (eds: Schnyder H, Isselstein J, Taube F, et al.), pp3–13. Duderstadt, 

Germany, Mecke Druck und Verlag. 

Lu X, Mo J, Gilliam FS, Zhou G, Fang Y (2010) Effects of experimental nitrogen additions 

on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688–

2700. 

Lü X-T, Reed S, Yu Q, He N-P, Wang Z-W, Han X-G (2013) Convergent responses of 

nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global 

Change Biology, 19, 2775–84. 

MacDonald R, Burke J (2012) Relationship between aboveground biomass and percent 

cover of ground vegetation in Canadian Boreal Plain riparian forests. Forest Science, 

58, 47–53. 

MacDougall AS, Turkington R (2006) Dispersal, competition, and shifting patterns of 

diversity in a degraded oak savanna. Ecology, 87, 1831–1843. 



 

 

59

Mack M, D’Antonio C, Ley R (2001) Alternation of ecosystem nitrogen dynamics by 

exotic plants: a case study of C4 Grasses in Hawaii. Ecological Applications, 11, 

1323–1335. 

Martin LM, Wilsey BJ (2006) Assessing grassland restoration success: relative roles of 

seed additions and native ungulate activities. Journal of Applied Ecology, 43, 1098–

1109. 

McGregor RL, Barkley TM, Schofield EK, Brooks R. (1991) Flora of the Great Plains. 

Kansas, Nebraska, USA, University Press of Kansas. 

McLendon T, Redente E (1992) Effects of nitrogen limitation on species replacement 

dynamics during early secondary succession on a semiarid sagebrush site. Oecologia, 

91, 312–317. 

Miles EK, Knops JMH (2009) Shifting dominance from native C4 to non-native C3 

grasses: relationships to community diversity. Oikos, 118, 1844–1853. 

Monteith JL (1978) Reassessment of maximum growth rates for C3 and C4 crops. 

Experimental Agriculture, 14, 1–5. 

Morford SL, Houlton BZ, Dahlgren RA (2011) Increased forest ecosystem carbon and 

nitrogen storage from nitrogen rich bedrock. Nature, 477, 78–81. 

Mueller-Dombois D, Ellenberg H (1974) Aims and Methods of Vegetation Ecology. New 

York, USA, John Wiley & Sons, Inc. 

Norris M, Blair J, Johnson L (2007) Altered ecosystem nitrogen dynamics as a 

consequence of land cover change in tallgrass prairie. The American Midland 

Naturalist, 158, 432–445. 

Nyamai PA, Prather TS, Wallace JM (2011) Evaluating restoration methods across a range 

of plant communities dominated by invasive annual grasses to native perennial 

grasses. Invasive Plant Science and Management, 4, 306–316. 



 

 

60

Oldham MJ, Bakowsky WD, Sutherland D. (1995) Floristic Quality Assessment System for 

Southern Ontario. Ontario Ministry of Natural Resources, Natural Heritage 

Information Center. 

Pärtel M, Wilson S (2002) Root dynamics and spatial pattern in prairie and forest. Ecology, 

83, 1199–1203. 

Pastor J, Stillwell M, Tilman D (1987) Little bluestem litter dynamics in Minnesota old 

fields. Oecologia, 72, 327–330. 

Payne RJ, Dise NB, Stevens CJ, Gowing DJ (2013) Impact of nitrogen deposition at the 

species level. Proceedings of the National Academy of Sciences of the United States of 

America, 110, 984–987. 

Phoenix GK, Hicks WK, Cinderby S, et al. (2006) Atmospheric nitrogen deposition in 

world biodiversity hotspots: the need for a greater global perspective in assessing N 

deposition impacts. Global Change Biology, 12, 470–476. 

Prieur-Richard A-H, Lavorel S, Grigulis K, Dos Santos A (2000) Plant community 

diversity and invasibility by exotics: invasion of Mediterranean old fields by Conyza 

bonariensis and Conyza canadensis. Ecology Letters, 3, 412–422. 

Pyšek P, Lepš J (1991) Response of a weed community to nitrogen fertilization: a 

multivariate analysis. Journal of Vegetation Science, 2, 237–244. 

Reich PPB, Knops J, Tilman D, et al. (2001) Plant diversity enhances ecosystem responses 

to elevated CO2 and nitrogen deposition. Nature, 411, 809–824. 

Rodger L (1998) Tallgrass communities of southern Ontario: a recovery plan. Toronto, 

Ontario, Canada, Ministry of Natural Resources. 

Samson F, Knopf F (1994) Prairie conservation in North America. BioScience, 44, 418–

421. 



 

 

61

Schramm P (1990) Prairie restoration: a twenty-five year perspective on establishment and 

management. In: Recapturing a vanishing heritage. Proceedings of the Twelfth North 

American Prairie Conference 1990 (eds: Smith DD, Jacobs CA), pp169–178. 

Galesburg, Illinois, University of Northern Iowa. Cedar Falls, IA. 

Seabloom E, Borer ET, Buckley Y, et al. (2013) Predicting invasion in grassland 

ecosystems: is exotic dominance the real embarrassment of richness. Global Change 

Biology, 19, 3777–3687. 

Seastedt T, Briggs J, Gibson D (1991) Controls of nitrogen limitation in tallgrass prairie. 

Oecologia, 87, 72–79. 

Smith MD, Wilcox JC, Kelly T, Knapp AK (2004) Dominance not richness determines 

invasibility of tallgrass prairie. Oikos, 106, 253–262. 

Socher S, Prati D, Boch S (2012) Direct and productivity-mediated indirect effects of 

fertilization, mowing and grazing on grassland species richness. Journal of Ecology, 

100, 1391–1399. 

Stephen Packard, Mutel CF (1997) The Tallgrass Restoration Handbook: for Prairies, 

Savannas, and Woodlands (P Stephen and CF Mutel, Eds.). Washington, DC, Island 

Press. 

Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation 

to nitrogen deposition in the UK: regional trends and potential controls. Global 

Change Biology, 12, 1823–1833. 

Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on 

the species richness of grasslands. Science, 303, 1876–1879. 

Stevens CJ, Duprè C, Dorland E, et al. (2010) Nitrogen deposition threatens species 

richness of grasslands across Europe. Environmental Pollution, 158, 2940–2945. 



 

 

62

Stevens CJ, Duprè C, Dorland E, et al. (2011) The impact of nitrogen deposition on acid 

grasslands in the Atlantic region of Europe. Environmental Pollution, 159, 2243–

2250. 

Temperton V, Hobbs R, Nuttle T, Halle S (2004) Assembly Rules and Restoration Ecology: 

bridging the gap between theory and practice (V Temperton, R Hobbs, T Nuttle, and 

S Halle, Eds.). Washington, DC, Island Press. 

Thébaud C, Finzi A, Affre L, Debussche M, Escarre J (1996) Assessing why two 

introduced Conyza differ in their ability to invade mediterranean old fields. Ecology, 

77, 791–804. 

Thomsen MA, Corbin JD, D’Antonio CM (2006) The effect of soil nitrogen on competition 

between native and exotic perennial grasses from northern coastal California. Plant 

Ecology, 186, 23–35. 

Thorne M, Cardina J (2007) Prairie grass establishment on calcareous reclaimed mine soil. 

Journal of Environmental Quality, 40, 1824–34. 

Tilman D (1985) The resource-ratio hypothesis of plant succession. American Naturalist, 

125, 827–852. 

Tilman D (1987) Secondary succession and the pattern of plant dominance along 

experimental nitrogen gradients. Ecological Monographs, 57, 189–214. 

Tilman D (1990) Constraints and tradeoffs: toward a predictive theory of competition and 

succession. Oikos, 58, 3–15. 

Tilman D (1997) Community invasibility, recruitment limitation, and grassland 

biodiversity. Ecology, 78, 81–92. 

Tilman D, Pacala S (1993) The maintenance of species diversity in plant communities. 

Species Diversity in Ecological Communities. (R Ricklefs and D Schluter, Eds.). 

Chicago, IL, USA, University of Chicago Press. 



 

 

63

Tilman D, Wedin D (1991) Dynamics of nitrogen competition between successional 

grasses. Ecology, 72, 1038–1049. 

Török P, Deák B, Vida E, Valkó O, Lengyel S, Tóthmérész B (2010) Restoring grassland 

biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes. 

Biological Conservation, 143, 806–812. 

Torok K, Szili-Kovacs T, Halassy M, Toth T, Hayek Z, Paschke MW, Wardell L. (2000) 

Immobilization of soil nitrogen as a possible method for the restoration of sandy 

grassland. Applied Vegetation Science, 3, 7–14. 

Turner C, Knapp A (1996) Responses of C4 Grass and three C3 forbs to variation in 

nitrogen and light in tallgrass prairie. Ecology, 77, 1738–1749. 

Vandenberg L, Vergeer P, Tim R, Smart S, Guest D, Ashmore MR (2011) Direct and 

indirect effects of nitrogen deposition on species composition change in calcareous 

grasslands. Global Change Biology, 17, 1871–1883. 

Vinton MA, Goergen EM (2006) Plant–soil feedbacks contribute to the persistence of 

Bromus inermis in tallgrass Prairie. Ecosystems, 9, 967–976. 

Vitousek PM, Aber JD, Howarth RW, et al. (1997) Technical report: human alteration of 

the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–

750. 

Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 

and C4 plants to drought in low and elevated CO2. Global Change Biology, 5, 857–

867. 

Wedin D (2004) Resource use, ecology, and global change. In: Warm-Season (C4) Grasses 

(eds: Moser LE, Burson BL, Sollenberger LE), pp15–50. Madison, WI., American 

Society of Agronomy-Crop Science Society of America-Soil Science Society of 

America. 



 

 

64

Wedin D, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial 

grasses. Oecologia, 84, 433–441. 

Wedin D, Tilman D (1992) Nitrogen cycling, plant competition, and the stability of 

tallgrass prairie. In: Recapturing a vanishing heritage. Proceedings of the Twelfth 

North American Prairie Conference 1990. (eds: Smith D., Jacobs C.), pp. 469–472. 

Cedar Falls, Iowa, Univeristy of Northern Iowa Press. 

Wedin D, Tilman D (1993) Competition among grasses along a nitrogen gradient. Initial 

conditions and mechanisms of competition. Ecological Monographs, 63, 199–229. 

Wilson S, Tilman D (1991) Component of plant competition along an experimental 

gradient of nitrogen availability. Ecology, 72, 1050–1065. 

Zeiter M, Stampfli A, Newbery DM (2006) Recruitment limitation constrains local species 

richness and productivity in dry grassland. Ecology, 87, 942–951. 



 

 

65 

Appendices 

 
 
On Nov 11, 2013, at 1:11 PM, Tallgrass Ontario <info@tallgrassontario.org> wrote: 
 
 
Hello Jennifer 
 
On behalf of the Tallgrass Ontario Board of Directors, you have permission to use the TgO 
map of “Current and Historical Tallgrass Vegetation of Southern Ontario” in your master's 
thesis. 
 
We only request that appropriate credit be given, and if at all possible, TgO receive a digital 
copy of the completed thesis for our files. 
 
We wish you well with your thesis and hope that you consider becoming a member of 
Tallgrass Ontario. 
 
Regards 
 
Tom Purdy - Treasurer 
 
  

 

Appendix 1. Permission to use Figure 1.1. 



 

 

66 

Appendix 2. Species list for seeded species at the restoration site, Spring 2010. All species 

seeded were native. 

Tallgrass Prairie Restoration Seed Mix (Spring 2010) 

Forbs 

Artemisia campestris L. (field woodworm) 
Asclepias syriaca L. (common milkweed) 
Asclepias tuberosa L. (butterfly milkweed) 
Crocanthemum bicknellii (Fernald) Janch. (bicknell's rock rose) 
Desmodium canadense (L.) DC (Canada tick-trefoil) 
Desmodium paniculatum (L.) DC (panicled tick-trefoil) 
Doellingeria umbellata (Mill.) Nees (flat-topped white aster) 
Euthamia graminifolia (L.) Nutt. (grass-leaved goldenrod) 
Helianthus divaricatus L. (hoary frostweed) 
Houstonia longifolia Gaertn. (long-leaved bluets) 
Lechea intermedia Britton (large-pod pinweed) 
Lechea mucronata Raf. (hairy pinweed) 
Lespedeza capitata Michx. (round-headed bush-clover) 
Lespedeza hirta (L.) Hornem. (hairy bush-clover) 
Lespedeza intermedia (S. Watson) Britton (shrubby bush-clover) 
Liatris cylindracea Michx. (slender blazing star) 
Lupinus perennis L. (sundial lupine) 
Maianthemum stellatum (L.) Link (false Solomon's seal) 
Monarda fistulosa L. (wild bergamot) 
Oenothera biennis L. (common evening primrose) 
Penstemon digitalis Sims (foxglove beardtongue) 
Pseudognaphalium macounii (Greene) Kartesz (Macoun’s cudweed) 
Pseudognaphalium obtusifolium (L.) Hilliard & B.L. Burtt (sweet everlasting) 
Pycnanthemum virginianum (L.) Fernald & B.L. Rob. (Virginia mountain-mint) 
Rudbeckia hirta L. (black-eyed Susan) 
Silene antirrhina L. (sleepy catchfly) 
Sisyrinchium montanum Greene (blue-eyed grass) 
Solidago juncea Aiton (early goldenrod) 
Solidago nemoralis Aiton (grey-stemmed goldenrod) 
Symphyotrichum ericoides (L.) G.L. Nesom (white heath aster) 
Symphyotrichum laeve (L.) Á. Löve & D. Löve  (smooth blue aster) 
Symphyotrichum oolentangiense  (Riddell) G.L. Nesom (sky blue aster) 
Symphyotrichum pilosum (Willd.) G.L. Nesom (old field aster) 
Symphyotrichum urophyllum  (DC) G.L. Nesom (arrow-leaved aster) 
Triodanis perfoliata (L.) Nieuwl. (clasping-leaved Venus' looking-glass) 
Viola sagittata Aiton (sand violet) 

* = Native (Oldham et al. 1995) 
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Appendix 2 (Continued). Species list for seeded species at the restoration site, Spring 

2010.  

* = Native (Oldham et al. 1995) 
 

 

Tallgrass Prairie Restoration Seed Mix (Spring 2010) 

Graminoids 
Andropogon gerardii Vitman (big bluestem) 
Bromus kalmii A. Gray (kalm's brome) 
Elymus trachycaulus (Link) Gould (slender wildrye) 
Schizachyrium scoparium (Mich.) Nash (little bluestem) 
Scirpus cyperinus (L.) Kunth (common woolly bulrush) 
Sorghastrum nutans (L.) Nash (yellow indiangrass) 
Sporobolus cryptandrus (Torr.) A. Gray (sand dropseed) 
 
Trees/Shrubs 
Carya cordiformis (Wang.) K. Koch (bitternut hickory) 
Carya glabra (Mill.) Sweet (pignut hickory) 
Carya ovata (Mill.) K. Koch (shagbark hickory) 
Ceanothus americanus L. (New Jersey tea) 
Cornus amomum Mill. (silky dogwood) 
Cornus racemosa Lam. (grey dogwood) 
Corylus americana Walter (American hazel) 
Crataegus pruinosa (H.L. Wendl.) K. Koch (frosted hawthorn) 
Prunus americana Marshall (American plum) 
Prunus serotina Ehrh. (black cherry) 
Prunus virginiana L. (chokecherry) 
Malus coronaria (L.) Mill. (sweet crabapple) 
Quercus macrocarpa Michx. (burr oak) 
Rhus copallinum L. (winged sumac) 
Rhus typhina L. (staghorn sumac) 
Rosa blanda Aiton (smooth rose) 
Rosa carolina L. (Carolina rose) 
Vitis aestivalis Michx. (summer grape) 
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  2012  2013 

Forbs Species 0 2 6  0 2 6 

  Prairie         

 *^ Artemisia campestris L. (field woodworm) 3.1 1.8 0.3  1.0 0.8 2.1 
 *^ Asclepias tuberosa L. (butterfly milkweed) 0.0 0.1 0.1  0.0 0.0 0.3 
 *^ Monarda fistulosa L. (wild bergamot) 4.2 3.7 9.2  12.0 10.3 35.4 

 *^ 
Pycnanthemum virginianum (L.) Fernald & B.L. Rob. (Virginia 
mountain-mint) 

0.0 3.0 2.1  0.1 8.8 3.6 

 *^ Rudbeckia hirta L. (black-eyed Susan) 15.3 16.8 22.8  14.6 19.7 17.6 
 *^ Symphyotrichum laeve (L.) Á. Löve & D. Löve  (smooth blue aster) 9.6 10.4 8.1  4.9 11.3 6.3 
 *^ Symphyotrichum oolentangiense  (Riddell) G.L. Nesom (sky blue aster) 0.0 0.0 0.0  3.7 3.9 5.5 
 *^ Symphyotrichum urophyllum  (DC) G.L. Nesom (arrow-leaved aster) 6.1 8.6 11.7  1.5 6.0 1.5 
  Non-prairie         
 * Ambrosia artemisiifolia L. (common ragweed) 0.1 2.2 0.2  0.1 0.0 0.4 
  Anthemis cotula L. (stinking chamomile) 0.9 1.9 2.2  0.0 0.0 0.0 
 * Arabidopsis lyrata  (L.) O'Kane & Al-Shehbaz (lyre-leaved rockcress) 1.3 9.1 14.4  5.7 5.7 6.6 
 *^ Asclepias syriaca L. (common milkweed) 0.1 0.1 2.1  0.0 0.0 0.0 
  Crepis capillaris (L.) Wallr. (smooth hawksbeard) 0.0 0.0 2.1  0.0 0.0 0.0 
  Crepis tectorum L. (narrow-leaf hawksbeard) 0.0 0.1 0.1  0.0 0.0 0.0 
 * Erigeron annuus (L.) Pers. (annual fleabane) 0.3 0.0 0.3  0.9 0.0 3.6 
 * Erigeron canadensis L. (Canada horseweed) 5.3 12.9 7.8  4.5 4.3 4.6 
 *^ Euthamia graminifolia (L.) Nutt. (grass-leaved goldenrod) 2.2 0.0 0.0  0.7 0.1 0.9 
  Holosteum umbellatum L. (jagged chickweed) 32.9 30.4 18.7  4.7 3.3 4.8 
 *^ Oenothera biennis L. (common evening primrose) 0.9 0.7 0.9  0.0 0.0 0.0 
 * Oxalis dillenii Jacq. (slender yellow wood-sorrel) 0.1 1.0 4.8  0.0 2.3 0.9 
 * Solidago canadensis L. (Canada goldenrod) 0.0 10.3 0.0  0.3 11.3 0.9 
 *^ Solidago juncea Aiton (early goldenrod) 5.8 13.0 4.3  6.9 8.7 6.3 
  Taraxacum officinale F.H. Wigg. (common dandelion) 4.4 11.1 14.7  3.0 6.6 5.0 
  Trifolium hybridum L. (alsike clover) 0.0 0.0 0.0  0.9 0.1 0.1 
  Veronica arvensis L. (corn speedwell) 7.8 5.6 3.9  7.7 11.6 5.8 
 * Native species ^ Seeded

 Appendix 3. Maximum species cover for the 2012 and 2013 field seasons by N treatment (0, 2, or 6 g N m-2 y-1). 
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    Appendix 3 (continued). Maximum species cover for the 2012 and 2013 field seasons by treatment (0, 2, or 6 g N m-2 y-1). 
  2012  2013 

Grasses Species 0 2 6  0 2 6 

  Prairie         

 *^ Andropogon gerardii Vitman (big bluestem) 6.1 3.9 19.0  13.9 5.1 10.8 
 *^ Bromus kalmii A. Gray (kalm's brome) 3.0 5.3 5.9  5.0 11.7 13.1 
 *^ Schizachyrium scoparium (Mich.) Nash (little bluestem) 21.0 13.4 22.3  21.6 22.5 23.2 
 *^ Sorghastrum nutans (L.) Nash (yellow indiangrass) 20.4 11.3 16.2  15.8 9.6 10.6 
  Non-prairie         
 *^ Elymus trachycaulus (Link) Gould ex Shinners (slender wildrye) 0.3 1.2 8.7  1.9 8.1 9.9 
Trees         
  Non-prairie         
 * Betula alleghaniensis Britton (yellow birch) 0.0 0.0 0.0  0.0 3.0 0.0 
 *^ Carya glabra (Miller) Sweet (pignut hickory) 0.1 0.1 0.0  0.0 0.1 0.0 
 *^ Quercus macrocarpa Mich. (burr oak) 0.0 0.1 0.1  0.0 0.3 0.1 
 * Rhus typhina L. (staghorn sumac) 0.0 0.0 0.0  0.1 0.0 0.9 
Legumes         
  Prairie         
 *^ Desmodium canadense (L.) de Candolle (Canada tick-trefoil) 2.7 0.3 0.3  9.9 0.1 2.2 
 *^ Lespedeza capitata Mich. (round-headed bush-clover) 4.8 2.2 3.1  4.9 1.6 1.1 
  Non-prairie         
 *^ Lupinus perennis L. (sundial lupine) 0.0 0.1 0.0  0.0 0.0 0.0 
  Medicago lupulina L. (black medick) 5.1 2.1 2.1  1.8 2.5 0.9 
Fern Ally         
  Non-prairie         
 * Equisetum arvense L. (field horsetail) 2.1 0.4 1.2  6.9 2.8 1.3 

* Native species ^ Seeded 
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