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Abstract 

Facilitating decision-making in a vital discipline such as disaster management requires 

information gathering, sharing, and integration on a global scale and across governments, 

industries, communities, and academia. A large quantity of immensely heterogeneous 

disaster-related data is available; however, current data management solutions offer few or 

no integration capabilities and limited potential for collaboration. Moreover, recent advances 

in cloud computing, Big Data, and NoSQL have opened the door for new solutions in 

disaster data management.  

In this thesis, a Knowledge as a Service (KaaS) framework is proposed for disaster cloud 

data management (Disaster-CDM) with the objectives of 1) facilitating information gathering 

and sharing, 2) storing large amounts of disaster-related data from diverse sources, and 3) 

facilitating search and supporting interoperability and integration. Data are stored in a cloud 

environment taking advantage of NoSQL data stores. The proposed framework is generic, 

but this thesis focuses on the disaster management domain and data formats commonly 

present in that domain, i.e., file-style formats such as PDF, text, MS Office files, and images. 

The framework component responsible for addressing simulation models is SIMONTO. 

SIMONTO, as proposed in this work, transforms domain simulation models into an ontology-

based representation with the goal of facilitating integration with other data sources, 

supporting simulation model querying, and enabling rule and constraint validation. 

Two case studies presented in this thesis illustrate the use of Disaster-CDM on the data 

collected during the Disaster Response Network Enabled Platform (DR-NEP) project. The 

first case study demonstrates Disaster-CDM integration capabilities by full-text search and 

querying services. In contrast to direct full-text search, Disaster-CDM full-text search also 

includes simulation model files as well as text contained in image files. Moreover, Disaster-

CDM provides querying capabilities and this case study demonstrates how file-style data can 

be queried by taking advantage of a NoSQL document data store. 

The second case study focuses on simulation models and uses SIMONTO to transform 

proprietary simulation models into ontology-based models which are then stored in a graph 

database. This case study demonstrates Disaster-CDM benefits by showing how simulation 
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models can be queried and how model compliance with rules and constraints can be 

validated. 
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Chapter 1  

1 Introduction  

Each year, a number of natural disasters strike across the globe, killing hundreds and 

causing billions of dollars in property and infrastructure damage. Extreme weather events 

have been predicted by climate scientists and have been attributed to global warming. As 

the number of such events increases, minimizing the impact of disasters becomes 

imperative in today‘s society.  

The role of information and communication technology in disaster management has been 

evolving. Large quantities of disaster-related data are being generated. Behaviour of 

critical infrastructures is being explored through simulation, response plans are being 

created by government agencies and individual organizations, sensory systems are 

providing potentially relevant information, and social media (Twitter, Facebook) have 

been flooded with disaster information [1]. Traditional storage and data processing 

system are facing challenges in meeting the performance, scalability, and availability 

needs of Big Data. In the context of disaster data management, Big Data refers to the 

massive collection of data sets generated by various participants and composed of diverse 

data structures, including structured, semi-structured, and unstructured data [1]. Current 

disaster data storage systems are disparate, providing few or no integration capabilities 

and limited potential for collaboration. To meet the needs of Big Data and make the most 

of available information, a reliable and scalable storage system provided by cloud 

infrastructure and supported by information sharing, reuse, integration, and analysis is 

needed. 

1.1 Motivation 

A vital element of successful disaster management is collaboration among a number of 

teams, including firefighters, first aid, police, critical infrastructure personnel, and many 

others. Each team or recovery unit is responsible for performing a well-defined task, but 

their collaboration is essential for decision-making and execution of well-organized and 

successful recovery operations [2]. The proliferation of social networking has introduced 
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citizens as collaborators in disaster decision-making since they can provide relevant 

information [3]. Such diverse disaster participants generate large quantities of 

heterogeneous disaster-related data, making information gathering, storage, and 

integration especially challenging.  

The activities of various disaster participants can be observed through four disaster 

management phases, as illustrated in Figure 1.1: mitigation, preparedness, response, and 

recovery [4]. Mitigation includes all activities undertaken to reduce disaster effects by 

avoiding or decreasing the impact of a disaster. The preparedness phase is concerned with 

preparing for disaster occurrence and includes activities such as planning, establishing 

procedures and protocols, training, and exercises. In this phase, collaboration is an 

essential element to correlate activities and generate effective plans and procedures. 

Examples of data generated during the mitigation and preparedness phases include 

response plans, emergency procedures, records of training exercises, and data about 

available response resources. The transition from the preparedness to the response phase 

is triggered by a disaster occurrence. The response is focused on addressing the direct, 

short-term effects of a disaster and includes immediate actions to save lives, protect 

property, and fulfill basic human needs. Collaboration among participants is crucial for a 

successful disaster response. The transition to the recovery phase starts when the direct 

disaster threat subsides and includes activities focused on bringing society into a normal 

state. Examples of the data generated during the response and recovery stages include 

incident reports, lessons learned, and improvements to disaster plans. The approach 

proposed in this study carries out both data collection and delivery through all four 

phases; however, the focus is on data collection during the mitigation and preparedness 

stages, while during the response and recovery phases, the focus is on data delivery, as 

illustrated in Figure 1.1. In other words, the main intent is not real-time collection of 

information during disaster response, but better use of the information collected in 

different phases. The ultimate goal is to create a knowledge system which will provide 

effective support for disaster management as well as support for other disaster-related 

activities. 
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Figure 1.1: Disaster management phases 

 

Recent advances in cloud computing, Big Data, and NoSQL have been changing how 

data are captured, stored, and analyzed. NoSQL solutions have been especially popular in 

Web applications [5], including Facebook, Twitter, and Google. However, the use of 

cloud technologies and NoSQL solutions in disaster management has been sparse.  

A solution which stores disaster-related data in a cloud environment can provide the 

following benefits to disaster management [6]: 

 High availability. Within the cloud environment, data are automatically 

replicated, often across large geographic distances. If a region is affected by a 

disaster and a local data centre fails, the system remains available because it can 

switch to another data centre. 

 Scalability and elasticity. The amount of disaster-related data is massive, and a 

cloud solution can adapt storage resources based on real-time needs and priorities. 

Data can be automatically redistributed to take advantage of heterogeneous 

servers.  

 There is no need for a large initial investment. The system can start small and be 

expanded by adding heterogeneous nodes as needed.  
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Moreover, NoSQL data stores have a number of characteristics that can benefit disaster 

data management, including [7]: 

 Flexible data structure. Disaster data are extremely diverse, and therefore it 

would be almost impossible to store them in a predetermined data structure. 

 Horizontal scalability. NoSQL data stores were designed for a cloud environment, 

and therefore they scale easily over a large number of commodity servers. 

 Performance. For simple read/write operations, NoSQL data stores can provide 

better performance than relational databases. 

Another crucial element of disaster management is simulation because it provides a 

means of studying the behaviour of critical infrastructures, as well as a way of exploring 

disaster response ―what-if‖ scenarios. Therefore, simulation-related information must be 

an integral part of any disaster knowledge system.  

Although the act of simulation is not domain-specific, simulation packages are usually 

application-oriented (designed for simulation experiments in a specific domain) and use 

different modelling approaches, diverse technologies and a wide variety of domain-

specific vocabularies. This heterogeneity in the simulation domain, representation, and 

semantics presents an obstacle to simulation model querying and rule and constraint 

validation and hinders the integration of simulation data with other information sources. 

To be able to provide comprehensive knowledge services, a disaster knowledge system 

needs to take advantage of simulation-related information and integrate it with other 

sources. Moreover, to enable better exploration of simulation models, the solution needs 

to provide querying within simulation models and rule and constraint validation 

capabilities. 

1.2 Goals and Scope 

The ultimate goal of this research is to design a data management framework which will 

provide effective support for disaster management as well as support for other disaster-

related activities. The main focus is on better use of existing information and not on real-

time data collection and delivery during a disaster; however, the proposed approach 
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allows data collection and delivery through all four disaster phases. This research will 

facilitate disaster preparedness, response, and recovery efforts by providing a flexible and 

expandable storage solution for diverse disaster data. Supporting global information 

sharing, reuse, and integration, the proposed solution will provide improved and informed 

decision-making and will therefore reduce the impact of disasters on human lives and 

property. 

Consequently, this research proposes a Knowledge as a Service (KaaS) framework for 

disaster cloud data management (Disaster-CDM). KaaS [8] aims to generate, from data 

stored in a cloud environment, knowledge such as advice or responses to meet 

organizational needs. Therefore, Disaster-CDM has the objectives of: 

1. Facilitating information gathering and sharing through collaboration. Knowledge 

acquisition is responsible for acquiring knowledge from diverse sources and from 

various collaboration partners. Knowledge delivery is responsible for integrating 

information and delivering it to consumers as a service. 

2. Storing large amounts of disaster-related data from diverse sources. The storage 

of massive quantities of immensely diverse disaster-related data is achieved by 

using a combination of various data stores in a cloud environment. 

3. Facilitating search and supporting interoperability and integration. Knowledge 

delivery services are the primarily components responsible for this task. Data 

stored in diverse data stores are provided to consumers as a service. 

The proposed framework is not disaster-specific and could potentially be applied for data 

management in other domains. However, Disaster-CDM was motivated by disaster 

scenarios and it was designed for the management of disaster-related data; consequently, 

this work applies it on disaster-related data.  

A part of the proposed framework responsible for addressing simulation models is 

SIMONTO, an ontology-based representation of simulation models. SIMONTO, as proposed 

in this work, represents domain simulation models as interconnected instances of 

simulator-specific ontologies. Specifically, SIMONTO uses existing models in the 

simulation engines‘ proprietary file formats as the foundation for the creation of its 
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ontology-based representation. Such ontology-based simulation models are stored in the 

NoSQL data store with the goal of: 

 Facilitating integration with other information sources, 

 Providing querying capabilities, 

 Enabling rule and constraint validation. 

The proposed Disaster-CDM provides a flexible and customizable disaster data 

management solution which can be expanded and altered according to the needs of the 

organizations using it: Disaster-CDM accommodates new data sources by adding new 

data processing services and by taking advantage of various NoSQL data stores. The 

solution is based on cloud computing, NoSQL data stores, and the KaaS approach; 

however, it takes advantage of a large number of other technologies, such as Web 

services, full-text search, optical character recognition (OCR), ontologies, and various 

querying approaches.  

The contributions of this thesis can be summarized as follows: 

Disaster-CDM framework, a  Knowledge as a Service (KaaS) framework for disaster 

cloud data management, is proposed. It supports disaster management and other disaster-

related activities by providing disaster-related knowledge as a service. Disaster-CDM 

achieves the following objectives: 

 Information gathering and sharing is facilitated by means of knowledge 

acquisition and knowledge delivery services. 

 Storing large amounts of disaster-related data from diverse sources is achieved by 

taking advantage of cloud computing and NoSQL data stores. 

 Search, interoperability and integration are supported primarily by means of 

knowledge delivery services. 

Moreover, the research presented in this thesis defines a process for introducing a new 

data source into the proposed Disaster-CDM framework. The process consists of: 

 adding new data processing services for dealing with the new data source; 
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 defining data processing rules for new data sources; 

 determining suitable data storage, including choosing the type of data store and 

designing a storage data model. 

SIMONTO is the part of the proposed Disaster-CDM framework responsible for 

processing simulation models. Existing simulation models expressed in simulator-

specific model files are transformed to their corresponding ontology-based 

representations which are better suited for integration with other data source and for 

providing simulation model querying capabilities, and rule and constraint validation. The 

ontology-based simulation models are stored according to their intended use: 

 For integration with other sources, simulation models are stored in a document 

database alongside other data.  

 For querying within simulation models, and for enabling rule and constraint 

validation, ontology-based simulation models are stored in a graph database. 

1.3 Thesis Organization 

This thesis is organized into chapters as follows: 

 Chapter 2 presents the main concepts and technologies relevant to this study: Big 

Data, cloud computing, and NoSQL data stores. The term ―Big Data‖ in the 

context of disaster data management is defined. Because the disaster data 

management solution proposed in this work is cloud-based, the main 

characteristics, goals, and challenges of cloud computing are discussed. Next, 

since the Disaster-CDM storage model incorporates NoSQL solutions, NoSQL 

data stores are introduced and their characteristics described. Furthermore, the 

four NoSQL data models are discussed with an emphasis on characteristics 

relevant in the Disaster-CDM context. 

 Chapter 3 surveys related work. First, work in disaster data management is 

examined, and the difference in focus between the reviewed work and the 

research reported in this thesis is highlighted. Because this research proposes a 

KaaS-based solution for disaster data management, studies that apply the KaaS 
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approach are examined. Next, work related to simulation model querying and rule 

and constraint validation is reviewed, and finally, the use of ontologies in 

simulation modelling is presented.  

 Chapter 4 proposes Disaster-CDM, a Knowledge as a Service (KaaS) framework 

for disaster cloud data management. The two main parts of the Disaster-CDM 

framework are discussed: knowledge acquisition and knowledge delivery. 

Knowledge acquisition is responsible for acquiring knowledge from diverse 

sources, processing it to add structure to unstructured or semi-structured data, and 

storing it in data stores. Knowledge delivery is responsible for integrating 

information from different data stores and delivering knowledge to consumers as 

a service. 

 Chapter 5 focuses on Disaster-CDM for file-style data, which are common in the 

disaster management domain. The generic process of adding a new data source to 

the proposed framework is introduced and then applied for file-style data sources. 

Details of applying each of the three steps to file-style data sources are discussed: 

establishing required data processing services, defining data processing rules, and 

data storage in the cloud environment. 

 Chapter 6 proposes SIMONTO, an ontology-based representation of simulation 

models, which represents proprietary simulation models as interconnected 

instances of simulator-specific ontologies. In the context of Disaster-CDM, 

SIMONTO is responsible for simulation model processing. Integration with other 

file-style data is achieved by storing simulation models in a document data store 

along with other data sources. On the other hand, simulation model querying and 

rule and constraint validation are achieved by storing the ontology-based 

simulation models in a graph database. 

 Chapter 7 presents an evaluation of the proposed Disaster-CDM framework on 

data collected during the CANARIE sponsored Disaster Response Network 

Enabled Platform (DR-NEP) project. The presented case study applies the 

Disaster-CDM framework on file-style data sources including simulation models. 

First, the Disaster-CDM implementation is described, including its two main 

knowledge acquisition components: data processing services and data storage. 
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Disaster-related knowledge is acquired from the DR-NEP data set and stored in a 

document data store. Finally, the benefits of Disaster-CDM are demonstrated on 

two knowledge delivery services: full-text search and querying. 

 Chapter 8, like Chapter 7, presents an evaluation of the proposed Disaster-CDM 

framework; however, in contrast to Chapter 7 which addresses file-style data 

sources, this chapter is concerned with simulation models. The SIMONTO 

implementation and the ontology-based models created by SIMONTO are 

discussed first. In the presented case study knowledge acquisition service, 

specifically SIMONTO, transforms simulation models to their corresponding 

ontology-based representations and stores them in a graph database. Finally, the 

benefits of Disaster-CDM are demonstrated on two simulation-specific 

knowledge delivery services: simulation model querying and rule and constraint 

validation. 

 Chapter 9 concludes this study by discussing the main contributions of this 

research as well as directions for future work. The two main contributions include 

the Disaster-CDM framework and SIMONTO, the part of the framework 

responsible for processing simulation models. Although this study has focused on 

disaster data management, the proposed Disaster-CDM framework is generic and 

could be applied in other domains. Consequently, future work will explore the 

potential of the proposed framework in other domains such as geological data 

management. 
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Chapter 2  

2 Background 

This chapter introduces the main concepts and technologies relevant to this work: Section 

2.1 introduces Big Data, Section 2.2 portrays cloud computing, and Section 2.3 presents 

the background on NoSQL data stores.  

2.1 Big Data 

In recent years, advances in Web technology and the proliferation of sensors and mobile 

devices connected to the Internet have resulted in the generation of massive data sets that 

must be processed and stored. For example, Facebook today has more than one billion 

users, with over 618 million active users on a daily basis generating more than 500 

terabytes of new data each day [9].  

Traditional relational database management systems (RDBMS) as well as data processing 

approaches were designed in an era when available hardware, as well as storage and 

processing requirements, were very different than they are today [10]. Therefore, 

traditional approaches are facing many challenges in meeting the requirements of Big 

Data, including storage, processing, management, search, transfer among devices or 

storage locations, analysis, and visualisation. 

The term ―Big Data‖ refers to large and complex data sets made up of a variety of 

structured and unstructured data which are too big to be managed by traditional 

techniques. According to Beyer and Laney [11], Big Data is characterized by the 3Vs: 

volume, velocity and variety. Volume refers to the quantity of data, variety refers to the 

diversity of data types, and velocity refers both to how fast data are generated and how 

fast they must be processed. Occasionally, a fourth V is added [12]: veracity is the ability 

to trust the data to be accurate and to use them to make crucial decisions. 

Big Data in the context of disaster data management, and even more specifically in the 

Disaster-CDM framework, refers to large collections of disaster-related data sets owned 

by various disaster participants. These data sets must be integrated to provide efficient 
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support for disaster management. In addition to volume, the variety of disaster-related 

data is a major challenge that Disaster-CDM must overcome to be able to provide 

integrated disaster knowledge as a service. Moreover, the veracity of disaster data is also 

significant as the decision-makers must be able to trust the data to use it in decision-

making. 

Enterprises are aware that Big Data has the potential to impact core business processes, 

provide competitive advantage, and increase revenues [12,13]. Therefore, organizations 

are exploring ways to make better use of Big Data by analyzing them to find meaningful 

insights which would lead to better business decisions and add value to their business. In 

the disaster management domain, better use of available information has the potential to 

improve decision-making, thus reducing the impact of disasters on human lives and 

property. 

A trend in the Big Data world of special interest to this research is collaboration. This 

refers to data sharing as well as treating data as a commodity which considers data as a 

product and even offers it as a service [13]. In the disaster management domain, 

collaboration among large numbers of participants is essential for successful response 

and recovery operations. Specifically, in the proposed Disaster-CDM approach, data 

sharing is achieved through knowledge acquisition from a variety of data sources owned 

by different collaborators. The integrated data are provided to consumers as a knowledge 

service. 

2.2 Cloud Computing 

Various cloud computing definitions have been proposed [14,15]; however, the definition 

proposed by the National Institute of Standards and Technology (NIST) has been gaining 

acceptance [5,15]. According to NIST, cloud computing is [16]  

―a model for enabling convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction‖. 
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It is important to point out the synergy between Big Data and cloud computing. Big Data, 

due to its size, volume and velocity, imposes continuously increasing computing 

demands on traditional computing techniques. Cloud computing promises to meet these 

demands by using a large number of networked resources. Therefore, cloud computing is 

one of the key enabling techniques for handling Big Data; hence, this work uses it for 

management of disaster-related Big Data. 

In cloud computing, service providers offer computer-based services, and service 

consumers use these services over the network. A large number of IT companies, 

including Amazon, Google, Microsoft, Rackspace, and IBM are now providing cloud 

computing services. According to the NIST definition, the main characteristics of cloud 

computing include [5,14,15]: 

 On-demand self-service. Services are consumed as needed, without the need for 

human interaction. 

 Broad, ubiquitous network access. Services are provided over the network 

through standard mechanisms. 

 Resource pooling. Computing resources are pooled to serve multiple consumers 

in a multi-tenant environment. 

 Rapid elasticity. Dynamic resource provisioning is achieved by obtaining and 

releasing resources on the fly. 

 Utility-based pricing (a pay-per-use pricing model). The consumer pays only for 

resources used. 

Consequently, the goal of cloud computing systems is to provide the following benefits 

[5]: 

 Availability. The system needs to remain operational and accessible in case of 

server, network, or even data centre failure. 

 Scalability. This refers to the ability to handle growing demands. 

 Elasticity. Changing requirements need to be accommodated by scaling up or 

down. 
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 Performance: In a pay-per-use pricing model, performance is directly correlated 

with cost. 

 Multi-tenancy. Many tenants (services, applications) reside on the same hardware 

and software infrastructure.  

 Fault tolerance. This refers to the ability of a system to continue operating in the 

presence of failures. 

 Load balancing. Loads are automatically moved among servers to achieve 

effective resource utilization.  

 Ability to run on heterogeneous commodity servers. In infrastructures involving a 

large number of nodes, heterogeneity is almost unavoidable. 

 

In this research, all mentioned attributes contribute to the choice of a cloud environment 

for management of disaster data; however, it is important to highlight scalability and 

availability attributes. Scalability makes it possible to start the system small and expand 

as needs grow by adding heterogeneous nodes. High availability ensures system 

operation in the presence of failures, which in the disaster management domain is 

particularly important as it can be expected that disasters will cause a variety of failures. 

From the delivery perspective, the three common cloud computing models are 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 

(SaaS). The IaaS model provides resources such as servers (physical or virtual), 

networks, storage, and operating systems. The PaaS model offers a higher-level 

environment and delivers a computing platform including data storage, programming 

languages, and Web application servers. Finally, the SaaS model provides on-demand 

software by offering access to software applications through the Internet. 

Specialized variations of these three models have emerged, including Storage as a 

Service, Database as a Service, Security as a Service, Integration as a Service, and 

Testing as a Service [15]. The Disaster-CDM approach proposed in this work applies the 

Knowledge as a Service (KaaS) model, in which requests presented by consumers are 
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answered by knowledge providers through knowledge services [17]. In other words, the 

proposed Disaster-CDM provides disaster-related knowledge as a service. 

Even though cloud computing is gaining popularity in industry and academia, further 

adoption is facing a number of challenges. Because the approach proposed in this thesis 

draws on cloud computing, it is exposed to the same challenges: 

 Security and privacy. In a public cloud, data are stored and processed on third-

party premises and in a shared multi-tenant environment; therefore, security and 

privacy vulnerabilities are increased. Providing an adequate solution is difficult as 

it needs to include both the service provider and the service consumer. 

 Customer lock-in. Due to lack of standardization within the cloud computing 

industry, it is challenging to move from one cloud provider to another. Customer 

lock-in makes cloud consumers vulnerable to price increases. 

 Data transfer challenges. The physical locations of provider and consumer may 

result in significant network traffic which must be considered when evaluating 

performance and cost. 

 Legal issues. Public cloud resources may reside in a geographical region with 

different security and privacy regulations than those in the cloud consumer region. 

For example, European companies storing data in the United States expose their 

data to easier access by government agencies due to the U.S. Patriot Act [15]. 

 Application parallelization. In the cloud computing environment, additional 

resources are typically acquired by allocating additional servers; however, only 

applications with parallelizable workload can take advantages of such resources. 

Even though the cloud computing challenges just described are generic and are outside 

the scope of this work, they have a major impact on possible adoption of this work in 

practice. Moreover, these challenges need to be taken into consideration when 

implementing the proposed approach in practice. 

Since this research focuses on data storage in the cloud, new storage solutions, namely 

NoSQL data stores, are introduced in Section 2.3.  
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2.3 NoSQL Data Stores 

Relational databases (RDBs) are traditional data storage systems designed for structured 

data. They have been used for decades due to their reliability, consistency, ACID 

(Atomicity, Consistency, Isolation, Durability) transactions and query capabilities 

through SQL. However, RDBs exhibit horizontal scalability challenges, Big Data 

inefficiencies, and limited availability [18]. In an attempt to address the challenges 

encountered by RDBs in handling Big Data and in satisfying cloud requirements, new 

storage solutions, namely NoSQL data stores [6], have emerged. Because this work aims 

to provide a storage solution for disaster-related Big Data, the proposed solution takes 

advantage of NoSQL data stores. 

Today, the term ―NoSQL‖ refers to ―Not only SQL‖, which emphasizes that SQL-style 

querying is not the crucial objective of these data stores. Therefore, the term encompasses 

a large number of immensely diverse data stores that are not based on the relational 

model, including some solutions designed for highly specific applications such as graph 

storage. Even though there is no agreement on what exactly constitutes a NoSQL 

solution, the following set of characteristics is often attributed to them [7,15,19]:  

 Simple and flexible non-relational data models. NoSQL data stores offer flexible 

schemas or are sometimes completely schema-free and are designed to handle a 

wide variety of data structures [7,20].  

 Ability to scale horizontally over many commodity servers. Some data stores 

provide data storage scaling, while others are more concerned with read and/or 

write scaling.  

 High availability. Many NoSQL data stores are meant to be used in highly 

distributed scenarios and consider partition tolerance as unavoidable. Therefore, 

to provide high availability, these solutions choose to compromise consistency in 

favour of availability, resulting in AP (Available / Partition-tolerant) data stores, 

whereas most RDBMSs are CA (Consistent / Available). 

 Typically, NoSQL data stores do not support ACID transactions as provided by 

RDBMS. NoSQL data stores are sometimes referred to as BASE systems 
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(Basically Available, Soft state, Eventually consistent) [21]. In this acronym, 

Basically Available means that the data store is available whenever accessed, 

even if certain parts are unavailable; Soft state highlights the fact that it can 

tolerate inconsistency for a certain time period; and Eventually consistent 

emphasizes that after a certain time period, the data store will arrive at a 

consistent state. 

 Lesser emphasis on normalization. Denormalized schema can provide simpler 

data access, reduce use of resource-intensive operations such as joins, and can 

more easily scale horizontally. However, this approach will result in larger 

storage size than for data stored in normalized schema [15]. 

Distributed and cloud computing are the key enabling technologies for NoSQL data 

stores. At the time when relational databases emerged, available storage space was 

restricted and thus normalization was highly desired and redundancy unwanted. Today, 

distributed and cloud computing provide massive storage space, but the immense quantity 

of operations imposes strict performance requirements. Therefore, focus has shifted from 

minimizing redundancy and storage space to improving performance [15]. Consequently, 

NoSQL schemas are often denormalized resulting in large storage size, but providing a 

number of advantages including: 

 Better horizontal scalability as denormalized schema can be partitioned easier, 

 Because data can be redundant, it can be repeated in order to simplify data access, 

 Resource-intensive operation such as joins can be avoided, 

 Schema can closer resemble application object model and therefore reduce 

impedance mismatch. 

The main characteristics responsible for making NoSQL stores a suitable storage option 

for the disaster data management solution proposed in this work include their flexible 

data model, horizontal scalability, and high availability. A flexible data model enables 

storage of diverse disaster-related data, horizontal scalability enables a NoSQL data store 

to accommodate growing storage needs by adding commodity servers, and high 

availability ensures continuous operation in case of disasters. 
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NoSQL data stores are typically further classified according to their data model. As there 

is no agreement on what exactly constitutes a NoSQL data store, various categorizations 

have been proposed [19,20]. This study adopts the categorization into four categories: 

key-value data stores, column-family stores, document stores, and graph databases 

[7,19,22]. The following discussion introduces the four NoSQL data store categories and 

highlights the main characteristics relevant for their use in the Disaster-CDM framework. 

Key-Value Data Stores have the simplest data model: they provide a simple mapping 

from each key to its corresponding value. They are primarily used for simple operations 

in which all access to the store is through a primary key. Client applications can set the 

value for a key, get the value corresponding to a specified key, or delete a key. The value 

can be just about anything, and the client application is responsible for interpreting what 

is stored. Therefore, when using a key-value data store, relations between data are 

handled at the application level. Although such a simple data model is somewhat 

restrictive, accessing data only through the primary key provides for good performance 

and easy scalability. Examples of key-value data stores include Redis, Riak, and Berkeley 

[19]. 

In spite of their flexibility, scalability, and performance characteristics, key-value stores 

have major drawbacks with respect to Disaster-CDM. Relations between data are handled 

by the application, and data are accessed only through the primary key. Since the 

relations among data are not expressed in the data store‘s data model, integration 

possibilities are limited. Moreover, accessing data only through the primary key greatly 

restricts querying capabilities. In the context of Disaster-CDM, limited querying 

capabilities and integration possibilities present a major drawback. 

Document Data Stores are designed around the concept of a document and focus on 

optimizing storage and access for semi-structured documents as opposed to rows or 

records. They are derivatives of the key-value store data model with documents stored in 

the value part of the key-value pair. The documents, typically in JSON (JavaScript Object 

Notation) or BSON (Binary JSON) representation, are hierarchical trees which 

encapsulate and encode data. The documents within the data store can have different 
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structures, which provide storage flexibility. At the same time, the document structure 

enables querying capabilities as fields within documents can be used as query criteria. 

Example data stores from this category include CouchDB, MongoDB, and Couchbase 

Server [19]. 

In the context of Disaster-CDM, document data stores provide two advantages: querying 

capabilities and flexible storage. Querying capabilities are made possible by the structure 

of the documents within the data store, while storage flexibility is achieved by allowing 

documents within the store to have different structures. However, querying capabilities 

and storage flexibility are competing attributes: a certain structural consistency among 

documents is needed to support querying, while excessive structural consistency 

decreases storage flexibility. 

Column-Family Data Stores, like key-value stores, map keys to their corresponding 

values; however, each value consists of a name-value pair. Key-value pairs can be 

perceived as rows in a relational database, while name-value pairs relate to column names 

and their corresponding values. Thus, column-family stores are on the surface similar to 

relational databases; however, in the relational database, columns are predefined, and 

each row contains the same fixed set of columns, whereas in the column-family data 

store, the columns that form a row are determined by the client application, and each row 

can have a different set of columns. Column-family data stores provide query 

capabilities. Cassandra, HBase, and Amazon SimpleDB belong to this category [19]. 

In the context of Disaster-CDM, column-family data stores provide the same advantages 

as document data stores: querying capabilities and flexible storage. Querying capabilities 

are supported by name-value pairs within rows, while storage flexibility is achieved by 

allowing each row to have a different set of columns. Similarly to document databases, a 

certain level of consistency among rows is needed to support querying capabilities.  

Graph Databases originated from graph theory and use graph-like structures with nodes, 

edges, and properties to store data. This data model is very different from the key-value, 

document, and column-family data models and is designed for efficient management of 

heavily linked data. Applications based on data with many relationships are well suited 
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for graph databases because the cost of intensive operations like recursive joins can be 

replaced by efficient graph traversals [7]. Neo4J and Allegro Graph are example stores 

from this category [19]. 

In the context of Disaster-CDM, graph databases are suitable for storage of heavily linked 

data and for data with a graph-like data model. For example, ontology-based simulation 

models are based on simulation model graphs and therefore are suitable for storage in a 

graph database. In the Disaster-CDM framework, graph databases have the advantage of 

advanced querying capabilities: graph database implementations often provide powerful 

and diverse querying capabilities. For example, a Neo4j graph database can be queried 

using Cypher, a property graph query language developed by Neo4j; using Gremlin, a 

graph traversal language; or even using the RDF query language, SPARQL. 

In addition to differences in their data models, data store implementations differ greatly 

in other aspects, such as scalability, fault tolerance, consistency, and concurrency control. 

These characteristics, in addition to the data model, are influential factors in determining 

the most suitable data store for the task at hand. Disaster-CDM offers a choice of storage 

solutions according to the characteristics of the data to be stored. Specifically, the data 

store category is chosen according to the data to be stored, and a specific data store 

implementation is then selected by matching the desired storage attributes with the 

characteristics of various data store implementations.  

Because one of the main characteristics of NoSQL data stores is their ability to scale 

horizontally and effectively by adding more servers to the resource pool, scaling aspects 

are discussed further here. With regard to what is being scaled, three scaling dimensions 

can be distinguished: scaling read requests, scaling write requests, and scaling data 

storage. The partitioning, replication, consistency, and concurrency control strategies 

used by NoSQL data stores have significant impact on their scalability. For example, 

partitioning determines the distribution of data among multiple servers and is therefore a 

means of achieving all three scaling dimensions.  

Another important factor in scaling read and write requests is replication: storing the 

same data on multiple servers so that read and write operations can be distributed over 
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them. Replication also has an important role in providing fault tolerance because data 

availability can withstand the failure of one or more servers. Furthermore, the choice of 

replication model is also strongly related to the consistency level provided by the data 

store. For example, the master-slave asynchronous replication model itself cannot provide 

consistent read requests from slaves. In the context of Disaster-CDM, the replication 

model is relevant when choosing the best data store implementation for the task at hand. 

2.4 Summary 

This chapter has presented the main concepts and technologies relevant to this study: Big 

Data, cloud computing, and NoSQL data stores. The term ―Big Data‖ has been defined, 

and its meaning in the context of disaster data management, and specifically Disaster-

CDM, has been emphasized. Because the disaster data management solution proposed in 

this work is cloud-based, the main characteristics, goals, and challenges of cloud 

computing have been discussed. The choice of the cloud environment for the storage of 

disaster-related data has been primarily motivated by its scalability and availability 

attributes. Next, because the Disaster-CDM storage model incorporates NoSQL solutions, 

NoSQL data stores were introduced and their characteristics described. The motivating 

factors for choosing NoSQL data stores in the proposed approach included data model 

flexibility, horizontal scalability, and high availability. Furthermore, the four NoSQL data 

models were described with an emphasis on the characteristics relevant in the Disaster-

CDM context. 
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Chapter 3  

3 Related Work 

This chapter surveys three categories of related work: disaster data management, 

Knowledge as a Service (KaaS) and related simulation work. 

3.1 Disaster Data Management 

Research in disaster management involves many fields, including health science, 

environmental science, computer science, and a number of engineering disciplines. Crisis 

informatics [23,24], the area of research concerned with the role of information and 

technology in disaster management, has been attracting increased research attention 

recently.  

Hristidis et al. [1] surveyed data management and analysis in the disaster domain. The 

main focus of their survey was on data analysis techniques without the storage aspect. In 

contrast, in Disaster-CDM, storage and analysis are considered as integral parts. Hristidis 

et al. identified the following data analysis technologies as relevant in disaster data 

management: information extraction, information retrieval, information filtering, data 

mining, and decision support. Similarly, Disaster-CDM uses a number of technologies 

from information extraction and retrieval. The survey reveals that the majority of 

research has focused on a very narrow area of disaster management, for example, a 

specific disaster event such as an earthquake or a flood, or specific disaster-related 

activities such as communication among actors, estimating disaster damage, and use of 

mobile devices. Hristidis et al. recognized the need for flexible and customizable disaster 

management solutions that could be applied in different disaster situations. Disaster-

CDM aims to provide such a solution using cloud computing and NoSQL data stores. 

Othman and Beydoun [25] pointed out the importance of providing sharable disaster 

knowledge in facilitating better disaster decision-making. They proposed a Disaster 

Management Metamodel with the objective of improving knowledge sharing and 

supporting the combination and matching of different disaster management activities. 
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This metamodel was instantiated twice: for an earthquake, and for a nuclear meltdown 

disaster situation. Although they highlighted the large amount of information generated in 

the disaster domain, their study does not consider disaster data storage. Disaster-CDM 

provides a scalable and flexible data storage solution in a cloud environment, 

accommodates both structured and unstructured data, and supports data sharing. 

Silva et al. [26] aimed to integrate diverse, distributed information sources by bringing 

them into a standardized and exchangeable common data format. Their approach focused 

on data available on public Web sites. Data were first extracted from different source 

Web sites and stored in a relational database. Next, the data were transformed into Linked 

Open Data (LOD) and published. In contrast to their work which addressed data available 

on public Web sites, the proposed Disaster-CDM can accommodate various information 

sources. In addition, Disaster-CDM is designed for high availability and large amounts of 

data. 

Palen et al. [23] presented a vision of technology-supported public participation during 

disaster events. They focused on the role of the public in disasters and how information 

and communication technology can transform that role. Similarly to Hristidis et al. [1], 

they recognized information integration as a core concern in crisis informatics.  

Anderson and Schram [27], like Palen et al. [23], studied the role of public and social 

media in disaster events. They proposed a crisis informatics data analytic infrastructure 

for the collection, analysis, and storage of information from Twitter. The main objective 

of their work was the support of other crisis information research by extracting disaster-

related tweets from Twitter and storing them in a database. In their initial study [27], data 

were stored in a relational database, specifically MySQL. Later, after encountering 

scalability challenges, they transitioned to a hybrid architecture that incorporates 

relational database and NoSQL data store [24]. Similarly, Disaster-CDM also uses a 

combination of relational database and NoSQL data stores. However, a combination of 

several NoSQL data stores has been used to address the storage requirements of diverse 

data. Specifically, Disaster-CDM allows the choice of storage solutions to suit a variety 

of data structures and access patterns.  
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Chou et al. [28] proposed an ontology for developing Web sites for natural disaster 

management. Web elements contained in the ontology were identified using a ground 

theory approach with an inventory of disaster management Web sites. To represent the 

Web page elements, they adopted a combination of XML, XML schemas, and document 

object model (DOM). The proposed ontology provides support for designing dynamic 

emergency response management Web sites. Like Chou et al. [28], Disaster-CDM also 

uses ontologies, but their purpose is data integration in the knowledge delivery stage. 

Moreover, while Chou et al. addressed disaster Web sites, Disaster-CDM is concerned 

with a variety of diverse data sources.  

3.2 Knowledge as a Service (KaaS) 

Disaster-CDM incorporates the KaaS approach to make disaster-related knowledge 

available as services. Within KaaS, a knowledge provider answers requests presented by 

knowledge consumers through knowledge services [17]. In Disaster-CDM, the main goal 

is to acquire knowledge from the diverse data sources and expose it as service to 

knowledge consumers. Generally, KaaS publishes knowledge models that represent a 

collection of learned lessons, best practices, and case studies as services that help 

consumers get knowledge from a distributed computing environment.  

The KaaS approach has been used in various domains [29-31]. Lai et al. [29] presented a 

KaaS model for business network collaboration in the medical context. The main 

objective of this KaaS is to facilitate the interoperation and the collaboration among 

members in a knowledge network. In contrast to Disaster-CDM, their work did not tackle 

the data management layer from which the knowledge is provided nor did it address the 

storage aspect.  

In the agricultural domain, Qirui [30] introduced the KaaS in order to provide farming 

recommendations according to user requirements and farming environment. The 

knowledge representation in their KaaS is based on ontologies and data are stored 

exclusively in a relational database (MySQL). Another interesting study is the work of 

Kannimuthu et al. [31] in the e-commerce domain. In their work, the KaaS purpose is the 

extraction of knowledge from data using data mining techniques. The extracted 
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knowledge assists in attracting users to buy other products of the same enterprise. In 

contrast to the approach proposed by Qirui [30] which stores data exclusively in 

relational database and that of Kannimuthu et al. [31] which stores data in XML 

database, the KaaS in Disaster-CDM accommodates both structured and unstructured 

data by taking advantage of relational databases and NoSQL data stores. 

3.3 Related Simulation Work 

Simulation is an established way of observing the behavior of a real-world system by 

developing models that represent the structure and behavior of the system of interest [32]. 

One of the main factors contributing to the increasing use of simulation involves its non-

confinement to a specific discipline [33] as simulation is employed in a variety of 

domains, such as military operations, critical infrastructures, medical and life sciences, 

learning, and chemical and biochemical engineering. 

Computer simulation, where computer models are developed to represent real-world 

scenarios, is supported by a variety of software simulation packages or simulation 

engines [34]. Although the act of simulation is not domain-specific, simulation packages 

are usually application-oriented, designed for simulation experiments in a specific 

domain. These packages use different modelling approaches, diverse technologies and a 

wide variety of domain-specific vocabularies. Moreover, simulation models are saved in 

simulators‘ engine-specific proprietary file formats. This heterogeneity presents an 

obstacle to querying, rule and constraint validation, as well as data integration.  

Related work in simulation model querying and rule and constraint validation is 

presented first. It is followed by the review of ontology use in simulation modelling 

highlighting different roles of ontologies in the reviewed work and the research presented 

in this thesis. 

3.3.1 Simulation Model Querying, Rule and Constraint Validation 

Integration among simulators has attracted significant attention and resulted in a standard, 

the IEEE High Level Architecture [35], and numerous research studies [36,37]. 
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Furthermore, semantic heterogeneity has been addressed by creating simulation 

ontologies [38,39]. 

Moreover, extensive research has been done on simulation model verification and 

validations [40,41]. Here, verification is the process of confirming that the model is 

implemented correctly while the validation checks that the model is accurate 

representation of the real system. In contrast, this work is concerned with how can 

simulation models be queried, and how can rules and constraints be written and model 

compliance with those rules and constraints validated. Nevertheless, research on the topic 

of simulation model querying, rule and constraints validation has been sparse.  

Querying simulation mesh data has been addressed by Lee et al. [42]; however, their 

AQSim system is intended for querying mesh data and cannot be used with other non-

mesh simulation models such as infrastructure networks or logistic systems. In contrast, 

the proposed SIMONTO focuses on infrastructure-like simulation models, transforms them 

into ontology-based representations and, as a result, enables simulation model querying 

and rule and constraint validation. 

Querying from the perspective of model discovery and selection in component-based 

simulation model development has been addressed in the work of Szabo and Teo [43]. In 

their approach, the COSMO (COmponent Simulation and Modelling Ontology), ontology 

is applied as a terminology for describing the attributes and behavior of components. 

Consequently, ontology-based description is queried for the purpose of component 

discovery and selection. In contrast, SIMONTO represents simulation models as instances 

of an ontology and Disaster-CDM queries those ontology-based models after storing 

them in a NoSQL data store. 

Rule and constraint validation in electronic systems domain can be performed using 

Property Specification Language (PSL) which has been standardized [44]. PSL is domain 

specific; it is intended for use with electronic system design languages. This work, on the 

other hand, is concerned with a range of application-oriented simulations packages 

related to disaster management with a special focus on infrastructure simulators. 
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3.3.2 Ontologies in Simulation Modelling 

Although ontologies have been used in a variety of domains [45], their application to the 

field of simulation has been limited and primarily constrained within the research 

community. The potential of ontologies in simulation and modelling was explored by 

Lacy and Gerber [46]. From the perspective of these authors, ontologies are beneficial in 

simulation and modelling because they formalize semantics and allow querying, 

inference, sharing, and reuse of developed models. 

The studies that are particularly relevant to our research are related to the use of 

ontologies to represent real-world scenarios for simulation purposes such as Tofani et al. 

[36], Miller et al. [38] and Silver et al. [47].  

Tofani et al. [36] proposed an ontology framework to model the interdependencies 

among Critical Infrastructures (CI). Like our SIMONTO, the approach of Tofani et al. 

represents infrastructures as instances of an ontology and uses proprietary simulation 

packages for the simulation execution. However, this study creates ontology-based 

representations from existing simulation models, while Tofani et al. model CIs directly as 

instances of ontologies and then map them manually onto the proprietary simulation 

models. Therefore there are two main drawbacks to the work of Tofani et al: firstly, the 

CI network has to be modelled twice, as instances of an ontology and in the domain 

simulation language; and secondly, the mappings between ontology representations and 

simulation models must be established manually.  

Miller et al. [38] investigated the development requirements and benefits of ontologies in 

Discrete Event Simulation (DES), and consequently, these authors presented the 

Discrete-event Modelling Ontology (DeMO). According to Miller and Baramidze [48], 

the main challenges in building DeMO, or a similar ontology for simulation and 

modelling, are twofold: firstly, it needs to be domain-independent, as DES can model any 

domain, and secondly, since simulation formalisms are founded in mathematics and 

statistics, the DES ontology should be based on the ontologies of those domains. DeMO 

captures generic discrete event simulation knowledge without addressing domain-specific 

simulation aspects. In contrast, SIMONTO approach uses simulator-specific ontologies; 
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therefore, it facilitates domain experts‘ understanding of ontologies and enables 

automated creation of the ontological representation from the proprietary simulation 

models. 

Silver et al. [47] represented real-world scenarios as instances of the extended DeMO 

PIModel (Process Interaction Model). Subsequently, these instances are transformed to 

XPIM (Extensible Process Interaction Markup) instances, which are then translated to a 

JSIM (Java-based SIMulation) model. This approach models real-world scenarios in 

terms of an ontology, which may represent a challenge for domain experts that are 

accustomed to domain-specific simulation engines. Moreover, DeMO makes use of 

generic, domain-independent terminology that may differ significantly from specific 

domain terminology. Depending on the domain modelled, the majority of DeMO entities 

may be irrelevant and hence may obscure the modelling efforts. In contrast, the SIMONTO 

approach does not require modelling in an ontology form; it draws on existing proprietary 

simulation models to automatically generate its ontology-based representation. When 

new simulation models are needed, experts create them in the domain-specific simulation 

packages they are accustomed to using, and SIMONTO generates their corresponding 

ontology-based representation. Moreover, SIMONTO uses existing domain simulators for 

the simulation execution, while Silver et al. transform the ontology-model to JSIM for 

the simulation execution. 

Like Miller et al. [38], Guizzardi and Wagner [39] also proposed a DES ontology. Their 

DES Ontology (DESO), a foundational ontology for discrete event system modelling, is 

derived from the Unified Foundational Ontology (UFO). In contrast to SIMONTO, whose 

objective is the representation of simulation models for querying and rule and constraint 

validation, or DeMO, whose aim is the representation of the real world for simulation 

purposes, the objective of DESO is to provide a basis for evaluating DES languages. 

Benjamin and Akella [49] applied ontologies to facilitate semantic interoperability and 

information exchange between simulation applications. The ontology models for each 

simulation application domain are extracted from textual data sources, such as 

requirements and design documents. In the work of Benjamin and Akella [49], ontologies 
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describe different simulation domains, while in this research ontologies represent actual 

simulation models. 

3.4 Summary 

This chapter has surveyed related work. First, work in disaster data management has been 

examined, and the difference in focus between the reviewed work and the research 

reported in this thesis has been highlighted. Because this research proposes a KaaS-based 

solution for disaster data management, studies that apply the KaaS approach have been 

examined. Next, work related to simulation model querying and rule and constraint 

validation has been reviewed, and finally, the use of ontologies in simulation modelling 

has been presented.  



29 

 

Chapter 4  

4 Disaster Cloud Data Management 

A successful disaster management relies on the collaboration among participants; 

however, the diversity of the involved participants and their activities results in massive 

data heterogeneity. This heterogeneity of data, together with their volume, is one of the 

main challenges in providing a comprehensive solution that could be used by various 

stakeholders in diverse disaster situations. Disaster-CDM addresses those Big Data 

challenges by integrating storage in the cloud environment with the KaaS approach which 

provides disaster-related knowledge as a service. 

This Chapter first introduces the overall Disaster-CDM framework in Section 4.1. Next, 

the two main parts of Disaster-CDM, knowledge acquisition and knowledge delivery are 

discussed in Sections 4.2 and 4.3. 

4.1 Disaster-CDM Framework 

The Disaster-CDM framework is illustrated in Figure 4.1 [50]. It consists of two parts: 

knowledge acquisition and knowledge delivery services. Knowledge acquisition is 

responsible for acquiring knowledge from diverse sources, processing it to add structure 

to unstructured or semi-structured data, and storing it. Heterogeneous data from sources 

like documents, simulation models, social media, and web pages, are handled by applying 

processes such as text extraction, file metadata separation, and SIMONTO simulation 

model transformation. This results in outputs including extracted text, annotated data, and 

ontology-based simulation models. Processed data are stored in a cloud environment, 

specifically in a variety of relational databases and NoSQL data stores. Knowledge 

delivery services are responsible for integrating information from different data stores 

and delivering knowledge to consumers as a service.  
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Figure 4.1: Disaster-CDM framework 

The following two Sections 4.2 and 4.3 provide an overview of the two main parts of 

Disaster-CDM: knowledge acquisition and knowledge delivery. 
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4.2 Knowledge Acquisition 

The knowledge acquisition services obtain data from heterogeneous data sources, process 

them, and store them in the cloud environment. It was decided to process the information 

and to store the processed, enriched data because this will allow shorter query response 

time than performing the processing ―on the fly‖. For example tagging large text content, 

transforming simulation models and OCR on files with a large number of images may 

take time and storing already processed files will reduce query response time. 

4.2.1 Heterogeneous Data Sources 

A few examples of information related to disasters are disaster plans, incident reports, 

situation reports, social media, simulation models including infrastructure and health-care 

simulation. As for representation formats, examples include MS Word, PDF, XML, a 

variety of image formats (jpeg, png, tiff), and simulation model formats specific to 

simulation packages. Data representation is important because it determines the methods 

that can be used to add structure to unstructured or semi-structured data. 

From our experience working with local disaster management agencies, the majority of 

information is stored in unformatted documents, primarily MS Word and PDF files. This 

agrees with the work of Hristidis et al. [1], who reported that most information is in MS 

Word and PDF files.  

4.2.2 Data Processing Services 

Because the input data are so diverse, they cannot be processed using a single approach. 

Therefore, the processing is driven by the input data and by data processing rules, as 

illustrated in Figure 4.1. Data processing rules specify what data processing services are 

to be applied to which input data and in which order. For example, a PDF incident report 

might go through file metadata separation, text extraction, and pattern processing. 

According to the KaaS approach, Disaster-CDM provides data processing services which 

can be composed by means of processing rules. The representative services with their 

associated outputs are included in Figure 4.1: 
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File Metadata Separation Service makes use of file and directory attributes, including 

file name, creation date, last modified date, and owner. File names themselves carry 

important information about content because they are typically chosen with the aim of 

describing the content. They are processed to separate the words contained in the file 

name. The creation date and last modified date can assist in distinguishing newer and 

potentially more relevant information from older and possibly outdated information. The 

file directory structure contains additional information about file content since directories 

are used to organize files. Directories can be seen as a categorization and therefore are 

included in metadata separation.  

Text Extraction Service recognizes the text in a file and separates it [51]. An example of 

such process is optical character recognition (OCR) which Disaster-CDM uses to extract 

text from images. This step prepares images, MS Office and PDF files for other 

processing steps such as tagging. Text extraction is especially important in the case of 

diagrams such as flowcharts or event-driven process chains because these documents 

contain large amounts of text that can be used for tagging. In the case of MS office files, 

text is extracted from document body as well as from the images embedded in the 

document as they may also contain relevant information. 

Pattern Processing Service makes use of existing patterns within documents to extract 

the desired structure. Hristidis et al. [1] observed that most of available disaster-related 

information is stored in unstructured documents, but that ―typically the same organization 

follows a similar format for all its reports‖ [1]. Therefore, it is feasible to use patterns for 

information extraction. However, the number of organizations involved in disaster 

management is large, which may result in a large number of patterns. This represents a 

challenge because the patterns need to be identified before pattern processing can be 

applied. Another challenge is with new data sources where patterns need to be indentified 

manually. 

SIMONTO Simulation Model Transformation Service is responsible for converting 

simulation models into a representation which enables model queries and integration with 

other disaster-related data. To extract as much information as possible from simulation 
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model files, an ontology-based representation of simulation models has been used 

[52,53]. Unlike text-processing approaches, an ontology-based representation makes it 

possible to: 

 address simulator-specific terminology, 

 remain schema-independent because ontologies do not have predefined schema,  

 focus on entities and their relations. 

SIMONTO transforms existing models in the simulator-specific file formats to their 

corresponding ontology-based representations. Those ontology-based simulation models 

are then stored in a NoSQL data store which facilitates integration with other data, 

querying, and rule and constraint validation. 

Tagging and Semantic Annotation Services. Tagging is the process of attaching 

keywords or terms to a piece of information with the objective of assisting in 

classification, identification, or search [54]. Semantic annotations additionally specify 

how entities are related. In disaster management data tagging, both manual and 

automated tagging are needed. Automated tagging applies various natural language 

processing (NLP) and soft computing techniques to add tags automatically to pieces of 

information. Because disaster data are immensely diverse, it might not be feasible to tag 

all content automatically. Images are examples of data which may require 

computationally expensive tagging. Therefore, manual tagging is used to supplement the 

automated approach. Tagging will be explored in this study, while semantic annotations 

will be addressed in future work.  

The presented data processing services are common processes for addressing file-style 

data; nevertheless, Disaster-CDM can be easily expanded to include new data processing 

services. 

4.2.3 Data Storage in the Cloud Environment 

Cloud computing offers a number of advantages over traditional approaches as discussed 

in Section 2.2. Moreover, Section 2.2 also pointed out the main attributes contributing to 

the choice of cloud environment for the storage of disaster data including: high scalability 
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and availability. In disaster data management, availability is greatly affected by 

replication strategy. Data should be replicated across data centers placed on 

geographically distant locations; therefore, if the region is affected by a disaster and a 

local data center fails, the system continues to be operational as a remote data center 

remains unaffected. 

As illustrated in Figure 4.1, for data storage Disaster-CDM uses both relational database 

and NoSQL data stores. As discussed in Section 2.3, NoSQL data stores were designed to 

address Big Data challenges while taking advantage of cloud computing environments. 

Moreover, NoSQL data stores have a number of characteristics making them an adequate 

solution for disaster data management including horizontal scalability and flexible data 

model. Horizontal scalability enables NoSQL stores to take advantage of the cloud 

environment by scaling over a number of nodes. Flexible data model is crucial for storage 

of disaster data due to an immense variety of data that needs to be stored. On the other 

hand, NoSQL data stores are designed for different purposes and therefore not all 

problems can be gracefully solved using the same data store. Consequently, Disaster-

CDM does not restrict storage to a specific NoSQL data model, but allows for the choice 

of storage according to the characteristics of the data to be stored.  

Despite the advantages of NoSQL data stores, Disaster-CDM also accommodates 

relational databases. RDBs are still an appropriate solution for many applications because 

of their characteristics such as ACID (Atomicity, Consistency, Isolation, Durability) 

transactions, their status as an established technology, and their advanced query 

capabilities. Moreover, existing data in relational databases do not need to be migrated.  

Additionally, if data are available in a form similar to a relational data model, a relational 

database can be used. Examples of online databases providing data in table-like form 

include The Canadian Disaster Database [55] and EM-DAT, The International Disaster 

Database [56]. By storing such data in a relational database, the structure of the data is 

preserved and data acquisition processing is reduced. This data stored in a relational 

database need to be integrated with data from NoSQL stores; however, integration among 
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relational databases and NoSQL data stores is a challenge. Part of this challenge is the 

fact that NoSQL data stores do not support a standard query language.  

4.3 Knowledge Delivery 

The Disaster-CDM knowledge delivery services answer information requests submitted 

by service consumers by integrating data stored in the cloud environment. In this stage, 

the collaboration is achieved by providing the integrated knowledge as a service to 

collaboration participants. As presented in Figure 4.1, the data access is mainly composed 

of three parts: 

 Ontologies: These provide an overall view of the local ontologies representing 

each data store independently of its category. Ontologies represent the mapping 

between heterogeneous sources which is needed to unify query capabilities. 

 Data interfaces: After querying the ontology, it is necessary to access the data. 

Data interfaces enable translation of the generic query into a specific language 

that corresponds to the underlying data store system. Thus, the data stored in 

heterogeneous sources can be accessed, analyzed, and administered. An attempt 

to unify access to NoSQL systems is proposed in the work of Atzeni et al.[57] 

where NoSQL models and their programming tactics are reconciled within a 

single framework. 

 Services: This is the access layer for users. It provides services independently of 

how the data are stored. Thus, users are unaware of the storage architecture and 

are provided with a unified view of the data. Examples of provided services are 

full-text search, data querying, data analytics, and system administration services. 

The application of the proposed Disaster-CDM approach on data formats commonly 

present in the disaster management domain, i.e. file-style data formats, is further detailed 

in Chapter 5. 

4.4 Summary 

This chapter has proposed Disaster-CDM, a Knowledge as a Service (KaaS) framework 

for disaster cloud data management. Disaster-CDM addresses Big Data challenges, 
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including data heterogeneity and volume, by integrating storage in the cloud 

environment, specifically NoSQL data stores and relational databases, with the KaaS 

approach which provides disaster-related knowledge as a service. The two main parts of 

the Disaster-CDM framework have been discussed: knowledge acquisition and 

knowledge delivery services. Knowledge acquisition is responsible for acquiring 

knowledge from diverse sources, processing it to add structure to unstructured or semi-

structured data, and storing it in data stores. Knowledge delivery services are responsible 

for integrating information from different data stores and delivering knowledge to 

consumers as a service. 
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Chapter 5  

5 Disaster-CDM for File-style Data 

The Disaster-CDM framework is designed to accommodate heterogeneous data sources, 

including PDF files, MS Word documents, simulation models, Web pages, and social 

media data. The introduction of a new data source to the framework requires: 

1. Adding new processing services to existing data processing capabilities. For 

example, video processing would require a new service which would attach 

textual context to videos. Such a textual context is essential for effective search 

and querying of video sources. 

2. Defining data processing rules for the new data source. For instance, a video 

processing rule might specify that video files first undergo metadata extraction 

followed by a new video-specific service. 

3. Determining the data storage appropriate for the new data source. Disaster-CDM 

does not define storage data structure or even the type of data store; in this step, 

the data store type suitable for the new data source is determined and the storage 

data model is designed. 

From our experience working with local disaster agencies, which agrees with the work of 

Hristidis et al. [1], the majority of information is stored in unformatted documents, 

primarily MS Word and PDF files. Another crucial element of disaster management is 

simulation because it provides a means of studying the behaviour of critical 

infrastructures, as well as a way of exploring disaster response ―what-if‖ scenarios. 

Consequently, this chapter focuses on processing information stored in files, including: 

 plain text,  

 image files, 

 MS Office documents including Word, PowerPoint, Excel, and Visio, 

 PDF files, and  

 simulation model files.  
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The common element among those information sources is that information is typically 

stored in self-contained and largely unrelated files. 

The following sections describe the steps of introducing file-style data into the proposed 

Disaster-CDM framework: data processing services, data processing rules, and storage in 

the cloud environment. 

5.1 Data Processing Services 

The main data processing services required to handle file-style data are included in 

Figure 4.1 and were discussed in Section 4.2.2. With respect to processing file-style data 

common in disaster management domain, data processing services are applied as follows: 

 File metadata separation service is used in processing anything that is stored as 

a file. Since metadata attributes vary among different file formats, resulting data 

annotations will also differ in annotation types. 

 Text extraction service applies various technologies according to the type of file 

that is being processed. For example, to extract text from image files or from 

images embedded in MS Word or Visio files, optical character recognition (OCR) 

technologies are applied. 

 SIMONTO simulation model transformation service is the process specific for 

simulation model files; nevertheless, it is applicable for various simulation model 

file formats. 

 Tagging and semantic annotation services are applied on textual data; however, 

in the case of images or PDF files, text is first extracted from the image or PDF 

files and then passed on for tagging and semantic annotation. All files are tagged 

and semantically annotated unless other processes were unable to extract any text 

from the file.  

Pattern processing service could potentially add more structure to processed data; 

however it is associated with a number of challenges including: patterns need to be 

known before processing, only a limited subset of files conforms to a specific pattern 
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with possible existence of a large number of patterns. Therefore, this work does not 

further address pattern processing service.  

5.2 Data Processing Rules 

Data processing rules define how a category of data sources needs to be processed before 

being stored in a data store. They are influenced by the format of the data source and the 

available processing services.  

For example,  Listing 5.1 illustrates a data processing rule for all MS Office files. First, 

metadata are separated (line 2), and text is extracted (line 3). Next, if there are images in 

the file, they are extracted (line 4). For each image, text is separated using OCR methods 

(lines 5 to 7). Finally, text extracted from the file and from the images is tagged (lines 8 

and 9).  

Listing 5.1: Data processing rule for MS Office files 

1: if file = MSOfficeFile then 

2:  processMetadata(file) 

3:  fileText = extractText(file) 

4:  images = extractImages(file) //extract all images 

5:  for each image in images  

6:   imageText += OCRProcess(image)  

7:  end for 

8:  tagText(fileText) 

9:  tagText(imageText) 

10: End 

 

The presented data processing rule represents a generic processing for all MS Office files 

regardless of file type. However, some MS Office files, such as Excel files, possess 

additional formatting that can be exploited to add additional structure to data. For 

example, since Excel organizes data in tabular form, data processing can take advantage 

of this formatting and create table-like structures in a data store. In this case, a service 

needs to be added which can take advantage of this specific formatting, and the data 

processing rule needs to be refined to include Excel-specific processing service.  
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Listing 5.2 illustrates a data processing rule for PDF files and Listing 5.3 shows a rule for 

image files. 

Listing 5.2: Data processing rule for PDF files 

1: if file = PDFFile then 

2:  processMetadata(file) 

3:  fileText = extractText(file) 

4:  tagText(fileText) 

5: End 

 

Listing 5.3: Data processing rule for images 

1: if file = image then 

2:  processMetadata(file) 

3:  imageText = OCRProcess(file)  

3:  tagText(imageText) 

3: End 

 

Another category of files that is particularly significant in disaster data management is 

simulation files. An example of a processing rule for simulation models is presented in 

Listing 5.4. Like the MS Office rule, it starts with metadata separation (line 2). Next, 

SIMONTO transforms the simulation model to its corresponding ontology-based 

representation (line 5), which is described in an ontology representation language. Such 

an ontology-based representation then needs to go through additional processing service, 

postProcessOntology, to prepare it for tagging. This processing service deals with 

specifics of the ontology representation language; for example, it replaces special 

characters with spaces and separates compound words such as those in camel-case 

naming to assist subsequent tagging. Finally, the same as MS Office rule, the simulation 

model processing rule ends with text tagging (line 7). 



41 

 

Listing 5.4: Data processing rule for simulation models 

1: if file = SimulationModel then 

2:  processMetadata(file) 

3:  //SIMONTO - Transform simulation model to its  

4:  // corresponding ontology-based representation 

5:  ontModel = transformSimModelToOntology(file) 

6:  fileText = postProcessOntology(ontModel) 

7:  tagText(fileText) 

8: end 

 

Similarly to these rules for MS Office files and simulation model files, rules are defined 

for other file categories that need to be processed, including plain text files, PDF files and 

a variety of image formats.  

Overall, generic file processing consists of separating metadata, extracting text from 

source files using file type-specific processing followed by tagging of extracted text. 

When a source file contains additional formatting, such as in Excel documents, data 

processing rules can use this to add additional structure to processed data.  

5.3 Data Storage in the Cloud Environment 

Flexibility of data storage is the core of the proposed Disaster-CDM framework because 

it enables a choice of storage according to the characteristics of the data to be stored. For 

each data source category, two steps must be performed:  

 determining the type of data store, and  

 designing the storage data model. 

Determining the type of data store consists of choosing among relational database, key-

value, document, column-family, and graph stores. The file-style data considered in this 

chapter are stored in self-contained, apparently unrelated files. Although the file contents 

might be related, this relation is not explicitly specified. Therefore, storage models 

focusing on relations, including relational and graph databases, are not the best suited for 

such data. The document data store model has been chosen here for the storage of file 
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data because it is designed around the concept of a document, providing flexible storage 

while allowing structure specification within a document. 

The storage data model design in the case of a document data store consists of defining a 

document structure. Document data store implementations differ in their internal 

representations of documents; however, they all encapsulate and encode data in some 

form of encoding. Therefore, the data model design is independent of the choice of data 

store implementation provided that the data store belongs to the document category.  

Table 5.1 depicts the data model designed for storing file data in a document data store. It 

is a generic model for storing a variety of file-style data with flexibility that enables it to 

accommodate different file types and a variety of attributes. The proposed data model is 

relatively standardized to support querying abilities. In contrast, allowing uncontrolled 

naming of fields within documents would negatively impact querying abilities. Several 

fields, such as fileName or origFileLocation, are mandatory because they are common for 

all file types and must exist in each document in the data store. On the other hand, other 

fields such as docImageText and tag are optional and exist only in documents that need to 

record those attributes. Two fields, metaData and tag, have a number of child fields for 

storing different attributes of the parent field. The number and names of the child fields 

are different among files of different types: for example, an image file might have 

metaData child fields such as imageWidth or resolutionUnits, but these child fields will 

not exist for other file types. With respect to tag fields, the number and names of the 

child fields depends on the tagging approach used. 

To accommodate other types of data the data model from Table 5.1 can be extended by 

adding new fields. For example, to handle geolocation new fields would be added to the 

model to record geographical location. If a document contains several entities with 

different geolocations, each entity would have child fields identifying its location. 

Consequently, this would allow for inclusion of geolocation is a search queries.  
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Table 5.1: File storage data model – document data store 

Field Name Child field 

name 

Mandatory Description 

fileName   Name of the original file 

origFileLocation   Full file path of the original file 

origFileMachine   Name of the computer from which 

the file originated 

DBLoadDateTime   Date and time that file was 

processed by Disaster-CDM 

contentType   Type of the content, such as PDF, 

MS Word, or MS PowerPoint 

metaData modified  Metadata, including generic data 

such as creator and modified and 

created date and time. File-specific 

metadata such as number of slides 

or word count are also included 

here. 

 created  

 creator  

 ...  

docText   Text extracted from files, not 

including text from images.  

docImageText   Text extracted from images. 

tag []  Arrays of generic tags ([]), as well 

as arrays of dates, organizations, 

locations, and persons found in the 

file text. 

 date []  

organization []  

location []  

person []  

...  

_attachment   File in its original form 

 

5.4 Summary 

This chapter has focused on Disaster-CDM for file-style data, which are common in the 

disaster management domain. The generic process of adding a new data source to the 

proposed framework has been introduced and then applied for file-style data sources. In 

the first step, data processing step, various data processing services and their role in file-

style data processing are defined. Rules for processing file-style data are introduced in the 

second step. Finally, in the third step, data storage step, the motivation for choosing 
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document data store has been explained and the data model for storing file-style data in a 

document data store has been presented. 
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Chapter 6  

6 Ontology-Based Representation of Simulation Models 

This chapter presents SIMONTO, an ontology-based simulation model representation. In 

the context of Disaster-CDM, SIMONTO is responsible for transforming simulation 

models into their corresponding ontology-based representations. Because SIMONTO is 

graph-based, the proposed simulation model graph is presented first. Next, the SIMONTO 

architecture is portrayed. 

6.1 Simulation Model Graph 

The ontology-based representation of the simulation model is founded on graph theory. 

In a simulation, the direction of the interaction or the dependence among entities is often 

significant; for example, in a transportation problem or in a provider-consumer 

arrangement, connections among entities have a specific direction. Consequently, a 

directed graph model [58] is used. 

Graph representations have been used for semantic Web search. Tran et al. [59] applied a 

graph-structured data model to represent resources on the Web as well as for search query 

representation. Moreover, their proposed semantic search strategy takes advantage of 

graph techniques. Delbru et al. [60] also made use of graph theory; they proposed entity 

retrieval and a high-performance indexing model for searching semi-structured Web 

documents by taking advantage of a labelled directed graph. They defined a labelled 

directed graph model which encompasses different types of Web data sources, including 

Resource Description Framework (RDF), RDF Schema (RDFS), and Microformats, and 

represents corresponding datasets, entities, and their relationships. In contrast to the work 

of Tran et al. and Delbru et al., who applied graph models in Web search, this work 

exploits graphs to represent simulation models. 

In addition to making use of a graph-structured representation, the SIMONTO simulation 

model exploits ontology formalisms. Since the Web Ontology Language (OWL) has been 

recommended by the World Wide Web Consortium (W3C) and has emerged as the 
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primary ontology specification language [45,61], this work uses OWL. Designed as an 

ontology language for the Semantic Web, OWL [62] has been established on the basis of 

RDF [63] and RDFS [64]. In particular, the fundamental mechanisms for describing 

classes and properties as well as their respective hierarchies are inherited from RDFS. In 

OWL terminology: 

 a class is a collection of similar entities, 

 an individual is an actual object in a domain. An instance refers to a class 

membership; individuals are instances of classes, and classes can be instances of 

other classes. 

 a data value refers to a value of an attribute, 

 properties establish relations: 

o an object property establishes relations between individuals, 

o a datatype property specifies attribute values by relating individuals and 

data values. 

OWL is characterized by a formal semantics and an abstract ontology structure that can 

be perceived as a graph. Consequently, elements of the simulation model graph proposed 

in this work correspond to OWL elements: 

 vertices: 

o entity vertices represent simulation entities or groups of entities and 

correspond to OWL individuals and classes, 

o data value vertices represent data values and are analogous to OWL data 

values. 

 arcs: 

o attribute arcs relate entities to data values and correspond to OWL 

datatype properties, 

o relation arcs establish relations between two simulation entities and are 

analogous to OWL object properties. 

Consequently, this work defines a simulation model graph as follows: 
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Definition 1: A simulation model graph S is a directed graph         , where: 

   is a finite set of vertices; it is conceived as the disjoint union of entity vertices (E-

vertices)   
  representing simulation entities and data value vertices (V-vertices) 

  
  representing data values: 

     
    

   (1) 

   is a finite set of arcs of the ordered form          with         . Two types of 

arcs are distinguished: 

o   
  : A-arc or attribute arc  

o   
  : R-arc or relation arc  

     
     

   (2) 

    
   
                  

         
   

  
                      

               
   (3) 

           (4) 

  
      

   0/   (5) 

E-vertices are simulation model entities, which are relevant objects for the observed 

system, while V-vertices represent data values. The A-arcs denote entity datatype 

properties by connecting entities (E-vertices) to data values (V-vertices), indicating a 

measure of an attribute. The relations between the two entities of the simulation model, 

the two E-vertices, are established with R-arcs. 

Example: Figure 6.1 shows an example of a simulation model graph. It displays a 

fragment of an EPANET [65] water distribution network represented as a simulation 

model graph. Specifically, the model includes five individuals (E-vertices): pipes 36, 37, 

and 218, reservoir 264, and junction 40. The A-arcs include diameter, length, initial 

status, and total head; they define attribute values by linking entities to data values. The 

R-arcs establish the relationship between entities, such as in the statement, ―pipe 218 has 
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start node junction 40‖, where ―pipe 218‖ and ―junction 40‖ are E-vertices and ―has start 

node‖ is an R-arc. 

 

 

Figure 6.1 A SIMONTO graph-structured EPANET simulation model 

 

The graph in Figure 6.1 can be perceived as an ontology-based graph, where the E-

vertices are individuals and classes, the V-vertices are data values, the R-arcs are object 

properties, and the A-arcs are datatype properties. Individuals are contained in classes as 

indicated in Figure 6.1 by ―is a‖ relations: pipes 36, 37, and 218 belong to the pipe class, 

junction 40 is in the junction class, and reservoir 264 belongs to the reservoir class. 

Therefore, an ontology related to Figure 6.1 contains the classes pipe, reservoir, and 

junction. The domain of the ―has end node‖ object property includes the class pipe, while 

the range includes the reservoir and junction classes. The classes and properties 

contained in the ontology depend on the simulation domain as well as on the simulation 

package used for model creation.  

The definition of a simulation model graph, as explained in Definition 1 and the observed 

relationship with ontology paradigms are the foundation of SIMONTO ontology-based 

simulation models. 
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6.2 SIMONTO Architecture 

The overall SIMONTO architecture is presented in Figure 6.2. The SIMONTO inputs are the 

proprietary simulation models represented in their simulator-specific file formats. 

Specifically, the SIMONTO Engine uses proprietary simulation models to create their 

corresponding ontology-based simulation models. The resulting ontology-based 

simulation models are persisted in a data store, consequently enabling various services 

including integration, simulation model querying, and rule and constraint validation.  

The following Sections 6.2.1, 6.2.2, 6.2.3, and 6.2.4 describe the SIMONTO components 

from Figure 6.2: SIMONTO ontologies, the SIMONTO Engine, storage for ontology-based 

simulation models, and simulation services.  

 

 

Figure 6.2: Overall SIMONTO architecture 

 

6.2.1 SIMONTO Ontologies 

To separate different concerns, the SIMONTO ontologies block has a layered design, as 

depicted in Figure 6.3 [53]. The top layer, the upper ontology, introduces general 

concepts which are common across different simulation domains. The second layer, or 
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the simulator-specific ontologies layer, defines the ontologies of domain-specific 

simulation packages by extending the upper ontology. Ontologies in this layer are the 

inputs to the SIMONTO Engine, as illustrated in Figure 6.2. The third layer contains the 

ontology-based simulation models created by the SIMONTO Engine. In this layer, each 

simulation model from the proprietary model file is represented as an ontology-based 

model. The rules represent an addition to ontology-based simulation models and act upon 

them.  

 

Figure 6.3: SIMONTO ontologies 

 

Upper Ontology Layer 

The top layer consists of the upper ontology, which contains generic concepts which are 

common to all simulation engines. The upper ontology‘s purpose is to provide a set of 

concepts on which other ontologies can be constructed and to support broad semantic 

interoperability among other ontologies. Based on Definition 1, the upper ontology can 

be defined as follows: 

Definition 2: The upper ontology is the set: 

            (6) 

where: 

   is the set of upper ontology classes and 
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    is the set of upper ontology properties. 

The classes    of the upper ontology are E-vertices, while the properties    are arcs of 

the simulation model graph from Definition 1.  

Example: Figure 6.4 [52] portrays the upper ontology classes. The cell is an entity that 

transforms inputs into outputs. The channel transports entities between cells and/or 

controls, while controls are responsible for distributing the flow of entities among 

channels. Meters are responsible for performance measures, while other serves as a 

category for entities that cannot be assigned to any of the other four categories. 

The only properties, or arcs in the graph representation included in the upper ontology, 

are object properties hasInput, hasOutput, and their inverse properties hasStartNode and 

hasEndNode. 

 

Figure 6.4: Upper ontology classes 

 

Simulator-Specific Ontologies Layer 

The simulator-specific ontologies layer consists of ontologies that are specific to the 

actual simulators. This layer provides the simulator-specific entities needed to describe 

individual simulation models. Thus, the terminology matches that of the simulators, 

making it easier for domain experts to understand the ontologies as well as enabling 

automated creation of ontology-based representations from proprietary simulation 

models. In this layer, there is one ontology for each simulation package. A simulator-

specific ontology is defined as: 
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Definition 3: The simulator-specific ontology for the i-th simulation package is the set: 

  
     

    
     (7) 

  
     

    
            (8) 

where:  

  
  is the set of the i-th simulation package classes such that each class is a subclass 

of an upper ontology class. (  indicates class/subclass relation: ‗  
  is subclass of 

 ‘) 

  
  is the set of the i-th simulation package properties. 

This definition provides limitations on the class definitions in this layer: each class 

defined in this layer must be a subclass of a class in the upper ontology layer. Because the 

upper ontology contains highly generic simulation concepts, this definition enables 

further division of classes in the simulator-specific ontologies layer.  

Example: An example of a simulator-specific ontology, specifically the EPANET water 

distribution simulator ontology, with its relation to the upper ontology is illustrated in 

Figure 6.5. To keep the illustration simple, this figure includes the EPANET ontology 

classes, but not their properties. It can be observed that each EPANET ontology class is a 

subclass of the upper ontology class. 

Although there are class restrictions at this layer, limitations on properties are not 

imposed. Therefore, at this level, properties can be independently defined, eliminating the 

need to identify properties as sub-properties of the upper ontology layer. This approach to 

property identification was chosen because properties vary greatly across domains and 

even among simulators in the same domain. As a result, the process of assigning each 

property into an upper-ontology category might cause implementation challenges. 

Although it is still possible to define properties as sub-properties of the upper ontology, 

properties can also remain independent of the upper ontology. In the case of the EPANET 

ontology, its properties are not sub-properties of the upper ontology. 
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Figure 6.5: EPANET ontology with relations to the upper ontology 

 

Furthermore, it is important to highlight the distinction between datatype properties DP 

and object properties OP: 

  
      

      
  . (9) 

With respect to the simulation model graph in Definition 1, datatype properties are A-

arcs, while object properties are R-arcs. The significance of distinguishing between 

datatype and object properties in simulation models is that the datatype properties of a 

single ontology individual can be established without the knowledge or existence of other 

individuals, while object properties require knowledge about another individual. This has 

a major impact on formulating an algorithm for creating ontology-based simulation 

models from proprietary simulation models. 

Ontology-Based Simulation Model Layer 

The ontology-based simulation model layer contains ontology-based simulation models 

that are represented as instances of simulator-specific ontologies. More specifically, each 

simulation model, usually contained in a simulation engine proprietary model file, is 

represented as an ontology-based simulation model consisting of interconnected instances 

of the simulator-specific ontology. Different simulation models from distinct proprietary 
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files correspond to the various models in this layer. Consequently, the ontology-based 

simulation model can be defined as follows: 

Definition 4: The ontology-based simulation model for the j-th simulation model of the i-

th simulation package is the set: 

   
      

      
     (10) 

   
                

     (11) 

    
              

         
        

         (12) 

where: 

AV is the set of data values. 

   
  is the set of individuals a. Each individual a is an instance of a class c from the set 

of simulator-specific ontology classes   
 . 

    
  is the set of all instantiated properties p. Each property p is instantiated from the 

properties   
  defined in the simulator-specific ontology layer. 

Example: An example of an ontology-based simulation model is portrayed in Figure 6.1. 

The set of individuals includes the actual objects from the simulation model: reservoir 

264, pipes 36, 37, and 218, and junction 37. The set of instantiated properties includes 

individual occurrences of properties defined in the simulator-specific ontology. For 

example, the property hasStartNode is defined in the EPANET ontology, and in Figure 

6.1 it appears twice, indicating two occurrences of the hasStartNode relation: 

hasStartNode(pipe218, junction40) and hasStartNode(pipe37, junction40). 

As shown in Definition 4, the ontology-based simulation model consists of individuals 

and instantiated properties. Since this definition does not permit the formation of new 

classes or properties in this layer, all classes and properties must be defined in the 

simulator-specific ontologies layer. Consequently, once a simulator-specific ontology has 

been created for each simulation engine, the creation of ontology-based simulation 

models can be automated. 
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As in the simulator-specific ontology case, in the ontology-based simulation model, 

object and datatype properties are distinguished from one another. In the example from 

Figure 6.1, all occurrences of A-arcs compose the datatype properties set, while the object 

properties set includes all occurrences of R-arcs. The set of instantiated properties is: 

    
        

       
  (13) 

      
                

         , (14) 

     
                  

  , (15) 

where: 

      
  is the set of instantiated datatype properties assigning attribute values AV to 

individuals    
 , 

     
  is the set of instantiated object properties establishing relations between two 

individuals x and y.  

Example: In the example from Figure 6.1, all occurrences of A-arcs compose the set of 

instantiated datatype properties       
 , while the set of instantiated object properties 

     
  includes all occurrences of R-arcs. An example of an instantiated datatype property 

is hasDiameter(pipe218, 300), while hasStartNode(pipe218, junction40) is an 

instantiated object property. 

Rules  

Although ontologies establish a way of describing knowledge with defined semantics, 

they do not provide a method for defining procedures to extract new knowledge from 

existing assertions. Consequently, in Berners-Lee‘s Semantic Web Stack [66], rules are 

the next hierarchical layer after ontologies. 

Accordingly, SIMONTO includes the rules which act upon ontology-based simulation 

models created by the SIMONTO Engine. Rules are intended for situations in which 

ontology-based specifications are not sufficient and additional expressiveness is required 
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to represent a complete simulation model. Additionally, they can also express rules and 

constraints to which the simulation model should conform. 

6.2.2 The SIMONTO Engine 

The SIMONTO Engine is responsible for the creation of an ontology-based simulation 

model representation. As illustrated in Figure 6.6, the SIMONTO Engine inputs consist of 

the simulator-specific ontology and the proprietary simulation model. The simulator-

specific ontology is simulation package-specific and captures simulation package 

components, vocabularies, and functionalities. On the other hand, the proprietary 

simulation models are model-specific, with each model stored in a separate model file. 

The output of the SIMONTO Engine is the ontology-based simulation model represented 

as interconnected instances of the simulator-specific ontology. 

 

Figure 6.6: The SIMONTO Engine 
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The four SIMONTO Engine components are: Ontology Reader, Simulation Model Reader, 

Integrator, and Ontology Writer. 

Ontology Reader is responsible for reading simulator-specific ontologies. Although 

ontologies are simulator-specific, they are always represented using the common 

ontology language, which allows a simulator-independent reader. Specifically, the 

Ontology Reader is responsible for acquiring information about simulator-specific classes 

and their properties, including datatype and object properties. The Ontology Reader is not 

aware of individuals because the simulator-specific ontologies contain only classes and 

their properties; however, individuals will be extracted by the SIMONTO Engine. 

Simulation Model Reader is responsible for reading the second SIMONTO Engine input, 

the proprietary simulation model. Since the format of a proprietary simulation model 

depends on a specific simulator, a separate Simulation Model Reader has to be created 

for each simulator having models that require transformation to an ontology-based 

representation. Therefore, there will be one Simulation Model Reader for each simulator. 

However, once a Simulation Model Reader has been created for a specific simulator, the 

reader can transform any model represented in that format. The Simulation Model Reader 

design depends on the model being read, and the reader can use the simulator‘s API 

interface, directly read the model file, or employ external model readers. 

The Integrator receives the data from the Ontology Reader and the Simulation Model 

Reader and creates the ontology-based simulation model. Specifically, the Integrator 

receives information about simulator-specific classes from the Ontology Reader. For each 

class, the Integrator obtains knowledge about its individuals and their data properties 

from the Simulation Model Reader. After acquiring information about all individuals of 

all classes and their datatype properties, the Integrator proceeds to determine object 

properties. Because object properties connect individuals of the same or different classes, 

all individuals must be determined before object properties are defined. Subsequently, the 

Integrator sends information about classes, individuals, and properties to the Ontology 

Writer.  
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The Ontology Writer is responsible for writing an ontology-based simulation model in 

an ontology language such as OWL. Rather than re-creating classes, the output ontology 

imports the simulator-specific ontology to acquire domain-relevant concepts and 

properties. The Ontology Writer then identifies individuals and properties using 

information received from the Integrator and records the output in an ontology language. 

As its purpose is to write ontologies from the Integrator‘s information, the Ontology 

Writer is simulator-independent. 

Algorithm 6.1 illustrates the process of creating ontology-based representations of 

simulation models performed by the SIMONTO Engine. The result of this algorithm is the 

Ontology-based Simulation Model    
  consisting of individuals and instantiated 

properties, as per Definition 4. For simplicity, the algorithm omits the following 

subscripts:      
 ,          

 ,          
 .  

Step 1: The Ontology Reader acquires classes, object properties and datatype properties 

from the simulator-specific ontology as specified in lines 1-3. At this point, there are no 

ontology individuals, and the only existing knowledge pertains to classes and properties. 

Step 2: Individuals and their datatype properties are acquired, as shown in lines 4-14. For 

each class from the simulator-specific ontology (the loop starting with line 6), the 

Simulation Model Reader acquires the set of all individuals (line 7). Then, for each 

individual, all datatype properties are obtained, as specified in lines 8-12. After this step, 

all instances of all classes are known. 

Step 3: Object properties are instantiated and the ontology-based simulation model 

finalized, as described in lines 15-24. Because object properties establish relations 

between individuals, their instantiation happens after all individuals have been acquired. 

For each object property (the loop starting with line 16), the Simulation Model Reader 

acquires all pairs of individuals related by that property (line 17). The union of all pairs 

of individuals related by object properties makes up a set of instantiated object properties, 

or OPI. Finally, lines 23 and 24 finalize the ontology-based simulation model. This 

ontology-based simulation model is written by the Ontology Writer in the ontology 

language of choice. 
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Algorithm 6.1: Creating ontology-based simulation models with SIMONTO (i-th 

simulation package) 

1:   
  := OntologyReader.getAllClasses(  

 ) 

2:    
  := OntologyReader.getAllObjectProperties(  

 ) 

3:    
  := OntologyReader.getAllDataProperties(  

 ) 

4:    0/  //set of all individuals 

5:      0/  //set of all instantiated datatype properties 

6: for each class    
     

  

7:                                    
    

8:  for each individual    
  ,    

       , of the    
  class 

9:   //    
  - k-th individual of the j-th class 

10:        
                                    

    

11:                
  

12:  end for 

13:          

14: end for 

15:      0/  //set of all instantiated object properties 

16: for each object property     
 ,     

      
  

17:                                               
   

18:  //         - set S of all individuals satisfying      

19:  for each pair of individuals               do 

20:                      
21:  end for 

22: end for 

23:            //set of all instantiated properties 

24:    
         //ontology-based simulation model 

 

Consequently, the Simulation Model Reader is the only SIMONTO Engine component that 

is simulator-dependent. However, this reader can be replaced with readers from different 

simulators to represent specific proprietary simulation models in an ontology-based 

representation. Once a reader has been created for a simulator, it will read all models 

constructed using that simulator. 

It is important to note that Algorithm 6.1 is suitable for parallel processing because it can 

be divided into parts which can be executed independently on different processing 

devices. For example, processing for each outer loop in step 2 (lines 7-12) can be 

executed on different devices as there are no interdependence among loops. Similarly, 

Step 1 

Step 2 

Step 3 
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each outer loop in step 3 (lines 17-21) can be executed simultaneously. However, step 2 

must be completed and its results must be aggregated (line 13) before the step 3 can start. 

6.2.3 Storage for Ontology-Based Simulation Models 

Disaster-CDM is designed to enable the choice of a storage solution that corresponds to 

data requirements in terms of data structure as well as access patterns. With respect to 

simulation models, the task at hand determines data access patterns and consequently 

influences the choice of storage solution. Therefore, this work addresses the two main 

storage approaches for simulation models: 

 Storage focused on integration with other data. This approach was described in 

Chapter 5 and includes storage of ontology-based simulation models in the 

document data store alongside all other file-style data. Because it supports full-

text search and querying pertaining to a variety of data sources, as will be 

demonstrated in the case study, this approach is very successful in integrating 

simulation models with other file-style data. Nevertheless, it provides limited 

capabilities for querying the simulation model itself or for validating that the 

simulation model complies with rules and constraints. 

 Storage focused on querying within simulation models. Ontology-based 

models are represented in OWL, which is characterized by an abstract ontology 

structure that can be perceived as a graph. On the other hand, graph databases use 

graph structures with nodes, edges, and properties to represent and store data. 

They are optimized for efficient management and storage of graph-like data. 

Consequently, because ontologies can be perceived as graphs, it is apparent that 

graph databases are a good choice for storing ontologies as well as ontology-

based simulation models. Another characteristic that makes a graph database a 

good choice is its query capabilities; graph database implementations typically 

offer advanced query capabilities using different query languages. However, this 

approach imposes challenges in integrating simulation models with other data 

sources. 
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Consequently, to facilitate integration services and simulation-specific services, Disaster-

CDM stores simulation models twice: in a document data store to facilitate integration 

with other data sources and in a graph database to enable simulation model querying. In a 

traditional approach to database design this redundancy is undesired and must be 

avoided. However, this work adopts a NoSQL approach which allows data redundancy in 

order to achieve performance and scaling benefits. By storing simulation models in a 

document data store and in a graph database, Disaster-CDM can take advantage of both, 

and therefore it can support integration services and simulation-specific services. 

6.2.4 Simulation Services 

Ontology-based simulation models created by the SIMONTO Engine enable integration, 

simulation model querying, and rule and constraint validation. These services are external 

to SIMONTO as they exploit existing methods, approaches, and technologies to carry out 

simulation-related tasks. However, they act on SIMONTO ontology-based simulation 

models. The following paragraphs introduce the three categories of services observed in 

this study: 

 Integration. This category involves any task that needs to be carried out across a 

variety of sources, including simulation models. Examples include full-text search 

and querying over data from a variety of sources. To support integration services, 

data are stored using integration-focused storage, as described in Section 6.2.3. 

Specifically, for integration with other file-style data typical in the disaster 

management domain, Disaster-CDM takes advantage of document data stores.  

 Simulation Model Querying. Ontologies, and therefore ontology-based 

simulation models, can be queried using ontology querying languages such as 

Semantic Query-Enhanced Web Rule Language (SQWRL) [67]. In addition, 

OWL ontologies can be serialized as RDFs, and therefore they can be queried 

using RDF query languages such as SPARQL [68]. Queries can be executed 

directly against OWL ontologies; however, disaster management deals with a 

large number of simulation models, which makes use of a database preferable to 

storing ontologies as OWL files. Consequently, to support simulation model 

querying, Disaster-CDM stores ontology-based simulation models in a graph 
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database and takes advantage of the querying capabilities provided by the 

database.  

 Rule and Constraint Validation. SIMONTO enables validation of model 

compliance with rules and constraints. Since simulation models are represented as 

ontologies, validation of simulation models can be performed using ontology 

approaches. Two approaches for rule validation are considered: genuine rule 

language and querying.  

o The genuine rule language approach. In the genuine rule language 

approach, the rules represent an addition to the ontology-based model and act 

upon the ontology. Ontology rule languages express antecedent/consequent 

relations: if the conditions expressed in the antecedent hold, then the 

conditions in the consequent also must hold. When the ontology is represented 

using OWL, a possible choice of rule language is the Semantic Web Rule 

Language (SWRL) [69]. The main disadvantage of this approach is that the 

complete ontology must fit into computer memory; therefore, instead of a rule 

language, this research has used a querying approach for rule and constraint 

validation.  

o Querying approach. This approach to rule and constraint validation involves 

querying ontologies to identify entities that do not conform to rules or 

constraints. Although querying is not actually a rule engine, it can identify 

entities that violate rules. Once the violating entities are identified, corrections 

are performed on the originating proprietary simulation model, which is also 

used for simulation execution. The advantage of this approach is that it can be 

carried out on an ontology-based simulation model stored in a graph database 

and therefore can take advantage of graph database querying capabilities. 

Moreover, the ontology-based model does not need to fit into computer 

memory as is the case with the rule language approach. A querying approach, 

unlike the rule language approach, cannot take advantage of inferences 

performed by ontology reasoners. However, in the context of Disaster-CDM, 

this drawback is outweighed by the advanced querying capabilities provided 

by graph databases.  
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This section has introduced the main services that SIMONTO enables in the context of 

Disaster-CDM; their application is demonstrated in the case study. A querying approach 

to rule and constraint validation transforms the validation problem into a querying task; 

however, this study examines them separately due to their different objectives and the 

presence of an alternative approach to rule and constraint validation. Future work will 

explore the possibility of combining the advantages of the two rule and constraint 

validation approaches. 

6.3 Summary 

This chapter has proposed SIMONTO, an ontology-based representation of simulation 

models, which represents proprietary simulation models as interconnected instances of 

simulator-specific ontologies. SIMONTO transforms existing proprietary simulation 

models into their corresponding ontology-based models with the objective of facilitating 

integration, simulation model querying, and rule and constraint validation. In the context 

of Disaster-CDM, SIMONTO is responsible for simulation model processing. For the 

purpose of integration with other file-style data, ontology-based simulation models are 

stored in the document data store along with other file-style data sources. For the purpose 

of simulation model querying and rule and constraint validation, ontology-based 

simulation models are stored in a graph database to take advantage of the advanced 

querying capabilities provided by the database and to enable querying within ontology-

based simulation models. 
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Chapter 7  

7 Evaluation: Case Study 1 

The objective of the presented case studies is to demonstrate Disaster-CDM benefits on 

data collected during the Disaster Response Network Enabled Platform (DR-NEP) 

project [70]. Public databases, such as Emergency Events database 

(http://www.emdat.be) and a number of databases from Global Risk Information Platform 

(http://www.gripweb.org/gripweb/?q=disaster-database) were considered; however, those 

databases contain only public information. In contrast, data set from DR-NEP project 

includes public data as well as sensitive data which are not accessible to the general 

public.  

Because this research focuses on knowledge acquisition and storage, the presented case 

studies show how knowledge from DR-NEP data set is acquired and stored; the benefits 

are demonstrated through the knowledge delivery services. Specifically, case study 1 

presented in this chapter demonstrates how knowledge is acquired from a variety of file-

style data sources including simulation models, how it is stored, and illustrates the 

Disaster-CDM benefits through the integration knowledge delivery services. In contrast, 

case study 2 presented in Chapter 8 focuses on simulation models; it shows how 

knowledge is acquired from simulation models and stored in a graph database, and 

demonstrates Disaster-CDM benefits through examples of simulation-specific knowledge 

delivery services.  

Section 7.1 describes the DR-NEP data set which is used in both case studies. The 

Disaster-CDM implementation is presented in Section 7.2 and knowledge acquisition and 

delivery in Sections 7.3 and 7.4 respectively. Finally, Section 7.5 discusses the findings 

and concludes case study 1. 

7.1 Data Set 

This work was evaluated on data collected by Western University during the two-year 

period of the CANARIE sponsored Disaster Response Network Enabled Platform (DR-

http://www.emdat.be/
http://www.gripweb.org/gripweb/?q=disaster-database
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NEP) project [70]. The DR-NEP project combined the expertise of a number of research 

groups, industries, government agencies, and response teams in multiple geographical 

locations with the aim of improving the capability to prepare for and respond to large 

disasters. To achieve this objective, close collaboration among partners was essential, and 

the case study presented here demonstrates how Disaster-CDM can facilitate this 

collaboration. Disaster modelling and simulation played a major role in the project, with 

a special focus on critical infrastructure (CI) simulation.  

The participation of Western University in the DR-NEP project involved the 

investigation of critical infrastructure interdependencies in an incident that happened on 

its campus. As the event involved various infrastructures, it was simulated using several 

simulators including EPANET [65] water distribution simulator and the I2Sim [71] 

interdependency simulator. Different disaster response strategies were explored and 

compared with decisions made during the event. Western University collected 

information directly related to the event such as the event reports and timelines, data 

pertaining to the involved infrastructures and a variety of other data that could help in 

better understanding and modeling the event. 

The data set is heterogeneous and includes data sources such as disaster plans from 

different institutions, reports of previous incidents and their timelines, minutes of DR-

NEP team meetings and various other disaster response meetings, information about 

different critical infrastructures, risk analysis documents, and information about a number 

of disaster-related stakeholders. These data sources are owned by various participants 

who had to collaborate and share the information they own to achieve successful disaster 

management.  

Because the simulation of critical infrastructures was of special interest in the DR-NEP 

project, the data set includes a number of simulation models that were used to explore 

interdependencies of critical infrastructures, including EPANET water-distribution 

models and I2Sim interdependency models. 

With respect to format, the data set includes image files in a variety of formats, text and 

PDF files, and MS Office documents, including Word, Excel, PowerPoint, and Visio. The 
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simulation model file formats are simulator-specific: I2Sim models are stored in a 

Simulink-style .mdl file format, while EPANET models are stored in .NET or .INP files. 

7.2 Disaster-CDM Implementation 

The Web application was implemented to provide access to the Disaster-CDM system 

using a Web browser. Specifically, this Web application provides access to KaaS, 

including knowledge acquisition and knowledge delivery services. Moreover, this 

approach enables users to access Disaster-CDM from anywhere and from a variety of 

devices. The following sections describe the implementation of the two main Disaster-

CDM knowledge acquisition components: data processing services and data storage. 

7.2.1 Implementation: Data Processing Services 

Disaster-CDM, according to the KaaS approach, provides data processes as services. The 

framework of the data processing component was implemented using Web services, in 

which each data processing component was treated as a separate Web service. In this case 

study Web services were deployed on a local machine; nevertheless, this choice of 

implementation enables flexible deployment of services in the cloud environment and 

their composition for the provision of knowledge acquisition services according to the 

KaaS approach. Specifically, the RESTful (Representational State Transfer) Web service 

architecture was used. 

This work focuses on data stored in a variety of file formats, and therefore case study 1 

implements the data processing services required for such data sources. Implementations 

of most of the generic file-style data processing services mentioned in Section 4.2.2 are 

available either as open source or commercial products. This case study used open source 

products, adapted them when needed, and wrapped them as RESTful Web services. The 

following data processing services for generic file-style data were implemented: 

 File metadata separation service used the Apache Tika Toolkit [72] to detect and 

extract file metadata. Tika supports a large number of formats, including MS 

Office, PDF, and a variety of image formats.  
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 Text extraction service for MS Office documents was also performed by Apache 

Tika; however, Tika is incapable of extracting text from images. Therefore, text 

extraction service for image files was performed using the Tesseract [73] optical 

character recognition (OCR) software. Text from images embedded in MS Office 

files was also extracted using Tesseract OCR. 

 Simulation model service applied the SIMONTO approach. SIMONTO was 

implemented as described in Section 8.1, and additional services required to 

prepare ontology-based simulation models for tagging were implemented in Java 

1.6.  

 Tagging service was carried out using the General Architecture for Text 

Engineering (GATE) tool suite [74,75]. Specifically, an information extraction 

system called ANNIE (A Nearly-New IE system), which is distributed with 

GATE, was used. ANNIE offers great flexibility by enabling customization of its 

components for the information task at hand; however, in this case study, 

customizations were not performed.  

The data processing rules at this stage of the research were predefined, even though 

extensions are planned which would provide dynamic rule specification. The challenge 

with such dynamic rules is that they may result in very similar files being processed in 

different ways, thus resulting in inconsistent system performance.  

7.2.2 Implementation: Data Storage 

This case study addresses generic file-style data, and accordingly the storage model 

chosen was the document data store, as presented in Section 5.3. The data model 

portrayed in Table 5.1 is designed for document data stores and can be realized in any 

document data store implementation. This case study used the Apache CouchDB 

document data store [76]. 

CouchDB is designed for Web applications. It uses JavaScript Object Notation (JSON) to 

represent documents and HTTP for an API. The primary reasons for choosing CouchDB 

for this case study were its scalability, high availability, and partition tolerance. Its ability 

to scale over many commodity servers enables CouchDB to store large amounts of data, 
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while its high availability ensures system operation even when a region is affected by a 

disaster and a local data centre fails. Partition tolerance refers to the ability of the system 

to remain operational in the presence of network partitions, which is especially relevant 

in disaster-related applications because it can be expected that parts of the network will 

fail. CouchDB achieves partition tolerance using an asynchronous replication approach. 

Multiple replicas placed on geographically distant locations have their own copies of 

data, and in case of network partition, each replica modifies its own copy. At a later time, 

when network connectivity is restored, the changes are synchronized.  

The primary way of querying and reporting on CouchDB documents is through views 

which use the MapReduce [77] model with JavaScript as a query language. In the 

MapReduce model, the Map function performs filtering and sorting, while the Reduce 

function carries out grouping and aggregation operations.  

The Apache Lucene library [78] provides full-text search of data stored in CouchDB. In 

general, Lucene is an open-source, high-performance text search engine library written in 

Java. It is suitable for almost any application which requires full-text search and has been 

recognized for its utility in Internet search engines. With respect to Disaster-CDM, 

Lucene enables ranked searches and field-specific searches such as searching for a 

specific file name or an author. This case study takes advantage of the CouchDB-Lucene 

project [79], which integrates Lucene with CouchDB. 

7.3 Knowledge Acquisition Services 

Western University stored the data collected and produced as part of the DR-NEP project 

on a server in a dedicated area. It was the responsibility of the individual participants to 

place data that needed to be shared among participants onto the server. Therefore, this 

case study uses data from this DR-NEP server as its data source. In the knowledge 

acquisition stage, these data were processed by data processing services described in 

Section 7.2.1 and loaded into the Disaster-CDM system, specifically into CouchDB in the 

cloud environment.  
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During the knowledge acquisition process, a total of 1129 files were successfully loaded 

into the Disaster-CDM system in the cloud environment, resulting in the same number of 

documents in the data store. A number of files failed to load; however, further review 

revealed that they were in file formats which are outside the scope of this case study, 

including pub, zip, mat, dll, and exe. Nevertheless, the number of these files was small, 

and including them in the knowledge acquisition process would not have resulted in a 

major system improvement. 

Table 7.1 shows a number of files of each type loaded into the system together with their 

size. As expected, there were many MS Word and PDF files. Furthermore, the number of 

PowerPoint presentation files (pptx) was large, which may be explained by the nature of 

the DR-NEP project, which was a multidisciplinary project involving a large number of 

stakeholders in which presentations were often used to transfer knowledge or convey 

findings. In addition, a large number of .m and .h text files were found, but their 

significance in knowledge delivery is minor because they are MATLAB and C-language 

program files. As for simulation data, there were 20 EPANET model files (.net) and 12 

MATLAB model files (.mdl). 

Table 7.1: Loaded file types 

File Type # of Files Size (MB) 

pdf 247 321.08 

m 149 0.5 

pptx 104 197.84 

h 73 0.49 

jpg 64 71.46 

docx 60 13.74 

txt 54 0.49 

png 51 1.5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

net 20 1.24 

mdl 12 11.42 
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Updates to existing knowledge are outside the scope of this study. In other words, the 

knowledge from each file is acquired once, and the system does not keep track of 

subsequent updates to the file. New files can be loaded into the system at any time. 

Nevertheless, updates to existing knowledge will be addressed in future work. 

7.4 Knowledge Delivery Services 

This case study demonstrated knowledge delivery services on two examples of 

integration services: full-text search and querying. The two are complementary 

approaches for accessing data stored in a cloud data store, with each one exhibiting 

strengths for specific data access tasks. 

7.4.1 Full-text Search 

Storing data in a document data store as described in Section 5.3 enables variants of full-

text search. Three variants of full-text search have been observed:  

 Searching attached documents. This search relies solely on document 

attachments in the CouchDB data store. Because original files are attached to the 

CouchDB document in their original form, this search is somewhat similar to 

using an indexing and search engine, Lucene in this case, directly on the original 

files. This strategy does not take advantage of any data processing performed 

during knowledge acquisition and is the baseline for comparison with other 

strategies. 

 Searching extracted text. This strategy includes only the contents of docText 

field. Because text extracted from images is in docImageText fields, this strategy 

ignores text contained in images as well as text in images embedded in other 

documents. Note that ontology-based simulation models are stored in docText 

fields and therefore are included in this strategy. 

 Searching extracted text, including text from images. This approach takes full 

advantage of text extraction service described in Section 7.2.1, including Tika text 

extraction and OCR text extraction, by engaging both fields, docText and 

docImageText, in the search strategy. This strategy also takes full advantage of the 

data processing performed in the knowledge acquisition stage. 
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A full-text search screen from the implemented Web application is displayed in Figure 

7.1. This application enables users to choose among the three described search strategies; 

on the screen in Figure 7.1, the extracted text strategy is selected. The result of searching 

for the term ―power house‖ are displayed in the table with two columns: document and 

last modified. The document column displays the file name, and it can be noted that the 

search result is made up of various file types, including pdf and text files, MS Word, 

PowerPoint, and simulation model files. Some of the files appear several times with 

different last modified date. This is caused by files residing in different folders, but 

having the same name. Disaster-CDM does not check whether files with the same name 

have identical content, but rather creates a new document in the data store for each loaded 

file. 

Table 7.2 provides an overview of different full-text search strategies with respect to the 

main file categories addressed in this study. For the three file categories, PDF, text and 

I2Sim model files, all three search strategies were virtually the same. Even though 

searching I2Sim models produced the same results set, the ranking of the documents was 

different because the searches were based on different text content. The attached 

document strategy searched mdl files, which are text files, directly, while the other two 

strategies searched the ontology-based simulation models. Consequently, the attached 

document strategy ranked simulation models lower than the other two strategies. 

With regard to MS Office files, the difference among the various searches depended on 

whether or not they were using text extracted from images. The data set for this case 

study contained 82 MS Word files (doc and docx), of which only 8 contained images 

from which text was successfully extracted. In contrast, out of 140 PowerPoint files (ppt 

and pptx), only 6 did not benefit from the OCR service. Therefore, the OCR service had a 

greater impact on processing PowerPoint files than on processing Word files. With 

respect to image files, out of 116 images, text was successfully extracted from 75; 

however, some of the extracted text did not contain readable words and therefore was not 

beneficial for searching. Therefore, the OCR service had a greater impact on PowerPoint 

files than on image files, which can be explained by the common use of diagram-style 

graphs in PowerPoint presentations.  
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Figure 7.1: Full-text search 
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Table 7.2: Search strategies 

 Search Strategy 

File type Attached 

document 

Extracted text Extracted text including 

text from images 
PDF files    

MS Office files  
Does not include text 

from images 

 
Does not include 

text from images 

 

Image files    

Text files    

Simulation model files    

  I2Sim model files (.mdl)  
(mdl file are text 

files) 

  

  EPANET model files (.net)    

 

Transforming simulation models into their corresponding ontology-based representations 

did not change the result set with respect to I2Sim models, but was essential for including 

EPANET models in the full-text search. The attached document strategy did not search 

EPANET models because they are represented in .net binary files; however, the extracted 

text strategies searched EPANET models by taking advantage of the ontology-based 

simulation models stored in docText fields. 

Note that the attached document search strategy took advantage of CouchDB-Lucene 

[79], which uses Apache Tika [72] to search the attached documents. This case study also 

used Tika to extract text from files, and therefore the only major difference between the 

attached-document and the extracted text strategies was with respect to EPANET model 

files. Only the extracted text strategy included EPANET model files. 

Full-text search can also be achieved by applying text search engine such as Lucene 

directly on the file system containing disaster-related data; however, such search ignores 

text contained in images as well as text in images embedded in other documents. In 

contrast, full-text search in Disaster-CDM includes image text because OCR performed 

in knowledge acquisition stage extracted text from images. Moreover, direct full-text 

search on the file system does not include EPANET .net model file as they are binary file. 

Disaster-CDM transforms EPANET model files into ontology-based representation, and 

consequently includes them in full-text search. Additionally, storing data in NoSQL data 
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store facilitates querying file-style data and allows Disaster-CDM to take advantage of 

scaling and replication capabilities provided by NoSQL store. 

7.4.2 Querying File-Style Data 

The documents contained in the document store are semi-structured: the data within a 

document are encoded, but each document can have a different structure. Such a data 

model enables document data stores to index documents based on primary keys as well as 

on document content fields. Consequently, this data model provides querying abilities. 

The data model designed for storage of file-style data, as presented in Table 5.1, was 

flexible enough to enable storage of diverse data, but at the same time was relatively 

standardized to support querying abilities. In this case study, querying was used to obtain 

various kinds of aggregate information about the contents of the data store, such as the 

number of documents of each type or the number of documents containing images. 

Aggregate querying is illustrated in this case study on a simple example, that of counting 

the documents of each type. In CouchDB, this is achieved by views which make use of 

the MapReduce approach. The Map function extracts the value of the fileExtension field 

from within each document, while the Reduce function groups by fileExtension (which is 

in the key argument passed to the Reduce function) and counts the entries for each 

fileExtension.  

Map function: 

function(doc) { 

 emit(doc.fileExtension, 1); 

} 

Reduce function: 

function (key, values) { 

return sum(values); 

} 

The data presented in Table 7.1 were obtained by executing this query. As illustrated, 

obtaining such information from the Disaster-CDM system is very simple; however, 
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doing this without the Disaster-CDM system would require extensive manual efforts or 

use of specialized (custom or off-the-shelf) software. 

The full-text search described in the previous section did not take full advantage of the 

tagging performed during data acquisition. When text was extracted from documents, 

tagging was performed, and the results were stored within different tag fields. Because 

the tag fields are encoded within the document, they facilitate querying. For example, as 

part of the DR-NEP project, Western University explored an incident on the university 

campus which involved a local power plant. During data acquisition, the text extracted 

from documents was forwarded to the tagging services. If a power plant was mentioned 

in a document, the ANNIE tagging service used in this case study recognized ―power 

plant‖ as an organization and therefore tagged it as organization=’power plant’. 

Consequently, the resulting document in the data store contained the following entry: 

tag: {organization: ["power plant"]}. This document structure can be used to find 

all documents referring to power plants. To enable searching by organization tag, a view 

with the organization tag as its first column was created. In CouchDB, this results in 

indexing on organization tag, thus enabling fast data access by organization tag. Listing 

7.1 illustrates the Map and Reduce functions for this CouchDB view. The Map function 

outputs the organization tag as the first array element because this is a search criterion. In 

addition, this view includes fileName to identify the original file and creationDate to 

distinguish more recent documents. In this view, the Reduce function eliminates 

duplicates produced by the Map function. After this view has been created, data can be 

queried by specifying organization tag values in HTTP calls. A few rows of the search 

results for the organization tag ―power plant‖ are displayed in Table 7.3. 
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Listing 7.1: Querying for ―Power Plant‖—Map and Reduce functions for CouchDB 

view 

Map function 
function(doc) { 

  if (doc.tag.Organization && Array.isArray(doc.tag.Organization)) { 

    doc.tag.Organization.forEach( function (organizationTag) { 

      var creationDate = doc.metaData["dcterms:modified"];  

      if (creationDate == null) { 

        creationDate = doc.metaData["dcterms:created"] 

      } 

      emit([organizationTag.toLowerCase(), doc.fileName, creationDate], null); 

    }); 

  } 

} 

Reduce function 
function (key, values) { 

  return null; 

} 

 

Table 7.3: Query results for ―power plant‖ 

Organization 

tag 

File Name Creation Date 

power plant 11_02_17_DR_NEP_Audit.pptx 2011-02-17T15:21:42Z 

power plant 11_09_08_DR_NEP_Audit_Final.pptx 2011-09-08T20:36:29Z 

power plant DeltaV-Chillers-a.jpg 2010-07-19T10:49:52Z 

power plant Disaster_phase2_Aug9.xlsx 2011-08-11T20:14:06Z 

power plant DisasterTable_phase2_Aug11_v1.xlsx 2011-08-12T15:48:49Z 

 

In this case study, only automated tagging was used, and therefore tags typically 

resembled phrases found in text extracted from documents. In this situation, querying as 

described in the example gave similar results to the full-text search described in the 

previous Section 7.4.1. However, Disaster-CDM was designed to allow manual tagging 

by end users in addition to automated tagging. In a manual tagging scenario, the 

effectiveness of queries similar to the organization tag example would be increased. 

7.5 Discussion 

The case study presented in this chapter has illustrated the use of Disaster-CDM on the 

data collected during the Disaster Response Network Enabled Platform (DR-NEP) 

project. In the knowledge acquisition stage, stakeholders share disaster-related data; 
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specifically, knowledge is acquired from data owned by various stakeholders. In the 

knowledge delivery stage, the KaaS approach delivers the knowledge as a service to 

collaboration participants. 

The presented case study focused on data formats commonly present in the disaster 

domain, e.i. file-style data sources, and implemented the services required for knowledge 

acquisition from such sources. Processed data were stored in a document data store, 

specifically CouchDB store. 

Two knowledge delivery services were explored: full-text search and querying: 

 Various full-text search approaches were investigated, which made it possible to 

analyze the effects of data processing performed during knowledge acquisition on 

the full-text search results. Overall, the benefits of data processing services vary 

by file format as well by file content. For example, as expected, the OCR service 

had a major impact on image file searching; however, experiments showed that 

searches of PowerPoint files also benefited greatly from this service. Full-text 

search does not take advantage of automated tagging, and therefore, if knowledge 

delivery relies only on full-text search, the automated tagging service can be 

omitted. 

 The querying service proved advantageous in obtaining various types of aggregate 

information about the stored contents. Some of the query tasks explored in this 

case study, such as searching for a word or a phrase, can also be achieved by full-

text search. In these circumstances, full-text search has an advantage over 

querying because of its simple call interface and the ability to rank documents 

according to their relevance. However, the querying approach is promising with 

respect to manual tagging as it provides fast and easy access to tagged data.  

Consequently, the two knowledge delivery services explored in this case study, full-text 

search and querying, are complementary services which are suitable for different tasks. 

Knowledge delivery services, together with knowledge acquisition services, facilitate 

collaboration by providing a platform for sharing and integrating disaster-related 

information. 
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7.6 Summary 

This chapter has presented an evaluation of the proposed Disaster-CDM framework on 

data collected by Western University during the CANARIE sponsored Disaster Response 

Network Enabled Platform (DR-NEP) project. The presented case study applied the 

Disaster-CDM framework on file-style data sources including simulation models. First, 

the Disaster-CDM implementation was presented, including its two main knowledge 

acquisition components: data processing services and data storage. Disaster-related 

knowledge was acquired from the DR-NEP data set using a variety of knowledge 

acquisition services and stored in a document data store. Finally, the benefits of Disaster-

CDM were demonstrated on two knowledge delivery services: full-text search and 

querying. 
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Chapter 8  

8 Evaluation: Case Study 2 

While case study 1 addressed the application of Disaster-CDM on a variety of file-style 

data including simulation models with the objective of integrating diverse data sources, 

the case study presented in this chapter focuses on simulation models with the goal of 

illustrating how Disaster-CDM enables simulation model querying and rule and 

constraint validation.  

Within the Disaster-CDM framework SIMONTO is responsible for processing simulation 

models and creating their ontology-based representations. All simulation models from the 

DR-NEP data set were transformed to ontology-based representations and stored. 

However, to illustrate Disaster-CDM use with simulation models, this chapter focuses on 

two specific models: the Western University campus water distribution network modelled 

in EPANET, and the I2Sim model developed as part of the DR-NEP project for the 

investigation of infrastructure interdependencies. 

The SIMONTO implementation, including SIMONTO ontologies and the SIMONTO engine, 

is described in Section 8.1. The two ontology-based models, EPANET and I2Sim models, 

created by SIMONTO from the two selected proprietary simulation models are presented 

in Section 8.2. Knowledge acquisition services and the storage of ontology-based 

simulation models are included in Section 8.3. Finally, knowledge delivery services are 

demonstrated in Section 8.4 and discussion is provided in Section 8.5. 

8.1 SIMONTO Implementation 

The SIMONTO approach is generic, meaning that it is independent of any specific 

simulation engine; however, its implementation requires the creation of two simulation 

engine-specific components: a simulator-specific ontology and the Simulation Model 

Reader. The remaining SIMONTO components are independent of simulation engines or 

simulation packages. 
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The SIMONTO implementation consists of two parts: the SIMONTO ontologies and the 

SIMONTO Engine. 

8.1.1 SIMONTO Ontologies 

The four SIMONTO ontology components can be described as follows: 

 Upper ontology (top ontology layer): This case study used the upper ontology 

depicted in Figure 6.4. In compliance with Definition 2, the upper ontology 

contains concepts and properties that are common across all domains. As depicted 

in Figure 6.4, the concepts include cell, control, channel, meter, and other. The 

―other‖ category serves as a container for entities that cannot be assigned to any 

of the other four categories and is needed because in Definition 3 of the simulator-

specific ontology each class of the simulator-specific ontology must be a subclass 

of an upper ontology class. 

 Simulator-specific ontologies (second ontology layer): A simulator-specific 

ontology is created once for each simulator. Hence, in this case study, simulator-

specific ontologies for the two simulators are created: the I2Sim ontology and the 

EPANET ontology. The main classes of the EPANET ontology and their mapping 

to the upper ontology are presented in Figure 6.5, while the I2Sim ontology 

classes with their mapping to the upper ontology are shown in Figure 8.1 [52]. 

Complying with Definition 3, the EPANET ontology contains classes specific to 

the EPANET simulator. As required by Definition 3 and illustrated in Figure 6.5, 

each class of the EPANET ontology is a subclass of the upper ontology class. The 

properties contained in the EPANET ontology are not sub-properties of the upper 

ontology. Likewise, in the I2Sim ontology, each I2Sim class is a subclass of the 

upper ontology, as illustrated in Figure 8.1, but the properties are not defined as 

sub-properties of the upper ontology.  

 Ontology-based simulation models (third ontology layer): This case study 

explored two proprietary simulation models, one EPANET model and one I2SIm 

model. Therefore, the SIMONTO engine created two corresponding ontology-based 

simulation models, which are described in further detail in Section 8.2. 
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 Rules: This component adds rules to the ontology-based models with the 

objective of increasing representation expressiveness and for validation of rules 

and constraints. This case study did not take advantage of the rules since the 

simulation models were expressed in OWL and the querying approach was used 

for rule and constraint validation. 

 

 

Figure 8.1: I2Sim ontology with relation to the upper ontology 

 

8.1.2 SIMONTO Engine 

The simulation models are saved in simulation engine-specific proprietary file formats. 

EPANET models are saved in .NET and .INP files, while I2Sim models are saved in .mdl 

files. When working with EPANET, the SIMONTO Engine inputs include the EPANET 

ontology and the EPANET simulation model as represented in the .NET or .INP file 

formats. For I2Sim, which is based on MATLAB‘s Simulink engine, the inputs include 

the I2Sim ontology and the I2Sim simulation model, which is stored in a Simulink style 

.mdl file. 

In this case study, the SIMONTO Engine was implemented as follows: 
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 OWL is the representation language of the upper and simulator-specific 

ontologies and the ontology-based simulation models. 

 The Ontology Reader and the Ontology Writer reads and writes OWL ontologies 

respectively. They are implemented using the Protégé OWL API [80] and Java 

1.6. 

 The Integrator is implemented using Java 1.6. 

 Two Simulation Model Readers are implemented: one each for the EPANET and 

I2Sim simulators. The EPANET Reader employs the EPANET API to read the 

simulation model, while the I2Sim Reader uses the Simulink Java library from 

Technische Universität München [81]. 

8.2 Ontology-Based Simulation Models 

To illustrate the SIMONTO transformation, this case study considers two proprietary 

simulation models: one EPANET model and one I2Sim model. Consequently, this 

section portrays the two corresponding ontology-based models. Section 8.3 describes 

how ontology-based models are loaded into a graph database and Section 8.4 

demonstrates the benefits of Disaster-CDM on the two knowledge delivery services: 

simulation model querying and rule and constraint validation. 

8.2.1 The EPANET Model 

The observed water distribution network consists of 802 junctions, 836 pipes, 6 valves, 

and 9 reservoirs. This simulation model has been transformed into an ontology-based 

representation; Figure 8.2 shows this representation displayed in the Protégé ontology 

editor [82]. The left pane shows the EPANET classes, such as pipe, pump, and valve. 

Because the pipe class is selected, the middle pane shows all the individual pipes from 

the EPANET model. In the right pane, the object properties and the datatype properties 

for the selected pipe, pipe 831, are displayed. The object properties hasStartNode and 

hasEndNode indicate that pipe 831 starts from junction 362 and ends at junction 837. In 

the EPANET ontology, hasStartNode and hasEndNode are asserted properties because 

the EPANET model specifies the pipe start and end nodes.  
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Figure 8.2: Ontology-based representation of the EPANET model 

 

8.2.2 The I2Sim Model 

The transformation of the I2Sim model into its ontology-based representation was similar 

to EPANET model transformation, but a few differences needed to be addressed. I2Sim 

is built upon Simulink [83] by customizing Simulink blocks and providing entities 

specific to infrastructure interdependency simulation. Like Simulink [83], I2Sim can 

divide models into hierarchies of sub-models, as illustrated in Figure 8.3, to make 

complex system modelling easier. The model hierarchies are represented in the ontology 

using the parentSystem object property. For each child model, the parentSystem property 

links the model to its direct parent. The set of assigned parentSystem properties 

establishes the model hierarchy. A fragment of a hierarchy depicted in Figure 8.3 is 

represented as modelE.parentSystem(modelB) and modelB.parentSystem(modelA). Since 

the sub-model entities do not belong to any of the simulator-specific ontology classes, a 

new class, parentSystem, was established to contain entities that serve as containers for 

other entities. 
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Figure 8.3: Simulation model hierarchy 

 

Initially, it was expected that the I2Sim model would contain only I2Sim blocks. 

However, when the model was transformed to its ontology-based representation, many 

entities belonged to the other class. Analysis of these entities revealed that they were 

Simulink blocks. Because I2Sim is constructed based on Simulink by customizing and 

extending Simulink blocks, it allows Simulink blocks to be used in conjunction with 

I2Sim blocks. Accordingly, the observed I2Sim model actually contained both I2Sim and 

Simulink blocks. Therefore, the non_i2sim class was created, and the transformation 

process was allowed to create non_i2sim subclasses representing Simulink block 

categories used in the observed I2Sim model, as illustrated in Figure 8.4. 

 

Figure 8.4: Ontology-based representation of the I2Sim model 
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8.3 Knowledge Acquisition Services 

The objective of this case study is to demonstrate how Disaster-CDM facilitates 

simulation model services, specifically simulation model querying and rule and constraint 

validation. Those services cannot be achieved in a straightforward manner by the 

document data store approach. As described in Section 6.2.3, the simulation-specific 

storage model recognizes that both OWL representations of simulation models and graph 

databases are graph-based and therefore store ontology-based simulation models in a 

graph database. Simulation model services can then take advantage of the advanced 

querying capabilities provided by a graph database. As a result, this storage model 

supports simulation model querying and rule and constraint validation. 

Specifically, this case study uses the Neo4j graph database [84]. Neo4j is an open source 

graph database implemented in Java with fully ACID transactions and REST as the API 

interface. It provides powerful and diverse querying capabilities: Neo4j can be queried 

using Cypher, a property graph query language developed by Neo4j; using Gremlin, a 

graph traversal language; or even using the RDF query language, SPARQL. Querying 

examples in this case study are written in the SPARQL query language. 

In this case study knowledge acquisition services are responsible for processing 

simulation model files and storing them in a graph database. Specifically, SIMONTO 

transforms proprietary simulation models into corresponding ontology-based models, 

which are then loaded into a graph database, in this case study the Neo4j database. 

Because Neo4j is a graph database and OWL ontologies are forms of graphs, loading 

ontologies into the database proved to be straightforward. The loading process was 

implemented in Java 1.6 using TinkerPop Blueprints [85], a property graph model 

interface with provided implementations.  

The DR-NEP data set contains 20 EPANET models and 12 I2Sim models; however, for 

the purpose of demonstrating simulation model services, this case study focuses on two 

models: one EPANET model and one I2Sim model. First, SIMONTO transforms the two 

simulation models to their corresponding ontology-based representations which are 
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described in Section 8.2. Next, the two ontology-based models are loaded into the Neo4j 

database.  

Loading the EPANET case study model into the database resulted in a graph with 7,542 

vertices and 22,555 edges, while loading the I2Sim model generated a graph with 2,533 

vertices and 9,724 edges. 

8.4 Knowledge Delivery Services 

Knowledge delivery services are illustrated on two examples of simulation-specific 

services: simulation model querying and rule and constraint validation. Both services 

operate on simulation-specific storage, specifically on ontology-based models stored in a 

graph database. Even though the two have different objectives, both use querying 

approaches to achieve their goals. 

8.4.1 Simulation Model Querying  

SIMONTO ontology-based simulation models stored in a Neo4j graph database can be 

queried using different approaches, including SPARQL, Gremlin, and Cypher. This case 

study illustrates the querying ability on an EPANET model example scenario using the 

SPARQL query language.  

Scenario: A new water distribution network has been modelled in EPANET. To plan 

network construction, analysts need to find out the total length of all pipes of each 

diameter in the simulation model. The EPANET simulator cannot directly provide this 

information. 

However, the proposed Disaster-CDM system can provide such information because the 

ontology-based representation of an EPANET model stored in a graph database can be 

queried. The following SPARQL query obtains, for each pipe diameter, the number of 

pipes and their total length. Results are sorted in ascending order of diameter.  

 

PREFIX epanet: <http://www.semanticweb.org/ontologies/Simulators/EPANET.owl#>  

PREFIX SimModel: 

<http://www.semanticweb.org/ontologies/Simulators/EPANETnetwork.owl#>  

SELECT ?diameter (COUNT(?pipe) as ?pipeCount) (SUM(?length) as ?pipeLength) 
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WHERE { ?pipe  a epanet:pipe.  

      ?pipe SimModel:diameter ?diameter. 

      ?pipe SimModel:length ?length  

}  

GROUP BY ?diameter 

ORDER BY DESC(?diameter) 

The results of this query for an ontology-based representation of the EPANET simulation 

model are displayed in Table 8.1. The first column shows the pipe diameter, the second 

the number of pipes, and the third the total length of pipes of each diameter. 

Table 8.1: SPARQL query output 

diameter pipeCount pipeLength 

600.0 6 2975.27 

300.0 32 7072.42 

250.0 134 16092.216 

200.0 195 11829.779 

150.0 270 23219.268 

100.0 118 6737.2803 

75.0 22 1564.59 

62.5 15 997.55005 

50.0 25 1259.47 

32.5 11 391.91998 

25.0 8 398.26 

 

8.4.2 Rule and Constraint Validation 

Rule and constraint validation is illustrated on an example from the Ontario Ministry of 

the Environment document, Watermain Design Criteria for Future Alterations 

Authorized under a Drinking Water Works Permit [86]. Table 8.2 shows a fragment of 

this document consisting of the Hazen-Williams C-factors that should be used in 

watermain designs when data from field tests are not available. The Hazen-Williams C-

factors specify pipe roughness. 
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Table 8.2: Watermain design recommendation [86] 

 

 

The objective of validating rules and constraints, such as those presented in Table 8.2, on 

an ontology-based simulation model is to identify which entities violate rules and 

constraints, not to change attribute values. After the entities have been identified, the 

attribute values should be changed in the original simulation model, in this case the 

EPANET model, rather than in the ontology-based model because the original simulation 

model is used for simulation execution. Therefore, querying can achieve rule and 

constraint validation because it can identify entities that are violating rules without 

introducing changes to the ontology. This approach transforms rule and constraint 

validation to a querying problem in which the query itself contains rules or constraints.  

The following SPARQL query identifies the entities that violate recommendations in 

Table 8.2: 

PREFIX net: 

<http://www.semanticweb.org/ontologies/Simulators/EPANETnetwork.owl#> 

SELECT * 

WHERE {  

{?x net:diameter ?d .  

?x net:roughness ?r 

FILTER (?d <= 150) FILTER (?r != 100)} 

UNION 

{?x net:diameter ?d .  

?x net:roughness ?r 

FILTER (?d >= 200) FILTER (?d <= 250) FILTER (?r != 110)} 

UNION 

{?x net:diameter ?d .  

?x net:roughness ?r 

FILTER (?d >= 300) FILTER (?d <= 600) FILTER (?r != 120)} 
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UNION 

{?x net:diameter ?d .  

?x net:roughness ?r 

FILTER (?d > 600) FILTER (?r != 130)} 

}  

The results of this query for an ontology-based representation of the EPANET simulation 

model are displayed in Table 8.3. Specifically, this SPARQL query identified two pipes 

violating recommendations: pipe38 and pipe612. The two pipes are modelled with 

diameter 150 and roughness 110, while the recommendations from Table 8.2 suggest that 

pipes of diameter 150 should be modelled with roughness 100. Consequently, to comply 

with recommendations, the two pipes‘ attributes need to be corrected in the EPANET 

simulation model. Moreover, the simulation experiments might need to be repeated 

because the change in the two pipes could impact the simulation results. 

Table 8.3: Result of validating rules from Table 8.2 

x (pipe) d (diameter) r (roughness) 

pipe38  150.0 110.0 

pipe612  150.0 110.0 

 

8.5 Discussion 

The case study 2 focused on simulation models and demonstrated how Disaster-CDM 

facilitates simulation model querying and rule and constraint validation. For this purpose, 

proprietary simulation models were first transformed by SIMONTO to their corresponding 

ontology-based representations and then stored in a graph database. 

Simulation-specific knowledge delivery services operate on ontology-based simulation 

models stored in a graph database and take advantage of the querying capabilities 

provided by the database. Two knowledge delivery services were demonstrated: 

simulation model querying and rule and constraint validation. 

Simulation model querying was demonstrated using SPARQL, an RDF querying 

language. However, this case study did not explore other querying languages which 
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potentially could have advantages over SPARQL. For example, it can be expected that a 

graph traversal language, such as Gremlin in Neo4j, would show performance benefits in 

the presence of join operations.  

Because the querying approach was chosen in this work for rule and constraint validation, 

as explained in Section 6.2.4, the presented case study demonstrated validation with 

SPARQL queries. This is similar to simulation model querying as both deal with query 

data stored in a graph database, but rule and constraint validation actually expresses rules 

in the form of queries. The case study presented here demonstrated rule and constraint 

validation, but did not explore the potential limitations of the approach used. A thorough 

comparison of the genuine rule language and querying approaches to rule and constraint 

validation would provide a better insight into the limitations, advantages, and 

disadvantages of each approach; however, such a comparison is outside the scope of this 

work.  

8.6 Summary 

This chapter, like Chapter 7, has presented an evaluation of the proposed Disaster-CDM 

framework; however, in contrast to Chapter 7 which addressed file-style data sources, 

this chapter was concerned with simulation models. Because SIMONTO is the Disaster-

CDM component responsible for processing simulation models, the SIMONTO 

implementation and the ontology-based models created by SIMONTO were discussed first. 

In the presented case study knowledge acquisition service, specifically SIMONTO, 

transformed simulation models to their corresponding ontology-based representations and 

stored them in a graph database. Finally, the benefits of Disaster-CDM were 

demonstrated on two simulation-specific knowledge delivery services: simulation model 

querying and rule and constraint validation. 
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Chapter 9  

9 Conclusions and Future Work 

In recent years, we have witnessed an increase in the number and severity of extreme 

weather events and natural disasters around the globe. Consequently, disaster impacts on 

human life and property have risen as well, escalating the importance of minimizing 

disaster impacts and making an effective response imperative in today‘s society.  

The main goal of disaster management is to minimize disaster impact, and a crucial 

element for achieving this goal is effective decision-making through all four disaster 

phases: mitigation, preparedness, response, and recovery. Successful and effective 

disaster decision-making requires information gathering, sharing, and integration by 

means of collaboration on a global scale and across governments, industries, 

communities, and academia. A large quantity of disaster-related data is available, 

including response plans, records of previous incidents, simulation data, social media 

data, and Web sites; however, current data management solutions offer few or no 

integration capabilities and limited potential for collaboration. 

At the same time, changes in software and hardware have created opportunities for new 

solutions in the disaster management domain. In particular, recent advances in cloud 

computing, Big Data, and NoSQL have opened doors for new solutions in disaster data 

management.  

Consequently, this research proposed a Knowledge as a Service (KaaS) framework for 

disaster cloud data management (Disaster-CDM). The ultimate goal of Disaster-CDM is 

to facilitate improved and informed disaster decision-making and consequently to reduce 

the impact of disasters on human lives and property. Disaster-CDM facilitates 

information gathering and sharing through knowledge acquisition and delivery; stores 

large amounts of disaster-related data from diverse sources by taking advantage of cloud 

computing and NoSQL data stores; and facilitates search and supports interoperability 

and integration by means of knowledge delivery services. 
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The case studies presented in this research demonstrated the use of Disaster-CDM on 

data collected during the Disaster Response Network Enabled Platform (DR-NEP) 

project. In the first case study knowledge was acquired from diverse file-style data 

sources such as MS Office documents, images, text and PDF files, and simulation 

models. In this case study Disaster-CDM contributions were demonstrated on examples 

of two integration services: full-text search and querying services. The second case study 

focused on simulation models and illustrated Disaster-CDM benefits on simulation-

specific tasks; specifically, two simulation services were presented: simulation model 

querying and rule and constraint validation. 

Section 9.1 discusses the contributions of this research, while Section 9.2 presents future 

work. 

9.1 Contributions 

The contributions of this thesis can be summarized as follows: 

Disaster-CDM framework 

This research has proposed Disaster-CDM, a Knowledge as a Service (KaaS) framework 

for disaster cloud data management. Disaster-CDM provides a flexible and customizable 

disaster data management solution which can be expanded and altered according to the 

needs of the organizations using it. Disaster-CDM achieves the following objectives: 

 Information gathering and sharing is facilitated by means of knowledge 

acquisition and knowledge delivery services. Knowledge acquisition services are 

responsible for acquiring knowledge from diverse collaboration partners and from 

heterogeneous data sources, processing it to add structure, and storing it. 

Knowledge delivery services are responsible for integrating information from 

different data sources and delivering knowledge to consumers as a service.  

 Storing large amounts of disaster-related data from diverse sources is achieved by 

taking advantage of cloud computing and NoSQL data stores. Specifically, data 

are stored in a cloud environment in a variety of relational databases and NoSQL 

data stores. Scalability of cloud and NoSQL solutions makes it possible to start 
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the system small and expand as needs grow by adding heterogeneous nodes. 

Within the cloud environment, data stored in NoSQL data stores is replicated, 

often across large geographic distances. This ensures high availability and system 

operation in the presence of failures, which in the disaster management domain is 

particularly important as it can be expected that disasters will cause a variety of 

failures. NoSQL data stores offer flexible data model and therefore enable storage 

of diverse disaster-related data. Moreover, Disaster-CDM allows a choice of 

storage solutions to suit a variety of data structures and access patterns. 

 Search, interoperability and integration are supported primarily by means of 

knowledge delivery services. Data stored in diverse data stores is provided to 

consumers as services according to the KaaS approach. This work focuses on 

knowledge acquisition, specifically on data processing services and storage; 

knowledge delivery services are used to demonstrate the benefits of the proposed 

framework. 

As already mentioned, Disaster-CDM is a flexible and expandable disaster data 

management solution which can accommodate a variety of data sources. Therefore, this 

research has defined a process for introducing a new data source into the framework. The 

process consists of three steps: 

 adding new processing services for dealing with the new data source; 

 defining data processing rules for the new data source; 

 determining appropriate data storage, including choosing the type of data store 

and designing a data model. 

All three steps must be considered when introducing a new data source, but they will not 

necessary introduce new components. For example, depending on existing processing 

capabilities, a new data source will not necessarily need a new processing service. 

This research applied the proposed Disaster-CDM approach to file-style data because 

data formats commonly present in the disaster management domain include MS Office 

files, text and PDF files, images, and simulation model files. The common element 

among these data sources is that information is typically stored in self-contained and 
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largely unrelated files. The data processing services required for file-style data were 

identified, and examples of data processing rules were presented. With respect to storage, 

two steps were performed: in the first step the type of data store was chosen, specifically, 

the document data store was selected as it is designed around the concept of a document 

and provides storage flexibility along with querying capabilities; in the second step a data 

model for storage of file-style data in a document data store was designed. 

Disaster-CDM contributions were demonstrated with two case studies. The first case 

study illustrated how Disaster-CDM supports integration of diverse file-style data sources 

on examples of full-text search and querying services. The second case study focused on 

simulation-specific tasks and demonstrated how Disaster-CDM facilitates querying 

within simulation models and rule and constraint validation. 

SIMONTO 

This work has proposed SIMONTO, an ontology-based representation of simulation 

models, which represents domain simulation models as interconnected instances of 

simulator-specific ontologies. SIMONTO transforms existing simulation models expressed 

in simulator-specific model files to their corresponding ontology-based representations. 

Such ontology-based simulation models facilitate integration with other sources, provide 

simulation model querying capabilities, and enable rule and constraint validation. 

In the context of Disaster-CDM, SIMONTO is responsible for processing simulation 

models. In this study, the created ontology-based simulation models are stored according 

to their intended use: 

 For integration with other file-style data sources, simulation models are stored in 

a document database alongside other data. Such storage enables full-text search 

and querying over data originating from a variety of sources, as demonstrated in 

Section 7.4. 

 For querying within simulation models, and for enabling rule and constraint 

validation, ontology-based simulation models are stored in a graph database. This 
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approach takes advantage of the advanced querying abilities provided by graph 

databases, as demonstrated in Section 8.4. 

9.2 Future Work 

This study has primarily addressed the knowledge acquisition and data storage 

components of the proposed framework. Directions for future research related to 

knowledge acquisition and data storage include: 

 Data acquisition from other sources such as Web sites and social media: 

Including other sources of information will provide a more comprehensive 

knowledge base and, when integrated with existing data, will lead to better 

decision-making. 

 Dynamic data processing rule specification: This work has considered static 

and predefined data processing rules. Dynamic rule specification should be 

explored for rule flexibility and to simplify addition of new data sources.  

 Changes to existing knowledge (knowledge evolution): In this research, 

knowledge from each data source is acquired once, and the system does not keep 

track of subsequent updates. Support for knowledge evolution would provide for a 

better, more comprehensive disaster knowledge solution. 

 Knowledge conflicts: In disaster management, due to large number of 

participants and the immense diversity of data sources, it is to be expected that 

knowledge conflicts will occur. Conflicts must first be detected and then resolved 

or managed so that non-contradicting knowledge can be provided to consumers. 

 NoSQL data store comparison: In this study, the document data store model 

specifically CouchDB, was chosen for storage of file-style data. A detailed 

comparison of different data store implementations would assist in choosing the 

most suitable NoSQL implementation for the task at hand. 

 Required storage space: This work did not analyze the storage space 

requirements for the proposed approach. Disaster-CDM stores original files in 

addition to data produced by data processing services. Moreover, the full-text 
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search and CouchDB views presented in the case study require indexes, which 

also occupy space and must be included in space estimates.  

The role of SIMONTO in Disaster-CDM is the transformation of proprietary simulation 

models to ontology-based representations which are better suitable for integration and 

querying. With respect to SIMONTO, directions for future research include: 

 SIMONTO limitations: This work did not explore the limitations of ontology-

based representations of simulation models. The completeness of the created 

model needs to be explored to understand its limitations more fully.  

 Working with large numbers of simulation models: The case study presented 

in Chapter 8 transformed a few simulation models and loaded them into a graph 

database. The behavior of the system with a large number of models loaded into 

the database remains to be investigated.  

 Stand-alone use of SIMONTO: This study employed SIMONTO as part of 

Disaster-CDM; however, SIMONTO also has the potential of being used on its own 

because Ontology-based simulation models could also be queried directly using 

an ontology querying language such as SQWRL. Moreover, rules can be added to 

the ontology base with the help of an ontology rule language such as SWRL. The 

use of SIMONTO outside the Disaster-CDM framework requires further 

exploration.  

 Rule languages and querying languages. When ontology-based models are 

loaded into a graph database, they can be queried using different approaches. 

Moreover, SIMONTO ontology-based models can be queried directly. Exploring 

the advantages and disadvantages of different approaches would provide a better 

insight into their capabilities and limitations; therefore, it could lead to guidelines 

for choosing the appropriate approach for the task at hand. 

This research has presented the main design of the knowledge delivery component 

without addressing details. Consequently, directions of future work in knowledge 

delivery include: 
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 Integration of NoSQL data stores: Since NoSQL data stores were designed for 

different purposes, they differ greatly in their data models and querying abilities, 

which presents an obstacle to integration. A major part of the integration 

challenge is the fact that NoSQL data stores do not support a standard query 

language.  

 Data analytic services: The case study presented in this thesis involved query 

and full-text services, but analytics services were not addressed. Data analytics 

actually refers to Big Data analytics, where disaster Big Data are analyzed to find 

meaningful insights which could lead to better decisions.  

 Privacy and security: Providing adequate security and privacy for such a 

framework is challenging for a number of reasons, including cloud storage on 

third-party premises and in a shared multi-tenant environment, diversity of the 

storage models involved, and the large number of collaboration participants. 

The proposed Disaster-CDM framework is designed for use with disaster-related data; 

however, it could potentially be applied in other domains. For example, Disaster-CDM 

for file-style data, as presented in Chapter 5 and demonstrated in Chapter 7, could be 

applied to any file-type data and is not restricted to disaster-related data. Future work will 

explore the potential of using the same framework, possibly with some adaptations, in 

other domains. For example, possible use of the proposed framework for geological data 

management will be explored. 



98 

 

References 

[1] V. Hristidis, S. Chen, T. Li, S. Luis, and Y. Deng, "Survey of Data Management 

and Analysis in Disaster Situations," The Journal of Systems and Software, vol. 

83, no. 10, pp. 1701-1714, 2010.  

[2] A.Y. Chena, F. Peña-Morab, and Y. Ouyang, "A Collaborative GIS Framework to 

Support Equipment Distribution for Civil Engineering Disaster Response 

Operations," Automation in Construction, vol. 20, no. 5, pp. 637-648, 2011.  

[3] K. de Faria Cordeiro, T. Marino, M. L. M. Campos, and M. Borges, "Use of 

Linked Data in the Design of Information Infrastructure for Collaborative 

Emergency Management System," Proceedings of the 15th International 

Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 

764-771, 2011.  

[4] D. P. Coppola, Introduction to International Disaster Management, Amsterdam, 

Netherlands: Butterworth-Heinemann, 2011.  

[5] S. Sakr, A. Liu, D.M. Batista, and M. Alomari, "A Survey of Large Scale Data 

Management Approaches in Cloud Environments," IEEE Communications 

Surveys & Tutorials, vol. 13, no. 3, pp. 311-336, 2011.  

[6] D. Kossmann and T. Kraska, "Data Management in the Cloud: Promises, State-of-

the-Art, and Open Questions," Datenbank-Spektrum, vol. 10, no. 3, pp. 121-129, 

2010.  

[7] R. Hecht and S. Jablonski, "NoSQL Evaluation: A use Case Oriented Survey," 

Proceedings of the International Conference on Cloud and Service Computing, 

pp. 336-341, 2011.  

[8] R. Abdullah, Z. D. Eri, and A. M. Talib, "A Model of Knowledge Management 

System for Facilitating Knowledge as a Service (KaaS) in Cloud Computing 

Environment," Proceedings of the International Conference on Research and 

Innovation in Information Systems, pp. 1-4, 2011.  

[9] P. Zadrozny and R. Kodali, Big Data Analytics using Splunk, Berkeley, CA, 

USA: Apress, 2013.  

[10] M. Stonebraker, S. Madden, D. J. Badi, S. Harizopoulos, N. Hachem, and P. 

Helland, "The End of an Architectural Era: (it‘s Time for a Complete Rewrite)," 

Proceedings of the 33rd International Conference on very Large Data Bases, pp. 

1150-1160, 2007.  

[11] M. A. Beyer and D. Laney, "The Importance of 'Big Data': A Definition," 

http://www.gartner.com/id=2057415, 2007.  

[12] F. Ohlhorst, Big Data Analytics: Turning Big Data into Big Money, Hoboken, 

N.J, USA: Wiley, 2013.  

http://www.gartner.com/id=2057415


99 

 

[13] S. Mohanty, M. Jagadeesh, and H. Srivatsa, Big Data Imperatives: Enterprise Big 

Data Warehouse, BI Implementations and Analytics, Berkeley, CA, USA: Apress, 

2013.  

[14] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing: State-of-the-Art and 

Research Challenges," Journal of Internet Services and Applications, vol. 1, no. 1, 

pp. 7-18, 2010.  

[15] T. Erl, Z. Mahmood, and R. Puttini, Cloud Computing: Concepts, Technology, & 

Architecture, Upper Saddle River, NJ, USA: Prentice Hall, 2013.  

[16] P. Mell and T. Grance, "The NIST definition of cloud computing. NIST special 

publication 800-145," http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf, 2011.  

[17] S. Khoshnevis and F. Rabeifa, "Toward Knowledge Management as a Service in 

Cloud-Based Environments," International Journal of Mechatronics, Electrical 

and Computer Technology, vol. 2, no. 4, pp. 88-110, 2012.  

[18] J. Han, M. Song, and J. Song, "A Novel Solution of Distributed Memory NoSQL 

Database for Cloud Computing," Proceedings of the 10th IEEE/ACIS 

International Conference on Computer and Information Science, pp. 351-355, 

2011.  

[19] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence, Upper Saddle River, NJ, USA: Addison-Wesley, 

2013.  

[20] R. Cattell, "Scalable SQL and NoSQL Data Stores," ACM SIGMOD Record, vol. 

39, no. 4, pp. 12-27, 2011.  

[21] E. Brewer, "CAP Twelve Years Later: How the "Rules" have Changed," 

Computer, vol. 45, no. 2, pp. 23-29, 2012.  

[22] O. Curé, R. Hecht, C. Le Duc, and M. Lamolle, "Data Integration Over NoSQL 

Stores using Access Path Based Mappings," Proceedings of the 22nd 

International Conference on Database and Expert Systems Applications, pp. 481-

495, 2011.  

[23] L. Palen, K. M. Anderson, G. Mark, J. Martin, D. Sicker, M. Palmer, et al., "A 

Vision for Technology-Mediated Support for Public Participation & Assistance in 

Mass Emergencies & Disasters," Proceedings of the ACM-BCS Visions of 

Computer Science Conference, pp. 1-12, 2010.  

[24] A. Schram and K. M. Anderson, "MySQL to NoSQL: Data Modeling Challenges 

in Supporting Scalability," Proceedings of the 3rd Annual Conference on Systems, 

Programming, Languages and Applications: Software for Humanity, pp. 191-202, 

2012.  

[25] S.H. Othman and G. Beydoun, "Model-Driven Disaster Management," 

Information & Management, vol. 50, no. 5, pp. 218-228, 2013.  

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


100 

 

[26] T. Silva, V. Wuwongse, and H. N. Sharma, "Linked Data in Disaster Mitigation 

and Preparedness," Proceedings of the Third International Conference on 

Intelligent Networking and Collaborative Systems, pp. 746-751, 2011.  

[27] K. M. Anderson and A. Schram, "Design and Implementation of a Data Analytics 

Infrastructure in Support of Crisis Informatics Research: NIER Track," 

Proceedings of the 33rd International Conference on Software Engineering, pp. 

844-847, 2011.  

[28] C. Chou, F. Zahedi, and H. Zhao, "Ontology for Developing Web Sites for 

Natural Disaster Management: Methodology and Implementation," IEEE 

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 

vol. 41, no. 1, pp. 50-62, 2011.  

[29] I. Lai, S. Tam, and M. Chan, "Knowledge Cloud System for Network 

Collaboration: A Case Study in Medical Service Industry in China," Expert 

Systems with Applications, vol. 39, no. 15, pp. 12205-12212, 2012.  

[30] Y. Qirui, "Kaas-Based Intelligent Service Model in Agricultural Expert System," 

Proceedings of the 2nd International Conference on Consumer Electronics, 

Communications and Networks, pp. 2678-2680, 2012.  

[31] S. Kannimuthu, K. Premalatha, and S. Shankar, "Investigation of High Utility 

Itemset Mining in Service Oriented Computing: Deployment of Knowledge as a 

Service in E-Commerce," Proceedings of the Fourth International Conference on 

Advanced Computing, pp. 1-8, 2012.  

[32] A. Maria, "Introduction to Modeling and Simulation," Proceedings of the Winter 

Simulation Conference, pp. 7-13, 1997.  

[33] L. G. Birta and G. Arbez, Modelling and Simulation: Exploring Dynamic System 

Behaviour, London: Springer, 2007.  

[34] E. Abu-Taieh and A. El Sheikh, "Commercial Simulation Packages: A 

Comparative Study," International Journal of Simulation, vol. 8, no. 2, pp. 66-76, 

2007.  

[35] "1516-2010 - IEEE Standard for Modeling and Simulation (M&S) High Level 

Architecture (HLA) - Framework and Rules," IEEE Standard, 2010.  

[36] A. Tofani, E. Castorinia, P. Palazzaria, A. Usovb, C. Beyelb, E. Romeb, et al., 

"Using Ontologies for the Federated Simulation of Critical Infrastructures," 

Proceedings of the International Conference on Computational Science, vol. 1, 

no. 1, pp. 2301-2309, 2010.  

[37] D. D. Dudenhoeffer, M. R. Permann, and M. Manic, "CIMS: A Framework for 

Infrastructure Interdependency Modeling and Analysis," Proceedings of the 

Winter Simulation Conference, pp. 478-485, 2006.  

[38] J. A. Miller, G. T. Baramidze, A. P. Sheth, and P. A. Fishwick, "Investigating 

Ontologies for Simulation Modeling," Proceedings of the 37th Annual Simulation 

Symposium, pp. 55-63, 2004.  



101 

 

[39] G. Guizzardi and G. Wagner, "Towards an Ontological Foundation of Discrete 

Event Simulation," Proceedings of the 2010 Winter Simulation Conference, pp. 

652-664, 2010.  

[40] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific 

Computing, New York, NJ, USA: Cambridge University Press, 2010.  

[41] T. J. Barth, F. Graziani, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, et 

al., Computational Methods in Transport: Verification and Validation, Berlin, 

Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2008.  

[42] B. Lee, T. Critchlow, G. Abdulla, C. Baldwin, R. Kamimura, and N. Tang, "The 

Framework for Approximate Queries on Simulation Data," Information Sciences, 

vol. 157, no. 1-2, pp. 3-20, 2003.  

[43] C. Szabo and Y. M. Teo , "An Approach to Semantic-Based Model Discovery and 

Selection," Proceedings of the 2011 Winter Simulation Conference, pp. 3054-

3066, 2011.  

[44] "IEEE Standard for Property Specification Language (PSL)," IEEE Std 1850-

2012, pp. 1-188, 2012.  

[45] S. Staab and R. Studer, Handbook on Ontologies, Berlin, Heidelberg: Springer-

Verlag Berlin Heidelberg, 2009.  

[46] L. Lacy and W. Gerber, "Potential Modeling and Simulation Applications of the 

Web Ontology Language - OWL," Proceedings of the Winter Simulation 

Conference, vol. 1, pp. 265-270, 2004.  

[47] G. A. Silver, L. W. Lacy, and J. A. Miller, "Ontology Based Representations of 

Simulation Models Following the Process Interaction World View," Proceedings 

of the Winter Simulation Conference, pp. 1168-1176, 2006.  

[48] J. A. Miller and G. Baramidze, "Simulation and the Semantic Web," Proceedings 

of the Winter Simulation Conference, pp. 2371-2377, 2005.  

[49] P. Benjamin and K. Akella, "Towards Ontology-Driven Interoperability for 

Simulation-Based Applications," Proceedings of the Winter Simulation 

Conference, pp. 1375-1386, 2009.  

[50] K. Grolinger, E. Mezghani, M. A. M. Capretz, and E. Exposito, "Knowledge as a 

Service Framework for Disaster Data Management," Proceedings of the 22nd 

WETICE Conference, pp. 313-318, 2013.  

[51] C.P. Sumathi, G.Gayathri Devi, and T. Santhanam, "A Survey on various 

Approaches of Text Extraction in Images," International Journal of Computer 

Science and Engineering Survey, vol. 3, no. 4, pp. 27-42, 2012.  

[52] K. Grolinger, M. A. M. Capretz, A. Shypanski, and G. S. Gill, "Federated Critical 

Infrastructure Simulators: Towards Ontologies for Support of Collaboration," 

Proceedings of the Canadian Conference on Electrical and Computer 

Engineering, Workshop on Connecting Engineering Applications and Disaster 

Management, pp. 1503-1506, 2011.  



102 

 

[53] K. Grolinger, M. A. M. Capretz, J. R. Marti, and K. D. Srivastava, "Ontology–

based Representation of Simulation Models," Proceedings of the 24the 

International Conference on Software Engineering and Knowledge Engineering, 

pp. 432-437, 2012.  

[54] M. Wang, B. Ni, X. Hua, and T. Chua, "Assistive Tagging: A Survey of 

Multimedia Tagging with Human-Computer Joint Exploration," ACM Computing 

Surveys, vol. 44, no. 4, pp. 1-24, 2012.  

[55] Public Safety Canada, "The Canadian Disaster Database," 

http://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-eng.aspx, 2013.  

[56] Center for research on the epidemiology of disasters - CRED, " 

EM-DAT, The International Disaster Database," http://www.emdat.be/database,.  

[57] P. Atzeni, F. Bugiotti, and L. Rossi, "Uniform Access to NoSQL Systems," 

Information Systems, 2013.  

[58] J. A. Bondy and U. S. R. Murty, Graph Theory, New York: Springer, 2008.  

[59] T. Tran, D.M. Herzig, and G. Ladwig, "SemSearchPro – using Semantics 

Throughout the Search Process," Web Semantics: Science, Services and Agents on 

the World Wide Web, vol. 9, no. 4, pp. 349-364, 2011.  

[60] R. Delbru, S. Campinas, and G. Tummarello, "Searching Web Data: An Entity 

Retrieval and High-Performance Indexing Model," Web Semantics: Science, 

Services and Agents on the World Wide Web, pp. 33-58, 2011.  

[61] V. Kashyap, P. Bernstein, C. Bussler, M. J. Carey, S. Ceri, U. Dayal, et al., The 

Semantic Web, Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.  

[62] W3C OWL Working Group, "OWL 2 Web Ontology Language," 

http://www.w3.org/TR/owl2-overview/, 2009.  

[63] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF): Concepts 

and Abstract Syntax," http://www.w3.org/TR/rdf-concepts/, 2004.  

[64] D. Brickley and R. V. Guha, "RDF Vocabulary Description Language 1.0: RDF 

Schema," http://www.w3.org/TR/rdf-schema/, 2004.  

[65] "EPANET, Water Distribution Modeling," 

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html, 2008.  

[66] T. Berners-Lee, "WWW past & future," http://www.w3.org/2003/Talks/0922-

rsoc-tbl/, 2003.  

[67] M.J. O'Connor and A. Das, "SQWRL: A Query Language for OWL," OWL 

Experiences and Directions, 6th International Workshop, 2009.  

[68] E. Prud'hommeaux and A. Seaborne, "SPARQL Query Language for RDF," 

http://www.w3.org/TR/rdf-sparql-query/, 2008.  

[69] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, 

"SWRL: A Semantic Web Rule Language," 

http://www.w3.org/Submission/SWRL/, 2004.  

http://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-eng.aspx
http://www.emdat.be/database
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/


103 

 

[70] "DR-NEP (Disaster Response Network Enabled Platform) project," 

http://drnep.ece.ubc.ca/index.html, 2011.  

[71] H. A. Rahman, M. Armstrong, D. Mao, and J. R. Marti, "I2Sim: A Matrix-

Partition Based Framework for Critical Infrastructure Interdependencies 

Simulation," Proceedings of the Electrical Power and Energy Conference, pp. 1-

8, 2008.  

[72] The Apache Foundation, "Apache Tika toolkit," http://tika.apache.org/, 2013.  

[73] R. Smith, "An Overview of the Tesseract OCR Engine," Proceeding of the Ninth 

International Conference on Document Analysis and Recognition, vol. 2, pp. 629-

633, 2007.  

[74] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham, "Evolving GATE to 

Meet New Challenges in Language Engineering," Natural Language Engineering, 

vol. 10, no. 3-4, pp. 349-373, 2004.  

[75] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts, et 

al, "Developing Language Processing Components with GATE. University of 

Sheffield Department of Computer Science," http://gate.ac.uk/sale/tao/split.html, 

2013.  

[76] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive Guide, 

Sebastopol, CA, USA: O'Reilly Media, 2010.  

[77] K. Hwang and K. Hwang, Distributed and Cloud Computing: From Parallel 

Processing to the Internet of Things, Waltham, MA, USA: Elsevier/Morgan 

Kaufmann, 2012.  

[78] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Stamford, 

CT, USA: Manning Publications, 2010.  

[79] "CouchDB-Lucene project," https://github.com/rnewson/couchdb-lucene, 2012.  

[80] "Protégé OWL API," http://protege.stanford.edu/plugins/owl/api/, 2011.  

[81] "Simulink Library, Technische Universität München," 

http://conqat.in.tum.de/index.php/Simulink_Library, 2011.  

[82] Stanford Center for Biomedical Informatics Research (BMIR), "Protégé," 

http://protege.stanford.edu., 2011.  

[83] "Simulink - Simulation and Model-Based Design," 

http://www.mathworks.com/products/simulink/, 2011.  

[84] "Neo4j," http://www.neo4j.org/, 2013.  

[85] "TinkerPop Blueprints," http://www.tinkerpop.com/, 2013.  

[86] Ministry of the Environment Safe Drinking Water Branch, "Watermain Design 

Criteria for Future Alterations Authorized Under a Drinking Water Works 

Permit," 

http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/document

s/resource/std01_086800.pdf, 2012.  

http://drnep.ece.ubc.ca/index.html
http://tika.apache.org/
http://gate.ac.uk/sale/tao/split.html
https://github.com/rnewson/couchdb-lucene
http://protege.stanford.edu/plugins/owl/api/
http://conqat.in.tum.de/index.php/Simulink_Library
http://protege.stanford.edu./
http://www.mathworks.com/products/simulink/
http://www.neo4j.org/
http://www.tinkerpop.com/
http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_086800.pdf
http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_086800.pdf


104 

 

Curriculum Vitae 
 

Name:   Katarina Grolinger  
 

Post-secondary  Doctorate, Software Engineering 

Education and  Western University 

Degrees:   London, Ontario, Canada 

   2013 

 

Western Certificate in University Teaching and Learning 

Western University 

London, Ontario, Canada 

2012 

 

Master of Engineering, Software Engineering 

Western University 

London, Ontario, Canada 

2009 

 

Master of Science, Mechanical Engineering  

University of Zagreb 

Zagreb, Croatia 

1994. 

 

Bachelor of Science, Mechanical Engineering 

University of Zagreb 

Zagreb, Croatia 

1997 

 

 

Honours and   The Natural Sciences and Engineering Research Council of  

Awards:  Canada,  

Alexander Graham Bell Canada Graduate Scholarships – Doctoral  

NSERC CGS-D 

2010 - 2013 

 

Ontario Graduate Scholarship (OGS) 

2013 

 

Graduate Student Teaching Award 

Western University 

2012 

 

Graduate Thesis Research Award 



105 

 

Western University 

2012 

 

Department Travel Grant 

Western University 

2011, 2012, 2013 

 

Best presentation in Software Engineering 

ECE Graduate Symposium, Western University 

2012 

 

Related Work  Teaching and Research Assistant 

Experience   Western University 

London, Canada 

2010 – 2013 

 

Teaching Assistant Mentor (Engineering) 

Teaching Support Centre, Western University, 

London, Canada 

2012 - 2013 

 

Instructor: Software Engineering Summer Academy 

Western University 

London, Canada 

Summer 2011 and 2012 

 

Database Administrator – Consultant 

Utilismart Corporation, 

London, Canada 

Jun 2011 

 

Software Engineer - Database Administrator 

Mutual Concept Computer Group Inc.,  

London, Ontario 

2008-2009 

 

Conversion Team Leader - Database Administrator 

Mutual Concept Computer Group Inc.,  

London, Ontario 

2005-2008 

 

Software Developer - Database Administrator 

Mutual Concept Computer Group Inc.,  

London, Ontario 

1999-2005 

 



106 

 

Software Developer 

Online Business Systems 

Winnipeg, Manitoba 

1997-1999 

 

Teaching and Research Assistant 

University of Zagreb, 

Zagreb, Croatia 

1995-1997 

 

 

PUBLICATIONS: 

 

REFEREED JOURNALS: 
 

1. K. Grolinger, Wilson A. Higashino, Abhinav Tiwari, Miriam A.M. Capretz, Data 

Management in Cloud Environments: NoSQL and NewSQL Data Stores, Journal 

of Cloud Computing: Advances, Systems and Application, Springer Open, Vol. 2, 

doi:10.1186/2192-113X-2-22, 2013. 

2. K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Collaborative 

Knowledge as a Service Applied to the Disaster Management Domain, 

International Journal of Cloud Computing, 2013 1
st
 round of review. 

3. K. Grolinger, Miriam A. M. Capretz, Americo Cunha, Said Tazi, Integration of 

Business Process Modeling and Web Services: A Survey, Service Oriented 

Computing and Applications, Springer, pp. 1-24, 2013. 

4. B. Muslimi, K. Grolinger, M.A.M. Capretz, Mark Benko, EEF-CAS: An Effort 

Estimation Framework with Customizable Attribute Selection, International 

Journal of Advanced Computer Technology, Vol. 5. No. 13, 2013. 

5. K. Grolinger, M.A.M Capretz, A Unit Test Approach for Database Schema 

Evolution, Information and Software Technology, Elsevier, Vol. 53, Issue 2, 

pp.159-170, 2011. 

6. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Agent Based on Reinforcement 

Learning and Adaptive Shadowed Network. Artificial Intelligence in Engineering. 

Vol. 13, Issue 2, pp. 141-157, 1999. 

7. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in 

Unpredictable Assembly Conditions, Automatika, Vol. 37 (1-2), Zagreb, Croatia, 

pp. 37-45. 1996. 

 

REFEREED CONFERENCES: 

 

1. K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a 

Service Framework for Disaster Data Management, The 22nd IEEE WETICE 

conference, Hammamet, Tunisia, pp. 313-318, 2013. 

2. K. Grolinger, M.A.M. Capretz, Ontology–based Representation of Simulation 

Models, The Twenty-Fourth International Conference on Software Engineering 



107 

 

and Knowledge Engineering, San Francisco Bay, California, USA, pp. 432-437 

2012. 

3. K. Grolinger, M.A.M. Capretz, Autonomic Database Management: State of the 

Art and Future Trends, 27th International Conference on Computers and Their 

Applications (CATA), Las Vegas, Nevada, USA, pp.276-, 281, 2012. 

4. K. Grolinger, K.P. Brown, M.A.M. Capretz, From Glossaries to Ontologies: 

Disaster Management Domain, The Twenty-Third International Conference on 

Software Engineering and Knowledge Engineering, Miami Beach, Florida, USA, 

pp. 402-407, 2011. 

5. K. Grolinger, A. Shypanski, G.S. Gill, M.A.M. Capretz, Federated Critical 

Infrastructure Simulators: Towards Ontologies for Support Of Collaboration, 

Workshop on Connecting Engineering Applications and Disaster Management 

2011, held in conjunction with the IEEE Canadian Conference on Electrical and 

Computer Engineering, Niagara Falls, Ontario, Canada, pp. 1503 – 1506, 2011. 

6. K.P. Brown, K. Grolinger, M.A.M. Capretz, Data Providing Web Service-Based 

Integration Framework for use in a Health Care Context, Symposium on 

Biomedical and Health Informatics of the IEEE Canadian Conference on 

Electrical and Computer Engineering 2011, Niagara Falls, Ontario, Canada, pp. 

1069–1072, 2011. 

7. K. Grolinger, B Jerbic, B. Vranjes. Autonomous Robot Behavior Based on 

Neural Networks, Proceedings of Applications and Science of Artificial Neural 

Networks III, Orlando, Florida, USA, SPIE Press, pp. 2038-2046, 1997. 

8. B. Jerbic, K Grolinger, B. Vranjes, Simulation of Intelligent Robot Behavior 

Based on Reinforcement Learning and Neural Network Approach, 11th 

International Conference on Artificial Intelligence in Engineering, Southampton, 

NY, USA, pp. 450-465, 1996. 

9. B. Jerbic, K. Grolinger, B. Vranjes, Simulation of Robotic Learning in Assembly 

Process, Proceedings of 7th International DAAAM Symposium, Vienna, Austria, 

pp. 185-187, 1996 

10. B. Vranjes, K. Grolinger, B. Jerbic, Modified Fuzzy ART Neural Network in 

Group Technologies, Proceedings of 7th International DAAAM Symposium, 

Vienna, Austria, pp. 185-187, 1996.  

11. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in 

Unpredictable Assembly Conditions, 13th Conference BIAM 96, Zagreb, Croatia, 

pp. B1-B6, 1996 

12. B. Vranjes, K. Grolinger, B. Jerbic, Cellular Manufacturing Formation with 

Modified Fuzzy ART Neural Network, 13th Conference BIAM 96, Zagreb, 

Croatia, pp. J5-J8, 1996.  

 

 


	Disaster Data Management in Cloud Environments
	Recommended Citation

	-

