
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-16-2013 12:00 AM

Disaster Data Management in Cloud Environments Disaster Data Management in Cloud Environments

Katarina Grolinger
The University of Western Ontario

Supervisor

Miriam A.M. Capretz

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Katarina Grolinger 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Recommended Citation Recommended Citation
Grolinger, Katarina, "Disaster Data Management in Cloud Environments" (2013). Electronic Thesis and
Dissertation Repository. 1774.
https://ir.lib.uwo.ca/etd/1774

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Fetd%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ir.lib.uwo.ca%2Fetd%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1774?utm_source=ir.lib.uwo.ca%2Fetd%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Disaster Data Management in Cloud Environments

(Thesis format: Monograph)

by

Katarina Grolinger

Graduate Program in Engineering Science
Department of Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
Western University

London, Ontario, Canada

© Katarina Grolinger 2013

ii

Abstract

Facilitating decision-making in a vital discipline such as disaster management requires

information gathering, sharing, and integration on a global scale and across governments,

industries, communities, and academia. A large quantity of immensely heterogeneous

disaster-related data is available; however, current data management solutions offer few or

no integration capabilities and limited potential for collaboration. Moreover, recent advances

in cloud computing, Big Data, and NoSQL have opened the door for new solutions in

disaster data management.

In this thesis, a Knowledge as a Service (KaaS) framework is proposed for disaster cloud

data management (Disaster-CDM) with the objectives of 1) facilitating information gathering

and sharing, 2) storing large amounts of disaster-related data from diverse sources, and 3)

facilitating search and supporting interoperability and integration. Data are stored in a cloud

environment taking advantage of NoSQL data stores. The proposed framework is generic,

but this thesis focuses on the disaster management domain and data formats commonly

present in that domain, i.e., file-style formats such as PDF, text, MS Office files, and images.

The framework component responsible for addressing simulation models is SIMONTO.

SIMONTO, as proposed in this work, transforms domain simulation models into an ontology-

based representation with the goal of facilitating integration with other data sources,

supporting simulation model querying, and enabling rule and constraint validation.

Two case studies presented in this thesis illustrate the use of Disaster-CDM on the data

collected during the Disaster Response Network Enabled Platform (DR-NEP) project. The

first case study demonstrates Disaster-CDM integration capabilities by full-text search and

querying services. In contrast to direct full-text search, Disaster-CDM full-text search also

includes simulation model files as well as text contained in image files. Moreover, Disaster-

CDM provides querying capabilities and this case study demonstrates how file-style data can

be queried by taking advantage of a NoSQL document data store.

The second case study focuses on simulation models and uses SIMONTO to transform

proprietary simulation models into ontology-based models which are then stored in a graph

database. This case study demonstrates Disaster-CDM benefits by showing how simulation

iii

models can be queried and how model compliance with rules and constraints can be

validated.

Keywords

Disaster Data Management, Big Data, NoSQL, Cloud Computing, Knowledge as a Service,

Document Data Stores, Graph Databases, Data Model Design, Ontologies, Ontology-based

Simulation Models

iv

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Miriam Capretz, for her

invaluable guidance, encouragement, and support. Dr. Capretz always valued my opinion,

trusted in my abilities, and made me feel that we were partners, which encouraged me to

reach for higher goals. I truly appreciate the freedom and flexibility I was given in my

research pursuit.

I would like to thank my husband Vladimir for supporting and encouraging me to pursue this

degree and my kids, Monica and Dominic, for their patience and understanding. I hope that

from my journey the kids learned about believing in yourself, being dedicated, and pursuing

dreams. In addition, I am grateful to my parents for their quiet but steady encouragement.

Furthermore, I am grateful for the opportunity to work with a number of professors, including

Dr. Said Tazi, Dr. Ernesto Exposito, Dr. Jose Marti, Dr. Krishan Srivastava, and Dr. Americo

Cunha. I have learned greatly from each one of them.

Finally, I want to extend my thanks to my colleagues, especially Emna Mezghani, Wilson

Higashino, Kevin Brown, and Vinson Wang, for sharing their ideas and providing feedback.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... ix

List of Figures ... x

Listings ... xi

List of Acronyms .. xii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Goals and Scope .. 4

1.3 Thesis Organization .. 7

Chapter 2 ... 10

2 Background .. 10

2.1 Big Data .. 10

2.2 Cloud Computing .. 11

2.3 NoSQL Data Stores... 15

2.4 Summary ... 20

Chapter 3 ... 21

3 Related Work ... 21

3.1 Disaster Data Management ... 21

3.2 Knowledge as a Service (KaaS) .. 23

3.3 Related Simulation Work .. 24

3.3.1 Simulation Model Querying, Rule and Constraint Validation.................. 24

vi

3.3.2 Ontologies in Simulation Modelling ... 26

3.4 Summary ... 28

Chapter 4 ... 29

4 Disaster Cloud Data Management ... 29

4.1 Disaster-CDM Framework.. 29

4.2 Knowledge Acquisition .. 31

4.2.1 Heterogeneous Data Sources .. 31

4.2.2 Data Processing Services .. 31

4.2.3 Data Storage in the Cloud Environment ... 33

4.3 Knowledge Delivery ... 35

4.4 Summary ... 35

Chapter 5 ... 37

5 Disaster-CDM for File-style Data .. 37

5.1 Data Processing Services .. 38

5.2 Data Processing Rules... 39

5.3 Data Storage in the Cloud Environment ... 41

5.4 Summary ... 43

Chapter 6 ... 45

6 Ontology-Based Representation of Simulation Models ... 45

6.1 Simulation Model Graph... 45

6.2 SIMONTO Architecture .. 49

6.2.1 SIMONTO Ontologies .. 49

6.2.2 The SIMONTO Engine ... 56

6.2.3 Storage for Ontology-Based Simulation Models 60

6.2.4 Simulation Services .. 61

6.3 Summary ... 63

vii

Chapter 7 ... 64

7 Evaluation: Case Study 1 ... 64

7.1 Data Set ... 64

7.2 Disaster-CDM Implementation ... 66

7.2.1 Implementation: Data Processing Services ... 66

7.2.2 Implementation: Data Storage .. 67

7.3 Knowledge Acquisition Services .. 68

7.4 Knowledge Delivery Services ... 70

7.4.1 Full-text Search ... 70

7.4.2 Querying File-Style Data .. 74

7.5 Discussion ... 76

7.6 Summary ... 78

8 Evaluation: Case Study 2 ... 79

8.1 SIMONTO Implementation ... 79

8.1.1 SIMONTO Ontologies .. 80

8.1.2 SIMONTO Engine ... 81

8.2 Ontology-Based Simulation Models ... 82

8.2.1 The EPANET Model... 82

8.2.2 The I2Sim Model .. 83

8.3 Knowledge Acquisition Services .. 85

8.4 Knowledge Delivery Services ... 86

8.4.1 Simulation Model Querying ... 86

8.4.2 Rule and Constraint Validation ... 87

8.5 Discussion ... 89

8.6 Summary ... 90

Chapter 9 ... 91

viii

9 Conclusions and Future Work .. 91

9.1 Contributions... 92

9.2 Future Work .. 95

References ... 98

Curriculum Vitae .. 104

ix

List of Tables

Table 5.1: File storage data model – document data store .. 43

Table 7.1: Loaded file types .. 69

Table 7.2: Search strategies .. 73

Table 7.3: Query results for ―power plant‖ ... 76

Table 8.1: SPARQL query output ... 87

Table 8.2: Watermain design recommendation [86] ... 88

Table 8.3: Result of validating rules from Table 8.2 .. 89

x

List of Figures

Figure 1.1: Disaster management phases .. 3

Figure 4.1: Disaster-CDM framework .. 30

Figure 6.1 A SIMONTO graph-structured EPANET simulation model 48

Figure 6.2: Overall SIMONTO architecture .. 49

Figure 6.3: SIMONTO ontologies ... 50

Figure 6.4: Upper ontology classes ... 51

Figure 6.5: EPANET ontology with relations to the upper ontology 53

Figure 6.6: The SIMONTO Engine ... 56

Figure 7.1: Full-text search ... 72

Figure 8.1: I2Sim ontology with relation to the upper ontology .. 81

Figure 8.2: Ontology-based representation of the EPANET model 83

Figure 8.3: Simulation model hierarchy ... 84

Figure 8.4: Ontology-based representation of the I2Sim model ... 84

xi

Listings

Listing 5.1: Data processing rule for MS Office files ... 39

Listing 5.2: Data processing rule for PDF files .. 40

Listing 5.3: Data processing rule for images .. 40

Listing 5.4: Data processing rule for simulation models .. 41

Listing 7.1: Querying for ―Power Plant‖—Map and Reduce functions for CouchDB view .. 76

xii

List of Acronyms

ACID - Atomicity, Consistency, Isolation, Durability

ANNIE - A Nearly-New IE system

BASE - Basically Available, Soft state, Eventually consistent

BSON - Binary JSON

CI - Critical Infrastructures

COSMO - COmponent Simulation and Modelling Ontology

DeMO - Discrete-event Modelling Ontology

DES - Discrete Event Simulation

DESO - DES Ontology

Disaster-CDM – Disaster Cloud Data Management

DOM - Document Object Model

DR-NEP - Disaster Response Network Enabled Platform

GATE - General Architecture for Text Engineering

IaaS - Infrastructure as a Service

I2Sim - Infrastructures Interdependencies Simulation

IE – Information Extraction

JSIM - Java-based SIMulation

JSON - JavaScript Object Notation

KaaS – Knowledge as a Service

LOD - Linked Open Data

MVCC - With Multi-Version Concurrency Control

NIST - National Institute of Standards and Technology

NLP - Natural Language Processing

NoSQL – Not only SQL

OCR - Optical Character Recognition

OWL - Web Ontology Language

PaaS - Platform as a Service

PIModel - Process Interaction Model

PSCAD - Power System Computer Aided Design

xiii

PSL - Property Specification Language

RDB - Relational database

RDBMS - Relational Database Management System

RDF - Resource Description Framework

RDFS - RDF Schema

REST - Representational State Transfer

SaaS - Software as a Service

SQWRL - Semantic Query-Enhanced Web Rule Language

SWRL - Semantic Web Rule Language

UFO - Unified Foundational Ontology

W3C - World Wide Web Consortium

XPIM - Extensible Process Interaction Markup

1

Chapter 1

1 Introduction

Each year, a number of natural disasters strike across the globe, killing hundreds and

causing billions of dollars in property and infrastructure damage. Extreme weather events

have been predicted by climate scientists and have been attributed to global warming. As

the number of such events increases, minimizing the impact of disasters becomes

imperative in today‘s society.

The role of information and communication technology in disaster management has been

evolving. Large quantities of disaster-related data are being generated. Behaviour of

critical infrastructures is being explored through simulation, response plans are being

created by government agencies and individual organizations, sensory systems are

providing potentially relevant information, and social media (Twitter, Facebook) have

been flooded with disaster information [1]. Traditional storage and data processing

system are facing challenges in meeting the performance, scalability, and availability

needs of Big Data. In the context of disaster data management, Big Data refers to the

massive collection of data sets generated by various participants and composed of diverse

data structures, including structured, semi-structured, and unstructured data [1]. Current

disaster data storage systems are disparate, providing few or no integration capabilities

and limited potential for collaboration. To meet the needs of Big Data and make the most

of available information, a reliable and scalable storage system provided by cloud

infrastructure and supported by information sharing, reuse, integration, and analysis is

needed.

1.1 Motivation

A vital element of successful disaster management is collaboration among a number of

teams, including firefighters, first aid, police, critical infrastructure personnel, and many

others. Each team or recovery unit is responsible for performing a well-defined task, but

their collaboration is essential for decision-making and execution of well-organized and

successful recovery operations [2]. The proliferation of social networking has introduced

2

citizens as collaborators in disaster decision-making since they can provide relevant

information [3]. Such diverse disaster participants generate large quantities of

heterogeneous disaster-related data, making information gathering, storage, and

integration especially challenging.

The activities of various disaster participants can be observed through four disaster

management phases, as illustrated in Figure 1.1: mitigation, preparedness, response, and

recovery [4]. Mitigation includes all activities undertaken to reduce disaster effects by

avoiding or decreasing the impact of a disaster. The preparedness phase is concerned with

preparing for disaster occurrence and includes activities such as planning, establishing

procedures and protocols, training, and exercises. In this phase, collaboration is an

essential element to correlate activities and generate effective plans and procedures.

Examples of data generated during the mitigation and preparedness phases include

response plans, emergency procedures, records of training exercises, and data about

available response resources. The transition from the preparedness to the response phase

is triggered by a disaster occurrence. The response is focused on addressing the direct,

short-term effects of a disaster and includes immediate actions to save lives, protect

property, and fulfill basic human needs. Collaboration among participants is crucial for a

successful disaster response. The transition to the recovery phase starts when the direct

disaster threat subsides and includes activities focused on bringing society into a normal

state. Examples of the data generated during the response and recovery stages include

incident reports, lessons learned, and improvements to disaster plans. The approach

proposed in this study carries out both data collection and delivery through all four

phases; however, the focus is on data collection during the mitigation and preparedness

stages, while during the response and recovery phases, the focus is on data delivery, as

illustrated in Figure 1.1. In other words, the main intent is not real-time collection of

information during disaster response, but better use of the information collected in

different phases. The ultimate goal is to create a knowledge system which will provide

effective support for disaster management as well as support for other disaster-related

activities.

3

Figure 1.1: Disaster management phases

Recent advances in cloud computing, Big Data, and NoSQL have been changing how

data are captured, stored, and analyzed. NoSQL solutions have been especially popular in

Web applications [5], including Facebook, Twitter, and Google. However, the use of

cloud technologies and NoSQL solutions in disaster management has been sparse.

A solution which stores disaster-related data in a cloud environment can provide the

following benefits to disaster management [6]:

 High availability. Within the cloud environment, data are automatically

replicated, often across large geographic distances. If a region is affected by a

disaster and a local data centre fails, the system remains available because it can

switch to another data centre.

 Scalability and elasticity. The amount of disaster-related data is massive, and a

cloud solution can adapt storage resources based on real-time needs and priorities.

Data can be automatically redistributed to take advantage of heterogeneous

servers.

 There is no need for a large initial investment. The system can start small and be

expanded by adding heterogeneous nodes as needed.

4

Moreover, NoSQL data stores have a number of characteristics that can benefit disaster

data management, including [7]:

 Flexible data structure. Disaster data are extremely diverse, and therefore it

would be almost impossible to store them in a predetermined data structure.

 Horizontal scalability. NoSQL data stores were designed for a cloud environment,

and therefore they scale easily over a large number of commodity servers.

 Performance. For simple read/write operations, NoSQL data stores can provide

better performance than relational databases.

Another crucial element of disaster management is simulation because it provides a

means of studying the behaviour of critical infrastructures, as well as a way of exploring

disaster response ―what-if‖ scenarios. Therefore, simulation-related information must be

an integral part of any disaster knowledge system.

Although the act of simulation is not domain-specific, simulation packages are usually

application-oriented (designed for simulation experiments in a specific domain) and use

different modelling approaches, diverse technologies and a wide variety of domain-

specific vocabularies. This heterogeneity in the simulation domain, representation, and

semantics presents an obstacle to simulation model querying and rule and constraint

validation and hinders the integration of simulation data with other information sources.

To be able to provide comprehensive knowledge services, a disaster knowledge system

needs to take advantage of simulation-related information and integrate it with other

sources. Moreover, to enable better exploration of simulation models, the solution needs

to provide querying within simulation models and rule and constraint validation

capabilities.

1.2 Goals and Scope

The ultimate goal of this research is to design a data management framework which will

provide effective support for disaster management as well as support for other disaster-

related activities. The main focus is on better use of existing information and not on real-

time data collection and delivery during a disaster; however, the proposed approach

5

allows data collection and delivery through all four disaster phases. This research will

facilitate disaster preparedness, response, and recovery efforts by providing a flexible and

expandable storage solution for diverse disaster data. Supporting global information

sharing, reuse, and integration, the proposed solution will provide improved and informed

decision-making and will therefore reduce the impact of disasters on human lives and

property.

Consequently, this research proposes a Knowledge as a Service (KaaS) framework for

disaster cloud data management (Disaster-CDM). KaaS [8] aims to generate, from data

stored in a cloud environment, knowledge such as advice or responses to meet

organizational needs. Therefore, Disaster-CDM has the objectives of:

1. Facilitating information gathering and sharing through collaboration. Knowledge

acquisition is responsible for acquiring knowledge from diverse sources and from

various collaboration partners. Knowledge delivery is responsible for integrating

information and delivering it to consumers as a service.

2. Storing large amounts of disaster-related data from diverse sources. The storage

of massive quantities of immensely diverse disaster-related data is achieved by

using a combination of various data stores in a cloud environment.

3. Facilitating search and supporting interoperability and integration. Knowledge

delivery services are the primarily components responsible for this task. Data

stored in diverse data stores are provided to consumers as a service.

The proposed framework is not disaster-specific and could potentially be applied for data

management in other domains. However, Disaster-CDM was motivated by disaster

scenarios and it was designed for the management of disaster-related data; consequently,

this work applies it on disaster-related data.

A part of the proposed framework responsible for addressing simulation models is

SIMONTO, an ontology-based representation of simulation models. SIMONTO, as proposed

in this work, represents domain simulation models as interconnected instances of

simulator-specific ontologies. Specifically, SIMONTO uses existing models in the

simulation engines‘ proprietary file formats as the foundation for the creation of its

6

ontology-based representation. Such ontology-based simulation models are stored in the

NoSQL data store with the goal of:

 Facilitating integration with other information sources,

 Providing querying capabilities,

 Enabling rule and constraint validation.

The proposed Disaster-CDM provides a flexible and customizable disaster data

management solution which can be expanded and altered according to the needs of the

organizations using it: Disaster-CDM accommodates new data sources by adding new

data processing services and by taking advantage of various NoSQL data stores. The

solution is based on cloud computing, NoSQL data stores, and the KaaS approach;

however, it takes advantage of a large number of other technologies, such as Web

services, full-text search, optical character recognition (OCR), ontologies, and various

querying approaches.

The contributions of this thesis can be summarized as follows:

Disaster-CDM framework, a Knowledge as a Service (KaaS) framework for disaster

cloud data management, is proposed. It supports disaster management and other disaster-

related activities by providing disaster-related knowledge as a service. Disaster-CDM

achieves the following objectives:

 Information gathering and sharing is facilitated by means of knowledge

acquisition and knowledge delivery services.

 Storing large amounts of disaster-related data from diverse sources is achieved by

taking advantage of cloud computing and NoSQL data stores.

 Search, interoperability and integration are supported primarily by means of

knowledge delivery services.

Moreover, the research presented in this thesis defines a process for introducing a new

data source into the proposed Disaster-CDM framework. The process consists of:

 adding new data processing services for dealing with the new data source;

7

 defining data processing rules for new data sources;

 determining suitable data storage, including choosing the type of data store and

designing a storage data model.

SIMONTO is the part of the proposed Disaster-CDM framework responsible for

processing simulation models. Existing simulation models expressed in simulator-

specific model files are transformed to their corresponding ontology-based

representations which are better suited for integration with other data source and for

providing simulation model querying capabilities, and rule and constraint validation. The

ontology-based simulation models are stored according to their intended use:

 For integration with other sources, simulation models are stored in a document

database alongside other data.

 For querying within simulation models, and for enabling rule and constraint

validation, ontology-based simulation models are stored in a graph database.

1.3 Thesis Organization

This thesis is organized into chapters as follows:

 Chapter 2 presents the main concepts and technologies relevant to this study: Big

Data, cloud computing, and NoSQL data stores. The term ―Big Data‖ in the

context of disaster data management is defined. Because the disaster data

management solution proposed in this work is cloud-based, the main

characteristics, goals, and challenges of cloud computing are discussed. Next,

since the Disaster-CDM storage model incorporates NoSQL solutions, NoSQL

data stores are introduced and their characteristics described. Furthermore, the

four NoSQL data models are discussed with an emphasis on characteristics

relevant in the Disaster-CDM context.

 Chapter 3 surveys related work. First, work in disaster data management is

examined, and the difference in focus between the reviewed work and the

research reported in this thesis is highlighted. Because this research proposes a

KaaS-based solution for disaster data management, studies that apply the KaaS

8

approach are examined. Next, work related to simulation model querying and rule

and constraint validation is reviewed, and finally, the use of ontologies in

simulation modelling is presented.

 Chapter 4 proposes Disaster-CDM, a Knowledge as a Service (KaaS) framework

for disaster cloud data management. The two main parts of the Disaster-CDM

framework are discussed: knowledge acquisition and knowledge delivery.

Knowledge acquisition is responsible for acquiring knowledge from diverse

sources, processing it to add structure to unstructured or semi-structured data, and

storing it in data stores. Knowledge delivery is responsible for integrating

information from different data stores and delivering knowledge to consumers as

a service.

 Chapter 5 focuses on Disaster-CDM for file-style data, which are common in the

disaster management domain. The generic process of adding a new data source to

the proposed framework is introduced and then applied for file-style data sources.

Details of applying each of the three steps to file-style data sources are discussed:

establishing required data processing services, defining data processing rules, and

data storage in the cloud environment.

 Chapter 6 proposes SIMONTO, an ontology-based representation of simulation

models, which represents proprietary simulation models as interconnected

instances of simulator-specific ontologies. In the context of Disaster-CDM,

SIMONTO is responsible for simulation model processing. Integration with other

file-style data is achieved by storing simulation models in a document data store

along with other data sources. On the other hand, simulation model querying and

rule and constraint validation are achieved by storing the ontology-based

simulation models in a graph database.

 Chapter 7 presents an evaluation of the proposed Disaster-CDM framework on

data collected during the CANARIE sponsored Disaster Response Network

Enabled Platform (DR-NEP) project. The presented case study applies the

Disaster-CDM framework on file-style data sources including simulation models.

First, the Disaster-CDM implementation is described, including its two main

knowledge acquisition components: data processing services and data storage.

9

Disaster-related knowledge is acquired from the DR-NEP data set and stored in a

document data store. Finally, the benefits of Disaster-CDM are demonstrated on

two knowledge delivery services: full-text search and querying.

 Chapter 8, like Chapter 7, presents an evaluation of the proposed Disaster-CDM

framework; however, in contrast to Chapter 7 which addresses file-style data

sources, this chapter is concerned with simulation models. The SIMONTO

implementation and the ontology-based models created by SIMONTO are

discussed first. In the presented case study knowledge acquisition service,

specifically SIMONTO, transforms simulation models to their corresponding

ontology-based representations and stores them in a graph database. Finally, the

benefits of Disaster-CDM are demonstrated on two simulation-specific

knowledge delivery services: simulation model querying and rule and constraint

validation.

 Chapter 9 concludes this study by discussing the main contributions of this

research as well as directions for future work. The two main contributions include

the Disaster-CDM framework and SIMONTO, the part of the framework

responsible for processing simulation models. Although this study has focused on

disaster data management, the proposed Disaster-CDM framework is generic and

could be applied in other domains. Consequently, future work will explore the

potential of the proposed framework in other domains such as geological data

management.

10

Chapter 2

2 Background

This chapter introduces the main concepts and technologies relevant to this work: Section

2.1 introduces Big Data, Section 2.2 portrays cloud computing, and Section 2.3 presents

the background on NoSQL data stores.

2.1 Big Data

In recent years, advances in Web technology and the proliferation of sensors and mobile

devices connected to the Internet have resulted in the generation of massive data sets that

must be processed and stored. For example, Facebook today has more than one billion

users, with over 618 million active users on a daily basis generating more than 500

terabytes of new data each day [9].

Traditional relational database management systems (RDBMS) as well as data processing

approaches were designed in an era when available hardware, as well as storage and

processing requirements, were very different than they are today [10]. Therefore,

traditional approaches are facing many challenges in meeting the requirements of Big

Data, including storage, processing, management, search, transfer among devices or

storage locations, analysis, and visualisation.

The term ―Big Data‖ refers to large and complex data sets made up of a variety of

structured and unstructured data which are too big to be managed by traditional

techniques. According to Beyer and Laney [11], Big Data is characterized by the 3Vs:

volume, velocity and variety. Volume refers to the quantity of data, variety refers to the

diversity of data types, and velocity refers both to how fast data are generated and how

fast they must be processed. Occasionally, a fourth V is added [12]: veracity is the ability

to trust the data to be accurate and to use them to make crucial decisions.

Big Data in the context of disaster data management, and even more specifically in the

Disaster-CDM framework, refers to large collections of disaster-related data sets owned

by various disaster participants. These data sets must be integrated to provide efficient

11

support for disaster management. In addition to volume, the variety of disaster-related

data is a major challenge that Disaster-CDM must overcome to be able to provide

integrated disaster knowledge as a service. Moreover, the veracity of disaster data is also

significant as the decision-makers must be able to trust the data to use it in decision-

making.

Enterprises are aware that Big Data has the potential to impact core business processes,

provide competitive advantage, and increase revenues [12,13]. Therefore, organizations

are exploring ways to make better use of Big Data by analyzing them to find meaningful

insights which would lead to better business decisions and add value to their business. In

the disaster management domain, better use of available information has the potential to

improve decision-making, thus reducing the impact of disasters on human lives and

property.

A trend in the Big Data world of special interest to this research is collaboration. This

refers to data sharing as well as treating data as a commodity which considers data as a

product and even offers it as a service [13]. In the disaster management domain,

collaboration among large numbers of participants is essential for successful response

and recovery operations. Specifically, in the proposed Disaster-CDM approach, data

sharing is achieved through knowledge acquisition from a variety of data sources owned

by different collaborators. The integrated data are provided to consumers as a knowledge

service.

2.2 Cloud Computing

Various cloud computing definitions have been proposed [14,15]; however, the definition

proposed by the National Institute of Standards and Technology (NIST) has been gaining

acceptance [5,15]. According to NIST, cloud computing is [16]

―a model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction‖.

12

It is important to point out the synergy between Big Data and cloud computing. Big Data,

due to its size, volume and velocity, imposes continuously increasing computing

demands on traditional computing techniques. Cloud computing promises to meet these

demands by using a large number of networked resources. Therefore, cloud computing is

one of the key enabling techniques for handling Big Data; hence, this work uses it for

management of disaster-related Big Data.

In cloud computing, service providers offer computer-based services, and service

consumers use these services over the network. A large number of IT companies,

including Amazon, Google, Microsoft, Rackspace, and IBM are now providing cloud

computing services. According to the NIST definition, the main characteristics of cloud

computing include [5,14,15]:

 On-demand self-service. Services are consumed as needed, without the need for

human interaction.

 Broad, ubiquitous network access. Services are provided over the network

through standard mechanisms.

 Resource pooling. Computing resources are pooled to serve multiple consumers

in a multi-tenant environment.

 Rapid elasticity. Dynamic resource provisioning is achieved by obtaining and

releasing resources on the fly.

 Utility-based pricing (a pay-per-use pricing model). The consumer pays only for

resources used.

Consequently, the goal of cloud computing systems is to provide the following benefits

[5]:

 Availability. The system needs to remain operational and accessible in case of

server, network, or even data centre failure.

 Scalability. This refers to the ability to handle growing demands.

 Elasticity. Changing requirements need to be accommodated by scaling up or

down.

13

 Performance: In a pay-per-use pricing model, performance is directly correlated

with cost.

 Multi-tenancy. Many tenants (services, applications) reside on the same hardware

and software infrastructure.

 Fault tolerance. This refers to the ability of a system to continue operating in the

presence of failures.

 Load balancing. Loads are automatically moved among servers to achieve

effective resource utilization.

 Ability to run on heterogeneous commodity servers. In infrastructures involving a

large number of nodes, heterogeneity is almost unavoidable.

In this research, all mentioned attributes contribute to the choice of a cloud environment

for management of disaster data; however, it is important to highlight scalability and

availability attributes. Scalability makes it possible to start the system small and expand

as needs grow by adding heterogeneous nodes. High availability ensures system

operation in the presence of failures, which in the disaster management domain is

particularly important as it can be expected that disasters will cause a variety of failures.

From the delivery perspective, the three common cloud computing models are

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS). The IaaS model provides resources such as servers (physical or virtual),

networks, storage, and operating systems. The PaaS model offers a higher-level

environment and delivers a computing platform including data storage, programming

languages, and Web application servers. Finally, the SaaS model provides on-demand

software by offering access to software applications through the Internet.

Specialized variations of these three models have emerged, including Storage as a

Service, Database as a Service, Security as a Service, Integration as a Service, and

Testing as a Service [15]. The Disaster-CDM approach proposed in this work applies the

Knowledge as a Service (KaaS) model, in which requests presented by consumers are

14

answered by knowledge providers through knowledge services [17]. In other words, the

proposed Disaster-CDM provides disaster-related knowledge as a service.

Even though cloud computing is gaining popularity in industry and academia, further

adoption is facing a number of challenges. Because the approach proposed in this thesis

draws on cloud computing, it is exposed to the same challenges:

 Security and privacy. In a public cloud, data are stored and processed on third-

party premises and in a shared multi-tenant environment; therefore, security and

privacy vulnerabilities are increased. Providing an adequate solution is difficult as

it needs to include both the service provider and the service consumer.

 Customer lock-in. Due to lack of standardization within the cloud computing

industry, it is challenging to move from one cloud provider to another. Customer

lock-in makes cloud consumers vulnerable to price increases.

 Data transfer challenges. The physical locations of provider and consumer may

result in significant network traffic which must be considered when evaluating

performance and cost.

 Legal issues. Public cloud resources may reside in a geographical region with

different security and privacy regulations than those in the cloud consumer region.

For example, European companies storing data in the United States expose their

data to easier access by government agencies due to the U.S. Patriot Act [15].

 Application parallelization. In the cloud computing environment, additional

resources are typically acquired by allocating additional servers; however, only

applications with parallelizable workload can take advantages of such resources.

Even though the cloud computing challenges just described are generic and are outside

the scope of this work, they have a major impact on possible adoption of this work in

practice. Moreover, these challenges need to be taken into consideration when

implementing the proposed approach in practice.

Since this research focuses on data storage in the cloud, new storage solutions, namely

NoSQL data stores, are introduced in Section 2.3.

15

2.3 NoSQL Data Stores

Relational databases (RDBs) are traditional data storage systems designed for structured

data. They have been used for decades due to their reliability, consistency, ACID

(Atomicity, Consistency, Isolation, Durability) transactions and query capabilities

through SQL. However, RDBs exhibit horizontal scalability challenges, Big Data

inefficiencies, and limited availability [18]. In an attempt to address the challenges

encountered by RDBs in handling Big Data and in satisfying cloud requirements, new

storage solutions, namely NoSQL data stores [6], have emerged. Because this work aims

to provide a storage solution for disaster-related Big Data, the proposed solution takes

advantage of NoSQL data stores.

Today, the term ―NoSQL‖ refers to ―Not only SQL‖, which emphasizes that SQL-style

querying is not the crucial objective of these data stores. Therefore, the term encompasses

a large number of immensely diverse data stores that are not based on the relational

model, including some solutions designed for highly specific applications such as graph

storage. Even though there is no agreement on what exactly constitutes a NoSQL

solution, the following set of characteristics is often attributed to them [7,15,19]:

 Simple and flexible non-relational data models. NoSQL data stores offer flexible

schemas or are sometimes completely schema-free and are designed to handle a

wide variety of data structures [7,20].

 Ability to scale horizontally over many commodity servers. Some data stores

provide data storage scaling, while others are more concerned with read and/or

write scaling.

 High availability. Many NoSQL data stores are meant to be used in highly

distributed scenarios and consider partition tolerance as unavoidable. Therefore,

to provide high availability, these solutions choose to compromise consistency in

favour of availability, resulting in AP (Available / Partition-tolerant) data stores,

whereas most RDBMSs are CA (Consistent / Available).

 Typically, NoSQL data stores do not support ACID transactions as provided by

RDBMS. NoSQL data stores are sometimes referred to as BASE systems

16

(Basically Available, Soft state, Eventually consistent) [21]. In this acronym,

Basically Available means that the data store is available whenever accessed,

even if certain parts are unavailable; Soft state highlights the fact that it can

tolerate inconsistency for a certain time period; and Eventually consistent

emphasizes that after a certain time period, the data store will arrive at a

consistent state.

 Lesser emphasis on normalization. Denormalized schema can provide simpler

data access, reduce use of resource-intensive operations such as joins, and can

more easily scale horizontally. However, this approach will result in larger

storage size than for data stored in normalized schema [15].

Distributed and cloud computing are the key enabling technologies for NoSQL data

stores. At the time when relational databases emerged, available storage space was

restricted and thus normalization was highly desired and redundancy unwanted. Today,

distributed and cloud computing provide massive storage space, but the immense quantity

of operations imposes strict performance requirements. Therefore, focus has shifted from

minimizing redundancy and storage space to improving performance [15]. Consequently,

NoSQL schemas are often denormalized resulting in large storage size, but providing a

number of advantages including:

 Better horizontal scalability as denormalized schema can be partitioned easier,

 Because data can be redundant, it can be repeated in order to simplify data access,

 Resource-intensive operation such as joins can be avoided,

 Schema can closer resemble application object model and therefore reduce

impedance mismatch.

The main characteristics responsible for making NoSQL stores a suitable storage option

for the disaster data management solution proposed in this work include their flexible

data model, horizontal scalability, and high availability. A flexible data model enables

storage of diverse disaster-related data, horizontal scalability enables a NoSQL data store

to accommodate growing storage needs by adding commodity servers, and high

availability ensures continuous operation in case of disasters.

17

NoSQL data stores are typically further classified according to their data model. As there

is no agreement on what exactly constitutes a NoSQL data store, various categorizations

have been proposed [19,20]. This study adopts the categorization into four categories:

key-value data stores, column-family stores, document stores, and graph databases

[7,19,22]. The following discussion introduces the four NoSQL data store categories and

highlights the main characteristics relevant for their use in the Disaster-CDM framework.

Key-Value Data Stores have the simplest data model: they provide a simple mapping

from each key to its corresponding value. They are primarily used for simple operations

in which all access to the store is through a primary key. Client applications can set the

value for a key, get the value corresponding to a specified key, or delete a key. The value

can be just about anything, and the client application is responsible for interpreting what

is stored. Therefore, when using a key-value data store, relations between data are

handled at the application level. Although such a simple data model is somewhat

restrictive, accessing data only through the primary key provides for good performance

and easy scalability. Examples of key-value data stores include Redis, Riak, and Berkeley

[19].

In spite of their flexibility, scalability, and performance characteristics, key-value stores

have major drawbacks with respect to Disaster-CDM. Relations between data are handled

by the application, and data are accessed only through the primary key. Since the

relations among data are not expressed in the data store‘s data model, integration

possibilities are limited. Moreover, accessing data only through the primary key greatly

restricts querying capabilities. In the context of Disaster-CDM, limited querying

capabilities and integration possibilities present a major drawback.

Document Data Stores are designed around the concept of a document and focus on

optimizing storage and access for semi-structured documents as opposed to rows or

records. They are derivatives of the key-value store data model with documents stored in

the value part of the key-value pair. The documents, typically in JSON (JavaScript Object

Notation) or BSON (Binary JSON) representation, are hierarchical trees which

encapsulate and encode data. The documents within the data store can have different

18

structures, which provide storage flexibility. At the same time, the document structure

enables querying capabilities as fields within documents can be used as query criteria.

Example data stores from this category include CouchDB, MongoDB, and Couchbase

Server [19].

In the context of Disaster-CDM, document data stores provide two advantages: querying

capabilities and flexible storage. Querying capabilities are made possible by the structure

of the documents within the data store, while storage flexibility is achieved by allowing

documents within the store to have different structures. However, querying capabilities

and storage flexibility are competing attributes: a certain structural consistency among

documents is needed to support querying, while excessive structural consistency

decreases storage flexibility.

Column-Family Data Stores, like key-value stores, map keys to their corresponding

values; however, each value consists of a name-value pair. Key-value pairs can be

perceived as rows in a relational database, while name-value pairs relate to column names

and their corresponding values. Thus, column-family stores are on the surface similar to

relational databases; however, in the relational database, columns are predefined, and

each row contains the same fixed set of columns, whereas in the column-family data

store, the columns that form a row are determined by the client application, and each row

can have a different set of columns. Column-family data stores provide query

capabilities. Cassandra, HBase, and Amazon SimpleDB belong to this category [19].

In the context of Disaster-CDM, column-family data stores provide the same advantages

as document data stores: querying capabilities and flexible storage. Querying capabilities

are supported by name-value pairs within rows, while storage flexibility is achieved by

allowing each row to have a different set of columns. Similarly to document databases, a

certain level of consistency among rows is needed to support querying capabilities.

Graph Databases originated from graph theory and use graph-like structures with nodes,

edges, and properties to store data. This data model is very different from the key-value,

document, and column-family data models and is designed for efficient management of

heavily linked data. Applications based on data with many relationships are well suited

19

for graph databases because the cost of intensive operations like recursive joins can be

replaced by efficient graph traversals [7]. Neo4J and Allegro Graph are example stores

from this category [19].

In the context of Disaster-CDM, graph databases are suitable for storage of heavily linked

data and for data with a graph-like data model. For example, ontology-based simulation

models are based on simulation model graphs and therefore are suitable for storage in a

graph database. In the Disaster-CDM framework, graph databases have the advantage of

advanced querying capabilities: graph database implementations often provide powerful

and diverse querying capabilities. For example, a Neo4j graph database can be queried

using Cypher, a property graph query language developed by Neo4j; using Gremlin, a

graph traversal language; or even using the RDF query language, SPARQL.

In addition to differences in their data models, data store implementations differ greatly

in other aspects, such as scalability, fault tolerance, consistency, and concurrency control.

These characteristics, in addition to the data model, are influential factors in determining

the most suitable data store for the task at hand. Disaster-CDM offers a choice of storage

solutions according to the characteristics of the data to be stored. Specifically, the data

store category is chosen according to the data to be stored, and a specific data store

implementation is then selected by matching the desired storage attributes with the

characteristics of various data store implementations.

Because one of the main characteristics of NoSQL data stores is their ability to scale

horizontally and effectively by adding more servers to the resource pool, scaling aspects

are discussed further here. With regard to what is being scaled, three scaling dimensions

can be distinguished: scaling read requests, scaling write requests, and scaling data

storage. The partitioning, replication, consistency, and concurrency control strategies

used by NoSQL data stores have significant impact on their scalability. For example,

partitioning determines the distribution of data among multiple servers and is therefore a

means of achieving all three scaling dimensions.

Another important factor in scaling read and write requests is replication: storing the

same data on multiple servers so that read and write operations can be distributed over

20

them. Replication also has an important role in providing fault tolerance because data

availability can withstand the failure of one or more servers. Furthermore, the choice of

replication model is also strongly related to the consistency level provided by the data

store. For example, the master-slave asynchronous replication model itself cannot provide

consistent read requests from slaves. In the context of Disaster-CDM, the replication

model is relevant when choosing the best data store implementation for the task at hand.

2.4 Summary

This chapter has presented the main concepts and technologies relevant to this study: Big

Data, cloud computing, and NoSQL data stores. The term ―Big Data‖ has been defined,

and its meaning in the context of disaster data management, and specifically Disaster-

CDM, has been emphasized. Because the disaster data management solution proposed in

this work is cloud-based, the main characteristics, goals, and challenges of cloud

computing have been discussed. The choice of the cloud environment for the storage of

disaster-related data has been primarily motivated by its scalability and availability

attributes. Next, because the Disaster-CDM storage model incorporates NoSQL solutions,

NoSQL data stores were introduced and their characteristics described. The motivating

factors for choosing NoSQL data stores in the proposed approach included data model

flexibility, horizontal scalability, and high availability. Furthermore, the four NoSQL data

models were described with an emphasis on the characteristics relevant in the Disaster-

CDM context.

21

Chapter 3

3 Related Work

This chapter surveys three categories of related work: disaster data management,

Knowledge as a Service (KaaS) and related simulation work.

3.1 Disaster Data Management

Research in disaster management involves many fields, including health science,

environmental science, computer science, and a number of engineering disciplines. Crisis

informatics [23,24], the area of research concerned with the role of information and

technology in disaster management, has been attracting increased research attention

recently.

Hristidis et al. [1] surveyed data management and analysis in the disaster domain. The

main focus of their survey was on data analysis techniques without the storage aspect. In

contrast, in Disaster-CDM, storage and analysis are considered as integral parts. Hristidis

et al. identified the following data analysis technologies as relevant in disaster data

management: information extraction, information retrieval, information filtering, data

mining, and decision support. Similarly, Disaster-CDM uses a number of technologies

from information extraction and retrieval. The survey reveals that the majority of

research has focused on a very narrow area of disaster management, for example, a

specific disaster event such as an earthquake or a flood, or specific disaster-related

activities such as communication among actors, estimating disaster damage, and use of

mobile devices. Hristidis et al. recognized the need for flexible and customizable disaster

management solutions that could be applied in different disaster situations. Disaster-

CDM aims to provide such a solution using cloud computing and NoSQL data stores.

Othman and Beydoun [25] pointed out the importance of providing sharable disaster

knowledge in facilitating better disaster decision-making. They proposed a Disaster

Management Metamodel with the objective of improving knowledge sharing and

supporting the combination and matching of different disaster management activities.

22

This metamodel was instantiated twice: for an earthquake, and for a nuclear meltdown

disaster situation. Although they highlighted the large amount of information generated in

the disaster domain, their study does not consider disaster data storage. Disaster-CDM

provides a scalable and flexible data storage solution in a cloud environment,

accommodates both structured and unstructured data, and supports data sharing.

Silva et al. [26] aimed to integrate diverse, distributed information sources by bringing

them into a standardized and exchangeable common data format. Their approach focused

on data available on public Web sites. Data were first extracted from different source

Web sites and stored in a relational database. Next, the data were transformed into Linked

Open Data (LOD) and published. In contrast to their work which addressed data available

on public Web sites, the proposed Disaster-CDM can accommodate various information

sources. In addition, Disaster-CDM is designed for high availability and large amounts of

data.

Palen et al. [23] presented a vision of technology-supported public participation during

disaster events. They focused on the role of the public in disasters and how information

and communication technology can transform that role. Similarly to Hristidis et al. [1],

they recognized information integration as a core concern in crisis informatics.

Anderson and Schram [27], like Palen et al. [23], studied the role of public and social

media in disaster events. They proposed a crisis informatics data analytic infrastructure

for the collection, analysis, and storage of information from Twitter. The main objective

of their work was the support of other crisis information research by extracting disaster-

related tweets from Twitter and storing them in a database. In their initial study [27], data

were stored in a relational database, specifically MySQL. Later, after encountering

scalability challenges, they transitioned to a hybrid architecture that incorporates

relational database and NoSQL data store [24]. Similarly, Disaster-CDM also uses a

combination of relational database and NoSQL data stores. However, a combination of

several NoSQL data stores has been used to address the storage requirements of diverse

data. Specifically, Disaster-CDM allows the choice of storage solutions to suit a variety

of data structures and access patterns.

23

Chou et al. [28] proposed an ontology for developing Web sites for natural disaster

management. Web elements contained in the ontology were identified using a ground

theory approach with an inventory of disaster management Web sites. To represent the

Web page elements, they adopted a combination of XML, XML schemas, and document

object model (DOM). The proposed ontology provides support for designing dynamic

emergency response management Web sites. Like Chou et al. [28], Disaster-CDM also

uses ontologies, but their purpose is data integration in the knowledge delivery stage.

Moreover, while Chou et al. addressed disaster Web sites, Disaster-CDM is concerned

with a variety of diverse data sources.

3.2 Knowledge as a Service (KaaS)

Disaster-CDM incorporates the KaaS approach to make disaster-related knowledge

available as services. Within KaaS, a knowledge provider answers requests presented by

knowledge consumers through knowledge services [17]. In Disaster-CDM, the main goal

is to acquire knowledge from the diverse data sources and expose it as service to

knowledge consumers. Generally, KaaS publishes knowledge models that represent a

collection of learned lessons, best practices, and case studies as services that help

consumers get knowledge from a distributed computing environment.

The KaaS approach has been used in various domains [29-31]. Lai et al. [29] presented a

KaaS model for business network collaboration in the medical context. The main

objective of this KaaS is to facilitate the interoperation and the collaboration among

members in a knowledge network. In contrast to Disaster-CDM, their work did not tackle

the data management layer from which the knowledge is provided nor did it address the

storage aspect.

In the agricultural domain, Qirui [30] introduced the KaaS in order to provide farming

recommendations according to user requirements and farming environment. The

knowledge representation in their KaaS is based on ontologies and data are stored

exclusively in a relational database (MySQL). Another interesting study is the work of

Kannimuthu et al. [31] in the e-commerce domain. In their work, the KaaS purpose is the

extraction of knowledge from data using data mining techniques. The extracted

24

knowledge assists in attracting users to buy other products of the same enterprise. In

contrast to the approach proposed by Qirui [30] which stores data exclusively in

relational database and that of Kannimuthu et al. [31] which stores data in XML

database, the KaaS in Disaster-CDM accommodates both structured and unstructured

data by taking advantage of relational databases and NoSQL data stores.

3.3 Related Simulation Work

Simulation is an established way of observing the behavior of a real-world system by

developing models that represent the structure and behavior of the system of interest [32].

One of the main factors contributing to the increasing use of simulation involves its non-

confinement to a specific discipline [33] as simulation is employed in a variety of

domains, such as military operations, critical infrastructures, medical and life sciences,

learning, and chemical and biochemical engineering.

Computer simulation, where computer models are developed to represent real-world

scenarios, is supported by a variety of software simulation packages or simulation

engines [34]. Although the act of simulation is not domain-specific, simulation packages

are usually application-oriented, designed for simulation experiments in a specific

domain. These packages use different modelling approaches, diverse technologies and a

wide variety of domain-specific vocabularies. Moreover, simulation models are saved in

simulators‘ engine-specific proprietary file formats. This heterogeneity presents an

obstacle to querying, rule and constraint validation, as well as data integration.

Related work in simulation model querying and rule and constraint validation is

presented first. It is followed by the review of ontology use in simulation modelling

highlighting different roles of ontologies in the reviewed work and the research presented

in this thesis.

3.3.1 Simulation Model Querying, Rule and Constraint Validation

Integration among simulators has attracted significant attention and resulted in a standard,

the IEEE High Level Architecture [35], and numerous research studies [36,37].

25

Furthermore, semantic heterogeneity has been addressed by creating simulation

ontologies [38,39].

Moreover, extensive research has been done on simulation model verification and

validations [40,41]. Here, verification is the process of confirming that the model is

implemented correctly while the validation checks that the model is accurate

representation of the real system. In contrast, this work is concerned with how can

simulation models be queried, and how can rules and constraints be written and model

compliance with those rules and constraints validated. Nevertheless, research on the topic

of simulation model querying, rule and constraints validation has been sparse.

Querying simulation mesh data has been addressed by Lee et al. [42]; however, their

AQSim system is intended for querying mesh data and cannot be used with other non-

mesh simulation models such as infrastructure networks or logistic systems. In contrast,

the proposed SIMONTO focuses on infrastructure-like simulation models, transforms them

into ontology-based representations and, as a result, enables simulation model querying

and rule and constraint validation.

Querying from the perspective of model discovery and selection in component-based

simulation model development has been addressed in the work of Szabo and Teo [43]. In

their approach, the COSMO (COmponent Simulation and Modelling Ontology), ontology

is applied as a terminology for describing the attributes and behavior of components.

Consequently, ontology-based description is queried for the purpose of component

discovery and selection. In contrast, SIMONTO represents simulation models as instances

of an ontology and Disaster-CDM queries those ontology-based models after storing

them in a NoSQL data store.

Rule and constraint validation in electronic systems domain can be performed using

Property Specification Language (PSL) which has been standardized [44]. PSL is domain

specific; it is intended for use with electronic system design languages. This work, on the

other hand, is concerned with a range of application-oriented simulations packages

related to disaster management with a special focus on infrastructure simulators.

26

3.3.2 Ontologies in Simulation Modelling

Although ontologies have been used in a variety of domains [45], their application to the

field of simulation has been limited and primarily constrained within the research

community. The potential of ontologies in simulation and modelling was explored by

Lacy and Gerber [46]. From the perspective of these authors, ontologies are beneficial in

simulation and modelling because they formalize semantics and allow querying,

inference, sharing, and reuse of developed models.

The studies that are particularly relevant to our research are related to the use of

ontologies to represent real-world scenarios for simulation purposes such as Tofani et al.

[36], Miller et al. [38] and Silver et al. [47].

Tofani et al. [36] proposed an ontology framework to model the interdependencies

among Critical Infrastructures (CI). Like our SIMONTO, the approach of Tofani et al.

represents infrastructures as instances of an ontology and uses proprietary simulation

packages for the simulation execution. However, this study creates ontology-based

representations from existing simulation models, while Tofani et al. model CIs directly as

instances of ontologies and then map them manually onto the proprietary simulation

models. Therefore there are two main drawbacks to the work of Tofani et al: firstly, the

CI network has to be modelled twice, as instances of an ontology and in the domain

simulation language; and secondly, the mappings between ontology representations and

simulation models must be established manually.

Miller et al. [38] investigated the development requirements and benefits of ontologies in

Discrete Event Simulation (DES), and consequently, these authors presented the

Discrete-event Modelling Ontology (DeMO). According to Miller and Baramidze [48],

the main challenges in building DeMO, or a similar ontology for simulation and

modelling, are twofold: firstly, it needs to be domain-independent, as DES can model any

domain, and secondly, since simulation formalisms are founded in mathematics and

statistics, the DES ontology should be based on the ontologies of those domains. DeMO

captures generic discrete event simulation knowledge without addressing domain-specific

simulation aspects. In contrast, SIMONTO approach uses simulator-specific ontologies;

27

therefore, it facilitates domain experts‘ understanding of ontologies and enables

automated creation of the ontological representation from the proprietary simulation

models.

Silver et al. [47] represented real-world scenarios as instances of the extended DeMO

PIModel (Process Interaction Model). Subsequently, these instances are transformed to

XPIM (Extensible Process Interaction Markup) instances, which are then translated to a

JSIM (Java-based SIMulation) model. This approach models real-world scenarios in

terms of an ontology, which may represent a challenge for domain experts that are

accustomed to domain-specific simulation engines. Moreover, DeMO makes use of

generic, domain-independent terminology that may differ significantly from specific

domain terminology. Depending on the domain modelled, the majority of DeMO entities

may be irrelevant and hence may obscure the modelling efforts. In contrast, the SIMONTO

approach does not require modelling in an ontology form; it draws on existing proprietary

simulation models to automatically generate its ontology-based representation. When

new simulation models are needed, experts create them in the domain-specific simulation

packages they are accustomed to using, and SIMONTO generates their corresponding

ontology-based representation. Moreover, SIMONTO uses existing domain simulators for

the simulation execution, while Silver et al. transform the ontology-model to JSIM for

the simulation execution.

Like Miller et al. [38], Guizzardi and Wagner [39] also proposed a DES ontology. Their

DES Ontology (DESO), a foundational ontology for discrete event system modelling, is

derived from the Unified Foundational Ontology (UFO). In contrast to SIMONTO, whose

objective is the representation of simulation models for querying and rule and constraint

validation, or DeMO, whose aim is the representation of the real world for simulation

purposes, the objective of DESO is to provide a basis for evaluating DES languages.

Benjamin and Akella [49] applied ontologies to facilitate semantic interoperability and

information exchange between simulation applications. The ontology models for each

simulation application domain are extracted from textual data sources, such as

requirements and design documents. In the work of Benjamin and Akella [49], ontologies

28

describe different simulation domains, while in this research ontologies represent actual

simulation models.

3.4 Summary

This chapter has surveyed related work. First, work in disaster data management has been

examined, and the difference in focus between the reviewed work and the research

reported in this thesis has been highlighted. Because this research proposes a KaaS-based

solution for disaster data management, studies that apply the KaaS approach have been

examined. Next, work related to simulation model querying and rule and constraint

validation has been reviewed, and finally, the use of ontologies in simulation modelling

has been presented.

29

Chapter 4

4 Disaster Cloud Data Management

A successful disaster management relies on the collaboration among participants;

however, the diversity of the involved participants and their activities results in massive

data heterogeneity. This heterogeneity of data, together with their volume, is one of the

main challenges in providing a comprehensive solution that could be used by various

stakeholders in diverse disaster situations. Disaster-CDM addresses those Big Data

challenges by integrating storage in the cloud environment with the KaaS approach which

provides disaster-related knowledge as a service.

This Chapter first introduces the overall Disaster-CDM framework in Section 4.1. Next,

the two main parts of Disaster-CDM, knowledge acquisition and knowledge delivery are

discussed in Sections 4.2 and 4.3.

4.1 Disaster-CDM Framework

The Disaster-CDM framework is illustrated in Figure 4.1 [50]. It consists of two parts:

knowledge acquisition and knowledge delivery services. Knowledge acquisition is

responsible for acquiring knowledge from diverse sources, processing it to add structure

to unstructured or semi-structured data, and storing it. Heterogeneous data from sources

like documents, simulation models, social media, and web pages, are handled by applying

processes such as text extraction, file metadata separation, and SIMONTO simulation

model transformation. This results in outputs including extracted text, annotated data, and

ontology-based simulation models. Processed data are stored in a cloud environment,

specifically in a variety of relational databases and NoSQL data stores. Knowledge

delivery services are responsible for integrating information from different data stores

and delivering knowledge to consumers as a service.

30

Figure 4.1: Disaster-CDM framework

The following two Sections 4.2 and 4.3 provide an overview of the two main parts of

Disaster-CDM: knowledge acquisition and knowledge delivery.

31

4.2 Knowledge Acquisition

The knowledge acquisition services obtain data from heterogeneous data sources, process

them, and store them in the cloud environment. It was decided to process the information

and to store the processed, enriched data because this will allow shorter query response

time than performing the processing ―on the fly‖. For example tagging large text content,

transforming simulation models and OCR on files with a large number of images may

take time and storing already processed files will reduce query response time.

4.2.1 Heterogeneous Data Sources

A few examples of information related to disasters are disaster plans, incident reports,

situation reports, social media, simulation models including infrastructure and health-care

simulation. As for representation formats, examples include MS Word, PDF, XML, a

variety of image formats (jpeg, png, tiff), and simulation model formats specific to

simulation packages. Data representation is important because it determines the methods

that can be used to add structure to unstructured or semi-structured data.

From our experience working with local disaster management agencies, the majority of

information is stored in unformatted documents, primarily MS Word and PDF files. This

agrees with the work of Hristidis et al. [1], who reported that most information is in MS

Word and PDF files.

4.2.2 Data Processing Services

Because the input data are so diverse, they cannot be processed using a single approach.

Therefore, the processing is driven by the input data and by data processing rules, as

illustrated in Figure 4.1. Data processing rules specify what data processing services are

to be applied to which input data and in which order. For example, a PDF incident report

might go through file metadata separation, text extraction, and pattern processing.

According to the KaaS approach, Disaster-CDM provides data processing services which

can be composed by means of processing rules. The representative services with their

associated outputs are included in Figure 4.1:

32

File Metadata Separation Service makes use of file and directory attributes, including

file name, creation date, last modified date, and owner. File names themselves carry

important information about content because they are typically chosen with the aim of

describing the content. They are processed to separate the words contained in the file

name. The creation date and last modified date can assist in distinguishing newer and

potentially more relevant information from older and possibly outdated information. The

file directory structure contains additional information about file content since directories

are used to organize files. Directories can be seen as a categorization and therefore are

included in metadata separation.

Text Extraction Service recognizes the text in a file and separates it [51]. An example of

such process is optical character recognition (OCR) which Disaster-CDM uses to extract

text from images. This step prepares images, MS Office and PDF files for other

processing steps such as tagging. Text extraction is especially important in the case of

diagrams such as flowcharts or event-driven process chains because these documents

contain large amounts of text that can be used for tagging. In the case of MS office files,

text is extracted from document body as well as from the images embedded in the

document as they may also contain relevant information.

Pattern Processing Service makes use of existing patterns within documents to extract

the desired structure. Hristidis et al. [1] observed that most of available disaster-related

information is stored in unstructured documents, but that ―typically the same organization

follows a similar format for all its reports‖ [1]. Therefore, it is feasible to use patterns for

information extraction. However, the number of organizations involved in disaster

management is large, which may result in a large number of patterns. This represents a

challenge because the patterns need to be identified before pattern processing can be

applied. Another challenge is with new data sources where patterns need to be indentified

manually.

SIMONTO Simulation Model Transformation Service is responsible for converting

simulation models into a representation which enables model queries and integration with

other disaster-related data. To extract as much information as possible from simulation

33

model files, an ontology-based representation of simulation models has been used

[52,53]. Unlike text-processing approaches, an ontology-based representation makes it

possible to:

 address simulator-specific terminology,

 remain schema-independent because ontologies do not have predefined schema,

 focus on entities and their relations.

SIMONTO transforms existing models in the simulator-specific file formats to their

corresponding ontology-based representations. Those ontology-based simulation models

are then stored in a NoSQL data store which facilitates integration with other data,

querying, and rule and constraint validation.

Tagging and Semantic Annotation Services. Tagging is the process of attaching

keywords or terms to a piece of information with the objective of assisting in

classification, identification, or search [54]. Semantic annotations additionally specify

how entities are related. In disaster management data tagging, both manual and

automated tagging are needed. Automated tagging applies various natural language

processing (NLP) and soft computing techniques to add tags automatically to pieces of

information. Because disaster data are immensely diverse, it might not be feasible to tag

all content automatically. Images are examples of data which may require

computationally expensive tagging. Therefore, manual tagging is used to supplement the

automated approach. Tagging will be explored in this study, while semantic annotations

will be addressed in future work.

The presented data processing services are common processes for addressing file-style

data; nevertheless, Disaster-CDM can be easily expanded to include new data processing

services.

4.2.3 Data Storage in the Cloud Environment

Cloud computing offers a number of advantages over traditional approaches as discussed

in Section 2.2. Moreover, Section 2.2 also pointed out the main attributes contributing to

the choice of cloud environment for the storage of disaster data including: high scalability

34

and availability. In disaster data management, availability is greatly affected by

replication strategy. Data should be replicated across data centers placed on

geographically distant locations; therefore, if the region is affected by a disaster and a

local data center fails, the system continues to be operational as a remote data center

remains unaffected.

As illustrated in Figure 4.1, for data storage Disaster-CDM uses both relational database

and NoSQL data stores. As discussed in Section 2.3, NoSQL data stores were designed to

address Big Data challenges while taking advantage of cloud computing environments.

Moreover, NoSQL data stores have a number of characteristics making them an adequate

solution for disaster data management including horizontal scalability and flexible data

model. Horizontal scalability enables NoSQL stores to take advantage of the cloud

environment by scaling over a number of nodes. Flexible data model is crucial for storage

of disaster data due to an immense variety of data that needs to be stored. On the other

hand, NoSQL data stores are designed for different purposes and therefore not all

problems can be gracefully solved using the same data store. Consequently, Disaster-

CDM does not restrict storage to a specific NoSQL data model, but allows for the choice

of storage according to the characteristics of the data to be stored.

Despite the advantages of NoSQL data stores, Disaster-CDM also accommodates

relational databases. RDBs are still an appropriate solution for many applications because

of their characteristics such as ACID (Atomicity, Consistency, Isolation, Durability)

transactions, their status as an established technology, and their advanced query

capabilities. Moreover, existing data in relational databases do not need to be migrated.

Additionally, if data are available in a form similar to a relational data model, a relational

database can be used. Examples of online databases providing data in table-like form

include The Canadian Disaster Database [55] and EM-DAT, The International Disaster

Database [56]. By storing such data in a relational database, the structure of the data is

preserved and data acquisition processing is reduced. This data stored in a relational

database need to be integrated with data from NoSQL stores; however, integration among

35

relational databases and NoSQL data stores is a challenge. Part of this challenge is the

fact that NoSQL data stores do not support a standard query language.

4.3 Knowledge Delivery

The Disaster-CDM knowledge delivery services answer information requests submitted

by service consumers by integrating data stored in the cloud environment. In this stage,

the collaboration is achieved by providing the integrated knowledge as a service to

collaboration participants. As presented in Figure 4.1, the data access is mainly composed

of three parts:

 Ontologies: These provide an overall view of the local ontologies representing

each data store independently of its category. Ontologies represent the mapping

between heterogeneous sources which is needed to unify query capabilities.

 Data interfaces: After querying the ontology, it is necessary to access the data.

Data interfaces enable translation of the generic query into a specific language

that corresponds to the underlying data store system. Thus, the data stored in

heterogeneous sources can be accessed, analyzed, and administered. An attempt

to unify access to NoSQL systems is proposed in the work of Atzeni et al.[57]

where NoSQL models and their programming tactics are reconciled within a

single framework.

 Services: This is the access layer for users. It provides services independently of

how the data are stored. Thus, users are unaware of the storage architecture and

are provided with a unified view of the data. Examples of provided services are

full-text search, data querying, data analytics, and system administration services.

The application of the proposed Disaster-CDM approach on data formats commonly

present in the disaster management domain, i.e. file-style data formats, is further detailed

in Chapter 5.

4.4 Summary

This chapter has proposed Disaster-CDM, a Knowledge as a Service (KaaS) framework

for disaster cloud data management. Disaster-CDM addresses Big Data challenges,

36

including data heterogeneity and volume, by integrating storage in the cloud

environment, specifically NoSQL data stores and relational databases, with the KaaS

approach which provides disaster-related knowledge as a service. The two main parts of

the Disaster-CDM framework have been discussed: knowledge acquisition and

knowledge delivery services. Knowledge acquisition is responsible for acquiring

knowledge from diverse sources, processing it to add structure to unstructured or semi-

structured data, and storing it in data stores. Knowledge delivery services are responsible

for integrating information from different data stores and delivering knowledge to

consumers as a service.

37

Chapter 5

5 Disaster-CDM for File-style Data

The Disaster-CDM framework is designed to accommodate heterogeneous data sources,

including PDF files, MS Word documents, simulation models, Web pages, and social

media data. The introduction of a new data source to the framework requires:

1. Adding new processing services to existing data processing capabilities. For

example, video processing would require a new service which would attach

textual context to videos. Such a textual context is essential for effective search

and querying of video sources.

2. Defining data processing rules for the new data source. For instance, a video

processing rule might specify that video files first undergo metadata extraction

followed by a new video-specific service.

3. Determining the data storage appropriate for the new data source. Disaster-CDM

does not define storage data structure or even the type of data store; in this step,

the data store type suitable for the new data source is determined and the storage

data model is designed.

From our experience working with local disaster agencies, which agrees with the work of

Hristidis et al. [1], the majority of information is stored in unformatted documents,

primarily MS Word and PDF files. Another crucial element of disaster management is

simulation because it provides a means of studying the behaviour of critical

infrastructures, as well as a way of exploring disaster response ―what-if‖ scenarios.

Consequently, this chapter focuses on processing information stored in files, including:

 plain text,

 image files,

 MS Office documents including Word, PowerPoint, Excel, and Visio,

 PDF files, and

 simulation model files.

38

The common element among those information sources is that information is typically

stored in self-contained and largely unrelated files.

The following sections describe the steps of introducing file-style data into the proposed

Disaster-CDM framework: data processing services, data processing rules, and storage in

the cloud environment.

5.1 Data Processing Services

The main data processing services required to handle file-style data are included in

Figure 4.1 and were discussed in Section 4.2.2. With respect to processing file-style data

common in disaster management domain, data processing services are applied as follows:

 File metadata separation service is used in processing anything that is stored as

a file. Since metadata attributes vary among different file formats, resulting data

annotations will also differ in annotation types.

 Text extraction service applies various technologies according to the type of file

that is being processed. For example, to extract text from image files or from

images embedded in MS Word or Visio files, optical character recognition (OCR)

technologies are applied.

 SIMONTO simulation model transformation service is the process specific for

simulation model files; nevertheless, it is applicable for various simulation model

file formats.

 Tagging and semantic annotation services are applied on textual data; however,

in the case of images or PDF files, text is first extracted from the image or PDF

files and then passed on for tagging and semantic annotation. All files are tagged

and semantically annotated unless other processes were unable to extract any text

from the file.

Pattern processing service could potentially add more structure to processed data;

however it is associated with a number of challenges including: patterns need to be

known before processing, only a limited subset of files conforms to a specific pattern

39

with possible existence of a large number of patterns. Therefore, this work does not

further address pattern processing service.

5.2 Data Processing Rules

Data processing rules define how a category of data sources needs to be processed before

being stored in a data store. They are influenced by the format of the data source and the

available processing services.

For example, Listing 5.1 illustrates a data processing rule for all MS Office files. First,

metadata are separated (line 2), and text is extracted (line 3). Next, if there are images in

the file, they are extracted (line 4). For each image, text is separated using OCR methods

(lines 5 to 7). Finally, text extracted from the file and from the images is tagged (lines 8

and 9).

Listing 5.1: Data processing rule for MS Office files

1: if file = MSOfficeFile then

2: processMetadata(file)

3: fileText = extractText(file)

4: images = extractImages(file) //extract all images

5: for each image in images

6: imageText += OCRProcess(image)

7: end for

8: tagText(fileText)

9: tagText(imageText)

10: End

The presented data processing rule represents a generic processing for all MS Office files

regardless of file type. However, some MS Office files, such as Excel files, possess

additional formatting that can be exploited to add additional structure to data. For

example, since Excel organizes data in tabular form, data processing can take advantage

of this formatting and create table-like structures in a data store. In this case, a service

needs to be added which can take advantage of this specific formatting, and the data

processing rule needs to be refined to include Excel-specific processing service.

40

Listing 5.2 illustrates a data processing rule for PDF files and Listing 5.3 shows a rule for

image files.

Listing 5.2: Data processing rule for PDF files

1: if file = PDFFile then

2: processMetadata(file)

3: fileText = extractText(file)

4: tagText(fileText)

5: End

Listing 5.3: Data processing rule for images

1: if file = image then

2: processMetadata(file)

3: imageText = OCRProcess(file)

3: tagText(imageText)

3: End

Another category of files that is particularly significant in disaster data management is

simulation files. An example of a processing rule for simulation models is presented in

Listing 5.4. Like the MS Office rule, it starts with metadata separation (line 2). Next,

SIMONTO transforms the simulation model to its corresponding ontology-based

representation (line 5), which is described in an ontology representation language. Such

an ontology-based representation then needs to go through additional processing service,

postProcessOntology, to prepare it for tagging. This processing service deals with

specifics of the ontology representation language; for example, it replaces special

characters with spaces and separates compound words such as those in camel-case

naming to assist subsequent tagging. Finally, the same as MS Office rule, the simulation

model processing rule ends with text tagging (line 7).

41

Listing 5.4: Data processing rule for simulation models

1: if file = SimulationModel then

2: processMetadata(file)

3: //SIMONTO - Transform simulation model to its

4: // corresponding ontology-based representation

5: ontModel = transformSimModelToOntology(file)

6: fileText = postProcessOntology(ontModel)

7: tagText(fileText)

8: end

Similarly to these rules for MS Office files and simulation model files, rules are defined

for other file categories that need to be processed, including plain text files, PDF files and

a variety of image formats.

Overall, generic file processing consists of separating metadata, extracting text from

source files using file type-specific processing followed by tagging of extracted text.

When a source file contains additional formatting, such as in Excel documents, data

processing rules can use this to add additional structure to processed data.

5.3 Data Storage in the Cloud Environment

Flexibility of data storage is the core of the proposed Disaster-CDM framework because

it enables a choice of storage according to the characteristics of the data to be stored. For

each data source category, two steps must be performed:

 determining the type of data store, and

 designing the storage data model.

Determining the type of data store consists of choosing among relational database, key-

value, document, column-family, and graph stores. The file-style data considered in this

chapter are stored in self-contained, apparently unrelated files. Although the file contents

might be related, this relation is not explicitly specified. Therefore, storage models

focusing on relations, including relational and graph databases, are not the best suited for

such data. The document data store model has been chosen here for the storage of file

42

data because it is designed around the concept of a document, providing flexible storage

while allowing structure specification within a document.

The storage data model design in the case of a document data store consists of defining a

document structure. Document data store implementations differ in their internal

representations of documents; however, they all encapsulate and encode data in some

form of encoding. Therefore, the data model design is independent of the choice of data

store implementation provided that the data store belongs to the document category.

Table 5.1 depicts the data model designed for storing file data in a document data store. It

is a generic model for storing a variety of file-style data with flexibility that enables it to

accommodate different file types and a variety of attributes. The proposed data model is

relatively standardized to support querying abilities. In contrast, allowing uncontrolled

naming of fields within documents would negatively impact querying abilities. Several

fields, such as fileName or origFileLocation, are mandatory because they are common for

all file types and must exist in each document in the data store. On the other hand, other

fields such as docImageText and tag are optional and exist only in documents that need to

record those attributes. Two fields, metaData and tag, have a number of child fields for

storing different attributes of the parent field. The number and names of the child fields

are different among files of different types: for example, an image file might have

metaData child fields such as imageWidth or resolutionUnits, but these child fields will

not exist for other file types. With respect to tag fields, the number and names of the

child fields depends on the tagging approach used.

To accommodate other types of data the data model from Table 5.1 can be extended by

adding new fields. For example, to handle geolocation new fields would be added to the

model to record geographical location. If a document contains several entities with

different geolocations, each entity would have child fields identifying its location.

Consequently, this would allow for inclusion of geolocation is a search queries.

43

Table 5.1: File storage data model – document data store

Field Name Child field

name

Mandatory Description

fileName Name of the original file

origFileLocation Full file path of the original file

origFileMachine Name of the computer from which

the file originated

DBLoadDateTime Date and time that file was

processed by Disaster-CDM

contentType Type of the content, such as PDF,

MS Word, or MS PowerPoint

metaData modified Metadata, including generic data

such as creator and modified and

created date and time. File-specific

metadata such as number of slides

or word count are also included

here.

 created

 creator

 ...

docText Text extracted from files, not

including text from images.

docImageText Text extracted from images.

tag [] Arrays of generic tags ([]), as well

as arrays of dates, organizations,

locations, and persons found in the

file text.

 date []

organization []

location []

person []

...

_attachment File in its original form

5.4 Summary

This chapter has focused on Disaster-CDM for file-style data, which are common in the

disaster management domain. The generic process of adding a new data source to the

proposed framework has been introduced and then applied for file-style data sources. In

the first step, data processing step, various data processing services and their role in file-

style data processing are defined. Rules for processing file-style data are introduced in the

second step. Finally, in the third step, data storage step, the motivation for choosing

44

document data store has been explained and the data model for storing file-style data in a

document data store has been presented.

45

Chapter 6

6 Ontology-Based Representation of Simulation Models

This chapter presents SIMONTO, an ontology-based simulation model representation. In

the context of Disaster-CDM, SIMONTO is responsible for transforming simulation

models into their corresponding ontology-based representations. Because SIMONTO is

graph-based, the proposed simulation model graph is presented first. Next, the SIMONTO

architecture is portrayed.

6.1 Simulation Model Graph

The ontology-based representation of the simulation model is founded on graph theory.

In a simulation, the direction of the interaction or the dependence among entities is often

significant; for example, in a transportation problem or in a provider-consumer

arrangement, connections among entities have a specific direction. Consequently, a

directed graph model [58] is used.

Graph representations have been used for semantic Web search. Tran et al. [59] applied a

graph-structured data model to represent resources on the Web as well as for search query

representation. Moreover, their proposed semantic search strategy takes advantage of

graph techniques. Delbru et al. [60] also made use of graph theory; they proposed entity

retrieval and a high-performance indexing model for searching semi-structured Web

documents by taking advantage of a labelled directed graph. They defined a labelled

directed graph model which encompasses different types of Web data sources, including

Resource Description Framework (RDF), RDF Schema (RDFS), and Microformats, and

represents corresponding datasets, entities, and their relationships. In contrast to the work

of Tran et al. and Delbru et al., who applied graph models in Web search, this work

exploits graphs to represent simulation models.

In addition to making use of a graph-structured representation, the SIMONTO simulation

model exploits ontology formalisms. Since the Web Ontology Language (OWL) has been

recommended by the World Wide Web Consortium (W3C) and has emerged as the

46

primary ontology specification language [45,61], this work uses OWL. Designed as an

ontology language for the Semantic Web, OWL [62] has been established on the basis of

RDF [63] and RDFS [64]. In particular, the fundamental mechanisms for describing

classes and properties as well as their respective hierarchies are inherited from RDFS. In

OWL terminology:

 a class is a collection of similar entities,

 an individual is an actual object in a domain. An instance refers to a class

membership; individuals are instances of classes, and classes can be instances of

other classes.

 a data value refers to a value of an attribute,

 properties establish relations:

o an object property establishes relations between individuals,

o a datatype property specifies attribute values by relating individuals and

data values.

OWL is characterized by a formal semantics and an abstract ontology structure that can

be perceived as a graph. Consequently, elements of the simulation model graph proposed

in this work correspond to OWL elements:

 vertices:

o entity vertices represent simulation entities or groups of entities and

correspond to OWL individuals and classes,

o data value vertices represent data values and are analogous to OWL data

values.

 arcs:

o attribute arcs relate entities to data values and correspond to OWL

datatype properties,

o relation arcs establish relations between two simulation entities and are

analogous to OWL object properties.

Consequently, this work defines a simulation model graph as follows:

47

Definition 1: A simulation model graph S is a directed graph , where:

 is a finite set of vertices; it is conceived as the disjoint union of entity vertices (E-

vertices)
 representing simulation entities and data value vertices (V-vertices)

 representing data values:

 (1)

 is a finite set of arcs of the ordered form with . Two types of

arcs are distinguished:

o
 : A-arc or attribute arc

o
 : R-arc or relation arc

 (2)

 (3)

 (4)

 0/ (5)

E-vertices are simulation model entities, which are relevant objects for the observed

system, while V-vertices represent data values. The A-arcs denote entity datatype

properties by connecting entities (E-vertices) to data values (V-vertices), indicating a

measure of an attribute. The relations between the two entities of the simulation model,

the two E-vertices, are established with R-arcs.

Example: Figure 6.1 shows an example of a simulation model graph. It displays a

fragment of an EPANET [65] water distribution network represented as a simulation

model graph. Specifically, the model includes five individuals (E-vertices): pipes 36, 37,

and 218, reservoir 264, and junction 40. The A-arcs include diameter, length, initial

status, and total head; they define attribute values by linking entities to data values. The

R-arcs establish the relationship between entities, such as in the statement, ―pipe 218 has

48

start node junction 40‖, where ―pipe 218‖ and ―junction 40‖ are E-vertices and ―has start

node‖ is an R-arc.

Figure 6.1 A SIMONTO graph-structured EPANET simulation model

The graph in Figure 6.1 can be perceived as an ontology-based graph, where the E-

vertices are individuals and classes, the V-vertices are data values, the R-arcs are object

properties, and the A-arcs are datatype properties. Individuals are contained in classes as

indicated in Figure 6.1 by ―is a‖ relations: pipes 36, 37, and 218 belong to the pipe class,

junction 40 is in the junction class, and reservoir 264 belongs to the reservoir class.

Therefore, an ontology related to Figure 6.1 contains the classes pipe, reservoir, and

junction. The domain of the ―has end node‖ object property includes the class pipe, while

the range includes the reservoir and junction classes. The classes and properties

contained in the ontology depend on the simulation domain as well as on the simulation

package used for model creation.

The definition of a simulation model graph, as explained in Definition 1 and the observed

relationship with ontology paradigms are the foundation of SIMONTO ontology-based

simulation models.

49

6.2 SIMONTO Architecture

The overall SIMONTO architecture is presented in Figure 6.2. The SIMONTO inputs are the

proprietary simulation models represented in their simulator-specific file formats.

Specifically, the SIMONTO Engine uses proprietary simulation models to create their

corresponding ontology-based simulation models. The resulting ontology-based

simulation models are persisted in a data store, consequently enabling various services

including integration, simulation model querying, and rule and constraint validation.

The following Sections 6.2.1, 6.2.2, 6.2.3, and 6.2.4 describe the SIMONTO components

from Figure 6.2: SIMONTO ontologies, the SIMONTO Engine, storage for ontology-based

simulation models, and simulation services.

Figure 6.2: Overall SIMONTO architecture

6.2.1 SIMONTO Ontologies

To separate different concerns, the SIMONTO ontologies block has a layered design, as

depicted in Figure 6.3 [53]. The top layer, the upper ontology, introduces general

concepts which are common across different simulation domains. The second layer, or

50

the simulator-specific ontologies layer, defines the ontologies of domain-specific

simulation packages by extending the upper ontology. Ontologies in this layer are the

inputs to the SIMONTO Engine, as illustrated in Figure 6.2. The third layer contains the

ontology-based simulation models created by the SIMONTO Engine. In this layer, each

simulation model from the proprietary model file is represented as an ontology-based

model. The rules represent an addition to ontology-based simulation models and act upon

them.

Figure 6.3: SIMONTO ontologies

Upper Ontology Layer

The top layer consists of the upper ontology, which contains generic concepts which are

common to all simulation engines. The upper ontology‘s purpose is to provide a set of

concepts on which other ontologies can be constructed and to support broad semantic

interoperability among other ontologies. Based on Definition 1, the upper ontology can

be defined as follows:

Definition 2: The upper ontology is the set:

 (6)

where:

 is the set of upper ontology classes and

51

 is the set of upper ontology properties.

The classes of the upper ontology are E-vertices, while the properties are arcs of

the simulation model graph from Definition 1.

Example: Figure 6.4 [52] portrays the upper ontology classes. The cell is an entity that

transforms inputs into outputs. The channel transports entities between cells and/or

controls, while controls are responsible for distributing the flow of entities among

channels. Meters are responsible for performance measures, while other serves as a

category for entities that cannot be assigned to any of the other four categories.

The only properties, or arcs in the graph representation included in the upper ontology,

are object properties hasInput, hasOutput, and their inverse properties hasStartNode and

hasEndNode.

Figure 6.4: Upper ontology classes

Simulator-Specific Ontologies Layer

The simulator-specific ontologies layer consists of ontologies that are specific to the

actual simulators. This layer provides the simulator-specific entities needed to describe

individual simulation models. Thus, the terminology matches that of the simulators,

making it easier for domain experts to understand the ontologies as well as enabling

automated creation of ontology-based representations from proprietary simulation

models. In this layer, there is one ontology for each simulation package. A simulator-

specific ontology is defined as:

52

Definition 3: The simulator-specific ontology for the i-th simulation package is the set:

 (7)

 (8)

where:

 is the set of the i-th simulation package classes such that each class is a subclass

of an upper ontology class. (indicates class/subclass relation: ‗
 is subclass of

 ‘)

 is the set of the i-th simulation package properties.

This definition provides limitations on the class definitions in this layer: each class

defined in this layer must be a subclass of a class in the upper ontology layer. Because the

upper ontology contains highly generic simulation concepts, this definition enables

further division of classes in the simulator-specific ontologies layer.

Example: An example of a simulator-specific ontology, specifically the EPANET water

distribution simulator ontology, with its relation to the upper ontology is illustrated in

Figure 6.5. To keep the illustration simple, this figure includes the EPANET ontology

classes, but not their properties. It can be observed that each EPANET ontology class is a

subclass of the upper ontology class.

Although there are class restrictions at this layer, limitations on properties are not

imposed. Therefore, at this level, properties can be independently defined, eliminating the

need to identify properties as sub-properties of the upper ontology layer. This approach to

property identification was chosen because properties vary greatly across domains and

even among simulators in the same domain. As a result, the process of assigning each

property into an upper-ontology category might cause implementation challenges.

Although it is still possible to define properties as sub-properties of the upper ontology,

properties can also remain independent of the upper ontology. In the case of the EPANET

ontology, its properties are not sub-properties of the upper ontology.

53

Figure 6.5: EPANET ontology with relations to the upper ontology

Furthermore, it is important to highlight the distinction between datatype properties DP

and object properties OP:

 . (9)

With respect to the simulation model graph in Definition 1, datatype properties are A-

arcs, while object properties are R-arcs. The significance of distinguishing between

datatype and object properties in simulation models is that the datatype properties of a

single ontology individual can be established without the knowledge or existence of other

individuals, while object properties require knowledge about another individual. This has

a major impact on formulating an algorithm for creating ontology-based simulation

models from proprietary simulation models.

Ontology-Based Simulation Model Layer

The ontology-based simulation model layer contains ontology-based simulation models

that are represented as instances of simulator-specific ontologies. More specifically, each

simulation model, usually contained in a simulation engine proprietary model file, is

represented as an ontology-based simulation model consisting of interconnected instances

of the simulator-specific ontology. Different simulation models from distinct proprietary

54

files correspond to the various models in this layer. Consequently, the ontology-based

simulation model can be defined as follows:

Definition 4: The ontology-based simulation model for the j-th simulation model of the i-

th simulation package is the set:

 (10)

 (11)

 (12)

where:

AV is the set of data values.

 is the set of individuals a. Each individual a is an instance of a class c from the set

of simulator-specific ontology classes
 .

 is the set of all instantiated properties p. Each property p is instantiated from the

properties
 defined in the simulator-specific ontology layer.

Example: An example of an ontology-based simulation model is portrayed in Figure 6.1.

The set of individuals includes the actual objects from the simulation model: reservoir

264, pipes 36, 37, and 218, and junction 37. The set of instantiated properties includes

individual occurrences of properties defined in the simulator-specific ontology. For

example, the property hasStartNode is defined in the EPANET ontology, and in Figure

6.1 it appears twice, indicating two occurrences of the hasStartNode relation:

hasStartNode(pipe218, junction40) and hasStartNode(pipe37, junction40).

As shown in Definition 4, the ontology-based simulation model consists of individuals

and instantiated properties. Since this definition does not permit the formation of new

classes or properties in this layer, all classes and properties must be defined in the

simulator-specific ontologies layer. Consequently, once a simulator-specific ontology has

been created for each simulation engine, the creation of ontology-based simulation

models can be automated.

55

As in the simulator-specific ontology case, in the ontology-based simulation model,

object and datatype properties are distinguished from one another. In the example from

Figure 6.1, all occurrences of A-arcs compose the datatype properties set, while the object

properties set includes all occurrences of R-arcs. The set of instantiated properties is:

 (13)

 , (14)

 , (15)

where:

 is the set of instantiated datatype properties assigning attribute values AV to

individuals
 ,

 is the set of instantiated object properties establishing relations between two

individuals x and y.

Example: In the example from Figure 6.1, all occurrences of A-arcs compose the set of

instantiated datatype properties
 , while the set of instantiated object properties

 includes all occurrences of R-arcs. An example of an instantiated datatype property

is hasDiameter(pipe218, 300), while hasStartNode(pipe218, junction40) is an

instantiated object property.

Rules

Although ontologies establish a way of describing knowledge with defined semantics,

they do not provide a method for defining procedures to extract new knowledge from

existing assertions. Consequently, in Berners-Lee‘s Semantic Web Stack [66], rules are

the next hierarchical layer after ontologies.

Accordingly, SIMONTO includes the rules which act upon ontology-based simulation

models created by the SIMONTO Engine. Rules are intended for situations in which

ontology-based specifications are not sufficient and additional expressiveness is required

56

to represent a complete simulation model. Additionally, they can also express rules and

constraints to which the simulation model should conform.

6.2.2 The SIMONTO Engine

The SIMONTO Engine is responsible for the creation of an ontology-based simulation

model representation. As illustrated in Figure 6.6, the SIMONTO Engine inputs consist of

the simulator-specific ontology and the proprietary simulation model. The simulator-

specific ontology is simulation package-specific and captures simulation package

components, vocabularies, and functionalities. On the other hand, the proprietary

simulation models are model-specific, with each model stored in a separate model file.

The output of the SIMONTO Engine is the ontology-based simulation model represented

as interconnected instances of the simulator-specific ontology.

Figure 6.6: The SIMONTO Engine

57

The four SIMONTO Engine components are: Ontology Reader, Simulation Model Reader,

Integrator, and Ontology Writer.

Ontology Reader is responsible for reading simulator-specific ontologies. Although

ontologies are simulator-specific, they are always represented using the common

ontology language, which allows a simulator-independent reader. Specifically, the

Ontology Reader is responsible for acquiring information about simulator-specific classes

and their properties, including datatype and object properties. The Ontology Reader is not

aware of individuals because the simulator-specific ontologies contain only classes and

their properties; however, individuals will be extracted by the SIMONTO Engine.

Simulation Model Reader is responsible for reading the second SIMONTO Engine input,

the proprietary simulation model. Since the format of a proprietary simulation model

depends on a specific simulator, a separate Simulation Model Reader has to be created

for each simulator having models that require transformation to an ontology-based

representation. Therefore, there will be one Simulation Model Reader for each simulator.

However, once a Simulation Model Reader has been created for a specific simulator, the

reader can transform any model represented in that format. The Simulation Model Reader

design depends on the model being read, and the reader can use the simulator‘s API

interface, directly read the model file, or employ external model readers.

The Integrator receives the data from the Ontology Reader and the Simulation Model

Reader and creates the ontology-based simulation model. Specifically, the Integrator

receives information about simulator-specific classes from the Ontology Reader. For each

class, the Integrator obtains knowledge about its individuals and their data properties

from the Simulation Model Reader. After acquiring information about all individuals of

all classes and their datatype properties, the Integrator proceeds to determine object

properties. Because object properties connect individuals of the same or different classes,

all individuals must be determined before object properties are defined. Subsequently, the

Integrator sends information about classes, individuals, and properties to the Ontology

Writer.

58

The Ontology Writer is responsible for writing an ontology-based simulation model in

an ontology language such as OWL. Rather than re-creating classes, the output ontology

imports the simulator-specific ontology to acquire domain-relevant concepts and

properties. The Ontology Writer then identifies individuals and properties using

information received from the Integrator and records the output in an ontology language.

As its purpose is to write ontologies from the Integrator‘s information, the Ontology

Writer is simulator-independent.

Algorithm 6.1 illustrates the process of creating ontology-based representations of

simulation models performed by the SIMONTO Engine. The result of this algorithm is the

Ontology-based Simulation Model
 consisting of individuals and instantiated

properties, as per Definition 4. For simplicity, the algorithm omits the following

subscripts:
 ,

 ,
 .

Step 1: The Ontology Reader acquires classes, object properties and datatype properties

from the simulator-specific ontology as specified in lines 1-3. At this point, there are no

ontology individuals, and the only existing knowledge pertains to classes and properties.

Step 2: Individuals and their datatype properties are acquired, as shown in lines 4-14. For

each class from the simulator-specific ontology (the loop starting with line 6), the

Simulation Model Reader acquires the set of all individuals (line 7). Then, for each

individual, all datatype properties are obtained, as specified in lines 8-12. After this step,

all instances of all classes are known.

Step 3: Object properties are instantiated and the ontology-based simulation model

finalized, as described in lines 15-24. Because object properties establish relations

between individuals, their instantiation happens after all individuals have been acquired.

For each object property (the loop starting with line 16), the Simulation Model Reader

acquires all pairs of individuals related by that property (line 17). The union of all pairs

of individuals related by object properties makes up a set of instantiated object properties,

or OPI. Finally, lines 23 and 24 finalize the ontology-based simulation model. This

ontology-based simulation model is written by the Ontology Writer in the ontology

language of choice.

59

Algorithm 6.1: Creating ontology-based simulation models with SIMONTO (i-th

simulation package)

1:
 := OntologyReader.getAllClasses(

)

2:
 := OntologyReader.getAllObjectProperties(

)

3:
 := OntologyReader.getAllDataProperties(

)

4: 0/ //set of all individuals

5: 0/ //set of all instantiated datatype properties

6: for each class

7:

8: for each individual
 ,

 , of the
 class

9: //
 - k-th individual of the j-th class

10:

11:

12: end for

13:

14: end for

15: 0/ //set of all instantiated object properties

16: for each object property
 ,

17:

18: // - set S of all individuals satisfying

19: for each pair of individuals do

20:
21: end for

22: end for

23: //set of all instantiated properties

24:
 //ontology-based simulation model

Consequently, the Simulation Model Reader is the only SIMONTO Engine component that

is simulator-dependent. However, this reader can be replaced with readers from different

simulators to represent specific proprietary simulation models in an ontology-based

representation. Once a reader has been created for a simulator, it will read all models

constructed using that simulator.

It is important to note that Algorithm 6.1 is suitable for parallel processing because it can

be divided into parts which can be executed independently on different processing

devices. For example, processing for each outer loop in step 2 (lines 7-12) can be

executed on different devices as there are no interdependence among loops. Similarly,

Step 1

Step 2

Step 3

60

each outer loop in step 3 (lines 17-21) can be executed simultaneously. However, step 2

must be completed and its results must be aggregated (line 13) before the step 3 can start.

6.2.3 Storage for Ontology-Based Simulation Models

Disaster-CDM is designed to enable the choice of a storage solution that corresponds to

data requirements in terms of data structure as well as access patterns. With respect to

simulation models, the task at hand determines data access patterns and consequently

influences the choice of storage solution. Therefore, this work addresses the two main

storage approaches for simulation models:

 Storage focused on integration with other data. This approach was described in

Chapter 5 and includes storage of ontology-based simulation models in the

document data store alongside all other file-style data. Because it supports full-

text search and querying pertaining to a variety of data sources, as will be

demonstrated in the case study, this approach is very successful in integrating

simulation models with other file-style data. Nevertheless, it provides limited

capabilities for querying the simulation model itself or for validating that the

simulation model complies with rules and constraints.

 Storage focused on querying within simulation models. Ontology-based

models are represented in OWL, which is characterized by an abstract ontology

structure that can be perceived as a graph. On the other hand, graph databases use

graph structures with nodes, edges, and properties to represent and store data.

They are optimized for efficient management and storage of graph-like data.

Consequently, because ontologies can be perceived as graphs, it is apparent that

graph databases are a good choice for storing ontologies as well as ontology-

based simulation models. Another characteristic that makes a graph database a

good choice is its query capabilities; graph database implementations typically

offer advanced query capabilities using different query languages. However, this

approach imposes challenges in integrating simulation models with other data

sources.

61

Consequently, to facilitate integration services and simulation-specific services, Disaster-

CDM stores simulation models twice: in a document data store to facilitate integration

with other data sources and in a graph database to enable simulation model querying. In a

traditional approach to database design this redundancy is undesired and must be

avoided. However, this work adopts a NoSQL approach which allows data redundancy in

order to achieve performance and scaling benefits. By storing simulation models in a

document data store and in a graph database, Disaster-CDM can take advantage of both,

and therefore it can support integration services and simulation-specific services.

6.2.4 Simulation Services

Ontology-based simulation models created by the SIMONTO Engine enable integration,

simulation model querying, and rule and constraint validation. These services are external

to SIMONTO as they exploit existing methods, approaches, and technologies to carry out

simulation-related tasks. However, they act on SIMONTO ontology-based simulation

models. The following paragraphs introduce the three categories of services observed in

this study:

 Integration. This category involves any task that needs to be carried out across a

variety of sources, including simulation models. Examples include full-text search

and querying over data from a variety of sources. To support integration services,

data are stored using integration-focused storage, as described in Section 6.2.3.

Specifically, for integration with other file-style data typical in the disaster

management domain, Disaster-CDM takes advantage of document data stores.

 Simulation Model Querying. Ontologies, and therefore ontology-based

simulation models, can be queried using ontology querying languages such as

Semantic Query-Enhanced Web Rule Language (SQWRL) [67]. In addition,

OWL ontologies can be serialized as RDFs, and therefore they can be queried

using RDF query languages such as SPARQL [68]. Queries can be executed

directly against OWL ontologies; however, disaster management deals with a

large number of simulation models, which makes use of a database preferable to

storing ontologies as OWL files. Consequently, to support simulation model

querying, Disaster-CDM stores ontology-based simulation models in a graph

62

database and takes advantage of the querying capabilities provided by the

database.

 Rule and Constraint Validation. SIMONTO enables validation of model

compliance with rules and constraints. Since simulation models are represented as

ontologies, validation of simulation models can be performed using ontology

approaches. Two approaches for rule validation are considered: genuine rule

language and querying.

o The genuine rule language approach. In the genuine rule language

approach, the rules represent an addition to the ontology-based model and act

upon the ontology. Ontology rule languages express antecedent/consequent

relations: if the conditions expressed in the antecedent hold, then the

conditions in the consequent also must hold. When the ontology is represented

using OWL, a possible choice of rule language is the Semantic Web Rule

Language (SWRL) [69]. The main disadvantage of this approach is that the

complete ontology must fit into computer memory; therefore, instead of a rule

language, this research has used a querying approach for rule and constraint

validation.

o Querying approach. This approach to rule and constraint validation involves

querying ontologies to identify entities that do not conform to rules or

constraints. Although querying is not actually a rule engine, it can identify

entities that violate rules. Once the violating entities are identified, corrections

are performed on the originating proprietary simulation model, which is also

used for simulation execution. The advantage of this approach is that it can be

carried out on an ontology-based simulation model stored in a graph database

and therefore can take advantage of graph database querying capabilities.

Moreover, the ontology-based model does not need to fit into computer

memory as is the case with the rule language approach. A querying approach,

unlike the rule language approach, cannot take advantage of inferences

performed by ontology reasoners. However, in the context of Disaster-CDM,

this drawback is outweighed by the advanced querying capabilities provided

by graph databases.

63

This section has introduced the main services that SIMONTO enables in the context of

Disaster-CDM; their application is demonstrated in the case study. A querying approach

to rule and constraint validation transforms the validation problem into a querying task;

however, this study examines them separately due to their different objectives and the

presence of an alternative approach to rule and constraint validation. Future work will

explore the possibility of combining the advantages of the two rule and constraint

validation approaches.

6.3 Summary

This chapter has proposed SIMONTO, an ontology-based representation of simulation

models, which represents proprietary simulation models as interconnected instances of

simulator-specific ontologies. SIMONTO transforms existing proprietary simulation

models into their corresponding ontology-based models with the objective of facilitating

integration, simulation model querying, and rule and constraint validation. In the context

of Disaster-CDM, SIMONTO is responsible for simulation model processing. For the

purpose of integration with other file-style data, ontology-based simulation models are

stored in the document data store along with other file-style data sources. For the purpose

of simulation model querying and rule and constraint validation, ontology-based

simulation models are stored in a graph database to take advantage of the advanced

querying capabilities provided by the database and to enable querying within ontology-

based simulation models.

64

Chapter 7

7 Evaluation: Case Study 1

The objective of the presented case studies is to demonstrate Disaster-CDM benefits on

data collected during the Disaster Response Network Enabled Platform (DR-NEP)

project [70]. Public databases, such as Emergency Events database

(http://www.emdat.be) and a number of databases from Global Risk Information Platform

(http://www.gripweb.org/gripweb/?q=disaster-database) were considered; however, those

databases contain only public information. In contrast, data set from DR-NEP project

includes public data as well as sensitive data which are not accessible to the general

public.

Because this research focuses on knowledge acquisition and storage, the presented case

studies show how knowledge from DR-NEP data set is acquired and stored; the benefits

are demonstrated through the knowledge delivery services. Specifically, case study 1

presented in this chapter demonstrates how knowledge is acquired from a variety of file-

style data sources including simulation models, how it is stored, and illustrates the

Disaster-CDM benefits through the integration knowledge delivery services. In contrast,

case study 2 presented in Chapter 8 focuses on simulation models; it shows how

knowledge is acquired from simulation models and stored in a graph database, and

demonstrates Disaster-CDM benefits through examples of simulation-specific knowledge

delivery services.

Section 7.1 describes the DR-NEP data set which is used in both case studies. The

Disaster-CDM implementation is presented in Section 7.2 and knowledge acquisition and

delivery in Sections 7.3 and 7.4 respectively. Finally, Section 7.5 discusses the findings

and concludes case study 1.

7.1 Data Set

This work was evaluated on data collected by Western University during the two-year

period of the CANARIE sponsored Disaster Response Network Enabled Platform (DR-

http://www.emdat.be/
http://www.gripweb.org/gripweb/?q=disaster-database

65

NEP) project [70]. The DR-NEP project combined the expertise of a number of research

groups, industries, government agencies, and response teams in multiple geographical

locations with the aim of improving the capability to prepare for and respond to large

disasters. To achieve this objective, close collaboration among partners was essential, and

the case study presented here demonstrates how Disaster-CDM can facilitate this

collaboration. Disaster modelling and simulation played a major role in the project, with

a special focus on critical infrastructure (CI) simulation.

The participation of Western University in the DR-NEP project involved the

investigation of critical infrastructure interdependencies in an incident that happened on

its campus. As the event involved various infrastructures, it was simulated using several

simulators including EPANET [65] water distribution simulator and the I2Sim [71]

interdependency simulator. Different disaster response strategies were explored and

compared with decisions made during the event. Western University collected

information directly related to the event such as the event reports and timelines, data

pertaining to the involved infrastructures and a variety of other data that could help in

better understanding and modeling the event.

The data set is heterogeneous and includes data sources such as disaster plans from

different institutions, reports of previous incidents and their timelines, minutes of DR-

NEP team meetings and various other disaster response meetings, information about

different critical infrastructures, risk analysis documents, and information about a number

of disaster-related stakeholders. These data sources are owned by various participants

who had to collaborate and share the information they own to achieve successful disaster

management.

Because the simulation of critical infrastructures was of special interest in the DR-NEP

project, the data set includes a number of simulation models that were used to explore

interdependencies of critical infrastructures, including EPANET water-distribution

models and I2Sim interdependency models.

With respect to format, the data set includes image files in a variety of formats, text and

PDF files, and MS Office documents, including Word, Excel, PowerPoint, and Visio. The

66

simulation model file formats are simulator-specific: I2Sim models are stored in a

Simulink-style .mdl file format, while EPANET models are stored in .NET or .INP files.

7.2 Disaster-CDM Implementation

The Web application was implemented to provide access to the Disaster-CDM system

using a Web browser. Specifically, this Web application provides access to KaaS,

including knowledge acquisition and knowledge delivery services. Moreover, this

approach enables users to access Disaster-CDM from anywhere and from a variety of

devices. The following sections describe the implementation of the two main Disaster-

CDM knowledge acquisition components: data processing services and data storage.

7.2.1 Implementation: Data Processing Services

Disaster-CDM, according to the KaaS approach, provides data processes as services. The

framework of the data processing component was implemented using Web services, in

which each data processing component was treated as a separate Web service. In this case

study Web services were deployed on a local machine; nevertheless, this choice of

implementation enables flexible deployment of services in the cloud environment and

their composition for the provision of knowledge acquisition services according to the

KaaS approach. Specifically, the RESTful (Representational State Transfer) Web service

architecture was used.

This work focuses on data stored in a variety of file formats, and therefore case study 1

implements the data processing services required for such data sources. Implementations

of most of the generic file-style data processing services mentioned in Section 4.2.2 are

available either as open source or commercial products. This case study used open source

products, adapted them when needed, and wrapped them as RESTful Web services. The

following data processing services for generic file-style data were implemented:

 File metadata separation service used the Apache Tika Toolkit [72] to detect and

extract file metadata. Tika supports a large number of formats, including MS

Office, PDF, and a variety of image formats.

67

 Text extraction service for MS Office documents was also performed by Apache

Tika; however, Tika is incapable of extracting text from images. Therefore, text

extraction service for image files was performed using the Tesseract [73] optical

character recognition (OCR) software. Text from images embedded in MS Office

files was also extracted using Tesseract OCR.

 Simulation model service applied the SIMONTO approach. SIMONTO was

implemented as described in Section 8.1, and additional services required to

prepare ontology-based simulation models for tagging were implemented in Java

1.6.

 Tagging service was carried out using the General Architecture for Text

Engineering (GATE) tool suite [74,75]. Specifically, an information extraction

system called ANNIE (A Nearly-New IE system), which is distributed with

GATE, was used. ANNIE offers great flexibility by enabling customization of its

components for the information task at hand; however, in this case study,

customizations were not performed.

The data processing rules at this stage of the research were predefined, even though

extensions are planned which would provide dynamic rule specification. The challenge

with such dynamic rules is that they may result in very similar files being processed in

different ways, thus resulting in inconsistent system performance.

7.2.2 Implementation: Data Storage

This case study addresses generic file-style data, and accordingly the storage model

chosen was the document data store, as presented in Section 5.3. The data model

portrayed in Table 5.1 is designed for document data stores and can be realized in any

document data store implementation. This case study used the Apache CouchDB

document data store [76].

CouchDB is designed for Web applications. It uses JavaScript Object Notation (JSON) to

represent documents and HTTP for an API. The primary reasons for choosing CouchDB

for this case study were its scalability, high availability, and partition tolerance. Its ability

to scale over many commodity servers enables CouchDB to store large amounts of data,

68

while its high availability ensures system operation even when a region is affected by a

disaster and a local data centre fails. Partition tolerance refers to the ability of the system

to remain operational in the presence of network partitions, which is especially relevant

in disaster-related applications because it can be expected that parts of the network will

fail. CouchDB achieves partition tolerance using an asynchronous replication approach.

Multiple replicas placed on geographically distant locations have their own copies of

data, and in case of network partition, each replica modifies its own copy. At a later time,

when network connectivity is restored, the changes are synchronized.

The primary way of querying and reporting on CouchDB documents is through views

which use the MapReduce [77] model with JavaScript as a query language. In the

MapReduce model, the Map function performs filtering and sorting, while the Reduce

function carries out grouping and aggregation operations.

The Apache Lucene library [78] provides full-text search of data stored in CouchDB. In

general, Lucene is an open-source, high-performance text search engine library written in

Java. It is suitable for almost any application which requires full-text search and has been

recognized for its utility in Internet search engines. With respect to Disaster-CDM,

Lucene enables ranked searches and field-specific searches such as searching for a

specific file name or an author. This case study takes advantage of the CouchDB-Lucene

project [79], which integrates Lucene with CouchDB.

7.3 Knowledge Acquisition Services

Western University stored the data collected and produced as part of the DR-NEP project

on a server in a dedicated area. It was the responsibility of the individual participants to

place data that needed to be shared among participants onto the server. Therefore, this

case study uses data from this DR-NEP server as its data source. In the knowledge

acquisition stage, these data were processed by data processing services described in

Section 7.2.1 and loaded into the Disaster-CDM system, specifically into CouchDB in the

cloud environment.

69

During the knowledge acquisition process, a total of 1129 files were successfully loaded

into the Disaster-CDM system in the cloud environment, resulting in the same number of

documents in the data store. A number of files failed to load; however, further review

revealed that they were in file formats which are outside the scope of this case study,

including pub, zip, mat, dll, and exe. Nevertheless, the number of these files was small,

and including them in the knowledge acquisition process would not have resulted in a

major system improvement.

Table 7.1 shows a number of files of each type loaded into the system together with their

size. As expected, there were many MS Word and PDF files. Furthermore, the number of

PowerPoint presentation files (pptx) was large, which may be explained by the nature of

the DR-NEP project, which was a multidisciplinary project involving a large number of

stakeholders in which presentations were often used to transfer knowledge or convey

findings. In addition, a large number of .m and .h text files were found, but their

significance in knowledge delivery is minor because they are MATLAB and C-language

program files. As for simulation data, there were 20 EPANET model files (.net) and 12

MATLAB model files (.mdl).

Table 7.1: Loaded file types

File Type # of Files Size (MB)

pdf 247 321.08

m 149 0.5

pptx 104 197.84

h 73 0.49

jpg 64 71.46

docx 60 13.74

txt 54 0.49

png 51 1.5

.

.

.

.

.

.

.

.

.

net 20 1.24

mdl 12 11.42

70

Updates to existing knowledge are outside the scope of this study. In other words, the

knowledge from each file is acquired once, and the system does not keep track of

subsequent updates to the file. New files can be loaded into the system at any time.

Nevertheless, updates to existing knowledge will be addressed in future work.

7.4 Knowledge Delivery Services

This case study demonstrated knowledge delivery services on two examples of

integration services: full-text search and querying. The two are complementary

approaches for accessing data stored in a cloud data store, with each one exhibiting

strengths for specific data access tasks.

7.4.1 Full-text Search

Storing data in a document data store as described in Section 5.3 enables variants of full-

text search. Three variants of full-text search have been observed:

 Searching attached documents. This search relies solely on document

attachments in the CouchDB data store. Because original files are attached to the

CouchDB document in their original form, this search is somewhat similar to

using an indexing and search engine, Lucene in this case, directly on the original

files. This strategy does not take advantage of any data processing performed

during knowledge acquisition and is the baseline for comparison with other

strategies.

 Searching extracted text. This strategy includes only the contents of docText

field. Because text extracted from images is in docImageText fields, this strategy

ignores text contained in images as well as text in images embedded in other

documents. Note that ontology-based simulation models are stored in docText

fields and therefore are included in this strategy.

 Searching extracted text, including text from images. This approach takes full

advantage of text extraction service described in Section 7.2.1, including Tika text

extraction and OCR text extraction, by engaging both fields, docText and

docImageText, in the search strategy. This strategy also takes full advantage of the

data processing performed in the knowledge acquisition stage.

71

A full-text search screen from the implemented Web application is displayed in Figure

7.1. This application enables users to choose among the three described search strategies;

on the screen in Figure 7.1, the extracted text strategy is selected. The result of searching

for the term ―power house‖ are displayed in the table with two columns: document and

last modified. The document column displays the file name, and it can be noted that the

search result is made up of various file types, including pdf and text files, MS Word,

PowerPoint, and simulation model files. Some of the files appear several times with

different last modified date. This is caused by files residing in different folders, but

having the same name. Disaster-CDM does not check whether files with the same name

have identical content, but rather creates a new document in the data store for each loaded

file.

Table 7.2 provides an overview of different full-text search strategies with respect to the

main file categories addressed in this study. For the three file categories, PDF, text and

I2Sim model files, all three search strategies were virtually the same. Even though

searching I2Sim models produced the same results set, the ranking of the documents was

different because the searches were based on different text content. The attached

document strategy searched mdl files, which are text files, directly, while the other two

strategies searched the ontology-based simulation models. Consequently, the attached

document strategy ranked simulation models lower than the other two strategies.

With regard to MS Office files, the difference among the various searches depended on

whether or not they were using text extracted from images. The data set for this case

study contained 82 MS Word files (doc and docx), of which only 8 contained images

from which text was successfully extracted. In contrast, out of 140 PowerPoint files (ppt

and pptx), only 6 did not benefit from the OCR service. Therefore, the OCR service had a

greater impact on processing PowerPoint files than on processing Word files. With

respect to image files, out of 116 images, text was successfully extracted from 75;

however, some of the extracted text did not contain readable words and therefore was not

beneficial for searching. Therefore, the OCR service had a greater impact on PowerPoint

files than on image files, which can be explained by the common use of diagram-style

graphs in PowerPoint presentations.

72

Figure 7.1: Full-text search

S
im

u
la

ti
o
n
 m

o
d
el

 f
il

es

M
S

 W
o
rd

,
P

o
w

er
P

o
in

t,

p
d
f

an
d
 t

x
t

fi
le

s

73

Table 7.2: Search strategies

 Search Strategy

File type Attached

document

Extracted text Extracted text including

text from images
PDF files

MS Office files
Does not include text

from images

Does not include

text from images

Image files

Text files

Simulation model files

 I2Sim model files (.mdl)
(mdl file are text

files)

 EPANET model files (.net)

Transforming simulation models into their corresponding ontology-based representations

did not change the result set with respect to I2Sim models, but was essential for including

EPANET models in the full-text search. The attached document strategy did not search

EPANET models because they are represented in .net binary files; however, the extracted

text strategies searched EPANET models by taking advantage of the ontology-based

simulation models stored in docText fields.

Note that the attached document search strategy took advantage of CouchDB-Lucene

[79], which uses Apache Tika [72] to search the attached documents. This case study also

used Tika to extract text from files, and therefore the only major difference between the

attached-document and the extracted text strategies was with respect to EPANET model

files. Only the extracted text strategy included EPANET model files.

Full-text search can also be achieved by applying text search engine such as Lucene

directly on the file system containing disaster-related data; however, such search ignores

text contained in images as well as text in images embedded in other documents. In

contrast, full-text search in Disaster-CDM includes image text because OCR performed

in knowledge acquisition stage extracted text from images. Moreover, direct full-text

search on the file system does not include EPANET .net model file as they are binary file.

Disaster-CDM transforms EPANET model files into ontology-based representation, and

consequently includes them in full-text search. Additionally, storing data in NoSQL data

74

store facilitates querying file-style data and allows Disaster-CDM to take advantage of

scaling and replication capabilities provided by NoSQL store.

7.4.2 Querying File-Style Data

The documents contained in the document store are semi-structured: the data within a

document are encoded, but each document can have a different structure. Such a data

model enables document data stores to index documents based on primary keys as well as

on document content fields. Consequently, this data model provides querying abilities.

The data model designed for storage of file-style data, as presented in Table 5.1, was

flexible enough to enable storage of diverse data, but at the same time was relatively

standardized to support querying abilities. In this case study, querying was used to obtain

various kinds of aggregate information about the contents of the data store, such as the

number of documents of each type or the number of documents containing images.

Aggregate querying is illustrated in this case study on a simple example, that of counting

the documents of each type. In CouchDB, this is achieved by views which make use of

the MapReduce approach. The Map function extracts the value of the fileExtension field

from within each document, while the Reduce function groups by fileExtension (which is

in the key argument passed to the Reduce function) and counts the entries for each

fileExtension.

Map function:

function(doc) {

 emit(doc.fileExtension, 1);

}

Reduce function:

function (key, values) {

return sum(values);

}

The data presented in Table 7.1 were obtained by executing this query. As illustrated,

obtaining such information from the Disaster-CDM system is very simple; however,

75

doing this without the Disaster-CDM system would require extensive manual efforts or

use of specialized (custom or off-the-shelf) software.

The full-text search described in the previous section did not take full advantage of the

tagging performed during data acquisition. When text was extracted from documents,

tagging was performed, and the results were stored within different tag fields. Because

the tag fields are encoded within the document, they facilitate querying. For example, as

part of the DR-NEP project, Western University explored an incident on the university

campus which involved a local power plant. During data acquisition, the text extracted

from documents was forwarded to the tagging services. If a power plant was mentioned

in a document, the ANNIE tagging service used in this case study recognized ―power

plant‖ as an organization and therefore tagged it as organization=’power plant’.

Consequently, the resulting document in the data store contained the following entry:

tag: {organization: ["power plant"]}. This document structure can be used to find

all documents referring to power plants. To enable searching by organization tag, a view

with the organization tag as its first column was created. In CouchDB, this results in

indexing on organization tag, thus enabling fast data access by organization tag. Listing

7.1 illustrates the Map and Reduce functions for this CouchDB view. The Map function

outputs the organization tag as the first array element because this is a search criterion. In

addition, this view includes fileName to identify the original file and creationDate to

distinguish more recent documents. In this view, the Reduce function eliminates

duplicates produced by the Map function. After this view has been created, data can be

queried by specifying organization tag values in HTTP calls. A few rows of the search

results for the organization tag ―power plant‖ are displayed in Table 7.3.

76

Listing 7.1: Querying for ―Power Plant‖—Map and Reduce functions for CouchDB

view

Map function
function(doc) {

 if (doc.tag.Organization && Array.isArray(doc.tag.Organization)) {

 doc.tag.Organization.forEach(function (organizationTag) {

 var creationDate = doc.metaData["dcterms:modified"];

 if (creationDate == null) {

 creationDate = doc.metaData["dcterms:created"]

 }

 emit([organizationTag.toLowerCase(), doc.fileName, creationDate], null);

 });

 }

}

Reduce function
function (key, values) {

 return null;

}

Table 7.3: Query results for ―power plant‖

Organization

tag

File Name Creation Date

power plant 11_02_17_DR_NEP_Audit.pptx 2011-02-17T15:21:42Z

power plant 11_09_08_DR_NEP_Audit_Final.pptx 2011-09-08T20:36:29Z

power plant DeltaV-Chillers-a.jpg 2010-07-19T10:49:52Z

power plant Disaster_phase2_Aug9.xlsx 2011-08-11T20:14:06Z

power plant DisasterTable_phase2_Aug11_v1.xlsx 2011-08-12T15:48:49Z

In this case study, only automated tagging was used, and therefore tags typically

resembled phrases found in text extracted from documents. In this situation, querying as

described in the example gave similar results to the full-text search described in the

previous Section 7.4.1. However, Disaster-CDM was designed to allow manual tagging

by end users in addition to automated tagging. In a manual tagging scenario, the

effectiveness of queries similar to the organization tag example would be increased.

7.5 Discussion

The case study presented in this chapter has illustrated the use of Disaster-CDM on the

data collected during the Disaster Response Network Enabled Platform (DR-NEP)

project. In the knowledge acquisition stage, stakeholders share disaster-related data;

77

specifically, knowledge is acquired from data owned by various stakeholders. In the

knowledge delivery stage, the KaaS approach delivers the knowledge as a service to

collaboration participants.

The presented case study focused on data formats commonly present in the disaster

domain, e.i. file-style data sources, and implemented the services required for knowledge

acquisition from such sources. Processed data were stored in a document data store,

specifically CouchDB store.

Two knowledge delivery services were explored: full-text search and querying:

 Various full-text search approaches were investigated, which made it possible to

analyze the effects of data processing performed during knowledge acquisition on

the full-text search results. Overall, the benefits of data processing services vary

by file format as well by file content. For example, as expected, the OCR service

had a major impact on image file searching; however, experiments showed that

searches of PowerPoint files also benefited greatly from this service. Full-text

search does not take advantage of automated tagging, and therefore, if knowledge

delivery relies only on full-text search, the automated tagging service can be

omitted.

 The querying service proved advantageous in obtaining various types of aggregate

information about the stored contents. Some of the query tasks explored in this

case study, such as searching for a word or a phrase, can also be achieved by full-

text search. In these circumstances, full-text search has an advantage over

querying because of its simple call interface and the ability to rank documents

according to their relevance. However, the querying approach is promising with

respect to manual tagging as it provides fast and easy access to tagged data.

Consequently, the two knowledge delivery services explored in this case study, full-text

search and querying, are complementary services which are suitable for different tasks.

Knowledge delivery services, together with knowledge acquisition services, facilitate

collaboration by providing a platform for sharing and integrating disaster-related

information.

78

7.6 Summary

This chapter has presented an evaluation of the proposed Disaster-CDM framework on

data collected by Western University during the CANARIE sponsored Disaster Response

Network Enabled Platform (DR-NEP) project. The presented case study applied the

Disaster-CDM framework on file-style data sources including simulation models. First,

the Disaster-CDM implementation was presented, including its two main knowledge

acquisition components: data processing services and data storage. Disaster-related

knowledge was acquired from the DR-NEP data set using a variety of knowledge

acquisition services and stored in a document data store. Finally, the benefits of Disaster-

CDM were demonstrated on two knowledge delivery services: full-text search and

querying.

79

Chapter 8

8 Evaluation: Case Study 2

While case study 1 addressed the application of Disaster-CDM on a variety of file-style

data including simulation models with the objective of integrating diverse data sources,

the case study presented in this chapter focuses on simulation models with the goal of

illustrating how Disaster-CDM enables simulation model querying and rule and

constraint validation.

Within the Disaster-CDM framework SIMONTO is responsible for processing simulation

models and creating their ontology-based representations. All simulation models from the

DR-NEP data set were transformed to ontology-based representations and stored.

However, to illustrate Disaster-CDM use with simulation models, this chapter focuses on

two specific models: the Western University campus water distribution network modelled

in EPANET, and the I2Sim model developed as part of the DR-NEP project for the

investigation of infrastructure interdependencies.

The SIMONTO implementation, including SIMONTO ontologies and the SIMONTO engine,

is described in Section 8.1. The two ontology-based models, EPANET and I2Sim models,

created by SIMONTO from the two selected proprietary simulation models are presented

in Section 8.2. Knowledge acquisition services and the storage of ontology-based

simulation models are included in Section 8.3. Finally, knowledge delivery services are

demonstrated in Section 8.4 and discussion is provided in Section 8.5.

8.1 SIMONTO Implementation

The SIMONTO approach is generic, meaning that it is independent of any specific

simulation engine; however, its implementation requires the creation of two simulation

engine-specific components: a simulator-specific ontology and the Simulation Model

Reader. The remaining SIMONTO components are independent of simulation engines or

simulation packages.

80

The SIMONTO implementation consists of two parts: the SIMONTO ontologies and the

SIMONTO Engine.

8.1.1 SIMONTO Ontologies

The four SIMONTO ontology components can be described as follows:

 Upper ontology (top ontology layer): This case study used the upper ontology

depicted in Figure 6.4. In compliance with Definition 2, the upper ontology

contains concepts and properties that are common across all domains. As depicted

in Figure 6.4, the concepts include cell, control, channel, meter, and other. The

―other‖ category serves as a container for entities that cannot be assigned to any

of the other four categories and is needed because in Definition 3 of the simulator-

specific ontology each class of the simulator-specific ontology must be a subclass

of an upper ontology class.

 Simulator-specific ontologies (second ontology layer): A simulator-specific

ontology is created once for each simulator. Hence, in this case study, simulator-

specific ontologies for the two simulators are created: the I2Sim ontology and the

EPANET ontology. The main classes of the EPANET ontology and their mapping

to the upper ontology are presented in Figure 6.5, while the I2Sim ontology

classes with their mapping to the upper ontology are shown in Figure 8.1 [52].

Complying with Definition 3, the EPANET ontology contains classes specific to

the EPANET simulator. As required by Definition 3 and illustrated in Figure 6.5,

each class of the EPANET ontology is a subclass of the upper ontology class. The

properties contained in the EPANET ontology are not sub-properties of the upper

ontology. Likewise, in the I2Sim ontology, each I2Sim class is a subclass of the

upper ontology, as illustrated in Figure 8.1, but the properties are not defined as

sub-properties of the upper ontology.

 Ontology-based simulation models (third ontology layer): This case study

explored two proprietary simulation models, one EPANET model and one I2SIm

model. Therefore, the SIMONTO engine created two corresponding ontology-based

simulation models, which are described in further detail in Section 8.2.

81

 Rules: This component adds rules to the ontology-based models with the

objective of increasing representation expressiveness and for validation of rules

and constraints. This case study did not take advantage of the rules since the

simulation models were expressed in OWL and the querying approach was used

for rule and constraint validation.

Figure 8.1: I2Sim ontology with relation to the upper ontology

8.1.2 SIMONTO Engine

The simulation models are saved in simulation engine-specific proprietary file formats.

EPANET models are saved in .NET and .INP files, while I2Sim models are saved in .mdl

files. When working with EPANET, the SIMONTO Engine inputs include the EPANET

ontology and the EPANET simulation model as represented in the .NET or .INP file

formats. For I2Sim, which is based on MATLAB‘s Simulink engine, the inputs include

the I2Sim ontology and the I2Sim simulation model, which is stored in a Simulink style

.mdl file.

In this case study, the SIMONTO Engine was implemented as follows:

82

 OWL is the representation language of the upper and simulator-specific

ontologies and the ontology-based simulation models.

 The Ontology Reader and the Ontology Writer reads and writes OWL ontologies

respectively. They are implemented using the Protégé OWL API [80] and Java

1.6.

 The Integrator is implemented using Java 1.6.

 Two Simulation Model Readers are implemented: one each for the EPANET and

I2Sim simulators. The EPANET Reader employs the EPANET API to read the

simulation model, while the I2Sim Reader uses the Simulink Java library from

Technische Universität München [81].

8.2 Ontology-Based Simulation Models

To illustrate the SIMONTO transformation, this case study considers two proprietary

simulation models: one EPANET model and one I2Sim model. Consequently, this

section portrays the two corresponding ontology-based models. Section 8.3 describes

how ontology-based models are loaded into a graph database and Section 8.4

demonstrates the benefits of Disaster-CDM on the two knowledge delivery services:

simulation model querying and rule and constraint validation.

8.2.1 The EPANET Model

The observed water distribution network consists of 802 junctions, 836 pipes, 6 valves,

and 9 reservoirs. This simulation model has been transformed into an ontology-based

representation; Figure 8.2 shows this representation displayed in the Protégé ontology

editor [82]. The left pane shows the EPANET classes, such as pipe, pump, and valve.

Because the pipe class is selected, the middle pane shows all the individual pipes from

the EPANET model. In the right pane, the object properties and the datatype properties

for the selected pipe, pipe 831, are displayed. The object properties hasStartNode and

hasEndNode indicate that pipe 831 starts from junction 362 and ends at junction 837. In

the EPANET ontology, hasStartNode and hasEndNode are asserted properties because

the EPANET model specifies the pipe start and end nodes.

83

Figure 8.2: Ontology-based representation of the EPANET model

8.2.2 The I2Sim Model

The transformation of the I2Sim model into its ontology-based representation was similar

to EPANET model transformation, but a few differences needed to be addressed. I2Sim

is built upon Simulink [83] by customizing Simulink blocks and providing entities

specific to infrastructure interdependency simulation. Like Simulink [83], I2Sim can

divide models into hierarchies of sub-models, as illustrated in Figure 8.3, to make

complex system modelling easier. The model hierarchies are represented in the ontology

using the parentSystem object property. For each child model, the parentSystem property

links the model to its direct parent. The set of assigned parentSystem properties

establishes the model hierarchy. A fragment of a hierarchy depicted in Figure 8.3 is

represented as modelE.parentSystem(modelB) and modelB.parentSystem(modelA). Since

the sub-model entities do not belong to any of the simulator-specific ontology classes, a

new class, parentSystem, was established to contain entities that serve as containers for

other entities.

84

Figure 8.3: Simulation model hierarchy

Initially, it was expected that the I2Sim model would contain only I2Sim blocks.

However, when the model was transformed to its ontology-based representation, many

entities belonged to the other class. Analysis of these entities revealed that they were

Simulink blocks. Because I2Sim is constructed based on Simulink by customizing and

extending Simulink blocks, it allows Simulink blocks to be used in conjunction with

I2Sim blocks. Accordingly, the observed I2Sim model actually contained both I2Sim and

Simulink blocks. Therefore, the non_i2sim class was created, and the transformation

process was allowed to create non_i2sim subclasses representing Simulink block

categories used in the observed I2Sim model, as illustrated in Figure 8.4.

Figure 8.4: Ontology-based representation of the I2Sim model

85

8.3 Knowledge Acquisition Services

The objective of this case study is to demonstrate how Disaster-CDM facilitates

simulation model services, specifically simulation model querying and rule and constraint

validation. Those services cannot be achieved in a straightforward manner by the

document data store approach. As described in Section 6.2.3, the simulation-specific

storage model recognizes that both OWL representations of simulation models and graph

databases are graph-based and therefore store ontology-based simulation models in a

graph database. Simulation model services can then take advantage of the advanced

querying capabilities provided by a graph database. As a result, this storage model

supports simulation model querying and rule and constraint validation.

Specifically, this case study uses the Neo4j graph database [84]. Neo4j is an open source

graph database implemented in Java with fully ACID transactions and REST as the API

interface. It provides powerful and diverse querying capabilities: Neo4j can be queried

using Cypher, a property graph query language developed by Neo4j; using Gremlin, a

graph traversal language; or even using the RDF query language, SPARQL. Querying

examples in this case study are written in the SPARQL query language.

In this case study knowledge acquisition services are responsible for processing

simulation model files and storing them in a graph database. Specifically, SIMONTO

transforms proprietary simulation models into corresponding ontology-based models,

which are then loaded into a graph database, in this case study the Neo4j database.

Because Neo4j is a graph database and OWL ontologies are forms of graphs, loading

ontologies into the database proved to be straightforward. The loading process was

implemented in Java 1.6 using TinkerPop Blueprints [85], a property graph model

interface with provided implementations.

The DR-NEP data set contains 20 EPANET models and 12 I2Sim models; however, for

the purpose of demonstrating simulation model services, this case study focuses on two

models: one EPANET model and one I2Sim model. First, SIMONTO transforms the two

simulation models to their corresponding ontology-based representations which are

86

described in Section 8.2. Next, the two ontology-based models are loaded into the Neo4j

database.

Loading the EPANET case study model into the database resulted in a graph with 7,542

vertices and 22,555 edges, while loading the I2Sim model generated a graph with 2,533

vertices and 9,724 edges.

8.4 Knowledge Delivery Services

Knowledge delivery services are illustrated on two examples of simulation-specific

services: simulation model querying and rule and constraint validation. Both services

operate on simulation-specific storage, specifically on ontology-based models stored in a

graph database. Even though the two have different objectives, both use querying

approaches to achieve their goals.

8.4.1 Simulation Model Querying

SIMONTO ontology-based simulation models stored in a Neo4j graph database can be

queried using different approaches, including SPARQL, Gremlin, and Cypher. This case

study illustrates the querying ability on an EPANET model example scenario using the

SPARQL query language.

Scenario: A new water distribution network has been modelled in EPANET. To plan

network construction, analysts need to find out the total length of all pipes of each

diameter in the simulation model. The EPANET simulator cannot directly provide this

information.

However, the proposed Disaster-CDM system can provide such information because the

ontology-based representation of an EPANET model stored in a graph database can be

queried. The following SPARQL query obtains, for each pipe diameter, the number of

pipes and their total length. Results are sorted in ascending order of diameter.

PREFIX epanet: <http://www.semanticweb.org/ontologies/Simulators/EPANET.owl#>

PREFIX SimModel:

<http://www.semanticweb.org/ontologies/Simulators/EPANETnetwork.owl#>

SELECT ?diameter (COUNT(?pipe) as ?pipeCount) (SUM(?length) as ?pipeLength)

87

WHERE { ?pipe a epanet:pipe.

 ?pipe SimModel:diameter ?diameter.

 ?pipe SimModel:length ?length

}

GROUP BY ?diameter

ORDER BY DESC(?diameter)

The results of this query for an ontology-based representation of the EPANET simulation

model are displayed in Table 8.1. The first column shows the pipe diameter, the second

the number of pipes, and the third the total length of pipes of each diameter.

Table 8.1: SPARQL query output

diameter pipeCount pipeLength

600.0 6 2975.27

300.0 32 7072.42

250.0 134 16092.216

200.0 195 11829.779

150.0 270 23219.268

100.0 118 6737.2803

75.0 22 1564.59

62.5 15 997.55005

50.0 25 1259.47

32.5 11 391.91998

25.0 8 398.26

8.4.2 Rule and Constraint Validation

Rule and constraint validation is illustrated on an example from the Ontario Ministry of

the Environment document, Watermain Design Criteria for Future Alterations

Authorized under a Drinking Water Works Permit [86]. Table 8.2 shows a fragment of

this document consisting of the Hazen-Williams C-factors that should be used in

watermain designs when data from field tests are not available. The Hazen-Williams C-

factors specify pipe roughness.

88

Table 8.2: Watermain design recommendation [86]

The objective of validating rules and constraints, such as those presented in Table 8.2, on

an ontology-based simulation model is to identify which entities violate rules and

constraints, not to change attribute values. After the entities have been identified, the

attribute values should be changed in the original simulation model, in this case the

EPANET model, rather than in the ontology-based model because the original simulation

model is used for simulation execution. Therefore, querying can achieve rule and

constraint validation because it can identify entities that are violating rules without

introducing changes to the ontology. This approach transforms rule and constraint

validation to a querying problem in which the query itself contains rules or constraints.

The following SPARQL query identifies the entities that violate recommendations in

Table 8.2:

PREFIX net:

<http://www.semanticweb.org/ontologies/Simulators/EPANETnetwork.owl#>

SELECT *

WHERE {

{?x net:diameter ?d .

?x net:roughness ?r

FILTER (?d <= 150) FILTER (?r != 100)}

UNION

{?x net:diameter ?d .

?x net:roughness ?r

FILTER (?d >= 200) FILTER (?d <= 250) FILTER (?r != 110)}

UNION

{?x net:diameter ?d .

?x net:roughness ?r

FILTER (?d >= 300) FILTER (?d <= 600) FILTER (?r != 120)}

89

UNION

{?x net:diameter ?d .

?x net:roughness ?r

FILTER (?d > 600) FILTER (?r != 130)}

}

The results of this query for an ontology-based representation of the EPANET simulation

model are displayed in Table 8.3. Specifically, this SPARQL query identified two pipes

violating recommendations: pipe38 and pipe612. The two pipes are modelled with

diameter 150 and roughness 110, while the recommendations from Table 8.2 suggest that

pipes of diameter 150 should be modelled with roughness 100. Consequently, to comply

with recommendations, the two pipes‘ attributes need to be corrected in the EPANET

simulation model. Moreover, the simulation experiments might need to be repeated

because the change in the two pipes could impact the simulation results.

Table 8.3: Result of validating rules from Table 8.2

x (pipe) d (diameter) r (roughness)

pipe38 150.0 110.0

pipe612 150.0 110.0

8.5 Discussion

The case study 2 focused on simulation models and demonstrated how Disaster-CDM

facilitates simulation model querying and rule and constraint validation. For this purpose,

proprietary simulation models were first transformed by SIMONTO to their corresponding

ontology-based representations and then stored in a graph database.

Simulation-specific knowledge delivery services operate on ontology-based simulation

models stored in a graph database and take advantage of the querying capabilities

provided by the database. Two knowledge delivery services were demonstrated:

simulation model querying and rule and constraint validation.

Simulation model querying was demonstrated using SPARQL, an RDF querying

language. However, this case study did not explore other querying languages which

90

potentially could have advantages over SPARQL. For example, it can be expected that a

graph traversal language, such as Gremlin in Neo4j, would show performance benefits in

the presence of join operations.

Because the querying approach was chosen in this work for rule and constraint validation,

as explained in Section 6.2.4, the presented case study demonstrated validation with

SPARQL queries. This is similar to simulation model querying as both deal with query

data stored in a graph database, but rule and constraint validation actually expresses rules

in the form of queries. The case study presented here demonstrated rule and constraint

validation, but did not explore the potential limitations of the approach used. A thorough

comparison of the genuine rule language and querying approaches to rule and constraint

validation would provide a better insight into the limitations, advantages, and

disadvantages of each approach; however, such a comparison is outside the scope of this

work.

8.6 Summary

This chapter, like Chapter 7, has presented an evaluation of the proposed Disaster-CDM

framework; however, in contrast to Chapter 7 which addressed file-style data sources,

this chapter was concerned with simulation models. Because SIMONTO is the Disaster-

CDM component responsible for processing simulation models, the SIMONTO

implementation and the ontology-based models created by SIMONTO were discussed first.

In the presented case study knowledge acquisition service, specifically SIMONTO,

transformed simulation models to their corresponding ontology-based representations and

stored them in a graph database. Finally, the benefits of Disaster-CDM were

demonstrated on two simulation-specific knowledge delivery services: simulation model

querying and rule and constraint validation.

91

Chapter 9

9 Conclusions and Future Work

In recent years, we have witnessed an increase in the number and severity of extreme

weather events and natural disasters around the globe. Consequently, disaster impacts on

human life and property have risen as well, escalating the importance of minimizing

disaster impacts and making an effective response imperative in today‘s society.

The main goal of disaster management is to minimize disaster impact, and a crucial

element for achieving this goal is effective decision-making through all four disaster

phases: mitigation, preparedness, response, and recovery. Successful and effective

disaster decision-making requires information gathering, sharing, and integration by

means of collaboration on a global scale and across governments, industries,

communities, and academia. A large quantity of disaster-related data is available,

including response plans, records of previous incidents, simulation data, social media

data, and Web sites; however, current data management solutions offer few or no

integration capabilities and limited potential for collaboration.

At the same time, changes in software and hardware have created opportunities for new

solutions in the disaster management domain. In particular, recent advances in cloud

computing, Big Data, and NoSQL have opened doors for new solutions in disaster data

management.

Consequently, this research proposed a Knowledge as a Service (KaaS) framework for

disaster cloud data management (Disaster-CDM). The ultimate goal of Disaster-CDM is

to facilitate improved and informed disaster decision-making and consequently to reduce

the impact of disasters on human lives and property. Disaster-CDM facilitates

information gathering and sharing through knowledge acquisition and delivery; stores

large amounts of disaster-related data from diverse sources by taking advantage of cloud

computing and NoSQL data stores; and facilitates search and supports interoperability

and integration by means of knowledge delivery services.

92

The case studies presented in this research demonstrated the use of Disaster-CDM on

data collected during the Disaster Response Network Enabled Platform (DR-NEP)

project. In the first case study knowledge was acquired from diverse file-style data

sources such as MS Office documents, images, text and PDF files, and simulation

models. In this case study Disaster-CDM contributions were demonstrated on examples

of two integration services: full-text search and querying services. The second case study

focused on simulation models and illustrated Disaster-CDM benefits on simulation-

specific tasks; specifically, two simulation services were presented: simulation model

querying and rule and constraint validation.

Section 9.1 discusses the contributions of this research, while Section 9.2 presents future

work.

9.1 Contributions

The contributions of this thesis can be summarized as follows:

Disaster-CDM framework

This research has proposed Disaster-CDM, a Knowledge as a Service (KaaS) framework

for disaster cloud data management. Disaster-CDM provides a flexible and customizable

disaster data management solution which can be expanded and altered according to the

needs of the organizations using it. Disaster-CDM achieves the following objectives:

 Information gathering and sharing is facilitated by means of knowledge

acquisition and knowledge delivery services. Knowledge acquisition services are

responsible for acquiring knowledge from diverse collaboration partners and from

heterogeneous data sources, processing it to add structure, and storing it.

Knowledge delivery services are responsible for integrating information from

different data sources and delivering knowledge to consumers as a service.

 Storing large amounts of disaster-related data from diverse sources is achieved by

taking advantage of cloud computing and NoSQL data stores. Specifically, data

are stored in a cloud environment in a variety of relational databases and NoSQL

data stores. Scalability of cloud and NoSQL solutions makes it possible to start

93

the system small and expand as needs grow by adding heterogeneous nodes.

Within the cloud environment, data stored in NoSQL data stores is replicated,

often across large geographic distances. This ensures high availability and system

operation in the presence of failures, which in the disaster management domain is

particularly important as it can be expected that disasters will cause a variety of

failures. NoSQL data stores offer flexible data model and therefore enable storage

of diverse disaster-related data. Moreover, Disaster-CDM allows a choice of

storage solutions to suit a variety of data structures and access patterns.

 Search, interoperability and integration are supported primarily by means of

knowledge delivery services. Data stored in diverse data stores is provided to

consumers as services according to the KaaS approach. This work focuses on

knowledge acquisition, specifically on data processing services and storage;

knowledge delivery services are used to demonstrate the benefits of the proposed

framework.

As already mentioned, Disaster-CDM is a flexible and expandable disaster data

management solution which can accommodate a variety of data sources. Therefore, this

research has defined a process for introducing a new data source into the framework. The

process consists of three steps:

 adding new processing services for dealing with the new data source;

 defining data processing rules for the new data source;

 determining appropriate data storage, including choosing the type of data store

and designing a data model.

All three steps must be considered when introducing a new data source, but they will not

necessary introduce new components. For example, depending on existing processing

capabilities, a new data source will not necessarily need a new processing service.

This research applied the proposed Disaster-CDM approach to file-style data because

data formats commonly present in the disaster management domain include MS Office

files, text and PDF files, images, and simulation model files. The common element

among these data sources is that information is typically stored in self-contained and

94

largely unrelated files. The data processing services required for file-style data were

identified, and examples of data processing rules were presented. With respect to storage,

two steps were performed: in the first step the type of data store was chosen, specifically,

the document data store was selected as it is designed around the concept of a document

and provides storage flexibility along with querying capabilities; in the second step a data

model for storage of file-style data in a document data store was designed.

Disaster-CDM contributions were demonstrated with two case studies. The first case

study illustrated how Disaster-CDM supports integration of diverse file-style data sources

on examples of full-text search and querying services. The second case study focused on

simulation-specific tasks and demonstrated how Disaster-CDM facilitates querying

within simulation models and rule and constraint validation.

SIMONTO

This work has proposed SIMONTO, an ontology-based representation of simulation

models, which represents domain simulation models as interconnected instances of

simulator-specific ontologies. SIMONTO transforms existing simulation models expressed

in simulator-specific model files to their corresponding ontology-based representations.

Such ontology-based simulation models facilitate integration with other sources, provide

simulation model querying capabilities, and enable rule and constraint validation.

In the context of Disaster-CDM, SIMONTO is responsible for processing simulation

models. In this study, the created ontology-based simulation models are stored according

to their intended use:

 For integration with other file-style data sources, simulation models are stored in

a document database alongside other data. Such storage enables full-text search

and querying over data originating from a variety of sources, as demonstrated in

Section 7.4.

 For querying within simulation models, and for enabling rule and constraint

validation, ontology-based simulation models are stored in a graph database. This

95

approach takes advantage of the advanced querying abilities provided by graph

databases, as demonstrated in Section 8.4.

9.2 Future Work

This study has primarily addressed the knowledge acquisition and data storage

components of the proposed framework. Directions for future research related to

knowledge acquisition and data storage include:

 Data acquisition from other sources such as Web sites and social media:

Including other sources of information will provide a more comprehensive

knowledge base and, when integrated with existing data, will lead to better

decision-making.

 Dynamic data processing rule specification: This work has considered static

and predefined data processing rules. Dynamic rule specification should be

explored for rule flexibility and to simplify addition of new data sources.

 Changes to existing knowledge (knowledge evolution): In this research,

knowledge from each data source is acquired once, and the system does not keep

track of subsequent updates. Support for knowledge evolution would provide for a

better, more comprehensive disaster knowledge solution.

 Knowledge conflicts: In disaster management, due to large number of

participants and the immense diversity of data sources, it is to be expected that

knowledge conflicts will occur. Conflicts must first be detected and then resolved

or managed so that non-contradicting knowledge can be provided to consumers.

 NoSQL data store comparison: In this study, the document data store model

specifically CouchDB, was chosen for storage of file-style data. A detailed

comparison of different data store implementations would assist in choosing the

most suitable NoSQL implementation for the task at hand.

 Required storage space: This work did not analyze the storage space

requirements for the proposed approach. Disaster-CDM stores original files in

addition to data produced by data processing services. Moreover, the full-text

96

search and CouchDB views presented in the case study require indexes, which

also occupy space and must be included in space estimates.

The role of SIMONTO in Disaster-CDM is the transformation of proprietary simulation

models to ontology-based representations which are better suitable for integration and

querying. With respect to SIMONTO, directions for future research include:

 SIMONTO limitations: This work did not explore the limitations of ontology-

based representations of simulation models. The completeness of the created

model needs to be explored to understand its limitations more fully.

 Working with large numbers of simulation models: The case study presented

in Chapter 8 transformed a few simulation models and loaded them into a graph

database. The behavior of the system with a large number of models loaded into

the database remains to be investigated.

 Stand-alone use of SIMONTO: This study employed SIMONTO as part of

Disaster-CDM; however, SIMONTO also has the potential of being used on its own

because Ontology-based simulation models could also be queried directly using

an ontology querying language such as SQWRL. Moreover, rules can be added to

the ontology base with the help of an ontology rule language such as SWRL. The

use of SIMONTO outside the Disaster-CDM framework requires further

exploration.

 Rule languages and querying languages. When ontology-based models are

loaded into a graph database, they can be queried using different approaches.

Moreover, SIMONTO ontology-based models can be queried directly. Exploring

the advantages and disadvantages of different approaches would provide a better

insight into their capabilities and limitations; therefore, it could lead to guidelines

for choosing the appropriate approach for the task at hand.

This research has presented the main design of the knowledge delivery component

without addressing details. Consequently, directions of future work in knowledge

delivery include:

97

 Integration of NoSQL data stores: Since NoSQL data stores were designed for

different purposes, they differ greatly in their data models and querying abilities,

which presents an obstacle to integration. A major part of the integration

challenge is the fact that NoSQL data stores do not support a standard query

language.

 Data analytic services: The case study presented in this thesis involved query

and full-text services, but analytics services were not addressed. Data analytics

actually refers to Big Data analytics, where disaster Big Data are analyzed to find

meaningful insights which could lead to better decisions.

 Privacy and security: Providing adequate security and privacy for such a

framework is challenging for a number of reasons, including cloud storage on

third-party premises and in a shared multi-tenant environment, diversity of the

storage models involved, and the large number of collaboration participants.

The proposed Disaster-CDM framework is designed for use with disaster-related data;

however, it could potentially be applied in other domains. For example, Disaster-CDM

for file-style data, as presented in Chapter 5 and demonstrated in Chapter 7, could be

applied to any file-type data and is not restricted to disaster-related data. Future work will

explore the potential of using the same framework, possibly with some adaptations, in

other domains. For example, possible use of the proposed framework for geological data

management will be explored.

98

References

[1] V. Hristidis, S. Chen, T. Li, S. Luis, and Y. Deng, "Survey of Data Management

and Analysis in Disaster Situations," The Journal of Systems and Software, vol.

83, no. 10, pp. 1701-1714, 2010.

[2] A.Y. Chena, F. Peña-Morab, and Y. Ouyang, "A Collaborative GIS Framework to

Support Equipment Distribution for Civil Engineering Disaster Response

Operations," Automation in Construction, vol. 20, no. 5, pp. 637-648, 2011.

[3] K. de Faria Cordeiro, T. Marino, M. L. M. Campos, and M. Borges, "Use of

Linked Data in the Design of Information Infrastructure for Collaborative

Emergency Management System," Proceedings of the 15th International

Conference on Computer Supported Cooperative Work in Design (CSCWD), pp.

764-771, 2011.

[4] D. P. Coppola, Introduction to International Disaster Management, Amsterdam,

Netherlands: Butterworth-Heinemann, 2011.

[5] S. Sakr, A. Liu, D.M. Batista, and M. Alomari, "A Survey of Large Scale Data

Management Approaches in Cloud Environments," IEEE Communications

Surveys & Tutorials, vol. 13, no. 3, pp. 311-336, 2011.

[6] D. Kossmann and T. Kraska, "Data Management in the Cloud: Promises, State-of-

the-Art, and Open Questions," Datenbank-Spektrum, vol. 10, no. 3, pp. 121-129,

2010.

[7] R. Hecht and S. Jablonski, "NoSQL Evaluation: A use Case Oriented Survey,"

Proceedings of the International Conference on Cloud and Service Computing,

pp. 336-341, 2011.

[8] R. Abdullah, Z. D. Eri, and A. M. Talib, "A Model of Knowledge Management

System for Facilitating Knowledge as a Service (KaaS) in Cloud Computing

Environment," Proceedings of the International Conference on Research and

Innovation in Information Systems, pp. 1-4, 2011.

[9] P. Zadrozny and R. Kodali, Big Data Analytics using Splunk, Berkeley, CA,

USA: Apress, 2013.

[10] M. Stonebraker, S. Madden, D. J. Badi, S. Harizopoulos, N. Hachem, and P.

Helland, "The End of an Architectural Era: (it‘s Time for a Complete Rewrite),"

Proceedings of the 33rd International Conference on very Large Data Bases, pp.

1150-1160, 2007.

[11] M. A. Beyer and D. Laney, "The Importance of 'Big Data': A Definition,"

http://www.gartner.com/id=2057415, 2007.

[12] F. Ohlhorst, Big Data Analytics: Turning Big Data into Big Money, Hoboken,

N.J, USA: Wiley, 2013.

http://www.gartner.com/id=2057415

99

[13] S. Mohanty, M. Jagadeesh, and H. Srivatsa, Big Data Imperatives: Enterprise Big

Data Warehouse, BI Implementations and Analytics, Berkeley, CA, USA: Apress,

2013.

[14] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing: State-of-the-Art and

Research Challenges," Journal of Internet Services and Applications, vol. 1, no. 1,

pp. 7-18, 2010.

[15] T. Erl, Z. Mahmood, and R. Puttini, Cloud Computing: Concepts, Technology, &

Architecture, Upper Saddle River, NJ, USA: Prentice Hall, 2013.

[16] P. Mell and T. Grance, "The NIST definition of cloud computing. NIST special

publication 800-145," http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf, 2011.

[17] S. Khoshnevis and F. Rabeifa, "Toward Knowledge Management as a Service in

Cloud-Based Environments," International Journal of Mechatronics, Electrical

and Computer Technology, vol. 2, no. 4, pp. 88-110, 2012.

[18] J. Han, M. Song, and J. Song, "A Novel Solution of Distributed Memory NoSQL

Database for Cloud Computing," Proceedings of the 10th IEEE/ACIS

International Conference on Computer and Information Science, pp. 351-355,

2011.

[19] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence, Upper Saddle River, NJ, USA: Addison-Wesley,

2013.

[20] R. Cattell, "Scalable SQL and NoSQL Data Stores," ACM SIGMOD Record, vol.

39, no. 4, pp. 12-27, 2011.

[21] E. Brewer, "CAP Twelve Years Later: How the "Rules" have Changed,"

Computer, vol. 45, no. 2, pp. 23-29, 2012.

[22] O. Curé, R. Hecht, C. Le Duc, and M. Lamolle, "Data Integration Over NoSQL

Stores using Access Path Based Mappings," Proceedings of the 22nd

International Conference on Database and Expert Systems Applications, pp. 481-

495, 2011.

[23] L. Palen, K. M. Anderson, G. Mark, J. Martin, D. Sicker, M. Palmer, et al., "A

Vision for Technology-Mediated Support for Public Participation & Assistance in

Mass Emergencies & Disasters," Proceedings of the ACM-BCS Visions of

Computer Science Conference, pp. 1-12, 2010.

[24] A. Schram and K. M. Anderson, "MySQL to NoSQL: Data Modeling Challenges

in Supporting Scalability," Proceedings of the 3rd Annual Conference on Systems,

Programming, Languages and Applications: Software for Humanity, pp. 191-202,

2012.

[25] S.H. Othman and G. Beydoun, "Model-Driven Disaster Management,"

Information & Management, vol. 50, no. 5, pp. 218-228, 2013.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

100

[26] T. Silva, V. Wuwongse, and H. N. Sharma, "Linked Data in Disaster Mitigation

and Preparedness," Proceedings of the Third International Conference on

Intelligent Networking and Collaborative Systems, pp. 746-751, 2011.

[27] K. M. Anderson and A. Schram, "Design and Implementation of a Data Analytics

Infrastructure in Support of Crisis Informatics Research: NIER Track,"

Proceedings of the 33rd International Conference on Software Engineering, pp.

844-847, 2011.

[28] C. Chou, F. Zahedi, and H. Zhao, "Ontology for Developing Web Sites for

Natural Disaster Management: Methodology and Implementation," IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,

vol. 41, no. 1, pp. 50-62, 2011.

[29] I. Lai, S. Tam, and M. Chan, "Knowledge Cloud System for Network

Collaboration: A Case Study in Medical Service Industry in China," Expert

Systems with Applications, vol. 39, no. 15, pp. 12205-12212, 2012.

[30] Y. Qirui, "Kaas-Based Intelligent Service Model in Agricultural Expert System,"

Proceedings of the 2nd International Conference on Consumer Electronics,

Communications and Networks, pp. 2678-2680, 2012.

[31] S. Kannimuthu, K. Premalatha, and S. Shankar, "Investigation of High Utility

Itemset Mining in Service Oriented Computing: Deployment of Knowledge as a

Service in E-Commerce," Proceedings of the Fourth International Conference on

Advanced Computing, pp. 1-8, 2012.

[32] A. Maria, "Introduction to Modeling and Simulation," Proceedings of the Winter

Simulation Conference, pp. 7-13, 1997.

[33] L. G. Birta and G. Arbez, Modelling and Simulation: Exploring Dynamic System

Behaviour, London: Springer, 2007.

[34] E. Abu-Taieh and A. El Sheikh, "Commercial Simulation Packages: A

Comparative Study," International Journal of Simulation, vol. 8, no. 2, pp. 66-76,

2007.

[35] "1516-2010 - IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) - Framework and Rules," IEEE Standard, 2010.

[36] A. Tofani, E. Castorinia, P. Palazzaria, A. Usovb, C. Beyelb, E. Romeb, et al.,

"Using Ontologies for the Federated Simulation of Critical Infrastructures,"

Proceedings of the International Conference on Computational Science, vol. 1,

no. 1, pp. 2301-2309, 2010.

[37] D. D. Dudenhoeffer, M. R. Permann, and M. Manic, "CIMS: A Framework for

Infrastructure Interdependency Modeling and Analysis," Proceedings of the

Winter Simulation Conference, pp. 478-485, 2006.

[38] J. A. Miller, G. T. Baramidze, A. P. Sheth, and P. A. Fishwick, "Investigating

Ontologies for Simulation Modeling," Proceedings of the 37th Annual Simulation

Symposium, pp. 55-63, 2004.

101

[39] G. Guizzardi and G. Wagner, "Towards an Ontological Foundation of Discrete

Event Simulation," Proceedings of the 2010 Winter Simulation Conference, pp.

652-664, 2010.

[40] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific

Computing, New York, NJ, USA: Cambridge University Press, 2010.

[41] T. J. Barth, F. Graziani, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, et

al., Computational Methods in Transport: Verification and Validation, Berlin,

Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2008.

[42] B. Lee, T. Critchlow, G. Abdulla, C. Baldwin, R. Kamimura, and N. Tang, "The

Framework for Approximate Queries on Simulation Data," Information Sciences,

vol. 157, no. 1-2, pp. 3-20, 2003.

[43] C. Szabo and Y. M. Teo , "An Approach to Semantic-Based Model Discovery and

Selection," Proceedings of the 2011 Winter Simulation Conference, pp. 3054-

3066, 2011.

[44] "IEEE Standard for Property Specification Language (PSL)," IEEE Std 1850-

2012, pp. 1-188, 2012.

[45] S. Staab and R. Studer, Handbook on Ontologies, Berlin, Heidelberg: Springer-

Verlag Berlin Heidelberg, 2009.

[46] L. Lacy and W. Gerber, "Potential Modeling and Simulation Applications of the

Web Ontology Language - OWL," Proceedings of the Winter Simulation

Conference, vol. 1, pp. 265-270, 2004.

[47] G. A. Silver, L. W. Lacy, and J. A. Miller, "Ontology Based Representations of

Simulation Models Following the Process Interaction World View," Proceedings

of the Winter Simulation Conference, pp. 1168-1176, 2006.

[48] J. A. Miller and G. Baramidze, "Simulation and the Semantic Web," Proceedings

of the Winter Simulation Conference, pp. 2371-2377, 2005.

[49] P. Benjamin and K. Akella, "Towards Ontology-Driven Interoperability for

Simulation-Based Applications," Proceedings of the Winter Simulation

Conference, pp. 1375-1386, 2009.

[50] K. Grolinger, E. Mezghani, M. A. M. Capretz, and E. Exposito, "Knowledge as a

Service Framework for Disaster Data Management," Proceedings of the 22nd

WETICE Conference, pp. 313-318, 2013.

[51] C.P. Sumathi, G.Gayathri Devi, and T. Santhanam, "A Survey on various

Approaches of Text Extraction in Images," International Journal of Computer

Science and Engineering Survey, vol. 3, no. 4, pp. 27-42, 2012.

[52] K. Grolinger, M. A. M. Capretz, A. Shypanski, and G. S. Gill, "Federated Critical

Infrastructure Simulators: Towards Ontologies for Support of Collaboration,"

Proceedings of the Canadian Conference on Electrical and Computer

Engineering, Workshop on Connecting Engineering Applications and Disaster

Management, pp. 1503-1506, 2011.

102

[53] K. Grolinger, M. A. M. Capretz, J. R. Marti, and K. D. Srivastava, "Ontology–

based Representation of Simulation Models," Proceedings of the 24the

International Conference on Software Engineering and Knowledge Engineering,

pp. 432-437, 2012.

[54] M. Wang, B. Ni, X. Hua, and T. Chua, "Assistive Tagging: A Survey of

Multimedia Tagging with Human-Computer Joint Exploration," ACM Computing

Surveys, vol. 44, no. 4, pp. 1-24, 2012.

[55] Public Safety Canada, "The Canadian Disaster Database,"

http://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-eng.aspx, 2013.

[56] Center for research on the epidemiology of disasters - CRED, "

EM-DAT, The International Disaster Database," http://www.emdat.be/database,.

[57] P. Atzeni, F. Bugiotti, and L. Rossi, "Uniform Access to NoSQL Systems,"

Information Systems, 2013.

[58] J. A. Bondy and U. S. R. Murty, Graph Theory, New York: Springer, 2008.

[59] T. Tran, D.M. Herzig, and G. Ladwig, "SemSearchPro – using Semantics

Throughout the Search Process," Web Semantics: Science, Services and Agents on

the World Wide Web, vol. 9, no. 4, pp. 349-364, 2011.

[60] R. Delbru, S. Campinas, and G. Tummarello, "Searching Web Data: An Entity

Retrieval and High-Performance Indexing Model," Web Semantics: Science,

Services and Agents on the World Wide Web, pp. 33-58, 2011.

[61] V. Kashyap, P. Bernstein, C. Bussler, M. J. Carey, S. Ceri, U. Dayal, et al., The

Semantic Web, Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.

[62] W3C OWL Working Group, "OWL 2 Web Ontology Language,"

http://www.w3.org/TR/owl2-overview/, 2009.

[63] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF): Concepts

and Abstract Syntax," http://www.w3.org/TR/rdf-concepts/, 2004.

[64] D. Brickley and R. V. Guha, "RDF Vocabulary Description Language 1.0: RDF

Schema," http://www.w3.org/TR/rdf-schema/, 2004.

[65] "EPANET, Water Distribution Modeling,"

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html, 2008.

[66] T. Berners-Lee, "WWW past & future," http://www.w3.org/2003/Talks/0922-

rsoc-tbl/, 2003.

[67] M.J. O'Connor and A. Das, "SQWRL: A Query Language for OWL," OWL

Experiences and Directions, 6th International Workshop, 2009.

[68] E. Prud'hommeaux and A. Seaborne, "SPARQL Query Language for RDF,"

http://www.w3.org/TR/rdf-sparql-query/, 2008.

[69] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean,

"SWRL: A Semantic Web Rule Language,"

http://www.w3.org/Submission/SWRL/, 2004.

http://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-eng.aspx
http://www.emdat.be/database
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/

103

[70] "DR-NEP (Disaster Response Network Enabled Platform) project,"

http://drnep.ece.ubc.ca/index.html, 2011.

[71] H. A. Rahman, M. Armstrong, D. Mao, and J. R. Marti, "I2Sim: A Matrix-

Partition Based Framework for Critical Infrastructure Interdependencies

Simulation," Proceedings of the Electrical Power and Energy Conference, pp. 1-

8, 2008.

[72] The Apache Foundation, "Apache Tika toolkit," http://tika.apache.org/, 2013.

[73] R. Smith, "An Overview of the Tesseract OCR Engine," Proceeding of the Ninth

International Conference on Document Analysis and Recognition, vol. 2, pp. 629-

633, 2007.

[74] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham, "Evolving GATE to

Meet New Challenges in Language Engineering," Natural Language Engineering,

vol. 10, no. 3-4, pp. 349-373, 2004.

[75] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts, et

al, "Developing Language Processing Components with GATE. University of

Sheffield Department of Computer Science," http://gate.ac.uk/sale/tao/split.html,

2013.

[76] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive Guide,

Sebastopol, CA, USA: O'Reilly Media, 2010.

[77] K. Hwang and K. Hwang, Distributed and Cloud Computing: From Parallel

Processing to the Internet of Things, Waltham, MA, USA: Elsevier/Morgan

Kaufmann, 2012.

[78] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Stamford,

CT, USA: Manning Publications, 2010.

[79] "CouchDB-Lucene project," https://github.com/rnewson/couchdb-lucene, 2012.

[80] "Protégé OWL API," http://protege.stanford.edu/plugins/owl/api/, 2011.

[81] "Simulink Library, Technische Universität München,"

http://conqat.in.tum.de/index.php/Simulink_Library, 2011.

[82] Stanford Center for Biomedical Informatics Research (BMIR), "Protégé,"

http://protege.stanford.edu., 2011.

[83] "Simulink - Simulation and Model-Based Design,"

http://www.mathworks.com/products/simulink/, 2011.

[84] "Neo4j," http://www.neo4j.org/, 2013.

[85] "TinkerPop Blueprints," http://www.tinkerpop.com/, 2013.

[86] Ministry of the Environment Safe Drinking Water Branch, "Watermain Design

Criteria for Future Alterations Authorized Under a Drinking Water Works

Permit,"

http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/document

s/resource/std01_086800.pdf, 2012.

http://drnep.ece.ubc.ca/index.html
http://tika.apache.org/
http://gate.ac.uk/sale/tao/split.html
https://github.com/rnewson/couchdb-lucene
http://protege.stanford.edu/plugins/owl/api/
http://conqat.in.tum.de/index.php/Simulink_Library
http://protege.stanford.edu./
http://www.mathworks.com/products/simulink/
http://www.neo4j.org/
http://www.tinkerpop.com/
http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_086800.pdf
http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_086800.pdf

104

Curriculum Vitae

Name: Katarina Grolinger

Post-secondary Doctorate, Software Engineering

Education and Western University

Degrees: London, Ontario, Canada

 2013

Western Certificate in University Teaching and Learning

Western University

London, Ontario, Canada

2012

Master of Engineering, Software Engineering

Western University

London, Ontario, Canada

2009

Master of Science, Mechanical Engineering

University of Zagreb

Zagreb, Croatia

1994.

Bachelor of Science, Mechanical Engineering

University of Zagreb

Zagreb, Croatia

1997

Honours and The Natural Sciences and Engineering Research Council of

Awards: Canada,

Alexander Graham Bell Canada Graduate Scholarships – Doctoral

NSERC CGS-D

2010 - 2013

Ontario Graduate Scholarship (OGS)

2013

Graduate Student Teaching Award

Western University

2012

Graduate Thesis Research Award

105

Western University

2012

Department Travel Grant

Western University

2011, 2012, 2013

Best presentation in Software Engineering

ECE Graduate Symposium, Western University

2012

Related Work Teaching and Research Assistant

Experience Western University

London, Canada

2010 – 2013

Teaching Assistant Mentor (Engineering)

Teaching Support Centre, Western University,

London, Canada

2012 - 2013

Instructor: Software Engineering Summer Academy

Western University

London, Canada

Summer 2011 and 2012

Database Administrator – Consultant

Utilismart Corporation,

London, Canada

Jun 2011

Software Engineer - Database Administrator

Mutual Concept Computer Group Inc.,

London, Ontario

2008-2009

Conversion Team Leader - Database Administrator

Mutual Concept Computer Group Inc.,

London, Ontario

2005-2008

Software Developer - Database Administrator

Mutual Concept Computer Group Inc.,

London, Ontario

1999-2005

106

Software Developer

Online Business Systems

Winnipeg, Manitoba

1997-1999

Teaching and Research Assistant

University of Zagreb,

Zagreb, Croatia

1995-1997

PUBLICATIONS:

REFEREED JOURNALS:

1. K. Grolinger, Wilson A. Higashino, Abhinav Tiwari, Miriam A.M. Capretz, Data

Management in Cloud Environments: NoSQL and NewSQL Data Stores, Journal

of Cloud Computing: Advances, Systems and Application, Springer Open, Vol. 2,

doi:10.1186/2192-113X-2-22, 2013.

2. K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Collaborative

Knowledge as a Service Applied to the Disaster Management Domain,

International Journal of Cloud Computing, 2013 1
st
 round of review.

3. K. Grolinger, Miriam A. M. Capretz, Americo Cunha, Said Tazi, Integration of

Business Process Modeling and Web Services: A Survey, Service Oriented

Computing and Applications, Springer, pp. 1-24, 2013.

4. B. Muslimi, K. Grolinger, M.A.M. Capretz, Mark Benko, EEF-CAS: An Effort

Estimation Framework with Customizable Attribute Selection, International

Journal of Advanced Computer Technology, Vol. 5. No. 13, 2013.

5. K. Grolinger, M.A.M Capretz, A Unit Test Approach for Database Schema

Evolution, Information and Software Technology, Elsevier, Vol. 53, Issue 2,

pp.159-170, 2011.

6. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Agent Based on Reinforcement

Learning and Adaptive Shadowed Network. Artificial Intelligence in Engineering.

Vol. 13, Issue 2, pp. 141-157, 1999.

7. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in

Unpredictable Assembly Conditions, Automatika, Vol. 37 (1-2), Zagreb, Croatia,

pp. 37-45. 1996.

REFEREED CONFERENCES:

1. K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a

Service Framework for Disaster Data Management, The 22nd IEEE WETICE

conference, Hammamet, Tunisia, pp. 313-318, 2013.

2. K. Grolinger, M.A.M. Capretz, Ontology–based Representation of Simulation

Models, The Twenty-Fourth International Conference on Software Engineering

107

and Knowledge Engineering, San Francisco Bay, California, USA, pp. 432-437

2012.

3. K. Grolinger, M.A.M. Capretz, Autonomic Database Management: State of the

Art and Future Trends, 27th International Conference on Computers and Their

Applications (CATA), Las Vegas, Nevada, USA, pp.276-, 281, 2012.

4. K. Grolinger, K.P. Brown, M.A.M. Capretz, From Glossaries to Ontologies:

Disaster Management Domain, The Twenty-Third International Conference on

Software Engineering and Knowledge Engineering, Miami Beach, Florida, USA,

pp. 402-407, 2011.

5. K. Grolinger, A. Shypanski, G.S. Gill, M.A.M. Capretz, Federated Critical

Infrastructure Simulators: Towards Ontologies for Support Of Collaboration,

Workshop on Connecting Engineering Applications and Disaster Management

2011, held in conjunction with the IEEE Canadian Conference on Electrical and

Computer Engineering, Niagara Falls, Ontario, Canada, pp. 1503 – 1506, 2011.

6. K.P. Brown, K. Grolinger, M.A.M. Capretz, Data Providing Web Service-Based

Integration Framework for use in a Health Care Context, Symposium on

Biomedical and Health Informatics of the IEEE Canadian Conference on

Electrical and Computer Engineering 2011, Niagara Falls, Ontario, Canada, pp.

1069–1072, 2011.

7. K. Grolinger, B Jerbic, B. Vranjes. Autonomous Robot Behavior Based on

Neural Networks, Proceedings of Applications and Science of Artificial Neural

Networks III, Orlando, Florida, USA, SPIE Press, pp. 2038-2046, 1997.

8. B. Jerbic, K Grolinger, B. Vranjes, Simulation of Intelligent Robot Behavior

Based on Reinforcement Learning and Neural Network Approach, 11th

International Conference on Artificial Intelligence in Engineering, Southampton,

NY, USA, pp. 450-465, 1996.

9. B. Jerbic, K. Grolinger, B. Vranjes, Simulation of Robotic Learning in Assembly

Process, Proceedings of 7th International DAAAM Symposium, Vienna, Austria,

pp. 185-187, 1996

10. B. Vranjes, K. Grolinger, B. Jerbic, Modified Fuzzy ART Neural Network in

Group Technologies, Proceedings of 7th International DAAAM Symposium,

Vienna, Austria, pp. 185-187, 1996.

11. B. Jerbic, K. Grolinger, B. Vranjes, Autonomous Robotic Task Reasoning in

Unpredictable Assembly Conditions, 13th Conference BIAM 96, Zagreb, Croatia,

pp. B1-B6, 1996

12. B. Vranjes, K. Grolinger, B. Jerbic, Cellular Manufacturing Formation with

Modified Fuzzy ART Neural Network, 13th Conference BIAM 96, Zagreb,

Croatia, pp. J5-J8, 1996.

	Disaster Data Management in Cloud Environments
	Recommended Citation

	-

