
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

10-24-2013 12:00 AM

Web-based Simulation and Training Environment for Web-based Simulation and Training Environment for

Laparoscopic Camera Calibration Laparoscopic Camera Calibration

Kartik Thakore
The University of Western Ontario

Supervisor

Hanif Ladak

The University of Western Ontario

Graduate Program in Biomedical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Kartik Thakore 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Bioimaging and Biomedical Optics Commons

Recommended Citation Recommended Citation
Thakore, Kartik, "Web-based Simulation and Training Environment for Laparoscopic Camera Calibration"
(2013). Electronic Thesis and Dissertation Repository. 1769.
https://ir.lib.uwo.ca/etd/1769

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61641581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/232?utm_source=ir.lib.uwo.ca%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1769?utm_source=ir.lib.uwo.ca%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

WEB-BASED SIMULATION AND TRAINING ENVIRONMENT FOR LAPAROSCOPIC

CAMERA CALIBRATION

Thesis format: Monograph

by

Kartik Thakore

Graduate Program in Biomedical Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Kartik Thakore 2013

ii

Abstract

Endoscopic cameras are increasingly employed in image-guidance procedures, where the video

images must be registered to data from other modalities. However, such cameras are susceptible

to distortions, requiring calibration before images can be used for registration, tracking and 3D

reconstruction. Camera calibration is learned in a laboratory setting, where configuring and

adjusting the physical setup is tedious and not necessarily conducive to learning. A centralized

resource that utilizes 3D interactive components needs to be available for training on camera

calibration. In this project, a web-based training environment for camera calibration is

implemented called SimCAM. SimCAM was developed using the Web Graphics Library

(WebGL), Open Computer Vision (OpenCV) library, and custom software components. WebGL

and OpenCV were used to simulate camera distortions and the calibration task. The main

contributions include the implementation and validation of SimCAM. SimCAM was validated

with a content validity study, where it was found to be useful as an introduction to camera

calibration. Future work involves improving the supporting material and implementing more

features, such as uncertainty propogation.

Keywords: WebGL; OpenCV; Camera Calibration; Endoscopy; Laparoscopic; Training;

calibration; Web-based training; 3D interactive environments

iii

Acknowledgments

I would like to thank my advisors, Dr. Ladak and Dr. Peters for their continued patience throughout

my program. I would also like to thank both Dr. Ladak and Dr. Peters for their critique of my work

and writing. I have learned an incredible amount, with regards to writing, presenting and analysis

for which I am eternally grateful. Additionally I would like to thank Alireza Rohani, Arefin

Shamsil, Caiwen Huang, Diego Cantor, Dr. Agrawal, Dr. Barron, Dr. Bureau, Dr. Chen, Dr.

Eagleson, Dr. Katchabaw, Dr. Parraga, and Uditha Jayarathne, for their support, advice and

valuable feedback. Also I would like to thank my family for their continued support.

Finally I would like to thank my dear friend Stacy Roberson, without her this thesis would not

have been possible.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Appendices ... xi

List of Abbreviations and Acronyms .. xii

List of Symbols .. xiv

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Cameras... 2

1.2.1 Components of a Camera .. 2

1.2.2 Pinhole Camera Model ... 3

1.2.3 Intrinsic Parameters .. 6

1.2.4 Extrinsic Parameters ... 9

1.3 Camera Calibration ... 10

1.3.1 Calibration Software ... 11

1.4 Available Training for Camera Calibration .. 11

1.5 Objectives ... 11

2 Methodology .. 12

2.1 System Users ... 12

2.2 Gathering Specifications ... 12

v

2.3 Specifications .. 12

2.3.1 Functional Specifications .. 13

2.3.2 Non-functional Specifications .. 13

2.4 Implementation ... 14

2.4.1 Programming Languages & Libraries ... 15

2.4.2 Architecture & Design .. 19

3 Results .. 49

3.1 Introduction ... 49

3.2 Time Spent on Tutorial ... 49

3.3 Content Validity .. 49

3.3.1 Section A: Specific content validity questions ... 50

3.3.2 Section B: Determining attitudes on design decisions 53

3.3.3 Section C: Measuring difficulty of simulator ... 54

3.3.4 Section D: Ensuring all simulation components worked 54

3.3.5 Additional Comments ... 55

3.4 Expert Determination .. 56

3.4.1 Quiz Results .. 57

4 Conclusion & Future Work .. 58

Bibliography ... 61

Appendices .. 65

Curriculum Vitae .. 72

vi

List of Tables

Table 3-1: Mean vs. Median of each question in Section A ... 51

Table 3-2: Results for Section B (questions regarding attitudes on design decisions) 54

vii

List of Figures

Figure 1-1: Simple Camera Components: Light enters the camera and is focused through a lens

system on the recording medium, which stores the image. .. 3

Figure 1-2: Camera image acquisition where a pinhole in a box acts as a lens for the light which

is projected on the back of the box – source: Wikimedia commons. ... 3

Figure 1-3: Depiction of a pinhole camera in the perspective projection model [14] that projects

3D world points P to 2D image points p, where f is the focal length. .. 4

Figure 1-4: Example of radial distortion, applied on the left image. The left image is also the

ideal correction of the radially distorted image. ... 7

Figure 1-5: The distorted image corrected with coefficients (-10, -100, -1000) for the radial

distortion correction equation applied. ... 7

Figure 1-6: Example of tangential distortion, applied on the left image. The left image is also the

ideal correction of the tangentially distorted image. ... 8

Figure 1-7: The distorted image corrected with coefficients (-0.1, 0) for the tangential distortion

correction equation applied. .. 9

Figure 1-8: Image on the right shows extracted features from the corners of the calibration grid

from the left image. ... 10

Figure 2-1: System architecture overview of SimCAM, showing the client (code deployed on the

user’s Web Browser), server and database component. ... 14

Figure 2-2: Mojolicious descriptive languages for web services. This example shows a simple

<<GET>> request to the root URL path that returns the text ‘Hello World!’. 17

Figure 2-3: SimCAM Architecture that shows specific components responsible for interfaces and

communication between the client and the server. ... 22

Figure 2-4: Class diagram describing the REST services implementation for SimCAMService. 24

viii

Figure 2-5: Initialization sequence of the client (SimCAM::Router::App) on the WebBrowser.

The User triggers the process by requesting the service URL through the WebBrowser. The

request triggers the SimCAMService on the server to provide the client application payload,

which is then initialized on the WebBrowser when the page is loaded. 25

Figure 2-6: Class diagram describing session resource provide by SimCAM::Service. 26

Figure 2-7: Class diagram describing the image and computer vision resource in

SimCAMService. .. 27

Figure 2-8: Class diagram describing the interface between the client and service via REST and

Backbone::Model and its children in the SimCAM::Collection and SimCAM::Model namespace.

... 28

Figure 2-9: Paper prototype of basic user interface template for each milestone. The milestone

progress bar shows how far along the user is in the study. The content material is shown in the

center with tutorial and interactive content. Finally a quiz is presented at the bottom. 30

Figure 2-10: Paper prototyping of GUI Design for 3D interactive components. The camera view

shows the current camera’s view. The 3D workspace is where the user interacts with the camera

and calibration grid. The side menu provides buttons for camera calibration results and capturing

images. The captured images are shown in the additional results area. Finally the

rotation/position manipulator shows the rotation and position of the current select object that can

also be edited... 31

Figure 2-11: Class diagram describing the class hierarchy for views in SimCAM. All

SimCAM::Views are implementations of Backbone::View and initiated by the

SimCAM::Router::App. .. 32

Figure 2-12: Hierarchy of implemented components of SimCAM: Simulation, Interactive,

Feedback, Tutorial Materials and Validation computers .. 34

Figure 2-13: 3D interactive camera implementation, with the 3D workspace, camera view and

the rotation/translation manipulator. ... 35

ix

Figure 2-14: Distortion simulation with controls on the side menu where the user can adjust the

parameters for radial and tangential distortions. ... 36

Figure 2-15: User interaction with calibration environment. (Step 1, A) Capture image with

camera. Images appear in (Step 2, B). .. 37

Figure 2-16: Camera matrix manipulator widget. Users can change the focal length and principal

points of the camera in the 3D environment above. ... 38

Figure 2-17: Camera pose manipulator. The user can adjust the rotation and translation matrix

directly to the 3D environment in the same milestone. .. 39

Figure 2-18: Interactive webcam component that allows user to calibrate their web camera. They

use their phones or printed paper to display an 8x5 calibration on their web camera. By clicking

the capture button similar to the calibration environment in Figure 2-15. The captured images are

shown in the bar on the bottom and the calibrated results in the results dialog (Figure 2-19) 40

Figure 2-19: Feedback popup dialog which shows the calibration parameters, graphs (Figure

2-20) and efficacy (Figure 2-21) of the current calibration attempts .. 41

Figure 2-20: Example of differencing the corrected and undistorted images. In the simulation

environment the undistorted images are simulated camera views before the simulated distortion

is applied. The distorted images are with simulated distortions applied, and the corrected images

are with the calibration parameters used to correct the distorted image. The final efficacy of the

calibration is based on the difference image of corrected and undistorted image. 42

Figure 2-21: Example of charted calibration parameters. Clicking on the legend values enables

each series ... 43

Figure 3-1: Time spent on study vs. correct answers in the quiz, p=0.73. 57

Figure 3-2: Hours participant was awake vs. quiz score, p=0.36 ... 58

Figure 3-3: Overall content validity score between Experts vs. Non-experts. The results indicate

that SimCAM has valid content to be a training environment for beginners 50

x

Figure 3-4: Mean Section A (specific content validity questions) answers compared between

experts and non-experts .. 51

xi

List of Appendices

Appendix A: Content Validity Questionnaire... 65

xii

List of Abbreviations and Acronyms

<<GET>> - HTTP GET request sent from the client to the server

<<POST>> - HTTP POST request sent from the client to the server

<<WS>> - HTTP WebSocket request that initiates a WebSocket between the client and server

2D – two-dimensional

3D - three-dimensional

API – Application programming interface

Bootstrap – HTML and CSS framework

C programming language – High level programming language with efficient data structures, CPU

and memory usage

CPAN - Comprehensive Perl Archive Network

CPU - central processing unit

CRUD - basic create, read, update and delete operations on the database

CT - computed tomography

DBI - Database interface

DBIx::Class – Database interface extension library that marshals database tables into class

GPU - Graphics Processing Unit

GUI - Graphical User Interface

HTML5 – Hyper Text Markup Language 5th edition

JSON - JavaScript Object Notation

xiii

MATLAB - high-level technical computing language and interactive environment

MIS - Minimally invasive surgeries

MRI - magnetic resonance imaging

MVC - model view controller architecture

MVP – model view presenter paradigm

OpenCV – Open Computer Vision library

OpenGL ES - a cross-platform API for full-function 2D and 3D graphics on embedded systems

ORM - object relational mapping

PET - positron emission tomography

RDBMS - Relational data base management system

REST - Representational state transfer

SimCAM – Name of system created and tested, sort for simulation camera

STD – Standard deviation

SQL - Structured Query Language

SQLite – Server less SQL database

Three.JS – JavaScript library that extends WebGL

WebBrowser – Software package that abstracts web browsers used by users

WebGL – 3D library access to the GPU via the user’s web browser enabling

xiv

List of Symbols

𝐴 - Camera matrix that describes the transformation between 𝑃 and 𝑝

𝑎 – Aspect ratio, a ratio between the height and width of the image plane

(𝑐𝑥, 𝑐𝑦) - Principal point

𝑓 – Focal Length in camera matrix 𝐴

𝑘1, 𝑘2, 𝑘3 − 3 coefficients for radial distortion correction equation

𝑃 - 3D world point (𝑋, 𝑌, 𝑍)

𝑝 – Image point (𝑢, 𝑣) or (𝑥, 𝑦)

𝑝1, 𝑝2 – 2 coefficients that describe tangential distortion correction equation

𝑟 - The distance of an image point from the center or principal

[𝑅|𝑡] - Homogenous matrix of the camera’s rotation (𝑅) and translation (𝑡) relative to the origin

point of the world

𝑠 - Arbitrary scalar scale factor for perspective camera model

(𝑢, 𝑣) or (𝑥, 𝑦) – 2D position coordinates in image

(𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) – X and Y positions after correction applied to original positions

1

1 Introduction

1.1 Motivation

Minimally invasive surgeries (MIS) help to increase patient recovery and decrease complications,

and have, in large measure, been enabled by the decreasing size of instruments and laparoscopic

cameras. Images from laparoscopic cameras must be highly accurate and distortion free because

they are often registered with images from other sources such as pre-operative computed

tomography (CT) or magnetic resonance imaging (MRI) [1] [2]. Laparoscopic cameras can be

effectively modeled as an ideal pinhole camera [3]. However, the precision and accuracy of MIS

applications are affected by distortions because the optical system associated with a typical

endoscope is not ideal [4]. Distortions are especially exacerbated as the camera is made smaller

for minimally-invasive procedures, which can directly affect application results [5]. As a

consequence, it is necessary to perform a calibration procedure to correct these distortions [6]. In

addition to this distortion correction, a further calibration step must be performed to relate the

pixels in the image to the three-dimensional space within which the image resides [7]. Most camera

calibrations enable the intrinsic (distortion and focal length) and extrinsic (pose) parameters to be

performed in a single calibration procedure [8].

The most common method of achieving such a camera calibration is to capture images of a known

grid pattern from multiple viewpoints. These images are then used to estimate the intrinsic

parameters of the camera. Additional steps are then performed to estimate the transformation

matrix that relates the 3D coordinate of the camera to those of the real world, also known as the

extrinsic parameters. These camera parameters are described more in detail in section 1.2 [8].

Currently there are several camera calibration algorithms and software packages. Regardless of

the algorithm however, calibration grid images remain a crucial component. Especially in medical

imaging the OpenCV software package is used to perform camera calibration. Camera calibration

is described in detail in section 1.3.

Camera calibration is a valuable technique and most medical imaging graduate students learn it

through trial and error. There is an existing software alternative called Metrovisionlab which is

2

used to teach industrial camera calibration with a course [9]. Web based training for similar

techniques have been found to be effective [10]. The motivation for the current work is that no

self-directed 3D interactive camera calibration environment is available for graduate students

online.

1.2 Cameras

Laparoscopic cameras, and cameras in general, are devices that record light scattered from objects

in the real word and capture them to a screen. In medical imaging, laparoscopic cameras provide

visual inputs that can be used to drive a variety of applications. Medical imaging tasks such as

registration, tracking and visualization are a few of the applications that depend on camera

calibration ([1], [2], [4]).

For example, medical registration applications involve alignment of features and images captured

from cameras and other modalities [1]. Medical imaging modalities used to acquire images of the

body include radiography (X-ray, Computer Tomography), magnetic resonance imaging (MRI),

and positron emission tomography (PET), with laparoscopic cameras also falling into this category

([11], [12]).

1.2.1 Components of a Camera

Cameras are composed of 2 major components, the lens and the recording medium shown in Figure

1-1 [13]. The lens focuses the incoming light onto a medium where the light is recorded.

Characteristics of these two components play a part in distortions that is discussed later. These

components can be modeled simply as a pinhole camera [14] (Figure 1-2). In this model the lens

is the pinhole and the back of the box is the recording medium. The pinhole camera model provides

a mathematical basis for camera calibration and is used throughout this thesis.

3

Figure 1-1: Simple Camera Components: Light enters the camera and is focused through a lens

system on the recording medium, which stores the image.

Figure 1-2: Camera image acquisition where a pinhole in a box acts as a lens for the light which

is projected on the back of the box – source: Wikimedia commons.

1.2.2 Pinhole Camera Model

The pinhole camera is a common model that describes the image acquisition process of a camera.

This model is used extensively in this research and is the basis for camera calibration. A part of

camera calibration involves acquiring two sets of parameters described in the pinhole camera

model, which describes both intrinsic and extrinsic camera parameters. The intrinsic camera

parameters describe internal features of a camera such as focal length and distortions, while the

4

extrinsic parameters describe the external features of the camera such as the orientation and

position of the camera [15].

Perspective projection model

In the pinhole camera model, the ideal relationship between the 3D world point 𝑃 = (𝑋, 𝑌, 𝑍) and

the camera’s capture point 𝑝 = (𝑢, 𝑣) is modeled as a perspective projection. In the perspective

projection model (Figure 1-3) the optical axis is collinear with the Z axis. The optical centre of the

camera is defined to be positioned at the origin of the 3D (world) coordinate system, and where

the image plane contains the projection of the 3D word point P onto the 2D image point (𝑝). The

focal length of the camera is the distance between the optical centre and the image plane. Finally

the centre of the image plane is the principal point that decides the offset of the image captured

[16].

Figure 1-3: Depiction of a pinhole camera in the perspective projection model [14] that projects

3D world points P to 2D image points p, where f is the focal length.

5

The model the projection of a 3D world point 𝑃 = (𝑋, 𝑌, 𝑍) to the 2D image point 𝑝 = (𝑢, 𝑣) can

be written as a relationship (1-1).

 𝑢 =
𝑋𝑓

𝑍
, 𝑣 =

𝑌𝑓

𝑍
 (1-1)

This relationship can be reformulated in matrix notation as denoted in (1-2).

[
𝑢
𝑣
1

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (1-2)

Equation (1-1) can be amended (Equation 1-3) to account for the principal point (𝑐𝑥, 𝑐𝑦), which is

the offset of the image plane capture.

[
𝑢
𝑣
1

] = [
𝑓 0 𝑐𝑥 0

0 𝑓 𝑐𝑦 0

0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (1-3)

This principal point is usually at the centre of the image plane. For example if the image plane is

600 pixels in width and 300 pixels in height, the principal point would be (300, 150) pixels. The

transformation matrix ([
𝑓 0 𝑐𝑥 0

0 𝑓 𝑐𝑦 0

0 0 1 0

]) is called the camera matrix (𝐴 in Equation (1-4)).

𝐴 [

𝑥
𝑦
𝑧
1

] = [
𝑢
𝑣
1

]
(1-4)

 The camera matrix can also be adapted (1-5) to account for additional parameter such as the

aspect ratio (𝑎, the ratio between the height and width) of the image plane.

[
𝑢
𝑣
1

] = [

𝑎𝑓𝑥 0 𝑐𝑥 0

0 𝑓𝑦 𝑐𝑦 0

0 0 1 0

] [

𝑋
𝑌
𝑍
1

]
(1-5)

6

1.2.3 Intrinsic Parameters

Linear Intrinsic Parameters

The components of the camera matrix (𝐴 in Equation (1-4)) are the linear intrinsic parameters of

the pinhole camera model. The linear intrinsic parameters are required to perform correction of

cameras. However, real cameras are not perfectly modeled by the ideal pinhole model.

An exception to the pinhole camera model in real lens systems is distortion. Two such distortions

are radial and tangential, described below. These distortions are corrected in the camera calibration

process, but first we need to define the equations that can appropriately characterize these

distortion. The coefficients used in the family of equations that correct both radial and tangential

distortions make up the non-linear intrinsic parameters. There are 5 coefficients in total, that

describe radial distortions (𝑘1, 𝑘2, 𝑘3 in Equation (1-6)) (3 parameters) and tangential distortions

(𝑝1, 𝑝2 in Equation (1-8)) (2 parameters) as described below. In the camera calibration process an

algorithm, usually Zhang’s [8], estimates these parameters to achieve distortion correction.

Radial Distortions

Radial distortions typically exhibit radial symmetry, and are caused by the inability of a typical

lens to accurately model the characteristics of a pinhole camera (Figure 1-4). Radial distortions are

mathematically modeled and corrected with the following equation:

[
xcorrected

ycorrected
] = [

x
y] (1 + k1r2 + k2r4 + k3r6) (1-6)

where 𝒙𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅, 𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 are the corrected 𝒙, 𝒚 points in an image after the image has been

process with equation (1-6) to remove radial distortions.

7

Figure 1-4: Example of radial distortion, applied on the left image. The left image is also the ideal

correction of the radially distorted image.

In Equation (1-6), 𝑟 is defined as the distance of an image point from the centre (Equation (1-7)).

𝑟2 = 𝑥2 + 𝑦2 (1-7)

The radial distortion correction equation lends three coefficients (𝑘1, 𝑘2, 𝑘3 Equation (1-6)) to

the non-linear intrinsic parameters. Figure 1-6 shows an example of tangential distortion that can

be corrected with the ideal coefficients values (-10, -100, -1000). The corrected image is shown in

Figure 1-5.

Figure 1-5: The distorted image corrected with coefficients (-10, -100, -1000) for the radial

distortion correction equation applied.

8

Tangential Distortions

Tangential distortions (Figure 1-6) occur along the X or Y axis and are caused by misalignment

between the camera’s lens and the recording medium (referring back to Figure 1-1) upon which

the image is projected.

Figure 1-6: Example of tangential distortion, applied on the left image. The left image is also the

ideal correction of the tangentially distorted image.

Tangential distortions can be mathematically modeled and corrected with the following equation:

[
xcorrected

ycorrected
] = [

x + (2p1y + p2(r2 + 2x2))

y + p1(r2 + 2y2) + 2p2x
] (1-8)

In Equation (1-8), again 𝑟 is defined as the distance of an image point from the center (Equation

(1-7)). The tangential distortion correction equation lends two coefficients (𝑝1, 𝑝2 in Equation

(1-8)) to the non-linear intrinsic parameters. Figure 1-6 shows an example of tangential distortion

that can be corrected with the coefficients values (-0.1, 0). Figure 1-7 shows the corrected image,

where 𝑝1 = −0.1 and 𝑝2 = 0.

9

Figure 1-7: The distorted image corrected with coefficients (-0.1, 0) for the tangential distortion

correction equation applied.

1.2.4 Extrinsic Parameters

The final set of parameters that describe a cameras’ pose, are the extrinsic parameters, which is a

homogenous matrix of the camera’s rotation and translation relative to the origin point of the world

coordinate system ([𝑅|𝑡] Equation (1-9)).

 The pose matrix (Equation (1-10) can then be applied to the perspective camera matrix Equation

(1-4), to achieve the expanded camera transformation (Equation (1-10)).

𝑠 ∗ 𝐴 ∗ [𝑅|𝑡] ∗ [

𝑥
𝑦
𝑧
1

] = [
𝑢
𝑣
1

] (1-10)

[𝑅|𝑡] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

] (1-9)

10

1.3 Camera Calibration

Camera calibration involves estimating the intrinsic and extrinsic parameters of the camera as

discussed in earlier sections [14]. These parameters are required to determine the camera’s position

and orientation (pose) from which an image is acquired. Specifically, Zhang’s algorithm [8], well

established for camera calibration, employ a calibration rig, consisting of a planar checkerboard

pattern as shown in Figure 1-8 [17]. By taking many images of the pattern with the camera, a set

of feature points can be extracted (Figure 1-8). The feature points and their locations are recorded

to create a projected image coordinate equation. Every captured image has a unique set of these

equations and a closed form solution can be formed which can be used to estimate further

parameters. The extrinsic parameters are estimated based on the camera position relative to an

arbitrary origin position for the real world coordinates (P). With respect to correcting lens

distortion, there are several algorithms (Zhang [8], R. Tsai [18], etc.) that maybe used to

accomplish this, but the practice and process is usually similar. With several image captures, the

feature points can be used to create a system of equations relating 2D image positions to 3D world

positions. Solving this system of provides the intrinsic parameters (especially the camera matrix

Equation (1-4)), discussed earlier, that define the relationship between the world coordinate

systems to the image plane.

Figure 1-8: Image on the right shows extracted features from the corners of the calibration grid

from the left image.

11

1.3.1 Calibration Software

Several algorithms are available that perform camera calibration which are usually based on

Zhang’s calibration algorithm which is used extensively in this thesis [8]. An implementation of

Zhang’s is available with the open-source Open Computer Vision (OpenCV1) software library

[19].

1.4 Available Training for Camera Calibration

Camera calibration is taught in computer vision courses, however it is a minor component and

practical application of the technique may not be covered. A simulation software package called

Metrovisionlab [9] is available and used for training camera calibration in an industrial computer

vision class. Metrovisionlab, available as an offline MATLAB module. Metrovisionlab simulates

several aspects of the camera calibration process, but doesn’t provide a 3D environment. The

Metrovisionlab simulator is used in two courses at the Department of Design and Manufacturing

Engineering at the Universidad de Zaragoza (Zaragoza, Spain), where it is used to teach students

in 4 year of a manufacturing engineering course and thus requires a higher level of understanding

to use. Metrovisionlab focuses on explaining how various parameters affect the image taken by a

camera, which makes the user interface complex to use.

1.5 Objectives

The objective of this project is to make a web based 3D interactive environment for training in

camera calibration, and to validate the content and efficacy of the created system by having experts

and non-experts review it.

1
 http://opencv.org/

http://opencv.org/

12

2 Methodology

The prototyping software engineering methodology was used to guide the project initialization,

design, implementation and testing. This methodology is notable for reducing development time

of small scale interactive software systems ([20], [21]). Initially information was gathered and

was used to specify the implementation that was to be built. The specifications were then used to

create two plans namely, the system architecture and the design. These plans were then used to

drive the implementation progress and subsequent testing. An implementation called SimCAM

was created based on the system architecture and design defined below.

2.1 System Users

SimCAM is designed for users who are learning camera calibration for medical imaging and who

are expected to have prior training in linear algebra, computer vision or computer graphics. Users

are also expected to have some experience using 3D environments and rich interactive web pages.

2.2 Gathering Specifications

In interviews, user stories were gathered from end users and subject matter experts. The user stories

are simple statements of features and behaviours the users expected from the system. Some early

prototypes were generated to gauge the feasibility, user experience and to further clarify the

specifications. After several initial prototypes were implemented, a list of specifications was

developed for the foundation of SimCAM.

2.3 Specifications

The specifications are broken down into two types. Functional specifications describe specific

features of the system and its components. On the other hand non-functional specifications

describe the operation of a system rather than specific behaviours. The following lists are the

specifications of SimCAM.

13

2.3.1 Functional Specifications

1. Camera simulation

1.1. User can manipulate cameras’ camera matrix

1.2. User can manipulate cameras’ extrinsic parameters

1.3. User can manipulate cameras’ distortion parameters

2. Camera calibration simulation

2.1. User can select position and orientation of the calibration grid

2.2. User can capture calibration grid placements

2.3. User can get calibration parameters for each calibration grid placement

2.4. User can see difference image of calibrated image vs. undistorted image

2.5. Calibration will be based on OpenCV implementation of Zhang’s algorithm

3. Webcam calibration

3.1. User can acquire images from their web camera

3.2. User can capture calibration grid placements from images

3.3. User can get calibration parameters for each calibration grid placement

3.4. User can see difference image of distorted image vs. calibrated image

4. Training and Validation

4.1. Users will be presented background material and quizzes to review material

4.1.1. A tutorial format will be used with several milestones

4.2. User metrics will be stored

4.2.1. Time spent per milestone of the tutorial

4.2.2. Quiz results

4.2.3. Answers to content validity questionnaires (defined in Appendix A)

2.3.2 Non-functional Specifications

1. Users will interact with the system through a website

2. System will provide near real-time feedback on camera distortions

2.1. Image frame rate should be approximately 20 milliseconds

14

The plan for implementing the functional specifications is defined in the system design; while the

plan for implementing the non-functional specifications is defined in the system architecture.

2.4 Implementation

SimCAM was implemented as a web application that provided milestones that are composed of

training tutorials, quizzes and interactive components (as depicted in Figure 2-1). SimCAM’s

architecture was designed as a web application due to the constraints and specifications distilled

from the user stories. The architecture of the system is divided into two major components: the

server and the client. The server (application server) serves content and resources to users over the

web to the user’s web browser. The server is responsible for data storage, content generation,

computer vision and image processing. The client will process and render the content generated to

the web browser. Additional processing such as calibration and distortions are handled by the

computer vision and image processing components in the server.

ServerUser Web Browser

Database Data storage and retrievalData Storage and Retrieval

Client/Server communication

Server/Client communication

Content
Renderer

Content
Generator

Computer Vision

Image Processing

Figure 2-1: System architecture overview of SimCAM, showing the client (code deployed on the

user’s Web Browser), server and database component.

15

2.4.1 Programming Languages & Libraries

SimCAM utilizes several programming languages and libraries for the implementation. The

SimCAM database was built on SQLite [22], a software library that implements a self-contained,

server less SQL (Structured Query Language [23]) database engine. Perl [24], a scripting language,

was used to implement SimCAM’s application server. Computer Vision components were

developed in the C programming language [25], using the OpenCV [26] library. Finally the

JavaScript language [27] and HTML5 (HyperText Markup Language) [28], were used in the client,

which is responsible for rendering content (such as the 3D simulation environment, distortions,

charts, etc.). HTML5 also provided a communication protocol called WebSockets [29].

WebSockets is a persistent connection between the user’s web browser and the server. WebSockets

was used since there needs to be image data communicated to the server for calibration and image

processing. With most broadband Internet connections the communication of image data was near

real time.

Database

SQLite [30] was appropriate for SimCAM because only a small amount of data (2 tables) are

stored. An alternative to SQLite would be to use another RDBMS (relational database management

system), which could handle larger datasets, volume of usage and concurrency. The RDBMS

features are currently not required for SimCAM’s data usage or specifications and would add

another system on the server that would need configuration and management. SQLite, however,

uses the same interface (SQL) as other RDBMSs, and migration would not be hindered.

Additionally SimCAM uses a database interface (DBI [31]) to abstract the database away from the

application.

Perl DBI [31] is an interface implemented in the Perl programming language which standardizes

database communications for programmers. Perl DBI has been maintained since 1992, and allows

for near database independent SQL code. SimCAM uses Perl DBI for communication with SQLite

indirectly via the DBIx::Class, an object relational mapping (ORM) library.

Object relational mapping (ORM) is a technique that converts data between databases and object

oriented constructs (usually classes). DBIx::Class generates boilerplate (inconsequential and

16

formulaic) code for basic create, read, update and delete (CRUD) operations on the database.

Usage of DBIx::Class [32] increases development speed, abstraction and portability, which

facilitates prototyping and faster iteration. Although, DBIx::Class abstractions may increase in

complexity for performing comprehensive queries and operations (which can be easily avoided by

stored procedures and views on the database), DBIx::Class was appropriate for SimCAM as the

queries and operations needed are not more complex than CRUD operations.

Perl

Perl is notable for its ease of integration with several systems, protocols and interfaces. Perl also

has a rich ecosystem of reusable code (called modules) available on the Comprehensive Perl

Archive Network (CPAN) [33]. CPAN currently provides 123,825 modules that are available on

over 271 servers worldwide. CPAN modules are well tested and provided several reusable

components that SimCAM is built with (for example DBIx::Class which was mentioned earlier).

Perl also provides great flexibility of language and paradigms that is excellent for prototyping

applications. However, this flexibility at times allows the user to develop complex components

(anti-patterns) that are difficult to migrate and extend. Perl anti-patterns can be avoided by

following best practices and testing. The Perl language was also selected for the SimCAM project,

for the Mojolicious web framework ([34]) module available on CPAN.

Mojolicious is a real-time Perl web framework with features such as Representational state transfer

(REST described in [35]), JavaScript Object Notation (JSON) ([36], [37]) and receiving

WebSockets. Mojolicious uses declarative language that emphasizes expression of the server logic,

which make defining web services simple. As an example of this declarative language the

following script (Figure 2-2) serves the text ‘Hello World’.

17

Figure 2-2: Mojolicious descriptive languages for web services. This example shows a simple

<<GET>> request to the root URL path that returns the text ‘Hello World!’.

The declarative language again makes writing complex web services simple and easier to

prototype. Mojolicious trades powerful features and abstraction of logic with performance. In

SimCAM, Mojolicious’ performance weaknesses are addressed by performing expensive

computation either on the client machine or in a memory/CPU efficient language like C

programming language.

C programming language

The C programming language is a low level language (relative to Perl) that is notable for efficiency

of data structures. In SimCAM the C language was used to implement computer vision features

with the OpenCV library. An alternative to C would have been to use Python another scripting

language similar to Perl. Usage of Python OpenCV would increase the memory and CPU overhead

unnecessarily.

JavaScript & WebGL

JavaScript is a dynamic scripting language available on modern web browsers, providing features

such as WebGL ([28], [38]). WebGL was appropriate for the frame rate specifications for data

rendering. WebGL allows web browsers access to the Graphics Processing Unit (GPU), a

specialized electronic circuit for graphics processing. WebGL is based on OpenGL ES 2.0, a

graphics library that is an industry standard. Using WebGL, JavaScript is able to render 3D content

on the user’s system without requiring processing from the server.

Use Mojolicious::Lite;

Get ‘/’ => {text => ‘Hello World!’};

App->start

18

Because WebGL is based on OpenGL ES 2.0, and is low level, this would increase the

development overhead for implementing features. A higher level library called Three.js ([39], [40]

) was used to meet the user specifications. Three.js created an object oriented interface to WebGL

in JavaScript. Three.JS provided classes and several utilities that address the overhead issue, while

still being a cross-browser light weight library. An example of a Three.JS class, is the camera class

making it easy to create perspective cameras and implement interaction for updating camera

parameters. Three.js can also render scene data to several targets, one of which is a HTML5 [41]

canvas tag. The advantage of rendering to a HTML5 canvas is that the final 2D rendered scene

from a camera can be extracted and sent to the server for additional processing.

Since the client was responsible for several views, a model view controller (MVC) architecture

was selected for the implementation. The Backbone.JS JavaScript library was used as the MVC

framework for SimCAM. Backbone.JS [42] is based on the model-view-presenter paradigm [43]

(a derivative of MVC), where a presenter is responsible for keeping various views synchronized

with the model data on the application. Backbone.JS performs synchronization by utilizing events

that are compartmentalized to views, collections, models and routers. Backbone.JS provides much

needed structure for SimCAM’s interactive user interface and is light weight and compatible across

several browsers and operation systems. Alternatives to Backbone.JS (such as Ember.js,

Angular.js, etc.) provide more features and abstractions but are less stable.

HTML5

Hyper Text Markup Language was specifically used for the availability of the canvas tag. The

canvas tag provides a view-port to a variety of content, especially WebGL content. An alternative

would be to use Flash, Java or Unity3D platforms to render the content. Both Flash and Java

applications would require an extra interface to transmit content back and forth between the client

and server. By using WebGL and HTML5 canvas we avoid this interface by using the existing

server interface that is used to render the rest of the data. The advantage of having access to

additional 3D rendering features has been traded-off by using HTML5, but the 3D content in

SimCAM is fairly simple and does not need those features.

Additionally a library called Bootstrap [44] was used to provide extra features such as scaffolding

and a cleaner design. Bootstrap required the client to process additional design components.

19

However, the additional processing load is negligible and in return the HTML5 content is well

structured and rendered, increasing the maintainability and extensibility of the project.

2.4.2 Architecture & Design

The architecture and design describe engineering decisions made prior and during the

construction of SimCAM.

Interfaces

Figure 2-3 shows the various classes, libraries and interfaces that make up SimCAM. On the client

side, WebBrowser (the WebBrowser is a software package referring to the users’ installed web

browser), runs the JavaScript SimCAM.js component and libraries. SimCAM.js uses

SimCAM::Model sub-packages to request objects as REST requests. The SimCAM::View sub-

packages renders various views that depend on Three.JS and WebGL to render content. The views

are also responsible for managing and responding to events on the web browsers.

The SimCAM server module was written in Perl, and services the client which runs as JavaScript

in a web browser. Communication is done using the HTTP 1.1 protocol. The server running the

service is available at http://simcam.imaging.robarts.ca. The Perl server module connects to both

the database and to a custom package of OpenCV, which handle the data storage and computer

vision components, respectively.

More specifically, the SimCAM.pm Perl module serves and services the SimCAM.JS application

on the WebBrowser. SimCAM.PM contains the SimCAMService, where the SimCAMService

depends on SimCAM::Schema class, which maps the database to class instances, via the

DBIx::Class ORM. SimCAMService also provides the SimCAM::API which exposes access to

SimCAM_CV. And SimCAM_CV is a package of custom OpenCV compiled resources that

perform computer vision processing. Figure 2-3 shows the architecture in more detail as a class

diagram.

http://simcam.imaging.robarts.ca/

22

Server

Database

Client

<<Interface>>

SimCAM::Schema

<<simcam.imaging.robarts.ca,
Application Service>>

SimCAMService

<<Interface>>

SimCAM::API

SimCAM_CV

WebBrowser

Backbone.JS

Three.JS

WebGL API Calls

SimCAM::View

SimCAM::Model REST request

HTTP 1.1 Protocol

SQLite

DBIx::Class ORM

Direct Calls

Mojolicious

Figure 2-3: SimCAM Architecture that shows specific components responsible for interfaces and

communication between the client and the server.

23

The SimCAMService (depicted in Figure 2-4) defines a service that provides a REST API to front

end clients. The resources provided by SimCAMService are sessions, images and computer vision

algorithms. Resources are available as URL (uniform resource locator) paths that extend the main

service domains (called resources):

 http://simcam.imaging.robarts.ca/ Service

o /session/ - SessionResource

o /api/image - ImageResource

o /api/ - CVResource

Each resource can be accessed with “verbs” such as:

 <<GET>> /api/session/start/1

o Gets the content for the first session

 <<POST>> /api/image

o Post new images from the client to the server

 <<WS>> /api/calibration

o Start a Websocket (bi-directional communication) between the client and server for

calibration of image data

24

<<Interface>>

SimCAM::API

distort
check
calibrate

<<simcam.imaging.robarts.ca,
Application Service>>

SimCAMService

<<ResourcePath>>
/api/

<<Resource>>

ImageResource

<<POST>>create_image()
<<GET>>get_image(id)

<<ResourcePath>>
/api/image

Base64Decode()

Encode64 Image data posted

<<Resource>>

SessionResource

<<ResourcePath>>
/session/

<<GET>>start(number)
<<GET>>end(number)
<<GET>>run(number)
<<POST>>save(number, data)

ID: store_image
image_path: get_image_path(id)

<<Resource>>

CVResource

<<GET>>distort(images, parameters)
<<GET>>check(image)
<<GET>>calibrate(images)
<<WS>>calibration_socket()
<<WS>>check_socket()

Figure 2-4: Class diagram describing the REST services implementation for SimCAMService.

Application Initialization

The process of initializing the application (Figure 2-5), describes the steps involved in starting

SimCM. SimCam is initiated when the user requests the http://simcam.imaging.robarts.ca URL

from their WebBrowser. The WebBrowser performs a <<GET>> request to receive the Home

Page. Users then submit their email addresses on the Home Page’s login form. In response to the

email submission the server provides a unique identification token (called the cookie), which will

be stored on the WebBrowser. Meanwhile the email and cookie are stored in the database via

SimCAM::Schema ORM interface. Once the user is identified, the correct session resources and

25

the client application are delivered to the WebBrowser, where the session is rendered (triggering

the onpageload event). The SimCAM::Router::App JavaScript class is then initialized, which

renders appropriate content for the user to see. The SimCAM::Router::App initializes also Views

(such as SimCAM::MainView), while binding events from the WebBrowser, that can update the

WebBrowser content and URL asynchronously allow for bi-directional interaction with the user.

User :WebBrowser :SimCAMService

Request SimCAM

<<GET>> session

Client Application & session resources
rendered view

:SimCAM::Router::App

onpageload

update url

SimCAM::MainView

bind events

Async. update content

<<GET>> simcam(email)
Cookie with user session

<<GET>> simcam
Home PageLogin Form

Submit email

Figure 2-5: Initialization sequence of the client (SimCAM::Router::App) on the WebBrowser.

The User triggers the process by requesting the service URL through the WebBrowser. The request

triggers the SimCAMService on the server to provide the client application payload, which is then

initialized on the WebBrowser when the page is loaded.

Session Resource

The session resource (shown below) is responsible for recording the results of the milestones and

quizzes. SimCAM::Schema::Session watches a directory on the server for milestone template files.

The template files are presented to users as completed tutorial content with a screen. This request

is initiated with <<GET>> SessionResource::start request and if valid redirected to the <<GET>>

SessionResource::run request, where the server responds with a specific milestone (associated with

an id number). Once the milestone is rendered, the quiz at the end of the milestone can be filled

out by the user. When the user clicks submit the data are posted as <<POST>>

26

SessionResource::save requests. The data from the request are store using the SimCAM::Schema

as a SimCAM::Schema::Session in the database. Each SimCAM::Schema::User is provided with

cookies that are deployed with SessionResource::start responses.

<<Resource>>

SessionResource

<<GET>>start(number)
<<GET>>end(number)
<<GET>>run(number)
<<POST>>save(number, data)

SimCAM::Session

start()
run()
end()

<<Interface>>

SimCAM::Schema

SimCAM::Schema::Usr

id
email

SimCAM::Schema::Session

id
usr_id
start_time
end_time
milestone
json_store

Figure 2-6: Class diagram describing session resource provide by SimCAM::Service.

Image/CV Resource

The image resource (shown in Figure 2-7) is responsible for storing and serving the image and

image data resources. The ImageResource accepts a <<POST>> request of base64 [45] (a lossless

encoding format) for image data and generates a server version of the image on the file system.The

ImageResource then serves the image to <<GET>> requests to the resource URL. The client is

able to construct encode64 image data using the HTML5 canvas tag. The computer vision resource

is provided by CVResource on the /api/ URL. The CVResource provides responses to <<GET>>

requests for distort, check for, calibrate (single image) and calibration (several image) operations.

27

CVResponse also provides sockets for bi-directional data transfer with WebSockets for <<WS>>

requests. All computer vision operations are programs that run on the local version of the image

(captured from ImageResource). Once these operations are completed the results are stored in a

public folder and the paths sent via JSON in responses.

SimCAM_CV

distort(distortion_xml, in_image, out_image,
intrinsic_xml)
check(image_path)
calibrate(intrinsics_path, distortions_path, ...)

<<Interface>>

SimCAM::API

distort
check
calibrate

<<simcam.imaging.robarts.ca,
Application Service>>

SimCAMService

<<ResourcePath>>
/api/

<<Resource>>

ImageResource

<<POST>>create_image()
<<GET>>get_image(id)

<<ResourcePath>>
/api/image

Base64Decode()

Encode64 Image data posted

ID: store_image
image_path: get_image_path(id)

<<Resource>>

CVResource

<<GET>>distort(images,
parameters)
<<GET>>check(image)
<<GET>>calibrate(images)
<<WS>>calibration_socket()
<<WS>>check_socket()

Figure 2-7: Class diagram describing the image and computer vision resource in SimCAMService.

28

Asynchronous Client/Server data interface

The SimCAM JavaScript application binds directly to resources on the SimCAMService, using

the SimCAM::Model::Generic. SimCAM::Model::Generic is an implementation of

Backbone::Model, where a URL resource can be defined on initialization. Once the client is

initialized, the SimCAM::Model::Generic instances can request and update asynchronously with

the SimCAMService (via the Backbone::Model shown in Figure 2-8). The advantage of using

asynchronous connection is that the frontend client does not have to wait for the response from the

server. Backbone.JS additionally provides a Backbone::Collection class that can be used to

implement a collection of models, which are used for the image captures and calibrations taken by

the user.

<<simcam.imaging.robarts.ca,
Application Service>>

SimCAMService

SimCAM::Model::Generic

float: DEG2RAD(degree)
float : RAD2DEG(radians)

<<Abstract>>

Backbone::Model

fetch()

url : String

save()

REST Service connection

<<Abstract>>

Backbone::Collection

SimCAM::Collection::Calibratio
ns

latest_results()
distortions_series_parameter
s()

SimCAM::Collection::Captures

String url : to_calibrate()

Figure 2-8: Class diagram describing the interface between the client and service via REST and

Backbone::Model and its children in the SimCAM::Collection and SimCAM::Model namespace.

29

Graphical User Interface

SimCAM was designed around a tutorial format, using user stories and feedback to do paper

prototyping. Paper prototyping is a technique to quickly design graphical user interfaces [45]. The

user logins in with their email address, which allows the system to track and store their results.

The user is presented with background materials that guide them through 6 milestones.

1. Determine if the user’s browser supports required technology

2. Teach user about the camera matrix and pose parameters using the pinhole camera model

3. Radial and tangential distortion tutorial and simulator

4. Camera calibration background and simulation environment

5. Web camera calibration simulator

6. Content validity questionnaire

After paper prototyping the following screen templates were generated. The graphical user

interface associated with each milestone is designed to follow the simple template shown in Figure

2-9 and Figure 2-10.

30

Figure 2-9: Paper prototype of basic user interface template for each milestone. The milestone

progress bar shows how far along the user is in the study. The content material is shown in the

center with tutorial and interactive content. Finally a quiz is presented at the bottom.

31

Another important GUI designed was the 3D workspace environment shown below.

Figure 2-10: Paper prototyping of GUI Design for 3D interactive components. The camera view

shows the current camera’s view. The 3D workspace is where the user interacts with the camera

and calibration grid. The side menu provides buttons for camera calibration results and capturing

images. The captured images are shown in the additional results area. Finally the rotation/position

manipulator shows the rotation and position of the current select object that can also be edited.

Since this was a pilot project, most of the design was created during the implementation period.

This was accomplished by performing several iterations of implementation periods, where each

iteration focused on a feature or specification.

SimCAM::View Classes

The relationship between the SimCAM::View classes, SimCAM::Router and Backbone are shown

in Figure 2-11. The SimCAM::View are responsible for the following user interfaces:

32

<<Abstract>>

Backbone::View

initialize()
render()

SimCAM::Router::App

initialize()

events : Hash

<<Abstract>>

Backbone::Router

SimCAM::View::ObjectRTModal

SimCAM::View::MainWebCamView

SimCAM::View::MainCanvas

SimCAM::View::SideCanvas

SimCAM::View::SideMenu

SimCAM::View::BottomBar

SimCAM::View::ResultsModal

SimCAM::View::MainView

Figure 2-11: Class diagram describing the class hierarchy for views in SimCAM. All

SimCAM::Views are implementations of Backbone::View and initiated by the

SimCAM::Router::App.

 SimCAM::View::MainView : The main view is the first view to be initialized by the

author and renders the structure as laid out in Figure 2-3. Creating the elements for the

other views to attach too.

33

 SimCAM::View::MainCanvas : The 3D workspace and user inputs with the mouse in

those areas are managed by the main canvas view. In the webcam interactive view the main

canvas loads the webcam view (SimCAM::View::MainWebCamView).

 SimCAM::View::SideCanvas : The camera view element in Figure 2-9 is managed by

the SimCAM::View::SideCanvas. This view watches for all changes on the MainCanvas

to update the camera view.

 SimCAM::View::SideMenu : The side menu view swaps several templates depending on

the parameters passed by SimCAM::Router::App. It shows the various menus for the

distortion, calibration and webcam calibration milestones.

 SimCAM::View::BottomBar : The bottom bar holds additional results such as the

captured images in the calibration and webcam calibration milestones.

 SimCAM::View::ObjectRTModal : The ObjectRTModal shows the position and

rotation of the object currently clicked on in the main canvas.

 SimCAM::View::ResultsModal : The results modal shows calibration results, charts and

efficacy.

SimCAM Graphical User Components

SimCAM’s GUI can be broken down by logical sets of features that cover the functional

specifications. The components that were implemented can be broken down into simulation,

interactive, feedback, tutorial and validation components (Figure 2-12).

34

Figure 2-12: Hierarchy of implemented components of SimCAM: Simulation, Interactive,

Feedback, Tutorial Materials and Validation computers

Camera

The camera was implemented using WebGL, which supports perspective cameras that can also be

manipulated by users in the interface show in Figure 2-13.

SimCAM
Implementation

Simulation

Camera

Distortions

Calibration

Interactive

Camera matrix

Pose

Webcam

Feedback

Efficacy

Calibration
parameters

Tutorial
Materials

Quizzes

Validation

Content

35

Figure 2-13: 3D interactive camera implementation, with the 3D workspace, camera view and the

rotation/translation manipulator.

Controls were implemented in the 3D workspace (blue pyramid) which can be moved and rotated

using the mouse. Additional controls are also provided in the bottom right widget where rotation

and positions can be typed in. All the manipulations change the camera view in the top right. This

is also where distortions are simulated.

Distortions

Distortions were implemented on the server side and powered by the OpenCV library (Figure

2-14). The user would be presented with several controls in the side menu (right) to change the

distortion parameters. As the parameters are changed the user can see the effect in the top right.

36

Figure 2-14: Distortion simulation with controls on the side menu where the user can adjust the

parameters for radial and tangential distortions.

Image Data Serializing and Communication

Implementation of distortions on SimCAM’s camera required a method to send the 3D data to the

server. Image data were captured from the camera view and serialized (compressed into a text

string). The serialized image data were encoded on the client side and sent via WebSockets to the

server. A custom server module was made to decode the serialized image and pipe it to the

OpenCV components. Once the distorted image was created it was made available on the server

as an image. The client then finished the communication loop by showing the distorted image

instead of the original image.

37

Calibration

In the camera calibration interactive component, the user was provided a random simulated camera

with distortions. The camera is presented with a calibration grid (checkerboard pattern). The user

is then able to move and position the calibration grid (using either the mouse or the widget), and

capturing images by clicking the button labeled A in Figure 2-15. The captured images is validated

by checking if the calibration grid is present in them, and shown in the bottom panel (B in Figure

2-15). The valid images are then used to perform a calibration attempt. Once a calibration attempt

is done the results button is enabled in the side menu. Clicking this opens the calibration dialog

which provides feedback about the current calibration attempt and compares it to previous

calibration attempt. This is described in further detail in the feedback section (Figure 2-19, Figure

2-20, and Figure 2-21).

Figure 2-15: User interaction with calibration environment. (Step 1, A) Capture image with

camera. Images appear in (Step 2, B).

Interactive Components

Several embedded components were developed that allowed users to interact and learn about

various parameters.

A

B

Step 1 Step 2

38

Camera Matrix

The widget shown in Figure 2-16 is embedded in the 2nd milestone of the tutorial and allows users

to change the camera matrix in the 3D environment. This widget was implemented by exploiting

the OpenGL matrix pipeline. In this pipeline, OpenGL can push matrices that will affect the

rendering of the camera view.

Figure 2-16: Camera matrix manipulator widget. Users can change the focal length and principal

points of the camera in the 3D environment above.

The widget shown in Figure 2-16 is embedded in the 2nd milestone of the tutorial and allows users

to change the camera matrix in the 3D environment. This widget was implemented by exploiting

the OpenGL matrix pipeline. In this pipeline, OpenGL can push matrices that will affect the

rendering of the camera view.

Camera Pose

With this embedded widget (Figure 2-17) users can see how the camera pose matrix is affect when

they move the camera in the environment. Also users can directly change the pose matrix here and

see the result in the environment. This widget is also implemented by exploiting the OpenGL

matrix pipeline.

39

Figure 2-17: Camera pose manipulator. The user can adjust the rotation and translation matrix

directly to the 3D environment in the same milestone.

Webcam

Users are also able to use a calibration grid to calibrate their webcam (Figure 2-18). Once several

images are captured, users can see the calibration parameters, charted values as described in the

feedback section (Figure 2-19, Figure 2-20, and Figure 2-21). This component was implemented

using HTML5 video and webcam components.

40

Figure 2-18: Interactive webcam component that allows user to calibrate their web camera. They

use their phones or printed paper to display an 8x5 calibration on their web camera. By clicking

the capture button similar to the calibration environment in Figure 2-15. The captured images are

shown in the bar on the bottom and the calibrated results in the results dialog (Figure 2-19)

Feedback

When the user finishes a camera capture and subsequent calibration, a series of feedback screens

are provided. These feedback components are available in popup dialog boxes (Figure 2-19) that

becomes available by pressing the Results button in the side.

41

Figure 2-19: Feedback popup dialog which shows the calibration parameters, graphs (Figure 2-20)

and efficacy (Figure 2-21) of the current calibration attempts

Efficacy

Difference images of the undistorted image and the corrected image show how well a camera was

calibrated. An ideal difference, were the image was perfectly calibrated, would show as a

completely black image (no difference). Thus by reviewing the difference image users were

provided quick feedback on the efficacy of each of their calibration attempts. These difference

image are available in the post calibration dialog (Figure 2-20).

42

Figure 2-20: Example of differencing the corrected and undistorted images. In the simulation

environment the undistorted images are simulated camera views before the simulated distortion is

applied. The distorted images are with simulated distortions applied, and the corrected images are

with the calibration parameters used to correct the distorted image. The final efficacy of the

calibration is based on the difference image of corrected and undistorted image.

Charting calibration parameters

The current calibration parameters are available on the first tab of the popup dialog (Figure 2-19)

and also as an interactive line graph chart (Figure 2-21). This line graph shows all the calibration

parameters for each calibration attempt, and shows how each parameter value eventually

converges.

43

Figure 2-21: Example of charted calibration parameters. Clicking on the legend values enables

each series

Content Validity

Content validity measure the completeness of the simulator in comparison to the natural processes

it is simulating. Content validity is assessed by asking experts experienced with camera calibration

to rate the simulator for its ability to perform the intended functions (such as training of camera

calibration). The content validity study was implemented as a questionnaire that was presented to

users. The questionnaire (described below in section 0) captured results that were stored in a

database (described in Chapter 3).

44

Testing & Validation

In SimCAM two types of testing were completed: software testing and content validity.

SimCAM’s software was tested with manual integration test cases and automated unit test cases

that tested major views of the system. The user acceptance testing (UAT) was performed in the

format of a content validation questionnaire. The content validity study was used to gauge if

SimCAM covers the required camera calibration subject, verify design decisions and the explore

value of certain features. The questionnaire (Appendix A) has six sections.

 The first section captures demographics of the participant

 The second section covers questions about specific content in the simulator (discussed in

the implementation section 2.4)

 The third section covers yes and no questions that focused on determining if the participant

agreed with the specific direction of SimCAM

 The fourth section determines if SimCAM is appropriately difficulty

 Finally free form comments are captured

The results of the content validity are discussed in the Results chapter.

Participants

The SimCAM content validity questionnaire targeted both expert and non-expert (who would be

end-users of the systems) participants [46]. Subject matter expert participants were included to

determine if enough content was covered and valid to act as a training resource. Non-experts, on

the other hand were included as they would provide the end-user perspective of the system. End-

user perspective is critical because they would not know common assumptions (that experts would

know) in the camera calibration material.

45

Quiz Results

Throughout each milestone users were quizzed with several multiple choice questions reviewing

the material just presented. The quizzes were made to be a quick review, to check if the user was

able to understand the material. It was expected that the expert users should have a higher score

on average than the non-experts, helping to further differentiate the two groups.

Demographics

The content validity study also collected the following demographics, which were used to

differentiate the expert user from the non-expert:

1. What is your area of study/program?

2. How many hours have you been awake?

3. What is your experience in number of years with computer vision/graphics?

4. What is your experience in number of years with linear algebra?

5. If you have done camera calibration in the past, about how many different times have you done

it?

Questions 1 and 3 to 5 were included to determine the experts in the pool of users. Question 2 was

included to exclude unexpectedly bad quiz results, for example, if the user was awake for too long.

Content Validity Questionnaire

On the last milestone, users were given 4 sections (sections A-D) that generated results to validate

the content of SimCAM. Section A presented users with 12 questions (Appendix A) and users

were asked to respond by circling a number on a 5-point Likert scale where:

 1= Strongly Agree

 2= Agree

 3= Neutral

 4= Disagree

 5= Strongly Disagree

46

The Likert scale is a psychometric scale used frequently in studies that are dependent on

questionnaires. The scale runs from an extreme to another opposite extreme, with a neutral point

in between. This scale is a tool to measure attitudes [47], and used in this study to measure attitudes

about the content of SimCAM.

Specific Content Validity Questions

Users were asked the 12 questions to measure the attitudes using the Likert scale:

Questions 1 and 2 covered the motivation of SimCAM. Users were asked if they agreed that having

a self-directed and structured tutorial for learning camera calibration is valuable. Question 3 asked

if SimCAM was a good introduction for camera calibration.

Question 4 also asked if SimCAM improved understanding of camera calibration.

Question 5 to question 10 asked participants if the various implemented components listed below

were valuable for learning camera calibration.

5. Simulation of pin-hole camera model, camera matrix and pose matrix (Figure 2-13,

Figure 2-16, and Figure 2-17)

6. Simulation of the radial and tangential distortions (Figure 2-14)

7. Simulation of the calibration task (Figure 2-15)

8. Feedback provided with the line graphs (Figure 2-21)

9. Feedback provided with difference images (Figure 2-20)

10. Webcam calibration component (Figure 2-18)

Finally, the last two questions asked if participants would continue to use SimCAM and if they

would recommend it to beginners.

In Section B, the participant was asked 4 (Yes/No) questions:

47

1) Is simulating individual aspects (e.g. rotation matrix, distortion parameters, etc.) of the camera

calibration task valuable for training?

2) Is simulation of the overall calibration task in an ideal environment important for camera

calibration training?

3) Should software programming using the OpenCV library (used for calibrating images) be

included in the tutorial for camera calibration training?

4) Is the amount of simulation you were exposed to in the environment sufficient for an

introduction to camera calibration?

The first two questions were included to capture users’ opinions on the motivation behind

SimCAM. Since OpenCV is a commonly used library for camera calibration, question 3 was

included to determine if expert users feel a software programming tutorial is needed. Question 4

was presented to determine if user’s felt there was enough fidelity in the simulator.

Section C asked expert users to compare the difficulty of the simulator and a real camera

calibration procedure. The difficulty of the simulator should be low enough to allow non-experts

an acceptable learning curve, but high enough to represent common challenges in camera

calibration.

Section D was used to qualify certain questions in Section A based on if the simulator and web-

cam technology worked as expected.

Free form comments were recorded from users, which let them provide additional insight and

critique of the content.

Analysis

To begin analysis of the results, the experts and non-expert samples needed to be separated.

Differentiating the non-expert and expert users was accomplished using the demographics and

quiz. The questionnaire results were analyzed to determine the overall content validity of the

system. The specific content questions in Section A were scaled (Figure below) to quantify users’

agreement to the question.

48

1= Strongly Agree (100%)

2= Agree (75%)

3= Neutral (50%)

4= Disagree (25%)

5= Strongly Disagree (0%)

Once quantified an overall agreement score is generated for the expert and non-expert users. An

arbitrary agreement of over 75% was considered as valid content.

Since Section B consisted of Yes/No answers, their statistical mode were used to determine if the

experts and non-experts users’ agreed with the question.

Section C results were used to determine if the simulator was too difficult for users to use. Should

the Section A results indicated a low content validity, the Section C results can be used to

determine if the cause was due to too high of a learning curve. Section D was also used to qualify

the Section A results, where questions where dependent on technology working.

49

3 Results

3.1 Introduction

SimCAM was made available online2 and users finished quizzes and the content validity study.

Overall, 13 users who meet the criteria as participants completed the study. The first type of data

collected on the participants was the total time spent on the study. Using these data, 2 participants

were excluded as they completed the study too quickly, suggesting they did not read the tutorial

materials. There were more non-experts (7) than experts (4) in this study. The remaining

participants were then separated into groups of experts and non-experts. This determination was

made based on the captured demographics information. Results of the remaining content validity

questionnaire (See Appendix A) were also recorded. The statistical analysis of results of each

section are presented below. Finally the result of each quiz in the milestones of the tutorial was

also available.

3.2 Time Spent on Tutorial

The overall time spent was calculated as a sum of the time spent on each milestone in the tutorial.

The time spent data indicates the presence of outliers as the mean was 51.4 minutes with a standard

deviation of 58 minutes. Reviewing the results was helpful in eliminating 2 participants that had

simply skimmed the study as indicated by their extremely low (compared to the mean) time spent

(2 and 4 minutes) on the tutorial. The excluded participants also selected the same answer for each

multiple choice question and had nonsensical answers for written answers.

3.3 Content Validity

The content validity results were based on Section A of the questionnaire. The experts and non-

experts (Figure 3-1) both validated that the content of SimCAM was appropriate and valid for

2
 http://simcam.imaging.robarts.ca

http://simcam.imaging.robarts.ca/

50

teaching camera calibration. Experts had an average of 74.6% (17.5% STD) agreement with

Section A questions that the content was valid. Non-experts had an average of 85.7% (9% STD)

agreement that the content was valid.

Figure 3-1: Overall content validity score between Experts vs. Non-experts. The results indicate

that SimCAM has valid content to be a training environment for beginners

3.3.1 Section A: Specific content validity questions

Due to the small number of participants, the possibility of a skewed dataset is high. The outliers in

the dataset may result in a misleading standard deviation and standard error of the mean. In a

similar study the median and mean were compared to determine an absence or presence of outliers

[48].

0.25

0.5

0.75

1

Experts Non-experts

A
ve

ra
ge

 A
gr

ee
m

en
t

(0
-1

)

Content Validity (Experts vs. Non-experts)

51

QUESTION 1 2 3 4 5 6 7 8 9 103 11 12

MEAN 1.73 1.64 2.09 2.00 1.82 1.82 2.00 2.45 1.73 1.6 2.00 1.91

MEDIAN 2 2 2 2 2 2 2 3 2 2 2 2

Table 3-1: Mean vs. Median of each question in Section A

The mean and median for the all participants’ answers are similar, suggesting an absence of

outliers. However, the non-experts were more positive than the experts (Figure 3-1 and Figure

3-2).

Figure 3-2: Mean Section A (specific content validity questions) answers compared between

experts and non-experts

3
 Ignoring 2 results as the webcam didn’t work for the participants. This question asks about the webcam.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12

P
er

ce
n

ta
ge

 o
f

ag
re

em
en

t
(0

-1
.0

)

Average Content Validity by Questions

Experts Non-experts

52

Results for questions 1 and 2 showed that both experts and non-experts agreed that these training

tools are valuable to have.

From the results for question 3 (the system is a good introduction to camera calibration), it appears

that non-experts agreed that SimCAM was a good introduction for camera calibration. However,

experts agreed less and reviewing their comments indicated that they were focused on the

presentation of the tutorial content, rather than the actual simulation components for this question.

Some experts mentioned several additional materials that should be included with SimCAM. In

future work, these comments will be used to improve SimCAM’s coverage. Results for question

4 indicated that non-experts and experts agreed that SimCAM did improve understanding of

camera calibration. Recall that question 5 to question 10 asked participants if the various

implemented components listed below were valuable for learning camera calibration.

5. Simulation of pin-hole camera model, camera matrix and pose matrix (Figure 2-13,

Figure 2-16, and Figure 2-17)

6. Simulation of the radial and tangential distortions (Figure 2-14)

7. Simulation of the calibration task (Figure 2-15)

8. Feedback provided with the line graphs (Figure 2-21)

9. Feedback provided with difference images (Figure 2-20)

10. Webcam calibration component (Figure 2-18)

Except for the line graph feedback mechanism, both non-experts and experts strongly agree that

the components were valuable for camera calibration training. The experts especially agreed that

the camera, camera matrix and pose matrix simulations were valuable for camera calibration

training. It is unclear why participants thought the line graphs feedback of camera calibration

parameters (Figure 2-21) were less valuable for training. Perhaps a follow-up with participants

would reveal the reason, as there were no comments about the line graphs. The line graphs were

perhaps too abstract, which would require the user to spend more time to understand results

(decreasing the feedback value). A potential solution to this would be to normalize the line graphs,

to highlight changes in the values rather than the actual values themselves. Another option would

53

be to move the line graphs directly next to the 3D interactive component (Figure 2-10), rather than

hidden away in dialog box. By moving the location of the line graphs, perhaps users can pick up

on more hints and understand the intent of the line graph (convergence of values indicating that

more calibration attempts are unnecessary or may even decrease accuracy).

Finally, the last two questions asked if participants would continue to use SimCAM and if they

would recommend it to beginners. The results suggested that the non-experts would recommend it

and continue to use SimCAM. The experts’ results suggested that they were less inclined than non-

experts to recommend it to beginners and to use SimCAM. Rewording the tutorial content, with a

quorum (agreement on content) between current experts, may change these results.

3.3.2 Section B: Determining attitudes on design decisions

In Section B, users were asked 4 (Yes/No) questions to determine attitudes on SimCAM design

decisions that are meant to be used to reveal further insight. Results are summarized in Table 3-2.

All users agreed that the individual simulation components were valuable for training. Except one

expert, all users believed that the overall calibration task was an ideal environment, important for

camera calibration training. The one exception mentioned in additional comments that:

“The interface might be useful for a beginner who does not have background in camera geometry.

It would be better if the uncertainty in parameter estimation can be plotted.”

Indicating that the expert believed that the overall simulation component may be useful for a

beginner (which was the intent of the question). Therefore, the users believed that design decisions

for the presentation of camera calibration components, were appropriate.

The results for question 3 and 4 were split and inconclusive for the overall user population.

Question 3 asked users if they believed a tutorial module for OpenCV programming was required.

Question 4 asked users if the simulation provide was enough as an introduction to camera

calibration. A second look reveals that experts (3 yes) believed a tutorial module for OpenCV

software programming is necessary for SimCAM.

On the other hand 3 out of 4 experts recorded “No” for question 4. The question 4 results, taking

into consideration the Section A results, indicate that although the SimCAM pilot is a good start,

54

more simulation components (such as uncertainty propagation and OpenCV programming) are

required. These results can be used to capture further specifications to improve SimCAM. The

captured specifications from the content validity will be used for the next iteration of SimCAM

development.

Question Yes No

1 11 0

2 10 1

3 6 5

4 5 6

Table 3-2: Results for Section B (questions regarding attitudes on design decisions)

3.3.3 Section C: Measuring difficulty of simulator

Section C asked the user to compare the difficulty of the simulator and a real camera calibration

procedure. All experts agreed that the difficulty of the simulator was much less than the actual

camera calibration procedure. This may indicate that the simulator is too easy and that additional

implementation (OpenCV programming module, uncertainty propagation simulation) will be

needed to challenge students. However, the purpose of SimCAM was to provide an introduction

to camera calibration and as such, the difficulty of the material may be appropriate. This can be

further investigated by conducting a study that gauges participants’ knowledge transfer from the

simulator and training materials to the actual camera calibration task.

3.3.4 Section D: Ensuring all simulation components worked

Section D was used to qualify certain questions in Section A, based on whether or not the simulator

and webcam technology worked as expected. Out of the 11 participants, the simulator worked as

expected for all of them. The webcam technology worked for only 9 participants. The participants

for which the webcam did not work had their answers for Section A, Question 10 ignored in the

results above.

55

3.3.5 Additional Comments

In the final section of the questionnaire (Appendix A), participants were allowed to add additional

comments. Participants noted that SimCAM was a good first step (“It is a good first step”, and

“Very good tutorial”).

Finally, participants also saw an opportunity to add more simulation components, especially

displaying how calibration affects the uncertainty (uncertainty propagation) of simulated camera

systems and applications. These comments will provide a launch board into future work to improve

SimCAM.

56

3.4 Expert Determination

Expert users were selected based on their experience with performing camera calibration, field of

study, background training and quiz results. Users were determined to be experts if they had

completed more than 5 camera calibrations, while the non-experts had no experience performing

camera calibration. The experts had a mean of 36.3 calibration attempts with a standard deviation

of 43 calibration.

Additionally, the training background of the users was used to determine if the experts and non-

experts were classified correctly. The experts’ response of their training backgrounds were in

Computer Vision and Biomedical Engineering (Medical Imaging) equally and was as expected.

The non-experts responded that they were training in a variety of backgrounds: 5 from Computer

Science, 2 from Biomedical Engineering, and 1 from Medicine.

These results indicate that the experts were trained in the fields that would require solid knowledge

of camera calibration, as expected. Additionally the variety in training backgrounds of non-experts

indicates a good representative sample of expected end-users.

Additional results of reported computer vision and linear algebra training shows a clear distinction

between the experts and non-experts.

 Training in Computer Vision & Linear Algebra

Reviewing specifically the years of training in computer vision and linear algebra of all the users

help to confirm the expert selections. The experts had on average 16 years (standard deviation

11.4 years) of training in computer vision, while non-experts had an average of 4.5 years (standard

deviation of 5.2 years). The experts had on average 7.2 years (standard deviation 11.1 years) of

training in linear algebra, while non-experts had an average of 2.9 years (standard deviation of 3.8

years). Comparing the experts and non-experts (where experts have at least 5 calibration attempts),

shows that experts had significantly more years of training in the reported computer vision and

linear algebra years in training results strengthening the selection of experts from the user pool.

57

3.4.1 Quiz Results

Throughout the tutorial, the participants answered simple multiple choice questions that quizzed

them on the material just presented. Overall, 11 questions were asked in 3 tutorial milestones.

Comparing the quiz with the time spent on the study seemed to show a slight correlation (Figure

3-3, Pearson’s correlation p=0.73), indicating that higher scores correlated with longer time:

Figure 3-3: Time spent on study vs. correct answers in the quiz, p=0.73.

Additionally the participants’ quiz did not seem affected by how long they had been awake (Figure

3-4, Pearson’s Correlation p=0.36). It was strange that none of the participants scored 100% on

the quiz and even more unexpected was that the experts’ average score (56.8%) was lower than

the non-experts’ average (59.7%). The number of waking hours did not correlate well with the

score (Figure 3-4, p=0.36), and could not explain the low score results. After reviewing the quiz

results and following up with experts’ additional comments, several ambiguities were noted in the

tutorial material that would need to be resolved.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250

Fi
n

al
 S

C
o

re
 o

f
Q

u
iz

Time Spent in Minutes

Time Spent vs. Correct Quiz Answers

58

Figure 3-4: Hours participant was awake vs. quiz score, p=0.36

4 Conclusion & Future Work

A pilot web application (SimCAM) and an application service was implemented for training

camera calibration. User stories from end users were gathered and distilled into specifications, and

functional specifications were created that describe the specific features of the system. Non-

functional specifications were generated to define the expected behaviour of the system. Using

these specifications, a client and server architecture was selected for SimCAM.

SimCAM integrates simulated and web cameras with camera calibration algorithms (currently

only OpenCV), while providing teaching materials in a tutorial format. WebGL, Three.JS and

Backbone.JS libraries were used to create 3D interactive components on users’ web browsers.

Using the REST and WebSocket protocols, image data were shared with a custom service. The

service was implemented using Mojolicious, OpenCV and DBIx::Class ORM.

The Mojolicious framework was used to describe and drive the SimCAMService.

SimCAMService was implemented and made available as a URL, providing session, image and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

Sc
o

re

Hours Awake

Hours Awake vs. Quiz Answer

59

computer vision resources, were accessible to via SimCAM::Model package to the rest of the client

application. The client application code had several views responsible for interactive components.

Once completed, SimCAM provided users with interactive components for experimenting with a

perspective camera’s camera matrix, distortions, pose and calibration. SimCAM used tutorials and

supplementary quizzes to guide users through the background material and interactive

components.

SimCAM was evaluated through software testing of each unit, entire modules, as well as user

acceptance testing. A content validity questionnaire was used to capture users’ opinion on the

simulator, tutorial and content. The results demonstrated that the need and value of such a

simulator for camera calibration, with both experts and non-experts being polled with the

questionnaire. Experts and non-experts were targeted for the content validity questionnaire.

Overall the aim of the content validity study was to determine the efficacy of SimCAM as a

training environment for camera calibration. Participants were split into groups, experts and non-

experts, based on their demographics. Experts were selected from the population if they had

completed camera calibration more than 5 times. Experts were then verified by comparing, to non-

experts their training in linear algebra and computer vision/graphics. Experts were also expected

to have a higher score for the milestone quizzes. Unexpectedly, neither the non-experts nor the

experts performed well (Experts 56.8% and Non-Experts 59.7%) in the milestone studies. The

reason for low scores remain unexplained by either how long they spent on the tutorial or how

many hours they were awake. Further feedback will be needed to clarify the reason for these

results, however we are limited in our ability to gather more data due to time constraints.

Specific content validity results from both the experts (75%) and non-experts (80%) showed the

content was valid and appropriate for camera calibration training. Design decision consideration

questions revealed that SimCAM’s individual components were valuable for training and

appropriate for beginners. Experts also believed that an OpenCV software programming module

is required in SimCAM, and that more simulation components are required.

60

Additional comments also indicated that although SimCAM was a good start, there were some

more simulation components that the users’ expected to see. Additional inquiries would help to

clarify what additional simulation components are required. Overall users believed that the content

was valid and appropriate for a pilot study.

Based on the feedback captured from the content validity, additional improvements can be made

to the current implementation of SimCAM. Following up on the participants’ comments may help

to launch another project that will make SimCAM more useable, relevant and pertinent for students

of camera calibration. Besides the content validity study, a knowledge transfer study (KTS) was

considered and would be valuable to perform. The KTS would help to determine how well students

perform calibration on real live cameras after being trained with SimCAM. A preliminary

implementation has already been implemented with the existing code base of SimCAM, which

just needs to be utilized. Finally SimCAM would benefit from additional implementation of

modules such as uncertainty propagation, OpenCV programming, additional camera types, etc.

The author’s contributions to this thesis are:

1. Creation a simulation framework for simulating ideal, non-ideal cameras and camera

calibration

2. Creation of interactive widgets for the purpose of exploring various camera parameters

3. Writing a custom software platform for making OpenCV features compatible with

WebGL 3D components

4. Conducting a content validity study to validate the created system

61

Bibliography

[1] M. Esteghamatian, S. E. Pautler, C. A. McKenzie and T. M. Peters, "A 2D to 3D ultrasound image

registration algorithm for robotically assisted laparoscopic radical prostatectomy," SPIE

Proceddings, vol. 7962, pp. 79621Z-79621Z-8, 2011.

[2] R. S. J. Estépar, C.-F. Westin and K. Vosburgh, "Towards real time 2D to 3D registration for

ultrasound-guided endoscopic and laparoscopic procedures," International Journal of Computer

Assisted Radiology and Surgery , vol. 4, no. 6, pp. 549-560, 2009.

[3] D. Stoyanov, "A practical approach towards accurate dense 3D depth recovery for robotic

laparoscopic surgery," Computer Aided Surgery, vol. 10, no. 4, pp. 199-208, 2005.

[4] P. Bao, J. R. Warmath, B. Poulose, J. Robert L. Galloway and A. J. Herline, "Tracked ultrasound for

laparoscopic surgery," SPIE Proceedings: Medical Imaging, vol. 5367, pp. 237-246, 2004.

[5] M. Gschwandtner, M. Liedlgruber, A. Uhl and A. V´ecsei, "Experimental study on the impact of

endoscope distortion correction on computer-assisted celiac disease diagnosis," in 10th IEEE

International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece,

pp. 1-6, 2010.

[6] S. Yamaguchia, A. Nishikawa, J. Shimada, K. Itoh and F. Miyazaki, "Real-time image overlay system

for endoscopic surgery using direct calibration of endoscopic camera," CARS 2005: Computer

Assisted Radiology and Surgery, vol. 1281, no. 19, pp. 756-761, 2005.

[7] S. P. Xiaoli Zhang, "Application of visual tracking for robot-assisted laparoscopic surgery," Journal of

Field Robotics, vol. 19, no. 7, pp. 315-328, 2002.

[8] Z. Zhang, "Flexible camera calibration by viewing a plane from unknown orientations," Proceedings

of the 7th International Conference on Computer Vision, pp. 666-673, 1999.

[9] D. Samper, J. Santolaria, J. Pastor and J. Aguilar, "Teaching Camera Calibration by a Constructivist

Methodology," Education, IEEE Transactions, vol. 53, no. 4, pp. 646,652, 2010.

[10] A. D. a. C. L. A. Heidi S. Chumley-Jones, "Web-based Learning: Sound Education Method or Hype? A

Review of the Evaluation Literature," Academic Medicine, vol. 77, no. 10, pp. S86-S93, 2002.

[11] J. S. a. H. M. G. Wu, "Imaging Modalities," in Bone Tumours, New York, Springer New York, 2012, pp.

51-86.

[12] K. H. Wong, T. Peters and K. Cleary, "Imaging Modalities," in Image-Guided Interventions, Springer

US, 2008, pp. 241 - 273.

[13] D. Merrill, "The Next-Generation Digital Camera," Optics and Photonics News, vol. 14, no. 1, pp. 26-

33, 2003.

62

[14] C. L. Cheung, Fusion of Stereoscopic Video and Ultrasound for Laparoscopic Partial, London, Ontario,

Canada: Published masters' dissertation, University of Western Ontario, 2010.

[15] Y. Morvan, Acquisition, Compression and Rendering of Depth and Texture for Multi-View Video,

Eindhoven: Published doctoral dissertation Eindhoven University of Technology, The Netherlands,

2009.

[16] S. J. Simon J. D. Prince, "The pinhole camera," in Computer Vision: Models, Learning, and Inference,

Cambridge, Cambridge University Press, 2012, pp. 297-320.

[17] C. Wöhler, 3D Computer Vision: Efficient Methods and Applications, London: Springer, 2013.

[18] R. Y. Tsai, "A versatile camera calibration technique for high-accuracy 3D machine vision metrology

using off-the-shelf TV cameras and lenses," IEEE: Journal of robotics and automation, Vols. RA-3, no.

4, pp. 323-344, 1987.

[19] "Open Source Computer Vision," 2013. [Online]. Available: http://opencv.org/. [Accessed 12 January

2013].

[20] W. T. J. Eugene M. Strand, "Prototyping and small scale software projects," Proceedings of the

workshop on Rapid prototyping, vol. 7, no. 5, pp. 169-170 , 1982 .

[21] A. B. Zachary Dwight, "Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software

Project Identification and Application Development in Health Science Research," Journal of software

engineering and applications, vol. 5, no. 2, pp. 62 -68, 2012.

[22] M. O. Grant Allen, The definitive guide to SQLite, New York: Apress, 2010.

[23] E. F. Codd, "A relational model of data for large shared data banks," Communications of the ACM,

vol. 26, no. 1, pp. 64-69, 1983 .

[24] B. D. F. L. W. Tom Christiansen, Programming Perl, Sebastopol, CA: O'Reilly, 2012.

[25] B. W. Kernighan and D. M. Ritchie, C Programming Language, Prentice-Hall software series, 1988.

[26] G. Bradski, Learning OpenCV: Computer Vision with the OpenCV Library, Cambridge: O'Reilly Media,

2008.

[27] Z. Nicholas, Maintainable Javascript, Sebastopol, CA: O'Reilly, 2012.

[28] B. Danchilla, Beginning WebGL for HTML5, Berkeley, CA: Apress: Imprint, 2012.

[29] "WebSockets," Mozilla Developer Network, [Online]. Available:

https://developer.mozilla.org/en/docs/WebSockets. [Accessed 01 June 2013].

[30] "SQLite," [Online]. Available: https://www.sqlite.org/. [Accessed August 18 2013].

63

[31] "Perl's Database Interface," The Perl Foundation, [Online]. Available: http://dbi.perl.org/. [Accessed

20 October 2012].

[32] P. Rabbitson, The Perl Foundation, [Online]. Available: http://search.cpan.org/~ribasushi/DBIx-

Class-0.08250/. [Accessed 20 November 2012].

[33] "Comprehensive Perl Archive Network," The Perl Foundation, [Online]. Available: http://cpan.org/.

[Accessed 20 September 2012].

[34] S. Riedel, "Mojolicious: Modern Perl Framework," [Online]. Available: http://mojolicio.us/.

[Accessed 23 Janurary 2013].

[35] R. T. Fielding, "Architectural Styles and the Design of Network-based Software Architectures,"

Dissertation completed for Doctor of Philosophy, p. chapter 5, 2000.

[36] "Introducing JSON," ECMA International, [Online]. Available: http://json.org/. [Accessed 10 October

2012].

[37] E. International, "ECMA-262: ECMAScript Language Specifcation," Ecma International, Geneva,

2011.

[38] A. S. Catherine Leung, "Enabling WebGL," Proceedings of the 19th international conference on World

wide web, no. 19, pp. 1369-1370, 2010.

[39] D. Brian, "Three.js Framework," in Beginning WebGL for HTML5, Berkeley, CA, Apress : Imprint,

2012, pp. 173 - 203.

[40] mrdoob, "Three.js," [Online]. Available: http://threejs.org/. [Accessed 3 October 2012].

[41] W. W. W. Consortium, "HTML5 : A vocabulary and associated APIs for HTML and XHTML," World

Wide Web Consortium, [Online]. Available: http://www.w3.org/TR/html5/. [Accessed 20 Feburary

2013].

[42] "Backbone.js," Documentcloud, [Online]. Available: backbonejs.org/. [Accessed 10 Feburary 2013].

[43] J.-P. Boodhoo, "Model View Presenter," MDSN Magazine, [Online]. Available:

http://msdn.microsoft.com/en-us/magazine/cc188690.aspx. [Accessed 10 August 2013].

[44] "Bootstrap," Twitter, [Online]. Available: http://getbootstrap.com/2.3.2/. [Accessed 13 September

2012].

[45] C. Snyder, Paper prototyping : the fast and easy way to design and refine user interfaces, San

Francisco, California: Morgan Kaufmann, Elsevier Science, 2003.

[46] A. Anastasi and S. Urbina, Psychological Testing, Prentice Hall, 1997.

64

[47] R. Likert, "A technique for the measurements of attitudes," in Archives of Psychology, 1932, pp. 1-

55.

[48] A. K. Ho, "INTERACTIVE COMPUTER MODEL OF THE EARDRUM FOR MYRINGOTOMY SIMULATION,"

Published masters' dissertation, pp. 75-78, 2010.

65

Appendices

Appendix A: Content Validity Questionnaire

66

67

68

69

70

71

Appendix B: List of used OpenCV functions

cvFindChessboardCorners – Used to find the checker board board corners

cvFindCornerSubPix – Detects corners with sub pixel accuracy

cvDrawChessboardCorners – Draws circles and lines around detected corners

cvCalibrateCamera2 – Calibrates images from a camera using intrinsic parameters

cvInitUndistortMap – Applies the correction to undistort an image

72

Curriculum Vitae

Name: Kartik Thakore

Post-secondary Western University

Education and London, Ontario, Canada

Degrees: 2005-2011 BESc with professional internship (Software Engineering)

Related Work Graduate Research Assistant

Experience Western University, London, Ontario

2012 – 2013

Quality Assurance Test Analyst

Canadian Imperial Bank of Canada, Toronto, Ontario

2009-2010

Presentations:

Poster

1. Kartik Thakore, Hanif Ladak and Terry Peters, Development and application of a web-based

simulation and training environment for endoscopy camera calibration, London Health Research

Day, March 14th, 2013

Conference Talk Presentations

1. Kartik Thakore, Perl, Medical Research and Maple Syrups, Yet Another Perl Conference

North America, University of Wisconsin, Madison, June 3rd, 2012

2. Kartik Thakore, Game Development in Perl, Yet Another Perl Conference North America,

Asheville, North Carolina, June 4th, 2011

	Web-based Simulation and Training Environment for Laparoscopic Camera Calibration
	Recommended Citation

	Web-based Simulation and Training Environment for Laparoscopic Camera Calibration

