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Abstract 

Triaxial tests are widely used to determine the behavior and strength characteristics of soils 

without due attention to the differences in specimen size. Several drained and undrained 

monotonic triaxial compression shear tests are performed on three different specimen sizes 

of the same sand to investigate the influence of specimen size and scale effect on the shear 

behavior. The test results indicate that the behavior of loose sand is strongly influenced by 

the specimen size, with larger specimens exhibiting a stiffer behavior during isotropic 

compression, and mobilizing smaller shear strengths and effective friction angles. Triaxial 

testing also involves many sources of errors that could significantly affect shear strength 

parameters if not corrected. Extensive errors are investigated and it is found that negligence 

in making corrections accounting for these errors will result in an overestimation as much as 

42% and 15 degrees in the critical shear strength and critical state friction angle, 

respectively. Furthermore, the measured critical state parameters and shear strengths are 

employed to compare the static and seismic slope stability of an earth embankment dam, 

calibrate a critical state soil constitutive model, study the soil behavior under shallow 

foundations, and evaluate liquefaction triggering and failure of retaining structures. The 

results show that all of these analyses are significantly affected by the strength parameters of 

the same soil determined from different specimen sizes. While using small size samples for 

determining shear strength parameters might result in un-conservative design, the choice of 

a large sample size is consequently a more accurate representation of soil strength conditions 

and field deformations.  

.Keywords 

Triaxial testing, loose sand, scale effect, corrections, critical state, geotechnical analyses. 
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Chapter 1  

1 Introduction 

1.1 Statement of the Problem 

Triaxial shear tests are widely used to determine the strength characteristics of soils subject 

to a wide range of stress paths and loading conditions. Although some researchers (Marsal 

1967; Marachi et al. 1969; Ladd 1978; Scott 1987; Been and Jefferies 1991; Hu et al. 2010; 

Chew et al. 2011) have studied the effect of sample size on the behavior of cohesionless 

soils using triaxial testing, the impact of specimen size on the shear strength parameters and 

design is largely overlooked in engineering practice. Previous investigations of specimen-

size effects in triaxial tests have mainly focused on the testing of dense sands (Scott 1987; 

Been and Jefferies 1985; Garga 1988; Hazarika et al. 2010) or coarser granular materials 

containing large particles such as rockfill (Marsal 1967; Marachi et al. 1969; Seif el Dine 

2009; Hu et al. 2010) which require the construction of a large-sized triaxial apparatus. 

Therefore, there is need for additional experimental work in order to investigate the 

influence of sample size on the shear behavior of very loose sands and develop new 

guidelines for specimen size in triaxial testing. A comprehensive and systematic 

experimental program of several static triaxial compression shear tests is conducted to 

investigate the sample size effect on the consolidation, drained and undrained shear behavior 

of loose Ottawa sand specimens. Three different specimen diameters of 38, 50, and 70 mm 

of the same sand were tested and sheared up to 30% strain using an automated stress path 

triaxial compression testing system. 

Reliability of shear strength parameters considerably depends on the accuracy of the triaxial 

shear testing results. Although limitation and errors accompanying triaxial testing are 
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evaluated by many researchers (Bishop and Henkel 1962; Lade 1977; Baldi and Nova 1984; 

Seed 1987; Kramer and Sivaneswaran 1989; Zhang 1997), there is need to recognize the 

errors that can significantly affect test results, and techniques or corrections to account for 

these errors. In addition it is required to identify how the corrections interact and if it is 

required to account for all the corrections and determine the correction that has the most 

significant effect on the sand shear behavior. Therefore, extensive errors investigation is 

accomplished for the triaxial test results in this study to improve the estimation of shear 

strength parameters. As non-uniform deformation at the critical state is an important factor 

that may affect the behavior of sand as well, enlarged and lubricated end platens are used to 

minimize non-uniformity caused by end restraint which required the design and construction 

of a set of special moulds and platens. 

Most practicing engineers are unaware of the significant effect of specimen size. 

Accordingly, this phenomenon is either totally neglected in using laboratory test results on a 

small specimen in engineering design and analysis, or laboratory test results are simply 

distrusted and the design or analysis is based on empirical interpretations of in-situ field 

tests (e.g. SPT or CPT) which could also involve a wide range of uncertainties. Therefore, 

there is need to investigate the influence of specimen size and scale effect from laboratory 

triaxial shear testing on engineering analysis and design of soil structures. The measured 

critical state parameters and shear strengths are used to compare the static and seismic slope 

stability of Lower San Fernando dam as a typical geometry of an embankment dam that 

underwent liquefaction flow failure, calibrate NorSand model as a critical state soil 

constitutive model that is widely used to predict soil behavior, study the soil behavior under 

shallow or strip foundations, and evaluate liquefaction triggering and failure of retaining 

structures. 
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1.2 Research Objective 

The main objective of this research is to examine the effect of sample size in triaxial shear 

testing on the deformation and strength behavior of very loose sand. Other objectives of this 

work include: 

1. Design and construct moulds and enlarged platens for each specimen size to 

accommodate the radial expansion of the specimen at large shear strains and reduce 

specimen non-uniform deformation and bulging and ensure uniform stress 

distribution within the specimens. 

2. Investigate the errors accompanying triaxial testing and study their influence on the 

sand shear behavior and determine the most significant error. 

3. Investigate the influence of specimen size on engineering analysis and design of soil 

structures. 

4. Develop a new guideline for specimen size in triaxial testing. 

Specially-designed moulds and platens were constructed in the machine shop of Western 

University. The sand used in this study is clean uniformly-graded quartz fine sand (SP as per 

ASTM D2487-11 Unified Soil Classification System) from Ottawa, Illinois. The 

experimental work included 24 strain – controlled, drained and undrained, monotonic 

loading tests performed on very loose specimens with 0% relative density.  
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1.3 Thesis Outline 

This thesis has been prepared in "Integrated-Article" format. It is organized into 5 chapters. 

A brief description of the following four chapters is as follows:  

Chapter 2: evaluates the significance of applying corrections to the triaxial test results and 

presents the improvement achieved on the shear strength parameters. The specimen 

preparation method and the applied triaxial procedure as well as the design of especially 

split moulds and enlarged platens are described in this chapter. The influence of using free 

end on the deformation pattern is also presented. 

Chapter 3: investigates the specimen size effect on drained and undrained sand shear 

behavior. The influence of specimen size on the isotropic compression behavior, the 

mobilized friction angles, the critical state parameters, and the yield and critical strengths are 

discussed. The relation between the measured shear strength parameters with the critical 

state parameter () is presented. The undrained brittleness index (IB) is also utilized to 

compare the degree of strain-softening and liquefaction flow exhibited for different 

specimen sizes. 

Chapter 4: implements the results obtained from testing different specimen sizes in 

evaluating the liquefaction triggering resistance, comparing the static and seismic slope 

stability of an earth embankment dam, calibrating a critical state soil constitutive model, 

investigating the soil behavior under shallow or strip foundations, and finally evaluating the 

stability analyses of retaining structures. 

Chapter 5: presents a brief summary of the performed research works accompanied with 

conclusions and recommendations for future study.  
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Chapter 2  

2 Effects of Errors and Multiple Corrections on Triaxial 
Compression Testing of Loose Sands 

2.1 Introduction 

Laboratory shear tests conducted to understand sand behavior have been improved with the 

continuous development of the testing devices. There are certain principle requirements that 

should be accounted for in the devices used to measure the shear behavior of sands in order 

to obtain reliable results. The most commonly used devices for measuring the shear behavior 

of laboratory soils are direct shear, triaxial, and ring shear devices.  

Reliability of shear strength parameters significantly depends on the accuracy of the triaxial 

shear testing results. Therefore, it is important to recognize the factors that can affect test 

results, and techniques to reduce or correct for these factors. In fact, the basic principles and 

limitations of triaxial testing have been admirably described by Bishop and Henkel (1962) 

and reevaluated by several researchers (Lade 1977; Baldi and Nova 1984; Seed 1987; 

Kramer and Sivaneswaran 1989; Zhang 1997). Furthermore, the effects of non-uniform 

deformations on test results have been widely investigated (Rowe and Barden 1964; Bishop 

and Green 1965; Finno et al. 1996). The non-uniform deformation at large strains, often 

required to achieve critical state conditions, can develop due to the formation of shear bands 

or the effect of end restraint. The increase in the initial modulus of elasticity and peak shear 

strength is a product of end restraint effects caused by the use of rough ends and therefore, 

researchers supported the use of free ends with lubricated sample-platen interfaces which 

improves the uniformity at all strain levels (Riemer and Seed 1997). 



6 

 

 In addition, triaxial shear tests involve many sources of errors that could significantly affect 

test results if not corrected. The most significant errors in the experimental investigation of 

granular soils are the variation of specimen cross- sectional areas during loading, and the 

volume change due to back-pressure saturation or membrane penetration resulting from the 

variation in the confining stress (Zhu and Anderson 1998). In addition, the bedding error 

resulting from using layers of latex membranes in the enlarged and lubricated end platens 

technique should be considered in the measured axial deformation (Sarsby et al.1980). The 

membranes’ resistance to the applied axial and radial stresses may also influence the 

measured shear strength. 

In this study, monotonic triaxial compression tests are performed on very loose Ottawa sand 

specimens to determine the volumetric response and shear behavior for different specimen 

sizes. Specially-designed moulds and platens are used to reduce end restraint effects and 

improve specimens’ uniform deformation. Corrections for the aforementioned errors were 

made to the test results to account for the volume change due to back pressure saturation 

(ASTM D4767-11) and membrane penetration (Baldi and Nova 1984), axial deformation 

due to bedding error (Sarsby et al. 1980), stress correction due to membrane resistance 

(ASTM D7181-11), and the change of specimen cross-sectional area during shear (Garga 

and Zhang 1997). The specimen preparation method and the applied triaxial procedure are 

described in this chapter. The design of especially split moulds and enlarged platens are 

presented as well as the influence of using free end technique on the deformation pattern and 

shear strength. The significance of applying corrections to the triaxial test results and the 

improvement achieved on the shear strength parameters are discussed and evaluated. It is 

worth mentioning that as with any other laboratory testing procedure there are a number of 

challenges in carrying out triaxial compression tests using enlarged platens, particularly on 
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loose sands and at large shear displacements. These factors, as well as the steps which are 

taken in this experimental procedure to correct for these challenges are discussed in the 

following paragraphs. 

 

2.2 Physical Index Properties of Tested Sand 

Clean, uniformly-graded Ottawa sand (with a commercial name of “Barco 71”) with round 

to sub-round particle shapes is used in the tests of this study. The large hardness of the 

quartz particles minimizes the amount of particle crushing experienced during loading. 

Sieve analysis was performed and the average particle size distribution is presented in 

Figure 2.1. The sand is classified as Fine Sand, SP as per the ASTM D2487 standard 

procedure (the unified soil classification system). The mean grain size (D50) was determined 

as 0.22 mm and the calculated coefficient of uniformity (Cu) and coefficient of gradation 

(Cc) is 1.71 and 1.07, respectively. Specific gravity of the sand particles (GS), and maximum 

and minimum void ratios of respectively 2.65, 0.821, and 0.487 were measured following 

the ASTM-D854 and D4253 standard procedures, respectively. 

 

 

Figure ‎2.1: Average particle size distribution of the Barco 71 sand 
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2.3 Testing Equipment 

2.3.1 Enlarged Platens 

Enlarged and lubricated end platens are introduced in the experimental work of this study to 

minimize strain localization and bulging deformation in the specimens. A sand specimen is 

supposed to deform as a right circular cylinder throughout a triaxial compression shearing 

tests, but it often exhibits bulging deformation at its middle portion as a result of friction at 

the specimen boundaries (Bishop and Green 1965). Specimen bulging produces non-uniform 

stresses and strains in a triaxial test which could significantly affect the strength, strain-

softening, pore pressure or volume change behavior of a soil specimen particularly at large 

deformation associated with critical states.  

Different methods have been pursued to reduce the effect of specimen boundaries, but the 

lubricated end platens developed by Rowe and Barden (1964) has been the most effective 

method (Zhang 1997). In this method, the platens are covered with layers of lubricated (with 

vacuum grease) latex discs. The vacuum grease among the latex discs allows nearly 

frictionless sliding of the discs to minimize end restrains. Using an X-ray imaging technique, 

Kirkpatrick and Belshaw (1968) investigated the strain field within specimens of dry sand in 

triaxial compression tests performed with and without lubricated end platens. They observed 

that rough end platens promoted the development of rigid cones at the specimen ends, which 

are mainly responsible for global geometric softening, while lubricating the platens 

prevented the formation of these cones and maintained the uniformity of specimen’s 

deformation up to large strain levels. Zhang and Garga (1997) studied the influence of 

lubricated platens on the stress-strain behavior of loose and dense Unimin and Ottawa sands. 

They found that the tests with lubricated platens presented lower deviator stresses and higher 



9 

 

pore pressures than tests conducted using regular end platens. They also observed that the 

lubricated ends can significantly reduce end restraint in dense samples, while the 

improvement achieved by lubrication becomes smaller in loose samples. 

 In the experiments of this study, enlarged end platens are employed to accommodate the 

radial expansion of the specimen at shear strains of up to 30%. As illustrated in Figure 

2.2(d), the lubricated ends consist of two sheets of 0.3 mm thick rubber discs which are 

separated with a thin layer of high vacuum silicone grease. The rubber discs are cut to the 

specimen diameter with a central hole cut to the diameter of the porous stone to allow 

drainage. An additional layer of high vacuum silicon grease was smeared on the rubber discs 

in order to provide a smooth and frictionless sliding on the specimen platens.  

The slenderness or the height to diameter (h/d) ratio of a specimen is another factor that 

could affect the bulging deformation. Bishop and Green (1965) illustrate that specimens 

with a slenderness ratio of 1 and lubricated ends could deform uniformly during drained 

loading, while specimens with a slenderness ratio of 2 with lubricated ends displayed a 

bulging deformation similar to the samples with regular ends. Accordingly, specimen 

bulging at large shear strains is largely reduced with smaller slenderness ratios (Hettler and 

Vardoulakis 1984).  

Three different specimen diameters of 38, 50, and 70 mm with a slenderness ratio (h/d) of 1 

were tested in this study. Trial tests on specimens with a slenderness ratio of 2 exhibited 

significant bulging at large shear strains, regardless of whether the specimen ends were 

enlarged and lubricated or not. Therefore, it was decided to adopt a slenderness ratio of 1 

along with lubricated and enlarged end platens to minimize the effects of specimen end 

restraint and allow for homogeneous stress distribution throughout the triaxial shear tests. 
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This is particularly necessary for critical state testing which require large shear strains. 

Accordingly, specially designed split moulds, to accommodate the enlarged platens, were 

constructed and used for preparing the specimens. As a result, although bulging was 

significantly reduced resulting in more homogeneous specimen deformations, it never 

completely disappeared. At this stage, a wide experimental investigation was made to 

further minimize specimen bulging and it was determined that rigid stainless steel platens 

would further reduce bulging. This was likely because the hard quartz sand particles 

microscopically penetrated into the soft acrylic platens producing additional end friction. 

This micro-penetration was eliminated by using hard stainless steel platens and therefore 

reduced end friction. Stainless steel end platens were subsequently replaced with the acrylic 

platens. Figures 2.2 and 2.3 show the schematic diagrams and photos of the enlarged end 

platens used in the experimental work. 

 

                                            

(a) Enlarged platens for 38mm specimens           (b) Enlarged platens for 50mm specimens 
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 (c) Enlarged platens for 70mm specimens                       (d) Free end arrangement 

Figure ‎2.2: Schematic diagrams of the enlarged platens for different sample sizes 

 

                      

(a) Enlarged platens for 38 mm specimens           (b) Enlarged platens for 50 mm specimens 

 

 

(c)  Enlarged platens for 70 mm specimens 

Figure ‎2.3: Photos of the enlarged platens used for different sample sizes 
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2.3.2 Mould Design 

Aluminum split moulds were constructed with internal diameters and heights equal to those 

of the three specimen sizes. The top and bottom ends of the moulds were bored larger to 

accommodate the enlarged specimen platens. Vacuum vent was constructed at the mid 

height of each mould to provide suction intended to hold the membrane tight against the 

wall during the moist tamping process. Collars that conformed to the top of each mould 

were constructed to allow sufficient space for tamping the sample top layers. A special 

tamper assembly consisting of a tamping rod scaled in millimeters covered with a clear 

resin, tamping foot, guide plate, and tamper lock was designed and constructed for tamping 

the moist sand at predetermined layer thicknesses. Figure 2.4 shows the design details of the 

tamper assembly. Figure 2.5 shows the schematic diagrams and photos of the different 

mould sizes used in the experimental work. 

 

 

Figure ‎2.4: Schematic diagram of the tamper assembly 
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(a) - 38 mm Split mould 
 

 

               

(b) - 50 mm Split mould 
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(c) - 70 mm Split mould 

Figure ‎2.5: Schematic diagrams and photos for split moulds used for different sample sizes 

 

2.3.3 Triaxial Test System  

The triaxial tests of this research were conducted using an automated stress path triaxial 

compression testing system (SIGMA-1
TM

 5K model) manufactured by GeoTac, Texas, 

USA. The main components of this apparatus include a triaxial cell, a loading frame, two 

electromechanical pressure pumps, and a data acquisition system. The system also includes 

an external load cell, deformation sensor, and three fluid pressure sensors. Figure 2.6 

provides a brief schematic diagram of the triaxial testing system. 

The application of the axial load was provided by the loading frame which can apply the 

axial load in displacement-control (up to a rate of 25.4 mm/minute) or load-control (up to a 

maximum axial load of 9,000 N) modes. The load measurements were taken externally by a 

load cell placed on the loading frame. All tests of this study were conducted using the 

displacement control mode at a rate of 5%/hour. The axial deformation of the sample during 
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shear was measured externally by a linear variable displacement transducer (LVDT) on the 

loading ram of the triaxial cell.  

 

 

Figure ‎2.6: Schematic diagram of the triaxial testing system. 

 

The two electromechanical pumps (referred to as the cell and pore pressure pumps) are used 

to control and measure the volume and pressure of the cell fluid and specimen’s pore water. 

The cell pump has a capacity of 180 ml and drives the water into the triaxial cell through a 

connection at the cell base to generate the desired confining pressure. A pressure sensor with 

a maximum capacity of 2000 kPa is attached to the pump to measure the applied confining 

pressure. The pore pump has a capacity of 80 ml and drives the water into the specimen 

through the top and bottom platens to apply the back pressure saturation. A pressure sensor 

with a maximum capacity of 2000 kPa is attached to the pump to measure the applied back 

pressure. Both pumps could be operated under volume-control or pressure-control modes. 
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The volume and water pressures in both pumps are measured at a resolution of 1 mL and 0.1 

kPa, respectively and transferred by an analog to digital data-controller to the computer. A 

separate water pressure sensor with a maximum capacity of 1400 kPa is also connected to 

the specimen through the bottom platen to measure the pore water pressure within the 

specimen for example during backpressure saturation or undrained shear. All sensors were 

calibrated at the commencement of the testing program. Calibration factors of each sensor 

are provided in appendix (A). 

The triaxial testing system includes a series of interconnected modules which control the cell 

and pore pressure pumps as well as the load frame. All the modules are connected to a 

computer for command, feedback and data acquisition. The system records the output 

voltages of the sensors, which are then converted to engineering units using the calibration 

factors for further analysis and interpretation. Figure 2.7 shows a photo of the triaxial 

device. 

 

 

Figure ‎2.7: Triaxial shear apparatus used in this study 
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2.4 Triaxial Compression Testing Procedure 

In the triaxial tests of this study, the cylindrical specimen is sealed in a water-tight rubber 

membrane and enclosed in a cell in which it could be subjected to stress changes made in 

two stages: (1) an increase in the cell pressure resulting in an equal all-round change in 

stress and (2) an increase in axial load resulting in a change in deviator stress. Monotonic 

triaxial compression shear tests were conducted according to the procedure described below.  

 

2.4.1 Sample Preparation 

There are several laboratory preparation methods (moist tamping, air pluviation, and water 

pluviation) that are generally used to produce sand samples. Moist tamping is the most 

popular laboratory method to prepare very loose sand specimens and consists of placing 

sand layers of specified thickness into a mould and tamping each layer with a flat tamper. 

The air pluviation method consists of pluviating dry sand through air into a sample mould 

from a constant fall height. Different soil densities are achieved by changing the fall height 

and tapping the sides of the specimen mould. Water pluviation method is similar to the air 

pluviation method except that the sand is pluviated through de-aired water rather than air.  

It is difficult to ensure a uniform density distribution in reconstituted laboratory specimens 

of sand, and moist tamping is the only method that achieves relatively high void ratios in the 

laboratory (Gilbert and Marcuson 1988). The moist tamping method is the method in which 

the surface tension between the soil particles is employed to maintain a very loose sand 

structure (Castro 1969). Because of this tension between particles, unsaturated sands can be 

placed using moist tamping at a very loose soil structure even at void ratios greater than the 
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maximum void ratio of the dry sand obtained from the recommended ASTM D2049 

procedure (Ishihara 1993).  

In order to obtain very loose specimens that would exhibit entirely contractive and strain-

softening behavior and achieve the critical state condition, all samples with different sizes 

were prepared by the moist tamping method. In the traditional method of the moist tamping 

technique, the specimens are prepared in a number of layers of equal dry weight and each 

layer is compacted to the same target density. This results in the lower layers of the 

specimen becoming denser than the global specimen density as compaction of each 

overlying layer also slightly compacts the underlying layers (Sadrekarimi and Olson 2012). 

Therefore, in order to minimize the density variations and void ratio non-uniformities within 

the specimens, the under compaction technique introduced by Ladd (1978) was employed to 

achieve a relatively uniform density throughout the specimen height. This method involves 

the compaction of each layer slightly looser than the target global unit weight, with the 

bottom layer compacted the least and the top layer compacted the most, so that the final unit 

weight of each layer, even with the effects of compaction of the successive overlying layers, 

would be equal to the target global unit weight.  

Very loose cylindrical specimens were prepared in diameters of 38, 50, and 70 mm with a 

length to diameter ratio of 1 to reduce non-uniformity at larger strains. The procedure used 

to prepare a moist tamped specimen is illustrated in Figure 2.8. This procedure is briefly 

described as follows:  

(1) the designated split mould was secured around the bottom platen over the pedestal of the 

triaxial cell and the membrane was gently stretched and folded around the mould and a 

vacuum pressure was applied over the entire mould diameter so  the membrane fitted tightly 



19 

 

inside the mould; (2) two latex membranes of the same specimen diameter and with 0.3 mm 

thicknesses were smeared with a thin layer of silicon grease and placed over the bottom 

platen in order to reduce soil friction at the bottom of the specimen; (3) the dry sand was 

weighted and mixed properly with de-aired water at a water content of 5% by weight; (4) the 

moist unit weight and void ratio of each layer was calculated based on the target overall 

relative density of zero with a maximum under compaction ratio (Un) of 10 for the bottom 

layer and the percent under compaction for each layer was determined based on the 

assumption that it linearly decreased from the bottom to the top layers; (5) each layer was 

weighed, poured into the mould, tamped to a predetermined equal height in a circular pattern 

using the developed scaled tamper, and scarified prior to placing the next layer with special 

care for tamping the top layer to ensure a level surface; (6) two latex membranes similar to 

those used for the bottom of the specimen were placed on the top of the soil prior to the 

placement of the upper platen and the membrane was gently stretched and folded around the 

mould and sealed with two O-rings; (7) a small vacuum (about 4 to 5 kPa) was applied by 

the pore pressure pump in order to provide confinement and hold the specimen in place 

during dismantling of the mould; (8) three readings of sample height and diameter were 

measured to determine the actual initial volume and thus void ratio of the specimen; (9) the 

cylindrical triaxial cell was assembled and placed in the load frame, filled with de-aired 

water, and the vacuum pressure was replaced by an external cell pressure of 10 kPa.   

The initial vacuum pressure was necessary to maintain the specimen before the application 

of the external cell pressure, otherwise the specimen collapsed upon the removal of the 

specimen mould.  
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1) – Enlarged platen over the pedestal                                2) – Placement of membrane  

 

                               

3) – Folding of the membrane around the mould                 4) - Measurement of sand 

 

                               

            5) – Tamping process                                                   6) –Compacted layers  
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7) - Two lubricated latex membranes                                    8) – Placement of top platen 

 

                               

         9) – Complete specimen                                             10) Specimen placed in the cell 

Figure ‎2.8: Steps of specimen preparation using moist tamping method 

 

2.4.2 Saturation Stage 

It was important to ensure that the porous stones were boiled in deaired water for about 15 

minutes prior to placement inside the platens. This helped to eliminate entrapped gas in the 

porous stone discs and specimen saturation. Furthermore, the pumps and sensors were 

saturated by flushing water to minimize errors in the measurement of specimen volume or 

pore water pressure resulting from the compression of entrapped air.  
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As complete saturation of the specimen was required to ensure accurate volume change and 

pore pressure measurement, carbon dioxide (CO2) was first percolated through all specimens 

under a small confining pressure of about 5 kPa for about 30 minutes. Compared to air, CO2 

is more soluble in water (forming carbonic acid) which reduces the time and pressure 

required to adequately saturate the specimen (Mulilis et al 1978). Subsequently, the top and 

bottom specimen drain lines were flushed using the backpressure pump at a very slow rate 

of 1 mL/min to ensure minimal disturbance to the specimen or dislodging the soil. The pore 

pressure was monitored carefully during CO2 percolation and flushing with water to ensure 

that no pore pressure built up inside the specimen and the effective stress on the specimen 

was never lost during saturation. 

The saturation procedure was continuing with a backpressure saturation phase as 

recommended by Black and Lee (1973). A back pressure of 200 kPa was applied to the 

specimen pore water to drive the carbon dioxide and any remaining air into solution. The 

process was done by raising the specimen pore pressure (using the backpressure pump) 

while simultaneously maintaining a constant difference effective stress of 10 kPa between 

the cell pressure and pore pressure. The pore pressure was increased at a rate slow enough to 

allow pore pressure equalization throughout the specimen. Skempton’s pore water pressure 

parameter B was used to verify the degree of specimen saturation. This was done by closing 

the drainage valves and applying a small increment of cell pressure (3B) while also 

measuring the increase in specimen’s pore pressure (uB). The B value was calculated as the 

rise in specimens pore water pressure divided by the increment in cell pressure (B = 

uB3B). A B = 1 indicates full (100%) saturation of the specimen. All specimens of this 

study were saturated until a B value of at least 0.98 was achieved. 
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2.4.3 Consolidation Stage 

Isotropic consolidation commenced subsequent to the completion of specimen saturation by 

increasing the confining pressure while maintaining a constant specimen pore pressure. 

Confining pressures were utilized with values of 100 kPa, 200 kPa, 300 kPa, and 500 kPa. 

As the piston remained locked during isotropic consolidation, a gap formed between the 

specimen top platen and tip of the axial loading piston. The amount of displacement applied 

to close this gap and make contact between the piston tip and the specimen top was used as 

the axial deformation of the specimen following isotropic consolidation. The volume of 

water driven out of the sample during the consolidation stage was also measured as the 

difference in pore pump volume before and after the consolidation and hence, the 

consolidation void ratio was readily computed for each test. 

 

2.4.4 Shearing Stage 

The specimens were sheared following isotropic consolidation to the target confining stress. 

During shear the total cell pressure was kept constant while advancing the axial loading 

piston on the specimen cap at a constant strain rate up to an axial strain of 30%. The shear 

strain rate was chosen to ensure full pore pressure equalization during undrained shearing 

and full excess pore pressure dissipation during drained shearing based on the following 

ASTM guidelines:  

 

                                ̇            ⁄                                                 (2.1) 

 

                                ̇            ⁄                                                 (2.2) 
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Where     and     are the amounts of time required to reach 50% and 90% degrees of 

consolidation, respectively. These were estimated from an initial trial triaxial test using the 

tested sand where the theory of consolidation was applied and a coefficient of consolidation 

(cv) of 5.4x10
-5

 m
2
/sec was determined using the equation: 

  

                       ⁄                                                                              (2.3) 

      

While the coefficient of permeability, k, was estimated using Hazen’s equation: 

 

         
              cm/sec                                                                 (2.4) 

 

Shear strain rates of 6.3%/hour and 5.9%/hour were calculated, and therefore a fixed 

shearing  rate of 5%/hour was adopted in both drained and undrained triaxial shear tests. 

Specimen drainage was not permitted during the undrained tests while the specimen pore 

pressure was kept at the value of the backpressure during drained shear tests so all the shear-

induced pore water pressure was dissipated. Measurements of excess pore pressures during 

the undrained shearing were taken by the pore pressure sensor, while volume change during 

shearing was measured and recorded by the back pressure pump in the drained tests. The 

void ratio at each strain level was calculated from the volume change measurements during 

the drained shear tests while a constant specimen volume was maintained in the undrained 

tests.  

Table 2.1 summarizes the specifications of the specimens, loading conditions, and the 

applied shear strain rate of this study. 
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Table ‎2.1: Triaxial test data in this study 

Test # 

Specimen 

Size       

(mm) 

Drainage 

Condition
a
 

p'c            

(kPa) 
ec 

Drc     

(%) 

Strain 

rate‎έ‎

(mm/min) 

MT-1 

70 D 

500 0.771 15 

0.058 

MT-2 300 0.779 13 

MT-3 200 0.785 11 

MT-4 100 0.797 7 

MT-5 

70 UD 

500 0.775 14 

MT-6 300 0.782 12 

MT-7 200 0.791 9     

MT-8 100 0.797 7 

MT-9 

50 D 

500 0.761 18 

0.042 

MT-10 300 0.769 16 

MT-11 200 0.773 14 

MT-12 100 0.786 10 

MT-13 

50 UD 

500 0.769 16 

MT-14 300 0.775 14 

MT-15 200 0.785 11 

MT-16 100 0.795 8 

MT-17 

38 D 

500 0.76 18 

0.032 

MT-18 300 0.766 16 

MT-19 200 0.775 14 

MT-20 100 0.786 10 

MT-21 

38 UD 

500 0.766 16 

MT-22 300 0.773 14 

MT-23 200 0.784 11 

MT-24 100 0.794 8 
       a

 D: drained shear test; UD: undrained shear test. 

 

2.5 Corrections for Triaxial Compression Tests 

Triaxial shear tests involve several sources of errors that could be significant in evaluating 

test results if not corrected. The major errors resulting from sample volume changes occur 

during back-pressure saturation, membrane penetration, and the variation of specimen cross-

sectional area during consolidation and shear. Additional errors result from the membrane 

rubber resistance to the axial and radial stresses, and the bedding errors resulting from using 
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latex membranes in the enlarged and lubricated end platens technique. These errors have a 

direct effect on the calculated stresses and the specimen’s void ratio. The methods to 

account for these errors and the applied corrections along with the obtained results are 

described in the following paragraphs. 

 

2.5.1 Correction of Volume Change during Saturation 

In conventional triaxial tests, the specimen void ratio before shear is calculated based on the 

initial sample dimensions taken before assembling the cell and the void ratio changes during 

backpressure saturation and consolidation stages. The correct assessment of these void ratio 

changes is particularly critical in the testing of very loose sands because of their higher 

sensitivity to void ratio and could affect the position of the critical state line. The sample 

volume changes due to the flushing and backpressure saturation could be measured as the 

volume change of the cell fluid or by measuring the axial and radial deformation using 

sensors. Freezing the sample at the end of the test is the commonly applied method due to its 

high accuracy in estimating the sample volume changes. Imaging technique using either a 

high resolution camera or a 3D laser scanner can be also utilized. The ASTM standard 

method D4767-11 suggests calculating the volume change during saturation as below: 

  

               ⁄                                                                                             (2.5) 

 

Where Vo is the initial specimen volume, hs is change in height of the specimen during 

saturation, and ho is the initial specimen height. Sladen and Oswell (1989) tested Syncrude 

tailing sand and measured void ratio changes due to saturation of as large as 0.15 using the 

specimen freezing technique. Zhang (1997) tested Unimin sand with initial relative densities 
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varying from 2% to 54% and monitored the axial and radial deformation during saturation 

using a linear variable displacement transducer (LVDT) and a hall radial displacement 

transducer (HRDT), respectively. He found that the entire saturation procedure resulted in a 

void ratio change of 0.008 to 0.026 which increased with increasing specimen void ratio 

where the looser the sample, the larger the volume change.  

As described earlier, the saturation of moist tamped samples in this study was undertaken by 

flushing the samples with carbon dioxide followed by de-aired water, and then applying 

backpressure saturation. The sample dimensions were measured after applying a low suction 

(5 kPa) and removing the mould. Since the purpose of this study is to investigate the effects 

of measuring errors and corrections on critical state testing, all specimens were prepared at 

an initial void ratio of 0.821 which represents relative density of 0% and the volume changes 

occurring during backpressure saturation were obtained by measuring the axial strain (a) of 

the specimen while making contact between the axial shaft and the specimen top cap, and 

calculating the radial strain (r) and thus the volumetric strain (v) of the specimen from its 

Poisson’s ratio ( = -    r/a) from the following relationships:  

 

                                                                                                       (2.6) 

 

                                                                                        (2.7) 

 

Where Ao is the initial specimen cross sectional area and hs is the height change during 

saturation. An average Poisson’s ratio of 0.34 was measured for all specimens from 

specimen deformations measured during consolidation.  
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The calculated volume changes during saturation indicated that the void ratio decreased by 

an average of 1.1% (0.008-0.01) after back pressure which corresponds to about (2.4-3%) in 

terms of relative density changes and were considered in the calculation of the specimens' 

void ratios at the critical state. Accordingly, neglecting saturation volume changes would 

lead to overestimation of the specimens' void ratio and eventually an incorrect critical state 

line and to about (2-3%) uncertainty in the critical strength that could be resulted from the 

differences in the cross-sectional area of the specimen before shear and therefore, this 

change in void ratio during saturation should not be ignored. Table 2.2 summarizes the void 

ratio changes after saturation of backpressure 200 kPa for the all conducted tests. 

 

Table ‎2.2: Void ratio change due to flushing and backpressure saturation 

Test # es e Drs (%) 

MT-1 0.813 -0.008 2.4 

MT-2 0.812 -0.009 2.7 

MT-3 0.812 -0.009 2.7 

MT-4 0.813 -0.008 2.4 

MT-5 0.812 -0.009 2.7 

MT-6 0.813 -0.008 2.4 

MT-7 0.812 -0.009 2.7 

MT-8 0.813 -0.008 2.4 

MT-9 0.812 -0.009 2.7 

MT-10 0.811 -0.010 3.0 

MT-11 0.812 -0.009 2.7 

MT-12 0.812 -0.009 2.7 

MT-13 0.813 -0.008 2.4 

MT-14 0.811 -0.010 3.0 

MT-15 0.812 -0.009 2.7 

MT-16 0.812 -0.009 2.7 

MT-17 0.811 -0.010 3.0 

MT-18 0.812 -0.009 2.7 

MT-19 0.812 -0.009 2.7 

MT-20 0.811 -0.010 3.0 

MT-21 0.812 -0.009 2.7 

MT-22 0.811 -0.010 3.0 

MT-23 0.811 -0.010 3.0 

MT-24 0.812 -0.009 2.7 
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2.5.2 Correction of Volume Change due to Membrane Penetration 

In triaxial tests on granular soils, volume change due to membrane penetration occurs when 

the latex membrane penetrates into the surface irregularities of the specimen when applying 

the effective confining stress. The amount of the resulting volume change is equal to the 

difference between the total volume of water driven out of the sample and the actual volume 

change of the soil skeleton (Newland and Allely 1959). This phenomenon was first 

recognized by Newland and Alley (1957) and since then it has been of considerable interest 

to numerous researchers (Pickering 1973, Frydman et al. 1973, Kiekbusch and Schuppener 

1977, Ramana and Raju 1982, Lade and Hernandes 1982, Seed et al. 1989, Ansal and Erken 

1996). Figure 2.9 illustrates the membrane penetration effect on a granular soil sample under 

low and high effective confining pressures. 

 

 

Figure ‎2.9: Effect of membrane penetration (after K.H. Head 1992) 

 

It can be observed from the above figure that the membrane penetrates into the surface 

cavities when the effective confining stress increases and tends to return to its original state 

when the effective confining stress is reduced. The impact of membrane penetration on the 

stress-strain behavior of soils has been recognized by several researchers (Newland and Allely 
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1959, Roscoe et al. 1963, Frydman et al. 1973, Raju and Sadasivan, 1974, Baldi and Nova 

1984, Seed and Anwar 1989, Kramer and Sivaneswaran 1989, Nicholson et al 1993). In a 

drained triaxial test, the effective confining stress ('3)
 
is constant and membrane penetration 

has only a minor influence on the volume change due to the slight changes of surface area, 

while in an undrained triaxial test, σ'3
 
changes substantially and the measured pore water 

pressure is significantly affected due to the membrane penetration (Roscoe et al. 1963). The 

amount of membrane penetration is a function of many factors including the effective 

confining pressure, grain size, grain shape, gradation, density of the sample, the surface area 

of the sample in contact with the rubber membrane, and the characteristics of the rubber 

membrane such as thickness and extension modulus. Hence, no single approach can 

precisely account for all these factors in order to accurately estimate membrane penetration 

for different sands (Raju and Sadasivan 1974).  

However, several methods are developed to account for the volume changes due to 

membrane penetration. For example, Frydman et al. (1973) studied membrane penetration 

for granular soils with different particle sizes. They tested soils at '3 ranging from 50 to 800 

kPa and found that the volume change due to membrane penetration     ) was directly 

proportional to the logarithm of '3. Further investigation by Lade and Hernandes (1977) 

showed that     was directly related to the mean diameter of the soil particles (D50). Baldi 

and Nova (1984) investigated the membrane penetration in triaxial testing and found that 

membrane penetration depends strongly on D50, '3, and the diameter of the specimen (d) as 

well as the membrane characteristics. According to their analysis, a quantitative correction 

was developed to account for membrane penetration in a typical triaxial test as below: 
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                                                                     (2.8) 

  

Where     is the volume change due to membrane penetration, Vs is the specimen volume 

after saturation, Em is the Young’s modulus for the membrane material, and tm is the 

thickness of the membrane. Nicholson et al. (1993) found that the influence of sample 

density on membrane penetration was relatively small in comparison to the influence of D50. 

Zhang (1997) studied the effect of membrane thickness on the amount of membrane 

penetration for two sands and found that membrane thickness significantly affected the 

amount of penetration in both sands. The thinner the membrane the higher the volume 

change was due to membrane penetration.  

Sivathayalan and Vaid (1998) investigated sets of experimental data produced using 

different techniques by several researchers and normalized the unit membrane penetration 

by dividing the recorded volumetric membrane penetration by the contact surface area 

between the sample and the membrane and then plotted that versus the logarithm of '3. 

They found that the slope (S) of the developed relationship was a function of D50 of the 

sand, with an average of 0.0115 D50 for a wide range of particle sizes. Figure 2.10 shows the 

linear plot of S versus D50 which illustrates the normalized unit membrane penetration data 

and indicates that all data fall within a narrow band for particle sizes ranging from about 0.1 

to 1.0 mm.   

The membrane penetration in this study was calculated using Baldi and Nova (1984) 

equation as it accounts for all factors that could influence the membrane penetration 

(confining pressure, grain size, sample diameter, and membrane thickness and modulus). For 

comparison purpose, the calculated volumetric membrane penetration, using different 
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particle sizes, was normalized to the contact surface area and presented in the same plot of 

Figure 2.10 which demonstrates that the calculated membrane unit penetration is in good 

agreement and within the same linear function of D50 as proposed by Sivathayalan and Vaid 

(1998).  

 

 

Figure ‎2.10: Effect of D50 on the normalized membrane penetration (Sivathayalan and Vaid 

1998) 

 

The membrane penetration volume change in an undrained test mainly depends on the 

change of the effective confining stress, with the higher consolidation pressure developing 

larger membrane penetration volume change. Instead of correcting for the effect of 

membrane penetration, a fewer number of studies have attempted to reduce the amount of 

membrane penetration during shear by isolating the direct contacting surface between the 

membrane and the soil specimen. For example, Lade and Hernands (1977) placed square 

plates inside the membrane, while Kiekbusch and Schuppener (1977) coated the membrane 

surface with liquid rubber. Such methods produce unknown amounts of disturbance to the 
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samples and result in a thick composite membrane whose axial load resistance is very 

difficult to evaluate (Zhu and Anderson 1998). Therefore, to eliminate the effect of 

membrane penetration on the results of undrained triaxial tests, several researchers have 

proposed to compensate for the membrane penetration volume change by injecting an 

equivalent volume of water into the soil specimen (Ramana and Raju 1982, Seed and Anwar 

1989, Nicholson et al. 1993a). The injection process can be performed either manually or 

automatically using a computer-controlled system and the volume of water to be injected 

into the specimen is predetermined based on one of the available information relationship 

(Baldi and Nova 1984; Sivathayalan and Vaid 1998) between volumetric penetration and 

effective confining pressure for a given soil. 

Correction for membrane penetration during the isotropic consolidation was considered in 

all tests performed in this study by correcting the recorded volume change after 

consolidation and accordingly, the consolidation void ratios. The D50 of the tested sand, tm, 

and Em of the used rubber membrane were measured as 0.22 mm, 0.3 mm, and 1350 kPa. 

The changes in the consolidation void ratios due to the membrane penetration was not 

significantly as only an average of 0.36% (0.002-0.003) was calculated, which corresponds 

to about (0.6-0.9%) in terms of relative density changes. This can be attributed to the fine 

gradation of the tested sand that limited the penetration of the membrane into the surface 

irregularities. However, as the critical state line is very sensitive to void ratio changes, it was 

considered for accurate estimation of the specimens' void ratios at the critical state. 

During the drained shearing, the effective confining stress '3 is constant and hence the 

membrane penetration occurring during the consolidation stage does not change during the 

drained shearing and continue with the same magnitude up to the test end.  
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During the undrained shearing, the specimen volume is considered constant throughout the 

test as all the drainage lines are closed. However, the increase in the generated pore pressure 

would push the membrane to move out of the voids causing a partially drainage state and as 

a result, the measured excess pore pressure could be significantly affected and smaller than 

that if no penetration had occurred. This effect on the developed pore pressure is depending 

on the magnitude of the membrane penetration. Considering the very high modulus of water 

Ew, (2.2 GPa for fully saturated soil), the measured excess pore water pressure could be 

lower by about 200-700 kPa due to the excess pore water pressure that could be developed 

due to the membrane penetration (u = Ew x v), where v is the volumetric strain 

corresponding to the membrane penetration. However, Ew could be much lower than 2.2 

GPa as the specimens are not fully saturated (B  1) and also due to the use of flexible drain 

tubes and accordingly, the expected response of pore pressure due to the membrane 

penetration could be much less than the over mentioned values. Actually, and since we are 

measuring pore pressure that represents the specimen behavior, this is not a testing error to 

be corrected. The membrane penetration in the conventional undrained triaxial shearing tests 

indicates the inadequacy for 100% constant volume or fully undrained condition even 

without measuring this slight volume change. 

 

2.5.3 Effects of Enlarged Platens on Stress-Strain Response  

As explained earlier, enlarged and lubricated end platens were employed in the experimental 

work of this study to allow free radial expansion of the specimen and minimize the bulging 

deformation during shear. A series of pilot tests were conducted on 50 mm specimens 

without lubricated platens and the results were compared with the final experiments in order 
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to quantify the improvements gained by lubricating the platens at large axial strains. Two 

undrained triaxial compression tests were performed for each case at isotropic consolidation 

stresses of 100 kPa and 300 kPa corresponding to relative densities of 8% and 14%, 

respectively. The stress-strain responses and the measured excess pore water pressures are 

shown in Figure 2.11. According to this figure, the shear-induced excess pore pressure is 

enhanced with lubricated end platens, resulting in about an average 13% reduction in the 

final deviator stress. This reduction occurs as friction at specimen boundaries is reduced 

which leads to more uniform specimen deformation and stress distribution. 

 

 

Figure ‎2.11: Effect of lubricated end platens on the stress-strain and excess pore pressure 

responses in triaxial compression tests on loose sand 

 

Accordingly, an average error of about 10% in the critical strength and 4 degrees in the 

critical state friction angle were calculated if rough ends were used. These results are also 

supported with those observed by some other investigators (Olson and Campbell 1964, Ueng 

et al. 1988). However, Lee (1978) observed an opposite effect of lubrication where larger 

shear strength and less pore pressure were obtained with lubricated ends. Castro et al. (1982) 

found that the shear strength and pore pressure were basically the same with and without 
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lubricated ends, and Zhang (1997) observed that lubricated ends significantly reduced the 

end restraint of dense specimens.  

 

2.5.4 Area Correction due to Specimen Deformation Pattern 

The axial stress on a specimen is computed by dividing the axial force by the cross-sectional 

area of the specimen. The cross-sectional area is calculated based on the assumption that the 

sample deforms as a right circular cylinder during shear. As it is necessary to shear sand 

samples to large axial strains for critical state testing, the triaxial samples deform 

substantially during the test and may significantly bulge. This bulging deformation makes 

the calculation of the cross-sectional area difficult and results in errors in the calculated 

deviator stresses and accordingly the critical strengths of the sands. Therefore, it is necessary 

to consider an effective cross-sectional area that takes into account the bulged shape of the 

specimen with a proper deformation pattern. Several methods for calculating the effective 

cross sectional area are summarized in the following paragraphs (Zhu and Anderson 1998): 

In the cylindrical deformation correction method the specimen is assumed to deform as a 

right circular cylinder during shear (La Rochelle et al. 1988). This correction is 

recommended by the ASTM standard test method (ASTM D4767). The corrected area is 

calculated as                     ⁄  where A is the effective area of the specimen, Ao 

is the specimen’s initial area, v is the volumetric strain, and a is the axial strain. At a more 

complex level, the specimen is assumed to deform as a parabola (similar to a barrel) and the 

effective area is computed at the mid-height of the specimen. The resulting area correction is 

given as          [       √                         ⁄ ]2
. For more bulging 

deformation, the effective area of the specimen is calculated by         (    
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   ) [(    ) (       )], where Af and Ace are the cross-sectional areas at the peak 

strength and at the end of the test, respectively, and e and f are the axial strains at the end 

of the test and at the peak strength, respectively.  

Zhang and Garga, (1997) also developed a method to correct the cross-sectional area of 

triaxial sand samples. They performed triaxial tests where the samples’ diameters were 

physically measured with a caliper at different strain levels and the deformation profile of 

the specimen was investigated in each test. They found that the maximum diameter occurred 

at the middle of the sample and the specimen diameter changes with height at different axial 

strains were parabolic. Therefore, they suggested using the average diameter within the 

middle third portion of the sample d1/3 to calculate the deviator stress as follows: 

  

  

 
 
        

 

  
                                                                                    (2.9) 
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                                                                      (2.10) 

 

The choice of the appropriate method depends on careful observation of specimen 

deformation during and after testing Figure 2.12 shows the influence of the employed 

lubricated ends in this study on the observed deformation patterns of the specimens at the 

tests end of 30% strain level. According to these photos, the lubricated end platens reduced 

but did not eliminate specimen bulging associated with the friction between the platens and 

the samples which exhibited a slightly parabolic shape at the end of the tests. Therefore, the 

method developed by Zhang and Garga (1997), where a parabolic deformation mode of the 

samples is assumed, was employed to account for the enlarged areas of the specimen. 
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        a) – Without lubrication                                           b) - With lubrication                    

Figure ‎2.12: Effect of lubricated end platens on the deformation patterns of loose sand 

specimens in triaxial compression tests at 30% axial strain 

 

The area correction method recommended by the ASTM standard D4767 assumes that the 

specimen deforms as a right circular cylinder and therefore it is not appropriate for the 

experiments of this study. However, a right cylindrical deformation would occur if the 

specimen ends were perfectly frictionless and therefore this correction could be used to 

replicate stress-strain response of an ideal specimen with no boundary effects. Figure 2.13 

compares the stress-stress response of the loose sand specimens using these methods. 

 

 

Figure ‎2.13: Effect of area correction method on the stress- strain response in undrained 

triaxial compression tests on loose sand 
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Comparing the deviator stress with and without applying area correction, the deviator stress 

at the end of the tests without applying any area correction was higher by about an average 

of 28% than that calculated using the parabolic area correction and by about 24% if area 

corrected considering the specimen deformed as a right circular cylinder. This further 

supports that the lubricated platens reduced but did not eliminate the end friction. This 

percentage of error is significant and can lead to overestimate the critical strength value if 

the actual deformation mode of the specimen is not taken into account in selecting the 

appropriate correction methd. For example, the critical strength of the 70mm specimen 

tested under a 300 kPa consolidation stress was measured to be 28.1 kPa without applying 

any area correction and reduced to 23.5 kPa considering the specimen deformed as a right 

circular cylinder and to much lower value of 22.3 kPa considering parabolic area correction 

which means that the critical strength and critical state friction angle were overestimated by 

26% and 9.5 degrees, respectively, if area correction was not applied. Table 2.3 summarizes 

the critical strength with and without correcting the specimens’ cross-sectional area. 

 

Table ‎2.3: Effect of area correction on the critical strength 

Specimen 

Size 

P'c            

(kPa) 

Drc     

(%) 

Uncorrected 

su(critical)   
(kPa) 

Corrected 

su(critical)    

(kPa) 

Correction 

(%) 

70 mm 

500 14 40.2 31.2 29 

300 12 28.1 22.3 26 

200 9 23.6 19.2 23 

100 7 14.8 12.2 21 

50 mm 

500 16 45.2 35.3 28 

300 14 34.8 27.8 25 

200 11 28.8 23.5 23 

100 8 16.9 14.1 20 

38 mm 

500 16 47.7 37.0 29 

300 14 41.3 33.0 25 

200 11 30.9 25.4 22 

100 8 20.2 16.9 20 
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2.5.5 Correction for Bedding Error 

The homogenous deformation and uniform distribution of stress during the performed 

triaxial tests was most closely achieved by using enlarged lubricated end platens with 

specimens that had a length to diameter ratio of one. The use of lubrication rubber 

membrane layers at the top and bottom of the specimens resulted in bedding errors with the 

application of the axial load as the rubber layers compressed and penetrated into the sand. 

These errors directly affect the precise measurement of the axial strain. Lee and Seed (1964) 

found that, although the lubrication grease may lose its effectiveness with time, the resulting 

bedding errors could be still significant. Sarsby et al. (1980) studied the compression of 

rubber membrane layers in triaxial tests and the importance of correcting the measured 

vertical displacement for the compression of these rubbers. They found that the bedding 

errors were a logarithmic function of the effective axial stress '1. Tatsuoka et al. (1984) 

performed triaxial tests with various numbers of lubricated rubber layers and found that 

multiple layers of greased rubbers give slightly better lubrication than single layers, but 

more bedding errors which should not be ignored. Russell and Khalili (2004) conducted a 

series of one-dimensional compression tests on sands with and without a lubricated layer 

separating the sample from the loading platen and the bedding error was found to be a 

logarithmic function of σ'
1 

as shown in Equation (2.11) and previously observed by Sarsby 

et al. (1980). 

 

                                                                                                     (2.11) 

 

Where,  is the error in the vertical displacement due to the use of one lubricated layer of 

rubber (mm) and '1 is the effective vertical stress (kPa).  To improve the accuracy of axial 
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displacement measurement during shear in all the drained and undrained triaxial tests 

performed in this study, the deformation of the two latex membrane sheets is accounted for 

by deducting the membrane compression from the measured axial displacement of the 

specimen. Equation (2.11) was employed to estimate the amount of membrane deformation 

resulted from the axial stress applied on the specimen. Note that as the rubber membrane 

was already compressed following the consolidation stage, it was necessary to include the 

rubber compression due to the effect of all-surround consolidation pressure and then 

applying the correction to the measured axial displacement during shear after deducting the 

calculated membrane compression due to the consolidation pressure. While the latex 

membrane compresses due to the axial stress, it also expands in the radial direction and 

hence has no influence on the measured volume change during consolidation or drained 

shearing. In addition, the rigid top and bottom platens reduce the penetration of the latex 

membrane into the specimen voids and so this would have no effect on the specimen void 

ratio.  

The bedding error, if not corrected, could significantly affect the measured axial strain. The 

maximum bedding deformation for the experimental work in this study was calculated to be 

0.38 mm and could have 5.1% effect on the measured axial displacement if not corrected. 

This error would increase with increasing the number of latex rubber layers. In addition to 

the error in axial displacement, ignoring this deformation would result for error in estimating 

the specimen shear modulus. Table 2.4 summarizes the calculated maximum membrane 

compression () and its effect on the axial displacement (a). It can be observed that the 

bedding error is more significant in the drained tests due to the steady increase in the 

effective vertical stress '1. The bedding error is also increases with the confining pressure.  
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Table ‎2.4: Effect of bedding error on the axial displacement 

Test # 
Specimen 

Size 

Drainage 

Condition
a
 

pc                

(kPa) 

Max  

(mm) 

Max 

a (%) 

MT-1  

D 

500 0.364 1.6 

MT-2 70 mm 300 0.331 1.9 

MT-3  200 0.304 2.3 

MT-4  100 0.257 3.4 

MT-5  

UD 

500 0.313 0.45 

MT-6 70 mm 300 0.281 0.86 

MT-7  200 0.253 1.2 

MT-8  100 0.208 1.8 

MT-9  

D 

500 0.373 1.7 

MT-10 50 mm 300 0.339 2.6 

MT-11  200 0.31 3.4 

MT-12  100 0.262 4.2 

MT-13  

UD 

500 0.315 0.77 

MT-14 50 mm 300 0.284 1.12 

MT-15  200 0.256 1.53 

MT-16  100 0.214 1.92 

MT-17  

D 

500 0.377 2.9 

MT-18 38 mm 300 0.342 3.4 

MT-19  200 0.314 3.7 

MT-20  100 0.267 5.1 

MT-21  

UD 

500 0.317 0.99 

MT-22 38 mm 300 0.286 1.48 

MT-23  200 0.258 1.85 

MT-24  100 0.217 2.6 

a
 D: drained shear test; UD: undrained shear test. 

 

2.5.6 Correction for Membrane Resistance 

The rubber membrane used to seal a specimen in triaxial testing can take a portion of the 

load applied on the specimen. During consolidation, the cell pressure applies axial and radial 

stresses on the sample. Most of this pressure is carried by the sample, while a small part of 

the load is taken by the surrounding membrane. During shearing, an additional axial load is 

applied on the sample, and again the membrane carried a part of the additional axial load. 

This could be particularly significant in measuring the reduced undrained strength of loose 
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soils after strain-softening and liquefaction. Henkel and Gilbert (1952) noticed this 

phenomenon and tried to correct for it. They conducted a series of triaxial tests using three 

different membrane materials. They found that the strength contributed by the rubber 

membrane was independent of specimen strength and cell pressure, but proportional to the 

stiffness of the membrane. They subsequently proposed two theories to determine the axial 

stress contribution of the membrane. In the first theory it is assumed that the confining cell 

pressure is sufficiently large to hold the membrane firmly against the specimen and the 

membrane acts as a reinforcing compression shell around the specimen. Whereas the second 

theory assumes that the rubber membrane is loosely held on the specimen (with some 

possible wrinkles), and acts as a rubber belt around the specimen. Duncan and Dunlop 

(1968) found that the restraint exerted by the rubber membrane induced indeterminate 

forces, which were most important when the displacements were large and the external 

forces were small. They considered the axial and volumetric strains in their proposed 

correction method. The ASTM standard method D7181-11 also provides a membrane 

resistance correction and recommends applying the correction if the calculated error in 

deviator stress by membrane resistance is greater than 5%. According to ASTM D7181-11 

the shear stress carried by the membrane can be calculated by the following equation: 

 

    
         

  
                                                                                       (2.12) 

 

Where Em is the Young’s modulus of the membrane material (kPa), tm is the thickness of the 

membrane (mm), and dc is the diameter of specimen after consolidation (mm). A membrane 

resistance correction was applied according to Equation 2.12 for all the experiments 

performed in this study. For accurate estimation of membrane resistance, the Young’s 
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modulus of the latex membrane material was determined from an extension test as 

recommended by ASTM D7181-11. The test involved stretching a one inch wide loop of the 

membrane with weights and measuring the force per axial deformation of the membrane. A 

modulus of about 1350 kPa was obtained. Figure 2.14 compares the influence of membrane 

resistance on the stress-strain responses of 38 mm loose sand specimens.  

 

 

Figure ‎2.14: Effect of membrane resistance on the stress- strain response of undrained 

triaxial compression tests on loose sand 

 

As shown in Figure 2.14, the contribution membrane resistance increases with the strain 

level ( = E) and thus correction for membrane resistance is particularly important at large 

strains where the reduced critical strength is mobilized in undrained shear tests. Neglecting 

this correction could lead to an average error in the measured critical strength up to 8% and 

up to 3 degrees in the critical state friction angle. For example, an undrained critical strength 

of about 35.9 kPa was measured in the 38mm specimen at p'c = 300 kPa, which includes an 

additional resistance of 2.9 kPa (9% of the total) provided by the membrane. Therefore, 

membrane resistance should be considered for accurate evaluation of the measured deviator 

stresses particularly at the critical state.  
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Table 2.5 summarizes the calculated membrane resistance and its effect on the measured 

deviator stress for the undrained tests. 

 

Table ‎2.5: Effect of membrane resistance on the deviator stress 

Specimen 

Diameter 

p'c 

(kPa) 

Drc 

(%) 

Membrane 

resistance 

q (kPa) 

Corrected 

deviator 

stress 

qcs (kPa) 

Correction 

(%) 

70 mm 

500 14 6.3 70.2 9 

300 12 5.6 50.5 11 

200 9 4.4 43.7 10 

100 7 3.1 27.8 11 

50 mm 

500 16 9.0 82.0 11 

300 14 7.8 64.9 12 

200 11 7.7 55.0 14 

100 8 4.3 33.0 13 

38 mm 

500 16 12.2 87.0 14 

300 14 12.5 78.0 16 

200 11 9.0 60.0 15 

100 8 7.2 40.0 18 

 
 

2.6 Comparison of Corrections  

The errors accompanied the triaxial testing of very loose sand and the applied techniques or 

corrections to account for these errors have been briefly reviewed. Generally, the difference 

between the corrected and uncorrected data increases with the increasing of the axial strain 

and accordingly, the shear strength and the internal friction angle could be largely 

overestimated. However, in order to identify how the corrections interact and if it is required 

to account for all these corrections and determine the correction that has the most significant 

effect on the sand shear behavior, the discussed errors and the applied correction methods 

with their references as well as the percentages of achieved improvements of the related 

parameters are summarized in Table 2.6 for all the performed tests in this study. 
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Table ‎2.6: Summary of the applied corrections and percentage improvement for triaxial 

shear testing on very loose sand 

Applied 

correction 

Associated 

Parameter 

Error 

mechanism 

Range of 

Improvement 

Average 

Improvement 

Correction 

Reference 

Enlarged 

and 

lubricated 

platens 

su(critical) 

% End 

restraints 

- (8 – 12) - 10 
Rowe 

(1962) cs 

(degrees) 
- (3.1 – 4.2) -3.6 

Area 

correction 

su(critical) 

% Specimen 

bulging 

- (20 – 29) - 24.5 Zhang and 

Garga 

(1997) cs 

(degrees) 
- (7.8 - 10) -8.9 

Membrane 

resistance 

su(critical) 

% Membrane 

resistance 

- (6 – 10) - 8.0 
ASTM 

D7181-11 cs 

(degrees) 
- (2.5 – 3.6) -3.1 

Volume 

change 

ecritical 

% 

Saturation 0.4 -1.1 
ASTM 

D4767-11 

Membrane 

penetration 
-0.08 0.36 

Baldi and 

Nova(1984) 

Bedding 

error 
a 

% 

Latex 

compression 
5 -2.5 

Sarsby et 

al. (1980) 

 

From the above analysis, it can be observed that each correction improved a certain 

parameter and the critical shear strength and friction angle as well as the critical void ratio 

was influenced by more than one correction. The negative sign indicates the overestimation 

of the related parameter if the corresponding correction was not applied. It can also be 

observed that the specimen cross-sectional area correction is the most significant error 

affects the strength of the tested sand and must be corrected based on the observation of soil 

deformation pattern during and after testing. However, the improvement of each parameter 

was calculated with applying the other corrections. Therefore, the corrections effect on these 

parameters could be either propagated or cancel each other. Accordingly, the critical 

strength and friction angle found to be much overestimated if the corrections to the area 
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variation  and the membrane resistance were not considered or the enlarged end platens were 

not employed. The combined improvement indicate that the critical strength and friction 

angle of the tested loose sand could be overestimated as large as 32% and 12 degrees, 

respectively, if these corrections were not applied and up to 42% and 15.6 degrees, 

respectively, if the enlarged lubricated platens were not used. On the other hand, the critical 

void ratio of the tested loose sand could be overestimated as much as 0.9% as the volume 

change due to the membrane penetration reduced the effects of volume change during 

saturation and this could be much larger when testing coarser sands or granular materials. 

 

2.7 Conclusion 

The experimental errors affecting the shear behavior of loose sand have been thoroughly 

reviewed in this study, which illustrated the significant effects of end restraint and triaxial 

data corrections on loose sand shearing behavior. The non-uniform deformations at large 

strain, which is often required to achieve critical state, may significantly affect the critical 

strength of sands. It was demonstrated that lubricated and enlarged end platens are helpful 

mechanisms to minimize the effects of end restraint and promote uniform deformations 

during shear. As a result of these improvements, accurate volume change in drained shear 

tests as well as lower deviator stresses and higher pore pressures were measured in the 

undrained shear tests. It was found that rough end platens could result in an average of 10% 

and 13% overestimation in the critical strength and friction angle, respectively. The 

importance of lubrication was found to increase with increasing specimen density. While 

lubrication improved specimens’ deformation uniformity, it did not completely eliminate 

them and the final specimen shapes were slightly parabolic and an area correction 
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conforming to the shape of the deformed specimens was used to account for this barreling 

deformation of the specimen and correct the measured axial stress on the specimens. 

Accordingly, the critical strength and friction angle was reduced by an average of 24% and 

32%, respectively. It was further indicated that neglecting membrane resistance would lead 

to overestimate of the critical strength and friction angle by an average of 8% and 11%, 

respectively. The propagation of all these errors, if not corrected, could overestimate the 

critical strength and friction angle of the tested loose sand by an average of 42% and 15.6 

degrees, respectively. In addition, the bedding error due to the compression of the latex 

membrane used in the enlarged platens technique increased the measured axial strain by an 

average of 2.5%. Another important factor affecting the behavior of sands is its void ratio. 

The volume change during back pressure saturation and due to membrane penetration could 

significantly affect the critical void ratio and the location of the critical state line and 

accordingly, the measured critical state parameters. The results of this study indicated that 

ignoring the volume change during saturation could lead to an overestimation of the sample 

void ratio up to 0.01 which corresponds to about 3% in terms of relative density. The 

membrane penetration into the surface cavities lead to an overestimation of specimens 

volume change during consolidation and thus underestimation of the void ratio by  about 

0.003 which represents 0.9% changes in specimen’s relative density. The relatively minor 

influence of membrane penetration on the volumetric strain could be related to the fine 

gradation (D50 = 0.22 mm) of the tested sand that minimized the penetration of the 

membrane into the surface irregularities among the sand particles. The results of the 

corrections also indicated that the change in the specimen cross sectional area at large strain 

is the most significant source of error observed in this comprehensive study on loose sand 

and choosing the appropriate correction method requires a special attention of the engineer. 
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Chapter 3  

3 Specimen Size Effect on Triaxial Compression Testing of 
loose sands 

3.1 Introduction 

Triaxial tests are widely used to determine the strength characteristics of soils subject to a 

wide range of stress paths and loading conditions. Different studies employ different 

specimen sizes in triaxial compression tests, however the behavior of a particular soil from 

different studies are often compared without due attention to the differences in specimen 

size and its effect on soil behavior. For example, Table 3.1 presents a summary of the 

different specimen sizes used in different triaxial testing studies of sand behavior. 

 

Table ‎3.1: Summary of the specimen sizes used in different studies 

Sample size (mm) 
Material Researcher  

Diameter  Height 

38 76 Leighton Buzzard sand Scott (1987) 

50 100 Unimin sand Garga (1988) 

50.8 101.6 Ottawa and Mississippi sands Sadrekarimi (2010) 

70 70 Athabasca oil sand  Wong (1999) 

71 140 Granular material Marachi et al. (1969) 

71 140 Ottawa sand Frost  (2000) 

74 150 Monterey sand Ladd (1978) 

75 150 Banding sand Castro (1969) 

75 150 Dune sand Konrad (1990) 

75 150 Lunar soil Arslan et al. (2010) 

76 150 Erkask 330/0.7 sand  Been and Jefferies (1991) 

100 200 Leighton Buzzard sand Scott (1987) 

100 200 Sydeny sand Hu et al. (2010) 

102 200 Silty sand Yamamuro and Lade (1997) 

250 500 Loire river sand Hu et al.(2010) 

300 675 Ticino 9 sand Jefferies et al. (1990) 

300 600 Granular material Seif el Dine (2009) 

915 1370 Granular material Marachi et al. (1969) 

1000 1500 Loire river sand Hu et al.(2010) 
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Several researchers have studied the effect of sample size on the behavior of cohesionless 

soils using triaxial shear tests (Marsal 1967; Marachi et al. 1969; Ladd 1978; Scott 1987; 

Been and Jefferies 1991; Hu et al. 2010; Chew et al. 2011), direct shear tests (Parsons 1936; 

Palmeira and Milligan 1989; Hight and Lerouiel 2003; Cerato and Lutenegger 2006; Wu et 

al. 2007; Bareither et al. 2008), and numerical modeling investigations (Oie et al. 2003; 

Liang et al. 2009; Arslan et al. 2010; Shen 2011; Frossard et al. 2012). For example, 

Parsons (1936) study on the effect of specimen size in direct shear testing on both Ottawa 

sand and crushed quartz indicates that a reduced friction angle is mobilized in a larger shear 

box, and that this difference is more significant in Ottawa sand specimens than in crushed 

quartz sand specimens. Scott (1987) performed drained triaxial compression tests on dense 

Leighton Buzzard sand specimens of diameters 38 mm and 100 mm which were 

consolidated to similar void ratios and effective confining pressures. He found a higher peak 

strength and initial shear modulus in the larger specimen whereas smaller post peak shear 

strength was mobilized in the larger specimen at the end of the tests at an axial strain of 

15%. Shear bands developed in both specimens indicating that shear banding could occur 

irrespective of sample size. Garga (1988) studied the size effects on the strength of dense 

basaltic soils using 100 and 500 mm square direct shear tests and 36 and 63.5 mm 

cylindrical specimens in undrained triaxial compression tests. The shear strength ratios were 

used to compare the results and a reduction in the peak and critical strengths were found 

with increasing specimen size. 

 Jefferies et al. (1990) investigated the influence of sample size on the drained shearing 

behavior of Ticino 9 sand. Four different cylindrical specimens of diameters 35, 75, 150, 

and 300 mm were prepared by dry pluviation and sheared from the same isotropic 
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consolidation pressure of 100 kPa. Figure 3.1 compares the measured stress-strain and 

volumetric strain behaviors of these specimens. 

 

 

    

Figure ‎3.1: Effect of specimen size on the behavior of Ticino 9 sand (Jefferies et al. 1990) 

 

According to Figure 3.1, the smaller specimen exhibits the greatest volumetric strain despite 

its smallest peak deviator stress. In addition, critical state conditions at which both the 

deviator stress and volumetric strain become constant are reached in the larger specimens 

while the smaller specimens (35.6 mm and 75.5 mm) are still strain-softening. This can be 
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attributed to the difference in the amounts of shear displacements applied in each specimen 

size. At the same axial strain, the larger specimens undergo greater shear displacements than 

the smaller specimens and thus subject the particles to larger amount of rearrangement and 

reorientation while there is insufficient space in the smaller sample for the movement and 

reorientation of the particles. 

Cerato and Lutenegger (2006) tested five different sands in three square shear boxes with 

different lengths of 60, 101, and 305 mm, respectively. They found that the specimen size 

had a significant impact on the measured friction angle with the values obtained from testing 

the 60 mm specimens being up to ten degrees higher than those measured from the 305 mm 

specimens. Similar results have been documented by many other studies on the effect of 

shear box size on the results of direct shear tests (Hight and Leroueil 2003; Wu et al. 2007; 

Bareither et al. 2008; Dadkhah et al. 2010; Moayed and Alizadeh 2011). Wang and 

Gutierrez (2010) performed discrete element analyses to examine the impact of specimen 

length and height on sand behavior. The results were presented in terms of stress ratio, box 

height, and box length. They found that the peak stress ratio (/’v) increased with 

decreasing box length or box height. Hu et al. (2010) developed a set of triaxial cells of 

various sizes to study the size effect on Loire River sand and Calcareous rockfill, and found 

that pre-peak behavior in drained triaxial compression tests was not affected by the 

specimen size, whereas the post-peak behavior depended on the size of the specimens which 

controlled strain localizations. It was also observed that for well-graded angular sands, the 

friction angle decreased as sample size increased.  

While the aforementioned studies have focused on the specimen size effect on soil behavior, 

some other investigators have compared the behavior of granular materials with different 
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ranges of particle sizes as an alternative approach for studying specimen scale effect 

(Tatsuoka 1997; Okuyama et al. 2003; Oie et al. 2003; Islam et al. 2011; Farbodfar 2013). 

In this method, while the specimen size does not change, among granular soils with parallel 

particle size distributions (similar coefficients of uniformity, CU and curvature, CC) a larger 

mean particle size (D50) replicates a smaller specimen size. For example, Fabodfar (2013) 

performed series of direct shear tests on three sands of more-or-less parallel particle size 

distributions but with different mean particles size (D50 = 0.19, 0.49, and 2.77 mm) to 

examine the influence of sand gradation and specimen size on the sand strength parameters. 

He found that the peak shear strength and the mobilized friction angle increased with 

increasing D50. Based on the analogy between D50 and specimen size, his results imply that 

the peak shear strength and the mobilized friction angle decrease with increasing specimen 

size. 

As summarized above, although many studies have observed that larger specimens often 

result in smaller shear strengths and friction angles, the impact of specimen size on the shear 

strength parameters and design is largely overlooked in engineering practice. In addition, 

previous investigations of specimen-size effects in triaxial tests have mainly focused on the 

testing of dense sands (Scott 1987; Been and Jefferies 1985; Garga 1988; Hazarika et al. 

2010) or coarser granular materials containing large particles such as rockfill (Marsal 1967; 

Marachi et al. 1969; Seif el Dine 2009; Hu et al. 2010) which also require the construction 

of a large-sized triaxial apparatus. In this study, a comprehensive and systematic 

experimental program is conducted to investigate the sample size effect on the 

consolidation, drained and undrained shear behavior of very loose Ottawa sand specimens.  
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3.2 Experimental Methodology 

An experimental program for testing loose Ottawa sand with different specimen sizes is 

implemented to study the size effect on the consolidation and stress-strain behaviors and 

shear strength parameters. Static triaxial compression tests were performed on cylindrical 

specimens prepared to 38, 50, and 70 mm diameters. Non-uniform deformations in triaxial 

testing often result from the mechanical boundary restraints as a result of the friction 

between a specimen and the end platens (Bishop and Green 1965; Lee 1978). This end 

restraint could affect the pore pressure or volume change measurements and lead to incorrect 

shear strength parameters under different consolidation stresses. In order to reduce specimen 

non-uniform deformation and bulging at large strains (Rowe and Barden 1964; Bishop and 

Green 1965; Dangus et al. 1988), the specimens were prepared with equal lengths and 

diameters (length to diameter ratio of one) and the end restraints were nearly eliminated by 

employing enlarged and lubricated end platens covered with two layers of lubricated latex 

sheets.  

The sand used in this investigation is clean uniformly-graded quartz sand from Ottawa, 

Illinois. This sand is composed of round to sub-round particles with a specific gravity of 

2.65 and maximum and minimum void ratios of 0.821 and 0.487, respectively measured 

using the ASTM standards D854 and D4243, respectively. The sand is classified as Fine 

Sand, SP as per the ASTM D2487 standard procedure (the unified soil classification system) 

with mean grain size (D50) of 0.22 mm. The specimens were prepared by tamping moist 

sand layers (at a moisture content of 5%) of predefined sand weights to specific equal 

thicknesses into the specimen mold. Very loose specimens (at relative densities of 0%) were 

developed to reach an unequivocal critical state at which the effective stress, shear stress and 
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specimen volume do not change. The under compaction technique (Ladd 1978) was 

employed to define the weight of each layer in order to form uniform specimens. 

Monotonic triaxial compression tests of this study were conducted using an automated stress 

path triaxial compression machine. The key components of this apparatus include a 1) 

triaxial cell which allows the testing of samples up to 70 mm in diameter which is mounted 

on a 20 kN loading frame, 2) an external load cell to measure the load acting on the sample, 

3) an LVDT to measure the vertical displacement of the sample, 4) three pressure 

transducers for the measurement of the cell pressure, pore pressure, and back pressure, 5) 

pressure pumps for the measurement of volume change, and 6) a data-acquisition unit 

dedicated for intelligent data acquisition. Back pressure was applied as recommended by 

Bishop and Henkel (1962) to saturate the specimen until a pore pressure parameter (B) of at 

least 0.97 was achieved. The specimen was then isotropically consolidated to the target 

effective confining stresses. All samples were subsequently sheared at a rate of 5% / hour 

(0.032, 0.042, and 0.058 mm / min for 38mm, 50mm, and 70mm specimen, respectively) to 

about 30% axial strain in order to reach a critical state. Table 3.2 summarizes the 

specifications of the specimens and loading conditions of this study.  

For accurate evaluation of the size effect on the measured shear strength parameters, 

corrections were made to the test results to account for the volume change due to back 

pressure saturation (ASTM D4767-11) and membrane penetration (Baldi and Nova 1984), 

axial deformation due to bedding error (Sarsby 1980), stress correction due to membrane 

resistance (ASTM D7181-11), and the change of specimen cross-sectional area during shear 

(Garga and Zhang 1997). 
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Table ‎3.2: Specifications of triaxial tests of this study 

Specimen 

Size  
Test # 

Drainage 

Condition
a
 

p'c                

(kPa) 
ec 

Drc           

(%) 

70 mm 

MT-1 

D 

500 0.771 15 

MT-2 300 0.779 13 

MT-3 200 0.785 11 

MT-4 100 0.797 7 

MT-5 

UD 

500 0.775 14 

MT-6 300 0.782 12 

MT-7 200 0.791 9 

MT-8 100 0.797 7 

50 mm 

MT-9 

D 

500 0.761 18 

MT-10 300 0.769 16 

MT-11 200 0.773 14 

MT-12 100 0.786 10 

MT-13 

UD 

500 0.769 16 

MT-14 300 0.775 14 

MT-15 200 0.785 11 

MT-16 100 0.795 8 

38 mm 

MT-17 

D 

500 0.76 18 

MT-18 300 0.766 16 

MT-19 200 0.775 14 

MT-20 100 0.786 10 

MT-21 

UD 

500 0.766 16 

MT-22 300 0.773 14 

MT-23 200 0.784 11 

MT-24 100 0.794 8 

a
 D: drained shear test; UD: undrained shear test. 

 

3.3 Triaxial Test Results: 

The results of the triaxial tests of this study are presented in the following paragraphs and 

compared for different specimen sizes during isotropic compression and shear. 

3.3.1 Isotropic Compression Response 

As discussed earlier, all the triaxial specimens were prepared at very low relative densities 

(Dr = 0%) corresponding to void ratios of 0.821 which reached about Dr = 2.4% following 
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saturation as a result of the volume changes occurring during flushing and the application of 

back-pressure (corresponding to approximately 0.45% volumetric strain). Figure 3.2 

presents the isotropic compression lines for the different specimen sizes tested in this study. 

According to the plots of Figure 3.2, the 38 mm specimens display the highest compression 

index (steepest compression line) followed by the 50 mm and 70 mm specimen sizes. In 

other words, the 70 mm specimens experienced less volumetric strain than the 38 and 50 

mm specimens under the same confining stress in all tests. This indicates that larger 

specimens exhibit markedly stiffer isotropic compression behavior and significantly smaller 

compressibility during isotropic compression which is consistent with the findings from 

other studies (Jefferies et al. 1990). 

As a result of the stiffer behavior of the larger specimens (70 mm), a slightly looser void 

ratio (2 – 3% lower Drc) was established at the end of consolidation just before shear. 

Accordingly, the 70 mm specimens established looser consolidation void ratios compared to 

the 50 mm and 38 mm specimens. On the other hand, specimens prepared at looser initial 

void ratios significantly deformed and collapsed after preparation and it was not possible to 

prepare the 50 mm and 38 mm specimens at looser initial void ratios. 
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Figure ‎3.2:  Effect of specimen size on the isotropic compression behavior of loose sand 

 

3.3.2 Undrained shear behavior 

The effect of specimen size on sand behavior during undrained shear is presented in the 

following paragraphs with respect to undrained shear strength and excess pore water 

pressure generation. Figure 3.3 compares the undrained deviator stress versus axial strain 

behavior from the triaxial compression tests on different specimen sizes. Although, all of the 

specimens exhibit strain-softening behaviors, the deviator stress mobilized throughout the 

test is consistently larger in the smaller specimens and the peak deviator stress occurs at 

larger strains with decreasing specimen size.  

The mechanical behavior and shear strength mobilization in cohesionless soils essentially 

depends on the interaction among soil particles and the amount of particle movement, 

rearrangement, reorientation and possible particle crushing. Accordingly, soil stress-strain 

response, which is a fundamental soil behavior, depends on the amount of relative 

displacement among soil particles and this should be essentially unrelated to the size of the 

specimen. Whereas on the other hand, the strain level is calculated based on normalization 
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with respect to specimen dimension and, therefore, the stress-strain behaviors of specimens 

of different sizes could appear to be different.  

Therefore, in order to remove the effect of specimen dimension from specimen deformation, 

the deviator stress plots of Figure 3.3 are redrawn versus the axial displacement of each 

specimen in Figure 3.4. Note that the axial displacements of 2.1, 1.5, and 1.2 cm represent 

the final axial displacements for the specimen sizes of 70, 50, and 38 mm, respectively, 

corresponding to the same axial strain level of 30%. According to Figure 3.4, although the 

peak deviator stresses now occur at almost the same axial displacement of approximately 

0.7mm for all specimen sizes, the differences in deviator stresses among different specimen 

sizes is amplified at the same axial displacements. Although the lower deviator stress 

mobilized in the 70 mm specimens could be partly due to their slightly looser void ratios, the 

50 mm and 38 mm diameter specimens were sheared from the same void ratios while still 

demonstrating specimen size effects. 

On the other hand, Figure 3.5 shows similar excess pore water pressures (u) developed 

during undrained shear in the different specimen sizes consolidated to the same confining 

stress (p'c). The minor differences in the initial rates of excess pore pressure generation are 

related to the slight differences in specimens Drc however equal u are developed after an 

axial strain of 10% where critical state is reached. These figures imply that although the 

sand fabric plastic contractive tendency is the same for all specimen sizes, the mobilized 

strength, deviator stress, and the strain-softening behavior include an inherent specimen size 

dependency irrespective of the differences in the amount of deformation that is experienced 

by each specimen size at similar axial strains. The mechanism of this specimen size effect 

will be discussed after comparing the drained shear behavior of the three specimen sizes.  
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Figure ‎3.3: Undrained stress – strain behavior of different specimen sizes in triaxial 

compression tests of loose sand 
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Figure ‎3.4: Undrained stress – axial displacement behavior of different specimen sizes in 

triaxial compression tests of loose sand 

 

 

 

 

Figure ‎3.5: Excess pore water pressure developed during undrained triaxial compression 

tests on different specimen sizes of loose sand 
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3.3.3 Drained shear behavior 

Figures 3.6 to 3.9 compare the drained behaviors of the loose sand specimens from the 

triaxial compression shear tests. According to Figures 3.6 and 3.7, larger initial modulus 

(increase in stiffness) is exhibited in the smaller specimens. This could be attributed to the 

higher relative density of the smaller specimens. In addition, larger deviator stresses are 

mobilized in the smaller specimens, which are exaggerated if axial displacements are used. 

Note that although the lower deviator stress of the 70 mm specimens could have been partly 

associated with their slightly looser void ratios, the 50 mm and 38 mm diameter specimens 

were sheared from the same void ratios and exhibit obvious specimen size effect. These 

observations are consistent with the findings from other studies (Jefferies et al. 1990).  

However, in order to investigate the influence of specimen size on the volumetric strain 

behavior and volumetric contraction recorded during the drained tests, the volumetric strain 

versus axial strain, as well as the volumetric dilatancy (v/a) versus axial strain obtained 

from testing specimens of different sizes are compared in Figures 3.8 and 3.9, respectively. 

All specimens show volumetric contraction with a steady decrease in the rate of volume 

reduction with axial strain (i.e. dilatancy) followed by an almost flat plateau of constant 

volume behavior (v = 0) at the critical state. Hypothetically, the same sand at the same p'c 

and ec should exhibit similar volumetric strains during shear. However, these plots 

demonstrate that volumetric strain increases with decreasing specimen size. Also, the rate of 

dilation increases with decreasing specimen size with the maximum occurring at a small 

strain of about 1% (same axial strain at which the peak undrained strength occurred). In 

other words, the dilatancy plots demonstrate the volumetric strain behavior of different 

specimen sizes with the smaller size showing more contractive behavior than the larger size. 
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Similar to our observation during the isotropic compression stage of the tests, the larger 

specimens exhibit a stiffer volumetric behavior (despite the slightly denser void ratios of the 

smaller 38 mm specimens) and display much less contractive potential and higher dilatancy 

than the smaller specimens. This progressive volumetric compressibility of the smaller 

specimens at large strains is the most remarkable aspect of the data regardless the effect of 

size on the specimens stiffness during the initial loading.  

 

 

 

 

Figure ‎3.6: Drained stress – strain behavior of different specimen sizes in triaxial 

compression tests of loose sand 
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Figure ‎3.7: Drained deviator stress – axial displacement behavior of different specimen 

sizes in triaxial compression tests of loose sand 
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In fact, the multiple shear band formation and complex localization is an inevitable response 

of sand to the stress state and shear path of the test, irrespective of the testing boundary 

conditions and specimen imperfections (Chu et al. 1996; Desrues et al. 1996). No matter 

how much effort is made to prevent in-homogeneity of deformation, strain localization and 

shear banding occur when a certain limit state is reached. Techniques such as enlarged and 

lubricated platens used to induce more uniform shear deformations in triaxial and biaxial 

tests merely delay and conceal shear localization (Lade and Wang 2011). For example, by 

minimizing the influence of specimen boundaries, Liang et al. (1997) found that a dominant 

shear band developed on its own (indicating material behavior) at a certain stress level. 

Through an extensive review of past experimental and numerical studies on shear banding 

and shear localization, Desrues and Chambon (2002) show that strain localization observed 

in laboratory tests is not an artificial effect due to imperfect test conditions and practice, and 

it is rather an essential aspect of material behavior which leads to localized deformation in 

most cases. The observed increase in stiffness and shear resistance with decreasing specimen 

size could be attributed to shearing along a larger number of shear bands formed in larger 

specimens and the differences in the available space or freedom for particle rearrangement 

in the specimens of different sizes. 
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Figure ‎3.8: Volumetric strain response during drained triaxial compression tests on different 

specimen sizes of loose sand 

 

  

 

  

Figure ‎3.9: Volumetric dilatancy response during drained triaxial compression tests on 

different specimen sizes of loose sand 
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3.4 Influence of Specimen Size on Effective Stress Paths 

According to the stress - strain and volumetric strain plots in Figures 3.3 and 3.8, both the 

undrained and the drained shear tests exhibit strain-softening or contractive behavior moving 

towards a critical state. At the critical state, there is a unique relationship between the 

effective stresses, void ratio, and shear stress which is often described by the critical stress 

ratio line in the stress path (q versus p') space and the critical state line in the void ratio 

versus p' plane (Been et al.1991) where (q = (1-3)) is the deviator stress and (p’ = 

(1+23)/3) is the mean effective stress. The effective stress paths obtained from testing 

specimens of different sizes in the q-p plane are compared in Figures 3.10 and 3.11 for both 

drained and undrained conditions, respectively. It can be observed that the effective stress 

paths resulting from all the undrained tests of all specimen sizes reach the instability line and 

then move into the region of potential instability, and approach a constant stress ratio from 

different p'c values, corresponding to the CSL of each specimen size. Unique critical state 

lines are obtained in the stress path plane for each specimen size, which become steeper with 

decreasing specimen size and accordingly, will affect the mobilized friction angle. 
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Figure ‎3.10: Effect of specimen size on drained effective stress paths 

 

  

 

  

Figure ‎3.11: Effect of specimen size on undrained effective stress paths 
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3.5 Influence of Specimen Size on Effective Friction Angle 

Granular soils mobilize shear resistance through its internal friction angle, and therefore, the 

friction angle is considered as the most important mechanical property to analyze granular 

soils responses to loading. The components of the mobilized friction angle during shear 

(mob) consist of the inter-particle sliding friction angle and the geometrical interference 

friction angle which can be further divided into dilation friction angle and particle 

rearrangement friction angle (Sadrekarimi and Olson 2011). The mobilized friction angle 

during shear is calculated from the effective stress ratio (M = q/p') using the following 

equation and compared for the drained and undrained shear tests on specimens of different 

sizes in Figures 3.12 and 3.13, respectively. 

 

 M

M


 

6

3
sin 1                                                                                                  (3.1) 

 

According to these figures, 'mob in both drained and undrained shear tests steadily increases 

with axial strain and approaches a constant value at the critical state ('cs) corresponding to 

the slopes of the CSLs in the stress paths of Figures 3.10 and 3.11.  
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Figure ‎3.12: Effect of specimen size on 'mob in undrained triaxial compression shear tests 

of loose sand 

 

 

 

 

Figure ‎3.13: Effect of specimen size on 'mob in drained triaxial compression shear tests of 

loose sand 
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The mobilized friction angle corresponding to the instability line (in Fig. 3.11) is the yield 

friction angle ('yield) which is obtained from undrained shear tests. Table 3.3 summarizes 

the measured 'yield and 'cs for each specimen size subject to different confining stresses and 

drainage conditions. 

 

Table ‎3.3: Summary of 'yield and 'cs for different specimen sizes 

Specimen 

Size  

Drainage 

Condition
a
 

pc 

(kPa) 

Drc 

(%) 
'yield 

(degs.) 

'cs 

(degs.) 

70 mm 

D 

500 15 - 27.1 

300 13 - 27.8 

200 11 - 28.2 

100 7 - 28.6 

UD 

500 14 14.2 27.3 

300 12 14.7 27.9 

200 9 16.4 28.4 

100 7 18.2 28.7 

50 mm 

D 

500 18 - 30.4 

300 16 - 31.0 

200 14 - 31.2 

100 10 - 31.4 

UD 

500 16 16.2 30.6 

300 14 17.3 31.1 

200 11 18.5 31.3 

100 8 20.0 31.6 

38 mm 

D 

500 18 - 31.5 

300 16 - 31.9 

200 14 - 32.1 

100 10 - 32.3 

UD 

500 16 16.9 31.7 

300 14 18.5 32.1 

200 11 19.7 32.3 

100 8 21.1 32.5 

                       a
 D: drained shear tests, UD: undrained shear test 
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Figure 3.14 presents the influence of p'c and Drc on the measured 'yield and 'cs for different 

specimen sizes. The effect of specimen size is clearly evident as both 'yield and 'cs increase 

with decreasing specimen size, particularly for the 38 mm and 50 mm specimens which 

were sheared from exactly same Drc and p'c. Besides the size of the specimens, 'yield and 'cs 

also decrease with increasing p'c as particle interaction and rearrangement are suppressed at 

larger p'c. The effect of specimen size (loose specimens) on 'yield and 'cs is summarized in 

Figure 3.15. It is often thought that 'yield is primarily affected by the initial sand fabric and 

decreases with increasing ec while 'cs largely depends on sand mineralogy and particle 

shape (Sadrekarimi and Olson 2011). However, the plots of Figures 3.14 and 3.15 show that 

the size of the specimen can have a non-negligible effect on the 'yield and 'cs measured from 

triaxial tests. This could have significant impact in geotechnical engineering practice and 

designs which involve drained strength of sands. 

 

  

Figure ‎3.14: Effect of pc and Drc on 'yield and 'cs mobilized in undrained triaxial 

compression tests on loose specimens of different sizes 
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Figure ‎3.15: Effect of specimen size on 'yield and 'cs from undrained triaxial compression 

tests of loose sand 

 

3.6 Influence of Specimen Size on Critical State Parameters 

The effect of specimen size on the projection of the CSL in the stress path plane was 

presented in Figures 3.10 and 3.11 for drained and undrained shear tests, respectively. These 

figures indicated that the projection of the CSL in the stress path plane (i.e. the critical stress 

ratio line) becomes steeper with decreasing specimen size. Figure 3.16 presents the 

projection of the CSL in the e – log (p'c) plane from the undrained and drained triaxial 

compression tests on different specimen sizes. According to this figure, although unique 

CSLs are established from drained and undrained tests for each specimen size, the CSLs 

become steeper and largely shift to denser void ratios with decreasing specimen size from 70 

mm to 38 mm specimen diameter, which reflects the stiffer response of the larger specimens 

observed in Figure 3.8. 
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Figure ‎3.16: Effect of specimen size on the CSLs from both drained and undrained triaxial 

compression tests of loose sand 

 

The slope () of the semi-logarithmic CSLs and the corresponding intercept value of   at p' 

= 1 kPa in        space ( ) are summarized in Table 3.4. The significant change of the 

CSL and the critical state parameters (, , and 'cs) could have large effect in estimating 

soil state parameter for evaluating the liquefaction susceptibility and strain-softening 

behavior of cohesionless soils and the predictions of critical state constitutive models (e.g. 

NorSand, MIT-S1, SANISAND).  

 

Table ‎3.4: Effect of specimen size on critical state parameters 

Specimen 

Size 
M = q/pc 

cs  
(degs.)

 

70 mm 1.12 28 0.023 0.887 

50 mm 1.25 31 0.026 0.881 

38 mm 1.29 32 0.028 0.878 
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3.7 Influence of Sample Size on Undrained Shear Strength 

The effect of specimen size on the effective stress friction angle, which represents the 

drained shear strength of soils, was presented in Figures 3.12 to 3.15. Based on the Mohr-

Coulomb failure theory, the undrained shear strength (su) is obtained from the deviator stress 

(q) as below: 

 

 mobu

q
s  cos

2
                                                                                                    (3.2) 

 

Accordingly, as presented in the deviator stress-strain plots of Figure 3.3 a peak undrained 

shear strength, su(yield) is attained at an axial strain of about 1%. This is followed by 

significant drop of the undrained shear resistance (often called “strain-softening”) as a result 

of rapid increase in the excess pore pressure at constant volume. Strain-softening continues 

until a more-or-less constant undrained strength is mobilized at the critical state, su(cs). Both 

su(yield) and su(cs) depend on sand void ratio and p'c and could vary considerably with small 

changes in ec. Table 3.5 summarizes the su(yield) and su(cs) measured from the triaxial 

compression tests for each specimen size.  

Figure 3.17 describes the increasing of su(yield) and su(critical) with p'c for each specimen 

size. According to this figure, su(yield) and su(critical) increase not only with increasing p'c 

and Drc, but also with decreasing specimen size. Note that although the comparatively lower 

undrained shear strengths of the 70 mm specimens occurs as a result of their looser Drc 

besides the potential effect of specimen size, since the 50 mm and 38 mm specimens were 

sheared from the same p'c and Drc the effect of specimen size on the undrained strengths of 

these specimen sizes is undeniable. 
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Table ‎3.5: su(yield) and su(critical) from undrained triaxial compression tests 

Specimen 

Size 

p'c 

(kPa) 

Dᵣc 

(%) 

su(yield) 

(kPa) 

su(cs) 

(kPa) 

70 mm 

500 14 71.1 31.2 

300 12 49.5 22.3 

200 9 38.8 19.2 

100 7 21.9 12.2 

50 mm 

500 16 81.5 35.3 

300 14 57.2 27.8 

200 11 44.7 23.5 

100 8 25.3 14.1 

38 mm 

500 16 88.7 37.0 

300 14 66.4 33.0 

200 11 48.4 25.4 

100 8 29.9 16.9 

 

 

 

Figure ‎3.17: Effect of specimen size on su(yield) and su(critical) in undrained triaxial 

compression tests on loose sand 

 

The critical state parameter (cs) describes the void ratio change from the initial 

consolidation state (ec) to the critical state (ecs) at the same p'c (Been and Jefferies 1985). A 

soil specimen at a positive cs ( 0) would generally exhibit a strain-softening (during 

undrained shear) or contractive (in drained shear) behavior, and at a negative cs ( 0) 
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displays strain-hardening or dilative response. In order to eliminate the influence of the 

slight differences in Drc of different specimen sizes and a clearer presentation of specimen 

size effect on undrained shear strengths and friction angles, the influences of Drc (i.e. ec) and 

p'c are collectively characterized by the critical state parameter (cs) in Figures 3.18 and 

3.19. The effect of p'c is also incorporated in su(yield) and su(cs) by normalizing them with 

respect to p'c in Figure 3.18. According to these figures, su(yield)/p'c, su(cs)/p'c, 'yield, and 'cs 

decrease with increasing cs. However, the decreasing trends of these parameters are widely 

separate for different specimen sizes with the smaller specimens mobilizing larger undrained 

strength ratios and effective stress friction angles. This occurs because of the large deviator 

stresses (in Figs. 3.3 and 3.6) as well as the higher cs of the smaller specimens as a result of 

their denser (larger ) and steeper (larger ) CSL in Fig. 3.16. 

 

 

                                         (a)                                                                    (b) 

Figure ‎3.18: Effect of specimen size on the changes of: (a) su(yield)/p'c and (b) 

su(critical)/p'c mobilized in undrained triaxial compression tests of loose sand with cs 
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                                        (a)                                                                    (b) 

Figure ‎3.19: Effect of specimen size on: (a) 'yield and (b) 'cs mobilized in undrained triaxial 

compression tests of loose sand with respect cs 

 

The differences in su ratios and friction angles among different specimen sizes are somewhat 

reduced by incorporating the effect of sand compressibility  in undrained shear using a 

critical state-compressibility ratio, cs/ in Figures 3.20 and 3.21. The decreases of these 

parameters with increasing cs are consistent with the findings from other studies 

(Sadrekarimi and Olson 2011). 

 

 

                                       (a)                                                                   (b) 

Figure ‎3.20: Effect of specimen size on the changes of: (a) su(yield)/p'c and (b) 

su(critical)/p'c mobilized in undrained triaxial compression tests of loose sand with cs/cs 
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        (a)                                                                    (b) 

Figure ‎3.21: Effect of specimen size on: (a) 'yield and (b) 'cs mobilized in undrained triaxial 

compression tests of loose sand with respect to cs/cs 

 

Finally, the degree of strain-softening and liquefaction flow exhibited for different specimen 

sizes in triaxial compression tests is compared in Figure 3.22 by the undrained brittleness 

index (IB) defined below (Bishop 1971): 

 

    
                         

          
                                                                                    (3.3) 

 

According to Figure 3.22a, not only lower undrained strengths are mobilized in the larger 

specimens, but also the amount of strain-softening and IB increase with increasing specimen 

size. In other words, larger specimens exhibit greater liquefaction potential and hence one 

may underestimate the liquefaction susceptibility potential of a saturated cohesionless soil 

by testing small specimen sizes. Although the differences in IB values among different 

specimen sizes are reduced by accounting for the differences in specimens shearing 

compressibility (cs/ in Figure 3.22b, the remaining difference among IB could be 

essentially due to the larger number of shear bands and failure planes in a larger specimen.  
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(a)       (b) 

Figure ‎3.22: Effect of specimen size on IB in undrained triaxial compression tests of loose 

sand with respect to: (a) cs, (b) cs/

 

Table 3.6 summarizes the shear strength ratios (su(yield)/p'c and su(cs)/p'c), IB, and cs of the 

different specimen sizes from the undrained triaxial tests. 

 

Table ‎3.6: Summary of cs, su(yield)/p'c, su(cs)/p'c, and IB for the undrained triaxial tests 

Specimen 

Size 

p'c 

(kPa) 

Dᵣc 

(%) 
ec ecs cs su(yield)/p'c su(cs)/p'c IB 
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500 14 0.775 0.716 0.059 0.14 0.06 0.56 

300 12 0.782 0.73 0.052 0.17 0.07 0.55 

200 9 0.791 0.749 0.042 0.19 0.10 0.51 

100 7 0.797 0.760 0.037 0.22 0.12 0.44 

50 mm 

500 16 0.769 0.701 0.068 0.16 0.07 0.56 

300 14 0.775 0.716 0.059 0.19 0.09 0.51 

200 11 0.785 0.734 0.051 0.22 0.12 0.48 

100 8 0.795 0.752 0.043 0.25 0.14 0.44 

38 mm 

500 16 0.766 0.691 0.075 0.18 0.07 0.55 

300 14 0.773 0.711 0.062 0.22 0.11 0.50 

200 11 0.784 0.729 0.055 0.24 0.13 0.48 

100 8 0.794 0.75 0.044 0.30 0.17 0.43 
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3.8 Discussion 

The micromechanical and particle-scale mechanisms associated with the observed specimen 

size effects were not investigated in this study and could be required in future work to 

investigate the role of the larger number of particles and hence, particle contacts mechanism 

on the observed lower stiffness and smaller volumetric contraction of the larger specimens 

during isotropic compression (in Fig. 3.2) and drained shear (in Fig. 3.8). While the drained 

and undrained shear strengths of the larger specimens were reduced as a result of shearing 

along a larger number of shear bands. Similar results have been documented by other studies 

on the effect of specimen size in triaxial compression tests (Scott 1987; Been and Jefferies 

1991; Hu et al. 2010; Chew et al. 2011). 

Specimen size effect on the shear strength parameters can affect the design and analysis of 

many geotechnical applications. For example, different instability zones can affect the 

evaluation of liquefaction triggering resistance of soils as liquefaction and pre-failure 

instability under undrained condition have often been considered as the triggering factors of 

loose granular slopes. The predication of sand behavior using critical state constitutive 

models depends on the critical state parameter and the different critical state parameters 

obtained from the testing of different specimen sizes can affect the modeling predictions for 

soil response. In addition, the static slope stability analysis as well as the seismic analysis 

due to an earthquake shaking can be directly affected by the different shear strength 

parameters. Lastly, the differences in the measured effective friction angles can affect soil 

bearing capacity and hence, the design of shallow footings on granular soil as well as the 

design and stability analysis of retaining wall structures.  
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Besides the fact that a larger specimen provides a better representation of field soil behavior, 

the smaller friction angles and undrained shear strengths mobilized in a larger specimen are 

more critical and should be used with caution for design as discussed above. However, the 

associated cost and the practical size of triaxial testing devices limit specimen size. 

Accordingly, several studies have proposed minimum sizes for direct shear or triaxial 

specimens. For example, the ASTM D3080 standard testing method for direct shear testing 

of soils requires a minimum specimen thickness of six times the maximum particle diameter 

(Dmax) as well as a minimum specimen width of 10 times Dmax. Similarly, ASTM D 4767 

and D 7181 standard methods for triaxial undrained and drained compression tests require 

cylindrical specimens with a minimum diameter of 33 mm and average height to diameter 

ratio between 2 and 2.5. The largest particle size shall be smaller than 1⁄6 the specimen 

diameter. Furthermore, Scarpelli and Wood (1982) and Bareither et al. (2008) respectively 

suggested using shear box lengths of at least 100 and 93 times the mean particle diameter 

(D50) in direct shear testing while other studies suggested shear box widths or diameters no 

less than 50 (Cerato and Lutenegger 2006) or 60 (Wang and Gutierrez 2010) times Dmax. 

The 38, 50, and 70 mm specimen sizes used in the triaxial tests of this study were 

respectively 173, 227, and 318 times D50 and 57, 74, and 104 times Dmax of the tested sand. 

While these ratios are larger than the criteria proposed by past studies, it was shown here 

that the effect of specimen size did not disappear or even reduce with increasing specimen 

diameter. Although a minimum specimen size or sand particle diameter (D50 or Dmax) at 

which specimen size effect disappears was not found in this study, the results indicate that 

the triaxial compression test results are still sensitive to specimen size at specimen to sand 

particle diameter ratios of 100 (based on Dmax) and 320 (based on D50). Figure 3.23 shows 

the average changes of su, 'yield, and 'cs with percentage deviation of a triaxial specimen’s 
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diameter (D) from a 70 mm-diameter specimen (the larger specimen diameter in this study). 

The following correlations are curve-fitted to these data: 

 

                                                                              (3.4) 

 

 
     

                                                                                        (3.5) 

 

 
  
                                                                                             (3.6) 

 

Therefore, a minimum specimen diameter for triaxial compression tests should be at least 

100×Dmax or 320×D50 (of the test sand) in order to obtain representative strength parameters. 

However, the above equations indicate that with every 10% decrease in specimen size (from 

a typical specimen diameter of 70 mm); the undrained strength could be overestimated by 

about 6.7%. In addition, the mobilized yield and critical state friction angles could be 

overestimated by about 0.71˚ and 0.94˚, respectively.  

  

      

                                          (a)                                                                    (b) 

Figure ‎3.23: Changes in (a) su(%) and (b) '(degrees) with percent changes of specimen 

diameter (D) from su and ' mobilized in a 70 mm loose specimen 
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3.9 Conclusion 

The main objective of this study is to investigate the specimen size effect on loose sand 

behavior in triaxial compression tests. An experimental program of 24 static drained and 

undrained triaxial compression tests were conducted on three specimen sizes (38, 50, and 70 

mm) of an Ottawa sand to determine whether specimen size effects exist or not. The triaxial 

test results illustrated the significance of sample size on loose sand shear behavior. The 

larger specimens showed stiffer isotropic compression behavior and significantly smaller 

compressibility than the smaller specimens. During shear, the smaller specimens exhibited 

steeper CSL, indicating a higher compressibility, exhibited higher modulus, and mobilized 

larger internal friction angles and shear strengths. The geometrical scale as well as the large 

number of shear bands and failure planes (the shear zone characteristics) in larger specimens 

could have produced the significant effect of specimen size on the observed behavior. 

This influence of sample size on sand behavior, particularly on the internal friction angle is 

very important as the friction angle is the most vital mechanical property of sands and it 

directly affects many aspects in geotechnical engineering practice (design of shallow 

footings on granular soils, slope stability analysis,  design of retaining structures). In order to 

reduce specimen size and scale effects, triaxial testing of larger specimens is recommended 

as it also provides a better representation of field soil behavior. Based on the results of this 

study, it is recommended, to use sand samples with a minimum diameter no less than 320 

times D50 and/or 100 times the maximum particle size in triaxial shear testing. Two 

equations are presented to estimate the deviation of undrained shear strengths and mobilized 

friction angles for samples of different sizes from a typical specimen size of 70 mm. 
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Chapter 4   

4 Influence of Triaxial Specimen Size in Engineering 
Practice 

4.1 Introduction 

Granular soils are widely employed as backfill material for earth embankment dams, 

trenches, highway embankments, and earth-retaining structures, as they provide high shear 

strength, and suitable compaction and drainage properties. For these soils, the friction angle 

plays a prominent role in their strength and stability behaviors. Accurate assessment of shear 

strength parameters for these soils is required for analysis and design of soil structures (e.g. 

earth dams, retaining walls, foundations, slopes) involving these soil types. However, the 

size of the specimen used to determine soil parameters can have a significant impact on the 

parameters selected for analysis or design, making it difficult to extrapolate laboratory test 

results to real field situations. Most practicing engineers are unaware of the significant effect 

of specimen size. Therefore, this phenomenon is either totally neglected in using laboratory 

test results on a small specimen in engineering design and analysis, or laboratory test results 

are simply distrusted and the design or analysis is based on empirical interpretations of in-

situ tests (e.g. SPT or CPT) which could also involve a wide range of uncertainties.  

Several investigators have studied the scale effect in practical engineering problems (DeBeer 

1963 and 1965, Meyerhof 1982, Eid 1987, Tatsuoka et al. 1991, Sakai 1997, Lehane et al. 

2005, Bareither et al. 2011). For example, DeBeer (1963) studied the influence of the width 

and the depth of a wedge (representing a strip footing) on the ultimate bearing capacity of an 

incompressible material. He calculated the ultimate bearing capacity of a dense Mol sand 

under the penetration of a wedge with different widths (varying from 0.5cm to 100cm) and 
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at different depths (varying from 0 to 20m). The results of the performed calculations 

indicated that the ultimate bearing capacity at a given depth was very sensitive to the width 

of the foundation and increased with decreasing the foundation width. Furthermore, DeBeer 

(1965) compiled, from the literature, the results of model-scale square and circular footing 

tests and derived an empirical equation that indicated the decreasing of the bearing capacity 

factor, N, with increasing the foundation width. Similarly, many other studies have also 

documented the effect of the footing size on N (Shiraishi 1990, Zhu et al. 2001, Ueno et al. 

2001, Okamura et al. 2002, Cerato and Lutenegger 2007.etc). Meyerhof (1982) compared 

the ultimate bearing capacity of piles, and proposed an empirical reduction factor for the 

ultimate resistance of larger pile diameters. Eid (1987) developed a large scale calibration 

chamber and conducted an extensive experimental program of cone penetration tests to 

study the effect of cone diameter on the measured tip and sleeve frictional resistances in 

Monterey sand samples. He found that cone tip resistance was lower for larger cones in both 

loose and dense samples. Using centrifuge model tests, Lehane et al. (2005) examined the 

effect of pile diameter on the unit shaft friction developed in sand and observed that the 

effective lateral stresses significantly reduced with increasing pile diameter. Bareither et al. 

(2011) investigated the immediate compression behavior of municipal solid wastes in 

laboratory compression cells of different diameters and observed a higher compressibility 

for the larger specimens. They also compared the measured laboratory results with those 

from field-scale experiments and found that the immediate compression index was identified 

in a shorter time in the laboratory compression tests compared to that from the field-scale 

experiments.  

In this study, the observed increase of sand shear strength and friction angle with decreasing 

specimen size in triaxial compression tests on three different specimen sizes are used to 
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explain some of the aforementioned scale effects, investigate specimen size effects in 

engineering analysis of slope stability and liquefaction, the design of foundations and 

retaining walls, as well as the calibration of soil constitutive models. Each analysis is carried 

out with reference to real engineering cases when possible or examples of actual field 

structures. 

 

4.2 Experimental Data 

Static triaxial compression tests were performed on loose sand specimens with different 

specimen sizes using an automated stress path triaxial compression testing system. These 

experiments were conducted on a uniformly-graded clean quartz sand from Ottawa, Illinois. 

This sand is composed of round to sub-round particles with a specific gravity of 2.65 and 

maximum and minimum void ratios of 0.821 and 0.487, respectively measured using the 

ASTM standards D854 and D4243, respectively. The sand is classified as Fine Sand, SP as 

per the ASTM D2487 standard procedure (the unified soil classification system) with mean 

grain size (D50) of 0.22 mm. Three different specimen diameters of 38, 50, and 70 mm were 

prepared with a slenderness ratio (h/d) of 1 to minimize strain localization and non-uniform 

deformations at large strains. In order to produce very loose specimens which would exhibit 

entirely contractive or strain-softening behaviors in both drained and undrained shear tests, 

all the specimens were prepared by moist tamping. In order to minimize the density 

variations and void ratio non-uniformities within the specimens, the under compaction 

technique introduced by Ladd (1978) was used for specimen preparation. Furthermore, the 

specimen end platens were adequately enlarged and lubricated in order to accommodate the 

radial expansion of the specimen at large shear strains and thus minimize the effect of 
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specimen boundaries and end restraints on the specimens' stress-strain behaviors. It was 

found that the initial modulus and the mobilized shear strength decreased with increasing 

specimen size, while volumetric compressibility during isotropic compression and drained 

shear increased with reducing specimen diameter. These results are used to investigate the 

application of triaxial test results from different specimen sizes on engineering analysis and 

design of soil structures and explain some of the scale effects observed in past studies. 

 

4.3 Sample Size Effect on Liquefaction Triggering Analysis 

Figure 4.1 illustrates the instability (IL) lines from the undrained triaxial compression tests 

of this study on the three different sizes of loose Ottawa sand specimens. The IL, which is 

developed by connecting the peak strengths of the undrained stress paths for a certain void 

ratio, separates the potentially unstable stress states from the stable stress states (Lade 1992) 

and constitutes the triggering stress condition for soil liquefaction. A soil specimen would 

fail with a rapid reduction of its undrained strength when the undrained stress path crosses 

the IL (i.e. “liquefaction”).  This phenomenon is often characterized by a sudden collapse 

under undrained conditions accompanied by a rapid increase in pore pressure. An undrained 

critical shear strength, su(critical) and the critical state line (CSL) is subsequently reached at 

large shear strains. 

According to Figure 4.1, IL becomes steeper with decreasing specimen size which will have 

significant implications for liquefaction triggering and stability analysis. Liquefaction of 

loose, saturated granular soil triggered by either monotonic, cyclic, or shock loading is a 

major cause of destruction and damage of constructed facilities. As liquefaction is triggered 

when the effective stress path crosses the IL, the liquefaction triggering resistance increases 
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with decreasing specimen size. Therefore, as the larger specimen (70 mm) is a closer 

replicate of a field soil sample, the in-situ liquefaction potential would be underestimated as 

a larger amount of excess pore water pressure is required for liquefaction with the triaxial 

test results of the smaller 38 mm specimens. 

 

 

Figure ‎4.1: IL of different specimen sizes from undrained triaxial compression tests 

 

4.4 Sample Size Effect on the Calibration of a Soil 
Constitutive Model 

Modeling of soil constitutive behavior as an elastic-plastic material has been the main area 

of development by many researchers (Lade 1972, Lade and Duncan 1975, Nova and Wood 

1979, Baladi et al. 1980, Lade 1980, Frantziskonis and Somasundaram 1986, Jefferies 1993, 

Jefferies and Shuttle 2002). The main components of an elastic-plastic model are the elastic 

properties of soil, a yield surface, a flow rule, and a hardening law. Currently, most 

constitutive models for sands are based on the critical state theory, for example the MIT-S1 

(Pestana and Whittle 1999), SANISand (Manzari and Dafalias 1997), UBCSand (Byrne et 
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al. 1995), and the NorSand models (Jefferies 1993). In these models the CSL is used in 

describing soil behaviour at large strains. An important advantage of critical-state 

constitutive models is their ability to predict soil behavior over a wide range of void ratios 

and confining pressures using a single set of parameters.  

NorSand (Jefferies 1993) is an isotropically hardening - isotropically softening generalized 

critical state model that captures particulate soil behavior over a wide range of void ratios. 

NorSand provides a simple computational platform to capture the salient aspects of 

liquefaction in all its forms. This model uses the critical state parameter to capture soil 

behavior, and in fact the Cam Clay model is a special case of NorSand. The primary 

advantages of NorSand over some other critical soil models is that it uses fewer material 

properties which are easily measured in conventional triaxial laboratory tests, and it has 

been validated for a wide range of sands and stress paths, including plane strain. It is 

therefore a general and validated soil model suitable for parametric studies of sand behavior 

as well as for practical engineering. Since cohesionless soils can exhibit virtually unlimited 

normal compression lines at different initial void ratios (Ishihara et al. 1975; Been et al. 

1991; Pestana and Whittle 1995; Jefferies and Been 2006), the hardening of the yield surface 

cannot be necessarily tied to its initial void ratio. Accordingly, these two parameters are 

realistically decoupled in the formulation of NorSand.  

NorSand models the behavior of cohesionless soil over a range of accessible void ratios 

using seven model parameters including three parameters to model soil plasticity using the 

CSL (, , and M), two parameters for modeling the hardening of the yield surface (H, N, 

χ), and two parameters which model soil elastic behavior within the yield surface. The effect 

of specimen size on the predictions of critical state-based constitutive models is investigated 
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here by calibrating the parameters of the NorSand model based on the experimental results 

of this study for the three specimen sizes of 38, 50, and 70 mm. The procedure used to 

establish these parameters is described below. The CSL parameters are defined from the 

slope and position of this line in the void ratio – p' space (, ) and the stress-path diagram 

(M) as shown in Figure 4.2.  

 

  
(a)                                                                   (b) 

Figure ‎4.2: Critical state lines for different specimen sizes in (a) void ratio – p' diagram, and 

(b) stress path plot 

 

As a result of the decoupling of the size of the yield surface from void ratio, a plastic 

hardening parameter (H), essentially independent of soil void ratio, is used to control the 

size of the yield surface. The plastic hardening parameter, H is determined iteratively by a 

trial and error procedure to match the stress-strain and stress paths from triaxial tests. The 

calibrated values of H for each specimen size are plotted against  as shown in Figure 4.3. 

The corresponding trend line for each specimen size is presented in the form of H = a – b. 

It can be observed that at the same state parameter, the smaller specimen exhibits higher 

plastic hardening modulus than the larger specimen. 
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Figure ‎4.3: Plastic hardening modulus as a function of  for each specimen size 

 

Among the parameters which describe the yield surface, tc is a model property that 

describes maximum soil dilatancy (Dmax) as a function of the critical state parameter (). 

The dilatancy parameter tc is more significant in dense samples and takes greater values 

with increasing soil density (Jefferies and Shuttle 2002). The dilatancy at peak deviator 

stress (Dmax) was obtained directly from the volumetric strain data of drained shear tests. 

The slope of the Dmax -  trendline in Figure 4.4 defines the dilatancy parameter for each 

specimen size where Dmax = -tc  

 

Figure ‎4.4: Dilatancy as a function of  for each specimen size 
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It can be observed from Fig. 4.4 that the dilatancy parameter tc increases with decreasing 

specimen size. This can be attributed to the smaller compressibility of the larger specimens 

during drained shearing.  

Finally, elasticity is modeled using a shear rigidity number (Ir = Gmax/p' = 100 - 600) and a 

constant Poisson’s ratio, (0.1 – 0.3). A Poisson ratio  of 0.34 was determined from the 

axial deformation and volume change of the specimen during isotropic consolidation. 

Although  does not vary greatly from one soil to another and is often constant for a 

particular soil, Ir is ideally determined from shear wave velocity measurements using bender 

elements located on a triaxial specimen, or from unload-reload cycles with local strain 

measurements. Since none of these measurements were made in the experimental program 

here, Ir was determined similar to the calibration process used for defining the plastic 

hardening modulus. As plastic shear strains govern soil behavior beyond the initial loading, 

Ir has a relatively minor effect on the post-peak soil behavior. The model parameters for 

each specimen size are summarized in Table 4.1. 

 

Table ‎4.1: Summary of NorSand calibration parameters 

Specimen Size M   Ir H tc 

70 mm 1.12 0.887 0.023 20 95 - 1330  3.6 

50 mm 1.25 0.881 0.026 20 140 - 1330  4.5 

38 mm 1.29 0.878 0.028 20 160 - 1330  5.1 

 

 

Using the parameters of Table 4.1, NorSand can describe soil shearing behavior moving to 

the critical state with shear strain in accordance with the fundamentals of the critical state 

soil mechanics. NorSand captures the post-peak shear localization of cohesionless soils by 
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imposing a maximum upper limit on the plastic hardening behavior of the soil. Strain-

softening ensues when this limit is reached and the soil within the shear accelerates to 

critical conditions. NorSand predictions are obtained by implementing the model in a 

MicroSoft Excel spreadsheet and using the macro programming capability of VBA for the 

numerical solution of the associated differential equations of NorSand. Figures 4.5 to 4.7 

compare the stress-strain and stress path plots of NorSand with those from the triaxial 

compression tests on each specimen size for p'c = 500 kPa.  

 

  

Figure ‎4.5: Comparison of Ottawa sand behavior in triaxial shear tests on 70 mm specimens 

with NorSand predictions 

 

  

Figure ‎4.6: Comparison of Ottawa sand behavior in triaxial shear tests on 50 mm specimens 

with NorSand predictions 
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Figure ‎4.7: Comparison of Ottawa sand behavior in triaxial shear tests on 38 mm specimens 

with NorSand predictions 

 

Overall, NorSand replicates the experimental data on very well and therefore the calibrated 

model could be employed to captures the influence of void ratio and confining stress on the 

behaviour of Ottawa sand.  

To investigate the effect of specimen size on the predictions of a soil constitutive model (e.g. 

NorSand), the parameters of Table 4.1 are used in NorSand to estimate the stress-strain 

behaviours of Ottawa sand at ec = 0.77 and p'c = 400 kPa in Figure 4.8. The plots 

demonstrate that model calibration from different specimen sizes could significantly affect 

modeling predictions (e.g. the peak and critical state strengths) for a certain soil at the same 

void ratio and p'c. Accordingly, large errors could arise in the application of constitutive 

models calibrated based on small specimens (e.g. 38 mm in this study) for predicting the 

behavior of in-situ soils, modeling larger soil masses and field applications. 
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Figure ‎4.8: Effect of specimen size on modeling sand behavior with NorSand 

 

NorSand is further used to compare the undrained peak (or yield), su(yield) and critical, 

su(critical) strengths for different specimen sizes in Figure 4.9. Similar to Figure 4.8, Figure 

4.9 also indicates that both of these strength parameters are significantly overestimated using 

the calibration parameters of the smaller specimen (38 mm). Such overestimations could 

lead to a false assessment of the safety of a soil structure (slope, foundation, retaining wall) 

or unsafe designs using numerical analysis with advanced soil constitutive models. 

 

 

Figure ‎4.9: Effect of specimen size on su(critical)/p'c and su(yield)/p'c estimations by the 

NorSand soil model 

0

80

160

240

320

400

0 5 10 15 20 25 30

q
 (
k
P

a
) 
 

a (%)

NorSand - 38mm
NorSand - 50mm
NorSand - 70mm

p'c = 400 kPa

ec = 0.77

0

100

200

300

400

500

600

0 100 200 300 400 500 600

q
 (
k

P
a

)

p' (kPa)

NorSand - 38mm
NorSand - 50mm
NorSand - 70mm

ec = 0.77

0.00

0.05

0.10

0.15

0.20

0.25

0.03 0.04 0.05 0.06 0.07 0.08

s
u

(c
ri

ti
c

a
l)

 /
 p
 c

   

cs

NorSand-70mm
NorSand-50mm
NorSand-38mm

0.10

0.15

0.20

0.25

0.30

0.35

0.03 0.04 0.05 0.06 0.07 0.08

s
u

(y
ie

ld
) 

/ 
p
 c

  
 

cs

NorSand-70mm
NorSand-50mm
NorSand-38mm



104 

 

4.5 Sample Size Effect on Consolidation Settlement 

Granular soils are relatively pervious materials that have high in-situ permeability and their 

compressibility characteristics are much less than those of cohesive soils. Accordingly, their 

consolidation is always assumed negligible compared to those of more compressible 

cohesive soils. However, the immediate compression of sands could be important in the 

design and analysis of critical structures (nuclear power plants, advanced laboratories) to 

minimize settlements. Figure 4.10 shows that the Ottawa sand would exhibit a much stiffer 

compression behavior in large specimens (70 mm). Since no particle crushing was found in 

any of our triaxial tests, we expect that this difference in compressibility resulted from the 

larger number of particles and particle contacts in the larger specimen. Accordingly, the 

specimen size from which soil compressibility is obtained, could affect settlement 

calculations as with smaller specimens, the immediate settlement could be overestimated.  

 

  

Figure ‎4.10: Isotropic compressibility of different specimen sizes 
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4.6 Sample Size Effect on Slope Stability Analysis 

In spite of improvements in recognition, prediction, mitigation, and warning systems, 

economic losses and casualties due to landslides continue to grow as a result of increasing 

development of landslide-prone areas due to population pressures (Seed 1979). Intense 

rainfall, rapid snowmelt, and water-level change are the most common causes of slope 

failures in addition to the failures occurring due to earthquakes, abnormal precipitations, 

hurricanes, etc. Landslides triggered by earthquakes often caused more damages, 

destructions, and casualties than the earthquakes themselves (Duncan 2005). Therefore, 

landslides represent a significant element of many major disasters and inadequate design and 

errors or uncertainties involved in the estimation of external factors (loads, pore pressure 

changes, and earthquake accelerations) and/or internal factors (soil cohesion, friction angle, 

and undrained shear strength) could be a major reason that leads to these failures. The 

accuracy of shear strength parameters has a high priority to the geotechnical engineers for 

the analysis of such slope failures or the design of new embankment slopes, earth dams, etc.  

The critical state friction angle ('cs) is used to analyse the stability of slopes in granular 

soils, except in very rapid loading (e.g. earthquakes, blasting, vibrations, flow-slides) of 

saturated granular soils where shear-induced excess pore pressure accumulates and the 

undrained shear strength (su) would apply. The CSL slope in the stress path diagram of 

Figure 4.2 reflects 'cs. Accordingly, the steeper CSL of the smaller specimen would result 

in the false perception of a higher stability and safety of a field slope, while being less stable 

or even at failure based on a more representative 'cs from the larger specimen.  

To demonstrate the influence of specimen size on static and seismic stability of cohesionless 

soil slopes, the shear strength parameters from the triaxial compression tests on different 
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specimen sizes are used for the slope stability analysis of the Lower San Fernando Dam 

(LSFD).  

LSFD is an earth embankment dam constructed during 1912 to 1915 in Los Angeles, 

California. The dam was a 43 m high dam with a reservoir capacity of about 25 million m
3
 

which was constructed using the hydraulic filling method (Seed et al. 1975). LSFD suffered 

significant damage following the February 9
th

, 1971 San Fernando earthquake as a result of 

liquefaction flow failure associated with strength losses and development of very high pore-

water pressure in the hydraulically filled sandy soil of its upstream slope (Seed et al. 1975, 

Lee et al. 1975, Castro et al. 1992). The cross section of the dam prior to the failure is 

shown in Figure 4.11.  

 

 

Figure ‎4.11: Pre-failure cross section of LSFD (Seed et al. 1975) 

 

LSFD as a typical geometry of an embankment dam that underwent liquefaction flow failure 

is an adequate case to analysis the slop stability using different shear strength parameters of 

the tested loose Ottawa sand. In this study, the drain and undrained stability of the LSFD is 

analyzed using the 'cs (for drained analysis), su(yield) and su(critical) (for undrained 

analysis) from the triaxial test of this study. Limit equilibrium analyses (Spencer 1967) are 
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performed using the Slope/W (Version 7) software package from GeoStudio Ltd and the 

factors of safety are compared for the stability of the slopes.  

 

4.6.1 Static Slope Stability Analysis  

Drained stability analyses corresponding to a static loading condition, were conducted using 

'cs for the three specimen sizes of 70, 50, and 38mm in the Mohr-Coulomb failure criterion. 

The analyses were carried out for the original cross section of the LSFD in Figure 4.11 and 

assuming a uniform material (Ottawa sand) for the entire hydraulic fill dam with a total unit 

weight of 15.3 kN/m
3
. A separate steady-state seepage analysis was initially performed 

using Seep/W for more precise calculation of the effective stresses existing in the dam. The 

minimum factors of safety using the strength parameters of different specimen sizes are 

summarized in Table 4.2 and the analysis diagrams are included in Appendix B. 

 

4.6.2 Seismic Slope Stability Analysis  

Undrained stability analyses were conducted for the seismic stability of the LSFD during the 

1971 San Fernando earthquake. It is assumed that the entire hydraulic fill was constructed at 

a density corresponding to  = 0.05 and the undrained shear strength ratios corresponding to 

 = 0.05 are used. The seismic acceleration as a pseudo-static acceleration was applied in 

Slope/W where the average acceleration of the sliding mass was estimated as 0.2 using 

(Makdisi and Seed’s 1978) plot. The method described by Olson and Stark (2003a) is used 

for the liquefaction triggering and flow slide stability analyses. In this method, su(yield)/p'c 

is used to determine the critical failure surface along which a larger portion of the hydraulic 

fill material would liquefy under the combined seismic and static (self-weight) loads. 
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Therefore, the liquefied slices are identified as those in which su(yield)/p'c is exceeded by the 

total driving shear stress at the base of the slide. A separate stability analysis is subsequently 

conducted using su(critical)/p'c for the liquefied slices and su(yield)/p'c for those which did 

not liquefy without including the seismic loads in order to assess the stability of the LSFD 

against liquefaction flow failures.  Table 4.2 summarizes the factors of safety obtained for 

each specimen size in both static and seismic analyses. 

 

Table ‎4.2: Factor of safety against static and seismic loads of different specimen sizes 

Specimen Size 
FOS                      

(Static S. Analyses) 
FOS                   

(Seismic S. Analyses) 

70 mm 1.58 0.89 

50 mm 1.75 1.05 

38 mm 1.89 1.14 

 

 

According to Table 4.2 specimen size has a significant impact on the computed factor of 

safety with the smaller specimen producing a higher factor of safety as a result of the 

differences existing in the effective stress friction angles and the undrained shear strengths 

of different specimen sizes. With a smaller specimen size, the slope is safe (FOS>1) while 

with using the strengths from a larger specimen the slope would fail (FOS1). The analysis 

diagrams are included in Appendix B. 

The factors of safety for the three specimen sizes in both drained and undrained conditions 

are plotted versus the sample size in Figure 4.12 which illustrates the significance of scale 

effect and sample size on the stability analyses and safety of slopes. Testing larger 
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specimens is recommended and the specimen size effects should be considered in landslides 

risk assessment.  

 

 

Figure ‎4.12: Specimen size effect on factors of safety (FOS) from static and seismic slope 

stability analyses 

 

4.7 Sample Size Effect on Bearing Capacity of Shallow 
Foundations 

Shallow foundations including spread footing and mat foundations are often constructed on 

the ground surface or at a shallow depth beneath the ground to transmit the structural loads 

to the ground over a suitably large area. The proper design of a shallow foundation is to 

ensure that the structural load is carried safely by the underlying soil. The ultimate bearing 

capacity (qult) is the critical applied pressure at which the soil mass beneath the foundation 

will theoretically collapse if exceeded. Vesic (1973, 1975) proposed a general bearing 

capacity formula as below which is widely used in engineering practice: 
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Where Nc, Nq, and N are bearing capacity factors, B and D are width and depth of the 

foundation, c' and ' are the effective cohesion and unit weight. Additional correction factors 

could be introduced to account for the foundation shape, depth, load inclination, base 

inclination, and ground inclinations.  

Several researchers have investigated the scale effect of different foundation sizes on the 

bearing capacity factor N for shallow foundations (DeBeer 1965, Habib 1974, Shiraishi 

1990, Zhu et al. 2001, Ueno et al. 2001, Okamura et al. 2003, Cerato and Lutenegger 2007).  

DeBeer (1965) was the first to observe that the bearing capacity factor N decreases with an 

increase in foundation width, and related this to the greater friction angle mobilized beneath 

large foundations. Habib (1974) did analytical analysis and observed that the bearing 

capacity of sands was sensitive to the width of the footing rather than the size of the sand 

particles. He found that smaller footings had a greater bearing capacity. Zhu et al. (2001) 

present numerical and physical modeling (with centrifuge tests) studies of scale effect on the 

bearing capacity of strip and circular footings on dense silica sands. Their findings indicate 

that the bearing capacity of both strip and circular footings increase with decreasing footing 

size. Ueno et al. (2001) reappraised the footing size effects on the prediction of ultimate 

bearing capacity of strip and circular surface footings. They considered the relationship 

between the footing width and the strength parameters of the underlying granular soil. They 

developed a rational method (using FEM) to estimate the soil shear parameters based on the 

stress range under the footing at failure. In addition, they introduced an extended slip line 

method with variable footing widths for estimating the ultimate bearing capacity which 

increased with decreasing footing width. Okamura et al. (2003) studied the effects of shape 

and size of footings on the bearing capacity and deformation characteristics of dense 
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Toyoura sand. They performed a series of centrifuge loading tests on rectangular footings 

with aspect ratios from 1 to 5 at two different centrifugal accelerations. They observed that 

the bearing capacity factor N decreased with an increase in the footing width irrespective of 

footing shape. Cerato and Lutenegger (2007) further evaluated the trend of decreasing N 

with increasing footing width by testing a large range of model-scale square and circular 

footing sizes, ranging in width from 0.025 to 0.914 m, on two compacted well-graded sands 

at three relative densities. Their results indicated that N was dependent on the width of the 

footing for both square and circular footings with the smaller footings exhibiting higher N 

values, and the impact increased with increasing sand relative density. Tatsuoka et al. (1991) 

related the effect of footing size effect on N to the stress-level dependency of sand 

mechanical properties (as also suggested by DeBeer 1965) and the relative size of sand 

particles compared to the footing width (B). Accordingly, Kusakabe (1995) suggested 

testing footing sizes with B/D50 ratios higher than 50–100 to avoid the particle size effect 

while Cerato and Lutenegger (2007) reinstated the effect of stress level as the observed 

footing-size dependency of N. Based on this mechanism, the mobilized friction angle in the 

underlying soil decreases with increasing mean stress under larger footings.  

The effect of specimen size is demonstrated using Equation (4.1) for the calculation of qult 

based on the triaxial test results of this study. For a shallow foundation resting on the surface 

(D = 0) of a sandy soil (c' = 0), Equation (4.1) reduces to the following relationship: 

 

                (4.2) 

 

Where the bearing capacity factors N and Nq are obtained as below (Vesic 1975): 
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    (     )                    

   (4.3) 

 

                          ⁄                        (4.4) 

 

Table 4.3 and Figure 4.13 show the effective friction angles ('cs) and the calculated N 

values for each specimen size. 

 

Table ‎4.3: Bearing capacity factor based on 'cs of different specimen sizes 

Specimen 

Size 
'csdegrees) N 

70 mm       28 16.7 

50 mm       31 26.0 

38 mm       32 30.2 

 

According to Figure 4.13, differences in 'cs from the differences in specimen size can have 

a profound impact on the bearing capacity factor N with the smaller specimens producing 

higher N values. For example, an increase of 4
o
 in the friction angle from the 70 mm to the 

38 mm specimen diameter led to 80% increase in N. Accordingly, the allowable bearing 

capacity could be significantly overestimated using the strength parameters of small 

specimens (e.g. 38 mm), which could lead to less safe foundation dimensions and the 

possibility of unaccounted large settlements associated with ground failure. An additional 

correction factor could be devised to reduce N obtained from laboratory tests on small 

specimens and account for specimen size effect.  
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Figure ‎4.13: Bearing capacity factor as a function of specimen size 

 

The specimen size effect observed in the triaxial compression tests is similar to the particle 

size mechanism introduced by Tatsuoka et al. (1991) and Kusakabe (1995). In both 

situations, a larger number of particles and particle contacts become involved in a larger 

specimen (in the triaxial tests) or beneath a larger footing, which reduces the overall amount 

of the mobilized shear resistance.  This result also agrees with the observation of Eid (1987) 

where the cone penetration resistance was lower for larger cones and with Lehane et al. 

(2005) who observed that the effective lateral stresses significantly reduced with increasing 

pile diameter. 

 

4.8 Sample Size Effect on Lateral Earth Pressure 

The design of earth retaining walls, abutments, mechanically stabilized earth walls, and 

reinforced soil slopes is a challenging geotechnical problem (Holtz et al. 2001). The basic 

design approach for these structures is to design against sliding, overturning, or bearing 
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capacity failure. In all of these phases of design, the lateral active earth pressure coefficient, 

ka, plays a vital role in the stability analyses which is defined as:  

 

         (    
   

 

 ⁄ )             (4.5) 

 

The measured 'cs for different sample sizes are employed to calculate ka, and to demonstrate 

the specimen size effect on lateral earth pressures in Figure 4.14. 

   

 

Figure ‎4.14: Lateral active earth pressure coefficient, ka, as function of specimen size 

 

Accordingly, the 'cs differences realized as a result of differences in specimen size could 

significantly affect the lateral earth pressures and therefore the sliding and overturning 

analysis and design of retaining structures. Therefore, obtaining the soil strength properties 

by testing of larger specimens allows for building safer structures. 
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4.9 Conclusion 

Scale effects have been observed in many practical implications by several researchers and 

illustrated in this study with different approaches. The shear strength parameters obtained 

from testing samples with different sizes could largely affect almost all geotechnical 

engineering applications in which soil shear strength and friction angle play important roles. 

The results of using shear strength parameters of three different specimen sizes indicated 

that the liquefaction triggering resistance increases with decreasing specimen size, large 

errors could arise in the application of constitutive models, uncertainty in stability analyses 

and safety of slopes and retaining structures, and the bearing capacity factor N increases 

with decreasing specimen size. Accordingly, testing smaller specimens could lead to falsely 

higher liquefaction triggering resistance and the liquefaction potential would be 

underestimated, unsafe designs using numerical analysis with advanced soil constitutive 

models, higher static and seismic factors of safety in slope stability analyses, less safe 

foundation dimensions, and a falsely higher factor of safety in designing retaining structures. 

These outcomes highlight the significant influence of specimen size on the geotechnical 

engineering design and the importance of selecting an appropriate sample size in 

geotechnical laboratories. Testing larger specimen sizes allows an accurate shear behavior, 

better representation of field deformations, and building safer structures. In  addition to the 

observation of many researchers on the behavior of most model-scale footing tests that 

cannot be directly correlated to the behavior of full-scale tests and the existing application of  

performing model-scale tests at a lower density than a corresponding prototype footing for 

accurate prediction of sand behavior. 
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Chapter 5  

5 Summary and Conclusions 

The comprehensive experimental study performed in this research was accomplished in 

order to solve the problem of sample size. In the testing program three different sample sizes 

are used to investigate the effect of specimen size on very loose sand behavior in triaxial 

testing which illustrated the significance of sample size on sand shear behavior. A clear 

effect of specimen size on the yield and critical state friction angles, critical state 

parameters, and the yield and critical strengths were presented. The larger specimens 

showed stiffer isotropic compression behavior and significantly smaller compressibility than 

the smaller specimens. During shear, the smaller specimens exhibited steeper CSL, 

indicating a higher compressibility, exhibited higher initial modulus, and mobilized larger 

internal friction angles and shear strengths. The geometrical scale as well as the large 

number of shear bands and failure planes (the shear zone characteristics) in larger specimens 

could have produced the significant effect of specimen size on the observed behavior.  

The experimental errors affecting the shear behavior of loose sand have been thoroughly 

reviewed in this research, which illustrated the significant effects of end restraint and triaxial 

data corrections on sand shearing behavior. The non-uniform deformations at large strain, 

which is often required to achieve critical state, may significantly affect the critical strength 

of sands. It was demonstrated that lubricated and enlarged end platens are helpful 

mechanisms to minimize the effects of end restraint and promote uniform deformations 

during shear. As a result of these improvements, accurate volume change in drained shear 

tests as well as lower deviator stresses and higher pore pressures were measured in the 

undrained shear tests. It was found that rough end platens could result in an average of 10% 
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and 4 degress overestimation in the critical strength and critical state friction angle, 

respectively. The importance of lubrication was found to increase with increasing specimen 

density. While lubrication improved specimens’ deformation uniformity, it did not 

completely eliminate them and the final specimen shapes were slightly parabolic and an area 

correction conforming to the shape of the deformed specimens was used to account for this 

barreling deformation of the specimen and correct the measured axial stress on the 

specimens. Accordingly, the critical strength and critical state friction angle was further 

reduced by an average of 24% and 9 degrees, respectively. The bedding error due to the 

compression of the latex membrane used in the enlarged platens technique increased the 

measured axial strain by an average of 2.5%. It was further indicated that neglecting 

membrane resistance would lead to overestimation of the critical strength by an average of 

8% and the friction angle by 3 degrees. The overall combined errors could overestimate the 

critical strength and friction angle of the tested loose sand as much as 42% and 15 degrees, 

respectively, if not corrected. Another important factor affecting the behavior of sands is its 

void ratio. The volume change during back pressure saturation and due to membrane 

penetration could significantly affect the critical void ratio and the location of the critical 

state line. The results of volume change analyses indicated that ignoring the volume change 

during saturation could lead to an overestimation of the sample void ratio up to 0.01 which 

corresponds to about 3% in terms of relative density. The membrane penetration into the 

surface cavities lead to an overestimation of specimens volume change during consolidation 

and thus the void ratio by about 0.003 which represents 0.9% changes in specimen’s relative 

density. The relatively minor influence of membrane penetration on the volumetric strain 

could be related to the fine gradation (D50 = 0.22 mm) of the tested sand that minimized the 

penetration of the membrane into the surface irregularities among the sand particles. The 
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area correction at large strains was the most significant source of error observed in this 

comprehensive study which requires necessary corrections for triaxial shear testing of loose 

sands. 

Scale effects in many practical implications are illustrated in this research with different 

approaches. The results of using shear strength parameters of three different specimen sizes 

indicated that the liquefaction triggering resistance increases with decreasing specimen size, 

large errors could arise in the application of constitutive models, uncertainty in stability 

analyses and safety of slopes and retaining structures, and the bearing capacity factor N 

increases with decreasing specimen size. Accordingly, testing smaller specimens could lead 

to falsely higher liquefaction triggering resistance and the liquefaction potential would be 

underestimated, unsafe designs using numerical analysis with advanced soil constitutive 

models, higher static and seismic factors of safety in slope stability analyses, less safe 

foundation dimensions, and higher factor of safety in designing retaining structures.  

These outcomes highlight the significant influence of specimen size on the geotechnical 

engineering design in which soil shear strength and friction angle play important roles. In 

order to reduce specimen size and scale effects, triaxial testing of larger specimens is 

recommended as it also provides a better representation of field soil behavior. Based on the 

results of this study, it is recommended, to use sand samples with a minimum diameter no 

less than 320 times D50 and/or 100 times the maximum particle size in triaxial shear testing. 

Two equations are presented to estimate the deviation of undrained shear strengths and 

mobilized friction angles for samples of different sizes from a typical specimen size of 70 

mm. The interesting finding of this research, open the door for a comprehensive study of the 

scale effect on different sands with different gradation, and different mean particle sizes. 
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Appendix A 

(Sensors Calibration Factors) 
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Appendix B 

(Stability Analyses - LSFD) 
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(a) - Result of 70 mm specimen 

 

(b) - Result of 50 mm specimen 

 

(c) - Result of 38 mm specimen 

Figure B.1: FOS for seismic stability analyses using different specimen sizes 
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(a) - Result of 70 mm specimen 

 

(b) - Result of 50 mm specimen 

 

(c) - Result of 38 mm specimen 

Figure B.2: FOS for static stability analyses using different specimen sizes 
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