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Abstract  

The integration of GIS and Multicriteria Decision Analysis (MCDA) capabilities into the 

Web 2.0 platform offers an effective Multicriteria Spatial Decision Support System (MC-

SDSS) with which to involve the public, or a particular group of individuals, in 

collaborative spatial decision making. Understanding how decision makers acquire and 

integrate decision-related information within the Web 2.0-based collaborative MC-SDSS 

has been one of the major concerns of MC-SDSS designers. This study examines human-

computer interaction patterns (information acquisition behavior of decision makers) 

within the Web 2.0-based MC-SDSS environment. It reports the results of an 

experimental study that investigated the effects of task complexity, information aids, and 

decision modes on information acquisition metrics and their relations. The research 

involved three major steps: (1) developing a Web 2.0-based MC-SDSS for parking site 

selection in Tehran, Iran to analyze human-computer interaction patterns, (2) conducting 

experiments using this system and collecting the human-computer interaction data, and 

(3) analyzing the log data to detect information acquisition metrics.  

Using task complexity, decision aid, and decision mode as the independent factors, and 

the information acquisition metrics as the dependent variables, the study adopted a 

repeated-measures experimental design (or within-subjects design) to test a number of 

hypotheses. Task complexity was manipulated in terms of the number of alternatives and 

attributes at four levels. At each level of task complexity, the participants carried out the 

decision making process in two different GIS-MCDA modes: individual and group 

modes. The decision information was conveyed to participants through common map and 

decision table information structures. The map and table were used, respectively, for the 

exploration of geographic (or decision) and criterion outcome spaces. 

The study employed a process-tracing method to directly monitor and record the decision 

makers’ activities during the experiments. The data on the decision makers’ activities 

were recorded as Web-based event logs using a database logging technique. Concerning 

task complexity effects, the results of the study suggest that an increase in task 
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complexity results in a decrease in the proportion of information searched and proportion 

of attribute ranges searched, as well as an increase in the variability of information 

searched per attribute. This finding implies that as task complexity increases decision 

makers use a more non-compensatory strategy. Regarding the decision mode effects, it 

was found that the two decision modes are significantly different in terms of: (1) the 

proportion of information search, (2) the proportion of attribute ranges examined, (3) the 

variability of information search per attribute, (4) the total time spent acquiring the 

information in the decision table, and (5) the average time spent acquiring each piece of 

information. Regarding the effect of the information/decision aids (map and decision 

table) on the information acquisition behavior, the findings suggest that, in both of the 

decision modes, there is a significant difference between information acquisition using 

the map and decision table. The results show that decision participants have a higher 

number of moves and spend more time on the decision table than map. 

The study presented in this dissertation has implications for formulating behavioral 

theories in the spatial decision making context and practical implications for the 

development of MC-SDSS. Specifically, the findings provide a new perspective on the 

use of decision support aids, and important clues for designers to develop an appropriate 

user-centered Web-based collaborative MC-SDSS. The study’s implications can advance 

public participatory planning and allow for more informed and democratic land-use 

allocation decisions.  

Key Words: Web 2.0-based MC-SDSS, GIS-MCDA, human computer interaction, 

information acquisition behavior, task complexity, information aid, decision mode 
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Chapter 1 

1 Introduction 

1.1 Background  

There is some evidence to show that spatial decisions made collectively tend to be more 

effective than decisions made by an individual decision maker (e.g., Carver, 1999; 

Dragićević & Balram, 2004; Jankowski, 2009; Joerin, Desthieux, Beuze, & Nembrini, 

2009; Simão, Densham, & Haklay, 2009). Thus, it is suggested that spatial 

planning/decision making should involve the use of a collaborative/participatory 

approach, where individuals with different backgrounds can be brought together to solve 

a decision problem (e.g., Bailey, Goonetilleke, & Campbell, 2003; Kyem, 2004; Bugs, 

Granell, Fonts, Huerta, & Painho, 2010). Participatory approaches provide an interactive, 

open, democratic, communicative, collaborative and well informed deliberative process in 

which both experts and non-experts communicate, negotiate, and develop solutions 

(Esnard & MacDougall, 1997; Klosterman, 1997). Only through such a process, it is 

possible to find a solution that reconciles the conflicting objectives that result from 

different people’s opinions and the final outcome can be accepted by the majority (Sipilä 

& Tyrväinen, 2005; Simão et al., 2009). 

An effective involvement of individuals (interest groups) in a participatory planning 

process requires the development of suitable methods and tools. Conventional 

participatory planning methods have been criticized for their limited ability to engage the 

public, provide useful information and tools, involve the interest groups in open and 

asynchronous discussions, and promote an exchange of ideas (Bugs et al., 2010; Wu, He, 

& Gong, 2010). Such criticism is based in part on the individuals’ inability to be present 

at a specific time and location, as well as their unwillingness to express their views and 

preferences among other community members during the public meetings (Dragićević & 

Balram, 2004; Jankowski, 2009; Boroushaki & Malczewski, 2010b). 
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The concept of Web-based GIS has been proposed as an effective tool for participatory 

planning. The Web can be used as an information infrastructure for delivering spatial data 

and GIS functionalities to the general public. GIS offers a wide spectrum of visual and 

computational decision support tools that can be used by both planners and lay 

participants on the Web for selection, prioritization, and integration of decision options 

(Sadagopan, 2000; Tang & Waters, 2005). Studies on the use of asynchronous GIS-based 

approaches for participatory planning suggest that the space-time distributed environment 

of the Web not only provides the flexibility to work in different places and times for the 

convenience of the participants, but also offers equal participation opportunity (Zhu & 

Dale, 2001; Sikder & Gangopadhyay, 2002; Malczewski, 2006b). Web 2.0 technologies 

and concepts have recent been adapted to Participatory GIS (PGIS) projects (Rinner, 

Keßler, & Andrulis, 2008; Bugs et al., 2010; Sani & Rinner, 2011; Dessì, Garau, & Pes, 

2012). The ability of Web 2.0 in advancing participation, interactivity, and collaboration 

has played a significant role in PGIS in general and collaborative decision making in 

particular. Web 2.0 technologies shift Web applications from a perceived information 

display medium that provides the Web content to many people through websites, to a 

fully interactive platform that allows collaboration. They allow two-way communication; 

that is, a read-write web by means of which the users are contributing as well as 

consuming information.  

Web 2.0-based GIS is an evolution of Web-based GIS that focuses on public participation 

and interaction using a geo-spatial system (Ganapati, 2010). This evolution has led to the 

increasing usability of GIS for non-specialist users, facilitating wider community usage of 

GIS technologies and taking advantage of the collective intelligence of the Web, building 

participation-oriented and user-centric GIS platforms, and developing spatial mashups 

(Geo-Web services) (Ganapati, 2010; Beaudreau, Johnson, & Sieber, 2011; Karnatak, 

Shukla, Sharma, Murthy, & Bhanumurthy, 2012). However, the conventional Web (or 

Web 2.0)-based GIS approaches have very limited capabilities for supporting decision 

making procedures. The integration of Web 2.0-based GIS and MCDA (Multicriteria 

Decision Analysis) techniques can alleviate this limitation. It can offer a Multicriteria 
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Spatial Decision Support System (MC-SDSS) for public participation, which provides 

appropriate analytical tools and platforms for direct involvement of the public in the 

spatial planning process. A MC-SDSS integrates previously separate GIS and MCDA tool 

sets into a unified whole more valuable than the sum of the parts. At the most basic level, 

a MC-SDSS can be viewed as a decision support tool that integrates geospatial data and 

value judgments (the decision maker’s preferences) to produce information for decision 

making (Laaribi, Chevallier, & Martel, 1996; Malczewski, 1999a; Joerin, Thériault, & 

Musy, 2001). The underlying idea behind incorporating MCDA techniques into GIS is 

that the MCDA capabilities can complement GIS tools during the decision making stages. 

Using GIS to store, manage, produce, analyze, retrieve, organize, and visualize 

geographically referenced and associated tabular attribute data offers the capability of 

efficiently developing techniques and methods for modeling spatial decision making 

problems. Planners can use GIS to reveal hidden information, analyze the data from 

different perspectives and summarize them into useful information, extract spatial 

patterns, analyze spatial relationship, identify problematic areas, and recommend possible 

computational policy solutions. As an analytical system, MCDA can serve spatial 

decision making process by providing a wide range of powerful techniques and 

approaches for structuring decision problems, designing, evaluating, and prioritizing 

geographic alternatives. It is in the context of the combined capabilities of GIS and 

MCDA that the significance of advancing theoretical and applied research on MC-SDSS 

becomes obvious (Malczewski, 2006a).  

MCDA can facilitate the GIS-based participatory decision making process in several 

ways. First, the integration of MCDA techniques into GIS-based procedures allows 

decision makers to input their judgments with respect to evaluation criteria and/or 

alternatives into GIS-based decision-making procedures, and generate a variety of 

planning scenarios that satisfy their decision objectives. Second, the GIS-MCDA strategy 

can improve the participatory decision making process by providing a flexible problem-

solving setting, in which those who are involved in collaborative tasks can analyze, 

discuss, and, if necessary, redefine a decision problem (Kyem, 2001; Hossack, Robertson, 
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Tucker, Hursthouse, & Fyfe, 2004; Norese & Toso, 2004). The GIS-MCDA approach 

offers a platform for organizing data relevant to the decision and helps to select the set of 

criteria for assessing and prioritizing alternative courses of action. The members of the 

decision making group can examine the spatial characteristics (locations) of alternatives, 

visualize them, and evaluate them according to their preferences (Voss et al., 2004). 

Third, an incorporation of MCDA into GIS can assist collaborative work by providing a 

tool for structuring group decision-making problems and facilitating communication in a 

group setting (e.g., Zhu & Dale, 2001; Rosmuller & Beroggi, 2004; Mau-Crimmins, de 

Steiguer, & Dennis, 2005; Boroushaki & Malczewski, 2010a). Fourth, an integration of 

GIS and MCDA allows for minimizing conflict over the choice of the best alternative 

course of action by providing mechanisms for revealing participants’ preferences, 

identifying and discussing various alternatives, and building a consensus among decision 

makers (Feick & Hall, 1999; Jankowski & Nyerges, 2001a; Kyem, 2001; Sharifi, van den 

Toorn, Rico, & Emmanuel, 2002; Boroushaki & Malczewski, 2010a). Evidence shows 

that MCDA for individual decision making combined with proper voting rules offers a 

valuable tool for group decision making in the GIS environment (Malczewski, 1996; 

Jankowski & Nyerges, 2001a; Norese & Toso, 2004). The incorporation of MCDA into 

Web 2.0-based GIS allows democratization of spatial data and spatial decision-making 

process by offering open accessibility and wide distribution of geospatial information. 

Web 2.0-based MC-SDSS tools change multicriteria decision making from a closed, 

place-based (fixed time and location), synchronous procedure to an open, asynchronous, 

distributed, and active decision making process. Such tools enable participants to input 

their preferences regarding the decision problem based on different time/ location of the 

spatial-temporal dimensionality of collaborative decision-making (Boroushaki & 

Malczewski, 2010a). These tools offer a broadly-distributed and optimal solution for 

spatial planning, as well as provide easy access to the general public for active 

participation in the decision making process.  

The main objective of GIS-MCDA procedures in the context of Web-based GIS-MCDA 

applications is to enhance two areas of spatial collaborative decision-making and 
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planning process: deliberative and analytic (Rinner, 2006; Boroushaki, 2010). The 

deliberative area of that process can be improved by consensus among various 

stakeholders and decision-makers through organizing discussion processes and 

facilitating negotiation and communication (Rinner, 2006; Rinner et al., 2008). The 

analytic area of decision-making and spatial planning process can be enhanced by 

providing a mechanism that enables individual decision-makers to use their value 

judgments about the decision issue, thereby producing a group solution that represents 

best the preferences of all participants (Malczewski, 1996; Feick & Hall, 1999; Jankowski 

& Nyerges, 2001a; Feick & Hall, 2004; Malczewski, 2006b; Simão et al., 2009).  

1.2 Research problem  

Over the last decade or so, significant research efforts have been made to integrate GIS 

and MCDA methods into the Web (or Web 2.0) environment (Rinner & Malczewski, 

2002; Sikder & Gangopadhyay, 2002; Dragićević & Balram, 2004; Evans, Kingston, & 

Carver, 2004; Voss et al., 2004; Hall & Leahy, 2006; Chen, Jiang, & Li, 2007; Karnatak, 

Saran, Bhatia, & Roy, 2007; Rao et al., 2007; Jankowski, Zielinska, & Swobodzinski, 

2008; Simão et al., 2009; Taranu, 2009; Boroushaki, 2010). However, the research into 

Web-based MC-SDSS has so far tended to concentrate on the technical questions of how 

to integrate GIS and MCDA (Carver, 1999; Sakamoto & Fukui, 2004; Karnatak et al., 

2007). In a research agenda about geovisual analytics for decision support analysis, 

Andrienko et al. (2007) argue that MCDA methods are essential for supporting the 

involvement of humans in complex spatial problem-solving. However, they also suggest 

that a simple combination of geovisualization techniques and GIS methods with MCDA 

modelling is not sufficient for facilitating the mutual reinforcement of the abilities of 

humans and computers and call for research about human-computer interaction (HCI) 

(see MacEachren et al., 2004).  

Little empirical research has been performed to understand the way decision makers, 

stakeholders, planners, and citizens acquire and use the relevant decision information 

during a collaborative GIS-MCDA process (Jankowski & Nyerges, 2001a; Meng, 2010). 
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Our understandings of the benefits of MC-SDSS applications are currently limited by the 

scarce empirical studies on the usage patterns of decision support tools. The major reason 

for the limited empirical critiques is that most research about MC-SDSS has focused on 

software design and development rather than use. This limited knowledge on how people 

search through and combine information to make spatial decisions leaves the design and 

development side without sound scientific bases for advancing the technology. Evidence 

shows that the effects of advanced information technologies on individuals and groups are 

less a function of the technologies themselves than how they are used by people 

(DeSanctis & Poole, 1994; Crossland, Wynne, & Perkins, 1995; Jankowski & Nyerges, 

2001a). The motivation for research coming out of this conclusion is that studying the 

patterns of human-commuter interaction under MC-SDSS conditions is as important as 

developing the decision support software. Web technology provides a distinctive 

opportunity for studying the usage patterns of MC-SDSS by means of the online system 

events log data analysis.  

Given the importance of understanding decision makers’ information acquisition 

behavior, it is equally important to understand this behavior across different types of 

decision situations (Abdul-Muhmin, 1994). Research on human-computer interaction in 

the context of MC-SDSS suggests that decision situations involving different levels of 

task complexity and also the use of different types of geographic information aids affect 

decision makers’ information acquisition behavior (Jankowski & Nyerges, 2001a; Speier, 

2006; Meng & Malczewski, 2010). There is a large body of literature on the influence of 

task complexity on information acquisition strategy. Empirical studies have shown that 

task complexity affects information processing demands and decision strategies of the 

individuals (e.g., Payne, 1976; Ford, Schmitt, Schechtman, Hults, & Doherty, 1989; 

Conlon, Dellaert, & Soest, 2001; Klemz & Gruca, 2001; Schulte-Mecklenbeck, 2005; 

Queen, Hess, Ennis, Dowd, & Gruhn, 2012). Decision makers rely on simplifying or non-

compensatory information search strategies as task complexity (i.e., the amount of 

information available by using a decision aid) increases (Minch & Sanders, 1986; Payne, 

Bettman, & Johnson, 1993; Malczewski et al., 2003). Compensatory search strategies 
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involve the combination of available information and an evaluation process where high 

values on some evaluation criteria can compensate for low values on other criteria. Non-

compensatory search strategies, on the other hand, involve various simplifying heuristics 

for evaluating and combining information. With a non-compensatory strategy, 

comparisons and combinations across evaluation criteria are avoided and evaluation may 

be qualitative rather than quantitative. Non-compensatory search strategies are less 

cognitively demanding and may result in different decisions than when compensatory 

strategies are used. Consequently, the decision maker is faced with a tradeoff between 

reduced cognitive effort and potentially less than optimal decisions (Bodily, 1985; 

Malczewski & Rinner, 2005). 

Access to different information aids, such as tables, graphs and maps has also been found 

to influence the decision process and outcomes (Crossland et al., 1995; Smelcer & 

Carmel, 1997; Dennis & Carte, 1998; Speier, 2006; Andrienko et al., 2007). Therefore, it 

is reasonable to expect that the type of decision aids offered for use in the GIS-MCDA 

environment has an influence on the number of times they are used and the way they are 

brought into use. The human-computer interaction (the pattern of decision aid moves) 

will likely be different between maps and decision tables because of the advantages or 

disadvantages of information associated with each (Contractor & Seibold, 1993). 

Jankowski and Nyerges (2001b) examined the usage of four different types of geographic 

information structures including: Map, MCDA (decision table), Consensus (rank map), 

and Table/Text aids in a collaborative GIS-MCDA environment. In an examination of the 

use of map and MCDA decision aids, they found that the time that participants spend on 

these information aids is significantly different. 

None of the previous studies has examined the effects of task complexity and information 

aids on the information acquisition strategies in the Web 2.0-based collaborative GIS-

MCDA. There is, therefore, a need for research to provide insights into decision makers’ 

information acquisition behaviors (human-computer interaction patterns) and the effect of 

task complexity and information aids on this behavior during the use of a Web 2.0-based 

collaborative MC-SDSS. The purpose of this dissertation is to contribute to addressing 
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this need by carrying out an experimental study of information acquisition behavior in a 

collaborative GIS-MCDA process. In addition to task complexity and information aid 

effects, this study examines the effects of decision mode (individual versus group 

decision making) on the information acquisition behavior. Several studies suggest that the 

information acquisition strategies used by decision makers differ between the different 

modes of decision making process (Abdul-Muhmin, 1994; Schrah, Dalal, & Sniezek, 

2006). For example, Schrah et al. (2006) suggested that decision makers employ different 

information acquisition strategies in the decision modes where they are provided with 

advice (alternative choice recommendations) and where they are not. There is no 

empirical study in the literature exploring how decision maker’ information acquisition 

behavior is affected by the use of different GIS-MCDA modes. Decision makers may 

exhibit different information search behaviors with or without having an access to the 

group decision results (group choice recommendations). 

Given the study’s focus on describing the process leading to a decision and an interest in 

dynamics of human-computer-human interaction during collaborative decision making, 

the study will adopt a process tracing approach to measure the information acquisition 

metrics (Ford et al., 1989; Jankowski & Nyerges, 2001a). Process tracing is a data 

collection technique that allows the researchers to directly monitor and record decision 

maker’ activities during the decision making process (Takemura & Selart, 2007). It 

provides a detailed understanding of what information is examined, when, how, and for 

how long the information is processed by tracking the steps leading to the decision 

(Pfeiffer, 2012). The use of process tracing technique allows for uncovering the cognitive 

processes that underlie how task complexity, information aid, and decision mode affect 

the way people deal with decision problems.  

1.3 Research questions and hypotheses 

The main objective of this dissertation is to examine the patterns of human-computer 

interaction (information acquisition behavior) in the use of a Web 2.0-based collaborative 

MC-SDSS for tackling a site selection problem under different decision situations. To 
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achieve this objective, the following set of research questions and corresponding 

hypotheses have been formulated. 

Research question 1 

How does the complexity of a decision task affect information acquisition strategies in 

the collaborative GIS-MCDA procedure? This research question is examined using the 

following hypotheses:  

H1a: There is a significant relationship between task complexity in the individual 

decision making (the GIS-MCDA individual mode) and the proportion of information 

searched. It is expected that an increased task complexity in the GIS-MCDA individual 

mode will result in a decrease in the proportion of information search (Payne, 1976; Ford 

et al., 1989; Chinburapa, 1991; Roe, Busemeyer, & Townsend, 2001; Katz, Bereby-

Meyer, Assor, & Danziger, 2010; Schram & Sonnemans, 2011; Queen et al., 2012). H1b: 

There is a significant relationship between task complexity in the group (collaborative) 

decision making (the GIS-MCDA group mode) and the proportion of information search. 

It is anticipated that the proportion of information search in the GIS-MCDA group mode 

will decrease along with an increasing task complexity. 

H2a: There is a significant relationship between task complexity in the GIS-MCDA 

individual mode and the proportion of information searched across the attribute ranges 

(the ranges of attribute values). It is expected that an increased task complexity in the 

GIS-MCDA individual mode will result in a decrease in the proportion of information 

searched. H2b: There is a significant relationship between task complexity in the GIS-

MCDA group mode and the proportion of information searched across the attribute 

ranges. It is anticipated that an increased task complexity in the GIS-MCDA group mode 

will decrease the proportion of attribute ranges searched. 

H3a: There is a significant relationship between task complexity in the individual 

decision making and the average amount of time spent on each piece of information. It is 

expected that an increased task complexity in the GIS-MCDA individual mode will result 
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in a decrease in the average amount of time spent on each piece of information (Ford et 

al., 1989; Klemz & Gruca, 2001). H3b: There is a significant relationship between task 

complexity in the GIS-MCDA group mode and the average amount of time spent on each 

piece of information. It is anticipated that that an increased task complexity in the GIS-

MCDA group mode will result in a decrease in the average amount of time spent on each 

piece of information. 

H4a: There is a significant relationship between task complexity in the GIS-MCDA 

individual mode and variability in the proportion of information searched per attribute. It 

is expected that an increased task complexity in the GIS-MCDA individual mode will 

result in increased variability in the proportion of information searched per attribute 

(Chinburapa, 1991; Abdul-Muhmin, 1994; Bröder & Schiffer, 2003; Schmeer, 2003). 

H4b: There is a significant relationship between task complexity in the GIS-MCDA group 

mode and variability in the proportion of information searched per attribute. It is 

anticipated that an increased task complexity in the GIS-MCDA group mode will result in 

increased variability in the proportion of information searched per attribute. 

H5a: There is a significant relationship between task complexity in the GIS-MCDA 

individual mode and variability in the proportion of information searched per alternative. 

The anticipated result is that an increased task complexity in the GIS-MCDA individual 

mode will result in increased variability in the proportion of information searched per 

alternative (Payne et al., 1993; Abdul-Muhmin, 1994; Bröder & Schiffer, 2003; Schmeer, 

2003; Carrigan, Gardner, Conner, & Maule, 2007; Glaholt, 2010). H5b: There is a 

significant relationship between task complexity in the GIS-MCDA group mode and 

variability in the proportion of information searched per alternative. It is expected that an 

increased task complexity in the GIS-MCDA group mode will result in increased 

variability in the proportion of information searched per alternative.  

H6a: In the GIS-MCDA individual mode, decision makers use a more attribute-wise 

strategy (direction of search) than an alternative-wise strategy in the information search 

process. It is expected that, in the GIS-MCDA individual mode, search will become 
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organized by attributes rather than by alternatives. H6b: In the GIS-MCDA group mode, 

decision makers use a more attribute-wise strategy than an alternative-wise in the 

information search process. The anticipated result is that, in the GIS-MCDA group mode, 

search will become organized by attributes rather than by alternatives. H6c: There is a 

significant relationship between task complexity in the GIS-MCDA individual mode and 

direction of search (Payne, 1976; Abdul-Muhmin, 1994; Roe et al., 2001; Katz et al., 

2010). It is expected that increased task complexity in the GIS-MCDA individual mode 

will result in a direction of search that is more attribute-wise than alternative-wise. H6d: 

There is a significant relationship between task complexity in the GIS-MCDA group mode 

and direction of search. It is suggested that increased task complexity in the GIS-MCDA 

group mode will result in a direction of search that is more attribute-wise than alternative-

wise. 

H7a: There is a significant relationship between task complexity in the GIS-MCDA 

individual mode and the total time spent acquiring the information in the decision table. 

It is expected that an increased task complexity in the GIS-MCDA individual mode will 

result in increased time spent acquiring the information in the decision table (Chinburapa, 

1991; Abdul-Muhmin, 1994). H7b: There is a significant relationship between task 

complexity in the GIS-MCDA group mode and total time spent acquiring the information 

in the decision table. It is anticipated that an increased task complexity in the GIS-MCDA 

group mode will result in increased time spent acquiring the information in the decision 

table.  

H8a: There is a significant relationship between task complexity in the GIS-MCDA 

individual mode and time spent acquiring the information on the map. It is expected that 

an increased task complexity in the GIS-MCDA individual mode will result in increased 

time spent acquiring the information on the map. H8b: There is a significant relationship 

between task complexity in the GIS-MCDA group mode and time spent acquiring the 

information on the map. It is anticipated that an increased task complexity in the GIS-

MCDA group mode will result in increased time spent acquiring the information on the 

map. H8c: There is a significant relationship between task complexity in the GIS-MCDA 
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individual mode and the number of moves on the map. It is expected that an increased 

task complexity in the GIS-MCDA individual mode will result in a higher number of 

moves on the map. H8d: There is a significant relationship between task complexity in 

the GIS-MCDA group mode and the number of moves on the map. It is anticipated that an 

increased task complexity in the GIS-MCDA group mode will result in a higher number 

of moves on the map.  

H9: There is a significant relationship between task complexity in the GIS-MCDA group 

mode and the time spent viewing the group (collective) decision. It is expected that 

increased task complexity in the GIS-MCDA group mode will result in increased time 

spent viewing the group (collective) decision. As task complexity increases, the 

participants may find the decision task difficult, and therefore will tend to use the group 

advice (e.g., group debates and ranking of the alternatives) (Schrah et al., 2006; Gino & 

Moore, 2007).  

Research question 2 

How do information acquisition and integration strategies used in the collaborative GIS-

MCDA individual mode differ from strategies used in the collaborative GIS-MCDA 

group mode? This question is addressed by the following hypotheses: 

H10a: There is a significant difference in the proportions of information searched 

between the two decision modes. H10b: There is a significant difference in the proportion 

of attribute ranges searched between the two decision modes. H10c: There is a significant 

difference in the average amount of time spent on each piece of information between the 

two decision modes. H10d: The two decision modes are significantly different in terms of 

variability in the proportion of information searched per attribute. H10e: The two 

decision modes are significantly different in terms of the variability in the proportion of 

information searched per alternative. H10f: There is a significant difference in the 

direction of information searched between the two decision modes. H10g: The two 

decision modes are significantly different in terms of the total time spent acquiring the 
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information in the decision table. H10h: The two decision modes are significantly 

different in terms of the time spent acquiring the information on the map. H10i: The two 

decision modes are significantly different in terms of the number of moves on the map. I 

expect that the two decision modes would be significantly different in terms of: (i) the 

proportion of information search, (ii) the variability of information search per attribute, 

(iii) the variability of information search per alternative, (iv) the direction of search 

(sequence of information search), (v) the total time spent acquiring the information, (vi) 

the average time spent acquiring each piece of information, (vii) the total time spent on 

the map exploration, and (viii) the number of moves on the map.  

Research question 3 

How do the types of geographic information structures (e.g., maps and tables) affect 

decision makers’ information acquisition behaviors? To answer this research question, the 

following set of hypotheses is examined: 

H11a: There is a significant relationship between the type of information aid in the GIS-

MCDA individual mode and information search moves. It is suggested that, in the GIS-

MCDA individual mode, the number of moves in the decision table is significantly higher 

than that on the map. H11b: There is a significant relationship between the type of 

information aid in the GIS-MCDA group mode and the number of moves. It is expected 

that, in the GIS-MCDA group mode, the number of moves in the decision table will be 

significantly higher than that on the map (Jankowski & Nyerges, 2001b). H11c: There is 

a significant relationship between the type of information aid in the GIS-MCDA 

individual mode and the time spent acquiring the decision information. It is anticipated 

that the amount of time spent on the decision table in the GIS-MCDA individual mode 

will be significantly more than that on the map. H11d: There is a significant relationship 

between the type of information aid in the GIS-MCDA group mode and the time spent 

acquiring the decision information. The expected result is that the amount of time spent 

on the decision table in the GIS-MCDA group mode is significantly more than that on the 

map (Jankowski & Nyerges, 2001b). H11e: In both the GIS-MCDA individual and group 



14 

 

modes, there is a significant relationship between the time spent on the decision table and 

the time spent on the map. H11f: In both the GIS-MCDA individual and group modes, 

there is a significant relationship between the number of table moves and map moves. 

Research question 4 

Is there a relationship between the time spent searching for information in the decision 

table/map and the time spent viewing the group decision? This question can be answered 

in terms of the following hypotheses: 

H12a: There is a significant relationship between the time spent on the map and the time 

spent viewing the group decision in the GIS-MCDA group mode. H12b: There is a 

significant relationship between the time spent on the decision table and the time spent 

viewing the group decision. It is expected that the time spent on the decision table/map 

and the time spent viewing the group decision will be significantly correlated. 

Research question 5 

Is there relationship between the information acquisition metrics used in the decision 

table? This research question can be addressed using the following hypothesis: 

H13: In both of the GIS-MCDA individual and group modes, there is a significant 

relationship among the information acquisition metrics. It is anticipated that there will be 

a significant relationship between the proportion of information search, the proportion of 

attribute ranges examined, the average decision time, the variability of information search 

per attribute, the variability of information search per alternative, and the direction of 

search (Abdul-Muhmin, 1994). 
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Research question 6 

Does task complexity affect the relationship between the information acquisition in the 

decision table and the map? The answer to this question can be derived from the 

following hypotheses: 

H14a: Increased task complexity in the GIS-MCDA individual mode has an insignificant 

impact on the relationship between the time spent on the decision map and table. H14b: 

Increased task complexity in the GIS-MCDA group mode has an insignificant impact on 

the relationship between the time spent on the map and table. H14c: Increased task 

complexity in the GIS-MCDA individual mode has an insignificant impact on the 

relationship between the number of map and table moves. H14d: Increased task 

complexity in the GIS-MCDA group mode has an insignificant impact on the relationship 

between the number of map and table moves. It is expected that, in both the GIS-MCDA 

individual and group modes, an increase in decision task complexity will affect both the 

relationship between the time spent on the decision map and table and the relationship 

between the number of moves on the map and in the decision table (Jankowski & 

Nyerges, 2001b). 

Research question 7 

Does task complexity affect the relationship between the time spent on the decision table/ 

map and the time spent viewing the group decision? To examine this question, the 

following hypotheses have been developed: 

H15a: Increased task complexity in the GIS-MCDA group mode has an insignificant 

impact on the relationship between the time spent viewing the group decision and the time 

spent on the decision table. H15b: Increased task complexity in the GIS-MCDA group 

mode has an insignificant impact on the relationship between the time spent viewing the 

group decision and the time spent on the map. It is anticipated that increased task 

complexity has significant impact on the relationship between the time spent on the 

decision table/ map and the time spent viewing the group decision. 
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Research question 8 

Does the decision mode influence the relationship between the information acquisition in 

the decision table and the map? To answer this question, the following hypotheses have 

been constructed: 

H16a: The decision mode has an insignificant effect on the relationship between the time 

spent on the map and table. H16b: The decision mode has an insignificant effect on the 

relationship between the number of map and table moves. I expect that the decision mode 

will influence both the relationship between the time spent on the map and table and the 

relationship between the number of map and table moves.  

1.4 Methodology 

The main focus of this research is on the examination of the set of hypotheses derived 

from the research questions in the context of a Web 2.0-based MC-SDSS application. To 

achieve the research objectives, the methodology used in the study involves a three stage 

procedure:  

(1) Developing and implementing a Web 2.0-based collaborative MC-SDSS for 

tackling a site selection problem in the City of Tehran, Iran 

The MC-SDSS software used in the case study consists of three modules: (i) the 

information aid tool is a Google Maps- and table-based representation of the decision 

information for exploring the decision-related information; (ii) the MCDA tool is a set of 

multicriteria decision procedures for evaluating decision alternatives by individuals and 

group of participants, and allows for ranking decision alternatives based on the user’s 

preferences with respect to evaluation criteria; and (iii) the group decision tool consists of 

two sub-modules: (a) a Google Maps-based on-line discussion forum for geo-referenced 

discourse, which allows for two basic forms of geo-argumentative relations: 

argumentative relations between geographic objects and spatial relations between 

arguments (Rinner, 2001, 2006), and (b) a Google Maps-based tool for representing 



17 

 

group/compromise rankings of alternatives, which are obtained by aggregating individual 

rankings using the Borda approach (Jankowski & Nyerges, 2001a; Boroushaki, 2010). 

The system can be used in two decision modes: (i) the individual decision making mode 

(or GIS-MCDA individual mode) and (ii) the group (collaborative) decision making 

mode (or GIS-MCDA group mode) (Jankowski & Nyerges, 2001a). In the individual 

mode, the participants have access to the two modules. The individual decision making 

module (i) provides participants with a decision table and map for exploring the decision 

information, and allows the participants to determine the criteria preferences, and 

eventually evaluate the alternatives. The decision table and map have been respectively 

used for the representation of decision space (alternative location space) and the criterion 

outcome space (criterion value space) (see Malczewski, 1999b). Locations of feasible 

decision alternatives along with the underlying spatial relationships constitute the 

geographic decision space. To each of the alternative locations there is assigned a binary 

decision variable, which takes 1 if the corresponding location is selected, or otherwise 0. 

Each location in the decision space (map) has its associated criterion values in the 

decision outcome space (decision table or criterion outcome table). Jankowski, 

Andrienko, and Andrienko (2001) argue that an integrated visualization of the decision 

space and criterion outcome space can be useful for understanding the structure of a 

decision problem (see also Rinner, 2007). They suggest that the simultaneous 

representation of criterion and decision spaces opens a possibility of eliciting a decision 

maker’s preferences for decision criteria not only on the basis of attribute data but also 

geography. 

Similar to the individual mode, the collaborative MC-SDSS in the group mode allows the 

participants to examine the decision table and the map, express their criteria preferences, 

and generate the alternatives’ orderings. The only difference is that, in the group mode, 

participants can review the other participants’ comments and also group rankings of the 

alternatives using the group decision making module. Having examined the group 

decision and others’ comments, the participants are able to compare their individual 

decisions with the group/collective decision, and therefore are able to refine their initial 
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preferences in an effort to get their decision close to the group decision. Both the decision 

modes will be used for the case study of parking site selection in district # 22 of Tehran.  

(2) Conducting experiments using the system and collecting the human-computer 

interaction data 

The study makes use of a decision-making experiment involving different decision 

situations based on the levels of task complexity, the types of information aids and 

decision modes. The primary field research activities center on using the MC-SDSS by a 

“virtual” non-mediated group comprised of community members interacting with the 

MC-SDSS tools accessed via Internet. Each individual in the group is able to participate 

in the experiments after registering online as a user in order to track the human-computer 

interaction patterns. The data on the participants’ activities during the experiment is 

recorded based on a database logging approach. The Web-based event logs (database log) 

provide an efficient and non-intrusive method for collecting data from the participants for 

the purpose of analyzing computer-human interactions. Each time a user performs an 

interaction with MC-SDSS, the system writes records to the database.  

(3) Analyzing the event log data for testing the hypotheses 

The hypotheses are tested by conducting Repeated Measures ANOVA (within-subjects 

ANOVA) tests, Linear Mixed Model (LMM) analyses, and Pearson correlation tests 

using the Statistical Package for the Social Sciences (SPSS) software (SPSS IBM., 2012). 

The set of hypotheses H1 to H9 are examined using the Repeated Measures ANOVA test 

(with Greenhouse-Geisser correction as needed). The LMM test is employed for 

analyzing the group of H10, H14, H15and H16 hypotheses. The three sets of hypotheses, 

H11, H12, and H13, are analyzed by conducting the Pearson correlation test; however, 

some of the H11 hypotheses will also be tested using the LMM test. 
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1.5 Structure of thesis 

The thesis is divided into seven chapters (see Figure 1). Chapter 1 discusses the research 

background and outlines the research questions, hypotheses, and methodology. Chapter 2 

explores the relevant literature. It gives a background on the pertinent concepts including: 

spatial planning, PGIS, collaborative multicriteria spatial decision analysis (Collaborative 

GIS-based MCDA), and Web 2.0 and Web 2.0-based collaborative GIS-MCDA. The 

chapter provides an overview of the research about information acquisition in the 

collaborative GIS-MCDA and behavioral decision making. Based upon the decision 

behavior literature, some general arguments about information acquisition metrics are 

made. Chapter 3 describes a collaborative GIS-MCDA procedure to be used in the 

empirical study. Chapter 4 provides a detailed discussion of the metrics used for 

examination of the information acquisition behavior during the use of the Web 2.0-based 

collaborative MC-SDSS. These metrics are used in the research hypotheses as a means of 

inferring decision making behavior and describing the strategies (or combination rules) 

used by decision makers in the collaborative GIS-MCDA. They characterize human-

computer interaction patterns in the information acquisition context. In Chapter 5, the 

study area and experimental procedure are described. The chapter also demonstrates the 

development of a Web 2.0-based collaborative MC-SDSS based upon the GIS-MCDA 

procedure proposed in Chapter 3. Chapter 6 presents the findings of the experiments, the 

results of hypothesis testing, and discussion of the results. Chapter 7 gives a summary of 

the research and concluding remarks. Also, it discusses the limitations and outlooks for 

research.  
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Figure 1. The structure of the thesis. 
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Chapter 2 

2 Literature review 

This chapter gives an overview of the theories, concepts, and practices that are relevant to 

this dissertation. It reviews the existing literature on studying information acquisition 

behavior in the process of decision making in general, and collaborative GIS-MCDA in 

particular. The chapter begins with a description of the pertinent concepts, including 

spatial planning, PGIS, GIS-based MCDA methods and framework, collaborative spatial 

multicriteria decision analysis (collaborative GIS-MCDA), and Web 2.0 and Web 2.0-

based collaborative GIS-MCDA. Next, the theories and empirical studies from other areas 

of decision making that can contribute to a better understanding of the information 

acquisition/search behavior in collaborative GIS-MCDA are reviewed. The empirical 

studies of information acquisition in the decision making process and methodologies 

concerning information acquisition behavior are also examined. Attention is given to the 

information processing metrics commonly used in the literature, as well as how the 

metrics are operationalized. Finally, the theoretical and empirical perspectives on the 

effects of different types of decision situations (i.e., decision situations manipulated by 

task complexity, information aid, and decision mode) on the information acquisition 

metrics are reviewed.  

2.1 Participatory spatial planning 

One of the early definitions of spatial planning is given by the European Regional/Spatial 

Planning Charter (CEMAT, 1983). CEMAT defines spatial planning as follows: 

“Regional/spatial planning gives geographical expression to the economic, social, cultural 

and ecological policies of society. It is at the same time a scientific discipline, an 

administrative technique and a policy developed as an interdisciplinary and 

comprehensive approach directed towards a balanced regional development and the 

physical organization of space according to an overall strategy” (p.5). Spatial planning 

aims at creating a more rational territorial organization of land uses and the linkage 

between them to balance the demand for development with the need to protect the 
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environment, and to achieve the social and economic objectives (Däne & Van Den Brink, 

2007). 

The approaches to spatial planning have been traditionally recognized as centralized, 

bureaucratic and top-down activity carried out by planning offices, planning authorities 

and other stakeholders (Krek, 2005). Typically, planners and professionals carry out 

almost all activities by themselves, starting from problem identification to plan 

formulation, with very little or no consideration given to the views of beneficiaries and 

other stakeholders1. Such approaches have been criticized for failing to provide an 

adequate solution for solving complex and wicked spatial problems, engaging diverse 

participants as competent stakeholders (experts and lay-persons), generating a 

nonconflictual decision or plan, democratizing planning process, etc. (Voss et al., 2004; 

Tang, 2006).  

Rittel and Webber (1973) argue that planning problems are typically “complex”, 

“wicked” and “ill-structured”. The problems cannot be adequately solved by the rational 

comprehensive planning approaches. The contradictory issues and the number of 

environmental, economic, and social factors directly or indirectly influence planning, and 

make it a complex process (Nidumolu, de Bie, van Keulen, Skidmore, & Harmsen, 2006; 

Yang et al., 2008). Such planning problems cannot effectively be addressed by a 

centralized approach (Tang, 2006; Joerin et al., 2009). 

According to Massam (1988), a generic planning problem can be defined as follows: 

“given a set of N plans or alternatives, and for each an evaluation on a set of M criteria, 

for a set of G interest groups, classify the N alternatives in such a way as to identify their 

relative attractiveness so that agreement among interested groups is maximized” (p. 19). 

This definition implies that the diverse values, objectives, and interests of the interested 

groups (decision-makers and the recipients of the outcome of the planning process) form 

an integral part of the planning process (Hodge, 2003; Tang, 2006). Tang (2006) argues 

                                                 
1 http://www.unescap.org/ttdw/Publications/TPTS_pubs/pub_2308/pub_2308.pdf 
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that the main goal of planning to reconcile the diverse values, objectives, and interests 

into acceptable community interests may not be achieved by centralized planning 

approaches that rely only on planners’ judgment, which is based on their knowledge, 

culture, and values. In other words, the conflicting interests caused by the differences as a 

matter of worldviews and values, experience and trust, and knowledge and expertise are 

not considered in the centralized approaches.  

The tendency of centralized planning ignores the principles of democratic planning. In a 

democratic society, one of the fundamental freedoms is the right of a citizen to know and 

participate in a decision situation, when decisions about valued-concerns affect the 

welfare (taken broadly) of those people and the places in which they live (Jankowski & 

Nyerges, 2001a). Citizens are the key players in urban planning as they are the ones who 

will be affected by the consequences of planning (Simão et al., 2009; Wu et al., 2010) and 

they also know the reality and the issues around them better than anybody else. A 

democratic government based on pluralist participation must first obtain different and 

opposing opinions and preferences from interest groups and the public at large, analyze 

them and then develop a single policy platform that will reflect the will of the majority of 

the voters (Wohlgemuth, 1999; Pennington, 2004). Without consideration of public 

debate, deliberation, values and objectives in planning, citizens are treated as passive 

members. These challenges are the driving forces changing spatial planning paradigm 

from the traditional, centralized, bureaucratic, and top-down approach to a holistic, 

participatory, communicative, and collaborative planning practice. Participatory 

approaches to spatial planning are gaining increased attention among decision makers and 

planners, as well as with community groups and civil society (Lovan, Murray, & Shaffer, 

2004; Kim, Halligan, Cho, Oh, & Eikenberry, 2005; Larson & Ribot, 2005). McCall and 

Dunn (2012) argue that these approaches can be interpreted as the specifically 

participatory methods of a more generic model of cyclic spatial planning and 

management with four basic phases: exploration, assessment, design of mitigation 

alternatives, and action. The integration of participatory approaches in spatial planning 

processes is expected to support good governance principles of openness, participation, 
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accountability, effectiveness and coherence through contributions to empowerment, 

legitimacy, and equity (McCall & Dunn, 2012).  

2.2 Participation  

Participation refers to a process by which the public can express opinions and exert 

influence regarding political, economic, management or other decisions. Jankowski and 

Nyerges (2001a) argue that at least four cumulative levels of “social interaction” fall 

under the umbrella term of “participation”: communication, cooperation, coordination, 

and collaboration. At a basic level of participation, people communicate with each other 

to share and exchange ideas, concerns, viewpoints, and knowledge as an essential process 

of social interaction. A cooperative interaction is defined by a set of processes which help 

people interact together in order to accomplish a specific goal or develop2. Cooperative 

interactions occur when a constructive change for one individual also increases the 

collective benefit of a group of individuals3. In a coordinated interaction, participants 

agree to cooperate, but they also agree to sequence their cooperative activity for mutual, 

synergistic gain (Jankowski & Nyerges, 2001a). A collaborative interaction is the process 

through which participants in a group agree to work on the same task simultaneously or at 

least with a shared understanding of a situation in a near-simultaneous manner (Roschelle 

& Teasley, 1995). The collaboration of people representing diverse areas of competence, 

political agendas, objectives and conflicting goals, scenarios, and social interests provide 

a synergic solution during planning. Through such a process, interested parties can have 

an active role from the initial stages (formulation of goals, exploration of alternatives) 

right up to the final stage of planning (Carsjens & Ligtenberg, 2007).  

There are a number of advantages of a participatory approach to the planning process. A 

participatory process:  

                                                 
2 http://www.londonmet.ac.uk/deliberations/collaborative-learning/panitz-paper.cfm 
3 http://www.thebigblob.com/competitive-and-cooperative-interactions-in-biological-inspired-ai/ 
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• enables individuals to voice their concerns and work on a compromise solution, 

leading to consensus decision-making practices. 

• “encompasses a group of procedures designed to consult, involve, and inform the 

public to allow those affected by a decision to have an input into that decision; 

“input” is the key phrase, differentiating participation methods from other 

communication strategies.” (Rowe & Frewer, 2000, p.6); 

 

• provides a rich source of updated information that helps to improve the quality of 

the analysis, leading to different solutions (Bugs et al., 2010);  

 

• helps decrease the complexity level as a group of people including local or 

neighborhood citizens, planning experts, and government employees has more 

information (knowledge) to understand and tackle the decision problem;  

 

• assures sustainability, stability and longevity of plan which stays intact over time4; 

 

• may improve the general sense of community and trust in government, since 

individuals themselves participate in planning and affect decisions (Tang & 

Waters, 2005);  

 

• can avoid the problems associated with bureaucratic governance (Pennington, 

2004); 

 

• promotes the development process; the plans and decisions, which are well-

designed but have not included public involvement, may face opposition which 

will slow or stop the project. 

 

                                                 
4 Http: //www. lgc.org /people/public.html 
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2.3 Participatory GIS-based planning  

2.3.1 Participatory GIS (PGIS) 

GIS-based approaches have the potential to improve the quality of plans, helping planners 

to achieve more informed, consistent, timely, and accurate spatial decisions by producing 

relevant information (Fischer & Nijkamp, 1993; Esnard & MacDougall, 1997; Voss et al., 

2004; Witlox, 2005; Sieber, 2006). Dai, Lee, and Zhang (2001) describe the main 

advantages of using GIS in planning as follows: the increase of efficiency, the automation 

of planning tasks, accuracy improvement, accessibility at low costs, ease of use by public, 

very short time for data manipulation, the possibility to explore diverse scenarios, 

providing decision support, and ease of handling the graphic output. 

While the planners and decision-makers have full access to relevant spatial 

data/information and GIS tools, there are relatively few GIS-based spatial planning and 

decision-making tools that are available to the general public. This division has been one 

of the main criticisms of GIS (Pickles, 1995; Carver, 1999; Carver & Peckham, 1999; 

Dragićević, 2004). During the 1990s, the critiques of the uses of traditional GIS in society 

and calls for enhanced public participation in spatial planning have led to the use of GIS 

for participatory planning/decision making. GIS and its offspring spatial decision support 

systems (SDSS) were suggested as information technology aids to facilitate geographic 

problem understanding and decision making in a participatory setting (Jankowski & 

Nyerges, 2001a). In general, these technologies lie within the broad umbrella of what has 

become known as Participatory GIS (PGIS). PGIS shifts the spatial planning from a 

closed, expert-oriented process to an open, community-oriented process (Malczewski, 

2004). There are many definitions of the concept of PGIS. For example, PGIS is defined 

as:  

• “a variety of approaches to make GIS and other spatial decision-making tools 

available and accessible to all those with a stake in official decisions” (Schroeder, 

1996, p.1); 
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• an integrative and inclusive process-based set of GIS methods and technologies 

amenable to public participation, multiple viewpoints, and diverse forms of 

information (Krygier, 2002); 

 

• a computer-aided approach that creates an environment to facilitate analysis and 

deliberation in a group decision setting (Jankowski & Nyerges, 2001a), allowing 

participants to access and understand information, incorporate local knowledge, 

integrate and contextualize complex spatial information, dynamically interact with 

input, and analyze alternative plans (Sieber, 2006); 

 

• a system that facilitates the meaningful introduction of appropriate forms of 

spatial information and analytical tools for widening public participation in the 

policy-making process, and promotes the goals of nongovernmental organizations, 

grassroots groups, and community-based organizations (Tang & Waters, 2005).  

2.3.2 Collaborative multicriteria spatial decision support 
systems 

While the mainstream GIS technology is focused on the creation of easy-to-use, 

ubiquitous mapping and spatial analysis tools, it has lacked a capability to collate 

individuals’ interests and preferences to support collaborative spatial decision making 

(CSDM) in particular, and participatory decision making in general (Jankowski & 

Nyerges, 2001a). The information needs that use specialized models for description, 

decision analysis, assessment, and forecast in planning cannot be answered by GIS alone. 

Planning requires specialized decision analysis procedures that go beyond the standard 

database manipulation and basic functions of GIS. Collaborative Multicriteria Spatial 

Decision Support Systems (MC-SDSS) extend the PGIS tools to include not only the 

capabilities of GIS, but also Multicriteria Decision Analysis (MCDA) techniques for 

collaborative decision analysis. It has been argued that the synergetic capabilities of GIS 

(GIS database and spatial analysis) and MCDA procedures (multicriteria analytical 

models) can potentially enhance the collaborative decision-making processes by 
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providing a rich collection of techniques and procedures for eliciting the decision-makers’ 

preferences; structuring decision problems; as well as designing, evaluating, and 

prioritizing decision alternatives (Feick & Hall, 1999; Jankowski & Nyerges, 2001a; 

Kyem, 2004; Malczewski, 2006a). Marttunen (2011) summarizes the potential benefits of 

the use of MCDA in planning (see Figure 2). 

 
Figure 2. Benefits of MCDA in planning (Source:Marttunen, 2011). 
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2.3.3 GIS-based MCDA 

The general aim of GIS-based MCDA techniques is to contribute to the decision making 

process by selecting the best alternative from the number of feasible alternatives 

according to multiple criteria. It involves the use of geographical data, decision maker 

preferences, and an aggregation function (decision rule) that combines spatial data and 

the decision maker’s preference to evaluate decision alternatives. The main rationale 

behind integrating GIS and MCDA is that these two distinct areas of research can 

complement each other (Malczewski, 1999a; Thill, 1999; Chakhar & Martel, 2003; 

Malczewski, 2006a; Boroushaki, 2010). While GIS is commonly recognized as a 

powerful and integrated tool with unique capabilities for storing, manipulating, analyzing 

and visualizing geographically referenced information for decision-making, MCDA 

provides a rich collection of procedures and algorithms for structuring decision problems, 

designing, evaluating and prioritizing alternatives. It is in the setting of the synergetic 

characteristics of GIS and MCDA that the importance of advancing theoretical and 

applied research on MC-SDSS becomes obvious.  

2.3.3.1 GIS-based MCDA elements  

Malczewski (1999a) divided MCDA problems into six components: (1) a decision goal or 

a set of goals; (2) a set of evaluation criteria (attributes and objectives); (3) the decision 

maker’s preferences or group of decision makers with their preferences; (4) the set of 

decision alternatives; (5) the set of uncontrollable variables (factors beyond the decision 

maker’s control), and (6) the outcomes or consequences associated with each alternative 

with respect to each criterion (see Figure 3). These elements are organized in a 

hierarchical structure with the top level corresponding to the ultimate goal of the decision 

at hand. A goal essentially describes an improvement from the present state of a system 

toward its desirable state. A decision maker can be a single person or a group of people. 

An important task of the decision maker(s) is to identify their values and interests with 

respect to the decision problem by determining the relative importance (weights) of 

criteria against which the alternatives are evaluated. Two types of criteria can be defined: 
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objective and attribute. An objective is a statement about the desired state of the decision 

problem under consideration. It indicates the directions of improvement of one or more 

attributes. For any objective, several different attributes5 can be defined, providing 

complete assessment of the degree to which the objective might be achieved. Attributes 

are measurable characteristics expressing the degree to which the associated objectives 

are achieved for a particular decision alternative (Keeney & Raiffa, 1976; Jankowski & 

Nyerges, 2001a). In the spatial context, an attribute describes a measurable quantity or 

quality of a geographic entity or a relationship between geographic entities. The 

procedures for selecting a set of attributes should be based on the desirable properties of 

attributes. Both individual attributes and a set of attributes should possess some properties 

to adequately represent the multicriteria nature of the decision problem. A set of attributes 

should be complete (the attributes should cover all aspects of a decision problem), 

operational (they can be used meaningfully in the analysis), decomposable (they can be 

broken into parts to simplify the process), non-redundant (they avoid problems of double 

counting), and minimal (the number of attributes should be kept as small as possible). 

Attribute values of the alternatives can be organized in a table format called decision 

matrix or decision table. The table rows and columns represent decision alternatives and 

attributes, respectively. A value at the intersection of row and column in the table 

represents the decision outcome associated with a particular alternative with respect to a 

given attribute.  

                                                 
5 Throughout this dissertation the term attribute will be used interchangeably with the term criterion.  
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Figure 3. A hierarchical structure for the MCDA (Source:Malczewski, 1999a). 

 

2.3.3.2 GIS-based MCDA framework  

Malczewski (1999a) proposes a sequence of activities for spatial multicriteria decision 

analysis by synthesizing Simon’s (1977) three-step decision making process (i.e., 

intelligence, design, and choice) and MCDA components (see Figure 4). They include: 

defining the decision problem, identifying evaluation criteria and constraints, determining 

decision alternatives, applying a decision rule, performing sensitivity analysis, and 

making a recommendation. A clear problem definition in spatial MCDA is the first step 

toward rationally selecting the best alternative. The problem definition is the result of a 

discrepancy between the present state of a system and the desired state. This discrepancy 

can be formulated as a problem calling for a decision.  
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Figure 4. Framework for multicriteria analysis (Source:Malczewski, 1999a). 

Articulating goals of a decision problem leads to a set of spatial and non-spatial criteria 

(objectives or attributes), which represent the important characteristics that an alternative 

should have. A constraint is the criterion that imposes limitations on the alternatives 

under consideration. GIS constraint maps are aimed at removing infeasible alternatives 

and representing only feasible ones. For example, a decision alternative to be feasible 

must be located within 500 meters of major road. In some cases, the constraint will be 

expressed as some characteristic that the final solution must possess (Eastman, Jin, Kyem, 

& Toledano, 1995). For example, the size of a parcel of land for development must be 

less than 3000 hectares. 

The decision alternatives are defined geographically in terms of location, spatial pattern, 

and spatial interaction. A spatial decision alternative consists of at least two elements: 

action (what to do?) and location (where to do it?) (Malczewski, 1999a). A set of 

alternatives is often generated based on the spatial relationship principles of connectivity, 

contiguity, and proximity. Geographic alternatives can be defined using both raster- and 

vector-based GIS data models. In raster data layer, each cell or a collection of adjacent 
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cells forms a decision alternative. In some cases, geographic alternatives can be defined 

as a spatial aggregation of cells based on a particular geometric shape. In vector data 

model, depending on the spatial scale of a problem, a location representing the decision 

option can be represented by point (e.g. site), area (e.g. county), line (e.g. water pipeline 

corridor) or any combination of the above such as in the case of a land use plan 

(Jankowski & Nyerges, 2001a). Malczewski (1999a) defines ten categories of vector-

based alternatives and groups them into two types: simple and complex. These categories 

include point, line, polygon, point-point, point-line, point-polygon, line-line, line-

polygon, polygon-polygon, and point-line-polygon. Simple decision alternatives are 

characterized by a single type of object such as a point for representing a site. Depending 

on the number of spatial units for an alternative, geographic decision problems can be 

categorized into two types: atomistic and holistic (Tomlin, 1990). An atomistic decision 

problem is one that can be addressed on a discrete and location-by-location basis, whereas 

a holistic decision problem considers collections of locations as an integrated area that 

represents a decision alternative.  

Decision makers’ preferences reflect the values and interests of decision makers with 

respect to the evaluation criteria. Decision makers are able to handle the preference 

judgments by means of fuzzy judgments as well as precise numerical judgment. The 

procedure that determines how best to evaluate alternatives or to decide which alternative 

is preferred to another is known as a decision rule. It integrates the data on a set of 

alternatives and decision makers’ preferences into an overall assessment of each 

alternative. Sensitivity analysis is aimed at determining how the outcome of a model is 

affected by changes in the model inputs. Sensitivity analysis in spatial MCDA involves 

identifying the effects of changes in the inputs (geographical data and decision maker’s 

preferences) on the outputs (ranking of alternatives). It can be performed to see how the 

decision alternatives might be ranked differently if the inputs are changed.  
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2.3.3.3 Choice model: decision rule 

MCDA methods can be categorized into two broad classes: Multi Objective Decision 

Making (MODM) and Multi Attribute Decision Making (MADM) (Malczewski, 1999a). 

MODM considers a criterion as an objective. It can be thought of as the optimization and 

search of an alternative or alternatives on the bases of a set of objectives. For example, a 

multiobjective problem could be stated as determining a route which simultaneously 

optimizes both cost and environmental impact (Church, Loban, & Lombard, 1992). 

Decision space in MODM is continuous and alternatives are defined implicitly by a 

mathematical programming structure. On the other hand, MADM6 concentrates on 

problems with discrete decision spaces in which alternatives are defined explicitly by a 

finite list of attributes. MADM is used to select an alternative from a set of predetermined 

alternatives based on the decision maker’s preferences. Both MODM and MADM 

methods can be used either by an individual or a group of people. Group decision making 

demands the participation of multiple decision makers with conflicting preferences to 

solve a particular decision problem. The people who influence a decision can contribute 

and collaborate in a group decision making process. In the group mode, all members can 

make use of MCDA models and methods to evaluate decision alternatives based on their 

preferences. A number of MCDA methods, such as weighted linear combination (WLC), 

ideal point methods, concordance analysis, analytical hierarchy process (AHP), 

value/utility function approaches, and ordered weighted averaging (OWA), have been 

developed that can be used for both of the above mentioned MCDA categories (for an 

overview see Malczewski, 1999a). The process of applying these methods in the spatial 

context is concerned with how to appropriately combine the relevant criteria values 

(spatial data) and decision maker’s preferences to determine the overall evaluation scores 

(ratings and rankings) for the decision alternatives. 

                                                 
6 Throughout this dissertation, the term MCDA will be used to refer to a MADM-based approach.  
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2.3.3.4 Collaborative GIS-based MCDA 

Although GIS-based MCDA approaches have traditionally focused on the MCDA 

techniques for individual decision making, substantial efforts have been made to integrate 

GIS with MCDA for participatory/collaborative/group decision making (Malczewski, 

1996; Jankowski, Nyerges, Smith, Moore, & Horvath, 1997; Feick & Hall, 1999; 

Andrienko & Andrienko, 2001; Feick & Hall, 2001; Jankowski & Nyerges, 2001a; Kyem, 

2001; Bailey et al., 2003; Kyem, 2004; Phua & Minowa, 2005; Simão et al., 2009; 

Taranu, 2009; Boroushaki, 2010). In general, collaborative GIS-based MCDA approaches 

cover many of the features of a single-user GIS-based MCDA (see Section 2.2.1). The 

specific features of a collaborative GIS-based MCDA are intended to support: alternative 

generation, selection of the evaluation criteria (objectives and attributes), criterion 

weighting, expressing individual preferences, combination of the individual judgments 

into a single collective preference, final ordering of alternatives so that a compromise 

alternative can be selected, and cartographic display functions for group decision-making 

problems (see Limayem & DeSanctis, 2000; Jankowski & Nyerges, 2001a; Malczewski, 

2006b; Boroushaki, 2010). In addition to the principal components of conventional GIS-

based MCDA frameworks (data and analysis module, MCDA module, and interface), a 

collaborative GIS-based MCDA should contain communication capabilities and allows 

for voting, ranking, and rating for developing a consensus. Communications technologies 

available within collaborative decision support systems include: electronic messaging, 

local- and wide-area networks, and teleconferencing. Jankowski and Nyerges (2001a) 

present generic methods and tools for collaborative GIS-based MCDA by synthesizing 

Renn et al. ’s (1993) three-step public-participation decision process with Simon’s (1977) 

three-step process for the macro level of a macro-micro decision strategy (see Table 1). 

The decision strategy consists of three macro-phases: intelligence on criteria, design of 

options set, and choice of options. Each phase is composed of four micro activities: 

gather, organize, select, and review.  
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Table 1. Methods and tools for collaborative decision making derived from macro-micro 
decision strategy (Source:Jankowski & Nyerges, 2001a). 

                              Macro-decision strategy phases 

Micro-decision 

strategy activities 
1. Intelligence about 

values, objectives and 

criteria 

2. Design of a 

feasible option set 
3. Choice about 

decision options 

A. Gather...  

participant input on 
values, goals and 
objectives using 
information 
management and 
structured-group 

process techniques 

data and models  
(GIS and spatial 
analysis, process 
models, optimization,  
simulation) to 
generate options 

values, criteria and 
feasible decision 
options using group 

collaboration support 

methods 

B. Organize...  

goals and  

objectives using 

representation  

aids  

an approach to 

decision option 

generation using 

structured-group  

process techniques 

and models  

values, criteria and 

feasible decision 

options using choice 

models  

C. Select... criteria to be used in 
decision process using 

group  

collaboration  

support methods 

decision options from 
outcomes  
generated by  
group process  
techniques and  
models 

goal- and  
consensus achieving  
decision options using  
choice models 

D. Review... 
criteria, resources, 

constraints, and 

standards using  

group collaboration 

support methods  

decision options and 

identify feasible 

options using 

information 

management and 

choice models  

recommendation(s)  

of decision Options 

using judgment  

refinement  

techniques  

Jankowski & Nyerges (2001a) and Boroushaki (2010) presented a Web-based analytic-

deliberative tool, called ParticipatoryGIS, for a collaborative GIS-based MCDA. They 

argue that the ultimate goal of the GIS-based MCDA procedures is to tackle two distinct 



37 

 

dimensions of spatial collaborative decision-making and planning: (i) the deliberative 

dimension of spatial planning by building a consensus, on the solution set of alternatives, 

among various decision-makers and interest groups through organizing and facilitating 

communication (Jankowski & Nyerges, 2001a; Rinner, 2006; Rinner et al., 2008) and (ii) 

the analytical dimension of spatial decision-making by generating a collective group 

solution that best represents the preferences of all participants (Malczewski, 1996; Feick 

& Hall, 1999; Feick & Hall, 2004; Malczewski, 2006b).  

The deliberative aspect of collaborative GIS-based MCDA involves discussion processes, 

arguing in favour or against decision alternatives, negotiation, and consensus-finding 

methods that seek input from community members and take into account their preferences 

and opinions. The paramount goal of the deliberation is to reach a high degree of 

consensus among the decision-makers (Herrera-Viedma, Herrera, & Chiclana, 2002; Ben-

Arieh & Chen, 2006). A consensus can be attained through the exchange of information 

and opinions, and through deliberation and rational arguments, which are expected to 

facilitate a convergence of the decision-makers’ opinions (Boroushaki & Malczewski, 

2010a).  

Boroushaki and Malczewski (2010a) proposed a generic structure for the analytical 

dimension of the collaborative GIS-MCDA process involving the use of two decision 

rules (see Figure 5): individual and group (collective) decision rules. They distinguished 

two approaches: (i) prior articulation of preferences; where the preferences and judgments 

(e.g., criterion weights) of decision-makers are first aggregated into a collective group 

preference, and in the second step, the group judgment is used within MCDA decision 

rule, and (ii) aggregation of individual solutions, which involves two stages: first, each 

decision-maker solves the decision problem individually to obtain a set of individual 

solutions, by assigning different weights for the evaluation criteria, and in second stage, 

the individual solutions are aggregated using a collective choice rule to obtain a group 

solution.  
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Figure 5. Structure of a collaborative GIS-MCDA process (Source:Boroushaki & 

Malczewski, 2010a). 

Malczewski (2004) suggested that the potential for advancing the role of GIS-based 

MCDA in the participatory decision making can be stimulated by focusing on the way in 

which different interest groups use GIS-based techniques. This poses an important 

question: how can broader and more effective use of GIS-MCDA tools by the general 

public be attained in participatory planning? It has been argued that effectiveness of GIS-

MCDA tools in participatory planning depends on the time that shared information is sent 

and received and on the location of group members (Jankowski & Nyerges, 2001a). In 
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this regard, four approaches to the use of GIS-MCDA for group decision making have 

been distinguished: (i) same place-same time (conventional face-to-face meeting), (ii) 

same place-different time (storyboard meeting), (iii) different place-same time 

(conference-call meeting), and (iv) different place-different time (distributed meeting) 

(Desanctis & Gallupe, 1987; Malczewski, 2006b). The first three types of these 

approaches received some criticism, based on the limited ability to effectively provide 

decision support data and functionalities in a distributed environment, sufficiently engage 

the public in an open and asynchronous session, and to promote an exchange of ideas 

(Dragićević & Balram, 2004; Jankowski, 2009; Boroushaki, 2010; Bugs et al., 2010). 

They have been criticized for the failure to represent some interest groups and the 

inability to provide a platform for active participation and collaboration, due to their 

closed, synchronous and place-based nature (Alexander, 2000).   

Since the early 1990s, the use of GIS-based MCDA methods in the World Wide Web 

(Web) environment has been one of the substantial shifts in the light of such critiques 

(Menegolo & Peckham, 1996; Andrienko & Andrienko, 2001; Zhu & Dale, 2001; Zhu, 

McCosker, Dale, & Bischof, 2001; Rinner & Malczewski, 2002; Sikder & 

Gangopadhyay, 2002; Dragićević & Balram, 2004; Evans et al., 2004; Sugumaran, 

Meyer, & Davis, 2004; Voss et al., 2004; Hall & Leahy, 2006; Chen et al., 2007; 

Karnatak et al., 2007; Rao et al., 2007; Jankowski et al., 2008; Simão et al., 2009; Taranu, 

2009; Boroushaki, 2010; Markieta & Rinner, 2012). Web technologies opened new 

possibilities for the use of GIS-MCDA in a participatory environment, shifting the 

paradigm of participatory planning process from a closed, place-based (fixed time and 

location), and synchronous process to an open, asynchronous, distributed, and active 

decision making process. The space and time distributed environment of the Web offered 

not only flexibility of using GIS-MCDA in different space and time for the convenience 

of individuals, but also provided better access to spatial information and enhanced 

benefits from its use. Access to the relevant GIS-MCDA data and tools anywhere (any 

location that has the Internet access), anytime (24 hours a day, seven days a week), and 

through any PCs or handheld devices (e.g., PDA, smart phones) and networks (wired or 
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wireless technologies) has remarkably enhanced the level of community participation in 

spatial planning (Chang, 1997; Sadagopan, 2000; Kingston, 2002; Tang & Waters, 2005).  

While the early Web facilitated the collaborative GIS-MCDA by providing online 

geographic information and decision analysis tools, there was little in the way of user 

interaction, communication, and contribution in the collaborative process. The goal of the 

collaborative GIS-MCDA to support the users in contributing, sharing and exchanging 

their opinion/preferences with respect to the decision criteria, alternatives, etc. was not 

adequately achieved by the early Web. Recent endeavourers have adopted Web 2.0 

technologies and concepts to PGIS related projects. The ability of Web 2.0, which is the 

next envisioned iteration of the Web, in advancing participation, interactivity, 

contribution, and collaboration have had significant role in PGIS in general, and 

collaborative decision making in particular.  

2.4 Web 2.0, Web 2.0-based GIS, and Web 2.0-based 
collaborative GIS-MCDA 

2.4.1 Web 2.0 

The term “Web 2.0” was first coined by DiNucci (1990). DiNucci emphasized that the 

Web will be “understood not as screenfuls of text and graphics but as a transport 

mechanism, the ether through which interactivity happens” (p.32). Musser and O’Reilly 

(2006) defined Web 2.0 as “a set of economic, social, and technology trends that 

collectively form the basis for the next generation of the Internet-a more mature, 

distinctive medium characterized by user participation, openness, and network effects” (p. 

4). It is a new trend of the Internet that shifts the Web into an interactive, read-write (two-

way communication), and participatory platform, in which people not only consume 

content but also contribute and produce new content. Web 2.0 does not make a 

fundamental change to the software/hardware infrastructure of the Internet; rather, it is a 

shift in the nature of how the Web is used and perceived.  
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The shift from the Web to Web 2.0 can be viewed from both social and technical 

perspectives. The essence of the social aspect of Web 2.0 is that it supports interaction 

and communication of users, content generation by users, collective intelligence 

exploitation, collaboration, knowledge sharing, etc. (Usluel & Mazman, 2009). The tech-

nological shift of Web 2.0 was focused on supporting Web sites, such as Web-based 

communities, social-networking sites, wikis, and blogs that incorporate Web 2.0 features. 

AJAX (Asynchronous JavaScript and XML) was the most significant turning point that 

altered the nature of Web 1.0. It is a standards-based programming technique designed to 

make Web-based applications more responsive, interactive, and customizable. The key of 

AJAX is the asynchronous interaction between browser clients and Web servers, which 

implies that multiple requests can occur in parallel. It allows for updating the content of 

Web pages instantly when a user performs an action (unlike an HTTP request during 

which users must wait for a whole new page to load). This capability of AJAX permits 

the development of highly interactive Web 2.0 applications featuring more responsive 

user interfaces. Another important technological development of Web 2.0 was focused on 

building the mashups. A mashup is an interactive Web application that combines content 

and functionality to create entirely new and innovative services. Central to the mashups 

are the easy-to-use, publicly accessible, free, and AJAX-based application programming 

interfaces (APIs) that are made available at no cost to Website designers. Thousands of 

different API libraries have been written for the user-driven Web.  

2.4.2 Geospatial Web 2.0 (GeoWeb) 

The rise of Web 2.0 and its related technologies has had significant impact on the recent 

evolution of GIS and PGIS. This advancement has led to the development of Geospatial 

Web 2.0, which is an evolution of Web GIS that focuses on public participation and 

interaction in geo-spatial system (Ganapati, 2010). Characterizing this evolution was 

increasing usability for non-GIS specialists, facilitating wider community usage of GIS 

technologies and taking advantage of the collective intelligence of the Web, building 

participation-oriented and user-centric GIS platforms, and developing spatial mashups 
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(Geo-Web services), etc. (Ganapati, 2010; Beaudreau et al., 2011; Karnatak et al., 2012). 

This trend has given rise to concepts like spatial mashups and argumentation mapping. 

2.4.2.1 Spatial mashups  

The Web 2.0 technologies have an important role in developing user-driven spatial 

mashups (rich geographic Websites). The AJAX-based spatial APIs can be adopted for 

interactive and fast accessing of geo-spatial data and services. Google Maps is a 

prominent example of the AJAX-based spatial APIs that has been made available to users 

to incorporate Google Maps into their spatial mashups. For example, the Web page 

“housingmaps.com” has employed the Google Maps API to display the real estate 

information on a Google Map. The Google Maps example essentially demonstrates the 

realization of what researchers had primarily theorized about in reference to the concept 

of PGIS (Leahy, 2011). Goodchild (2007) describes the Google Maps phenomenon as 

the “democratization of GIS”, because it has opened some of the more straightforward 

capabilities of GIS to the general public. That is, non-GIScientists are now able to “read, 

write, alter, store, test, represent information in ways that they desire and in formats and 

environments they understand” (Miller, 2006, p.188). According to Macdonald (2008), 

there were 1740 spatial mashups in August 2008 (see http://www. 

programmableWeb.com/tag/mapping/) and the number has risen to 2153 in February 

2010. By mid-2007, there were over 50,000 new Websites that were based on Google 

Maps (Tran, 2007). In the previous era of the Internet mapping, the number of mapping 

Websites was significantly smaller due to technical and financial barriers (Haklay, 

Singleton, & Parker, 2008). 

2.4.2.2 Argumentation mapping  

The ability of Web 2.0 to facilitate person-to-person communications has been adopted 

for developing online argumentation mapping as a specific type of PGIS. Argumentation 

mapping is the concept proposed by Rinner (2001) as a map-centered communication tool 

to support geographically referenced discussions and deliberations. This concept was 

developed as a method for organizing debates on spatial issue in asynchronous online 
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discussions (Rinner, 2001; Sidlar & Rinner, 2007), where it proposes to structure the 

arguments, argument locations, and their many-to-many relationships. An argument can 

refer to multiple locations, a location can be referenced by multiple arguments, an 

argument can be logically related to a number of other arguments, and locations can be 

spatially related. Such a model provides the theoretical foundations for PGIS tools that 

support the deliberative aspects in spatial decision-making.  

By clicking on the map, individuals can reference their contributions about different 

dimensions of the decision problem to geographic locations. It enables participants to 

hold conversations in the form of posted messages on the map, which allows for graphical 

submission, compilation, tracking of geographic proposal via annotated map. The 

participants who view the same map at a later time are able to read comments and view 

the geographical locations to which they are linked, and can develop argumentation and 

discourse further with other participants. This essentially facilitates a level participant-to-

participant communication that closer approximates the kinds of discussion that take 

place during in-person meetings, with the added ability to have statements in the 

discussion linked explicitly to associated spatial features on the map (Leahy, 2011). 

Most of the Web 2.0-based argumentation mapping tools (mashups) have been deployed 

using the free-of-charge geospatial data and functionalities provided by Google Maps 

APIs (e.g.,Sidlar & Rinner, 2007; Simão et al., 2009; Boroushaki & Malczewski, 2010b; 

Sani & Rinner, 2011). The ease of use of Google Maps plays a key role in the success of 

such systems as the target group is the general public with no familiarity with GIS 

functionalities (Rinner et al., 2008). There were already a number of Google Maps-based 

mashups in existence; therefore, a reasonable number of the general public and non-GIS 

experts could be expected to be familiar with this particular user interface. 
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2.4.3 Web 2.0 and collaborative GIS-MCDA  

The collaborative GIS-based MCDA capabilities matured as the Web and Web-based GIS 

became more advanced, social, and user-oriented. Recent trends in Web 2.0 development 

overcome some of the obstacles associated with technical and social challenges that were 

faced by early Web-based GIS-MCDA applications. The concern of accessibility to GIS-

based MCDA methods for the general public is far less challenging in the current era then 

it was previously. Large amounts of data are freely available to the public through 

commercial service, and from official and/or user-generated data repositories. Although 

existing data sources available to the public may fail to fully support what an individual 

requires, the tools for individuals to create their own data sets are readily accessible 

through various Web 2.0 services (Leahy, 2011). 

Using the AJAX-based technologies, many interactive GIS-MCDA interfaces and 

mashups have been developed for the collaborative decision making environment (e.g., 

Boroushaki, 2010; Markieta & Rinner, 2012). These technologies allow the integration of 

analytical and deliberative parts of GIS-MCDA in a single Web page with a set of tools 

and functionalities that resemble a desktop GIS (Boroushaki & Malczewski, 2010b). Such 

AJAX-based GIS-MCDA frameworks enable participants to have continuous and 

seamless interaction with GIS-MCDA systems. For instance, Markieta and Rinner (2012) 

developed an AJAX-based interactive GIS-MCDA tool that enables users to generate on-

the-fly weighting schemes for any combination of criterion map layers. Using these tools, 

even a non-technical user can actively interact and contribute to the decision making 

process.  

A number of collaborative GIS-based MCDA applications have specifically used the 

Google Maps-based argumentation mapping techniques to support the deliberative aspect 

of collaborative decision making (e.g., Boroushaki, 2010). Using this capability, 

individuals can deliberate and exchange information regarding the decision alternatives 

on Google Maps. Such tools empower participants to share their opinions about the 

current alternatives; to propose inclusion of one or more locations as the new alternatives 
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in a decision problem or exclusion of alternative(s); to collaborate on design and 

refinement of the alternatives; and to assist in giving voice to social, health, 

environmental, economic, and safety concerns related to a particular place. This makes 

Google Maps an appropriate candidate to be the base of any collaborative GIS-MCDA 

development. 

2.5 Information acquisition in collaborative GIS-MCDA 

Any informed decision involves the acquisition and integration of information about 

decision problems. Researchers in collaborative decision-making have long recognized 

the importance of information acquisition as a determinant of decision quality (e.g., Janis, 

1989; Saunders & Miranda, 1998; Paul, Saunders, & Haseman, 2005; Meng, 2010). Janis 

(1989) suggests that information acquisition by decision makers early in the decision-

making process likely leads to a high-quality decision since it is assimilated and 

processed with little bias. Saunders and Miranda (1998) argue that relevant information 

needs to be collected and assimilated in the early stages of the decision-making process to 

form a strong preference for the decision solution. 

The process of information search and acquisition is critical to collaborative GIS-MCDA. 

It refers to the process by which a decision maker seeks information about decision 

alternatives and criteria. This includes an examination of information aids (e.g., decision 

table and maps), what pieces of information are acquired, the pattern in which 

information is acquired, etc. Typically, decision makers in the collaborative GIS-MCDA 

process need to seek the decision information as a basis for assigning criteria 

preferences/weights. During specification of the criteria preferences, one may take into 

account the preferred range of attributes values (a particular range), the least-preferred 

and the most-preferred value for a given attribute, compare a change from the least-

preferred to the most-preferred value for an attribute to a similar change in another 

attribute, and so on.  
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Researchers suggest that the weights a decision maker assigns to criteria typically reflect: 

(1) the changes in the range of variation for each attribute (the extent to which 

alternatives vary on that attribute), and (2) the different degrees of importance being 

attached to these ranges of variation (subjective evaluation of importance of that attribute) 

(Keeney & Raiffa, 1976; Anderson & Zalinski, 1988; Mellers & Cooke, 1994; 

Malczewski, 2000; Pöyhönen, Vrolijk, & Hämäläinen, 2001; Parnell et al., 2007; 

Ligmann-Zielinska & Jankowski, 2012). According to range sensitivity principal, a 

weight value is dependent on the range of criterion values; that is, the difference between 

the minimum and maximum value for a given criterion. A weight can be made arbitrarily 

large or small by increasing or decreasing the range value. The general rule is that one is 

concerned with the perceived advantage of changing from the maximum level to the 

minimum level of each attribute, relative to the advantages of changing from the worst to 

the best level for the other attributes under consideration. In other words, the weights 

assigned to attributes should be derived by asking the decision maker to compare a 

change from the least-preferred to the most-preferred value on one attribute to a similar 

change in another attribute.  

The decision table and map are two fundamental categories of decision aids for 

representing and organizing the information about spatial decision problems. These two 

information aids enable decision makers to explore the decision space (spatial 

alternatives) and criteria outcome space (the criteria values associated with the 

alternatives). Within the collaborative GIS-MCDA context, a number of studies have 

explicitly developed a decision support tool that represent the decision information on the 

map or in the table format (e.g., Jankowski et al., 1997; Jankowski & Nyerges, 2001a; 

Boroushaki, 2010). For example, Spatial Group Choice, a collaborative GIS-MCDA tool 

developed by Jankowski et al. (1997), used both the table and map as aids for 

representing the decision information. Using this system, a decision maker is able to 

explore and compare the attribute data associated with alternatives contained in a decision 

table, and to examine the spatial distributions of alternatives and attributes on a thematic 

map. In a similar attempt, Boroushaki (2010) developed a Web 2.0-based collaborative 
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GIS-MCDA tool called PGIS for solving a parking site selection problem. Within this 

system, the collaborating participants are able to access the decision alternatives 

displayed on a map, examine the criteria values associated with the alternatives by 

clicking on each alternative, prioritize the criteria, and evaluate the alternatives according 

to their individual preferences. 

2.5.1 Decision strategies and information acquisition 
metrics 

Decision strategies are typically characterized as compensatory or non-compensatory. In 

compensatory strategies, the low values on some attributes are compensated for by the 

high values on other criteria (Koele & Westenberg, 1995; Schmeer, 2003; Pfeiffer, 2012). 

In other words, compensatory strategies involve trade-offs among criteria. Non-

compensatory strategies, on the other hand, avoid compensation or trade-offs between 

criteria and only consider a subset of available information. Compensatory decision-

making processes are more complex, require greater cognitive effort, and are more 

difficult to apply than non-compensatory procedures (Chinburapa, 1991; Bettman, Luce, 

& Payne, 1998; Schmeer, 2003; Katz et al., 2010). Decision makers often choose non-

compensatory decision strategies, especially when the decision to be made is complex 

(Payne et al., 1993; Katz et al., 2010). 

There is a link between decision strategies and information acquisition metrics. Decision 

behavior researchers have made remarkable efforts in operationalizing information 

acquisition and integration variables as a means of inferring the strategies used by 

decision makers (e.g., Payne, 1976; Svenson, 1979). In order to identify the information 

search variables, Chestnut and Jacoby (1976) carried out a principal components analysis 

on a sample of 28 information acquisition variables and found three main factors (cited in 

Abdul-Muhmin, 1994). These include: proportion (depth), content, and sequence 

(direction) of information search. The proportion and direction of information search are 

the two variables that have been considered as the basic distinction between 

compensatory and non-compensatory decision strategies. The proportion of information 
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search refers to the extent to which all or some of the available information is utilized by 

the decision maker prior to arriving at a decision (see also Payne, 1976; Ford et al., 1989; 

Roe et al., 2001; Katz et al., 2010; Schram & Sonnemans, 2011; Queen et al., 2012). A 

higher proportion in the amount of available information searched is indicative of a 

compensatory strategy, while a lower proportion reflects a non-compensatory approach. 

The sequence of a search is concerned with the specific order in which various 

information values are searched (see also Payne, 1976; Abdul-Muhmin, 1994; Roe et al., 

2001; Katz et al., 2010). Typically, the search sequences are alternative-wise (where an 

alternative is selected and attributes are searched for that alternative) and attribute-wise 

(in which case an attribute is selected and alternatives are searched for that attribute). An 

attribute-wise pattern of information search represents the use of a compensatory strategy, 

while an alternative-wise search pattern indicates a non-compensatory strategy. 

Along with the search proportion and direction, Payne (1976) suggested an examination 

of the variability of information searched per alternative, arguing that this variable differs 

for compensatory (low variability) and non-compensatory (high variability) strategies 

(see also Payne et al., 1993; Abdul-Muhmin, 1994; Bröder & Schiffer, 2003; Schmeer, 

2003; Carrigan et al., 2007; Glaholt, 2010). For compensatory strategies, a constant and 

equal amount of information is searched for each alternative, while for non-compensatory 

strategies a variable pattern of information search across alternatives is used (Schmeer, 

2003). Klayman (1985) argued that in addition to variability in search per alternative, the 

extent of variability in amount of information searched per attribute should also be 

examined (see also Chinburapa, 1991; Abdul-Muhmin, 1994; Bröder & Schiffer, 2003; 

Schmeer, 2003). He suggested that a distinction between the two different forms of 

variability would enable decision makers to identify the sources of total variability; e.g., 

whether the search is attributable to unsearched alternatives or unsearched attributes.  

Payne et al. (1993) suggested that total time spent acquiring information and average time 

spent per item of information acquired provide the evidence whether decision makers use 

non-compensatory or compensatory processing strategies (see also Ford et al., 1989; 

Dhar, Nowlis, & Sherman, 2000; Klemz & Gruca, 2001). As a compensatory process 
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requires more cognitive effort, it is assumed that the average time spent per piece of 

information acquired is greater when decision makers use the compensatory strategy than 

when decision makers use a non-compensatory decision-making process (Chinburapa, 

1991).  

2.5.2 Task complexity and its effect on the information 
acquisition metrics 

2.5.2.1 Task complexity  

The impact of task complexity on decision making behavior has been the focus of much 

research. Campbell (1988) argues that any structural characteristic of a decision task that 

places high cognitive demands on the decision maker can be perceived as a factor 

representing task complexity. In the literature on decision making processes, information 

overload has been considered to be a particular type of task complexity, where an 

increase in the amount of information available to the decision maker is viewed as 

representing a relevant complexity factor (Jacoby, Speller, & Kohn, 1974; Shields, 1980; 

Koele & Westenberg, 1995; Lee & Lee, 2004; Wang & Chu, 2004). Accordingly, 

decision researchers measure task complexity by: (i) the number of alternatives available 

to the decision maker (e.g., Payne, 1976; Payne et al., 1993; Schmeer, 2003; Stafford, 

2007; Pfeiffer, 2012) and (ii) the number of attributes that describe those alternatives 

(e.g., Payne, 1976; Abdul-Muhmin, 1994; Takemura & Selart, 2007; Pfeiffer, 2012; 

Queen et al., 2012). Both the number of alternatives and attributes are the major variables 

that affect the information acquisition behavior (decision strategy) during the decision 

making process.  

2.5.2.2 Task complexity effects  

Task complexity effects lead to a better understanding of the direction in which changes 

in the number of alternatives and attributes, affect how decision makers choose various 

strategies to accomplish the decision task (Abdul-Muhmin, 1994). There is a large body 

of literature about the influences of task complexity on decision strategy. Empirical 
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studies have shown that task complexity affects information processing demands and 

decision strategies of individuals (e.g., Payne, 1976; Ford et al., 1989; Bettman, Johnson, 

& Payne, 1991; Payne, Bettman, Coupey, & Johnson, 1992; Abdul-Muhmin, 1994; 

Conlon et al., 2001; Klemz & Gruca, 2001; Schulte-Mecklenbeck, 2005; Queen et al., 

2012). Payne (1982) reviewed the literature on the effects of task complexity on the use 

of decision strategies. He concluded that the hypothesis that changes in task complexity 

result in changes in decision-making strategies tends to be strongly supported when task 

complexity is manipulated via alternatives (cited in Chinburapa, 1991). 

Previous studies have found a tendency for individuals to use simplified decision 

strategies when task complexity increases. It is suggested that an increase in task 

complexity results in the use of non-compensatory decision strategies in order to reduce 

information processing demands and cognitive efforts (Payne et al., 1992; Conlon et al., 

2001; Pfeiffer, 2012). As the alternatives become more numerous and/or vary on more 

attributes, people are more likely to reduce their information search and adopt simplifying 

strategies which require less cognitive effort than a complete cost-benefit analysis of the 

available alternatives (Vandenberghe, 2011). In a complex decision situation, decision 

makers have to consider more information for making a decision; thus they experience 

information overload and use a strategy that is low in effort and turn to less demanding 

strategies, i.e., non-compensatory ones. In other words, they might neglect information 

rather than use more effortful compensatory strategies (Pfeiffer, 2012). The empirical 

studies on the effects of task complexity on information search metrics have consistently 

demonstrated that an increase in task complexity results in: (i) a decrease in the 

proportion of available information searched, (ii) an increase in the variability of 

information search per alternative or attribute, (iii) a decrease in mean search time, and 

(iv) an attribute-wise search pattern. 
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2.5.3 The effect of task complexity, information aids and 
decision modes in spatial decision making 

As indicated in the previous section, there are a number of studies that have focused on 

studying the effects of task complexity on information acquisition behavior within the 

realm of non-spatial decisions. However, the research efforts examining task complexity 

effects in the field of spatial decision making in general and GIS-MCDA in particular 

have been rather limited. Crossland et al. (1995) examined the effects of task complexity 

on decision time and accuracy during the use of a spatial decision support system. The 

complexity of decision problem was manipulated on two levels. The first level required 

subjects to rank five facility sites based on three spatial criteria. The second level required 

ranking ten facility sites based on seven spatial criteria. The findings of this study 

suggested that an increase in task complexity resulted in an increase in decision time and 

a decrease in decision accuracy. Jankowski and Nyerges (2001a) employed a process 

tracing technique to study the influence of task complexity on dynamics of human-

computer interaction (social-behavioral data analysis strategies) during a collaborative 

GIS-MCDA. They investigated how an increase in task complexity influences the use of 

information aids (e.g., maps, tables, diagrams) by decision participants, group work, and 

group conflict. In this effort, the task complexity was increased as a variation in both the 

number of spatial alternatives and criteria, with the simplest task involving eight sites and 

three evaluation criteria versus the most complex task being a choice among twenty sites 

based on eleven criteria. Results in this study demonstrated that the maps were used more 

in the simple task than the complex task by about twice as much.  

As for the effect of information aids on decision making, it has been suggested that access 

to different tables, graphs and maps has an influence on the decision process and 

outcomes (Crossland et al., 1995; Smelcer & Carmel, 1997; Dennis & Carte, 1998; 

Speier, 2006; Andrienko et al., 2007). Speier (2006) argues that visualized data allows the 

decision-maker to shift some of the cognitive processing burden to perceptual operations 

that typically occur automatically and results in significantly lower mental workload that 

accelerate the speed and depth at which large amounts of data can be absorbed and 
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comprehended. Therefore, it is reasonable to expect that the character of decision aids 

offered for use in the GIS-MCDA environment will have an influence on the number of 

times they are used and the way they are brought into use. The human-computer 

interaction (the pattern of decision aid moves) will likely be different between maps and 

decision tables because of the advantages or disadvantages of information associated with 

each (Contractor & Seibold, 1993). In an empirical study of socio-behavioral dynamics of 

using decision aids, Jankowski and Nyerges (2001b) examined the usage of four different 

types of geographic information structures including: map, MCDA (decision table), 

consensus (rank map), and table/text aids in a collaborative GIS-MCDA environment. In 

examination of the use of map and MCDA decision aids, they found that participants 

spent more time on exploring the MCDA aid than the map during the collaborative spatial 

decision making process. Dennis and Carte (1998) investigated the effect of map-based 

and tabular presentations on decision accuracy and speed. The study found that when data 

were presented in a map-based form and decision makers needed to consider the 

relationships among the geographic areas, the use of the map-based presentation led to 

both faster and more accurate decisions. 

However, none of these studies has gone further to examine the effects of task complexity 

and information aids on the information acquisition metrics discussed above within the 

Web 2.0-based collaborative GIS-MCDA context. Also, these research efforts have not 

examined effect of decision mode (individual vs. group) on the information acquisition 

metrics. There is no empirical study exploring how decision makers’ information 

acquisition behavior can be affected by the use of different GIS-MCDA modes. There is, 

therefore, a need for further research to examine: (i) information acquisition metrics as a 

means of inferring the behaviors and strategies used by participants within the realm of 

collaborative spatial multicriteria decision making and (ii) the effect of task complexity, 

information aids and decision modes on the information acquisition metrics.  
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Chapter 3 

3 OWA-based approach for collaborative GIS-MCDA  

This chapter presents a collaborative GIS-MCDA procedure to be used in the empirical 

study. The procedure involves two stages: (i) each decision maker solves the problem 

individually, and (ii) the individual solutions are aggregated to obtain a group solution. 

The first stage is operationalized by an OWA (ordered weighted averaging)-based 

decision rule for the generation of individual solutions. The second stage employs a 

Borda-based method for aggregating the individual solutions into a consensus solution. 

During the process of individual decision making, decision makers have access to the 

decision information represented by means of a decision table or map. They are able to 

acquire and integrate decision-relevant information, specify their preferences, and arrive 

at a decision. 

3.1 The OWA-based GIS-MCDA decision rule  

3.1.1 The OWA operator  

The procedure that determines how to evaluate alternatives or to decide which alternative 

is preferred to another is known as decision rule. The decision rules in the GIS-MCDA 

context involve combining the relevant spatial data (attribute values) and preferences set 

by the decision participants to provide an overall assessment (ratings /ordering) of the 

decision alternatives. The Boolean overlay operations (non-compensatory combination 

rules) and the weighted linear combination (WLC) methods (compensatory combination 

rules) are the two fundamental, most often used classes of the decision rules in GIS-

MCDA (Eastman, 1997; Heywood, Cornelius, & Carver, 2002; O'Sullivan & Unwin, 

2003). These two types of combination rules can be generalized within the framework of 

OWA (Jiang & Eastman, 2000; Makropoulos, Butler, & Maksimovic, 2003; Malczewski 

et al., 2003; Malczewski, 2006c; Boroushaki, 2010). 

The concept of the OWA operator was proposed by Yager (1988) to describe a class of 

multicriteria aggregation methods. For a given set of n attributes (criteria), an OWA 
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operator can be defined as a function IIF n →: that has an associated set of order weights 

V= [v1, v2,…, vn]; vj∈  [0,1] for j = 1, 2, …, n and ∑ =
=

n

j jv
1

1 . Given a set of 

standardized attribute values Ai = [ai1, ai2,… ,ain] for i = 1, 2, …, m, where aij∈  [0,1] is the 

j-th attribute associated with the i-th alternative, the OWA operator is defined as follows: 

∑
=

=
n

j

ijjiniii zvaaaOWA
1

21 ),...,,(           (1) 

where zi1≥ zi2 ≥… ≥ zin is the sequence obtained by reordering the attribute values ai1, 

ai2,… ,ain. The reordering process is central to the OWA operator. It involves associating a 

weight, vj, with a particular ordered position of the attribute values ai1, ai2,… ,ain for the i-

th alternative. The first order weight, v1, is assigned to the highest attribute value for the i-

th alternative, v2 is associated with the second highest value for the same alternative, and 

so on with vn assigned to the lowest attribute value. It should be noted that a particular 

value of aij is not associated with a particular weight vj but rather the weight is assigned to 

a particular ordered position of aij.  

3.1.2 Attribute value standardization 

As mentioned earlier, the OWA-based GIS-MCDA requires that the attribute values be 

commensurate. To do so, a standardization of the attribute values is required. Many 

approaches can be used to make the attribute values commensurate. Here, we adopt a 

standardization procedure that uses the minimum and maximum values of an attribute as 

scaling points. Depending on whether the attribute is to be maximized (i.e., the larger the 

raw value, the better the performance) or minimized (i.e., the lower the value, the better 

the performance), Equations 2 and 3 can respectively be used to convert the raw attribute 

values into standardized values (comparable units).  
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where Sij is the raw value for the i-th alternative and the j-th attribute, min
jS represents 

the minimum value for the j-th attribute, max
jS is the maximum value for the j-th 

attribute, aij is the standardized value for the i-th alternative and the j-th attribute. The 

standardized attribute values range from 0 to 1.  

3.1.3 Deriving the order weights 

The OWA aggregation operator in Equation (1) exclusively focuses on the order weights. 

It ignores the fact that most of the GIS based decision-making problems require a set of 

different weights to be assigned to criteria. To overcome this problem,Yager (1997) 

proposed an attribute weight modification approach for generating the order weights 

based on inclusion of the attribute weights into the OWA operator as follows: 
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where uj is the reordered j-th attribute weight, wj, according to the reordered attribute 

value zij. The attribute weight wj is assigned to j-th attribute for all locations to indicate the 

relative importance of the attribute according to the decision maker’s preferences. This 

weight reflects the values and interests of a decision participant with respect to the 

decision attribute, representing a priority that can be assigned to each attribute. All 

locations for the j-th attribute are assigned the same weight of wj. The order weights, vj, 

are associated with the attribute values on a location-by-location basis. They are assigned 

to the i-th location’s attribute values in decreasing order without consideration of with 
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which attribute they are associated. In the GIS-based multicriteria evaluation procedures, 

the attribute weights typically have the following property:∑ = =n

j jw1 1 . Accordingly, 

∑ = =n

j ju1 1  and Equation (4) can be written as follows:  

                                         ( ) ( )α1

1

α
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== −= j
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j

l lj uuv               (5) 

Given the sets of attribute weights, wj, and the order weights, vj, the OWA operator can be 

defined as: 
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The value of α is related to ORness (or degree of risk) according to Equation (7) (Yager, 

1996). The measure of ORness ranges from 0 to 1. It shows the degree to which an OWA 

operator is similar to the logical OR in terms of its combination behaviour (Malczewski, 

2006c).   

1
1

  α
  ORness

+
=           α � 0       (7) 

The degree of ORness indicates the position of the OWA on a continuum between the 

AND or OR combination rules. With different ORness values (or α parameter) one can 

generate different sets of the OWA weights and, in turn, a variety of GIS-based map 

combination strategies ranging from a minimum-type (logical AND) combination through 

all intermediate types (including the conventional WLC) to a maximum-type (logical OR) 

combination (see Yager, 1988; Jiang & Eastman, 2000; Malczewski et al., 2003) (see 

Table 2). The AND and OR operators represent the extreme cases of OWA. The ORness 

value of 0 (α = ∞) represents the strategy corresponding to the MIN operator. The order 

weights associated with the MIN operator are: vn =1, and vj = 0 for all other weights. 

Given the order weights, OWAi(MIN) = MINj(ai1, ai2, . . ., ain). The ORness = 1 (α=0) 
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represents the strategy corresponding to the MAX operator. The following weights are 

associated with the MAX operator: v1=1, and vj= 0 for all other weights, and consequently 

OWAi(MAX) =MAXj(ai1, ai2, . . ., ain). If ORness = 0.5 (α =1), then the strategy 

corresponds to the conventional WLC, which is situated at the mid-point on the 

continuum ranging from the MIN to MAX operators. The order weights associated with 

the ORness value of 0.5 correspond to the attribute weights, which indicates the use of the 

WLC strategy. In the extreme cases of OR and AND (ORness = 0 and 1), there is no 

trade-off between evaluation criteria. 

By identifying a particular value of ORness, one can control the level of decision risk and 

provide a low- or high- risk solution for the decision problem. The ORness parameter 

guides the decision makers along the continuum ranging from the pessimistic to 

optimistic decision strategies. The decision makers can specify their own preferred 

ORness value to put emphasis on the higher (better) values or the lower (worse) values in 

a set of the attributes associated with the i-th alternative. Both theoretical and empirical 

evidence show that decision makers with optimistic (or risk-taking) attitudes tend to be 

more concerned with the good properties (better values) of alternatives, while pessimistic 

(or risk-averse) decision-makers tend to concentrate more on the bad properties (worse 

values) of alternatives (Bodily, 1985; Mellers & Chang, 1994). 

The strategy associated with the ORness = 0 (the Boolean AND operator) is referred to as 

the pessimistic strategy (extremely pessimistic) (see Table 2); it is the decision situation 

in which only the lowest attribute value of each location is considered in the evaluation 

process. If the lowest value is met, it means that all of the other attribute values (i.e., the 

higher values) are met as well. This implies that the AND operator is a very conservative 

or risk averse operation, where an alternative location is considered suitable only if all 

criteria have been met (Eastman, 2006). Conversely, the extreme optimistic strategy can 

be found at the opposite end of the risk continuum (ORness = 1, the Boolean OR 

operator). This strategy assigns an order weight of 1 to the highest value at each location. 

Under this strategy, the decision maker is characterized by optimistic attitudes 

represented by the best possible outcome, that is, only the highest possible value is 
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selected at each location.While the Boolean AND require all attributes to be met for an 

alternative to be called suitable, the Boolean OR requires that at least one attribute (i.e., 

the highest attribute value) be met (Eastman, 2006). Such a decision strategy is too risky 

because, for any suitable alternative location, all except the one attribute could be 

unacceptable.  

 

Table 2. The order weights and the corresponding decision/combination strategies for 
specific ORness values (or α parameter). 

α ORness OWA weights (vj) Combination strategy Decision strategy 

α→0 1.0 v1 = 1; vj = 0 for others Logic OR (MAX) Extremely optimistic 

α=0.1 0.9 * * Very optimistic 

α=0.5 0.6 * * Optimistic 

α=1 0.5 vj =wj for all j WLC Neutral 

α=2 0.3 * * Pessimistic 

α=10 0.1 * * Very pessimistic 

α→∞ 0.0 vn = 1; vj = 0 for others Logic AND (MIN) Extremely pessimistic 

Note: *These measures are case-dependant. 

Table 3 presents the set of order weights for the six evaluation attributes according to the 

specified ORness values. It is evident from the table that, as the ORness measure 

increases from 0 to 1, the value of v1 increases from 0 to 1 at the expense of decreasing 

values of v6 from 1 to 0. This means that, by increasing the ORness degree, the higher 

attribute values associated with an alternative become relatively more and more important 

and the lower values become relatively less and less important in evaluating the 

alternative. In other words, greater and greater order weights are assigned to the higher 

attribute values at a given location at the expense of assigning smaller weights to the 

smaller attribute values at that location. This implies that, as the ORness degree increases, 

a more optimistic and high-risk decision strategy is being taken in the decision making 

process. 
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Table 3. The order weights (vj) of the six attributes for particular ORness values. 
 ORness degree 
 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

v1 0.000 0.000 0.007 0.054 0.153 0.286 0.434 0.585 0.731 0.870 1.000 
v2 0.000 0.001 0.045 0.123 0.176 0.190 0.176 0.143 0.100 0.051 0.000 
v3 0.000 0.047 0.209 0.279 0.275 0.238 0.189 0.138 0.089 0.042 0.000 
v4 0.000 0.101 0.169 0.155 0.125 0.095 0.070 0.048 0.029 0.013 0.000 
v5 0.000 0.100 0.110 0.087 0.065 0.048 0.034 0.023 0.014 0.006 0.000 
v6 1.000 0.750 0.460 0.302 0.206 0.143 0.098 0.064 0.038 0.017 0.000 

 

3.2 OWA-based collaborative GIS-MCDA 

The proposed OWA-based collaborative GIS-MCDA procedure involves four major 

steps: (i) acquiring the decision information, (ii) specifying the attribute weights and the 

ORness value, (iii) deriving the individual alternative’s orderings, and (iv) deriving the 

group orderings of decision alternatives (see Figure 6). Information acquisition (i.e., 

information search) is the first stage in the collaborative GIS-MCDA. In this step, a 

decision maker searches for the information on the alternatives, attributes, and attribute 

values. Exploring the decision information enables the decision makers to recognize the 

decision situation, and specify their preferences with respect to the evaluation attributes. 

There are two steps for deriving the orderings of decision alternatives from the decision 

makers’ preferences: (i) the individual judgments are converted into an ordering using an 

OWA-based decision rule, and (ii) the individual orderings of the alternatives are then 

combined into the group orderings by means of the Borda method (e.g., Malczewski, 

1996; Jankowski & Nyerges, 2001a; Feick & Hall, 2004; Boroushaki, 2010).  
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Figure 6. The collaborative GIS-MCDA procedure. 
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3.2.1 Information acquisition 

Any decision-making process begins with searching and acquiring the decision 

information. In the setting of GIS-MCDA, information acquisition is concerned with the 

examination of decision information including the spatial alternatives, attributes, and 

attribute values associated with the alternatives using the information aids. The 

information available for the collaborative decision can be conveyed to participants 

through two distinct forms of information structures: the decision table and map (Dennis 

& Carte, 1998; Malczewski, 1999b; Jankowski et al., 2001; Jankowski & Nyerges, 

2001b). The decision table represents the decision information in an alternative × attribute 

matrix (see Table 4). It consists of a set of values associated with each alternative-

attribute pair. The rows of the matrix represent alternatives, the columns represent 

attributes, and the cells contain the measured values of the attributes associated with the 

alternatives. In addition to the alternative-attribute values, the table includes the range 

values of the attributes in the last row. The map is a complementary information source to 

the decision table. Using the map, the decision makers are able to explore the alternatives 

and also the spatial distribution of the geographic entities based on which attributes are 

defined. Malczewski (1999b) suggests that the main purpose of using maps in GIS-based 

MCDA should be the consideration of alternative locations during the exploration of 

tradeoffs among the decision criteria and the search for the best (compromise) solutions 

to the decision problem. The dualistic map-table information view provides a better 

understanding of the decision problem by allowing the decision makers to explore the 

basic relationships between the non-spatial attribute values of decision alternatives 

(criterion outcomes) and the spatial patterns of alternatives (decision space) (Jankowski et 

al., 2001; Rinner, 2007).  

As was discussed in Chapter 2, specification of the individual preferences (attribute 

weights and ORness value) is the fundamental motive behind examining the available 

information within the GIS-MCDA context. To determine the attribute weights, one 

might need to look at the changes in the range of variation for each attribute, i.e., the 

range of the attribute values across the alternatives, and the minimum and maximum 
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value for a given attribute. A weight value is dependent on the range of the attribute 

values, that is, the difference between the minimum and maximum value for a given 

attribute. An attribute weight can be made arbitrarily large or small by increasing or 

decreasing the range. For example, if all alternatives to be evaluated were characterized 

by the “land cost” between $10,000 and $10,100, the attribute would be less important 

than in the case where the attribute values range from $1 to $10,000. As another example, 

let us consider the values of the attribute “proximity to main road” ranging from 1 m to 

100 m, and the values of the attribute “land size” ranging from 1000 to 10,000 square 

meters. Since the values of “land size” cover a wider range than the values of the 

“proximity to the main road”, the attribute “land size” might likely be deemed as more 

important, and hence receive a higher weight. 

Acquiring the decision information allows decision makers to take into account their 

preferred range of attribute values (a particular range), least-preferred and most-preferred 

value for a given attribute, etc. during the specification of criteria weights. For example, 

one decision maker may prefer a range of 200 m for the attribute “proximity to main 

road” with the least-preferred value of 100 m and the most-preferred value of 300m. 

Accordingly, this stresses the need for the decision makers to examine the decision table, 

and look at the attribute values when they assign their attribute preferences. 
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Table 4. The decision table: matrix of alternatives and the associated attribute values. 

 Attribute 1 Attribute 2 Attribute 3 … Attribute n 

Alternative1 S11 S12 S13 … S1n 

Alternative 2 S21 S22 S23 … S2n 

Alternative 3 S31 S32 S33 … S3n 

… … … … … … 

Alternative m Sm1 Sm2 Sm3 … Smn 

Range of attribute RA1 RA2 RA3 … RAn 

Note: Sij is the raw value of the i-th alternative with respect to the j-th attribute (i = 1,2, ... , m; j = 
1,2, ... ,n); RAj is the range value of the j-th attribute. 
  

3.2.2 Specifying attribute weights and ORness value 

The decision makers should specify their preferences with respect to the relative 

importance of attributes and the values of ORness based on examination of the relevant 

decision information. There are a number of methods for estimating the attribute weights 

from the individual preferences. An appropriate method for estimating attribute weights 

can be based on an ordering of the evaluation criteria; that is, every attribute under 

consideration is ranked in the order of the decision maker’s preference (see Stillwell, 

Seaver, & Edwards, 1981;Malczewski, 2006c). Stillwell et al. (1981) have shown 

empirically that, in many situations, the rank-order approximation is a satisfactory 

approach to the attribute weight assessment. This method is simple, reliable, and requires 

less time to specify  preferences (Bakhsh, 2008). It provides an effective way to elicit 

judgments about the relative importance of criteria in participatory decision making 

frameworks. Formally, the j-th attribute weight can be calculated as follows: 
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where rj is the rank position of the j-th attribute denoting (the most important attribute 

ranks first (rj = 1), the second most important attribute ranks second (rj = 2), and so on; 

the least important attribute is assigned a rank of rj = n); and n is the number of attributes.  

3.2.3 Deriving individual orderings using the OWA-based 
MCDA decision rule 

Given the standardized attribute values, the ORness value, and the attribute weights, 

individuals can utilize the OWA-based decision rule to determine the individual orderings 

of the alternatives. With different values of ORness, individuals can generate a wide 

range of OWA operators and, in turn, a wide range of the individual alternative orderings. 

An example of the OWA operator for ORness = 0.5 (α = 1) is illustrated in Figure 7. 

Considering a spatial decision-making problem with a set of standardized attribute values 

at the i-th location as aij = [0.3, 0.5, 0.1, 0.8, 0.4, 0.6] for six attributes j= [1, 2,…, 6], the 

procedure involves: (i) ranking the attributes according to the individual preferences; (ii) 

determining the attribute weights according to Equation (8), wj = [0.04, 0.23, 0.14, 0.28, 

0.09, 0.19]; (iii) ranking the attributes according to their standardized values, and so the 

fourth attribute (j = 4) ranks first and the third attribute  (j = 3) ranks sixth; (iv) ordering 

the attribute values, and so zij = [0.8, 0.6, 0.5, 0.4, 0.3, 0.1]; (v) reordering the attribute 

weights according to zij, and so uj =[0.28, 0.19, 0.23, 0.09, 0.04, 0.14]; (vi) calculating the 

order weights according to Equation (5) , and so vj = [0.28, 0.19, 0.23, 0.09, 0.04, 0.14]; 

and (vii) calculating OWA according to Equation (6), which would yield the result of 

0.53 for ORness = 0.5.    
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Figure 7. Example computation of the OWA for the i-th location and ORness = 0.5. 
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3.2.4 Deriving group orderings using the group decision rule 

The group/collective decision rule takes the format of aggregating the individual 

preferences into a group preference so that the consensus or compromise solution can be 

identified (Feick & Hall, 2004). Specifically, a group decision rule is defined as a 

function F: IO1× IO2×,…,×IOk → GO. This function associates the individual orderings 

IOk to a group ordering, GO, in such a way that there is one and only one group solution 

relation for a set of individual orderings. There are many possible approaches to identify 

the group ordering of decision alternatives (e.g., Jankowski & Nyerges, 2001a; 

Boroushaki & Malczewski, 2010c). Evidence shows that a combination of MCDA for 

individual decision making with voting techniques provides an effective tool for 

collaborative decision making in the GIS environment (Malczewski, 2006b). Their 

simplicity and comprehensibility are central advantages of the voting approaches for 

collaborative decision making. Here, a vote aggregation function based on the Borda 

count method (Borda, 1781) is used as the collective decision rule. This approach requires 

deriving the total of the individual orderings for each alternative as assigned by the 

individuals involved in the decision making process. 

Given the individual orderings, IO (Ik, Ai), one can derive the individual preference set 

based on the pairwise comparisons. In each of the individual preference sets, for any 

alternative Ai and Ap, either individual k prefers Ai to Ap, or he/she prefers Ap to Ai, or 

he/she is indifferent between Ai and Ap. The Ai gets 1 point if it is preferred over Ap; the Ap 

gets 1 point, if it is preferred over Ai; and each one gets 0.5 points if an individual is 

indifferent between the two alternatives. For each pair Ai and Ap, there are two group 

preference scores indicating how many individuals prefer one of the paired alternatives 

over the other alternative. The group score G (Ai, Ap) represents the number of individuals 

who prefer the alternative Ai to Ap, whereas the second score G (Ap, Ai) indicates the 

number of individuals who have the opposite preference. A set of group scores presenting 

the total points obtained by Ai against Ap (and vice versa) are displayed in a table m×m; 

where m is the number of alternatives (see Table 5). This table is inversely symmetric: 
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G(Ai, Ap) = the total number of individuals - G(Ap, Ai). The group overall score for the i-th 

alternative is calculated by summing the group scores for that alternative; that is:  
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pii AAG  AG  ,           (9) 

The best (consensus) alternative is that with the highest Borda score. If there is a tie 

among pairs of alternatives, decision makers may arbitrarily break the tie in favour of one 

or the other in the pair. Figure 8 illustrates the Borda method using an example of four 

decision makers and the individual orderings for five candidate sites. Once all the 

individual orderings have been determined, the group ordering for each of the alternatives 

is obtained (see Table 5). The results indicate that A2 is evaluated as the best alternative 

with a Borda score of 12, meaning that the majority of individuals prefer A2.   

 

 
Figure 8. Deriving the group alternative orderings from the individual orderings. 
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Table 5. The Borda score and group ordering of the five alternatives. 
 A1 A2 A3 A4 A5 

A1 0 4 2 3 4 
A2 0 0 1 2 1 

A3 2 3 0 3 2 
A4 1 2 1 0 1 

A5 0 3 2 3 0 
The Borda score  3 12 6 11 8 
Group ordering 5 1 4 2 3 
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Chapter 4 

4 The metrics of information acquisition  

In this chapter, the metrics used for studying information acquisition behavior in the 

collaborative GIS-MCDA process will be presented and discussed. Based on the research 

hypotheses stated in Chapter 1, and the literature review in Chapter 2, a conceptual 

framework of the metrics to be investigated is presented in Figure 9. This framework has 

been used as the theoretical basis for examining information acquisition in the present 

study. Depending on the information source (or information aid) used in the context of 

collaborative GIS-MCDA (see Chapter 3), the metrics for the information search fall 

within three broad categories: the decision table, map, and group decision metrics. The 

decision table metrics refer to the information search characteristics derived from the 

decision table. The metrics include: (i) the proportion of information search, (ii) the 

variability of information search per attribute, (iii) the variability of information search 

per alternative, (iv) the direction of search (sequence of information search), (v) the total 

time spent searching for information, and (vi) average time spent acquiring each piece of 

information. The map metrics represent the information search variables concerned with 

exploring information on the map. In this study, the two information acquisition metrics 

suggested by Jankowski and Nyerges (2001a) have been used to investigate decision 

making behavior on the map. These include (i) the total time spent on the map exploration 

and (ii) the number of moves on the map. The third metric is concerned with acquiring 

information from the other decision makers in the collaborative decision making process. 

This metric is operationalized in terms of the time spent exploring the group decision, 

deliberations, and discussions. Obviously, examining the information provided by the 

other individuals is the key to the collaborative GIS-MCDA. 

Differences along both the decision table and map metrics will be investigated for three 

sets of decision situations. The first set concerns the differences among the decision 

situations involving different levels of task complexity in the GIS-MCDA individual 

mode. The second set focuses on the differences among the decision situations with 
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different levels of task complexity in the GIS-MCDA group mode. In the individual 

mode, the system allows the participants to evaluate the alternatives without knowing of 

the group decision. While in the group mode, individuals are able to review the group 

solution (i.e., the group ordering of the alternatives) and the other participants’ map-based 

comments, and then conduct the decision making process. The third set addresses the 

differences between the decision situations in the GIS-MCDA individual mode and the 

group mode. In addition to these three sets of the differences, the differences between the 

decision table and map, and also the differences in the time spent examining the group 

decision among the decision situations involving different levels of task complexity will 

be examined. The set of dash arrows denote that the metrics would be different between 

the two decision modes, the decision table and the decision map, and the decision 

situations involving different levels of the task complexity in both of the two decision 

modes (see Figure 9). In addition to the differences, the relationships between the metrics 

will be examined in each of the decision modes.  
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Figure 9. A conceptual framework of the information acquisition metrics to be studied in the empirical study. 
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4.1 Information acquisition in the decision table 

4.1.1 The proportion of information search  

The proportion of information search refers to the amount of information searched or the 

amount of available information actually considered in making a decision (see Payne, 

1976; Ford et al., 1989; Roe et al., 2001; Redlawsk, 2004; Katz et al., 2010; Schram & 

Sonnemans, 2011; Queen et al., 2012). According to Payne (1976) and Klayman (1983), 

the proportion of information search is measured as the number of information pieces 

(cells containing the attribute values associated with alternatives) that a decision maker 

examines divided by the total number of information pieces. For instance, in a decision 

problem involving 5 attributes and 10 alternatives, there are 50 cells containing different 

pieces of information that can be examined. Investigation of a decision maker’s search 

can easily reveal whether all or only a portion of these 50 pieces of information were 

actually searched. The proportion of information search can then be calculated as the 

number of cells examined divided by 50. This measure varies from 0 to 1, with 1 

indicating all of the available information pieces are examined (i.e., all attributes 

available for every relevant alternative is examined), and 0 indicating none of the 

information pieces are examined.  

However, the decision makers may look at the same piece of information more than once. 

One may reopen some of the information cells after initial viewing as an effort to make a 

precise decision. If a decision maker examines the entire decision matrix in such a context 

then, his/her score on this metric would be greater than 1. In addition, where a decision 

maker looks at some pieces of information more than once but does not search the entire 

table, his/her score on this variable may be quite high in spite of the fact that he/she has 

an incomplete information search (Abdul-Muhmin, 1994). To overcome this problem, the 

proportion of information search is calculated based on the first time information 

acquisition. Examination of a larger proportion of information (deep search) could be an 

indication of a more compensatory strategy, whereas a lower proportion (shallow search) 
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suggests little effort to compare attribute values and few tradeoffs, therefore the hallmarks 

of non-compensatory search strategy. 

4.1.2 The direction of search 

The direction (or pattern) of search in the decision table is the sequence in which the 

information cells are examined (Bettman & Jacoby, 1976; Payne, 1976; Harte & Koele, 

2001; Roe et al., 2001; Schrah et al., 2006; Stafford, 2007; Katz et al., 2010; Queen et al., 

2012). This metric represents the transitions from the acquisition of one piece of 

information to the next one. The direction can be determined by examining the alternative 

and attribute associated with the D-th + 1 piece of information searched by a decision 

maker as a function of the alternative and attribute associated with the D-th piece of 

information searched (Payne, 1976). Different types of transitions are distinguished with 

respect to whether the information cell searched as the next one regards the same or a 

different alternative and the same or a different attribute (Stokmans, 1992; Riedl, 

Brandstätter, & Roithmayr, 2008) (see Figure 10). If the D-th + 1 piece of information 

searched is within the same alternative but involves a different attribute, then the search 

constitutes an instance of an alternative-wise search pattern. In other words, when 

decision makers tend to consider first several attributes of the same alternative before 

proceeding to the next alternative, the search direction is alternative-wise (Pfeiffer, 2012). 

On the other hand, if the D-th + 1 piece of information searched is within the same 

attribute, but a different alternative, then that search constitutes an instance of an 

attribute-wise search direction. Attribute-wise information acquisition is a search pattern 

in which a decision maker picks one attribute, compares its attribute levels across the 

alternatives, and then moves to the next attribute. If the D-th + 1 piece of information 

searched is neither within the same alternative or the same attribute as the D-th piece of 

information, then that is considered to be a shift in the direction of search. When the D-th 

+ 1 piece of information acquired is within the same alternative and attribute as the D-th 

piece of information, then the search is considered a re-acquisition strategy. If a decision 

maker examines C information cells before making a decision, there are a total of C-1 

transitions in the decision maker’s search matrix (Abdul-Muhmin, 1994). For each 
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decision maker, these C-l transitions are classified into each of the four categories in 

order to determine the total number of each transition type in the matrix.  

 
Figure 10. Examples of the transitions for the four search patterns. 

Depending on whether the information search direction is the alternative- or attribute-

wise, one can determine whether the decision maker employs a compensatory or non-

compensatory search strategy to arrive at the decision. An alternative-wise direction 

involves trade-offs among attribute values, and thus, suggests a compensatory acquisition 

strategy, while the attribute-wise ignores the trade-offs, and therefore, presents a non-

compensatory strategy. To measure whether the direction of search is alternative- or 

attribute-wise, Payne (1976) developed a search index (SI). This index is defined as a 

ratio of the number of alternative-wise transitions minus the number of dimension- or 
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attribute-wise transitions over the sum of those two numbers as shown in the following 

equation: 

attalt

attalt

rr

rr
SI

+
−

=                 (10) 

where ralt denotes the alternative-wise transition frequency and ratt the attribute-wise 

transition frequency. The value of SI varies from -1 to +1. The search direction is 

classified as alternative-wise if this index has a positive value and as attribute-wise if it 

has a negative value. A direction consisting of only alternative-wise transitions and shift 

transitions would have a value of + 1.00. A direction consisting of only attribute-wise 

transitions and shifts would have a value of −1.00. Figure 11 shows examples of the 

search directions of alternative-wise or attribute-wise search strategies. 

 
Figure 11. Examples of the information search for the attribute- and alternative-wise 

patterns. 
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Payne’s SI has been criticized by Böckenholt and Hynan (1994). They showed that the 

index is biased towards alternative-wise processing if the number of attributes exceeds the 

number of alternatives and towards attribute-wise processing if the number of alternatives 

exceeds the number of attributes. This bias reflects the fact that the probability of an 

alternative-wise transition is greater in the case where number of attributes exceeds the 

number of attributes, and the probability of an attribute-wise transition is greater when the 

number of alternatives exceeds the number of attributes. To overcome this problem, 

Böckenholt and Hynan (1994) proposed a strategy measure (SM), which is defined as:  
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where m denotes the number of alternatives, n the number of attributes, and t the number 

of transitions. The value of SM is not constrained to the interval between -1 and +1, 

rendering its interpretation difficult (Pfeiffer, 2012). SM < 0 indicates an attribute-wise 

search, while SM > 0 indicates an alternative-wise search, and the higher the SM, the 

more alternative-wise is the search. 

4.1.3 The variability of information search  

The variability of search refers to the degree to which the amount of information searched 

per attribute or alternative is consistent. This measure indicates whether a decision maker 

searches a constant or variable amount of information per alternative and/or per attribute. 

The variability of information search per alternative is defined as the standard deviation 

of the number of information pieces searched per alternative based on the first acquisition 

(Payne, 1976; Schmeer, 2003; Riedl et al., 2008). This metric measures the extent to 

which the same or unequal amounts of information are searched for each of the available 

alternatives in a decision. The variability is equal to 0, if the same number of the cells for 

each of the alternatives is examined, and it is greater than 0, if a different number of cells 

per alternative is viewed.  
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The variability of information search per attribute is measured as the standard deviation 

of the number of information pieces searched per attribute. It indicates the extent to which 

different attributes receive different amounts of search. It equals 0, if the same number of 

alternatives is searched for each attribute, and it is greater than 0, if a different number of 

alternatives are searched for each attribute.  

Both the variability of search per alternative and attribute have been linked to the type of 

decision strategy employed. Payne (1976) argued that the level of variability in the 

amount of information searched per alternative can help distinguish between 

compensatory and non-compensatory decision strategies. For compensatory strategies, a 

constant and equal amount of information will be searched per alternative, whilst for non-

compensatory strategies a variable amount of information search per alternative will be 

observed. If a decision maker acquires the same amount of information for all 

alternatives, the processing is termed consistent and is assumed to reflect a compensatory 

strategy (Carrigan et al., 2007). On the other hand, a high variability in information 

searched per alternative implies that the decision maker searches unequal amounts of 

information for each of the available alternatives, and is an indication that the decision 

maker is using non-compensatory decision processes.  

A similar argument can be derived for variability of search per attribute. If the variability 

of search per attribute is high the decision maker is assumed to have employed a non-

compensatory strategy, where the number of information items searched for each attribute 

varies. A low variability of search is consistent with a compensatory strategy, where the 

decision maker trades off attributes against each other, and therefore searches a similar 

number of alternative values for each attribute. Although the two measures are not 

completely independent, they are not completely redundant either (Klayman, 1983; 

Schmeer, 2003). Klayman (1983) argues that the two variability metrics may be used to 

determine where a high variability of search comes from. Figure 12 illustrates that the 

two types of variability are not redundant, where the sources of variability can be 

distinguished by the distinction between the two variability values.  
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Figure 12. Illustration of the distinction between variability of search per attribute and 

variability of search per alternative (modified from Klayman, 1983). 
 

4.1.4 The time spent acquiring information 

In addition to the above metrics, the time spent acquiring information in the decision table 

is also one variable that is typically used as an information acquisition metric in decision 

research (Chinburapa, 1991; Riedl et al., 2008; Queen et al., 2012). This metric serves as 

an indirect measure of the amount of effort and deliberation required to make the 

decision. In this study, the time spent acquiring the information has been measured in 

terms of two variables. These include: (i) the total time spent examining the pieces of 

information in the decision table, and (ii) the average time spent per item of information 

acquired (Ford et al., 1989; Klemz & Gruca, 2001). The total time is measured by the 

length of time during which a decision maker examines the decision table. The average 

time is calculated by dividing the total time spent examining all acquired pieces of 

information by the number of acquisitions. Since a compensatory decision making 

process is considered to be more complex and requires more cognitive effort than a non-
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compensatory process, it is assumed that the average time spent per item of information 

acquired is greater when subjects use a compensatory than when subjects use a non-

compensatory decision-making process (Chinburapa, 1991). 

4.1.5 Proportion of attribute ranges 

It has been argued that the tradeoffs among attributes depend on the range of the attribute 

values; that is, the difference between the maximum and minimum values for a given 

attribute (Malczewski, 2000; Pöyhönen et al., 2001; Ligmann-Zielinska & Jankowski, 

2012). Taking this into account, the proportion of attribute ranges examined by the 

decision maker is an indication of using compensatory or non-compensatory strategy. 

This metric is calculated as the number of attribute ranges searched divided by the total 

number of attributes. The larger the proportion, the more tradeoffs among the attributes. 

This can be considered as an indication of a more compensatory strategy. On the other 

hand, a lower proportion suggests little effort to compare attributes and few tradeoffs, and 

is an indication of a non-compensatory strategy.  

4.2 Information acquisition on the map  

The map-based presentation of the decision information is a complementary source to the 

decision table. While the table provides a structured form of the decision information 

(i.e., alternative-attribute values), the map offers a graphical means for exploring the 

decision information in the decision (geographic) space. Representing decision 

alternatives in the decision space, one can explore the spatial patterns of alternatives and 

spatial relationships. The map functionalities allow the individuals to switch between 

different map views, zoom in to certain alternatives, features, and places on the map, and 

so on. Similar to the decision table, the number and time of acquisitions could be used as 

the information acquisition metrics on the map. In this study, the total time spent on the 

map exploration and the number of map moves, have been employed to examine the 

decision maker’ interaction with the map (Jankowski & Nyerges, 2001b). The total time 

is calculated as the length of time during which the decision makers interact with the map. 

The number of map moves is determined as the sum of the decision maker’s interactions 
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with the map, including the map clicks, zoom-ins or zoom-outs, switches between 

different map views, etc. 

4.3 Information acquisition on the group decision map 

In addition to acquiring the information from the decision table and map, an examination 

of the group solution and information provided by other individuals is also critical to 

collaborative decision making (Jankowski & Nyerges, 2001b; Boroushaki, 2010). In the 

present study, the time spent exploring the group decision map has been considered as the 

information acquisition metric on the group decision map (Jankowski & Nyerges, 2001b; 

Meng, 2010). Decision makers can explore the group decision map and acquire the 

information on the collective solution (group ordering of alternatives). A decision maker 

may review the group decision, and find out that there exists a great discrepancy between 

his/her solution and the group solution. In this case, he/she might want to adjust and 

update his/her initial criterion preferences in an effort to obtain a higher degree of 

consensus. In addition, the decision makers may review the others’ comments and 

suggestions regarding the inclusion of one or more locations as a new feasible alternative 

or exclusion of alternative(s) from the set of options on the group decision map. 
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Chapter 5 

5 Data, system implementation, and experimental 
procedure 

The problem of parking site selection in District # 22 of Tehran, Iran, was selected as the 

case study. This chapter begins with an overview of the study area, describing the 

geographic context, population, and decision problem. This is followed by a brief 

description of the alternative locations and criteria used for evaluating the decision 

alternatives, and an outline of the experimental design used in the empirical study. Next, 

the strategy used for developing and implementing the Web 2.0-based collaborative MC-

SDSS, specifically targeted for the experimental study, is presented. The integration of 

Web 2.0 concepts into Web-based GIS applications provides the foundation for user-

friendly online collaborative spatial decision-making tools (see Chapter 2). The system 

has been developed based on the collaborative GIS-MCDA procedure proposed in 

Chapter 3. Finally, the method used for collecting the human-computer interaction data is 

discussed. 

5.1 Study area: District # 22 of Tehran  

Tehran is the fastest growing city in Iran. It is divided into 22 municipal districts, each 

with its own administrative center (see Figure 13).The population of Tehran increased 

from 1,512,082 people in 1956 to approximately 7,705,036 in 2006 (Statistical Center of 

Iran, 2006) with an expected increase to 8,429,807 by 2013 (see Table 6 ). The rapidly 

changing pattern of urban growth of Tehran, Iran, accompanied by the growth of 

population, has led to a shortage of basic urban facilities. As there is a severe shortage of 

parking spaces and traffic congestion in the city, the availability of public parking has 

emerged as an area of serious concern. In recent years, urban planners and municipality 

departments have taken some measures to increase the number of public parking facilities 

in different districts of Tehran.  
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The proposed collaborative GIS-MCDA procedure has been used to solve the problem of 

parking site selection in the center of District # 22 (see http://collaborativesdss.com). The 

district is surrounded by the Central Alborz Mountain in the north, the Kan River in the 

east, the Tehran-Karaj freeway in the south, and the Vardavard forest area in the west. 

Comparing the area of District 22 with the other 21 districts of Tehran shows that at least 

8.4 percent of Tehran’s services space belongs to this region which is an indication of the 

significant position of this area in the western region of Tehran. According to policies of 

the Supervisory Council of Tehran and Comprehensive Development Plan of District 22, 

the district should cover all service shortages in the western area of Tehran. One of the 

critical problems is the shortage of public parking space. 
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Figure 13. District # 22 of Tehran, Iran. 

 

Table 6. The population and urban growth in Tehran from 1921 to 2006 (Source: Roshan, 
Zanganeh, Sauri, & Borna, 2010). 

Year  1956 1966 1976 1986 1996 2000 2006 
Population (million) 1.51 2.71 4.50 6.04 6.70 7.02 7.71 

Area (hectare) 10000 19000 32000 62000 73950 78900 80000 
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5.2 Alternative sites and evaluation criteria  

A set of 20 feasible candidate sites (decision alternatives) have been identified in this 

study (see Figure 14). The feasible alternatives have been generated taking into 

consideration the constraints and evaluation criteria for public parking sites. The parking 

site selection literature was consulted to identify the attributes (evaluation criteria) 

relevant for locating the parking facilities (e.g., Jiaxi, 2003; City of Dover Inc, 2008; 

Karimi, Ebadi, & Ahmady, 2009; Matkan, Shakiba, Pourali, & Ebadi, 2009; Boroushaki, 

2010; Farzanmanesh, Naeeni, & Abdullah, 2010; Ghanbari & Ghazi Asgar, 2011). Based 

on the literature review, a set of eight distinct attributes for evaluating the suitability of 

feasible parking locations has been identified (see Table 7). The set of criteria include: 

two benefit (maximization) criteria and six cost (minimization) criteria. The benefit 

criteria include: (1) adjacent population to a candidate site, and (2) the size of the 

candidate site. The adjacent population reflects the demand for the candidate site; it is 

measured as the number of people within 500 m from the site. These two criteria are of 

the maximization type. The larger the size of the land and the adjacent population around 

the candidate site, the better the candidate site. The cost criteria are as follows: (1) 

distance to main roads, (2) average distance to recreational services, (3) average distance 

to administrative centers, (4) average distance to commercial centers, (5) average distance 

to transportation stations, and (6) cost of land acquisition. The smaller the values of 

distance and land cost, the better the candidate site.  



85 

 

 

 
Figure 14. The candidate sites for new parking in District # 22. 

 

Table 7. Evaluation criteria for parking site location. 

# Criteria Description Measurement 

unit 
 Criterion 

type 

1 Adjacent 
population to 
a candidate 
site  

Adjacent population is the number of 
people residing within 500 meters of a 
candidate site. 

Number of 
residents 

Maximize  

2 Land size Size is the total area of a candidate 
site.  

Square Meter  Maximize 

3 Land cost  The cost of land is obtained by 
multiplying the land size and the land 
cost per square meter. 

Iranian Toman Minimize  
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4 Distance to 
roads 

Distance to main road is the nearest 
distance from a candidate site to a 
main road. The parking site is 
targeting users who park their cars in 
the downtown and look for services. 
Main roads are the community’s main 
shopping areas with various amenities. 
Parking plays a key role to limit traffic 
congestion in the main roads.  

Meter  Minimize  

5 Average 
distance to 
recreation 
centers 

For all recreation centers including 
sport, leisure and entertainment 
centers (e.g., cinemas, museums and 
visitor attractions), it will be necessary 
to provide a reasonable amount of 
parking space.  

Meter  Minimize  

6 Average 
distance to 
administrative 
centers 

The availability of adequate parking 
space is essential for employee and 
also non-employee visitors doing 
business with large public buildings 
such as administrative services 
centers, educational centers, 
community centers, etc.  

Meter  Minimize  

7 Average 
distance to 
commercial 
centers 

With regard to retail shopping centers, 
it is recognized that people come to 
such locations to buy goods and it may 
be difficult to carry them back on 
public transport. Hence, there will be a 
need for parking space at such 
locations. Further, markets attract 
short, medium and long duration 
parking. Shoppers will need short term 
parking and shop-owners will need 
long duration parking.  

Meter  Minimize  

8 Average 
distance to 
transportation 
stations 

Public parking availability and access 
are essential for transportation stations 
such as subway stations, bus terminals, 
etc. Some people may prefer to park 
their cars in the vicinity of the stations 
and use the public transport services 
(multi-modal transportation). 

Meter  Minimize  
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5.3 Experimental design 

Using task complexity, the type of decision aid, and the decision mode as the independent 

factors, and the information acquisition metrics as the dependent variables, this study 

adopts a repeated-measures experimental design (or within-subjects design) to test the 

hypotheses advanced in Chapter 1. A within-subjects-design is an experiment in which 

the same individuals participate in all of the experimental sessions. As the subjects are 

exposed to each treatment in turn, the measurement of the dependent variables (i.e., 

information acquisition variables) is repeated. There are two fundamental advantages of 

using the within-subjects design (Kantowitz, Roediger III, & Elmes, 2009; Valente et al., 

2011). First, a within-subjects design does not require a large pool of participants as 

compared to a between-subjects design that would require more participants (different 

people for different experiments). Second, the conditions are always exactly equivalent 

with respect to individual differences since the participants are the same in different 

conditions. Therefore, a within-subjects design leads to a reduction in error variance 

associated with individual differences. 

The task complexity was manipulated at four levels (treatment levels): (i) five alternatives 

and two attributes; (ii) ten alternatives and four attributes; (iii) fifteen alternatives and six 

attributes; and (iv) twenty alternatives and eight attributes (see Table 8). Each increase in 

the number of alternatives and attributes incorporated the previous available attributes as 

a subset. That is, an increase in the task complexity from “five alternatives and two 

attributes” to “ten alternatives and four attributes” involved just adding five alternatives 

and two attributes to the original ones. In this way, the procedure ensured that even the 

most limited information load would involve at least some attributes which would seem 

necessary to making a realistic choice, e.g., land cost (Payne, 1976). To avoid carryover 

or order effects in the experiment (that is, a subject may get better at the task over time 

because of practice or the subject will become worse at the task over time because of 

fatigue) the order of presentation of the decision situations (task complexity) was 

counterbalanced across the participants. In other words, decision situations were 

presented to each participant in a different order in such a way that each condition was 



88 

 

given in each sequential position an equal number of times. Figure 15 shows an example 

of the counterbalancing of the decision situations across four participants.  

At each level of task complexity, the participants carried out the decision making process 

in the two different GIS-MCDA modes: individual and group mode (see Table 8). In the 

individual mode, the system allows the participants to evaluate the alternatives without 

knowing the group decision, while in the group mode, the members can review the group 

solution (i.e., group ordering of alternatives) and other participants’ map-based 

comments, and then conduct the decision making process.  

 
Table 8. The decision situations (or experimental treatments) according to the task 

complexity and the decision mode. 
Experiment # Decision situation 

(alternatives × attributes) 
Decision analysis mode 

1 5×2 Individual 
2 5×2 Group 
3 10×4 Individual 
4 10×4 Group 
5 15×6 Individual 
6 15×6 Group 
7 20×8 Individual 
8 20×8 Group 

 

 
Figure 15. An example of counterbalanced decision situations for four participants. 
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5.4 The Web 2.0-based collaborative MC-SDSS  

5.4.1 System development  

The MC-SDSS applications use many different strategies to integrate GIS capabilities 

with MCDA models. In this study, the Web 2.0-based collaborative GIS-MCDA is 

developed based on the tight coupling approach. This type of coupling strategy results in 

a full integration of the MCDA capabilities into GIS, a shared data base, and a common 

user interface (Jankowski, 1995). The system is developed using the Web 2.0 Application 

Programming Interfaces (APIs) (Google Web Toolkit and Google Maps APIs) and 

MySQL database in the Java IDE environment IntelliJ IDEA 10.5 (see Appendix A). The 

Web 2.0 technologies provide the foundation for user-friendly online tools for 

collaborative spatial decision-making. The Web 2.0 APIs are easy-to-use and public 

domain software allowing programmers to combine geo-services and resources into so-

called mashups that meet specific user needs (Rinner et al., 2008; Bugs et al., 2010). 

Google Web Toolkit (GWT), an AJAX (Asynchronous JavaScript and XML) 

development tool, is one of the best existing frameworks to build Web 2.0 applications in 

Java. The AJAX-powered MC-SDSS allows for seamless interaction between the users 

and the system; it provides a more interactive platform for collaborative decision making.  

Google Maps, a Web mapping service application and technology provided by Google, is 

an AJAX-based spatial API that has been made available to users to incorporate Google 

Maps into their spatial mashups. The launch of the Google Maps service allows the 

Internet users around the world to have free access to browser-based WebGIS 

functionalities and high quality geospatial data (http://maps.google.com). It offers easy-

to-use and free-of-charge WebGIS tools for both novice and expert users (Miller, 2006; 

Udell, 2008; Boroushaki & Malczewski, 2010b). This illustrates the realization of what 

researchers had primarily theorized about in reference to the concept of Participatory GIS 

(Leahy, 2011). Goodchild (2007) describes the Google Maps phenomenon as the 

“democratization of GIS,” due to its potential to open some of the more straightforward 

capabilities of GIS to the general public. Thanks to Google Maps, non-GIS scientists are 
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now able to “read, write, alter, store, test, represent information in ways that they desire 

and in formats and environments they understand” (Miller, 2006, p.188). This makes 

Google Maps a valuable tool to build the groundwork for any collaborative WebGIS 

development. The Google Maps API was utilized in the collaborative MC-SDSS to 

empower decision participants with a visual framework that represents alternative 

locations, individual and group orderings of alternatives, and to support geographically 

referenced argumentations using visual access to the geo-referenced debates in the 

decision problem domain.  

The architecture of the collaborative MC-SDSS is illustrated in Figure 16. It is based on a 

thin client approach (Peng & Tsou, 2003), where the user interface components (a Web 

browser) run on the client (user) machine but data elements (MySQL database), the 

application logic (decision analysis functionalities), and the Google Maps service remain 

on the server (Rinner & Jankowski, 2002; Boroushaki & Malczewski, 2010b). The user 

interface of the system consists of a user registration form and three main Web pages 

including “Instruction”, “GIS-MCDA individual mode”, and “GIS-MCDA group mode”. 

The MySQL database stores two types of data: decision data and user interaction data 

(log data). The decision data includes: (i) user registration information; (ii) alternatives’ 

locations (geographical coordinates); (iii) the criteria values associated with the 

alternative; (iv) criteria ranks according to each user’s preferences; (v) the final score and 

rank of each alternative according to each individual judgment; (vi) the score and rank of 

each alternative based on the majority of participants (group preference); (vii) the ORness 

value; and (viii) geo-referenced arguments and their locations (geographical coordinates). 

The log data (computer-human interaction event log data) are the records of participants’ 

activities during the use of the system. Each time a user performs an interaction with the 

MC-SDSS, such as clicking on the information items contained in the decision table, the 

system writes records to the database describing the nature of the action. Tracking the 

user’s every move makes it possible to obtain highly detailed and useful information 

about the participants’ information acquisition behavior in the decision making process.  
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The decision analysis component of the MC-SDSS applies the GIS-MCDA decision 

rules. It involves computing individual and group solutions using the OWA-based MCDA 

and the Borda score approaches, respectively (see Chapter 3). Given the individual 

preferences set by the decision participants, the decision analysis component generates 

the orderings of alternatives. Then, the set of individual orderings is combined into a 

compromise (group) solution and displayed on Google Maps.  
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Figure 16. The architecture of the proposed Web 2.0-based collaborative MC-SDSS. 
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5.4.2 System description  

5.4.2.1 User registration 

User registration is the first stage of the collaborative decision making procedure. Each 

individual participating in the parking site selection process must complete and submit the 

registration form individually (see Figure 17). The anonymous information that 

individuals provide in this page includes: age, education, gender, experience with the 

Internet, and experience with GIS. A drop-down list of predefined entries for each of the 

user characteristics is provided. For example, two characteristics, “experience with 

internet” and “experience with GIS”, include three entries (“low”, “medium”, and “high”) 

from which users choose the appropriate one. By completing the registration, users are 

then redirected to the “instruction” page. Returning users can log into the system using 

the “log in” Web page. 
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Figure 17. The user registration form. 

 

 

 



95 

 

5.4.2.2 Instruction 

The instruction page describes the goal and objectives of the spatial decision problem at 

hand and provides a detailed explanation of the attributes and characteristics of the 

decision alternatives. The definitions of the evaluation criteria and their units of 

measurement are given in the “instruction” page as well. In addition, the page provides a 

step-by-step tutorial that familiarizes users with the system. It presents a walkthrough on 

how to use the Website for selecting the preferred location, and how to complete the 

experimental tasks (see Appendix B).  

5.4.2.3 Decision analysis 

5.4.2.3.1 The GIS-MCDA individual mode 

In the individual mode, the collaborative MC-SDSS has tools to assist an individual in the 

evaluation of decision alternatives. It provides participants with a decision table and a 

map for exploring the criteria outcome and geographic decision space. It allows the 

participants to determine the criteria preferences (criteria ranks) and ORness value, and 

evaluate the decision alternatives (see Chapter 3). Figures 18 and 19 show the examples 

of the Web pages for the individual decision making (see Appendix C). These pages 

include both the decision table and the map relevant for the decision situation. The 

information cells in the decision table contain the measured values of attributes associated 

with alternatives as well as the range values of the attributes. In the beginning, only 

attribute and alternative labels are visible, and all the attribute values and their ranges are 

hidden in the cells (Lurie & Swaminathan, 2009; Katz et al., 2010). To access and 

examine the information in each cell, the participant needs to move the mouse cursor into 

the cell and click on it. The information in the cell immediately appears and remains 

visible until the cursor is moved out of the cell. When the participant clicks on another 

cell, the information in the previous cell disappears and the new cell’s value comes into 

view. Therefore, each participant can open only one cell at a time. In this way, the system 

keeps track of the order in which cells are opened, the amount of time and frequency that 

each cell is opened, and so on.  
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Figure 18. The GUI for the GIS-MCDA individual mode in decision situation “5×2”. 

 

 
Figure 19. The GUI for the GIS-MCDA individual mode in decision situation “15×6”. 
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The system provides a dynamic and interactive linkage between the decision table and 

map views where the search moves in one view are immediately propagated to the other 

view (Jankowski et al., 2001). It allows the participants to locate on the map any decision 

alternative selected in the decision table or to assess an alternative selected on the map by 

examining its multi-attributes characteristics in the decision table. When the participant 

clicks on a particular alternative (parking site) on the map, the respective alternative on 

the map and the corresponding information cells (entire row) in the decision table become 

highlighted (see Figures 18 and 19). And vice versa, by clicking on a particular 

information cell in the decision table, the system highlights the corresponding alternative 

on the map. Such a level of interactivity allows the concurrent exploration of the 

candidate sites in the geographic decision space and the decision outcome space (see 

Chapter 1), thus facilitating information acquisition during the collaborative site selection 

process.   

Participants can use the map to explore the alternatives, and also the spatial distribution of 

the geographic entities on the base of which criteria are defined. The system allows 

switching between different map views, turning the map layers on and off on the Google 

Maps, and using the Zoom slider on the on the Google Maps to zoom in to certain 

alternatives, features, and places on the map. In decision situation 1 (5×2), there is only 

one layer of alternatives on the map, as the criteria in this experiment involve only the 

alternatives (see Figure 18). In the more complex decision situations (2, 3 and 4), the set 

of criteria involve some other geographic entities in addition to the alternatives, such as 

main roads, recreational centers, administrative centers, etc. The participants are able to 

explore the spatial distribution of these entities by turning the map layers on and off on 

the top the map (see Figure 19).  

The system enables the participants to determine the attribute ranks during or after 

examining the decision table or map. Using the Up/Down arrow keys, the participants 

assign a higher rank to the selected attribute by moving it up or assign a lower rank by 

moving it down (see Figure 20). After identifying the attribute priorities, the participants 

have to specify the value of ORness by dragging the slider between 0 and 1. The decision 
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participants can generate the range of decision strategies based on either pessimistic or 

optimistic attitudes towards risk by adjusting the ORness parameter. Evidence shows that 

an individual with a tendency to avoid risks (pessimist decision maker) would typically 

specify the lower ORness value compared to an individual with high risk-taking 

propensity (optimist decision maker) (Mellers & Chang, 1994; Malczewski et al., 2003). 

Once the individual preferences and the ORness value have been specified, the system 

computes and represents the alternative orderings (individual solution) on Google Maps. 

The map is dynamically updated in response to changes in criterion preferences and the 

value of ORness. When the user changes the slider value, the system generates a new set 

of order weights, and accordingly the scores and ranks of the decision alternatives are re-

calculated and represented on the map. 

 

 
Figure 20. The windows for specifying the criteria priorities and ORness value in decision 

situations “5×2” and “15×6”, respectively. 
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5.4.2.3.2 The GIS-MCDA group mode 

As with the individual mode, the collaborative MC-SDSS in the group mode allows the 

participants to examine the decision table and map, and determine the criteria preferences 

(criteria ranks) and ORness value for generating the alternatives’ orderings of alternatives 

(see Figures 21 and 22). The only difference is that in the group mode, participants can 

review the other participants’ comments as well as the group rankings of the alternatives 

during the decision making process. By reviewing the others’ decisions and comments, 

the participants are able to compare their decision with the decisions made by other users, 

and refine their decision. 

Similar to the individual orderings, a participant can observe the group rates/orderings by 

clicking on the group decision button, showing the score and ordering of each alternative 

location based on the preferences of all the participants who have finished the site 

selection procedure. Clicking on the checkbox “individual comment” in the group 

decision window, participants are able to review others’ geo-referenced comments, make 

comments, and hold conversations in the form of posted messages on the map (Rinner et 

al., 2008; Simão et al., 2009). This tool allows for graphical submissions, compilations, 

and tracking of geographic proposals via an annotated map. Clicking on the map, the 

individuals input their contributions about different dimensions of the decision problem 

on the particular geographic locations (see Figures 23 and 24). They can deliberate and 

exchange information regarding the parking decision problem on the map.  
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Figure 21. The GUI for the GIS-MCDA group mode in decision situation “5×2”. 

 

 
Figure 22. The GUI for the GIS-MCDA group mode in decision situation “15×6”. 
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Figure 23. The group decision window for decision situation “5×2”. 

 

 
Figure 24. The group decision window for decision situation “15×6”. 
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5.5 Web implementation and participants 

The proposed collaborative MC-SDSS and relevant data were put on a server for use from 

January 1st, 2013 to May 30st, 2013 (see http://collaborativesdss.com). Students in the 

urban planning departments at Shahid Beheshti University and the University of Tehran 

were invited to participate in the collaborative parking site selection process. The website 

holding the system was advertised through announcements in the classes across the 

departments. The students were invited to identify their concerns, ideas, suggestions or 

preferences over the candidate sites and evaluation criteria for locating the new parking 

site(s). No special competence was sought, only an interest in the decision task to be 

undertaken. To join the decision-making process, a participant needed a computer and 

Internet service to access the website containing the relevant data and MC-SDSS. All of 

the students in the departments had direct twenty-four hours access to computers and the 

Internet network. A total of 55 volunteers participated throughout the parking site 

selection process, and out of the total 58 % were female and 42 % were male. Table 9 

presents the number of the participants according to the levels of experience with GIS, 

web surfing and involvement in urban planning. Most of the participants had a low level 

of experience with GIS (52%), a high level of experience with the Internet (65%), and a 

medium level of experience with urban planning (48%).  

 
Table 9. The number of participants according to their levels of experience with GIS, 

Internet and urban planning. 

 Low  Medium High 
Total number of 
participants (%) 

Experience with GIS 29 (52) 24(44) 2(4) 55(100) 
Experience with Internet 0(0) 19(35) 36(65) 55(100) 
Experience with urban 

planning 
21(38) 26(48) 8(14) 55(100) 

Note: The percentage of the number of participants is given in bracket. 

A special emphasis was placed on the importance of reading instructions on the tutorial 

(instruction) page in the system. The instruction page provided the participants with a 

step-by-step walkthrough on how to use the Website for selecting the preferred location, 

and how to complete the experimental tasks (see Appendix B). This page informed the 
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users that they would be participating in a study aimed at identifying the most suitable 

alternatives for locating the parking sites. Specifically, the participants were instructed 

that they: (i) would be performing two decision tasks (individual and group mode tasks) 

across four decision situations (complexity levels); (ii) would go through both tasks at the 

four decision conditions; (iii) would be presented with a number of alternatives, 

attributes, and a certain amount of information about each alternative during each of the 

decision situations; (iv) would specify their criteria preferences and ORness value on the 

basis of the information provided, and eventually the system would compute the 

individual solution for them according to their preferences; (vi) would be free to look at 

as much available information as they wanted to or felt was necessary to make a decision; 

and (vii) could spend as much time on the decision as they desired. 

5.6 Collecting the human-computer interaction event log 
data: input data for the experiments  

The data on the decision makers’ activities during the experiments were recorded as the 

Web-based event logs using the logging module of the system. The event logs are an 

indirect record of what a user has done (Zhang, 2007). They provide an efficient and non-

intrusive method for collecting data from the participants for the purpose of analyzing 

human-computer interactions. The main incentives for using the logs in the data 

collection process are low implementation cost, high speed, and high accuracy. In 

addition, the logging method does not require the use of personally administered 

questionnaires or interviews (Atterer, Wnuk, & Schmidt, 2006).  

There are a number of log storage techniques/formats, such as text-based log files, flat 

text files, and databases (see Chuvakin, Schmidt, & Phillips, 2012). In this study, a 

database logging approach was employed to record the log information. Each time a user 

performed an interaction with the system, the system continuously wrote records to the 

log database describing the nature of the action (see Appendix D). The main advantage of 

using the database logging approach is that it allows for structuring the log information in 

a format that can be quickly read, searched, reviewed, analyzed, and queried. In contrast 



104 

 

to the file-based approaches that take a lot of time and effort to read, filter, summarize, 

and analyze the log data, the database approaches allow for using standard SQL queries to 

combine all sorts of information from different entries and easily analyze the log records.  

The log data for information acquisition behavior include the information the subject 

seeks (information cells) in the decision table, how much information is examined, how 

long the information is examined for, as well as the sequence in which they are looked at 

in the decision table. In addition to recording the data on the use of the decision table, the 

system records decision makers’ activities during the use of the decision map. The 

records are date and time stamped, and when reviewed, provide a picture of the user 

interaction with the system. By querying the log data stored in the MySQL database, one 

can derive data for computing the information acquisition metrics defined in Chapter 4. 

Figure 25 shows an example of SQL query in the Navicat for MySQL7 environment, 

which aims at retrieving the number of information cells examined by each decision 

maker. This query returns the number of information cells acquired specifically for each 

user in a particular decision situation (task complexity level) and a particular decision 

mode. The query results for two example decision makers are shown in Figure 26. For 

instance, the query results show that the number of information cells examined in the 

decision table by the decision maker with “UserID=1” in decision situation “5×2” (task 

complexity = 1) and within the GIS-MCDA individual mode is 14. 

                                                 
7 http://www.navicat.com/download/navicat-for-mysql?gclid=CIX7qKW1v7gCFfFDMgodZV4AJg  
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Figure 25. Querying the log data using the Navicat for MySQL. 

 
Figure 26. Results for the query “what is the number of information cells acquired by 
each participant in a particular decision situation within a particular decision mode?”. 
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Chapter 6 

6 Results and analysis 

The research hypotheses developed for this study call for an examination of the 

differences in the information acquisition metrics when task complexity or information 

load increases (low vs. high), the information aid varies (the map vs. table), and the 

decision mode changes (individual vs. group). Additionally, the relationships between the 

metrics, and the effect of the decision mode and task complexity on these relationships 

will be examined. The hypotheses were tested by conducting Repeated Measures 

ANOVA (within-subjects ANOVA), Linear Mixed Model (LMM) analysis, and Pearson 

correlation tests using the Statistical Package for the Social Sciences (SPSS) software 

(SPSS IBM., 2012). Sixteen sets of hypotheses were examined (see Chapter 1). The 

hypotheses from H1 through H9 examine the effect of task complexity on the information 

acquisition metrics. These hypotheses were tested using the Repeated Measures ANOVA 

test (with the Greenhouse-Geisser correction as needed), with task complexity as the 

independent factor and each of the information acquisition metrics as the dependent 

variable. This would enable a comparison of the means for the dependent metrics at 

different levels of task complexity. The set of H10 hypotheses look at the effect of the 

decision mode on the information acquisition metrics. To test the differential effects of 

the decision mode on the metrics, the LMM test was carried out. The LMM procedure 

extends the general linear model so that the data are permitted to be correlated (SPSS 

IBM., 2011). The term “mixed model” refers to the use of both fixed and random effects 

in the same statistical analysis8. The presence of the random effects often introduces 

correlations between the subjects. The LMM test allows for integrating and analyzing the 

correlated repeated measurements by explicitly modeling a variety of correlation patterns 

(or random effects) (SPSS Inc., 2005).  

                                                 
8 http://www.stat.cmu.edu/~hseltman/309/Book/chapter15.pdf  
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The set of H11 hypotheses examine the relationship between information acquisitions in 

the decision table and map. The hypotheses H12 look at the relationship between the 

information acquisition in the decision table and map. The H13 hypotheses investigate the 

inter-relationship among the information acquisition metrics in the decision table. The 

three sets of hypotheses, H11, H12, and H13, were tested by conducting the Pearson 

correlation test; however, some of the H11 hypotheses were also examined using the 

LMM test. The set of hypotheses H14 explore the effect of task complexity on the 

relationship between the information acquisition in the decision table and map. The H15 

hypotheses look at the effect of task complexity on the relationship between the times 

spent on the decision table/map and the time spent viewing the group decision. The set of 

H16 hypotheses assess the influence of the decision mode on the relationship between the 

information acquisition in the decision table and on the map. The three hypotheses, H14, 

H15 and H16, were tested using the LMM test. All of the sixteen sets of hypotheses were 

examined at a significance level of α= 0.05. In addition to the significance level of α= 

0.05, the Pearson correlation tests on the hypotheses were conducted at a level of α= 0.01.  

6.1 The effect of task complexity on the information 
acquisition metrics 

Hypothesis 1  

H1a: In the GIS-MCDA individual mode, an increase in task complexity results in a 

significant decrease in the proportion of information search. Participants were expected 

to search a larger proportion of available information in the lower levels of task 

complexity than the higher levels. Table 10 shows the descriptive statistics for the 

proportion of information search for each of the decision situations (the complexity 

levels). The results indicate that the mean proportion of information search declines as 

task complexity increases. For the task complexity of 5×2 information cells, 27% of the 

total available information is examined. This percentage decreases for the higher levels, 

where participants look at only 4% of the available information at the highest level of task 



108 

 

complexity (a set of 20×8 information cells). These results imply that a smaller proportion 

of information is examined as the decision complexity increases. 

 
Table 10. Descriptive statistics for the proportion of information search in the GIS-

MCDA individual mode. 
Level of task 
complexity 

(Alternatives 
× Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.271 0.312 0.000 1.000 
2 10×4 0.150 0.205 0.000 1.000 
3 15×6 0.078 0.109 0.000 0.433 
4 20×8 0.043 0.070 0.000 0.331 

Under the null hypothesis that there is no difference in the proportion of information 

search between the low-complexity and high-complexity decision situations, the ANOVA 

test gives a p-value of 0.000 (F(2, 104) = 23.49, p = 0.000 < 0.05). Thus, the null 

hypothesis should be rejected. This leads to the conclusion that the proportion of 

information search in the lower levels of task complexity is significantly greater than that 

in the higher levels; thus, the results provide evidence for the use of more non-

compensatory strategies in high-complexity tasks. This conclusion is consistent with a 

number of empirical studies (see Payne, 1976; Ford et al., 1989; Chinburapa, 1991; Roe 

et al., 2001; Schrah et al., 2006; Katz et al., 2010; Schram & Sonnemans, 2011; Queen et 

al., 2012).  

H1b: In the GIS-MCDA group mode, an increase in task complexity results in a 

significant decrease in the proportion of information search. Similar to the individual 

mode, participants were expected to search a larger proportion of available information in 

the low-complexity tasks than the high-complexity tasks. The proportion of information 

search in decision situations 1, 2, 3, and 4 are 17.3%, 4.6%, 2.1%, and 1.3%, respectively 

(see Table 11). The results suggest a negative relationship between task complexity and 

the proportion of information searched. The participants searched for a lesser amount of 

available information as the level of complexity increased. When faced with a lower 

number of alternatives and attributes, they searched for a larger proportion of information 

than when faced with a higher number of alternatives and attributes. This indicates that 
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the proportion of information search is in the same direction as anticipated by the 

hypothesis. 

Table 11. Descriptive statistics for the proportion of information search in the GIS-
MCDA group mode. 

Level of task 
complexity 

(Alternatives 
× Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.173 0.213 0.000 1.000 
2 10×4 0.046 0.082 0.000 0.400 
3 15×6 0.021 0.034 0.000 0.133 
4 20×8 0.013 0.022 0.000 0.118 

The ANOVA test gives a p-value of 0.000 (F(1, 71) = 25.68, p = 0.000 < 0.05). Thus, the 

null hypothesis of no difference in the proportion of information search is rejected. There 

are statistically significant differences in the proportion of information searches among 

decision situations in the GIS-MCDA group mode. Consistent with the expectations, 

participants search a significantly higher proportion of available information in the lower 

levels of task complexity. This result provides a support for using a non-compensatory 

strategy in high-complexity tasks.  

Hypotheses 2  

H2a: In the GIS-MCDA individual mode, an increase in task complexity results in a 

significant decrease in the proportion of attribute ranges searched. Participants were 

expected to look at a higher number of attribute ranges in the low-complexity tasks than 

the high-complexity tasks. Table 12 shows the descriptive statistics for the proportion of 

attribute ranges searched in the four decision situations. The results show that decision 

makers examined a relatively low proportion of attribute ranges during the decision 

making process. This corroborates a number of early findings and suggestions, which 

state that decision makers remarkably ignore the attribute ranges when weighing the 

criteria in the decision making process (Beattie & Baron, 1991; Von Nitzsch & Weber, 

1993; Fischer, 1995; Yeung & Soman, 2005; Monat, 2009; Riabacke, Danielson, & 

Ekenberg, 2012). For instance, in an empirical study,Von Nitzsch and Weber (1993) 

found that decision makers do not properly adjust their criteria judgments if the range 

values vary. 
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The mean proportion values of 55.5%, 26.8%, 24.5%, and 14.5% for decision situations 

1, 2, 3, and 4, respectively, indicate a negative relationship between task complexity and 

the proportion of attribute ranges. Given the null hypothesis of no difference in the 

proportion of attribute ranges between the low- and high-complexity decision tasks, the 

ANOVA test gives a p-value of 0.000 (F(3, 162) = 19.755, p = 0.000 < 0.05). This 

indicates a statistically significant difference in the proportion of attribute ranges 

examined among the four experimental conditions. In other words, participants searched a 

significantly higher number of attribute ranges in the lower levels of task complexity. 

When the task complexity increases, the addition of alternatives and attributes to the 

initial set of alternatives is more likely to expand the variations of ranges across the 

attributes (Broniarczyk, 2006). For example, the attribute values associated with the 

added alternatives may not be within the range of the existing attributes or the added 

attributes may have larger ranges across the existing alternatives, thereby increasing the 

dissimilarity of attribute ranges. Dissimilarity in attribute ranges in turn leads to an 

increase in cognitive strain in the examination of information as there are many distinct 

attribute ranges that should be considered. Several studies show that the greater the 

attribute ranges, and thus the less similar the alternatives, the lower is the proportion of 

search (e.g., Bockenholt, Albert, Aschenbrenner, & Schmalhofer, 1991; Pfeiffer, 2012). 

With an increased task complexity, the proportion of attribute ranges examined by 

decision makers decreases as a kind of unintentional cognitive short cut. This means that 

decision makers avoid a full compensation or trade-off between attributes by considering 

an only subset of available attribute ranges, and therefore it is an indication of a non-

compensatory strategy. 
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Table 12. Descriptive statistics for the proportion of attribute ranges searched in the GIS-

MCDA individual mode. 
Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.555 0.426 0.000 1.000 
2 10×4 0.268 0.336 0.000 1.000 
3 15×6 0.245 0.286 0.000 1.000 
4 20×8 0.145 0.230 0.000 1.000 

H2b: Under the use of the GIS-MCDA group mode, an increase in task complexity results 

in a significant decrease in the proportion of attribute ranges searched. Similar to the 

GIS-MCDA individual mode, the participants were expected to examine a higher number 

of attribute ranges in the low-complexity tasks than the high-complexity tasks. Table 13 

shows the descriptive statistics for the proportion of attribute ranges searched in the GIS-

MCDA group mode. The proportions of 21.8%, 8.6%, 8.4%, and 7.9% in decision 

situations 1, 2, 3, and 4, respectively, indicate that an increase in task complexity leads to 

a decreased proportion of attribute ranges. 

 
Table 13. Descriptive statistics for the proportion of attribute ranges searched in the GIS-

MCDA group mode. 

The ANOVA test results for task complexity effects on the proportion of attribute ranges 

searched provides evidence that the null hypothesis of no difference in the proportion of 

attribute ranges searched should be rejected (F(2, 118) = 5.21, p = 0.005< 0.05). 

Therefore, there is a statistically significant difference in the proportion of attribute 

ranges searched among the decision situations, as was the case in the individual mode. 

This provides evidence that a non-compensatory strategy is used in the high-complexity 

tasks.  

 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.218 0.369 0.000 1.000 
2 10×4 0.086 0.221 0.000 1.000 
3 15×6 0.084 0.207 0.000 1.000 
4 20×8 0.079 0.204 0.000 0.875 
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Hypotheses 3  

H3a: In the GIS-MCDA individual mode, the average amount of time significantly 

decreases with an increase in task complexity. The participants were expected to spend 

more time on each piece of information acquired in the low-complexity tasks than the 

high-complexity tasks. Table 14 summarizes the descriptive statistics for the average time 

spent in the four decision situations. Contrary to the expectations, the mean decision 

times of 4.54, 5.99, 3.79, and 6.65 seconds in decision situations 1, 2, 3, and 4, 

respectively, are not in a descending order. The results of the ANOVA test indicate that 

the null hypothesis of no difference in the average amount of time between the low and 

high complexity situations should be accepted (F (2, 84) = 1.45, p = 0.239). In other 

words, task complexity has no significant effect on the average time. The findings from 

this study are inconsistent with the results of research by Ford et al. (1989) and Klemz 

and Gruca (2001). For example, Klemz and Gruca (2001) changed the level of task 

complexity by manipulating the number of alternatives from three to seven, and found 

that the mean search time in the low complexity condition was 4.15 and 2.97 in the high 

complexity condition. This difference was also significant at the p = 0.01 level (F (1,109) 

= 24.15). The discrepancy between the findings of present and previous studies may be 

explained by the differences in the type of decision (spatial vs. non-spatial), decision 

making platforms (moderated decision making vs. Web-based non-moderated decision 

making), methods (MCDA vs. simple multicriteria choice), and tools used (MC-SDSSs 

vs. non-GIS based DSS systems) in the studies. The multicriteria methods used in the 

previous studies mostly involved the ability of decision makers to simply rank non-spatial 

alternatives based on multiple criteria, whereas the present study employed a MCDA 

technique (OWA-based approach) for the evaluation of geographic alternatives based on 

the individual preferences. In other words, the inconsistency between the findings may be 

due to the different methods used for the multicriteria evaluations (this applies to all of 

the hypotheses in the study). 
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Table 14. Descriptive statistics for the average time spent acquiring per item of 

information in the GIS-MCDA individual mode. 
 Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 4.540 5.240 0.000 29.400 
2 10×4 5.990 11.820 0.600 70.300 
3 15×6 3.790 3.030 0.910 15.400 
4 20×8 6.650 7.070 0.000 38.000 

H3b: In the GIS-MCDA group mode, an increase in task complexity results in a 

significant decrease in the average time spent acquiring information. Similar to the 

individual mode, participants were expected to spend more time on each piece of 

information acquired in the low-complexity tasks than the high-complexity tasks. 

Descriptive statistics for the average decision time in the GIS-MCDA group mode are 

shown in Table 15. The mean times in decision situations 1, 2, 3, and 4 are 2.95, 2.56, 

2.99, and 3.47 seconds, respectively. Clearly, these times are not in the hypothesized 

direction. Based on the ANOVA results, one cannot reject the null hypothesis of no 

difference in the average decision time (F(1, 17) = 3.09, p =0.086). In other words, the 

main effect of task complexity on the average decision time is insignificant.  

 

Table 15. Descriptive statistics for the average time spent acquring per item of 
information in the GIS-MCDA group mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 2.950 3.550 0.600 16.000 
2 10×4 2.560 2.130 0.667 10.500 
3 15×6 2.990 1.920 0.615 7.000 
4 20×8 3.470 3.740 0.000 18.110 

 

Hypotheses 4  

H4a: In the GIS-MCDA individual mode, an increase in task complexity results in a 

significant increase in the variability of information search per attribute. Participants 

were expected to have a lower variability of information searched in the lower level of 

task complexity as compared to the higher levels. Table 16 shows the descriptive statistics 
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for the variability in the four decision situations. The variability in decision situations 1, 

2, 3, and 4 are 0.82, 1.34, 1.66, and 1.73, respectively; thus indicating a positive 

relationship between task complexity and variability. Therefore, the direction of these 

values is consistent with that specified in the hypothesis. 

Under the null hypothesis of no difference in the variability of information search per 

attribute between low- and high-complexity tasks, the ANOVA test gives a p-value of 

0.002 (F(3, 84) = 5.50, p = 0.002 < 0.05). This means that task complexity has a 

significant effect on the variability of information searched per attribute. Clearly, there is 

sufficient evidence to conclude that participants have a significantly higher amount of 

variability in the higher levels of task complexity than the lower levels. This suggests that 

decision makers employ a non-compensatory decision strategy in the high-complexity 

tasks. The result is consistent with Chinburapa’s (1991) finding, where decision makers 

had a lower variability per attribute when faced with three alternatives than when faced 

with six alternatives.  

Table 16. Descriptive statistics for the variability of information search per attribute in the 
GIS-MCDA individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.820 1.030 0.000 3.530 
2 10×4 1.340 1.410 0.000 5.770 
3 15×6 1.660 1.930 0.408 7.740 
4 20×8 1.730 2.420 0.000 9.250 

 

H4b: Given the use of GIS-MCDA in the group mode, an increase in task complexity 

results in a significant increase in the variability of information search per attribute. 

Similar to the GIS-MCDA individual mode, variability in the high-complexity tasks were 

expected to be higher than the corresponding value in the low-complexity tasks. Table 17 

shows the descriptive statistics for the variability of the information search per attribute in 

the GIS-MCDA group mode. The mean variability values in decision situations 1, 2, 3, 

and 4 are 0.77, 1.21, 1.18, and 0.94, respectively. Contrary to the individual mode, the 

variability values are not in the same direction as predicted by the hypothesis. Under the 
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null hypothesis of no differences in the mean variabilities between the low- and high-

complexity tasks, the ANOVA test gives a p-value of 0.445 (F(3, 27) = 0.91, p = 0.44), 

indicating that the null hypothesis should be accepted. This means that the main effect of 

task complexity on the variability of search per attribute is statistically insignificant.  

 
Table 17. Descriptive statistics for the variability of information search per attribute in the 

GIS-MCDA group mode. 
Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.770 0.910 0.000 3.530 
2 10×4 1.210 1.240 0.500 5.000 
3 15×6 1.180 1.080 0.408 4.490 
4 20×8 0.940 1.200 0.354 6.710 

Hypotheses 5 

H5a: In the GIS-MCDA individual mode, the variability of information search per 

alternative increases with an increase in task complexity. Participants were expected to 

have a higher variability in the higher levels of complexity as compared to the lower 

levels. Table 18 shows the descriptive statistics for the variability in the four decision 

situations. The variability in decision situations 1, 2, 3, and 4 are 0.474, 0.575, 0.567, and 

0.560, respectively. This indicates that the amount of variability is not in the hypothesized 

direction. Given the null hypothesis that the means of the variability are equal among the 

low and high-complex decision situations, the p-value value is .468, and therefore the null 

hypothesis cannot be rejected (F (2, 52) = .75, p = 0.468). As a result, the main effect of 

task complexity on the variability of search per alternative is not statistically significant. 

This suggests that, with an increase in task complexity, participants do not necessarily 

search a less constant and equal amount of information for each of the available 

alternatives. Thus, hypothesis H5a is not supported by the evidence. This result is 

confirmed by Schrah et al. (2006) finding that the variability of information search per 

alternative differs insignificantly as a function of task complexity. However, it is 

inconsistent with some empirical studies. For example, Payne, 1976; Ford et al., 1989) 

suggested that an increase in the information load would result in a significant increase in 
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the variability of search per alternative. As was discussed earlier, the discrepancy between 

the findings of this study and those of the others is most likely due to the difference in the 

MCDA methods (see H3a). 

Table 18. Descriptive statistics for the variability of information search per alternative in 
the GIS-MCDA individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. Deviation Minimum Maximum 

1 5×2 0.474 0.306 0.000 1.090 
2 10×4 0.575 0.318 0.000 1.430 
3 15×6 0.567 0.359 0.000 1.990 
4 20×8 0.560 0.424 0.000 9.250 

 

H5b: Under the use of GIS-MCDA group mode, an increase in task complexity results in 

an increase in variability of information search per alternative. Similar to the individual 

mode, participants were expected to have a lower variability of information search in the 

lower levels of task complexity. Descriptive statistics for the variability in the four 

decision situations are shown in Table 19. The mean variability in decision situations 1, 2, 

3, and 4 are 0.585, 0.572, 0.469, and 0.484, respectively. Similar to the individual mode, 

the mean differences in the variability are not in the expected direction. The ANOVA test 

fails to reject the null hypothesis of no difference (F (3, 27) = 0.040, p =0.986), indicating 

that the effect of task complexity on the variability of information search per alternative is 

statistically insignificant.  

Table 19. Descriptive statistics for the variability of information search per alternative in 
the GIS-MCDA group mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.585 0.264 0.000 1.000 
2 10×4 0.572 0.276 0.000 1.350 
3 15×6 0.469 0.162 0.258 0.862 
4 20×8 0.484 0.384 0.224 1.790 
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Hypotheses 6  

H6a: In the GIS-MCDA individual mode, participants use a more attribute-wise strategy 

than an alternative-wise in the information search process. As discussed in Chapter 4, the 

two main approaches suggested in the literature were used as the measures of search 

direction (the sequence of information acquisition): SI and SM. These two measures 

indicate the extent of alterative-wise (where an alternative is selected and attributes are 

searched for that alternative) or attribute-wise (in which case an attribute is selected and 

alternatives are searched for that attribute) processing in the information acquisition 

process. The negative values of the SI indicate an attribute-wise processing, while the 

positive values indicate an alternative-wise pattern for the information search. The 

treatment means for both the SI and SM are shown in Tables 20 and 21, respectively. Both 

the SI and SM values are negative in all of the four decision situations. This means that 

participants used more attribute-wise than alternative-wise strategies, thus providing the 

evidence that supports the hypothesis.  

Table 20. Descriptive statistics for the SI index in the GIS-MCDA individual mode. 
Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 -0.284 0.551 -1.000 1.000 
2 10×4 -0.245 0.631 -1.000 1.000 
3 15×6 -0.255 0.666 -1.000 1.000 
4 20×8 -0.086 0.645 -1.000 1.000 

 
Table 21. Descriptive statistics for the SM index in the GIS-MCDA individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 -0.239 1.420 -3.530 2.610 
2 10×4 -0.779 2.720 -10.240 4.490 
3 15×6 -1.350 3.760 -11.100 5.360 
4 20×8 -1.420 5.440 -16.140 10.920 
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H6b: Under the use of the GIS-MCDA group mode, participants use a more attribute-

wise strategy than alternative-wise in the information search process. The SI values for 

all of the four decision situations are negative (see Table 20). This means that participants 

used more attribute-wise than alternative-wise strategies in all of the four decision 

situations; thus providing the evidence to support H6b. As for the SM measure, the mean 

values are negative for all of the decision situations, except for decision situation 1 (see 

Table 21). This implies that participants used an alternative-wise strategy in decision 

situation 1, and an attribute-wise strategy in the other three conditions. Consequently, the 

values of SM provide insignificant evidence for supporting the hypothesis. 

H6c: Increased task complexity in the GIS-MCDA individual mode results in a direction 

of search that is more attribute-wise than alternative-wise. According to this hypothesis, 

participants switch from an alternative-wise to attribute-wise direction as task complexity 

increases. A higher value for SI and SM indicates a higher level of alternative-based 

processing. The mean SI values in decision situations 1, 2, 3, and 4 are -0.284, -0.245, -

0.255, and -0.086, respectively (see Table 20). Clearly, the levels of these mean values 

are not in the direction suggested by the hypothesis.  

As the number of alternatives is higher than the number of attributes in all of the decision 

situations, the SI measure is biased in the direction of an attribute-wise search strategy, 

and therefore, the SM measure might better represent the direction of search (see Chapter 

4). The results suggest that the average value of SM is higher when task complexity is 

lower. As indicated in Table 21, the respective SM mean values of -0.239, -0.779, -1.357, 

and -1.423 in decision situations 1, 2, 3, and 4 are in the direction predicted by the 

hypothesis. This implies that the participants used a type of attribute-wise search strategy 

in the higher levels of task complexity, while they exhibited a more alternative-wise 

search pattern in the lower levels. However, contrary to the expectations, although the SM 

means are in the hypothesized direction, the null hypothesis of no difference in the 

direction of search cannot be rejected (F (2, 54) = 2.290, p = 0.111). In other words, the 

effect of task complexity on the SM is not statistically significant. The finding by Schrah 

et al. (2006) confirms the results of this study that the search pattern (direction of search) 
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varies insignificantly as a function of task complexity. However, this contradicts a 

number of studies (e.g., Payne, 1976; Roe et al., 2001; Katz et al., 2010; Queen et al., 

2012), which found that increased task complexity has a significant effect on the direction 

of search. Differences between the findings of this study and previous work can be 

accounted for by the difference in the MCDA methods used (see H3a). 

 

H6d: Increased task complexity in the GIS-MCDA group mode results in a direction of 

search that is more attribute-wise than alternative-wise. Likewise in the individual mode, 

it was expected that participants in the lower complexity levels would use a relatively 

more alternative-wise strategy than an attribute-wise processing strategy. Clearly, neither 

the mean SI values nor the mean SM values in decision situations 1, 2, 3, and 4 are in the 

predicted direction (see Tables 22 and 23). In addition, the ANOVA results indicate that 

there were statistically insignificant differences in the SM measures between the decision 

situations (F (2, 21) =0.140, p = 0.898), as was the case in the individual mode. 

Consequently, the evidence cannot support the hypothesis.  

 
Table 22. Descriptive statistics for the SI in the GIS-MCDA group mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 -0.246 0.552 -1.000 1.000 
2 10×4 -0.195 0.603 -1.000 1.000 
3 15×6 -0.270 0.626 -1.000 1.000 
4 20×8 -0.160 0.632 -1.000 1.000 

 
Table 23. Descriptive statistics for the SM in the GIS-MCDA group mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.023 1.130 -3.090 2.030 
2 10×4 -0.180 2.060 -5.750 4.360 
3 15×6 -0.700 2.270 -5.640 3.460 
4 20×8 -0.340 3.010 -10.440 5.890 
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Hypotheses 7  

H7a: In the GIS-MCDA individual mode, the total time spent acquiring the information in 

the decision table significantly increases with an increase in task complexity. According 

to this hypothesis, increased task complexity results in an increase in the total time spent 

in the decision table. Table 24 shows the descriptive statistics for the total time spent in 

the four decision situations. The respective mean times of 20.92, 32.41, 44.52, and 34.18 

seconds in decision situations 1, 2, 3, and 4, respectively, indicate that the amount of time 

spent across the decision situations are not in the hypothesized direction. 

Table 24. Descriptive statistics for the total time spent on the table under the use of the 
GIS-MCDA individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 20.920 33.370 0.000 168.000 
2 10×4 32.410 46.840 0.000 211.000 
3 15×6 44.520 124.720 0.000 911.000 
4 20×8 34.180 40.920 0.000 189.000 

Given the null hypothesis of no difference in total time among the decision situations, the 

ANOVA test gives a p-value of 0.368 (F (3, 162) = 1.06, p = 0.368). This provides 

evidence that the null hypothesis of no difference should be accepted. Therefore, one can 

conclude that task complexity in the individual mode has an insignificant effect on the 

total time spent acquiring the information in the decision table. These results are 

inconsistent with the previous findings by Chinburapa (1991) and Queen et al. (2012). 

The possible reasons for the discrepancy between these findings might be those described 

for H3a. 

H7b: In the GIS-MCDA group mode, the total time spent acquiring the information in the 

decision table significantly increases with an increase in task complexity. Similar to the 

individual mode, participants were expected to spend more time on the information pieces 

in the high-complexity tasks than the low-complexity tasks. Descriptive statistics for the 

total time in the group mode are shown in Table 25. Looking at the table, we note that the 

respective decision times of 6.27, 5.94, 6.16, and 10.27 seconds in decision situations 1, 

2, 3, and 4 are not in the hypothesized direction. The ANOVA results suggest that there is 
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a statistically insignificant difference in the total times among the decision situations, 

similar to the individual mode (F (3, 162) = 1.250, p = 0.294). Therefore, the hypothesis 

is rejected. 

Table 25. Descriptive statistics for the total time spent on the table under the use of the 
GIS-MCDA group mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 6.270 9.400 0.000 48.000 
2 10×4 5.940 10.470 0.000 47.000 
3 15×6 6.160 8.730 0.000 41.000 
4 20×8 10.270 23.270 0.000 163.000 

  

Hypotheses 8  

H8a: Under the use of the GIS-MCDA individual mode, participants spend more time on 

the map in the high-complexity tasks than the low-complexity tasks. Table 26 summarizes 

the descriptive statistics for time spent on the map in the four decision situations. It is 

evident that the respective mean times of 1.32, 0.74, 2.27, and 2.32 seconds in decision 

situations 1, 2, 3, and 4 are not in the hypothesized direction. Under the null hypothesis of 

no difference in the mean times, this difference is associated with a p-value of 0.612 (F 

(2, 133) = 0.55, p = 0.612). Consequently, the null hypothesis of no difference is accepted 

and therefore one can conclude that the time spent on the map in the GIS-MCDA 

individual mode is not influenced by task complexity. These results are inconsistent with 

previous findings by Jankowski and Nyerges (2001a). They reported that the maps were 

used more in the simple task than in the complex situation. Although both Jankowski and 

Nyerges (2001a) study and this research investigated the effect of task complexity on 

information acquisition times within a collaborative GIS-MCDA context, the discrepancy 

between the findings may be due to the use of different GIS-MCDA methods, decision 

problems, and/or decision making platforms (Web-based vs. Desktop-based) in the 

empirical studies.  
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Table 26. Descriptive statistics for the total time spent on the map in the GIS-MCDA 
individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 1.320 6.810 0.000 42.000 
2 10×4 0.745 4.270 0.000 31.000 
3 15×6 2.270 10.350 0.000 60.000 
4 20×8 2.320 7.830 0.000 45.000 

H8b: Given the use of the GIS-MCDA group mode, participants spend more time on the 

map in the high-complexity tasks than the low-complexity tasks. The mean times in 

decision situations 1, 2, 3, and 4 are 0.52, 0.80, 0.61, and 0.09 seconds, respectively (see 

Table 27). Similar to the individual mode, the mean times are not in the expected 

direction. In addition, the ANOVA results indicate that there were statistically 

insignificant differences in the mean times (F (2, 123) = 0.64, p = 0.549). Therefore, the 

hypothesis cannot be accepted. 

 
Table 27. Descriptive statistics for the total time spent on the map in the GIS-MCDA 

group mode. 
Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.527 2.480 0.000 14.000 
2 10×4 0.800 3.210 0.000 19.000 
3 15×6 0.618 3.740 0.000 27.000 
4 20×8 0.090 0.674 0.000 5.000 

 

H8c: In the GIS-MCDA individual mode, participants have a higher number of moves on 

the map in the high-complexity tasks than the low-complexity tasks. Table 28 shows the 

descriptive statistics for the mean number of map moves in the four decision situations. 

The mean map moves in decision situations 1, 2, 3, and 4 are 0.30, 0.07, 0.18, and 0.61, 

respectively. Thus, these values are not in the hypothesized direction. The ANOVA 

results for this hypothesis indicate that there is an insignificant difference in the number 

of map moves among the four experimental conditions (F (1, 99) = 1.48, p = 0.233).  
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Table 28. Descriptive statistics for the number of map moves in the GIS-MCDA 
individual mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.309 1.650 0.000 13.000 
2 10×4 0.072 0.325 0.000 2.000 
3 15×6 0.181 0.795 0.000 5.000 
4 20×8 0.618 2.230 0.000 12.000 

 

H8d: In the GIS-MCDA group mode, an increase in task complexity results in an 

increase in the number of the map moves. Similar to the individual mode, participants 

were expected to have a higher number of moves in the higher levels of task complexity 

than the lower levels. The difference in the number of map moves between the decision 

situations was expected to be significant. Table 29 shows the descriptive statistics for the 

map moves in the four decision situations. The results indicate that the mean values for 

the map moves are not in the anticipated direction. The effects of task complexity on the 

number of map moves was found to be statistically insignificant (F (1, 66) = 1.60, p = 

0.211), as was the case in the individual mode. Therefore, the hypothesis is not supported 

by the evidence.  

Table 29. Descriptive statistics for the number of map moves in the GIS-MCDA group 
mode. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 0.363 1.740 0.000 11.000 
2 10×4 0.145 0.558 0.000 3.000 
3 15×6 0.072 0.325 0.000 2.000 
4 20×8 0.018 0.134 0.000 3.000 

 

Hypotheses 9 

H9: Increased task complexity results in a significant increase in the amount of time 

spent viewing the group decision. Participants were expected to spend more time on 

examining the group decision in the higher levels of task complexity as compared to the 

lower ones. Table 30 summarizes the descriptive statistics for the time spent viewing the 

group decision in the four decision situations. The respective mean times in decision 
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situations 1, 2, 3, and 4 are 10.92, 17.09, 27.01, and 16.87 seconds, respectively. Clearly, 

the differences in the mean times are not in the same direction as suggested by the 

hypothesis. Under the null hypothesis that there is no difference in the total time spent, 

the ANOVA test gives a significant level of 0.283 (F (1, 75) = 1.24, p = 0.283). This 

means that the null hypothesis of no difference should be accepted, or alternatively that 

the task complexity has an insignificant impact on the time spent examining the group 

decision. These results contradict the early findings reported by Jankowski and Nyerges 

(2001a), Schrah et al. (2006), and Gino and Moore (2007). Jankowski and Nyerges 

(2001a) found that, in the collaborative GIS-MCDA context, participants examine the 

group decision (consensus aids) more in the complex task than the simple task. Schrah et 

al. (2006) suggest that decision makers discount the choice advice or recommendations 

less when tasks are complex. The inconsistency between the findings is probably due to a 

difference in the use of GIS-MCDA methods (OWA-base method vs. weighted 

summation method), platforms (Desktop-based vs. Web-based), decision problems, 

decision making methods, etc. (see H3a).  

  
Table 30. Descriptive statistics for the time spent viewing the group decision. 

Level of task 
complexity 

(Alternatives × 
Attributes) 

Mean Std. 
Deviation 

Minimum Maximum 

1 5×2 10.920 15.780 0.000 80.000 
2 10×4 17.090 25.640 0.000 140.000 
3 15×6 27.010 77.780 0.000 500.000 
4 20×8 16.870 25.480 0.000 140.000 

6.2 The effect of decision mode on the information 
acquisition metrics 

H10a: There is a significant difference between the proportions of information search in 

the GIS-MCDA individual and group modes. The null hypothesis is that the decision 

mode has no influence on the proportion of information search. The hypothesis was tested 

by comparing the mean proportion of information searched in the two decision modes. 

The comparison illustrates that this metric is higher in the individual mode than that in the 

group mode (see Figure 27). For the effect of the decision mode, the LMM test results 
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give a p-value of 0.010 (F =7.24, p =0.010 < 0.05), thereby rejecting the null hypothesis 

and suggesting there is a statistically significant difference in the proportion of 

information searched between the two decision modes. In other words, there is sufficient 

evidence from the data to conclude that decision makers search a significantly different 

proportion of the available information in the GIS-MCDA individual mode as compared 

to the group mode. This is consistent with the findings reported by Schrah et al. (2006) 

that the information acquisition strategies differ between the decision situations where 

recommendations are provided (advice acquisition ) and those where they are not. They 

found that recommendations concerning the choice of one or more specific alternatives 

affect the information acquisition strategies (e.g., the proportions of information search) 

used by the decision makers (see also Bonaccio & Dalal, 2006). Consequently, it is likely 

that the representation of the group/consensus ranking of alternatives as the choice 

recommendations influence the way that participants acquire and integrate information in 

their individual decisions.  

 

 
Figure 27. A comparison between the proportions of information search in the two 

decisions modes.  

 



126 

 

H10b: The difference in the proportion of attribute ranges searched between the GIS-

MCDA individual and group modes is significant. The null hypothesis states that the 

decision mode has no impact on the proportion of attribute ranges searched. By 

comparing the proportion of attribute ranges searched in the two decision modes, it is 

evident that this variable in the individual decision mode is higher than that in the group 

mode (see Figure 28). The LMM test results suggest that the null hypothesis of no 

difference between the two decision modes in terms of the proportion of attribute ranges 

searched should be rejected (F = 16.92, p = 0.001 < 0.05). Therefore, one can conclude 

that there is a significant difference in the proportion of attribute ranges examined 

between the two decision modes.  

 

 
Figure 28. A comparison between the proportions of attribute ranges searched in the two 

decisions modes.  

H10c: The amount of average time spent on each piece of information acquired is 

significantly different between the two decision modes. The null hypothesis is that the 

amount of average time spent on each piece of information is not affected by the decision 

mode. By comparing the average decision time between the two decision modes in the 

four experimental conditions (see Figure 29), one can indicate that the time spent 
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acquiring the information pieces in the individual mode is more than that in the group 

mode. Under the null hypothesis that there is no difference in the average decision time 

between the two decision modes, the LMM test gives a p-value of 0.033 (F = 5.04, p 

=0.033 < 0.05). This suggests that there is a significant difference in the average decision 

time between the two decision modes. 

 
Figure 29. A comparison between the average decision times in the two decision modes.  

H10d: There is a significant difference in the variability of information search per 

attribute between the GIS-MCDA individual and group decision modes. The null 

hypothesis states that the two decision modes are not significantly different in terms of 

the variability of information searched per attribute. Comparing the mean variability 

values of the information searched between the two modes indicates that the variability is 

higher in the individual mode as compared to the group mode (see Figure 30). The results 

indicate that there is a statistically significant difference in the variability of information 

searched between the two modes of GIS-MCDA. For the decision mode effect, the LMM 

test gives a p-value of 0.047 (F =4.63, p = 0.047 < 0.05), thereby suggesting that we 

reject the null hypothesis, or alternatively that the decision mode has an insignificant 

impact on the variability of information searched per attribute. These findings are 

consistent with the suggestion by Schrah et al. (2006), that recommendations regarding 

which alternative to choose have an influence on the variability of information search per 
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attribute. Consequently, the group recommendations regarding the rankings of decision 

alternatives significantly affect the variability of information search per attribute. 

 
Figure 30. Comparing the variability of information search per attribute in the two 

decisions modes.  

H10e: There is a significant difference in the variability of information search per 

alternative between the GIS-MCDA individual and group decision modes. The null 

hypothesis is that the decision mode has no influence on the variability of information 

search per alternative. Figure 31 shows a comparison of information searched per 

alternative between the two decision modes in each of the four decision situations. A 

comparison of the mean variability values in the two decision modes indicates that the 

variability is pretty much the same in the two decision modes. This is confirmed by the 

LMM results, indicating that the observed difference in the variability is not statistically 

significant (F = 1.47, p = 0.233). Thus, this hypothesis is not supported by the evidence 

(see also Schrah et al., 2006). 
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Figure 31. A comparison between the variability of information search per alternative in 

the two decision modes. 

H10f: The direction of information search is significantly different between the GIS-

MCDA individual and group decision modes. The null hypothesis states that there is no 

difference between the directions of information search in the two decision modes. 

Participants were expected to adopt different information search directions when the 

decision mode was changed. Comparing the SI and SM mean values in the two modes 

suggests that the participants used different search patterns in the two decision modes (see 

Figures 32 and 33). The LMM results for differences in the direction of information 

searched between the two decision modes gives a p-value of 0.570 (F = 0.32, p = 0.570) 

and 0.421 (F = 0.67, p = 0.421) for SI and SM, respectively. This implies that the null 

hypothesis of no difference cannot be rejected (or the decision mode has an insignificant 

impact on the directions of information search). It provides evidence that the direction of 

information search in the individual decision mode is insignificantly different from that in 

the group decision mode. The result contradicts Schrah et al. (2006) findings. In their 

research, the effect of advice acquisition (choice recommendation) on search pattern was 

found significant at the low and medium complexity levels, and insignificant at the high 

level of task complexity. The possible reasons for the discrepancy between the findings of 
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this study and Schrah et al. (2006) findings might be those discussed with reference to 

H3a . 

 
Figure 32. A comparison between the directions of information search (SI index) in the 

two decision modes.  
  

 
Figure 33. A comparison between the directions of information search (SM index) in the 

two decision modes. 
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H10g: There is a significant difference in the total time spent acquiring information in the 

decision table between the GIS-MCDA individual and group decision modes. The null 

hypothesis states that the decision mode has no influence on the total time spent acquiring 

information in the decision table. It was expected that the difference in the total time 

between the two decision modes would be significant. A comparison of the mean times in 

the two modes confirms that the participants spent different amounts of time in the two 

decision modes (see Figure 34). Given the null hypothesis of no difference in the total 

time between the two decision modes, the LMM test gives a p-value of 0.000 (F = 34.86, 

p = 0.000). This suggests that the null hypothesis of no difference in the total time should 

be rejected, meaning that the total time spent in the individual decision mode is 

significantly different from that in the group mode.  

 
Figure 34. A comparison between the total times spent acquiring the information in the 

two decision modes. 

H10h: The total time spent on the map is significanttly different between the GIS-MCDA 

individual and group decision modes. The null hypothesis is that the total time spent on 

the map is not influenced by the decision mode. By comparing the mean times for the two 

modes in the four experimental conditions, it becomes clear that the total time spent on 

the map in the individual mode differs from that in the group mode (see Figure 35). 

However, under the null hypothesis that there is no difference in the decision times 
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between the two decision modes, the LMM test gives a p-value of 0.168 (F = 1.95, p = 

0.168). This suggests that there is an insignificant difference in the decision time spent on 

the map between the decision modes. The lack of significant difference may be, in part, 

due to the fact that the decision makers focus more on the decision table than the map. In 

other words, the use of a map in the two decision modes is insignificant, and therefore the 

difference is intangible. 

 

 
Figure 35. A comparison between the total times spent on the map in the two decision 

modes.  

H10i: There is a significant difference in the number of map moves between the two 

decision modes. The null hypothesis states that the decision mode has no significant effect 

on the number of map moves. A comparison between the number of map moves in the 

two decision modes is shown in Figure 36. For the decision mode effect, the LMM test 

gives a p-value of 0.722 (F = 0.12, p = 0.722), thereby suggesting that the null hypothesis 

of no difference in the total map moves should be accepted. Thus, the hypothesis has not 

been supported by the evidence.  
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Figure 36. A comparison between the number of map moves in the two decision modes. 
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6.3 The effect of aid on the information acquisition metrics 

Hypotheses 11 

H11a: In the use of the GIS-MCDA individual mode, the number of moves in the decision 

table is significantly higher than that on the map. Participants were expected to have a 

higher number of moves in the decision table than on the map. Figure 37 shows a 

comparison between the numbers of moves in the table and map for each of the four 

decision situations. As indicated in the figure, the number of table moves is higher than 

the number of map moves. Under the null hypothesis that there is no difference in the 

number of moves between the decision table and map, the LMM test gives a p-value of 

0.000 (F = 39.05, p = 0.000< 0.05). This provides the evidence to reject the null 

hypothesis and conclude that the number of table moves is significantly higher than the 

number of map moves. The possible reasons for using the decision table more than the 

map could be: (i) the importance of information that decision table represents, and (ii) the 

way that it represents the information. Although both the map and table representations 

complement each other, they contain different information (criteria outcome vs. 

geographic decision space) in fundamentally different ways. The map represents the 

spatial information relevant with the geographic decision space using a graphical 

structure, while the table emphasizes symbolic information, and uses a precise yet 

compact way for representing criteria outcome space. Speier (2006) argues that data 

visualized using such techniques as graphs, scatterplot displays, tables, and maps allows 

the decision-maker to shift some of the cognitive processing burden to perceptual 

operations that typically occur automatically and result in significantly lower mental 

workload (see also Dennis & Carte, 1998; Kim, Hahn, & Hahn, 2000). Therefore, it is 

reasonable to expect that the types of decision aids offered in the GIS-MCDA 

environment have a significant influence on the number of times that they are used and 

the way they are brought into use.  
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Figure 37. A comparison between the number of table and map moves in the individual 

decision mode. 

H11b: Under the use of the GIS-MCDA group mode, the number of moves in the decision 

table is significantly higher than that on the map. Similar to the individual mode, 

participants were expected to have a higher number of moves in the decision table than 

the map. A comparison of the moves between the table and map for each of the decision 

situations is presented in Figure 38. The results suggest that the number of moves in the 

decision table is higher than that on the map, as was observed in the individual mode. 

Given the null hypothesis of no difference in the number of moves between the decision 

table and map, the LMM test gives a significance level of 0.000 (F = 52.69, p = 0.000< 

0.05); therefore, we reject the null hypothesis and suggest that the number of table moves 

is significantly higher than map moves.  
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Figure 38. A comparison between the number of table and map moves in the GIS-MCDA 

group mode.  

H11c: In the GIS-MCDA individual mode, the amount of time spent on the decision table 

is significantly more than that on the map. Participants were expected to spend more time 

acquiring the information in the table than the map. Figure 39 shows a comparison of the 

time spent between the decision table and map in each of the four decision situations. As 

can be seen from the figure, the time spent examining the information pieces in the 

decision table is higher than that on the map. The LMM test results indicate that one 

should reject the null hypothesis that there is no difference in the amount of time spent 

between the decision table and map. In other words, there is a statistically significant 

difference in the time spent between the table and map (F = 62.29, p = 0.000 < 0.05). This 

means that participants spent a significantly higher amount of time on information 

acquired in the decision table than the map.  
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Figure 39. A comparison between the time spent on the decision table and map in the 

GIS-MCDA individual mode. 

H11d: In the GIS-MCDA group mode, the amount of time spent on the decision table is 

significantly more than that on the map. Comparing the time spent between the table and 

map confirms that participants spent more time on the table than the map, as was 

observed in the individual mode (see Figure 40). As the LMM test results suggest (F = 

56.13, p = 0.000 < 0.05), the null hypothesis of no difference in the time spent between 

the decision table and map should be rejected. This means that, similar to the individual 

mode, the participants spent significantly more time examining the decision table than the 

map. This is consistent with the findings of the previous study by Jankowski and Nyerges 

(2001b). They found that, in the group GIS-MCDA setting, participants tend to spend a 

longer time on the decision table than the map. Similar arguments to the ones made for 

the hypothesis H11a can be applied here to explain why participants tend to spend more 

time on the use of the decision table, rather than the map. 

 

 

 



138 

 

 
Figure 40. Comparing the time spent on the decision table and map in the GIS-MCDA 

group mode. 

H11e: In both the GIS-MCDA individual and group modes, there is a significant 

correlation between the time spent on the decision table and the time spent on the map 

across the decision situations. Within the individual decision mode, the Pearson 

correlation coefficients show that these two metrics are positively correlated in each of 

the decision situations (see Table 31). However, the metrics are either weakly or 

insignificantly correlated with each other in all of the decision situations, except for 

decision situation 2, in which the correlation is significant. As regards the group mode, 

the direction of correlation varies across the decision situations. The two metrics are 

positively correlated in the former decision situations and negatively in the latter decision 

situations. Except for decision situation 1, there is an insignificant relationship between 

the two metrics. Consequently, there is not enough evidence to support the hypothesis. 

H11f: Given the use of both the GIS-MCDA individual and group modes, there is a 

significant correlation between the number of table moves and the number of map moves. 

Examining the correlation coefficients in the GIS-MCDA individual mode indicates that 

the correlations are not in the same direction across the decision situations (see Table 31). 

Specifically, the number of table and map moves are either weakly or insignificantly 
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correlated with each other in all of the decision situations, except for decision situation 2, 

in which the correlation is moderate and significant. These findings are consistent with 

other studies on information acquisition behavior in the GIS-MCDA context (Jankowski 

& Nyerges, 2001a; Meng, 2010). For example, Jankowski and Nyerges (2001a) found a 

very weak relationship between the table and map moves. They suggested that the map 

and table moves are not likely to occur in a systematic manner across decision tasks. 

When it comes to the correlations in the group mode, the two metrics are significantly and 

moderately correlated with each other in the former decision situations and either weakly 

or insignificantly correlated in the latter conditions. Accordingly, the evidence cannot 

support the hypothesis. 

Table 31. The correlation between the time spent on the table and map, as well as the 
table and map moves. 

 GIS-MCDA individual mode GIS-MCDA group mode 
Decision situation 1 2 3 4 1 2 3 4 
TT and MT 0.165 0.294* 0.053 0.096 0.285* 0.209 -0.079 -0.008 
TM and MM -0.046 0.329* -0.056 0.100 0.769** 0.414** -0.067 0.005 
Note: ** significant at p < 0.01, *significant at p < 0.05, TM = the number of table moves, TT 
=the time spent on the decision table, MM = the number of map moves, MT = the time spent on 
the map. 

 

6.4 The relationship between time spent examining the 
decision table/map and the time spent viewing the 
group decision 

Hypothesis 12 

H12a: There is a significant relationship between the time spent on the map and the time 

spent viewing the group decision in the GIS-MCDA group mode. As shown in Table 32, 

the correlation coefficients are weak and insignificant in all of the four decision 

situations. The results suggest there is an insignificant relationship between the time spent 

on the map and the time spent viewing the group decision. The lack of a relationship 

implies that those who spend a great or low amount of time acquiring information on the 

map do not necessarily spend this same amount of time examining the consensus ordering 

of alternatives and group discussions on the group decision map. These results are 
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somehow consistent with the findings reported by Jankowski and Stasik (2006) and Meng 

(2010). For example, Meng (2010) found that there is a relatively low and insignificant 

correlation between the use of mapping functions and group deliberation/argumentation 

functions in a collaborative GIS-MCDA process. The use of the decision table and the 

group decision map in this study reflect the use of MCDA functions and 

deliberation/argumentation functions, respectively. 

H12b: In the GIS-MCDA group mode, there is a significant relationship between the time 

spent on the decision table and the time spent viewing the group decision. The correlation 

coefficients show that these two metrics are positively correlated in all of the decision 

situations (see Table 32). However, the positive correlations are fairly low, and 

insignificant in decision situations 2 and 4. The correlation overall shows that those 

decision makers spending more time on the examination of information in the decision 

table are likely to spend more time on viewing the group decision, and vice versa. To 

some extent, the correlation results corroborate the finding reported by Meng (2010). He 

found that there is a statistically significant, moderate and positive relationship between 

the number of MCDA functions used and the number of group deliberation functions in 

the context of a collaborative GIS-MCDA.  

 
Table 32. The correlation coefficients between the time spent on the decision table/ map 

and time spent viewing the group decision. 
 Decision situation 
 1 2 3 4 

MT and GT -0.117 0.118 0.056 0.017 
TT and GT 0.278* 0.026 0.355** 0.202 

Note: ** significant at p < 0.01,   * significant at p < 0.05, MT = the time spent on the map; GT = 
the time spent viewing the group decision; TT = the time spent on the decision table. 
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6.5 The relationship between information acquisition 
metrics  

Hypothesis 13 

H13: There is a significant relationship between the information acquisition metrics 

across the decision situations. This hypothesis was tested using the Pearson correlation 

coefficient for a pair of metrics. As shown in Table 33, there is an insignificant and fairly 

weak relationship between the proportion of information search and the proportion of 

attribute ranges examined. In addition, the direction and value of the correlation differ 

across the decision situations in both the individual and group modes. It can be concluded 

that there is an insignificant relationship between these two metrics. This implies that the 

examination of available information cells (alternative-attribute values) is not 

proportional to the examination of attribute ranges, and vice versa.  

Table 33. The correlation coefficients among the information acquisition metrics in the 
decision table. 

 Decision situation 

 GIS-MCDA individual mode GIS-MCDA group mode 

 1 2 3 4 1 2 3 4 

P and R -0.053 0.239 0.070 -0.051 -0.071 -0.255 -0.365 -0.301 

P and SI -0.464** -0.339* -0.385** -0.515** -0.399* -0.330 -0.394 -0.190 

P and SM -0.475** -0.654** -0.818** -0.744** -0.330 -0.570** -0.550** -0.311 

P and AT -0.077 -0.189 0.083 -0.271 -0.241 0.011 -0.383* -0.047 

P and VAL -0.535** -0.044 0.505** 0.350* -0.300 0.330 0.624** 0.451* 

P and VAT -0.064 0.505** 0.813** 0.874** 0.172 0.879** 0.834** 0.786** 

R and SI 0.028 0.067 -0.038 -0.138 -0.187 -0.119 -0.203 -0.135 

R and SM -0.030 -0.238 -0.192 -0.204 -0.243 -0.277 -0.075 -0.123 

R and AT -0.028 0.093 0.354* 0.022 -0.096 -0.104 -0.050 -0.016 

R and VAL -0.066 -0.150 -0.015 -0.044 -0.218 -0.296 -0.285 -0.218 

R and VAT -0.101 0.076 0.097 0.158 0.079 0.169 -0.080 -0.035 

AT and SI 0.126 0.204 0.175 0.101 0.196 0.215 -0.060 0.357 

AT and SM 0.218 0.165 -0.118 0.151 0.187 0.182 -0.009 0.471 
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AT and VAL 0.105 -0.139 0.116 -0.206 0.270 0.132 -0.256 0.594* 

AT and VAT 0.020 -0.181 0.010 -0.232 -0.041 -0.078 -0.151 -0.199 

VAT and SI -0.463** -0.492** -0.435** -0.635** -0.617** -0.498* -0.548** -0.441* 

VAT and SM -0.391* -0.619** -0.852** -0.890** -0.834** -0.782** -0.831** -0.764** 

VAL and SI 0.623** 0.219 0.073 0.209 0.400* 0.275 0.171 0.380 

VAL and SM 0.710** 0.470** 0.078 0.243 0.687** 0.411* 0.138 0.591** 

VAL and VAT -0.297 -0.123 0.022 -0.016 -0.560** -0.069 0.269 -0.114 

Note: ** significant at p < 0.01, * significant at p < 0.05, P = the proportion of information 
search, R = the proportion of attribute ranges examined, AT = the average decision time, VAT = 
the variability of information search per attribute, VAL = the variability of information search per 
alternative, SI = the search index, SM = the strategy measure (for definitions of the metrics see 
Chapter 4).  

In the individual mode, the proportion of information search is either moderately and 

negatively correlated or significantly correlated with the direction metrics (i.e., the SI and 

SM) in all of the decision situations (see Table 33). This means that the greater the 

number of information (cells) examined by the decision maker, the lower the values of SI 

and SM, and therefore the more attribute-wise strategy is used. These results are 

inconsistent with the findings of the previous studies by Abdul-Muhmin (1994) and 

Stafford (2007), which show a positive correlation between the proportion of information 

searched and the direction of search. According to those studies, the greater the amount of 

information that is searched, the more likely an alternative-wise strategy is used. The 

discrepancy between the findings of this research and findings of the previously described 

studies may be explained by the differences in the methodological approaches or decision 

making techniques. The previous studies involved ranking the alternatives based on a set 

of attributes in a moderated experimental sessions, while the present study employed a 

Web-based GIS-MCDA technique in the decision making process (see H3a). Similar to 

the individual mode, the coefficients show a moderate and negative correlation between 

the two metrics in the group mode. However, the proportion of information search is 

insignificantly correlated with the direction metrics in all of the decision situations.  

In the individual mode, the proportion of the information search and the average decision 

time are weakly and insignificantly correlated in all of the decision situations. In addition, 
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the direction and value of the correlation differ across the decision situations. When it 

comes to the group mode, Table 33 shows a weak and insignificant correlation between 

the two metrics, except for decision situation 3, in which the correlation is significant. 

Also, the direction and value of the correlation varies across the decision situations, as 

was the case in the individual mode. 

It is evident that, in the individual mode, the proportion of information search and the 

variability of information search per alternative are not strongly and significantly 

correlated in all of the four decision situations. In addition, the coefficients indicate that 

the significance level, direction, and value of the correlation vary across the decision 

situations. For the group mode, the coefficients show a low and insignificant value of the 

correlation coefficient for decision situations 1 and 2 and a significant and moderate 

correlation for decision situations 3 and 4. In addition, the significance level, direction, 

and values of the coefficient are different in the decision situations, as is observed in the 

individual mode. 

In the individual mode, except for an insignificant correlation in the first decision 

situation, the proportion of the information search is strongly and significantly correlated 

with the variability of information search per attribute. The significance level and 

direction of the correlation in the first decision situation are different from those in the 

remaining decision situations. In the group mode, the two metrics are positively 

correlated. Similar to the individual mode, the two metrics are strongly and significantly 

correlated, except for the insignificant correlation in decision situation 1. Moreover, the 

significance level and value of the correlation in the first decision situation differ from 

those in other conditions, as is the case in the individual mode. 

In both of the decision modes, the correlation between the proportion of attribute ranges 

on the one hand, and the direction of search (i.e., SI and SM), the average decision time, 

the variability of information search per alternative, and the variability of information 

search per attribute on the other hand is generally insignificant and relatively low (see 

Table 34). Similarly, in both of the decision modes, the correlation coefficients overall 
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indicate an insignificant and weak relationship between the average decision time on the 

one hand, and the direction of search (i.e., SI and SM), the variability of information 

search per alternative, and the variability of information search per attribute on the other 

hand. The significance level, direction, and value of the correlation vary across the 

decision situations. 

In both the individual and group decision modes, the variability of information search per 

attribute is either strongly (overall) and negatively correlated or significantly correlated 

with the direction of search (i.e., SI and SM). This means that the variability of 

information search per attribute increases as the participants use a more attribute-wise 

strategy during the information search. The correlation between the direction of search (SI 

and SM) and the variability of information search per alternative is positive and relatively 

low in both of the decision modes. Considering SI as the direction metric, the correlation 

is significant in the first decision situation in both the individual and group modes. With 

regard to SM, the correlation is significant in decision situations 1 and 2 in the individual 

decision mode, and 1, 2 and 4 in the group mode. The correlation coefficients show that, 

in the individual decision mode, the variability of information search per alternative is 

overall weakly and insignificantly related with the variability of information search per 

attribute. When it comes to the group decision mode, the correlation is significant only in 

the first decision situation. In addition, the direction and value of the correlation vary 

across the decision situations in both the individual and group modes. 

6.6 The effect of task complexity on the relationship 
between the information acquisition in the decision table 
and map  

Hypotheses 14  

H14a: In the GIS-MCDA individual mode, task complexity has an insignificant impact on 

the relationship between the time spent on the decision table and map. The dependent 

variable was the time spent on the map, the covariate was the time spent on the decision 

table, and the factor was task complexity. Consistent with the expectations, the LMM 
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results suggest that an increase in task complexity has an insignificant effect on the 

relationship between the table and map time (F = 0.82, p = 0.485). In other words, task 

complexity has no impact on the interaction between the geographic (decision) and 

criteria outcome spaces (the interaction between the map and table uses). There is, 

therefore, evidence from the data in support of the hypothesis. 

H14b: In the GIS-MCDA group mode, task complexity has an insignificant impact on the 

relationship between the time spent on the decision map and table. Similarly with the 

individual mode, the LMM test results show that an increase in task complexity has an 

insignificant effect on the relationship between the two times (F = 1.51, p = 0.221). Thus, 

the hypothesis that the strength of the relationship between the two measures (the times 

spent on the decision map and table) is not moderated by the task complexity is 

confirmed. This is an indication that the interaction between the exploration of the 

geographic and criteria outcome spaces in the GIS-MCDA group mode is not affected by 

the complexity of decision task. 

H14c: In the GIS-MCDA individual mode, task complexity has an insignificant influence 

on the relationship between the number of map and table moves. In the LMM test, the 

number of map moves was considered as the dependent variable and the table moves as 

the covariate. For task complexity effect, the LMM test gives a significant value of 0.156 

(F = 1.814, p = 0.156), which means that task complexity has an insignificant effect on 

the relation between the map and table moves in the individual mode. This confirms the 

results of H14a; that is, task complexity has no effect on the interaction between the 

geographic and criteria outcome space. Consequently, the strength of the relationship 

between the table and map uses does not vary under different level of task complexity. 

H14d: In the GIS-MCDA group mode, task complexity has an insignificant influence on 

the relationship between the number of map and table moves. Similarly with the 

individual mode, the LMM test results for this hypothesis indicate that task complexity 

has an insignificant effect on this relationship (F = 1.45, p = 0.236). This implies that task 

complexity has no effect on the interaction between the geographic and criteria outcome 
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spaces. The result corroborates the findings reported by Jankowski and Nyerges (2001a). 

They found that, in the GIS-MCDA group mode, task complexity has an insignificant 

effect on the interaction between the number of map and table moves. 

6.7 The effect of task complexity on the relationship 
between the time spent on the decision table/map and 
the group decision 

Hypotheses 15  

H15a: In the GIS-MCDA group mode, increased task complexity has an insignificant 

influence on the relationship between the time spent viewing the group decision and the 

time spent on the decision table. In the LMM test, the dependent variable was the time 

spent viewing the group decision, the covariate was the time spent on the decision table, 

and the factor was task complexity. For task complexity effect, the LMM test gives a 

significance value of 0.175 (F = 1.71, p = 0.175), indicating that the task complexity has 

an insignificant effect on the relationship. What this suggests is that the relationship 

between the times spent to explore the criteria outcome space in the decision table and to 

review the other participants’ comments and group rankings of the alternatives on the 

group decision map is not affected by the task complexity. 

H15b: In the GIS-MCDA group mode, increased task complexity has an insignificant 

influence on the relationship between the time spent viewing the group decision and the 

time spent on the map. The dependent variable was time spent viewing the group 

decision, the covariate was the time spent on the map, and the factor was task complexity. 

The LMM test gives a significance value of 0.975 (F = 0.001, p = 0.975) for task 

complexity effect, which means that task complexity has an insignificant effect on this 

relationship. Consequently, the relationship between the times spent for the acquisition of 

information on the map (the geographic decision space) and the examination of the group 

rankings of the alternatives and geo-referenced discussions on the group decision map is 

not influenced by the task complexity. 
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6.8 The effect of decision mode on the relationship between 
decision table and map  

Hypotheses 16  

H16a: The decision mode has an insignificant effect on the relationship between the time 

spent searching for information using the decision table and map. The dependent variable 

was the time spent searching the map while the covariate is the time spent looking for 

information in the decision table, and the factor is the decision mode (that is, individual 

versus group decision making). For the effect of the decision mode on this relationship, 

the LMM test results give a significance value of 0.666 (F = 0.18, p = 0.666). This 

implies that the interaction between the exploration of the geographic decision space and 

the criteria outcome space is not significantly different between the two decision modes. 

As was observed in the hypothesis 11, in both of the decision modes, the amount of time 

spent on the decision table is higher than that on the map. This in part confirms that the 

relationship between the table and map uses in the GIS-MCDA individual decision 

making mode differ insignificantly from that in the group mode.  

H16b: The decision mode has an insignificant impact on the relationship between the 

number of map and table moves. In the LMM test, the factor was the decision mode and 

the covariate was the number of table moves whereas the dependent variable was the 

number of map moves. For the effect of the decision mode on this relationship, the LMM 

test gives a significance value of 0.887 (F = 0.02, p = 0.887). Clearly, there is enough 

evidence from the data in support of the hypothesis. Consequently, the relationship 

between the number of map and table moves is not significantly different between the two 

decision modes. This confirms that the interaction between the exploration of the 

geographic decision space and the criteria outcome space is not affected by the decision 

mode, as was the case for the hypothesis H16a. 
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Chapter 7 

7 Conclusions  

This chapter begins with an overview of the main findings and research contributions 

made by this thesis. It highlights the significant theoretical, technical, and empirical 

contributions of the thesis, as well as the potential implications of the overall findings. 

Next, a number of practical and theoretical limitations of the present study that need to be 

addressed are discussed. Finally, the chapter gives some prospective points, directions, 

and suggestions for future research. 

7.1 Research contributions  

The main purpose of the study was to examine human-computer interaction patterns 

within a Web 2.0- based collaborative MC-SDSS. Specifically, the study investigated: (i) 

how participants acquire decision-related information in making their individual 

decisions, and (ii) how the decision situations involving different levels of task 

complexity, types of information aids and decision modes affect the information 

acquisition strategies used by the decision makers. Through achieving these objectives, 

this research has made several theoretical, technical and empirical contributions to the 

research on Web 2.0-based collaborative MC-SDSSs.  

7.1.1 Theoretical contribution 

The major theoretical contributions of the research are the development of: (i) a 

collaborative GIS-MCDA framework and (ii) a conceptual model for studying 

information acquisition behavior in the collaborative GIS-MCDA context. The 

collaborative GIS-MCDA framework involves four main steps, including the acquisition 

of decision information, the specification of criteria preferences, and the computation of 

individual and group/consensus solutions using decision rules. During the information 

acquisition step, decision makers search for information on the alternatives, attributes, 

and attribute values in a decision table (criteria outcome space) or map (geographic 

decision space). This enables them to recognize the decision situation, and optimally 
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specify their judgments and preferences with respect to the evaluation criteria. The 

approach employs a rank-order approach for specification of the criteria preferences; that 

is, every criterion under consideration is ranked in the order of the decision maker’s 

preference. The rank-order method is simple, reliable, and requires less time to specify 

the criteria/attribute preferences (Bakhsh, 2008). The collaborative GIS-MCDA 

framework uses a decision rule that involves two stage procedures: (i) the MCDA 

decision rule for modeling the individual decision making (individual ordering of 

alternatives) based on the individual preferences and (ii) the collective decision rule for 

combining individual preferences to produce group preference (group ordering of 

alternatives). The first stage is operationalized by an OWA-based GIS-MCDA approach 

to create individual decision maker’s solutions. The OWA-based method allows 

participants to define a decision strategy on a continuum between pessimistic and 

optimistic strategies. By changing a parameter (ORness value), a participant can control 

the level of decision risk and provide a low- or high- risk solution for the decision 

problem. The second stage employs the Borda voting method for aggregating the 

individual solutions to a consensus solution. The simplicity and comprehensibility are 

central advantages of the voting approaches for collaborative decision making 

(Malczewski, 2006b). 

The second theoretical contribution was the development of a conceptual framework for 

investigating the information search behavior in the collaborative GIS-MCDA context. 

The framework provides a formal approach for the study of cognitive processes in the use 

of Web 2.0-based collaborative MC-SDSS, based on concepts drawn from behavioral 

decision theory and information processing psychology. Based on the research 

hypotheses (see Chapter 1) and the literature review (see Chapter 2), this study presented 

a set of information acquisition metrics to be used as a means of describing information 

acquisition behavior and decision strategies. The metrics for the information search fell 

within three broad categories: decision table, map, and group decision metrics. The 

metrics used in the decision table (criterion outcome space) were operationalized in terms 

of: (i) the proportion of information search, (ii) the variability of information search per 
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attribute, (iii) the variability of information search per alternative, (iv) the direction of 

search (sequence of information search), (v) total time spent acquiring the information, 

(vi) and average time spent acquiring each piece of information. The map metrics 

represent the information search variables concerned with exploring the map or 

geographic decision space. These include (i) the total time spent on the map exploration 

and (ii) the number of moves on the map (Jankowski & Nyerges, 2001b). The third metric 

was concerned with acquiring information from the other decision makers in the 

collaborative decision making process. This metric was operationalized in terms of the 

time spent exploring the group decision, deliberations, and discussions.  

7.1.2 Technical contribution 

From a technical point of view, this research has presented the design and development of 

a Web 2.0-based collaborative MC-SDSS for a spatial decision making process based on 

the proposed GIS-MCDA approach. The collaborative MC-SDSS provides an open, 

asynchronous, distributed, and active decision making process. People can have access to 

relevant geographical data and GIS-MCDA tools anywhere (any location that has the 

Internet access), anytime (24 hours a day, 7 days a week), and through any PC or 

handheld device (e.g., PDA, smart phones) and network (wired or wireless technologies), 

thus enhancing the level of community participation in spatial planning. It has been 

argued that the concept of “24/7” access (i.e., 24 hours a day, 7 days a week) opens up 

opportunities for more people to participate in the decision process (Kingston, 2002; Tang 

& Waters, 2005).  

The system consists of two key elements for supporting the spatial decision making: 

analytic and deliberative. The analytic (or mathematical) dimension of the system deals 

with a mechanism that allows individual decision-makers to input their value judgments 

about the decision problem, develop individual solutions, and eventually arrive at a group 

decision in such a way that represents best the preferences of all participants. The 

deliberative aspect of the system focuses on building consensus among participants 

through organizing debates and facilitating negotiation and communication. It involves 
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participants’ comments and discussions regarding different aspects of the decision 

problem. The deliberative element of the system enhances communication, the exchange 

of values, and the sharing of information among decision-makers and stakeholders 

regarding the geospatial issue in question (Boroushaki & Malczewski, 2010b).  

The proposed analytic-deliberative MC-SDSS has been developed based on Web 2.0 

techniques, including Google Web Toolkit (GWT) and Google Maps APIs. Web 2.0 

techniques have made significant contributions to the interactivity, user-centeredness, 

deliberation, collective intelligence, content generation (both by users and for users) of 

the collaborative GIS-based MCDA frameworks. GWT, an AJAX (Asynchronous 

JavaScript and XML) development tool, is one of the best existing frameworks to build 

Web 2.0 applications. The Ajax-powered MC-SDSS allows for seamless interaction 

between the users and the system; it provides a more interactive platform for 

collaborative decision making (Rinner et al., 2008; Bugs et al., 2010).  

The Google Maps services provide open source or free-to-use software and geospatial 

data that allow novices and experts to use them in a user-friendly and familiar 

environment (Hall & Leahy, 2006; Miller, 2006; Udell, 2008; Boroushaki & Malczewski, 

2010b). Goodchild (2007) calls the Google Maps phenomenon the “democratization of 

GIS,” since it has opened some of the more straightforward capabilities of GIS 

to the general public. This demonstrates the realization of what researchers have theorized 

about in reference to the concept of PGIS, and therefore allows Google Maps to build the 

foundation for any collaborative WebGIS development (Boroushaki, 2010; Leahy, 2011).  

7.1.3 Empirical contribution 

The empirical contribution of this dissertation lies in the use of a case study (parking site 

selection) to examine the effect of task complexity, information/decision aids, and 

decision modes on information acquisition metrics and their relations. The study 

investigated the differences in information acquisition (metrics) and their relationships 

when task complexity or information load increased (low complexity vs. high 
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complexity), the structures of information sources varied (the map vs. table), and the 

decision mode changed (individual vs. group decision making).  

As was discussed in Chapters 1 and 2, the basic assumption underlying an examination of 

task complexity effects was that information search strategies shift from compensatory to 

non-compensatory as the amount of information used or task complexity increases. The 

following hypotheses represented six fundamental ways this shift in strategies manifest 

itself: (1) a smaller proportion of available information is examined; (2) a smaller 

proportion of attribute ranges is examined; (3) there is a decrease in the average time 

spent acquiring each piece of information (information cells); (4) there is increased 

variation in the amount of information examined per alternative; (5) and per attribute; and 

(6) search becomes organized by attributes rather than by alternatives. In addition to these 

hypotheses, it was expected that an increase in task complexity would result in an 

increase in: (1) the total time spent acquiring the information in the decision table; (2) the 

total time spent on the map exploration; (3) the number of moves on the map; and (4) the 

time spent exploring the group decision. 

Table 34 summarizes findings from the empirical study for the task complexity and 

decision mode effects. With regards to the task complexity effects, support was found for 

hypotheses concerning the following information acquisition metrics: (1) the proportion 

of information search; (2) the proportion of attribute ranges examined; (3) the variability 

of information search per attribute; and (4) the direction of search. The effects on the 

proportion of information searched and attribute ranges examined were either significant 

or in the hypothesized direction in both of the decision modes. For the variability of 

information search per attribute, the effect was in the hypothesized direction, and 

significant only within the GIS-MCDA individual mode. The effect of task complexity on 

the direction of search (SM index) was in the expected direction only within the GIS-

MCDA individual mode and lacked statistical significance in both of the decision modes. 

The impact of the task complexity on the other metrics in both of the decision modes 

were neither significant nor in the direction suggested by the relevant hypotheses. Despite 

the lack of significant differences for some of the hypotheses, it is reasonable to conclude 



153 

 

that overall, an increase in task complexity results in the use of non-compensatory 

decision strategies. 

The hypotheses concerning the decision mode effects stated that there is a significant 

difference in the information acquisition metrics between the GIS-MCDA individual and 

group modes. Looking at the table, it is evident that the two decision modes are 

significantly different in terms of: (1) the proportion of information search, (2) proportion 

of attribute ranges examined, (3) variability of information search per attribute, (4) the 

total time spent acquiring the information in the decision table, and (5) the average time 

spent acquiring each piece of information. However, no support has been found for the 

effects of decision mode on the variability of search per alternative, direction of search, 

the total time spent on the map exploration, and the number of moves on the map. 

Although, not all of the metrics were found to be significantly different between the two 

decision modes, the findings overall show that the information acquisition and integration 

behaviors of decision participants in the GIS-MCDA individual mode differ from those in 

the GIS-MCDA group mode.  
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Table 34. The effect of task complexity and decision mode on the information acquisition 
metrics. 

 The effect of task complexity The effect 
of decision 

mode b 
Information 

aid 
Information acquisition 

metric 
Individual 

mode a 
Group mode a 

Decision 
table 

Proportion of information 
search 

Yes/Yes Yes/Yes Yes 

Proportion of attribute 
ranges examined 

Yes/Yes Yes/Yes Yes 

Variability of information 
search per attribute 

Yes/Yes No/No Yes 

Variability of information 
search per alternative 

No/No No/No No 

Direction of search (SI) No/No No/No No 
Direction of search (SM) Yes/No No/No No 
Total time spent acquiring 
the information 

No/No No/No Yes 

Average time spent 
acquiring the each piece of 
information 

No/No No/No Yes 

Map 

The total time spent on the 
map exploration 

No/No No/No No 

The number of moves on 
the map 

No/No No/No No 

Group 
decision map 

The time spent exploring 
the group decision 

N/A No/No N/A  

Note: a the effect is in the hypothesized direction/ the effect is significant, b the effect is 
significant. 

With regards to the effect of information aids (map and decision table aids) on the 

information acquisition behavior (or the dynamics of using GIS decision aids) during the 

collaborative decision making, the hypotheses proposed that, in both the GIS-MCDA 

individual and group modes, the decision table is used more than the map. It was 

expected that the number of moves in and time spent on the decision table would be 

significantly higher than that in the decision map. As shown in Table 35, the findings 

emerging from this study clearly demonstrate that, in both of the decision modes, the 

participants had a higher number of moves and spent more time on the decision table than 

the map. These effects were either significant or in the direction predicted by the relevant 

hypothesis. 
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Table 35. The effect of information aid on the information acquisition metrics. 
 The effect of information aid 

Individual mode a Group mode b 
Total time spent on the table vs. the map Yes/Yes Yes/Yes 

The number of moves in the table vs. on the map Yes/Yes Yes/Yes 
Note:  a,b the effect of information aid is in the hypothesized direction/ the effect is 
significant. 

Table 36 summarizes the significance of correlation among the information acquisition 

metrics in the decision table. In the GIS-MCDA individual mode, the proportion of 

information search is significantly correlated with the direction metrics (i.e., SI and SM) 

in all of the four decision situations. In both the individual and group decision modes, 

there is a significant correlation between the variability of information search per attribute 

and the direction of search (SI and SM). This means that the variability of information 

search per attribute increases as the decision makers use a more attribute-wise strategy 

during the information search. The other correlations, in both the individual and group 

decision modes, are not significant in all of the four decision situations. 

 
Table 36. The significance of correlation among the information acquisition metrics in the 

decision table 
 GIS-MCDA individual mode GIS-MCDA group mode 
P and R No No 
P and SI Yes No 
P and SM Yes No 
P and AT No No 
P and VAL No No 
P and VAT No No 
R and SI No No 
R and SM No No 
R and AT No No 
R and VAL No No 
R and VAT No No 
AT and SI No No 
AT and SM No No 
AT and VAL No No 
AT and VAT No No 
VAT and SI Yes Yes 
VAT and SM Yes Yes 
VAL and SI No No 
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VAL and SM No No 
VAL and VAT No No 

Note: Yes = the coefficient of correlation is significant in all of the four decision situations, No = 
the coefficient of correlation is not significant in all of the four decision situations, P = the 
proportion of information search, R = the proportion of attribute ranges examined, AT = the 
average decision time, VAT = the variability of information search per attribute, VAL = the 
variability of information search per alternative, SI = the search index, SM = the strategy measure. 

Table 37 summarizes the effect of the task complexity and decision mode on the 

relationships between the time spent on the decision table and map, the number of map 

and table moves, the time spent viewing the group decision and the time spent on the 

decision table, and the time spent viewing the group decision and the time spent on the 

map. It can be seen from the table that both the task complexity (either in the GIS-MCDA 

individual mode or group mode) and decision mode have insignificant effect on the 

relationships. This implies that the interaction between the exploration of the geographic 

decision, criteria outcome spaces, and the group decision map is insignificantly 

influenced by the task complexity and decision mode.  

 
Table 37. The effect of task complexity and decision mode on the relationship between 

information acquisition in the decision table, map, and group decision map.  

 The effect of task complexity The effect of 

decision 

mode 
Individual 

mode 
Group mode 

The relationship between the time spent 
on the decision map and table No No No 

The relationship between the number of 
map and table moves 

No No No 

The relationship between the time spent 
viewing the group decision and the time 
spent on the decision table 

No No No 

The relationship between the time spent 
viewing the group decision and the time 
spent on the map 

No No No 

Note: No = the effect is not significant.  
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7.2 Implications  

The findings emerging from this empirical study offer important implications for research 

in the area of spatial decision making. First, the findings broaden and deepen our 

understanding of collaborative spatial decision making behavior and provide details about 

decision process dynamics involving geographic decision aids. An understanding of how 

collaborating participants acquire and combine decision-related information in a decision 

making process provides a contribution to knowledge about decision processes and 

challenges (Jankowski & Nyerges, 2001b). Second, the findings make contributions to 

behavioral decision theory and have implications for developing the theoretical constructs 

and propositions of information acquisition behavior in the collaborative GIS-MCDA 

context. Specifically, the findings allow researchers to create theoretical frameworks 

explaining why information search or human-computer interaction patterns differ 

between low-complexity and high-complexity tasks, GIS-MCDA individual and group 

decision modes, and map- and table-based information aids. For example, researchers 

might develop theoretical reasons why the distinction between GIS-MCDA individual 

and group decision modes has implications for whether or not decision makers use all or 

only a subset of the available information in their evaluations. 

Third, this research has practical implications for the development of collaborative MC-

SDSSs. The findings provide a new perspective on the use of decision support aids, and 

also important clues for designers to develop an appropriate user-centered Web-based 

collaborative MC-SDSS (Meng, 2010). They enable researchers to gain insights into how 

information search and decision-making processes in the MC-SDSS are affected by 

decision contexts. A better understanding of decision making behavior would aid 

researchers and designers in finding ways to properly structure decision information and 

improve the quality of spatial decision making; it encourages certain user-centered 

designs of the system where system goals, objectives, context, and environment are all 

aligned with the users’ preferences. If the decision situations do affect the search strategy 

employed by decision makers, and if the search strategy in turn affects the decision made, 

then MC-SDSS designers can foster the use of a particular decision making process via 
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manipulation of the decision situation. For instance, the use of compensatory decision-

making processes can be enhanced by limiting the amount of information provided or by 

reorganizing the format of presenting information through aggregation and 

summarization. The results that decision makers used relatively more attribute-based 

processing as task complexity increased provide evidence that the decision may be 

enhanced by developing an information structure that better supports attribute-based 

processing. Another result that the decision table was used much more than the map 

provides an important clue for MC-SDSS designers to improve the quality of map for 

representing the geographic decision. Such considerations would stimulate an 

organization (such as a municipal government) to use a system that supports a particular 

decision strategy or combination of strategies, which are logically justifiable and 

defensible (Lawrence, Goodwin, & Fildes, 2002; Gönül, Önkal, & Lawrence, 2006; 

Meng, 2010). 

7.3 Limitations 

As is the case with any research, the current research acknowledges a few limitations that 

should be taken into account: 

One of the main limitations of this study is the choice of a Mouselab process-tracing 

approach (Web-based logging technique) to record the human-computer interaction data 

during the collaborative decision making process. Recording decision makers’ 

information search activities in the decision table using this approach requires that the 

attribute values be hidden behind the cells so as to find out which specific attribute values 

are examined for which alternatives. Due to the recent advances in computer technology 

and computer vision techniques, eye tracking has gained much attention as an alternative 

way of keeping track of the decision process (Duchowski, 2007; Pfeiffer, 2012). Eye 

tracking refers to the process of measuring eye movements with eye tracker devices, such 

as head-mounted, stationary eye trackers, etc. With eye trackers it is unnecessary to hide 

information since the eye tracker system is able to precisely record fixations on 

information items (Reisen, Hoffrage, & Mast, 2008). However, the current eye tracking 
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technologies are expensive, and require the test users to use a particular computer with 

eye tracking capabilities (Meng, 2010).  

Another important limitation is to make sure that GIS-MCDA techniques are used in such 

a way that their fundamental assumptions are met. For instance, incorrect specification of 

weights is specially common error in the application of MCDA approaches to spatial 

decision problems (Malczewski, 2000). Any participant, whether lay or expert, should 

realize that assigning weights to criteria accounts for a number of factors, such as the 

changes in the range of variation for each attribute (the extent to which alternatives vary 

on that attribute) and the different degrees of importance attached to these ranges of 

variation (subjective evaluation of importance of that attribute). In many GIS-based 

studies, however, individuals assign weights to the criteria without full understanding of 

their meaning. Carver (1999) asserts that the participants lose confidence in any Web-

based GIS applications when they do not understand the methods, technology and 

rationale behind that application, so that they cannot use the system efficiently. These 

challenges can be overcome by providing adequate Web-based learning materials on the 

meaning, rationale, and use of the system (Mustajoki, Hämäläinen, & Marttunen, 2004; 

Boroushaki, 2010). 

It is suggested that the use of incentives for the decision makers may affect the decision 

making behavior. If decision making performance was tied to incentives or rewards, 

different types of behavior may have been exhibited by the decision makers (Todd, 1988). 

The use of incentives encourages the decision makers to make a good choice, and perhaps 

expend extra effort on the decision problem. For example, in an empirical study 

concerning the impacts of financial incentives on the decision making process, Dobbs, 

Miller, House, and Yards (2008) found that incentives would induce individuals to use 

information systems more fully and efficiently, learn faster and make better decisions, 

and hence turn in higher levels of performance.  
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Another area which needs to be addressed is the issue of generalisability or external 

validity. This limitation concerns the question of to what extent are the findings 

generalisable to other types of decision problems, political and social contexts of 

decision, decision makers, and decision support tools?. The choice of decision strategies 

is a function of characteristics of decision problems, decision or task environments, and 

characteristics of the decision maker (Beach & Mitchell, 1978). Meng (2010) suggested 

that information search in a Web-based collaborative GIS-MCDA context may vary 

among public participants as a result of their differences in age, education, gender, and 

levels of experience in web surfing, GIS use and involvement in public participatory 

planning. According to Sieber (2006), a participatory GIS project is not implemented in a 

void but rather is conditioned by the laws, culture, politics, and history of the community, 

city, region, or nation in which it is applied. While a collaborative MC-SDSS may be 

broadly accepted by all stakeholders in one community, the same system may be entirely 

unacceptable in another community. This also applies to our study and affects how we 

generalize the present findings beyond the research setting. Explicitly, this suggests that, 

with the lack of previous findings consistent with the one reported in this dissertation, one 

has to be cautious while generalizing the findings to other cases.  

Finally, the present study has examined the external information search behavior during 

the use of the information aids (the map and table) in the collaborative MC-SDSS. 

However, it is suggested that, in addition to the external search, researchers should also 

study decision maker’ internal search behaviors (search in mind) during the decision 

making process (see Abdul-Muhmin, 1994). An internal search is concerned with 

recalling relevant information from individuals’ long term memories. It involves no 

sources other than the decision maker’s own memory, prior knowledge, and experience 

(Lindquist & Sirgy, 2003). For example, a decision maker might deeply analyze 

particular places and spatial relations or specific attribute values in his/her mind while 

looking at the map and decision table, respectively. It is suggested that individuals with 

higher levels of knowledge would replace an external search with an internal one and 
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conduct information searches more efficiently than the less knowledgeable individuals 

(Brucks, 1985; Wang, 2006).  

7.4 Recommendations for future Work  

The research presented in this thesis suggests a variety of research directions that need to 

be addressed:  

This study focused on investigating decision-making behavior and understanding 

cognitive processes in the context of a parking site selection. However, further research 

should be undertaken to replicate the present study with a different site selection problem, 

spatial decision support tool, multicriteria evaluation approach, level of decision 

importance and consequences associated with it, region and community, and decision 

makers. It would be desirable to examine whether the effects of task complexity, 

information aids, and decision mode found in this study extend to other spatial decision 

making contexts. 

Another important area of future research is the use of an outcome-based research 

paradigm for examining the effects of task complexity, information aids, and decision 

mode on decision quality (or accuracy). While process tracing approach allows for 

investigating the decision strategies using information acquisition patterns, the outcome-

based approach enables the researcher to quantitatively examine decision qualities based 

on observed final choices. Decision quality can be measured in terms of the levels of 

agreement (consensus) or disagreement (Shih, Wang, & Lee, 2004). Consensus means 

unanimous agreement of the decision-makers involved in a decision-making process; it 

ensures that the best decision alternative is perceived to be acceptable by the decision 

makers.  

The present study did not investigate the interaction effects of the decision situations on 

the information search behavior. Such effects describe a situation in which the effect of 

one of the task factors differs depending on the level of the other factor. Research on the 

interaction effects in a spatial decision making context suggest that there are simultaneous 
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and additive influences of two or more decision situations on the decision making process 

(Chinburapa, 1991; Speier, Vessey, & Valacich, 2003; Downing, Moore, & Brown, 2005; 

Wilkening & Fabrikant, 2013). This opens up a great number of possibilities for future 

research to examine how the decision situations interactively affect information 

acquisition strategies in spatial multicriteria decisions. For example, an interesting 

research issue would be to study whether there is a significant interaction effect between 

task complexity and geographic information aids on information search metrics. 

In this study, the complexity of a decision task was manipulated by increasing both the 

numbers of alternatives and attributes. Future research may consider separately 

examining the effects of the numbers of alternatives or attributes on information 

acquisition behavior. This enables us to find out which of the increases in the number of 

alternatives, attributes, and or both has more effect on the information search variables. 

The decision making task in this study’s experiments involved using every available 

alternative and attribute to generate the decision solutions. It might be more efficient to 

allow the participants the option to narrow down their search by making choices among 

the alternatives and attributes, and then perform the decision making process using the 

selected alternatives and attributes.  

While the present study used a within-subjects design for the experimental sessions, 

future research might consider employing a between-subjects design, where separate 

groups of individuals are involved at each level of decision situations. Using a between-

subjects design allows us to overcome the potential drawback of a within-subjects design 

(e.g., carryover effects). A combination of the results obtained from the two experimental 

designs provides the robust and precise insights into the interpretations of decision 

making behavior.  

Research on effects of complexity on decision making processes suggests that, in addition 

to task-based complexity, context-based complexity also affects the way that individuals 

acquire and combine decision information (see Payne, 1982; Biggs, Bedard, Gaber, & 

Linsmeier, 1985; White & Hoffrage, 2009; Pfeiffer, 2012). Payne (1982) characterizes 
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context factors as “those factors associated with the particular values of the objects in the 

decision set under consideration” (p. 386). This type of complexity reflects the degree of 

similarity between the attribute values associated with available alternatives, the quality 

of the alternative set and the attributes, etc. For instance, the more similar the values, the 

harder it is for the decision maker to compare the attributes (higher complexity) (Pfeiffer, 

2012). Therefore, there is a need for future research to examine context-based complexity 

effects in the use of Web 2.0-based collaborative GIS-MCDA.  

Finally, although the current study used a relatively comprehensive list of metrics for 

examining information search behavior, one can argue that there are other relevant 

variables for studying decision making behavior. Future research should use additional 

measures of information acquisition variables for investigating the human-computer 

interaction patterns in collaborative GIS-MCDA. 

 

 

 

 

 

 

 

 

 

 



164 

 

References 

Abdul-Muhmin, A. G. (1994). A process-tracing study of external information search in 

multiple-item purchase decisions. Doctoral dissertation, Institute of Marketing at 
the Norwegian School of Economics and Business Administration, Bergen, 
Norway. 

Alexander, E. R. (2000). Rationality revisited: planning paradigms in a post-
postmodernist perspective. Journal of Planning Education and Research, 19(3), 
242-256. 

Anderson, N. H., & Zalinski, J. (1988). Functional measurement approach to self-
estimation in multiattribute evaluation. Journal of Behavioral Decision Making, 

1(4), 191-221. 

Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M. J., MacEachren, A., & 
Wrobel, S. (2007). Geovisual analytics for spatial decision support: setting the 
research agenda. International Journal of Geographical Information Science, 

21(8), 839-857. 

Andrienko, N., & Andrienko, G. (2001). Intelligent support for geographic data analysis 
and decision making in the Web. Journal of Geographic Information and 

Decision Analysis, 5(2), 115-128. 

Atterer, R., Wnuk, M., & Schmidt, A. (2006). Knowing the user's every move: user 

activity tracking for website usability evaluation and implicit interaction. Paper 
presented at the Proceedings of the 15th international conference on World Wide 
Web, Edinburgh, Scotland. Retrieved from 
http://www.medien.ifi.lmu.de/pubdb/publications/pub/atterer2006www/atterer200
6www.pdf 

Bailey, D., Goonetilleke, A., & Campbell, D. (2003). A new fuzzy multicriteria 
evaluation method for group site selection in GIS. Journal of Multi-Criteria 

Decision Analysis, 12(6), 337-347. 

Bakhsh, Z. (2008). A new methodological approach to selecting and weighting criteria 

for the objective grading system. Doctoral dissertation, University of Illinois, 
Chicago, Illinois. 

Beach, L. R., & Mitchell, T. R. (1978). A contingency model for the selection of decision 
strategies. The Academy of Management Review, 3(3), 439-449. 

Beattie, J., & Baron, J. (1991). Investigating the effect of stimulus range on attribute 
weight. Journal of Experimental Psychology: Human Perception and 

Performance, 17(2), 571-585. 



165 

 

Beaudreau, P., Johnson, P. A., & Sieber, R. (2011). Creating and testing a portable 

template for municipal-level adoption of the Geospatial Web 2.0. Paper presented 
at the Proceedings of Spatial Knowledge and Information – Canada (SKI-
Canada), March 3-6, Fernie BC, Canada. Retrieved from 
http://rose.geog.mcgill.ca/ski/system/files/fm/2011/Beaudrea,%20Johnson,%20Si
eber_0.pdf 

Ben-Arieh, D., & Chen, Z. (2006). Linguistic-labels aggregation and consensus measure 
for autocratic decision making using group recommendations. Systems, Man and 

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 36(3), 558-
568. 

Bettman, J. R., & Jacoby, J. (1976). Patterns of processing in consumer information 
acquisition. Advances in consumer research, 3(1), 315-320. 

Bettman, J. R., Johnson, E. J., & Payne, J. W. (1991). Consumer decision making. In T. 
S. Robertson & H. H. Kassarjian (Eds.), Handbook of consumer behavior (pp. 50-
84). Englewood Cliffs, NJ: Prentice-Hall. 

Bettman, J. R., Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice 
processes. Journal of consumer research, 25(3), 187-217. 

Biggs, S. F., Bedard, J. C., Gaber, B. G., & Linsmeier, T. J. (1985). The effects of task 
size and similarity on the decision behavior of bank loan officers. Management 

science, 31(8), 970-987. 

Bockenholt, U., Albert, D., Aschenbrenner, M., & Schmalhofer, F. (1991). The effects of 
attractiveness, dominance, and attribute differences on information acquisition in 
multiattribute binary choice. Organizational Behavior and Human Decision 

Processes, 49(2), 258-281. 

Böckenholt, U., & Hynan, L. S. (1994). Caveats on a process‐tracing measure and a 
remedy. Journal of Behavioral Decision Making, 7(2), 103-117. 

Bodily, S. E. (1985). Modern decision making: a guide to modeling with decision support 

systems. New York: McGraw-Hill. 

Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making: an integrative 
literature review, and implications for the organizational sciences. Organizational 

Behavior and Human Decision Processes, 101(2), 127-151. 

Borda, J. (1781). Mathematical derivation of an election system. Isis, 44(1-2), 42-51. 

Boroushaki, S. (2010). ParticipatoryGIS: a Web-based collaborative GIS and 

multicriteria decision analysis. Doctoral dissertation, University of Western 
Ontario, London, Ontario. 



166 

 

Boroushaki, S., & Malczewski, J. (2010a). Measuring consensus for collaborative 
decision-making: a GIS-based approach. Computers, Environment and Urban 

Systems, 34(4), 322-332. 

Boroushaki, S., & Malczewski, J. (2010b). ParcitipatoryGIS: a WebGIS-based 
collaborative multicriteria decision analysis. Journal of the Urban and Regional 

Information Systems Association (URISA), 22(1), 23-32. 

Boroushaki, S., & Malczewski, J. (2010c). Using the fuzzy majority approach for GIS-
based multicriteria group decision-making. Computers & Geosciences, 36(3), 
302-312. 

Bröder, A., & Schiffer, S. (2003). Bayesian strategy assessment in multi-attribute 
decision making. Journal of Behavioral Decision Making, 16(3), 193-213. 

Broniarczyk, S. M. (2006). Product assortment. In C. P. Haugtvedt, P. M. Herr & F. R. 
Kardes (Eds.), Handbook of consumer psychology (pp. 755-779). New York: 
Psychology Press. 

Brucks, M. (1985). The effects of product class knowledge on information search 
behavior. Journal of consumer research, 12(1), 1-16. 

Bugs, G., Granell, C., Fonts, O., Huerta, J., & Painho, M. (2010). An assessment of 
Public Participation GIS and Web 2.0 technologies in urban planning practice in 
Canela, Brazil. Cities, 27(3), 172-181. 

Campbell, D. J. (1988). Task complexity: a review and analysis. Academy of management 

review, 13(1), 40-52. 

Carrigan, N., Gardner, P., Conner, M., & Maule, J. (2007). The impact of structuring the 
interface as a decision tree in a treatment decision support tool. In A. Holzinger 
(Ed.), HCI and Usability for Medicine and Health Care (pp. 273-288). Berlin: 
Heidelberg. 

Carsjens, G. J., & Ligtenberg, A. (2007). A GIS-based support tool for sustainable spatial 
planning in metropolitan areas. Landscape and Urban Planning, 80(1–2), 72-83. 

Carver, S. (1999). Developing Web-based GIS/MCE: improving access to data and 
spatial decision support tools. In J. C. Thill (Ed.), Spatial Multicriteria Decision-

making and Analysis (pp. 49-75). Aldershot, England: Ashgate. 

Carver, S., & Peckham, R. (1999). Using GIS on the Internet for planning. In J. Stillwell, 
S. Geertman & S. Openshaw (Eds.), Geographical Information and Planning (pp. 
371-390). Berlin Springer Berlin Heidelberg. 



167 

 

CEMAT. (1983). The European Regional/Spatial Planning Charter (Torremolinos 
charter), Strasbourg, Council of Europe. 

Chakhar, S., & Martel, J.-M. (2003). Enhancing geographical information systems 
capabilities with multi-criteria evaluation functions. Journal of Geographic 

Information and Decision Analysis, 7(2), 47-71. 

Chang, K.-P. (1997). The design of a web-based geographic information system for 

community participation. Master's thesis. 

Chen, Y., Jiang, Y., & Li, D. (2007). A decision support system for evaluation of the 
ecological benefits of rehabilitation of coal mine waste areas. New Zealand 

Journal of Agricultural Research, 50(5), 1205-1211. 

Chestnut, R. W., & Jacoby, J. (1976). Analytical techniques for examining process data. 
Purdue Papers in Consumer Psychology, 160. 

Chinburapa, V. (1991). Physician prescribing decisions: the effects of situational 

involvement and task complexity on information acquisition and decision-making. 
Doctoral dissertation, The University of Arizona, Tucson, Arizona. 

Church, R. L., Loban, S. R., & Lombard, K. (1992). An interface for exploring spatial 
alternatives for a corridor location problem. Computers & Geosciences, 18(8), 
1095-1105. 

Chuvakin, A., Schmidt, K., & Phillips, C. (2012). Logging and log management: the 

authoritative guide to dealing with syslog, audit logs, events, alerts and other it 

‘noise’. Rockland, United States: Syngress Media Inc. 

City of Dover Inc. (2008). Downtown parking facility and management study. 

Conlon, B., Dellaert, B. G., & Soest, A. v. (2001). Complexity and accuracy in consumer 

choice: the double benefits of being the consistently better brand. Netherlands: 
Tilburg University (CentER Discussion Paper). 

Contractor, N. S., & Seibold, D. R. (1993). Theoretical frameworks for the study of 
structuring processes in group decision support systems. Human Communication 

Research, 19(4), 528-563. 

Crossland, M. D., Wynne, B. E., & Perkins, W. C. (1995). Spatial decision support 
systems: an overview of technology and a test of efficacy. Decision Support 

Systems, 14(3), 219-235. 

Dai, F. C., Lee, C. F., & Zhang, X. H. (2001). GIS-based geo-environmental evaluation 
for urban land-use planning: a case study. Engineering Geology, 61(4), 257-271. 



168 

 

Däne, S., & Van Den Brink, A. (2007). Perspectives on citizen participation in spatial 
planning in Europe. In A. Van Den Brink, R. Van Lammeren, R. Van De Velde & 
S. Dane (Eds.), Imaging the future: geo-visualisation for participatory spatial 

planning in Europe (pp. 33-51). Wageningen: Wageningen Academic Publishers. 

Dennis, A. R., & Carte, T. A. (1998). Using geographical information systems for 
decision making: extending cognitive fit theory to map-based presentations. 
Information Systems Research, 9(2), 194-203. 

Desanctis, G., & Gallupe, R. B. (1987). A foundation for the study of group decision 
support systems. Management science, 33(5), 589-609. 

DeSanctis, G., & Poole, M. S. (1994). Capturing the complexity in advanced technology 
use: adaptive structuration theory. Organization Science, 5(2), 121-147. 

Dessì, N., Garau, G., & Pes, B. (2012). Web 2.0 technologies empowering spatial 

decision making. Paper presented at the IEEE 21st International Workshop on 
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). 
Retrieved from 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6269780 

Dhar, R., Nowlis, S. M., & Sherman, S. J. (2000). Trying hard or hardly trying: an 
analysis of context effects in choice. Journal of Consumer Psychology, 9(4), 189-
200. 

DiNucci, D. (1990). Fragmented Future (1999). Print, 53(4), 32. 

Dobbs, I. M., Miller, A. D., House, C., & Yards, H. (2008). The impact of financial 

incentives on decision making: further evidence. Edinburgh: Institute of Chartered 
Accountants of Scotland. 

Downing, R. E., Moore, J. L., & Brown, S. W. (2005). The effects and interaction of 
spatial visualization and domain expertise on information seeking. Computers in 

Human Behavior, 21(2), 195-209. 

Dragićević, S. (2004). The potential of Web-based GIS. Journal of Geographical 

Systems, 6(2), 79-81. 

Dragićević, S., & Balram, S. (2004). A Web GIS collaborative framework to structure 
and manage distributed planning processes. Journal of Geographical Systems, 

6(2), 133-153. 

Duchowski, A. T. (2007). Eye tracking methodology: theory and practice. London: 
Springer-Verlag. 



169 

 

Eastman, J. (1997). IDRISI for Windows, version 2.0: tutorial exercises graduate 

Worcester,Massachusetts Clark University. 

Eastman, J. (2006). IDRISI Andes tutorial. Worcester,Massachusetts Clark University. 

Eastman, J. R., Jin, W., Kyem, P. A. K., & Toledano, J. (1995). Raster procedures for 
multi-Criteria/multi-objective decisions. Photogrammetric Engineering and 

Remote Sensing (PE&RS), 61(5), 539-547. 

Esnard, A.-M., & MacDougall, E. B. (1997). Common ground for integrating planning 
theory and gis topics. Journal of Planning Education and Research, 17(1), 55-62. 

Evans, A. J., Kingston, R., & Carver, S. (2004). Democratic input into the nuclear waste 
disposal problem: the influence of geographical data on decision making 
examined through a Web-based GIS. Journal of Geographical Systems, 6(2), 117-
132. 

Farzanmanesh, R., Naeeni, A. G., & Abdullah, A. M. (2010). Parking site selection 
management using fuzzy logic and multi criteria decision making. Environ Asia, 

3, 109-116. 

Feick, R., & Hall, B. (2004). A method for examining the spatial dimension of multi-
criteria weight sensitivity. International Journal of Geographical Information 

Science, 18(8), 815-840. 

Feick, R., & Hall, G. B. (2001). Balancing consensus and conflict with a GIS-based 
multi-participant, multi-criteria decision support tool. GeoJournal, 53(4), 391-
406. 

Feick, R. D., & Hall, G. B. (1999). Consensus building in a multiparticipant spatial 
decision support system. Journal of the Urban and Regional Information Systems 

Association (URISA), 11(2), 17-23. 

Fischer, G. W. (1995). Range sensitivity of attribute weights in multiattribute value 
models. Organizational Behavior and Human Decision Processes, 62(3), 252-
266. 

Fischer, M. M., & Nijkamp, P. (1993). Geographic information systems, spatial 

modelling and policy evaluation. Berlin: Springer-Verlag  

Ford, J. K., Schmitt, N., Schechtman, S. L., Hults, B. M., & Doherty, M. L. (1989). 
Process tracing methods: contributions, problems, and neglected research 
questions. Organizational Behavior and Human Decision Processes, 43(1), 75-
117. 



170 

 

Ganapati, S. (2010). Using geographic information systems to increase citizen 

engagement (pp. 1-46). Washington, DC: IBM Center for the Business of 
Government. 

Ghanbari, S., & Ghazi Asgar, A. (2011). Evaluation of different methods of site selection 
in management of public parking construction in central business of Esfahan using 
GIS. Geography and Environmental Planning, 22(2), 183-198. 

Gino, F., & Moore, D. A. (2007). Effects of task difficulty on use of advice. Journal of 

Behavioral Decision Making, 20(1), 21-35. 

Glaholt, M. G. (2010). Biases in looking behaviour during visual decision making tasks. 
Doctoral dissertation. 

Gönül, M. S., Önkal, D., & Lawrence, M. (2006). The effects of structural characteristics 
of explanations on use of a DSS. Decision Support Systems, 42(3), 1481-1493. 

Goodchild, M. (2007). Citizens as sensors: the world of volunteered geography. 
GeoJournal, 69(4), 211-221. 

Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: the neogeography of 
the GeoWeb. Geography Compass, 2(6), 2011-2039. 

Hall, B., & Leahy, M. G. (2006). Internet-based spatial decision support using open 
source tools. In S. Balram & S. Dragićević (Eds.), Collaborative Geographic 

Information Systems (pp. 237-262). Hershey: Idea Group Publishing. 

Harte, J. M., & Koele, P. (2001). Modelling and describing human judgement processes: 
the multiattribute evaluation case. Thinking & reasoning, 7(1), 29-49. 

Herrera-Viedma, E., Herrera, F., & Chiclana, F. (2002). A consensus model for 
multiperson decision making with different preference structures. IEEE 

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 

32(3), 394-402. 

Heywood, D. I., Cornelius, S., & Carver, S. (2002). An introduction to Geographical 

Information Systems. Harlow, England: Prentice-Hall. 

Hodge, G. (2003). Planning Canadian communities: an introduction to the principles, 

practice, and participants. Toronto: Nelson Thomson Learning. 

Hossack, I., Robertson, D., Tucker, P., Hursthouse, A., & Fyfe, C. (2004). A GIS and 
Web-based decision support tool for the management of urban soils. Cybernetics 

and Systems, 35(5-6), 499-509. 



171 

 

Jacoby, J., Speller, D. E., & Kohn, C. A. (1974). Brand choice behavior as a function of 
information load. Journal of Marketing Research, 11(1), 63-69. 

Janis, I. L. (1989). Crucial decisions: Leadership in policymaking and crisis 

management. New York: Free Press. 

Jankowski, P. (1995). Integrating geographical information systems and multiple criteria 
decision-making methods. International Journal of Geographical Information 

Systems, 9(3), 251-273. 

Jankowski, P. (2009). Towards participatory geographic information systems for 
community-based environmental decision making. Journal of Environmental 

Management, 90(6), 1966-1971. 

Jankowski, P., Andrienko, N., & Andrienko, G. (2001). Map-centred exploratory 
approach to multiple criteria spatial decision making. International Journal of 

Geographical Information Science, 15(2), 101-127. 

Jankowski, P., & Nyerges, T. (2001a). Geographic information systems for group 

decision-making: towards a participatory, geographic information science. New 
York: Taylor & Francis. 

Jankowski, P., & Nyerges, T. (2001b). GIS-supported collaborative decision making: 
results of an experiment. Annals of the Association of American Geographers, 

91(1), 48-70. 

Jankowski, P., Nyerges, T. L., Smith, A., Moore, T. J., & Horvath, E. (1997). Spatial 
group choice: a SDSS tool for collaborative spatial decisionmaking. International 

Journal of Geographical Information Science, 11(6), 577-602. 

Jankowski, P., & Stasik, M. (2006). An experimental study using SDS tools for a 
participatory approach to local land use planning. In S. Balram & S. Dragićević 
(Eds.), Collaborative Geographic Information Systems (pp. 150-166). Hershey: 
Idea Group Publishing. 

Jankowski, P., Zielinska, A.-L., & Swobodzinski, M. (2008). Choice modeler: a Web-
based spatial multiple criteria evaluation tool. Transactions in GIS, 12(4), 541-
561. 

Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria 
evaluation in GIS. International Journal of Geographical Information Science, 

14(2), 173-184. 

Jiaxi, L. (2003). Multi-functioned parking facility’s site selection in tourist towns: case 

study of Changyang, China. Master's dissertation. 



172 

 

Joerin, F., Desthieux, G., Beuze, S. B., & Nembrini, A. (2009). Participatory diagnosis in 
urban planning: proposal for a learning process based on geographical 
information. Journal of Environmental Management, 90(6), 2002-2011. 

Joerin, F., Thériault, M., & Musy, A. (2001). Using GIS and outranking multicriteria 
analysis for land-use suitability assessment. International Journal of 

Geographical Information Sciences, 15(2), 153-174. 

Kantowitz, B. H., Roediger III, H. L., & Elmes, D. G. (2009). Experimental psychology. 
Belmont: Cengage Learning. 

Karimi, V., Ebadi, H., & Ahmady, S. (2009). Modeling of parking site selection by using 
gis with emphasis on weighting and integrating layers. Journal of Faculty of Eng, 

38(3), 11-21. 

Karnatak, H., Saran, S., Bhatia, K., & Roy, P. S. (2007). Multicriteria spatial decision 
analysis in Web GIS environment. GeoInformatica, 11(4), 407-429. 

Karnatak, H. C., Shukla, R., Sharma, V. K., Murthy, Y. V. S., & Bhanumurthy, V. 
(2012). Spatial mashup technology and real time data integration in geo-web 
application using open source GIS – a case study for disaster management. 
Geocarto International, 27(6), 499-514. 

Katz, I., Bereby-Meyer, Y., Assor, A., & Danziger, S. (2010). Children’s adaptive pre-
decisional search behavior: effects of memory and number of alternatives. Journal 

of Economic Psychology, 31(1), 17-24. 

Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: preferences and 

value trade-offs. New York: Wiley. 

Kim, J., Hahn, J., & Hahn, H. (2000). How do we understand a system with (so) many 
diagrams? Cognitive integration processes in diagrammatic reasoning. 
Information Systems Research, 11(3), 284-303. 

Kim, P. S., Halligan, J., Cho, N., Oh, C. H., & Eikenberry, A. M. (2005). Toward 
participatory and transparent governance: report on the sixth global forum on 
reinventing government. Public Administration Review, 65(6), 646-654. 

Kingston, R. (2002). Web-based PPGIS in the United Kingdom. In W. Craig, T. Harris & 
D. Weiner (Eds.), Community participation and geographic information systems 
(pp. 127-138). London: Taylor & Francis. 

Klayman, J. (1983). Analysis of predecisional information search patterns. In P. 
Humphreys, O. Svenson & A. Vári (Eds.), Advances in Psychology (pp. 401-414). 
Amsterdam: North-Holland. 



173 

 

Klayman, J. (1985). Children's decision strategies and their adaptation to task 
characteristics. Organizational Behavior and Human Decision Processes, 35(2), 
179-201. 

Klemz, B. R., & Gruca, T. S. (2001). Managerial assessment of potential entrants: 
processes and pitfalls. International Journal of Research in Marketing, 18(1), 37-
51. 

Klosterman, R. E. (1997). Planning support systems: a new perspective on computer-
aided planning. Journal of Planning Education and Research, 17(1), 45-54. 

Koele, P., & Westenberg, M. R. (1995). A compensation index for multiattribute decision 
strategies. Psychonomic bulletin & review, 2(3), 398-402. 

Krek, A. (2005). Rational ignorance of the citizens in public participatory planning. 
Paper presented at the Proceedings of the 10th Symposium on Information and 
Communication Technologies  in Urban Planning and Spatial Development and 
Impacts of ICT on Physical Space, Vienna, Austria. Retrieved from 
http://www.hcu-
hamburg.de/fileadmin/documents/Professoren_und_Mitarbeiter/Alenka_Poplin/R
ational_Ignorance_of_the_Citizens_in_Public_Participatory_Planning_CORP__kr
ek_rational_ignorance_in_participatory_planning.pdf 

Krygier, J. B. (2002). A praxis of public participation GIS and visualization. In W. J. 
Craig, T. M. Harris & D. Weiner (Eds.), Community participation and geographic 

information systems (pp. 330-345). London: Taylor and Francis. 

Kyem, P. A. K. (2001). An application of a choice heuristic algorithm for managing land 
resource allocation problems involving multiple parties and conflicting interests. 
Transactions in GIS, 5(2), 111-129. 

Kyem, P. A. K. (2004). Of intractable conflicts and participatory gis applications: the 
search for consensus amidst competing claims and institutional demands. Annals 

of the Association of American Geographers, 94(1), 37-57. 

Laaribi, A., Chevallier, J. J., & Martel, J. M. (1996). A spatial decision aid: a 
multicriterion evaluation approach. Computers, Environment and Urban Systems, 

20(6), 351-366. 

Larson, A., & Ribot, J. (Eds.). (2005). Democratic decentralisation through a natural 

resource lens: an introduction. London: Routledge. 

Lawrence, M., Goodwin, P., & Fildes, R. (2002). Influence of user participation on DSS 
use and decision accuracy. Omega, 30(5), 381-392. 



174 

 

Leahy, M. G. (2011). Adaptation of public participation GIS for community irrigation 

planning in rural New Zealand. Waterloo,Ontario: Wilfrid Laurier University. 

Lee, B. K., & Lee, W. N. (2004). The effect of information overload on consumer choice 
quality in an on-line environment. Psychology & Marketing, 21(3), 159-183. 

Ligmann-Zielinska, A., & Jankowski, P. (2012). Impact of proximity-adjusted 
preferences on rank-order stability in geographical multicriteria decision analysis. 
Journal of Geographical Systems, 14(2), 167-187. 

Limayem, M., & DeSanctis, G. (2000). Providing decisional guidance for multicriteria 
decision making in groups. Information Systems Research, 11(4), 386-401. 

Lindquist, J. D., & Sirgy, J. (2003). Shopper, buyer, and consumer behavior: theory, 

marketing applications, and public policy implications. Cincinnati, OH: Atomic 
Dog Publishing. 

Lovan, W. R., Murray, M. R., & Shaffer, R. (Eds.). (2004). Participatory governance: 

planning, conflict mediation and public decision making in civil society. 
Aldershot: Ashgate Publishing. 

Lurie, N. H., & Swaminathan, J. M. (2009). Is timely information always better? The 
effect of feedback frequency on decision making. Organizational Behavior and 

Human Decision Processes, 108(2), 315-329. 

Macdonald, S. (2008). Data visualization tools: part 2-spatial data in a Web 2.0 
environment and beyond, DISC-UK data share project. 

MacEachren, A. M., Gahegan, M., Pike, W., Brewer, I., Cai, G., Lengerich, E., & 
Hardisty, F. (2004). Geovisualization for knowledge construction and decision 
support. IEEE Computer Graphics and Applications, 24(1), 13-17. 

Makropoulos, C., Butler, D., & Maksimovic, C. (2003). Fuzzy logic spatial decision 
support system for urban water management. Journal of Water Resources 

Planning and Management, 129(1), 69-77. 

Malczewski, J. (1996). A GIS-based approach to multiple criteria group decision-making. 
International Journal of Geographical Information Systems, 10(8), 955-971. 

Malczewski, J. (1999a). GIS and multicriteria decision analysis. New York, NY: John 
Wiley & Sons. 

Malczewski, J. (1999b). Visualization in multicriteria spatial decision support systems. 
Geomatica, 53(2), 139-147. 



175 

 

Malczewski, J. (2000). On the use of weighted linear combination method in GIS: 
common and best practice approaches. Transactions in GIS, 4(1), 5-22. 

Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. 
Progress in Planning, 62(1), 3-65. 

Malczewski, J. (2006a). GIS‐based multicriteria decision analysis: a survey of the 
literature. International Journal of Geographical Information Science, 20(7), 703-
726. 

Malczewski, J. (2006b). Multicriteria decision analysis for collaborative GIS. In S. 
Balram & S. Dragićević (Eds.), Collaborative Geographic Information Systems 
(pp. 167-185). Hershey: Idea Group Publishing. 

Malczewski, J. (2006c). Ordered weighted averaging with fuzzy quantifiers: GIS-based 
multicriteria evaluation for land-use suitability analysis. International Journal of 

Applied Earth Observation and Geoinformation, 8(4), 270-277. 

Malczewski, J., Chapman, T., Flegel, C., Walters, D., Shrubsole, D., & Healy, M. A. 
(2003). GIS-multicriteria evaluation with ordered weighted averaging (OWA): 
case study of developing watershed management strategies. Environment and 

Planning A, 35(10), 1769-1784. 

Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS 
with linguistic quantifiers: a case study of residential quality evaluation. Journal 

of Geographical Systems, 7(2), 249-268. 

Markieta, M., & Rinner, C. (2012). Using web map overlay for visual multi-criteria 

analysis - the example of the Ontario human influence index. Paper presented at 
the GEOIDE Annual Scientific Conference, Quebec City, Canada. 

Marttunen, M. (2011). Interactive multi-criteria decision analysis in the collaborative 

management of watercourses. Helsinki, Finland: Aalto University. 

Massam, B. H. (1988). Multi-Criteria Decision Making (MCDM) techniques in planning. 
Progress in Planning, 30, Part 1(0), 1-84. 

Matkan, A., Shakiba, A., Pourali, S., & Ebadi, I. (2009). Crisp and fuzzy decision making 
in multistore public parking lots. Environmental Sciences, 6(3), 207-222. 

Mau-Crimmins, T., de Steiguer, J. E., & Dennis, D. (2005). AHP as a means for 
improving public participation: a pre–post experiment with university students. 
Forest Policy and Economics, 7(4), 501-514. 

McCall, M. K., & Dunn, C. E. (2012). Geo-information tools for participatory spatial 
planning: fulfilling the criteria for ‘good’ governance? Geoforum, 43(1), 81-94. 



176 

 

Mellers, B. A., & Chang, S. J. (1994). Representations of risk judgments. Organizational 

Behavior and Human Decision Processes, 57(2), 167-184. 

Mellers, B. A., & Cooke, A. D. (1994). Trade-offs depend on attribute range. Journal of 

Experimental Psychology: Human Perception and Performance, 20(5), 1055-
1067. 

Menegolo, L., & Peckham, R. J. (1996). A fully integrated tool for site planning using 
multi criteria evaluation techniques within a GIS. In M. Rumor, R. McMillan & 
H. F. L. Ottens (Eds.), Geographical information (pp. 621-630). Amsterdam: IOS 
Press. 

Meng, Y. (2010). Evaluating web-based public participatory GIS for multicriteria site 

selection analysis: a case study in Canmore Alberta. Doctoral dissertation, 
Departement of Geography, University of Western Ontario, London, Ontario. 

Meng, Y., & Malczewski, J. (2010). Web-PPGIS usability and public engagement: a case 
study in Canmore, Alberta, Canada. Journal of the Urban and Regional 

Information Systems Association (URISA), 22(1), 55-64. 

Miller, C. C. (2006). A beast in the field: the Google Maps Mashup as GIS/2. 
Cartographica, 41(3), 187-199. 

Minch, R. P., & Sanders, G. L. (1986). Computerized information systems supporting 
multicriteria decision making. Decision Sciences, 17(3), 395-413. 

Monat, J. P. (2009). The benefits of global scaling in multi-criteria decision analysis. 
Judgment and Decision Making, 4(6), 492-508. 

Musser, J., & O’Reilly, T. (2006). Web 2.0 principles and best practices.O’Reilly radar 

report. Sebastopol, CA: O'Reilly Media Inc. 

Mustajoki, J., Hämäläinen, R. P., & Marttunen, M. (2004). Participatory multicriteria 
decision analysis with Web-HIPRE: a case of lake regulation policy. 
Environmental Modelling & Software, 19(6), 537-547. 

Nidumolu, U. B., de Bie, C., van Keulen, H., Skidmore, A. K., & Harmsen, K. (2006). 
Review of a land use planning programme through the soft systems methodology. 
Land Use Policy, 23(2), 187-203. 

Norese, M. F., & Toso, F. (2004). Group decision and distributed technical support. 
International Transactions in Operational Research, 11(4), 395-417. 

O'Sullivan, D., & Unwin, D. J. (2003). Geographic information analysis. Hoboken, NJ: 
John Wiley & Sons. 



177 

 

Parnell, G., Figueira, J., Bennett, S., Bobylev, N., Pup, M., Ganoulis, J., . . . Schnelle, D. 
(2007). Decision analysis tools for safety, security, and sustainability of ports and 
harbors. In I. Linkov, R. Wenning & G. Kiker (Eds.), Managing Critical 

Infrastructure Risks (pp. 245-260). Netherlands: Springer  

Paul, S., Saunders, C. S., & Haseman, W. D. (2005). A question of timing: the impact of 
information acquisitions on group design making. Information Resources 

Management Journal, 18(4), 81-99. 

Payne, J. W. (1976). Task complexity and contingent processing in decision making: an 
information search and protocol analysis. Organizational Behavior and Human 

Performance, 16(2), 366-387. 

Payne, J. W. (1982). Contingent decision behavior. Psychological Bulletin, 92(2), 382-
402. 

Payne, J. W., Bettman, J. R., Coupey, E., & Johnson, E. J. (1992). A constructive process 
view of decision making: multiple strategies in judgment and choice. Acta 

Psychologica, 80(1), 107-141. 

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. 
Cambridge: Cambridge University Press. 

Peng, Z. R., & Tsou, M. H. (2003). Internet GIS: distributed geographic information 

services for the internet and wireless networks. New York: John Wiley & Sons. 

Pennington, M. (2004). Citizen participation, the -knowledge problem- and urban land 
use planning: An austrian perspective on institutional choice. The Review of 

Austrian Economics, 17(2-3), 213-231. 

Pfeiffer, J. (2012). Fundamentals on decision-making behavior. In J. Pfeiffer (Ed.), 
Interactive Decision Aids in E-Commerce (pp. 15-45). Berlin: Springer-Verlag. 

Phua, M.-H., & Minowa, M. (2005). A GIS-based multi-criteria decision making 
approach to forest conservation planning at a landscape scale: a case study in the 
Kinabalu Area, Sabah, Malaysia. Landscape and Urban Planning, 71(2–4), 207-
222. 

Pickles, J. (Ed.). (1995). Ground truth: the social implications of geographic information 

systems. New York: Guilford Press. 

Pöyhönen, M., Vrolijk, H., & Hämäläinen, R. P. (2001). Behavioral and procedural 
consequences of structural variation in value trees. European Journal of 

Operational Research, 134(1), 216-227. 



178 

 

Queen, T. L., Hess, T. M., Ennis, G. E., Dowd, K., & Gruhn, D. (2012). Information 
search and decision making: effects of age and complexity on strategy use. 
Psychol Aging, 27(4), 817-824. 

Rao, M., Fan, G., Thomas, J., Cherian, G., Chudiwale, V., & Awawdeh, M. (2007). A 
Web-based GIS decision support system for managing and planning USDA's 
Conservation Reserve Program (CRP). Environmental Modelling & Software, 

22(9), 1270-1280. 

Redlawsk, D. P. (2004). What voters do: information search during election campaigns. 
Political Psychology, 25(4), 595-610. 

Reisen, N., Hoffrage, U., & Mast, F. W. (2008). Identifying decision strategies in a 
consumer choice situation. Judgment and Decision Making, 3(8), 641-658. 

Renn, O., Webler, T., Rakel, H., Dienel, P., & Johnson, B. (1993). Public participation in 
decision making: a three-step procedure. Policy Sciences, 26(3), 189-214. 

Riabacke, M., Danielson, M., & Ekenberg, L. (2012). State-of-the-Art prescriptive 
criteria weight elicitation. Advances in Decision Sciences, 2012. 

Riedl, R., Brandstätter, E., & Roithmayr, F. (2008). Identifying decision strategies: a 
process-and outcome-based classification method. Behavior Research Methods, 

40(3), 795-807. 

Rinner, C. (2001). Argumentation maps: GIS-based discussion support for on-line 
planning. Environment and Planning B: Planning and Design, 28(6), 847-863. 

Rinner, C. (2006). Argumentation mapping in collaborative spatial decision making. In S. 
Balram & S. Dragićević (Eds.), Collaborative Geographic Information Systems 
(pp. 85-102). Hershey: Idea Group Publishing. 

Rinner, C. (2007). A geographic visualization approach to multi-criteria evaluation of 
urban quality of life. International Journal of Geographical Information Science, 

21(8), 907-919. 

Rinner, C., & Jankowski, P. (2002). Web-based spatial decision support-technical 
foundations and applications. In C. B. Medeiros (Ed.), The Encyclopedia of Life 

Support Systems (EOLSS), Theme 1.9 – Advanced Geographic Information 

Systems (pp. 209-234). Oxford: UNESCO / Eolss Publishers. 

Rinner, C., Keßler, C., & Andrulis, S. (2008). The use of Web 2.0 concepts to support 
deliberation in spatial decision-making. Computers, Environment and Urban 

Systems, 32(5), 386-395. 



179 

 

Rinner, C., & Malczewski, J. (2002). Web-enabled spatial decision analysis using 
Ordered Weighted Averaging (OWA). Journal of Geographical Systems, 4(4), 
385-403. 

Rittel, H. J., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy 

Sciences, 4(2), 155-169. 

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field 
theory: a dynamic connectionist model of decision making. Psychol Rev, 108(2), 
370-392. 

Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in 
collaborative problem solving. In C. O’Malley (Ed.), Computer Supported 

Collaborative Learning (pp. 69-97). Berlin: Springer-Verlag. 

Roshan, G., Zanganeh, S. Z., Sauri, D., & Borna, R. (2010). Urban sprawl and climatic 
changes in Tehran. Iranian Journal of Environmental Health Science & 

Engineering, 7(1), 43-52. 

Rosmuller, N., & Beroggi, G. E. G. (2004). Group decision making in infrastructure 
safety planning. Safety Science, 42(4), 325-349. 

Rowe, G., & Frewer, L. J. (2000). Public participation methods: a framework for 
evaluation. Science, Technology & Human Values, 25(1), 3-29. 

Sadagopan, G. D. (2000). Web-based geographic information systems: public 

participation in virtual decision making environment. Master’s dissertation, 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 

Sakamoto, A., & Fukui, H. (2004). Development and application of a livable environment 
evaluation support system using Web GIS. Journal of Geographical Systems, 

6(2), 175-195. 

Sani, A., & Rinner, C. (2011). A scalable GeoWeb tool for argumentation mapping. 
Geomatica, 65(2), 145-156. 

Saunders, C., & Miranda, S. (1998). Information acquisition in group decision making. 
Information & Management, 34(2), 55-74. 

Schmeer, S. (2003). The effects of accountability on information search, evaluation and 

integration in multiattribute decision making. Doctoral dissertation. 

Schrah, G. E., Dalal, R. S., & Sniezek, J. A. (2006). No decision-maker is an island: 
Integrating expert advice with information acquisition. Journal of Behavioral 

Decision Making, 19(1), 43-60. 



180 

 

Schram, A., & Sonnemans, J. (2011). How individuals choose health insurance: an 
experimental analysis. European Economic Review, 55(6), 799-819. 

Schroeder, P. (1996). Criteria for the design of a GIS/2. Paper presented at the 
Specialists’ meeting for NCGIA Initiative 19: GIS and Society. Retrieved from 
http://www.commoncoordinates.com/ppgis/criteria.html 

Schulte-Mecklenbeck, M. (2005). Tracing the decision maker. Doctoral dissertation, 
University of Fribourg, Fribourg , Switzerland. 

Sharifi, M. A., van den Toorn, W., Rico, A., & Emmanuel, M. (2002). Application of GIS 
and multicriteria evaluation in locating sustainable boundary between the tunari 
National Park and Cochabamba City (Bolivia). Journal of Multi-Criteria Decision 

Analysis, 11(3), 151-164. 

Shields, M. D. (1980). Some effects on information load on search patterns used to 
analyze performance reports. Accounting, Organizations and Society, 5(4), 429-
442. 

Shih, H.-S., Wang, C.-H., & Lee, E. S. (2004). A multiattribute GDSS for aiding 
problem-solving. Mathematical and Computer Modelling, 39(11–12), 1397-1412. 

Sidlar, C. L., & Rinner, C. (2007). Analyzing the usability of an argumentation map as a 
participatory spatial decision support tool. Journal of the Urban and Regional 

Information Systems Association (URISA), 19(1), 47-55. 

Sieber, R. (2006). Public participation geographic information systems: a literature 
review and framework. Annals of the Association of American Geographers, 

96(3), 491-507. 

Sikder, I. U., & Gangopadhyay, A. (2002). Design and implementation of a Web-Based 
collaborative spatial decision support system: organizational and managerial 
implications (pp. 33-47): IGI Global. 

Simão, A., Densham, P. J., & Haklay, M. (2009). Web-based GIS for collaborative 
planning and public participation: an application to the strategic planning of wind 
farm sites. Journal of Environmental Management, 90(6), 2027-2040. 

Simon, H. A. (1977). The new science of management decision. New Jersey: Prentice-
Hall. 

Sipilä, M., & Tyrväinen, L. (2005). Evaluation of collaborative urban forest planning in 
Helsinki, Finland. Urban Forestry & Urban Greening, 4(1), 1-12. 



181 

 

Smelcer, J. B., & Carmel, E. (1997). The effectiveness of different representations for 
managerial problem solving: comparing tables and maps. Decision Sciences, 

28(2), 391-420. 

Speier, C. (2006). The influence of information presentation formats on complex task 
decision-making performance. International Journal of Human-Computer Studies, 

64(11), 1115-1131. 

Speier, C., Vessey, I., & Valacich, J. S. (2003). The effects of interruptions, task 
complexity, and information presentation on computer-supported decision-making 
performance. Decision Sciences, 34(4), 771-797. 

Stafford, B. A. (2007). Cognitive components, information search processes, and 

outcomes in a decision making task. Master's dissertation. 

Statistical Center of Iran. (2006). National census of 2006: Tehran Province.  Tehran: 
SCI Press. 

Stillwell, W. G., Seaver, D. A., & Edwards, W. (1981). A comparison of weight 
approximation techniques in multiattribute utility decision making. 
Organizational Behavior and Human Performance, 28(1), 62-77. 

Stokmans, M. (1992). Analyzing information search patterns to test the use of a two-
phased decision strategy. Acta Psychologica, 80(1), 213-227. 

Sugumaran, R., Meyer, J. C., & Davis, J. (2004). A Web-based environmental decision 
support system (WEDSS) for environmental planning and watershed 
management. Journal of Geographical Systems, 6(3), 307-322. 

Svenson, O. (1979). Process descriptions of decision making. Organizational Behavior 

and Human Performance, 23(1), 86-112. 

Takemura, K., & Selart, M. (2007). Decision making with information search constraints: 
a process tracing study. Behaviormetrika, 34(2), 111-130. 

Tang, K., & Waters, N. (2005). The internet, GIS and public participation in 
transportation planning. Progress in Planning, 64(1), 7-62. 

Tang, M. Y. (2006). Design and implementation of a GIS-enabled online discussion 

forum for participatory planning Master's dissertation, University of New 
Brunswick Fredericton, New Brunswick,Canada. 

Taranu, J. (2009). Building consensus using a collaborative spatial multi-criteria analysis 

system. Master's dissertation. 



182 

 

Thill, J. C. (1999). Spatial multicriteria decision making and analysis: a geographic 

information sciences approach. New York: Ashgate. 

Todd, P. A. (1988). An experimental investigation of the impact of computer based 

decision aids on the process of preferential choice. Doctoral dissertation. 

Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. New 
Jersey: Prentice-Hall. 

Tran, T. (2007). Google Maps Mashups 2.0. Google Lat-Long Blog   Retrieved from 
http://google-latlong.blogspot.ca/2007/07/google-maps-mashups-20.html  

Udell, S. (2008). Beginning Google Maps mashups with mapplets, KML, and GeoRSS: 

from novice to professional. Berkeley, CA: Apress. 

Usluel, Y. K., & Mazman, S. G. (2009). Adoption of Web 2.0 tools in distance education. 
Procedia - Social and Behavioral Sciences, 1(1), 818-823. 

Valente, M., Sarli, C. C., Valente, L. M., Amlani, A. M., Oeding, K., Finnell, J., . . . 
Huart, S. (2011). The audiology capstone: research, presentation, and 

publication. New York: Thieme Medical Publishers. 

Vandenberghe, E. S. (2011). Behavioral approaches to contract law. In G. De Geest (Ed.), 
Contract Law and Economics (pp. 401-424). Cheltenham: Edward Elgar 
Publishing. 

Von Nitzsch, R., & Weber, M. (1993). The effect of attribute ranges on weights in 
multiattribute utility measurements. Management science, 39(8), 937-943. 

Voss, A., Denisovich, I., Gatalsky, P., Gavouchidis, K., Klotz, A., Roeder, S., & Voss, H. 
(2004). Evolution of a participatory GIS. Computers, Environment and Urban 

Systems, 28(6), 635-651. 

Wang, H., & Chu, P. C. (2004). The impact of problem size on decision processes: an 
experimental investigation on very large choice problems with support of decision 
support systems. Expert Systems, 21(2), 104-118. 

Wang, T. (2006). The impact of the internet adoption on the information search for high 

and low involvement products: an empirical study based in Taiwan. Master's 
dissertation, University of Nottingham, Nottingham, England. 

White, C. M., & Hoffrage, U. (2009). Testing the tyranny of too much choice against the 
allure of more choice. Psychology and Marketing, 26(3), 280-298. 

Wilkening, J., & Fabrikant, S. I. (2013). How users interact with a 3D geo-browser under 
time pressure. Cartography and Geographic Information Science, 40(1), 40-52. 



183 

 

Witlox, F. (2005). Expert systems in land-use planning: an overview. Expert Systems with 

Applications, 29(2), 437-445. 

Wohlgemuth, M. (1999). Entry barriers in politics, or: why politics, like natural 
monopoly, is not organised as an ongoing market-process. The Review of Austrian 

Economics, 12(2), 175-200. 

Wu, H., He, Z., & Gong, J. (2010). A virtual globe-based 3D visualization and interactive 
framework for public participation in urban planning processes. Computers, 

Environment and Urban Systems, 34(4), 291-298. 

Yager, R. (1997). On the inclusion of importances in OWA aggregations. In R. R. Yager 
& J. Kacprzyk (Eds.), The Ordered Weighted Averaging Operators (pp. 41-59). 
Boston: Kluwer Academic Publishers. 

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in 
multicriteria decisionmaking. IEEE Transactions on Systems, Man and 

Cybernetics, 18(1), 183-190. 

Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International 

Journal of Intelligent Systems, 11(1), 49-73. 

Yang, F., Zeng, G., Du, C., Tang, L., Zhou, J., & Li, Z. (2008). Spatial analyzing system 
for urban land-use management based on GIS and multi-criteria assessment 
modeling. Progress in Natural Science, 18(10), 1279-1284. 

Yeung, C. W., & Soman, D. (2005). Attribute evaluability and the range effect. Journal of 

consumer research, 32(3), 363-369. 

Zhang, Z. (2007). Human computer interaction research in Web design and evaluation. In 
P. Zaphiris & S. Kurniawan (Eds.), (pp. 209-228). Hershey, PA: Idea Group 
Publishing. 

Zhu, X., & Dale, A. P. (2001). JavaAHP: a web-based decision analysis tool for natural 
resource and environmental management. Environmental Modelling and Software 

with Environment Data News, 16(3), 251-262. 

Zhu, X., McCosker, J., Dale, A. P., & Bischof, R. J. (2001). Web-based decision support 
for regional vegetation management. Computers, Environment and Urban 

Systems, 25(6), 605-627. 

 

 



184 

 

Appendices 

Appendix A: The sample source code for developing the Web 2.0-based MC-

SDSS  

 

Figure A1. A part of source code in the in the Java IDE environment IntelliJ IDEA 10.5. 
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 �&;� وارد :��9

�*9*C� .( 
�� A9Wان �f�ل، 8�b ا�� ��yE از ��ر��ان، �� ه�
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. ��Yات، ��ر��ان ���� �� رو

 
�*+ ,* -. �Pa" �� د� � ��ز+;�، ��ر��ان 
�� �!*M �� رو


 #�د
 Acد را .��ار �� �*+ ,* -. ���+;�0 و دو��ر6 #�ا�9

�9��: . 
(R از (���ن ا�8 ��3!�، ��ر��ان �� �!*M �� رو


�*+ ,* -. 
�E� �2�3 وارد �E� �!3�� � د� ��A% �� . 
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Appendix C: The GUIs for the GIS-MCDA individual and group modes in the 
four decision situations (in Persian) 

 

 

Figure C2. The GUI for the GIS-MCDA individual mode in decision situation “5×2”. 
 

 

Figure C3.The GUI for the GIS-MCDA group mode in decision situation “5×2”. 
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Figure C4. The GUI for the GIS-MCDA individual mode in decision situation“10×4”. 
 

 

Figure C5. The GUI for the GIS-MCDA group mode in decision situation “10×4”. 
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Figure C6. The GUI for the GIS-MCDA individual mode in decision situation “15×6”. 
 

 

Figure C7. The GUI for the GIS-MCDA group mode in decision situation “15×6”. 
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Figure C8. The GUI for the GIS-MCDA individual mode in decision situation “20×8”. 
 

 

Figure C9. The GUI for the GIS-MCDA group mode in decision situation “20×8”. 
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Figure C10. The windows for specifying the criteria priorities and ORness value in the 
four decision situations “5×2”, “10×4”, “15×6”, and “20×8”. 
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Appendix D: The log event data  

 

Figure D11. The sample log event data in MySQL database. 
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