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Abstract 

Changes in availability and foraging profitability of agricultural and aquatic habitats have 

the potential to greatly influence population dynamics of waterfowl. Therefore, the 

purpose of my research was to understand habitat selection by Tundra Swans during the 

nonbreeding period and to explore the scale-dependency of these relationships. Habitat 

selection was influenced by seasonal changes in nutritional requirements and food 

availability; Tundra Swans selected open water and agriculture in winter, wetlands were 

weakly selected during migration when open water was strongly selected (especially 

during autumn), and there was a 2-fold increase in use of agriculture from autumn to 

spring. It appears that selection for agriculture and wetlands was influenced by 

continuous changes in habitat availability, whereas selection for open water changed 

discretely by region. Based upon my results, habitat management for large-bodied 

waterfowl should focus on protecting and improving aquatic habitats and ensuring 

availability of agriculture, especially during winter and spring.  
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Chapter One: Introduction 
Statement of Direction 

It is estimated that at least half of the developed world’s wetlands were either drained, 

filled and converted to alternate uses, or highly degraded from pollution by the mid-

1900s (OECD 1996). Loss of traditional foraging habitats and increased availability of 

agriculture resulted in many granivorous waterfowl species exploiting readily available 

agricultural grains. Consumption of agricultural grains led to substantial increases of 

several waterfowl populations due to increased energy intake and earlier arrival on 

breeding grounds (Ringelman 1990, Gauthier et al. 1992, van Eerden et al. 1996, Jefferies 

et al. 2004, Fox et al. 2005, van Eerden et al. 2005). Moreover, large-bodied waterfowl 

have altered their migration routes to closely coincide with agricultural availability 

(Bellrose 1980, Ringleman 1990, Fox et al. 2005). Despite the impacts of agricultural 

grain consumption, the relationship between use and availability of agricultural and 

aquatic habitats (i.e., habitat selection) by waterfowl is relatively unknown. The purpose 

of my thesis was to use Tundra Swan, Cygnus columbianus columbianus Ord, satellite 

telemetry data to investigate geographic and temporal selection of agricultural, open 

water, and wetland habitats by this large-bodied, Arctic nesting waterfowl species 

throughout the nonbreeding period.  

Habitat Selection by Migratory Waterfowl  

Seasonal migrants are vulnerable to changes in both current and future habitats as well as 

to factors that may interrupt migratory routes (Calvert et al. 2009). Moreover, decreased 

quantity and quality of migratory foraging and resting habitats have been linked to 

reductions and fluctuations in species abundance and reproductive output (Moore et al. 

1995, Baker et al. 2004, Norris et al. 2004, Drent et al. 2006). Unfortunately, knowledge 

of migration ecology is often logistically constrained and limited to specific stopover 

sites (e.g., Barnacle Goose, Branta leucopsis Bechst., on outer Norwegian islands – Black 

et al 1991, Pink-footed Goose, Anser brachyrhynchus Baill., at Iceland staging area – 

Boyd and Fox 1992, Sedge Warbler, Acrocephalus schoenobaenus L., at Ramsar coastal 

estuary, Iberia – Arizaga et al. 2012). Limited understanding of migration and wintering 
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ecology has resulted in recent reviews identifying a need to address seasonal and regional 

changes in habitat selection during the nonbreeding period (Arzel et al. 2006, Calvert et 

al. 2009). Habitat selection is a hierarchical process, involving decision-making at a 

series of temporal and spatial scales (Johnson 1980, Zhang and Tankuo 2005). 

Knowledge of selection of habitats at different seasonal and geographic scales will enable 

management of adequate resource availability throughout the annual cycle (Calvert et al. 

2009). By understanding how known local habitat relationships compare to broad scale 

habitat selection, it may be possible to extrapolate on current research for resource and 

habitat management across the nonbreeding period (Zhang and Yankuo 2005). 

Historical Use of Agricultural Habitats by Large-bodied Waterfowl 

During the mid-to-late 1900s, conversion of wetlands and uplands to agriculture greatly 

decreased the availability of waterfowl habitats and foods. Following these land 

conversions, approximately 50% of North American waterfowl species began consuming 

agricultural foods, at least occasionally, where agricultural waste grains were seasonally 

available (Bellrose 1980). Shifting foraging strategies were accompanied by earlier 

arrival on spring stopover sites and on breeding grounds, where birds now arrived in 

better condition, and increased survival for many species of waterfowl (Gauthier et al. 

1992, van Eerden et al. 1996). Furthermore, consumption of agricultural grains was 

largely responsible for range expansions and great population increases of many large-

bodied waterfowl species (i.e., geese and swans; Ringelman 1990, Jefferies et al. 2004, 

Fox et al. 2005, van Eerden et al. 2005). However, the agricultural market is volatile, and 

future changes in crop selection and advancements in harvest efficiency may reduce the 

availability of waste grain below profitability thresholds that are necessary for foraging 

waterfowl (Fredrickson 1983, Krapu et al. 2004, Stafford et al. 2006, Foster et al. 2010). 

Therefore, it is important to understand how endogenous and exogenous factors influence 

selection of habitats by waterfowl. 

Maximizing lifetime fitness through allocation of resources to reproduction is the focus 

of life-history theory (e.g., Roff 1992, Stearns 1992, Roff 2002). An important theoretical 

component is the storage and subsequent allocation of lipids and proteins for 

reproduction (Houston et al. 2006). Avian species, unlike mammals, have the ability to 
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catabolize lipid stores during times of energetic stress instead of burning carbohydrates 

(Ramenofsky 1990, Klaassen 1996). Large-bodied waterfowl that breed in the Arctic (e.g., 

Tundra Swans) migrate north during snow and ice melt, a time when food resources are 

at an annual low (Ebbinge et al. 1982, Hupp et al. 2001, Newton 2004). Moreover, a 

relatively short breeding period and limited food availability upon arrival to Arctic 

breeding grounds are associated with waterfowl building nutrient stores during winter, 

spring, or both, to enable immediate nesting upon arrival to breeding grounds (i.e., they 

use some endogenous stores for reproduction, classifying them as capital breeders; Drent 

and Daan 1980, Krapu and Reinecke 1992, Marra and Holberton 1998, Klaassen 2003, 

Clausen et al. 2003, Studds et al. 2008, Reudink et al. 2009). Following reproduction and 

moult, Arctic-nesters begin autumn migration when goslings and cygnets are continuing 

to grow and develop (Bellrose 1980, Sedinger 1992) and adults may be replenishing 

nutrient reserves catabolized during breeding and wing molt (Petrie et al. 2002, Badzinski 

et al. 2011). Because of the above nutritional demands, the availability of foods high in 

carbohydrates, proteins and other nutrients during the nonbreeding period is important to 

Tundra Swan productivity and survival (Klaassen 2003).  

Agricultural grains represent a food source high in metabolizable energy, yet they are 

deficient in daily requirements of many inorganic elements, essential amino acids, and 

vitamins (Baldassarre et al. 1983, Delnicki and Reinecke 1986, Loesch and Kaminski 

1989). Because waterfowl cannot obtain certain vital nutrients through agricultural foods, 

a monotypic diet of agricultural grains results in lower body mass and therefore cannot be 

maintained for long periods of time (Baldassarre et al. 1983, Jorde et al. 1983, Loesch 

and Kaminski 1989). When consuming a mixed agricultural and aquatic diet prior to 

spring migration, increasing the proportion of aquatic vegetation in their diets has been 

documented to improve body condition in Bewick’s Swans (Cygnus columbianus 

bewickii Ord, measured by abdominal profile index; Hoye et al. 2012). Previous studies 

suggest that consideration of nutritional value of foods in combination with an 

individual’s current and predictable future physiological requirements is important to 

understand habitat selection during the nonbreeding period (e.g., Hutto 1985, Prins and 

Ydenberg 1985, Brown 1988, McKay et al. 1994).  
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Optimal foraging theory states that animals strive to maximize fitness by increasing their 

long-term energy intake (Stephens and Krebs 1986). Following this theory, changes in 

habitat selection are often associated with the depletion of the quantity and quality of 

available foods (Sutherland 1996, Rowcliffe et al. 2001, Chisholm and Spray 2002). 

Waterfowl food depletion studies have determined that, although aquatic vegetation is 

abundantly available immediately following the summer growing period, its availability 

decreases between autumn and spring as a result of foraging and winter senescence 

(Alisauskas and Ankney 1992, Badzinski 2003, Badzinski et al. 2006). Moreover, 

accessibility of aquatic plants is often reduced by ice during winter and spring 

(Schummer et al. 2010). Agricultural grains, on the other hand, are a food source rich in 

carbohydrates, and are available throughout much of the nonbreeding range of Tundra 

Swans and other waterfowl (Ringelman 1990, Alisaukas and Ankney 1992, Petrie et al. 

2002). Therefore, one would expect waterfowl to select agricultural resources during 

winter and spring when aquatic foods are less available, less accessible, or limited on 

both accounts. 

Tundra Swan Life History 

Tundra Swans are large-bodied (range in adult body mass = 3.4-9.6 kg), migratory 

waterfowl with a Holarctic distribution (Madge and Burn 1987). The species is 

commonly separated into two taxa, the Palearctic Bewick’s Swan and the Nearctic 

Tundra Swan, formerly known as the Whistling Swan (hereon Tundra Swan; American 

Ornithologists’ Union 1998). Tundra Swans are the most numerous and widely 

distributed swan in North America and are managed as Eastern and Western Populations 

(EP and WP, respectively) based upon different breeding and wintering ground affinities 

(Bellrose 1980). My research focused on EP Tundra Swans, which winter from North 

Carolina to the Great Lakes and breed in the tundra from Alaska’s north slope to eastern 

Hudson Bay, including the Fox Islands and Baffin Island (Sladen 1973, Madge and Burn 

1987). Overall, EP Tundra Swans spend 19% of the annual cycle on wintering grounds, 

52% on autumn and spring staging areas, and 29% on breeding grounds (Petrie and 

Wilcox 2003). During migration, most of the population follows a relatively narrow 

corridor between the Atlantic Coast and northern Prairies, splitting into three distinct 
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corridors in the northern Boreal Forest before reaching their breeding grounds (Figure 

1.1). During autumn migration, EP Tundra Swans spend approximately half of their time 

in the Boreal Forest and the other half in the Prairies and Great Lakes; during spring they 

spend the majority of their time in the Great Lakes and Prairies, passing quickly through 

the Boreal Forest (Petrie and Wilcox 2003). 

 
Figure 1.1 Map of Eastern Population Tundra Swan best of day locations (red dots) 
during the nonbreeding period as determined by satellite telemetry from 63 Tundra 
Swans (1998-2012); connected by migration lines (in black, delineates individual 
bird movements) to indicate migration corridors. 

 

Habitat Switching by Tundra Swans 

Tundra Swans began foraging in agricultural fields in the mid-1960s (Nagel 1965, Tate 

and Tate 1966). Following the consumption of agricultural grains, population numbers 

for Tundra Swans in North America nearly doubled between 1955-1989 (Serie and 

Bartonek 1991), with the EP now numbering just over 100,000 individuals (Serie et al. 
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2002). Because of the substantial changes to Tundra Swan populations brought on by the 

consumption of agricultural grains, it is paramount that we understand the selection of 

agricultural and aquatic habitats during the nonbreeding period to manage resource 

availability and maintain a stable population of Tundra Swans. Anecdotal evidence and a 

few location specific studies suggest that Bewick’s and Tundra Swans rely primarily on 

aquatic vegetation during autumn migration, aquatic and agricultural foods through 

winter and primarily agricultural foods during spring (Munro 1981, Bortner 1985, 

Beekman et al. 1991, Earnst 1994, Nolet et al. 2002, Petrie et al. 2002). To my 

knowledge, no studies in North America have quantified changes in habitat selection by 

large-bodied waterfowl throughout the nonbreeding period. I explored the connection 

between previous location-specific knowledge and broad-scale geographic and temporal 

selection of agricultural, wetland and open water habitats by Tundra Swans. By 

increasing our understanding of the mechanisms (external factors driving selection) 

influencing nonbreeding habitat selection, it may be possible to more accurately predict 

the selection of habitats with changing habitat availability and environmental conditions. 

Aquatic habitats can be classified into five systems: 1) marine – open ocean over the 

continental shelf, 2) estuarine – tidal habitats with access to open ocean, 3) riverine – all 

habitat within a channel, 4) lacustrine (lakes) – systems in a depression or dammed river 

channel with less than 30% plant coverage and an area exceeding 8ha, there is also 

generally considerable wave action, and 5) palustrine – non-tidal wetlands dominated by 

trees, shrubs, persistent emergents, emergent mosses or lichens. Palustrine also includes 

wetlands lacking vegetation that are less than 8ha in size and 2m deep with no wave-

action and a salinity less than 0.5% (Cowardin et al. 1979). Throughout my thesis, open 

water habitats refer to rivers, lakes and estuarine and marine deep-water habitats; 

wetlands include all palustrine aquatic habitats (see Appendix A). 

Satellite Telemetry and Habitat Selection 

Satellite telemetry uses Platform Transmitter Terminals (PTTs) that are either attached 

externally or surgically implanted to remotely track animal movements (Hatch et al. 2000, 

Wilson et al. 2002). Signals from PTTs are sent to satellites orbiting Earth, which localize 

the signal and create a positional fix for the PTT, thereby identifying the latitudinal and 
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longitudinal location of each animal (Wilson et al. 2002). Telemetry technology, such as 

biotelemetry (remote monitoring of physiological, behavioural and energetic data), and 

mapping of migration routes, critical stopovers and anthropogenic barriers to migration 

has enabled scientists to study many aspects of migratory ecology in inaccessible 

environments (Perras and Nebel 2012). Because there is limited knowledge of seasonal 

and geographic habitat selection by waterfowl, I used satellite telemetry to investigate 

habitat selection by EP Tundra Swans, a large-bodied, Arctic nesting waterfowl species, 

during the nonbreeding period. Information from this study will contribute to scientific 

understanding of waterfowl migration and habitat selection and may help guide allocation 

of management resources for Arctic nesting waterfowl throughout the nonbreeding period 

(Martin et al. 2007). 

Thesis Objectives and Competing Hypotheses 

Consumption of agricultural foods and subsequent population level changes for many 

waterfowl species has created a potential bottleneck of resource availability to waterfowl 

during the winter and migratory periods. Changes in agricultural practices (resulting in 

lack of green weedy vegetation, reduced availability of waste grain, and altered crop 

types) and loss and degradation of aquatic systems have the potential to greatly impact 

the population dynamics of waterfowl. Moreover, because of the difference in nutritional 

profitability and the seasonal availability and accessibility of agricultural versus aquatic 

foods, it is important to understand selection of these habitats to ensure adequate resource 

availability to waterfowl during the nonbreeding period (Gates et al. 2001). Also, spring 

staging sites are underrepresented in the international network of protected wetlands 

(Arzel et al. 2006) and my research may help identify important wetland areas that should 

be protected. Therefore, I sought to increase knowledge of broad-scale selection of 

agricultural, open water, and wetland habitats by large-bodied waterfowl through use of 

satellite telemetry from 63 EP Tundra Swans. Results from my study will provide 

valuable insight into demographic patterns and conservation needs common to diverse 

migratory taxa (e.g., Martin et al. 2007, Bolger et al. 2008, Robinson et al. 2008, Sherrill-

Mix et al. 2008).  

The research questions I address within my thesis are: 1) do Tundra Swans differentially 
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select open water, wetlands and agriculture seasonally and geographically throughout the 

nonbreeding period; 2) do local seasonal habitat use patterns remain the same when 

explored on broad regional and temporal scales; and 3) what is the relative influence of 

habitat availability, nutritional requirements, and seasonal food availability on the 

temporal and geographic selection of agricultural and aquatic habitats. Because I was not 

able to measure directly the influence of habitat availability, nutritional requirements and 

seasonal food availability (i.e., the selection factors of interest), I included variables to 

represent their influence on habitat selection. I also included discrete and continuous 

measures of each variable to determine how habitat selection varied by location and time. 

When exploring selection of agricultural and aquatic habitats I chose regions (Atlantic 

Coast, Great Lakes, or Prairies) to represent discrete changes in habitat availability, and 

latitude and longitude to represent continuous changes in habitat availability. To address 

changes in nutritional requirements and seasonal food availability I chose season (autumn, 

winter, or spring; discrete changes) and study date (continuous changes) as representative 

variables. Because there are no agricultural habitats available in the Boreal Forest (Wiken 

1986), I explored selection of aquatic habitats in the Boreal Forest separate from 

exploration of agricultural and aquatic habitats in the Atlantic Coast, Great Lakes and 

Prairies.  

I hypothesized that habitat selection during the nonbreeding period could be most 

strongly influenced by: 1) geographic changes in habitat availability; 2) temporal 

variation in nutritional requirements and food availability; or 3) both geographic and 

temporal changes combined. I evaluated my competing hypotheses at different temporal 

and geographic scales through a set of candidate models to investigate selection intensity 

(i.e., the magnitude of difference between proportional use of a habitat and its availability 

on the landscape) of agriculture, open water, and wetlands by EP Tundra Swans during 

the nonbreeding period (see Statistical Analysis in Methods). Based upon previous 

literature on Tundra Swan habitat use and knowledge of food and habitat availability 

alongside nutritional requirements of Tundra Swans, I predicted that Tundra Swans 

would select aquatic habitats during autumn and a combination of agricultural and 

aquatic habitats during winter and spring. For the Boreal Forest, I predicted that both 

wetlands and open water would be selected during autumn and that open water would be 
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selected more strongly than wetlands during spring based upon the assumption that 

smaller wetlands would be ice-covered at that time. 
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Chapter Two: Methods and Experimental Design 

Study Area 

I classified geographic regions used by EP Tundra Swans during the nonbreeding period 

as: 1) Atlantic Coast; 2) Great Lakes; 3) northern Prairies; and 4) Boreal Forest (Figure 

2.1). I explored yearly habitat selection of agricultural and aquatic habitats by EP Tundra 

Swans starting in the Prairies from late-September or early-October (dependent upon 

year), to the Great Lakes and Atlantic Coast through winter, back to the Great Lakes in 

spring, and finally leaving the Prairies in mid-to-late May for Boreal locales and Arctic 

breeding areas. Yearly habitat selection of open water and wetlands was explored 

separately in the Boreal Forest where Tundra Swans passed through during spring (mid-

April to late-May or mid-June) and autumn (late-August or early-September to early-to-

mid-November) migration. 

 



 

 

11 

 
Figure 2.1 Eastern Population Tundra Swan nonbreeding habitat range (based 
upon best of day locations from satellite telemetry data from 63 Tundra Swans, 
shown in red) with assigned geographic regions (Atlantic Coast, Boreal Forest, 
Great Lakes and Prairies) determined by designated ecoregions, land cover and 
Tundra Swan location data. Colours on map indicate habitat type (see map legend). 

 

Capture and Marking of Tundra Swans 

Sixty-three adult EP Tundra Swans were marked with satellite telemetry units between 

1998 and 2008; 12 at Long Point, Ontario (42.579 N, 80.430 E) in the Great Lakes during 

spring and autumn migration (Petrie and Wilcox 2003), 41 in the Atlantic Coast over-

winter (Wilkins et al. 2010), and 10 in the Arctic Coastal Plains in Alaska during the 

breeding period (Ramey et al. 2012). Of the transmitters attached at Long Point, seven 

Tundra Swans were marked in spring and autumn of 1998 (95 g backpack harnesses) and 

five in spring of 1999 (30 g neck collar transmitters). Transmitters attached in 1998 were 

programmed to transmit data for 24 h a day for the first 30 days and for 8 h every 3 days 
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afterwards, lasting for approximately 100 days after December 1998. Transmitters 

attached in 1999 were programmed to transmit for 8 h every 5 days and lasted until 

September 2000 (Petrie and Wilcox 2003). Of the 41 Tundra Swans marked on mid-

Atlantic wintering grounds, six were in Maryland, 18 in North Carolina, 10 in 

Pennsylvania, and seven in Virginia from November 2000-March 2002 (39 g neck collar 

transmitters; Wilkins 2007, Wilkins et al. 2010). Transmitters for Tundra Swans marked 

on wintering grounds provided location information for 8 h every 4 days during 

September – May and 8 h every 8 days during June – August, 2001–2003. The 10 

Alaskan transmitters were attached in August and transmitted data for 5 h every 18 h, 

from mid-September – December 2008 and mid-March – mid-May 2009, for 5 h every 72 

h from December 2008 – mid-March 2009, and for 5 h every 80 h mid-May 2009 – 

December 2011 (Craig R. Ely, USGS Research Wildlife Biologist, personal 

communication, Ramey et al. 2012). 

Data Processing and Analysis 

The Argos Data Collection and Location System is used worldwide to provide satellite 

telemetry information by emailing raw location data to researchers on a daily basis 

(Service Argos 2008). Argos has five polar-orbiting satellite receivers and calculates 

geographical positions as a satellite passes over the transmitter using the Doppler shift 

(Miller et al. 2005, Krapu 2011). Further information about the Argos system can be 

found in Fancy et al. (1988) and Harris et al. (1990). Accuracy of Argos satellite location 

data is classified according to seven Location Classes (LCs) based on satellite-to-

transmitter geometry, the number of transmissions received and the stability of the 

transmission frequency. The seven accuracy ratings are grouped as Standard, LC-3 = 

<250 m radius, LC-2 = 250-500 m radius, LC-1 = 500-1500 m radius; and Auxiliary, LC-

0 = >1500 m radius, and LC-A, -B and -Z = no accuracy assessment (Service Argos 

2008). Because there must be a certain level of error assumed with each locational fix 

(Minton et al. 2003), I created a circle around each fix, known as Used Polygons, with a 

radius matching the assigned LC to account for satellite inaccuracies (e.g., Used Polygon 

with LC-1 had a 1500 m radius).  
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I used the following criteria to filter location data and to classify these data by time of day 

and period:  

1)  Filtering for Accuracy: I used the Douglas Argos-Filter Algorithm (Douglas-

Filter) in Movebank to filter satellite location data (Douglas 2006, Douglas et al. 

2012). The Douglas-Filter has three different filtering methods. Each filter acts 

upon raw tracking data of each individual animal, evaluating three consecutive 

locations at a time. The first filter method, Maximum Redundant Distance (MRD), 

addresses spatiotemporal redundancy under the assumption that significant location 

errors are unlikely to occur consecutively in the same geographic area. For MRD, 

the user sets a maximum distance from each location beyond which all other 

locations are rejected within a set time frame. The second filter method, Distance 

Angle Rate (DAR), removes Argos locations that exceed travel rate and bearing 

between three consecutive locations and the location under evaluation by evaluating 

velocity, internal angle of intersection and length of adjoining locations. The third 

filter method, Hybrid, merges the previous MRD and DAR and is used for birds 

that intermittently migrate long distances or remain in relatively localized nesting, 

molting, staging or wintering areas (Douglas et al. 2012). I used the Hybrid filter 

based upon default parameters; 10 km redundancy value, 50 km/h maximum rate of 

travel, and >150° angle of divergence. 

2)  Diurnal or Nocturnal: I classified each Tundra Swan location as a daytime or 

nighttime fix using available macro equations for Microsoft Excel (Minton 2003, 

Sunrise/Sunset - http://www.ecy.wa.gov/programs/eap/models.html). I considered 

locations occurring between civil sunrise and sunset (when the sun is 6° below the 

horizon) as diurnal, and locations between civil sunset and sunrise the next day as 

nocturnal.  

3)  Best of Day: I manually filtered the Douglas-Filtered location data by choosing the 

most accurate LC available for each diurnal and nocturnal period. Due to the scale 

of my research, I used Standard locations only to ensure use of the most accurate 

locations (Miller et al. 2005). In the event of a tie with equally accurate LCs, the 

location with the greatest IQX prevailed, and if another tie occurred, the location 

with the highest number of messages was chosen. If there was still a tie, the 
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location with the highest IQY was chosen. If all three of these values were a tie, I 

randomly chose one location to remain (sensu Service Argos 2008). IQX and IQY 

give information on the PTTs in terms of 2 digits, the X is the first digit and 

indicates residual error on the frequency calculation and Y is the second digit and 

indicates the drift in transmitter oscillator frequency between two satellite passes 

(Service Argos 2008). 

4)  Period: I categorized each Tundra Swan location as autumn, winter, or spring 

(sensu Wilkins 2007) to compare seasonal habitat selection. I categorized PERIOD 

on movements of individual Tundra Swans because timing of migration and 

wintering have greater biological relevance than calendar dates used to define 

seasons. I considered autumn migration to be initiated on the day a Tundra Swan 

traveled >150 km from the breeding grounds, and to be ended upon arrival at a 

terminal southern location (with Maryland to North Carolina representing one 

location; Wilkins 2007). Subsequent sites were considered winter locations until a 

northerly movement >150 km was detected, which I interpreted as the onset of 

spring migration for that Tundra Swan. From the spring onset date forward, sites 

were considered spring migration until arrival on the breeding grounds, defined as 

satellite locations that did not vary by >150 km during late spring and early summer. 

Because this was a nonbreeding period study, I removed all breeding locations and 

any further erroneous location data (e.g. dead birds or dropped transmitters).  

 

I used conditional habitat analyses to control for changes in habitat availability by 

location by pairing Used and Available Polygons at each Tundra Swan location (Figure 

2.2; Duchesne et al. 2010). I created Used Polygons by exporting filtered location data 

from Movebank as ESRI Shapefiles, importing these data in ArcGIS, creating unique 

layers for LC-1, -2, and -3 and buffering by the radius of the estimated error. I merged all 

three layers to create one file for all Used Polygons. The radii of Available Polygons 

were based on the 90% upper confidence interval of average daily foraging distance. I 

determined average daily foraging distance by tracking Tundra Swans from roost, to daily 

foraging sites and back to roost using the following criteria:  
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1) The Tundra Swan demonstrated at least one before-sunrise, one diurnal, and one 

after-sunset location within a given day (selected from Argos-Filtered dataset 

before manual filtering). Before-sunrise, diurnal and after-sunset locations were 

manually filtered to include only one best location for each time period within the 

24-hour set (n = 81 sets). 

2) The 24-hour set demonstrated a “back and forth” pattern unless consecutive 

locations were within 2 km of each other (these were considered the same location 

and were included in analysis as a single location). I defined “back and forth” 

patterns by first drawing a straight line between the before-sunrise and diurnal 

locations, next I created a perpendicular line and after-sunset locations that stayed 

on the same side of 180° boundary as the before-sunrise locations were considered 

to demonstrate a “back and forth” movement (Figure 2.3). 

3) All breeding locations were excluded from analysis, leaving 44 24-hour sets (17 

during autumn, 15 during winter and 12 during spring; total of 88 roost to forage or 

forage to roost flights) for analysis.  

 

 

Figure 2.2 Visual representation of the methodology used to create Used Polygons 
and Available Polygons in ArcGIS 10. 
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Habitat Analysis 

I mapped habitats along migration routes and on wintering areas by projecting land cover 

and aquatic habitat data in ArcGIS (Minton et al. 2003). For Canada, I used the Ducks 

Unlimited Hybrid Wetland Layer and supplemented with Natural Resources Canada’s 

Circa 2000 for northern Canada obtained from GeoBase. For the United States (US), I 

used the National Land Cover Database 2001 from the US Geological Survey database 

(Homer et al. 2007). Because habitat data were obtained from different sources, I created 

a new classification system called the Habitat Analysis Classification System using a 

cross-walk method to ensure continuity between Canada and US land cover designations 

(see Appendix A); the habitat types which I chose to explore were open water, wetlands 

and agriculture. To determined proportions of each habitat type present in Used and 

Available Polygons, I used the Intersect Polygons with Raster and Intersect Polygons 

with Polygons functions in Geospatial Modeling Environment (GME; Hawthorne 2001-

2012). The GME functions produced output values between 0 and 1 for each habitat type, 

representing the proportion of the polygon that habitat type occupied. I then calculated 

Figure 2.3 Back-and-forth criteria used to determine average daily foraging 
distance.  As long as the After Sunset Location remained on the same side of the 
180° line as the Before Sunrise Location, the set was considered as Daily 
Movements. 
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selection intensity of each habitat type by subtracting the proportion of each habitat type 

present in Available Polygons from those present in their paired Used Polygon (e.g., 

polygon pair: proportion of agriculture in Available Polygon = 0.3, proportion of 

agriculture in Used Polygon = 0.8, selection intensity = 0.5). I also obtained mean raw 

habitat use and availability information by region and season to aid in interpretation of 

results.  

Habitat accessibility plays a major role in habitat selection and is influenced by many 

social, inter-specific and environmental factors, such as human disturbance, predation, 

and weather (Garshelis 2000, Matthiopoulos 2003, Aarts et al. 2008). Generally, habitat 

accessibility cannot be quantified, but because weather data are readily available at great 

spatial scales, and given the potential for changing climates (Crick 2004, Inkley et al. 

2004), I included indices of snow and ice as covariates in my analysis to determine if 

selection intensities were influenced by these weather variables (Schummer et al. 2010). I 

calculated a snow index from snow depth data obtained through Movebank from the 

National Centers for Environmental Prediction’s North American Regional Reanalysis 

(NARR) Snow Depth databank. I considered snow depth >1 cm as the presence of snow. 

I indexed ice using Freezing Degree Days (FDD) because this metric is correlated with 

percent ice cover and thickness in lakes and wetlands in North America (Boyd 1975, 

Assel 1990). To calculate FDD I completed the following based on Boyd (1975):  

1) I obtained mean daily temperature values from NARR for all Tundra Swan 

locations from the date the location was recorded, backdated to 1 October of that 

nonbreeding period (e.g., if a Tundra Swan was located at location X on 20 January 

2002, I calculated the mean daily temperature for location X from 1 October 2001 – 

20 January 2002) 

2) I calculated the amount each mean daily temperature departed from freezing (0 °C; 

termed departure value, DV).  

3) I calculated Freezing Degree Days as FDD = Σ (- DV), whether DV was positive or 

negative. Including positive DVs controlled for days >0 °C when there would be a 

tendency for ice to melt or ground to thaw. Including a negative sign before DV 

ensured that the FDDs calculated would be a positive value for the period. 
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Statistical Analyses 

I investigated factors influencing selection intensity for open water, wetland, and 

agricultural habitats using Generalized Linear Mixed Models in SAS (Zurr et al. 2009); a 

mixed model approach was necessary because I included both fixed and random effects. 

Using an information-theoretic approach for science based, a priori model selection (i.e., 

presenting plausible mechanisms for habitat selection and choosing appropriate variables 

to represent these mechanisms; Burnham and Anderson 2002, Richards 2005), I 

developed a candidate set of 10 models. The candidate model set was used to assess the 

amount of variation in selection intensity for OPEN WATER, WETLANDS, or 

AGRICULTURE explained by REGION (Atlantic Coast, Great Lakes and Prairies), 

LATITUDE and LONGITUDE, PERIOD (autumn, winter, spring), STUDY DATE, and 

biologically plausible combinations (explored concurrent contribution of these 

independent variables on selection intensity; Table 2.1; PROC Mixed, SAS Institute 

2009). REGION, LATITUDE and LONGITUDE address changes in location, and 

support for either variable would suggest changes in selection are driven by habitat 

differences rather than seasonal availability of food and physiological requirements, as 

would be suggested by PERIOD and STUDY DATE. Support for REGION would 

suggest that discrete regional differences influence habitat selection in Tundra Swans, 

whereas LATITUDE and LONGITUDE would suggest a gradient of change by location. 

Support for PERIOD would suggest that changing food availability and physiological 

needs of Tundra Swans drive changes in habitat selection and these shifts occur at 

discrete times such as initiation of migration. STUDY DATE would also suggest habitat 

selection was influenced by food availability and timing of physiological requirements, 

but that these influential variables scale to continuously changing time rather than 

seasonal endpoints. To investigate selection intensity of OPEN WATER and 

WETLANDS for the Boreal Forest, I removed all candidate models containing REGION 

and was left with six models (Table 2.1).  

I included LC and DAYNIGHT (diurnal or nocturnal location classification) as 

categorical fixed covariates to control for variation attributable to differences in size of 

error circles and diurnal and nocturnal selection, respectively. Because weather variables 
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may influence habitat accessibility, I included SNOW as a fixed categorical covariate and 

ICE as a fixed continuous covariate. I included STUDY DATE nested in YEAR as a 

repeated measure to account for sampling of the same individual through time (Zurr et al. 

2009). Including Tundra Swan ID as a random repeated variable was necessary to 

account for the nested nature of the data (i.e., repeated measures from individual birds) 

because individual birds are more likely to exhibit similar habitat selection repeatedly. 

Including YEAR and ID as a random variable rather than a fixed variable also allowed 

me to make statistical inferences about the entire EP, instead of limiting the application of 

my results to the 63 Tundra Swans in my study (Zurr et al. 2009). I used Studentized 

Residuals of model outputs to confirm that all data within models approximated a normal 

distribution and used Compound Symmetry covariance structure for my analysis because 

it produced the least Akaike Information Criterion (AIC) value from a suite of tested 

covariance structures (Littell et al. 2007). 

I used AIC to determine which model(s) best explained variation in selection intensity for 

each habitat type by comparing ΔAIC and AIC weights (wi; Akaike 1973, Burnham and 

Anderson 2002). Delta AIC provides a measure of each model relative to the best model 

(model with the lowest AIC value) by comparing AIC values from the best model and the 

model in question; ΔAIC ≤ 2 suggests substantial evidence for the model, ΔAIC between 

3–7 indicate considerably less support, and ΔAIC ≥ 10 indicate the model is very unlikely. 

Another measure of strength of evidence for the model is wi, which indicate the 

probability that the model is the best among those considered in the candidate model set 

(Burnham and Anderson 2002). When interpreting selection results, I only considered 

models ≤2.0 ΔAIC units from top models and, when multiple models were ≤2.0 ΔAIC, I 

used model averaging to estimate parameters, 95% confidence intervals (CI), and model-

adjusted predicted values of OPEN WATER, WETLANDS or AGRICULTURE 

(Burnham and Anderson 2002). Model averaging provides a weighted estimate of 

parameter values for each variable included in the top models and is done by averaging 

the estimates according to how likely each model is. By averaging estimates of each 

variable across top models you include model selection uncertainty in the estimate of 

precision of the parameter and produce unconditional estimates of variances and standard 

errors (Wasseman 2000). 
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Table 2.1. Candidate model sets conducted in SAS as General Linear Mixed Models 
and compared using AIC weights to determine relative influence on selection 
intensity of OPEN WATER, WETLANDS, or AGRICULTURE. 

Competing Hypothesis Influence Explored Models 
Habitat Availability 
 

Discrete influence of location 
 

REGION 
 

Habitat Availability  
 

Continuous influence of location 
 

LATITUDE AND 
LONGITUDEa 

Food Availability and 
Nutritional Requirements 

Discrete influence of time 
 

PERIODa 
 

Food Availability and 
Nutritional Requirements 

Continuous influence of time 
 

STUDY DATEa 
 

Food Availability and 
Nutritional Requirements 

Continuous influence of time 
within discrete periods 

PERIOD + STUDY 
DATEa 

Habitat Availability, Food 
Availability and Nutritional 
Requirements 

Discrete influence of location with 
discrete influence of time 
 

REGION 
+ PERIOD 
 

Habitat Availability, Food 
Availability and Nutritional 
Requirements 

Discrete influence of location with 
continuous influence of time 
 

REGION +  
STUDY DATE 
 

Habitat Availability, Food 
Availability and Nutritional 
Requirements 

Continuous influence of location 
with discrete influence of time 
 

LATITUDE AND 
LONGITUDE + 
PERIODa 

Habitat Availability, Food 
Availability and Nutritional 
Requirements 

Continuous influence of location 
with continuous influence of time 
 

LATITUDE AND 
LONGITUDE + 
STUDY DATEa 

Habitat Availability, Food 
Availability and Nutritional 
Requirements 

Discrete influence of location with 
continuous influence of time within 
discrete periods 

REGION + 
PERIOD + STUDY 
DATE 

aModels incorporated parameters of satellite telemetry error ratings (LC), diurnal and 
nocturnal selection differences, snow, and ice as fixed effects. Individual Tundra Swans 
were identified and included, along with year, as random repeated effects. 
bModels included for analysis of aquatic habitats in the Boreal Forest. 
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Chapter Three: Results 

Raw location data from Argos resulted in 65,608 observations; after filtering, 5,042 

observations remained [by period: autumn (n = 1,674), winter (n = 1,363) and spring (n = 

2,005); by region: Atlantic Coast (n = 1,344), Great Lakes (n = 1,107), Prairies (n = 

1,422) and Boreal (n = 1,169)]. The average daily foraging distance traveled by Tundra 

Swans was 6.5 ± 8.2 km, with a median distance of 3.5 km and range from 210.5 m – 

48.7 km. The 90% upper CI was 8.0 km; thus, I created 8 km buffers around filtered 

Tundra Swan locations to represent available habitat. 

I included raw use and availability information to establish a baseline understanding of 

the average availability of each habitat type by period and region to aid in interpretation 

of selection intensity results. Availability of each habitat type does not reflect overall 

habitat availability in the region, but was a function of the scale of my study and was 

based upon habitats available within each Tundra Swan’s daily foraging zone. In general, 

agriculture was highly available to Tundra Swans, ranging from 30% of available habitat 

in the Atlantic Coast to 80% in the Prairies, whereas availability of aquatic habitats was 

more limited, representing approximately 50% of habitats in the Atlantic Coast, 35% in 

the Great Lakes and only 10% in the Prairies. Agricultural availability was greatest 

during spring and least during winter, open water was least available during spring and 

most available during winter, and wetlands were least available during autumn and spring 

(Tables 3.1 and 3.2). In the Boreal Forest, availability of open water was more than 2× 

greater than wetlands during autumn and 1.5× greater than availability of wetlands during 

spring (Table 3.3). Because my analysis included diurnal and nocturnal locations, I 

conducted a paired t-test and determined that diurnal habitat use was not statistically 

different from overall habitat use (t17 = 0.154, p = 0.88). Use and availability are raw data 

and therefore have the potential to be statistically biased because mean values are not 

controlled for pseudoreplication of individual Tundra Swans (i.e., individual birds may 

bias the results) or for spatial and temporal autocorrelation. 
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G
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SE 
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Agriculture and Aquatic Habitats 

Agriculture.  The model explaining the most variation in selection intensity for 

AGRICULTURE included PERIOD and LATITUDE and LONGITUDE and was 

strongly supported (wi = 1.0; Table 3.4). Model-predicted selection intensity for 

AGRICULTURE was greater during winter (6.91 ± 0.12 %) than spring (-4.12 ± 0.16 %), 

and suggested avoidance during autumn (-23.83 ± 0.19 %; Table 3.5, Figure 3.1). 

AGRICULTURE selection intensity increased by 1.67% for each degree decrease in 

LATITUDE and increased by 0.80% for each degree decrease in LONGITUDE (Table 

3.5 Figure 3.2). These results suggest that after including influence of PERIOD, selection 

intensity increased as Tundra Swans moved south and east. 

Open Water. The model explaining the most variation in selection intensity for OPEN 

WATER included REGION and PERIOD and was strongly supported (wi = 1.0; Table 

3.4). Model-predicted selection intensity for OPEN WATER was greater during autumn 

(32.16 ± 0.23 %) than winter and spring (6.60 ± 0.18 and 4.78 ± 0.18 %, respectively; 

Table 3.5, Figure 3.3) and greater in the Great Lakes (20.03 ± 0.44 %) and Prairies (13.26 

± 0.40 %) than Atlantic Coast (6.34 ± 0.17 %; Table 3.5, Figure 3.4). 

Wetlands. Models retained within 2.0 AIC units included LATITUDE, LONGITUDE 

and PERIOD as fixed variables (Table 3.4). Model-averaged selection intensity for 

WETLANDS was greatest during autumn and spring (0.44 ± 0.10 % and 0.73 ± 0.09 %, 

respectively), and slightly negative during winter (-6.7 ± 0.11 %; Table 3.5, Figure 3.5). 

After correction for season, selection intensity for WETLANDS increased by 0.64% for 

each degree increase in LATITUDE and increased by 0.22% for each degree increase in 

LONGITUDE (Table 3.5, Figure 3.6).  
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Table 3.4 Mixed-effects models of selection intensitya for terrestrial and aquatic 
habitats in the Atlantic Coast, Great Lakes and Prairies based upon nonbreeding 
movements by 63 EP Tundra Swans, 1998 – 2004 (n = 1636) and 2008 – 2011 (n = 
2236). 

Habitat Type Modelsb K ΔAICc wi 
AGRICULTURE PERIOD, LATITUDE and LONGITUDE 7 0.0 1.00 

 
PERIOD, STUDY DATE 6 16.3 0.00 

 
Nulld 4 633.8 0.00 

  
   

OPEN WATER REGION, PERIOD 6 0.0 1.00 

 
REGION, PERIOD, DATE 7 15.1 0.00 

 
Nulld 4 400.7 0.00 

  
   

WETLANDS LATITUDE and LONGITUDE 6 0.0 0.69 

 
PERIOD, LATITUDE and LONGITUDE 7 1.6 0.31 

 
Nulld 4 131.1 0.00 

aSelection intensity = difference between proportion of habitat used and available (0.0 – 
1.0). 
bModels incorporated parameters of satellite telemetry error ratings (LC), diurnal and 
nocturnal selection differences, snow, and ice as fixed covariate effects. Individual 
Tundra Swans were identified and included, along with year, as random repeated effects. 
cModels are sorted by Akaike Information Criterion (AIC), the top two models (models 
with the lowest AIC values) and null models are shown. The AIC values for top models 
were 584.8, 741.5, and -2337.3 for AGRICULTURE, OPEN WATER and WETLANDS, 
respectively. 
dNull model includes all covariates and the intercept. 
K – number of parameters 
ΔAIC – difference between AIC of the top model and AIC of model of interest 
wi – model weight, indicates probability that model is best among the candidate models 
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Table 3.5 Parameter estimates (θ), standard errors, and 95% confidence intervals 
derived from candidate models (ΔAIC ≤ 2) of selection intensitya for agricultural 
and aquatic habitats in the Atlantic Coast, Great Lakes and Prairies based upon 
nonbreeding movements by 63 EP Tundra Swans, 1998 – 2004 (n = 1636) and 2008 – 
2011 (n = 2236). 

Habitat Typeb Parameter θ SE 95% CI 
AGRICULTURE Intercept 0.386 0.064 0.245 to 0.528 

 
Autumn -0.201 0.021 -0.242 to -0.160 

 
Winter 0.000 . . 

 
Spring -0.101 0.022 -0.144 to -0.058 

 
Latitude -0.008 0.004 -0.015 to -0.001 

 
Longitude 0.001 0.002 -0.002 to 0.004 

     OPEN WATER Intercept 0.024 0.038 -0.060 to 0.108 

 
Autumn 0.267 0.032 0.205 to 0.329 

 
Winter 0.000 . . 

 
Spring 0.028 0.031 -0.032 to 0.088 

 
Atlantic Coast 0.073 0.033 0.008 to 0.137 

 
Great Lakes 0.096 0.014 0.069 to 0.123 

 
Prairies 0.000 . . 

     WETLANDS Intercept -0.221 0.034 -0.295 to -0.147 

 
Autumn 0.014 0.004 0.005 to 0.023 

 
Winter 0.000 . . 

 
Spring 0.008 0.005 -0.001 to 0.017 

 
Latitude 0.019 0.002 0.015 to 0.023 

  Longitude 0.007 0.001 0.005 to 0.009 
aSelection intensity = difference between proportion of habitat used and available (0.0 – 
1.0). 
bModel-averaged parameter estimates are reported for WETLANDS, whereas statistics 
for AGRICULTURE and OPEN WATER are based on the model with the lowest AIC 
score. 
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Figure 3.1. Boxplot of model predicted selection intensity for agriculture by season 
in the Atlantic Coast, Great Lakes and Prairies, autumn (n = 1045), winter (n = 
1363) and spring (n = 1465).  

The upper and lower limits of each box outline the areas where 25% of the data is 
greater than or lower than the median. The whiskers represent the maximum and 
minimum values observed (excluding outliers), and the line in the middle of the 
boxes is the median value observed. 
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Figure 3.2 Scatterplot of model predicted selection intensity for agriculture by 
latitude and longitude (n = 3873) in the Atlantic Coast, Great Lakes and Prairies.  
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Figure 3.3 Boxplot of model predicted selection intensity for open water by season in 
the Atlantic Coast, Great Lakes and Prairies, autumn (n = 1045), winter (n = 1363) 
and spring (n = 1465).  

The upper and lower limits of each box outline the areas where 25% of the data is 
greater than or lower than the median. The whiskers represent the maximum and 
minimum values observed (excluding outliers), and the line in the middle of the 
boxes is the median value observed. 
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Figure 3.4 Boxplot of model predicted selection intensity for open water by region in 
the Atlantic Coast (n = 1344), Great Lakes (n = 1107) and Prairies (n = 1422). 

The upper and lower limits of each box outline the areas where 25% of the data is 
greater than or lower than the median. The whiskers represent the maximum and 
minimum values observed (excluding outliers), and the line in the middle of the 
boxes is the median value observed. 
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Figure 3.5 Boxplot of model-averaged predicted selection intensity for wetlands by 
season in the Atlantic Coast, Great Lakes and Prairies, autumn (n = 1045), winter (n 
= 1363) and spring (n = 1465).  

The upper and lower limits of each box outline the areas where 25% of the data is 
greater than or lower than the median. The whiskers represent the maximum and 
minimum values observed (excluding outliers), and the line in the middle of the 
boxes is the median value observed. 
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Figure 3.6 Scatterplot of model-averaged predicted selection intensity for wetlands 
by latitude and longitude (n = 3873) in the Atlantic Coast, Great Lakes and Prairies.  
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Aquatic Habitats in the Boreal Forest 

Open Water. The model explaining the most variation in selection intensity for OPEN 

WATER included LATITUDE and LONGITUDE and was relatively strongly supported 

(wi = 0.87; Table 3.3). Model-predicted selection intensity for OPEN WATER increased 

by 0.69% for each degree decrease in LATITUDE and increased by 0.15% for each 

degree decrease in LONGITUDE (Table 3.4, Figure 3.2). 

Wetlands. The null model explained more variation in selection intensity for 

WETLANDS than any of the candidate models (wi = 0.94). Because no models fell 

within 2.0 AIC units of the null model, no other models were retained. The null model-

predicted selection intensity for WETLANDS was -2.99 ± 0.12 %. 

 

Table 3.6 Mixed-effects models of selection intensitya for aquatic habitats in the 
Boreal Forest based upon nonbreeding movements by 63 EP Tundra Swans, 1998 – 
2003 (n = 363) and 2008 – 2011 (n = 806). 

Habitat Type Modelsb K ΔAICc wi 
OPEN WATER LATITUDE and LONGITUDE 6 0.0 0.87 

 
PERIOD, LATITUDE and LONGITUDE 7 4.6 0.09 

 
Nulld 4 6.3 0.04 

  
 

  WETLANDS PERIOD 5 0.0 0.06 

 
DATE 5 8.9 0.00 

 
Nulld 4 -5.4 0.94 

aSelection intensity = difference between proportion of habitat used and available (0.0 – 
1.0). 
bModels incorporated parameters of satellite telemetry error ratings (LC), diurnal and 
nocturnal selection differences, snow, and ice as fixed covariate effects. Individual 
Tundra Swans were identified and included, along with year, as random repeated effects. 
cModels are sorted Akaike Information Criterion (AIC), the top two models (models with 
the lowest AIC values) and null models are shown. The AIC values for top models were 
1110.2 and 364.2 for OPEN WATER and WETLANDS, respectively. 
dNull model includes all covariates and the intercept. 
K – number of parameters 
ΔAIC – difference between AIC of the top model and AIC of model of interest 
wi – model weight, indicates probability that model is best among the candidate models 
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Table 3.7 Parameter estimates (θ), standard errors, and 95% confidence intervals 
derived from candidate models (ΔAIC ≤ 2) of selection intensitya for agricultural 
and aquatic habitats in the Boreal Forest based upon nonbreeding movements by 63 
EP Tundra Swans, 1998 – 2003 (n = 363) and 2008 – 2011 (n = 806). 

Habitat Type Parameter θ SE 95% CI 
OPEN WATER Intercept 1.09 0.172 0.704 to 1.484 

 
Latitude -0.009 0.005 -0.019 to 0.001 

 
Longitude 0.002 0.002 -0.001 to 0.006 

     WETLANDS Intercept -0.078 0.021 -0.126 to -0.030 
aSelection intensity = difference between proportion of habitat used and available (0.0 – 
1.0). 
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Figure 3.7 Scatterplot of model predicted selection intensity of open water by 
latitude and longitude in the Boreal Forest (n = 3873).  
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Chapter Four: Discussion 

Habitat use and selection are inherently scale-dependent and involve making decisions on 

a hierarchy of temporal and geographic scales (Johnson 1980, Zhang and Yankuo 2005). 

Despite an abundance of site specific (i.e., local scale) habitat studies exist during 

snapshots of the annual cycle (e.g., habitat switching by Brant, Branta bernicla L., during 

winter in Norfolk, England, Vickery et al. 1995; cornfield use during spring by cranes 

and geese in Nebraska, Anteau et al. 2011), we do not know how these relationships 

relate to broad scale habitat selection. By understanding the temporal and geographic 

selection of habitats by Tundra Swans and the mechanisms driving these relationships, 

we can: 1) better predict how Tundra Swans respond to changing habitats and 

environmental factors, 2) make inferences about habitat selection at local scales based 

upon geographic location and time of year, and 3) refine conservation strategies to more 

appropriately match regional and seasonal requirements. Therefore, I used scientific 

theory to develop models in an observational study to investigate selection of agricultural, 

open water and wetlands habitats to better understand the ecology of large-bodied 

migratory waterfowl in autumn, winter and spring. I used multiple competing hypotheses 

and discovered that variables representing habitat availability, food availability and 

nutritional requirements all explain variation in selection intensity for agricultural and 

aquatic habitats in the Atlantic Coast, Great Lakes and Prairies, but, of the selection 

factors explored, only the representative variable for habitat availability appears to 

influence selection of aquatic habitats in the Boreal Forest. Moreover, the influence of 

habitat availability, food availability, or nutritional requirements on habitat selection 

intensities changed discretely with time and both discretely and continuously with 

location, depending upon the habitat type addressed. All conclusions drawn are based 

upon variables representing changes in habitat availability, nutritional requirements and 

seasonal food availability, as these factors could not be measured in my analysis. 

Daily Movements by Tundra Swans 

Knowledge of landscape mosaics within daily foraging distances is necessary to 

understand how wintering and migrating waterfowl may use landscapes surrounding 

roosting locations, wildlife refuges, and other managed and unmanaged habitats 
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(Ackerman et al. 2006). Mean daily foraging distance for Tundra Swans during the 

nonbreeding period was 6.5 km but individual foraging distances ranged from 

approximately 200 m to 50 km. Because of this variability, I used the upper CI for the 

daily foraging distance (8.0 km) to determine what habitats were available to 90% of 

Tundra Swans at any given location. The foraging distance used in my study is similar to 

those observed in other wintering waterfowl species in North America (e.g., geese 8.6 ± 

7.6 km and dabbling ducks 5.7 ± 5.2 km; Johnson et al. 2013); therefore, selection 

intensities calculated in my study may be representative of other nonbreeding waterfowl 

species that regularly use agricultural habitats to forage. Understanding how waterfowl 

select habitats available in complex landscapes provides additional guidance to 

conservation planners charged with ensuring appropriate habitats are available at times 

when birds are selecting for specific resources (Arthur et al. 1996, Calvert et al. 2009). 

Agricultural and Aquatic Habitats 

The nonbreeding period is nutritionally demanding because it represents a time when 

adult Tundra Swans build and replenish nutrient stores and when juveniles continue to 

grow and develop (Bellrose 1980, Drent and Daan 1980, Sedinger 1992, Klaassen 2003, 

Petrie et al. 2002, Clausen et al. 2003, Studds et al. 2008, Reudink et al. 2009, Badzinski 

et al. 2011). Because aquatic foods provide balanced nutrient intake, and because 

increased consumption of submerged aquatic vegetation (SAV) has been linked to better 

body condition (Loesch and Kaminski 1989, Hoye et al. 2012), one would expect Tundra 

Swans to focus on aquatic habitats when available. However, foraging, senescence and 

ice can decrease the availability and accessibility of SAV over-winter and especially 

during spring migration (Alisauskas and Ankney 1992, Badzinski et al. 2006, Schummer 

et al. 2010). When investigating raw availability of habitats to Tundra Swans, the 

approximate make-up of regions was: 1) one third agriculture, one quarter wetlands and 

one quarter open water in the Atlantic Coast; 2) half agriculture, one quarter open water 

and one tenth wetlands in the Great Lakes; and 3) over three quarters agriculture in the 

Prairies with open water and wetlands making up only one tenth of the remaining habitat. 

Because Tundra Swans roost and feed in aquatic habitats overnight, it was possible that 

inclusion of nocturnal locations may have resulted in an overestimate of aquatic habitat 
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use and I controlled for this possibility by including diurnal or nocturnal classifications as 

covariates in my analysis. However, diurnal and overall raw habitat use data were not 

significantly different, indicating that inclusion of nocturnal data did not bias results in 

my study.  

Overall, I detected the selection of investigated habitats by season to be: 1) during 

autumn, Tundra Swans selected open water most strongly, then wetlands, and agriculture 

was used substantially less than its availability; 2) during winter, selection intensity was 

greatest for agriculture, then open water, and wetlands were used less than their 

availability; and finally 3) during spring, selection intensity was greatest for open water, 

then wetlands, with Tundra Swans using agriculture slightly less relative to its 

availability. Because season had such a strong influence on the selection intensity of 

habitats, it appears that nutritional requirements, food availability, or both vary discretely 

with changing seasons, rather than continuously throughout the year. Discrete variance in 

habitat selection by season may be related to changes in nutritional requirements that 

evolved in relatively stable climates, enabling Tundra Swans to exploit habitat specific 

foods that change with the seasons throughout their annual life cycle. 

Agriculture 

Raw data indicated that availability of agriculture by region decreased as Tundra Swans 

moved south and east from the prairies to the Atlantic Coast. Selection for agriculture 

demonstrated an inverse relationship with agricultural availability by increasing with 

decreasing latitude and longitude, suggesting that availability of agricultural habitats had 

the greatest potential to be limiting as Tundra Swans moved toward wintering grounds. 

By investigating clusters on latitude and longitude scatterplots and pairing these results 

with a map of the nonbreeding period (Figure 4.1), I determined that selection intensity 

for agriculture during winter was greatest in North Carolina, with a slight decrease in 

intensity in Chesapeake Bay and again in Pennsylvania. Most Tundra Swans travel from 

Pennsylvania to Chesapeake Bay to North Carolina over-winter and then head back north 

just before spring migration, suggesting that selection for agriculture was strongest mid-

winter. Outside the wintering grounds, selection intensity for agricultural habitats tended 

to be negative but was highly variable, suggesting that strategies among individual 
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Tundra Swans differed greatly during migration. An increased use of agriculture relative 

to its availability was detected in the Prairies at the eastern edge of North Dakota where 

the availability of agriculture is especially high (over 80% of available habitats) in 

comparison with other regions. Increased selection for agriculture in an area with such 

high agricultural availability may suggest an importance of agriculture for obtaining high-

energy foods during spring immediately before travelling through the Boreal Forest 

where agriculture was unavailable and SAV may be reduced by senescence and ice cover. 

Obtaining lipid stores in the Prairies during spring migration would reduce the costs of 

migration prior to this point because Tundra Swans would have been travelling with a 

reduced body mass (Badzinski et al. 2011). However, the North Dakota relationship did 

not alter the overall negative trend and my results suggest agricultural habitats were more 

consistently selected for in the Atlantic Coast relative to the Great Lakes and Prairies.  

Although agriculture was not selected during migration, it represented approximately 

45% and 80% of habitats where Tundra Swans occur in the Great Lakes and Prairies, 

respectively. Therefore, it is likely that selection intensities in these regions were 

decreased by an oversaturation of agricultural habitats. Also, not all agricultural habitats 

are profitable to foraging Tundra Swans, either due to crop type (e.g., tobacco, pastures, 

cotton) or because of agricultural practices (i.e., harvest schedules and plowing of fields) 

and the inclusion of these habitats could have influenced my results. Moreover, the 

proportional availability of each crop type may vary by region, which would influence 

the nutritional profitability of each region and this must also be considered when 

interpreting results. Therefore, although agriculture was not selected for (in relation to 

availability) in the Great Lakes and Prairies during spring, it is likely still an important 

source of energy for migrating Tundra Swans when these carbohydrate needs cannot be 

met in natural aquatic habitats through consumption of SAV (Baldassarre and Bolen 

1994).  
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Variability in the results by latitude and longitude during migration may have been 

influenced by changes in seasonal selection intensity between autumn and spring. Even 

though Tundra Swans passed through the same regions during autumn and spring 

migration, my results indicate they used agriculture approximately 2× more during spring 

and they used agricultural areas substantially less during autumn relative to their 

availability. Avoidance of agricultural habitats during autumn does not appear to be a 

product of harvest schedules, because Tundra Swans arrive in each region after or during 

harvest when agricultural grains are most readily available (Table 4.1). Therefore, 

increased availability of SAV after the summer growth period (Alisauskas and Ankney 

1992, Badzinski 2003, Badzinski et al. 2006) is likely linked to agricultural avoidance 

during autumn. Avoidance of agriculture in autumn, alongside greater selection 

intensities for open water during autumn than during winter and spring suggests that, 

when available, SAV and carbohydrate rich SAV tubers may be preferred over 

agricultural grains.  

 

The consumption of agricultural grains is associated with cold temperatures (Jorde et al. 

1983, Baldassarre and Bolen 1984) and may reduce use of lipid reserves during cold 

periods by increasing an individual’s total energy balance (Calder and King 1974, 

Kendeigh et al. 1977, Baldassarre and Bolen 1984). In my study, Tundra Swans selected 

agricultural habitats during winter and used agriculture 2× more during spring migration 

than they did in autumn, suggesting that agricultural grains may be especially important 

as a high-energy supplement for winter and spring survival when Tundra Swans are 

exposed to cold temperatures and energy needs cannot be met through consumption of 

aquatic foods alone. Moreover, because selection of agricultural habitats during winter 

and spring was relatively greater than in autumn, it is possible that Tundra Swans 

increased lipid stores through consumption of agricultural foods during these periods in 

preparation for predictable future energetic requirements of migration and breeding. 
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Table 4.1 Agricultural harvest schedules and range of dates satellite tracked Tundra 
Swans were present in each region during the nonbreeding period.  

Region Tundra Swans Present Crop Harvest Date Rangea 
Atlantic Coast Nov 4 - Mar 28 Corn Aug 25 - Dec 10 

  
Alfalfa May 1 - Nov 30 

  
Oats July 20 - Aug 30 

  
Sorghum N/A 

  
Soybeans Oct 4 - Dec 30 

  
Sugarbeets N/A 

  
Winter Wheatb Aug 30 - Dec 31 

    Great Lakes Oct 13 - April 9 Corn Sep 5 - Dec 10 

  
Alfalfa May 20 - Oct 14 

  
Oats July 19 - Sep 2 

  
Sorghum N/A 

  
Soybeans Sep 25 - Nov 13 

  
Sugarbeets Sep 26 - Nov 11 

  
Winter Wheatb Sep 22 - Oct 22 

    Prairies Sep 26 - Dec 3 Corn Sep 24 - Dec 6 

  
Alfalfa May 1 - Oct 1 

  
Oats July 14 - Sep 18 

  
Sorghum Jun 30 - Nov 17 

  
Soybeans Sep 17 - Nov 5 

  
Sugarbeets Sep 16 - Oct 30 

  
Winter Wheatb Sep 1 - Oct 16 

 

aData collected from USDA National Agricultural Statistic Service 2010 A. 
bDate range represents the planting dates rather than harvest dates because waterfowl 
forage on winter wheat new growth.  

 



 

 

44 

Open Water 

Availability of open water ranged from just over 20% of Tundra Swan habitats in the 

Atlantic Coast and Great Lakes and only 5.5% in the Prairies, however, selection 

intensity did not vary directly with changes in availability as was observed with 

agriculture selection intensities. Rather, selection intensity for open water was lowest in 

the Atlantic Coast and greatest in the Great Lakes where overall availability of open 

water was approximately equal. Differences in selection intensities in these two regions 

suggests that some sort of regional difference, whether it was the stage within the annual 

cycle that Tundra Swans pass through the area or the different types of open water 

habitats available (i.e., in the Great Lakes and Prairies open water represents rivers and 

lakes but at the Atlantic Coast open water also includes estuarine and marine deep-water 

habitats), was strongly influencing selection of open water habitats.  

During migration, selection for open water was approximately 7× greater in autumn than 

spring, likely due to the increased availability of SAV in autumn. Because many Tundra 

Swans travel with cygnets during autumn, and because the latter continue to grow and 

develop up to six months of age (Bowler et al. 1992), it is possible that aquatic habitats 

are especially important to provide nutritionally balanced foods (i.e., carbohydrates, 

proteins, minerals, essential amino acids) and predator protection for growing cygnets. 

Moreover, because agricultural forage was used more intensively during winter and 

spring, selection for open water may not need to be as intense at these times. Although I 

did not investigate other extrinsic factors such as the amount of field hunting or 

conspecific competition, these factors may influence accessibility and functional 

availability of agricultural forage during autumn, and thus necessitate increased use of 

open water habitats during the southward migration.  

Wetlands  

Wetlands were most available in the Atlantic Coast (approximately 25% of Tundra Swan 

habitat), with availability decreasing to approximately 9% in the Great Lakes and 5% in 

the Prairies. As seen with agriculture, selection intensity for wetlands corresponded to 

changes in wetland availability and selection increased as Tundra Swans moved north 

and west in their range. Investigation of the latitude and longitude graphs suggests that 
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wetland use was greater than availability in the Prairies (in North Dakota and Canada), in 

the lower Great Lakes and along the Potomac and Rappanhannock Rivers within the 

northern Chesapeake Bay, although wetlands were not selected at the Chesapeake Bay 

overall (Figure 4.2). As previously mentioned, wetland areas requiring protection are 

underrepresented during spring in the international network of protected wetlands (Arzel 

2006) and my research has identified these four areas as potentially important for future 

research and management. Because Tundra Swans select for wetlands during the majority 

of autumn and spring, but do not during winter, it appears they may be responding to 

nutritional pressures such as growing cygnets, future egg production and the energetic 

stress of migration. However, it is also possible that variability in selection for wetlands 

was simply a function of decreased availability of wetlands during migration and 

increased availability over-winter.  
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Aquatic Habitats in the Boreal Forest 

I addressed the Boreal Forest separately because agricultural forage was not available and 

habitat relationships are likely to change when waterfowl must rely solely on aquatic 

foods. Boreal Forest aquatic systems are important to Tundra Swans and other Arctic-

nesting waterfowl because they represent a final stopover before breeding and the first 

autumn stopover where cygnets continue to develop (Bowler 1992, Petrie and Wilcox 

2003). Tundra Swans spend about 15% of spring migration and approximately 50% of 

autumn migration in the Boreal (Petrie and Wilcox 2003), suggesting the Boreal Forest is 

likely especially important to Tundra Swans during autumn.  

Based upon the assumption that ice-cover during spring would influence habitat selection, 

I predicted that open water would be selected during spring and both open water and 

wetlands would be selected during autumn in the Boreal Forest. However, because season 

did not appear in the top habitat selection models, my results suggest that season did not 

have a strong influence on aquatic habitat selection in the Boreal Forest. Overall, the 

selection relationships indicated that open water was strongly selected and wetlands were 

used approximately equal to their availability. Although the relationship was weak, 

selection intensity for open water appeared to decrease as birds moved north and west 

from approximately 25% at the southern edge of the Boreal Forest to 15% near the 

breeding grounds. When exploring selection of wetlands by Tundra Swans in the Boreal 

Forest, I discovered that none of my proposed candidate models were better at explaining 

variation in selection intensities than my covariates alone. Weak support of my models 

suggests: 1) the Boreal Forest is so saturated with wetlands that I was unable to detect 

any selection relationships; 2) I did not capture the factor(s) driving selection for 

wetlands in the Boreal Forest; or 3) inaccuracy of land cover data in the Boreal Forest. 

Overall, wetlands represented less than one fifth of habitats used in the Boreal while open 

water represented approximately half of the habitats used during spring and over three 

fifths of habitats used during autumn. Because of the extended amount of time spent in 

the Boreal Forest during autumn as compared with spring, it is likely that availability of 

suitable foraging habitats was more important than simply finding a place to rest, which 

may explain the increased use of open water during autumn. Although availability of 
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open water was between 1.5-2× greater than availability of wetlands in the Boreal Forest, 

selection intensity was greater for open water than wetlands. Increased selection for open 

water over wetlands may be explained by: 1) the gregarious nature of Tundra Swans 

during the nonbreeding period; 2) decreased accuracy of land cover data in the Boreal 

Forest (because it is difficult to distinguish between open water and wetlands without 

detailed depth information, it is possible that wetlands were underrepresented in my 

habitat analysis and were actually used more than results suggest); or 3) a potential 

association between Tundra Swan migration routes and river habitats (observed during 

habitat analysis in my thesis), which are classified as open water habitats. Tundra Swans 

may associate with rivers because they represent a landscape cue with which Tundra 

Swans can direct migration (Hochbaum 1955, Bellrose 1980), or because rivers contain 

moving water and therefore are likely one of the first aquatic habitats to thaw during 

spring migration. Given that river habitat was classified as open water in my analysis and 

that open water was so strongly selected for, a more detailed analysis of this relationship 

is warranted and may explain some of the patterns I observed.  

As suspected, my results suggest that waterfowl researchers and habitat managers should 

be addressing the Boreal Forest separately from regions where agricultural habitats are 

available. Because previous literature on wetland selection by waterfowl is often obtained 

in regions where agricultural forage is available, it may not be applicable in the Boreal 

Forest. Moreover, because wetlands are especially vulnerable to climate change (Poiani 

and Johnson 1991, Poiani et al. 1996, Sorenson et al. 1998, Johnson et al. 2005), and 

because open water was so strongly selected in the Boreal Forest, further investigation 

into habitat characteristics that may influence selection intensities of wetlands and open 

water in this environment is suggested. 

Satellite Telemetry: Advantages and Caveats 

Local-scale habitat use patterns by Tundra Swans were generally supported by the broad-

scale geographic and temporal selection relationships identified in this study, suggesting 

that selection of habitats by Tundra Swans is not scale-dependent. Habitat selection 

during spring differed from local-scale habitat use information in that selection intensity 

was greatest for open water and agricultural habitats were not selected for relative to their 
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availability. My results confirm that Tundra Swans use agriculture more during spring 

than autumn as observed, but it is likely that Tundra Swans were not documented to 

select agriculture during spring migration because it was so greatly available. Another 

possible explanation for differences between observational studies and satellite telemetry 

results is that, although Tundra Swans are habitat generalists at the population level, they 

may be habitat specialists at the individual level. That is, individual Tundra Swans may 

engage in a variety of foraging strategies from primarily aquatic to primarily agricultural, 

as documented for Bewick’s Swan during autumn migration (Hoye et al. 2012). Because 

observation of Tundra Swans numbers within habitats does not identify the actions of 

individuals, this trend may not have been detectable prior to use of satellite telemetry data. 

Use of telemetry data removes observer biases and allows observation of individual 

animals at inaccessible locations and over broad geographic ranges (Wikelski et al. 2007). 

Moreover, pairing results with land cover data allows easy comparison between habitats 

used and available (Minton et al. 2003, Aarts et al. 2008), and my results suggest that use 

of satellite telemetry and land cover data is an important tool for habitat management.  

Use of satellite telemetry allowed analysis of habitat selection throughout the entire 

nonbreeding range, however, it also introduced error and potential bias into the analysis. 

The main issue caused by use of satellite telemetry data in my study was the inaccuracy 

of Tundra Swan locations, which necessitated that I consider proportional use of habitats 

within a used polygon rather than identifying specific habitats used (Minton et al. 2003). 

By using habitat mosaic information I may have reduced the accuracy of my results for 

comparison between agricultural and aquatic habitats when Tundra Swans were located 

on edges between habitats. With respect to agricultural habitats specifically, use of 

satellite telemetry data may have resulted in an underestimate of their nutritional 

contribution to Tundra Swan diets. Waterfowl can obtain nutrients from agricultural 

fields during very short periods of time because it is a high-energy food that is easily 

accessible and because their esophagus morphology allows them to carry more food than 

they could consume at one time (e.g., dabbling ducks averaged 20 to 45 minute foraging 

periods in fields over-winter; Baldassarre and Bolen 1984). Because satellite telemetry 

does not report locations continuously throughout the day and because I chose to include 
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only one location per day for individual Tundra Swans to reduce temporal autocorrelation, 

it is possible that I may have missed short flights to agricultural fields.  

Without the use of land cover data, I would not have been able to address my research 

questions; however, it is possible that certain habitat selection relationships may not have 

been identified because of the broad land cover habitat classification system. For instance, 

agricultural habitat encompasses many types of agriculture that are not nutritionally 

profitable to Tundra Swans, such as tobacco, cotton, fruits, and pasture land. Specifically 

in North Carolina, where Tundra Swans were most strongly selecting for agriculture, 

tobacco and cotton accounted for 18.4% and 15.6% of all field crops planted in 2004 and 

2010, respectively (U.S. Department of Agriculture National Agricultural Statistics 

Service). By obtaining detailed information on crop type availability, it is possible that 

more intense selection of nutritionally profitable agricultural habitats may be detected 

during winter and spring. Use of land cover data may also explain why there was no 

selection relationships identified for wetlands in the Boreal Forest and it is likely that 

more detailed information on wetland characteristics is needed.  
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Chapter Five: Thesis Summary 
Conclusions  

Aquatic vegetation is a nutritionally balanced food source and my results support the 

notion suggested by Baldassarre and Bolen (1984) that, if SAV were abundantly available 

in aquatic habitats, it would be advantageous to forgo energetically expensive flights to 

agricultural fields and forage solely in aquatic habitats. However, loss and degradation of 

aquatic habitats has necessitated the consumption of high-energy agricultural foods 

(Baldassarre et al. 1983, Delnicki and Reinecke 1986, Loesch and Kaminski 1989). For 

the most part, local-scale habitat trends transferred to the broad spatial and temporal 

scales investigated in my thesis. As predicted, selection intensity was greatest for aquatic 

habitats during autumn, and agriculture was avoided. Also fitting with predictions, 

agriculture and open water were the habitats most strongly selected during winter, 

suggesting Tundra Swans may forage in agricultural fields to increase lipid stores and rest 

in open water, as observed by Pearse et al. (2013) in Greater White-fronted Geese, Anser 

albiforns frontalis Scop., and Lesser Snow Geese, Chen caerulescens caerulescens L., in 

Nebraska. However, during spring I had predicted Tundra Swans would select both 

aquatic and agricultural habitats and, although aquatic predictions were supported, 

agriculture was not selected relative to its availability. Expectations for springtime 

agriculture selection stemmed from evidence of increased use of agriculture by Tundra 

Swans during spring migration. Although agriculture represented 68% of habitats used 

during spring in my study, agriculture was so greatly available (71.5%) that it was not 

selected. Important caveats of my study design that must be recognized when interpreting 

agricultural selection results are: 1) short flights to agricultural fields may have been 

missed due to the nature of satellite telemetry and my study design and, 2) availability of 

agricultural foods to foraging Tundra Swans may have been overestimated. Overall, it 

appears that Tundra Swans are using agriculture during spring to supplement more 

nutritionally balanced aquatic diets with a quick source of energy. 

Wetlands were not selected on the wintering grounds as a whole; however, Tundra Swans 

do appear to select wetlands along the Potomac and Rappanhannock Rivers in the 

Chesapeake Bay. As Tundra Swans moved further from the wintering grounds, selection 
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intensity values followed an overall positive trend, resulting in slight selection of 

wetlands in the lower Great Lakes and most of the Prairies. Increased selection for 

aquatic habitats near breeding grounds suggests that Tundra Swans may be selecting for 

habitats with more balanced nutrient availability immediately prior to and following 

reproduction. By increasing consumption of aquatic vegetation, Tundra Swans would be 

able to replenish nutrients and gain weight rapidly, which would be important for 

building stores for reproduction during spring and replenishing reserves during autumn 

(Loesch and Kaminski 1989, Jorde et al. 1995). Similarly, Northern Pintails, Anas acuta 

L., selected agricultural and aquatic foods relative to their availability in late autumn and 

early winter, but prior to spring migration they actively selected foods with balanced 

nutrient availability (Miller 1987). In my study, selection of open water, wetlands and 

agriculture all fell within 10% of each other during winter and spring, yet the difference 

exceeded 50% during autumn. These results may suggest a diverse diet during winter and 

spring was important to obtain adequate nutrient stores for breeding. Although, it is likely 

that Tundra Swans were using aquatic habitats to rest during winter and using them to 

obtain a balanced diet in late winter and spring. However, because agriculture was so 

highly available, and because I was not able to quantify what Tundra Swans were doing 

in each habitat through satellite telemetry, I am unable to make any conclusions on the 

importance of nutritional requirements in the selection of habitats.  

Important geographic and temporal selection relationships for agriculture, open water and 

wetlands were identified in this study and have opened the door to many important 

microhabitat selection studies in the future. Understanding habitat use is essential to 

assess a species’ biological requirements, justify protection of key areas, predict effects 

of habitat change, and test hypotheses underlying ecological processes (Holbrook and 

Schmitt 1988, Andren 1990, Carey et al. 1992, Crist and MacMahon 1992, Lubin et al. 

1993). By investigating habitat selection and accounting for the availability of habitats I 

increased the utility of my results for conservation planning and promoted a more 

realistic understanding of the influence environmental features may have on abundance 

and distribution of large-bodied waterfowl (Johnson 1980, With and Crist 1995). 

Variability in the results was likely due to a combination of individual variation in 

foraging strategies (Hoye et al. 2012) and error introduced from satellite telemetry and 
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land cover data. Overall it appears that habitat and food availability have the strongest 

influence on selection of habitats, with nutritional requirements also appearing to be 

important. Based upon my results, I suggest that habitat managers interested in increasing 

roosting and foraging habitat for large-bodied waterfowl focus on conservation and 

restoration of aquatic habitats and food sources while ensuring availability of 

supplementary agricultural forage within 8 km of known roosting locations during winter 

and spring. 

Future Directions 

Trends observed in this study about habitat selection by EP Tundra Swans on regional 

and seasonal scales can be applied to large-bodied waterfowl species in a suite of studies. 

Because satellite telemetry error and land cover limitations reduced the utility of my 

results to broad-scale analysis, further analysis using radio-telemetry or Global 

Positioning System devices to address aspects of local ecosystems movements is 

suggested to correct for any potential inaccuracies in my study. Fine scale assessment of 

forage availability, quality, and use in agricultural, open water and wetland habitats by 

region and season would help explain temporal and geographic trends observed in my 

study and lend assistance to habitat managers. Moreover, body condition studies and 

isotopic analysis of Tundra Swans during autumn, winter and spring would determine 

relative consumption of different aquatic and agricultural foods, thereby identifying how 

and where Tundra Swans are acquiring nutrients for migration and reproduction, and 

identifying the importance of each habitat to seasonal nutrition. Information such as crop 

type selection, quality of available aquatic foods, and selection of aquatic system 

characteristics would also be beneficial. Further, because disturbance has the ability to 

limit accessibility and profitability of aquatic and agricultural habitats considered 

available, future research on the influence of these exogenous factors is suggested. 

Finally, the association observed between rivers and Tundra Swan migration routes 

should be further investigated. 

The potential influence of weather has been addressed throughout this thesis, specifically 

in regards to its influence on accessibility of habitats, increased selection of agriculture at 

colder temperatures, and the sensitivity of wetlands to changing weather. However, 
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weather also has the ability to decrease the nutritional quality of post-harvest agricultural 

grain in fields from autumn to spring due to moisture related damage (Warner et al. 1989, 

Barney 2008). When flooded for 90 days rice loses 19% of metabolizable energy, and 

corn and soybean decrease by 50% and 86%, respectively (Ringelman 1990). In more 

northern latitudes, a “freezer effect” can preserve the nutritional content of grains (Barney 

2008), which may make agricultural habitats with frequent snow and freezing 

temperatures important foraging areas during winter and spring (Schummer et al. 2010). 

However, a warming climate has the potential to reduce the profitability of agricultural 

forage due to above freezing temperatures and subsequent increased decline in nutrient 

availability (Barney 2008, Schummer et al. 2010). While I controlled for the influence of 

ice and snow on habitat selection in my modeling procedure, it may be important to 

further explore the potential influences of weather on habitat selection. Moreover, 

because a warming climate may encourage shortstopping in the Great Lakes (i.e., 

stopping and spending winters in the Great Lakes rather than continuing on to traditional 

wintering grounds; Greene and Krementz 2008, Brook et al. 2009, Nevin et al. 2010, 

Schummer et al. 2010), understanding the impact of intraspecific and interspecific 

shortstopping on nutritional availability in the Great Lakes staging areas also warrants 

further attention.   

Management Implications 

Waterfowl managers use information from food and habitat selection studies to set 

conservation goals and to conserve and manage foraging habitat at staging and wintering 

areas for waterfowl and other wildlife (Bolen 2000, Callicutt et al. 2011). Because 

Tundra Swans select different habitats depending on location and timing within the 

annual cycle, it is possible that landscapes that remain unchanged with regards to habitat 

availability through time and location may not be ideal when managing Tundra Swan 

habitats. Rather, one must consider availability and accessibility of habitat, seasonal 

availability of food and current and predictable future physiological requirements 

(Baldassarre and Bolen 1994).  

My overall habitat recommendations are as follows. First, protect open water habitats 

during the nonbreeding period because open water was the most strongly selected habitat 
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during migration and was selected for over-winter. Second, manage for quality, abundant 

SAV at times when open water is most strongly selected (i.e., during autumn and spring 

in the Boreal Forest and during autumn in the Prairies, Great Lakes and Atlantic Coast). 

Third, protect and enhance wetland habitats in the lower Great Lakes, North Dakota, 

Canadian Prairies, and the northern Chesapeake Bay; and fourth, because changing 

cropping practices and increased harvester efficiency has the potential to greatly decrease 

the carrying capacity of many waterfowl species, monitor the availability of agricultural 

foods through time (especially during winter and spring) to ensure that they remain 

profitable locations for waterfowl to supplement nutrition acquired in aquatic habitats. 

Overall, managers should consider time of year and proportional availability of open 

water, wetlands and agriculture within 8 km of managed land when making decisions 

pertaining to habitat designations. Also, because selection for wetlands and agriculture 

changed continuously throughout the landscape, habitat management should be unified 

across flyways and political borders.  
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Appendices 
 
Appendix A. Crosswalk Chart describing Habitat Analysis Classification System 
used to combine three different land cover datasets (Hybrid Wetland Layer (HWL), 
Circa 2000, and National Land Cover Database 2001 (NLCD)) for analysis.   
 

Habitat Analysis Classification System Land Cover Classification Systems 
Open Water NLCD Open Water 

HWL  Water 
Circa Water (rivers too) 

Wetland NLCD Woody Wetlands Emergent Wetlands 
HWL  Byroids  

Wetland 
Wetland – Treed 
Wetland – Shrub 
Wetland – Herb 

Circa Bryoids 
Wetland 
Wetland – Treed 
Wetland – Shrub 
Wetland – Herb 
Wet sedge 

Perennial Ice/Snow NLCD Perennial Ice/Snow 
HWL  Snow/Ice 
Circa Snow/Ice 

Developed NLCD Developed – Open 
Developed – Low Intensity 
Developed – Medium Intensity 
Developed – High Intensity 

HWL  Developed 
Circa Developed 

Barren Land NLCD Barren Land (Rock/Sand/Clay) 
HWL  Exposed/Barren Land 

Rock/Rubble 
Non-Vegetated 
Upland 
Cloud 
Shadow 

Circa Barren/Non-vegetated 
Rock/Rubble 
Exposed Land 
Sparsely vegetated bedrock 
Sparsely vegetated till-colluvium 
Bare soil 
Cloud 
Shadow 

Deciduous Forest NLCD Deciduous Forest 
HWL  Broadleaf 

Broadleaf – Dense 
Broadleaf – Open 
Broadleaf – Sparse  
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Circa Deciduous Forest 
Broadleaf – Dense 
Broadleaf – Open 
Broadleaf – Sparse 

Coniferous Forest NLCD Evergreen Forest 
HWL  Coniferous 

Coniferous – Dense 
Coniferous – Open 
Coniferous – Sparse 

Circa Coniferous Forest 
Coniferous – Dense 
Coniferous – Open 
Coniferous – Sparse 

Mixed Forest NLCD Mixed Forest 
HWL  Mixedwood 

Mixedwood – Dense 
Mixedwood – Open 
Mixedwood – Sparse 

Circa Mixed Forest 
Mixedwood – Dense 
Mixedwood – Open 
Mixedwood – Sparse 

Shrub/Scrub NLCD Dwarf Scrub * Alaska Only 
Shrub/Scrub 

HWL  Shrubland 
Shrub – Tall 
Shrub – Low  

Circa Shrubland 
Shrub – Tall 
Shrub – Low 
Prostrate Dwarf Shrub 
Tussock Graminoid Tundra 
Non-tussock/Dwarf Shrub Tundra 
Dry Graminoid Dwarf Shrub Tundra 

Agriculture 
 
 
*Agriculture in the Boreal Region represents 
Sedge/Herbaceous and includes Dwarf Shrub in 
Alaska* 

NLCD Grassland/Herbaceous 
Pasture 
Cultivated Crops 

HWL  Herb 
Native Grassland 
Agriculture 
Cropland 
Pasture/Hay 

Circa Herb 
Grassland 
Cultivated Agricultural Land 
Annual Cropland 
Perennial Cropland/Pasture 
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