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Abstract 

Polymersomes are potentially multifunctional soft materials constructed by the self-

assembly of amphiphilic block copolymers in aqueous medium. While much research has 

focused on controlling the assembly and encapsulation properties of polymersomes, their 

surface functionalization has been relatively unexplored. This is important because it 

plays a critical role in determining their properties such as toxicity and biodistribution 

behavior. The work described in this thesis involves the development of a biocompatible 

and biodegradable polymersome systems based on poly(ethylene oxide)-b-

polycaprolactone (PEO-PCL) block copolymers with azide surface groups as a novel 

scaffold for various biomedical applications. The surface functionalization of these 

polymersomes with polyester dendrons bearing alkyne focal points with different 

peripheral groups, such as amines and guanidines, as well as a small molecule rhodamine 

dye is accomplished and their conjugation yields are compared to each other. Moreover, 

dendritic and non-dendritic polymersome-based MRI contrast agents, with the highest 

currently reported longitudinal relaxivity for a polymersome system, are developed by 

decorating PEO-PCL polymerosomes' surfaces with both non-dendritic and dendritic 

Gd(III)-based contrast agents. In addition, PEO-PCL polymersomes were employed to 

develop a multifunctional system with the potential to interfere with the viral infection 

process at two levels. In addition to their use as materials for functionalizing the surfaces 

of nanomaterials, dendrimers and their assemblies have been widely used as drug 

delivery vehicles. In order to enable a new level of control over drug release, backbone 

photodegradable dendrimers and dendrons are synthesized by incorporation of a 

monomer unit based on o-nitrobenzyl esters and 2,2-bis(hydroxymethyl)propionic acid. It 

is shown that these dendrimers undergo effective photolysis to release only small 

molecules upon irradiation with UV light. Finally, these dendrons are incorporated into 

amphiphilic Janus dendrimer structures and their self-assembly to dendrimersomes 

followed by their photodegradation are discussed.       

Keywords 

Polymersome, biodegradable, dendrimer, dendron, MRI contrast agent, influenza virus, 

photodegradable, dendrimersome  
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Chapter 1  

1 Biodegradable Polymersomes and Dendrimers in 
Biomedical Applications

*
 

 

1.1 Introduction to Macromolecules 

The word macromolecule is a Greek-Latin hybrid word that contains two contradictory 

terms. It refers to a small mass (Greek: molecula, diminutive of moles = mass) that is 

large (Large: makros).
1
 Thus, they are simply large molecules. According to the 

International Union of Pure and Applied Chemistry (IUPAC), a macromolecule is 

defined as  

"a molecule of high relative molecular mass, the structure of which essentially 

comprises the multiple repetition of units derived, actually or conceptually, from 

molecules of low relative molecular mass." 

Macromolecules are either natural, such as proteins, DNA, and polysaccharides, or 

synthetic, such as synthetic rubbers, fibers and dendrimers, with molecular weights 

(MWs) of several thousands to millions. Humankind has used naturally occurring 

macromolecules since the early days of civilization. For instance, proteins in meat and 

polysaccharides in grain are essential constituents of food, and a high MW resin called 

Amber was used in old Greece as jewelry. On the other hand, the first synthetic and 

semisynthetic macromolecules, such as nitrocellulose in 1869, were prepared without any 

insight to their chemical structure. It was not until 1920s when scientists began to obtain 

knowledge about the structures of macromolecules, and soon after, fully synthetic 

macromolecules such as polychloroprene, polystyrene, and nylon 6.6 were discovered 

and commercialized.
1
  

                                            
*
 This chapter contains work that is press: Nazemi, A.; Gillies, E. R. “Dendrimer Bioconjugates: Synthesis 

and Applications" in "Bioconjugates for Biomedical Applications” Narain, R. Ed., John Wiley and Sons, 

Hoboken, New Jersey, In Press. Nazemi, A.; Gillies, E. R. Braz. J. Pharm. Sci. In Press. See Co-

Authorship statement for specific contributions from each author. 
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Compared to traditional small molecules with single molar masses, synthetic 

macromolecules display molar mass distributions. Among the different techniques 

developed to measure these molar mass distributions,
1
 mass spectroscopy techniques 

such as matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) and 

size exclusion chromatography (SEC) have found widespread applications in chemistry 

and materials science laboratories. Compared to mass spectroscopy, which is an absolute 

method for molar mass determination, most SEC requires a correlation of the measured 

properties of standards with molar masses that have been independently determined with 

those of the sample. Because of the presence of the above-mentioned molar mass 

distribution in most synthetic macromolecules, their molar mass is often calculated 

around an average value. Depending on the statistical method that is applied to calculate 

the average molar mass, different average values can be defined, among which number 

average molar mass, Mn, and weight average molar mass, Mw, are most commonly used. 

Mathematical expressions for Mn and Mw are shown in Figure 1.1. In these equations, Ni 

is defined as the number of moles of each macromolecule species and Mi as the molar 

mass of that species. Another term widely used in macromolecular science is 

polydispersity index (PDI), which is calculated as Mw/Mn. PDI indicates the distribution 

of individual molar masses in a batch of polymer sample. It has a value of greater than 1. 

However, as the polymer chain lengths become more uniform, the PDI approaches 1.       

 

Figure 1.1. Mathematical equations for Mw and Mn. 

Among various natural and synthetic macromolecules, of particular interest to this 

thesis are biodegradable polymers, block copolymers (BCPs), and dendritic architectures. 

In the following sections, these families of macromolecules will be briefly introduced and 

recent advancements in their self-assembly behaviors and their use in biomedical 

applications will be highlighted.  
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1.1.1  Biodegradable Polymers 

During the past few decades, the field of synthetic polymers has progressed to such an 

extent that synthetic polymers are essential in daily life. This mainly stems from their low 

cost, reproducibility in production, and their resistance to physical aging.
2
 However, 

when they are intended to be used for a limited period of time, such as in surgery, 

pharmacology, or agriculture, such resistance becomes problematic. In all these time-

limited applications, elimination of the artificial materials after use is desirable. For such 

applications, biodegradable polymers have been emerged as an important class of 

materials. These are defined as materials that can degrade by the action of living 

organisms. Biodegradable polymers have found use in applications ranging from bulk 

commercial materials such as biodegradable plastics to highly specialized drug delivery 

vehicles. Mainly, they include polyesters such as polycaprolactone (PCL), poly(D/L-

lactic acid) (PDLLA), poly(L-lactic acid) (PLLA), and poly(glycolic acid) (PGA) (Figure 

1.2). In addition to these commonly used biodegradable polymers, other backbones such 

as polyamides, polyanhydrides, polyphosphazenes, polydisulfides, polyacetals, 

poly(ortho ester)s, and other polyesters derived from diacids and diols have been used as 

biodegradable polymers. These biodegradable polymers have found widespread 

biomedical applications in materials such as stents and sutures,
3
 tissue engineering,

4-9
 and 

drug delivery vehicles.
10,11

  

 

Figure 1.2. Chemical structures of the most common polyesters. 

1.1.2 Block Copolymers 

BCPs are macromolecules containing two or more chemically distinct homopolymer 

blocks that are linked together. As shown in Figure 1.3, BCPs can be classified into a 

number of architecturally different categories. Linear BCPs contain two or more polymer 

chains in sequence. On the other hand, a star BCP is composed of more than two linear 
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BCPs attached at a common branch point.  Architecturally similar to star BCPs, when 

polymers containing at least three homopolymers are attached at a common branching 

point, are called mixed-arm star BCPs.  

 

Figure 1.3. Representation of various BCP architectures. 

BCPs exhibit many interesting properties, one of which is their ability to phase 

separate both in thin films and in solution. This property stems from the inherent 

immiscibility of the chemically different polymer blocks. As a consequence of phase 

separation, BCPs form nanoscopic patterns in thin films,
12

 while self-assembling into a 

wide range of morphologies in solution.
13

 To better control these processes, BCPs with 

well-defined structures, specific chain lengths, and low PDIs are required. A great deal of 

control over these parameters has been achieved by the development of various living 

polymerization techniques including certain classes of ionic polymerization,
14-16

 atom-

transfer radical polymerization (ATRP),
17,18

 reversible addition-fragmentation chain-

transfer polymerization (RAFT),
19

 nitroxide-mediated polymerization,
20

 and ring-opening 

metathesis polymerization (ROMP). 
21,22

 These advanced techniques allow for the precise 

tailoring of BCPs architecture and composition.  

1.1.3 Block Copolymer Self-Assembly in Solution 

As described above, one of interesting properties of BCPs is their ability to undergo self-

assembly in solution as a result of the inherent immiscibility of the polymer blocks. 

Amphiphilic BCPs are composed of both hydrophilic and hydrophobic polymer blocks. 

In aqueous solution, well-defined amphiphilic BCPs undergo self-assembly in order to 

minimize energetically unfavorable hydrophobe–water interactions.
13

 The resulting 
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morphologies obtained from self-assembly include spherical micelles,
23

 helical rods,
24

 

toroids,
25

 vesicles,
26,27

 macroscopic tubes,
28

 and multicompartment cylinders.
29

 These 

morphologies are a result of the inherent molecular curvature of the BCPs.
30

 More 

specifically, for an amphiphilic diBCP suspended in aqueous solution it's been shown that 

the resulting self-assembled morphology is dictated by the hydrophilic volume fraction of 

the BCP (fhydrophilic).
31

 In aqueous medium, polymers with fhydrophilic between 20 % and 42 

% are expected to form vesicles. BCPs with fhydrophilic between 42 % and 50 % are 

expected to form worm-like assemblies while ones with fhydrophilic > 50 % are expected to 

form spherical micelles. 

Two morphologies that have been extensively studied are polymeric micelles and 

vesicles. In micelles (Figure 1.4a), the hydrophobic portions of the BCP aggregate with 

each other to avoid contact with water, while the hydrophilic portions are directed 

towards water. When compared to micelles formed by surfactants, micelles formed by 

BCPs show significant improvements in their thermodynamic stability with a lower 

critical micelle concentration.
32

 The diameters of polymeric micelles typically fall in the 

range of 10-100 nm.
33

 In addition to polymeric micelles, another morphology that has 

received great interest in recent years is BCP vesicles, often called “polymersomes” 

(Figure 1.4b). 

 

Figure 1.4. Cartoon representation of a) polymer micelles, b) polymersomes. 

Polymersomes are morphologies with membranes that resemble those of liposomes, 

vesicles obtained from phospholipids. This self-assembled structure consists of 

hydrophilic blocks directed towards the external and internal aqueous solution, and 

hydrophobic blocks that repel water and thus form the interior of the membrane. In 
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comparison with phospholipid vesicles, polymersomes have been shown to have several 

improved properties. Based on the fact that the MWs of the polymers are usually several 

times greater than those of phospholipids, polymersome membranes are thicker, which 

results in higher stability and lower permeability than common phospholipid bilayers.
34

 

In addition, chemical versatility of the BCP syntheses creates endless opportunities to 

tune the polymersome properties. While micelles can only encapsulate hydrophobic 

drugs in the core, polymersomes are capable of entrapping hydrophobic drugs within 

their membrane as well as encapsulating hydrophilic species in their aqueous core. 

Polymeric micelles and vesicles have been prepared by a variety of different methods. 

The method of preparation often depends on solubility and other properties of the 

constituent BCPs. The easiest method for the preparation BCP micelles and vesicles is 

the direct dissolution of BCPs in water.
34,35

 In addition, film rehydration methods have 

also been widely used for assembly formation.
36,37

  In this method, the BCP is first 

dissolved in a volatile organic solvent. The solvent is then removed under a stream of air 

or nitrogen. After subjecting to vacuum to remove most of the organic solvent, the 

resulting film is hydrated by pure water or buffer solution. The assemblies are normally 

formed upon stirring/sonication. In a method known as "solvent switch", "phase 

inversion", or  "nanoprecipitation", a solution of polymer in an organic solvent which is 

miscible with water (such as ethanol or tetrahydrofuran) and is a good solvent for both 

blocks, is diluted or injected into water or buffer solution. The organic solvent is then 

normally removed by dialysis.
38,39

 Alternatively, these assemblies can be formed by oil in 

water emulsion procedures.
40,41

 In this approach, the BCP is dissolved in a volatile 

organic solvent that is immiscible with water, and this solution is then injected into a 

rapidly stirring aqueous media. The organic solvent is then left to evaporate. Solvent-free 

techniques such as electroformation have also been employed for the preparation of 

assemblies.
42

      

1.1.4 Other Macromolecular Architectures: Dendrimers 

In addition to the above-mentioned polymers and BCPs, dendritic architectures including 

hyperbranched polymers (HBPs) and dendrimers are another major class of 

macromolecules. This class of macromolecules is characterized by their three-
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dimensional globular architecture. Structurally, HBPs are comprised of dendritic units, 

linear units, and terminal groups (Figure 1.5a). An important characteristic of HBPs is 

that these structural units are randomly distributed along their backbone.
43

 In other words, 

they possess an irregular dendritic structure. Compared to HBPs with irregular structures, 

and linear polymers and BCPs with molar weight distributions, dendrimers are 

structurally perfect dendritic structures with a single or very narrow molar weight 

distribution (Figure 1.5b). Dendrimers comprise three structural regions: a) a core, b) 

layers of branching repeat units comprising the backbone, where each layer typically 

results from one stage of growth and is termed a “generation”, and c) end groups on the 

peripheral layer. Alternatively, when dendrimers are prepared from a monovalent core 

moiety (focal point), a wedge-like structure typically called a “dendron” results (Figure 

1.5c).  

 

Figure 1.5. Schematics of a) a hyperbranched polymer; b) a dendrimer; c) a dendron. 

The iterative synthesis of dendrimers can generally be categorized into two strategies, 

the divergent approach and the convergent approach. In the divergent approach,
44-48

 the 

dendrimer is grown outwards from the core by the repetition of coupling and activation 

steps. This approach is the preferred one for the large scale preparation of dendrimers 

because the quantity of dendrimer sample increases with each generation and the removal 

of excess reagents by techniques such as precipitation, distillation, or ultrafiltration is 

facilitated by their differences in mass. However, the exponentially increasing number of 

coupling reactions required for each subsequent generation means that the number of side 
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reactions or incomplete couplings also increases, ultimately leading to incomplete 

branching and flawed structures that are nearly impossible to separate from the target 

molecule.  

In the convergent approach,
49

 growth initiates from what will become the dendrimer 

periphery and progresses towards the core. When the desired generation is reached, the 

resulting “dendrons” are coupled to a core molecule. As this approach only involves a 

small number of coupling reactions at each generation, the molecules that result from 

incomplete couplings can often be separated from the desired molecules as they are 

sufficiently different in structure. This affords dendrimers with higher structural 

homogeneity and monodispersity than the divergent approach. Nevertheless, the 

couplings become increasingly challenging due to steric hindrance as the dendrons 

approach higher generations. Furthermore, although the molar mass increases with each 

generation, the excesses of dendrons used in the couplings, incomplete couplings and 

losses associated with the purification generally result in a decrease in the overall mass of 

material at each step, making this approach less attractive on a large or industrial scale. 

Due to their iterative syntheses and highly branched structures, dendrimers and 

dendrons possess several properties that are unique relative to traditional polymers. As 

mentioned above, while most syntheses of linear and HBPs lead to a range of molecules 

differing in MWs, the iterative syntheses of dendrimers leads to molecules with a single 

or very narrow range of MWs. Furthermore, while linear or HBPs can theoretically be 

grown infinitely, the growth of dendrimers is mathematically limited. This is due to the 

exponential increase in the number of monomer units with each generation, while the 

volume available for these units increases with the cube of the dendrimer radius. Finally, 

one of the most important differences in the context of bioconjugate chemistry is that 

while linear polymers have only two end groups, dendrimers have an exponentially 

increasing number of end groups. This results in the properties of dendrimers being 

dominated by these end groups at high generations, and also provides many sites for the 

conjugation of functional moieties. Based on these unique properties, dendrimers and 

dendrons have found widespread applications in biomedical research.
50-53
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Over the past few decades, tremendous progress has been made in the optimization of 

dendrimer syntheses and a diverse array of backbones are now readily accessible. Some 

of the more commonly used backbones include the poly(amido amine) (PAMAM) 

“Starburst” (Figure 1.6a), polyester (PE) dendrimers based on 2,2-bis(methylol)propionic 

acid (Figure 1.6b), poly(propylene imine) (PPI) (Figure 1.6c), and poly(L-lysine) (PLL) 

(Figure 1.6d). 

 

Figure 1.6. Readily accessible dendrimer backbones: a) PAMAM; b) PE; c) PPI; d) PLL. 

Many of these dendrimers are now available from commercial supplies. 
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1.1.5 Amphiphilic Janus Dendrimers and Their Assemblies 

In addition to conventional dendrimers with uniform compositions as shown above, there 

also exists a unique class of dendrimers known as "Janus dendrimers". These are 

dendrimers with well-defined but asymmetric architectures of two chemically distinct 

dendrons on opposite sides with different chemical compositions, peripheral groups, or 

polarities. They are also known as surface-block dendrimers, diblock dendrimers, 

codendrimers, diblock co-dendrimers, or bow-tie dendrimers.
54

  

As shown in Figure 1.7, three main approaches have been proposed for the synthesis 

of Janus dendrimers.
54

         

 

Figure 1.7. Schematic representation of main methods for the synthesis of Janus 

dendrimers. 

In the simplest approach, two dendrons with complementary functional groups at their 

focal points are reacted with each other to obtain the desired Janus dendrimer (Figure 

1.7a). In the second method, one of the dendrons is first reacted with a multifunctional 

core molecule and then the second dendron is grafted to the remaining functionality 
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(Figure 1.7b). In the final approach, the focal point of one of the dendrons is used for the 

divergent growth of the second dendron (Figure 1.7c). This method has not been found as 

popular as the previous two approaches. It should be noted that as the purification of 

macromolecules is often a difficult and tedious task to perform, highly efficient reactions 

need to be employed for the synthesis of Janus dendrimers. Despite the difficulty in the 

synthesis of Janus dendrimers compared to symmetrical dendrimers, Janus dendrimers 

with various backbones such as benzyl ether, phenylene, phosphorous, PAMAM, 3,3'-

diaminobenzidine (DAB), lysine, ester, etc., have been synthesized via the above-

mentioned methods (Figure 1.8).
54

 The difficulties in their syntheses can certainly 

account for the relatively limited number of examples of Janus dendrimers in comparison 

to conventional symmetrical dendrimers.   

 

Figure 1.8. Examples of Janus dendrimers based on a) ether/amide linkages; b) benzyl 

ether and PAMAM dendrons.  

Similar to amphiphilic BCPs, when constituents of Janus dendrimers are hydrophilic 

and hydrophobic dendrons, they are called "amphiphilic Janus dendrimers (AJDs)". To 

date, AJDs with a variety of dendritic backbones have been synthesized
54

 and their self-

assembly behaviours have been studied, resulting in the formation of different 

morphologies ranging from nano-aggregates
55

 to vesicles,
56,57

 multilamellar aggregates,
57

 

button structures,
58

 and ribbons.
59,60

 More recently, Percec and coworkers have 

synthesized a total number of 107 AJDs, with different backbones and generation 

numbers, and screened their self-assembly behaviour in water.
61,62

 It was shown that such 
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macromolecules were able to form structures including vesicles (named as 

dendrimersomes), cubosomes, disks, tubular vesicles, and helical ribbons. The authors 

concluded that dendrimersomes not only exhibit stability and mechanical strength of 

polymersomes, but also have the advantages of superior size uniformity, ease of 

formation, and chemical modification.
61

 A cartoon representation of a dendrimersome is 

shown in Figure 1.9.  

 

Figure 1.9. Schematic representation of a dendrimersome. 

In a follow up study by the same group, it was observed that dendrimersome size and 

stability were inversely proportional to the membrane thickness, meaning that 

dendrimersomes with thinner membrane were larger and more stable. They attributed this 

observation to the increased degree of interdigitation of the membrane-forming 

hydrophobic dendron, which resulted in the shrinkage of the membrane thickness and its 

higher stability.              

1.2 Macromolecules for Biomedical Applications 

For living cells to function, nature employs macromolecules and finds intelligent ways of 

regulating their self-assembly behaviour to impart specific chemical and structural 

functions. To mimic such systems, improve the biological functions of organs and 

tissues, and cure diseases, researchers have prepared a wide range of synthetic 

macromolecules with similar/improved features and established the field of 

nanobiotechnology. Synthetic macromolecules, both in their molecular and self-

assembled structures, have been the focus of intense research for a wide range of 

biomedical applications during the past few decades.
10,11,63-65

 These include applications 
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in tissue engineering,
4-9

 sutures,
3
 bone fixation devices and vascular grafts,

66
 drug 

delivery systems,
10,11,67,68

 and diagnostics.
69-71

 In the following sections, recent advances 

made in the biomedical applications of BCPs and their assemblies, and dendrimers will 

be highlighted.          

1.2.1 Block Copolymer Assemblies for Drug Delivery 

Over the past several decades, many advances have been made in the development of 

therapeutics to treat human diseases. However, many current drugs and new drug 

candidates still suffer from significant limitations. For example, the low aqueous 

solubilities of hydrophobic drugs are major obstacles for their administration. One of the 

ways to overcome solubility problems is the use of excipients. However this can result in 

undesirable side effects, such as when Cremophor EL or ethanol are used for the 

solubilization of paclitaxel (TAX).
72

 An additional challenge encountered is the rapid 

elimination of drug molecules from the blood stream, which limits their therapeutic 

efficacy and increases the required dose. Moreover, many drugs exhibit a lack of 

specificity for their therapeutic target. For example, many anti-cancer drugs not only 

affect cancer cells but also kill non-cancerous and healthy cells causing severe side 

effects. These challenges have motivated significant interest in the development of drug 

delivery systems, where the incorporation of a drug into a polymeric system can enhance 

its solubility, prolong its circulation time, and enhance its specificity for its target. 

Among the various structures obtained by engineering BCP self assembly, which were 

described earlier, polymeric micelles and vesicles are among the extensively investigated 

systems. Therefore, the recent advances made in their applications as drug careers will be 

discussed in this section.  

There are several considerations that need to be taken to an account in the application 

of self-assembled materials for in vivo drug delivery. Generally, delivery materials need 

to avoid uptake by reticuloendothelial system (RES) and have prolonged circulation time 

in the blood.
73

 One of the factors to control this property is the corona-forming 

hydrophilic polymer block composition. A few examples of synthetic hydrophilic blocks 

that have been used to achieve this property include poly(ethylene oxide) (PEO),
74 

poly 

(acrylic acid),
26

 poly(acryloylmorpholine),
75

 poly(2-methyl-2-oxazoline) (PMOXA),
76
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and polyvinylpyrrolidone.
75

 Although these hydrophilic blocks give so called "stealth" 

properties to the assemblies, PEO has been found to be the most effective candidate due 

to its excellent biocompatibility and minimal protein adsorption.
75,77-79

 In addition, the 

size of the delivery vehicle also plays an important role in determining its circulation 

time. It's been found that particles with diameters less than 200 nm can overcome the 

clearance by RES.
80

 Furthermore, the lower size limit for the particles in order to avoid 

renal clearance and thus rapid urinary excretion has been shown to be 5.5 nm.
81

 Particles 

with diameters larger than 100 nm are found to accumulate mostly in liver and spleen.
82

 

To minimize the side effects of drugs, it is preferable that drug delivery vehicles 

selectively accumulate in the therapeutic sites. This is often achieved through selective 

targeting. For cancerous tumors, there are two main targeting mechanisms, namely 

passive and active targeting. Due to the tendency of tumor cells for rapid growth, it has 

been shown that solid tumor tissues generally possess unusual characteristics such as 

hypervasculature and incomplete vascular architecture which result in their leaky 

behaviour.
83

 Because of these properties, tumor blood vessels show high permeability to 

macromolecules and nano-sized particles.
83

 Additionally, because of the immature 

lymphatic capillaries in cancer tissues, their lymphatic drainage system fails to operate as 

in normal tissue.
83

 As a result, the uptaken nanoparticles are retained for prolonged 

periods of time in tumor cells. This effect, known as the enhanced permeability and 

retention (EPR) effect, is the basis for the passive tumor targeting by polymeric systems. 

On the other hand, in active targeting, biologically specific interactions between the 

diseased cells and the delivery vehicles are sought. This includes interactions such as 

antigen-antibody binding. In this case, because of the overexpression of tumor-associated 

antigens on tumor cells, specific antibodies that interact with those antigens can be 

chosen and engineered onto the surface of the assembled materials.
84

 Other active 

targeting mechanisms involving the binding of small molecules such as folate
85

 or 

peptides such as RGD
86

 to receptors overexpressed in cancerous tissue have also been 

explored.  



15 

 

 

1.2.1.1 Polymeric Micelles for Drug Delivery 

Polymeric micelles have been prepared using a wide range of BCP compositions. 

Readers are referred to several comprehensive review articles published in this 

context.
11,83,87-89

 With the advances made in this field, several BCP micellar drug delivery 

systems have reached clinical trials. For instance, doxorubicin (DOX)-BCP micelles, 

TAX-BCP micelles, and cisplatin BCP micelles are all in the Phase II of clinical trials.
88

 

It should be noted that hydrophobic drugs can either be physically entrapped within the 

hydrophobic core of BCP micelles or chemically conjugated to the hydrophobic polymer 

block and the drug release mechanism is mainly dependent on the type of encapsulation. 

It has been proposed that in the case of covalently bound drug, bulk degradation of 

polymer matrix or surface degradation is the main pathway of release, while for the 

physically entrapped drug, diffusion plays the main role for drug release.
83

 Kataoka and 

coworkers
90

 incorporated DOX at the core of BCP micelles composed of poly(ethylene 

oxide-b-benzyl L-aspartate) by physical entrapment and showed that drug release occurs 

very slowly from the micelles. In fact, it was found that even after 100 hours (h) only a 

small percentage of the encapsulated DOX was released from the micelles. This was 

suggestive of the stability of such micelle-drug complex. In an example of covalently 

linked micelle-drug conjugate, Hruby and coworkers
91

 prepared micelle-DOX 

bioconjugates via a pH-sensitive hydrazone linkage. In this study, poly(ethylene oxide-b-

allyl glycidyl ether) BCP was first functionalized with hydrazide groups by first reacting 

the allyl side chains of the polymer with methyl sulfanylacetate and then treating the 

resulting product with hydrazine hydrate. The resulting hydrazide groups of the polymer 

were then reacted with the ketone moiety of DOX, to provide a hydrazone linkage and 

yield a drug-containing BCP with approximately 3 wt.% drug loading. It was shown that 

micelles formed from this BCP were able to release 43% of their drug upon incubation at 

pH 5.0 for 24 h, while incubation at pH 7.4 resulted in 16% drug release. This illustrates 

the importance of a labile linkage between drugs and micelles for the release of 

covalently-constructed micelle-drug bioconjugates. 
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1.2.1.2 Polymersomes for Drug Delivery 

Unlike BCP micelles, owing to their aqueous core and hydrophobic membrane, 

polymersomes can potentially be multifunctional. They are capable of encapsulating 

hydrophilic drugs in their cores and entrapping hydrophobic species within their 

membranes. Given the multifunctional capabilities of polymersomes and advances made 

in the area of polymer synthesis, polymersomes composed of a wide range of BCPs have 

been prepared and studied. These include polymer-polymer, polymer-polypeptide, 

polymer-polysaccharide, and polypeptide-polysaccharide BCPs. Readers are referred to 

several review articles published in this context for more details.
30,79,92-95

 Owing to their 

aqueous core, they have not only been investigated as drug careers, but have also been 

used as vehicles for proteins, DNA, and imaging agents. For the sake of space, only a few 

examples of these systems will be discussed in this section.  

Discher and coworkers have elegantly used polymersomes composed of a blend of 

PEO-b-poly(lactic acid) and PEO-polybutadiene (PBD) to encapsulate both DOX and 

TAX. In this system, DOX was loaded into the aqueous cores of the polymersomes while 

TAX was entrapped within their hydrophobic membranes. The authors showed that when 

used in vivo, this system demonstrated a higher maximum tolerated dose and increased 

tumor shrinkage and maintenance compared to the case when both drugs were 

administered as free drugs.
96

 In another example, Zhong and coworkers used a dually 

responsive polymersome for protein delivery.
97

 Polymersomes were comprised of 

poly(ethylene glycol)-S-S-poly(2-(diethyl amino)ethyl methacrylate) diBCP. In this BCP, 

the poly(2-(diethyl amino)ethyl methacrylate block is the hydrophobic block that can be 

protonated under mildly acidic conditions, resulting in disintegration of polymersomes. 

Moreover, the disulfide bond ensures the responsiveness of polymersomes under 

intracellular-mimicking reductive environments. This BCP self-assembled into 

polymersomes of 55-67 nm, which were able to efficiently encapsulate proteins such as 

bovine serum albumin (BSA) and cytochrome C. The authors showed that while protein 

release was minimal at neutral pH and 37 °C, the release rate was significantly enhanced 

at pH 6.0 due to disintegration of the polymersomes. Interestingly, it was found that the 

fastest protein release occurred under intracellular-mimicking reductive environments (10 
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mM dithiothreitol, pH 7.4). These polymersomes were able to efficiently deliver 

cytochrome C protein to MCF-7 cells upon hours of incubation with the cells and induced 

increased apoptosis of the cells. Thus, polymersomes are promising delivery vehicles for 

future protein therapies, which currently suffer from delivery difficulties.  

To demonstrate the potential of polymersomes for gene delivery, Li and coworkers
98

 

synthesized poly[(n-butyl methacrylate)-b-(N-acryloylmorpholine)] amphiphilic BCPs, 

self-assembled them into polymersomes, and used them for DNA delivery in gene 

therapy. Compared to the traditional  polyethylenimine as a DNA complexing agent, 

these polymersomes exhibited improved plasmid DNA condensing efficiency, DNase I 

degradation protection, and cellular uptake  by renal tubular epithelial and human 

hepatocellular carcinoma cell lines. Moreover, compared to polyethylenimine, these 

polymersomes were not cytotoxic and showed high serum stability, making them 

promising candidates for DNA delivery. In addition to their use for drug delivery 

purposes, polymersomes have also been employed for the encapsulation of various types 

of imaging agents. Some examples include the encapsulation of near infrared (NIR)-

emissive porphyrin-based fluorophores,
99

 hydrophilic lanthanide complexes,
100

 and 

membrane-entrapped superparamagnetic iron oxide nanoparticles.
101

     

1.2.2 Dendrimers for Biomedical Applications 

Whether prepared by a convergent or divergent approach, dendrimers are still much more 

costly than conventional polymers. This means that over the longer term, the applications 

of dendrimers will almost certainly be limited to high value added products. One area that 

meets this criterion is biomedical materials, where the cost of a material is less important 

than its performance. In addition, very well-defined materials are typically required by 

regulatory agencies to approve their use in the human body. For this, the structural 

homogeneity of dendrimers that results from their iterative syntheses is a distinct 

advantage over other classes of synthetic macromolecules. As a result, the biomedical 

applications of dendrimers are starting to be widely investigated. The following 

subsections will discuss recent advances made in applications of dendrimers as drug 

careers, imaging agents, and multivalent carbohydrate scaffolds (glycodendrimers). A 

focus will be to explore how bioconjugation chemistry can be used to covalently attach 
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biologically relevant molecules to dendrimers. It will explore how the specific 

conjugation chemistries are determined based on the application, the chemical 

functionalities available on the molecules of interest and those on the dendrimer’s focal 

point or periphery. 

1.2.2.1 Dendrimer-Drug Conjugates 

Among the currently studied drug delivery systems, dendrimers have emerged as an 

attractive class of materials, mainly because of their well-defined structures. In addition, 

they possess many peripheral groups for drug conjugation and their nanoscale sizes can 

lead to enhanced blood circulation times and selective accumulation in tumors via the 

EPR effect.  

As reviewed recently in the context of chemotherapeutics,
51,52

 drugs can be 

incorporated into dendrimers either by covalent conjugation to the periphery or by 

noncovalent encapsulation within the backbone of the dendrimer. Both classes of delivery 

systems have been demonstrated to be more effective than the free drug in certain 

laboratory studies and each approach is associated with its own advantages and 

disadvantages. However, control over the drug:dendrimer ratio in a noncovalent system 

can present challenges and noncovalently incorporated drugs are often released too 

rapidly under physiological conditions. This has limited their in vivo efficacy thus far. 

With the use of optimized chemical reactions, the covalent attachment of drugs to 

dendrimers benefits from superior control over the ratio of drug:dendrimer in the 

resulting conjugate. Moreover, the problem of the burst release observed for physically 

entrapped drugs upon injection can be mitigated to a great extent by covalently attaching 

drugs to dendrimers. In selecting the appropriate bioconjugation chemistry for dendrimer-

drug conjugates, there are some important considerations. In order to achieve a controlled 

release of the drug from a dendrimer-drug bioconjugate, the linker stability under various 

physiological conditions is crucial. The lability of a given linker in a specific 

microenvironment plays an important role in the specificity and the rate of drug release. 

For example, to obtain selective and controlled release of drug in cancerous tissues or 

within the endosomes and lysosomes of cells, which are known to be more acidic than 

healthy tissues, an acid-labile linkage such as an ester or hydrazone can prove 
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effective.
102

 In addition, the released drug derivative needs to be identical to, or as active 

as the original drug in order to be effective.
103

  

The review of various dendrimer-drug conjugates is out of the scope of this thesis. For 

this purpose, readers are directed to several comprehensive reviews published in the 

literature.
52,104

 Here, to illustrate the importance of the linkage type in pharmacological 

behavior of drugs, one example will be discussed. In this example, Kono and coworkers 

prepared PAMAM-DOX-PEO conjugates via both amide (Figure 1.10a) and hydrazone 

(Figure 1.10b) linkages and observed that the conjugates containing hydrazone linkages 

exhibited seven times higher cytotoxicity to HeLa cancer cells than the conjugates 

containing amides. This result highlights the importance of the more labile hydrazone 

linkage for the treatment of the cancerous cells. However, both conjugates showed lower 

cytotoxicity to the same cell line when compared to free DOX.
105

  

 

Figure 1.10. PAMAM-DOX conjugates with a) amide and b) hydrazone linkages 

1.2.2.2 Dendrimer-Carbohydrate Conjugates 

Carbohydrates are the most abundant group of natural products found on the earth. Aside 

from their important roles in supplying energy to cells and structural support to plants, 

carbohydrates are implicated in a vast array of biological processes. These include 

hormonal activities, fertilization, embryogenesis, neural development, and many other 

cellular processes such as cell-cell recognition, cell proliferation, cellular transport, viral 

infection, bacterial adhesion, and tumour cell metastasis.
106

 Thus, it is not surprising that 
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the efficient synthesis of saccharides and their incorporation into various systems to 

obtain specific biological effects has attracted much attention in the past few decades. 

One such example is the tremendous effort that has been devoted to enhancing the 

multivalency of carbohydrates by incorporating them onto multivalent architectures such 

as dendrimers. It is known that multivalent interactions are prevalent in biology, such as 

in the adhesion of viruses and bacteria to cell surfaces and in the binding of cells to other 

cells.
107

 Many of these processes involve the interactions of carbohydrates with protein 

receptors called lectins. While the interactions of individual carbohydrate ligands with 

lectins is often weak, multivalency provides a means of significantly increasing the 

strength of the interaction.
107

  

A wide variety of nanoscale materials such as linear and HBPs, nanoparticles, and 

polymer assemblies can be used as backbones to present carbohydrates in a multivalent 

manner,
108-111

 but the well-defined nature of the dendrimer backbone provides 

advantages. For example, the number of carbohydrate ligands present on a given 

molecule can be precisely determined, allowing advancements in the fundamental 

understanding of carbohydrate-lectin interactions. In addition, the product monodispersity 

and reproducibility in its synthesis is advantageous for the development of a clinical 

therapeutic. A wide range of saccharides including mannose, galactose, glucose, lactose, 

maltose, xylose, N-acetylneuraminic acid (Neu5Ac) (sialic acid), and other 

oligosaccharides have been conjugated to various dendrimer peripheries via different 

linkages such as amide, hydrazide, amine, thioether, thriourea, and triazole linkages.
112

 

Unlike dendrimer-drug conjugates, in which fine-tuned lability of the linkage is essential 

for controlled release of the drug, carbohydrates typically do not need to be released from 

the dendrimer periphery in order to exhibit activity. Thus, although the linkages can have 

modest effects on the binding affinities of multivalent carbohydrates, the choice of 

linkage is determined primarily by synthetic requirements. In this section, the conjugation 

of Neu5Ac, which is relevant to this thesis, to the peripheries of various dendrimer 

backbones will be discussed and the biological properties of the resulting bioconjugates 

will be briefly introduced. This discussion provides representative examples of the 

different conjugation chemistries that can be for coupling of dendrimers with 

carbohydrates. 



21 

 

 

1.2.2.2.1 Dendrimer-N-Acetylneuraminic Acid Conjugates 

 Neu5Ac is the most abundant sialic acid found in mammalian cells. This negatively 

charged molecule is found in complicated glycans on mucin and in glycoproteins that are 

embedded in cell membrane. It is known that all types of influenza viruses interact with 

Neu5Ac residues on the host cell surface through their trimeric lectin hemagglutinin 

(HA), and this is followed by endocytosis of the virus into the cell.
107

 Monovalent 

Neu5Ac can inhibit this interaction at millimolar concentrations, but there is significant 

interest in the development of multivalent Neu5Ac derivatives in order to obtain higher 

binding affinity. For this purpose, various dendrimer-Neu5Ac conjugates have been 

developed. Different strategies to construct such bioconjugates is shown in Figure 1.11. 

 

Figure 1.11. Conjugation strategies for Neu5Ac. 
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Thus far, the formation of a thioether linkage is the most commonly reported approach 

for the conjugation of Neu5Ac to the peripheries of dendrimers.
113-120

 To construct these 

conjugates, a thiol must be installed on either sialic acid or on the dendrimer periphery. 

Because unprotected thiols tend to dimerize readily, a process that is facilitated on the 

dense peripheries of dendrimers, the introduction of the thiol to Neu5Ac has been a more 

viable approach. For example, Roy and coworkers have prepared a protected 2-α-

thioacetyl-Neu5Ac and reacted it with three types of N-chloroacetylated dendrimers 

including polypeptide,
113

 PAMAM,
114,115

 and gallic acid-oligoethylene glycol 

dendrimers.
116

 The acetyl groups on the sugars were then removed under basic conditions 

to yield the unprotected dendrimers. An enzyme-linked lectin inhibition assay using 

human α1-acid glycoprotein as the coating antigen and horseradish peroxidase-labeled 

Limax flavus agglutinin (LFA) for detection purposes was performed. Their results 

showed that the globular dendrimer with a valency of 12 exhibited a 182-fold increase in 

inhibitory potency compared to the reference monomeric Neu5Ac.
115

 

To investigate different spacers between Neu5Ac and dendrimers, Matsuoka and 

coworkers prepared a library of brominated carbosilane dendrimers with different types 

of spacers on their peripheries.
118,119

 The thiol-functionalized Neu5Ac derivative was 

similar to that employed by Roy and coworkers but with an additional 5-carbon aliphatic 

spacer between the sugar and the thiol. Introduction of this molecule onto different 

brominated carbosilane dendrimers with either normal, ether elongated, or amide 

elongated peripheral groups was accomplished by initially treating the thioacetic acid-

functionalized sugar and bromide terminated dendrimer mixture with sodium methoxide 

(NaOMe)/methanol (MeOH) in N,N-dimethylformamide (DMF) followed by addition of 

acetic anhydride/pyridine. Fully deprotected dendrimers were obtained by treatment of 

these dendrimers with NaOMe/MeOH and 0.1 M sodium hydroxide solution. Biological 

evaluations of these glycodendrimers showed that all of the ether- and amide-elongated 

compounds had inhibitory activities for the influenza sialidases in the millimolar range. 

Surprisingly, the glycodendrimers having normal aliphatic linkages did not exhibit any 

activities except for a dendrimer with a valency of 12.
119
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Hawker and coworkers recently reported the glycosylation of a 4
th

 generation 

dendrimer via a free-radical thiol-ene coupling reaction between thiol-functionalized 

carbohydrates including Neu5Ac, mannose, glucose, and lactose and a dendrimer having 

peripheral alkene moieties.
120

 This reaction results in the formation of a thioether linkage 

in high yield. 

McReynolds and coworkers have investigated amide linkages between Neu5Ac and 

PAMAM dendrimers.
120

 They have constructed their bioconjugates with or without 

spacers between the dendrimer and Neu5Ac. In the case without any spacers, 

commercially available Neu5Ac was directly conjugated to the amine peripheral groups 

of the dendrimers using (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium 

hexafluorophosphate (BOP). Alternatively, to minimize steric congestion between 

Neu5Ac and the dendrimer, a bifunctional spacer molecule was first conjugated to the 

carboxylic acid functionality of Neu5Ac. After deprotection of the other terminus of the 

spacer, which resulted in the formation of a free amine, it was coupled to the periphery of 

acid-functionalized PAMAM dendrimers. Subsequent sulfation of the conjugates was 

accomplished by reacting the obtained dendrimers with an SO3-pyridine complex. When 

evaluated for inhibition of Human immunodeficiency virus (HIV)-1 infection, the 

sulfated Neu5Ac-PAMAM glycodendrimer bearing 16 Neu5Ac moieties with 11 sulfate 

groups was found to inhibit all four HIV-1 strains tested in the low micromolar range. 

Finally, thiourea conjugates of Neu5Ac and dendrimers have also been prepared. An 

acetate protected p-isothiocyanatophenyl derivative of Neu5Ac was prepared and was 

coupled to the peripheral amines of PAMAM dendrimers to give the protected Neu5Ac 

dendrimers in high yields (71-100%).
121,122

 Complete deprotection was accomplished by 

sequential ester hydrolysis in first NaOMe/MeOH followed by 50 mM NaOH solution to 

hydrolyze the acetyl followed by methyl ester groups. By performing a competitive 

enzyme-linked lectin assay, it was demonstrated that these dendrimers exhibited a 

substantial 210-fold increase in the inhibitory activity compared to monomeric 

Neu5Ac.
121
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1.2.2.3 Dendrimer Conjugates with Imaging Agents 

With rapid developments in imaging technology, along with an increased focus on the 

early detection of diseases and the monitoring of treatment effects, there has been great 

interest in the development of new contrast agents for various imaging modalities 

including magnetic resonance imaging (MRI), x-ray computed tomography (CT), single 

photon emission computed tomography (SPECT), positron emission tomography (PET) 

and optical imaging. These contrast agents aid in distinguishing between normal and 

diseased tissues through their localization at specific sites in vivo. Among the new 

contrast agents under development, nanosized agents based on materials such as linear 

polymers, organic and inorganic nanoparticles, proteins, and dendrimers have received 

particular attention in recent years. When the size and chemical functionalities of these 

agents are optimized, they can exhibit significantly longer in vivo circulation times than 

small molecule analogues. This enables new applications such as vascular imaging and 

the targeting of specific disease sites such as tumors to be explored. In addition, 

nanosized agents enable the conjugation of multiple contrast agent molecules to a 

nanomaterial, enhancing the contrast on a per molecule or per particle basis. Furthermore, 

this same attribute can allow the conjugation of both contrast agents and targeting 

moieties or multiple contrast agents for different imaging modalities to the same system 

providing enhanced, multifunctional properties.  

Among the various nanomaterials available, as previously discussed, the well-defined 

chemical structures of dendrimers provide a significant advantage in terms of 

reproducibility in the synthesis and resulting properties of the agents, allowing well-

characterized materials to be prepared to the satisfaction of regulatory agents. Relevant to 

this thesis are dendrimer conjugates as MRI contrast agents. As a result, various 

examples involving the conjugation of MRI contrast agents will be described. 

1.2.2.3.1 Dendrimer Conjugates for MRI 

MRI is a prominent noninvasive imaging modality due to its excellent spatial resolution, 

soft tissue contrast, and the absence of harmful ionizing radiation in its application. 

Despite its high levels of soft tissue contrast, contrast agents based on small molecule 
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chelates of Gd(III) are frequently employed in clinical MRI scans to aid in the 

differentiation between healthy and diseased tissues.
123-125

 These agents, which act by 

altering the relaxation times of the protons in nearby water molecules, have enabled 

significant advancements in MRI over the last couple of decades. However, the low 

contrast efficiency (ie. low relaxivity), fast renal excretion, and low specificity of these 

agents results in a requirement for high doses. This can be problematic for patients with 

chronic renal disease.
126

 It can also limit their applicability in molecular imaging 

applications, where target receptors are present only at low concentrations.
127

 Dendrimer-

based MRI contrast agents have been intensively investigated over the past couple of 

decades for several reasons.
128,129

 First they allow for the attachment of multiple MRI 

labels to a single scaffold, greatly increasing the molecular relaxivity and allowing a 

single targeting moiety to carry multiple labels. In addition, their size can be well- 

controlled by tuning both their core and generation, allowing their biodistribution 

properties to be tuned. Finally, because of the nanoscale dimensions of the dendrimer and 

steric hindrance at the periphery, the molecular tumbling rate of the conjugated Gd(III) 

chelates is significantly slowed, resulting in an increase in R, the rotational correlation 

time. This can result in substantial enhancements in the longitudinal relaxivity (r1) of the 

contrast agents, as predicted by Solomon-Bloombergen-Morgan theory, which is 

described in detail elsewhere.
123,130

 

An important class of clinically used small molecule Gd(III) chelates is based on the 

ligand diethylenetriaminepentaacetic acid (DTPA) (Figure 1.12a). Seminal work by 

Lauterbur and coworkers in the area of dendrimer MRI contrast agents involved the 

conjugation of a DTPA derivative containing an aromatic isothiocyanate to various 

generations of PAMAM dendrimers having peripheral amine groups (Figure 1.12b).
131

 

Gd(III) was introduced in the final synthetic step. On a per ion basis, r1 of this agent was 

found to be 34 mM
-1

s
-1

, about 6-fold greater than that of the clinical agent Gd(III)-DTPA 

(Magnevist). This result was attributed to the slower tumbling rate of the chelates at the 

dendrimer periphery. Subsequently, a series of PPI dendrimer-DTPA conjugates up to the 

5
th

 generation were synthesized by Kobayashi and coworkers using the same linker 

chemistry and increasing relaxivity was observed with increasing generation, up to 29 
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mM
-1

s
-1

.
132

 In other work, Meijer and coworkers used a different linker to conjugate the 

DTPA derivative (Figure 1.12c).
133

 This resulted in a less significant increase in r1, up to 

a maximum of 20 mM
-1

s
-1

 for the 5
th

 generation dendrimer. In this case, the flexibility of 

the linker likely allowed for relatively high local mobility of the chelates at the dendrimer 

periphery, illustrating the importance of the conjugation chemistry. 

 

Figure 1.12. Chemical structures of: a) the clinical agent Gd(III)-DTPA (Magnevist) 

and dendrimer conjugates of DTPA derivatives containing b) an aromatic isothiocyanate 

and c) a more flexible aliphatic isocyanate. 

Another major class of clinical Gd(III) chelates is based on the ligand 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) (Figure 1.13a). This chelate 

forms Gd(III) complexes that are kinetically and thermodynamically more stable than 

those formed with DTPA. Like DTPA, DOTA derivatives have also been conjugated to 

PAMAM dendrimers from the 2
nd

 to 10
th

 generations. Isothiocyanate linkages have 

commonly been used to conjugate these ligands to the peripheral amine groups of the 

dendrimer (Figure 1.13b). It was found that the ionic (per Gd(III)) r1 values for these 

dendrimers plateaued at 36 mM
-1

s
-1

 due to slow water exchange with the chelates, an 

important consideration for systems with long R.
134,135

 A derivative containing a 

phosphinic acid moiety in the linkage was also investigated with PAMAM dendrimers, 

resulting in good relaxivity values due to steric crowding and the formation of a 

secondary hydration sphere by the bulky phosphinate group (Figure 1.13c).
136,137

 

Researchers at Schering AG (Berlin, Germany) have developed Gadomer-17, bearing 24 

DOTA derivatives attached to a lysine based dendrimer backbone via amide linkages 

(Figure 1.13d).
138

 In a different approach, DOTA has also been incorporated at the core 

of polyglycerol dendrimers, where the motion of the Gd(III) should be coupled to the 

motion of the whole dendrimer.
139

 The dendritic arms were conjugated to the chelates via 
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amide linkages. This indeed resulted in a remarkably high relaxivity of 39 mM
-1

s
-1

, 

though the rate of water exchange was slowest for the largest dendrimer limiting further 

gains in r1. 

 

Figure 1.13. Chemical structures of: a) the clinical agent Gd(III)-DOTA (Dotarem) and 

dendrimer conjugates of DOTA derivatives containing b) an aromatic isothiocyanate 

linker; c) a a phosphinic acid linker; d) an amino acid-based linker. 

As described above, for the highest generation dendrimers, when R is increased by 

substantially slowing the tumbling rates of the Gd(III) chelates, the rate of water 

exchange can be a limiting factor in achieving higher relaxivity values. Chelates with 

faster water exchange rates are desired. In addition, the coordination of multiple water 

molecules can also increase r1. However, due to the toxicity of unchelated Gd(III), it is 

also critical to maintain the stability of the complexes. These aspects have been addressed 

by Raymond and coworkers through the development of a new class of ligands based on 

hydroxypyridinone (HOPO).
140

 The Gd(III) chelates of these ligands bind two water 

molecules yet exhibit high stability due to their oxygen donor atoms and the high 

oxophilicity of the Gd(III) center. In addition, they possess rapid, near optimal water 
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exchange rates. This results in enhanced relaxivities about 2-fold higher than the DTPA 

or DOTA chelates.  

HOPO derivatives have also been incorporated into dendrimer systems. Initially, 

HOPO was conjugated to the focal point of a dendron based on aspartic acid and 

tris(hydroxymethyl)aminomethane via the formation of a rigid amide linkage between an 

aromatic carboxylate of the ligand and the amine of the focal point aspartic acid (Figure 

1.14a).
141

 HOPO derivatives have also been conjugated to the peripheries of PLL and 

esteramide dendrimers that also bear solubilizing poly(ethylene glycol) (PEG) chains.
142

 

In this case, N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC)-mediated amide 

bond formation was performed using the peripheral carboxylic acids of the dendrimers 

and the amines of the HOPO chelates containing precomplexed Gd(III). This 

precomplexation was argued to prevent the nonspecific binding of Gd(III) to the 

dendrimer backbone, which might occur if a subsequent Gd(III) chelation step were 

performed. The effect of the linker was investigated and it was found that the shorter 

ethylene diamine spacer (Figure 1.14b) provided an r1 of 38 mM
-1

s
-1

 with the esteramide 

dendrimer, whereas a more flexible diethylene triamine spacer resulted in a lower r1 of 32 

mM
-1

s
-1

 with the same dendrimer. In addition, the PLL dendrimer backbones resulted in 

lower relaxivity, perhaps due to increased hydrogen bonding between the dendrimer 

backbone and the water coordination sites or due to a shorter R of the conjugated 

chelates. Overall, these results again demonstrate the importance of the bioconjugation 

chemistry, with shorter, more rigid spacers leading to the highest relaxivity values for 

Gd(III) contrast agents. 
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Figure 1.14.  Dendrimer conjugates of HOPO derivatives using a) a rigid amide linkage 

between the carboxylic acid on the ligand and the dendron’s focal point amine; b) an 

ethylene diamine spacer between the ligand and the dendrimer’s peripheral carboxylic 

acids. 

Several of the above dendrimer MRI contrast agents have been investigated in 

vivo.
128,129

 In general, it has been found that low generation dendrimers such as the 3
rd

 

and 4
th

 generations exhibit rapid renal clearance, while higher generations remain in the 

bloodstream for longer periods making them useful for the visualization of vasculature. 

The highest generation dendrimers such as the 8
th

 and 9
th

 generations tend to accumulate 

in the liver but they have also been useful for MR lymphangiography. Exploiting the 

multivalent peripheries of dendrimers, moieties for targeting specific tissues in vivo have 

been conjugated along side the Gd(III) chelates. However, a noteworthy example is a 4
th

 

generation dendrimer with DTPA and folic acid conjugated to the periphery, which 

enabled the selective labeling of ovarian cancer tumors overexpressing the folate 

receptor.
143,144

  

1.3 Surface Functionalization of Polymersomes 

As discussed in the earlier sections, a wide range of materials with various compositions 

and architectures have been developed for biomedical applications. While the bulk 

composition of a material is important for its function and long-term biocompatibility, the 

functionalities present at its surface are also critical. It is the surface of a material that 

will first come into contact with the biological system and as such will play a major role 

in its toxicity and biodistribution behavior.
145

 The surface can also provide sites for the 
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introduction of drugs and moieties to target the material to specific sites in vivo.
146,147

 

Furthermore, the high levels of multivalency available at the surface of a material can 

provide therapeutic properties by inhibiting undesirable multivalent interactions between 

host cells and pathogens including bacteria and viruses using ligands such as 

carbohydrates.
107,148

 Of particular interest to this thesis are polymersomes. In this section, 

approaches to the surface functionalization of polymersomes with a focus on dendritic 

groups will be discussed. 

Two main approaches for the surface functionalization of polymersomes with 

functional ligands can be envisioned. In the first approach, polymersomes with functional 

handles on their surfaces are first formed. In a second step, ligands of interest with 

complementary functional groups are installed onto their surfaces. The attachment of the 

ligands onto the surfaces of polymersomes via this approach can be accomplished 

through either covalent or non-covalent attachment of the ligand. Covalent attachment of 

the ligand takes advantage of high-yielding chemical reactions such as Cu(I)-catalyzed 

alkyne-azide cycloaddition click reactions, thiol-N-hydroxysuccinimidyl ester and thiol-

vinyl sulfone reactions to form S-C bonds, amine- succinimidyl ester reactions to form 

amide bonds, aldehyde-amine reactions to form imines, and conjugation reaction via bis-

arylhydrazone bond formation.
149,150

 On the other hand, in functionalization of 

polymersomes via the non-covalent attachment approach, strong non-covalent attractions 

such as biotin–streptavidin binding, nitrilotriacetic acid–metal complexation binding, and 

cyclodextrin–adamantane interactions have been employed.
149,150

 One advantage of 

covalent over non-covalent attachment of ligands is the increased ligand binding stability, 

which is accompanied with its higher site specificity and reproducibility. Using these two 

methods various surface ligands have been conjugated to the surface of polymersomes 

including proteins, peptides, dendrons, carbohydrates, imaging agents, and antibodies 

.
93,94,149,150

  

In the second approach, the hydrophilic terminus of the BCPs is first pre-

functionalized with the ligand of interest. In the second step, the functionalized BCP is 

used for polymersome formation. As a result, this approach makes it possible to isolate, 

purify, and characterize the newly functionlized polymer. In addition, by blending 
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appropriate ratios of the functionalized and non-functionalized polymers it is possible to 

have precise control over the surface density of desired ligand. However, a disadvantage 

of this approach is that potentially 50% of the ligands will be inaccessible in the interior 

of the polymersome for the given application. Applying this approach, different 

carbohydrates and organic dyes have been incorporated onto the surfaces of 

polymersomes.
93,94,149,150

   

1.3.1 Dendritic Surface Functionalization of Polymersomes 

Based on the unique properties of dendrons and dendrimers discussed in the earlier 

sections, the introduction of dendritic groups to polymersome surfaces provides the 

opportunity to alter the surface chemistry in a single step without changing the BCPs 

comprising the polymersome membranes. This provides a unique opportunity to impart 

new biological properties and functions.  

In previous work by the Gillies group,
151

 as shown in Figure 1.15, polymersomes 

composed of the amphiphilic linear diBCP poly(butadiene-b-ethylene oxide) (PBD-PEO) 

were used. An azide was introduced to the polymer terminus and polymersomes were 

prepared containing varying ratios of the azide and hydroxyl terminated polymers. A 

polyester dendron, having an alkyne focal point and peripheral amine groups with ~1 

rhodamine dye per dendron, was reacted with the polymersomes under standard click 

conditions involving CuSO4, sodium ascorbate, and the ligand 

bathophenanthrolinedisulfonic acid. It was found that the use of this ligand prevented the 

adsorption of copper ions to the dendritic amines. The conjugation yields for the various 

polymersomes were quantified based on the ultraviolet (UV)-visible absorbance of the 

rhodamine dye on the dendrons. 
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Figure 1.15. Schematic showing the functionalization of polymersomes bearing 

peripheral azide groups with dendrons having focal point alkynes. 

It was found that the conjugation yields were typically greater than 60% at low surface 

azide content ( 20%). This was greater than expected as ~50% of the azides would be on 

the interior of the polymersome and it was not expected that the dendrons could pass 

through the membrane into the polymersome’s aqueous core. However, it is likely that 

through various processes, some interior azides can move to the surface during the 24 h 

reaction time. At higher azide content, the conjugation yields dropped off dramatically. 

This was attributed to steric hindrance at the polymersome surface due to the bulky 

nature of the dendrons. In addition, well-dispersed polymersomes were observed at low 

azide content. On the other hand, at higher azide content, significant aggregation was 

observed which may be attributed to either a disruption of the hydrophilic/hydrophobic 

balance within the polymersome membrane upon dendron conjugation, or to interactions 

between the dendrons on different polymersomes. However, at azide content  20% this 

method was highly promising for the surface functionalization of polymersomes. Overall, 

this proof of concept study indicated that this approach could be used as an effective 

method to impart new properties to polymersomes. 
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In a subsequent study, the surface functionalization of PBD-PEO polymersomes with 

dendritic versus non-dendritic ligands was studied.
152

 Mannose was selected as the ligand 

as its multivalent binding to targets such as Concanavalin A (Con A) has been 

extensively investigated and a number of assays have been developed to evaluate this 

binding. In this study, a 3
rd

 generation mannose-functionalized polyester dendron as well 

as a mannose-terminated PBD-PEO BCP were prepared (Figure 1.16). As shown in 

Figure 1.16a, dendritic mannose polymersomes were prepared by the “click” conjugation 

of the mannose dendron to polymersomes containing 5% azide-functionalized PBD-PEO. 

Non-dendritic mannose polymersomes were prepared by the assembly of polymersomes 

from a 50:50 mixture of mannose and hydroxyl-terminated polymers (Figure 1.16b). 

These quantities were selected in order to provide the same overall mannose content in 

the dendritic and non-dendritic polymersomes, but displayed in a different manner. 

 

Figure 1.16. Schematic for the preparation of a) dendritic mannose polymersomes; b) 

non-dendritic mannose polymersomes. 

The dendritic and non-dendritic polymersomes were compared using a 

hemagglutination assay. The results showed that despite their multivalency, the non-
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dendritic polymersomes provided only a very modest 3.7-fold enhancement in affinity on 

a per mannose basis. In contrast, the dendritic mannose functionalized polymersomes 

provided a much greater 42-fold increase in relative binding affinity. This enhancement 

relative to the non-dendritic system was attributed to several factors including the 

relatively rigid display of ligands on the dendritic scaffold resulting in an entropic 

advantage, the ability of the dendritic scaffold to overcome steric inhibition of binding by 

the PEO layer, and an enhanced “proximity” effect resulting from the clustered display of 

ligands on the dendron. Through the preparation of the analogous dendritic and non-

dendritic systems on dextran coated superparamagnetic iron oxide nanoparticles, it was 

demonstrated that these enhancements were generalizable to other nanoparticles and 

other polymer coatings in addition to PEO.
153

 Thus, this study revealed that it is 

important to consider carefully not only the choice of biological ligand, but also the mode 

in which it is conjugated to the surface in order to exploit the benefits of nanomaterials. 

Furthermore, it showed that dendritic scaffolds are an effective means of displaying 

biological ligands on surfaces. 

1.4 Stimuli Responsive Dendrimers  

As described above, dendrimers have been explored in a broad range of biomedical 

applications.
154,155

 Despite these advancements, the area of responsive dendrimers 

(dendrimers that can either disassemble or change their conformation in response to 

external stimuli) is in its infancy. This field is of a great importance because triggering 

such behavior in a controlled manner can impart new properties and expand their scope 

of applications. External stimuli used thus far for the triggering of stimuli-responsive 

dendrimers include pH,
156,157

 light,
158

 temperature,
159,160

 and redox state.
161,162

 In this 

section, representative examples of each stimulus will be discussed with an emphasis on 

light-responsive dendrimers. For exhaustive examples of stimuli-responsive dendrimers, 

readers are referred to review articles published in this field.
163-165

  

It is known that tumor cells along with lysosomes and endosomes of healthy cells have 

a mildly acidic pH. As a result, delivery vehicles that are sensitive to variations in pH can 

act as smart materials for the selective delivery of drugs in such micro-environments. In a 

study by Pistolis and coworkers,
156

 the peripheral groups of a PPI dendrimer were first 
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functionalized with quaternary ammonium salts. This positively charged dendrimer was 

used to physically encapsulate pyrene as a model drug. In the next step, the release 

behaviour of this system at low pH values was followed by fluorescence studies. It was 

found that when the pH was decreased from 11 to 2-4 by addition of hydrochloric acid, 

the fluorescence intensity of the system was enhanced dramatically as a result of pyrene 

release. It was proposed that such an acidic pH results in protonation of internal 

secondary and tertiary amine groups of the dendrimer, which in turn increases its 

hydrophilicity. Such an increase in the hydrophilicity of the system results in the release 

of the cargo. Although not pointed out by the authors, the increase in the internal volume 

of the dendrimer as a result of the repulsion between the positive charges of the 

protonated amines cannot be ignored. In another study by Fréchet and coworkers,
157

 the 

peripheral groups of either polyester or polylysine dendrons were functionalized with 

hydrophobic groups via highly acid-labile cyclic acetal groups. These dendrons were then 

functionalized with PEO at the focal point to obtain linear-dendritic BCPs. It was shown 

that these materials were able to undergo self-assembly to form stable micelles at neutral 

pH. These micelles were used to encapsulate Nile Red as a model drug in their 

hydrophobic dendritic core. Upon exposure to mildly acidic pH, Nile Red was released 

from the micelles as a result of acetal hydrolysis, which results in disintegration of 

micelles by disturbing the hydrophilic-hydrophobic balance of the system.  

Dendrimers that can release their payload in response to temperature are also highly 

attractive systems as advanced materials. These materials have the potential to be used in 

thermotherapy. The response often observed as a result of a change in temperature is a 

change in the solubility of the macromolecule. This can be accomplished by modifying 

dendrimers with a molecule that exhibits a lower critical solution temperature (LCST). 

This is a temperature above which a molecule becomes insoluble due to entropic factors. 

For example, Kimura and coworkers
159

 reported the synthesis of a thermoresponsive 

dendrimer in which the catalytic activity of the encapsulated molecule showed a 

significant increase upon increasing the temperature of the system from 25-37 °C. The 

thermoresponsive dendrimer was constructed by first reacting the peripheral amine 

groups of a 3
rd

 generation PPI dendrimer with 11-(thioacetyl)-undecanoic acid followed 

by the hydrolysis of the thioacetyl groups to install thiols on the dendrimer. In the second 



36 

 

 

step, these thiols were used as chain transfer reagents for free radical polymerization of 

N-isopropylacrylamide (NIPAAm). The resulting dendrimer was used to encapsulate a 

water-soluble cobalt(II) phthalocyanine complex which is a known catalyst for thiol 

oxidation. It was observed that catalytic activity of this system for the oxidation of 

mercaptoethanol was only 6% of that with the PPI dendrimer at 25 °C. This implies that 

PNIPAAm  arms effectively restrict the penetration of starting materials (thiols and 

dioxygen) to the catalytic site inside the dendrimer. However, at a temperature above the 

LCST of the PNIPAAm arms (34 °C), a dramatic increase in the turnover frequency of 

the catalyst was observed. The authors concluded that below LCST of the PNIPAAm 

arms, these chains are soluble and expand over the dendrimer core and sterically hinder 

substrate penetration. Above the LCST, the PNIPAAm arms phase-separate and shrink 

which results in accessibility of the catalytic center to substrates. In addition, Kono and 

coworkers showed that functionalization of the periphery of PAMAM dendrimers with 

phenylalanine imparts thermoresponsive behaviour to the resulting dendrimers.
160

 They 

were able to show that the LCSTs of such dendrimers were tuneable by the introduction 

of more hydrophilic amino acid residues, as well as through changes in dendrimer 

generation and pH.  

To prepare redox-responsive materials, McCarley and coworkers took advantage of 

trimethyl-locked quinones (TLQ) as redox-active moieties. They prepared G1-5 PPI 

dendrimers functionalized with this redox-active group on their peripheries.
162

 Using 

Na2S2O4 as a chemical reducing agent, they demonstrated successful liberation of the 

peripheral groups from the dendrimers as lactones. Intramolecular reaction of the 

hydroxyl groups, formed from the quinone reduction, with the amide-containing 

substituents on the quinone moiety resulted in the liberation of the above-mentioned 

lactones. Interestingly, this process did not show any generation-dependent rates and 

reached completion in about 20 minutes (min) for all generations. In a subsequent study 

by the same group, electrochemical reduction of the same dendrimers was also 

demonstrated to be an effective way of achieving dendrimer peripheral group cleavage. 

The authors showed that bulk electrochemical reduction of dendrimers resulted in PPI 

dendrimers with dianionic TLQ
2-

 peripheral groups which produced the transient 

hydroquinone intermediates upon protonation with water. These intermediates were 
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finally liberated from the dendrimers as lactones in the same fashion as the chemically-

induced pathway.
161

 

In addition to conventional dendrimer backbones mentioned above, non-conventional 

dendritic backbones such as cascade  release dendrimers have also been used as 

responsive dendrimers. In this case, stimuli such as enzymes and light have been applied 

to trigger the release of drug molecules. This class of materials has been recently 

reviewed.
166

    

1.4.1 Photodegradable Dendrimers 

Among the above-mentioned stimuli, light is of particular interest for the development of 

smart materials as it can be applied at a specific time and location, with control over its 

intensity and wavelength. Among the many photocleavable groups that have been 

investigated, o-nitrobenzyl ester derivatives have gained tremendous attention. This 

photolabile group was initially used as a protecting group in organic synthesis.
167

 The 

mechanism of action for this group is based on the photoisomerization of the o-

nitrobenzyl ester group into the corresponding o-nitrosobenzaldehyde and the release of 

the corresponding carboxylic acid upon irradiation with UV light (Scheme 1.1). This 

mechanism has been the subject of in-depth studies recently by Wirz and coworkers.
168

 

This isomerization and cleavage of the ester bond often occur within minutes upon 

exposure to 300-360 nm light. The irradiation wavelength can be tuned by including 

substituents on both the aromatic ring and the benzylic position of the linker. 
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Scheme 1.1. Photoisomerization mechanism for o-nitrobenzyl ester derivatives. 

Application of the photolabile o-nitrobenzyl ester group has not been restricted to 

organic synthesis and protecting groups. In fact, numerous applications of this moiety in 

polymer and materials science within different backbones such as BCPs, hydrogels, and 

dendrimers have been the subject of several reviews.
165,169,170

 In the context of dendritic 

materials, systems have been developed through the incorporation of photodegradable 

units either at the core of the dendrimer
171

  or at the junction between the hydrophobic 

and hydrophilic portions of amphiphilic dendrons.
158,172

  

In an early example, photolabile dendrimers based on o-nitrobenzyl ester groups in 

which the photolabile moieties were installed at the cores of the dendrimers were 

reported by McGrath and coworker.
171

 In this study, first through third generation 

dendrimers that contained three o-nitrobenzyl ester groups at their cores were 

synthesized. Due to the hydrophobic backbones of the dendrimers, their photolysis was 

carried out in chloroform. The degradation studies revealed that upon irradiation with 350 

nm light, these dendrimers released discrete dendrons as shown in the cartoon in Figure 

1.17.  
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Figure 1.17. Schematic representation of sequential photodegradation of dendrimers 

functionalized with three o-nitrobenzyl ester groups at their core. 

In a second study by Kostiainen and coworkers,
172

 first and second generation 

amphiphilic dendrons with hydrophilic spermine peripheral groups and o-nitrobenzyl 

ester groups at the junctions between the hydrophilic and hydrophobic segments were 

synthesized.  The chemical structures of these dendrons are shown in Figure 1.18. The 

photolytic behaviors of these dendrons were first studied in aqueous media by irradiating 

dendron solutions at 350 nm. The results showed that the degradation needed only 200 

seconds to reach completion. As an application of these optically triggerable dendrons, 

they were used for complexation of DNA. It was found that both generations of the 

dendrons were able to effectively bind to DNA with the second generation dendron 

having slightly higher binding strength compared to the first generation dendron due to 

the increased multivalent effect at higher generations of dendrons and dendrimers. To 

release DNA, the complexed samples were irradiated at 350 nm. The authors showed that 

at a lower NaCl concentration of 9.4 mM, dendrons were able to release the DNA within 

only 90 seconds, while at higher salt concentration of 150 mM, the release time was 

decreased. The DNA release behaviour of the dendrons were also confirmed by light 

scattering, ς-potential, and gel electrophoresis measurements.      
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Figure 1.18. Chemical structures of a) first generation and b) second generation 

photodegradable amphiphilic dendrons used for DNA complexation and release. 

More recently, Thayumanavan and coworkers developed nanocontainers comprised of 

photodegradable amphiphilic dendritic structures that are capable of encapsulation and 

release of hydrophobic guest molecules.
158

 First and second generation dendrons in this 

study were based on hydrophilic oligo ethylene glycol groups and hydrophobic alkyl 

chains which were conjugated together through o-nitrobenzyl ester linkers (Figure 1.19). 

It was found that the micellar structures formed by G1 and G2 dendrons in aqueous 

media were 80 and 85 nm in diameter respectively. In the next step, the micelles were 

used to encapsulate Nile Red as a model hydrophobic drug within their hydrophobic 

cores. To study the release of the cargo from the micelles, Nile Red-containing micelles 

were irradiated with 365 nm light and the release of the organic dye was monitored by 

fluorescence spectroscopy. The authors showed that after 200 seconds, the G1 dendron 
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was able to release up to 88% of the loaded guest molecule while this value for the G2 

dendron was about 72%, presumably due to the more tightly packed nature of the 

micelles obtained from the G2 dendron. Moreover, it was observed by dynamic light 

scattering (DLS) measurements, that the sizes of the assemblies were decreased from 

about 80 nm down to about 37 nm by irradiating the micellar samples with UV light. 

 

Figure 1.19. Chemical structures of a) first generation and b) second generation 

amphiphilic photodegradable dendrons used for encapsulation and release of Nile Red.     

These examples highlight the potential of such photo-responsive dendrimers for 

biomedical applications. However, to better achieve this goal, dendrimers that could 

respond to NIR or visible wavelengths of light are highly desirable. This demands 

extensive research on developing chromophores that absorb light at higher wavelengths 

or a combination of dendrimers with metal nanoparticles, such as up-converting 

nanoparticles, that are capable of absorbing light in NIR or visible region and converting 

it to UV light. In such an example, Almutairi and coworkers have developed self-

immolative dendritic scaffolds caged with a coumarin derivative that are capable of 
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releasing their terminal groups (in this case L-glutamic acid) in response to two photons 

of NIR light.
173

 The structures of the quinone-methide based dendrimers used in this 

study are shown in Figure 1.20. NIR light-induced release of the L-glutamic acid terminal 

groups occurs via a cascade of molecular rearrangements upon the removal of the caging 

coumarin derivative.  

 

Figure 1.20. Structures of photodegradable dendrimers containing coumarin as NIR 

light-degrading groups. 

1.5 Scope of This Thesis     

The main goal of this thesis is to demonstrate the potential of biodegradable and 

biocompatible polymersomes, conventional and photodegradable dendrimers and 

dendrons, and polymersome-dendron hybrid materials toward biomedical applications. 

When work began on this thesis, the concept of dendritic surface functionalization of 

polymersomes was previously developed by our group. However, based on the fact that 

in the previous work, non-biodegradable polymersomes with unknown biocompatibilty 

were used, one of the first goals of this thesis was to develop biocompatible and 

biodegradable drug delivery systems. Once this was accomplished, several biomedical 

applications of the system, such as MRI contrast agents and potential antiviral agents, 

were pursued using these constructs. In addition, a new photodegradable dendritic 
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backbone was developed with the ultimate goal of constructing dendrimer-based vesicles, 

known as dendrimersomes, as smart materials for the controlled release of drugs.      

Chapter two focuses on development of biocompatible and biodegradable 

polymersomes based on poly(ethylene oxide)-b-polycaprolactone (PEO-PCL) BCPs. The 

synthesis of azide-functionalized PEO-PCL BCPs and their assembly into polymeric 

micelles and vesicles with activated surface azide groups will be shown. The surface 

functionalization of these assemblies with both dendritic groups and small molecules will 

be discussed.  

Chapter three will describe the application of PEO-PCL polymersomes as scaffolds for 

the development of polymersome-dendritic hybrid materials as effective MRI contrast 

agents. It will be shown how nanoscale components can be readily combined to provide 

additive enhancements in relaxivity of MRI contrast agents. 

Chapter four describes the development of a polymersome-based potential influenza 

virus inhibitor agent. The synthesis of sialic acid-functionalized polyester dendrons, their 

installation onto polymersome surfaces, and evaluation of their inhibitory potentials will 

be shown in this chapter.     

Chapter five describes the synthesis of backbone photodegradable dendrons and 

dendrimers by the incorporation of photodegradable o-nitrobenzyl ester moieties into the 

widely used 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) dendrimer backbone. The 

photodegradation behaviours of G1-3 dendrimers will also be discussed.  

  Chapter six will demonstrate the incorporation of photodegradable dendrons into 

AJDs which will be shown to self-assemble to form dendrimersomes with a 

photodegradable membrane with the goal of encapsulation and triggered release of 

hydrophilic and hydrophobic model drugs.  

Chapter seven will summarize the key results discussed in previous chapters in the 

context of the field and will outline the future directions for the ongoing projects. 
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Chapter 2  

2 Dendritic Surface Functionalization of Biodegradable 

Polymer Assemblies
*
 

 

2.1 Introduction 

In solution, amphiphilic BCPs can undergo self-assembly, forming a diverse range of 

structures from spherical micelles
1
 to helical rods,

2
 toroids,

3
 vesicles,

4,5
 

 
tubes,

6
 and 

multicompartment cylinders.
7
 In recent years, micelles and vesicles have received 

significant attention as they can be readily accessed using a wide range of BCPs by 

controlling the relative volume fractions of the constituent blocks.
8
 Relative to their 

counterparts formed from low MW surfactants,
9
 these assemblies typically exhibit much 

lower critical aggregation concentrations and enhanced thermodynamic and kinetic 

stabilities.
7,10

 Because of these properties, there has been particular interest in biomedical 

applications of these materials and they have been demonstrated as promising carriers of 

proteins,
11-13

 hydrophilic and hydrophobic drugs,
14-17

 and imaging contrast agents.
18-20

 

Micelles and vesicles are complementary systems in that micelles possess a hydrophobic 

core that is typically used to encapsulate hydrophobic species, while vesicles possess an 

aqueous core capable of encapsulating water-soluble species. However, vesicles also 

possess a hydrophobic membrane that can also encapsulate hydrophobes, making these 

assemblies multifunctional. 

While much research thus far has focused on controlling the assembly and 

encapsulation properties of BCPs and their corresponding assemblies,
21-23

 the 

functionalization of micelle and vesicle surfaces is emerging as an important area of 

research. The surfaces of the materials will come into direct contact with biological 

                                            
*
 This chapter contains work that has been published: Nazemi, A.; Amos, R. C.; Bondulle, C. V.; Gillies, E. 

R. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2546. Reproduced by permission of John Wiley and 

Sons. See Co-Authorship statement for detailed contributions from each author. 
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systems and will therefore play a critical role in determining their properties such as 

toxicity and biodistribution behaviour.
16

 Furthermore, the conjugation of ligands to the 

surface can potentially lead to targeting of specific tissues such as tumours in vivo.
20,24

 

Our group has recently reported a method for the introduction of dendritic groups to the 

surfaces of polymer vesicles using the widely applicable Cu(I)-catalyzed click reaction 

between vesicle azide groups and dendrons bearing focal point alkynes.
25

 Owing to the 

high multivalency of the dendrons, this approach provides a rapid means of controlling 

the surface functionalities on the assembly. Furthermore, using mannose as a model 

biological ligand, it was demonstrated that binding to the target receptors was 

significantly enhanced using a dendritic approach in comparison to the conjugation of 

small molecules directly to the vesicle surface.
26

 This result was also generalizable to 

polymer functionalized nanoparticles and was attributed to the increased availability of 

the ligands on the surface of the nanomaterial when presented on the dendritic 

framework, as well as the clustered nature of ligand display.  

Overall, the results of our previous studies suggested that this dendritic surface 

functionalization approach is highly promising for controlling the surface functionalities 

of nanomaterials in order to impart specific biological properties and functions such as 

targeting. However, this initial work was performed on vesicles composed of PEO-PBD 

BCP, a non-biodegradable polymer with unknown biocompatibility. Furthermore, the 

micron-scale sizes of these vesicles were unsuitable for in vivo circulation.
27

 To address 

these limitations, and thus provide a significant advancement towards biomedical 

applications, we describe here the application of the dendritic surface functionalization 

approach to nano-sized PEO-PCL vesicles and micelles.  PCL is a well-known 

biodegradable polymer that is currently Food and Drug Administration (FDA)-approved 

for uses in tissue engineering
28,29

 and drug delivery.
30,31

 Although PEO is not 

biodegradable, it is generally considered non-toxic and is currently used in several FDA-

approved products including PEG-INTRON, ONCASPAR, and NEULASTA. Both 

micelles
32-38

 and vesicles
15,38-46 

based on PEO-PCL have been previously reported and 

have been investigated as delivery vehicles for drugs such as DOX,
40

 TAX,
15

 docetaxel,
36

 

hemoglobin,
41

 dihydrotestosterone,
33

 cyclosporine A,
34

 and rapamycin.
35

 In current work, 

we describe the synthesis of azide terminated PEO-PCL BCPs, their assembly into 
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micelles and vesicles, and the conjugation of dendrons bearing different surface 

functionalities including hydroxyls, amines, and guanidines, as well as a small molecule 

rhodamine derivative to both vesicles and micelles. The effects of these conjugations on 

the properties of the assemblies are explored. 

2.2 Results and Discussion 

2.2.1 Synthesis of Block Copolymers 

In order to functionalize polymer assemblies using the previously described azide + 

alkyne click chemistry approach, new PEO-PCL BCPs bearing terminal azides on the 

hydrophilic PEO blocks were required. As the polymerization of -caprolactone (CL) is 

generally initiated from small molecule
47,48

 or macromolecular alcohols,
49-51

 these target 

copolymers could be most readily derived from asymmetrically functionalized PEOs 

bearing azide and hydroxyl termini (N3-PEO-OH). While there are numerous reports 

describing the asymmetric functionalization of oligo(ethylene glycol)s,
52-54

 their higher 

MW analogues, particularly those lacking charged moieties are more difficult to prepare 

due to the purification challenges associated with statistical functionalization reactions. 

For example, in recent work Hillmyer and coworkers did not succeed in purifying their 

target asymmetrically functionalized PEO, and therefore used the statistical mixture of 

end-functionalized molecules in the preparation of a BCP.
55

 They later separated the 

resulting copolymers based on their differing solubilities and sizes. On the other hand, 

Taton and coworkers have recently reported asymmetric PEOs that were obtained 

directly from the ring-opening polymerization (ROP) of ethylene oxide using N-

heterocyclic carbenes as catalysts.
56

  

In the current work, to obtain the target N3-PEO-OH, hydroxy-terminated PEO (HO-

PEO-OH, 2.1) with a MW of 2000 g/mol was first reacted with 1.1 equivalent (equiv.) of 

p-toluenesulfonyl chloride (TsCl) in the presence of 4-dimethylaminopyridine (DMAP) 

as a catalyst and triethylamine (NEt3) (Scheme 2.1). The crude product was then reacted 

with sodium azide to obtain the target N3-PEO-OH (2.2) along with the diazide N3-PEO-

N3 and diol HO-PEO-OH resulting from the statistical functionalization. Although the 

properties of the three products were quite similar to each other, using very careful 
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column chromatography it was possible to isolate an 18% yield (out of a possible 50% 

theoretical yield) of the target compound 2.2 in pure form as evidenced by MALDI-MS 

(Figure A2.11.). Despite the relatively low yield, the low cost of all of the reagents and 

starting materials for this chemistry resulted in this being a viable route for the 

preparation of the required macroinitiator.  

 

Scheme 2.1. Synthesis of HO-PEO-N3 (2.2). 

As shown in Scheme 2.2, N3-PEO-OH (2.2) was then used as a macroinitiator in the 

ROP of CL. The commercially available PEO monomethyl ether (MeO-PEO-OH) was 

also used as a macroinitiator to provide BCPs without terminal azides. These non-

functionalized copolymers were required in the preparation of the assemblies to control 

the number of surface azide groups and thus the degree of functionalization with the 

dendritic groups. Most reports involving the preparation of PEO-PCL have involved the 

use of metal catalysts such as tin 2-ethylhexanoate (stannous(II) octanoate),
37,42,44,57

 zinc 

bis[bis(trimethylsilyl)amide],
39

 or triethylaluminum.
58,59

 For in vivo applications, the use 

of non-metallic catalysts is highly desired in order to minimize the potential toxicity 

effects. Acids such as hydrochloric acid (HCl),
36,60

 trifluoromethanesulfonic acid,
61

 and 

methanesulfonic acid
61

 (MSA) have been reported to polymerize CL with small molecule 

alcohols as initiator. Among these catalysts, MSA was shown to produce PCLs with 

lower PDIs and in shorter reaction times. For these reasons, MSA was selected as the 

catalyst for this work and the polymerization was conducted at 30 C for 2.5-3.5 h. Based 

on previous reports that PEO-PCL BCPs with monomer ratios of approximately 44:9 to 

44:40 assemble into spherical micelles, while those with ratios of 44:82 to 44:105 

assemble into vesicles, the four BCPs 2.3 - 2.6 shown in Table 2.1 were synthesized with 

the aim of preparing both micelles and vesicles from these materials. 
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Scheme 2.2. Synthesis of PEO-PCL BCPs. 

Table 2.1. MW characteristics of PEO-PCL BCPs. 
a
MW expected from the 

polymerization based on the initiator and monomer ratio. 
b
MW determined by 

1
H NMR 

spectroscopy in CDCl3. 
c
Mw obtained from SEC-MALS. 

d
PDI determined from SEC-

MALS. 

Copolymer MWexpected 

(g/mol)
a
 

MWNMR 

(g/mol)
b
 

Mw 

(g/mol)
c 

PDI
d
 Experimental 

Yield 

MeO-PEO44-PCL24 (2.3) 4700 4800 5500 1.14 97% 

N3-PEO44-PCL24  (2.4) 4700 5000 4600 1.18 97% 

MeO-PEO44-PCL82 (2.5) 11300 11300 12400 1.40 95% 

N3-PEO44-PCL82 (2.6) 11300 11600 12000 1.19 93% 

The MWs of the resulting polymers were determined by 
1
H NMR spectroscopy and 

size exclusion chromatography with detection by multi-angle light scattering (SEC-

MALS). The
 
MW characteristics of the synthesized BCPs are summarized in Table 2.1 

and SEC traces of the polymers are shown in Figure 2.1. It is worth noting that high 

reaction yields and relatively low PDIs were generally obtained, with the measured MWs 

in agreement with target monomer ratios. 
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Figure 2.1. SEC traces for copolymers: (a) 2.3 and 2.4 and (b) 2.5 and 2.6. Detection was 

based on light scattering (90  trace shown). 

2.2.2 Synthesis of Alkyne-Functionalized Dendrons 

To explore the functionalization of the PEO-PCL vesicles and micelles, two different 

dendrons with focal point alkynes were initially explored. The third generation dendron 

1.33 bearing peripheral amine functional groups and statistically one rhodamine dye per 

molecule was selected, as this dendron was used in previous work with the PEO-PBD 

vesicles
25

 and would allow comparison between the different vesicle systems. 

Additionally, to demonstrate that the dendritic surface functionalization approach can 

impart new functions, the guanidine functionalized dendron 2.8 was prepared by first 

reacting 1.33
25

 with the tert-butoxycarbonyl (Boc)-protected guanidine derivative 2.7
62

 in 

the presence of o-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate 

(HBTU), 1-hydroxybenzotriazole (HOBt), and N,N-diisopropylethylamine  (DIPEA), 

then removing the Boc groups by treatment with 1/1 trifluoroacetic acid (TFA)/CH2Cl2 

(Scheme 2.3). Similar guanidine functionalized dendrons
62

 have been demonstrated by 

our group to have cell penetrating properties comparable to those of the well known HIV 

Tat peptide,
63,64

 and were capable of enhancing the transport of iron oxide nanoparticles 

into cells.
62

 Therefore, they might enhance the capacity of these micelles and vesicles to 

carry cargo into cells. The molar extinction coefficients (ε) for dendrons 1.33 and 2.8 

were determined by UV-visible spectroscopy in order to enable the quantification of their 
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conjugation yields to the surfaces of the nanoassemblies. Finally, as the conjugation 

yields for the dendrons can be limited by steric hindrance at the surface of the assembly, 

it was also of interest to compare these reactions with those of a small molecule alkyne. 

Thus, the rhodamine derivative 2.9
65

 was reacted with propargyl bromide to provide 2.10 

(Scheme 2.4). As the local environment of the dye may alter its extinction coefficient, 

rhodamine-functionalized derivatives of copolymers 2.4 and 2.6 were also prepared as 

shown in Scheme 2.5, and the extinction coefficients of the resulting polymers 2.11 and 

2.12 were measured in order to enable the accurate quantification of the conjugation 

yields for 2.10. 

 

Scheme 2.3. Synthesis of rhodamine-labeled guanidine dendron 2.8. 

 

 

Scheme 2.4. Synthesis of alkyne-functionalized rhodamine 2.10. 
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Scheme 2.5. Synthesis of rhodamine-labeled PEO-PCL block copolymers 11 and 12. 

2.2.3 Formation of Nanoassemblies and Surface Functionalization 
Reactions 

PEO-PCL vesicles and micelles can be formed through a number of different methods 

including rehydration of copolymer thin films on roughened teflon plates
36,43,44

 and 

nanoprecipitation.
38,42,45,46

 In our hands, thin film rehydration of copolymers 2.3 and 2.4 

provided micelles with diameters on the order of 25 nm. With copolymers 2.5 and 2.6, 

rehydration of copolymer thin films on roughened teflon plates resulted in the formation 

of micron-sized vesicles, accompanied by many aggregates. The large sizes and 

aggregation were undesirable, so this method was not explored further. On the other 

hand, using a nanoprecipitation method involving the dissolution of the copolymer in 

tetrahydrofuan (THF), followed by a gradual addition of water and then dialysis against 

water to remove the THF, led reproducibly to micelles with diameters of approximately 

20 nm (copolymers 2.3 and 2.4) and vesicles with diameters of approximately 140 nm 

(copolymers 2.5 and 2.6) as measured by both DLS (Figure 2.2) and transmission 

electron microscopy (TEM) (Figure 2.3). As materials smaller than 100 nm are desired 

for in vivo applications, it was demonstrated that the vesicles could be extruded through a 

100 nm polycarbonate membrane at 65 ˚C. This resulted in a decrease in the vesicle 

diameter to about 65 nm. 
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Figure 2.2. Size distribution profiles measured by DLS for: a) micelles prepared from 

copolymer 2.3; b) vesicles prepared from copolymer 2.5; c) extruded vesicles prepared 

from copolymer 2.5. 

 

Figure 2.3. TEM images of: a) micelles prepared from copolymer 2.3; b) vesicles 

prepared from copolymer 2.5. 

Micelles and vesicles with varying densities of surface azides were prepared from 

mixtures of copolymers 2.3 and 2.4 or 2.5 and 2.6 respectively using the 

nanoprecipitation method described above. Click reactions were subsequently performed 

using CuCl2, sodium ascorbate, and four equivalents of the alkyne 1.33, 2.8, or 2.10 

relative to the azide (Scheme 2.6). After 18 h, the excess alkyne and other reagents were 

removed by dialysis. Following the removal of water, the materials resulting from each 

reaction were dissolved in CHCl3/MeOH (3/2), and their UV-visible absorbances were 

measured. Using the extinction coefficients measured for 1.33, 2.8, 2.11, and 2.12, the 

yields of the alkynes conjugated to the micelle and vesicle surfaces were then calculated. 
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Scheme 2.6. Preparation of functionalized a) vesicles and b) micelles. 

The conjugation yields for the vesicles are shown in Figure 2.4a. It was found that the 

yields for the conjugation of dendron 1.33, bearing peripheral amines were very similar 

to those previously obtained with PEO-PBD vesicles.
25

 It should be noted that 

approximately 50% of the azides should be located in the interior of the vesicles, and thus 

inaccessible to the dendron, which is unlikely to diffuse through the vesicle membrane. 

Nevertheless, as previously reported,
25

 conjugation yields higher than 50% were obtained 

at low azide loadings. This may be attributed to the dynamic nature of the vesicles, 

allowing azides from the vesicle interior to migrate to the vesicle surface during the 18 h 

reaction time and then subsequently react. The slow migration of dendron 1.33 from the 

reaction solution into the vesicle core also cannot be excluded. As the azide loading 

increased beyond 20%, the reaction yields decreased. This was likely due to the steric 

hindrance at the vesicle surface which restricted the conjugation of dendrons. The yields 

for the conjugation of the guanidine-functionalized dendron 2.8 were consistently lower 

than those for dendron 1.33. This result was not surprising considering the larger size of 

this dendron. 



63 

 

 

 

Figure 2.4. Click reaction yields as a function of azide loading on: a) vesicles (remaining 

copolymer is 2.5); b) micelles (remaining copolymer is 2.3). 

Yields for the conjugation of the small molecule rhodamine derivative 2.10, calculated 

using the extinction coefficient of 2.12, were consistently greater than 90% for azide 

loadings of 1% to 40%. In order to ensure that the measured reaction yields accurately 

reflected covalently conjugated dye, and not simply dye entrapped within the vesicle core 

or membrane, these yields were determined following not only the usual aqueous dialysis 

but also a dialysis against DMF, which would disrupt the vesicles and enable the release 

of any non-covalently bound dye. Indeed these yields are lower than those observed after 

just the aqueous dialysis, which were consistently greater than 100% (at all azide 

loadings). Overall, these results suggested that the dye can diffuse across the vesicle 

membrane during the reaction time and react with azides on the interior membrane 

surface. Consistent with this hypothesis, we have observed the release of non-covalently 

encapsulated rhodamine out of vesicle cores over a 24 h period suggesting that the 

reverse process could also occur given the appropriate concentration gradient. Somewhat 

surprisingly, the reaction yields even for this small molecule dropped off at higher azide 

loadings above 20%. This might be attributed to the presence of dye molecules on the 

membrane disrupting the availability of nearby azides, or perhaps due to diffusion of the 

rhodamine across the vesicle membrane providing insufficient concentrations of 

rhodamine to react with all of the azides at the vesicle core. Moreover, the covalent or 

non-covalent attachment of the substrates to the nanoassemblies was evaluated by 

performing control experiments. Two PEO-PCL vesicle samples with 0% azide polymer 
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content were prepared. Both samples were subjected to click reaction condition with 

either alkyne-functionalized rhodamine dye 2.10 or dye-labled amine dendron 1.33 equal 

to vesicles containing 10% azide-functionalized PEO-PCL copolymer 2.6. The vesicle 

sample with 1.33 was dialyzed only against water and the sample with 2.10 was dialyzed 

against water followed by dialysis against DMF. Quantification of the samples, with 

respect to 10% azide-functionalized PEO-PCL copolymer, revealed that 1.3% of the dye-

labeled amine dendron 1.33 and 2.3% of the alkyne-functionalized rhodamine dye 2.10 

were non-covalently attached to the vesicles samples. Comparing these values with the 

overall conjugation yields shows that non-covalent attachment of the substrates to 

nanoassemblies is negligible compared to covalently bonded substrates.  

In the conjugation reactions of dendron 1.33 with the micelles, it was expected that the 

yields would approach 100% at low azide loadings as all of the azides should be available 

for reaction at the micelles surface. However, as shown in Figure 2.4b, this was not the 

case, and surprisingly the conjugation yields were consistently lower than those obtained 

for the vesicles. The reasons for these lower yields are still unclear at this time, but could 

perhaps be related to the large size of the dendrons relative to the micelles. The yields for 

the conjugation of the guanidine-functionalized dendron 2.8 were similar to those 

obtained with dendron 1.33 and were similar to the yields obtained on the vesicles. Like 

for the vesicles, the conjugation yields for the small molecule rhodamine 2.10 were high, 

but unlike for the vesicles, these yields did not drop off as significantly at higher azide 

loadings. This suggests that the decrease in yields observed for the vesicles at high azide 

loading was more likely due to insufficient quantities of rhodamine 2.10 for reaction with 

the interior azides due to its limited diffusion across the vesicle membrane, rather than 

due to the presence of dye molecules hindering the reaction of nearby azides. 

Furthermore, in the context of the micelles, it suggests that the lower conjugation yields 

obtained for the dendrons were likely related to their size. It should also be noted that in 

order to investigate the reproducibility of the conjugation reactions, each reaction 

combination was repeated three times at the azide loading of 10%. The standard 

deviations, represented as error bars in Figure 2.4 ranged from  2% to  9%, indicating 

that the results were quite reproducible. 
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2.2.4 Effects of Surface Functionalization on the Nanoassemblies 

During the conjugation reactions, all of the micelles and vesicles remained well-dispersed 

and the solutions were clear. As shown in Figures 2.5a and 2.5d, TEM confirmed that the 

micelles and vesicles remained intact following the click reaction. However, upon 

removal of the excess alkyne and other reagents by aqueous dialysis, aggregation was 

observed in some cases. In the case of dendron 1.33 with the vesicles, DLS 

measurements revealed aggregation, even at low azide loadings (Figure 2.6a), and 

beyond 10% azide loading, macroscopic aggregates were observed that could not even be 

measured by DLS. In our previous work with PEO-PBD, vesicle aggregates were 

observed at azide loadings beyond approximately 20%, but at low loadings the vesicles 

remained well-dispersed based on fluorescence confocal microscopy images.
25

 Thus, the 

PEO-PCL vesicles appear to be more sensitive to aggregation. In the case of the 

guanidine dendron 2.8, the aggregation was even more extensive. The aggregates formed 

at 2% azide loading were detected by DLS (Figure 2.6a) and were imaged by TEM 

(Figures 2.5b and c). Based on the TEM images, these aggregates seem to be composed 

primarily of vesicles. Beyond 2% azide, macroscopic precipitates were formed and 

unfortunately it was not possible to image these by TEM. 

 

Figure 2.5. TEM images of: a) vesicles with 2% azide loading, following conjugation of 

dendron 2.8 (prior to dialysis); b) and c) vesicles with 2% azide loading, following 

conjugation of dendron 2.8 and dialysis, showing aggregation; d) micelles with 20% 

azide loading, following conjugation of dendron 2.8 and dialysis. 
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Figure 2.6. Size distribution profiles following click reactions and dialysis, measured by 

DLS for: a) vesicles and b) micelles. 

The high sensitivity of the vesicles to aggregation upon dendron conjugation may be 

in part due to the resulting linear-dendritic copolymers being architecturally unfavorable 

for membrane formation. In addition, incorporation of the dendron may disrupt the 

hydrophilic-hydrophobic balance of the copolymer that is required for vesicle formation. 

These factors may destabilize the vesicle membrane. Nevertheless, the formation of the 

aggregates only upon dialysis suggests that these are not the only factors. It is noteworthy 

that dendrons 1.33 and 2.8 both possess cationic charges and it is possible that the 

presence of the excess dendrons somehow helps to stabilize the dispersed vesicles 

through hydrogen bonding or ionic interactions. To further investigate this aggregation 

phenomenon additional experiments were performed. First, a fourth generation polyester 

dendron 2.14 with a focal point alkyne was prepared as shown in Scheme 2.7.
66

 This 

dendron was selected as it was estimated to have a size similar to dendron 1.33 but 

without the cationic charges. Dendron conjugation at azide loadings from 5% to 40% 

were investigated and no aggregation was detected in any of these cases, even after 

dialysis (Figure 2.6a). This suggests that the dendritic architecture alone is not sufficient 

to trigger aggregation in this system, and that the charge of the dendrons was involved. 

The use of NaCl solutions (0.2 or 0.5 M) rather than pure water for the dialyses was also 

investigated as a means of controlling the counterion and ionic strength of the medium, 

but aggregation was still observed. In addition to this, dialysis against buffer solutions at 

different pH values were also examined. Dialysis of the samples against phosphate buffer 
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at pH = 6 and acetate buffer at pH = 5 also resulted in the aggregation of the vesicle 

samples functionalized with amine and guanidine dendrons. The role of the rhodamine 

dye molecule was also investigated. Vesicles functionalized with alkyne 2.10, did exhibit 

some aggregation, likely due to the dye's cationic charge and the tendency of polycyclic 

aromatic systems to undergo - stacking (Figure A2.12).
67

 However, the rhodamine was 

certainly not the only contributor, as the conjugation of previously reported dendrons 

analogous to dendrons 1.33 and 2.8 but lacking the rhodamine,
25,62

 led to the same degree 

of vesicle aggregation as observed with the dye-labeled dendrons. Therefore, it appears 

that the PEO-PCL vesicles are sensitive to aggregation, particularly upon conjugation of 

cationic molecules. On the other hand, uncharged dendritic molecules, despite their 

architecture, seem to be well-tolerated and will be the focus of future work. 

 

Scheme 2.7. Synthesis of dendron 2.14. 

In the case of dendron conjugation to the micelles, much less aggregation was 

observed. For example, upon conjugation of amine-functionalized dendron 1.33, no 

significant aggregation was observed, even at azide loadings up to 100% (Figure 2.6b). 

The guanidine dendron 2.8 and the rhodamine 2.10 could also be conjugated at azide 

loadings up to 100% without significant aggregation (Figure 2.6b). Thus, overall the 

micelles were much less sensitive to aggregation than the vesicles. Unlike the vesicles, 

the incorporation of linear-dendritic polymers into micelles is known to be well-tolerated, 

and there are several examples of micelles comprising linear dendritic copolymers where 
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the dendritic block is hydrophilic or even hydrophobic.
68-70

 Furthermore, micelle 

formation is generally favored for BCPs possessing hydrophilic volume fractions of 

>50%.
8
 Thus, the formation of micelles may be less affected by the increase in 

hydrophilic volume fraction imparted by the dendritic groups. The micelles also seem to 

be able to tolerate the introduction of charged groups much better than the vesicles. This 

may be attributed to the inherent structural differences between the micelles and vesicles. 

If the introduction of cationic groups to the vesicle surfaces results in repulsive 

interactions that destabilize the membrane, the hydrophobic portions of the membranes 

can perhaps become exposed, triggering the aggregation. In contrast, the micelles posses 

much shorter hydrophobic blocks that are well-buried at the cores of the micelles. This 

may make them inherently more resistant to the aggregation phenomena observed in this 

work. 

2.2.5 Cellular Uptake of the Guanidine Dendron-Functionalized 
Micelles 

It has been shown by our group that dextran-coated superparamagnetic iron oxide 

nanoparticles bearing guanidine-functionalized polyester dendrons exhibit enhanced cell 

uptake relative to the unfunctionalized nanoparticles or those bearing hydroxyl- or amine-

functionalized dendrons.
62

 To demonstrate that the dendritic surface functionalization 

approach can impart new functions to our nanoassemblies, the cellular uptake of micelles 

bearing guanidine-functionalized dendrons was investigated in HeLa cancer cells. 

Micelles were prepared from a 70/20/10 ratio of polymers 2.3/2.4/2.11 as described 

above (Figure 2.7). This provided an azide loading of 20% and the incorporation of 

polymer 2.11 provided the rhodamine for visualization of cell uptake. A dendron 

analogous to 2.8 but with an eighth guanidine in place of the rhodamine
62

 was then 

conjugated to the micelle surface by the click chemistry protocol described above. This 

approach was used as the presence of the rhodamine dye in 2.8 might alter the transport 

properties of the dendron. Micelles comprising a 90/10 ratio of copolymers 2.3/2.11 were 

used as a control. Due their high levels of aggregation, even at low azide loadings, 

guanidine-functionalized vesicles were not included in this experiment. 
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Figure 2.7. Preparation of PEO-PCL micelles functionalized with dendrons having 

peripheral guanidines, and their uptake into HeLa cells as visualized by fluorescence 

microscopy (detection of the rhodamine label). In contrast, micelles bearing the 

rhodamine label, but no dendron exhibited no detectable uptake.  

Micelles were incubated with the cells at a concentration of 0.1 mg/mL (estimated 0.2 

μM concentration of dendron) for 4 h, and then the cells were fixed and imaged by 

fluorescence confocal microscopy. As shown in Figure 2.7, cells incubated with the 

guanidine-functionalized micelles were strongly fluorescent, while no fluorescence was 

detected in cells incubated with the unfunctionalized micelles using the same microscope 

settings (Figure A2.13). This suggests that the dendritic surface functionalization 

approach can be used to impart cell penetrating properties to PEO-PCL micelles, which 

may allow them to more effectively deliver materials such as drugs, DNA, or labels into 

cells. Further experimentation will be required to quantify the cell uptake, study the 

intracellular tracking of these materials, and explore applications of these materials. 

2.3 Conclusion 

In conclusion, azide- and methoxy-terminated PEO-PCL BCPs with the appropriate 

relative block lengths for formation of micelles and vesicles were prepared with the aim 



70 

 

 

of developing surface-functionalized biodegradable assemblies. The azide- and methoxy-

terminated copolymers were combined in varying ratios to provide assemblies with 

varying loadings of surface azide groups. Subsequently, dendrons having focal point 

alkyne moieties and peripheral amines, guanidines, or hydroxyl groups, as well as a small 

molecule alkyne derivative of rhodamine were conjugated to the surfaces of the micelles 

and vesicles using a Cu(I)-catalyzed azide + alkyne cycloaddition reaction. It was found 

that the conjugation yields for the dendrons on the vesicles were similar to those reported 

previously for PEO-PBD vesicles, while those for the small molecule were higher, likely 

due its ability to cross the vesicle membrane. Conjugation yields on the micelle surface 

were somewhat lower than expected for the dendrons, but were high for the small 

molecule. While the micelles remained well-dispersed following all conjugation 

reactions, the vesicles exhibited a propensity to aggregate, particularly upon the 

conjugation of cationic alkynes. To demonstrate the applicability of the dendritic surface 

functionalization approach, micelles with conjugated dendritic guanidines were shown to 

have enhanced cell uptake relative to unfunctionalized micelles. 

2.4 Experimental 

General Procedures and Materials 

Chemicals were purchased from Sigma-Aldrich and were used without further 

purification unless otherwise noted. Anhydrous DMF, toluene, and CH2Cl2 were obtained 

from a solvent purification system. NEt3 was distilled from CaH2. CL was stirred over 

CaH2 for 24 h at room temperature and overnight at 60 ˚C and then it was distilled from 

CaH2 at reduced pressure under nitrogen immediately prior to polymerization. PEO 

derivatives were purified by precipitation from CH2Cl2 into cold diethyl ether (1:10). The 

precipitated PEO was then dried by azeotropic distillation (×3) with dry toluene using a 

Schlenk line system under nitrogen. Unless otherwise stated, all reactions were 

performed under a N2 atmosphere using flame or oven dried glassware. Column 

chromatography was performed using silica gel (0.063-0.200 mm particle size, 70-230 

mesh). Dialyses were performed using Spectra/Por regenerated cellulose membranes with 

either a 12000-14000 g/mol or 3500 g/mol molecular weight cutoff (MWCO). 
1
H NMR 

spectra were obtained at 400 MHz and 
13

C NMR spectra were obtained at 100 MHz. 
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NMR chemical shifts are reported in ppm and are calibrated against residual solvent 

signal of CDCl3 ( 7.26 and 77 ppm), CD3OD ( 3.34 ppm), or (CD3)2SO ( 2.50 and 40 

ppm). Coupling constants (J) are expressed in Hertz (Hz). Infrared spectra (IR) were 

obtained as films from CH2Cl2 or THF/MeOH on NaCl plates. UV-visible absorption 

spectroscopy was performed on a Varian Cary 300 Bio UV-Visible Spectrophotometer. 

SEC was performed in THF using a Waters 515 HPLC pump, Wyatt OptilabRex RI and 

miniDAWN-TREOS detectors and two ResiPore (300 x 7.5 mm) columns from Polymer 

Laboratories. Polymer MWs were calculated based on the multi-angle light scattering 

data using the Wyatt Astra software, with dn/dc values of the polymers determined from 

the refractive index (RI) detector using Astra. DLS data were obtained using a Zetasizer 

Nano ZS instrument from Malvern Instruments. MALDI-TOF mass spectrometry data 

were obtained using a 4700 Proteomics Analyzer, MALDI TOF TOF (Applied 

Biosystems, Foster City, CA, USA).  Reflectron and linear positive ion modes were used.  

High-resolution mass spectrometry (HRMS) was performed using a Finnigan MAT 8400 

electron impact (EI) mass spectrometer. Extinction coefficients () of compounds 1.33, 

2.8, 2.10, 2.11 and 2.12 were obtained from calibration curves based on the measurement 

of UV-visible absorbance versus concentration in CHCl3/MeOH (3/2).    

Synthesis of N3-PEO-OH (2.2): HO-PEO-OH (2.1) with a MW of 2000 g/mol (2.0 g, 

1.0 mmol, 1.0 equiv.), TsCl (0.22 g, 1.1 mmol, 1.1 equiv.), and DMAP (0.061 g, 0.50 

mmol, 0.50 equiv.) were dissolved in dry CH2Cl2 (30 mL). Dry NEt3 (0.12 g, 1.2 mmol, 

1.2 equiv.) was then added via syringe. The resulting mixture was stirred at room 

temperature for 24 h. Following this, the mixture was washed with cold 1M HCl solution 

(1×20 mL) and cold brine (1×20 mL). The organic phase was dried over MgSO4. After 

removal of MgSO4 via filtration, CH2Cl2 was removed under reduced pressure. The 

residue was taken up in minimal CH2Cl2 and the product was precipitated into cold 

diethyl ether. This material was then dissolved in dry DMF (15 mL). Sodium azide (0.16 

g, 2.5 mmol, 2.5 equiv. relative to 2.1) was then added and the resulting mixture was 

stirred at 100 
o
C overnight. After cooling to room temperature, distilled water (15 mL) 

and CH2Cl2 (15 mL) were added. The organic phase was separated. The aqueous phase 

was extracted with CH2Cl2 (3×10 mL) and the combined CH2Cl2 layers were dried over 
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MgSO4. After removal of MgSO4 via filtration, the CH2Cl2 was removed under reduced 

pressure. The residue was taken up in minimal CH2Cl2 and precipitated into cold diethyl 

ether. Subsequent purification by column chromatography using CH2Cl2/MeOH as eluent 

(gradient: 19/1 to 14/1) gave compound 2.2 (0.36 g, 0.18 mmol) as a white solid. Overall 

yield: 18%. 
1
H NMR (400 MHz, CDCl3): δ 3.42-3.80 (m, 180H), 3.36 (t, 2H, J  = 4.0). 

IR (cm
-1

): 3445, 2884, 2102. MS calcd. for [M+Na]
+
 based on functionalization of the 

starting polymer 2.1 with a peak MW of 1802 g/mol (n = 40): 1827. Found (MALDI-

TOF+): 1827. 

Synthesis of Copolymer 2.3 and General Procedure for the Preparation of 

Copolymers 2.3-2.6: Dry MeO-PEO-OH (0.25 g, 0.12 mmol, 1.0 equiv.) was added to a 

Schlenk flask as a solution in dry toluene (1.5 mL). CL (0.34 g, 3.0 mmol, 24 equiv.) was 

then added to the macroinitiator and the resulting solution was equilibrated at 30
 o

C for 

10 min. MSA (0.12 mmol, 7.8 μL, 1.0 equiv.) was then added and the reaction mixture 

was stirred at 30
 o

C for 2.5 h. After cooling to room temperature, the mixture was treated 

with Amberlyst® A21 in order to remove the catalyst. The resin was removed by 

filtration and the product was precipitated in excess cold hexane. The resulting white 

solid was filtered and dried in vacuo to give 0.57 g of the product. Yield = 97%. 
1
H NMR 

(400 MHz, CDCl3): δ 4.21 (t, J = 6.0), 4.05 (t, J = 8.0, 50H), 3.46-3.82 (m, 180H), 3.37 

(s, 3H), 2.29 (t, J = 8.0, 50H), 1.63 (m, 100H), 1.37 (m, 50H). IR (cm
-1

): 3436, 2889, 

1724. SEC: Mw = 5500 g/mol, PDI = 1.14, dn/dc = 0.086.  

Synthesis of Copolymer 2.4: The copolymer was prepared by the same method 

described above for copolymer 2.3 except that compound 2.2 was used as the 

macroinitiator. Yield = 97%. 
1
H NMR (400 MHz, CDCl3): δ 4.21 (t, J = 6.0, 2H), 4.05 (t, 

J = 8.0, 56H), 3.46-3.82 (m, 180H), 3.37 (t, J  = 6.0, 2H), 2.29 (t, J = 8.0, 56H), 1.63 (m, 

112H), 1.37 (m, 56H). IR (cm
-1

): 3438, 2869, 2105, 1724. SEC: Mw = 4600 g/mol, PDI = 

1.18, dn/dc = 0.078. 

Synthesis of Copolymer 2.5: The copolymer was prepared by the same method 

described above for copolymer 2.3 except that 82 equiv. of CL were used and the 

reaction time was 3.5 h. Yield = 95%. 
1
H NMR (400 MHz, CDCl3): δ 4.19 (t, J = 6.0, 
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2H), 4.03 (t, J = 8.0, 164H), 3.43-3.79 (m, 180H), 3.35 (s, 3H), 2.28 (t, J = 8.0, 164H), 

1.64 (m, 328H), 1.37 (m, 164H). IR (cm
-1

): 3437, 2867, 1724. SEC: Mw = 12400 g/mol, 

PDI = 1.40, dn/dc = 0.060. 

Synthesis of Copolymer 2.6: The copolymer was prepared by the same method 

described above for copolymer 2.3 except that compound 2.2 was used as the 

macroinitiator, 82 equiv. of CL were used, and the reaction time was 3.5 h. Yield = 93%. 

1
H NMR (400 MHz, CDCl3): δ 4.21 (t, J = 6.0, 2H), 4.05 (t, J = 8.0, 168H), 3.45-3.80 

(m, 180H), 3.38 (t, J = 4.0, 2H), 2.30 (t, J = 8.0, 168H), 1.64 (m, 336H), 1.37 (m, 168H). 

IR (cm
-1

): 3433, 2866, 2100, 1725. SEC: Mw = 12000 g/mol, PDI = 1.19, dn/dc = 0.080. 

Synthesis of Dendron 2.8: Dendron 1.33
25

 (81 mg, 39 µmol, 1.0 equiv.) and the 

protected guanidine derivative 2.7
62

 (0.20 g, 0.55 mmol, 14 equiv.) were dissolved in 

anhydrous DMF (7 mL) under a nitrogen atmosphere. HBTU (0.20 g, 0.55 mmol, 14 

equiv.) was added, followed by HOBt (73 mg, 0.55 mmol, 14 equiv.) and DIPEA (0.14 

mL, 0.78 mmol, 20 equiv.). The reaction mixture was stirred under nitrogen in the dark 

for 48 h. The product was then purified by dialysis against DMF using a 3500 MWCO 

membrane for 24 h. After removal of DMF under reduced pressure, the residue was 

dissolved in 2 mL of 1/1 TFA/CH2Cl2, and the reaction mixture was stirred at room 

temperature and in dark for 2 h. The solvent was removed under reduced pressure to 

provide dendron 2.8 (0.11 g) with approximately one chromophore per dendron 

statistically. Yield: 87%. 
1
H NMR (400 MHz, CD3OD): δ 7.92 (d, J = 8.0, 1H), 7.84-7.75 

(m, 3H), 7.65-7.47 (m, 3H), 7.28 (d, J = 12, 1H), 7.10 (dd, J1 = 12.0 , J2 = 4.0, 1H), 7.00 

(d, J = 4.0, 1H), 4.84-4.81 (m, 2H), 4.39-4.10 (m, 30H), 3.78-3.65 (m, 8H), 3.55-3.37 (m, 

20H), 3.20 (t, J = 8.0, 16H), 3.04 (br s, 1H), 2.76-2.68 (m, 2H), 2.66-2.47 (m, 16H), 2.48-

2.21 (m, 20H), 1.81-1.55 (m, 32H), 1.52-1.07 (m, 49H). IR (cm
-1

): 3282, 3180, 2943, 

2125, 1730, 1670, 1590, 1467. ε: 28008 L mol
-1

 cm
-1

 at 563 nm (CHCl3/MeOH, 3/2). 

Synthesis of Rhodamine Derivative 2.10: To a solution of  2.9
65

 (0.40 g, 0.73 mmol, 1.0 

equiv.) in anhydrous DMF (2 mL) were added propargyl bromide (0.11 g, 0.92 mmol, 1.2 

equiv.) and DIPEA (0.16 g, 1.3 mmol, 1.8 equiv.). The reaction mixture was stirred at 

room temperature in the dark for 24 h. An additional 1.2 equiv. of propargyl bromide and 
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DIPEA was then added, and the resulting solution was stirred for 2 additional h. The 

reaction mixture was then partitioned between ethyl acetate and saturated aqueous 

NaHCO3. The aqueous layer was extracted with isopropanol/CH2Cl2 (1/3). The organic 

layer was collected, dried over MgSO4, filtered, and concentrated to provide 0.33 g of the 

desired product. Yield: 82%. 
1
H NMR (400 MHz, CDCl3): δ 7.69-7.67 (m, 2H), 7.56-

7.54 (m, 1H), 7.37-7.35 (m, 1H), 7.28 (s, 1H), 7.25 (s, 1H), 7.05-7.02 (dd, J1 = 12.0, J2 = 

12.0, 2H), 6.81 (d, J = 4.0, 2H), 3.71-3.61 (m, 8H), 3.46-3.41 (m, 2H), 3.38-3.32 (m, 2H), 

3.26 (d, J = 4.0, 2H), 2.41-2.33 (m, 4H), 2.24 (t, J = 4.0, 1H), 1.33 (t, J = 8.0, 12H). 
13

C 

NMR (400 MHz, CDCl3): δ 167.2, 157.5, 155.4, 135.2, 131.8, 130.2, 130.0, 129.7, 127.4, 

114.0, 113.4, 110.7, 96.1, 73.8, 51.4, 50.7, 47.2, 46.4, 46.0, 41.3, 12.5. HRMS (m/z) 

calc’d for C35H42N4O2, 550.3308; found (EI), 550.3221 [M]
+
. ε: 86201 L mol

-1
 cm

-1
 at 

563 nm (CHCl3/MeOH, 3/2). 

Preparation of Rhodamine-Labeled Copolymers 2.11 and 2.12: Copolymer 2.4 or 2.6 

(1.0 equiv.) and rhodamine derivative 2.10 (5.0 equiv.) were dissolved in THF/H2O (2/1). 

To the solution were added CuCl22H2O (5.0 equiv.) and sodium ascorbate (50 equiv.), 

and the reaction mixture was stirred in the dark at room temperature for 20 h. The 

product was purified by first dialysis against distilled water for 24 h followed by dialysis 

against DMF for an additional 24 h using a 3500 MWCO dialysis membrane. DMF was 

removed in vacuo to give dye-labeled polymers 2.11 (yield: 81%) or 2.12 (yield: 89%), 

respectively. Due to low intensity of aromatic peaks of the dye compared to the polymer 

peaks, the integration of the 
1
H NMR spectrum was not possible. However, completion of 

the reaction was confirmed by disappearance of the peaks corresponding to the methylene 

protons adjacent to the azide group in the polymer (Figure A2.8 and Figure A2.9). ε for 

2.11: 22851 L mol
-1

 cm
-1

 at 563 nm (CHCl3/MeOH, 3/2). ε for 2.12: 19847 L mol
-1

 cm
-1

 

at 563 nm (CHCl3/MeOH, 3/2). 

Synthesis of Dendron 2.14: Dendron 2.13
66

 (0.42 g, 0.20 mmol) was dissolved in 

methanol (150 mL) and concentrated sulfuric acid (1.5 mL) was added. The resulting 

solution was stirred at room temperature for 2 h and then was then neutralized with 7 M 

NH3 in MeOH to pH 7.  The solution was filtered to remove the (NH4)2SO4 precipitate 

and then the solvent was removed under reduced pressure to provide 2.14 (0.35 g) as a 
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white solid. Yield: 99%. 
1
H NMR (400 MHz, DMSO-d6): δ 7.35-6.80 (br s, 16H), 4.72 

(d, J = 7.8, 2H), 4.70-4.50 (m, 12H), 4.21-4.07 (m, 16H), 3.49-3.30 (m, 32H), 2.42 (t, J = 

7.0, 1H), 1.22 (s, 3H), 1.18 (s, 6 H), 1.15 (s, 12H), 1.00 (s, 24H). 
13

C NMR (400 MHz, 

DMSO-d6): δ 174.5, 172.2, 171.8, 171.7, 78.3, 78.2, 64.8, 64.1, 53.3, 50.6, 46.7, 46.6, 

33.7, 25.7, 24.9, 17.8, 17.6, 17.3, 17.1. MS (m/z) calc'd for C78H124NaO46, 1820; found 

(MALDI-TOF), 1820 [M+Na]
+
. 

General Procedure for the Preparation of PEO-PCL Micelles and Vesicles: The BCP 

(5 mg) was dissolved in THF (0.5 mL). Distilled water (2 mL) was added dropwise over 

10 min with vigorous stirring. After the addition was complete, the resulting 

nanoassembly suspension was stirred for 10 min and then dialyzed against 2 liters of 

distilled water, using a 12000-14000 MWCO dialysis membrane, with multiple changes 

for at least 36 h to remove THF. The vesicles were extruded ten times through a 0.1 μm 

polycarbonate membrane at 65 ˚C using a pressure driven Lipex Thermobarrel Extruder 

(1.5 mL capacity, Northern Lipids). 

General Procedure for Surface Functionalization of Micelles and Vesicles: Micelles 

or vesicles were prepared as described above using mixtures of copolymers 2.3 and 2.4 

(micelles) or 2.5 and 2.6 (vesicles) in varying ratios (Scheme 2.6). To the assemblies 

were added CuCl22H2O (0.40 equiv. relative to total polymer), sodium ascorbate (4.0 

equiv. relative to total polymer), and dye labeled dendron 1.33, 2.8, or dye 2.10 (4.0 

equiv. relative azides) in sequence and the reaction mixture was stirred at room 

temperature for 18 h and then dialyzed against distilled water for 24 h using a 12000-

14000 MWCO or 3500 MWCO dialysis membrane.   

Quantification of Surface Dendritic Groups: Following dialysis, the samples were 

lyophilized in order to remove water and were then taken up in about 2 mL of 

CHCl3/methanol 3/2. The solutions were centrifuged at 4500 rpm for 4 h to remove any 

insoluble material. Finally, the absorbance was measured at 563 nm. The degree of 

functionalization was calculated using the measured ε for the dye-labeled dendron 1.33, 

dye-labeled guanidine dendron 2.8, or rhodamine-functionalized polymers 2.11 or 2.12 in 

the same solvent.  
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Transmission Electron Microscopy: The suspension of micelles or vesicles (20 μL, 0.1 

mg/mL) was placed on a carbon formvar grid and was left to stand for 5 min. The excess 

solution was then blotted off using a piece of filter paper. The resulting sample was dried 

in air overnight before imaging. Imaging was performed using a Phillips CM10 

microscope operating at 80 kV with a 40 µm aperture. 

Uptake of Micelles into HeLa Cells: HeLa cells were maintained at 37 
o
C and 5% CO2 

in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) supplemented with 10% 

fetal bovine serum (FBS, Invitrogen). Sterilized microscope glass cover slips (22mm  

22mm) were placed in the wells of a 6-well plate and 1.5  10
5
 cells per well were seeded 

onto each cover slip. The cells were allowed to adhere for 24 h. The culture medium was 

then aspirated and replaced with fresh serum free medium containing control or 

functionalized micelles at a concentration of 0.1 mg/mL of polymer.  The experiments 

were completed in triplicate. The cells were incubated at 37 
o
C for 4 h. They were then 

washed 3 times with phosphate buffered saline (PBS) then fixed with 10% 

paraformaldehyde solution for 10 min. The cells were washed again with PBS, and then 

the cover slips were placed face down onto microscope slides for confocal microscopy. 

Confocal images were obtained using a confocal laser scanning microscope (LSM 510, 

Carl Zeiss Inc.) using a 63 (N.A. = 1.4) oil immersion objective and an excitation 

wavelength of 543 nm (He-Ne laser). 
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Chapter 3  

3 Biodegradable Dendritic Polymersomes as Modular, High 
Relaxivity MRI Contrast Agents

*
 

 

3.1 Introduction 

The early detection and diagnosis of disease is currently one of the major challenges in 

medicine. Clinical imaging plays a significant role in this process. Among the various 

imaging modalities, MRI has become a well-established and powerful tool, due to its 

excellent spatial resolution and soft tissue contrast. To aid in the differentiation between 

healthy and diseased tissues, small molecule Gd(III) chelates such as Magnevist
® 

are used 

in approximately 50% of MRI scans. While the availability of these agents has enabled 

significant developments in MRI, they do suffer from some significant limitations. For 

example, they typically possess longitudinal relaxivities (r1) in the range of 3 - 5 mM
-1

s
-1

, 

only a small fraction of the theoretically possible values.
1
 This results in the requirement 

for very large doses of these agents and also limits their applicability in molecular 

imaging.
2
 In addition, most of these agents are non-targeted and have very short 

circulation half-lives in the blood. 

To address these limitations, Gd(III) complexes have been conjugated to a wide 

variety of  macromolecular scaffolds including dendrimers,
3,4

 linear polymers,
5
 proteins,

6
 

viral particles,
7
 micelles,

8,9
 liposomes,

10,11
 and polymersomes.

12-14
 This can result in 

improvements in r1 values due to the slower tumbling rates of macromolecules and the 

resulting increases in the rotational correlation times of the Gd(III).
15,16

 In addition, 

macromolecular systems can exhibit prolonged blood circulation times, enabling the 

targeting of tissues either passively or actively through the conjugation of targeting 

ligands. Among the available macromolecular assemblies, BCP vesicles, commonly 

referred to as polymersomes, have attracted significant attention due to their potential 

                                            
*
 This chapter contains work that has been published: Nazemi, A.; Martinez, F. M.; Scholl, T. J.; Gillies, E. 

R. RSC Advances, 2012, 2, 7971. Reproduced by permission of The Royal Society of Chemistry. See Co-

Authorship statement for detailed contributions from each author.  
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multifunctionality. They possess an aqueous core capable of encapsulating water-soluble 

species, a hydrophobic membrane that can encapsulate hydrophobes, and a surface to 

which specific targeting ligands or other species can be conjugated. Thus far, there are 

very few reports of polymersome-based MRI contrast agents.
12-14

 Cheng et al. have 

investigated porous polymersomes containing Gd(III)-labeled dendrimers within their 

aqueous cores, and have obtained an r1 of 7.5 mM
-1

s
-1

 (60 MHz, 40 ˚C) on per Gd 

basis.
12,13

 More recently, Grüll et al. incorporated Gd(III)-labeled lipids into a 

polymersome membrane, resulting in an r1 of 22 mM
-1

s
-1

 (20 MHz, 25 ˚C).
14 

 

Our group has developed approaches for the functionalization of polymersome 

surfaces with dendritic groups.
17,18

 It was shown that this is an effective method for 

tuning the surface chemistries of polymersomes in a single step, resulting in properties 

such as enhanced target binding and cell uptake.
19,20

 For the current work, it was 

proposed that polymersome-immobilized dendrons functionalized with Gd(III) 

complexes may serve as highly efficient MRI contrast agents. While conjugation of 

Gd(III) complexes to high generation dendrimers is known to enhance their relaxivities,
3,4

 

immobilization on the polymersome surface should provide further enhancements, at the 

same time opening the possibility to exploit the multifunctional properties of 

polymersomes. We describe here the preparation of the dendron and polymersome 

components, and studies of their relaxivities. It is demonstrated how nanoscale 

components can be readily combined to provide additive enhancements in relaxivity. 

3.2 Results and Discussion 

3.2.1 Design and Synthesis  

Figure 3.1 depicts the general approach for the preparation of the polymersome MRI 

contrast agents. PCL-PEO BCPs were selected due to the biodegradability of the PCL 

block and the well demonstrated biocompatibility of PEO in various applications.
21

 

Methoxy- (2.5) and azide-terminated (2.6) PCL-PEO were prepared as previously 

reported and were assembled into azide-functionalized vesicles.
22

 The z-average diameter 

of the polymersomes was 140 nm, as measured by DLS. 
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Figure 3.1. Schematic for the preparation of dendritic and non-dendritic Gd(III)-

functionalized polymersomes. 

Gd(III)-functionalized dendron 3.1, having a focal point alkyne, was prepared starting 

from the third generation polyester dendron 3.5.
17

 As shown in Scheme 3.1, the 

peripheral amine groups of 3.5 were reacted with the commercially available DTPA 

isothiocyanate derivative 3.6. The resulting dendron 3.7 was then treated with GdCl3 to 

provide the target dendron 3.1.  

As shown in Figure 3.1, in order to determine the contribution of the dendron versus 

polymersome to the relaxivity, it was also desirable to prepare a non-dendritic alkyne 

derivative of the Gd(III) chelate (3.2). As shown in Scheme 3.2, this was accomplished 

by the reaction of propargyl amine with 3.6 to provide 3.8, followed by chelation of 

Gd(III) to obtain the target compound 3.2. 
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Scheme 3.1. Synthesis of Gd(III)-functionalized dendron 3.1. 

 

 

Scheme 3.2. Synthesis of Gd(III) complex 3.2. 

Prior to Gd(III) insertion, compounds 3.7 and 3.8 were characterized by 
1
H and 

13
C 

NMR spectroscopy. In addition, IR spectroscopy was informative for this class of 
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compounds. For example, upon conversion of dendron 3.5 to 3.7, the absence of the 

characteristic C=S stretch of the isothiocyanate functional group that was present in 

compound 3.6 confirmed the successful removal of excess 3.6 (Figure A3.1). After 

insertion of Gd(III), NMR spectroscopic analysis was no longer possible due to the 

paramagnetic nature of the Gd(III) ion. However, inductively coupled plasma mass 

spectrometry (ICP-MS) was performed, confirming the successful insertion of Gd(III) 

into dendron 3.1 and compound 3.2. In addition, IR spectroscopy demonstrated that the 

peaks corresponding to the C=O stretches of the ligand shifted to significantly lower 

frequencies in compounds 3.1 and 3.2 relative to 3.7 and 3.8 respectively (Figure A3.1 

and Figure A3.2). This is also an indication of successful coordination of the carboxylate 

groups to Gd(III).
23

 

3.2.2 Functionalization of Polymersome Surfaces with Dendritic and 
Non-Dendritic Contrast Agents 

The next step was to conjugate 3.1 and 3.2 to the polymersome surfaces. This was 

accomplished by a Cu(I)-mediated 3+2 “click” cycloaddition to provide the dendritic 

Gd(III)-functionalized polymersomes 3.3, and non-dendritic Gd(III)-functionalized 

polymersomes, 3.4, respectively. Unreacted 3.1 and 3.2 were removed by dialysis. ICP-

MS measurements were performed on the products and the results indicated that 38% of 

the azide groups were functionalized in polymersomes 3.3 and 26% in polymersomes 3.4. 

The sizes and morphologies of the resulting polymersomes were evaluated by DLS and 

TEM. As shown in Figure 3.2, small increases in the z-average diameters to 158 and 156 

nm were found for vesicles 3.3 and 3.4 respectively. It should be mentioned that the 

shoulder observed at higher molecular weight region in  polymersomes 3.3 (Figure 3.2c) 

suggests the existence of a small degree of aggregation upon conjugation of the bulky 

dendron 3.1 to the polymersome surfaces. Moreover, TEM showed that the vesicular 

morphology was preserved and the contrast was enhanced upon incorporation of the 

Gd(III) in both dendritic and non-dendritic polymersomes (Figure 3.3). 
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Figure 3.2. Size distribution profiles for: a) naked polymersome; non-dendritic 

polymersome 3.4; c) dendritic polymersome 3.3. 

 

 

Figure 3.3. TEM images of (a) naked polymersome; (b) dendritic Gd(III)-functionalized 

polymersomes 3.3; (c) non-dendritic Gd(III)-functionalized polymersomes 3.4. 

3.2.3 Evaluation of the Relaxivity Properties of the Contrast Agents  

The properties of the three newly developed contrast agents (3.1, 3.3, and 3.4) were 

assessed in phosphate buffer (0.1 M, pH 7.4) at 298K (Figure 3.4) and 310 K (Figure 

A3.3) between 0.01 and 42 MHz using a field cycling relaxometer. On a per Gd(III) 

basis, dendron 3.1 and polymersomes 3.3 and 3.4 exhibited r1 values of 12.1 ± 0.3, 26.1 ± 

1.2, and 10.6 ± 0.4 mM
-1

s
-1

, respectively (20 MHz, 298 K). In comparison with the 

clinical agent Magnevist
®
 (Gd(III)-DTPA) which has a reported relaxivity of 4.6 mM

-1
s

-1 

under the same conditions
24

, this corresponds to 2.6-, 5.7-, and 2.3-fold increases in r1 for 

dendron 3.1, and polymersome 3.3 and 3.4 respectively. All of the systems exhibit an r1 

versus frequency curve shape that is characteristic of restricted tumbling motion of the 

Gd(III) complex.
1
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Figure 3.4. Longitudinal relaxivity (r1) of dendron 3.1, polymersome 3.3, and 

polymersome 3.4 in phosphate buffer (0.1 M, pH 7.4) as a function of field strength at 

298 K. 

While polyester dendrons such as 3.1 have not previously been investigated as MRI 

contrast agents, the r1 value of 12.1 mM
-1

s
-1

 is within the range expected for a third 

generation dendrimer.
3,4

 As with other dendrimers, this enhancement can likely be 

attributed to the crowded nature of the dendron periphery, which inhibits the free rotation 

of the Gd(III) complexes. The enhanced r1 value of 10.6 mM
-1

s
-1 

obtained for the non-

dendritic polymersomes 3.4 is also likely a result of the hindered motion of the Gd(III) 

complexes at the vesicle surface, as well as the slow tumbling rate of the entire vesicle 

system. This r1 value is lower than the value of 22 mM
-1

s
-1

 at (20 MHz, 25 ˚C) obtained 

by Grüll et al. with lipid functionalized Gd(III) chelates incorporated into polymersomes. 

This is probably because their chelates were attached directly to the lipids, rather than 

through a long linker. The PEO chains in the current work introduce flexibility, which 

can decrease the rotational correlation time. PEO surrounding the chelate may also slow 

water exchange.  However, r1 is higher than for the system reported by Cheng et al. 

which contained Gd(III) complexes within the polymersomes.
12,13

 This can be attributed 

to our selective attachment of the chelates to the periphery, where they are easily 

accessible to bulk water. 
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When both the dendritic component and the polymersome component are combined in 

polymersome 3.3, the resulting r1 of 26.1 mM
-1

s
-1

 is the highest reported relaxivity for a 

polymersome system. This additive effect can result from the availability of chelates at 

the vesicle surface for water exchange, hindered motion of the Gd(III) complexes 

imparted by the dendron at a local level, as well as the large size and slow tumbling rate 

of the polymersome at the nanoscale level. Thus, this work elegantly demonstrates that 

different components can be combined through rational design to obtain additive effects 

on the relaxivity. An additional feature of the current system relative to those previously 

reported is the biodegradability imparted by the PCL block of the copolymer and the 

polyester dendron which is known to break down over a period of several days in 

physiological conditions.
25

 This should enable the release of low MW Gd(III) complexes 

and polymer products from the body, an important consideration for MRI contrast agents. 

3.3 Conclusion 

In conclusion, through the synthesis of dendritic and non-dendritic Gd(III) chelates and 

their conjugation to polymersome surfaces, three new MRI contrast agents were 

developed. Using these systems, the effects of the dendritic and polymersome 

components on the relaxivities of the agents were elucidated. They were found to have an 

additive effect, resulting in the highest currently reported r1 for a polymersome system. In 

addition, this system possesses the advantage of being composed of PEO and 

biodegradable polyester components. Future work will be aimed at exploring the 

biodegradability and in vivo properties of the system as well as exploiting the 

multifunctional capabilities of polymersomes. 

3.4 Experimental 

General Procedures and Materials  

Compound 3.6 was purchased from Macrocyclics (Dallas, USA). All the other chemicals 

were purchased from Sigma-Aldrich and were used without further purification unless 

otherwise noted. Anhydrous DMF was obtained from a solvent purification system using 

aluminum oxide columns. NEt3 was distilled from CaH2. Ultrapure water was obtained 
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from a Barnstead EASYpure II system. Unless otherwise stated, all reactions were 

performed under a nitrogen atmosphere using flame or oven dried glassware. Dialyses 

were performed using Spectra/Por regenerated cellulose membranes with either a 1000, 

3500, or 50000 g/mol MWCO. 
1
H NMR spectra were obtained at 400 MHz, and 

13
C 

NMR spectra were obtained at 100 MHz. NMR chemical shifts are reported in ppm and 

are calibrated against the residual solvent signal of CD3OD (δ 3.31 and 50.41 ppm), or 

(CD3)2SO (δ 2.50 and 40.45 ppm). J values are expressed in Hz. IR spectra were obtained 

as NaCl pellets using a Bruker Tensor 27 instrument. HRMS was performed using a 

Finnigan MAT 8400 electron impact mass spectrometer. DLS data were obtained using a 

Zetasizer NanoZS instrument from Malvern Instruments. ICP-MS analysis was 

performed at the Environmental Analytical Laboratories of the Saskatchewan Research 

Council. Relaxation rate measurements were performed on a Stelar Spinmaster FFC2000 

1T C/DC relaxometer at 298 and 310 K using 100 mM pH 7.4 phosphate buffer as 

solvent. Error measurements on the relaxivity are based on the combined uncertainties of 

the relaxometer measurements and the Gd(III) concentrations in the solutions. 

Synthesis of Dendron 3.7: Dendron 3.5
17

 (49 mg, 22 µmol, 1.0 equiv.) and DTPA 

derivative 3.6 (0.11 g, 0.18 mmol, 8.0 equiv.) were dissolved in anhydrous DMF (2 mL) 

with sonication. Anhydrous NEt3 (0.4 mL) was then added and the reaction mixture was 

stirred at room temperature overnight. An additional portion of 3.6 (0.11 g, 0.18 mmol, 

8.0 equiv.) was added the next morning and the mixture was stirred for another 12 h at 

room temperature. Distilled water (1 mL) was then added to dissolve the resulting solid 

and the solution was dialyzed against distilled water (2 L) using a 3500 g/mol MWCO 

membrane for 24 h. The sample was lyophilized to provide dendron 3.7 as a light yellow 

fluffy solid (0.12 g, 73%). 
1
H NMR (CD3OD): δ 7.54-7.35 (m, 16H), 7.32-7.19 (m, 16H), 

4.79 (br s, 2H), 4.40-4.16 (m, 28H), 3.89-3.40 (m, 112H), 3.24-2.94 (m, 296H), 2.80-2.68 

(m, 16H), 1.27 (t, 384H, J = 8). 
13

C NMR (CD3OD): δ 180.7, 174.6, 171.7, 169.9, 169.4, 

158.4, 138.2, 129.3, 124.1, 123.6, 62.3, 57.2, 55.6, 54.3, 53.9, 53.8, 52.5, 45.8, 39.6, 38.6, 

38.4, 37.8, 33.4, 32.0, 25.4, 24.7, 17.1, 17.0, 7.9. IR (cm
-1

): 3444, 2976, 2939, 2678, 

2495, 1740, 1628. 
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Synthesis of Dendron 3.1: Dendron 3.7 (30 mg, 3.9 µmol, 1.0 equiv.) was dissolved in 

ultrapure water (4 mL). Using 0.1 M NaOH (in ultrapure water), the pH of the dendron 

solution was carefully adjusted to 7.4. GdCl3·6H2O (46 mg, 0.12mmol, 32 equiv.) was 

then added as a solution in ultrapure water. The pH of the solution was again adjusted to 

7.4 using the 0.1M NaOH. The resulting solution was stirred at room temperature for 20 

h. After this period of time, the mixture was transferred to a 1000 g/mol MWCO 

membrane and dialyzed against ultrapure water for 24 h. The sample was centrifuged at 

5000 rpm for 30 min to remove any insoluble species. Finally, the sample was 

lyophilized to give the target Dendron 3.1 as a fluffy white solid (19 mg, 65%). IR (cm
-1

): 

3421, 2924, 1735, 1602.
1
H and 

13
C NMR of this compound could not be obtained 

because of paramagnetic Gd(III) ions. ICP-MS: mass of dendron analyzed: 2.4 mg; mass 

of Gd(III) expected: 0.43 mg; mass of Gd(III) found: 0.42 ± 0.01 mg. This suggests that 

all eight positions at the periphery of dendron 3.1 were functionalized with the DTPA 

derivative and these  successfully chelated Gd(III). 

Synthesis of compound 3.8: Compound 3.6 (21 mg, 33 µmol, 1.0 equiv.) and 

propargylamine hydrochloride (2.7 mg, 30 µmol, 0.90 equiv.) were dissolved in 

anhydrous DMF (0.5 mL) and anhydrous NEt3 (0.4 mL). The mixture was stirred at room 

temperature overnight. The solvents were removed under reduced pressure and the 

obtained target molecule 3.8 was used without further purification (quantitative yield). 
1
H 

NMR (DMSO-d6): δ 7.45 (d, 2H, J = 8), 7.10 (d, 2H, J = 8), 5.21 (d, 2H, J = 16), 4.74 (s, 

1H), 3.63 (br s, 2H), 3.52-3.18 (m, 12H), 3.12-2.91 (m, 5H), 2.88-2.75 (m, 5H), 2.47-2.40 

(m, 1H), 1.18 (br s, 9H). 
13

C NMR (DMSO-d6): δ 189.6, 162.7, 153.2, 132.2, 129.7, 

118.6, 78.0, 77.6, 74.4, 45.6, 37.0, 31.2, 31.2, 28.5, 8.8. IR (cm
-1

): 3422, 2978, 2676, 

2495, 2125, 1637. HRMS: calcd [M]
+
 (C25H33N5O10SNa): 618.1846 Found: (EI) 

618.1830. 

Synthesis of compound 3.2: Compound 3.8 (23 mg, 21 µmol, 1.0 equiv.) was dissolved 

in ultrapure water (3 mL). Using 0.1 M NaOH (in ultrapure water) the pH of the solution 

was carefully adjusted to 7.4. GdCl3·6H2O (12 mg, 31 µmol, 1.5 equiv.) was then added 

as a solution in ultrapure water. The pH of the solution was again adjusted to 7.4 using 

0.1 M NaOH. The resulting solution was stirred at room temperature for 20 h. The 
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sample was centrifuged at 5000 rpm for 30 min to remove any insoluble species. Finally, 

the sample was lyophilized to give the target molecule 5 as a white solid (12 mg, 70%). 

IR (cm
-1

): 3412, 2924, 1603. 
1
H and 

13
C NMR of this compound could not be obtained 

because of paramagnetic Gd (III) ions. ICP-MS: mass of sample analyzed: 0.51 mg; mass 

of Gd(III) expected: 0.10 mg; mass of Gd(III) found: 0.16 ± 0.01 mg. The higher amount 

of Gd(III) found for this sample was expected as no purification was performed on 

compound 3.2. However, this is not problematic as the relaxivity of this molecule will not 

be evaluated and the excess Gd(III) will subsequently be removed during dialysis of 

polymersomes 3.4. 

Preparation of dendritic Gd(III)-functionalized polymersomes 3.3: PCL-PEO 

polymersomes (2 mg/mL, 5 mL) containing an 80:20 ratio of methoxy-terminated PCL-

PEO (2.5): azide-terminated PCL-PEO-N3 (2.6) were prepared in ultrapure water as 

previously reported.
18

 To the vesicle suspension was then added 3.1 (5.1 mg, 0.70 µmol, 

4.0 equiv. relative to azide polymer) dissolved in minimal ultrapure water. Separately, 

CuCl2·2H2O (0.34 mg, 2.0 µmol, 2.3 equiv. relative to total polymer) and 

bathophenanthrolinedisulfonic acid (2.4 mg, 4.0 µmol, 4.6 equiv. relative to total 

polymer) were combined in ultrapure water (0.2 mL) for 15 min and then the resulting 

complex was added to the vesicle suspension followed by addition of sodium ascorbate 

(4.0 mg, 20 µmol, 23 equiv. relative to total polymer). The resulting mixture was stirred 

at room temperature for 18 h and then dialyzed against phosphate buffer (0.10 M, pH 7.4) 

for 24 h using a 50000 g/mol MWCO dialysis membrane. ICP-MS of the sample 

prepared for relaxivity measurement: mass of Gd(III) expected for 100% 

functionalization of 2.6: 220 µg; mass of Gd(III) found: 83 ± 4 µg, which corresponds to 

38% functionalization of polymer 2.6 in the polymersomes with dendron 3.1. To exclude 

the possibility of presence of any free Gd, Xylenol orange test
26

 was performed and it 

was found that less than 0.01% of the Gd(III) present was unchelated. Moreover, ICP-MS 

results showed that > 94% of the copper used for reaction was successfully removed by 

dialysis. 

Preparation of non-dendritic Gd(III)-functionalized polymersomes 3.4: PCL-PEO 

polymersomes (2 mg/mL, 5 mL) containing a 50:50 ratio of methoxy-terminated PCL-
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PEO (2.5): azide-terminated PCL-PEO-N3 (2.6) were prepared in ultrapure water as 

previously reported.
18

 To the vesicle suspension was then added 3.2 (1.4 mg, 1.7 µmol, 

4.0 equiv. relative to azide polymer) dissolved in minimal ultrapure water. Separately, 

CuCl2·2H2O (0.34 mg, 2.0 µmol, 2.3 equiv. relative to total polymer) and 

bathophenanthrolinedisulfonic acid (2.4 mg, 4.0 µmol, 4.6 equiv. relative to total 

polymer) were combined in ultrapure water (0.2 mL) for 15 min and then the resulting 

complex was added to the vesicle suspension followed by the addition of sodium 

ascorbate (4.0 mg, 20 µmol, 23 equiv. relative to total polymer). The resulting mixture 

was stirred at room temperature for 18 h and then dialyzed against phosphate buffer (0.10 

M, pH 7.4) for 24 h using a 50000 g/mol MWCO dialysis membrane. ICP-MS of the 

sample prepared for relaxivity measurement: mass of Gd(III) expected for 100% 

functionalization of 2.6: 68 µg; mass of Gd(III) found: 18 ± 1 µg, which corresponds to 

26% functionalization of polymer 2.6 in the polymersomes with compound 3.2. Xylenol 

orange test showed that only 0.06% of the of the Gd(III) present was unchelated. In 

addition, ICP-MS results confirmed successful removal of more than 97% of the copper 

used for the reaction by dialysis. 

*Note: The reason why a different composition of 2.5:2.6 was used for polymersome 

formation here than for polymersomes 3.3 is to account for the higher loading of Gd that 

was introduced by each dendron 3.1, because each dendron can potentially introduce 

eight Gd ions while each of molecule 3.2 can only introduce one Gd ion. 

Transmission electron microscopy: A small portion of the vesicle suspension was 

dialyzed against distilled water to remove any salts from the phosphate buffer. The 

suspension (20 µL, 0.1 mg/mL) was then placed on a Carbon/Formvar
® 

grid and was left 

to stand for 5 min. The excess solution was then blotted off using a piece of filter paper. 

The resulting sample was dried in air overnight before imaging. Imaging was performed 

using a Phillips CM10 microscope operating at 80 kV with a 40 µm aperture. 
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Chapter 4  

4 Multifunctional Dendritic Sialopolymersomes as Potential 
Antiviral Agents: Their Lectin Binding and Drug Release 
Properties

*
 

 

4.1 Introduction 

Amphiphilic BCPs have been demonstrated to undergo self-assembly in solution to form 

a wide range of structures including spherical micelles,
1
 helical rods,

2
 toroids,

3
 vesicles,

1,4
 

tubes,
5
 and multicompartment cylinders.

6
 In recent years, polymer vesicles, commonly 

referred to as polymersomes, have garnered significant attention.
7-9

 They are attractive 

materials because they can be readily accessed using a wide range of BCPs, and relative 

to their counterparts formed from low MW surfactants, polymersomes typically exhibit 

much lower critical aggregation concentrations and enhanced thermodynamic and kinetic 

stabilities.
6,10

 In addition, they are potentially multifunctional, possessing an aqueous core 

capable of encapsulating water-soluble molecules, a hydrophobic membrane that can 

encapsulate hydrophobic species, and a surface to which specific targeting ligands or 

other moieties can be conjugated. Based on these properties, there has been particular 

interest in biomedical applications of polymersomes and they have been employed as 

carriers for proteins,
11,12

 hydrophilic drugs,
13,14

 and imaging contrast agents.
15

  

Influenza viruses are highly contagious viruses known to cause widespread seasonal 

epidemics as well as potentially catastrophic pandemics. The two glycoproteins 

hemagglutinin (HA) and neuraminidase (NA) on the virus are responsible for the 

initiation and sustenance of the infection process. N-Acetylneuraminic acid (Neu5Ac) is 

the most abundant sialic acid found in mammalian cells. It is known that all types of 

influenza viruses interact with Neu5Ac residues on the host cell surface through their 

HA, and this is followed by endocytosis of the virus into the cell.
16-18

 Release of the 

                                            
*
 This chapter contains work that has been published: Nazemi, A.; Haeryfar, S. M. M.; Gillies, E. R.  
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progeny virus from the infected cell is then triggered by NA-catalyzed cleavage of the 

terminal Neu5Ac.
16

 Most of the effort in developing anti-influenza drugs has been 

devoted to the design of drugs that can cease the release of progeny virus after cell 

infection. Drugs in this category include the proton channel M2 targeting drugs such as 

amantadine and rimantadine,
19

 and NA inhibitors such as zanamivir and oseltamivir.
20

 

However, it has been proposed that various influenza strains are prone to the 

development of resistance to these drugs.
19

 An alternative approach involves the 

inhibition of the initial adhesion of the virus HA glycoprotein to Neu5Ac moieties on 

target cells and thus prevention of the initial cell infection. Monomeric Neu5Ac can 

inhibit this interaction, but only at millimolar concentrations.
19

 In order to achieve 

inhibition at lower concentrations, Neu5Ac has been conjugated to various scaffolds to 

obtain multivalent displays. In this context, polymers,
17,18,21-24

 dendrimers,
25-30

 

liposomes,
31-33

 gold nanoparticles,
34,35

 nanogels,
36

 and polymer nanoparticles
37

 

functionalized with Neu5Ac have been proposed as potential inhibitors of influenza virus 

infection.  

Because of their high multivalency, multifunctional capabilities, tunable size, and 

morphological resemblance to mammalian cells, polymersomes are attractive scaffolds 

for the study of carbohydrate-protein interactions
38-44

 and for the potential development 

of therapeutics and vaccines.
38-45

 However, to the best of our knowledge there are 

currently no examples of carbohydrate-functionalized polymersomes capable of 

interacting with viral proteins. Our group has recently developed approaches for the 

introduction of dendritic groups to the surfaces of polymersomes.
46,47

 Owing to the high 

multivalency of dendrons, this approach provides a means of tuning the polymersome’s 

surface chemistry using a single synthetic step.
48

 Furthermore, using mannose as a model 

biological ligand, it was demonstrated that binding to the target protein Con A was 

significantly enhanced using the dendritic approach in comparison with the conjugation 

of small molecule mannose derivatives directly to the polymersome surface.
42

 This was 

attributed to the increased availability of the dendritic mannose in comparison to the 

small molecule mannose derivatives on the polymersome surface, as well as a cluster 

effect resulting from the dendritic ligand display. This suggested the promise of dendritic 
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polymersomes for the development of new therapeutic inhibitors based on multivalent 

carbohydrate displays.   

Here we exploit the multivalent and multifunctional capabilities of polymersomes in a 

dendritic sialopolymersome system designed to interact with the influenza virus at two 

different stages in the infection process. First, the preparation of biodegradable PEO-PCL 

polymersomes functionalized with dendritic Neu5Ac is described, and their binding 

affinities to the sialic acid-binding lectin Limax flavus agglutinin (LFA) were compared 

with those of a small-molecule Neu5Ac derivative as well as dendritic Neu5Ac in an 

enzyme-linked lectin inhibition assay (ELLA). Second, it is demonstrated that in addition 

to the Neu5Ac at the polymersome surface, which is designed to interact with HA, 

preventing uptake of the virus into the host cells, it is also possible to encapsulate the 

drug zanamivir, an NA inhibitor, into the aqueous core of the polymersomes. Release of 

this drug in the vicinity of infected cells, should further hinder the spread of viral 

infection through a synergistic effect. The release rates of the drug from both naked and 

dendritic sialopolymersomes are studied and compared. 

4.2 Results and Discussion 

4.2.1 Sialodendron Synthesis 

To obtain the desired Neu5Ac-functionalized dendron for conjugation to the 

polymersome surface, a polyester dendron (3.5) based on bis-MPA (Scheme 4.1) was 

selected due to its demonstrated biocompatibility and ease of synthesis.
46,49

 It was 

envisioned that as previously reported, the focal point alkyne moiety would enable 

conjugation to azide functionalized vesicles via Cu(I)-catalyzed azide + alkyne “click” 

cycloaddition chemistry, 
46,47

 while peripheral amine groups would provide sites for the 

conjugation to an Neu5Ac derivative. This dendron was prepared as previously 

reported.
46

 An isothiocyanate derivative of Neu5Ac was selected because an unprotected 

Neu5Ac isothiocyanate can be prepared and selectively reacted with the dendritic amines 

to provide a stable thiourea linkage, without the need for deprotection of the carbohydrate 

once on the polyester dendron backbone. To prepare the target Neu5Ac derivative, the 

amine-functionalized Neu5Ac 4.1 was first synthesized in five steps starting form 
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commercially available Neu5Ac according to previously published procedures.
29,50

 Next, 

upon reacting 4.1 with thiophosgene, the isothiocyanate group was successfully installed 

to obtain the target molecule 4.2 in quantitative yield (Scheme 4.1). Dendron 3.5 was 

then reacted with Neu5Ac derivative 4.2 in the presence of NEt3 to obtain the target 

Neu5Ac-functionalized dendron 4.3 in good yield. 

 

Scheme 4.1. Synthesis of sialodendron 4.3.  

To quantify the functionalization of the polymersomes with the Neu5Ac-

functionalized dendron, it was necessary to tag the sialodendron with a chromophore for 

quantification using UV-visible absorption spectroscopy. This approach has proven to be 

reliable for the quantification of polymersome surface functionalization with dendritic 

groups.
46-48,51

 For this purpose, the third generation dendron 1.33
46

 bearing peripheral 

amine functional groups and statistically one rhodamine dye per molecule was reacted 

with Neu5Ac derivative 4.2 under the same reaction conditions used for the synthesis of 

4.3, to obtain the rhodamine-labeled sialodendron 4.4 (Scheme 4.2). ε for 4.4 was then 

measured in MeOH/DMF (10/1) to be 43980 Lmol
-1

cm
-1

 at 563 nm. 
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Scheme 4.2. Synthesis of rhodamine-labeled sialodendron 4.4. 

4.2.2 Functionalization of Polymersomes with Sialodendrons 

To functionalize PEO-PCL polymersomes with sialodendrons, polymersomes with 

varying densities of surface azides were first prepared from mixtures of methoxy- (2.5) 

and azide-terminated (2.6) PEO-PCL BCPs as previously reported.
47

 With the aim of 

quantifying the conjugation yields at different azide densities, azide + alkyne “click” 

reactions were then performed using CuCl2, sodium ascorbate, and four equivalents of 

dendron 6 relative to the azide (Scheme 4.3). The reaction mixtures were stirred at room 

temperature in the dark overnight and then the unreacted dendrons and other reagents 

were removed by dialysis. After water was removed by lyophilization, the product of 

each reaction was dissolved in DMF/MeOH (10/1), and the UV–visible absorbance was 

measured. Using the ε measured for dendron 4.4, the yield of the conjugation reaction on 

polymersome surface was calculated. 
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Scheme 4.3. Preparation of dendritic sialopolymersomes. 

The conjugation yields for the reaction of polymersomes with the rhodamine-labeled 

sialodendron 4.4 are shown in Figure 4.1. Consistent with our previous studies, the yields 

were higher than 50% at lower loadings of azide-terminated copolymer.
42,46,47

 It should 

be noted that approximately 50% of the azides should be located in the interior of the 

vesicles, and thus inaccessible to the dendron, which is unlikely to diffuse through the 

vesicle membrane. As a result, this observation may be attributed to the dynamic nature 

of the vesicles, allowing azides from the vesicle interior to migrate to the vesicle surface 

during the reaction time and then subsequently react. To ensure that the high reaction 

yields were not the result of noncovalently immobilized dendron remaining after dialysis, 

a control experiment was also performed on polymersomes composed entirely of 

methoxy-terminated copolymer 2.5 but with the same excess of dendron and other 

reaction and purification conditions used for vesicles containing 20 wt% copolymer 2.6. 

In this case, the apparent ‘‘yield’’ was less than ~5%, indicating that no significant 

amount of noncovalently immobilized dendron remained after dialysis. The reproducibity 

of the conjugation was assessed by performing the conjugation experiment in triplicate on 

polymersomes composed of 20 wt% copolymer 2.6 and it was found that the standard 

deviation was less than 6%. 
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Figure 4.1. Yields for the azide + alkyne “click” conjugation reaction between dendron 

4.4 and PEO-PCL polymersomes having varying percentages of azide-terminated 

copolymer 2.6 (remaining percentage is methoxy-terminated PEO-PCL 2.5). Note that 

the error bar on the 20 wt% copolymer 2.6 measurement represents the standard deviation 

of triplicate experiments designed to assess the reproducibility of the conjugation. 

These polymersomes were also characterized by DLS. The initial PEO-PCL 

polymersomes had a z-average diameter of 140 nm and a low PDI of 0.11. After 

conjugation with dendron 4.4, no significant changes were observed at lower percentages 

of azide-functionalized copolymer 2.6. Beyond 40 wt% copolymer 2.6, some aggregation 

was observed (Figure A4.2). This can be explained by taking into account that the linear-

dendritic architecture of the resulting triBCPs as well as the newly imparted hydrophilic-

hydrophobic balance might be unfavourable for polymersome formation at high degrees 

of dendritic functionalization. 

4.2.3 Evaluation of Inhibitory Potencies Using an Enzyme-Linked 
Lectin Inhibition Assay  

On the basis of the quantification of sialodendron conjugation to the polymersomes, as 

well as the aggregation observed at the highest degrees of dendritic functionalization, two 

dendritic sialopolymersome samples based on 20 wt% and 40 wt% azide-functionalized 

copolymer 2.6 were prepared in order to evaluate their lectin binding potencies using an 
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ELLA. These polymersomes were prepared as described above but using fully sialylated 

dendron 4.3 rather than dendron 4.4. As shown in Figure 4.2a, for the volume 

distribution, DLS showed no change in the size of polymersomes after reaction with 

dendron 4.3. The intensity distribution was very similar, with no aggregation detected 

(Figure A4.3). Although a modest increase in polymersome hydrodynamic diameter 

might be expected upon dendron conjugation, this has generally not been observed in our 

previous work.
47,60 

 It is possible that the hydrophobic backbone may be able to integrate 

itself to some extent into the polymersome membrane, mainly leaving the hydrophilic 

surface groups exposed to the aqueous solution, and also that the modest size change may 

be difficult to reliably detect by DLS.  TEM was also used to confirm that the 

polymersomes retained their integrity after their reaction with dendron 4.3 and their 

diameters were in agreement with those measured by DLS. This result, as well as the 

TEM image of the naked polymersomes, are shown in parts b and c, respectively, of 

Figure 4.2. 

 

Figure 4.2. a) Size distribution profiles for naked polymersomes and polymersomes 

composed of different percentages of azide-functionalized copolymer 2.6 following 

“click” conjugation of dendron 4.3; b) TEM image of polymersomes prepared from 40 

wt% copolymer 2.6 following conjugation of dendron 4.3; c) TEM image of naked 

polymersomes prepared from 100 wt% copolymer 2.5. Scale bars are 500 nm. 

With the dendritic sialopolymersomes in hand, their protein binding properties were 

then evaluated using an ELLA. In this assay, the polymersomes were compared to 

dendron 4.3 and to a monovalent Neu5Ac derivative phenyl 2-thio-α-sialoside (4.5)
50

. 

LFA has been shown to be a specific lectin for Neu5Ac and N-glycolylneuraminic acid 
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with a much greater binding affinity towards Neu5Ac. This has made it a good candidate 

to study Neu5Ac-protein binding.
52

 The ELLA was performed as reported by Roy and 

coworkers,
28,29

 where the inhibition of the binding of horseradish peroxidase-labeled LFA 

(HRP-LFA) to human α1-acid glycoprotein (coating antigen) was studied.  

The results of the ELLA are shown in Figure 4.3. In general, the inhibition did not 

reach 100%, which has commonly been observed in such assays with Neu5Ac
28

 and other 

sugars.
53,54

 For the monovalent Neu5Ac derivative 4.5, the concentration required for 

50% inhibition of LFA binding to the coating antigen (IC50) was 4.0 ± 1.0 mM. In 

contrast, dendron 4.3 having 8 Neu5Ac moieties exhibited an IC50 value of 30 ± 5 µM 

(240 µM per sialoside moiety), which means that it was approximately 17 times more 

potent than the monovalent sialoside 4.5 on a per sialoside basis. This result is 

comparable with the results obtained previously by Roy and coworkers for dendritic 

sialosides.
28

 When this dendron was conjugated to the polymersome surface, the resulting 

materials exhibited a much stronger potency towards the inhibition of LFA binding to 

human α1-acid glycoprotein. For instance, when dendritic sialopolymersomes prepared 

from 20 wt% and 40 wt% azide-terminated copolymer 2.6 were tested, IC50 values of 

0.24 ± 0.10 µM and 0.28 ± 0.12 µM were obtained respectively on a per dendron basis 

(1.92 µM and 2.24 µM per sialoside respectively). This means that the 

sialopolymersomes exhibit a greater than 100-fold increase in LFA binding inhibition 

potency compared to dendron 4.3 and almost 2000-fold enhanced potency relative to 

monovalent compound 4.5 on per sialoside basis. This can perhaps be attributed to the 

increased ability of the larger polymersome systems to span the two Neu5Ac binding 

sites on LFA in comparison with the relatively small and compact dendrons on their own. 

The two different polymersome systems exhibit very similar IC50 values on a per dendron 

(or per sialoside) basis relative to one another, indicating that in this range of dendron 

densities there is no further increase in multivalent effect to be gained from increased 

Neu5Ac density at the polymersome surface, though the sialopolymersomes prepared 

from 40 wt% copolymer 2.6 would exhibit higher potency on a per polymersome basis. 

Such plateauing of multivalent effects is commonly observed with dendrimeric and 

polymeric sialosides and has been attributed to factors such as lack of involvement of 

some of the glycoside residues in binding due to conformation constraints.
28,55-60
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Figure 4.3. Inhibition of binding of LFA to human α1-acid glycoprotein by a) 

monovalent Neu5Ac derivative 4.5; b) sialodendron 4.3; c) dendritic sialopolymersomes 

prepared from the conjugation of sialodendron 4.3 to polymersomes prepared from 20 

wt% and 40 wt% azide-functionalized copolymer 2.6. Note that in b) and c) the inhibitor 

concentration corresponds to the dendron concentration. 

4.2.4 Encapsulation and Release of Zanamivir by Naked 
Polymersomes and Dendritic Sialopolymersomes 

While the binding properties of the sialopolymersomes to LFA were promising on their 

own, a key advantage of polymersomes over other macromolecular systems that have 

previously been used to display multivalent Neu5Ac, is their potential to simultaneously 

perform multiple functions by also exploiting their hydrophobic membrane domains 

and/or their aqueous core to encapsulate other bioactive molecules. To demonstrate this, 

the water-soluble antiviral drug zanamivir was selected for encapsulation into the 

polymersome’s aqueous core. Zanamivir is a dehydrated neuraminic acid derivative in 

which a guanidinyl group has been substituted for the hydroxyl group on carbon 4. The 

presence of the alkene group in the molecular framework mimics the geometry of the 

transition state in the enzymatic reaction and the guanidinyl functional group enhances its 

interaction with enzyme’s active site.
20

 Zanamivir is a highly specific inhibitor for 

influenza NA and causes viral replication to cease. Currently there is one prior report 

involving the preparation of polymers with both Neu5Ac and zanamivir covalently 

conjugated and these were found to be potent inhibitors of wild-type influenza virus, 

suggesting the promise of the approach.
61

 The encapsulation of zanamivir into the 
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polymersome core should lead to sustained release of drug, which may prolong and 

enhance its therapeutic efficacy, while the binding of the sialopolymersomes to the virus 

may target the release to occur in the vicinity of the virus.  

To prepare the multifunctional system, dendritic sialopolymersomes prepared from the 

conjugation of dendron 4.3 to polymersomes composed of 20 wt% azide-terminated 

copolymer 2.6 were selected. To encapsulate the drug, a solution of zanamivir in distilled 

water was added to a THF solution of copolymers 2.5 and 2.6. After removal of THF 

through evaporation, sialodendron 4.3 was conjugated to the vesicle surface by the Cu(I)-

catalyzed cycloaddition reaction. Finally, nonencapsulated drug, unreacted 4.3, and click 

reaction reagents were removed by rapid dialysis against pH 7.4 phosphate buffer using 

Slide-A-Lyser dialysis cassette at room temperature for 3.5 h. That 3.5 h was sufficient 

for removal of unencapsulated drug was determined in a separate control experiment 

where the free drug was dialyzed in the absence of polymersomes under the same 

conditions. After 3.5 h, the sample was transferred to fresh phosphate buffer at 37 °C. 

The release of the drug was then evaluated by measuring the UV-visible absorption of the 

dialysate at 234 nm, until no further changes in absorbance were observed. To verify that 

complete release had been achieved, the polymersomes were disrupted by the addition of 

THF. After the THF was removed under reduced pressure, the aqueous solutions were 

returned to the dialysis cassette and dialyzed for an additional 24 h. No absorption peak 

was detected in the dialysate, confirming that all drug had been previously released. The 

release of zanamivir from naked polymersomes was also evaluated to investigate the 

effect of the dendritic groups on the encapsulation and release properties of the polymers. 

These polymersomes were prepared in the same manner described above for the dendritic 

sialopolymersomes except that no dendron conjugation was performed. The release 

experiment was performed following the same protocol. 

As shown in Figure 4.4a, approximately 50% of the zanamivir was released from the 

naked polymersomes over the first day, and complete release was observed after about 6 

days. The dendritic sialopolymersomes also released about 50% of the drug over the first 

day, and complete release required approximately 4 days (Figure 4.4b). This suggests that 

the release rates were quite similar for the naked and dendritic polymersomes, though the 
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data suggests that there was a small increase in the release rate of drug imparted by the 

dendritic functionalization, perhaps due to the effect of the large dendritic groups on 

polymersome stability. Examination of the DLS and TEM data for polymersomes after 

the release was complete suggested that the polymersomes were still intact and that drug 

release likely occurred through diffusion across the polymersome membrane (Figure 

A4.5). Overall, the polymersome systems exhibit a sustained release of zanamivir, which 

could be beneficial for its therapeutic effect. 

 

Figure 4.4. Release profiles of zanamivir from a) naked PEO-PCL polymersomes and b) 

dendritic sialopolymersomes. All experiments were performed in triplicate. 

Using the drug release data as well as the measured extinction coefficient for 

zanamivir in phosphate buffer (ε = 6540 Lmol
-1

cm
-1

) the amount of encapsulated drug in 

each polymersome system was determined, allowing the loading efficiency (mass of drug 

in loaded polymersomes relative to mass of initial drug used for sample preparation) and 

drug content (mass of drug in loaded polymersomes relative to mass of polymer) to be 

calculated. The naked polymersomes were found to have a loading efficiency of 8% ± 

1% and a drug content of 31% ± 5% and the dendritic sialopolymersomes had a loading 

efficiency of 8.8% ± 0.2% and a drug content of 35% ± 1%. The relatively low loading 

efficiencies are intrinsic to the loading method as the drug is expected to partition equally 

between the polymersome cores and external solution, and the external solution 

constitutes a much greater volume than the polymersome cores. However, the drug 

content in these systems is high, which is a desirable property for their application. 
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4.3 Conclusion 

In summary, we have developed for the first time, a multifunctional polymersome system 

with the potential to interfere with the viral infection process at two levels. First dendritic 

Neu5Ac incorporated onto the polymersome surface was designed to inhibit the binding 

of the influenza virus HA to Neu5Ac moieties on mammalian host cells. Secondly, the 

antiviral drug zanamivir was incorporated into the polymersome core with the aim of also 

inhibiting influenza virus NA, thus preventing the release of progeny virus from host 

cells. In this study, we showed that sialodendrons based on a polyester backbone could be 

synthesized, and their conjugation to biodegradable PEO-PCL polymersomes was 

demonstrated and quantified using a rhodamine-labeled dendron. Using an ELLA with a 

model sialic acid binding lectin, LFA, it was found that incorporation of Neu5Ac onto the 

dendritic scaffold led to a 17-fold enhancement in binding on a per-Neu5Ac basis in 

comparison to a small molecule analogue. Incorporation of the dendritic Neu5Ac onto the 

polymersome surface led to an almost 2000-fold enhancement, showing the advantage of 

the polymersome system for enhancing binding. The antiviral drug zanamivir was 

encapsulated in the aqueous core of the dendritic sialopolymersomes during their 

preparation and the drug release behavior was studied and compared to that of naked 

polymersomes encapsulating the same drug. Sustained release of drug was observed for 

both systems with release occurring over a period of several days. Furthermore the drug 

content was high (30-35 wt%) for these systems. Combined, this work demonstrates how 

polymer self-assembly can serve as a promising approach for enhancing interactions with 

biological targets, with an additive effect on target binding imparted by the different 

nanoscale components of the system including the dendron and the polymersome, and 

with different components of the polymersome performing different functions including 

target binding and drug release. Future work will involve an evaluation of this 

multifunctional system in in vitro and in vivo models to demonstrate how the combined 

functions of the drug loaded dendritic sialopolymersomes can lead to potent inhibition of 

viral infection. 

4.4 Experimental 

General Procedures and Materials  
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Compounds 3.5
51

, 4.1
29,50

 and 1.33
46

 were synthesized according to previously published 

procedures. Neu5Ac was purchased from RIA International LLC. HRP-LFA was 

purchased from E-Y Laboratories. α1-acid glycoprotein from human plasma was 

purchased from Sigma-Aldrich. All the other chemicals were purchased from Sigma-

Aldrich or Alfa Aesar and were used without further purification unless otherwise noted. 

Anhydrous DMF was obtained from a solvent purification system using aluminum oxide 

columns. NEt3 was distilled from CaH2. Unless otherwise stated, all reactions were 

performed under a nitrogen atmosphere using flame or oven dried glassware. Dialyses 

were performed using Spectra/Por regenerated cellulose membranes with a 1,000 g/mol, 

3500 g/mol, or 25,000 g/mol MWCO. 
1
H NMR spectra were obtained at 400 MHz, and 

13
C NMR spectra were obtained at 100 MHz. NMR chemical shifts are reported in ppm 

and are calibrated against the residual solvent signal of (CD3)2SO (δ 2.50 and 39.52 

ppm), or CD3OD (δ 3.31 and 49.00 ppm). J values are expressed in Hz. IR spectra were 

obtained as NaCl pellets using a Bruker Tensor 27 instrument. HRMS was performed 

using a Finnigan MAT 8400 electron impact mass spectrometer. UV–visible absorption 

spectroscopy was performed on a Varian Cary 300 Bio UV–visible spectrophotometer. 

DLS was performed using a Zetasizer Nano ZS instrument from Malvern Instruments, at 

a polymer concentration of 0.05 mgmL
-1

. Nunclon (Delta) microtiter 96-well plates were 

purchased from Thermo Scientific and were used for the incubation of inhibitors and 

Horseradish peroxidase-conjugated LFA. Nunc Immuno 96-well plates with flat bottom, 

Maxi Sorp, Pinchbar 400 µL/well were purchased from Fisher Scientific and were used 

for intigen coating. Absorbances of each well were measured at 410 nm and 570 nm 

using a plate reader (Tecan Safire). 

Synthesis of Neu5Ac derivative 4.2: Compound 4.1
29,50

 (0.43 g, 1.0 mmol, 1.0 equiv.) 

was dissolved in ethanol (80%, 50 mL). Thiophosgene (0.17 mL, 2.3 mmol, 2.2 equiv.) 

was then added and the resulting solution was stirred at room temperature for 3 h. The 

solvent was then removed under reduced pressure. The remaining residue was then 

azeotroped with toluene to remove all traces of water and HCl byproducts (3×20 mL). 

The target compound 4.2 was obtained as a light orange solid in quantitative yield (0.47 

g). 
1
H NMR (CD3OD) δ: 7.63 (d, J = 8.0, 2H), 7.27 (d, J = 8.0, 2H), 3.82-3.66 (m, 4H), 
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3.58 (dd, J1 = 16.0, J2 = 8.0, 1H), 3.47 (dd, J1 = 8.0, J2 = 4.0, 1H), 3.38 (dd, J1 = 8.0, J2 = 

4.0, 1H), 2.87 (dd, J1 = 16.0, J2 = 8.0, 1H), 2.00 (s, 3H), 1.85 (dd, J1 = 12.0, J2 = 4.0, 1H). 

13
C NMR ((CD3)2SO) δ: 172.0, 170.1, 137.0, 134.9, 131.2, 129.2, 126.2, 86.2, 76.2, 72.0, 

68.6, 66.7, 63.0, 52.2, 48.6, 22.7. IR (film from THF/MeOH, cm
-1

): 3348, 3085, 2930, 

2859, 2090, 1716, 1635, 1558, 1271, 1128. HRMS: calcd for [M+Na]
+
 

(C18H22N2O8S2Na): 481.0715. Found: (EI) 481.0710. 

Synthesis of dendron 4.3: Dendron 3.5
51

 (40 mg, 17 µmol, 1.0 equiv.) was dissolved in 

DMF (5 mL). Neu5Ac derivative 4.2 (0.12 g, 0.27 mmol, 16 equiv.) and NEt3 (0.5 mL) 

were then added and the resulting solution was stirred at room temperature for 48 h. The 

mixture was then dialyzed against distilled water using a 1000 g/mol MWCO membrane 

for 24 h with multiple dialysate changes. Target dendron 4.3 was obtained in 86% yield 

by lyophilization as a light yellow fluffy solid (75 mg, 15 µmol). 
1
H NMR ((CD3)2SO) δ: 

10.16 (br s, 8H), 8.10 (br s, 8H), 7.70-7.25 (br m, 32H), 5.14 (br s, 8H), 4.72 (br s, 10 H), 

4.43-4.04 (br m, 28H), 3.86-3.06 (br m, 104H), 2.80-2.51 (br m, 25H), 1.86 (s, 24H), 

1.61-1.44 (br m, 8H), 1.32-1.04 (br m, 21H). 
13

C NMR ((CD3)2SO) δ: 180.1, 172.0, 

171.8, 171.4, 171.3, 171.1, 171.0, 140.5, 135.6, 124.3, 121.6, 87.6, 87.4, 86.0, 77.9, 75.7, 

71.7, 68.6, 67.2, 64.9, 63.0, 52.3, 46.2, 46.0, 45.5, 41.4, 36.6, 34.3, 32.9 (2), 22.6, 17.3, 

17.0, 8.6. IR (film from THF/MeOH, cm
-1

): 3340, 3066, 2923, 2855, 2102, 1733, 1652, 

1541, 1251, 1126. 

Synthesis of rhodamine-labeled dendron 4.4: Dendron 1.33
46

 (17 mg, 8.4 µmol, 1.0 

equiv.) and Neu5Ac derivative 4.2 (54 mg, 0.12 mmol, 14 equiv.) were dissolved in DMF 

(2 mL). NEt3 (0.2 mL) was then added and the resulting solution was stirred at room 

temperature in dark for 48 h. The resulting material was dialyzed first against DMF, then 

against distilled water using a 3500 g/mol MWCO membrane. Dendron 4.4 was obtained 

in 81% yield (36 mg, 6.8 mmol) by lyophilization. 
1
H NMR ((CD3)2SO)  δ: 10.07 (br s, 

7H), 9.10 (s, 1H), 8.18-8.05 (m, 5H), 7.72 (m, 1H), 7.66-7.22 (m, 28H), 7.16-7.03 (m, 

2H), 6.93 (s, 1H), 6.70 (s, 1H), 5.13 (br s, 7H), 4.80-4.60 (m, 9H), 4.40-4.00 (m, 28H), 

3.89 (br s, 2H), 3.78-3.08 (m, 93H), 2.71-2.59 (m, 23H), 2.48-2.32 (m, 10H), 2.26 (s, 

7H), 1.86 (s, 21H), 1.59-1.45 (m, 7H), 1.29-0.98 (m, 33H). IR (film from THF/MeOH, 
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cm
-1

): 3309, 3076, 2923, 2852, 2127, 1735, 1649, 1591, 1541, 1247, 1131. ε: 43979 

Lmol
-1

cm
-1

 at 563 nm (DMF/MeOH, 10/1). 

General procedure for dendritic surface functionalization of polymersomes: Azide-

functionalized PEO-PCL polymersomes were prepared as described previously using 

BCPs 2.5 and 2.6 to obtain a final polymer concentration of 2 mg/mL in distilled water.
47

 

Dendron 4.3 or 4.4 (4.0 equiv. relative to azide polymer), CuCl2·2H2O (0.40 equiv. 

relative to total polymer), and sodium ascorbate (4.0 equiv. relative to total polymer) 

were added in sequence to the aqueous suspension of polymersomes and the resulting 

reaction mixture was stirred at room temperature and in dark overnight. After this time, 

the mixture was dialyzed against distilled water (dendron 4.3 for TEM analysis and 

dendron 4.4) or against 10 mM pH 7.3 phosphate buffer (dendron 4.3 for ELLA) for 24 h 

using a 25,000 g/mol MWCO membrane to remove excess dendrons and reagents 

required for click reaction. We have previously shown by ICP-MS measurements that 

this dialysis method effectively removes copper ions up to 97% from the reaction 

mixture.
62

 Therefore, no extra purification methods were applied to remove copper as 

trace levels should not interfere with the ELLA assay.  

Quantification of click reaction yields on polymersome surfaces: The functionalized 

polymersomes were prepared as described above. After dialysis, the samples were 

lyophilized to remove water. The resulting residues were then taken up in about 2 mL of 

DMF/MeOH (10/1) and were centrifuged at 4500 rpm for 4 h to remove any insoluble 

material. Next, the absorbance was measured at 563 nm. The reaction yields were then 

calculated using the measured ε for the rhodamine-labeled dendron 4.4 in the same 

solvent.  

Transmission Electron Microscopy: The suspension of polymersomes (10 µL, 0.05 

mgmL
-1

) was placed on a carbon formvar grid and was left to dry overnight. Imaging 

was performed using a Phillips CM10 microscope operating at 80 kV with a 40 µm 

aperture. 

Enzyme-linked lectin assay: The procedure developed by Roy and coworkers was 

adopted for this assay.
28,29

 The detailed description of this assay is as follows: A stock 
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solution of human α1-acid glycoprotein in phosphate buffer (10 mM, pH 7.3) was first 

prepared at a concentration of 10 µg/mL. Nunc Immuno 96-well plates were then coated 

with this solution overnight. A phosphate buffer (10 mM, pH 7.3) solution containing 

0.05% (v/v) Tween 20 (PBST) was then used to wash the wells (3 × 300 µL/well). This 

PBST solution was used to wash the wells after each incubation periods throughout the 

assay. In the next step, the wells were blocked with phosphate buffer (10 mM, pH 7.3) 

containing 1% bovine serum alumin (150 µL/well) for 1 h at 37°C. After washing with 

PBST, the inhibitor/HRP-LFA solutions were added to wells (100 µL/well) following by 

another 1 h incubation at 37°C. These inhibitor solutions were premade in Nunclon 

(Delta) microtiter 96-well plates as follows: The inhibitor (dendritic sialopolymersomes, 

sialodendron 4.3, or sialoside 4.5) solutions in PBS were added in serial 2-fold dilutions 

to each well (60 µ/well). To these was then added HRP-LFA solution in PBS (60 µL/well 

of 100-fold dilution of a 1 mg/mL stock solution of HRP-LFA in PBS) and incubated at 

37 °C for 1 h. The inhibitor/HRP-LFA solutions (100 µL/well) were then transferred to 

the blocked antigen-coated plate and incubated for 1 h at 37 °C. After washing with 

PBST, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt solution (1 

mg/mL) in citrate-phosphate buffer (0.2 M, pH 4.0 with 0.015% H2O2) was added to each 

well (50 µL/well) which causes the reaction with the enzyme. After 20 min, the reaction 

was stopped by adding 1 M sulfuric acid solution (50 µL/well). Finally, the optical 

density was measured at 410 nm relative to 570 nm using plate reader. The percent 

inhibition was calculated using the following equation:  

% inhibition = [(Ano inhibitor - Awith inhibitor)/Ano inhibitor]×100 

In this assay, the concentration of sialopolymersomes was calculated based on initial 

loading of azide copolymer 2.6 in the polymersome formation (described above), the 

conjugation yield of sialodendron on the polymersome surface at each azide loading, 

calculated by UV-visible measurement, as described above, and the total volume of 

polymersome solution added in the assay.   

Preparation of zanamivir-loaded dendritic sialopolymersomes: To a solution of 

polymers 2.5 (4 mg) and 2.6 (1 mg) in THF (0.5 mL) was added zanamivir solution (2 
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mL, 10 mg/mL) in distilled water with vigorous stirring. The resulting mixture was 

stirred at room temperature overnight with an open cap to remove THF by evaporation. 

The click reaction was then performed with dendron 4.3 as described above. The sample 

was then transferred to a Slide-A-Lyzer dialysis cassette with a MWCO of 20,000 g/mol 

and dialyzed against phosphate buffer (10 mM, pH 7.4) at room temperature for 3.5 h to 

remove the unencapsulated drug and other reagents required for click reaction. The time 

required for the removal of free drug was determined by performing the same dialysis 

using a cassette containing the same concentration of only free zanamivir and waiting 

until the absorbance of the drug in the dialysate reached equilibrium as measured by UV-

visible spectroscopy at 234 nm. This time was measured to be 3.5 h. 

Preparation of zanamivir-loaded naked polymersomes: To a solution of polymer 2.5 

(5 mg) in THF (0.5 mL) was added zanamivir solution (2 mL, 10 mg/mL) in phosphate 

buffer (10 mM, pH 7.4) with vigorous stirring. The resulting mixture was stirred at room 

temperature with an open cap to remove THF by evaporation. The sample was then 

transferred to a Slide-A-Lyzer dialysis cassette with a MWCO of 20,000 g/mol and 

dialyzed against phosphate buffer (10 mM, pH 7.4) at room temperature to remove the 

unencapsulated drug.  

Measurement of zanamivir release from the polymersomes: After the removal of free 

drug, the Slide-A-Lyzer dialysis cassette containing the loaded polymersomes was 

transferred to phosphate buffer (400 mL, 10 mM, pH 7.4) preheated to 37 °C. This point 

was taken as t = 0. At certain time points, 3 mL aliquots of the dialysate were taken for 

UV-visible measurement. The aliquots were placed back in the dialysate immediately 

after measurements. An average of the absorption intensities at 234 nm of aliquots where 

the release had clearly plateaued was defined as 100% release and the percent release at 

other time points was calculated relative to this value. Moreover, to ensure that complete 

release had been achieved, the individual polymersome solutions were mixed with THF 

(4 mL) to disrupt the assemblies and release any potential remaining drug. The THF was 

removed under reduced pressure and the aqueous solution was returned to the dialysis 

cassette and allowed to stir for another 24 h in fresh buffer. At this point, the UV-visible 



113 

 

 

spectrum of the dialysate was measured and did not show any absorption peak at 234 nm. 

The release experiments were performed in triplicate. 
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Chapter 5  

5 Synthesis and Degradation of Backbone 
Photodegradable Polyester Dendrimers

*
 

 

5.1 Introduction 

Dendrimers are highly branched macromolecules with exact MWs or very low PDIs 

resulting from their step-wise synthesis. Higher generation dendrimers possess large 

numbers of functional groups on their peripheries and often adopt globular conformations 

with internal cavities. These properties have led to much research in the application of 

dendrimers for light-harvesting,
1,2

 organic light-emitting diodes,
3,4

 catalysis,
5,6

 and 

numerous biomedical areas.
7-9

 The development of dendrimers that are responsive to 

specific stimuli is also of significant interest as this can impart new properties and further 

expand their scope of applications. For example, the breakdown of a dendrimer in 

response to a stimulus can provide a means of releasing encapsulated cargo or 

fragmenting assemblies of dendritic materials. 

The first reports on cleavable dendrimers emerged less than two decades ago.
10,11

 

Since then, a number of examples of dendrimers that cleave in response to stimuli such as 

pH change,
12-14

 light,
15-24

 transition metals,
25,26

 catalytic antibodies,
27,28

 and reducing 

agents
29,30

 have been developed. Among these stimuli, light is of particular interest for 

the development of smart materials as it can be applied at a specific time and location 

with control over its intensity and wavelength. Thus far, several photodegradable 

dendrimer systems have been developed through the incorporation of photodegradable 

units either at the core of the dendrimer
15,19

 or at the junction between the hydrophobic 

and hydrophilic portions of amphiphilic dendrons.
16,20,22,23

 The limitation of these 

approaches is that following photodegradation, in most cases large residual fragments of 

                                            
*
 This chapter contains work that has been published: Nazemi, A.; Schon, T. B.; Gillies, E. R. Org. Lett. 

2013, 15, 1830. Reproduced by permission of The American Chemical Soci.See Co-Authorship statement 

for detailed contributions from each author. 
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the dendrimer remain, limiting the application of these materials. For example, residual 

hydrophobic fragments may undergo aggregation in aqueous solutions.  Self-immolative 

dendrons that fragment in response to the cleavage of a photoresponsive focal point 

moiety have also been developed.
17,18,24

 However, due to the inherent design of these 

materials they have been limited to dendrons rather than dendrimers and are thus far 

limited to a very select set of backbone monomers that are derivatives of 

dihydroxybenzylalcohols.  

Photodegradable linkages have not previously been incorporated throughout the 

backbones of dendrimers or dendrons at each monomer unit. This approach would allow 

for a rapid, simultaneous cleavage of multiple linkages through the dendrimer backbone, 

and is potentially applicable to various dendrimer backbones. However, the incorporation 

of photodegradable moieties throughout the dendrimer backbone is a significant synthetic 

challenge due to the requirement for extremely clean and efficient chemistry in dendrimer 

synthesis. Despite the multitude of reports on dendrimer synthesis over the last few 

decades, only a limited number of dendrimer backbones have emerged as widely 

accessible synthetically, and minor modifications to the monomer units can dramatically 

alter the synthetic process and results. We report here the incorporation of 

photodegradable o-nitrobenzyl ester moities
31,32

 into the widely used bis-MPA dendrimer 

backbone and photodegradation studies of the resulting materials. 

5.2 Results and Discussion 

5.2.1 Design and Synthesis 

Our synthetic strategy, an adaptation of the polyester dendrimer synthesis developed by 

Ihre et al.,
33

 involved the divergent synthesis of first, second, and third generation (G1-

G3) dendrons with alkyne focal points followed by an azide + alkyne “click” conjugation 

of the dendrons onto a trifunctional azide core to obtain the target G1-G3 dendrimers. 

Due to the photosensitivity of the target molecules and intermediates, all reaction flasks 

were protected from light using aluminum foil, but no special measures were required 

during the isolation and purification steps. 4-Bromomethyl-3-nitrobenzoic acid (5.1) was 

used as the starting material in the synthesis (Scheme 5.1). First, it was necessary to mask 
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the carboxylic acid group on 5.1 using a protecting group that would not require acidic or 

basic conditions for deprotection as these conditions would cause complications in 

subsequent steps of the synthesis. Thus, an allyl ester was installed by reaction with allyl 

alcohol using N,N'-dicyclohexylcarbodiimide (DCC) to provide 5.2.  Bis-MPA (5.3) was 

then introduced in the presence of Cs2CO3 in DMF to provide 5.4 in quantitative yield. 

Finally, the principle monomer for dendrimer growth (5.5) was synthesized by 

deprotection of the allyl group in 5.4 using Pd(PPh3)4 and piperidine. 

With the key monomer in hand, the next step was the synthesis of the G1-G3 

dendrons. As an alkyne focal point was desired for the eventual dendron coupling to the 

core, the synthesis of the G1 dendron was carried out in a manner similar to that 

described above for monomer 5.5, but using propargyl alcohol instead of allyl alcohol. 

This provided first the propargyl ester derivative 5.6, followed by the bis-MPA derivative 

5.7 (Scheme 5.1). Another key difference was that instead of cleaving the focal point 

propargyl alcohol on 5.7, this was left intact and instead the acetonide protecting group 

was removed using H2SO4 in MeOH to provide the G1 dendron 5.8 in high yield overall. 

 

Scheme 5.1. Synthesis of monomer 5.5 and G1 dendron 5.8. 

Synthesis of the G2 dendron was accomplished by coupling monomer 5.5 to the 

deprotected G1 dendron 5.8 using EDC·HCl to provide 5.9 (Scheme 5.2). Removal of the 
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acetonide groups under acidic conditions provided 5.10. Repetition of this coupling and 

deprotection sequence provided G3 dendron 5.12 in high yield. 

 

Scheme 5.2. Synthesis of G2 dendron 5.10 and G3 dendron 5.12. 

In order to construct the target photodegradable G1-G3 dendrimers, dendrons 5.8, 

5.10, and 5.12 were attached to a trifunctional azide core molecule 5.13
34

 via  a 

copper(I)-catalyzed alkyne-azide cycloaddition reaction (Scheme 5.3). It should be noted 

that 5.13 was handled with care as organic polyazides can be potentially explosive. While 

heating the reaction vessel in an oil bath at 70 °C overnight resulted in low dendrimer 

yields, likely due to breakdown of ester linkages under these conditions, the reaction 

proceeded smoothly under microwave conditions at 120 °C in 20 min.
35

 Follow-up 
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studies showed that the catalyst was still essential under these conditions and that 

microwave irradiation played a significant role in accelerating the reaction, even at this 

temperature. 

 

Scheme 5.3. Synthesis of G1-G3 dendrimers 5.14 - 5.16. 

The resulting dendrimers were characterized by 
1
H and 

13
C NMR spectroscopy, 

MALDI mass spectrometry, IR spectroscopy, and SEC. As shown in SEC traces (Figure 

5.1), the resulting dendrimers exhibited monomodal molecular weight distribution 
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profiles with the expected increases in hydrodynamic volume with each generation, as 

well as very narrow PDIs. 

 

Figure 5.1. SEC traces of G1 (5.14), G2 (5.15), and G3 (5.16) dendrimers with their 

corresponding PDIs. 

5.2.2 Photodegradation Study of the Dendrimers 

Having the three dendrimers in hand, their photodegradation behaviors were then studied. 

First, ~20 µg/mL solutions of each dendrimer in THF were irradiated with UV light for 1 

h and the UV-visible absorption spectra of the solutions were recorded in 2 min intervals 

for the first 10 min, followed by 5 min intervals for the remaining 50 min. The results for 

the G3 dendrimer (5.16) are shown in Figure 5.2a. A decrease in absorbance was 

observed for the peak at 225 nm while increases in absorbance were observed at 305 and 

350 nm, along with corresponding red shifts in their absorption maxima. The results for 

photolysis of G1 (5.14) and G2 (5.15) dendrimers are shown in Figure A5.1. These 

observations are in accordance with the results obtained by other groups for this 

photolabile group.
15,16,20

 The absorption band at 350 nm is attributed to o-

nitrosobenzaldehyde, which is a product of o-nitrobenzyl ester photolysis, and exhibits a 

weak absorption band at 350-360 nm that is solvent dependent.
16

 
1
H NMR spectroscopy 

was also used to study the photodegradation of the dendrimers. A 10 mg/mL solution of 

the dendrimer in (CD3)2SO was irradiated with UV light in a quartz NMR tube for 1 h 

and 
1
H NMR spectra were collected in 10 min intervals. The results for the 

photodegradation of G3 dendrimer (5.16) are shown in Figure 5.2b. The results for 
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photolysis of G1 (5.14) and G2 (5.15) dendrimers as well as extensive peak assignments 

for the degradation of all three dendrimers are shown in Figure A5.2, Figure A5.3 and 

Figure A5.4. 

 

Figure 5.2. a) UV-visible spectra for G3 dendrimer (5.16) upon irradiation with UV light 

for 60 min. Inset shows the expanded region between 285-450 nm. b) Evolution of 
1
H 

NMR spectra during the photolysis of a 10 mg/mL sample of G3 dendrimer (5.16) in 

(CD3)2SO. 

As shown for the G3 dendrimer (5.16) in Figure 5.2b, the multiplets at 3.57 and 3.46 

ppm, corresponding to the methylene groups of bis-MPA in the dendrimer backbone 

decrease as irradiation time increases. At the same time, a new sharp multiplet at 3.45 

ppm appears, corresponding to the same methylene groups in the released product bis-

MPA, a starting material for the dendrimer synthesis. The peak intensities of the methyl 

groups in the dendrimer backbone at 1.46, 1.42, and 1.10 ppm also decrease and a single 

methyl peak at 1.00 ppm corresponding to the released bis-MPA compound increases in 

intensity. The appearance of other smaller multiplets in the region of 3.45 ppm and 

singlets in the region of 1.00 ppm can result from the expected release of other bis-MPA 

derivatives containing the photocleavable aromatic groups. In addition, a general trend of 

peak broadening in the aromatic region was observable, which can be attributed to 

formation of different aromatic species after photodegradation, as nitroso compounds are 

known to be unstable and undergo side reactions to form other aromatic species such as 

diazo compounds.
31

 However, if the aromatic region is expanded and increased in 
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intensity, it is possible to see that the peaks at 7.27 and 8.31 ppm, corresponding to the 

core molecule and triazole ring respectively, are still present after 1 h as they do not 

participate in degradation process. Moreover, SEC traces of the degraded 
1
H NMR 

samples showed that only small molecules were present, demonstrating the successful 

full degradation of the dendrimers (Figure A5.5). 

5.3 Conclusion 

In summary, we have successfully designed and synthesized a new series of dendrons and 

dendrimers that are able for the first time to undergo complete backbone 

photodegradation to small molecules. We expect that the incorporation of these dendrons 

and dendrimers into new materials will impart new photoresponsive properties and 

functions. In addition, tuning of their optical properties by changing the photochemically 

responsive group or through the incorporation of other photophysical processes in such a 

way that they can undergo photodegradation in the visible or nearinfrared region can 

potentially open up new opportunities to access materials with fully photodegradable 

hydrophobic blocks suitable for biological or other applications. 

5.4 Experimental 

General Procedures and Materials 

Compounds 5.3
36

 and 5.13
35

 were synthesized according to the previously published 

procedures. All the other chemicals were purchased from Sigma-Aldrich or Alfa Aesar 

and were used without further purification unless otherwise noted. Anhydrous DMF was 

obtained from a solvent purification system using aluminum oxide columns. 

Dichloromethane was distilled from CaH2. Unless otherwise stated, all reactions were 

performed under a nitrogen atmosphere using flame or oven dried glassware. For the 

reactions that were mentioned to be stirred in dark, aluminum foil was used to isolate the 

reaction flasks from light. No special precautions regarding light, were taken during 

purification or isolation of these compounds. For long term storage the isolated materials 

were stored in freezer. However no degradation issues were encountered when materials 

were stored in the dark at ambient temperature. 
1
H NMR spectra were obtained at 400 
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MHz, and 
13

C NMR spectra were obtained at 100 MHz. NMR chemical shifts are 

reported in ppm and are calibrated against the residual solvent signal of CDCl3 (δ 7.26 

and 77.16 ppm), (CD3)2SO (δ 2.50 and 39.52 ppm), or (CD3)2CO (δ 2.05 and 29.84 ppm). 

J values are expressed in Hz. IR spectra were obtained as films from CH2Cl2 or THF on 

NaCl plates using a Bruker Tensor 27 instrument. HRMS was performed using a 

Finnigan MAT 8400 electron impact mass spectrometer. Electrospray mass spectrometry 

(ESI) was performed using a PE-Sciex API 365  mass spectrometer. Melting points 

(m.p.) were determined using a Gallenkamp variable heater. UV–visible absorption 

spectroscopy was performed on a Varian Cary 300 Bio UV–visible spectrophotometer. 

MALDI-TOF mass spectrometry data were obtained using a 4700 Proteomics Analyzer, 

MALDI TOF (Applied Biosystems, Foster City, CA). Reflectron and linear positive ion 

modes were used. 2-(4'-Hydroxybenzeneazo)benzoic acid (HABA) was used as the 

matrix for the measurements. Dialyses were performed using Spectra/Por regenerated 

cellulose membranes with either a 12,000–14,000 g/mol or 6000-8000 g/mol MWCO. 

SEC instrument was equipped with a Viscotek GPC Max VE2001 solvent module. 

Samples were analyzed using the Viscotek VE3580 RI detector operating at 30 C. The 

separation technique employed a Polypore guard column (50x7.5mm) and two Agilent 

Polypore (300x7.5mm) columns connected in series.  Samples were dissolved in THF 

(glass distilled grade) at approximately 5 mg/mL concentrations and filtered through 0.22 

µm syringe filters. Samples were injected using a 100 µL loop. The THF eluent was 

filtered and eluted at 1 ml/min for a total of 30 min. A calibration curve was obtained 

from polystyrene standards with MWs ranging from 1,540-1,126,000 g/mol. Microwave 

reactions were performed in a Biotage® Initiator Microwave Synthesizer. The light 

source used for the photochemical reactions was either a Hanovia medium pressure 

mercury lamp (PC 451050/616750, 450 Wage) or a model LZC-4X Luzchem 

Photoreactor equipped with Luzchem LZC-UVB lamps.  

Note: Triazide 5.13 has been reported to be relatively insensitive to heat and 

shock.
35,37

 However, due to the explosive nature of organic polyazides, this compound 

was handled with care. A blast shield was used during concentrating its solution on rotary 

evaporator and during further drying under high vacuum. 
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Synthesis of compound 5.2: Compound 5.1 (0.50 g, 1.9 mmol, 1.0 equiv.) and allyl 

alcohol (2.2 g, 38 mmol, 20 equiv.) were dissolved in CH2Cl2 (14 mL). DCC (0.68 g, 3.3 

mmol, 1.7 equiv.) and DMAP (0.12 g, 0.96 mmol, 0.50 equiv.) were then added. The 

resulting solution was stirred at room temperature in dark while the course of the reaction 

was monitored by thin layer chromatography (TLC) (ethyl acetate (EtOAc):cyclohexane, 

1:2). TLC showed that the reaction was complete after 3.5 h. At this point, the solution 

was filtered and the filtrate was washed with 1 M KHSO4 (1×50 mL), distilled water 

(3×50 mL), and brine (1×50 mL). The organic solution was dried over magnesium 

sulfate, filtered, and concentrated under reduced pressure. The product was purified by 

column chromatography (EtOAc:cyclohexane, 1:6). Compound 5.2 (0.43 g, 1.4 mmol)  

was obtained in 75% yield as a yellow oil. 
1
H NMR (CDCl3) δ: 8.68 (s, 1H), 8.26 (d, J = 

8.0, 1H), 7.68 (d, J = 8.0, 1H), 6.09-5.99 (m, 1H), 5.46-5.41 (m, 1H), 5.36-5.32 (m, 1H), 

4.87 (dd, J1 = 8.0, J2 = 4.0, 2H), 4.85 (s, 2H). 
13

C NMR (CDCl3) δ: 163.8, 148.2, 137.3, 

134.3, 133.0, 131.9, 131.6, 126.7, 119.5, 66.7, 28.0.  IR (cm
-1

, film from CH2Cl2): 3093, 

2931, 2858, 2106, 1730, 1539, 1351, 1263, 1131. HRMS: calcd for [M]
+
 (C11H10BrNO4): 

298.9793. Found: (EI) 298.9798. 

Synthesis of compound 5.4: Compound 5.2 (0.90 g, 3.0 mmol, 1.0 equiv.) was dissolved 

in DMF (25 mL). Compound 5.3 (1.0 g, 6.0 mmol, 2.0 equiv.) and cesium carbonate (2.9 

g, 9.0 mmol, 3.0 equiv.) were then added. The resulting mixture was stirred at room 

temperature in dark while the course of the reaction was monitored by TLC 

(EtOAc:cyclohexane, 1:4). TLC showed that the reaction was complete after 1.5 h. At 

this point, the mixture was diluted with EtOAc (100 mL), washed with distilled water 

(1×100 mL), 1M KHSO4 (1×100 mL), 1M Na2CO3 (2×100 mL), and brine (1×100 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated under reduced 

pressure. The product 5.4 (1.2 g, 3.0 mmol) was obtained in quantitative yield as a light 

orange solid that did not require further purification. 
1
H NMR (CDCl3) δ: 8.76 (d, J = 4.0, 

1H), 8.30 (dd, J1 = 8.0, J2 = 4.0, 1H), 7.86 (d, J = 8.0, 1H), 6.09-5.99 (m, 1H), 5.67 (s, 

1H), 5.45-5.40 (m, 1H), 5.35-5.32 (m, 1H), 4.88-4.86 (m, 2H), 4.28 (d, J = 12.0, 2H), 

3.72 (d, J = 12.0, 2H), 1.47 (s, 3H), 1.40 (s, 3H), 1.17 (s, 1H). 
13

C NMR (CDCl3) δ: 

173.8, 164.0, 147.3, 137.3, 134.4, 131.6, 131.1, 129.1, 126.3, 119.3, 98.4, 66.6, 66.4, 

63.3, 42.6, 26.8, 20.8, 18.4. IR (cm
-1

, film from CH2Cl2): 3096, 2994, 2932, 2877, 1728, 
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1625, 1539, 1373, 1350, 1257, 1158. HRMS: calcd for  [M+H]
+
 (C19H24NO8): 394.1502. 

Found: (CI) 394.1499. m. p.: 79.3-81.1 °C. 

Synthesis of  monomer 5.5: Compound 5.4 (1.1 g, 2.7 mmol, 1.0 equiv.) and 

tetrakis(triphenylphosphine)palladium(0) (0.16 g, 0.14 mmol, 0.050 equiv.) were 

dissolved in CH2Cl2 (20 mL). Piperidine (0.40 mL, 4.0 mmol, 1.5 equiv.) was added and 

the resulting solution was stirred at room temperature in dark while the course of the 

reaction was monitored by TLC (EtOAc:cyclohexane, 1:1). TLC showed that the reaction 

was complete after 1 h. At this point, CH2Cl2 was removed under reduced pressure. The 

residue was dissolved in EtOAc (100 mL). The organic solution was washed with 1 M 

KHSO4 (3×100 mL), brine (1×100 mL), dried over MgSO4, filtered, and concentrated 

under reduced pressure. The product was purified by column chromatography using a 

gradient of EtOAc:cyclohexane (1:1) to pure EtOAc. Compound 5.5 (0.87 g, 2.5 mmol) 

was obtained in 92% yield as a light yellow solid. 
1
H NMR (CDCl3) δ: 8.80 (d, J = 4.0, 

1H), 8.32 (dd, J1 = 8.0, J2 = 4.0, 1H), 7.90 (d, J = 8.0, 1H), 5.69 (s, 2H), 4.31 (d, J = 12.0, 

2H), 3.75 (d, J = 12.0, 2H), 1.49 (s, 3H), 1.42 (s, 3H), 1.18 (s, 3H). 
13

C NMR (CDCl3) δ: 

173.9, 168.9, 147.4, 138.0, 134.9, 134.8, 129.2, 126.8, 98.6, 66.4, 63.3, 42.6, 27.0, 20.6, 

18.4. IR (cm
-1

, film from CH2Cl2): 3460, 3249, 2995, 2933, 2887, 2104, 1737, 1625, 

1541, 1352, 1222, 1157.  HRMS: calcd for  [M+H]
+
 (C16H20NO8): 354.1189. Found: (CI) 

354.1198. m. p.: 146.1-148.8 °C. 

Synthesis of compound 5.6: Compound 5.1 (0.50 g, 1.9 mmol, 1.0 equiv.) and propargyl 

alcohol (2.2 g, 38 mmol, 20 equiv.) were dissolved in CH2Cl2 (14 mL). DCC (0.68 g, 3.3 

mmol, 1.7 equiv.) and DMAP (0.12 g, 0.96 mmol, 0.50 equiv.) were then added. The 

resulting solution was stirred at room temperature in dark while the course of the reaction 

was monitored by TLC (EtOAc:cyclohexane, 1:2). TLC showed that the reaction was 

complete after 3.5 h. At this point, the solution filtered and the filtrate was washed with 1 

M KHSO4 (1×50 mL), distilled water (3×50 mL), and brine (1×50 mL). The organic 

solution was dried over magnesium sulfate, filtered, and concentrated under reduced 

pressure. The product was purified by column chromatography (EtOAc:cyclohexane, 

1:4). Compound 5.6 (0.47 g, 1.6 mmol) was obtained in 82% yield as light yellow solid. 

1
H NMR (CDCl3) δ: 8.70 (d, J = 4.0, 1H), 8.28 (dd, J1 = 8.0, J2 = 4.0, 1H), 7.70 (d, J = 
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8.0, 1H), 4.98 (d, J = 4.0, 2H), 4.85 (s, 2H), 2.56 (t, J = 4.0, 1H). 
13

C NMR (CDCl3) δ: 

163.4, 148.2, 137.7, 134.4, 133.1, 131.2, 126.9, 77.0, 76.0, 53.5, 28.0. IR (cm
-1

, film from 

CH2Cl2): 3296, 3096, 2959, 2917, 2131, 1733, 1621, 1537, 1350, 1262, 1132. HRMS: 

calcd for [M]
+
 (C11H8BrNO4): 296.9637. Found: (EI) 296.9641. m. p.: 54.8-56.5 °C. 

Synthesis of protected G1 dendron 5.7: Compounds 5.6 (0.64 g, 2.1 mmol, 1.0 equiv.), 

5.3 (0.74 g, 4.3 mmol, 2.0 equiv.), and cesium carbonate (2.1 g, 6.4 mmol, 3.0 equiv.) 

were dissolved in DMF (20 mL). The resulting mixture was stirred at room temperature 

in dark while the course of the reaction was monitored by TLC (EtOAc:cyclohexane, 

1:4). TLC showed that the reaction was complete after 1.5 h. At this point, the mixture 

was diluted with EtOAc (100 mL), washed with distilled water (1×100 mL), 1M KHSO4 

(1×100 mL), 1M sodium carbonate (Na2CO3) (2×100 mL), and brine (1×100 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure. 

The product 5.7 was obtained in quantitative yield (0.82 g, 2.1 mmol) as an orange solid 

that did not require any further purification. 
1
H NMR (CDCl3) δ: 8.78 (d, J = 4.0, 1H), 

8.31 (dd, J1 = 8.0, J2 = 4.0, 1H), 7.88 (d, J = 8.0, 1H), 5.67 (s, 2H), 4.97 (d, J = 4.0, 2H), 

4.28 (d, J = 12.0, 2H), 4.72 (d, J = 12.0, 2H), 2.56 (t, J = 4.0, 1H), 1.47 (s, 3H), 1.41 (s, 

3H), 1.17 (s, 3H). 
13

C NMR (CDCl3) δ: 173.8, 163.6, 147.4, 137.7, 134.6, 130.4, 129.2, 

126.4, 98.4, 77.1, 75.9, 66.4, 63.2, 53.4, 42.6, 26.9, 20.8, 18.4. IR (cm
-1

, film from 

CH2Cl2): 3291, 3097, 2994, 2967, 2878, 2133, 1738, 1625, 1539, 1373, 1370, 1254, 

1154. HRMS: calcd for [M+H]
+
 (C19H22NO8): 392.1345. Found: (CI) 392.1346. m. p.: 

88.4-89.8 °C. 

Synthesis of deprotected G1 dendron 5.8: Compound 5.7 (0.79 g, 2.0 mmol) was 

dissolved in methanol (50 mL) and CH2Cl2 (5 mL). Concentrated sulfuric acid (0.40 mL) 

was added and the resulting solution was stirred at room temperature in dark while the 

course of the reaction was monitored by TLC (EtOAc:cyclohexane, 1:2). TLC showed 

that the reaction was complete after 2 h. At this point, the solution was concentrated to 

one-third of its initial volume. EtOAc (50 mL) was added and the organic solution was 

washed with 1M Na2CO3 (2×50 mL) and brine (1×50 mL). The organic layer was dried 

over MgSO4, filtered, and concentrated under reduced pressure. The product 5.8 was 

obtained in quantitative yield as an orange solid that did not require any further 
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purification. 
1
H NMR (CDCl3) δ: 8.76 (d, J = 4.0, 1H), 8.33 (dd, J1 = 8.0, J2 = 4.0, 1H), 

7.84 (d, J = 8.0, 1H), 5.66 (s, 2H), 4.97 (d, J = 4.0, 2H), 4.00 (d, J = 12.0, 2H), 8.79 (d, J 

= 12.0, 2H), 2.56 (t, J = 4.0, 1H), 1.12 (s, 3H). 
13

C NMR (CDCl3) δ: 175.3, 163.6, 147.5, 

137.1, 134.7, 130.5, 129.4, 126.4, 77.1, 75.9, 68.8, 63.4, 53.4, 49.7, 17.3. IR (cm
-1

, film 

from CH2Cl2): 3421, 3299, 3097, 2953, 2888, 2126, 1742, 1625, 1541, 1433, 1352, 1249, 

1131. HRMS: calcd for [M+H]
+
 (C16H18NO8): 352.1032. Found: (CI) 352.1039. m. p.: 

76.4-77.0 °C. 

Synthesis of protected G2 dendron 5.9: Compounds 5.8 (0.30 g, 0.85 mmol, 1.0 equiv.) 

and 5.5 (0.91 g, 2.6 mmol, 3.0 equiv.) were dissolved in CH2Cl2 (20 mL). EDC·HCl 

(0.74 g, 3.8 mmol, 4.5 equiv) and DMAP (0.10 g, 0.85 mmol, 1.0 equiv.) were added in 

one portion and the resulting solution was stirred at room temperature in dark while the 

course of the reaction was monitored by TLC (EtOAc:cyclohexane, 1:1). TLC showed 

that the reaction was complete after 7 h. At this point, CH2Cl2 was removed under 

reduced pressure. The remaining residue was dissolved in EtOAc (50 mL) and washed 

with 1M KHSO4 (3×100 mL), 1M Na2CO3 (3×100 mL), and brine (1×100 mL). The 

organic layer was dried was dried over MgSO4, filtered, and concentrated under reduced 

pressure. The product was purified by column chromatography (EtOAc:cyclohexane, 

1:1). Compound 5.9 (0.80 g, 0.78 mmol) was obtained in 91% yield as a fluffy off white 

solid. 
1
H NMR (CDCl3) δ: 8.63 (d, J = 4.0, 1H), 8.62 (d, J = 4.0, 2H), 8.20-8.15 (m, 3H), 

7.84 (d, J = 8.0, 2H), 7.64 (d, J = 8.0, 1H), 5.66 (s, 4H), 5.62 (s, 2H), 4.96 (d, J = 4.0, 

2H), 4.63 (s, 4H), 4.28 (d, J = 12.0, 4H), 3.73 (d, J = 12.0, 4H), 2.56 (t, J = 4.0, 1H), 1.50 

(s, 3H), 1.47 (s, 6H), 1.39 (s, 6H), 1.18 (s, 6H). 
13

C NMR (CDCl3) δ: 173.7, 171.6, 163.5, 

163.2, 147.8, 147.2, 137.7, 135.6, 134.3, 134.2, 130.9, 130.1, 130.0, 129.1, 126.3, 126.0, 

98.3, 77.0, 76.0, 66.6, 66.2, 63.8, 63.0, 53.4, 47.1, 42.5, 26.7, 20.7, 18.3, 18.0. IR (cm
-1

, 

film from CH2Cl2): 3269, 2999, 2885, 2137, 1730, 1652, 1539, 1257, 1122. HRMS: calcd 

[M+Na]
+ 

(C48H51N3O22Na): 1044.2862. Found: (ESI) 1044.2867. 

Synthesis of deprotected G2 dendron 5.10: Compound 5.9 (0.22 g, 0.21 mmol) was 

dissolved in a mixture of methanol (40 mL) and CH2Cl2 (4 mL). Concentrated sulfuric 

acid (0.40 mL) was added and the resulting solution was stirred at room temperature in 

dark while the course of the reaction was monitored by TLC (EtOAc:cyclohexane, 1:1). 
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TLC showed that the reaction was complete after 2 h. At this point, the solution was 

concentrated to one-third of its initial volume. EtOAc (50 mL) was added and the organic 

solution was washed with 1M Na2CO3 (2×50 mL) and brine (1×50 mL). The organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The 

product 5.10 (0.20 g, 0.21 mmol) was obtained in quantitative yield as a fluffy light 

orange solid that did not require any further purification. 
1
H NMR (CDCl3) δ: 8.61 (d, J = 

4.0, 1H), 8.56 (d, J = 4.0, 2H), 8.17-8.14 (m, 3H), 7.80 (d, J = 8.0,, 2H), 7.65 (d, J = 8.0, 

1H), 5.64 (s, 4H), 5.63 (s, 2H), 4.96 (d, J = 4.0, 2H), 4.64 (s, 4H), 4.00 (d, J = 12.0, 4H), 

3.80 (d, J = 12.0, 4H), 2.93 (br s, 4H), 2.58 (t, J = 4.0, 1H), 1.49 (s, 3H), 1.13 (s, 6H). 
13

C 

NMR (CDCl3) δ: 175.0, 171.8, 163.6, 163.3, 147.8, 147.1, 137.3, 135.7, 134.3 (2), 130.8, 

130.1 (2), 129.2, 126.2, 126.0, 77.0, 76.1, 67.4, 66.8, 63.8, 63.1, 53.4, 49.8, 47.0, 18.1, 

17.2. IR (cm
-1

, film from CH2Cl2): 3440, 3300, 3087, 2932, 2859, 2133, 1737, 1623, 

1539, 1352, 1257, 1125. HRMS: calcd [M+Na]
+
 (C42H43N3O22Na): 964.2236. Found: 

(ESI) 964.2266. 

Synthesis of protected G3 dendron 5.11: Compounds 5.10 (55 mg, 58 µmol, 1.0 equiv.) 

and 5.5 (0.12 g, 0.35 mmol, 6.0 equiv.) were dissolved in CH2Cl2 (10 mL). EDC·HCl 

(0.11 g, 0.52 mmol, 9.0 equiv) and DMAP (15 mg, 0.12 mmol, 2.0 equiv.) were added 

and the resulting solution was stirred at room temperature in dark overnight. CH2Cl2 was 

removed under reduced pressure. The remaining residue was dissolved in EtOAc (50 mL) 

and washed with 1M KHSO4 (3×100 mL), 1M Na2CO3 (3×100 mL), and brine (1×100 

mL). The organic layer was dried was dried over MgSO4, filtered, and concentrated under 

reduced pressure. The product was purified by dialysis against DMF (300 mL) using a 

3500 MWCO membrane. The solvent was then removed under reduced pressure. 

Dendron 5.11 (0.12 g, 50 µmol) was obtained in 86% yield as a fluffy off-white solid. 
1
H 

NMR (CDCl3) δ: 8.60-8.59 (m, 5H), 8.49-8.48 (m, 2H), 8.20 (dd, J1 = 8.0, J2 = 4.0, 4H), 

8.16 (dd, J1 = 8.0, J2 = 4.0, 1H), 8.10 (dd, J1 = 8.0, J2 = 4.0, 2H), 7.85 (d, J = 8.0, 4H), 

7.67-7.63 (m, 3H), 5.64 (s, 8H), 5.61 (br s, 6H), 4.94 (d, J = 4.0, 2H), 4.64 (s, 8H), 4.62 

(s, 4H), 4.27 (d, J = 12.0, 8H), 3.72 (d, J = 12.0, 8H), 2.57 (t, J = 4.0, 1H), 1.50 (s, 6H), 

1.49 (s, 3H), 1.46 (s, 12H), 1.38 (s, 12H), 1.17 (s, 12H). 
13

C NMR (CDCl3) δ: 173.7, 

171.6, 163.6, 163.3, 163.2, 147.9, 147.8, 147.2, 137.8, 135.7, 135.6, 134.3 (2), 134.1, 

130.9, 130.8, 130.2, 130.1 (2), 129.1, 126.3, 126.1, 126.0, 98.3, 77.0, 76.0, 66.7, 66.6, 
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66.2, 63.9, 63.1, 53.4, 47.1, 47.0, 42.5, 41.8, 26.7, 20.7, 18.3, 18.1, 18.0. IR (cm
-1

, film 

from CH2Cl2): 3300, 3097, 2989, 2879, 2131, 1739, 1625, 1539, 1352, 1249, 1122. 

HRMS: calcd [M+Na]
+
 (C106H111N7O50Na): 2304.6256. Found: (ESI) 2304.6218. 

Synthesis of deprotected G3 dendron 5.12: Compound 5.11 (0.10 g, 44 µmol) was 

dissolved in methanol (30 mL) and CH2Cl2 (15 mL). Concentrated sulfuric acid (0.50 

mL) was added and the resulting solution was stirred at room temperature in dark while 

the course of the reaction was monitored by TLC (EtOAc:cyclohexane, 4:1). TLC 

showed that the reaction was complete after 2 h. At this point, the solution was 

concentrated to one-third of its initial volume. EtOAc (50 mL) was added and the organic 

solution was washed with 1M Na2CO3 (2×50 mL) and brine (1×50 mL). The organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The 

product 5.12 was further purified by dialysis against DMF (300 mL) using a 3500 

MWCO membrane. The solvent was then removed under reduced pressure. Dendron 5.12 

was obtained in quantitative yield (93 mg, 44 µmol) as a fluffy off-white solid. 
1
H NMR 

(CDCl3) δ: 8.59 (d, J = 4.0, 1H), 8.51 (d, J = 4.0, 4H), 8.34 (d, J = 4.0, 2H), 8.16-8.14 (m, 

5H), 8.06-8.01 (m, 2H), 7.78 (d, J = 8.0, 4H), 7.66-7.62 (m, 3H), 5.63-5.60 (m, 14H), 

4.94 (d, J = 4.0, 2H), 4.64 (s, 8H), 4.61 (s, 4H), 3.96 (d, J = 12.0, 8H), 3.78 (d, J = 12.0, 

8H), 3.03 (br s, 8H), 2.58 (t, J = 4.0, 1H), 1.50 (s, 6H), 1.48 (s, 3H), 1.12 (s, 12H). 
13

C 

NMR ((CD3)2SO) δ: 174.3, 171.7, 171.6, 163.3, 163.1, 162.9, 147.5, 147.4, 146.9, 137.5, 

135.8, 135.6, 134.0, 133.8 (2), 130.6, 130.5, 130.0, 129.8, 129.6, 129.2, 125.3, 125.2, 

125.1, 78.4, 77.8, 66.6, 66.5, 64.0, 63.3 (2), 63.2, 62.0, 53.3, 50.7, 46.6, 17.3 (2), 16.9. IR 

(cm
-1

, film from CH2Cl2): 3440, 3290, 3109, 2931, 2854, 2129, 1731, 1623, 1537, 1346, 

1255, 1122.  HRMS: calcd [M+Na]
+
 (C94H95N7O50Na): 2144.5004. Found: (ESI) 

2144.5006. 

Synthesis of G1 dendrimer 5.14: Compound 5.13 (7.0 mg, 29 µmol, 1 equiv.), dendron 

5.8 (36 mg, 0.10 mmol, 3.6 equiv.), copper sulfate (CuSO4) (2.8 mg, 17 µmol, 0.60 

equiv.), and sodium ascorbate (14 mg, 69 µmol, 2.4 equiv.) were dissolved in DMF/water  

(4:1) mixture (2 mL). The reaction vessel was sealed and irradiated in a Biotage 

microwave at 120 °C for 20 min. The reaction content was then partitioned between brine 

(50 mL) and EtOAc (50 mL). The organic layer was separated and the aqueous layer was 
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extracted with EtOAc (3×50 mL). The organic layers were combined, dried over MgSO4, 

filtered, and concentrated under reduced pressure. The product was purified by column 

chromatography (acetone:CH2Cl2, 2:1). Dendrimer 5.14 (33 mg, 25 µmol) was obtained 

in 88% yield as a fluffy off-white solid. 
1
H NMR ((CD3)2SO) δ: 8.52 (d, J = 4.0, 3H), 

8.32 (s, 3H), 8.26 (dd, J1 = 8.0, J2 = 4.0, 3H), 7.91 (d, J = 8.0, 3H), 7.26 (s, 3H), 5.61 (s, 

6H), 5.50 (s, 6H), 5.43 (s, 6H), 4.79 (t, J = 6.0, 6H), 3.60-3.56 (m, 6H), 3.48-3.44 (m, 

6H), 1.11 (s, 9H).  
13

C NMR ((CD3)2CO) δ: 175.3, 164.6, 148.2, 143.2, 138.6, 138.2, 

134.9, 131.2, 130.2, 128.7, 126.3, 125.6, 65.8, 63.1, 59.6, 53.7, 51.5, 17.4. IR (cm
-1

, film 

from THF): 3406, 3155, 2960, 2883, 1730, 1623, 1537, 1350, 1259, 1124.  HRMS: calcd 

[M+Na]
+ 

(C57H60N12O24Na): 1319.3741. Found: (ESI) 1319.3728 and (MALDI-TOF) 

1319.4. SEC data: Mn = 1700 gmol
-1

, PDI: 1.01. 

Synthesis of G2 dendrimer 5.15: Compound 5.13 (4.0 mg, 16 µmol, 1 equiv.), dendron 

5.10 (56 mg, 59 µmol, 3.6 equiv.), CuSO4 (1.6 mg, 9.8 µmol, 0.60 equiv.), and sodium 

ascorbate (7.8 mg, 39 µmol, 2.4 equiv.) were dissolved in DMF/water  (4:1) (2 mL). The 

reaction vessel was sealed and irradiated in a Biotage microwave reactor at 120 °C for 20 

min. The product was purified by dialysis against DMF (300 mL) using a 6000-8000 

MWCO membrane. The target dendrimer 5.15 (45 mg, 15 µmol) was obtained in 92% 

yield as a fluffy off-white solid. 
1
H NMR ((CD3)2SO) δ: 8.42 (d, J = 4.0, 6H), 8.33 (d, J = 

4.0, 3H) 8.29 (s, 3H), 8.19 (dd, J1 = 8.0, J2 = 4.0, 6H), 8.06 (dd, J1 = 8.0, J2 = 4.0, 3H), 

7.86 (d, J = 8.0, 6H), 7.79 (d, J = 8.0, 3H), 7.26 (s, 3H), 5.60 (s, 6H), 5.54 (s, 6H), 5.49 

(s, 12H), 5.39 (s, 6H), 4.80 (t, J = 6, 12H), 4.64-4.57 (m, 12H), 3.61-3.57 (m, 12H), 3.49-

3.45 (m, 12H), 1.45 (s, 9H), 1.12 (18H). 
13

C NMR ((CD3)2SO) δ: 174.4, 174.3, 171.6, 

163.3, 147.5, 146.9, 141.6, 137.5, 137.1, 135.5, 133.9, 133.8, 130.7, 130.2, 129.5, 129.2, 

127.6, 125.3, 125.2, 125.1, 66.5, 64.0, 63.2, 62.0, 58.6, 52.4, 50.7, 46.6, 17.3, 16.9. IR 

(cm
-1

, film from THF): 3396, 3101, 2958, 2879, 1731, 1623, 1537, 1346, 1251, 1120.  

HRMS: calcd [M+Na]
+
 (C135H138N18O66Na): 3089.7893. Found: (ESI) 3089.7893 and 

(MALDI-TOF) 3089.9. SEC data: Mn = 3700 gmol
-1

, PDI: 1.03. 

Synthesis of G3 dendrimer 5.16: Compound 5.13 (1.9 mg, 8.0 µmol, 1 equiv.), dendron 

5.12 (61 mg, 29 µmol, 3.6 equiv.), CuSO4 (1.6 mg, 9.8 µmol, 1.2 equiv.), and sodium 

ascorbate (7.8 mg, 39 µmol, 4.9 equiv.) were dissolved in DMF/water  (4:1) mixture (2 
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mL). The reaction vessel was sealed and irradiated in a Biotage microwave reactor at 120 

°C for 20 min. The product was purified by dialysis against DMF (300 mL) using a 

12000-14000 MWCO membrane. The target dendrimer 5.16 (48 mg, 7.3 µmol) was 

obtained in 91% yield as a fluffy off-white solid. 
1
H NMR ((CD3)2SO) δ: 8.44-8.39 (m, 

12H), 8.33-8.25 (m, 12H), 8.19 (d, J = 8.0, 12H), 8.02(d, J = 8.0, 9H), 7.90 (s, 3H), 7.88-

7.83 (m, 9H), 7.81-7.73 (m, 9H), 7.27 (s, 3H), 5.61-5.32 (m, 54H), 4.84-4.72 (m, 24H), 

4.70-4.49 (m, 36H), 3.61-3.53 (m, 24H), 3.50-3.42 (m, 24H), 1.46 (s, 18H), 1.42 (s, 9H), 

1.10 (s, 36H). 
13

C NMR ((CD3)2SO) δ: 174.3, 171.6 (3), 163.3, 163.0, 147.4, 146.8, 

137.5, 137.1, 137.0, 135.6, 135.5 (2), 133.9, 133.8 (2), 133.7, 130.5, 130.4, 130.2, 130.1, 

130.0, 129.5, 129.2, 125.2, 125.1 (2), 66.5, 66.4, 64.0, 63.2 (2), 62.0, 54.8, 53.1, 50.7, 

46.6, 46.5, 17.3, 17.2, 16.8. IR (cm
-1

, film from THF): 3429, 3097, 2927, 2854, 1731, 

1623, 1537, 1350, 1253, 1122.  MS: calcd [M+Na]
+
 (C291H294N30O150Na): 6633.6. Found 

(MALDI-TOF) 6634.3. SEC data: Mn = 6000 gmol
-1

, PDI: 1.04. 

General Procedure for Monitoring Dendrimer Degradation by UV-visible 

Spectroscopy: Dendrimer solutions were prepared at the concentration of 23 µM in 

spectroscopic grade THF. 3 mL of solution was transferred to a quartz cuvette and 

irradiated with 313 nm UV light in a Luzchem Photoreactor for 1 h. UV-visible 

absorption spectra were collected every 2 min for the first 10 min and then every 5 min 

for the remaining 50 min. 

General Procedure for Monitoring Dendrimer Degradation by 
1
H NMR 

Spectroscopy: Dendrimer solutions were prepared at the concentration of 10 mg/mL in 

(CD3)2SO. The solutions were transferred to a quartz NMR tube and irradiated with UV 

light using a Hanovia medium pressure mercury lamp (PC 451050/616750, 450 Wage) 

light box for 1 h. 
1
H NMR spectra were collected every 10 min. 
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Chapter 6  

6 Photodegradable Amphiphilic Janus Dendrimers and 
Dendrimersomes as Potential Smart Drug Delivery 
Vehicles 

 

6.1 Introduction 

As discussed in Chapters 2 and 5, dendrimers are a major class of macromolecules that 

are well-known for their three-dimensional globular architecture. Dendrimers are 

structurally perfect dendritic structures with a single or very narrow molar weight 

distribution. They comprise three structural regions: a core, layers of branching repeat 

units comprising the backbone, where each layer typically results from one stage of 

growth and is termed a “generation”, and a peripheral layer. Based on their unique 

properties such as their very defined chemical structures, branched architectures, and 

existence of multiple peripheral groups for conjugation of functional moieties, 

dendrimers and dendrimer assemblies have received significant interest in the area of 

biomedical applications.
1-4

 

In addition to conventional dendrimers, Janus dendrimers have also become the focus 

of intense research in the past two decades. These are dendrimers with well-defined but 

asymmetric architectures of two chemically distinct dendrons on opposite sides with 

different chemical compositions, peripheral groups, and/or polarities. They are also 

known as ‘‘surface-block’’ dendrimers, diblock dendrimers, codendrimers, diblock co-

dendrimers, or bow-tie dendrimers.
5
 In comparison with conventional dendrimers with 

uniform chemical structures, the presence of two or more chemically distinct regions in 

the backbone of Janus dendrimers can impart additional novel properties to these 

molecules.  

To develop dendrimer-based vehicles capable of encapsulating drugs and delivering 

them to the organs of interest, amphiphilicity needs to be imparted to dendrimers. This 

can be achieved by having both hydrophobic and hydrophilic dendrons in their 
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backbones. Such dendrimers, commonly known as "Amphiphilic Janus dendrimers 

(AJD)", are capable of undergoing phase segregation to form well-defined morphologies 

owing to different phase behaviour of their dendritic blocks.
5,6

 To date, AJDs with a 

variety of dendritic backbones have been synthesized. The first example of such AJD 

synthesis dates back only to twenty years ago where Fréchet and coworkers synthesized 

an asymmetric dendrimer based on 3,5-dihydroxybenzyl alcohol repeat unit, known as 

Fréchet-type dendrimers, with phenyl and carboxy peripheral groups.
7
 Since then, many 

examples of AJDs and their potential as drug delivery vehicles have been reported in the 

literature. A few examples of these materials are discussed below. 

As PAMAM dendrimers are leading dendrimer types in biomaterials, their 

incorporation into AJD architectures has also been frequently reported.
8
 In an early work 

by Okada and coworkers,
9
 PAMAM-based AJDs were prepared in which the periphery of 

one wedge of the dendrimer was decorated with the hydrophilic maltono lactone 

carbohydrate while the surface amine groups of the other wedge were reacted with 

phthalic anhydride in order to impart the required hydrophobic properties. Although the 

self-assembly behavior of this dendrimer was not investigated, its molecular recognition 

potential was evaluated using concanavalin A lectin. In another study by the same group, 

a library of third and fourth generation PAMAM-based AJDs with various surface 

functionalities were prepared. These include dendrimers with amino and n-hexyl 

(amino/hexyl) peripheral groups, hydroxyl and n-hexyl (hydroxyl/hexyl) peripheral 

groups, and N-acetyl-D-glucosamine and n-hexyl (glucosamine/hexyl) peripheries.
10

 The 

authors then studied the adlayer (the layer formed by the adsorption of AJDs on the solid 

substrate) formation capabilities of these dendrimers on solid substrates. More recently, 

effective synthesis of AJDs based on PAMAM and Fréchet-type dendrons have also been 

reported.
11

 To efficiently construct such dendrimers, PAMAM dendrons (G1-4) with 

alkyne functionalities at their focal point and Fréchet-type dendrons (G1-4) with azide 

focal groups were ligated together employing the high-yielding Cu(I)-catalyzed alkyne-

azide click reaction to obtain various generations of such AJDs.  In addition to PAMAM-

based AJDs, amino acid-based AJDs,
12-15

 ones incorporating aliphatic polyethers,
16-18

 

fullerene-containing AJDs,
19,20

 polymerized AJDs,
21

 and ones based on PEG have been 

reported.
22
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AJDs in which at least one dendritic block incorporates bis-MPA-based polyester 

dendrons in its backbone are among the most widely reported dendrimers of this type.
23-38

 

For instance, Fréchet and coworkers have developed "bow-tie" dendritic systems in 

which both dendritic blocks are bis-MPA-based polyester dendrons.
23,25,26

 In these 

examples, the periphery of one dendritic block was used for the conjugation of PEG 

chains with varying MWs to enhance their water solubility and the other wedge of the 

dendrimer was used for the conjugation of therapeutics.
23,25,26 

 In another example, 

Wegner and coworkers have synthesized a third generation AJD consisting of Fréchet-

type and polyester dendrons and studied its self-assembly behavior.
30

 It was shown that in 

water-immiscible organic solvents containing water droplets this AJD undergoes a 

topological transformation from sphere to button structures.  

More recently, Percec and coworkers have synthesized a total number of 107 

amphiphilic Janus dendrimers, with different backbones and generation numbers, and 

screened their self-assembly behaviour in aqueous media.
37,38

 The authors showed that 

when such materials are dispersed in water, they can undergo self-assembly to form a 

wide range of morphologies including vesicles (named as dendrimersomes), cubosomes, 

disks, tubular vesicles, and helical ribbons. Similar to polymersomes, dendrimersomes 

are of significant interest as they can potentially be multifunctional by encapsulating both 

hydrophilic and hydrophobic species. As a result, they were investigated in more depth in 

these reports. The authors concluded that dendrimersomes not only exhibit stability and 

mechanical strength of polymersomes, but also have the advantages of superior size 

uniformity, ease of formation, and chemical modification.   

The development of drug delivery vehicles that are responsive to specific stimuli is 

also of significant interest as this can impart new properties and further expand their 

scope of applications. To date, several types of nanomaterials responsive to a wide 

variety of external stimuli have been developed.
39-43

 Among various stimuli, light is of 

particular interest for the development of smart materials as it can be applied at a specific 

time and location with control over its intensity and wavelength. In the context of 

vesicular drug delivery systems that are capable of photolytic degradation, there are 

limited number of reported examples.
44-48

 In these examples, which are mostly 
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polymersome-based systems, a photodegradable moiety, often an o-nitrobenzyl ester 

moiety, is placed at the junction between the hydrophilic and hydrophobic blocks of the 

BCPs. Upon irradiation with UV light, the BCPs undergo degradation resulting in 

disruption of the vesicular structure. However, as pointed out by other scientists, in these 

cases there is a high chance for the released hydrophobic chains to either aggregate to 

form macroscopic precipitates or undergo rearrangement to form other sorts of 

assemblies.
49

 Both these events can potentially reduce their drug delivery efficiencies.  

We have recently reported the synthesis and photodegradation behavior of dendrons 

and dendrimers (G1-3) with an entire photodegradable backbone.
50

 We have shown that 

these dendrimers are capable of undergoing complete photolytic backbone cleavage 

without producing any macromolecular byproducts. In this chapter, the progress towards 

the incorporation of these photodegradable dendrons into AJD structures, their self-

assembly to nanomaterials including photodegradable dendrimersomes, and their 

photolytic cargo release will be discussed. It is noteworthy that the photodegradable 

dendrimersomes described in this chapter are the first example of any vesicular 

architecture (including polymersomes, dendrimersomes, and small amphiphile-based 

vesicles) that are capable of complete photolytic membrane degradation to release their 

encapsulated model drugs. 

6.2 Results and Discussion 

6.2.1 Synthesis of Photodegradable Amphiphilic Janus Dendrimers 

The synthetic strategy to incorporate our recently developed photodegradable dendrons
50

 

into AJD structure involves the divergent growth of the dendrimers from the focal point 

of the hydrophilic dendritic block (Scheme 6.1).  



140 

 

 

 

Scheme 6.1. Synthesis of G1-3 AJDs. 

For the hydrophilic block, a dendritic backbone based on triethylene glycol (TEG) and 

gallic acid, 6.1, was synthesized with a benzyl alcohol focal point.
51,52

 As shown in 

Scheme 6.1, the hydroxyl focal point was then reacted with our previously reported 
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photodegradable monomer 5.5 under EDC-coupling conditions to provide protected G1 

dendrimer 6.2 in high yield. The acetonide protecting group was then removed under 

acidic condition to obtain unprotected G1 AJD 6.3. Repetition of this coupling and 

deprotection sequence provided protected G2, 6.4, and G3, 6.6, dendrimers in high 

yields. 

The resulting dendrimers were characterized by 
1
H and 

13
C NMR spectroscopy, 

HRMS, IR spectroscopy, and SEC. SEC traces of the protected AJDs are depicted in 

Figure 6.1a with their corresponding SEC data shown in Figure 6.1b. 

 

Figure 6.1. a) SEC traces and b) MW and PDI characteristics of AJDs 6.2, 6.4, and 6.6. 
a 

Molecular weight calculated based on chemical structures of the dendrimers, 
b 

Mn 

obtained from SEC, and 
c 
PDI was determined from SEC. 

As shown in the SEC traces (Figure 6.1a), the resulting dendrimers exhibit 

monomodal MW distribution profiles with the expected increases in hydrodynamic 

volume with each generation, as well as very narrow PDIs (Figure 6.1b). 

6.2.2 Self-Assembly of Amphiphilic Janus Dendrimers in Aqueous 
Media 

Having the protected AJDs 6.2, 6.4, and 6.6 in hand, their self-assembly behaviors in 

mixed organic-aqueous system were then investigated. For this purpose, an 8 mg/mL 

solution of each dendrimer in THF (0.25 mL) was first prepared in a vial and distilled 

water (1.25 mL) was then added dropwise with vigorous stirring. The samples were then 



142 

 

 

stirred overnight with their caps left open to remove most of the THF. The samples were 

dialyzed against distilled water to further remove the residual THF.  

The samples were first analyzed by DLS measurements to gain insight into the sizes of 

the materials obtained. In the case of the 1
st
 generation dendrimer 6.2, no meaningful 

DLS data was obtained. As a result, it was speculated that the hydrophobic block of this 

AJD was too small compared to the hydrophilic block to induce any self-assembly events 

and the molecule was essentially water-soluble. On the other hand, it was found that 2
nd

 

and 3
rd

 generation AJDs 6.4 and 6.6 were able to form assemblies with average sizes (z-

average)  of about 270 nm and 450 nm, respectively  (Figure 6.2). 

 

Figure 6.2. Size distribution profiles measured by DLS for assemblies formed by a) 2
nd

 

generation AJD 6.4 and b) 3
rd

 generation AJD 6.6. 

In addition to DLS, TEM imaging revealed additional information regarding the 

morphologies of the resulting assemblies. As shown in Figure 6.3a, it was found that 

particles formed by dendrimer 6.4 had a core-shell structure with a photodegradable 

hydrophobic core and a shell of TEG chains. On the other hand, 3
rd

 generation dendrimer 

6.6 underwent self-assembly to form well-defined dendrimersomes in which the 

photodegradable hydrophobic dendritic block constituted their membranes and the TEG 

chains pointing towards the interior and exterior aqueous media (Figure 6.3b). Further 

TEM analysis revealed that dendrimersomes have a membrane thickness of roughly 10 

nm which is within the range of values obtained for other dendrimersomes formed by a 

variety of other AJDs in the literature.
37

 



143 

 

 

 

Figure 6.3. TEM images of a) particles prepared from AJD 6.4 and b) dendrimersomes 

formed by AJD 6.6. 

6.2.3 Photodegradation Study of the Dendrimersomes 

As the main focus of this project was to develop dendrimersomes with photodegradable 

membranes, photodegradation studies of the above-mentioned assemblies did not involve 

the particles obtained from dendrimer 6.4.  

Prior to the photolysis of the dendrimersomes, it was essential to study the 

photodegradation behavior of AJD 6.6 in the solution state and compare the results to 

those previously obtained for our photodegradable dendrimers.
50

 For this purpose, a ~30 

µg/mL solution of G3 dendrimer 6.6 in THF was irradiated with 300 - 400 nm UV light 

at with a receiving power of about 25 mW·cm
-2

 over a period of 30 min and the UV-

visible absorption spectra of the solution were recorded in 2 min intervals. As shown in 

Figure 6.4a, the result obtained is in accordance with our previously obtained data for 

photodegradable hydrophobic dendrimers.
50

 A decrease in absorbance was observed for 

the peaks at 225 and 265 nm while increases in absorbance were observed at 300 and 340 

nm, along with corresponding red shifts in their absorption maxima. As mentioned 

earlier, these observations are in accordance with the results obtained by other groups for 

this photolabile group. The absorption band at 350 nm is attributed to o-

nitrosobenzaldehyde, which is a product of o-nitrobenzyl ester photolysis, and exhibits a 

weak absorption band at 350-360 nm that is solvent dependent. In addition, spectral 
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change behavior of this dendrimer was also investigated when it was self-assembled into 

vesicular structure in aqueous media. For the data to be consistent with the solution state, 

the dendrimersome sample was prepared at the concentration of ~30 µg/mL 
 
and was 

irradiated with the same lamp settings and time intervals described above. As shown in 

Figure 6.4b, a general trend of decrease in the peak intensities was observed for the 

dendrimersomes. It should be noted that as the chemical environments of dendrimer 6.6 

in THF versus in self-assembled state in water are quite different and the suspension of 

the dendrimersomes scatters light significantly, differences in their spectral profiles were 

expected. Nevertheless, the change in the UV-visible spectra of the dendrimersomes upon 

UV irradiation does suggest a change in the spectroscopic state of their photodegradable 

hydrophobic membrane. 

 

Figure 6.4. UV-visible spectra for G3 AJD 6.6 a) as THF solution and b) as self-

assembled dendrimersomes in water upon irradiation with UV light for 30 min. Inset 

shows the expanded region between 285-415 nm. 

DLS analysis was also employed to study the photolysis of the dendrimersomes. For 

this purpose, suspension of dendrimersomes with the concentration of 0.1 mg/mL were 

placed in a quartz cuvette, irradiated with UV light, and DLS measurements were 

performed at the given time points. As a result, there was no change in the overall 

concentration of the dendrimer 6.6 throughout the experiment in the system. At each time 
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point, three measurements of 150 s each were performed. As shown in Figure 6.5a, upon 

irradiating dendrimersome for a course of 210 min, a dramatic decrease in the mean 

count rate from about 240 to 9 kcps was observed. It has been demonstrated that a 

decrease in the count rate (intensity of the scattered light) can stem from three factors: 1) 

a decrease in the total concentration of particles in the system, 2) a decrease in the size of 

the particles in the system, and 3) a combination of the former two factors.
45

 Taking into 

account that no precipitation was observed during the photolysis of the dendrimersomes, 

we conclude that the total concentration of particles did not change. As a result, the 

observed decrease in the mean count rate can be explained by the decrease in the size of 

the particles in the system. In fact, as shown in Figure 6.5b, it was demonstrated that after 

irradiating the sample for 210 min, dendrimersomes were completely disrupted and new 

objects with diameters of 2 nm were formed, likely small molecule degradation products. 

However, due to the very low degree of light scattering, it should be noted that the quality 

of DLS data obtained at this point was marginal. 

 

Figure 6.5. DLS measurements for the photolysis of dendrimersomes: a) plot of mean 

count rate versus irradiation time and b) size distribution profile of the dendrimersome 

sample before and after UV irradiation. 

As described above, while there was no precipitate formation during the experiment, 

this decrease in the mean count rate can be attributed to very small size of the photolysis 

byproducts which were out of the detection limit of the instrument. As a result, it was 

concluded that, upon photolysis, the membranes of the dendrimersomes were completely 
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fragmented to small molecules and the remaining hydrophilic dendritic blocks were 

unable to undergo self-assembly to form any further meaningful morphologies. In fact, 

this hypothesis was further supported by TEM imaging of the photodegraded sample. As 

shown in Figure 6.6, no distinct self-assembled material was observed in these images. In 

a similar observation by Zhao and coworkers, 60 nm polymeric micelles with a backbone 

photodegradable hydrophobic core were shown to undergo photodegradation to a point 

where no clear morphology was observable.
53

 

 

Figure 6.6. TEM images of the UV-irradiated dendrimersome sample after 210 min. 

As a result of this complete photolytic membrane degradation, this system offers 

significant advantage over the currently reported photodegradable vesicular drug delivery 

systems. As previously discussed, while it has been shown that photolysis of 

polymersomes, comprised of BCPs with a single photodegradable group at the junction 

between the hydrophilic and hydrophobic blocks, results either in the precipitation of the 

detached hydrophobic block or morphological transformation to smaller size particles as 

micelles, our photodegradable dendrimersome system represents the first example of this 

class of drug delivery vehicles in which complete degradation of the hydrophobic block 

is achieved. This is expected to result in significant enhancement in release efficiency of 

vesicular drug delivery systems. 
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6.3 Conclusion 

In summary, a small library of AJDs (G1-3) with backbone photodegradable hydrophobic 

dendritic blocks were successfully synthesized and fully characterized. 3
rd

 generation 

AJD 6.6 was shown to undergo self-assembly to form well-defined dendrimersomes with 

an average size of about 450 nm. Upon irradiation with UV light (300-400 nm, 25 

mW·cm
-2

), the dendrimersomes' membranes were effectively disrupted to disintegrate 

these assemblies with no sign of precipitation or morphological change to smaller 

assemblies. Studies are currently underway to evaluate the photolytic release behavior of 

these smart dendrimersomes with regards to both hydrophilic and hydrophobic model 

drug molecules. 

6.4 Experimental 

General Procedures and Materials 

Compounds 6.1
51,52

 and 5.5
50

 were synthesized according to the previously published 

procedures. All the other chemicals were purchased from Sigma-Aldrich or Alfa Aesar 

and were used without further purification unless otherwise noted. Anhydrous DMF was 

obtained from a solvent purification system using aluminum oxide columns. 

Dichloromethane was distilled from calcium hydride. Unless otherwise stated, all 

reactions were performed under a nitrogen atmosphere using flame or oven dried 

glassware. For the reactions that were stirred in dark, aluminum foil was used to isolate 

the reaction flasks from light. No special precautions regarding light, were taken during 

purification or isolation of these compounds. For long term storage, the isolated materials 

were stored in freezer. However no degradation issues were encountered when materials 

were stored in the dark at ambient temperature. 
1
H NMR spectra were obtained at 400 

MHz, and 
13

C NMR spectra were obtained at 100 MHz. NMR chemical shifts are 

reported in ppm and are calibrated against the residual solvent signal of CDCl3 (δ 7.26 

and 77.16 ppm). J values are expressed in Hz. IR spectra were obtained as films from 

CH2Cl2 on NaCl plates using a Bruker Tensor 27 instrument. HRMS was performed 

using a Finnigan MAT 8400 electron impact mass spectrometer. ESI was performed 

using a PE-Sciex API 365  mass spectrometer. UV–visible absorption spectroscopy was 
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performed on a Varian Cary 300 Bio UV–visible spectrophotometer. Dialyses were 

performed using Spectra/Por regenerated cellulose membranes with either a 2,000 g/mol 

or 3500 g/mol MWCO. SEC instrument was equipped with a Viscotek GPC Max 

VE2001 solvent module. Samples were analyzed using the Viscotek VE3580 RI detector 

operating at 30 C. The separation technique employed a Polypore guard column (50 x 

7.5mm) and two Agilent Polypore (300 x 7.5 mm) columns connected in series.  Samples 

were dissolved in THF (glass distilled grade) at approximately 5 mg/mL concentrations 

and filtered through 0.22 µm syringe filters. Samples were injected using a 100 µL loop. 

The THF eluent was filtered and eluted at 1 ml/min for a total of 30 minutes. A 

calibration curve was obtained from polystyrene standards with molecular weights 

ranging from 1,540-1,126,000 g/mol. The light source used for the photochemical 

reactions was a Hanovia medium pressure mercury lamp (PC 451050/616750, 450 Wage) 

with an emitting wavelength of 300-400 nm and a power of 25 mW·cm
-2

 at 10 cm from 

the lamp where the samples were irradiate. DLS data were obtained using a Zetasizer 

NanoZS instrument from Malvern Instruments. 

Synthesis of Protected G1 AJD 6.2: Hydrophilic dendritic block 6.1 (0.55 g, 0.92 

mmol, 1.0 equiv.) and monomer 5.5 (0.49 g, 1.4 mmol, 1.5 equiv.) were dissolved in 

CH2Cl2 (30 mL). EDCHCl (0.40 g, 2.1 mmol, 2.2 equiv.) and DMAP (0.11 g, 0.92 

mmol, 1.0 equiv.) were added in one portion and the resulting solution was stirred at 

room temperature in dark for 18 h. At this point, CH2Cl2 was removed under reduced 

pressure. The residue was dissolved in DMF and the product was purified by dialysis 

against DMF using 2000 MWCO membrane for 24 h. The solvent was then removed 

under reduced pressure to give dendrimer 6.2 (0.76 g, 0.82 mmol) in 89% yield. 
1
H NMR 

(CDCl3) δ: 8.76 (d, J = 4.0, 1H), 8.30 (dd, J1 = 8.0, J2 = 4.0, 1H), 7.85 (d, J = 8.0, 1H), 

6.67 (s, 2H), 5.66 (s, 2H), 5.27 (s, 2H), 4.28 (d, J = 12.0, 2H), 4.19-4.13 (m, 6H), 3.85 (t, 

J = 4.0, 4H), 3.73 (t, J = 4.0, 2H), 3.75-3.69 (m, 8H), 3.68-3.62 (m, 12H), 3.56-3.52  (m, 

6H), 3.37 (s, 9H), 1.47 (s, 3H), 1.40 (s, 3H), 1.17 (s, 3H). 
13

C NMR (CDCl3) δ: 173.6, 

163.9, 152.7, 147.1, 138.7, 137.1, 134.3, 130.8, 130.4, 128.9, 126.1, 108.3, 98.1, 72.2, 

71.8, 71.8, 70.7, 70.6, 70.4, 70.4, 69.6, 68.9, 67.6, 66.1, 63.0, 58.9, 42.3, 26.5, 20.7, 18.2. 

IR (cm
-1

, film from CH2Cl2): 3097, 2939, 2881, 1731, 1623, 1539, 1351, 1249, 1122. 
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HRMS: calcd [M+Na]
+
 (C44H67NO20Na): 952.4154. Found: (ESI) 952.4114. SEC data: 

Mn = 1200 gmol
-1

, PDI: 1.01. 

Synthesis of Deprotected G1 AJD 6.3: Dendrimer 6.2 (0.26 g, 0.28 mmol) was 

dissolved in methanol (25 mL) and CH2Cl2 (5 mL). Concentrated sulfuric acid (0.30 mL) 

was added and the resulting solution was stirred at room temperature in dark for 2 h. At 

this point, 
1
H NMR showed the completion of the reaction. The solution was diluted by 

the addition of CH2Cl2 (50 mL). Organic solution was then washed with 1M Na2CO3 

(2×100 mL) and brine (1×100 mL). The organic layer was dried over MgSO4, filtered, 

and concentrated under reduced pressure to give dendrimer 6.3 (0.23 g, 0.26 mmol) in 

93% yield. 
1
H NMR (CDCl3) δ: 8.75 (d, J = 4.0, 1H), 8.31 (dd, J1 = 8.0, J2 = 4.0, 1H), 

7.83 (d, J = 8.0, 1H), 6.68 (s, 2H), 5.65 (s, 2H), 5.27 (s, 2H), 4.18-4.14 (m, 6H), 3.98 (d, 

J = 8.0, 2H), 3.85 (t, J = 4.0, 4H), 3.80-3.77 (m, 4H), 3.73-3.70 (m, 6H), 3.66-3.62 (m, 

12H), 3.55-3.52 (m, 6H), 3.36 (s, 9H), 2.81 (br s, 2H), 1.12 (s, 3H). 
13

C NMR (CDCl3) δ: 

174.8, 163.8, 152.6, 147.1, 138.5, 136.8, 134.3, 130.8, 130.4, 129.0, 125.9, 108.2, 72.2, 

71.7, 70.6, 70.5, 70.4, 70.3, 69.6, 68.8, 67.6, 66.9, 62.8, 58.8, 49.6, 17.1. IR (cm
-1

, film 

from CH2Cl2): 3415, 3089, 2906, 2879, 1730, 1623, 1535, 1350, 1253, 1112. HRMS: 

calcd [M+Na]
+
 (C41H63NO20Na): 912.3841. Found: (ESI) 912.3821. SEC data: Mn = 1200 

gmol
-1

, PDI: 1.01. 

Synthesis of Protected G2 AJD 6.4: Dendrimer 6.3 (0.21 g, 0.24 mmol, 1.0 equiv.) and 

monomer 5.5 (0.26 g, 0.72 mmol, 3.0 equiv.) were dissolved in CH2Cl2 (45 mL). 

EDC·HCl (0.21 g, 1.1 mmol, 4.5 equiv.) and DMAP (59 mg, 0.48 mmol, 2.0 equiv.) were 

added in one portion and the resulting solution was stirred at room temperature in dark 

for 18 h. At this point, CH2Cl2 was removed under reduced pressure. The residue was 

dissolved in DMF and product was purified by dialysis against DMF using 3500 MWCO 

membrane for 24 h. The solvent was then removed under reduced pressure to give 

dendrimer 6.4 (0.31 g, 0.20 mmol) in 83% yield. 
1
H NMR (CDCl3) δ: 8.64-8.58 (m, 3H), 

8.23-8.16 (m, 3H), 7.85 (d, J = 8.0, 2H), 7.63 (d, J = 8.0, 1H), 6.68 (s, 2H), 5.65 (s, 4H), 

5.60 (s, 2H), 5.26 (s, 2H), 4.67-4.59 (m, 4H), 4.28 (d, J = 12.0, 4H), 4.19-4.13 (m, 6H), 

3.85 (t, J = 4.0, 4H), 3.73 (t, J = 4.0, 2H), 3.75-3.69 (m, 10H), 3.67-3.61 (m, 12H), 3.56-

3.51 (m, 6H), 3.36 (s, 9H), 1.49 (s, 3H), 1.47 (s, 6H), 1.39 (s, 6H), 1.18 (s, 6H). 
13

C NMR 
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(CDCl3) δ: 173.6, 171.5, 163.6, 163.4, 152.7, 147.8, 147.1, 138.7, 137.6, 135.0, 134.2, 

131.6, 130.4, 130.0, 129.0, 129.0, 126.1, 126.0, 126.0, 108.4, 98.2, 72.3, 71.9, 71.8, 70.7, 

70.6, 70.4, 69.6, 68.9, 67.8, 66.4, 66.1, 63.8, 63.0, 58.9, 47.0, 42.4, 26.6, 20.6, 18.2, 17.9. 

IR (cm
-1

, film from CH2Cl2): 3091, 2918, 2875, 1733, 1623, 1535, 1348, 1249, 1116. 

HRMS: calcd [M+Na]
+
 (C73H97N3O34Na): 1582.5851. Found: (ESI) 1582.5857. SEC 

data: Mn = 1900 gmol
-1

, PDI: 1.01. 

Synthesis of Deprotected G2 AJD 6.5: Dendrimer 6.4 (0.20 g, 0.13 mmol) was 

dissolved in methanol (50 mL) and CH2Cl2 (10 mL). Concentrated sulfuric acid (0.60 

mL) was added and the resulting solution was stirred at room temperature in dark for 2 h. 

At this point, 
1
H NMR showed the completion of the reaction. The solution was diluted 

by the addition of CH2Cl2 (50 mL). Organic solution was then washed with 1M Na2CO3 

(2×100 mL) and brine (1×100 mL). The organic layer was dried over MgSO4, filtered, 

and concentrated under reduced pressure to give dendrimer 6.5 (0.18 g, 0.12 mmol) in 

95% yield. 
1
H NMR (CDCl3) δ: 8.60-8.51 (m, 3H), 8.20- 8.09 (m ,3H), 7.79 (d, J = 8.0, 

2H), 7.62 (d, J = 8.0, 1H), 6.68 (s, 2H), 5.61 (s, 6H), 5.25 (s, 2H), 4.63 (s, 4H), 4.21-4.12 

(m, 6H), 4.02-3.94 (m, 4H), 3.85 (t, J = 4.0, 4H), 3.83-3.76 (m, 6H), 3.75-3.69 (m, 6H), 

3.68-3.61 (m, 12H), 3.56-3.51 (m, 6H), 3.36 (s, 9H), 2.98 (t, J = 8.0, 4H), 1.49 (s, 3H), 

1.13 (s, 6H). 
13

C NMR (CDCl3) δ: 175.0, 171.7, 163.8, 163.5, 152.7, 147.8, 147.1, 138.6, 

137.4, 135.2, 134.2, 134.2, 131.5, 130.4, 130.2, 130.0, 129.2, 126.1, 125.9, 108.4, 72.3, 

71.9 (2), 70.7, 70.6, 70.4, 69.7, 68.9, 67.9, 67.3, 67.3, 66.8, 63.8, 62.9, 59.0, 49.7, 47.0, 

18.1, 17.2. IR (cm
-1

, film from CH2Cl2): 3394, 3082, 2927, 2883, 1726, 1625, 1537, 

1350, 1255, 1114. HRMS: calcd [M+Na]
+
 (C67H89N3O34Na): 1502.5225. Found: (ESI) 

1502.5205. SEC data: Mn = 1900 gmol
-1

, PDI: 1.02. 

Synthesis of Protected G3 AJD 6.6: Dendrimer 6.5 (0.14 g, 0.10 mmol, 1.0 equiv.) and 

monomer 5.5 (0.21 g, 0.60 mmol, 6.0 equiv.) were dissolved in CH2Cl2 (35 mL). 

EDC·HCl (0.17 g, 0.90 mmol, 9.0 equiv.) and DMAP (49 mg, 0.40 mmol, 4.0 equiv.) 

were added in one portion and the resulting solution was stirred at room temperature in 

dark for 18 h. At this point, CH2Cl2 was removed under reduced pressure. The residue 

was dissolved in DMF and product was purified by dialysis against DMF using 3500 

MWCO membrane for 24 hrs. The solvent was then removed under reduced pressure to 
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give dendrimer 6.6 (0.25 g, 90 µmol) in 90% yield. 
1
H NMR (CDCl3) δ: 8.61-8.57 (m, 

5H), 8.51-8.48 (m ,2H), 8.22-8.16 (m, 5H), 8.12-8.08 (m, 2H), 7.85 (d, J = 8.0, 4H), 7.65 

(d, J = 8.0, 3H), 6.67 (s, 2H), 5.64 (s, 8H), 5.61 (s, 4H), 5.59 (s, 2H), 5.25 (s, 2H), 4.67-

4.58 (m, 12H), 4.27 (d, J = 12.0, 8H), 4.20-4.12 (m, 6H), 3.85 (t, J = 4.0, 4H), 3.73 (t, J 

= 4.0, 2H), 3.75-3.68 (m, 14H), 3.67-3.61 (m, 12H), 3.56-3.51 (m, 6H), 3.36 (s, 9H), 

1.50 (s, 6H), 1.48 (s, 3H), 1.46 (s, 12H), 1.38 (s, 12H), 1.17 (s, 12H). 
13

C NMR (CDCl3) 

δ: 173.7, 171.6, 171.6, 163.8, 163.6, 163.3, 152.8, 147.9, 147.8, 147.2, 138.9, 137.7, 

135.7, 135.2, 134.3, 134.1, 131.7, 130.9, 130.4, 130.3, 130.1, 129.1, 126.2, 126.1, 126.0, 

114.8, 108.5, 98.3, 72.4, 72.0 (2), 70.8, 70.7, 70.6, 70.5, 69.8, 69.0, 67.9, 66.6, 66.5, 66.2, 

64.0, 63.9, 63.9, 63.1, 59.0, 47.1, 47.0, 42.5, 26.7, 20.7, 18.3, 18.1, 18.0. IR (cm
-1

, film 

from CH2Cl2): 3084, 2927, 2879, 1731, 1623, 1539, 1346, 1255, 1118. HRMS: calcd 

[M+Na]
+
 (C131H157N7O62Na): 2842.9251. Found: (ESI) 2842.9245. SEC data: Mn = 3200 

gmol
-1

, PDI: 1.01. 

General Procedure for the Preparation of Dendrimer Assemblies: Dendrimer 

assemblies were prepared by first dissolving each AJD dendrimer (2 mg) in spectroscopic 

grade THF (0.25 mL) in a vial followed by dropwise addition of distilled water (1.25 mL) 

with vigorous stirring. The resulting assembly samples were stirred overnight with their 

vial caps left open to remove most of the THF. The residual THF was removed by 

dialyzing the samples against distilled water using 3500 MWCO membrane for 24 h.  

General Procedure for Monitoring Dendrimer Degradation by UV-visible 

Spectroscopy: Dendrimer sample was prepared at the concentration of 30 µg/mL in 

either spectroscopic grade THF or as dendrimersomes in distilled water. 3 mL of solution 

was transferred to a quartz cuvette and irradiated with UV light for 30 min. UV-visible 

absorption spectra were collected every 2 min. 

General Procedure for Monitoring Dendrimersome Degradation by DLS analysis: 

Dendrimesome sample was prepared at the concentration of 0.1 mg/mL of dendrimer 6.6 

in distilled water. 2 mL of this sample was transfered to a quartz cuvette and irradiated 

with UV light for 210 min. DLS measurements were performed at the given time points 

on the same sample. For each time point three measurements each for 150 s were 
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performed. Mean count rates reported in Figure 6.5a are the average values obtained for 

each time point with their relevant error bars.  

Transmission Electron Microscopy: The suspension of the dendrimer assemblies (5 μL, 

0.05 mg/mL) was placed on a carbon formvar grid and was left to dry in air in dark for 6 

h. Imaging was performed using a Phillips CM10 microscope operating at 80 kV with a 

40 µm aperture. 
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Chapter 7  

Conclusions and Future Directions 

The research described in this thesis demonstrated not only the application of dendron-

functionalized biodegradable and biocompatible PEO-PCL polymersome system as a 

novel scaffold for various biomedical applications, but also took a significant step 

towards the biomedical applications of photo-responsive materials by developing 

backbone photodegradable dendrimers and dendrimer assemblies as potential drug 

delivery vehicles. These contributions are of importance in the area of biomaterials as 

researchers are always seeking materials with new and improved properties and 

functions, as well as an enhanced understanding of the interactions of materials with 

biological systems.  

The initial focus of this research was to develop a biodegradable and biocompatible 

polymersome-based system that could be used in different areas of biomedical research. 

Work by our group had shown that dendritic surface functionalization of materials, 

including polymersomes, is a highly promising approach for controlling their surface 

functionalities and imparting specific biological properties. However, the polymersomes 

used in these studies were micron-sized and were composed of nonbiodegradable PEO-

PBD BCPs with unknown biocompatibility. To address these limitations, and thus 

provide a significant advancement toward biomedical applications, this work was 

extended to nano-sized biodegradable and biocompatible polymer assemblies, namely 

micelles and polymersomes, constructed by the self-assembly of PEO-PCL BCPs. 

Having decorated their surfaces with azide groups, the conjugation of 3
rd

 generation 

polyester dendrons bearing alkyne functionalities at their focal points and either amine or 

guanidine peripheral groups as well as a clickable small molecule rhodamine dye were 

evaluated by performing Cu(I)-catalyzed alkyne-azide click reaction at the surfaces of the 

assemblies. To demonstrate the applicability of the dendritic surface functionalization 

approach, micelles with conjugated dendritic guanidines were shown to have enhanced 

cell uptake by HeLa cancer cells relative to unfunctionalized micelles.  
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To enhance the longitudinal relaxivity of clinically used MRI contrast agents, Gd(III) 

complexes have been conjugated to a wide variety of macromolecular and material-based 

scaffolds. Among such scaffolds, there are very few reports of polymersome-based MRI 

contrast agents. Cheng et al. have investigated porous polymersomes containing Gd(III)-

labeled dendrimers within their aqueous cores, and have obtained an r1 of 7.5 mM
-1

 s
-1

 

(60MHz, 40 °C) on a per Gd basis. More recently, Grull et al. incorporated Gd(III)-

labeled lipids into a polymersome membrane, resulting in an r1 of 22 mM
-1

 s
-1

 (20 MHz, 

25 °C). To improve these values, in Chapter 3, we designed and synthesized dendritic and 

non-dendritic polymersome-based MRI contrast agents. In this design, both alkyne-

functionalized non-dendritic and dendritic Gd(III)-based contrast agents were first 

synthesized and then installed onto the surface of azide-decorated PEO-PCL 

polymersomes. The effects of the dendritic and polymersome components on the 

relaxivities of the agents were elucidated. They were found to have an additive effect, 

resulting in the highest currently reported r1 for a polymersome system. In addition, this 

system possesses the advantage of being composed of PEO and biodegradable polyester 

components. Therefore, this study not only enhanced the performance of the contrast 

agents in terms of relaxivity, it also contributed to the fundamental understanding of the 

contribution of different nano-scale components to enhancing this relaxivity. 

To show the versatility of this functionalization approach and to demonstrate the 

multifunctional potential of polymersomes, in Chapter 4, a multifunctional polymersome 

system with the potential to interfere with the viral infection process at two levels was 

developed. In this study, a 3
rd

 generation polyester dendron decorated with Neu5Ac was 

introduced to the surface of PEO-PCL polymersomes to inhibit the binding of influenza 

virus hemagglutinin to Neu5Ac moieties on mammalian host cells. In addition, the 

antiviral drug zanamivir was incorporated into the polymersome core with the aim of also 

inhibiting influenza virus neuraminidase, thus preventing the release of progeny virus 

from host cells. Using an enzyme-linked lectin inhibition assay, it was shown that 

incorporation of the dendritic Neu5Ac onto the polymersome surface led to a nearly 

2000-fold enhancement in binding affinity, showing the advantage of the polymersome 

system for enhancing binding. Sustained release of the drug was also observed for this 

system, with release occurring over a period of several days. This work represents the 
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first multifunctional polymersome system with the potential to interfere with the viral 

infection process. 

The development of smart dendrimers that can respond to external stimuli is of 

significant interest as this can impart new properties and further expand their scope of 

applications. Among various stimuli, light is of particular interest as it can be applied at a 

specific time and location with control over its intensity and wavelength. The examples 

of photodegradable dendrimer systems in the literature have been limited to dendrimers 

in which the photodegradable units were either at the core of the dendrimer or at the 

junction between the hydrophobic and hydrophilic portions of amphiphilic dendrons. The 

limitation of these approaches is that following photodegradation, in most cases residual 

hydrophobic fragments may undergo aggregation in aqueous solutions. To address this 

drawback, in Chapter 5, a new series of dendrons and dendrimers that are able for the 

first time to undergo complete backbone photodegradation to small molecules was 

designed and synthesized. This was done through the incorporation of photodegradable o-

nitrobenzyl esters into a new dendrimer monomer based on bis-MPA. Dendrons were 

synthesized using a divergent approach, and were subsequently coupled to a core 

molecule in the final step via the microwave-assisted Cu(I)-catalyzed alkyne-azide click 

reaction in high yields. Photolysis of these dendrimers were tracked using techniuqes 

such as UV-visible and 
1
H NMR spectroscopy as well as SEC and it was demonstrated 

that the dendrimers degrade to release the small molecule bis-MPA.  

Incorporation of the photodegradable dendrons described in Chapter 5 into AJDs and 

their self-assembly to different morphologies were discussed in Chapter 6. A small 

library of AJDs (G1-3) with backbone photodegradable hydrophobic dendritic blocks and 

hydrophilic blocks based on TEG and gallic acid were successfully synthesized. It was 

shown that a 3
rd

 generation AJD was able to undergo self-assembly to form well-defined 

dendrimersomes with an average size of about 450 nm. Upon irradiation with UV light 

(300-400 nm, 25 mWcm
-2

), the dendrimersomes' membranes were effectively disrupted 

to disintegrate these assemblies with no sign of precipitation or morphological change to 

smaller assemblies. This result is of significant interest because the photodegradable 

dendrimersomes described in this chapter are the first example of any vesicular 
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architecture (including polymersomes, dendrimersomes, and small amphiphile-based 

vesicles) that are capable of complete photolytic membrane degradation to release their 

encapsulated model drugs without creation of any smaller size micelles or precipitate. 

Future investigations in the area of PEO-PCL polymersome-based biomaterials 

involves evaluation of their actual antiviral potential against various strains of influenza 

virus. This can be accomplished by initiating collaborative project with research groups 

at the Department of Microbiology and Immunology at Western University. Moreover, 

the concept of biodegradable and biocompatible polymersomes can be extended to 

biodegradable and biocompatible dendrimersomes with activated azide surface groups by 

synthesizing third or fourth generation AJDs constructed by bis-MBA-based hydrophobic 

dendrons and TEG/gallic acid-based hydrophilic dendritic blocks. Given the higher order 

of monodispersity that is offered by dendrimers compared to linear polymers, this can 

potentially result in the development of the first example of a dendrimersome system  

with activated surface groups that can readily be functionalized with various ligands of 

interest.  

In the context of backbone photodegradable dendrimers and dendrimer assemblies, 

encapsulation and release behavior of these dendrimersomes with respect to both 

hydrophilic and hydrophobic model drugs needs be investigated in a near future. In 

longer term, tuning of their optical properties by changing the photochemically 

responsive group or through the incorporation of other photophysical processes in such a 

way that they can undergo photodegradation in the visible or NIR region can potentially 

open up new opportunities to access materials with fully photodegradable hydrophobic 

blocks suitable for biological or other applications. In addition, it would be interesting to 

investigate to see whether or not it is possible to fine-tune the release rate of an 

encapsulate model drug from photodegradable dendrimersomes. This can be done 

through the selective incorporation of the photodegradable unit at specific generations 

(G1, G2, or G3) of the AJDs. To accomplish this, a small library of three 3
rd

 generation 

AJDs with the photodegradable monomer unit incorporated at either the first, second, or 

the third generation layer needs to be synthesized and their self-assembly to 

dendrimersomes followed by their cargo release rates needs to be investigated. 
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Appendix 1: Permission to Reuse Copyrighted Material 
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Appendix 2: Supporting Information for Chapter 2 

 

Figure A2.1. 
1
H NMR spectrum of N3-PEO-OH (2.2) (400 MHz, CDCl3). 

 

 

Figure A2.2. 
1
H NMR spectrum of copolymer 2.3 (400 MHz, CDCl3). 
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Figure A2.3. 
1
H NMR spectrum of copolymer 2.4 (400 MHz, CDCl3). 

 

Figure A2.4. 
1
H NMR spectrum of copolymer 2.5 (400 MHz, CDCl3). 
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Figure A2.5. 
1
H NMR spectrum of copolymer 2.6 (400 MHz, CDCl3). 

 

Figure A2.6. 
1
H NMR spectrum of rhodamine-labeled guanidine-functionalized dendron 

2.8 (400 MHz, CD3OD). 
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Figure A2.7. 
1
H NMR spectrum of rhodamine derivative 2.10 (400 MHz, CDCl3). 

 

Figure A2.8. 
1
H NMR spectrum of rhodamine-labeled copolymer 2.11 (400 MHz,  

CDCl3). 
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Figure A2.9. 
1
H NMR spectrum of rhodamine-labeled copolymer 2.12 (400 MHz, 

CDCl3). 

 

Figure A2.10. 
1
H NMR spectrum of dendron 2.14 (400 MHz, (CD3)2SO). 
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Figure A2.11. MALDI-TOF mass spectrum of compound 2.2. 
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Figure A2.12. Size distribution profiles following click reaction of rhodamine 2.10 on 

vesicles. 

 

Figure A2.13. Confocal microscopy of HeLa cells after incubation for 4 h with control 

PEO-PCL micelles (rhodamine functionalization only): a) Differential interference 

contrast image verifying the presence of cells in the field of view; b) Fluorescence image 

taken using the same microscope settings used for the image in Figure 2.7 shows no 

detectable uptake. 
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Appendix 3: Supporting Information for Chapter 3 

 

Figure A3.1. IR spectra for: a) DTPA derivative 3.6; b) dendron 3.7; c) dendron 3.1. 
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Figure A3.2. IR spectra for: a) DTPA derivative 3.6; b) compound 3.8; c) compound 3.2. 
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Figure A3.3. Longitudinal relaxivity (r1) of dendron 3.1, polymersome 3.3, and 

polymersome 3.4 in phosphate buffer (0.1 M, pH 7.4) as a function of field strength at 

310 K. 

 

Figure A3.4. Longitudinal relaxivity (r1) of unpurified 3.2 in phosphate buffer (0.1 M, 

pH 7.4) as a function of field strength at 310 K. Note that the presence of excess Gd(III) 

likely present as Gd(III)(H2O)8 increases the relaxivity. 
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Table A3.1. NMRD data for 3.1, 3.3, and 3.4 at 298 K. 

 

                                       Dendron 3.1        Polymersome 3.3     Polymersome 3.4 

                                            

              Frequency       r1            ± error          r1              ± error          r1              ± error 

                (MHz)     (mM
-1

s
-1

)    (mM
-1

s
-1

)     (mM
-1

s
-1

)     (mM
-1

s
-1

)     (mM
-1

s
-1

)    (mM
-1

s
-1

)     

 

42.485 13.9468 0.35583 29.1871 1.42059 11.2262 0.4526 

32.226 13.0277 0.34114 28.8367 1.37637 12.532 0.47005 

24.151 12.5703 0.35946 27.3942 1.3068 10.8241 0.39216 

18.095 11.9149 0.31532 25.4439 1.21532 10.4419 0.39374 

13.56 11.5797 0.37432 24.2906 1.23797 8.71823 0.36866 

10.165 11.2655 0.30497 22.3345 1.19751 7.61084 0.46985 

7.6177 10.6191 0.26476 20.4367 0.98503 6.56897 0.3817 

5.7081 10.3709 0.27915 20.2217 1.02722 7 0.42405 

4.2784 10.2498 0.24824 19.4613 0.98773 7.42956 0.41578 

3.2065 10.394 0.26049 19.3263 0.92909 7.9399 0.43684 

2.401 10.7171 0.25894 19.5809 0.93411 7.23547 0.39227 

1.8005 10.849 0.26617 20.0514 0.97972 8.60099 0.44634 

1.3483 10.9211 0.26433 20.4173 0.9928 8.75616 0.44744 

1.0104 11.2019 0.27076 20.8922 0.9895 8.50837 0.39931 

0.75806 11.4886 0.27293 21.3698 1.01748 8.40739 0.38531 

0.56802 11.6184 0.28249 21.7274 1.03445 8.70394 0.35741 

0.42589 11.5538 0.27788 22.0061 1.04202 8.6468 0.36749 

0.31839 11.6476 0.28257 21.7189 1.05168 9.30443 0.37775 

0.23878 11.6388 0.28092 22.1196 1.09736 9.38719 0.3836 

0.17926 11.8268 0.28324 21.8339 1.04392 8.98621 0.3988 

0.13402 11.8385 0.29036 22.4487 1.08742 9.65369 0.36336 

0.10033 11.9043 0.28695 22.6929 1.0932 9.2335 0.41176 

0.07539 11.821 0.31517 22.6322 1.09317 9.44483 0.38747 

0.05663 11.8748 0.30641 22.2902 1.11094 9.55961 0.36876 

0.04216 11.8676 0.29306 22.4021 1.11577 9.57291 0.3576 

0.03178 11.819 0.29499 22.1639 1.06491 9.82512 0.38554 

0.02384 11.8798 0.28709 23.2296 1.14638 10.3557 0.42257 

0.01787 11.8476 0.2852 22.3151 1.11062 9.82217 0.41358 

0.01332 11.8582 0.28578 22.7316 1.1307 9.86355 0.39769 

0.01005 11.8228 0.28582 22.4915 1.09679 9.75123 0.43025 
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Table A3.2. NMRD data for 3.1, 3.3, and 3.4 at 298 K. 

 

                                   Dendron 3.1           Polymersome 3.3        Polymersome 3.4 

                                            

         Frequency       r1               ± error           r1                 ± error             r1                ± error          

            (MHz)     (mM
-1

s
-1

)     (mM
-1

s
-1

)       (mM
-1

s
-1

)       (mM
-1

s
-1

)         (mM
-1

s
-1

)      (mM
-1

s
-1

)      

 
42.485 12.12974 0.308419 24.70432 1.202339 7.675889 0.440764 

32.226 11.57483 0.297817 24.32695 1.155758 8.508374 0.430055 

24.151 11.01165 0.274025 22.76779 1.093878 8.187685 0.326891 

18.095 10.7773 0.27112 22.62621 1.143689 8.252217 0.299043 

13.56 10.24124 0.256736 20.18495 1.146539 7.230542 0.327636 

10.165 9.982981 0.278239 18.49589 0.994324 7.226601 0.373374 

7.6177 9.529907 0.25443 17.33842 0.933652 8.051232 0.296329 

5.7081 9.277963 0.23684 17.1 0.829593 8.232512 0.332303 

4.2784 9.143037 0.238939 16.54358 0.808106 8.333005 0.291729 

3.2065 9.123537 0.244629 16.73642 0.863996 8.324138 0.299654 

2.401 9.458981 0.230666 17.21684 0.82571 8.579803 0.314226 

1.8005 9.874537 0.243801 17.83 0.867142 8.837931 0.308924 

1.3483 9.832926 0.240478 18.03611 0.870415 8.933498 0.332639 

1.0104 10.1245 0.248905 18.38716 0.890337 9.749754 0.369044 

0.75806 10.34187 0.251679 18.62432 0.894888 9.553202 0.355386 

0.56802 10.38541 0.25377 18.94705 0.902074 9.370443 0.363834 

0.42589 10.43285 0.252389 19.09358 0.900006 9.554187 0.357284 

0.31839 10.40139 0.256121 19.66316 0.993456 9.399507 0.317746 

0.23878 10.68167 0.260583 19.30158 0.971088 9.200985 0.36774 

0.17926 10.60106 0.259376 19.65337 1.000355 10.14089 0.408701 

0.13402 10.56869 0.26436 19.45042 0.941913 9.776355 0.334029 

0.10033 10.71293 0.271159 19.16611 0.964125 8.791133 0.312885 

0.07539 10.44635 0.26105 19.23768 0.986247 9.223645 0.444246 

0.05663 10.56539 0.261974 19.69958 0.963367 9.727094 0.362393 

0.04216 10.60959 0.263527 19.95242 0.991791 10.94581 0.552264 

0.03178 10.62474 0.269735 19.43695 0.970396 9.330049 0.466202 

0.02384 10.67987 0.273295 19.96768 0.987754 11.52217 0.519033 

0.01787 10.6393 0.26195 19.37705 0.942645 10.90394 0.478739 

0.01332 10.67291 0.26032 19.19758 0.93875 11.66059 0.553324 

0.01005 10.57759 0.257902 18.79895 0.949368 9.871429 0.493652 
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Table A3.3. NMRD data for unpurified compound 3.2 at 298 and 310 K. 

               298 K                       310 K 

                                            

                             Frequency       r1               ± error           r1             ± error 

                                (MHz)      (mM
-1

s
-1

)     (mM
-1

s
-1

)      (mM
-1

s
-1

)     (mM
-1

s
-1

) 

 

42.485 7.164357 0.239302 5.806553 0.198736 

32.226 7.4717 0.26715 5.95605 0.215379 

24.151 7.61 0.262536 6.12295 0.210226 

18.095 7.84835 0.270608 6.39345 0.238233 

13.56 7.81255 0.283246 6.5026 0.224501 

10.165 7.442025 0.292533 5.94605 0.282405 

7.6177 7.62545 0.265663 6.40275 0.239543 

5.7081 7.9683 0.285034 6.863 0.251785 

4.2784 8.0546 0.278805 6.9062 0.243733 

3.2065 8.51975 0.290723 7.11605 0.247265 

2.401 8.4612 0.286282 7.456 0.257229 

1.8005 8.84115 0.296912 7.66125 0.268017 

1.3483 8.9957 0.302398 7.78315 0.265708 

1.0104 9.1258 0.306825 7.8839 0.261812 

0.75806 9.1464 0.30944 7.87605 0.289503 

0.56802 9.241 0.31658 7.83935 0.275286 

0.42589 9.3689 0.317881 8.01545 0.269447 

0.31839 9.29925 0.317361 7.88775 0.277594 

0.23878 9.37455 0.320122 8.0635 0.278503 

0.17926 9.46935 0.319043 7.95385 0.272022 

0.13402 9.3859 0.315734 8.1297 0.274145 

0.10033 9.3894 0.312762 8.0159 0.268276 

0.075388 9.5268 0.314929 8.15365 0.276447 

0.056625 9.3446 0.314749 8.15405 0.283728 

0.042161 9.4225 0.32211 8.1109 0.272298 

0.031778 9.4146 0.323253 7.9203 0.275189 

0.023836 9.3698 0.3204 8.03265 0.276627 

0.017874 9.43465 0.32513 8.1256 0.273448 

0.013316 9.38825 0.319244 8.0661 0.279237 

0.010053 9.32145 0.320652 8.10275 0.289865 
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Figure A3.5. 
1
H NMR of dendron 3.7 (400 MHz , CD3OD). 

 

Figure A3.6. 
1
H NMR of compound 3.8 (400 MHz , (CD3)2SO). 



181 

 

 

Appendix 4: Supporting Information for Chapter 4 

 

 

Figure A4.1. Calibration curve for the determination of extinction coefficient of 

rhodamine-labeled sialodendron 4.4. 
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Figure A4.2. Size distribution profiles following functionalization of polymersomes 

containing (a) 5 wt%; (b) 7 wt%; (c) 10 wt%; (d) 20 wt%; (e) 40 wt%; (f) 70 wt%; and 

(g) 100 wt% azide copolymer 2.6 with the rhodamine-labeled sialodendron 4.4. 
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Figure A4.3. Intensity-based size distribution profiles for polymersomes composed of a) 

20% w/w azide-functionalized copolymer 2.6 and b) 40% w/w azide-functionalized 

copolymer 2.6 following “click” conjugation of dendron 4.3. 

 

 

 Figure A4.4. Size distribution profiles for (a) zanamivir-loaded naked polymersomes 

and (b) zanamivir loaded dendritic sialopolymersomes. 
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Figure A4.5. a) Size distribution profile and b) TEM image of zanamivir-loaded naked 

polymersomes after releasing the drug. 

 

Figure A4.6. 
1
H NMR spectrum of compound 4.2 (400 MHz, CD3OD). 



185 

 

 

 

Figure A4.7. 
13

C NMR spectrum of compound 4.2 (100 MHz, (CD3)2SO). 

 

Figure A4.8. 
1
H NMR spectrum of sialodendron 4.3 (400 MHz, (CD3)2SO).  
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Figure A4.9. 
13

C NMR spectrum of sialodendron 4.3 (100 MHz, (CD3)2SO). 

 

Figure A4.10. 
1
H NMR spectrum of rhodamine-labeled sialodendron 4.4 (400 MHz, 

(CD3)2SO). 
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Appendix 5: Supporting Information for Chapter 5 

 

 

Figure A5.1. Evolution of UV-visible spectra for a) G1 dendrimer (5.14) and b) G2 

dendrimer (5.15) upon irradiation with 350 nm light for 60 minutes. 
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Figure A5.2. Evolution of 
1
H NMR spectra during the photolysis of G1 dendrimer (5.14) 

in (CD3)2SO at 400 MHz. 
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Figure A5.3. Evolution of 
1
H NMR spectra during the photolysis of G2 dendrimer (5.15) 

in (CD3)2SO at 400 MHz. 
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Figure A5.4. Evolution of 
1
H NMR spectra during the photolysis of G3 dendrimer (5.16) 

in (CD3)2SO at 400 MHz. 
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Figure A5.5. SEC traces of a) G1 dendrimer 5.14, b) G2 dendrimer 5.15, and c) G3 

dendirmer 5.16 before and after UV degradation. 

 

 

Figure A5.6. MALDI-TOF spectra for a) G1 dendrimer 5.14, b) G2 dendrimer 5.15, and 

c) G3 dendrimer 5.16. It should be noted that the laser used for MALDI-TOF 

experiments operates at 360 nm and thus effectively photodegrades the dendrimers. As a 

result, some photodegradation products were also observed in these spectra, which are 

not shown. 
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Figure A5.7. 
1
H NMR spectrum of compound 5.2 (400 MHz, CDCl3). 

 

Figure A5.8. 
13

C NMR spectrum of compound 5.2 (100 MHz, CDCl3). 
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Figure A5.9. 
1
H NMR spectrum of compound 5.4 (400 MHz, CDCl3). 

 

Figure A5.10. 
13

C NMR spectrum of compound 5.4 (100 MHz, CDCl3). 
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Figure A5.11. 
1
H NMR spectrum of compound 5.5 (400 MHz, CDCl3). 

 

Figure A5.12. 
13

C NMR spectrum of compound 5.5 (100 MHz, CDCl3). 
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Figure A5.13. 
1
H NMR spectrum of compound 5.6 (400 MHz, CDCl3). 

 

Figure A5.14. 
13

C NMR spectrum of compound 5.6 (100 MHz, CDCl3). 
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Figure A5.15. 
1
H NMR spectrum of compound 5.7 (400 MHz, CDCl3). 

 

Figure A5.16. 
13

C NMR spectrum of compound 5.7 (100 MHz, CDCl3). 
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Figure A5.17. 
1
H NMR spectrum of compound 5.8 (400 MHz, CDCl3). 

 

Figure A5.18. 
13

C NMR spectrum of compound 5.8 (100 MHz, CDCl3). 
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Figure A5.19. 
1
H NMR spectrum of compound 5.9 (400 MHz, CDCl3). 

 

Figure A5.20. 
13

C NMR spectrum of compound 5.9 (100 MHz, CDCl3). 
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Figure A5.21. 
1
H NMR spectrum of compound 5.10 (400 MHz, CDCl3). 

 

Figure A5.22. 
13

C NMR spectrum of compound 5.10 (100 MHz, CDCl3). 
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Figure A5.23. 
1
H NMR spectrum of compound 5.11 (400 MHz, CDCl3). 

 

Figure A5.24. 
13

C NMR spectrum of compound 5.11 (100 MHz, CDCl3). 
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Figure A5.25. 
1
H NMR spectrum of compound 5.12 (400 MHz, CDCl3). 

 

Figure A5.26. 
13

C NMR spectrum of compound 5.12 (100 MHz, (CD3)2SO). 
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Figure A5.27. 
1
H NMR spectrum of compound 5.14 (400 MHz, (CD3)2SO). 

 

Figure A5.28. 
13

C NMR spectrum of compound 5.14 (100 MHz, (CD3)2SO). 
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Figure A5.29. 
1
H NMR spectrum of compound 5.15 (400 MHz, (CD3)2SO). 

 

Figure A5.30. 
13

C NMR spectrum of compound 5.15 (100 MHz, (CD3)2SO). 
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Figure A5.31. 
1
H NMR spectrum of compound 5.16 (400 MHz, (CD3)2SO). 

 

Figure A5.32. 
13

C NMR spectrum of compound 5.16 (100 MHz, (CD3)2SO). 
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Appendix 6: Supporting Information for Chapter 6 

 

Figure A6.1. 
1
H NMR spectrum of compound 6.2 (400 MHz, CDCl3). 

 

Figure A6.2. 
13

C NMR spectrum of compound 6.2 (100 MHz, CDCl3). 
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Figure A6.3. 
1
H NMR spectrum of compound 6.3 (400 MHz, CDCl3). 

 

Figure A6.4. 
13

C NMR spectrum of compound 6.3 (100 MHz, CDCl3). 
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Figure A6.5. 
1
H NMR spectrum of compound 6.4 (400 MHz, CDCl3). 

 

Figure A6.6. 
13

C NMR spectrum of compound 6.4 (100 MHz, CDCl3). 
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Figure A6.7. 
1
H NMR spectrum of compound 6.5 (400 MHz, CDCl3). 

 

Figure A6.8. 
13

C NMR spectrum of compound 6.5 (100 MHz, CDCl3). 
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Figure A6.9. 
1
H NMR spectrum of compound 6.6 (400 MHz, CDCl3). 

 

 

Figure A6.10. 
13

C NMR spectrum of compound 6.6 (100 MHz, CDCl3). 

 



210 

 

 

Curriculum Vitae 

EDUCATION   

 

Western University, London, Canada                                                           2009-present 

Ph.D., Organic and Polymer Chemistry  

Research Supervisor: Dr. Elizabeth R. Gillies 

 

University of Toronto, Canada                                                                          2008-2009                                                         

M.Sc., Inorganic Chemistry 

Thesis title "Investigation of Anion Dependence of Fluorescent Sensors Toward 

Transition Metal Ions"  

   Research Supervisor: Dr. Datong Song 

 

K. N. Toosi University of Technology, Tehran, Iran                                       2001-2005                          

B.Sc. Chemistry  

4
th

 year project title "Methodology in the Synthesis of Thiol Esters" 

Project Supervisor: Dr. Barahman Movassagh 
 

 

RESEARCH EXPERIENCE 

Graduate Research Assistant, Gillies Group,                                                2009-present                                                                      

Western University, London, Canada 

 

Graduate Research Assistant, Song Group,                                                      2008-2009                                                            

University of Toronto, Canada 

 

4
th

 Year Undergraduate Project, Movassagh  Group,                                      2004-2005                                                             

K. N. Toosi University of Technology, Tehran, Iran   

 

TEACHING EXPERIENCE 

Graduate Teaching Assistant, Western University, London, Canada           2009-present                             

   Laboratory teaching assistant for Organic Chemistry for Life Sciences 

   Laboratory teaching assistant for Organic Chemistry II 

   Tutorial teaching assistant for Organic and Inorganic Structural Elucidation 

   Laboratory teaching assistant for Discovering Chemistry for first year 

undergraduate students  

 

Graduate Teaching Assistant, University of Toronto, Canada                         2008-2009                                     

   Laboratory teaching assistant for Organic Chemistry I 

   Laboratory teaching assistant for Organic Chemistry II 

 



211 

 

 

AWARDS & SCHOLARSHIPS 

    Graduate Thesis Research Award, Western University, London, Ontario (2013)  

    Dr. Joseph Soltys Award in Chemistry, Western University, London, Ontario   

 (2012) 

    Queen Elizabeth II Graduate Scholarships in Science and Technology 

 (September 2011 – May 2012) 

    Third place Poster Award, Ontario Nanoscience and Nanotechnology 

 Workshop, London ON, May   16
th

- May 18
th 

 2010 

    Western Graduate Research Scholarship (WGRS), Western University, London, 

 Ontario (2009 – 2010) 

    Recognized as distinguished student from K. N. Toosi University of 

 Technology (2003-2004) 

 

SELECTED PRESENTATIONS 

E. R. Gillies, A. Nazemi, C. V. Bonduelle, R. C. Amos; “Dendrimer-Functionalized 

Block Copolymer Assemblies: New Architectural Hybrids for Therapeutic and Delivery 

Applications” 96
th

 Canadian Society for Chemistry Conference, Quebec, Quebec, May 

26-30, 
 
2013. [oral presentation] 

A. Nazemi, R. C. Amos, C. V. Bonduelle, E. R. Gillies; “Biodegradable Polymersome-

Dendron Hybrid Materials for Biomedical Applications” Gordon Conference on Self-

Assembly & Supramolecular Chemistry, Les Diablerets, Switzerland, May 5-10, 2013 

[poster presentation] 

A. Nazemi, R. C. Amos, C. V. Bonduelle, E .R. Gillies; “Biodegradable Dendritic 

Polymersomes as Scaffolds for Biomedical Applications”  244
th

 American Chemical 

Society National Meeting & Exposition, Philadelphia, PA, August 19-23, 2012 [poster 

presentation]   

Soleimani, R.; Nazemi, A.; Homenick, C. M.; Maris, M.; Martinez, F. M.; Scholl, T. J.; 

Gillies, E. R. “ Development of Optimized Gd(III) Contrast Agents: An Exploration of 

Macromolecular Architecture” 244
th

 American Chemical Society National Meeting & 

Exposition, Philadelphia, PA, August 19-23, 2012 [oral presentation]   

A. Nazemi, R. C. Amos, C. V. Bonduelle, E .R. Gillies; “Dendritic Surface 

Functionalization of Bionanomaterials, Controlling Properties and Functions” CAMBR 

Distinguished Lecturer and Research Day, London, ON, June 23
rd

, 
 
2011. [oral 

presentation]  

A. Nazemi, R. C. Amos, C. V. Bonduelle, E .R. Gillies; “Dendritic Surface 

Functionalization of Bionanomaterials, Controlling Properties and Functions” 94
th

 

Canadian Society for Chemistry Conference, Montreal, Quebec, June 5
-
9, 

 
2011. [oral 

presentation]  



212 

 

 

A. Nazemi, C. V. Bonduelle, R. C. Amos, E .R. Gillies; “Surface Functionalized 

Biodegradable and Biocompatible Polymer Vesicles” 93
nd

 Canadian Society for 

Chemistry Conference, Toronto ON, May 29
th

 – June 2
rd 

2010. [poster presentation] 

Bonduelle, C. V.;  Nazemi A.; Amos, R. C.; Martin, A.; Li, B.; Gillies, E. R. “Surface 

Functionalized Polymersomes for Enhanced Cell Uptake and Binding to Biological 

Targets” 240
th

 American Chemical Society National Meeting & Exposition, Boston, MA, 

August 22-26, 2010 [oral presentation]    

A. Nazemi, C. V. Bonduelle, R. C. Amos, E .R. Gillies; “Surface Functionalized 

Biodegradable and Biocompatible Polymer Vesicles” Ontario Nanoscience and 

Nanotechnology Workshop, London ON, May 16
th

- May 18
th 

 2010. [poster presentation] 

 

PUBLICATIONS 

Refereed Articles & Book Chapters: 

1. Gobbo, P.; Mossma, Z.; Nazemi, A.; Niaux, A.; Gillies, E. R.; Biesinger, M. C.; 

Workentin, M. S. “Strained-Alkyne Modified Water-Soluble AuNPs: Interfacial Stain-

Promoted Cycloaddition for Formation of AuNP- Decorated Polymersomes” 

(manuscript submitted to Mater. Horiz.). 

2. Nazemi, A.; Haeryfar, S. M. M.; Gillies, E. R. “Multifunctional Dendritic 

Sialopolymersomes as Potential Antiviral Agents: Their Lectin Binding and Drug 

Release Properties” Langmuir, 2013, 29, 6420. 

3. Nazemi, A.; Schon, T. B.; Gillies, E. R. “Senthesis and Degradation of Backbone 

Photodegradable Polyester Dendrimers” Org. Lett. 2013, 15, 1830. 

4. Nazemi, A.; Gillies, E. R. “Dendrimer Bioconjugates: Synthesis and Applications" in 

"Bioconjugates for Biomedical Applications” Narain, R. Ed., John Wiley and Sons, 

Hoboken, New Jersey (in press). 

5. Nazemi, A.; Gillies, E. R. “Dendritic Surface Functionalization of Nanomaterials: 

Controlling Properties and Functions for Biomedical Applications” Braz. J. Pharm. 

Sci. 2013 (invited for special issue, in press). 

6. Nazemi, A.; Martinez, F. M.; Scholl, T. J.; Gillies, E. R. “ Biodegradable Dendritic 

Polymersomes as Modular, High Relaxivity MRI Contrast Agents” RSC Advances, 

2012, 2, 7971. 

7. Amos, R. C.; Nazemi, A.; Bondulle, C. V.; Gillies, E. R. “Tuning Polymersome 

Surfaces: Functionalization with Dendritic Groups” Soft Matter, 2012, 8, 5947. 

javascript:;
javascript:;
javascript:;
javascript:;


213 

 

 

8. Nazemi, A.; Amos, R. C.; Bondulle, C. V.; Gillies, E. R. “Dendritic Surface 

Functionalization of Biodegradable Polymer Assemblies” J. Polym. Sci., Part A: 

Polym. Chem. 2011, 49, 2546. (Featured on the front cover of the journal) 

9.  DeWit, M. A.; Nazemi, A.; Karamdoust, S.; Beaton, A.; Gillies, E. R
. 
“Design,  

Synthesis and Assembly of Self-Immolative Linear Block Copolymers.” ACS Symp.  

Series. 2011, 1066, 9.          

10. Atkins, K. M.; Martinez, F. M.; Nazemi, A.; Scholl, T. J.; Gillies, E. R. “Poly(para- 

      Phenylene Ethynylene)s Functionalized with Chelates as Potential MRI Contrast 

      Agents” Can. J. Chem. 2011, 89, 47.    

              

Non-Refereed Contributions: 

1. Nazemi, A.; Amos, R. C.; Bondulle, C. V.; Gillies, E. R. “Biodegradable Dendritic 

Polymersomes as Scaffolds for Biomedical Applications” Polymer Preprints, 2012, 

53, 392. 

2. Soleimani, R.; Nazemi, A.; Homenick, C. M.; Maris, M.; Martinez, F. M.; Scholl, T. 

J.; Gillies, E. R. “ Development of Optimized Gd(III) Contrast Agents: An 

Exploration of Macromolecular Architecture” Polymer Preprints, 2012, 53, 446.  

3. Bonduelle, C. V.;  Nazemi A.; Amos, R. C.; Martin, A.; Li, B.; Gillies, E. R. “Surface 

Functionalized Polymersomes for Enhanced Cell Uptake and Binding to Biological 

Targets” Polymer Preprints, 2010, 51, 295.  

  

 

javascript:;
javascript:;
javascript:;

	Development of Biodegradable and Stimuli-Responsive Macromolescules and Their Assemblies
	Recommended Citation

	Development of Biodegradable and Stimuli-Responsive Macromolescules and Their Assemblies

