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ABSTRACT 

 

Increasing evidence suggests the gut microbiome plays an important role in immune 

functioning and neurodevelopment. Metabolic products of enteric bacteria, such as short 

chain fatty acids and lipopolysaccharides, may alter development and subsequent behaviour. 

Altered microbiome composition, including elevated short chain fatty acids, and/or immune 

system dysfunction has been observed in children with autism spectrum disorders (ASD). 

This thesis describes the effects of prenatal propionic acid (PPA), a short chain fatty acid and 

metabolic fermentation product of antibiotic resistant enteric bacteria, and of prenatal 

lipopolysaccharide (LPS), a bacterial mimetic and product of enteric bacteria, on a range of 

behaviours in male and female neonatal, adolescent and adult rats. Long-Evans rats were 

administered PPA or LPS during pregnancy and rat pups were administered PPA in the 

second week of life. The first study evaluated the effects of prenatal PPA and LPS, and 

postnatal PPA, on developmental milestones in early life and on locomotor activity, 

repetitive behaviour, and anxiety-related behaviour in adolescent rats. Secondly, 

sensorimotor behaviours were examined using the acoustic startle response and prepulse 

inhibition. The final study investigated the effects of prenatal PPA and LPS on social and 

related behaviours in neonatal, adolescent, and adult rats. Overall, prenatal and postnatal 

treatments subtly altered behaviour in a sex- and test-specific manner. Male and female rats 

showed developmental delay in day of eye opening and in acquiring a nest seeking odor 

discrimination. Prenatal and postnatal treatments increased anxiety-related behaviour and 

altered acoustic startle responses in male and female adolescent rats. Male rats displayed 

alterations in social behaviour and locomotor activity that was not observed in female rats, 

supporting the male bias seen in ASD. However, female rats showed sensitivity to PPA, 

displaying repetitive behaviour, altered acoustic startle response, and decreased prepulse 

inhibition. There is evidence to suggest that these behaviours are more severe in females 

diagnosed with ASD. These findings demonstrate that the metabolic products of enteric 

bacteria, PPA and LPS, may alter development in ways resembling ASD and contribute to 

the growing literature on the importance of the gut microbiome and its components on 

influencing brain and behaviour. 
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General Introduction 
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1.1. Microbiome 

The gastrointestinal tract (GI) is home to over a trillion commensal bacteria, 

known as the microbiome, that have a symbiotic relationship with their human hosts. 

Microbiota benefit from the nutrient-rich environment provided, while the metabolic 

activities of the microbiota provide essential products and increase our ability to harvest 

nutrients from food (e.g., vitamins, amino acids, short chain fatty acids). These products 

can communicate with the central nervous system (CNS) through the enteric nervous 

system or via metabolites and/or neurotransmitters released into the bloodstream. The 

microbiome plays an important role in maintaining homeostasis and in the development 

and functioning of the immune system (Cryan and Dinan, 2012; Nicholson et al., 2012; 

Round and Mazmanian, 2009). Various environmental factors can influence microbiome 

composition diversity over time during early life. For example, introducing new foods 

and antibiotic treatment can alter the bacterial composition of the microbiome, leading to 

changes in metabolic activity (Bennet et al., 2002; Cho et al., 2012; Koenig et al., 2011).  

Increasingly, attention has focused on how the microbiome and gut bacteria 

influence the CNS and the health of the host. Studies using germ-free mice illustrate the 

relationship between the microbiome and the CNS. These mice are void of the 

commensal bacterial populations that conventional mice have. Alterations in brain and 

behaviour include changes in immediate early gene expression, neurotransmitter turnover 

and stress responses, and reduced anxiety and social behaviour (Desbonnet et al., 2013; 

Foster and Neufeld, 2013; Heijtz et al., 2011; Neufeld et al., 2011; Sudo et al., 2004). 

These and other studies with rodents show that a normal bacterial population is necessary 

for the development of appropriate humoral and immunological functions.  

Maintaining the correct balance of bacterial species is also essential for normal 

behavioural, metabolic, and neural functioning. For example, introducing Gram-negative 

bacterial species, such as those of food-borne pathogens, increases anxiety and early gene 

expression in limbic brain regions involved in anxiety (Bercik et al., 2011; Goehler et al., 

2008; Lyte et al., 2006). Antibiotic treatment has been shown to alter the microbiome 

composition and reverse infection induced anxiety (Bercik et al., 2011). With 

bidirectional communication between the CNS, immune, and GI systems, GI dysbiosis 

has been implicated in inflammatory diseases, obesity, and neuropsychiatric health, such 
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as inflammatory bowel disease, depression, and as discussed here, possibly autism (Cryan 

and Dinan, 2012; Nicholson et al., 2012). 

1.2. Autism spectrum disorders 

The prevalence of autism spectrum disorders (ASD) has increased to 

approximately 1 in 88 children with a male predominance of approximately 4:1 over 

females (Autism and Developmental Disabilities Monitoring Network Surveillance Year 

2008 Principal Investigators, 2012). ASD are currently diagnosed through aberrant 

behaviours, widely encompassing impairments in communication, social behaviour, and 

restricted and repetitive behaviour (DiCicco-Bloom et al., 2006). In the Diagnostic and 

Statistical Manual of Mental Disorders (Fifth Edition, DSM-5), this triad will become a 

dyad consisting of social communication and repetitive, restrictive behaviour, with 

sensory abnormalities being incorporated as a core criterion into the repetitive, restrictive 

behaviour domain. Both hyper- and hypo-sensitivities to stimuli across multiple 

modalities are reported in ASD (Leekam et al., 2007; Marco et al., 2011). Multiple co-

morbidities have been observed in patients with ASD, including anxiety disorders, 

seizures, and gastrointestinal disturbance, suggesting that ASD is not merely a disorder of 

the brain but of dysfunction in multiple organ systems (Herbert et al., 2006; Tuchman and 

Rapin, 2002; Simonoff et al., 2008; Williams et al., 2011).  

1.2.1. Etiology of ASD 

While the exact causes of ASD are unknown, there is clearly a genetic component 

to the development of the disorders. Multiple candidate genes have been identified 

through linkage analyses and de novo copy number variations that have been found, 

implicating a number of processes including synaptic development and 

neurotransmission, cell signalling and transcription, and immune and mitochondrial 

function (Cook, Jr. and Scherer, 2008; Geschwind, 2011; Szatmari et al., 2007). Despite 

these discoveries, known genetic factors exclusively account for approximately 10-20% 

of ASD cases (Hallmayer et al., 2011; Scherer and Dawson, 2011). Furthermore, 

concordance rates among monozygotic twins range from 50-90% (Bailey et al., 1995; 

Hallmayer et al., 2011). This has led to the acceptance that the environment influences 

the development of ASD, likely acting on underlying genetic susceptibilities during 

prenatal or early postnatal life (Herbert, 2010).  



4 

 

 

Multiple risk factors have been suggested to increase the risk for ASD such as 

preterm birth, maternal and paternal age, and pre-eclampsia/eclampsia (Kolevzon et al., 

2007; Mann et al., 2010). A number of environmental agents have been identified which 

can increase the risk of ASD, including thalidomide, ethanol, and valproic acid (Arndt et 

al., 2005). Lastly, the immune system has garnered much attention as prenatal infections 

increase the risk of developing ASD, with viral infection in the first trimester and 

bacterial infection in the second trimester being associated with ASD (Atladottir et al., 

2010). 

1.3. Immune abnormalities in ASD 

Immune system abnormalities, both central and peripheral, have been found in 

children with autism and their families. A family history of autoimmune disease has been 

associated with families of children with ASD (Atladottir et al., 2009; Croen et al., 2005). 

Plasma of children with ASD has shown an increase in a number of cytokines and 

chemokines that have been associated with severity of behaviours, including interleukin 

(IL)-1 , IL-6, IL-17, IL-23, and monocyte chemoattractant protein (MCP)-1 (Ashwood et 

al., 2011a; Ashwood et al., 2011b; Enstrom et al., 2009). Additionally, alterations in the 

adaptive and innate cellular immune responses have been observed in children (see Onore 

et al., 2012 for review). Infections during pregnancy or early life in genetically 

susceptible populations may contribute to altered neurodevelopmental processes via 

release of pro-inflammatory cytokines. The balance between pro- and anti-inflammatory 

cytokines is important for normal development (e.g., neural cell differentiation and 

migration), and dysregulation in this balance may have adverse consequences (Deverman 

and Patterson, 2009). Postmortem analysis of brain tissue of autistic patients has revealed 

a neuroinflammatory response with increased activated microglia and astrocytes and 

proinflammatory cytokines (Li et al., 2009; Vargas et al., 2005). Increases in the 

proinflammatory cytokine IL-6 has been suggested to alter neural processes in autism, 

mediating the effects of maternal immune infection and neuroinflammatory responses 

(Parker-Athill and Tan, 2010; Wei et al., 2013). 

1.4. Gastrointestinal abnormalities in ASD 

A subset of patients with ASD have gastrointestinal (GI) symptoms, with the 

severity of autistic behaviours associated with the severity of GI dysfunction (Adams et 
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al., 2011b). These symptoms may be lessened by alterations in diet in some cases 

(Knivsberg et al., 2002; Pennesi and Klein, 2012). GI symptoms can include increased 

permeability or inflammation of the intestinal tract, alterations in gut motility, and food 

allergies/sensitivities (deMagistris et al., 2010; Horvath and Perman, 2002; Jyonouchi et 

al., 2002; White, 2003). Multiple changes in immune and GI functioning have been 

observed in children with ASD and GI symptoms, including increases in intestinal pro-

inflammatory cytokines (Ashwood et al., 2004; Jyonouchi et al., 2005; Jyonouchi et al., 

2011). 

Additionally, immune responses can alter the composition of the microbiome of 

the GI tract, which may contribute to intestinal inflammation and development or 

maintenance of ASD (Bartlett and Gerding, 2008; Bennet et al., 2002). Indeed, abnormal 

levels of bacteria flora have been found in the intestinal tract and feces of children with 

ASD and GI symptoms, including Clostridia, Bacteroidetes, and Desulfovibrio (Finegold 

et al., 2002; Finegold et al., 2012; Parracho et al., 2005), with other bacterial species 

implicated as well (Williams et al., 2011; Williams et al., 2012). Interestingly, these 

anaerobic bacteria are antibiotic-resistant. As such, repeated infections in early life 

treated with antibiotics may provide an enteric environment that promotes overgrowth of 

these bacteria (Cho et al., 2012; Finegold et al., 2012) and an association has been made 

between antibiotic use and autism (Parracho et al., 2005). Alternatively, prenatal 

infection and/or, in addition, GI disturbances in pregnancy may alter gut bacteria 

composition. Products of these bacteria as a result of their metabolic activities include 

elevated levels of a number of compounds, including lipopolysaccharide and short chain 

fatty acids (SCFA), apart from the amounts of these compounds released from normal 

carbohydrate metabolism by bacteria in general (Finegold et al., 2010). These compounds 

may induce inflammatory responses, alter neurodevelopment, and act on the CNS to 

influence behaviour. 

1.5. Environmental animal models of ASD 

1.5.1. Maternal immune activation (MIA) 

Studies that administer agents that induce an immune response to pregnant 

rodents are used to investigate the role of prenatal infectious processes in the 

development of neurodevelopmental disorders such as autism and schizophrenia 
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(reviewed in Meyer, 2013; Patterson, 2011). To activate the maternal immune response in 

the absence of a pathogen, the viral mimetic, polyinosinic:polycytidylic acid (poly I:C)  

or the bacterial mimetic, lipopolysaccharide (LPS) are widely used. These agents activate 

Toll-like receptors 3 and 4, respectively, to induce an inflammatory response and trigger 

the release of pro-inflammatory cytokines (Akira and Takeda, 2004).   

LPS is the major component of the cell wall of Gram-negative bacteria but is 

present in low amounts in the GI tract as a product of enteric bacteria. It has been shown 

that the composition of the gut microbiome and increased levels of LPS can have 

detrimental effects. For example, infection of germ-free mice with the Gram-negative 

enteric pathogen (Campylobacter jejuni) altered anxiety-like behaviour and was 

associated with increased early gene expression in brain regions implicated in anxiety 

(Goehler et al., 2008; Lyte et al., 2006). Additionally, systemic LPS administration, that 

results in clinically relevant plasma concentrations, induced intestinal inflammation and 

increased intestinal cell wall permeability in rats and mice similar to that seen in gut and 

intestinal disorders (Ge et al., 2000; Guo et al., 2013; Tokes et al., 2011; Yue et al., 

2012). Inflammation and increased permeability of the GI tract can result in the further 

release of cytokines and LPS into the bloodstream to exact effects on the CNS (de Theije 

et al., 2011), including triggering brain endothelial cells to release cytokines (Verma et 

al., 2006).  

Prenatal administration of LPS and poly I:C produces changes in behaviour in 

adult male and female offspring, with limited studies, to date, in adolescent offspring. 

Timing and dose of MIA can influence the nature of the behavioural change and cytokine 

release (Boksa, 2010; Meyer et al., 2006). Results of a variety of studies have shown that 

offspring of MIA dams displayed increased anxiety behaviour, decreased exploratory 

behaviour, decreased social interaction and approach, and decreased sensorimotor gating 

(Fortier et al., 2007; Shi et al., 2003; Smith et al., 2007). Alterations in dopamine and 

GABA neurotransmission and white matter changes have also been observed (Baharnoori 

et al., 2013; Meyer, 2013; Oskvig et al., 2012; Vuillermot et al., 2010). Giovanoli et al. 

(2013) prenatally administered a low dose of the viral mimetic, poly I:C, which did not 

result in changes to behaviour in adult offspring unless combined with a stress protocol in 

early adolescence (P30-40). It is becoming apparent that prenatal immune activation may 
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act to predispose individuals to a number of neuropsychiatric conditions, or act on pre-

existing genetic predispositions (Meyer, 2013). Termed the double hit hypothesis, the 

idea of genetic predisposition leaving individuals vulnerable to an environmental trigger 

later in life that results in manifestation of a disorder was originally proposed for 

schizophrenia (Bayer et al., 1999).  

The mechanisms associated with MIA induced alterations in brain and behaviour 

of offspring are beginning to be elucidated. It appears that toxins and/or cytokines gain 

access to the fetus, as maternal virus is not detected in the fetus (Bloise et al., 2013; Shi et 

al., 2005). Cytokines, particularly IL-6, have been shown to induce further cytokine 

release and activate intracellular pathways in the placenta to alter gene expression and 

growth protein levels (Hsiao and Patterson, 2011), while blocking IL-6 has reversed 

behavioural impairments in MIA mice (Smith et al., 2007). Gene expression changes in 

offspring include upregulation of cellular stress genes and downregulation of genes 

associated with neurogenesis, neural migration, and neurotransmission (Garbett et al., 

2012; Oskvig et al., 2012). 

1.5.2. Propionic acid (PPA) model 

Propionic acid (PPA) is a short chain fatty acid (SCFA), and is a metabolic 

product of enteric gut bacteria (Finegold et al., 2002). Physiologically, PPA can cross the 

gut-blood and blood-brain barriers (BBB). G-protein coupled receptors, GPR41 and 

GPR43, are specific for SCFAs and located in intestine, immune and blood endothelial 

cells (Brown et al., 2003; Bindels et al., 2013), while monocarboxylate transporters are 

located at the BBB for SCFAs (Pierre and Pellerin, 2005). SCFAs are endogenous and in 

normal physiological conditions, PPA and other SCFAs fulfill a number of important 

roles in cell metabolism. For example, SCFA are involved in energy utilization from the 

diet via activation of GPR43, are used as substrates themselves in cell metabolism, and 

regulation of the immune system (Al-Lahham et al., 2010; Brestoff and Artis, 2013; 

Kimura et al., 2013). 

It has been proposed that elevated levels of PPA may act as an environmental 

trigger and contribute to the development of ASD. Elevated levels of fecal SCFAs have 

been measured in children with ASD (Wang et al., 2012) and a recent case report was 

published of a child with propionic acidemia and autism (Al-Owain et al., 2013). Altered 



8 

 

 

propionic acid (PPA) metabolism occurs in propionic acidemia, a neurodevelopmental 

disorder that clinically resembles some aspects of autism. Children with this disorder 

have a deficient enzyme resulting in elevated levels of PPA along with developmental 

and cognitive delay, seizures, and stereotyped movements (Feliz et al., 2003).  

PPA can elicit diverse effects on the CNS that could drastically alter neural 

processes, including changes in neurotransmitter synthesis and release, oxidative stress 

and mitochondrial function, immune activation, and gene expression (DeCastro et al., 

2005; Inoue et al., 2012; Le Poul et al., 2003; Parab et al., 2007; Wajner et al., 2004). 

Metabolic dysfunction in mitochondria and oxidative stress have been found in children 

with ASD, and associated with severity of behavioural symptoms (Adams et al., 2011a; 

Rossignol and Frye, 2012). 

PPA, similar to valproic acid (VPA), is capable of acting as a histone deacetylase 

inhibitor to elicit epigenetic changes in gene expression, and both are fatty acids that can 

interfere with mitochondria cell metabolism (Brass, 1992; Coulter, 1991; Frye et al., 

2013). VPA is a common antiepileptic drug and with use in pregnancy, there is a risk for 

congenital malformations (e.g., spina bifida) and for ASD to develop in children, 

specifically when used in the first trimester (Bromley et al., 2008; Jentink et al., 2010). 

Animal studies administering VPA during a comparable window of vulnerability 

(gestation day 12 in rats) produce offspring that display physical malformations, 

developmental delay, and behavioural deficits, including sensory impairments, and 

decreases in exploratory behaviour, social play/interaction, and prepulse inhibition (Favre 

et al., 2013; Roullet et al., 2013). VPA through its effects as a histone deactylase inhibitor 

and can alter gene expression, with administration in rodents both increasing and 

decreasing expression of ASD-implicated genes (Kolozsi et al., 2009; Okada et al., 2005; 

Yu et al., 2009). 

Changes in brain and behaviour resembling those observed in ASD have been 

shown in rats receiving central PPA, providing face validity for a rodent model. The 

majority of previous studies investigating the effects of PPA on brain and behaviour have 

been in adult male rats administered PPA centrally into the lateral ventricles with some 

studies of peripheral administration. Repeated infusions of PPA produced kindled 

seizures, increased locomotor activity, decreased social behaviour, and impaired reversal 



9 

 

 

of the Morris water maze in adult male rats (Shultz et al., 2008; Shultz et al., 2009; 

Thomas et al., 2012), with decreased social behaviour and impaired maze reversal in 

adolescent male rats (MacFabe et al., 2011).  

Peripheral administration of PPA in adolescent and male adult rats has aversive 

properties, and produced decreased social behaviour and increased anxiety (Benzaquen et 

al., 2010; Ossenkopp et al., 2011; Shams et al., 2009). Brains of animals that received 

central PPA showed an innate neuroinflammatory response, oxidative stress and 

mitochondrial dysfunction, and lipid alterations, all of which have been associated with 

ASD (Frye et al., 2013; MacFabe et al., 2007; MacFabe et al., 2008; Thomas et al., 2010; 

Thomas et al., 2012). As ASD are childhood disorders and are more prevalent in males, 

the next step in garnering evidence for PPA as an environmental trigger of ASD is to 

conduct studies on younger animals and investigate both males and females for possible 

sex differences. 

1.6. Present studies 

The goal of my thesis was to investigate the effects of metabolic products, 

associated with enteric bacteria and an altered gut microbiome composition, on 

neurodevelopment and subsequent behaviour. Immune system activation can alter the 

composition of the microbiome of the gastrointestinal tract (Bartlett and Gerding, 2008; 

Bennet et al., 2002). Repeated environmental insults (e.g., immune) in prenatal and/or 

early postnatal life may lead to chronic inflammation, altering the gut microbiome, and 

contribute to the development of ASD. Thus, I administered the enteric metabolic 

products PPA and LPS prenatally to rats to mimic subtle alterations in the production of 

gut metabolites that may result from a low-grade bacterial infection and the resulting 

inflammatory response.  

To investigate the effects of an early life infection or insult that could alter the gut 

microbiome,  a second ‘hit’ of PPA in the second postnatal week was given to mimic 

postnatal production of SCFA from the developing gut microbiota (Midtvedt and 

Midtvedt, 1992; Nafday et al., 2005). Manipulations in development leaving animals 

susceptible to later environmental insults are not unheard of, with evidence for the double 

hit hypothesis observed in neonatal immune research. Neonatal LPS in the first week of 

life produced altered behaviour in rats upon a second environmental insult during 
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adolescence or adulthood (Tenk et al., 2008; Walker et al., 2009). This approach has not, 

to date, been used in previous animal models of ASD. However, not all maternal 

infections result in neurodevelopmental disorders and repeated insults throughout 

development may be required. It is thus possible that prenatal treatment with LPS or PPA 

may leave offspring vulnerable to the effects of postnatal PPA exposure.  

Specifically, in this thesis I addressed the following questions: 1. Does 

administration of propionic acid in development alter subsequent behaviour in adolescent 

male and female rats? 2. Does prenatal administration of a low dose of 

lipopolysaccharide alter subsequent behaviour in adolescent male and female rats? and 3. 

Based on the double-hit hypothesis, will a combination of prenatal and postnatal 

treatments exacerbate subsequent behaviour altered by prenatal treatment or allow 

alterations in behaviour to appear that would not otherwise occur with either treatment 

alone? I used a range of behavioural tests to characterize the effects of PPA and LPS on 

offspring.  

Developmental milestones, locomotor activity, and anxiety (Chapter 2), reactivity 

to acoustic startle and sensorimotor gating (Chapter 3), and social and related behaviour 

(Chapter 4) were assessed. I hypothesized that prenatal PPA and LPS would produce 

developmental delay in milestones, decrease sensorimotor gating, and decrease social 

behaviour. I also predicted alterations in locomotor activity and acoustic startle responses 

with prenatal PPA, either increases or decreases. Where prenatal effects occurred, I 

hypothesized that a second hit with postnatal PPA would exacerbate behavioural changes. 

These studies demonstrate that metabolic products of the gut microbiome, PPA and LPS, 

alter neurodevelopment to produce sexually dimorphic behavioural changes in offspring 

that resemble some of the behaviours observed in ASD. 
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Chapter 2 

Sex differences in the effects of prenatal lipopolysaccharide or the bacterial 

metabolic product, propionic acid on postnatal development, and locomotor activity 

and anxiety in male and female adolescent rats 
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2.0. Summary 

Alterations in the composition of the gut microbiome and/or immune system function 

may have a role in the development of autism spectrum disorders (ASD). The current 

study examined the effects of prenatal and early life administration of lipopolysaccharide 

(LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a 

metabolic fermentation product of enteric bacteria, on developmental milestones, 

locomotor activity, and anxiety-like behaviour in adolescent male and female offspring. 

Pregnant Long-Evans rats were injected once a day with PPA (500 mg/kg SC) on 

gestation days G12-16, LPS (50 g/kg SC) on G15-16, or vehicle control on G12-16 or 

G15-16. Male and female offspring were injected with PPA (500 mg/kg SC) or vehicle 

twice a day, every second day from postnatal days P10-18. Physical milestones and 

reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye 

opening. Locomotor activity and anxiety was assessed in adolescence (P40-42) in the 

elevated plus maze and open-field. Prenatal and postnatal treatments altered behaviour in 

a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field 

in males and females while prenatal and postnatal PPA increased anxiety behaviour on 

the EPM in female rats. Prenatal LPS did not influence locomotor activity or anxiety-like 

behaviour. Evidence for the double hit hypothesis was seen as females receiving a double 

hit of PPA (prenatal and postnatal) displayed increased repetitive behaviour in the open-

field. These results provide evidence for the hypothesis that by-products of enteric 

bacteria metabolism may contribute to ASD, altering development and behaviour in 

adolescent rats similar to that observed in ASD and other neurodevelopmental disorders. 
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2.1. Introduction 

Autism spectrum disorders (ASD) are neurodevelopmental disorders with roughly 

4 males diagnosed for every 1 female. ASD comprise a number of behavioural 

symptoms,  including impairments in communication, social behaviour, sensory 

abnormalities, and restricted and repetitive behaviour (DiCicco-Bloom et al., 2006). 

Repetitive behaviour can include motor patterns such as hand flapping or repetitive use of 

objects while restricted interests may include an insistence on sameness or resistance to 

change (Leekam et al., 2011; Richler et al., 2007). In many children and adults with 

ASD, psychiatric disorders, gastrointestinal symptoms and epilepsy comorbidly occur 

(Tuchman and Rapin, 2002; Simonoff et al., 2008; Williams et al., 2011).  

It is becoming well established that both genetics and environmental factors 

contribute to the development and expression of ASD. A number of genes involved in 

immune function, mitochondrial function, and neural circuit formation have been 

implicated (Cook, Jr. and Scherer, 2008; Szatmari et al., 2007). However, known genetic 

factors discovered thus far account for 10-20% of ASD and concordance rates among 

monozygotic twins are less than 100%, suggesting an important role for environmental 

risk factors which act on the genetic susceptibilities (Hallmayer et al., 2011; Anderson et 

al., 2008). 

The gastrointestinal tract (GI) is home to over a trillion commensal bacteria, 

known as the microbiome, that have a bidirectional relationship with the central nervous 

system and contribute to normal immune system development and homeostasis in both 

humans and rodents (see Foster and Neufeld, 2013). GI dysbiosis has been implicated in 

inflammatory diseases and neuropsychiatric health (Brestoff and Artis, 2013; Cryan and 

Dinan, 2012; Nicholson et al., 2012). There is suggestive evidence that imbalances in the 

composition of the microbiome may also contribute to the development or maintenance 

of ASD in children with findings of abnormal levels of bacteria flora, including 

Clostridia, Bacteroidetes, and Desulfovibrio, in the GI tract of autistic children (Finegold 

et al., 2002; Finegold et al., 2012; Parracho et al., 2005). These anaerobic bacteria are 

antibiotic-resistant. As such, repeated early infections in postnatal life treated with 

antibiotics may provide an enteric environment that promotes overgrowth of these 

bacteria resulting in intestinal inflammation (Cho et al., 2012; Finegold et al., 2012).  
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Metabolic products of these enteric bacteria include the short chain fatty acids 

(SCFA, from carbohydrate metabolism) (Finegold et al., 2010), which are able to enter 

circulation and may alter immune function and/or exacerbate ASD behaviours. In fact, 

propionic acidemia is a neurodevelopmental metabolic disorder characterized by elevated 

levels of the SCFA, propionic acid, (PPA) that clinically resembles some aspects of 

autism (Feliz et al., 2003). A case study of autism occurring comorbidly with propionic 

acidemia has been reported (Al-Owain et al., 2013) while elevated fecal levels of SCFA 

have been found in ASD children (Wang et al., 2012). Although PPA is necessary for 

normal immune and physiological functioning, elevated levels may result in disruptive 

effects (Brestoff and Artis, 2013). It has been proposed that PPA, produced by enteric 

bacteria, may be a potential environmental factor in the development of ASD. Central 

administration of PPA has produced hyperactivity and decreased social behaviour in 

adult male rats (MacFabe, 2012). High levels of SCFA in the hindgut of rats and 

peripheral PPA injections have also produced changes in activity, anxiety-like, and social 

behaviour, consistent with ASD (Hanstock et al., 2004; Ossenkopp et al., 2012). 

Neuroinflammatory and metabolic changes, implicating oxidative stress and 

mitochondrial dysfunction, have been observed in a subset of patients with ASD and in 

rats given central PPA (Frye et al., 2013; MacFabe et al., 2008; Rossignol and Frye, 

2012). 

Immune dysfunction may increase the risk for ASD with alterations in the 

adaptive and innate cellular immune responses having been observed in children (see 

Onore et al., 2012 for review). Viral infection in the first trimester and bacterial infection 

in the second trimester have also been associated with ASD (Atladottir et al., 2010). 

Maternal immune activation (MIA) in rodents is used to investigate the role of the 

immune system in development, including its role in anxiety, schizophrenia and ASD. A 

variety of agents, including poly I:C (a viral mimetic) and  lipopolysaccharide (LPS), 

induce an inflammatory response. LPS, a bacterial mimetic, is the major component of 

the cell wall of Gram-negative bacteria and is also a by-product of enteric bacteria 

metabolism. Valproic acid (VPA), a common epilepsy treatment, has been shown to 

increase the risk of ASD. MIA and prenatal administration of VPA produces 

developmental delay and behavioural deficits in rodents (see Boksa, 2010; Roullet et al., 
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2013). Brusque et al., (1999) administered daily PPA throughout postnatal life (days 6-28 

of life) and reported developmental delay and motor impairment. Interestingly, VPA is 

converted to PPA. However, to date, there have been no studies examining the effects of 

prenatal PPA administration on behaviour in either male or female offspring. 

Prenatal and postnatal administration of immune stimulants (such as LPS) has 

shown to result in changes in anxiety-like and exploratory behaviour in adult male and 

female rats. Increased anxiety in the elevated plus maze have been shown in male and 

female adult offspring (Enayati et al., 2012; Lin et al., 2012; Walker et al., 2009). 

Assessment of open-field activity has yielded mixed results, with decreased exploration 

(Shi et al., 2003; Smith et al., 2007), no change in activity (Fortier et al., 2004; Vorhees et 

al., 2012), or hyperactivity (Howland et al., 2012) being observed. Studies of MIA with 

adolescent rats are fewer in numbers. Examination of possible sex differences in younger 

animals is particularly relevant in view of the predominance of ASD in young males. 

Studies report increased anxiety on the elevated plus maze in adolescent males and 

decreased exploration in the open-field in adolescent males and females, with some 

studies reporting no change in behaviour (Enayati et al., 2012; Howland et al., 2012; 

Oskvig et al., 2012; Schwendener et al., 2009; Vorhees, 1987). While there is increasing 

attention on investigating possible sex differences following MIA, most published 

studies, to date, are with male rodents. 

Results of a number of studies have also shown that the effects of postnatal LPS 

on subsequent behaviour do not manifest themselves unless a second environmental 

insult (e.g., restraint stress or LPS injection) is experienced in adulthood (e.g., Tenk et al., 

2008, Walker et al., 2009). Postnatal immune activation confers a susceptibility to later 

systemic insults that result in abnormal behaviour. This idea, termed the double hit 

hypothesis, was put forward to describe the genetic predisposition in schizophrenia that 

may confer vulnerability to an environmental trigger later in life that results in emergence 

of the disorder (Bayer et al., 1999). Genetics may also confer a susceptibility to prenatal 

or postnatal environmental insults in ASD, or it may be that more than one insult may be 

required as is the case in repeated infections in early life. Acute or repeated immune 

responses may alter the composition of the gut microbiome, increasing production of 

potential aversive metabolic products (Bartlett and Gerding, 2008; Bennet et al., 2002). 
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Thus, it is possible that prenatal treatment with PPA may leave offspring vulnerable to 

the effects of postnatal PPA treatment. Prenatal LPS may also leave offspring vulnerable 

to postnatal PPA, as LPS is also a product of enteric bacteria. This approach of multiple 

environmental insults has not been used in animal models of ASD thus far. 

The present study investigated the effects of prenatal treatment with the immune 

stimulant, LPS, and the microbiome associated gastrointestinal factors, PPA, on postnatal 

developmental milestones, open-field activity and anxiety-like behaviour in adolescent 

male and female offspring. In addition, the effects of a second ‘hit’ of PPA in the second 

postnatal week were examined. Specifically, the effects of prenatal LPS, prenatal PPA, 

and postnatal PPA administration on the development and behaviour of adolescent male 

and female rats are compared. It was hypothesized that prenatal LPS would increase 

anxiety-like behaviour in offspring and that prenatal PPA would increase locomotor 

activity and anxiety-like behaviour in offspring. Combinations of prenatal and postnatal 

treatments, prenatal LPS with postnatal PPA and prenatal PPA with postnatal PPA, are 

included to assess whether behavioural effects will be magnified compared to that seen 

after either treatment alone. Developmental delay was observed in male and female rats 

with prenatal PPA and LPS, while increased anxiety-like behaviour was sex- and 

treatment-specific. 

2.2. Method 

2.2.1. Animals 

 Twelve primiparous female Long-Evans rats weighing between 270-310 g were 

mated with adult male Long-Evans rats (375-550 g, Charles River, Canada) for a total of 

12 litters. Females were paired overnight with a male the night before behavioural estrus. 

Sperm present on a vaginal smear (hematoxylin & eosin stain) the morning after pairing 

indicated successful mating and this was designated gestational day 0 (G0). Dams were 

housed individually in standard polypropylene cages (45 x 22 x 20 cm) with ad libitum 

access to both food (ProLab RMH 3000) and water. A 12:12 h light:dark cycle (lights on 

at 0700 h) was maintained in a temperature controlled colony room (21 ± 2°C). Litters 

were born on G22 (designated as postnatal day (P) 0), toe-clipped for identification, and 

were weaned at P21 (M = 14.17 pups, SD = 2.41). On P21, pups were weaned and 

randomly culled to a maximum of 10 animals per litter (5 males, 5 females). Weaned rats 
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were housed in same-sex, same-postnatal drug groups of 2 or 3 in standard polypropylene 

cages under the same conditions as dams. All behavioural testing took place during the 

light phase and animals were monitored (e.g., body weight) during testing. Procedures 

were approved by the University of Western Ontario Animal Use Subcommittee and 

were in accordance with the Canadian Council of Animal Care (CCAC) guidelines. 

2.2.2. Prenatal LPS and PPA administration 

Sodium propionate (PPA, P1880, Sigma Chemical, St. Louis, MO, USA) was 

dissolved in 0.1 M phosphate buffered saline and administered at a dose of 500 mg/kg 

subcutaneously (SC, pH corrected to 7.4 with concentrated HCl) once a day on G12-16 

for a total of 5 injections. Injections started on G12 to mimic the VPA and MIA models 

of ASD (Schneider and Przewlocki, 2005). Multiple injections were administered given 

the short half-life of PPA (20 min) (Brusque et al., 1999). A low dose (compared to 

previous studies) was used in order to be comparable to the relatively low dose of 

elevated PPA resulting from an altered microbiome composition. Lipopolysaccharide 

(LPS from E. coli serotype 0111:B4, L2630, Sigma Chemical, St. Louis, MO, USA) was 

dissolved in 0.1 M phosphate buffered saline and administered SC at a low dose of 50 

g/kg on G15 and G16. Prenatal LPS administered at this time has been previously 

shown to increase anxiety-like behaviour (Enayati et al., 2012) and decrease sensorimotor 

gating (Fortier et al., 2007). An equivalent volume of phosphate buffered saline was 

injected SC as a vehicle control (2 mL/kg) to yield two control groups, either on G15 and 

G16 (2VEH) or on G12-16 (5VEH). All maternal injections were administered between 

the shoulder blades.  

2.2.3. Postnatal PPA administration 

 As synaptogenesis occurs during the first 3 weeks of postnatal life in rats (Rice 

and Barone Jr, 2000), on P10, 12, 14, 16, and 18, male and female pups were injected 

twice a day SC with either PPA (500 mg/kg, pH = 7.4) or equivalent volumes of 

phosphate buffered saline vehicle (VEH, 5mL/kg) to correspond with an environmental 

insult in early human life. Half of each litter was injected with postnatal PPA and the rest 

with VEH. Injections took place at 0930 h (between the shoulder blades) and 1530 h 

(between the haunches). 

 



28 

 

 

2.2.4. Experimental procedure 

Table 2.1 provides a summary of drug treatments and group numbers of pups 

monitored for developmental milestones. Litters were weaned to a maximum of 10 

animals and these animals underwent behavioural testing in adolescence on P40, 42 

(Table 2.2). The prenatal and postnatal injection schedule yielded the following treatment 

combinations for each sex: No drug treatment except vehicle (prenatal 2VEH or 5VEH 

with postnatal VEH); Prenatal treatment alone (prenatal LPS or PPA with postnatal 

VEH); Postnatal PPA alone (prenatal 2VEH or 5VEH with postnatal PPA); Prenatal and 

Postnatal treatment combined (prenatal LPS or PPA with postnatal PPA). 

2.2.4.1. Developmental milestones 

 The body weights of pups were monitored daily for the first 20 days of life. The 

following developmental milestones were assessed for day of appearance: Righting reflex 

(P2-6): pups were placed on their back and given 30 s to turn onto stomach with all limbs 

outstretched from body; Pinna detachment (P2-4): bilateral pinna unfolding completely 

from head; Incisor eruption (P7-13): both upper and lower; Eye opening (P12-16): scored 

as 0 = both eyes closed, 1 = one eye open, 2 = both eyes open; Negative geotaxis (P7-10): 

time (s) to rotate 180° on a 30° incline when placed head down (assesses vestibular 

function and motor development) (Altman and Sudarshan, 1975) with each pup given a 

maximum of 3 – 60 s trials to complete the task; Free-fall righting reflex (P15): pups 

were held 35 cm above a padded surface with back facing down and released. A 

successful trial occurred when the pup landed on its stomach and all limbs were 

outstretched, with 3 successive trials (15 s apart) yielding a possible maximum score of 3. 

2.2.4.2. Elevated plus maze (EPM) – P40 

The EPM was made of wood and painted grey with non-toxic paint. The 

apparatus consisted of two opposite open arms (54 x 12 cm) with no sides or ends and 

orthogonal to two enclosed arms with sides and ends (54 x 12 x 48 cm). The four arms 

extended from a centre platform (12 x 12 cm) and the apparatus was raised 50 cm from 

the floor. An overhead camera connected to a television and DVD-R recorded behaviour 

for later scoring. 
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Table 2.1. Summary of treatment groups tested for developmental milestones 

 

        Prenatal treatment     
      2VEH LPS 5VEH PPA   

 
VEH 

(M) 8 8 8 12 36 
       
Postnatal (F) 9 12 12 10 43 
treatment       
 

PPA 
(M) 10 8 11 14 43 

       
  (F) 11 14 12 11 48 
        
  Total   38 42 43 47 170 

 

Note: Numbers in the table represent number of animals per group for males (M) and 

females (F). There were 3 litters in each of the 4 prenatal groups (2VEH, 5VEH: 2 or 5 

injections of phosphate buffered saline vehicle on G15-16 or G12-16, respectively; LPS: 

Lipopolysaccharide, 50 ug/kg on G15-16; PPA: Propionic acid, 500 mg/kg on G12-16). 

Postnatal treatment during the second week of rat pups’ life consisted of phosphate 

buffered saline vehicle (VEH) or propionic acid (PPA). 
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Table 2.2. Summary of treatment groups used for behavioural testing 

 

        Prenatal treatment     
      2VEH LPS 5VEH PPA   

 
VEH 

(M) 6 6 6 6 24 
       
Postnatal (F) 6 6 6 6 24 
treatment       
 

PPA 
(M) 8 8 9 9 34 

       
  (F) 8 9 9 9 35 
        
  Total   28 29 30 30 117 

 

Note: Numbers in the table represent number of animals per group for males (M) and 

females (F). There were 3 litters in each of the 4 prenatal groups (2VEH, 5VEH: 2 or 5 

injections of phosphate buffered saline vehicle on G15-16 or G12-16, respectively; LPS: 

Lipopolysaccharide, 50 ug/kg on G15-16; PPA: Propionic acid, 500 mg/kg on G12-16). 

Postnatal treatment during the second week of rat pups’ life consisted of phosphate 

buffered saline vehicle (VEH) or propionic acid (PPA). A maximum of 5 males and 5 

females (3 postnatal PPA, 2 postnatal VEH for each sex) per litter were included in 

behavioural testing. Testing took place on P40 and P42. 
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 Testing took place on the afternoon of P40. Animals were recorded for 5 minutes 

and placed on the centre platform facing an open arm to begin the test. After each animal, 

the maze was cleaned with a 20% alcohol solution. Measures assessed included the 

number of entries onto open and closed arms and time spent (s) on open and closed arms. 

Percent time in open arms was taken as a measure of anxiety (time spent in open 

arms/time spent in open arms + time spent in closed arms x 100).  

2.2.4.3. Open-field test – P42 

 Locomotor activity was monitored using eight Versamax Animal Activity 

Monitors (AccuScan Model DCM-8, Columbus, OH, USA), each consisting of a 

Plexiglas open field chamber (40 cm x 40 cm x 30.5 cm), and a Plexiglas lid with air 

holes. Infrared beams surrounding each chamber recorded horizontal and vertical 

locomotor activity as beam breaks, from which locomotor measures were compiled 

(Ossenkopp and Kavaliers, 1996). There were 16 infrared beam sensors on each side 

(2.54 cm apart, 4.5 cm from the floor) for horizontal movements, while on two opposite 

sides, 16 upper beams were located 15 cm above the chamber floor to assess vertical 

movements. Additionally, the VersaMax software separated the open-field into discrete 

periphery (7.5 cm wide border) and centre (30 x 30 cm square) zones to measure 

thigmotaxis (tendency of animals to stay close to the walls, an indication of anxiety) 

(Treit and Fundytus, 1988). 

 Animals were placed in the novel open-field for 60 min on P42 to assess any 

changes in locomotor activity. Horizontal activity measures analyzed were: total distance 

(TD) − total horizontal distance (cm); horizontal movement time (MT) − amount of time 

(s) an animal was engaged in horizontal movement; number of horizontal movements 

(NM) − number of horizontal movements separated by 1 s stop time. Vertical activity 

measures analyzed were: vertical movement time (VT) − amount of time (s) an animal 

spent in a vertical position; number of vertical movements (VM) − number of vertical 

movements separated by 1 s stop time. Repetitive activity was measured as number of 

revolutions (clockwise and counterclockwise) - number of times an animal runs in a 

clockwise or counterclockwise circle of at least 2 inches in diameter. Duration spent (s) 

in the periphery and centre was measured, and locomotor activity was corrected for time 

spent in each zone (TD, MT, VM, VT). 
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2.2.5. Statistical analysis 

All analyses were performed with IBM Statistics 20 (formerly Statistical Package 

for the Social Sciences, SPSS). As pups within a litter are not independent samples, the 

effects associated with belonging to a litter and being raised in a litter must be accounted 

for. To do this, linear mixed models were used for each of the dependent variables, with 

Litter used as a subject variable. Fixed factors in all models were: Sex, Prenatal drug, 

Postnatal drug while litter size was used as a covariate. For body weight, negative 

geotaxis, and eye opening, Day was also included as a factor. LSD post-hocs were 

performed. Significance was set to  = 0.05. 

2.3. Results 

2.3.1. Development 

2.3.1.1. Body Weight: Postnatal 

Weight was monitored daily for the first 20 days of life (P0-P19). All pups gained 

weight across days, F(19,3072) = 3077, p < 0.001, and male pups weighed significantly 

more than female pups, F(1,3072) = 88.02, p < 0.001 (Figure 2.1A-D). There was a 

significant Sex x Prenatal drug x Postnatal drug interaction, F(3,3072) = 6.20, p < 0.001. 

Postnatal PPA treated male pups were significantly heavier than postnatal VEH treated 

male pups (p < 0.001) on P13-19 in the prenatal PPA and 2VEH groups, ps < 0.05 

(Figure 2.1A-B). Postnatal PPA treated female pups were significantly lighter than 

postnatal VEH treated female pups (p < 0.001) with individual days failing to reach 

significance in the prenatal LPS group (Figure 2.1C-D). 

2.3.1.2. Body Weight: Adolescence 

Weight was monitored on P39, P45, 47, 49, and 51 (data from P45-51 presented 

in Chapter 3). All animals gained weight across days, F(4,419) = 298.04, p < 0.001, with 

males weighing significantly more than females, F(1,417) = 1841.06, p < 0.001. A 

significant Sex x Prenatal drug x Postnatal drug interaction, F(3,417) = 3.36, p = 0.019, 

indicated that in prenatal 2VEH animals, postnatal PPA adolescent males weighed 

significantly more than postnatal VEH males, p < 0.001 (P39 NS, P45-51 ps < 0.05), with 

no significant effect of postnatal drug in adolescent females (see Figure 2.2). 
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Figure 2.1. Body weight (g) for male and female offspring from postnatal days 10-19.  

 

A-B: Males. C-D: Females. Rats were prenatally exposed to either lipopolysaccharide 

(LPS) on G15-16, propionic acid (PPA) on G12-16, or their respective phosphate 

buffered saline controls (2VEH and 5VEH). Postnatal treatment, either PPA or VEH, was 

administered 2x/day every other day from P10-18. Males receiving postnatal PPA 

weighed significantly more than postnatal VEH treated males within prenatal PPA and 

2VEH groups, while females receiving postnatal PPA weighed significantly less than 

postnatal VEH treated females within the prenatal LPS group (ps < .05). Error bars 

represent S.E.M. Refer to Table 2.1 for sample sizes. 
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Figure 2.2. Body weight (g) for male and female offspring during adolescence. 

  

A-B: Males. C-D: Females. Rats were prenatally exposed to either lipopolysaccharide 

(LPS) on G15-16, propionic acid (PPA) on G12-16, or their respective phosphate 

buffered saline controls (2VEH and 5VEH). Postnatal treatment, either PPA or VEH, was 

administered 2x/day every other day from P10-18. Postnatal PPA males treated prenatally 

with 2VEH weighed significantly more than prenatal 2VEH-postnatal VEH males on 

P45-51 (ps < 0.05). There were no significant differences in female offspring. Error bars 

represent S.E.M. Refer to Table 2.2 for sample sizes.
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2.3.1.3. Physical Milestones 

There was no developmental delay and no sex differences in pups as a result of 

either prenatal PPA or LPS treatment for eruption of top and bottom incisors, and pinna 

detachment (Figure 2.3A-C). There was developmental delay observed in day of eye 

opening in both prenatal PPA and prenatal LPS treated male and female pups (Figure 

2.4). A significant Day x Prenatal drug interaction, F(12,762) = 13.0, p < 0.001, indicated 

that prenatal PPA and LPS treated male and female pups were significantly different 

from both 5VEH (ps < 0.01) and 2VEH treated pups (ps < 0.05) on P14, while on P15, 

prenatal PPA treated male and female pups were significantly different from 5VEH and 

LPS (ps < 0.05). 

2.3.1.4. Reflexes 

 The day at which rat pups could perform a righting reflex was monitored. A sex 

difference was present, F(1,147) = 6.70, p = 0.011, with males performing the reflex 

significantly earlier than females, with prenatal drug treatment having no significant 

effect on this reflex (Figure 2.5A). Negative geotaxis was monitored daily on P7-10 to 

ensure motor reflex development (Figure 2.5B). There was no delay among treatment 

groups and all animals showed improvement across days, F(3,588) = 3.66, p = 0.012. 

Lastly, on P15, a free-fall righting reflex test was performed with a higher score 

indicating good performance. There was a significant Sex x Prenatal drug x Postnatal 

drug interaction, F(3,146) = 4.95, p = 0.003. Males receiving prenatal LPS and postnatal 

PPA had significantly higher scores on the free-fall righting reflex test than males 

receiving prenatal LPS and postnatal VEH, p = 0.002. Females receiving prenatal LPS 

and postnatal PPA had significantly lower scores on the reflex test than females receiving 

prenatal LPS and postnatal VEH (p = 0.031) and lower scores than females receiving 

prenatal 2VEH and postnatal PPA (p = 0.029) or prenatal PPA and postnatal PPA (p = 

0.042, Figure 2.5C). 

2.3.2. Behavioural Tests in Adolescence 

2.3.2.1. Open-Field Locomotor Activity 

Generally, regardless of drug treatment, female offspring were more active than 

male offspring for total distance traveled, F(1,100) = 8.55, p = 0.004, horizontal  
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Figure 2.3. Physical developmental milestones for male and female offspring.  

 

Pups were monitored daily and postnatal day of milestone emergence was recorded. A: 

Pinna detachment, B: Top incisor eruption, and C: Bottom incisor eruption. There were 

no significant effects of prenatal treatment and no sex differences. Error bars represent 

S.E.M. Refer to Table 2.1 for group designations and sample sizes. 
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Figure 2.4. Eye opening across postnatal days for prenatal treatment groups.  

 

Data is collapsed across sex and postnatal treatment as there were no significant effects of 

these on eye opening. On P14, both prenatal LPS (^, p < 0.05) and PPA treated animals 

were delayed compared to vehicle treated controls (* p < 0.05, ** p < 0.01). On P15, 

prenatal PPA treated pups continued to exhibit delayed eye opening. Error bars represent 

S.E.M. Refer to Table 2.1 for group designations and sample sizes.  
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Figure 2.5. Reflexes during early life for male and female offspring.  

 

A. Righting reflex: the day at which animals could right themselves from a supine 

position with all limbs outstretched. Male pups righted significantly earlier than females. 

B. Negative geotaxis: on postnatal days 7-10, the time in seconds that it took animals to 

rotate 180° on a 30° incline when placed head down. An effect of Day indicated that pups 

completed a 180° turn more quickly across postnatal days. There were no significant 

effects of sex or prenatal drug. C. Free-fall righting reflex: 3 trials occurred, with a 

successful trial given a score of 1. In prenatal LPS treated pups, postnatal PPA produced 

sex differences, with higher scores in postnatal PPA treated males and lower scores in 

postnatal PPA treated females compared to postnatal VEH treated males and females, 

respectively. Error bars represent S.E.M. Refer to Table 2.1 for group designations and 

sample sizes. * p < 0.05, ** p < 0.01 
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movement time, F(1,100) = 6.31, p = .014, and number of revolutions, F(1,93) = 11.86, p 

= 0.001). Significant main effects of Prenatal drug were found for total distance traveled, 

F(3,100) = 3.23, p = 0.026, and number of horizontal movements, F(3,100) = 4.37, p = 

0.006, but not for horizontal movement time. Animals prenatally exposed to PPA or 

5VEH moved a significantly greater total distance than animals in both the LPS and 

2VEH control group, ps < 0.05 (Figure 2.6A, B). Further analysis showed this difference 

to be present in only female offspring as prenatal PPA and 5VEH treated females were 

significantly more active than prenatal LPS treated females, ps < 0.01. Animals 

prenatally exposed to 5VEH performed a significantly greater number of horizontal 

movements than the other 3 prenatal drug groups (PPA p = 0.040, 2VEH p = 0.002, LPS 

p = 0.003), with the same effect in both male (5VEH significantly greater than 2VEH p = 

0.014) and female offspring (5VEH significantly greater than 2VEH, LPS ps < 0.05, 

Figure 2.6C).  

 There were no effects of prenatal LPS or PPA, or postnatal PPA treatment on 

vertical activity measures (number of vertical movements and vertical movement time, 

data not shown). For number of revolutions, the Sex x Prenatal drug x Postnatal drug 

interaction was nearly significant, F(3,93) = 2.68,   p = 0.051. Further analysis showed 

that a double hit of prenatal and postnatal PPA increased the number of revolutions made 

in the female offspring, but not in the male offspring (Figure 2.6D). Female offspring 

exposed to prenatal and postnatal PPA displayed significantly more revolutions than their 

male counterparts (p = 0.001), prenatal PPA-postnatal VEH treated females (p = 0.046), 

and female offspring exposed to prenatal LPS or 2VEH and postnatal PPA (ps < 0.05). 

 Overall, prenatal PPA, prenatal LPS, and postnatal PPA alone did not produce 

hyper- or hypo-activity in male and female adolescent offspring. Prenatal PPA and 

postnatal PPA combined significantly increased repetitive behaviour (number of 

revolution) in female, not male offspring. 

2.3.2.2. Open-Field Thigmotaxis 

 There was a significant main effect of Prenatal drug, F(3,100) = 4.83, p = 0.004, 

for percent time spent in the centre (Figure 2.7A). Prenatal PPA treated animals spent 

significantly less time in the centre of the open-field compared to prenatal 5VEH treated  
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Figure 2.6. Locomotor activity in a novel open-field (P42) in male and female offspring. 

  

Adolescent females moved significantly more than males. Total distance traveled (cm): 

A: Sex x Prenatal treatment and B: Prenatal treatment. Prenatal PPA and 5VEH treated 

animals moved significantly more than prenatal LPS and 2VEH treated animals. C: 

Number of horizontal movements. An effect of prenatal treatment showed animals in the 

prenatal 5VEH group made significantly more horizontal movements than the other 3 

prenatal treatment groups. D: Number of revolutions. Females made significantly more 

revolutions than males. A double hit of prenatal PPA and postnatal PPA produced 

significantly more revolutions in female offspring compared to prenatal PPA alone in 

females and a double hit of PPA in males. Error bars represent S.E.M. Refer to Table 2.2 

for group designations and sample sizes. * p < .05, ** p < .01 
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controls, p = 0.005. Prenatal 2VEH and LPS treated animals also spent significantly less 

time in the centre than animals treated with 5VEH (2VEH p = 0.023, LPS p = 0.001). 

There were no significant effects of drug on the number of entries into the centre or 

perimeter of the open-field and postnatal PPA as compared to postnatal VEH had no 

significant effect on percent time in the centre or perimeter of the open-field (Figure 

2.7B). 

 Locomotor activity measures were corrected for the amount of time spent in the 

perimeter or centre of the open-field. Prenatal LPS, prenatal PPA, and postnatal PPA did 

not significantly affect locomotor activity in the perimeter of the open-field on any 

horizontal or vertical activity measures. Females traveled significantly greater total 

distances, Sex F(1,100) = 11.53, p = 0.001, and spent more time moving horizontally 

than males, Sex F(1,100) = 8.41, p = 0.005 (data not shown). 

 Postnatal PPA and prenatal LPS also did not affect central locomotor activity. 

However, prenatal PPA resulted in increased activity in the centre of the open-field. 

There were significant main effects of Sex, F(1,100) = 5.82, p = 0.018, and Prenatal drug, 

F(3,100) = 5.14, p = 0.002, for total distance traveled in the centre (Figure 2.7C) and a 

significant main effect of Prenatal drug, F(3,100) = 2.82, p = 0.043, for horizontal 

movement time in the centre (data not shown). Animals in the prenatal PPA group 

traveled significantly greater total distances than all other prenatal groups (5VEH p < 

0.001, LPS p = 0.006, 2VEH p = 0.008). This effect was present in both females (prenatal 

PPA significantly greater than other 3 groups, ps < 0.01) and in males (prenatal PPA 

significantly greater than 5VEH, p = 0.021). For horizontal movement time, prenatal PPA 

treated animals spent significantly more time moving in the centre than 5VEH treated 

animals, p = 0.005. 

 While in the centre of the open-field, females generally performed more vertical 

movements, Sex F(1,93) = 6.56, p = 0.012, and spent more time engaged in rearing than 

males, Sex F(1,100) = 4.48, p = 0.037. A significant Sex x Prenatal drug interaction for 

number of vertical movements in the centre of the open-field, F(3,93) = 2.89, p = 0.040, 

indicated that females prenatally exposed to PPA performed a significantly greater 

number of vertical movements than prenatal PPA treated males, p = 0.001 (Figure 2.7D). 

No significant effects of prenatal drugs (LPS or PPA) were found for vertical time. 
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Figure 2.7. Thigmotaxis measures in a novel open-field (P42) in male and female 

offspring.  

 

Activity measures were time corrected. Females moved significantly more than males. A: 

Percent time in the centre of the open-field. Animals in the prenatal PPA treated group 

spent significantly less time in the centre of the open field than the prenatal 5VEH group. 

B: Number of entries into the centre. There were no significant differences in entries into 

the centre. C: Total distance traveled (cm/s). Male and female offspring in the prenatal 

PPA treated group traveled significantly greater distances than the 5VEH treated control 

group. D: Number of vertical movements. Prenatal PPA treated female offspring reared 

significantly more than prenatal PPA treated male offspring. Error bars represent S.E.M. 

Refer to Table 2.2 for group designations and sample sizes. * p < .05, ** p < .01 

 

Prenatal

Sex
Male Female

P
e

rc
e

n
t 
ti
m

e
 i
n
 c

e
n
tr

e
 z

o
n
e

0

5

10

15

20
2VEH 

LPS 

5VEH 

PPA 

A.

*

*

Sex
Male Female

T
im

e
 c

o
rr

e
c
te

d
 n

u
m

b
e

r 
o

f 
v
e

rt
ic

a
l 
m

o
v
e

m
e

n
ts

 i
n
 c

e
n
tr

e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 2VEH 

LPS 

5VEH 

PPA 

D. Prenatal

*

Sex
Male Female

T
im

e
 c

o
rr

e
c
te

d
 t
o

ta
l 
d

is
ta

n
c
e

tr
a

v
e

le
d

 (
c
m

/s
) 

in
 c

e
n
tr

e

0

2

4

6

8 2VEH 

LPS 

5VEH 

PPA 

C. Prenatal

**

*

Sex
Male Female

N
u
m

b
e

r 
o

f 
e

n
tr

ie
s
 i
n
to

 c
e

n
tr

e

0

50

100

150

200

250

300
2VEH 

LPS 

5VEH 

PPA 

B. Prenatal



43 

 

 

 Overall, prenatal LPS and postnatal PPA did not significantly alter time spent, or 

locomotor activity, in the perimeter or centre of the open-field. However, prenatal PPA 

significantly increased locomotor activity in the centre of the open-field in both males 

and females. 

2.3.2.3. Elevated Plus Maze 

The number of entries into the closed arm was used as a measure of locomotion. 

There were no significant differences among groups in closed arm entries (Figure 2.8A). 

Number of entries into the open arm, percent time spent in the open arm, and closed arm 

time were used as traditional measures of anxiety-like behaviour.  

For number of entries into the open arm, there was a Prenatal drug x Postnatal 

drug interaction, F(3,92) = 2.99, p = 0.035. Postnatal PPA treated animals in the prenatal 

5VEH group entered the open arm significantly fewer times than postnatal VEH animals 

(p = 0.01). A significant Sex x Prenatal drug interaction for both open arm entries, 

F(3,92) = 9.45, p < 0.001, and percent time in the open arm, F(3,99) = 7.14, p < 0.001, 

showed there were no differences in open arm entries among male offspring. Female 

offspring prenatally exposed to PPA entered the open arm significantly less often (p = 

0.001) and spent significantly less time in the open arm than prenatal 5VEH treated 

female offspring (p < 0.001, Figure 2.8B, C). Prenatal LPS and 2VEH treated females 

were also significantly less than prenatal 5VEH treated females for open arm entries and 

percent time in the open arm (ps < 0.001). The significant Sex x Prenatal drug interaction, 

F(3,92) = 4.10, p = 0.009, for time spent in the closed arm showed that female offspring 

in the prenatal 5VEH group spent significantly less time in the closed arm than female 

offspring in the other 3 prenatal groups (ps < 0.01, Figure 2.8D). Postnatal PPA treated 

animals also spent significantly more time in the closed arm than postnatal VEH treated 

animals, Postnatal drug F(1,92) = 6.74, p = 0.011, but this was only in female offspring 

(p = 0.037). 

In summary, females in the prenatal PPA group made significantly less open arm 

entries, and spent less percent time in the open arm with more time in the closed arm than 

controls. Postnatal PPA significantly increased closed arm time in female offspring. 
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Figure 2.8. Elevated plus maze (P40) for male and female offspring. 

  

A: Number of closed arm entries was not significant. B: Number of open arm entries, C: 

Percent time in the open arm, D: Time in closed arm. Female offspring in the prenatal 

PPA group made less open arm entries, spent less time in the open arm, and spent more 

time in the closed arm than the prenatal 5VEH group. Error bars represent S.E.M. Refer 

to Table 2.2 for group designations and sample sizes. * p < 0.05, ** p < 0.01, *** p < 

0.001 
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2.4. Discussion 

Until relatively recently, limited attention has been given to possible 

developmental effects of microbiome associated, GI metabolic products in rodents. 

Likewise, investigations of the effects of prenatal and postnatal immune activation with 

LPS and poly I:C have been mostly limited to adult male rodents. The present study 

investigated the effects of prenatal PPA and prenatal LPS in the emergence of postnatal 

developmental milestones, locomotor activity and on anxiety-like behaviour in both male 

and female adolescent offspring. Additionally, a PPA regimen in the second week of life 

was used to evaluate if a subsequent postnatal insult would exacerbate any behavioural 

effects of prenatal treatment.  

Prenatal LPS and PPA treatment resulted in developmental delays in male and 

female offspring, suggesting altered neurodevelopmental effects. Prenatal PPA alone did 

not influence open-field activity, but as expected, prenatal PPA produced increased 

anxiety-like behaviour as evidenced by decreased time spent in the centre of the open-

field in male and female adolescent rats, and less time on the open arm of the elevated 

plus maze (EPM) in females. Prenatal LPS did not alter behaviour in the open-field and 

EPM. Postnatal PPA alone did not alter open-field activity, yet increased anxiety-like 

behaviour in the EPM. Evidence for the double hit hypothesis was present in female 

adolescent rats, with the combination of PPA treatments increasing repetitive behaviour. 

As a whole, the present results provide evidence that prenatal LPS or PPA and postnatal 

PPA can alter neurodevelopmental processes and that these changes manifest as sex- and 

test-specific alterations in activity and anxiety-like behaviour in adolescent rats. 

2.4.1. Prenatal and postnatal treatments produce developmental delay 

Prenatal and postnatal treatments influenced body weight and developmental 

milestones. Body weight in male and female offspring was affected slightly by postnatal 

PPA treatment administered in the second week of life. Male pups were heavier and 

female pups were lighter than control pups, with the effects in males reaching 

significance across days. PPA administered in the first week of life and postnatal VPA in 

prior studies had no effect on body weight (Brusque et al., 1999; Reynolds et al., 2012). 

However, while postnatal LPS has been demonstrated to not influence body weight in the 

first 3 weeks of life, there is some evidence of increasing body weight in males 
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throughout adolescence (Iwasa et al., 2010; Spencer et al., 2007). There were no 

differences in females with postnatal PPA and differences in males only in the prenatal 

2VEH group at adolescence, suggesting minimal long-lasting effects on body weight.  

Motor reflexes and development also developed normally in early life, consistent 

with previous studies in rats receiving LPS and VPA (Baharnoori et al., 2010; Schneider 

and Przewlocki, 2005). In female offspring, there was a deficit in the ability to right mid-

air on P15 in animals receiving a combination of prenatal LPS and postnatal PPA 

compared to prenatal vehicle treated controls. Prenatal VPA impaired free-fall righting in 

male and female offspring (Wagner et al., 2006), while daily postnatal administration of 

PPA impaired free-fall righting in male offspring (Brusque et al., 1999). However, in 

males, prenatal LPS males receiving postnatal PPA were found to have higher righting 

ability scores compared to prenatal LPS-postnatal VEH treated males. These findings 

suggest that changes in activity in prenatal LPS and PPA treated adolescents are not due 

to developmental impairment in motor functions, but rather are associated with 

developmental changes in underlying neurobiological processes. 

Physical developmental milestones monitored were normal in prenatal PPA and 

LPS treated pups compared to vehicle controls, with the exception of eye opening, which 

was delayed in both prenatal PPA and LPS treated male and female pups. These results 

are consistent with previous studies showing VPA delayed eye opening (Roullet et al., 

2010; Schneider and Przewlocki, 2005). In contrast, prenatal LPS on G15-16 at a higher 

dose than this study found no delay in eye opening (Baharnoori et al., 2010), which may 

suggest that Long-Evans rats are more susceptible to developmental delay with prenatal 

LPS than Sprague-Dawley rats. Eye opening has been shown to be important for 

initiating glutamatergic synapse maturation (Zhao et al., 2013). As such, prenatal LPS 

and PPA treatment and postnatal PPA appear to have the capacity to affect some 

developmental processes.  

2.4.2. Prenatal PPA and postnatal PPA combined produces repetitive behaviour in 

female offspring  

Overall, female adolescent rats displayed greater levels of basal locomotor 

activity than males, consistent with what is seen in adults (Lynn and Brown, 2009; Lynn 

and Brown, 2010). Previously, central administration of PPA directly into the brain 
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ventricles of adult males increased locomotion and repetitive behaviour (MacFabe et al., 

2007; Thomas et al., 2012). While these acute administrations are not directly 

comparable to prenatal effects, they do point to possible direct locomotory effects with 

prenatal PPA. However, prenatal PPA or postnatal PPA alone did not affect locomotor 

activity. In fact, a ‘double hit’ of PPA in female offspring was required to produce an 

increase in repetitive movement, as measured by number of revolutions. This is similar to 

the results of Schneider et al. (2008) who reported a single injection of prenatal VPA 

increased duration and number of stereotypic movements in adult female rats, but not 

male rats.  

Prenatal VPA has been shown to produce hyperactivity in male and female 

juvenile rats (P22-28) and adolescent male rats in an open-field (Dendrinos et al., 2011; 

Schneider and Przewlocki, 2005). The present findings suggest that PPA at the present 

dosage may not be as effective as VPA and/or exert its effects through different 

mechanisms (Dawson, 1991). MIA offspring challenged with dopamine and NMDA 

drugs show increased locomotor activity compared to MIA controls challenged with the 

drugs (Fortier et al., 2004; Howland et al., 2012). It is possible that PPA also affected 

dopamine neurotransmission (DeCastro et al., 2005; Rorig et al., 1996), and that changes 

are subtle and might only appear if animals were challenged with psychomimetic drugs at 

the time of testing.  

General activity in a novel open-field was greater in prenatal PPA and 5VEH 

treated offspring compared to LPS and 2VEH treated offspring. Receiving five injections 

may have induced a mild stress response and been enough of a stressor to affect 

development. Prenatally stressed rats have been shown to be hyperactive in a novel open-

field, as well as displaying anxiety-like behaviour (Fride and Weinstock, 1988; Wilson et 

al., 2013). Repeated injections can alter baseline levels of plasma corticosterone (Drude 

et al., 2011; Ryabinin et al., 1999) and prenatal stress can compromise the placental 

barrier, exposing developing animals to corticosterone (O'Donnell et al., 2009). This may 

have led to greater activity in a potentially stressful situation, in this case, a novel open-

field.  
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2.4.3. Prenatal LPS did not influence locomotor activity and anxiety-like behaviour 

General activity in an open-field does not seem to be altered by MIA alone in 

adolescent or adult offspring, as observed in this and prior studies (Fortier et al., 2004; 

Howland et al., 2012; Lin et al., 2012; Vorhees et al., 2012). This does not necessarily 

indicate that there are no developmental changes in neural functioning. For example, 

Fortier et al. (2004) found no change in open-field activity with a low dose of prenatal 

LPS until adult rats were challenged with amphetamine. Alternatively, the open-field 

used in this study may have been too small to detect aversiveness to the centre of the 

open-field in prenatal LPS-treated rats. In a study with a larger novel open-field, prenatal 

LPS induced decreases in locomotor activity and time spent in the centre (Lin et al., 

2012).  

The low dose of LPS (50 g/kg) administered during mid-late gestation (G15-16) 

may help explain why there were no effects of prenatal LPS on anxiety measures in the 

open-field and EPM. Increased anxiety-like behaviour in the EPM was observed in 

adolescent male rats prenatally exposed to LPS on G16 or G17 at higher doses (100 and 

150 g/kg), and in adult mice offspring exposed to a similar dose of LPS as this study, 

but earlier prenatally (G10), or postnatally (Enayati et al., 2012; Lin et al., 2012; Majidi-

Zolbanin et al., 2013). While prenatal LPS produced developmental delay in rats, it was 

not sufficient to alter anxiety-like behaviour.  

2.4.4. Prenatal PPA increased anxiety-like behaviour in the open-field 

When the open field was divided into centre and perimeter zones, prenatal PPA 

treatment increased anxiety-like behaviour in both male and female offspring. Reduced 

time in the centre is indicative of increased anxiety, as the open space acts as an aversive 

space. Adolescent males and females prenatally exposed to PPA were also hyper-active 

when in the centre of the open-field, which may suggest a level of aversiveness. Adult 

rats fed a carbohydrate-rich diet exhibited anxiety and elevated levels of SCFAs in the 

gut (Hanstock et al., 2004) while previous research with MIA and VPA report decreased 

time in the centre of an open-field in adolescent male and female offspring (Lin et al., 

2012; Smith et al., 2007; Vorhees, 1987). Additionally, infection of germ-free mice with 

a Gram-negative enteric pathogen (Campylobacter jejuni) increased anxiety behaviour 

and was associated with increased early gene expression in brain regions implicated in 
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anxiety (Goehler et al., 2008; Lyte et al., 2006). However PPA, unlike LPS and C. jejuni, 

is not a pathogen and may not alter developmental processes in the same way. It is 

possible that similar immune processes are activated (e.g., cytokine release) as central 

PPA induces an innate neuroinflammatory response in the brain (MacFabe et al., 2007); 

however, it remains to be seen if PPA in development alters immune function in rat 

offspring. 

2.4.5. Prenatal and postnatal PPA increased anxiety-like behaviour in the EPM 

 There were sexually dimorphic effects of prenatal and postnatal PPA treatment, 

with female rats displaying increased anxiety-like behaviour. Compared to 5VEH treated 

control females, time in the open arm and open arm entries were decreased in prenatal 

PPA treated females and closed arm time was increased in prenatal PPA and postnatal 

PPA treated females. An increase in anxiety is consistent with previous reports of 

prenatal VPA and enteric infection producing anxiety-like behaviour in male and female 

adult rat offspring (Lyte et al., 1998; Markram et al., 2008; Schneider et al., 2008). 

 A sex difference was present in the 5VEH control group, with males exhibiting 

similar levels of behaviour as prenatal PPA treated males and females, suggesting anxiety 

in these control males. Brief daily periods of maternal stress resulted in increased anxiety 

in male adolescent rats, but not females (Muhammad and Kolb, 2011). To prevent an 

effect of prenatal PPA in males from being significant, mild stress associated with the 

control injections may have increased exposure to corticosterone and altered 

developmental processes in males. Studies of prenatal stress have shown sex differences 

in neurogenesis, decreased levels of testosterone and increased levels of corticosterone in 

offspring that may account for alterations in behaviour (reviewed in Weinstock, 2011). 

Similar to prenatal 5VEH males, both males and females treated with LPS and 

2VEH displayed low levels of activity on the EPM. There may have been a ceiling effect 

in the current study that prevented an effect of LPS from being evident. It appears that 

this effect may be specific to these animals as behavioural testing occurred in a paired 

fashion (2VEH and LPS animals tested on the same day, and 5VEH and PPA animals 

tested together), and prenatal 5VEH treated females performed as expected. It is unclear 

why 2VEH and LPS treated animals produced such low levels of maze exploration. It has 

been shown that exposure to additional stressors has been required before increased 
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anxiety-like behaviour on the EPM was observed in rats treated with postnatal LPS 

(Breivik, 2002; Walker et al., 2009). Additionally, EPM results are sensitive to multiple 

environmental factors including prior housing condition, illumination levels, and prior 

handling (reviewed in Carobrez and Bertoglio, 2005). Some aspect of the current EPM 

set-up may have induced a stressful state that led to decreased levels of exploration in the 

maze. Future investigations under different conditions may provide insight on this issue 

and how it relates to results of previous studies. 

2.4.6. LPS and PPA have the potential to alter neurodevelopmental processes 

An imbalance between excitation and inhibition in the brain has been implicated 

in autism and anxiety, with changes in GABA and possibly serotonin suggested to be 

critical. Modifications in GABAergic systems have been reported in various brain regions 

of patients with ASD (Fatemi et al., 2002; Oblak et al., 2010) and these systems may be 

vulnerable to environmental agents during development. 

SCFAs and VPA can cross the placenta via monocarboxylate transporters and 

gain access to the developing fetus (Nagai et al., 2010; Ushigome et al., 2001). PPA and 

VPA can act as histone deacetylase inhibitors and induce changes in gene expression 

(D'Souza et al., 2009; Phiel et al., 2001) with preliminary results demonstrating that 

central administration of PPA can alter gene expression in ASD associated genes 

(unpublished observations). Oral PPA during gestation and early life depleted whole 

brain GABA, serotonin, and dopamine and increased IL-6 in young rat brains (El-Ansary 

et al., 2011). Further investigation into the mechanisms associated with PPA-induced 

alterations in development and behaviour is needed. 

While no behavioural effects of LPS were found in the current study, acute and 

chronic LPS during gestation induces a proinflammatory response and alters the placental 

barrier, which may allow external agents and/or cytokines to gain access to the fetus 

(Bloise et al., 2013; Shi et al., 2005). Increases in proinflammatory cytokines, and 

changes in gene expression and GABAergic neurons have been found following prenatal 

LPS treatment (Garbett et al., 2012; Gayle et al., 2004; Nouel et al., 2012). 

2.4.7. Conclusion 

In summary, these results are the first to demonstrate that prenatal PPA, and one 

of a few to demonstrate that postnatal PPA and a low dose of LPS, alters developmental 
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processes and subsequent behaviour in male and female adolescent rats, resembling 

alterations observed in ASD and previous animal models. Prenatal LPS and prenatal PPA 

produced delay in eye opening and prenatal and postnatal PPA increased anxiety-like 

behaviour in both male and female offspring, with a greater effect observed in female 

offspring. Developmental delay and altered temperament are observed in children with 

ASD, as reduced communication and motor skills or inappropriate emotional responses 

(e.g., passiveness) are observed (Mitchell et al., 2011; Zwaigenbaum et al., 2005) and 

anxiety disorders were the most common psychiatric conditions reported in ASD 

populations (Skokauskas and Gallagher, 2010). There was no male bias in PPA and LPS 

induced alterations in behaviour, unlike the male predominance seen in ASD. A more 

balanced male to female ratio and the presence of gastrointestinal abnormalities was 

observed in children with ASD and mitochondrial disease (MD) (Rossignol and Frye, 

2012). It is possible that environmental insults contribute differently to the sex ratio 

observed in ASD. Additionally, evidence suggests that females with ASD display more 

severe behavioural symptoms than males and are likely to show more repetitive interests 

(Fombonne, 2009; Mandy et al., 2012; Russell et al., 2011). The current results support 

this with a female sensitivity to PPA effects on repetitive behaviour and anxiety. These 

results provide evidence that by-products of enteric bacteria metabolism can alter 

development and behaviour in rats resembling that of ASD. Repeated infection or 

immune insult throughout gestation and early life may induce intestinal inflammation and 

alter the composition of the gut microbiome. Subsequent production of metabolic 

products, such as LPS and PPA, has the potential to adversely alter neurodevelopment in 

susceptible populations.  
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Chapter 3 

Prenatal exposure to lipopolysaccharide and pre- and postnatal exposure to 

propionic acid, alters acoustic startle response and prepulse inhibition in male and 

female adolescent rats 
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3.0. Summary 

Potential environmental risk factors for autism spectrum disorders (ASD) include 

viral/bacterial infection and an altered microbiome composition. The present study 

investigated whether administration of immune and gastrointestinal factors during 

gestation and early life altered startle response and prepulse inhibition in adolescent 

offspring using lipopolysaccharide (LPS), a bacterial mimetic, and propionic acid (PPA), 

a short chain fatty acid and enteric metabolic bacterial product. Pregnant Long-Evans rats 

were injected once a day with PPA (500 mg/kg SC) on gestation days G12-16, LPS (50 

g/kg SC) on G15-16, or vehicle control on G12-16 or G15-16. Male and female 

offspring were injected with PPA (500 mg/kg SC) or vehicle twice a day, every second 

day from postnatal days 10-18. Acoustic startle response and prepulse inhibition was 

measured on postnatal days 45, 47, 49, and 51. Prenatal and postnatal treatments altered 

startle response characteristics in a sex-specific manner. Prenatal LPS treatment produced 

hypersensitivity to acoustic startle in males, but not females and did not alter prepulse 

inhibition. Subtle alterations in startle responses, which disappeared with repeated trials, 

occurred with prenatal PPA and postnatal PPA treatment in both male and female 

offspring. Prenatal PPA treatment decreased prepulse inhibition in females, but not 

males. Females receiving a double hit of PPA (prenatal and postnatal) showed 

sensitization to acoustic startle, providing evidence for the double hit hypothesis. The 

current study provides support for the hypothesis that immune activation and metabolic 

products of enteric bacteria can alter development and behaviour in ways that resemble 

sensory abnormalities observed in ASD. 
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3.1. Introduction 

The prevalence of autism spectrum disorders (ASD) has increased to 

approximately 1 in 88 children (Autism and Developmental Disabilities Monitoring 

Network Surveillance Year 2008 Principal Investigators, 2012). ASD encompasses a 

wide range of behavioural symptoms, including impairments in communication and 

social behaviour, and the presence of stereotyped movements and repetitive behaviour 

(DiCicco-Bloom et al., 2006). In the DSM-5, sensory aspects have been incorporated into 

the repetitive and restrictive behaviour domain, as both hyper- and hypo-sensitivities to 

stimuli across multiple modalities are reported (Leekam et al., 2007; Marco et al, 2011). 

Both genetic and environmental factors contribute to the development of ASD. A number 

of genes have been implicated as well as de novo copy number variations (Cook and 

Scherer, 2008; Geschwind, 2011), with heritability estimates of 90%. However, 

concordance rates among monozygotic twins is reported to range from 50-90% (Bailey et 

al., 1995; Hallmayer et al., 2011), leaving an important role for environmental risk factors 

to act on underlying genetic susceptibilities (Herbert, 2010).  

Immune dysfunction may increase the risk for ASD as alterations in the adaptive 

and innate cellular immune responses have been observed in children with ASD (see 

Onore et al., 2012 for review). Viral infection in the first trimester and bacterial infection 

in the second trimester have been associated with development of ASD (Atladottir et al., 

2010). During an immune insult, the release of proinflammatory cytokines, which act 

both peripherally and centrally, result in a range of behavioural and physiological 

responses termed sickness behaviours. This release of cytokines during critical periods 

may have adverse consequences for neurodevelopmental processes, such as cell 

differentiation, migration, and synaptogenesis (Bilbo and Schwarz, 2012; Deverman and 

Patterson, 2009).  

There has been an increasing interest in the role of host gut microbial populations, 

or microbiome, in communicating with the central nervous system and influencing 

gastrointestinal (GI), immune, and neuropsychiatric health (Cryan and Dinan, 2012; 

Nicholson et al., 2012). Imbalances in the composition of the microbiome and the 

immune sequelae may also contribute to the development and/or maintenance of ASD in 

children. Support for this comes from findings of abnormal levels of bacteria flora, 
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including augmented Clostridia, Bacteroidetes, and Desulfovibrio subtypes, in the GI 

tract of autistic children (Finegold et al., 2002; Finegold et al., 2012; Parracho et al., 

2005). As these anaerobic bacteria are antibiotic-resistant, repeated early infections in 

postnatal life treated with antibiotics may provide an enteric environment that promotes 

the overgrowth of these bacteria and the propensity for intestinal inflammation and 

associated neuroimmune and neurohormonal changes (Cho et al., 2012; Finegold et al., 

2012).  

Metabolic products of these bacteria include short chain fatty acids (SCFA, from 

carbohydrate metabolism) (Finegold et al., 2010), which are able to enter circulation and 

may alter metabolic and immune function and/or exacerbate ASD behaviours. Indeed, 

propionic acidemia, a neurodevelopmental metabolic disorder characterized by elevated 

levels of the SCFA, propionic acid (PPA), clinically resembles some aspects of autism 

(Feliz et al., 2003) and a case study of comorbidity of propionic acidemia and ASD has 

been presented (Al-Owain et al., 2013). Our laboratory has proposed that PPA, produced 

by enteric bacteria, may be a potential environmental factor in the development of ASD. 

Central administration of PPA in adult male rats has produced a number of brain and 

behavioural changes including hyperactivity and decreased social behaviour consistent 

with ASD (MacFabe et al., 2007; MacFabe et al., 2008; MacFabe et al., 2011; MacFabe, 

2012; Shultz et al., 2008; Shultz et al., 2009; Thomas et al., 2012) and has predictive 

value in many metabolic alterations in a subset of ASD patients (Frye et al., 2013). 

Maternal immune activation (MIA) in rodents is used to investigate the role of the 

immune system in ASD. An inflammatory response is induced using a variety of agents, 

including influenza and polyinosinic:polycytidylic acid (poly I:C- a viral mimetic). 

Lipopolysaccharide (LPS, a bacterial mimetic) is the major component of the cell wall of 

Gram-negative bacteria and is also a by-product of many enteric bacteria metabolism. 

Offspring of dams treated with these immune agents display behavioural deficits in 

exploratory behaviour and social interaction (Fortier et al., 2007; Romero et al., 2010; Shi 

et al., 2003; Smith et al., 2007). Valproic acid (VPA), an epilepsy treatment that increases 

the risk of ASD, shares pharmacological properties with PPA (Brass, 1992; Coulter, 

1991), and is also widely used in animal studies. Prenatal administration of VPA 

produced developmental delay and behavioural deficits (reviewed in Roullet et al., 2013). 
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Brusque et al. (1999) administered daily PPA throughout postnatal life (days 6-28 of life) 

and reported developmental delay with mild behavioural deficits. To date, there are no 

published studies on the effects of prenatal PPA and one study (Brusque et al., 1999) on 

the effects of postnatal PPA administration on behaviour in offspring. 

Sensory abnormalities reported in children and adults with autism vary in 

modalities affected and severity. In both self-reports and parental reports, over 90% of 

those with autism report unusual responses to sensory stimuli (Crane et al., 2009; Leekam 

et al., 2007). Both hyper-responding (more than typical) and hypo-responding (below 

normal response) to taste/smell, tactile, visual, and auditory stimuli have been observed, 

and there is evidence of abnormal sensory integration (Baranek et al., 2007; Iarocci and 

McDonald, 2006; Leekam et al., 2007; Rogers et al., 2003). Difficulties with habituation 

to sensory stimuli (decreased responding to repeated stimuli over time) have also been 

observed (Barry and James, 1988; Ornitz et al., 1993), but are not always present in 

patients (Baranek et al., 2007; Rogers and Ozonoff, 2005). 

In animal models, the acoustic startle response (ASR) is a commonly used 

measure of sensory responsiveness. The ASR can be modulated in a number of ways, 

including with a low intensity prepulse and with habituation. Habituation is the reduction 

in startle response with repeated presentation of the stimulus. Prepulse inhibition refers to 

a decrease in acoustic startle response level that occurs when the startle stimulus is 

preceded 30-500 ms by a non-startling stimulus (prepulse). This inhibition effect is 

presumed to be due to sensory filtering to allow prepulse processing (Koch, 1999).  

As ASD are present in childhood and are more prevalent in males, it is important 

to conduct animal studies on younger animals and investigate both males and females for 

possible sex differences. Although more attention has been recently focused on sex 

differences in adults, the majority of animal studies have used male adults (Boksa, 2010), 

and information on adolescents is still lacking. Also, few studies assess ASR, focusing on 

other behavioural tests, though prepulse inhibition is more frequently included in 

behavioural test batteries. While repeated treatment with LPS throughout gestation has 

been shown to decrease prepulse inhibition in adolescent male and female rats (Romero 

et al., 2010), there are no reports, to our knowledge, of the effects of prenatal LPS 

administered at specific gestational time points on ASR, habituation, or prepulse 
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inhibition in adolescent offspring. Previous MIA research has obtained decreases in 

prepulse inhibition in adult male and female (Basta-Kaim et al., 2011; Howland et al., 

2012) and adolescent male offspring (Wolff and Bilkey, 2010). Prenatal exposure to other 

toxins, such as valproic acid (VPA), have resulted in mixed ASR results and decreased 

prepulse inhibition in adult male and female rats and adolescent males (Markram et al., 

2008; Schneider and Przewlocki, 2005; Vorhees, 1987).   

The present study investigated the effects of prenatal treatment with LPS or PPA, 

on ASR, habituation, and prepulse inhibition in adolescent male and female offspring. 

Additionally, a second ‘hit’ of PPA, in the second postnatal week, was given to act as an 

early life insult to mimic postnatal production of SCFA from the developing gut 

microbiota (Midtvedt and Midtvedt, 1992; Nafday et al., 2005). This double hit 

hypothesis has been proposed for schizophrenia, where genetic predisposition leaves 

individuals vulnerable to an environmental trigger later in life that results in 

manifestation of the disorder (Bayer et al., 1999). The “double hit” approach has also 

been applied to animal models of immune activation using two environmental insults. 

Immune activation early in life may confer susceptibility to disease or psychopathology 

in adulthood (Giovanoli et al., 2013; Tenk et al., 2008; Walker et al., 2009). Genetics 

may also confer susceptibility to prenatal or postnatal environmental insults in ASD, or, 

more than one insult may be required, as in repeated infections in early life. Immune 

responses can alter the composition of the microbiome of the gastrointestinal tract 

(Bartlett and Gerding, 2008; Bennet et al., 2002). It is thus possible that prenatal 

treatment with LPS or PPA may leave offspring vulnerable to the effects of postnatal 

PPA exposure. To date, this approach has not been used in previous animal models of 

ASD. Previous animal models of ASD have primarily focused on adult offspring, with 

few investigations of sex differences in adolescent male and female offspring. 

The present study specifically compared the effects of prenatal exposure to LPS 

and/or PPA, and postnatal exposure to PPA in adolescent male and female rats. Thus, 

combined treatments of prenatal LPS with postnatal PPA and prenatal PPA with postnatal 

PPA are considered. These unique combinations of prenatal and postnatal treatment 

assess the presence of exacerbated behavioural effects compared to treatments alone. It 

was hypothesized that prenatal PPA would alter the acoustic startle response and that 
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both prenatal PPA and LPS exposure would result in decreased prepulse inhibition in 

adolescent offspring. If effects on behaviour were found, postnatal PPA treatment was 

expected to exacerbate behaviour. 

3.2. Method 

3.2.1. Animals 

 The animals used in this experiment are the same animals from Chapter 2, with 

behavioural testing following the behaviours measured in Chapter 2. Twelve primiparous 

female Long-Evans rats weighing between 270-310 g were mated with adult male Long-

Evans rats (375-550 g, Charles River, Canada) for a total of 12 litters. Females were 

paired overnight with a male the night before behavioural estrus. Sperm present on a 

vaginal smear (hematoxylin & eosin stain) the morning after pairing indicated successful 

mating and this was designated gestational day 0 (G0). Dams were housed individually in 

standard polypropylene cages (45 x 22 x 20 cm) with ad libitum access to both food 

(ProLab RMH 3000) and water. A 12:12 h light:dark cycle (lights on at 0700 h) was 

maintained in a temperature controlled colony room (21 ± 2°C). Litters were born on G22 

(designated as postnatal day (P) 0), toe-clipped for identification, and were weaned at 

P21 (M = 14.17 pups, SD = 2.41). On P21, pups were weaned and randomly culled to a 

maximum of 10 animals per litter (5 males, 5 females). Weaned rats were housed in 

same-sex, same-postnatal drug groups of 2 or 3 in standard polypropylene cages under 

the same conditions as the dams. All behavioural testing took place during the light phase 

and body weight was monitored during testing. Procedures were approved by the 

University of Western Ontario Animal Use Subcommittee and were in accordance with 

the Canadian Council of Animal Care (CCAC) guidelines. 

3.2.2. Prenatal LPS and PPA administration 

Sodium propionate (PPA, P1880, Sigma Chemical, St. Louis, MO, USA) was 

dissolved in 0.1 M phosphate buffered saline and administered at a dose of 500 mg/kg 

subcutaneously (SC, pH corrected to 7.4 with concentrated HCl) once a day on G12-16 

for a total of 5 injections. Injections started on G12 to mimic the VPA and MIA models 

of ASD (Schneider and Przewlocki, 2005); multiple injections were administered given 

the short half-life of PPA (20 min, Brusque et al., 1999). Lipopolysaccharide (LPS from 

E. coli serotype 0111:B4, L2630, Sigma Chemical, St. Louis, MO, USA) was dissolved 
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in 0.1 M phosphate buffered saline and administered SC at a dose of 50 g/kg on G15 

and G16. Administration at this time has been shown to alter adult prepulse inhibition in 

models of maternal immune activation (Fortier et al., 2007). An equivalent volume of 

phosphate buffered saline was injected SC as a vehicle control (2 mL/kg) to yield two 

control groups, either on G15 and G16 (2VEH) or on G12-16 (5VEH). All maternal 

injections were administered between the shoulder blades.  

3.2.3. Postnatal PPA administration 

 As synaptogenesis occurs during the first 3 weeks of postnatal life in rats (Rice 

and Barone, 2000), male and female pups were injected twice a day SC with either PPA 

(500 mg/kg, pH = 7.4) or equivalent volumes of phosphate buffered saline vehicle (VEH, 

5mL/kg) on P10, 12, 14, 16, and 18 to correspond with an environmental insult in early 

human life. Approximately half of each litter was injected with postnatal PPA, the rest 

with VEH. Injections took place at 0930 h (between the shoulder blades) and 1530 h 

(between the haunches). 

 3.2.4. Experimental procedure – Acoustic startle and prepulse inhibition (PPI) 

Behavioural testing occurred in late adolescence on P45, 47, 49, and 51. 

Additional behavioural testing took place prior to startle testing (Chapter 2). A summary 

of the treatment groups is provided in Table 3.1. The prenatal and postnatal injection 

schedule yielded the following treatment combinations for each sex: Vehicle only 

(prenatal 2VEH or 5VEH with postnatal VEH); Prenatal treatment alone (prenatal LPS or 

PPA with postnatal VEH); Postnatal PPA alone (prenatal 2VEH or 5VEH with postnatal 

PPA); Prenatal and Postnatal treatment combined (prenatal LPS or PPA with postnatal 

PPA). 

Acoustic startle response and prepulse inhibition (PPI) testing was conducted in 3 

separate startle chambers (SRLAB, San Diego Instruments, San Diego, CA). Each 

chamber consisted of a cylindrical, clear acrylic rat enclosure (10.2 cm outside diameter) 

mounted on an acrylic platform. The platform sat on a piezoelectric accelerometer which 

transduced the force of animal movement. This was placed inside a ventilated, sound 

attenuating box containing a mounted fluorescent light and a speaker which emitted the 

background noise, prepulse and acoustic startle stimuli. Data were recorded for 100 ms  
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Table 3.1. Summary of treatment groups 

 

        Prenatal treatment     
      2VEH LPS 5VEH PPA   

 
VEH 

(M) 6 6 6 6 24 
       
Postnatal (F) 6 6 6 6 24 
treatment       
 

PPA 
(M) 8 8 9 9 34 

       
  (F) 8 9 9 9 35 
        
  Total   28 29 30 30 117 

 

Note: Numbers in the table represent number of animals per group for males (M) and 

females (F). There were 3 litters in each of the 4 prenatal groups (2VEH, 5VEH: 2 or 5 

injections of phosphate buffered saline vehicle on G15-16 or G12-16, respectively; LPS: 

Lipopolysaccharide, 50 ug/kg on G15-16; PPA: Propionic acid, 500 mg/kg on G12-16). 

Postnatal treatment during the second week of rat pups’ life consisted of phosphate 

buffered saline vehicle (VEH) or propionic acid (PPA). A maximum of 5 males and 5 

females (3 postnatal PPA, 2 postnatal VEH for each sex) per litter were included in 

behavioural testing. Testing took place from P45-51. 
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immediately following the onset of the acoustic startle stimulus. The magnitude of the 

first peak in the startle response from stimulus onset was taken as the measure of the 

acoustic startle response. Four testing sessions in the startle apparatus took place, one on 

each of P45, 47, 49, and 51. 

In a testing session, which lasted approximately 22 min, a 5 min acclimation 

period with background noise (70 dB) was followed by a 17 min (67 trials) testing 

session in which the 70 dB background noise was maintained. Eleven trial types were 

used in the testing session; startle-alone trials (consisting of a 115 dB burst of white noise 

stimulation lasting 40 ms in duration), six different prepulse inhibition trial types 

(prepulses 3, 6 or 12 dB louder than the 70 dB background noise (73, 76 and 82 dB, 

respectively), each consisting of a 20 ms burst of white noise presented with an onset 

either 120 ms prior to the startle pulse (100 ms inter-stimulus interval, ISI) or 80 ms prior 

to the startle pulse (60 ms ISI)), and four control trial types (no pulse, 73, 76, or 82 dB 

prepulse only).  

The first 10 trials were startle-alone trials which served to reduce the amount of 

variability measured for the startle response. The middle 52 trials (presented in pseudo-

random order) consisted of 10 startle-only, 30 PPI trials (5 each of 6 different PPI trial 

types), and 12 control trials (3 each of no pulse, 73, 76, or 82 dB only). The session 

ended with 5 startle-alone trials. All of the trials were separated by an inter-trial interval 

(ITI) of 8–23 s in length (average ITI = 15 s).   

3.2.5. Behavioural measures 

The magnitude of the first peak recorded following the startle pulse was used as 

the measure of acoustic startle response and the average of each trial type was computed. 

Startle responses on the first 2 trials were taken as a measure of initial startle reactivity. 

For habituation during each session, the startle response of trials 3-10 was each divided 

by the average of the first 2 trials to give normalized startle amplitudes. Within each test 

session, a percent habituation score was also calculated using startle responses at the 

beginning and end of the session. %Habituation = 100x (average of startle response on 

trials 6-10 – average of startle response on last 5 trials of the session)/average of trials 6-

10. 
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Prepulse inhibition (PPI) was calculated for each prepulse level/ISI. %PPI = 100x 

(Startle only magnitude – PPI startle magnitude)/Startle only magnitude. Similar to other 

studies (Braff et al., 1999; Lockey et al., 2009), some groups of animals produced 

prepulse facilitation (increased startle response with prepulse presentation) at the 73 dB 

prepulse instead of inhibition. This can occur with prepulses that are too close to the 

background noise. As a result, only 76 dB and 82 dB prepulses were analyzed for 

prepulse inhibition.  

3.2.6. Statistical analysis 

All analyses were performed with IBM Statistics 20 (formerly Statistical Package 

for the Social Sciences, SPSS). Outliers were identified as being ± 2 standard deviations 

from the mean and were removed from analysis. As pups within a litter are not 

independent samples, the effects associated with belonging to a litter and being raised in 

a litter must be accounted for. To do this, linear mixed models were used for each of the 

dependent variables, with Litter used as a subject variable. Fixed factors in most models 

were: Session, Sex, Prenatal drug, Postnatal drug. For habituation across the first 10 

trials, Session was removed and replaced by Trials, with a model used for each session 

individually. Additionally, Prepulse level was added as a fixed factor into models for 

each ISI level to assess prepulse inhibition. The random factor was startle box the animal 

was tested in and covariates were body weight and litter size in all models. LSD post-

hocs were performed. Significance was set to  = 0.05. 

3.3. Results 

3.3.1. Initial startle reactivity 

Each startle session began with 10 trials in which the startle pulse alone was 

presented. Responses can vary greatly across the first few trials as animals acclimate to 

the startle stimulus and a period of adjustment is desired prior to assessment of average 

startle response and prepulse inhibition. However, the first trials can also provide a true 

indication of initial startle reactivity prior to habituation (Geyer and Swerdlow, 2001). 

The startle response for the first 2 trials of each session was analyzed to determine if 

initial startle reactivity was influenced by prenatal or postnatal treatments. 

Startle responses decreased from trial 1 to 2, with a significant effect of Trial, 

F(1,777) = 15.30, p < 0.001 (data not shown) and decreased across Session,           
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F(3,777) = 4.06, p = 0.007 (Session 1 significantly greater than Sessions 3 and 4, ps < 

0.05). The Session x Sex x Prenatal drug x Postnatal drug interaction was significant,    

F(9,777) = 2.10, p = 0.028. As there were no significant interactions between trials and 

drug treatments, startle responses were collapsed across the first 2 trials for the 4 sessions 

(Figure 3.1). 

Effects of postnatal PPA treatment 

On Session 1, there was a sex difference in the postnatal effect of PPA on startle 

responses in the prenatal 2VEH control group. Postnatal PPA treated males in this group 

showed significant hypo-responsiveness to startle compared to postnatal VEH (p = 

0.007), while postnatal PPA treated females showed significant hyper-responsiveness to 

startle compared to postnatal VEH (p = 0.048). This effect was not present on any other 

sessions (Figure 3.1A). 

Effects of prenatal LPS treatment 

Prenatal LPS treatment produced hyper-responsiveness to startle in female 

offspring postnatally treated with either PPA or VEH. In postnatal VEH treated females, 

prenatal LPS produced significantly greater startle responses than 2VEH treatment         

(p = 0.013), while in postnatal PPA treated females prenatal LPS produced significantly 

greater startle responses than both prenatal PPA (p = 0.032) and 5VEH (p = 0.027) 

treatments. These effects of treatment on initial startle responses were limited to Session 

1 (Figure 3.1A). 

Effects of prenatal PPA treatment 

 Prenatal PPA treatment alone did not influence startle on the first 2 trials until 

Session 4. Prenatal PPA treatment produced significant hyper-responsiveness to startle 

relative to prenatal 5VEH treatment in females for both postnatal PPA (p = 0.044) and 

postnatal VEH (p = 0.046) and in males for postnatal VEH (p = 0.049, Figure 3.1D). 

Effects of combined prenatal LPS or PPA and postnatal PPA treatment 

Later test sessions showed effects of combined prenatal and postnatal treatment. 

Postnatal PPA attenuated the effects of prenatal LPS treatment (Figure 3.1C, D). On 

Sessions 3 and 4, prenatal LPS treatment produced hyper-responsiveness to startle in 

male offspring compared to other prenatal treatment groups, but only in postnatal VEH 

treated males (Session 3: 2VEH, p = 0.035, PPA, p = 0.016, and 5VEH, p = 0.023;  
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Figure 3.1. Initial acoustic startle response collapsed across the first 2 trials for the 4 

sessions. 

  

On Session 1, postnatal PPA decreased startle in males and increased startle in females 

(prenatal 2VEH group). Prenatal LPS increased startle initially in females (Session 1) and 

increased startle developed in males (Session 3, 4). In later sessions, prenatal PPA treated 

offspring also showed increased startle. Error bars represent SEM. Refer to Table 3.1 for 

group designations and sample sizes. * p < 0.05, ** p < 0.01 
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Session 4: 2VEH, p = 0.018 and 5VEH, p = 0.020). On Session 3, prenatal LPS-postnatal 

VEH treated males also had significantly greater startle responses than prenatal LPS-

postnatal PPA treated males (p = 0.002). 

On Session 3, an effect of prenatal PPA in combination with postnatal PPA was 

seen in male offspring. In postnatal PPA treated males, prenatal PPA produced 

significantly greater startle responses than prenatal 5VEH (p = 0.043), 2VEH (p = 0.041), 

and LPS (p = 0.038) treatments. This group (prenatal PPA-postnatal PPA) was also 

significantly greater than males treated with prenatal PPA and postnatal VEH, p = 0.007 

(Figure 3.1C).  

In summary, on Session 1, postnatal PPA decreased startle in males and increased 

startle in females in the prenatal 2VEH control group. Prenatal LPS treatment also 

initially increased startle in females, with increased startle developing in later sessions in 

males. The effect in males was attenuated with postnatal PPA. Lastly, increased startle 

with prenatal PPA treatment developed in later sessions in both males and females.  

3.3.2. Habituation 

3.3.2.1. Habituation across the first 10 trials 

To assess whether drug treatments affected habituation to the startle stimulus, the 

first 2 trials of a session were averaged and trials 3-10 were normalized to this average. A 

linear model was used to analyze each of the 4 sessions. There were significant effects of 

Trial for all Sessions (1, 2: p < 0.001; 3: p = 0.001; 4: p = 0.020), but no significant 

interactions with trial and treatments. By trial 10, startle responses were significantly 

lower than the average response of trials 1 and 2 across all 4 Sessions       (ps < 0.05). 

When data were divided into treatment groups, no animals displayed significant 

habituation across the first 10 trials on Sessions 1, 3, and 4, with 6 of 16 treatment groups 

on Session 2 showing habituation (trials 9 and 10 each significantly lower than the 

averaged response of trials 1 and 2, ps < 0.05). 

On Session 1, 2, and 4, significant Sex x Prenatal drug x Postnatal drug 

interactions were found (1: F(3,891) = 7.26, p < 0.001; 2: F(3,894) = 6.68, p < 0.001; 4: 

F(3,896) = 4.69, p = 0.003), and significant Sex x Postnatal drug (F(1,900) = 5.05,            

p = 0.025) and Prenatal x Postnatal drug (F(3,906) = 11.94, p < 0.001) interactions were 

found on Session 3 (Figure 3.2).  
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Effects of postnatal PPA treatment 

 In male offspring, there was an effect of postnatal PPA on normalized startle 

amplitudes. Postnatal PPA produced significantly greater startle responses compared to 

postnatal VEH in prenatal PPA treated males on Session 1 (p = 0.029), in LPS, 2VEH, 

and 5VEH treated males on Session 3 (ps < 0.05) and in prenatal PPA and LPS treated 

males on Session 4 (ps < 0.01). 

Effects of prenatal LPS treatment 

Limited to Session 2, prenatal LPS produced significantly greater startle 

responses compared to the other 3 prenatal treatments in females treated with postnatal 

VEH (2VEH, 5VEH, PPA, p < 0.01), and compared to prenatal 2VEH in females treated 

with postnatal PPA (p = .035, Figure 3.2B). 

Effects of combined prenatal PPA and postnatal PPA treatment 

Prenatal PPA treatment alone did not significantly affect startle responses across 

the first 10 trials. Prenatal PPA treatment combined with postnatal PPA treatment to 

increase the startle response of female offspring on Sessions 1 and 2. Prenatal PPA-

postnatal PPA treated females produced significantly greater startle responses than the 

other 3 prenatal groups treated with postnatal PPA (5VEH, 2VEH, LPS, p < 0.001), and 

prenatal PPA treated females receiving postnatal VEH (p < 0.001) on Session 1. On 

Session 2, this group was significantly greater than 5VEH and 2VEH females treated 

with postnatal PPA (ps < 0.01, Figure 3.2A, B).  

Figure 3.3B shows that prenatal PPA-postnatal PPA treated females were not 

habituating to startle and were in fact sensitized across trials compared to the average of 

trial 1 and 2 on Session 1 (trials 3-10, ps < 0.05). This effect was significant on Session 2, 

but not as pronounced, with females prenatally exposed to PPA and postnatally to PPA 

showing significantly greater startle responses than 5VEH and 2VEH females on trials 3, 

5-7, ps < 0.05 (data not shown). By Session 3, the effects of prenatal and postnatal PPA 

had disappeared, with Session 4 showing the opposite pattern to Session 1 and 2 (Figure 

3.2C, D). Collapsed across trials, prenatal PPA in combination with postnatal PPA 

treatment in females produced significantly lower startle responses compared to the other 

prenatal groups combined with postnatal PPA (5VEH p = 0.018, 2VEH p = 0.006, LPS p 

= 0.002).  
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Figure 3.2. Habituation to the acoustic startle pulse across the 4 sessions. 

 

Habituation to the startle pulse was assessed over the first 10 trials of each session. 

Collapsed across trials, effects of prenatal PPA and postnatal PPA treatment were evident 

in female, but not male, offspring. Females who received both prenatal and postnatal PPA 

showed significantly increased startle on Sessions 1 and 2, with a decrease in Session 4 

compared to other prenatal treatments. Error bars represent SEM. Refer to Table 3.1 for 

group designations and sample sizes. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 3.3. Habituation to the acoustic startle pulse on Session 1. 

  

Session 1 habituation across trials 3-10 for A: Males and B: Females. Female offspring 

who received prenatal and postnatal PPA displayed increased startle amplitudes 

compared to other prenatal treatment groups. Trial 2 is the average of trial 1 and 2.         

C: Percent habituation score between the beginning and end of the session. Animals 

performed similarly at the beginning and end of the startle session, with the exception of 

postnatal PPA treated male offspring in the prenatal 2VEH and PPA treated group. These 

groups showed negative habituation, or sensitization, to startle at the end of the session. 

This effect was present only on Session 1. Error bars represent SEM. Refer to Table 3.1 

for group designations and sample sizes. * p < 0.05 
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3.3.2.2. Percent habituation within session 

 The last 5 trials of each startle session were pulse alone trials. The average of the 

peak startle response was taken along with the average of the peak startle response of  

trials 6-10 in order to compute a percent habituation measure within each startle session. 

A significant Session x Sex x Prenatal x Postnatal interaction was found, F(9,369) = 1.98, 

p = 0.041, with some treatment groups showing sensitization (increased levels) at the end 

of a startle session compared to the beginning.  

On Session 1, an effect of postnatal PPA was found in male offspring prenatally 

exposed to PPA or 2VEH, as these animals showed significant sensitization compared to 

prenatal LPS and 5VEH (ps < 0.05) and to prenatal PPA and 2VEH males postnatally 

treated with VEH (ps < 0.05, Figure 3.3C). This effect was only present on Session 1 as 

the remaining sessions showed similar startle responses among male offspring. On 

Session 2, female offspring in the prenatal 2VEH group postnatally treated with PPA 

showed sensitization compared to the prenatal LPS, PPA, and 5VEH groups (ps < 0.01), 

with no differences during the other 3 sessions (data not shown). 

 In summary, postnatal PPA treatment produced slight sensitization to startle in 

male offspring. Prenatal LPS treatment increased startle responses in female offspring 

only on Session 2. Most striking is the sensitization to startle in female offspring that 

received both prenatal and postnatal PPA. This was present on Sessions 1 and 2, with 

habituation occurring by Session 4 compared to other prenatal treatment groups. 

3.3.3. Acoustic startle response 

Following habituation to the first 10 trials, each startle session contained 10 startle 

alone trials interspersed with prepulse-pulse, prepulse only, or no pulse trials. These 10 

trials provided a measure of average startle response. There was a significant effect of 

Session, F(3,361) = 6.06, p < 0.001, with startle responses during Session 1 greater than 

the other 3 sessions. There were no interactions with Session. However, a significant    

Sex x Prenatal drug x Postnatal drug interaction was found, F(3,376) = 5.08, p = 0.002 

(Figure 3.4). Prenatal treatment with LPS produced significant hyper-reactivity to startle 

in postnatal-VEH treated male offspring as compared to prenatal 2VEH (p = 0.025) or 

5VEH treatments (p = 0.034). This was not found in male offspring postnatally treated 

with PPA where startle responses were significantly lower in prenatal LPS-postnatal PPA  
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Figure 3.4. Acoustic startle response collapsed across the 4 sessions. 

  

There were no significant effects of prenatal or postnatal treatment in female offspring. In 

male offspring, prenatal LPS produced a hyper-responsiveness to startle in postnatal VEH 

treated animals, while this effect was attenuated in postnatal PPA treated animals. Error 

bars represent SEM. Refer to Table 3.1 for group designations and sample sizes.              

* p < 0.05, *** p < 0.001 
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treated males as compared to prenatal LPS-postnatal VEH treated males (p < 0.001). No 

significant effects of prenatal LPS in females, or prenatal and postnatal PPA in males and 

females, on acoustic startle response were found. 

3.3.4. Percent prepulse inhibition (%PPI) 

 Percent prepulse inhibition was assessed for the 76 dB and 82 dB prepulses at 

each inter-stimulus interval (ISI, 60 ms and 100 ms). Inclusion of trials consisting of each 

prepulse in the absence of the 115 dB pulse verified that animals were not startling to the 

prepulses alone and that the drug treatments were not significantly different. 

 At the 60 ms ISI, %PPI increased across session, F(3,730) = 68.02, p < 0.001, and 

increased as the prepulse intensity increased, F(1,730) = 82.93, p < 0.001. There were no 

other significant effects of session or prepulse. The Sex x Prenatal drug interaction, 

F(3,751) = 7.67, p < 0.001, indicated that while there were no differences in %PPI for 

male offspring, female offspring prenatally exposed to PPA exhibited a significant 

decrease in %PPI compared to females in the 5VEH control group, p = 0.037 (Figure 

3.5). Further analysis showed that prenatal PPA resulted in a deficit in female offspring 

on Sessions 2 (76 dB, p = 0.028), 3 (82 dB, p = 0.018), and 4 (76 dB, p = 0.023). 

As with a 60 ms ISI, the 100 ms ISI also produced %PPI that increased across 

session, F(3,728) = 32.70, p < 0.001, and increased as the prepulse intensity increased, 

F(1,728) = 250.05, p < 0.001. There was a significant Sex x Prenatal drug x Postnatal 

drug interaction, F(3,746) = 3.57, p = 0.014 (Figure 3.6). In prenatal 2VEH treated male 

offspring, postnatal PPA produced significantly greater %PPI than postnatal VEH, p = 

0.003. This effect was present on Sessions 1 (82 dB, p = 0.026), 2 (p = 0.049, NS on each 

prepulse), and 4 (82 dB, p = 0.045). In female offspring, postnatal PPA had the reverse 

effect in the 2VEH group, with postnatal PPA significantly decreasing %PPI compared to 

postnatal VEH, p = 0.017 (Session 3, 82 dB, p = 0.042; Session 4, 76 dB, p = 0.039). 

Limited to Session 1, there was a difference in the prenatal control groups in female 

offspring postnatally treated with PPA as females in the 2VEH group had significantly 

lower %PPI than the 5VEH group (76 dB, p = 0.020). The 100 ms ISI also produced a 

Session x Sex x Prenatal drug interaction, F(9,728) = 2.07, p = 0.030. On Session 2, 

females in the prenatal PPA group showed significantly less %PPI than 5VEH females, p 

= 0.006 (76 dB, p = 0.011).   
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Figure 3.5. Percent prepulse inhibition (%PPI) with 60 ms inter-stimulus interval. 

 

The amount of prepulse inhibition increased as prepulse intensity increased, no 

interactions with treatments were found. A: Sex x Prenatal drug interaction was 

significant. Females in the prenatal PPA treated group displayed significantly decreased 

prepulse inhibition compared to 5VEH treated controls. B: Data displayed across 

prepulse level. Error bars represent SEM. Refer to Table 3.1 for group designations and 

sample sizes. * p < 0.05 
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Figure 3.6. Percent prepulse inhibition (%PPI) with 100 ms inter-stimulus interval. 

 

The amount of prepulse inhibition increased as prepulse intensity increased, no 

interactions with treatments were found. A: Sex x Prenatal drug x Postnatal drug 

interaction was significant. In the prenatal 2VEH treated group, postnatal PPA decreased 

prepulse inhibition in female offspring and increased PPI in male offspring. B: Data 

displayed across prepulse level. Error bars represent SEM. Refer to Table 3.1 for group 

designations and sample sizes. * p < 0.05, ** p < 0.01 
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 Overall, prenatal LPS did not significantly affect prepulse inhibition. Prenatal 

PPA treatment produced a %PPI deficit in female, but not male, offspring at both ISIs. 

This effect was more evident at the 60 ms ISI. Additionally, at the 100 ISI, there was a 

sex difference in the effects of postnatal PPA, with males showing increased %PPI and 

females showing decreased %PPI. 

3.4. Discussion 

 Prior investigations of the effects of prenatal and postnatal immune activation and 

the effects of GI microbial metabolites have been limited to adult rodents. In the present 

study, the acoustic startle response (ASR), habituation to this response, and prepulse 

inhibition in male and female adolescent rat offspring was evaluated following prenatal 

treatment with the immune stimulant, lipopolysaccharide, or the short chain fatty acid, 

PPA. Rat offspring were further administered a PPA regimen in the second week of life 

to see if a postnatal insult would further exacerbate any behavioural effects of prenatal 

treatment.  

Prenatal LPS produced pronounced hyper-sensitivity to startle in males, but not 

females, while prenatal and postnatal PPA each produced transient effects on startle 

response in both males and females. A deficit in prepulse inhibition in female offspring 

prenatally exposed to PPA was present, while prenatal LPS and postnatal PPA did not 

alter prepulse inhibition. In addition, evidence supporting a double-hit hypothesis was 

apparent in females, showing that further environmental insults during development can 

exacerbate the effects of a prenatal insult.  The combination of prenatal and postnatal 

PPA produced an increased, or sensitized, startle response over the first 10 startle trials, 

rather than habituation. Among all animals, there was little habituation to startle. Taken 

together, the present results indicate that prenatal LPS or PPA, postnatal PPA, and 

combined prenatal and postnatal PPA treatments can produce subtle and sexually 

dimorphic effects on sensory processing in adolescent rats. Effects on sensory processing 

were specific to each treatment and are discussed below. 

3.4.1. Prenatal LPS treatment influenced acoustic startle response, not prepulse 

inhibition 

Prenatal treatment with LPS on G15-16 produced significant effects on startle 

responses, with increased startle responses to initial stimuli in females and throughout the 
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startle testing session in males. Females acclimated to the acoustic pulse after Session 1, 

with hyper-sensitivity to the first trials disappearing. In male offspring, a pattern of 

hyper-sensitivity to initial trials did not develop until Sessions 3 and 4. Additionally, 

prenatal LPS affected the average peak startle response in the bulk of the testing session, 

with males hyper-sensitive to acoustic startle, regardless of test session.  

These results suggest that with a low dose of prenatal LPS, startle behaviour is 

altered in a sex-specific manner in adolescent offspring; transiently in female offspring 

(to novel stimuli) and more permanently in male offspring. Interestingly, hyper-

responding was non-significant in prenatal LPS males postnatally treated with PPA when 

it was hypothesized that an exacerbation with the 2 treatments might occur. However, 

valproic acid (VPA) and sodium butyrate (a SCFA) have been shown to decrease LPS-

induced proinflammatory responses via their activity on gene expression as histone 

deacetylase inhibitors (Chen et al., 2007). PPA can also act as a histone deacetylase 

inhibitor (Nguyen et al., 2007) and may have similarly countered effects of LPS 

treatment.  

There is limited information on the effects of maternal immune activation (MIA) 

on ASR in adolescent rats. Most startle response studies report prepulse inhibition and do 

not report ASR data. Where reported, MIA on G15 using the viral mimetic, poly I:C, has 

been found to produce no change in startle responses in adolescent male (Wolff et al., 

2010) and adolescent male and female rats (Howland et al., 2012). The present findings 

of hyper-sensitivity to acoustic startle in male and, to a lesser extent, female adolescent 

rats with MIA using LPS are novel and suggest developmental differences in responses. 

Female adolescent rats are hyper-responsive to an acoustic startle stimulus for a 

short time and then acclimate, while males showed more long-term effects. This pattern 

of immune activation during development affecting the behaviour of males and not 

females has been previously reported with postnatal LPS and adult rats (Tenk et al., 2008; 

Tenk et al., 2013). Sex differences in the innate immune response, with males more 

susceptible to immune stimulation and females better able to handle an immune insult, 

may be related to estrogen modulated cytokine gene expression (Dimayuga et al., 2005; 

Klein, 2012). 
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Hypersensitivity to startle with prenatal LPS administration has been shown in 

adult male rats. Fortier et al. (2004) report increased startle responses in adult males with 

LPS administered at the same dose as the present study (50 g/kg) on G18-19, but did not 

find changes in males when a higher dose of LPS (100 g/kg) was administered on G15-

16 (Fortier et al., 2007). Injection later in gestation tends to increase risk of infant 

mortality and, as such, an increased sensitivity at G18-19 is observed. No change in ASR 

in adult males with prenatal LPS exposure at G15-16 suggests that adolescent rats may be 

more vulnerable to the effects of maternal LPS.  

Repeated LPS administration for the duration of gestation produced mixed results 

on ASR in adult males and females. Increased startle responses were found in both male 

and female offspring (Basta-Kaim et al., 2011), while Borrell et al. (2002) found no 

change in ASR in males or females. Clearly, the effects of prenatal LPS appear to be 

influenced by the intensity and timing of immune system activation and, as the present 

study demonstrates, the age at which offspring are tested.  

Contrary to previous results, prenatal LPS treatment did not alter prepulse 

inhibition in male and female adolescent offspring. Romero et al. (2010) found decreased 

prepulse inhibition in male and female adolescent offspring exposed to LPS throughout 

gestation. Similar effects are reported with poly I:C administered on G12 (Deslauriers et 

al., 2013) or G15 (Howland et al., 2012). This is consistent with PPI deficits observed in 

adult male and female offspring following MIA (Basta-Kaim et al., 2011; Fortier et al., 

2007; Howland et al., 2012; Smith et al., 2007). LPS was administered at a low dose and 

a fixed time (G15-16) in the present study. Time of injection, dose, and immune 

stimulant affect the subsequent effects on offspring, and the present dose was not 

sufficient to produce changes in prepulse inhibition. It is interesting that prenatal LPS 

produced alterations in acoustic startle response in the absence of PPI deficits, reinforcing 

the idea that differing levels of severity of maternal immune insult at similar time points 

in development may produce different behavioural phenotypes. 

In summary, maternal immune activation with the bacterial mimetic, LPS, altered 

sensory processing of acoustic startle, with intact prepulse inhibition, in adolescent rats. 

Effects of LPS were sexually dimorphic, as hyper-responding to acoustic startle was 

more permanent in male offspring and occurred only to novel stimuli in female offspring. 
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Importantly, these results demonstrate that a low dose of LPS can alter sensory 

processing in adolescence at a dose that has been shown to not alter adult startle 

responses. In light of the male prevalence in ASD, bacterial infection during gestation 

may influence sensory responsiveness to stimuli. 

3.4.2. Prenatal PPA and postnatal PPA treatment alone each influenced acoustic 

startle response and prepulse inhibition 

Prenatal PPA treatment produced hyper-sensitivity to the initial startle trials (first 

2 trials of a session) in both male and female offspring on the last session, following 

repeated experience with the startle pulse. In contrast, postnatal PPA affected initial 

responses to startle stimuli only on Session 1. Male offspring were hypo-sensitive and 

female offspring were hyper-sensitive to acoustic startle. Unlike prenatal LPS treatment, 

the effects of prenatal and postnatal PPA were present only for the first trials of the startle 

test as results for the average peak response to acoustic startle in the bulk of the session 

(during prepulse inhibition trials) did not show an effect of prenatal PPA or postnatal 

PPA. It appears that animals treated with prenatal or postnatal PPA have altered 

sensitivity to sudden stimuli, but with repeated presentations within a session, are quickly 

able to adapt their responses.  

Habituation measures showed that postnatal PPA enhanced startle in male 

offspring, in a non-specific manner, across trials 3-10 of a session and enhanced within 

session startle (sensitization) on Session 1, while no effects were observed in female 

offspring. Males habituated to startle within a session similarly to other groups on 

Sessions 2-4. This effect in postnatal PPA treated males could indicate a delay in 

habituation compared to other animals. Perry et al. (2007) report habituation to acoustic 

startle in adults with ASD; however, while the end result was habituation, it took longer 

for ASD patients to reach that habituation across trials. 

Although this is, to date, the first study assessing the effects of prenatal and 

postnatal PPA on acoustic startle in rat offspring, comparisons to previous studies using 

environmental toxins as models for neurodevelopmental disorders can be made. One of 

the most widely used toxins in models of autism is valproate (VPA). Again, most work 

has been carried out with adult offspring and ASR is rarely reported. Hypo-sensitivity 

(Vorhees, 1987) and no change in ASR (Markram et al., 2008) has been reported in adult 
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male and female offspring prenatally exposed to VPA, while Dendrinos et al. (2011) 

report hypo-sensitivity in juvenile offspring following prenatal VPA, but did not separate 

males and females. A study using postnatal VPA in the first week of life also found hypo-

sensitivity in both male and female adolescent rats (Reynolds et al., 2012). Postnatal PPA 

treated male adolescent rats also showed hypo-sensitivity to startle on the first 2 trials of 

Session 1. 

Other toxins have also been administered prenatally in rats. As mentioned above, 

MIA produced hyper-sensitivity to startle. Zerrate et al. (2007) reported hypersensitivity 

to acoustic startle in female adolescent offspring following postnatal treatment (first week 

of life, P2-5) with terbutaline, a drug administered to arrest preterm labor in humans. 

Hypersensitivity in the current study suggests the effects of PPA may be similar to these 

toxins. It may also be the case that the ASR profile with PPA administered at various 

times in development has a distinct profile. Prenatal PPA and postnatal PPA in the 

second week of life produced hypersensitivity to startle across the first 10 trials in the 

current study, while postnatal PPA in the first week of life produced no change in startle 

across the first 10 trials (unpublished data).   

Prenatal and postnatal PPA each produced a prepulse inhibition deficit in female 

adolescent offspring. Prenatal PPA did not alter prepulse inhibition in male offspring, but 

produced a decrease in prepulse inhibition in female offspring at both ISIs (60 and 100 

ms). Both of these intervals are used in the human literature with ASD patients, while 

100 ms is often used in behavioural rodent studies in order to draw comparisons with 

human literature. Although it is unclear why this decrease was only significant on later 

sessions and not on session 1, it does emphasize the utility of repeated testing. Similar to 

prenatal PPA, females treated with postnatal PPA showed a decrease in prepulse 

inhibition, but males showed an increase in prepulse inhibition. This increase in males 

could also be interpreted as a deficit, with fixation on prepulse processing resulting in an 

inability to respond appropriately to stimuli in the environment. A similar pattern was 

observed in previous work with postnatal PPA in the first week of life increasing prepulse 

inhibition in female, not male offspring (Foley et al., 2009). 

A deficit in prepulse inhibition is consistent with previous animal work with VPA 

and MIA models. Decreases in prepulse inhibition have been reported following MIA in 
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both male and female treated adolescent offspring (Howland et al., 2012; Romero et al., 

2010) and prenatal VPA in adolescent males and adult males and females (Markram et 

al., 2008; Schneider et al., 2005). Postnatal VPA also produced a prepulse inhibition 

deficit in both male and female adolescent rats (Reynolds et al., 2012). 

The present results indicate that prenatal and postnatal PPA alone affects sensory 

processing in adolescent offspring. Subtle effects on acoustic startle responses in both 

male and female adolescent offspring, and sustained effects on prepulse inhibition were 

observed. Effects on prepulse inhibition were sexually dimorphic, with prenatal PPA 

producing a decrease in females and no change in males, and postnatal PPA producing a 

decrease in females and an increase in males. 

3.4.3. Combined effects of prenatal and postnatal PPA: Evidence for the double hit 

hypothesis 

The combination of prenatal and postnatal PPA produced augmented startle 

responses in female offspring, but not male offspring. Prenatal PPA in combination with 

postnatal PPA showed increased normalized startle across trials 3-10 for the first 2 

sessions in female offspring, showing a sensitized startle response that was not observed 

in other animals. Females with this ‘double-hit’ of PPA require longer adjusting to the 

startle stimuli compared to other treatment groups. Increased startle responses return to a 

level similar to other animals as repeated sessions occur, suggesting a heightened 

sensitivity to repeated stimuli that gradually adapts. There was no evidence of a double 

hit effect in males or for prepulse inhibition in males and females. Coupled with the 

effects of prenatal PPA on prepulse inhibition in female offspring, it appears that female 

offspring were more susceptible to PPA induced alterations in behaviour. In this respect, 

anxiety and gut-derived illnesses are more prevalent in females over males (Donner and 

Lowry, 2013; Tang et al., 2012). That the main source of endogenous PPA is from 

metabolism by enteric bacteria could link the susceptibility of females to the 

developmental effects observed in the current study.  

 Combined PPA effects in adolescence could distinguish this treatment from that 

of prenatal LPS and MIA. Yee et al. (2011) found no evidence for a double hit hypothesis 

in adult rats using prenatal poly I:C (G15) and juvenile stress (P27-29), with no combined 

effects of treatment on ASR and prepulse inhibition, while evidence for a double hit 
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hypothesis has been reported in adult mice following combined prenatal poly I:C (G9) 

and adolescent stress (P30-40) (Giovanoli et al., 2013). Prenatal LPS combined with 

postnatal PPA did not produce enhanced effects. This may be a product of timing of 

administration, or the type of insult, as studies of postnatal LPS administration have 

shown augmented responses of rats with subsequent insults of LPS or stress in adulthood 

(Tenk et al., 2008; Walker et al., 2009). Previous work with postnatal PPA in the first 

week of life and adolescent PPA challenge increased habituation across the first 10 startle 

trials in male rats (unpublished data). In a more naturalistic setting, both LPS and PPA 

together would be produced by enteric bacteria, along with other SCFAs. Future 

investigation warrants combining LPS and PPA into one insult and/or combining these 

environmental toxins with a genetic animal model. Regardless, the effects of a ‘double 

hit’ of PPA suggest that multiple environmental insults, perhaps altering immune 

responses, can have sexually dimorphic effects on sensory behaviour in adolescent rats. 

3.4.4. Lack of habituation and effects of vehicle injections on behaviour 

The effect of trial indicated that normalized startle responses were significantly 

lower at trial 10 than at the beginning of the session, suggesting habituation to acoustic 

startle. However, when animals were divided by treatment group this habituation was no 

longer present. Methodology may account for the lack of progressively decreasing 

responses to startle in all treatment groups, including controls. A larger number of trials 

(e.g., 30) may be required to produce habituation of the startle response and/or constant 

inter-trial intervals facilitate habituation (Geyer et al., 2001; Schmid et al., 2011). Wolff 

and Bilkey (2008) also used a small number of trials at the beginning and end of their 

startle session to assess habituation and also found no change in startle in MIA treated or 

control animals. 

It is also very interesting to note that there were some significant differences in 

offspring behaviour of those rats that were prenatally exposed to 2 or 5 vehicle control 

injections; specifically, that there were effects of postnatal PPA on acoustic startle and 

prepulse inhibition in 2VEH, but not 5VEH animals. Laboratory procedures can alter 

physiological and hormonal parameters in rodents. For example, repeated vehicle 

injections can alter baseline levels of plasma corticosterone (Balcombe et al., 2004; 

Drude et al., 2011; Ryabinin et al., 1999). Furthermore, with prenatal stress, the enzyme 
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11 -hydroxy steroid dehydrogenase Type II (11 -HSD2) that normally protects the fetus 

from maternal cortisol can be downregulated in animals and humans, exposing the 

developing animals and the fetus to cortisol (O'Donnell et al., 2009). Prenatal stress can 

result in anxiety-like behaviour and increased responding to novelty in offspring (Henry 

et al., 1994; Fride and Weinstock, 1988). In fact, prenatal handling and saline injection 

can produce hyper-sensitivity to acoustic startle on first presentation of the stimulus in 

male offspring (White and Birkle, 2001). A stress response associated with saline 

injections, although quite mild in comparison to maternal stress paradigms, may have 

been enough of a stressor to alter development and mask the effects of postnatal PPA.  

3.4.5. Potential neurodevelopmental changes from LPS and PPA administration 

Alterations in neurodevelopment in excitatory and/or inhibitory 

neurotransmission may have contributed to the effects of treatments on ASR. Glutamate 

is the major neurotransmitter mediating the acoustic startle response in the midbrain, with 

GABA receptor blockade shown to increase the ASR (Koch and Schnitzler, 1997). 

Decreased GABA could alter excitation/inhibition balance and lead to less inhibition of 

glutamatergic inputs in the startle pathway. Fear or anxiety to the startle stimuli could 

account for the subtle effects on startle responses. Inputs from the amygdala modulate 

startle and are involved in sensitization and fear-potentiation of startle (Koch and 

Schnitzler, 1997; Van Nobelen and Kokkinidis, 2006). In the case of prenatal LPS in 

females and prenatal and postnatal PPA in males and females, these are subtle alterations 

as offspring are able to adjust their behaviour over repeated startle sessions and respond 

to startle similar to other animals, perhaps through learning that the stimuli are not 

threatening. Associations have been made between sensory abnormalities and increased 

anxiety in children with ASD (Goldsmith et al., 2006; Pfeiffer et al., 2005).  

Supporting the possibility of PPA induced developmental alterations in 

neurotransmission are reports of a PPA-laced diet administered throughout prenatal and 

postnatal life produced altered cortical migration, increased synaptic density, and reduced 

inhibitory interneurons in the cortex of rat offspring (Taylor et al., 2013) while orally 

administered PPA depleting GABA in young rat brains (El-Ansary et al., 2011). SCFAs 

and VPA may gain access to the developing fetus through active transport via 

monocarboxylate transporters in the placenta (Nagai et al., 2010; Ushigome et al., 2001). 
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It should be noted that the effects of PPA and SCFAs on biological systems are broad 

(MacFabe, 2012), and also, at many levels, may be beneficial (Al-Lahham et al., 2010). 

Prenatal LPS has recently been shown to decrease the number of GABA neurons 

in adult offspring and alter expression of genes regulating the migration of GABAergic 

interneurons, important for proliferation, migration, and synaptogenesis in early 

development (Nouel et al., 2012; Oskvig et al., 2012; Owens and Kriegstein, 2002). This 

may contribute to an imbalance in excitation/inhibition, favouring excitability of neural 

circuits. Increases in the proinflammatory cytokines IL-1 , IL-6, and TNF-  in the 

amniotic fluid and the fetal brain with LPS treatment may also contribute to adverse 

outcomes (Gayle et al., 2004; Ning et al., 2008; Oskvig et al., 2012). 

Prepulse inhibition is modulated by prefrontal and mesolimbic dopamine inputs to 

the brain stem. Dopamine and serotonin antagonists, and norepinephrine agonists can 

decrease prepulse inhibition (Koch, 1999). PPA may alter gene expression of 

catecholamine synthesis. Butyrate (a SCFA) and VPA, both histone deacetylase 

inhibitors, both increase transcription of the tyrosine hydroxylase (TH) gene in PC12 

cells, in vitro (DeCastro et al., 2005; D'Souza et al., 2009). PPA also acts as a histone 

deacetylase inhibitor (Nguyen et al., 2007; Phiel et al., 2001) and preliminary results have 

shown that central administration of PPA can alter gene expression in ASD associated 

genes (Nankova et al., 2012). 

3.4.6. Relevance for autism spectrum disorders 

 An imbalance between excitation and inhibition within neural circuits may 

explain behavioural impairments observed in autism, with alterations in GABA suggested 

to be critical. A meta-analysis reports that multiple ASD mouse models share a decrease 

in GABA cells in the cortex (Gogolla et al., 2009). The cortex is organized into 

minicolumns, consisting of glutamatergic and GABAergic neurons. In autistic patients, 

minicolumns in the frontal and temporal cortex were narrower and less compact than 

controls (Casanova et al., 2002), while there was a 50% reduction in enzyme protein 

levels responsible for GABA synthesis in parietal and cerebellar areas (Fatemi et al., 

2002). A decrease in inhibition may impair neural circuit maturation and/or leave neural 

circuits in a hyper-excitable state, resulting in either withdrawing or hyper-reacting to 
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environmental stimuli in order to cope (Markram et al., 2008; Rubenstein and Merzenich, 

2003).  

In reports of MIA or VPA animal models of neurodevelopmental disorders, 

prepulse inhibition is frequently used in behavioural test batteries, acoustic startle 

response is less frequently reported, and habituation to acoustic startle rarely investigated. 

Behavioural startle response studies often discard the first trials from analysis. Current 

results suggest that it may be useful to include habituation measures in acoustic startle 

testing. It may also be informative to use different modalities (e.g., tactile, heat) as 

multiple sensory abnormalities in ASD have been reported that do not include acoustic 

(Leekam et al., 2007).  

Prepulse inhibition deficits have not been extensively investigated in the ASD 

population and very few reports have been published, with conflicting results (McAlonan 

et al., 2002; Oranje et al., 2013; Perry et al., 2007). Prepulse inhibition is governed by 

long term neural connections between prefrontal/striatal regions, midbrain, and brain 

stem. As ASD may involve impaired long-range neural connectivity (Shukla et al., 2011), 

including prepulse inhibition in a behavioural test battery has utility.  

3.4.7. Concluding Remarks 

 In summary, this study is the first, to date, to assess the effects of prenatal and 

postnatal PPA, and one of a few assessing effects of prenatal LPS, on the acoustic startle 

response and prepulse inhibition in both male and female adolescent offspring. The 

results highlight the importance of using both male and female rats in developmental 

neuroscience and provide new information on adolescent rats. Prenatal LPS increased the 

acoustic startle response in adolescent males, while postnatal PPA altered initial startle 

responses in both male and female offspring. A greater effect on habituation to the startle 

response was observed in females who received a double hit of PPA, prenatal and 

postnatal. A decrease in prepulse inhibition in female offspring prenatally and postnatally 

exposed to PPA was present, postnatal PPA increased prepulse inhibition in males, and 

prenatal LPS did not alter prepulse inhibition. These results provide evidence that by-

products of enteric bacteria metabolism can alter development and behaviour in ways that 

resemble sensory problems observed in ASD. Repeated infection or immune insult 

throughout gestation and early life may influence the gut microbiome and lead to 
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production of metabolic products that alter neurodevelopment in susceptible populations. 

That different developmental time points of PPA administration produced different 

behavioural phenotypes illustrates how one environmental insult may contribute to a 

range of disorders on the autism spectrum.  

 



94 

 

 

3.5. References 

Al-Lahham, S.H., Peppelenbosch, M.P., Roelofsen, H., Vonk, R.J., Venema, K., 2010. 

Biological effects of propionic acid in humans; metabolism, potential 

applications, and underlying mechanisms. Biochim Biophys Acta. 1801, 1175-

1183. 

Al-Owain, M., Kaya, N., Al-Shamrani, H., Al-Bakheet, A., Qari, A., Al-Muaigl, S., 

Ghaziuddin, M., 2013. Autism Spectrum Disorder in a child with propionic 

acidemia. J Inherit. Metab Dis. 7, 63-66. 

Atladottir, H.O., Thorsen, P., Ostergaard, L., Schendel, D.E., Lemcke, S., Abdallah, M., 

Parner, E.T., 2010. Maternal Infection Requiring Hospitalization During 

Pregnancy and Autism Spectrum Disorders. J. Autism Dev. Disord. 40, 1423-

1430. 

Autism and Developmental Disabilities Monitoring Network Surveillance Year 2008 

Principal Investigators, 2012. Prevalence of autism spectrum disorders - autism 

and developmental disabilities monitoring network, 14 sites, United States, 2008. 

MMWR Surveill Summ. 61, 1-19. 

Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., Rutter, 

M., 1995. Autism as a strongly genetic disorder: evidence from a British twin 

study. Psychol. Med 25, 63-77. 

Balcombe, J.P., Barnard, N.D., Sandusky, C., 2004. Laboratory routines cause animal 

stress. Contemp. Top. Lab Anim Sci. 43, 42-51. 

Baranek, G.T., Boyd, B.A., Poe, M.D., David, F.J., Watson, L.R., 2007. Hyperresponsive 

sensory patterns in young children with autism, developmental delay, and typical 

development. Am. J. Ment. Retard. 112, 233-245. 

Barry, R.J., James, A.L., 1988. Coding of stimulus parameters in autistic, retarded, and 

normal children: evidence for a two-factor theory of autism. Int. J. Psychophysiol. 

6, 139-149. 

Bartlett, J.G., Gerding, D.N., 2008. Clinical recognition and diagnosis of Clostridium 

difficile infection. Clin. Infect. Dis. 46 Suppl 1, S12-S18. 

Basta-Kaim, A., Fijal, K., Budziszewska, B., Regulska, M., Leskiewicz, M., Kubera, M., 

Golembiowska, K., Lason, W., Wedzony, K., 2011. Prenatal lipopolysaccharide 

treatment enhances MK-801-induced psychotomimetic effects in rats. Pharmacol. 

Biochem. Behav. 98, 241-249. 

Bayer, T.A., Falkai, P., Maier, W., 1999. Genetic and non-genetic vulnerability factors in 

schizophrenia: the basis of the "two hit hypothesis". J. Psychiatr. Res. 33, 543-

548. 

Bennet, R., Eriksson, M., Nord, C.E., 2002. The fecal microflora of 1-3-month-old 

infants during treatment with eight oral antibiotics. Infection 30, 158-160. 

Bilbo, S.D., Schwarz, J.M., 2012. The immune system and developmental programming 

of brain and behaviour. Front Neuroendocrinol. 33, 267-286. 



95 

 

 

Boksa, P., 2010. Effects of prenatal infection on brain development and behaviour: a 

review of findings from animal models. Brain Behav. Immun. 24, 881-897. 

Borrell, J., Vela, J.M., Arevalo-Martin, A., Molina-Holgado, E., Guaza, C., 2002. 

Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications 

for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26, 204-

215. 

Braff, D.L., Swerdlow, N.R., Geyer, M.A., 1999. Symptom correlates of prepulse 

inhibition deficits in male schizophrenic patients. Am. J. Psychiatry 156, 596-602. 

Brass, E.P., 1992. Interaction of carnitine and propionate with pyruvate oxidation by 

hepatocytes from clofibrate-treated rats: importance of coenzyme A availability. 

J. Nutr. 122, 234-240. 

Brusque, A.M., Mello, C.F., Buchanan, D.N., Terracciano, S.T., Rocha, M.P., Vargas, 

C.R., Wannmacher, C.M., Wajner, M., 1999. Effect of chemically induced 

propionic acidemia on neurobehavioural development of rats. Pharmacol. 

Biochem. Behav. 64, 529-534. 

Casanova, M.F., Buxhoeveden, D.P., Switala, A.E., Roy, E., 2002. Minicolumnar 

pathology in autism. Neurology 58, 428-432. 

Chen, P.S., Wang, C.C., Bortner, C.D., Peng, G.S., Wu, X., Pang, H., Lu, R.B., Gean, 

P.W., Chuang, D.M., Hong, J.S., 2007. Valproic acid and other histone 

deacetylase inhibitors induce microglial apoptosis and attenuate 

lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149, 203-

212. 

Cho, I., Yamanishi, S., Cox, L., Methe, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., 

Raju, K., Teitler, I., Li, H., Alekseyenko, A.V., Blaser, M.J., 2012. Antibiotics in 

early life alter the murine colonic microbiome and adiposity. Nature 488, 621-

626. 

Cook, E.H., Jr., Scherer, S.W., 2008. Copy-number variations associated with 

neuropsychiatric conditions. Nature 455, 919-923. 

Coulter, D.L., 1991. Carnitine, valproate, and toxicity. J. Child Neurol. 6, 7-14. 

Crane, L., Goddard, L., Pring, L., 2009. Sensory processing in adults with autism 

spectrum disorders. Autism 13, 215-228. 

Cryan, J.F., Dinan, T.G., 2012. Mind-altering microorganisms: the impact of the gut 

microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701-712. 

D'Souza, A., Onem, E., Patel, P., La Gamma, E.F., Nankova, B.B., 2009. Valproic acid 

regulates catecholaminergic pathways by concentration-dependent threshold 

effects on TH mRNA synthesis and degradation. Brain Res. 1247, 1-10. 

DeCastro, M., Nankova, B.B., Shah, P., Patel, P., Mally, P.V., Mishra, R., La Gamma, 

E.F., 2005. Short chain fatty acids regulate tyrosine hydroxylase gene expression 

through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res. 142, 

28-38. 



96 

 

 

Dendrinos, G., Hemelt, M., Keller, A., 2011. Prenatal VPA Exposure and Changes in 

Sensory Processing by the Superior Colliculus. Front Integr. Neurosci. 5, 68. 

Deslauriers, J., Larouche, A., Sarret, P., Grignon, S., 2013. Combination of prenatal 

immune challenge and restraint stress affects prepulse inhibition and 

dopaminergic/GABAergic markers. Prog. Neuropsychopharmacol. Biol. 

Psychiatry 45, 156-164. 

Deverman, B.E., Patterson, P.H., 2009. Cytokines and CNS development. Neuron 64, 61-

78. 

DiCicco-Bloom E, Lord, C., Zwaigenbaum, L., Courchesne, E., Dager, S.R., Schmitz C, 

Schultz RT, Crawley J, Young LJ., 2006. The Developmental Neurobiology of 

Autism Spectrum Disorder. The Journal of Neuroscience 26, 6897-6906. 

Dimayuga, F.O., Reed, J.L., Carnero, G.A., Wang, C., Dimayuga, E.R., Dimayuga, V.M., 

Perger, A., Wilson, M.E., Keller, J.N., Bruce-Keller, A.J., 2005. Estrogen and 

brain inflammation: effects on microglial expression of MHC, costimulatory 

molecules and cytokines. J. Neuroimmunol. 161, 123-136. 

Donner, N.C., Lowry, C.A., 2013. Sex differences in anxiety and emotional behaviour. 

Pflugers Arch. 465, 601-626. 

Drude, S., Geissler, A., Olfe, J., Starke, A., Domanska, G., Schuett, C., Kiank-Nussbaum, 

C., 2011. Side effects of control treatment can conceal experimental data when 

studying stress responses to injection and psychological stress in mice. Lab Anim 

(NY) 40, 119-128. 

El-Ansary, A.K., Al-Daihan, S.K., El-Gezeery, A.R., 2011. On the protective effect of 

omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health 

Dis. 10, 142. 

Fatemi, S.H., Halt, A.R., Stary, J.M., Kanodia, R., Schulz, S.C., Realmuto, G.R., 2002. 

Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic 

parietal and cerebellar cortices. Biol. Psychiatry 52, 805-810. 

Feliz, B., Witt, D.R., Harris, B.T., 2003. Propionic acidemia: a neuropathology case 

report and review of prior cases. Arch. Pathol. Lab. Med. 127, e325-e328. 

Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C., Henley, K.E., Wolcott, R.D., 

Youn, E., Summanen, P.H., Granpeesheh, D., Dixon, D., Liu, M., Molitoris, D.R., 

Green, J.A., III, 2010. Pyrosequencing study of fecal microflora of autistic and 

control children. Anaerobe 16, 444-53. 

Finegold, S.M., Downes, J., Summanen, P.H., 2012. Microbiology of regressive autism. 

Anaerobe. 18, 260-262. 

Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.L., Bolte, E., McTeague, 

M., Sandler, R., Wexler, H., Marlowe, E.M., Collins, M.D., Lawson, P.A., 

Summanen, P., Baysallar, M., Tomzynski, T.J., Read, E., Johnson, E., Rolfe, R., 

Nasir, P., Shah, H., Haake, D.A., Manning, P., Kaul, A., 2002. Gastrointestinal 

microflora studies in late-onset autism. Clin. Infect. Dis. 35, S6-S16. 



97 

 

 

Foley K.A., Kavaliers, M., Ossenkopp K.-P., MacFabe, D. Prenatal exposure to propionic 

acid and lipopolysaccharide produces developmental delay and hyper-sensitivity 

to acoustic startle in adolescent rats . Program No.151.17.2011 Neuroscience 

Meeting Planner.Washington, DC Society for Neuroscience, Online. 2011.  

Foley K.A., Tichenoff L., Ossenkopp K.-P., MacFabe D.F. Neonatal administration of 

propionic acid alters startle response magnitude and pre-pulse inhibition in 

adolescent rats . Program No.436.8.2009 Neuroscience Meeting Planner.Chicago, 

IL Society for Neuroscience. Online. 2009.  

Fortier, M.E., Joober, R., Luheshi, G.N., Boksa, P., 2004. Maternal exposure to bacterial 

endotoxin during pregnancy enhances amphetamine-induced locomotion and 

startle responses in adult rat offspring. J. Psychiatr. Res. 38, 335-345. 

Fortier, M.E., Luheshi, G.N., Boksa, P., 2007. Effects of prenatal infection on prepulse 

inhibition in the rat depend on the nature of the infectious agent and the stage of 

pregnancy. Behav. Brain Res. 181, 270-277. 

Fride, E., Weinstock, M., 1988. Prenatal stress increases anxiety related behaviour and 

alters cerebral lateralization of dopamine activity. Life Sci. 42, 1059-1065. 

Frye, R.E., Melnyk, S., MacFabe D.F., 2013. Unique acyl-carnitine profiles are potential 

biomarkers for acquired mitochondrial disease in autism spectrum disorder. 

Transl. Psychiatry 3, e220. 

Gayle, D.A., Beloosesky, R., Desai, M., Amidi, F., Nunez, S.E., Ross, M.G., 2004. 

Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing 

hormone in the fetal rat brain. Am. J. Physiol Regul. Integr. Comp Physiol 286, 

R1024-R1029. 

Geschwind, D.H., 2011. Genetics of autism spectrum disorders. Trends Cogn Sci. 15, 

409-416. 

Geyer, M.A., Swerdlow, N.R., 2001. Measurement of startle response, prepulse 

inhibition, and habituation. Curr. Protoc. Neurosci. Chapter 8, Unit. 

Giovanoli, S., Engler, H., Engler, A., Richetto, J., Voget, M., Willi, R., Winter, C., Riva, 

M.A., Mortensen, P.B., Schedlowski, M., Meyer, U., 2013. Stress in puberty 

unmasks latent neuropathological consequences of prenatal immune activation in 

mice. Science 339, 1095-1099. 

Gogolla, N., Leblanc, J.J., Quast, K.B., Sudhof, T., Fagiolini, M., Hensch, T.K., 2009. 

Common circuit defect of excitatory-inhibitory balance in mouse models of 

autism. J. Neurodev. Disord. 1, 172-181. 

Goldsmith, H.H., Van Hulle, C.A., Arneson, C.L., Schreiber, J.E., Gernsbacher, M.A., 

2006. A population-based twin study of parentally reported tactile and auditory 

defensiveness in young children. J. Abnorm. Child Psychol. 34, 393-407. 

Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., 

Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L.A., Ozonoff, S., 

Lajonchere, C., Grether, J.K., Risch, N., 2011. Genetic Heritability and Shared 



98 

 

 

Environmental Factors Among Twin Pairs With Autism. Arch. Gen. Psychiatry 

68, 1095-1102. 

Henry, C., Kabbaj, M., Simon, H., Le, M.M., Maccari, S., 1994. Prenatal stress increases 

the hypothalamo-pituitary-adrenal axis response in young and adult rats. J. 

Neuroendocrinol. 6, 341-345. 

Herbert, M.R., 2010. Contributions of the environment and environmentally vulnerable 

physiology to autism spectrum disorders. Curr. Opin. Neurol. 23, 103-110. 

Howland, J.G., Cazakoff, B.N., Zhang, Y., 2012. Altered object-in-place recognition 

memory, prepulse inhibition, and locomotor activity in the offspring of rats 

exposed to a viral mimetic during pregnancy. Neuroscience 201, 184-198. 

Iarocci, G., McDonald, J., 2006. Sensory integration and the perceptual experience of 

persons with autism. J. Autism Dev. Disord. 36, 77-90. 

Klein, S.L., 2012. Immune cells have sex and so should journal articles. Endocrinology 

153, 2544-2550. 

Koch, M., 1999. The neurobiology of startle. Prog. Neurobiol. 59, 107-128. 

Koch, M., Schnitzler, H.U., 1997. The acoustic startle response in rats--circuits mediating 

evocation, inhibition and potentiation. Behav. Brain Res. 89, 35-49. 

Leekam, S.R., Nieto, C., Libby, S.J., Wing, L., Gould, J., 2007. Describing the sensory 

abnormalities of children and adults with autism. J. Autism Dev. Disord. 37, 894-

910. 

Lockey, A.J., Kavaliers, M., Ossenkopp, K.P., 2009. Lipopolysaccharide produces dose-

dependent reductions of the acoustic startle response without impairing prepulse 

inhibition in male rats. Brain Behav. Immun. 23, 101-107. 

MacFabe D.F., 2012. Short-chain fatty acid fermentation products of the gut microbiome: 

implications in autism spectrum disorders. Microb Ecol in Health & Dis 23, 

19260. 

MacFabe D.F., Cain, N.E., Boon, F., Ossenkopp, K.P., Cain, D.P., 2011. Effects of the 

enteric bacterial metabolic product propionic acid on object-directed behaviour, 

social behaviour, cognition, and neuroinflammation in adolescent rats: Relevance 

to autism spectrum disorder. Behav. Brain Res. 217, 47-54. 

MacFabe DF, Rodriguez-Capote, K., Hoffman, J.E., Franklin, A.E., Mohammad-Asef, 

Y., Taylor, A., Boon, F., Cain D.P., Kavaliers, M., Possmayer F, Ossenkopp KP, 

2008. A novel rodent model of autism: Intraventricular infusions of propionic acid 

increase locomotor activity and induce neuroinflammation and oxidative stress in 

discrete regions of adult rat brain. Am. J. Biochem. & Biotech. 4, 146-166. 

MacFabe, D.F., Cain, D.P., Rodriguez-Capote, K., Franklin, A.E., Hoffman, J.E., Boon, 

F., Taylor, A.R., Kavaliers, M., Ossenkopp, K.P., 2007. Neurobiological effects 

of intraventricular propionic acid in rats: possible role of short chain fatty acids on 

the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain 

Res. 176, 149-169. 



99 

 

 

Marco, E.J., Hinkley, L.B., Hill, S.S., Nagarajan, S.S., 2011. Sensory processing in 

autism: a review of neurophysiologic findings. Pediatr. Res. 69, 48R-54R. 

Markram, K., Rinaldi, T., La, M.D., Sandi, C., Markram, H., 2008. Abnormal fear 

conditioning and amygdala processing in an animal model of autism. 

Neuropsychopharmacology 33, 901-912. 

McAlonan, G.M., Daly, E., Kumari, V., Critchley, H.D., van, A.T., Suckling, J., 

Simmons, A., Sigmundsson, T., Greenwood, K., Russell, A., Schmitz, N., Happe, 

F., Howlin, P., Murphy, D.G., 2002. Brain anatomy and sensorimotor gating in 

Asperger's syndrome. Brain 125, 1594-1606. 

Midtvedt, A.C., Midtvedt, T., 1992. Production of short chain fatty acids by the intestinal 

microflora during the first 2 years of human life. J. Pediatr. Gastroenterol. Nutr. 

15, 395-403. 

Nafday, S.M., Chen, W., Peng, L., Babyatsky, M.W., Holzman, I.R., Lin, J., 2005. Short-

chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. 

Pediatr. Res. 57, 201-204. 

Nagai, A., Takebe, K., Nio-Kobayashi, J., Takahashi-Iwanaga, H., Iwanaga, T., 2010. 

Cellular expression of the monocarboxylate transporter (MCT) family in the 

placenta of mice. Placenta 31, 126-133. 

Nankova, B.B., La Gamma, E.F., Taylor A.R., Tichenoff L., MacFabe D.F. 

Intraventricular enteric short chain fatty acid infusions in rats induce behavioural, 

neuropathological, lipid and epigenetic changes consistent with Autism. 

International Meeting for Autism Research: 2012 May 17-19: Toronto, ON . 

2012.  

Nguyen, N.H., Morland, C., Gonzalez, S.V., Rise, F., Storm-Mathisen, J., Gundersen, V., 

Hassel, B., 2007. Propionate increases neuronal histone acetylation, but is 

metabolized oxidatively by glia. Relevance for propionic acidemia. J. Neurochem. 

101, 806-814. 

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., Pettersson, S., 

2012. Host-gut microbiota metabolic interactions. Science 336, 1262-1267. 

Ning, H., Wang, H., Zhao, L., Zhang, C., Li, X.Y., Chen, Y.H., Xu, D.X., 2008. 

Maternally-administered lipopolysaccharide (LPS) increases tumor necrosis factor 

alpha in fetal liver and fetal brain: its suppression by low-dose LPS pretreatment. 

Toxicol. Lett. 176, 13-19. 

Nouel, D., Burt, M., Zhang, Y., Harvey, L., Boksa, P., 2012. Prenatal exposure to 

bacterial endotoxin reduces the number of G. Eur. Neuropsychopharmacol. 22, 

300-307. 

O'Donnell, K., O'Connor, T.G., Glover, V., 2009. Prenatal stress and neurodevelopment 

of the child: focus on the HPA axis and role of the placenta. Dev. Neurosci. 31, 

285-292. 

Onore, C., Careaga, M., Ashwood, P., 2012. The role of immune dysfunction in the 

pathophysiology of autism. Brain Behav. Immun. 26, 383-392. 



100 

 

 

Oranje, B., Lahuis, B., Van, E.H., Jan van der, G.R., Kemner, C., 2013. Sensory and 

sensorimotor gating in children with multiple complex developmental disorders 

(MCDD) and autism. Psychiatry Res. 206, 287-292. 

Ornitz, E.M., Lane, S.J., Sugiyama, T., De, T.J., 1993. Startle modulation studies in 

autism. J. Autism Dev. Disord. 23, 619-637. 

Oskvig, D.B., Elkahloun, A.G., Johnson, K.R., Phillips, T.M., Herkenham, M., 2012. 

Maternal immune activation by LPS selectively alters specific gene expression 

profiles of interneuron migration and oxidative stress in the fetus without 

triggering a fetal immune response. Brain Behav. Immun. 26, 623-634. 

Owens, D.F., Kriegstein, A.R., 2002. Is there more to GABA than synaptic inhibition? 

Nat. Rev. Neurosci. 3, 715-727. 

Parracho, H.M., Bingham, M.O., Gibson, G.R., McCartney, A.L., 2005. Differences 

between the gut microflora of children with autistic spectrum disorders and that of 

healthy children. J. Med. Microbiol. 54, 987-991. 

Perry, W., Minassian, A., Lopez, B., Maron, L., Lincoln, A., 2007. Sensorimotor gating 

deficits in adults with autism. Biol. Psychiatry 61, 482-486. 

Pfeiffer, B., Kinnealey, M., Reed, C., Herzberg, G., 2005. Sensory modulation and 

affective disorders in children and adolescents with Asperger's disorder. Am. J. 

Occup. Ther. 59, 335-345. 

Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A., Klein, P.S., 2001. 

Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, 

mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741. 

Reynolds, S., Millette, A., Devine, D.P., 2012. Sensory and motor characterization in the 

postnatal valproate rat model of autism. Dev. Neurosci. 34, 258-267. 

Rice, D., Barone S Jr, 2000. Critical periods of vulnerability for the developing nervous 

system: evidence from humans and animal models. Environ. Health Perspect. 108 

Suppl 3, 511-533. 

Rogers, S.J., Hepburn, S., Wehner, E., 2003. Parent reports of sensory symptoms in 

toddlers with autism and those with other developmental disorders. J. Autism 

Dev. Disord. 33, 631-642. 

Rogers, S.J., Ozonoff, S., 2005. Annotation: what do we know about sensory dysfunction 

in autism? A critical review of the empirical evidence. J. Child Psychol. 

Psychiatry 46, 1255-1268. 

Romero, E., Guaza, C., Castellano, B., Borrell, J., 2010. Ontogeny of sensorimotor gating 

and immune impairment induced by prenatal immune challenge in rats: 

implications for the etiopathology of schizophrenia. Mol. Psychiatry 15, 372-383. 

Roullet, F.I., Lai, J.K., Foster, J.A., 2013. In utero exposure to valproic acid and autism--

a current review of clinical and animal studies. Neurotoxicol. Teratol. 36, 47-56. 

Rubenstein, J.L., Merzenich, M.M., 2003. Model of autism: increased ratio of 

excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255-267. 



101 

 

 

Ryabinin, A.E., Wang, Y.M., Finn, D.A., 1999. Different levels of Fos immunoreactivity 

after repeated handling and injection stress in two inbred strains of mice. 

Pharmacol. Biochem. Behav. 63, 143-151. 

Schmid, S., Azzopardi, E., De, J., X, Prado, M.A., Prado, V.F., 2011. VAChT knock-

down mice show normal prepulse inhibition but disrupted long-term habituation. 

Genes Brain Behav. 10, 457-464. 

Schneider, T., Przewlocki, R., 2005. Behavioural Alterations in Rats Prenatally Exposed 

to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology 30, 80-

89. 

Shi, L., Fatemi, S.H., Sidwell, R.W., Patterson, P.H., 2003. Maternal influenza infection 

causes marked behavioural and pharmacological changes in the offspring. J. 

Neurosci. 23, 297-302. 

Shukla, D.K., Keehn, B., Muller, R.A., 2011. Tract-specific analyses of diffusion tensor 

imaging show widespread white matter compromise in autism spectrum disorder. 

J. Child Psychol. Psychiatry 52, 286-295. 

Shultz, S.R., MacFabe D.F., Martin, S., Jackson, J., Taylor, R., Boon, F., Ossenkopp, 

K.P., Cain, D.P., 2009. Intracerebroventricular injections of the enteric bacterial 

metabolic product propionic acid impair cognition and sensorimotor ability in the 

Long-Evans rat: further development of a rodent model of autism. Behav. Brain 

Res. 200, 33-41. 

Shultz, S.R., MacFabe D.F., Ossenkopp, K.P., Scratch, S., Whelan, J., Taylor, R., Cain, 

D.P., 2008. Intracerebroventricular injection of propionic acid, an enteric bacterial 

metabolic end-product, impairs social behaviour in the rat: implications for an 

animal model of autism. Neuropharmacology 54, 901-911. 

Smith, S.E., Li, J., Garbett, K., Mirnics, K., Patterson, P.H., 2007. Maternal immune 

activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 

10695-10702. 

Tang, Y.R., Yang, W.W., Wang, Y.L., Lin, L., 2012. Sex differences in the symptoms 

and psychological factors that influence quality of life in patients with irritable 

bowel syndrome. Eur. J. Gastroenterol. Hepatol. 24, 702-707. 

Taylor A.R., Tichenoff L., Boon F., Thomas RH, Holbrook S, MacFabe DF. 

Neuropathological and biochemical effects of dietary propionic acid in rats –

further development of a rodent model of autism. To be presented at the Society 

for Neuroscience, San Diego, CA . 2013.  

Tenk, C.M., Kavaliers, M., Ossenkopp, K.P., 2008. Sexually dimorphic effects of 

neonatal immune system activation with lipopolysaccharide on the behavioural 

response to a homotypic adult immune challenge. Int. J. Dev. Neurosci. 26, 331-

338. 

Tenk, C.M., Kavaliers, M., Ossenkopp, K.P., 2013. Neonatal treatment with 

lipopolysaccharide differentially affects adult anxiety responses in the light-dark 

test and taste neophobia test in male and female rats. Int. J. Dev. Neurosci. 31, 

171-180. 



102 

 

 

Thomas, R.H., Meeking, M.M., Mepham, J.R., Tichenoff, L., Possmayer, F., Liu, S., 

MacFabe D.F., 2012. The enteric bacterial metabolite propionic acid alters brain 

and plasma phospholipid molecular species: further development of a rodent 

model of autism spectrum disorders. J. Neuroinflammation. 9, 153. 

Ushigome, F., Takanaga, H., Matsuo, H., Tsukimori, K., Nakano, H., Ohtani, H., 

Sawada, Y., 2001. Uptake mechanism of valproic acid in human placental 

choriocarcinoma cell line (BeWo). Eur. J. Pharmacol. 417, 169-176. 

Van Nobelen, N.M., Kokkinidis, L., 2006. Amygdaloid GABA, not glutamate 

neurotransmission or mRNA transcription controls footshock-associated fear 

arousal in the acoustic startle paradigm. Neuroscience 137, 707-716. 

Vorhees, C.V., 1987. Behavioural teratogenicity of valproic acid: selective effects on 

behaviour after prenatal exposure to rats. Psychopharmacology (Berl) 92, 173-

179. 

Walker, A.K., Nakamura, T., Byrne, R.J., Naicker, S., Tynan, R.J., Hunter, M., Hodgson, 

D.M., 2009. Neonatal lipopolysaccharide and adult stress exposure predisposes 

rats to anxiety-like behaviour and blunted corticosterone responses: implications 

for the double-hit hypothesis. Psychoneuroendocrinology 34, 1515-1525. 

White, D.A., Birkle, D.L., 2001. The differential effects of prenatal stress in rats on the 

acoustic startle reflex under baseline conditions and in response to anxiogenic 

drugs. Psychopharmacology (Berl) 154, 169-176. 

Wolff, A.R., Bilkey, D.K., 2008. Immune activation during mid-gestation disrupts 

sensorimotor gating in rat offspring. Behav. Brain Res. 190, 156-159. 

Wolff, A.R., Bilkey, D.K., 2010. The maternal immune activation (MIA) model of 

schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and 

adult rats but these effects are not associated with maternal weight loss. Behav. 

Brain Res. 213, 323-327. 

Yee, N., Ribic, A., de Roo, C.C., Fuchs, E., 2011. Differential effects of maternal 

immune activation and juvenile stress on anxiety-like behaviour and physiology 

in adult rats: no evidence for the "double-hit hypothesis". Behav. Brain Res. 224, 

180-188. 

Zerrate, M.C., Pletnikov, M., Connors, S.L., Vargas, D.L., Seidler, F.J., Zimmerman, 

A.W., Slotkin, T.A., Pardo, C.A., 2007. Neuroinflammation and Behavioural 

Abnormalities after Neonatal Terbutaline Treatment in Rats: Implications for 

Autism. J. Pharmacol. Exp. Ther 322, 16-22. 

 

 

 

 



103 

 

 

 

 

 

 

 

 

Chapter 4 

Prenatal exposure to the enteric bacterial metabolic product, propionic acid, and 

the bacterial mimetic, lipopolysaccharide, alters social behaviour in neonatal, 

adolescent and adult male and female rats 
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4.0. Summary 

Emerging evidence suggests the gut microbiome plays an important role in immune 

functioning, behavioural regulation and neurodevelopment. Altered microbiome 

composition, including elevated short chain fatty acids, and/or immune system 

dysfunction may contribute to autism spectrum disorders (ASD) with some children with 

ASD exhibiting both abnormal gut bacterial composition and immune system 

dysfunction. This study describes the effects of prenatal propionic acid (PPA), a short 

chain fatty acid and metabolic fermentation product of antibiotic resistant enteric 

bacteria, and of prenatal lipopolysaccharide (LPS), a bacterial mimetic, on social 

behaviour in male and female neonatal, adolescent and adult rats. Pregnant Long-Evans 

rats were injected once a day with either a low level of PPA (500 mg/kg SC) on gestation 

days G12-16, LPS (50 g/kg SC) on G12, or vehicle control on G12 or G12-16. Sex- and 

age-specific, subtle effects on behaviour were observed. Both male and female PPA 

treated pups were impaired in their nest seeking response test, suggesting impairment in 

olfactory recognition at a very young age. As well, adolescent males born to PPA treated 

dams approached a novel object more than control animals and showed increased levels 

of locomotor activity compared to prenatal PPA females. Prenatal LPS produced subtle 

impairment in social behaviour in male and female adults. These sex differences, with 

males affected more by treatments, are consistent with the male predominance in ASD. 

These findings raise the possibility that prenatal exposure to elevated levels of 

microbiome products, such as PPA, can subtly influence neonatal, adolescent and adult 

social behaviour. 
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4.1. Introduction 

Attention has increasingly focused on how host gut microbial populations, known 

as the microbiome, influence health. Through communication with the central and 

peripheral nervous system, modification in the various components of the microbiome 

have the potential to contribute to gastrointestinal (GI), immune, and neuropsychiatric 

disease (Cryan and Dinan, 2012; Nicholson et al., 2012). Results of recent studies with 

germ-free mice have demonstrated that alterations in the GI microbiome are associated 

with changes in early gene expression, neurotransmitter turnover, stress response, as well 

as reduced social behaviour (e.g., Desbonnet et al., 2013; Foster and Neufeld, 2013; 

Heijtz et al., 2011).  

There is also mounting evidence alterations in the composition of the microbiome 

may also contribute to the development and/or maintenance of autism spectrum disorders 

(ASD) in children. Autism spectrum disorders (ASD) are a broad range of 

neurodevelopmental disorders of unclear etiology. ASD are behaviourally diagnosed, 

with impairments in verbal and social communication, social behaviour, sensory 

functioning, and stereotyped and repetitive behaviour (Patterson, 2011). There are a 

number of comorbid traits in ASD, including a subset of patients that have 

gastrointestinal (GI) symptoms which can include increased permeability or 

inflammation of the intestinal tract. Indeed, the severity of autistic symptoms has been 

associated with severity of GI dysfunction in some patients (Adams et al., 2011; Horvath 

and Perman, 2002). 

Abnormal levels of bacteria flora, including augmented Clostridia, Bacteroidetes, 

and Desulfovibrio subtypes, have been found in the GI tract of autistic children (Finegold 

et al., 2012; Parracho et al., 2005). Metabolic products of these include the short chain 

fatty acids (SCFA, from carbohydrate metabolism) (Finegold et al. , 2010) which at 

normal levels are essential for normal and immune associated functions (Al-Lahham et 

al., 2010), but at higher levels may alter immune function and/or exacerbate ASD 

behaviours.   

The SCFA, propionic acid (PPA), produced by enteric bacteria, has been 

proposed as a potential environmental factor in the development of ASD. Elevated levels 

of PPA characterize the neurodevelopmental metabolic disorder propionic acidemia 
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(Feliz et al., 2003), with Al-Owain et al. (2013) recently reporting a case study of 

propionic acidemia and ASD comorbidly. Central and peripheral administrations of PPA 

in male rats have produced brain and behavioural changes consistent with ASD 

(MacFabe et al., 2007; MacFabe et al., 2011; MacFabe, 2012; Shultz et al., 2008; Thomas 

et al., 2012). PPA may exert its effects through a variety of modes including immune 

dysregulation, inflammation, oxidative stress, mitochondrial dysfunction, and epigenetic 

actions through inhibition of histone deacetylase, all of which have been associated with 

ASD (Frye et al., 2013; MacFabe, 2012; Rossignol and Frye, 2012). 

Several studies have linked maternal infections or inflammation during pregnancy 

to the development of ASD (reviewed by Patterson, 2011). An immune insult during 

critical periods, and the accompanied release of proinflammatory cytokines acting both 

peripherally and centrally, may have adverse consequences for neurodevelopmental 

processes, such as cell differentiation, migration, and synaptogenesis (Bilbo and Schwarz, 

2012; Patterson, 2011).  

Maternal immune activation (MIA) in rodents has been used to investigate the 

role of the immune system in various behavioural disorders including that of ASD using a 

number of agents to induce an inflammatory response (e.g., the viral mimetic, 

polyinosinic:polycytidylic acid (poly I:C) and the bacterial mimetic, lipopolysaccharide).  

Lipopolysaccharide (LPS) is not only the major component of the cell wall of Gram-

negative bacteria but also is a by-product of metabolism of many enteric bacteria. 

Offspring of dams treated with these immune agents display behavioural deficits in 

exploratory behaviour and social interaction (Smith et al., 2007). Prenatal treatment with 

other environmental agents, such as valproate (VPA), an epilepsy treatment that increases 

the risk of ASD and a precursor of PPA, also produces alterations in social behaviour in 

adolescence and adulthood rats (Kim et al., 2013; Schneider and Przewlocki, 2005). 

Impairments in social behaviour have been reported following acute and central 

administration of PPA in male adolescent and adult rats, both in social interaction and 

social approach (MacFabe et al., 2011; Shultz et al., 2008), but to date, there have been 

no investigations of the potential effects of prenatal PPA on social behaviour. Likewise, 

there are also relatively few reports on the effects of prenatal LPS on social behaviour in 

either adult or, in particular, adolescent male and female rats. LPS administered in early 
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or mid-late gestation resulted in decreased social play behaviour and interaction in male 

adolescent and adult rats (Taylor et al., 2012; Kirsten et al., 2010). MIA at G12.5 also 

decreased social approach in adult mice (Malkova et al., 2012; Smith et al., 2007). 

The present study investigated the effects of prenatal treatment with either LPS or 

the microbiome metabolite, PPA, on social and related behaviour in male and female 

neonatal, adolescent, and adult rats. Low doses of LPS and PPA were used to examine if 

subtle changes in the components of the microbiome and its products can affect 

development. Following administration of prenatal LPS and prenatal PPA, a variety of 

social behaviour measures were assessed throughout the lifespan of male and female 

offspring. It was hypothesized that prenatal LPS and PPA would affect social behaviour 

in adolescent and adult rats. 

4.2. Methods 

4.2.1. Animals 

 Female Long-Evans rats (230-305 g) were mated with adult males (370-575 g, 

Charles River, Canada) for a total of 16 litters. Females were paired with a male the night 

before behavioural estrus. Sperm present on a vaginal smear (hematoxylin and eosin 

stain) the next morning indicated successful mating and this was designated as gestational 

day 0 (G0). Dams were housed individually in standard polypropylene cages (45 x 22 x 

20 cm) with ad libitum access to both food (ProLab RMH 3000) and water. A 12/12 h 

light-dark cycle (lights on at 07:00 h) was maintained in a temperature controlled colony 

room (21 ± 2°C). Litters were born on G22 (designated as postnatal day 0 (P0)), toe-

clipped for identification, and were weaned at P21. Prenatal treatments did not differ in 

pregnancy length (22 days) and there were no significant differences in litter size 

between treatment groups (M = 13.06 pups, SD = 2.67). On P21, pups were weaned and 

culled to 8 or 10 animals per litter. Weaned rats were housed in same-sex, same-drug 

groups of 2-3, in standard polypropylene cages under the same conditions as dams, unless 

otherwise stated. All behavioural testing took place during the light phase. Body weight 

was monitored weekly. All procedures were approved by the University of Western 

Ontario Animal Use Subcommittee and were in accordance with the Canadian Council of 

Animal Care (CCAC) guidelines. 
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4.2.2. Prenatal LPS and PPA administration 

Sodium propionate (PPA, P1880, Sigma Chemical, St. Louis, MO, USA) was 

dissolved in 0.1 M phosphate buffered saline and administered at a dose of 500 mg/kg SC 

(250 mg/mL, pH corrected to 7.4 with concentrated HCl) once a day on G12-16 for a 

total of 5 injections. Injections started on G12 to mimic the VPA model of ASD 

(Schneider and Przewlocki, 2005). Multiple injections were administered given the short 

half-life of PPA (20 min, Brusque et al., 1999). Lipopolysaccharide (LPS from E. coli 

serotype 0111:B4, L2630, Sigma Chemical, St. Louis, MO, USA) was dissolved in 0.1 M 

phosphate buffered saline and administered SC at a dose of 50 g/kg on G12 based on 

other studies of MIA (e.g., Smith et al., 2007). Phosphate buffered saline was injected SC 

as a vehicle control to yield two control groups, either on G12 (VEH) or on G12-16 

(5VEH). All injections were between the shoulder blades.  

4.2.3. Experimental procedures 

4.2.3.1. Nest seeking behaviour (Olfactory discrimination), P9-11 

 All pups (n=209) underwent determinations of nest seeking response behaviour 

(VEH: Male n=21, Female n=31; LPS: Male n=23, Female n=28; 5VEH: Male n=26, 

Female n=23; PPA: Male n=33, Female n=24). On P9, 10, and 11, pups were individually 

placed in the centre of a plastic cage (28 cm x 17.5 cm x 13 cm) with either home or 

clean bedding placed on filter paper (Whatman No. 1, Whatman International Ltd., 

England) at each end of the cage, 10 cm from the centre. Bedding was 3 days old for all 

of the tests and the side of the cage that each bedding was placed on was counter-

balanced across trials. The time (s) to reach the home bedding was measured, with a 

maximum score of 180 s. A choice was made when the rat pup’s head emerged in the 

bedding or when all 4 feet were resting on the bedding. The apparatus was cleaned in 

between animals. This test is considered to reflect a nest-seeking response mediated by 

the olfactory system (Gregory and Pfaff, 1971). 

4.2.3.2. Open-field activity and adolescent social interactions, P30-33 

Litters were culled at weaning (n=126), and these animals were behaviourally 

tested in adolescence and adulthood (VEH: Male n=16, Female n=16; LPS: Male n=16, 

Female n=14; 5VEH: Male n=14, Female n=18; PPA: Male n=16, Female n=16). 

Behaviour was evaluated in a circular open-field arena (90 cm diameter, 40 cm high) 
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with Beta Chip bedding covering the floor. A CD camera was mounted to the ceiling 

above the centre of the arena and connected to a computer, allowing behaviour to be 

recorded using the EthoVision 3.0.15 Behavioural Monitoring and Analysis System 

(Noldus Information Technology) at a rate of 5.994 frames/s. The x-y coordinates of each 

animal in the arena are tracked and several variables quantified. The camera was also 

connected to a DVD-R, allowing recordings for experimenter manual scoring. 

Habituation to the circular open-field arena took place from P30-32. Animals 

were placed individually into the centre of the open-field for 15 min and the following 

locomotor activity variables were monitored: total distance – total horizontal distance 

traveled in cm; movement time – time in seconds spent in horizontal movement; velocity 

– distance traveled per unit time (cm/s); vertical time – time in seconds an animal spent 

rearing; percent time spent in periphery – time in seconds spent in the outer third of the 

open-field. 

On P33, animals were individually housed for 3 hours to encourage social 

interaction. Following this brief period of social isolation, animals were placed at 

opposite sides into the open-field in same-sex, same-prenatal drug pairs to assess social 

interaction. Members of a pair were from the same litter, but were not cage-mates since 

weaning. Total locomotor activity and social behaviour was recorded for 15 minutes. 

Immediately prior to being placed in the open-field (and the day before as a habituation), 

the dorsal surfaces of rats were colored with black, non-toxic marker so that the 

EthoVision system could identify individuals. One member of a pair had the entire dorsal 

surface colored and the second member had the natural black markings on the dorsal 

surface colored. Following this social behaviour test, animals were pair housed in their 

home cages with their original cage-mate. Analysis for social interaction used animal 

pairs as subjects (VEH: Male n=8, Female n=8; LPS: Male n=8, Female n=7; 5VEH: 

Male n=7, Female n=9; PPA: Male n=8, Female n=8). 

Locomotor activity of each animal was measured (total distance, movement time, 

velocity, vertical time). Social behaviour was quantified using the automated measures of 

the average distance between pairs of animals in cm, and the time animals spent within 5 

cm proximity of each other. Manual scoring of social behaviour for each animal was 

carried out according to previously described criteria (Pellis et al., 1997): 
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1. Frequency of social initiations: number of snout to nape contacts. 

2. Probability of defense: the number of defenses performed by an animal (withdrawal of 

the nape from the partner’s snout) divided by the number of social initiations performed 

by the partner towards that animal. 

3. Type of defense: i) Probability of facing defense: the number of facing defenses 

(withdrawal of the nape from the partner’s snout by turning to face the partner) divided 

by the total number of defenses times 100. ii) Probability of evasive defense: the number 

of evasive defenses (withdrawal of the nape from the partner’s snout by either running or 

turning away from the partner) divided by the total number of defenses times 100. 

A second experimenter manually scored a subset of the data in order to calculate inter-

rater reliability using Pearson correlations (15 pairs, 30 animals). 

4.2.3.3. Novel object vs. Novel rat choice test, P42 

Rats were re-habituated to the open-field arena without any bedding on P39-41 

for 5 min each. On P42, a novel object vs. novel rat directed behaviour test was 

conducted to assess social approach to a confined social animal (Choleris et al., 2009) 

and to determine if prenatal LPS or PPA treated offspring would direct behaviour to an 

inanimate object rather than a novel conspecific.  

A novel sex, age, and weight-matched untreated stimulus rat was restrained in a 

small cage with a circular Plexiglas top and bottom and a wire mesh cylindrical wall 

(diameter, 18 cm; 1.0 cm wire mesh). The cage was large enough for the stimulus rats to 

be able to turn around freely and rear, with the stimulus rats habituated to the cage and 

open-field for 3 days prior to testing. No stimulus rat was used in more than 5 novel 

object vs. novel rat choice tests. A small plastic children’s toy, approximately 5 cm x 7 

cm x 8 cm, served as the novel object. 

The caged novel rat and novel object were placed opposite each other in the 

circular arena approximately 10 cm from the wall. Experimental rats were placed at the 

centre of the arena midway between the novel object and the novel rat facing the wall. 

Rats were tested one at a time for 5 min, and the arena and object were cleaned with an 

alcohol–water solution after each rat. Each rat was tested once and the same object was 

used for all of the tests, with the novel object/rat positions counterbalanced within litters. 

The percent of time approaching the novel rat or the novel object (moving towards either 
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stimulus while within 35 cm of stimulus) and total duration within 10 cm proximity of 

the novel rat or the novel object were determined by the EthoVision software.  

4.2.3.4. Novel object recognition, P43 

In order to determine whether or not there was a general impairment in 

recognition, a novel object recognition test was employed on P43. Two novel objects 

(plastic children’s toys, 5 cm x 7 cm x 8cm) were placed in the open-field at opposite 

ends, approximately 10 cm from the wall. Rats explored the open-field and the objects in 

this 5 min exploration phase before being removed from the arena for 2 min. During this 

time, one of the objects from the exploration phase was removed and replaced by a new 

novel object so that one object was now familiar and one was novel. Rats were then 

recorded for 5 min in this test phase. If recognition is intact, more time should be spent in 

contact with the novel object as opposed to the familiar object (Choleris et al., 2009). The 

same 3 objects were used for all of the rats, with object placement and novel object 

identity in the test phase counterbalanced between and within litters. Objects were 

cleaned with an alcohol-water solution after testing with each rat and between the 

exploration and test phases. Manual scoring of each animal was performed. The time 

spent in contact (s) with each of the 2 objects was measured in both the exploration and 

test phase. 

4.2.3.5. Adult social interaction test, P70 

Animals were housed individually overnight (24 hr) before social interaction 

testing took place in adulthood on P70. Animals were colored with a marker the day 

before and immediately prior to the 15 min test with a partner in the arena. Pairings were 

same-sex, same-prenatal drug, but as in adolescence, with a non-cage mate from the same 

litter. Similar to adolescence, behaviour was recorded with the EthoVision software and 

the same automated and manual behavioural measures were obtained. 

4.2.4. Data analysis 

All analyses were performed with IBM Statistics 20 (formerly Statistical Package 

for the Social Sciences). As groups of rat pups belong to litters, they are not independent 

samples and effects associated with being raised in a litter must be accounted for. To do 

this, linear mixed models were used for each of the dependent variables, with Litter used 

as a subject variable and litter size as a covariate. Fixed factors in most models were Sex 
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and Prenatal drug. For body weight, nest seeking response, and habituation to the open-

field, Week or Day was included as a fixed factor. A fixed factor of Stimulus type was 

included in the models for the novel object vs. novel rat (2 levels: object and rat) and the 

novel object recognition test (2 levels: one for each object). LSD post-hocs were 

performed. Significance was set to  = 0.05. 

4.3. Results 

4.3.1. Body weight across lifespan 

 A significant Week x Sex interaction, F(10,1623) = 752.0, p < 0.001, showed that 

for the first 3 weeks of life, males and females were not significantly different (Figure 

4.1A-B). From P28 on, males weighed significantly more than females, ps < 0.001. 

Additionally, there was a Week x Prenatal drug interaction, F(30,1623) = 4.62, p < 0.001. 

There were no differences in body weight between prenatal groups for the first 5 weeks 

of life. On P42 and P49, prenatal 5VEH treated animals weighed significantly more than 

prenatal VEH treated animals, ps < 0.05. This was found for females on P42 (p = 0.041) 

and males and females on P49 (ps < 0.05). On P49 (males) and P63 (males and females), 

prenatal LPS treated animals weighed significantly more than prenatal VEH treated 

animals, ps < 0.05. The last 2 weeks (P63, P70), prenatal PPA and 5VEH treated animals 

weighed significantly more than prenatal VEH animals (ps < 0.01) in both males (ps < 

0.05) and females (ps < 0.05). 

4.3.2. Nest seeking behaviour (olfactory discrimination), P9-11 

Latency to reach the home bedding was recorded across P9-11. There was a 

significant effect of Day, F(2,602) = 15.60, p < 0.001, with all pups improving from P9 

to P10 and taking significantly less time to reach their home bedding. There was no effect 

of Sex and a significant effect of Prenatal drug, F(3,602) = 4.17, p = 0.006. Overall, 

prenatal PPA treated offspring took significantly longer to approach and reach their home 

bedding than either prenatal LPS or VEH, ps < 0.01 (Figure 4.1C). On P9, prenatal PPA 

treated offspring took significantly longer to reach home bedding than all other prenatal 

groups, ps < 0.05. Prenatal LPS treated offspring did not significantly differ from their 

prenatal control treated offspring in nest seeking behaviour. 
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Figure 4.1. Body weight and nest seeking response. 

 

Rats were prenatally exposed to either lipopolysaccharide (LPS), propionic acid (PPA), 

or their respective vehicle controls (VEH and 5VEH). Body weight was monitored 

weekly. A: Males and B: Females. * p < 0.05: Prenatal 5VEH animals weighed 

significantly greater than prenatal VEH animals; additionally, prenatal PPA animals 

weighed greater on P63, 70. ^ p < 0.05: Prenatal LPS animals weighed significantly 

greater than prenatal VEH.  

C: Nest seeking response. Home and clean bedding were placed at opposite ends of a 

small chamber. The time to reach home bedding by individual pups was measured (max. 

score 180 s). Prenatal PPA treated offspring, regardless of sex, took significantly more 

time to reach home bedding on P9 than all other prenatal treatment groups. * p < 0.05. 

Error bars represent S.E.M. Further details of the prenatal treatments, sample sizes, and 

statistical analysis are provided in the text. 
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4.3.3. Open-field behaviour, P30-32 

Total distance traveled and velocity showed similar patterns with both measures 

decreasing across days, F(2,348) = 103.18, p < .001 and F(2,348) = 103.45, p < 0.001 

(Figure 4.2A-B). Significant Sex x Prenatal drug interactions were found for total 

distance F(3,349) = 4.51, p = 0.004, and velocity F(3,349) = 4.52, p = 0.004. While there 

were no significant differences between prenatal treatments, there were sex differences 

within treatments. In VEH treated animals, females traveled a significantly greater total 

distance (p = 0.018) and with a greater velocity than males (p = 0.017), while in PPA 

treated offspring, males traveled a significantly greater total distance (p = 0.018) and with 

a greater velocity than females (p = .018). Movement time also showed a pattern of 

decreasing activity across days, F(2,348) = 68.06, p < 0.001, with a significant Sex x 

Prenatal drug interaction, F(3,349) = 2.96, p = 0.032. Again, PPA treated males spent 

significantly more time moving than PPA treated females (p = 0.007), and LPS treated 

males compared to females neared significance (p = 0.051, Figure 4.2C).  

 Vertical movements, or rearing, did not show any significant effects of prenatal 

drug. Rearing on P30 was significantly greater than on P31 and 32, F(2,348) = 11.46,  

p < 0.001 (data not shown), and females reared significantly more than males,         

F(1,352) = 6.43, p = 0.012 (Figure 4.2D). Lastly, a significant effect of Day was found 

for percent time in the centre of the open-field, F(2,348) = 13.02, p < 0.001. Animals 

spent significantly more time in the centre on P30 than on P31 and 32. This likely reflects 

that the starting position of the rats was the centre of the open-field (data not shown). 

4.3.4. Social interaction test – Adolescence P33 and Adulthood P70 

4.3.4.1. Adolescent social behaviour 

 On P33, there were no significant effects of prenatal drug on the distance between 

pairs of animals or on time rats spent within 5 cm proximity of each other during the 

social interaction test. There was however an effect of sex, as males spent significantly 

more time within 5 cm of each other than did females, F(1,43) = 6.09, p = 0.018 (Figure 

4.3A) and initiated interactions significantly more often than did females,             

F(1,107) = 16.39, p < 0.001 (Figure 4.3B). There were no significant effects of prenatal 

drug for initiations, or significant effects of sex or prenatal drug for probability of 

defense, and probability of facing and evasive defense (Figure 4.3C-D). There was 
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Figure 4.2. Locomotor activity in the novel open-field collapsed across days (P30-32) in 

male and female rats. 

 

A: Total distance traveled (cm), B: Velocity, and C: Movement time (s). Rats were 

prenatally exposed to either lipopolysaccharide (LPS), propionic acid (PPA), or their 

respective vehicle controls (VEH and 5VEH). Prenatal PPA treated male offspring were 

significantly more active than prenatal PPA treated female offspring for all 3 measures, 

while prenatal VEH treated female offspring traveled a greater distance than prenatal 

VEH treated male offspring, ps < 0.05. D: Rearing. Female offspring reared significantly 

more than male offspring, p < 0.05. Error bars represent S.E.M. Further details of the 

prenatal treatments and sample sizes are provided in the text. 
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Figure 4.3. Adolescent social behaviour on P33. 

 

Rats were prenatally exposed to either lipopolysaccharide (LPS), propionic acid (PPA), 

or their respective vehicle controls (VEH and 5VEH). A: Time animals spent within 5 cm 

proximity to each other. Male offspring spent significantly more time within 5 cm 

proximity to each other than female offspring, p < 0.05. B: Number of initiations,             

C: Probability of defense once contact is initiated, and D: Type of defense: Facing or 

evasive. Error bars represent S.E.M. Details of the prenatal treatments and sample sizes 

are provided in the text. 
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significant inter-rater reliability for manual scoring of adolescent social behaviour 

(initiations r(28) = 0.88, p < 0.001; facing defense r(28) = 0.54, p < 0.01; evasive defense 

r(28) = 0.81, p < 0.001). 

4.3.4.2. Adult social behaviour 

On P70, there were also no significant effects of prenatal drug or sex on the 

distance between pairs of animals or on time the rats spent within 5 cm proximity of each 

other (Figure 4.4A). Males again initiated more interaction than females, but the effect 

was not significant, F(1,99) = 3.77, p = 0.055 (Figure 4.4B). A significant effect of 

Prenatal drug for probability of defense, F(3,99) = 3.13, p = 0.029, showed that prenatal 

PPA and prenatal LPS treated animals engaged in defense significantly less than prenatal 

VEH treated animals, ps < 0.05 (Figure 4.4C). There were no significant differences 

between prenatal PPA and 5VEH (p = 0.330) or VEH and 5VEH (p = 0.128). Probability 

of facing and evasive defense did not show any significant sex or prenatal drug 

differences (Figure 4.4D). There was significant inter-rater reliability for manual scoring 

of adulthood social behaviour (initiations r(28) = 0.89, p < 0.001; facing defense r(28) = 

0.63,  p < 0.01; evasive defense r(28) = 0.76, p < 0.001). 

4.3.4.3. Locomotor activity during social interaction 

 During the social interaction test on P33, there were no significant effects of 

prenatal drug and no sex differences in the total distance traveled and the number of 

vertical movements. There was no effect of prenatal drug on movement time, but a 

significant effect of Sex, F(1,107) = 7.60, p = 0.007, with male adolescent offspring 

spending significantly more time moving than females. On P70, there were significant 

effects of sex for total distance traveled, F(1,100) = 13.64, p < 0.001, and movement 

time, F(1,109) = 46.67, p < 0.001, with females moving significantly more than males. A 

significant Sex x Prenatal drug interaction for number of vertical movements,       

F(3,100) = 2.77, p = 0.045, showed that female rats performed significantly more vertical 

movements in the prenatal PPA, VEH, and 5VEH groups (ps < 0.05), but not in the 

prenatal LPS group (data not shown). 
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Figure 4.4. Adult social behaviour on P70.  

 

Rats were prenatally exposed to either lipopolysaccharide (LPS), propionic acid (PPA), 

or their respective vehicle controls (VEH and 5VEH). A: Time animals spent within 5 cm 

proximity to each other, B: Number of initiations, C: Probability of defense once contact 

is initiated, and D: Type of defense: Facing or evasive. Prenatal LPS treated animals, 

collapsed across sex, engaged in defensive behaviour significantly less than prenatal 

VEH treated animals, p < 0.05. Error bars represent S.E.M. Details of the prenatal 

treatments and sample sizes are provided in the text. 
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4.3.5. Novel object vs. Novel rat choice – P42 

There was a significant effect of Stimulus type, F(1,239) = 6626, p < 0.001, as all 

of the animals spent significantly more time within 10 cm of the novel rat compared to 

the novel object. Females in the prenatal 5VEH treated group spent significantly less time  

within 10 cm of the novel rats than did the prenatal PPA treated females (p = 0.023) and 

prenatal 5VEH treated males (p < 0.001), Stimulus type x Sex x Prenatal drug        

F(3,239) = 3.33, p = 0.020 (Figure 4.5A). 

 Percent time approaching the novel rat or novel object also revealed that all of the 

animals spent significantly more time approaching the novel rat, Stimulus type     

F(1,239) = 2898, p < 0.001. A significant Stimulus type x Sex x Prenatal drug 

interaction, F(3,239) = 2.87, p = 0.037, showed that prenatal PPA treated males spent 

significantly more time approaching the novel object compared to prenatal 5VEH treated 

males, p = 0.009 (Figure 4.5B). A sex difference in the prenatal 5VEH group showed that 

5VEH treated females spent significantly more time approaching the novel object than 

did the males, p = 0.021. 

4.3.6. Novel object recognition – P43 

 There was no significant sex or prenatal drug effect on the initial exploration of 

the objects. The rats made a similar number of visits to, and spent a similar time 

exploring, the objects. In the novel object recognition test, animals spent significantly 

more time in contact with the novel object compared to the familiar object,           

F(1,224) = 69.26, p < 0.001, regardless of prenatal drug. However, females made 

significantly more visits to the objects (F(1,225) = 7.65, p = 0.006) and spent 

significantly more time in contact with the objects than did males, F(1,225) = 6.52, p = 

0.011 (Table 4.1).  

4.4. Discussion 

 These results demonstrate that prenatal exposure to low levels of either PPA or 

LPS has selective and sexually dimorphic effects on neonatal, adolescent, and adult 

behaviour. Prenatal PPA treated male and female rats displayed delayed olfactory 

mediated nest seeking behaviour. Male adolescent PPA treated rats displayed increased 

approach to a novel object and enhanced novel open-field activity, without any changes 

in social interaction. There were also no evident or significant effects of PPA on adult  



120 

 

 

 

 

 

 

Figure 4.5. Novel Object vs. Novel Rat choice test on P42. 

  

Rats were prenatally exposed to either lipopolysaccharide (LPS), propionic acid (PPA), 

or their respective vehicle controls (VEH and 5VEH). A. Time spent within 10 cm 

proximity to the stimuli, and B. Percentage of time spent moving towards either stimulus. 

All animals spent more time near and more time approaching the novel rat. Prenatal 

5VEH treated female offspring spent significantly less time near the novel rat than 

prenatal PPA treated females. Prenatal PPA treated male offspring spent significantly 

more time approaching the novel object than prenatal 5VEH treated males. * p < 0.05,    

** p < 0.01 Error bars represent S.E.M. Further details of the prenatal treatments and 

sample sizes are provided in the text. 
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Table 4.1. Time spent at, and number of visits to, objects in the novel object recognition 

test on P43 by male offspring (M) and female offspring (F) prenatally exposed to either 

lipopolysaccharide (LPS), propionic acid (PPA), or their respective vehicle controls 

(VEH and 5VEH). Further details of the prenatal treatments, sample sizes, and statistical 

analysis are provided in the text. 

 

            

   Prenatal treatment  

    PPA 5VEH LPS VEH 

Time- (M) 5.12 ± .77 s 6.85 ± .94 s 6.22 ± .81 s 4.13 ± .52 s 

Familiar (F) 6.44 ± .74 s 6.35 ± .86 s 5.59 ± 1.26 s 5.83 ± .96 s 

      

Time- (M) 9.40 ± 1.58 s 8.85 ± 1.18 s 8.84 ± 1.08 s 7.29 ± .78 s 

Novel (F) 11.31 ± 1.19 s 11.89 ± 1.32 s 9.90 ± 1.38 s 10.22 ± 1.25 s 

      

# Visits- (M) 6.50 ± .98 6.27 ± .52 7.80 ± .83 6.69 ± .65 

Familiar (F) 6.94 ± .70 6.83 ± .72 6.86 ± 1.04 9.0 ± .92 

      

# Visits- (M) 5.44 ± .88 6.60 ± .72 7.13 ± .82 7.06 ± .67 

Novel (F) 7.75 ± .62 7.67 ± .62 7.50 ± .86 9.63 ± .75 
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social behaviour. In contrast, although prenatal LPS did not influence social behaviour in 

neonatal and adolescent rats, in adulthood, it decreased the probability that male and 

female rats engaged in defensive behaviour. Taken together, these results suggest that 

prenatal exposure to low levels of PPA and LPS produces subtle and sexually dimorphic 

alterations in social and related behaviour with prenatal PPA having a greater impact on 

neonatal and adolescent behaviour. 

4.4.1. Nest seeking behaviour (olfactory discrimination) 

As maternal separation has adverse consequences for rats, it is necessary for pups 

to be able to recognize and respond appropriately to the olfactory cues of the home nest. 

Consistent with this, and with the results of previous studies (Roullet et al., 2010; 

Schneider and Przewlocki, 2005), vehicle treated male and female rats showed a rapid 

discrimination and approach to maternal nest bedding. 

Prenatal PPA increased the latency of male and female pups to reach home 

bedding in the nest seeking response test, consistent with findings from animals receiving 

prenatal VPA showing an increased time to find the home bedding (Roullet et al., 2010; 

Schneider and Przewlocki, 2005). The present results may reflect decreased interest in the 

social odors of the maternal nest and/or increased perseverance towards the clean odor. 

Interestingly, adult male rats that received central PPA persevered at a location where 

soiled bedding from the home cage of an unfamiliar rat had been placed and did not 

investigate novel bedding (MacFabe, 2012; Meeking et al., unpublished). This, coupled 

with nest seeking behaviour, may be interpreted as PPA-induced impairment, either in the 

recognition, or utilization, of socially relevant olfactory cues. However, it cannot be ruled 

out that prenatal PPA treatment may have influenced development of the olfactory 

system. 

Prenatal LPS had no significant effect on the latency to reach home bedding in the 

test. This is contrary to a previous report reporting increased latency in nest seeking 

response with prenatal LPS (Baharnoori et al., 2012). This discrepancy likely reflects 

differences in timing and dose of LPS, as LPS exposure in this study is earlier in 

gestation, and of a lower dose (50 vs. 100 g) than that used in Baharnoori et al. (2012).  

The alteration in nest seeking response behaviour of pups receiving prenatal PPA 

was not associated with any significant consistent changes in growth. During one week 
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for males and two weeks for females, prenatal LPS treated animals were heavier. Results 

of other studies have reported decreased, or no change in, body weight (see Patterson, 

2011). This likely reflects dose and strain effects. However, the number of injections 

received in gestation affected growth, suggesting that stress associated with injections 

may have a developmental effect. Repeated vehicle injections can alter baseline levels of 

plasma corticosterone (Drude et al., 2011), similar to chronic stress protocols (Weinstock, 

2001). Rats born to dams treated with prenatal PPA or 5VEH control were heavier as 

adolescents and adults than those born to dams treated with one injection of VEH. 

Prenatal stress has been shown to result in heavier adult weights in mice (Mueller and 

Bale, 2006) and decrease propensity for social interactions (Weinstock, 2001). Effects 

associated with number of prenatal injections have also been seen in open-field activity 

and an acoustic startle paradigm (Chapter 2, 3). The stress response associated with saline 

injections, although mild in comparison to maternal stress paradigms, may have limited 

the detection of some subtle effects of PPA. 

4.4.2. Social behaviour and the effects of prenatal PPA and LPS 

There were sex-specific changes in basal locomotor activity during habituation to 

the open-field. Previous work has shown that adolescent and adult female rats generally 

are more active than male rats (Lynn and Brown, 2009). However, in prenatal PPA 

animals, adolescent males were more active than females, suggesting that prenatal PPA 

may have increased activity in males, or possibly decreased activity in females. 

Previously, central administration of PPA has induced hyperactivity in adult male rats 

(MacFabe et al., 2007; Thomas et al., 2012), but female activity has not been 

investigated. In contrast, prenatal LPS did not have any evident effects on adolescent 

basal activity. 

Consistent with the results of previous studies in adolescent rats, males engaged 

in more social behaviour than females, as measured by time animals spent in proximity to 

each other and in the number of social initiations (Olioff and Stewart, 1978). The higher 

incidence of social play in males may also account for the sex difference in adolescent 

locomotor activity during behavioural interaction. In adulthood, there was no sex 

difference in social interaction, although sex differences in social initiations approached 

significance. Social play activity peaks in adolescence (Thor and Holloway Jr., 1984), 
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making differences in adulthood less likely, although overall males are still generally 

more likely to engage in social interaction. This may also be reflected in the greater 

locomotor activity displayed by females.  

Prenatal LPS and PPA did not significantly affect social interactions in 

adolescence as measured in a paired interaction test of social play. Results of previous 

MIA studies using the viral mimetic, poly I:C, and LPS have reported reduced social play 

in adolescent males (see Patterson, 2011). This difference may again be attributed to the 

relatively low doses of LPS and PPA as well as differences in the timing of 

administration. 

Evidence of subtle alterations in adolescent social behaviour with prenatal PPA 

was however present in the novel object vs. novel rat choice test. Prenatal PPA 

adolescent males spent significantly more time approaching the novel object than 

corresponding vehicle treated males, suggesting a subtle alteration and decrease in social 

preference. This increased interest in the novel object is similar to the decrease in social 

approach to an unfamiliar mouse relative to a non-social object in a 3 chamber apparatus 

seen in VPA and MIA mice (Kim et al., 2013; Smith et al., 2007). Taken together with 

the delay in nest seeking response in prenatal PPA offspring, it is possible that odor 

associated with the novel rat may not have been as salient of a social cue leading to 

changes in social responses. Interestingly, in a similar task, adolescent males receiving 

central PPA spent less time in proximity to, and less approach behaviour towards, the 

novel rat (MacFabe et al., 2011). This effect in prenatal PPA males is also consistent with 

the male predominance seen in ASD. 

In the novel object recognition task, all adolescent animals spent more time 

investigating the novel object, with female rats spending more time than males in total 

contact with the objects, consistent with prior studies (Howland et al., 2012). As well, 

there was no effect of prenatal treatment, again consistent with prior MIA studies 

(Howland et al., 2012; Mychasiuk et al., 2012). While novel object recognition confirmed 

intact recognition abilities for non-social items, it does not necessarily rule out the 

possibility of an alteration in the recognition of novel conspecifics.  

In adulthood, once social interactions were initiated, although prenatal LPS 

treated male and female rats spent a similar amount of time near each other as control 
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rats, they showed a decrease in the probability to engage in defensive behaviour (effect 

collapsed by sex). Decreased defensive behaviour could be interpreted as an indifference 

of the animals towards the social partner. This change in defensive behaviour may be 

associated with prenatal LPS-induced alterations in dopaminergic activity which has been 

shown to influence defensive behaviour (Baharnoori et al., 2013).  

Prenatal PPA did not significantly alter social interaction between pairs of 

animals in adulthood (P70). It should be noted that prenatal PPA treated rats displayed a 

significant decrease in defensive behaviour relative to the VEH group, similar to LPS. 

However, repeated VEH injections (5VEH) also non-significantly decreased defensive 

behaviour, potentially attenuating or masking the effects of PPA. Previous work in adult 

male rats has demonstrated that central PPA can rapidly decrease social behaviour 

(Shultz et al., 2008). However, the effects of acute PPA treatment and prenatal PPA are 

not necessarily comparable. 

Previous MIA studies used higher doses of immune stimulants while the current 

study used a low dose of LPS (50 g vs. 100 g). Studies of neonatal LPS using a similar 

dose as this study produce a number of sexually dimorphic behaviours, including 

increased anxiety-like behaviour and altered responses to adult immune challenges (Tenk 

et al., 2008; Walker et al., 2009). Although milder effects of prenatal LPS on social 

behaviour were seen here, this does not necessarily exclude alterations in 

neurodevelopment. Manipulations in development may leave animals susceptible to later 

environmental insults. Neonatal LPS enhanced hypoactivity to an immune challenge in 

adulthood, while neonatal LPS combined with restraint/isolation stress in adulthood 

decreased locomotor activity and increased anxiety-like behaviour (Tenk et al., 2008; 

Walker et al., 2009). Prenatal immune activation may act to predispose individuals to a 

number of neuropsychiatric conditions, or act on pre-existing genetic predispositions 

(Patterson, 2011). While the current dose of LPS did not directly influence social 

behaviour in adolescent rats and minimally affected adult behaviour, it is possible that a 

second environmental stressor is required for changes in social and other behaviour to be 

expressed. 

Similar to LPS, a low dose of PPA was administered in this study to represent 

subchronic changes in the gut microbiome. PPA is endogenous and very quickly 
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metabolized, and this may have contributed to the subtle alterations in behaviour. It is 

possible that prenatal PPA treated rats are susceptible to further environmental trauma. 

An additional insult in adolescence or adulthood may have allowed for further 

behavioural changes to manifest. A combination of prenatal and postnatal PPA sensitized 

acoustic startle responses in female adolescent rats (Chapter 3), consistent with prenatal 

immune activation predisposing rats to further environmental insults. 

4.4.3. Relation to autism spectrum disorders 

ASD include altered neural synapse maturation and connectivity, leading to a 

possible imbalance between inhibition and excitation (MacFabe, 2012). Immune 

dysregulation in patients with ASD suggests the presence of an inflammatory state and 

maternal infection as a risk factor. Prenatal LPS, as mentioned, alters dopaminergic 

functioning in offspring and has also been shown to decrease the number of GABAergic 

neurons in adult animals (Nouel et al., 2012). These and other changes in 

neurotransmission may occur via increases in proinflammatory cytokines altering gene 

expression involved in neural migration of inhibitory interneurons or the developmental 

processes itself (Garbett et al., 2012; MacFabe, 2012).  

PPA may alter neurotransmission via epigenetic developmental changes in gene 

expression through histone deacetylation of ASD implicated genes (Nguyen et al., 2007), 

similar to that suggested for valproic acid (D'Souza et al., 2009; Phiel et al., 2001). As 

well, PPA has specific G-protein coupled receptors and can have adverse effects on 

oxidative stress and decrease neurotransmitter levels such as GABA, serotonin, and 

dopamine (MacFabe et al., 2007; MacFabe, 2012). PPA and other SCFAs are part of gut 

functioning and under normal conditions serve a variety of physiological and immune 

functions. However, shifts in the composition of the microbiome may lead to augmented 

and inappropriate levels of PPA that could have adverse effects (Al-Lahham et al., 2010). 

In conclusion, prenatal exposure to low levels of PPA subtly altered social 

behaviour in neonatal and adolescent rats in a sex-specific manner, while a low dose of 

LPS altered social behaviour in adult male and female rats. Repeated infection or immune 

insult throughout gestation and early life may influence the gut microbiome and provide 

an enteric environment that promotes the overgrowth of certain bacteria, leading to 
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production of metabolic products, such as PPA or LPS, which may adversely alter 

neurodevelopment.  
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The effects of prenatal and postnatal administration of the microbiome bacterial 

metabolic products, PPA and LPS, on development and behaviour of male and female 

rats were examined. Additionally, PPA was administered in the second week of life to 

determine if a postnatal insult would exacerbate any behavioural effects. The relatively 

subtle, sex-specific, and treatment-specific alterations in behaviour found are summarized 

in Table 5.1. The developmental delay, altered locomotor activity, sensory responses, and 

social behaviour found in adolescent male and female rats resembled previous animal 

models and features of human ASD, suggesting metabolic products of enteric bacteria 

may contribute to the development of ASD.  

5.1. Developmental milestones 

Assessment of milestones and body weight provided a gross measure to determine 

if prenatal and postnatal drug treatments affected neurodevelopment and general health. 

Minimal consistent effects on body weight were observed. Developmental delay in eye 

opening (Chapter 2) in both males and females receiving prenatal PPA or LPS and delay 

in acquisition of odor mediated nest finding (Chapter 4) in males and females receiving 

prenatal PPA was observed in the first 2 weeks of neonatal life. The developmental 

delays see here point to an impact of early infection on socially related factors. 

Additionally, the free fall righting reflex of female pups was impaired with a combination 

of prenatal LPS and postnatal PPA. A delay in eye opening and motor reflexes have been 

reported in the VPA animal model of ASD (Roullet et al., 2010; Schneider and 

Przewlocki, 2005; Wagner et al., 2006). Developmental delay is observed within the first 

12-24 months of life in infants with ASD or high risk siblings and may include delays in 

gesturing or language (Filipek et al., 1999; Mitchell et al., 2011). Infants may also display 

postural instability, head lag, hypotonia and/or delay in walking (see Mitchell et al., 2011 

for review). 

5.2. Locomotor activity and anxiety-like behaviour 

Minimal changes in total locomotor activity were seen after prenatal treatment 

with PPA or LPS. However, males receiving prenatal PPA were more active than females 

receiving PPA (Chapter 4), opposite to what was observed in vehicle control animals. 

Repetitive behaviour in females was observed with the combination of pre- and postnatal 

PPA, consistent with the double-hit hypothesis (Chapter 2). These results suggest, again,
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Table 5.1. Summary of significant effects of either prenatal LPS, pre-, or postnatal PPA on subsequent offspring behaviour 

    Body Weight   Eye Milestones   O/F O/F Centre O/F Centre 

    Neonatal Adolescent Adult Opening Physical Reflex Activity Time Activity 

Pre-PPA M    -    - + 

 F    -    - + 

Pre-LPS M  + + -      

 F   + -      

Post-PPA M + + ND       

  F -   ND             

 

  EPM EPM   ASR    Nest Seeking Social interaction Social  

    Open Closed Initial Habituation Average %PPI Latency Adolescent Adult Approach NOR 

Pre-PPA M   +    +   -  

 F - + +   - +     

Pre-LPS M   +  +    -   

 F   +      -   

Post-PPA M   - -  + ND ND ND ND ND 

  F   + +     - ND ND ND ND ND 

M- Males, F- Females. + denotes increase in behaviour, - denotes decrease in behaviour compared to vehicle control offspring. 

Empty space denotes no effect of drug, ND = not determined.  

Pre-PPA: PPA administered on G12-16, 500 mg/kg SC; Pre-LPS: LPS, 50 g/kg SC, administered on G12-16, or G12 (social 

measures, last 5 columns); Post-PPA: PPA administered 2x/day, every other day, P10-18, 500 mg/kg SC 

Physical Milestones: top and bottom incisor eruption and pinna detachment. Reflex Milestones: righting reflex, negative geotaxis, 

free-fall righting reflex 

O/F- open-field, EPM- elevated plus maze open and closed arm time, ASR- acoustic startle response, %PPI- percent prepulse 

inhibition, NOR- novel object recognition
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that PPA produces subtle and sexually dimorphic changes in activity.  

Both hypo- and hyperactivity are reported in ASD. Hyperactivity and a range of 

repetitive or restricted behaviours are observed throughout childhood. MIA rodent studies 

report restricted behaviours, with decreased exploratory behaviour in an open-field 

(Malkova et al., 2012; Smith et al., 2007), while VPA studies report decreased 

exploration and hyperactivity, although this is not always the case (Schneider and 

Przewlocki, 2005; Mychasiuk et al., 2012).  Decreased exploratory behaviour was 

observed in both male and female rats receiving prenatal PPA (decreased open-field 

centre time), but there was limited evidence supporting hyper- or hypoactivity. Prenatal 

PPA, LPS, and postnatal PPA alone did not alter locomotor activity in a small open-field 

(Chapter 2). In Chapter 4, a large open-field arena was used and males receiving prenatal 

PPA were more active than females receiving prenatal PPA, opposite to what was 

observed in vehicle controls. Lastly, increased repetitive behaviour (number of 

revolutions) in females receiving a double hit of prenatal and postnatal PPA provided 

evidence for a double hit hypothesis (Chapter 2). Increased repetitive behaviour specific 

to females has been observed in the VPA rodent model (Schneider et al., 2008). This 

indicates that locomotory effects are dependent on the measures used, suggesting 

interactions with other environmental/experiential factors. 

Both male and female adolescents prenatally exposed to PPA showed an increase 

in anxiety-like behaviour in the open field and pre- and postnatal PPA produced an 

increase in anxiety in females in the EPM (Chapter 2). Anxiety is one of the most 

common psychiatric disorders that occurs comorbidly with ASD (Skokauskas and 

Gallagher, 2010). Additionally, anxiety and depression are commonly seen with GI 

dysfunction (Donner and Lowry, 2013). Previous studies with MIA report increased 

anxiety-like behaviour in adult offspring, with limited and conflicting reports in 

adolescence (Enayati et al., 2012; Schwendener et al., 2009; Smith et al., 2007). The 

current results support a role for prenatal and postnatal PPA in contributing to anxiety-

like phenotypes. Enhanced behaviour to threatening situations may be analogous to 

atypical affective responses seen in children with ASD (e.g., inappropriate emotional 

response, increased neutral expressions) (Mitchell et al., 2011; Zwaigenbaum et al., 2005) 

and as such consistent with the present results.  



136 

 

 

5.3. Sensitivity to acoustic stimuli and sensorimotor gating (Chapter 3) 

Hyper- and hypo-sensitivity to environmental stimuli and difficulties with 

habituating to repeated stimuli have been reported in patients with ASD, with some 

evidence of decreased prepulse inhibition (Leekam et al., 2007; Ornitz et al., 1993; Perry 

et al., 2007). Consistent with these observations in humans, prenatal PPA, prenatal LPS, 

and postnatal PPA altered acoustic startle response behaviour in male and female 

adolescent rats. Effects were subtle and short-lived, as animals displayed abnormal 

responses to the initial startle pulse and then adjusted responding.  

Prenatal LPS did not alter prepulse inhibition. This is contrary to previous MIA 

studies in adolescent and adult rats (Howland et al., 2012; Fortier et al., 2007). Robust 

hypersensitivity to startle in males was seen over the course of a startle session similar to 

Fortier et al. (2004), providing a dissociation of aberrant startle responses and 

sensorimotor gating with a low dose of LPS. Prenatal LPS did not affect habituation to 

the acoustic stimuli. On the other hand, postnatal PPA in males, and the combination of 

prenatal and postnatal PPA in females, produced sensitization (hypersensitivity) rather 

than habituation to the startle pulses over the first 2 sessions. With repeated exposure 

over days, all animals habituated in a similar manner to control animals. In one report, 

adults with ASD took longer to reach the same level of habituation to acoustic stimuli as 

other adults and (Perry et al., 2007), with evidence of decreased habituation to auditory 

sounds in at risk infants and males with Fragile X syndrome (Guiraud et al., 2011; Van 

der Molen et al., 2012). Similar to decreases in prepulse inhibition observed in MIA and 

VPA studies (Howland et al., 2012; Schneider and Przewlocki, 2005), decreases in 

prepulse inhibition were observed in female rats receiving prenatal PPA and in male and 

female rats receiving postnatal PPA. The current results indicate that PPA and LPS 

administration in development can alter sensory processing in ways that may resemble 

behaviours seen in ASD. 

5.4. Social and related behaviours 

Altered social behaviour is one of the core behavioural deficits in ASD (DiCicco-

Bloom et al., 2006; Zwaigenbaum et al., 2005). Impaired social behaviour has been 

observed in rodents in social interaction tests and social approach tests in both MIA and 

VPA models. Chapter 4 assessed social behaviour in rat offspring following prenatal PPA 
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or prenatal LPS using a social interaction test and social approach to a novel object 

versus to that of a novel rat. In addition, olfactory mediated nest seeking behaviour in 

neonatal rats was measured and prenatal PPA treated male and female neonatal rats were 

delayed in reaching home bedding. This is consistent with VPA studies (Roullet et al., 

2010; Schneider and Przewlocki, 2005) and may suggest a social impairment in 

recognizing or using socially relevant cues in very young animals.  

Prenatal PPA did not alter paired social interaction in adolescent or adult rats. 

However, evidence of alterations in social approach was seen in adolescent male rats, 

with more time spent approaching the novel object than vehicle controls. This subtle 

effect resembles that seen in MIA and VPA studies using the 3 chamber apparatus where 

treated animals spend more time in a chamber containing a non-social object compared to 

a chamber containing a conspecific, or more time in an empty chamber compared to 

controls (Dufour-Rainfray et al., 2010; Malkova et al., 2012; Smith et al., 2007). The 

current study provides some evidence supporting prenatal PPA producing behaviours that 

resemble ASD. The absence of PPA effects in social interaction may be due to drug 

administration (discussed below) or alternatively, a 3 chamber apparatus or test of novel 

social recognition may more effectively parse out any effects of PPA.   

Prenatal LPS did not alter social behaviour in neonatal or adolescent rats; 

however, in adulthood, decreased social behaviour (decreased probability to engage in 

defensive behaviour) was observed. Previous MIA studies with the viral mimetic, poly 

I:C, have shown decreased social behaviour in mice (Smith et al., 2007) and Taylor et al. 

(2012) report LPS-induced decreases in social interaction and play behaviour in 

adolescent rats. The results observed in the current study may be explained by the earlier 

administration of LPS and the lower dose of LPS used here compared to other studies 

(Oskvig et al., 2012; Taylor et al., 2012). Overall, changes in social behaviour are 

consistent with decreases observed in previous animal studies and in ASD. 

5.5. Evidence for the double-hit hypothesis 

PPA was administered during the second postnatal week to act as a double ‘hit’. 

The double hit hypothesis describes that a genetic predisposition or environmental insult 

early in life may confer vulnerability to an environmental trigger later in life that results 

in emergence of adverse behaviour or neuropathology (Bayer et al., 1999). In humans, 
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adverse childhood experiences have been associated with an increased susceptibility to 

psychopathology such as mood disorders and altered stress responses (Heim and 

Nemeroff, 2001; McGowan et al., 2009). Evidence for the double-hit hypothesis was 

found in female rats, but not male rats. The combination of prenatal and postnatal PPA 

altered behaviour in females where individual drug treatments alone did not. Repetitive 

behaviour and sensitization to acoustic startle was present in female rats, but not males. 

The free-fall righting reflex was also impaired in females receiving a combination of 

prenatal LPS and postnatal PPA. This is similar to a previous MIA study where a stress 

protocol in adolescence manifested MIA-induced alterations in behaviour similar to that 

seen in schizophrenia and autism (Giovanoli et al., 2013). Children with ASD were found 

to have had a greater number of ear infections and to use more antibiotics than typically 

developing children (Niehus and Lord, 2006), suggesting a circumstantial link to repeated 

early life insults and immune activation. 

5.6. Sex differences: Females may be more susceptible to the effects of PPA 

 The prevalence of ASD favors males, with 4 males to every 1 female diagnosed 

with ASD. Prenatal PPA influenced the approach to a novel object and prenatal LPS 

produced hyper-sensitivity to acoustic startle in male, not female, adolescents, coinciding 

with the idea of male predominance in ASD. However, prenatal and postnatal PPA and 

prenatal LPS influenced male and female offspring behaviour in similar ways for many 

behaviours measured. Furthermore, female offspring were more sensitive to the effects of 

prenatal and postnatal PPA as both treatments combined produced sensitization to 

acoustic startle and increased repetitive movements. Additionally, pre- and postnatal PPA 

decreased sensorimotor gating and increased anxiety on the EPM in females that was not 

observed in males. 

These behavioural results in females may relate to phenomena observed in human 

ASD. Females may be under-diagnosed due to differences in normal coping behaviour 

and social communication skills compared to males. Girls that display high scores on 

autistic traits similar to that of boys are nevertheless diagnosed less frequently than boys 

(Russell et al., 2011). When females are diagnosed with ASD, they are more severely 

affected and often intellectual disability brings attention to the behavioural symptoms 

(Fombonne, 2009; Russell et al., 2011). Females are likely to show more repetitive 
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interests, sensory symptoms, and display emotional symptoms such as anxiety or 

depression (Lai et al., 2011; Mandy et al., 2012). Acquired metabolic dysfunction in 

mitochondria has been suggested to contribute to ASD symptoms; a more balanced male 

to female ratio and presence of gastrointestinal abnormalities were significantly greater in 

children with ASD and mitochondrial disease (MD) as opposed to ASD or MD alone 

(Rossignol and Frye, 2012). PPA may interfere with mitochondrial metabolism, inducing 

oxidative stress and disrupting fatty acid oxidation (Frye et al., 2013; MacFabe et al., 

2008). 

 It is possible then, that the sex ratio observed in studies may reflect the nature of 

the environmental toxin, with a certain sex more vulnerable to particular toxins. VPA 

studies have shown male-specific behavioural effects, while MIA studies have not shown 

many sex differences. There is, however, evidence that adult females may be more 

vulnerable to the effects of drug abuse (Fattore et al., 2008), suggesting sex-specific 

alterations in neurochemical systems. Adult female rats are more sensitive to the 

reinforcing effects of stimulants (Lynch, 2006). Neonatal LPS increased the development 

of dopaminergic locomotor sensitization in female, but not male, rats (Tenk et al., 2007), 

while altering neophobia in both males and females (Tenk et al., 2013). As such, it is 

possible that SCFAs and PPA may affect males and females similarly for some 

behaviour, with either a greater female or male susceptibility for other behaviours. The 

behavioural data of the current studies tentatively support this hypothesis, though further 

investigation is needed. 

5.7. Potential mechanisms for alterations in neurodevelopment 

Short-term LPS and PPA administration during prenatal and early life may have 

the capacity to alter neurodevelopmental processes leading to changes in brain and 

behaviour later in life. SCFAs may gain access to the developing fetus through active 

transport via monocarboxylate transporters in the placenta (Nagai et al., 2010), while 

immune stimulants may exert effects via cytokines; for example, through IL-6 activation 

of intracellular pathways in the placenta (Hsiao and Patterson, 2011; Shi et al., 2005). 

An ongoing innate neuroinflammatory state may contribute to ASD as post-

mortem study of brains of ASD patients show increased astrocytes, activated microglia, 

and cytokines (Li et al., 2009; Vargas et al., 2005). Microglia are present in rodent brain 
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from about G13-14 and have been shown to play a role in neurodevelopmental processes 

such as cell differentiation and synapse pruning. Cytokine release from microglia could 

perpetuate a chronic inflammatory response throughout life, with sensitized responding to 

environmental insults (see Bilbo and Schwarz, 2012; Deverman and Patterson, 2009). 

Increases in proinflammatory cytokines have been detected in the amniotic fluid and the 

fetal brain following LPS treatment (Gayle et al., 2004; Ning et al., 2008) with some 

evidence suggesting that PPA may also be capable of inducing a neuroinflammatory 

response and cytokine release (El-Ansary et al., 2011; Foley et al., 2008; MacFabe et al., 

2007). Elevated IL-6 has been hypothesized to contribute to the excitatory/inhibitory 

imbalance in neuronal circuits that might contribute to ASD (Rubenstein and Merzenich, 

2003; Wei et al., 2013). 

Epigenetic mechanisms present a plausible mechanism for how environmental 

toxins or insults in early fetal or neonatal life could lead to altered neurotransmission 

and/or circuitry and delayed manifestation of behavioural impairments as children 

develop. Epigenetic involvement, that is, changes to chromatin structure without altering 

the genetic sequence, is being recognized as contributing to ASD. Modifications to genes 

results in increased or decreased gene expression. For example, a recent post-mortem 

brain analysis of ASD patients identified novel methylation sites in the temporal cortex 

and cerebellum that were modified compared to non-ASD brains. These sites may be 

involved in immune and mitochondrial functions (Ladd-Acosta et al., 2013). Patients 

with known epigenetic disorders, such as Rett syndrome or Fragile X syndrome, often 

have autistic features and can be diagnosed on the autism spectrum (Grafodatskaya et al., 

2010).  

VPA and PPA are both histone deacetylase inhibitors, placing them in a position 

to effect epigenetic change through alterations in gene expression (Nguyen et al., 2007; 

Phiel et al., 2001). Thus far, studies have shown that VPA can interfere with neural 

migration and cell differentiation via the Wnt signalling pathway (Go et al., 2012; Wiltse, 

2005). Preliminary results have shown that central administration of PPA can alter gene 

expression in ASD associated genes (Nankova et al., 2012). Prenatal LPS administration 

has also been shown to alter expression of genes involved in neural migration and 

neurotransmission (Oskvig et al., 2012). 
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5.8. Relation to PPA rodent model of ASD 

As discussed in Chapter 1, results of previous studies have shown central and 

peripheral administration of PPA produce changes in behaviour, including hyperactivity 

and decreased social interaction, and neuropathological and metabolic changes in adult 

and adolescent male rats similar to that seen in ASD (reviewed in (MacFabe, 2012). The 

current results add to the face validity of this model by demonstrating that PPA 

administered during development can produce changes in the behaviour of rat offspring 

in ways that resemble ASD. It remains to be seen if PPA administered early in 

development induces neuropathological or metabolic changes similar to those seen 

following either central PPA or in ASD. 

I hypothesized that PPA would alter behaviour in rat offspring in similar ways to 

that observed in other developmental models (VPA, MIA). Changes in behaviour with 

prenatal PPA, prenatal LPS, and postnatal PPA were subtle and even transient in some 

cases. Given that PPA is endogenous, metabolized fairly quickly, and was administered 

in healthy animals, the load may not have been sufficient to cause large functional 

changes in behaviour. It is unknown what amount of PPA is reaching the offspring in 

utero. Likewise, many behavioural results of prenatal LPS administration were not 

similar to past MIA studies. This may be due to the low level of LPS used in the present 

studies. It was important to first characterize the effect of prenatal administration of PPA 

and LPS before extending the work to multiple prenatal insults. There was limited 

evidence for the double hit hypothesis, with postnatal PPA combined with prenatal PPA 

or prenatal LPS altering behaviour in a couple of instances not otherwise seen with each 

treatment alone. Again, creating an experimental situation that is more naturalistic, such 

as combining SCFA or inducing colitis may alter the behavioural results observed. 

5.9. Conclusions 

In summary, my thesis provides a broad overview of the effects of pre- and 

postnatal PPA, and prenatal LPS administration on the behaviour of male and female rats. 

The emphasis of these studies on adolescent rat behaviour in both males and females add 

to the literature that exists on the topic and is important given the developmental and 

sexually dimorphic nature of ASD. Subtle and sex-specific effects on locomotor, anxiety, 

sensory, and social behaviour were observed, providing evidence that metabolic products 
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of enteric bacteria may alter development in ways resembling ASD. The different 

behavioural phenotypes for the different administrations of PPA and LPS illustrate how 

environmental insults may produce a range of symptoms on the autism spectrum, 

depending on developmental timing. Furthermore, the effects of PPA and LPS may not 

be limited to modelling ASD symptoms. Risk factors and behaviours associated with 

neurodevelopmental disorders such as schizophrenia and autism overlap, and it has been 

suggested that prenatal infection may be a general risk factor that confers vulnerability to 

multiple disorders, with the specific disorder determined by genetic or other 

environmental factors (Harvey and Boksa, 2012; Meyer, 2013). 

There are many effects of PPA and SCFAs on biological systems that are 

favourable, including maintenance of normal immune function (Al-Lahham et al., 2010; 

Brestoff and Artis, 2013). However, shifts in the microbiome composition, as with 

alterations in diet or antibiotic use, may lead to increased levels of PPA, LPS, and other 

enteric metabolites that could induce inflammatory responses, alter neurodevelopment, 

and influence behaviour. Indeed, impaired carbohydrate digestion and increased 

behavioural symptoms in children with ASD following carbohydrate consumption have 

been reported (Adams et al., 2011; Jyonouchi, 2009). Colonization of the gut by microbes 

occurs throughout early development and perturbations in this process leading to gut 

dysbiosis may contribute to the development of neuropsychiatric disorders, including 

autism.  
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