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Abstract 

Natural earthquake fault systems are composed of a variety of materials with different spatial 

configurations a complicated, inhomogeneous fault surface. The associated inhomogeneities 

with their physical properties can result in a variety of spatial and temporal behaviors. As a 

result, understanding the dynamics of seismic activity in an inhomogeneous environment is 

fundamental to the investigation of the earthquakes processes.  

This study presents the results from an inhomogeneous earthquake fault model based on the 

Olami-Feder-Christensen (OFC) and Rundle-Jackson-Brown (RJB) cellular automata models 

with long-range interactions that incorporates a fixed percentage of stronger sites, or 

‘asperity cells’, into the lattice. These asperity cells are significantly stronger than the 

surrounding lattice sites but eventually rupture when the applied stress reaches their higher 

threshold stress.  

The introduction of these spatial heterogeneities results in temporal clustering in the model 

that mimics that seen in natural fault systems. Sequences of activity that start with a 

gradually accelerating number of larger events (foreshocks) prior to a mainshock that is 

followed by a tail of decreasing activity (aftershocks) are observed for the first time in simple 

models of this type. These recurrent large events occur at regular intervals, similar to 

characteristic earthquakes frequently observed in historic seismicity, and the time between 

events and their magnitude are a function of the stress dissipation parameter. The relative 

length of the foreshock to aftershock sequences can vary and also depends on the amount of 

stress dissipation in the system. 

The magnitude-frequency distribution of events for various amounts of inhomogeneities 

(asperity sites) in the lattice is investigated in order to provide a better understanding of 

Gutenberg-Richter (GR) scaling. The spatiotemporal clustering of events in systems with 

different spatial distribution of asperities and the Thirumalai and Mountain (TM) metric 

behaviour, an indicator of changes in activity before the main event in the sequence, also are 

investigated.  Accelerating Moment Release (AMR) is observed before the mainshock. The 

Omori law behaviour for foreshocks and aftershocks is quantified for the model in this study.  
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Finally, a fixed percentage of randomly distributed asperity sites were aggregated into bigger 

asperity blocks in order to investigate the effect of changing the spatial configuration of 

stronger sites. The results show that the larger block of asperities generally increases the 

capability of the fault system to generate larger events, but the total percentage of asperities 

is important as well.  The increasing number of larger events is also associated with an 

increase in the total number of asperities in the lattice. 

This work provides further evidence that the spatial and temporal patterns observed in natural 

seismicity may be controlled by the underlying physical properties and are not solely the 

result of a simple cascade mechanism and, as a result, may not be inherently unpredictable.  
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Chapter 1  

1 Introduction and Background 

The spatial inhomogeneities of a fault play an important role in the seismicity of an 

earthquake fault system. The complicated spatial arrangements of inhomogeneities on the 

surface of a fault are dependent on the geologic history of the fault, which is typically 

quite complex.  Understanding the dynamics of seismic activity in an inhomogeneous 

medium is fundamental to the investigation of earthquakes processes. In addition, the fact 

that nonlinearity is a significant aspect of earthquake physics (Kanamori, 1981; Main, 

1996; Turcotte, 1997; Rundle et al., 1999; Scholz, 2002) and the rare occurrence of 

extreme events means that computational simulations are a critical tool in understanding 

the dynamics of the earthquake systems (Schorlemmer and Gerstenberger, 2007; Vere-

Jones, 1995, 2006; Zechar et al., 2010). There are several numerical models that have 

been proposed to test hypotheses regarding the complicated dynamics of earthquake fault 

systems and the controlling parameters and their relative variability (Burridge and 

Knopoff, 1967; Otsuka, 1972; Rundle and Jackson, 1977; Rundle, 1988; Carlson and 

Langer, 1989; Nakanishi, 1990; Rundle and Brown, 1991; Olami et al., 1992; Alava et al. 

2006). Although inhomogeneity plays an important role in the spatial and temporal 

behavior of an earthquake fault (Dominguez et al., 2013), most of the numerical models 

of earthquake faults simulate a spatially homogeneous fault in a short stress transfer 

range (Nakanishi, 1990; Olami et al., 1992; Alava et al. 2006). Those OFC models that 

have been expanded to include inhomogeneity by varying individual parameters along 

the fault plane are limited to short range stress transfer  (Janosi and Kertesz, 1994; 

Torvund and Froyland; 1995; Ceva, 1995; Mousseau, 1996; Ramos et al., 2006; Bach et 

al. 2008; Jagla, 2010).  

In this dissertation, the macroscopic behaviour of an earthquake fault-like system with 

microscopic spatial heterogeneities is studied. The model is a variation of the RJB 

(Rundle, Jackson and Brown) and OFC (Olami, Feder and Christensen) models with 

long-range stress transfer, where particular parameters of the model vary from site to site. 
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In particular, a stress driven system with a variety of imposed localized stress 

accumulators is investigated in order to improve our understanding of the dynamics of 

faulting and seismic activity. This proposed earthquake fault model is a driven, 

dissipative, cellular automaton model originally introduced by Rundle, Jackson, and 

Brown (Rundle and Jackson, 1977; Rundle and Brown, 1991) and reintroduced by Olami, 

Feder, and Christensen (Olami et al., 1992). The inhomogeneities are imposed by 

converting a percentage of either organized or randomly selected locations of the lattice 

into sites that have the ability to accumulate higher levels of stress, similar to asperities 

on natural faults.  

In the first chapter, some general properties of this earthquake fault model are discussed. 

Section 1.1 introduces physical concepts relevant to this study. This is followed by a 

discussion of some of the pioneering numerical models for earthquake fault systems 

which are used as the foundation to this cellular automata model in section 1.2. The 

important properties of the spring-block Burridge-Knopoff (BK) model (1972) are 

presented in Section 1.2.1. The Rundle-Jackson-Brown (RJB) model is discussed Section 

1.2.2. The RJB model is a cellular automata version of a two-dimensional BK spring 

block model, introduced by Rundle and Jackson in 1991 and based an earlier model of 

Rundle and Jackson (1977). The Olami-Feder-Christensen (OFC) cellular automata 

model (1992) is reviewed in Section 1.2.3. The OFC model is generalized from the Bak, 

Tang and Wiesenfeld sand-pile model (1987), designed to investigate self-organized 

criticality (SOC) behaviour in earthquakes.  

1.1 Earthquake phenomenology 

This section presents those fundamental concepts of seismology related to earthquake 

fault systems that are necessary to describe physical properties such as the magnitude of 

an event in terms of the output of the model. Basic ideas are introduced in order to better 

understand the behavior of an earthquake fault.  In particular, internal parameters such as 

the stress dissipation or the amount and configuration of inhomogeneities are shown to 

affect the well-studied characteristics of real earthquake fault systems, such as the 

magnitude-frequency distribution of events known as Gutenberg-Richter (GR) scaling.  
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1.1.1 Magnitude and scaling of earthquakes 

Earthquakes are the result of the brittle failure of materials. Initially, a fracture starts with 

the arbitrary appearance of damage in the form of microcracks, followed by nucleation 

and propagation of the microcracks (Alava, 2006; Herrmann, 1990). The increase of 

microcracks and their spatial localization creates a macroscale discontinuity in the 

material which is designated a “fault” in geological terms. An earthquake is an abrupt 

release of energy inside a volume in the earth as a result of sudden motion on that 

surface. The associated displacement of the fault is the result of a stick-slip dynamical 

instability across a fault plane, ultimately caused by plate tectonic motion (Scholz 1968; 

2002). The stick-slip instability is an expression of a so-called “locking-up” phenomenon, 

in which the loaded stress is stored and abruptly released at the critical stress threshold. 

The energy during an earthquake can be represented by the seismic moment tensor, M (a 

symmetric tensor of rank two). The description of the moment tensor can be simplified by 

introducing the scalar moment, which is one measure of the size of an earthquake based on 

the area of fault rupture, the average amount of slip, and the force that was required to 

overcome the friction sticking the rocks together that were offset by faulting (Aki, 1966; 

Hanks and Kanamori, 1979).  

0 ,M uAµ= ∆  (1.1) 

where µ is the shear modulus of the medium, ∆u is the average scalar displacement and A 

is the entire surface that slips during the earthquake event is called the rupture surface.  

Seismic moment can also be calculated from the amplitude spectra of seismic waves 

(Brune, 1970, 1971; Allen and Kanamori, 2003; Wu and Kanamori, 2008).  

The first quantitative method for the comparison of earthquakes was introduced by 

Richter in the mid-1930’s (Richter, 1935). Using a seismograph, the released energy of 

an earthquake was quantified based on the amplitude of the seismic waves. He defined 

the local, or Richter, magnitude, ML, 

10 10 0log log ,
L

M A A≡ −  (1.2) 
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where A is the maximum amplitude recorded by a Wood-Anderson torsion seismograph 

and A0 is a reference magnitude that is adjusted based on the distance between the 

epicentre of the event and the location of the instrumentation (Richter, 1935).  

Subsequently, different magnitude scales were introduced to overcome the limitations of 

the previous techniques, including the surface-wave magnitude, Ms, the body-wave 

magnitude, Mb, and the moment magnitude, MW (Aki, 1972; Kanamori, 1977, 1978; 

Kanks and Kanamori, 1979). The moment magnitude can be calculated by an empirical 

equation, based the scalar moment, as 

10 0

2
log 10.7,

3
W

M M≡ −   (1.3) 

where the scalar moment, M0, is expressed in cgs units, that is, dyne-cm (Hanks and 

Kanamori, 1979). Note that log M0 is effectively log(M0/M̃0) where M̃0 ≡ 1 dyne-cm is a 

reference magnitude. 

With the magnitude of an earthquake properly quantified, it is possible to study the 

features of earthquakes with different magnitudes. One of the most studied properties of 

earthquake fault systems is the magnitude-frequency distribution of events, or Gutenberg-

Richter (GR) scaling (Gutenberg and Richter, 1954). This empirical equation relates the 

frequency of earthquakes to their magnitudes in a cumulative distribution 

10log ,
M

N a bM= −
 (1.4) 

where M is the Richter magnitude (Gutenberg and Richter, 1954). If nM is defined as the 

number of events per unit time with a magnitude M є [M,M+dM], then  

.M

M

N n dξ ξ
∞

= ∫
 (1.5) 

It is interesting to note that b ~ 1 for the worldwide distribution of earthquakes (Gulia and 

Weiner, 2010). If we substitute the scalar moment with the magnitude from Equation 1.3,  
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the exponential distribution of magnitudes can be written as a power-law distribution of 

scalar moments where 

0 2
3

0

1
,

M b
N

M
∝  (1.6) 

This scaling relationship and its b-value exponent has been of great interest (e.g. 

Gutenberg and Richter, 1954; Mogi, 1962; Scholz, 1968; Mori and Abercombie, 1997; 

Sornette, D. and Sornette, A. 1999; Main, 1996, 2000; Kagan, 1997, 1999; Schorlemmer 

et al., 2005) and will be investigated further here.  

Klein et al. (2007) and Serino (2011) argued that the magnitude-frequency of events on 

individual faults does not, in general, scale as a power law. However, they also showed 

that the aggregate distribution of different faults with various parameters is well-

described by the GR scaling relation. Klein et al. (2007) studied GR scaling of the mean-

field limit of an OFC model and found that the number of events of size s for a 

noncumulative distribution is associated with a spinodal critical point and obeys the 

scaling  

 

( ) ,
h se

n s
s

σ

τ

−∆

∼

  (1.7) 

where n(s) is the number of events of size s, τ = 3/2, σ = 1, and ∆h is a measure of the 

distance from the spinodal which is the limit of stability of the metastable state. The 

above distribution approaches a power law distribution as the dissipation parameter goes 

to zero (∆h→0 if α→0). It should be noted that n(s) is the number of events of size s, 

which is the noncumulative distribution, rather than the number of events of size s or 

smaller, which is the cumulative distribution often discussed in relation to the Gutenberg-

Richter law. 

1.1.2 Clustering of earthquakes 

The clustering of seismic events in space-time is an essential aspect of earthquake 

sequences on both global and regional scales. In general, there are two classes of 
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earthquake clusters: Foreshocks, mainshock and aftershocks, or earthquakes belonging to 

what are generally known as swarms.  Swarms are a localized surge of earthquakes where 

no one shock is conspicuously larger than all other shocks of the swarm. These occur in a 

variety of geologic environments and have not been proven to be indicative of any 

change in the long-term seismic risk of the region (Hill, 1975b; Klein et al., 1977; Waite, 

2002; Govoni et al., 2013). Various types of spatiotemporal clustering have been 

identified in historic earthquake catalogues, briefly described below (Kanamori, 1981).  

Schwartz et al. (1981) and Schwartz and Coppersmith (1984) originally introduced the 

concept of recurrent large events, or characteristic earthquakes based on Reid's Elastic 

Rebound Theory (1910), which states that the crust of the earth gradually stores elastic 

stress over time that is released suddenly during an earthquake. The characteristic 

earthquake theory hypothesizes that earthquakes repeatedly rupture the same fault 

segments with the similar magnitude and slip distribution (Ellsworth and Cole, 1997; 

Parsons and Geist, 2009; Schwartz and Coppersmith, 1984; Schwartz et al., 1981; 

Wesnousky, 1994).  

Many researchers have concentrated on identifying earthquakes that occur in the vicinity 

of the mainshock as either foreshocks which occur immediately before the mainshock or 

aftershocks which occurs subsequent to the mainshock (Bath, 1965; Kanamori, 1981; 

Ogata, 1983; Utsu et al., 1995; Dodge et al., 1996 and Shcherbakov et al., 2004).  

Occurrence of an earthquake produces a spatially localized series of generally smaller 

events in which their frequency and magnitude decreases with time (aftershocks). Omori 

(1894) and Utsu (1961) were the first to quantify this decrease in the frequency of 

aftershocks. The modified Omori law for aftershocks (Utsu, 1961) states that the rate of 

aftershocks is proportional to the inverse of time since the mainshock, 

(t t) ap

a M
R

−−∼
 (1.8) 

where Ra is the rate of aftershocks, tM is the time of the mainshock, and pa is the decay 

rate for aftershocks.  
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Similarly, it has been suggested (Papazachos, 1975; Jones and Molnar 1979; Kagan and 

Knopoff, 1976) that there is an inverse Omori distribution for foreshocks with different 

exponents: 

(t t ) fp

f M
R

−
−∼

 (1.9) 

where Rf  is the rate of foreshocks, tM is the time of the mainshock, and pf is the reverse 

decay (growth) rate for foreshocks.  

There is also another empirical constraint on the behaviour of the aftershocks (Båth, 

1965). Bath’s law states that difference in magnitude between a main shock and its 

largest aftershock is approximately constant and the largest aftershock is, on average, 1.2 

magnitude units smaller than the main shock. McGuire et al. (2005) studied foreshocks 

on East Pacific Rise transform faults and showed that the transform faults in that region 

have a relatively low number of aftershocks and higher foreshock rates when compared 

to continental strike-slip faults. Their findings support the idea that the underlying 

physics links the foreshocks and mainshocks through stress changes. Recently, Shearer 

(2012) studied foreshock and aftershock behaviour in southern California and in 

numerical simulations and demonstrated that aftershock b-values are significantly lower 

than that of the complete catalogue. He also studied the foreshock-to-aftershock ratio and 

concluded that the ratio is too large to be consistent with Båth’s law. Their observations 

also demonstrated that triggering self-similarity in southern California does not hold for 

small main shocks, and the associated spatiotemporal clustering is not caused primarily 

by earthquake-to-earthquake triggering. 

1.1.3 Accelerating moment release (AMR) 

Mogi (1981) observed a regional increase in seismicity rates before great earthquakes. 

This included an increase in the overall level of seismicity in the crust surrounding the 

future rupture zone, in conjunction with a relative shortage of events, or quiescence, 

along or near the fault. Ellsworth et al (1981) also observed an increase in the rate of M5 

events over a broad region in the years preceding the 1906 San Francisco earthquake. 

This precursory regional increase in the seismicity (AMR) has been documented in a 
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variety of papers (Bowman and King, 2001, Bowman et al, 1998, Sornette and Sammis, 

1995, Bufe and Varnes, 1993, and Skyes and Jaumé, 1990). It is defined by the equation  

( ) ( )m

f
t A B t tε = − −   (1.10) 

where ε(t) has been interpreted as the accumulated seismic moment, the energy release or 

the Benioff strain release within a specified region, from some origin time t0, up to time t. 

( )

1

( ) ,
N t

k

it Eε =∑   (1.11) 

where N(t) is the number of events in the region between t0 and t, Ei is the energy release 

from the ith event, and k=0, 1/2, or 1. The remaining quantities, A, B, tf and m, are 

parameters characterizing the seismic episode under study. In 2002, Ben-Zion and 

Lyakhovsky analyzed the deformation preceding large earthquakes and obtained a 1-D 

analytical power-law time-to-failure relation for accelerating moment release before big 

events. They found that phases of accelerating moment release exist when the seismicity 

occurring immediately before a large event has broad magnitude-frequency statistics. 

These and similar results are consistent with observed seismic activation before some 

large earthquakes (Turcotte et al., 2003; Zoller et al., 2006). 

1.1.4 Thirumalai–Mountain (TM) metric 

The TM metric was introduced in the field of statistical physics in order to study the time 

scales necessary to achieve effective ergodicity in models of liquids and supercooled 

liquids (Thirumalai and Mountain, 1989). In statistical mechanics, the ergodic theory is 

justified by replacing the time averages with ensemble averages. It is an important 

measure that quantifies equilibrium in a system. In seismology, the TM metric has been 

used to quantify whether an earthquake system can be considered effectively ergodic for 

some period of time which is interrupted by large events (Timapo et al. 2003, 2006). This 

is important because equilibrium-like systems may be treated as statistically stationary 

over long periods of time, which justifies using statistical methods inherent in some 

forecasting techniques (Tiampo et al., 2007). In addition, application of the TM metric 
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also has been used to demonstrate that numerical models of earthquakes exhibit the 

property of effective ergodicity (Tiampo et al., 2003).  

In a lattice system (or a system of many particles), the time average for some interval t of 

a phase variable xj(t) for lattice site (or particle) j is 

0

1
( ) (t )dt ,

t

j j
f t x

t
′ ′= ∫

 (1.12) 

and the space average of this time average is 

1

1
(t) (t),

N

j

j

f f
N =

= ∑
 (1.13) 

where N is the total number of sites (or identical particles).  

The TM metric is a fluctuation metric used to test if a self-averaging system with 

statistical symmetry is effectively ergodic on some timescale of interest. It is defined as 

( )
2

1

1
( ) ( ) ( ) ,

N

x j

j

t f t f t
N =

Ω ≡ −∑  (1.14) 

and can be understood as the spatial variance of the temporal mean. Recently, the TM 

metric was used to measure whether or not the earthquake fault models are in equilibrium 

(Ferguson et al., 1999; Klein et al., 2000 and Serino et al., 2011). These systems are 

defined as effectively ergodic if  

1
( ) , ,t t

t
Ω ∼ → ∞   (1.15) 

and effective ergodicity is used to determine whether or not a spatially uniform system is 

in statistical equilibrium (Thirumalai et al. 1989, 1993). 



10 

 

1.2 Pioneering Earthquake Fault Models 

In this section, three models of earthquake faults are described that are the foundation of 

the model studied in this dissertation. These include the well-known Burridge and 

Knopoff (BK), the Rundle, Brown and Jackson (RJB) (1991) and the Olami, Feder and 

Christensen (OFC) models.   

1.2.1 Burridge and Knopoff (BK) Model  

Burridge and Knopoff (1967) introduced one of the first simple models of an earthquake 

fault. This model has been applied to the fields of geology, seismology, mechanical and 

materials engineering, mathematics, and physics (Vasconcelos, 1996, 1992; Clancy and 

Corcoran, 2005, 2006; Carlson and Langer, 1989; Carlson et al., 1991; Carlson et al. 

1994; Langer, 1992; Xia et al. 2005, 2008; Mori and Kawamora, 2005, 2006).  

Burridge and Knopoff (BK) (1967) formulated their initial model of a one-dimensional 

continuum by studying the motion of an elastic string in contact with a frictional surface 

which retards the motion and then expanded it to a one-dimensional (1D) system of 

springs and blocks which was originally established to study the role of friction along a 

fault in the propagation of an earthquake. 

 

Figure  1-1 Schematic diagram of the BK numerical model (Burridge and Knopoff, 1967). 

A chain of ten connected blocks where the dashed lines separate the chain into three 

parts with markedly different properties; all particles are coupled through the springs 

with constants µ. Particles 6-10 form the analog of a strongly seismic fault. Particles 4 

and 5 form a viscous region adjacent to the large fault and Particles 1-3 form the analog 

of a second seismic fault weaker than the one represented by particles 6-10. 
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In order to model this concept, BK considered a chain of ten particles connected as 

shown in Figure 1-1, with specified parameters. They divided the ten particles into three 

parts with clearly different properties, as shown in Figure 1-1. Particles 6 through 10 

form the analog of a strongly seismic fault, while particles 4 and 5 represent a viscous 

region adjacent to the large fault. Particles 1 through 3 form the analog of a second 

seismic fault, weaker than that represented by particles 6 through 10. Hence the seismic 

energies released by shocks in the region of particles 1 through 3 will be generally less 

than those released by shocks in the region of particles 6 through 10.  

BK solved the nonlinear differential equations of this system by numerical integration 

using a Runge-Kutta procedure and computed the potential energy as a function of time 

in the quiet intervals between shocks, as well as during the shocks themselves. They also 

computed the loss of potential energy and the total energy radiated for each shock, along 

with a detailed description of the coordinates, velocities and accelerations of the particles 

during each shock. Figure 1-2 shows the detailed motion of the system when a major 

shock occurred in the region of particles 6 through 10. The motion is initiated with 

particle 6, the particle adjacent to region 4 and 5; the latter is the viscous region. Since 

particle 6 is defined to have the largest value of static friction, when large motions of this 

particle take place, large energies are released. 

 

Figure  1-2 Detailed motion of the lattice during a major shock occurred in the region of 

particles 6-10. (Burridge and Knopoff, 1967). 
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Following the major shock of Figure 1-2, a large number of aftershocks were observed.  

Figure 1-3 is the plot of potential energy against time for this aftershock sequence. 

(Burridge and Knopoff, 1967). 

 

Figure  1-3 Potential energy as a function of time for the aftershock sequence following 

the main shock. Shocks occurring on the principal segment of the fault are identified by 

the symbol P (Burridge and Knopoff, 1967). 

In a generalized one-dimensional BK model, there is an array of N identical blocks in a 

row. The blocks are connected to their two adjacent neighbors via springs with the elastic 

constant of kc. Each block also is attached to the driving plate via some other springs with 

the elastic constant of kp. All blocks are subjected to the friction force θi, which is the 

only source of nonlinearity in the model. Based on the described configuration, the 

equation of motion for the ith block can be written as: 

1 1( ) ( 2 ) ,
i p db i c i i i i

mu k v t u k u u u θ+ −= − + − + −��
  (1.16) 

where t is the time, ui is the displacement of the ith block, νdb is the speed of the driving 

block, and θi is the friction force at the ith block (Burridge and Knopoff, 1967).  

After the initial BK studies, many other researchers investigated similar dynamical 

models of many-body systems with friction, ranging from propagation and rupture in 

earthquakes to the fracture of over layers on a rough substrate. A deterministic version of 
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the 1D Burridge-Knopoff model was analyzed by Carlson and Langer (1989) and the 

same model but in a quasi-static limit was studied by Nakanishi (1990). Otsuka (1972) 

simulated a two-dimensional (2D) version of Burridge-Knopoff model. In this model, 

today known as a Burridge-Knopoff spring-block model, the particles on opposite sides 

of the fault are reduced to a 2D network of masses interconnected by springs. Here the 

usual elastic elements are further coupled by frictional elements interconnecting the 

elements on opposite sides of the fault. A network of masses (blocks) is constructed and 

each of them is connected to the four nearest neighbors by identical springs. These blocks 

also are frictionally connected to a fixed rigid block with the different maximal static 

friction. Each block is connected to another rigid plate by a set of springs and used this 

plate as the driving plate for the system. The blocks are driven by the relative movement 

of the two rigid plates (Figure 1-4). When the force on one of the blocks exceeds its 

threshold value, the block starts to slip.  The movement of one block will redistribute the 

forces on its nearest neighbors and can result in further slips and a chain of reaction can 

evolve. 

 

Figure  1-4 The geometry of a 2D spring block model. K1, K2 represents the elastic 

constants of the springs between the blocks and KL is the elastic constant of the spring 

between each block and the moving plate. (Olami et al., 1992). 

Later Rundle and Brown (1991) introduced a discrete version based on the Rundle and 

Jackson (1977) model, which was formulated as a cellular automaton and is described in 

the next section. 
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1.2.2 Rundle, Jackson and Brown Model (RJB)  

Rundle and Brown (1991) presented the first cellular automaton model for frictional 

sliding using the Mohr-Coulomb friction law. Their model was a lattice automaton 

generalized from earlier model of Rundle and Jackson (1977) which was based on the 

well-known models described by Burridge and Knopoff (1967) and Dieterich (1972a). 

Rundle and Brown (1991) studied a microscopic system based upon the macroscopic 

velocity-dependent friction force.  

In this model the contacting surface is idealized as a lattice of microscopic contact points, 

called "asperities". Each cell (or block in BK model) represents an asperity along the 

fault to manifest the “locking-up” process in the stick-slip dynamical instability across a 

fault plane. As the stress on an asperity increases, it will break (slip), and therefore 

decrease its own stress but raise the stress on surrounding asperities. Upon successive 

application of a shearing force at a series of discrete times, contact points fail and slip 

relative to each other. This model is based on a lattice dividing the surface below a 

macroscopic block into an M×M lattice of adjoining microscopic squares. The force σi on 

the ith square is 

(t) (t),
i i ij j

j

p Tσ = + Φ∑
 (1.17) 

where pi is an externally applied force, and Tij is an interaction between squares. The 

spring constants are encoded in the stress tensor, T, which is, in principle, derived from a 

continuum elastic theory and is the Green’s function for a given boundary value problem. 

Theoretically, a Green's function is the impulse response of the elastic medium and is 

used to describe the propagation of seismic waves in the medium. Here, it is used as a 

function to describe the stress interaction between the lattice sites or the propagation of 

stress in the system. The order parameter Φi (t) = si - vt is the "slip deficit", with si being 

the total distance square i has slipped. A failure envelope σi
F is specified, so that slip 

occurs if σi
F
>σi. In the BK model, the driving plate moves with a constant velocity (v). 

Here, since the blocks rearrange themselves immediately after a failure, the driving plate 

can move a fixed distance (v∆T), with ∆T much smaller than the mean time for an event 
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to stop in the BK model. Therefore, the plate does not move while an event occurs.  Then 

it moves some fixed distance and waits for the event to stop, provided one was triggered. 

In a system such as this, the fracture dynamics are slow, so that in spite of potentially 

rapid local developments, the sample can be considered to be in equilibrium during most 

of the increments.  The dynamics are generated by incrementing t by δt = ∆, producing a 

force increment δσi = -∑i Tij v∆>0 at site i at regular intervals δt. As these sites fail by 

sliding, a chain reaction, or an avalanche of failed sites, may occur by the triggering of 

neighboring sites. Another addition of Rundle and Brown was to introduce a “jump 

function”, J, to determine the new position of a block after the slip that occurs when a site 

decays from the active to the passive state (Rundle and Jackson, 1977; Rundle, 1988).  

Site i is in an active state for σi >σi
F and in a passive state when σi

F≥σi.  

1.2.3 Olami, Feder and Christensen Model (OFC)  

Olami, Feder, and Christensen (OFC) introduced a cellular automata (Olami et al. 1992) 

based on the Burridge and Knopoff slider bock model which is very similar to the RJB 

model (Rundle and Jackson, 1977). Inspired by the Bak, Tang, and Wiesenfeld’s sandpile 

model (Bak et al., 1987), Olami et al. (1992) presented evidence that a nonconservative 

cellular automata without added external noise can display SOC behaviour (Olami et al., 

1992). 

Bak et al. (1987) introduced the concept of self-organized criticality: a dynamical many-

body system reaches a critical state without the need to fine-tune the system parameters 

(Olami et al., 1992). Olami, Feder and Christensen (1992) generalized the BTW model 

(Bak et al., 1987) based on a 2D version of the Burridge-Knopoff spring block model. 

They mapped the 2D spring-block model into a cellular automaton model by defining an 

L×L array of blocks by (i,j), where i, j were integers between 1 and L. They calculated the 

total force on a specific block by (i,j)  

, 1 , 1, 1, 2 , , 1 , 1 ,[2 ] [2 ] ,
i j i j i j i j i j i j i j L i j

F K dx dx dx K dx dx dx K dx− + − += − − + − − +
 (1.18) 

where dxi,j is the displacement of each block from its relaxed position and K1, K2 and KL 

denote the elastic constant.  When the driving plate begins to move, the total force on all 
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the blocks increases until one site reaches the threshold value and the process of 

relaxation begins (an earthquake is triggered). To summarize, the OFC model is a lattice 

of cells which interact by redistributing a proportion of their strain to neighboring cells 

once they reach a failure threshold (Olami et.al, 1992). OFC argued that this dependence 

explains the variance of the exponent in the Gutenberg-Richter (1956) law observed in 

real earthquakes.  

 

Figure  1-5 a) Simulation results for the probability density of an earthquake of energy E 

as a function of E for a 35 by 35 system. The curves correspond to different elastic ratios. 

The slope of the curve becomes steeper as the elastic ratio is decreased. b) The power-

law exponent B as a function of the elastic parameter (α). The level of conservation is 4α. 

Notice the sudden change of the B value around α=0.07. Below α=0.05 there is a 

transition to exponential decay. The arrows indicate the actual measured B values for 

earthquakes. (Olami et al., 1992). 

Olami et al., (1992) demonstrated that their continuous, non-conservative cellular 

automaton model exhibits SOC behaviour for a wide range of elastic ratios (Figure 1-5a). 

The level of conservation in this nearest neighbour model is dependent on the elastic 

parameter of α.  Because each cell in the model is connected to four adjacent neighbours 

(nearest neighbours), the level of conservation is 4*α. They also increased the system size 

for a constant elastic ratio to verify the criticality in the model and observed that the 

exponent stays the same while the cutoff in the energy distribution scales with system 

size (Figure 1-6).   
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Figure  1-6  The probability density function for an earthquake of energy E as a function 

of E for a constant elastic ratio.  The different curves refer to different system sizes L=15, 

25, 35 and 50.  The cutoff in energy distribution scales with L
2.2

 (Olami et al., 1992). 

The approach of these studies generally examines various metrics averaged over the 

model evolution.  These include testing the presence of 1/f pink noise (Bak et al., 1987), 

quantifying branching ratios (Carvalho and Prado, 2000), or the examination of the 

behaviour in more analytically tractable regimes (Kinouchi et al., 1998). Naylor and 

Main (2008) also investigated the occurrence of spatial organisation and quantified the 

strain distributions and their dependency on the lattice geometry. As noted above, there 

has been considerable investigation into the scaling properties of rupture modeling. Bak 

et al. (1987) and Feder and Feder (1991) showed that GR scaling is a form of self-

organized criticality. 

The OFC model is important as it provides insight into the statistical behaviour of 

rupturing in heterogeneous materials that do not fail through a single crack mechanism.   

In such materials rupture statistics are a product of complex interactions.  However, 

formal comparison with data, especially at high magnitude, remains difficult due to the 

short duration of earthquake catalogues (Leonard and Papasouliotis, 2001).  In the OFC 

model, nucleation always occurs when a single cell slips by a fixed amount. However 

variation of the conservation parameter, α, as shown in Figure 1-5b, leads to a wide 

variety of rupture propagation behaviour (Olami et al., 1992). 
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Klein et al. (1997, 2000, and 2007) also studied earthquake behaviour in long-range OFC 

and found that the earthquake fault systems relieve stress via long-range elastic 

interactions within the Earth’s crust (Klein et al., 2000). They showed that, for nearest 

neighbor stress transfer, there is no apparent GR scaling (Grassberger, 1994; Klein et al., 

1997, 2000, 2007).  However, in long-range interaction models (R>>1), the system 

becomes near mean-field (Klein et al., 2000) and there appears to be GR or cluster 

scaling associated with a spinodal critical point (Klein et al., 1997, 2000). In models of 

this type, the number of events obeys the equation 1-7. Recently, several cellular 

automata models of earthquake fault system based on the RJB and OFC models have 

been expanded to include different aspect of inhomogeneity. Most of these studies have 

tried to integrate inhomogeneity into OFC models by changing the individual parameters 

along the fault plane, but only for the short-range stress transfer system (Janosi and 

Kertesz, 1994; Torvund and Froyland, 1995; Ceva, 1995; Mousseau, 1996; Ramos et al. 

2006; Bach et al., 2008; Jagla, 2010). Serino et al. (2011) and Dominguez et al. (2012, 

2013) incorporated inhomogeneities in terms of damage into a long-range OFC model. 

Their findings illustrate that the interaction between structures has an important effect on 

the earthquake fault process and this interaction affects how close the fault is to the 

critical point.  

We have noted in section 1.1.1 that the cumulative magnitude-frequency distribution for 

earthquakes obeys the GR relation (equation 1-2). However, this distribution is not 

accurate enough for larger earthquakes. There are some physical limitations that suggest 

an upper bound or taper and a maximum size for extreme events (Main, 1996; Kagan and 

Jackson, 2000; Bell et al., 2013). Turcotte (1999) proposed a modified GR relation 

(MGR) that adds an exponential tail to the cumulative form, with an exponential cutoff at 

the corner moment or magnitude. However, because of the statistical limitations of the 

available data, the debate continues as to the true nature of this distribution (Main 2000; 

Zoller et al., 2006).  

Serino et al. (2011) introduced a physical basis for the MGR form of the magnitude-

frequency distribution that depends on the level of damage in each fault network, denoted 

by a damage parameter q. They showed that the corner magnitude is dependent on the 



19 

 

amount of damage and the scaling exponent depends on the relative frequency of the 

faults with a particular amount of damage. Dominguez et al., (2012, 2013) expanded the 

previous study by altering the spatial configuration of inhomogeneities into the lattice. 

They showed that the frequency of events depends on the amount of damage but also on 

the spatial configurations of the damage.  

As noted above, a variety of models for earthquake fault have been established to provide 

further insights into the complex dynamics of the earthquakes. Although significant 

improvement has been made in our knowledge and understanding of the statistical 

properties of earthquakes, none of them are able to reproduce one of the most crucial 

characteristics of natural seismicity: temporal clustering. Based on the known structure of 

natural faults and the fact that long-range interactions model are able to reproduce more 

realistic representations of earthquake seismicity (Fisher et al., 1997; Ben Zion et al., 

2008; Serino et al., 2011) this dissertation introduces spatial heterogeneity in the form of 

asperities into the OFC model with long-range stress transfer. The results of the model 

illustrates that while this long-range heterogeneous earthquake fault model leaves the GR 

scaling intact while  it also produces, for the first time, temporal clustering similar to that 

seen in natural faults, including aftershocks, foreshocks and quasi-periodic large events 

(characteristic earthquakes).   

1.3 Thesis structure 

This integrated thesis is presented in five chapters. The introductory chapter (Chapter 1) 

outlines the background information and earlier important models. 

Chapter 2 presents results related specifically to foreshock and aftershock statistics, 

submitted to Physical Review Letters. This chapter illustrates the initial results and shows 

that, for the first time in these models, the occurrence of characteristic earthquake 

sequences associated with a gradually accelerating number of larger events (foreshocks) 

prior to a mainshock and is followed by a tail of decreasing activity (aftershocks). The 

relative length of the foreshock to aftershock sequences can vary and depends on the 

amount of stress dissipation in the system.  
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In the next chapter, the investigation is expanded by increasing the number of stronger 

asperity sites. In Chapter 3, the focus is on the spatiotemporal clusters of events and the 

scaling behavior of the magnitude-frequency distribution of earthquakes. The effect of 

different asperity percentages for a range of values of the stress dissipation parameter is 

studied. It is concluded that the spatial heterogeneities are responsible for the primary 

features of the higher activity sequences, including the size of the largest events and the 

upper bound or taper, of the modified GR relation. The sensitivity of the spatial and 

temporal clusters and their activity rates to the initial parameters of the model such as 

stress dissipation and the number and configuration of asperity sites in the model is 

discussed. Included is a thorough investigation of the presence of Accelerating Moment 

Release (AMR) before the mainshock, along with the Omori and reverse Omori law for 

foreshocks and aftershocks. The TM metric analysis is applied to the higher periods of 

activity prior to the main event in the sequence. The results of this chapter have been 

submitted to the Journal of Geophysical Research. 

In Chapter 4, additional properties of this OFC model are outlined. This chapter has been 

submitted to the journal Pure and Applied Geophysics. It discusses the different spatial 

configurations and amount of inhomogeneities in the model. Changing the spatial 

configuration of inhomogeneities increases the ability of the fault system to generate 

larger events, but results show that the total percentage of asperities is important as well.  

Chapter 5 concludes with a summary and discussion of the results and suggestions for 

future work. 
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Chapter 2  

 

2 Foreshock and aftershocks in simple earthquake 

models 

This chapter presents the cellular automata earthquake fault model with long-range 

interactions and a fixed percentage of randomly distributed stronger sites, or ‘asperity 

cells’. The introduction of these spatial heterogeneities results in temporal clustering in 

the model that mimics those seen in natural fault systems. Sequences of activity are 

observed that start with a gradually accelerating number of larger events (foreshocks) 

prior to a mainshock that is followed by a tail of decreasing activity (aftershocks). These 

recurrent large events occur at regular intervals, similar to characteristic earthquakes 

described in historic seismicity, and the time between events and their magnitude are a 

function of the stress dissipation parameter. The relative length of the foreshock 

sequences to the aftershock sequences can vary and also depends on the amount of stress 

dissipation in the system. This work provides further evidence that the spatial and 

temporal patterns observed in natural seismicity may be controlled by the underlying 

physical properties and are not solely the result of a simple cascade mechanism and, as a 

result, may not be inherently unpredictable.  
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2.1 Introduction 

Understanding the dynamics of seismic activity is fundamental to the investigation of the 

earthquake process. Simple models of statistical fracture have been used in the past to test 

many of the typical assumptions and effective parameters inherent in the complicated 

dynamics of the earthquake fault system and their relative variability (Burridge and 

Knopoff, 1967; Otsuka, 1972; Rundle and Jackson, 1977; Rundle, 1988; Carlson and 

Langer, 1989; Nakanishi, 1990; Rundle and Brown, 1991; Olami et al., 1992; Alava et al. 

2006). Most of these models assume a spatially homogeneous fault and short range stress 

transfer. However, inhomogeneity plays an important role in the spatial and temporal 

behavior of an earthquake fault (Dominguez et al., 2013).  A number of OFC models with 

nearest neighbor stress transfer have been expanded to include inhomogeneity, generally 

by varying individual parameters along the fault plane (Janosi and Kertesz, 1993; 

Torvund and Froyland; 1995; Ceva, 1995; Mousseau, 1996; Ramos et al., 2006; Bach et 

al. 2008; Jagla, 2010).  

Stress transfer in natural earthquake faults is elastic and, as a result, OFC models with 

long-range interactions produce more realistic representations (Ben-Zion, 2008; Serino et 

al., 2011).  Inhomogeneities in the form of stress relieving micro-cracks have been 

incorporated into long-range OFC models, resulting in a better understanding of 

Gutenberg-Richter (GR) scaling (Richter, 1935; Dominguez et al., 2013; Serino et al., 

2011).  However, to date, none of these models have been able to reproduce the temporal 

clustering that is a primary feature of natural seismicity and a critical component in the 

assessment of earthquake hazard. Motivated by the structure of natural faults, we 

introduce heterogeneity in the form of asperities into the OFC model with long-range 

stress transfer.  The introduction of these spatial heterogeneities produces, for the first 

time, temporal clustering similar to that seen in natural faults, including aftershocks, 

foreshocks and quasi-periodic large events (characteristic earthquakes).   
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2.2 Model dynamics 

Our model is a two-dimensional cellular automaton with periodic boundary conditions 

based on the OFC (Olami et al., 1992) and RJB (Rundle and Jackson, 1977; Rundle and 

Brwon, 1991) models. Every site in the lattice is connected to z neighbors which are 

defined as sites within a certain distance or stress interaction range, R. A homogeneous 

residual stress σr is assigned to all the sites in the lattice. To impose spatial 

inhomogeneity on the lattice, two sets of failure thresholds are introduced; ‘regular sites’ 

with a failure threshold of σF and ‘asperity sites’ with a significantly higher failure 

threshold (σF
(asperity)=σ

F
+∆σF) in order to incorporate stronger sites which can support 

higher stress prior to failure.  

Initially, an internal stress variable, σj(t), is randomly distributed to each site in such way 

that the stress on all sites falls between the residual stress and failure stress thresholds 

(σr
<σi(t=0)<σF). Given the initializing procedure, it is clear that at t=0 no sites will have 

σi > σF. Here we use the so-called zero velocity limit to simulate the increase in stress 

associated with the dynamics of plate tectonics (Olami et al., 1992). The lattice is 

searched for the site that minimizes (σF - σi). Then (σF - σi) stress is added to each site 

such that the stress on at least one site is now equal to its failure threshold. One site fails 

and some fraction of its stress, given by α*[σF–(σr
±η)], is dissipated from the system. α is 

a dissipation parameter (0 < α ≤ 1) which quantifies the portion of stress dissipated from 

the failed site and η is a randomly distributed noise. Stress on the failed site is lowered to 

(σr
±η) and the remaining stress is distributed to its predefined z neighbors. After the first 

site failure, all neighbors are searched to determine if the stress added to those neighbors 

caused additional failures. If so, the procedure is repeated.  If not, the time step, known as 

the plate update (pu), increases by unity and the lattice is searched again for the next site 

which minimizes (σF - σi). The size of each event is calculated from the total number of 

failures that result from the initial failure. Stress is dissipated from the system both at the 

regular lattice sites (temporarily) and through the asperity sites which are placed 

randomly throughout the system. However, the asperity sites fail less frequently than the 

regular sites, providing a time-dependent source and sink of stress:  storing “dissipated” 

stress until asperity failure releases it back into the system.  The addition of these large 
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failure threshold heterogeneities, or localized stress accumulators, results in a rich pattern 

of temporal clustering, including the occurrence of large events with constant return 

period (characteristic events), foreshocks and aftershocks.  

2.3 Foreshocks and aftershocks 

Spatial and temporal clustering has long been recognized in seismicity data, and 

significant research efforts have focused on that which occurs in the same general region 

as the mainshock as well as both immediately before (foreshocks) or immediately after 

(aftershocks) its occurrence (Båth, 1965; Kanamori, 1981; Ogata, 1983; Utsu et al. 1995; 

Dodge et al., 1996; Shcherbakov and Turcotte, 2006). For example, aftershocks occur 

close to their triggering mainshocks and the aftershock rate generally decays with time, 

following the power law relation known as the modified Omori law (Ogata, 1983; Utsu et 

al. 1995). On the other hand, while precursory seismic activity, or foreshocks, have been 

recorded before a number of large events around the world, their signal is much more 

difficult to observe (Bakun et al., 2005; Ellsworth et al. 1981; Jordan and Jones, 2010; 

Shearer, 2012).  

One particular foreshock pattern, accelerating moment release (AMR) (Ellsworth et al. 

1981; Sykes and Jaumé, 1990; Bowman and King, 2001; Bowman et al., 1998; Sornette 

and Sammis, 1995; Bufe and Varnes; 1993) is defined by the equation ε(t) = A + B(tf – 

t)m. ε(t) has been interpreted as either the accumulated seismic moment, energy release 

or Benioff strain release within a specified region, from some origin time t0 to time t. A is 

a constant that depends on the background level of activity, tf is the time of the 

mainshock, B is negative and m is a value between 0.3 and 0.7. For example, Ben-Zion et 

al. (2002) analyzed the deformation preceding large earthquakes and obtained a 1-D 

analytical power-law time-to-failure AMR relationship before large events when the 

seismicity occurring immediately before a large event had broad frequency-size statistics, 

consistent with observed seismic activation before some large earthquakes (Turcotte et 

al., 2003; Zoller et al., 2006). 
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The ETAS (Epidemic Type Aftershock Sequences) model (Ogata, 1999; Helmstetter and 

Sornette, 2002) is a triggering model based on the concept that every event, regardless of 

its size, increases the probability of later events. In ETAS, not only do mainshocks trigger 

aftershocks, they can trigger aftershocks with magnitudes larger than themselves. If the 

largest event is triggered by earlier, smaller events, these are classified as foreshocks. 

While ETAS can replicate many features of earthquake clustering seen in natural 

seismicity, recent work suggests that these triggering models may not fully explain the 

foreshock-mainshock-aftershock process and that other mechanisms may be important 

(Sykes and Jaumé, 1990; Dodge and G. C. Beroza, 1997; Enescu et al., 2009). For 

example, Chen and Shearer (2013) studied foreshock sequences for M > 7 earthquakes in 

California and determined that they behaved more like swarms initiated by aseismic 

transients rather than triggered cascades or a nucleation process. These foreshock 

sequences occurred in areas of significant fault zone complexity, highlighting the 

importance of heterogeneity in the clustering process. 

2.4 The model behavior 

Here we investigate a system with 1% of randomly distributed asperity sites in a two-

dimensional lattice of linear size L=256 with periodic boundary conditions. We set a 

homogeneous failure threshold for the regular sites at σF=2.0, homogeneous residual 

stress for the entire lattice as σr=1.0, and random distribution of noise η=[-0.1,+0.1]. The 

failure threshold for asperity sites is designated σF
(asperity)=σ

F
+10. The system has a stress 

transfer range R=16 and every failed site directly transfers stress to z=1088 neighbors. 

We compare our inhomogeneous model and a standard homogeneous model with no 

asperity sites in Figure 2-1. This figure shows time series (6*105 pu) and distribution of 

events (collected during 107 pu) for three different values of stress dissipation parameters 

α (Figures. 2-1a, b, and c). The first diagram (i) in each set is the time series of events for 

the heterogeneous model with 1% of asperity sites. The time steps in which an asperity 

site breaks are shown with a grey background shade. The second diagram (ii) in each set 

is the time series for the homogeneous model with no asperity sites.  Figure 2-1d is the 

comparison between the frequency distributions for different values of α with and 
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without asperity sites. For the 1% asperity model the lattice does not break randomly in 

the time domain, despite the random spatial distribution of asperity sites.  

 

Figure  2-1. Time series of events during a period of 6*10
5
 pu for three different values of 

stress dissipation parameters (a) α = 0.6, (b) α = 0.4 and (c) α = 0.2; (i) are results for 

the model with 1% asperities (shaded background are those steps in which an asperity 

site breaks); (ii) are results for the homogeneous model.  (d) Comparison between the 

distribution of events for two different scenarios (with and without 1% of spatially 

random distributed asperity sites) for three values of stress dissipation parameter. 

The asperity model produces large, characteristic events that recur at constant intervals. 

Those characteristic events occur less frequently as α, or stress dissipation, increases. The 

distributions also confirm that, as stress dissipation increases, the largest events become 

smaller, as higher stress dissipation works to suppress large events (Serino et al., 2011).  

The frequency distributions also show that the model with 1% of asperities generates 

larger events compared to the homogeneous model. 
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Figure  2-2 (a-i) Time series of events (shaded areas indicate the steps where an asperity 

site breaks) for =0.2. (a-ii) The distance of each event from the biggest event (mainshock, 

shown by the larger grey cross). (a-iii) Distribution of events during the time period of 

(a-i). (a-iv) The accumulated number of events bigger than the defined threshold versus 

coarse-grained time. (b-i, ii, iii, iv) as in (a) for =0.4. 

In Figure 2-2, we bin time into coarse-grained units of ∆t=500 pu and count the number 

of events greater than a predefined threshold in each bin. Figures 2-2a and 2-2b show one 

of the activation periods for α=0.2 and α=0.4, respectively. The first subfigure in each set 

(i) shows the time series of events and isolates, in gray, those time steps where an 

asperity breaks. The second subfigure of each set (ii) plots distance versus time for each 
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event (foreshock or aftershock) relative to the biggest event in the series (mainshock). In 

the third subfigure (iii) is shown the frequency distribution for the selected period and the 

fourth subfigure (iv) is the cumulative number of events greater than the chosen threshold 

versus coarse-grained (binned) time. Temporal clustering is clearly visible (i,ii), starting 

with a gradually increasing number of bigger events (foreshocks) and ending with a tail 

of decreasing activity (aftershocks). The increasing number of large events prior to the 

mainshock in Figures 2-2(a-iv) and 2-2(b-iv) produces an increasing rate of activity 

similar to AMR behavior before large events. This is the first time this complete set of 

phenomena has been observed in OFC models. 

While most theoretical models of earthquake seismicity such as ETAS presuppose that all 

events are governed by the same physics, recent careful analysis has suggested that 

variation in foreshock-aftershock rates may be dependent on the local or regional 

rheology. Enescu et al. (2009) demonstrated that swarm-type seismic activity with higher 

foreshock rates occurred in areas of California with relatively high surface heat flow 

while more typical sequences occurred in regions with lower heat flow. McGuire et al. 

(2005) analyzed hydroacoustic data to mainshock along East Pacific Rise faults and 

identified sequences with higher foreshock rates and lower aftershock rates than 

previously observed in continental transform faults. The result is a relatively high ratio of 

foreshocks to aftershocks, similar to what is observed in the asperity-α combinations in 

Figure 2-2.  

2.5 Real swarm events 

We performed a similar analysis for a swarm that began in the southern Eyjafjarðaráll 

graben off the north coast of Iceland in the late summer of 2012 (Figure 2-3a). Data 

collected by the 55-station SIL seismic network was provided by the Icelandic Met 

Office (en.vedur.is). The bulk of the activity occurred between the Eyjafjarðaráll graben 

and the Húsavík-Flatey fault. Figure 2-3a shows a seismicity map of the events that 

occurred between Aug 20, 2012 and March 25, 2013, 66 and 66.75 degrees north latitude 

and -18 and -19.25 degrees longitude.  We identified the fifteen largest events (M ≥ 2.5) 

in the sequence.  Eight of those events were associated with foreshock and/or aftershock 



40 

 

clusters that could be distinguished from the background swarm activity. The spatial and 

temporal distribution of those foreshock and aftershock events, relative to their respective 

mainshocks, is plotted in Figure 2-3b. Although here there is spatial clustering in addition 

to the temporal clustering evident in Figure 2-2, the similarity to Figures 2-2a(ii) and 

2.2b(ii) provides further evidence for natural cases in which foreshock abundance is of 

the same order of magnitude and duration as aftershock sequences.  

 

Figure  2-3 (a) Swarm event, north Iceland, southern Eyjafjarðaráll graben, Aug 20, 

2012 through March 25, 2013. (b) Spatiotemporal distribution of the seismicity 

associated with the twelve largest events in the sequence shown in (a). 

In order to better understand how the relative production of foreshocks and aftershocks is 

governed by the model parameters, we investigated the length of the average foreshock 
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and aftershock activation periods for different values of stress dissipation in our model. In 

general, lower dissipation models favor more frequent, larger events and higher 

dissipation suppresses the large events (Domiguez et al., 2013; Serino et al., 2011). This 

is also true for the asperity model, as shown in Figure 2-1d. However, stress dissipation 

appears to have an effect on the relative length of those foreshock sequences, as shown in 

Figure 2-4, where we plot the relative length of the foreshock and aftershock sequences, 

normalized by the total time period of each sequence.  For low α values, the energy, or 

stress, available for foreshock activity is greater and initially results in an increased 

number of foreshocks, breaking more asperities. Once the mainshock occurs, there are 

fewer unbroken sites available for the occurrence of aftershocks. As a result, the 

aftershock sequence is shorter. On the other hand, in the higher dissipation systems, it is 

not until the occurrence of the largest event, the mainshock, that enough stress is injected 

into the surrounding sites to initiate the failure of large numbers of additional sites as 

aftershocks. High dissipation results in shorter foreshock sequences and relatively longer 

aftershock sequences (Figure 2-4). 

 

Figure  2-4 The average time period associated with foreshocks and aftershocks as a 

function of stress dissipation, for a model with 1% asperities.  FT: Foreshock time; AT = 

Aftershock time; Red = FT/(FT + AT); Blue = AT/(FT + AT); (FT + AT) = total time in 

the sequence. 
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Again, as expected, the average number of all events is lower in models with higher 

stress dissipation, but the length of the total activity period also appears to be related to 

the stress dissipation parameter. Again, lower values of dissipation favor more frequent, 

larger events and higher dissipation values suppress large events. As a result, more plate 

updates are required to fail all of the asperities in the higher dissipation models. 

2.6 Discussions 

In summary, we present a long-range OFC model in which we have included randomly 

distributed asperities. While the asperities do not change the GR relation proposed in 

(Serino et al., 2011), this type of heterogeneity introduces temporal clustering similar to 

that seen in natural fault systems. For the first time in these models, we observe 

characteristic earthquake sequences associated with periods of activity which start with 

gradually increasing numbers of larger events, or foreshocks, that display AMR behavior, 

and end with a tail of decreasing activity, or aftershocks (Figure 2-2). The relative length 

of the foreshock and aftershock sequences varies, as observed in different tectonic 

regions (Figure 2-3). The length of the foreshock and aftershock activation is shown to be 

related to one or more controlling parameters of the model, including the stress 

dissipation (Figure 2-4), providing a potential explanation for the observation that certain 

tectonic regimes, such as mid-ocean ridges, produce measurable foreshock sequences, 

while others, such as crustal transform faults, produce very few foreshocks.. The results 

from this simple model also suggest that asperities are responsible for the time-dependent 

behavior observed in natural earthquake fault systems and support the hypothesis that 

spatial and temporal patterns observed in natural seismicity may be controlled by the 

underlying physical properties, rather than simple triggering alone. If the spatial and 

temporal patterns observed in natural seismicity are controlled by the underlying physical 

properties, this has broad implications for earthquake fault networks and other natural 

driven threshold systems in metastable equilibrium, suggesting that they may not be 

inherently unpredictable.  
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Chapter 3  

 

3 Spatiotemporal clustering in simple earthquake fault 

models 

The work in this chapter extends the findings from the previous chapter on the simple, 

long-range cellular automata model for earthquake fault systems by increasing the 

number and configuration of randomly distributed asperity sites. We observe a rich array 

of spatial and temporal clustering, including large, recurrent events with foreshock and 

aftershock sequences and accelerating seismic moment release. From this simple model 

we conclude that the spatial heterogeneity is responsible for the primary features of those 

sequences, including the size of the largest events and the upper bound or taper, of the 

modified GR relation. Those are modulated by the amplitude of the stress dissipation of 

the system.  In addition, this study shows that the relative activation rate of the foreshock 

and aftershock sequences can be modulated by the stress dissipation, which may help to 

explain similar variations in the observations of earthquake sequences in different 

tectonic regimes. This work provides support for the hypothesis that the spatial and 

temporal patterns observed in natural seismicity are, at least in part, controlled by the 

underlying physical properties, which is significantly different from the interpretation, 

based on self-organized criticality (SOC), that a simple cascade mechanism is the basis 

for these sequences. This interpretation has important implications for understanding 

large earthquakes, suggesting that they may not be inherently unpredictable.  
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3.1 Introduction 

While understanding the dynamics of seismic activity is fundamental to the investigation 

of the earthquake process, detailed studies of the earthquake fault system are difficult 

because the underlying dynamics of the system are not observable (Herz and Hopfield, 

1995; Rundle et al., 2000). In addition, the fact that nonlinear earthquake dynamics are 

coupled across a broad range of spatial and temporal scales (Kanamori, 1981; Main, 

1996; Turcotte, 1997; Rundle et al., 1999; Scholz, 2002), combined with the occurrence 

of rare, extreme events and the associated patterns in seismic data (Schorlemmer and 

Gerstenberger, 2007; Vere-Jones, 1995, 2006; Zechar et al., 2010), means that 

computational simulations are critical to our understanding of the dynamics of the 

earthquake systems (see, e.g., Rundle et al., 2003).  

The mechanisms governing the fracture evolution of a fault can vary significantly, 

depending on the associated materials, the nature and rate of applied load, and the amount 

of disorder in the system. Numerical and experimental models of both rock fracture and 

the earthquake process suggest that spatial inhomogeneities in the fault network play an 

important role in the occurrence of large events (Dahmen et al., 1998; Turcotte et al., 

2003; Lyakhovsky and Ben-Zion, 2009; Serino et al., 2011, Dominguez et al., 2012, 

2013). The nature of these fault inhomogeneities is dependent on the geologic history of 

the fault, and because this history is typically quite complex, the distribution of these 

inhomogeneities occurs on many length scales. The inhomogeneous nature of the fault 

system manifests itself in the spatial and temporal patterns in the network seismicity 

(Tiampo et al., 2002, 2007; Tiampo and Shcherbakov, 2012). 

Simple models of statistical fracture have been employed effectively to test many of the 

typical assumptions and effective parameters inherent in the complicated dynamics of the 

earthquake fault system and their relative variability.  These models have been employed 

with remarkable success to advance our understanding of the statistical properties of 

earthquakes (Burridge and Knopoff, 1967; Otsuka, 1972; Rundle and Jackson, 1977; 

Rundle, 1988; Carlson and Langer, 1989; Nakanishi, 1990; Rundle and Brown, 1991; 

Olami et al., 1992; Klein et al., 1997; Klein et al., 2000; Alava et al. 2006; Mori and 
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Kawamura, 2008a, b). Burridge and Knopoff (1967) introduced a one-dimensional (1D) 

system of spring and blocks to study the role of friction along a fault in the propagation 

of an earthquake.  Later Rundle and Brown (1991) presented a version with frictional 

sliding using the Mohr-Coulomb friction law that ignored inertial effects.  Olami, Feder 

and Christensen (1992) generalized Bak, Tang and Wiesenfeld (1987) sand-pile model 

and introduced a lattice version of the continuous, nonconservative cellular automata 

model (OFC) to investigate SOC behaviour in earthquakes.  However, most of these 

models included only short-range stress transfer.  None incorporated spatial heterogeneity 

into these earthquake-like fault models.   

Because inhomogeneity plays an important role in the spatial and temporal behaviour of 

an earthquake fault (Serino et al., 2011; Dominguez et al., 2012, 2013), these models 

recently have been expanded to include different types of inhomogeneity, generally by 

varying individual parameters along the fault plane. Several studies incorporated 

inhomogeneity into OFC models, although only for those with short-range or nearest 

neighbor stress transfer (Janosi and Kertesz, 1993; Torvund and Froyland, 1995; Ceva, 

1995; Mousseau, 1996; Ramos et al. 2006; Bach et al., 2008; Jagla, 2010). However, 

stress transfer in natural earthquake faults is elastic and, as a result, models with long-

range interactions produce more realistic representations (Fisher et al., 1997; Ben Zion et 

al., 2008; Serino et al., 2011).  OFC models with long-range stress transfer produce 

mean-field systems in stable or quasi-stable equilibrium, unlike short-range OFC models, 

and the existence and range of GR scaling is related to those periods of equilibrium 

(Gulbace et al., 2004; Klein et al., 2000, 2006; Rundle et al., 1995, 2000; Serino et al., 

2011).  In these mean-field systems near spinodal critical points, large events drive the 

system away from the critical point while small events bring it closer, resulting in GR 

scaling over several orders of magnitude. 

Over the past few years, the incorporation of damage into long-range OFC models have 

provided insights into the nature of GR scaling, its relation to the critical point and the 

earthquake cycle, and the interaction between structure and the critical point process 

(Serino et al., 2011; Dominguez et al., 2012, 2013).  Results suggest that the interaction 

between structure, or geometry, has an important effect on the critical point process.  
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Spatial features impact the earthquake fault process – the interplay between geometry and 

the critical point process affects how close the fault is to the critical point.  

Serino et al. (2011) incorporated damage inhomogeneities into the long-range OFC 

model in the form of stress relieving micro-cracks, resulting in a better understanding of 

the earthquake frequency-size distribution.  The Gutenberg-Richter (GR) distribution 

(Richter, 1935; Gutenberg and Richter, 1956) usually is expressed as log(N) = a - bM, 

where N is the total number of earthquakes of magnitude M or greater, and a and b are 

model parameters (Turcotte, 1997).  However, the form of this distribution is more 

uncertain for large events. Physical limitations suggest that there is an upper bound or 

taper and a maximum size for extreme events (Main, 1996; Kagan and Jackson, 2000; 

Bell et al., 2013). A modified GR relation (MGR) has been proposed that adds an 

exponential tail to the cumulative form, with an exponential cutoff at the corner moment 

or magnitude (Turcotte, 1997).  A global catalog with GR scaling then is composed of 

many superimposed regional catalogs, each with different upper bounds. However, 

controversy remains as to the statistical limitations inherent in the data.  For example, 

Zöller (2013) maintained that convergence to a specific distribution, if it ever occurs, 

requires approximately 200 years of homogeneous recording of global seismicity. 

The model of Serino et al. (2011) introduced a physical basis for the MGR form of the 

magnitude-frequency distribution that depends on the level of damage in each fault 

network, denoted by a damage parameter q. The introduction of damage into the system 

results in an MGR distribution for individual faults and the corner magnitude is 

dependent on the amount of damage.  The scaling exponent depends on the relative 

frequency with which faults with a particular amount of damage occur in the fault 

system. In aggregate, these non-interacting simple lattice models with different levels of 

damage produce GR scaling over much larger orders of magnitude, although the 

individual damaged models do not necessarily have well-defined scaling at the large 

event sizes. This paradigm results in an explanation for regional GR scaling as a result of 

the aggregation of varying amounts of damage in families of individual faults. 
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In subsequent work, Dominguez et al., (2012, 2013) incorporated spatial inhomogeneity 

into the lattice by clustering the dead sites in various patterns.  They found that the 

scaling depends not only on the amount of damage but also on the spatial distribution of 

that damage.  However, to date, none of the short or long-range models have been able to 

reproduce the variety of temporal clustering that is a primary feature of natural seismicity 

and a critical component in the assessment of earthquake hazard. In this work, motivated 

by the structure of natural faults, we incorporate damage in the form of asperities into a 

simple cellular automata model for earthquake fault systems with long-range stress 

transfer. These asperity sites fail less frequently than the regular sites, providing a time-

dependent source and sink of stress, storing dissipated stress until asperity failure releases 

it back into the system.  The addition of structural asperities leaves the MGR scaling 

intact but produces clustering of foreshocks and aftershocks as well as large quasi-

periodic events. 

The model is a cellular automata version of earthquake faults based on the OFC (Olami et 

al., 1992) and RJB (Rundle and Jackson, 1977; Rundle and Brown, 1991) models with 

some minor variations. Inhomogeneities are imposed on the model by inserting a 

percentage of either organized or randomly selected locations that accumulate higher 

levels of stress, similar to asperities on natural faults. These sites are incorporated by 

varying the ability of these individual sites to support much higher levels of stress. We 

observe a rich array of spatial and temporal clustering for the first time in these models, 

including large, recurrent events, seismic sequences consisting of foreshocks, mainshock 

and aftershocks, and accelerating moment release (AMR).  In addition, we investigate the 

relationship between the spatial and temporal properties of the seismic sequences and the 

various parameters of the model, such as the overall stress dissipation and the percentage 

of asperities. These statistics include the magnitude-frequency distribution scaling regime 

for the largest events, the relative activation of the foreshock and aftershock sequences, 

AMR and Thirumalai-Mountain (TM) metric fluctuations prior to the sequence 

mainshock and the Omori law for foreshocks and aftershocks.  

This paper is organized as follows. In Section 2, the model dynamics and details of the 

simulations are introduced. The magnitude-frequency distribution of events for various 
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amounts of inhomogeneities (asperity sites) in the lattice as well as the scaling behavior 

of the model is investigated in Section 3. Section 4 discusses various types of 

spatiotemporal clustering of events which are observed by imposing different spatial 

configuration of asperities in the model. These include AMR signals observed before the 

mainshocks and the Omori law behaviour for foreshocks and aftershocks. Also, an 

analysis of the TM metric behaviour (Thirumalai et al. 1989; Tiampo et al. 2003, 2007, 

2010), here an indicator of increased activity before the main event, is introduced in 

Section 4. Finally, Section 5 presents a summary and discussion. 

3.2 The model 

The model is a two-dimensional cellular automaton model with periodic boundary 

conditions.  In this model every site in the lattice is connected to z neighbors, which are 

defined as sites within a certain distance or stress interaction range, R. A homogeneous 

residual stress σr is assigned to all the sites in the lattice. To impose spatial 

inhomogeneity on the lattice, two sets of failure thresholds are introduced; ‘regular sites’ 

with a constant failure threshold of σf and ‘asperity sites’ with a much higher failure 

threshold (σf
(asperity)= σf+∆σf).  These asperity sites incorporate a percentage of stronger 

sites into the lattice that will support higher stress before failure.  

Initially, the internal stress variable, σj(t), is randomly distributed on each site in such a 

way that the stress on all sites lies between the residual and failure stress thresholds 

(σr<σi(t=0)< σf). At t=0 no sites will have σi > σf. There are several ways to simulate the 

increase in stress associated with the dynamics of plate tectonics. Here we use the so-

called zero velocity limit (Olami et al., 1992). The entire lattice is searched for the site 

that minimizes (σf - σi) and that amount of stress is added to each site such that the stress 

on at least one site is now equal to its failure threshold. That site fails and some fraction 

of its stress, given by α [σf – (σr±η)], is dissipated from the system. α is a dissipation 

parameter (0 < α ≤ 1) which describes the portion of stress dissipated from the failed site 

and η is randomly distributed noise. Stress on the failed site is lowered to (σr±η) and the 

remaining stress is distributed to its neighbors.  
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After the first site failure, all neighbors, including asperity sites, are searched to 

determine if the stress change from the failed site caused any of others to reach their 

failure stress. If so, the described procedure repeats for those neighbors and if not, the 

time step (known as the plate update) increases by unity and the lattice is searched again 

for the next site which minimizes (σf - σi). The size of each event is calculated from the 

total number of failures that expand from the first failed site during that plate update, or 

time step. Unlike the original model, stress is dissipated from the system both at the 

regular lattice sites and through asperity sites which are placed inhomogeneously 

throughout the lattice. The asperity sites fail less frequently than the regular sites and 

release much higher stress at the time of their failure resulting in inhomogeneous, time-

dependent stress dissipation in this model.  

Initial results for two different, organized spatial distributions of asperities are shown in 

Figure 3-1.  In Figure 3-1a, 5% of the sites are designated as asperities and grouped in 

one large asperity. In Figure 3-1b, 10% of the total lattice sites are selected as asperity 

sites and grouped together. The associated magnitude-frequency relations are plotted for 

varying values of α.  Both plots support previous results that increasing the stress 

dissipation decreases the length of the scaling regime (Serino et al., 2011; Dominguez et 

al., 2012, 2013). 

3.3 Event Size Scaling 

The magnitude-frequency scaling of the long-range OFC model introduced in Section 2 is 

studied in greater detail in order to investigate the effect of spatial inhomogeneities in 

earthquake fault-like systems with long-range stress transfer. Serino et al. (2011) studied 

an inhomogeneous version of OFC models with long-range stress transfer by adding 

random damage into the lattice and Dominguez et al., (2013) extended it by imposing 

various spatial configurations of damage into the model. They studied various amounts of 

stress dissipation, α (0<α≤ 1) and showed that both stress dissipation and damage 

dissipation reduce the length of the scaling regime in the resulting magnitude-frequency 

distributions and reduce the size of the largest events.   
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Here, we study the magnitude-frequency distribution of events in our inhomogeneous 

model for different percentages of asperity sites by changing the number of stronger sites 

in the lattice. We find that the scaling relationship for the heterogeneous systems depends 

on the total amount of the asperity sites. We begin this study with the two different large 

size asperity blocks shown in Figure 3-1 and their associated magnitude-frequency 

relation plotted for varying values of stress dissipation.  

 

Figure  3-1 Numerical distribution of event sizes for varying values of stress dissipation, 

α, for the asperity grouping as shown in the inset. a) 5% asperity sites, small block; b) 

10% asperity sites, large block. 

The results confirm previous findings that higher values of stress dissipation in the 

system decrease the length of the region in which the event sizes follow a scaling form. 

However, it also shows that the larger asperity region (Figure 3-1b) promotes the 
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occurrence of larger events for lower values of dissipation (α = 0.05 and 0.10), while 

previous work (Serino et al., 2011; Dominguez et al., 2012, 2013) showed that increasing 

the number of damaged sites results in fewer extreme events.This distinction is a result of 

the different functionality of a dead site and an asperity site. As detailed above, a dead 

site in the lattice is a source of inhomogeneous stress dissipation in the model.  Therefore, 

increasing the number of dead (damaged) sites increases the total overall amount of stress 

dissipation in the system. On the other hand, a stronger asperity site has a dual role. They 

act as a dead site while the applied stress has not reached their higher failure threshold, 

but when they break they input a higher amount of released stress back into the system. 

This large amount of released stress, relative to the background stress release occurring 

between the large characteristic-type events, has a greater effect on those sites within its 

interaction range for systems with lower dissipation. The result is the failure of a large 

number of neighboring asperity sites and larger mainshock events.  

To better understand this relationship, we extend this study by imposing a percentage of 

randomly distributed asperity sites into the lattice. As expected from the results seen in 

Figure 3-1, the magnitude-frequency event distribution confirms that as the percentage of 

asperities increases, the system produces significantly larger events (Figure 3-2a). 

However, the region in which the event sizes follow a scaling form becomes shorter and 

the relative number of moderate-sized events decreases as the number of asperities in the 

lattice is increased (Figure 3-2b). By increasing the number of asperities in the lattice, 

some of the moderate events appear to grow into a larger event. This migration from the 

moderate to large sizes is the consequence of two effects. When an asperity site breaks, a 

greater amount of stress is released into the system and that amount of released stress can 

cause the failure of more sites, especially in a system with long range stress transfer. In 

addition, a greater number of randomly distributed asperity sites in the lattice increases 

the probability of asperity sites triggering each other. A system with a higher density of 

asperities increases the chance that asperity blocks are inside the stress transfer range of a 

failing asperity. That failure can result in a cascade behavior and a greater likelihood for a 

moderate-sized event to grow and become an extreme event.  
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Figure  3-2 a) Magnitude-frequency distribution of events of size “s” for various amounts 

of randomly distributed asperity sites in a system with low stress dissipation, α=0.2; b) a 

closer view of the dashed box in a. 

We compare the effect of stress dissipation parameters in a model with different amount 

of asperity sites and long-range stress transfer, R=16. As discussed earlier, some fraction 

of stress on a site, given by α [σF–(σr
±η)], is dissipated from the system at failure 

(0<α≤1). In general, lower stress dissipation models produce larger events and higher 

stress dissipation suppresses large events.  This also should be true in a system with 

asperity sites.  In higher dissipation models, less stress is transferred to neighboring sites, 

even when asperities fail.  As a result, there is a lower probability of an asperity 

triggering in the model. This implies that more plate update steps and a greater number of 

smaller events in general are required to trigger failure of all of the asperities, 
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In Figure 3-3, the event distribution for three different stress dissipation parameters, 

α=0.2, 0.4 and 0.6, is compared for three different percentages of asperity sites (1%, 3% 

and 5%). 20%, 40% and 60% of the failed site stress dissipates at the time of failure and 

the remaining stress is distributed to z=1088 neighbors.  

 

Figure  3-3 Magnitude-frequency distribution of events of size “s” for three different 

stress dissipation parameters, α=0.2, 0.4 and 0.6, in a system with randomly distributed 

asperity sites and a) 1%, b) 3%, and c) 5% of asperity sites. 
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For all three different percentages of asperities (Figure 3-3a, b and c), lower values of 

stress dissipation leads to a higher number of large events. On the other hand, in systems 

with a high amount of stress dissipation, the released stress from a less dense asperity site 

distribution (1%) is not enough to offset the greater dissipation and does not trigger any 

of the neighboring asperities. As a result, since asperities are not able to trigger each 

other, the system does not produce large events even in the case of distribution of 5% of 

asperity sites (Figure 3-3a, b and c).  

We also compared the scaling in our system with the scaling of regular OFC with no 

asperity sites. Klein et al. (2007) studied the mean-field limit of OFC models with no 

damage and found that the number of events of size s for a noncumulative distribution is 

associated with a spinodal critical point and obeys the scaling  

 

( ) ,
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−∆

∼
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where n(s) is the number of events of size s, τ = 3/2, σ = 1, and ∆h is a measure of the 

distance from the spinodal.  The distribution approaches a power law distribution as the 

dissipation parameter goes to zero. We apply the above scaling form to a system with no 

asperity sites for a range of stress dissipation parameters (0.05, 0.2, 0.4 and 0.6). Figure 

3-4a shows the result of fitting Equation 1 to the magnitude-frequency event sized 

distribution. The best fit parameters for Equation 1 are listed in Table 3-1.  

Table  3-1 Exponents of the model for magnitude frequency distributions in Figure 3-4. 

Dissipation n0*10
6 

∆h σ τ RMSE 

α=0.05 3.93 0.001 1.007 1.48 1.001 

α=0.20 4.68 0.026 0.988 1.47 1.006 

α=0.40 6.19 0.116 0.996 1.45 1.024 

α=0.60 9.70 0.372 0.963 1.38 1.065 
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In order to further investigate the scaling behavior of the model, we investigated the data 

collapse of the magnitude-frequency distribution. Data-collapse is a method for 

establishing scaling in complex systems that show self-similar behavior and extracting 

the associated exponents. Data collapse is based on the hypothesis which predicts that all 

the curves for many simple systems with scaling can be ‘‘collapsed’’ onto a single curve, 

given that the correct renormalization values are chosen to scale the variable for each 

system (Stanley, 1999). Serino et al. (2011) showed that lattices with a spatially uniform 

distribution of damage follow the above scaling form (Equation 1) and the magnitude-

frequency distributions collapse to a single curve in the form of Equation 1.  They 

rescaled their data to nz (1-q) / q3 versus z = q
2
s, where q is the fraction of dead sites for 

uniform, randomly distributed damage. In their model, dead sites are spatially distributed 

sources of stress dissipation in addition to the regular stress dissipation parameter (α) of 

the system. Therefore the fraction of the dead sites (q) is the representative of the total 

damage in the model. In other words, higher values of q means higher dissipation in the 

system with constant stress dissipation parameter (α=constant).  

 

Figure  3-4 a) Magnitude-frequency distribution of events of size “s” for a system without 

asperity cells for three different stress dissipation parameters α=0.05, 0.20, 0.40 and 

0.60, the parameters of the model are listed in Table 1. b) The distribution of event sizes, 

n(s), weighted by (1 − q)/q
3
 versus the scaling variable z = q

2
s. The data collapses to a 

single curve as in Serino et al. (2011). 
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Because the initial values of α are changing in our model, we tested different scaling 

parameters and determined the best fit to be q = (∆h)0.5 for the exponents in Table 1. It 

appears that ∆h is representative of the total stress dissipation of the system, which is an 

aggregation of different parameters, including α and the total amount of inhomogeneity, 

in terms of dead sites. In Figure 3-4b, we plot the number of events of size s, scaled by 

(1-q) / q
3, versus the scaling variable z = q

2
s, with q = (∆h)0.5, for a model without 

asperities and four different stress dissipation parameters (5%, 20%, 40% and 60%). The 

successful collapse into one curve in Figure 3-4b further confirms the validity of the 

scaling form of Equation 1 (Klein et al., 2007).  

Table  3-2 Exponents of the model for magnitude frequency distributions in Figure 3-5. 
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We apply this scaling equation to the systems with asperities. We have already observed 

that imposing a random distribution of stronger sites into the system promotes events of 

larger size in the system.  

 

Figure  3-5 Magnitude-frequency distribution of events of size “s”. a) 1% asperity, 

α=0.05, b) 1% asperity, α=0.20 c) 1% asperity, α=0.40 d) 1% asperity, α=0.60 e) 3% 

asperity, α=0.05 f) 3% asperity, α=0.20 g) 3% asperity, α=0.40 h) 3% asperity, α=0.60 

i) 5% asperity, α=0.05 j) 5% asperity, α=0.20 k) 5% asperity, α=0.30 l) 5% asperity, 

α=0.60. The red line of each graph shows the model that is used for the small size events 

and blue line shows the model for large size events. The exponents of each model are 

shown in Table 2. 
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It appears that the magnitude-frequency distribution of events in systems with asperity 

sites is a combination of two different distributions; one for the small events and the 

second for the larger events. The second scaling form for larger events is difficult to 

observe in systems with only 1% of asperity sites, but increasing the number of asperities 

to 3% and 5% makes it easier to distinguish the second distribution in the tails of the 

distribution. In order to fit the two distributions, we choose a cross-over size which is the 

point on the magnitude-frequency distributions where two distributions separate. We then 

apply the scaling form of the Equation 1, above, only to those events smaller than the 

cross-over size. We then apply the same scaling model for larger events bigger than the 

cross-over size. Since the tail of the magnitude-frequency distributions for the large 

events is wide, we confined our model by fixing two of the four parameters to those 

values that we obtained from the small size model. This is based on the hypothesis that 

the two different distributions are the result of a single model with a constant percentage 

of asperities and stress dissipation and that σ and τ are related to both. As seen in Table 2, 

σ and τ for the larger events (blue line) are fixed to the corresponding values obtained 

from the smaller events (red line), and n0 and ∆h values are fit separately. 

Figure 3-5 shows the results for several stress dissipation parameters in a system with 

different percentages of asperity sites. The exponents of the model are shown in Table 2. 

From these results, it appears that τ is a function of stress dissipation in the system while 

σ is function of both percentage of asperities and stress dissipation.  

In Serino et al. (2011) ∆h depends on damage, which was defined as the number of dead 

sites in the model. Our results also confirm the dependency of ∆h on the damage in the 

system. However, we find that ∆h depends both on the number and characteristics of 

asperities but it also is a function of the stress dissipation parameter. The stronger 

asperity sites in the system dissipate large amounts of stress during their failure, so here 

we define damage as a function of both the number of asperities and the stress dissipation 

parameter α. As described above, asperity triggering in this system means that the failure 

of one asperity site can trigger the other neighboring asperity sites to fail and results in 

the clustering of bigger events in the system. We also know that failure of an asperity site 

that has stored a large amount of stress dissipates a higher amount of stress from the 
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system (higher damage) and therefore imposes a time dependence on the model damage. 

On the other hand, larger events occur during asperity failure in this model.  As discussed 

above, the maximum time-dependent stress release occurs during these time steps and is 

the most likely cause of the different values of ∆h for the models in Table2.    

3.4 Earthquake Clustering 

The terms “earthquake cycle”, “seismic cycle” and “characteristic earthquake” have been 

used to describe the regularly occurring cycles of earthquake activity, including large 

events that are similar in magnitude and location. Temporal and spatial clustering is 

evident in seismicity data, including activation and quiescence, foreshock and aftershock 

sequences, repeating events, and variations in the rate of occurrence (see, e.g., Båth, 

1965; Mogi, 1969; Swan et al., 1980; Habermann, 1981; Ogata, 1983; Bakun et al., 1986; 

Frohlich, 1987; Rundle, 1989; Keilis-Borok and Kossobokov, 1990; Kanamori, 1981; 

Pacheco et al., 1992; Bufe and Varnes, 1993; Romanowicz and Rundle, 1993; Gross and 

Kisslinger, 1994; King et al., 1994; Utsu et al., 1995; Dodge et al., 1996; Deng and 

Sykes, 1996; Gomberg, 1996; Wyss et al.,1996; Pollitz and Sacks, 1997; Ellsworth and 

Cole, 1997; Eneva and Ben-Zion, 1997; Jones and Hauksson, 1997; Nanjo et al., 1998; 

Bowman et al., 1998; Brehm and Braile, 1998; Jaume and Sykes, 1999; Tiampo et al., 

2002; Shcherbakov and Turcotte, 2004; Tiampo et al., 2006a,b; Tiampo and 

Shcherbakov, 2012). This aspect of earthquake behavior is an essential characteristic of 

seismic sequences on different scales.  

Most earthquake clusters consist of the mainshock and its following aftershocks. As 

noted above, aftershocks are the most easily identified clustering pattern in seismic 

catalogs. Aftershocks occur immediately after their triggering mainshocks and their rate 

usually decays with time, following the power law relation known as the modified Omori 

law (Ogata, 1983; Utsu et al., 1995). Alternatively, there is evidence of precursory 

earthquakes or foreshocks before a number of large events around the world, although 

they are more difficult to detect (Rikitake, 1976; Jones and Molnar, 1979; Ellsworth et 

al., 1981; Sykes and Jaumé, 1990; Bufe and Varnes, 1993; Bowman et al., 1998; Brehm 

and Braile, 1998; Jaumé and Sykes, 1999; Robinson, 2000; Bowman and King, 2001; 
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Ben-Zion and Lyakhovsky, 2002; Turcotte et al., 2003; Bakun et al., 2005; Mignan, 

2008; Jordan and Jones, 2010; Shearer, 2012).  

The ETAS (Epidemic Type Aftershock-Sequences) model (Ogata, 1999; Helmstetter and 

Sornette, 2002) is a triggering model based on the concept that every event, regardless of 

its size, increases the probability of later events. In ETAS, not only do mainshocks trigger 

aftershocks, they can trigger aftershocks with magnitudes larger than themselves.  If the 

largest event is triggered by earlier, smaller events, these are classified as foreshocks. 

While ETAS can model many features of earthquake clustering seen in natural 

seismicity, recent work suggests that these triggering models may not fully explain the 

foreshock-mainshock-aftershock process and that other mechanisms may be important 

(Dodge et al., 1997; Enescu et al., 2009; Shearer, 2012).  For example, Chen and Shearer 

(2013) studied foreshock sequences for M > 7 earthquakes in California and determined 

that they behaved more like swarms initiated by aseismic transients rather than triggered 

cascades or a nucleation process. These foreshock sequences occurred in areas of 

significant fault zone complexity, highlighting the importance of heterogeneity in the 

clustering process. 

3.4.1 Temporal clustering of events 

The concept of recurrent large events, or characteristic earthquakes, was first introduced 

by Schwartz et al. (1981) and Schwartz and Coppersmith (1984), based on the early work 

of Reid (1910). Based on elastic rebound theory, it hypothesizes that earthquakes 

repeatedly rupture the same fault segments with the similar magnitude and slip 

distribution (Ellsworth and Cole, 1997; Parsons and Geist, 2009; Schwartz and 

Coppersmith, 1984; Schwartz et al., 1981; Wesnousky, 1994). 
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Figure  3-6 Recurrence of the large events on the time series of events during a period of 

4*10
5
 pu for three different amount of asperity sites (a-1%, b-3% and c-5%) and the 

stress dissipation parameter α = 0.2. 

Here, we study the model described in Section 2 with 1%, 3% and 5% of randomly 

distributed asperity sites in a two-dimensional lattice of linear size L=256 with periodic 

boundary conditions. We considered a homogeneous failure threshold for the regular sites 

as σf=2.0, homogeneous residual stress for the entire lattice as σr=1.0, and temporal 

random distribution of noise as η=[-0.1,+0.1]. The failure threshold for asperity sites is 

also considered as σf
(asperity) = σf + 10. The system has the stress transfer range of R=16 

and every site in the lattice is connected to z=1088 neighbors. Although the asperity sites 

have random spatial distributions, temporal clustering of events is clearly visible in 

Figure 3-6.  
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Figure  3-7 Time series of events of a system with randomly distributed asperity sites and 

a) 1%, b) 3%, and c) 5% of asperity sites. (Shaded areas indicate the steps where an 

asperity site breaks.) The distance of each event from the biggest event in the sequence 

for the corresponding system d) 1%, e) 3%, and f) 5% of asperity sites (mainshock, 

shown by the larger grey cross). (All the above plots are for a model with α=0.2- low 

stress dissipation.) 

We observe the repeated occurrence of large events which starts with the gradually 

increasing number of bigger events (foreshocks) and ends with a tail of decreasing 

activity (aftershocks), similar to a characteristic earthquake. This is the first time that this 

complete set of phenomena has been observed in OFC models. Figure 3-7a, b and c show 

the time series (2*105 pu) of events (collected during 107 pu) for three different 

percentages of asperity sites (1%, 3% and 5%) and a fixed low stress dissipation system 

with α=0.2 (Figures 3-7-a,b and c). The time steps in which an asperity site breaks are 

shown with a grey background shade. In Figure 3-7d, e and f, we plot distance versus 

time for each event (foreshock or aftershock) relative to the largest event in the series 
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(mainshock). Figure 3-8 shows the same results but for a high stress dissipation system, 

α=0.6.  

 

Figure  3-8 Time series of events of a system with randomly distributed asperity sites and 

a) 1%, b) 3%, and c) 5% of asperity sites. (Shaded areas indicate the steps where an 

asperity site breaks.) The distance of each event from the biggest event in the sequence 

for the corresponding system d) 1%, e) 3%, and f) 5% of asperity sites (mainshock, 

shown by the larger grey cross). (All the above plots are for a model with α=0.6- high 

stress dissipation.) 

The inhomogeneities imposed on the system create a more realistic fault system. The 

failure of a strong asperity site distributes a large amount of stress into the system, 

triggering the remaining asperities and resulting in temporal clustering of the larger 

events. In an earlier work, we determined not only that the time between events and their 

magnitude are a function of the stress dissipation parameter, but that the relative length of 

the foreshock to aftershock sequences varies as a function of the amount of stress 

dissipation in the system (Kazemian et al., 2013).  Here we investigate the behavior in 

more depth. 
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3.4.1.1 Accelerating Moment Release (AMR) 

Mogi (1981) observed a regional increase in seismicity before great earthquakes, 

including an increase in the overall level of seismicity in the crust surrounding the future 

rupture zone, in conjunction with quiescence, or a relative shortage of events, along or 

near the fault. Ellsworth et al. (1981) also observed an increase in the rate of M5 events 

over a broad region in the years preceding the 1906 San Francisco earthquake. This 

particular pattern of precursory seismicity appears to accelerate with the approach of the 

mainshock (AMR) (Bowman and King, 2001; Bowman et al, 1998; Sornette and 

Sammis, 1995; Bufe and Varnes, 1993; Sykes and Jaumé, 1990) and is defined by the 

equation  
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ε(t) has been interpreted as either the accumulated seismic moment, the energy release or 

the Benioff strain release within a specified region, from some origin time t0, up to time t.  
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is the number of events in the region between t0 and t,  Ei is the energy release from the 

ith event, and k=0, 1/2, 1. A is a constant that depends on the background level of activity, 

tf is the time of the mainshock, B is negative and m is a value between 0.3 and 0.7. Ben-

Zion and Lyakhovsky (2002) analyzed the deformation preceding large earthquakes and 

obtained a 1-D analytical power-law time-to-failure relation for AMR before big events. 

They found that phases of AMR exist when the seismicity occurring immediately before 

a large event has magnitude-frequency statistics over several ranges of magnitude. These 

and similar results of Turcotte et al. (2003) and Zoller et al. (2006) are consistent with 

observed seismic activation before some large earthquakes.  

In this section, we investigate the AMR signal in the time series of the events in our 

model results. Because the dynamics of our model requires that there is at least one 

broken site in every time step, we binned time into coarse-grained units of ∆t=500 pu and 
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counted the number of events greater than a predefined threshold in each bin. Then we 

calculate the number of events greater than a chosen threshold in each coarse-grained 

time unit. 

 

Figure  3-9 The accumulated number of events bigger than the defined threshold versus 

coarse-grained time for a-1% and α=0.20, b-3% and α=0.20, c-5% and α=0.20, d-1% 

and α=0.60, 3% and α=0.60 and f-5% and α=0.60 of randomly distributed asperity sites 

for two different stress dissipation parameters. The grey star on each graph shows the 

time of the main shock. 

Figure 3-9 illustrates the cumulative number of events versus coarse-grained (binned) 

time for three different amounts of asperity sites in the models with different stress 

dissipation. The increasing number of larger events prior to the mainshock in all the 

subfigures also produces an increasing rate of activity similar to AMR behavior before 

large events. The results suggest that the AMR signal before the main event is more 

evident in those regions with more inhomogeneities and higher stress dissipation. This is 

also the first time this phenomenon has been observed in any simple model in 

conjunction with GR scaling. These results prompted investigation using the Thirumalai 
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and Mountain (TM) metric (Thirumalai and Mountain, 1989; Tiampo et al. 2003, 2007, 

2010). 

3.4.1.2 TM metric behaviour 

In this section, we introduce the TM metric as a measure of event clustering. The TM 

metric was introduced in the field of statistical physics of fluids to study the time scales 

necessary to achieve effective ergodicity in models of liquids and supercooled liquids 

(Thirumalai and Mountain, 1989). This method was first applied to earthquake 

simulations (Ferguson et al., 1999) and later was applied to regional seismicity by 

Tiampo et al. (2003, 2007, 2010). They identified periods of metastable equilibrium in 

seismic activity, between large events, as well as the relationship between periods of 

effective ergodicity and certain types of seismicity patterns (Tiampo et al. 2003, 2007, 

and 2010). 

The TM metric measures effective ergodicity, or the difference between the time average 

of an observable (e.g. energy or stress) at each site and the ensemble average of that time 

average (Thirumalai et al., 1989; Mountain and Thirumalai, 1992; Thirumalai and 

Mountain, 1993). A necessary but not sufficient condition for ergodicity is stationarity, so 

that regions of phase space identified as effectively ergodic are maintaining stationary 

statistics over a given period of time. In addition, it is a behavior generally limited to 

equilibrium states. The TM metric is defined as 

( )
2

1

1
( ) ( ) ( ) ,

N

x j

j

t f t f t
N =

Ω ≡ −∑
  (3.4) 

where j refers to lattice sites, N is the total number of sites in the system  

0

1
( ) ( ) ,

t

j j
f t x t dt

t
′ ′≡ ∫

  (3.5) 

and 
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1
(t) (t),

N

j

j

f f
N =

≡ ∑
  (3.6) 

and x is an observable quantity (Thirumalai and Mountain, 1989). The TM metric is the 

spatial variance of the temporal mean and should disappear by the law of large numbers 

in ergodic systems. The system is “effectively ergodic” if 

1
( ) ,t t

t
Ω → ∞∼

 (3.7) 

and the TM metric is used to determine whether or not a system is in statistical 

equilibrium. 

Here, we calculate the TM metric for our inhomogeneous fault model and use it to 

identify precursors, or foreshocks, of the mainshock in the associated time series. Figure 

3-10 shows the inverse TM metric plot for 1%, 3% and 5% percent of randomly 

distributed asperity sites in the low dissipation model. The failure of the first asperity site 

in the series releases a large amount of stress into the system.  Because the system has 

long-range stress interactions and low stress dissipation, the released stress can migrate 

farther and trigger other asperity cells. 

Figure 3-10 clearly shows the deviation of the linear inverse TM metric in those time 

steps prior to the mainshock (grey star). By increasing the total number of asperity sites 

from 1% (Figure 3-10a) to 5% (Figure 3-10c), the probability of triggering and therefore 

the amount of released stress before the mainshock increases and we can see stronger 

fluctuations in the TM metric plot. Also, larger fluctuations in the TM metric plot occur 

prior to larger events in the time series. Figure 3-11 is similar to Figure 3-10, but for 

higher stress dissipation (α=0.6). In this case, the probability of asperity triggering is very 

low and, as a result, the model produces smaller events compared to the low dissipation 

model. The TM metric plot also shows smaller deviations for higher stress dissipation.  
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Figure  3-10 Inverse TM metric of each event for a-1%, b-3% and c-5% of randomly 

distributed asperity sites. The grey star on the last graph shows the time of the main 

shock. (All the above plots are for a model with α=0.2- low stress dissipation.) 
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Figure  3-11 Inverse TM metric of each event for a-1%, b-3% and c-5% of randomly 

distributed asperity sites. The grey star on the last graph shows the time of the main 

shock. (All the above plots are for a model with α=0.6- high stress dissipation.) 
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3.4.1.3 Omori law  

In this section we investigate the foreshock and aftershock statistics in our 

inhomogeneous model to see if the foreshocks are consistent with the observations of 

natural seismicity (Papazachos, 1975; Jones and Molnar 1979; Kagan and Knopoff, 

1976) and the aftershocks with Omori’s law (Omori, 1894; Utsu, 1961). The well-known 

modified Omori’s law for aftershocks (Utsu, 1961) states that the rate of aftershocks is 

proportional to the inverse of time since the mainshock, 

(t t) ap

a M
R

−−∼
, (3.8) 

where Ra is the rate of aftershocks, tM is the time of the mainshock, and p is the decay rate 

for aftershocks. It also has been suggested (Papazachos, 1975; Jones and Molnar 1979; 

Kagan and Knopoff, 1976) that there is an inverse Omori distribution for foreshocks with 

different exponents: 

(t t ) fp

f M
R

−
−∼

, (3.9) 

where Rf  is the rate of foreshocks, tM is the time of the mainshock, and pf is the reverse 

decay (growth) rate for foreshocks.  

In this section, we collect the statistics of 107 events for two different stress dissipation 

parameters (α=0.2 and 0.4) and three different amount of randomly distributed asperity 

sites (1%, 3% and 5%). The results for the Omori model for aftershocks and also the 

reverse Omori law for foreshocks are shown in Figures 3-12 and 3-13. In these figures we 

calculated the exponent of the Omori law based on the number of events counted on the 

coarse-grained bins of ∆t=500 pu, and then averaged over many earthquake sequences.    
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Figure  3-12 (a, b and c) Number of event prior to the main shock (foreshocks) for α=0.2. 

(d, e and f) Number of events after the main shocks (aftershocks). Black line on each 

graph shows the Omori fit for each case (exponents in table 3). 
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Figure  3-13 (a, b and c) Number of event prior to the main shock (foreshocks) for α=0.4. 

(d, e and f) Number of events after the main shocks (aftershocks). Black line on each 

graph shows the Omori fit for each case (exponents in table 3). 

Table 3 records the exponents of the reverse Omori law for foreshocks in the form of  

( ) ,
(t ) f

f

f p

K
n t

c
−

=
+   (3.10) 

and the Omori law for aftershocks in the form of  

( ) .
(t ) a

a
a p

K
n t

c
−

=
+  (3.11) 
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Table  3-3 Exponents of the Omori law model for aftershocks and also reverse Omori law 

for foreshock. 

Table 3. Aftershocks Foreshocks 

Asperity 

Percentage 
Dissipation Ka pa Kf pf 

α=0.2 38 0.331 32 0.264 

1 % 

α=0.4 13 0.230 12 0.182 

α=0.2 112 0.784 78 0.614 

3 % 

α=0.4 74 0.669 49 0.594 

α=0.2 114 0.843 102 0.659 

5 %  

α=0.4 254 1.196 111 0.782 

 

The results show that, in general, the decay rate is higher for aftershocks compared to the 

increase in the foreshocks rate, while the total number of aftershocks is higher than the 

total number of foreshocks in all cases. Increasing the number of asperities leads to a 

greater number of both foreshocks and aftershocks in the system. The decay rate is also 

higher in those systems with more asperity sites.  

3.4.2 Spatial clustering of events 

We studied the models with 1%, 3% and 5% percent of asperity sites for a different 

spatial configuration of asperity sites. Here, instead of randomly distributed asperity sites, 

we again aggregate all the asperity sites into a single block of asperities. Figures 3-14 and 

3-15 present the time series of events for a low (α=0.2) and high (α=0.6) stress 

dissipation model. In the lower dissipation model (Figure 3-14), although the released 

stress of the failed asperity block can migrate farther and trigger the remainder of the 
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sites to fail, we can clearly see the quiescence in locations adjacent to the mainshock, 

both before and after its occurrence. In the high dissipation model (Figure 3-15) there is a 

very obvious temporal and spatial cluster of foreshocks and aftershock close to the 

biggest event (mainshock) in the series. 

 

Figure  3-14 Time series of events of a system with asperity sites aggregated in single 

large block and a) 1%, b) 3%, and c) 5% of asperity sites. (Shaded areas indicate the 

steps where an asperity site breaks.) The distance of each event from the biggest event in 

the sequence for the corresponding system d) 1%, e) 3%, and f) 5% of asperity sites 

(mainshock, shown by the larger grey cross). (All the above plots are for a model with 

α=0.2, low stress dissipation.) 
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Figure  3-15 Time series of events of a system with asperity sites aggregated in single 

large block and a) 1%, b) 3%, and c) 5% of asperity sites. (shaded areas indicate the 

steps where an asperity site breaks.) The distance of each event from the biggest event in 

the sequence for the corresponding system d) 1%, e) 3%, and f) 5% of asperity sites 

(mainshock, shown by the larger grey cross). (All the above plots are for a model with 

α=0.6- high stress dissipation.) 

Enescu et al. (2009) demonstrated that swarm-type seismic activity with higher foreshock 

rates occurred in areas of California with relatively high surface heat flow while more 

typical sequences occurred in regions with lower heat flow. McGuire et al. (2005) 

analyzed hydroacoustic data to mainshock along East Pacific Rise faults and identified 

sequences with higher foreshock rates and lower aftershock rates than previously 

observed in continental transform faults. The result is a relatively high ratio of foreshocks 

to aftershocks, similar to what is observed in the asperity-α combinations in Figures 3-3, 

3-4, 3-14 and 3-15.  

We performed a similar analysis for a swarm that began in the southern Eyjafjarðaráll 

graben off the north coast of Iceland in the late summer of 2012 (Figure 3-16). Data 

collected by the 55-station SIL seismic network was provided by the Icelandic Met 

Office (en.vedur.is). The bulk of the activity occurred between the Eyjafjarðaráll graben 



81 

 

and the Húsavík-Flatey fault. Fig. 15a shows a seismicity map of the events that occurred 

between Aug 20, 2012 and March 25, 2013, 66 and 66.75 degrees north latitude and -18 

and -19.25 degrees longitude.  We identified the fifteen largest events (M ≥ 2.5) in the 

sequence.  Eight of those events were associated with foreshock and/or aftershock 

clusters that could be distinguished from the background swarm activity. The spatial and 

temporal distribution of those foreshock and aftershock events, relative to their respective 

mainshocks, is plotted in Figure 3-16b. The pattern of spatial and temporal clustering is 

similar to Figure 3-15, although there is no distinct quiescent signal, providing further 

evidence for natural cases in which foreshock abundance is of the same order of 

magnitude and duration as aftershock sequences.  

 

Figure  3-16 (a) Swarm event, north Iceland, southern Eyjafjarðaráll graben, Aug 20, 

2012 through March 25, 2013. (b) Spatiotemporal distribution of the seismicity 

associated with the twelve largest events in the sequence shown in (a). 

3.5 Summary and Discussion 

The inhomogeneity of natural materials with different physical properties in the Earth 

motivated this investigation of the effect of spatial inhomogeneity on the macroscopic 

properties of a many-body system. The model studied here is a variation of the OFC and 

RJB cellular automata models of earthquake faults with long-range stress transfer. In 

order to reproduce the spatial inhomogeneities of real earthquake faults in the model we 
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have converted a percentage of selected locations in our lattice into local stress 

accumulators which have the ability to store and release a higher amount of stress than 

the surrounding lattice sites, similar to asperities on natural faults. 

The initial results illustrate that increasing values of stress dissipation, regardless of the 

presence of inhomogeneity in the system, decrease the length of the scaling regime 

(Figure 3-1). In addition, the increasing number of asperity sites promotes the occurrence 

of larger events (Figure 3-2 and 3-3).  

Results also demonstrate that imposing the stronger asperity sites does not change the 

MGR relation proposed by Klein et al. (2007).  The spatial heterogeneity directly affects 

the size of the largest events, the length of the scaling regime and the upper bound of the 

MGR.  However, it appears that the stronger lattice sites create a second distribution of 

the same form for the large events.  As a result, the overall magnitude-frequency 

distribution is a combination of two distinct distributions of the same form for the smaller 

and larger events (Figure 3-5). 

The proposed inhomogeneous model also introduces spatiotemporal clustering of events 

similar to that seen in natural earthquake fault systems.  That spatiotemporal clustering is 

dependent on the size and spatial configuration of the asperities (Figures 3-7 and 3-8). 

Seismic sequences occur at regular time intervals, starting with a slow increase in the 

number and size of events (foreshocks) and ending with a tail of decreasing activity 

(aftershocks) after the mainshock, very similar to the concepts of both characteristic 

earthquakes and seismic sequences (Figure 3-6).  

The increasing number of larger events in these recurrent time series follows a pattern of 

precursory AMR activity prior to the mainshock comparable to that observed in natural 

seismicity (Figure 3-9). Plots of the inverse TM metric also show a clear deviation from 

stationarity before the mainshock (Figures 3-10 and 3-11).  

Finally, our results demonstrate that both the decay rate of the aftershock sequences and 

the growth rate of the foreshock sequences can vary, as observed in different tectonic 

regions. Our studies of the Omori law relation for both types of sequences confirm that 
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these rates are related to one or more of the controlling parameters of the model, 

including both the amount and complexity of the asperities as well as the stress 

dissipation (Figures 3-12 and 3-13).  

This simple model supports the hypothesis that spatial heterogeneity has an impact on the 

primary features of both modeled and natural earthquake sequences and that the spatial 

and temporal patterns observed in natural seismicity may be controlled by the underlying 

physical properties. The model reproduces the MGR distribution and the size of the 

largest events and the length of the scaling regime on each fault are controlled by the 

amplitude of the stress dissipation of the system.  The superposition of many faults, each 

with a different amount of damage, results in GR scaling in the larger fault network.  

Spatial features affect the critical point scaling behavior intrinsic to the earthquake fault 

process and the associated structure and geometry directly impacts the spatial and 

temporal nature of fault networks.  These findings suggest that asperities could be 

responsible for much of the spatial and temporal behavior of real earthquake fault 

systems and support the hypothesis that the patterns observed in natural seismicity may 

be controlled by the underlying physical complexity, rather than simple triggering alone.  
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Chapter 4  

 

4 Spatial heterogeneity in earthquake fault-like systems  

Various aspects of the spatial heterogeneities are studied in the long-range stress 

interaction earthquake fault model. As described earlier, localized stress accumulators 

are added into the system by converting a percentage of randomly selected sites into 

stronger sites which are called ‘asperity cells’. These asperity cells support much higher 

failure stresses than the surrounding regular lattice sites but eventually rupture when the 

applied stress reaches their threshold stress. Here we investigate the scaling in these 

systems for different percentages of asperity sites and different asperity configurations, 

comparing those results with the simple homogeneous system with no asperities. We see 

that the addition of spatial heterogeneity into the lattice increases the length of the 

scaling regime and the size of the largest events as the randomness of the spatial pattern 

decreases. We also find that the total percentage of asperities can affect the capability of 

the system to produce larger events. In addition, we observe an increasing number of 

larger events associated with the total number of asperities in the lattice. 
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4.1 Introduction 

Despite the multitude of space-time patterns of activity observed in natural earthquake 

fault systems, the bulk of the research associated with these patterns has focused on a 

relatively small fraction of the events, those associated with either larger magnitudes or 

persistent, localized signals such as aftershock sequences (Kanamori, 1981; Ogata, 1983; 

Utsu et al., 1995].  One significant problem associated with studies of the earthquake 

fault network is that the underlying dynamics of the system are not observable (Herz and 

Hopfield, 1995; Rundle et al., 2000]. A second is that the nonlinear earthquake dynamics 

are strongly coupled across a wide range of spatial and temporal scales (Kanamori, 1981; 

Main, 1996; Turcotte, 1997; Rundle et al., 1999; Scholz, 2002]. Finally, the relatively 

small number of extreme events occur very rarely, impacting our ability to evaluate the 

significance of the associated local and regional patterns in the instrumental and historic 

data (Schorlemmer and Gerstenberger, 2007; Vere-Jones, 1995, 2006; Zechar et al., 

2010]. As a result, computational simulations are critical to enhancing our understanding 

of the dynamics of the earthquake system and the occurrence of its largest events (see, 

e.g., Rundle et al., 2003]. 

Although simple models cannot replicate the complete spectrum of earthquake 

phenomenology, these models can provide insights into the important patterns and 

features associated with the earthquake process and improve our understanding of the 

dynamics and underlying physics of earthquake fault networks. As a result, simple 

models of statistical fracture have been used to test some of the typical assumptions and 

parameters and their possible outcomes (Burridge and Knopoff, 1967; Otsuka, 1972; 

Rundle and Jackson, 1977; Rundle, 1988; Carlson and Langer, 1989; Nakanishi, 1990, 

Rundle and Brown, 1991; Olami et al., 1992; Alava et al. 2006). Most of these models 

assumed a spatially homogeneous earthquake fault, despite the fact that numerical and 

experimental models of rock fracture suggest that spatial inhomogeneities play an 

important role in the occurrence of large events and the associated spatial and temporal 

phenomenology (Dahmen et al., 1998; Turcotte et al., 2003; Tiampo et al., 2002, 2007; 

Lyakhovsky and Ben-Zion, 2009].  One argument for this approach has been that 

earthquake faults have long-range stress transfer (Klein et al., 2007].  For long-range 
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stress transfer without inhomogeneities, or randomly distributed inhomogeneities, these 

models have been found to produce scaling similar to the Gutenberg-Richter (GR) scaling 

found in real earthquake systems (Gutenberg and Richter, 1956; Serino et al., 2011].  

When the stress transfer range is longer than the length scales associated with the 

inhomogeneities in the system, the dynamics appear to be unaffected by the 

inhomogeneities. However, recent work by Dominguez et al., (2013] shows that the ratio 

of the stress transfer range to the length scale of the inhomogeneities affects the GR 

scaling distribution and the ability of the system to produce large events.   

The spatial arrangement of fault inhomogeneities is dependent on the geologic history of 

the fault.  This history is typically quite complex and, as a result, the spatial distribution 

of the various inhomogeneities occurs on many length scales. Because spatial 

inhomogeneity plays an important role in the seismicity of an earthquake fault, here we 

extend the homogeneous OFC model with long-range stress transfer to inhomogeneous 

models, where particular parameters might vary from site to site.  

There have been some earlier studies of the inhomogeneous OFC model (Janosi and 

Kertesz, 1993; Torvund and Froyland, 1995; Ceva, 1995; Mousseau, 1996; Ramos et al. 

2006; Bach et al., 2008; Jagla, 2010). Although, these models considered a number of 

different ways to impose inhomogeneity on the system, most only investigated systems 

with nearest neighbor or short-range stress transfer. For example, Janosi and Kertesz 

(1993) introduced spatial inhomogeneity into the lattice by imposing random site-

dependent stress thresholds. Torvund and Froyland (1995) imposed inhomogeneity by 

changing the uniform distribution of threshold stresses to a Gaussian distribution. Ceva 

(1995) introduced defects associated with the stress transmission parameter. Ramos 

(2006) and Jagla (2010) considered varying levels of randomness in the stress threshold.  

Serino et al. (2011) studied OFC models with long-range stress transfer in which random 

damage was incorporated into the lattice.  Dominguez et al. (2013) studied the various 

spatial configurations of damage in a long-range stress transfer model with varying 

amounts of stress dissipation, α (0 < α ≤ 1) which describe the portion of stress dissipated 

from the failed sites. Both models represented damage by imposing live and dead sites in 
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the lattice framework. The live sites can hold an internal stress that is a function of time.  

Dead sites cannot hold any stress and therefore all the stress that is passed to them during 

an event is dissipated from the system.  The amount of stress dissipated by damage sites 

at each location can be characterized by the percentage of dead sites in a given 

neighborhood, φi. Serino et al. (2011) established a connection between the two types of 

dissipation, stress dissipation and damage dissipation, and Dominguez et al (2013) 

showed that they can be characterized together in one parameter, γi, herein called site 

dissipation, γi = 1 − φi(1 − αi).  Results showed that both stress dissipation and damage 

dissipation reduces the length of the scaling regime in their magnitude-frequency 

distributions and reduces the size of the largest events.  

 

Figure  4-1 a) Various configurations of 25% dead sites (in black) for a lattice with α = 0 

and a linear size L = 256. From left to right, lattices contain dead sites distributed 

randomly (random), blocks of various sizes, where each block has varying values of 

randomly distributed dead sites (random cascading blocks), completely dead blocks of 

various sizes (cascading dead blocks), and dead blocks of a uniform size (dead blocks); 

b) Numerical distribution of avalanche events of size s for the various spatial 
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distributions of dead sites shown in (a) with stress transfer range R = 16.   is the 

average dissipation for each lattice. 

Dominguez et al. (2013) imposed various spatial patterns for the dead sites and compared 

the behavior with simpler systems with uniformly distributed stress dissipation.  Figure 4-

1 shows four different configurations of 25% dead sites for a lattice with linear size 

L=256, stress dissipation α=0, and a stress transfer range of R = 16.  These include one 

case with randomly distributed dead sites (random); a second with blocks of various 

sizes, where each block has varying values of randomly distributed dead sites (random 

cascading blocks); a third with completely dead blocks of various sizes (cascading dead 

blocks); and a fourth with dead blocks of a uniform size (dead blocks).  The resulting 

numerical distribution of events of size s for the various spatial distributions of dead sites 

shown is shown in Figure 4-1b.  Here we see that the addition of spatial heterogeneity 

into the lattice increases the length of the scaling regime and the size of the largest events 

as the randomness of the spatial pattern decreases. 

 

Figure  4-2 Numerical distribution of avalanche events of size s for blocks of dead sites of 

linear size b. Systems are characterized by the dimensionless parameter R/b. (the inset 

corresponds to R/b = 1.) The size of the systems shown here is L = 256, α = 0, and the 

stress transfer range is R = 16. 
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Figure 4-2 investigates the effect of the size of the damage blocks.  Again, results are for 

a lattice with 25% dead sites, a linear size L = 256, stress dissipation α = 0, and a stress 

transfer range of R = 16.  The dead block size, b, is varied while the interaction length, R, 

remains constant.  In this case, the scaling regime and maximum event size increases as 

the ratio R/b decreases.  The spatial distribution of γi affects the potential for a large event 

because failing sites with low values of γi pass along a high percentage of excess stress to 

neighboring sites, encouraging additional failures. In the damage only system, site 

dissipation is determined by spatial locality only, so we require large clumps of sites with 

low values of γi in order to allow for a large event. 

In this work, the focus is also on the spatial heterogeneity in OFC models with long-range 

stress transfer. The model is a cellular automata version of earthquake faults based on the 

OFC (Olami et al., 1992) and RJB (Rundle and Jackson, 1977; Rundle and Brown, 1991) 

models with some minor variations. Here, inhomogeneities are imposed in the model by 

allowing a percentage of randomly selected locations that accumulate higher levels of 

stress, similar to asperities on natural faults. These sites are incorporated by varying the 

ability of individual sites to support much higher stress for different spatial 

configurations. We find that the scaling relationship for the heterogeneous systems 

depends on the amount of the asperity sites as well as the spatial distribution of those 

asperities and the ratio of the size of the asperities to the stress transfer range. 

Investigation of the effects of a variety of spatial configurations for asperity sites 

provides insights into the construction of practical models of an earthquake fault system 

which is consistent with GR scaling. 

4.2 The Model 

Our model is a two-dimensional cellular automaton model with periodic boundary 

conditions.  In this model every site in the lattice is connected to z neighbors, which are 

defined as sites within a certain distance or stress interaction range, R. A homogeneous 

residual stress σr is assigned to all the sites in the lattice. To impose spatial 

inhomogeneity on the lattice, two sets of failure thresholds are introduced; ‘regular sites’ 

with a constant failure threshold of σf and ‘asperity sites’ with a much higher failure 
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threshold (σf
(asperity)=σ

f
+∆σf).  These asperity sites are imposed in order to incorporate 

some percentage of stronger sites into the lattice which will bear higher stress before 

failure.  

Initially, the internal stress variable, σj(t), is randomly distributed on each site in such a 

way that the stress on all sites lies between the residual and failure stress thresholds (σr
 < 

σi(t=0) < σf). At t=0 no sites will have σi > σf. There are several ways to simulate the 

increase in stress associated with the dynamics of plate tectonics. Here we use the so-

called zero velocity limit (Olami et al., 1992). The entire lattice is searched for the site 

that minimizes (σf - σi) and that amount of stress is added to each site such that the stress 

on at least one site is now equal to its failure threshold. That site fails and some fraction 

of its stress, given by α (σf–(σr
±η)], is dissipated from the system. α is a dissipation 

parameter (0 < α ≤1) which describes the portion of stress dissipated from the failed site 

and η is randomly distributed noise. The failed site’s stress is lowered to (σr
±η) and the 

remaining stress is distributed to its neighbors. After the first site failure, all neighbors are 

searched to determine if the stress change from the failed site caused any of others to 

reach their failure stress. If so, the described procedure repeats for those neighbors and if 

not, the time step (known as the plate update) increases by unity and the lattice is 

searched again for the next site which minimizes (σf
 - σi). The size of the event is 

calculated from the total number of failures that expand from the first failed site. Stress is 

dissipated from the system both at the regular lattice sites and through asperity sites 

which are placed inhomogeneously throughout the lattice. However, because the asperity 

sites release much higher stress at the time of their failure, the amount of stress dissipated 

by these sites is different from the bulk of the system and results in inhomogeneous stress 

dissipation in this model.  

Initial results for two different sized large asperity blocks are shown in Figure 4-3 (a-5% 

and b-10% of the total lattice sites are considered as asperity sites), with their associated 

magnitude-frequency relation plotted for varying values of α. Both plots support previous 

results that increasing values of stress dissipation decrease the length of the scaling 

regime and the time of the largest events, and that larger asperity, or damage, regions 

promote the occurrence of larger events.  
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In this study we want to investigate the scaling in these systems for different percentages 

of asperity sites and different asperity configurations, comparing those results with the 

simple homogeneous system with no asperities.  

 

Figure  4-3 a) Schematic depicting the size and location of a smaller set (5% of the total 

lattice sites) of grouped asperities (top).  Numerical distribution of event sizes for varying 

values of stress dissipation, α, for the layout shown above.  b) Schematic depicting the 

size and location of the larger set (10% of the total lattice sites) of grouped asperities 

(top).  Numerical distribution of event sizes for varying values of stress dissipation, α, for 

the layout shown above. 

4.3 Percentage of asperity blocks 

A system with different percentage of randomly distributed asperity sites in a two 

dimensional cellular automaton lattice of linear size L=256 with periodic boundary 

conditions and long range of interaction (R=16) is studied here. In this model we consider 

a homogeneous failure threshold for the regular sites of σf=2.0, a homogeneous residual 

stress for the entire lattice of σr=1.0, and a random distribution of noise as η=[-0.1,+0.1]. 

The failure threshold for the asperity sites is σf
(asperity)=σ

f+10. Figure 4-4 shows the 

distribution of event sizes for different cases where α is equal to 0.2. This study begins 
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with smaller percentages of asperities and increase the number of randomly distributed 

stronger sites in the lattice (no asperities in black, 1% in blue, 3% in green and 5% in 

red).  As the percentage of asperities increases, the system produces significantly larger 

events. However, the relative number of moderate-sized events decreases as the number 

of asperities in the lattice is increased. By increasing the number of asperities in the 

lattice some of the moderate events appear to grow into a larger event. This migration 

from the moderate to large sizes could be consequence of two effects. When an asperity 

site breaks a greater amount of stress is released into the system and that amount of 

released stress can cause the failure of more sites and result in larger events, especially in 

a system with long range stress transfer.  

 

Figure  4-4 Numerical distribution of events of size “s” for various amounts of randomly 

distributed asperity sites, α=0.2. 
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In addition, a greater number of randomly distributed asperity sites in the lattice increases 

the probability of asperity sites triggering. In other words, a system with a higher density 

of asperities increases the chance of asperity blocks to be in the stress transfer range of 

another asperity. So, failure of one asperity site can results in a cascade behavior and a 

greater likelihood for a medium size event to grow and become an extreme event. 

4.4 Configuration of spatial heterogeneity 

Dominguez et al. (2013) studied the scaling behavior of systems with damage and 

showed that event distribution depends not only on the total amount of damaged sites in 

the system but also on the spatial distribution of damage. They noticed that lattices with 

more homogeneously distributed dead sites suppress large events. Here, we study the 

effect of different spatial configurations of the asperity blocks in the system.  

 

Figure  4-5 Four different configurations of 1 percent asperity sites (upper row) and 5 

percent asperity sites (lower row) (in black) for lattices with linear size L=256. Each 

lattice has asperity blocks of a single size b. For each a) b=L/256, b) b=L/64, c) b=L/32, 

and d) b=L/16. 
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In this model, the lattices have the same size (256 × 256), a constant percentage of 

asperity sites (1% and 5% for each case), and a constant stress transfer range (R = 16). As 

a result, any differences in the large event behavior are not caused by the finite size of the 

lattice. Figure 4-5 presents two-dimensional lattices of linear size L = 256 and asperity 

blocks with a linear size of b which are randomly distributed throughout the system and 

two cases of 1% (top) and 5% (bottom) of asperity sites (note that the stress dissipation 

parameter is constant in all cases, α = 0.2). To highlight the distinction between the 

different configurations of asperities, logarithmic bins are used in the distributions and 

they are normalized to the total number of events in each case. Figure 4-6 shows the 

probability density function of event sizes for the various arrangements of asperity blocks 

in Figure 4-5.  

 

Figure  4-6 Normalized probability density function of events of size “s” for various sizes 

of asperity blocks which are randomly distributed in the system for R=16 and a) 1% and 

b) 5% of asperity sites. 
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By changing the linear size of the asperity blocks, we ensure that at least some of the 

asperity sites which are inside a larger asperity block are in the stress transfer range of 

others and will certainly interact with each other. On the other hand, we decrease the 

probability of interaction between two large blocks of asperity sites. Although the 

number of asperity sites is constant, changing the linear size of the asperity sites has a 

significant effect on the event distributions. For 1% of asperities, b=1 (Figure 4-5a-i) has 

the lowest spatial separation among the different size of asperity blocks. But since there 

are fewer of asperities in the lattice, the probability of interaction between the asperity 

sites is still very low and big events do not occur even with the failure of an asperity site. 

For b=4, there are 16 asperity sites in a 4 by 4 block that are adjacent to each other. 

Failing a site in the asperity block can easily trigger the rest of the block and create larger 

events than for b=1 (Figure 4-6a). The numerical distributions for b=8 and b=16 confirms 

that there is triggering of asperity sites inside the block, but because the distance between 

the blocks is higher than the stress transfer range they cannot affect each other directly.  

Again, in this case the largest events occur for smaller values of R/b. 

The biggest event for 5% of asperity sites falls between different configurations of 

asperity blocks and occurs for the smallest block size (Figure 4-6b, b=1). Because the 

percentage of asperities is much higher, the shortest spatial separation between the 

asperities occurs in the case of b=1 and there is a higher probability of asperity triggering. 

In this case, the number of triggered asperity sites increases and a much bigger event 

occurs. However, increasing the linear size of asperity blocks (b=4, 8 and 16) increases 

the probability of triggering inside a block, but it also increases the spatial separation 

between the blocks, resulting in a decrease in the probability of triggering between 

asperity blocks. 

4.5 Range of interaction 

To further investigate the effect of block size and asperity triggering on event size for 

larger numbers of asperities, we focus on the stress transfer range. Here, 5% of asperity 

sites are randomly distributed in the system in the blocks with four different linear sizes 

(b=1, 4, 8 and 16, Figure 4-5a-ii, b-ii, c-ii and d-ii) and the system is run for three 
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different stress transfer ranges, R=16, R=8 and R=1. Figure 4-7 shows the comparison 

between the event distributions for different stress transfer ranges and different asperity 

block sizes. By reducing the stress transfer range, the likelihood that an asperity site will 

be affected by a neighboring asperity site decreases.  This results in a lower probability of 

asperity triggering in the model. The absence of triggering asperities makes the system 

unable to produce big events. Figure 4-7 confirms that, for lower percentages of 

asperities, the size of the biggest event occurs in systems with long range interactions 

(R=16), regardless of the asperity block size, and that event is much larger than the size 

of the biggest event in system with short stress transfer range.  In addition, for short range 

stress transfer (R=1), the size of the largest events does not change with increasing 

asperity block size.  For longer range stress transfer, the size of the asperity blocks affects 

the size of the biggest event. 

4.6 Stress dissipation  

We also compare the effect of stress dissipation parameters on different asperity 

configurations in a system with long stress transfer range, R=16. As discussed earlier, 

upon failure, some fraction of a site’s stress, given by α [σf
–(σr

±η)], is dissipated from the 

system (0 < α ≤1). In general, lower stress dissipation models produce more larger events 

and higher stress dissipation suppresses large events.  

This also should be true in the system with asperity sites.  In higher dissipation models, 

less stress is transferred to neighboring sites, even when asperities fail.  As a result, there 

is lower probability of asperity triggering in the model. This implies smaller events and 

more plate update steps to fail all of the asperities. In Figure 4-8 the event distribution for 

four different stress dissipation parameters and 1% of asperity sites in the lattice is 

compared for three different configuration of asperity blocks (b=1, b=4 and b=16). This 

figure shows the results for four stress dissipation parameters, α=0.2, 0.3, 0.4 and 0.5, in 

each 20%, 30%, 40% and 50% of the failed site stress dissipates at the time of failure and 

the remaining stress is distributed to its z=1088 neighbors. 
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Figure  4-7 Normalized probability density function of events of size s for various stress 

transfer range in a system with 5% of asperity sites for four different linear sizes of 

asperity blocks shown in Figure 2 and a) b=1, b) b=4, c) b=8 and d) b=16. 

For all three asperity configurations (Figure 4-8 a, b and c), lower values of stress 

dissipation leads to a higher number of big events. On the other hand, in systems with a 

high amount of stress dissipation, the released stress from a small asperity block is not 

enough to offset the greater dissipation and cannot trigger any of the neighboring asperity 

blocks. As a result, the change in the asperity block size from b=1 to b=4 (Figure 4-8a 

and 4-8b) does not significantly affect the distributions of events, especially for higher 

stress dissipation. However, the released stress from bigger asperity blocks of b=16 is 

high enough to trigger another asperity block. We again observe larger events in the tail 

of the distributions, even for higher stress dissipation models (Figure 4-8c). 
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Figure  4-8 Normalized probability density function of events of size s for various amount 

of stress dissipation parameter and for 1% of three different sizes of asperity blocks 

randomly distributed in the system for a) b=1, b) b=4 and c) b=16. 

4.7 Discussions 

Here we investigated a variation of the OFC model in which localized stress 

accumulators were added to the system by converting a small percentage of the lattice 

site into stronger sites. We studied different spatial configurations of the stronger asperity 

sites and observed the effect of asperity patterns on the distribution of event sizes in the 

systems for a selected stress transfer range. In particular, we observed an increasing 

number of larger events associated with the total number of asperities in the lattice 

(Figure 4-4). We also found that imposing a fixed number of asperity sites with different 

spatial distributions strongly affects the capability of the fault system to generate extreme 

events, but that the total percentage of asperities is important as well. The event 



111 

 

distributions shown in Figure 4-6 confirm the sensitivity of the system to different 

configurations of inhomogeneities. In addition, we studied the role of the interaction 

range on triggering asperities and observed that the probability of asperity triggering and 

the occurrence of larger events is much higher in the in those systems with a longer stress 

transfer range (Figure 4-7). However, in models with higher dissipation it is the asperities 

are less sensitive to other failures and therefore the probability of asperity triggering 

decreases in high dissipation models. This implies that higher dissipation results in a 

lower probability of smaller events regardless of the number and spatial distribution of 

asperities. 
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Chapter 5  
 

5 General discussion and conclusions 

5.1 Summary and Conclusions 

The goal of this work is to study the role of inhomogeneities in an earthquake fault-like 

system with long-range interactions by imposing different amount of spatial 

inhomogeneities in different sizes and configurations in a cellular automaton model of 

earthquakes. 

The proposed model is a two-dimensional cellular automata model with periodic 

boundary conditions that is variation of the well-known Rundle, Jackson and Brown 

(RJB) and Olami-Feder-Christensen (OFC) earthquake fault models. In this model every 

site in the lattice is connected to z=1088 neighbors which are defined as sites within a 

certain distance or stress interaction range, R=16. Spatial inhomogeneity is imposed on 

the lattice by introducing two sets of different failure thresholds. The stronger sites, 

designated “asperity sites”, are significantly stronger than the surrounding lattice sites but 

eventually rupture when the applied stress reaches their higher failure threshold.  A 

higher amount of stress is released into the system at the time of their failure. 

In the first study, 1% randomly distributed asperity sites are included in the long-range 

stress transfer model. The findings illustrate that although the asperities do not change the 

modified GR relation proposed in (Serino, et al., 2011), this type of inhomogeneity 

introduces temporal clustering of events which is very similar to that seen in real 

earthquake fault systems. Characteristic earthquake sequences are observed which are 

associated with periods of higher activity that start with gradually increasing numbers of 

larger events, or foreshocks, that display AMR-like behavior, and end with a tail of 

decreasing activity, or aftershocks (Fig. 2-2). Similar to activity observed in different 

tectonic regions (Fig. 2-3), the relative length of the foreshock and aftershock sequences 
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varies and the length of the foreshock and aftershock activation period is shown to be 

related to one or more controlling parameters of the model, including the stress 

dissipation (Fig. 2-4). These results provide a potential explanation for the observation 

that certain tectonic regimes, such as mid-ocean ridges, produce measurable foreshock 

sequences, while others, such as crustal transform faults, produce very few foreshocks. 

These initial results also suggest that asperities are responsible for the time-dependent 

behavior observed in natural earthquake fault systems and support the hypothesis that 

spatial and temporal patterns observed in natural seismicity are controlled by the 

underlying physical properties, rather than simple triggering alone.  

The second stage of this study investigates the effect of variations in the total number of 

asperity sites (1%, 3% and 5%), both in systems with random spatial distributions of 

asperities and those with a single large block of asperities. The effect on the magnitude-

frequency distribution of events as well as the spatial and temporal clustering of events is 

studied in greater detail and with respect to different stress dissipation regimes in the 

system. It was found that regardless of the presence of inhomogeneity in the system, 

higher stress dissipation systems suppress the ability of the system to produce larger 

events (Figure 3-1). Also, increasing the number of asperity sites in the systems with a 

constant stress dissipation parameter promotes the occurrence of larger events (Figure 3-2 

and 3-3). Results confirm that although the incidence of inhomogeneities does not change 

the form of the modified GR relation proposed by Klein et al. (2007), it does affect the 

size of the largest events, the length of the scaling regime and the upper bound of the 

modified GR.  In addition, it appears that the stronger lattice sites create a second 

distribution of the same form as the smaller events, but for the large events.  Therefore 

the overall magnitude-frequency distribution becomes a combination of two distinct 

distributions of the same form for the smaller and larger events (Figure 3-5).  

The clustering of events seen in Chapter 2 is investigated in more detail for systems with 

higher percentages of inhomogeneities. The spatiotemporal clustering of events is 

dependent on the size and spatial configuration of the asperities (Figures 3-7 and 3-8). 

These results show that the presence of inhomogeneities in terms of the asperity sites in 

the system results in the occurrence of seismic sequences at regular time intervals which 
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starts with a slow increase in the number and size of events and ends with a tail of 

decreasing activity after the mainshock. This behaviour is very similar to the concepts of 

both characteristic earthquakes and seismic sequences (Figure 3-6). The increasing 

number of larger events in these recurrent time series follows a pattern of precursory 

AMR activity prior to the mainshock comparable to that observed in natural seismicity 

(Figure 3-9). Results from the inverse TM metric plots also highlighted a clear deviation 

from stationarity at the time steps prior to the mainshock (Figures 3-10 and 3-11). In 

addition, the decay rate of the aftershock sequences and the growth rate of the foreshock 

sequences can vary, as observed in different tectonic regions. Analysis of the Omori law 

relation for both types of sequences confirms that these rates are related to one or more of 

the controlling parameters of the model, including both the amount and complexity of the 

asperities as well as the stress dissipation (Figures 3-12 and 3-13).  

In the final stage of this study, different spatial configurations of the stronger asperity 

sites in the systems were investigated for selected stress transfer ranges in order to 

observe the effect of asperity patterns on the event distribution. In particular, it was 

shown that imposing a fixed number of asperity sites with different spatial distributions 

on the lattice strongly affects the capability of the fault system to generate extreme 

events, but that the total percentage of asperities is important as well. The event 

distributions shown in Figure 4-6 confirm the sensitivity of the system to different 

configurations of inhomogeneities.  

In addition, the role of the interaction range on triggering asperities was studied and it 

was observed that the probability of asperity triggering and consequently the occurrence 

of larger events is much higher in systems with longer stress transfer range (Figure 4-7). 

However, in models with higher dissipation the asperities are less sensitive to the failure 

of their neighboring asperity sites and therefore the probability of asperity triggering is 

much lower in such systems. This implies that higher dissipation results in a lower 

probability of smaller events regardless of the number and spatial distribution of 

asperities. 
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Finally, results from this simple earthquake fault model support the hypothesis that 

spatial heterogeneities play an important role on the primary features of both modeled 

and natural earthquake sequences and that the spatial and temporal patterns observed in 

natural seismicity may be controlled by the underlying physical properties. Our model 

reproduced the modified GR distribution and the size of the largest events and the length 

of the scaling regime on each fault are controlled by the amplitude of the stress 

dissipation of the system.  The superposition of many faults, each with a different amount 

of damage, results in GR scaling in the larger fault network.  Spatial features affect the 

critical point scaling behavior intrinsic to the earthquake fault process and the associated 

structure and geometry directly impacts the spatial and temporal nature of fault networks. 

These findings suggest that asperities could be responsible for much of the spatial and 

temporal behavior of real earthquake fault systems and support the hypothesis that the 

patterns observed in natural seismicity may be controlled by the underlying physical 

complexity, rather than simple triggering alone.  

5.2 Suggestions for future studies 

This study on a simple inhomogeneous cellular automata model of earthquake fault 

systems provides insights into the important aspect of heterogeneities in natural fault 

systems. The effect of the total number and the configuration of the inhomogeneities in 

such systems are studied. The research presented in this thesis also raises additional 

questions that should be pursued. 

First of all, the next step toward understanding a more realistic fault model should 

include investigating the effect of the asperity strength and effects of different 

configurations of asperities with different failure threshold on the spatiotemporal 

clustering of events. 

The second step is to study the role of the stress transfer range on the asperity triggering 

of a fault. In particular, associating a dependent range of interactions with the strength of 

the asperities will likely ensure that the simulations are closer to those of a real fault 

system.  



120 

 

Third, understanding the interaction between the numbers of asperity sites in the systems 

with different stress dissipation and stress transfer ranges, and how they affect the 

triggering of the asperities, could provide a better understanding of the effects of 

inhomogeneities in natural fault systems.   

Fourth, more detailed comparison of the model results for various parameter ranges with 

historic earthquake seismicity from a variety of regions, including swarms, induced 

seismicity and tectonic sequences, can help to both narrow the applicability of the 

associated parameter (stress dissipation and percent asperities) as well as provide 

potential insights into natural fault structure. 

Finally, it also is possible to establish a fault network of individual interacting fault 

models with different internal parameters, using the presented model as a basis, in order 

to model a more realistic fault system of interacting faults.   
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 Appendices 

Appendix A: The computer code 

This appendix contains the computer code that is used to model the earthquake fault 

system. The code is written in the FORTRAN language.  

Program Inhomogeneous OFC Model 

! The code is written by Javad Kazemian to model an inhomogeneous fault based on the homogeneous 

OFC Model 

! Last revision November 2013 

 implicit none 

!********************************************************************************** 

! DEFINING THE INTERNAL VARIABLES OF THE CODE  

 

 integer*1 tempi1,syo,wri,asp(20000000) 

 integer*2 L,minl(2),x,y,xf(20000000),yf(20000000),tempi,neib 

 integer*4 timeArray(3),t,ta,i,j,tsel,tlen,i1,aval(20000000) 

 real:: alpha,rand,minv,sr,dsigmaf,noise,stressr(20000000),stressi(20000000) 

 integer,allocatable:: st(:,:),stat(:,:) 

 real,allocatable:: sigma(:,:),sigmar(:,:),sigmac(:,:),fmin(:,:)  

 character filename*45,yes*1 

 

!********************************************************************************** 

! Defining the input parameters 

  

L=256  !  Linear size of the Lattice  

 alpha=0.05 !  Stress dissipation Parameter    
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 neib=16  ! Defining the Radius of the neighborhood  

 dsigmaf=10.0 ! Δσf  

 noise=0.10 ! Amplitude of the Noise η 

 syo=0  ! Selecting the boundary condition, 0 for periodic and 1 for open boundary 

 tsel=10000000 ! The time step in which the code starts to collect the statistics   

 tlen=10000000 ! Length of the window for collecting the statistics 

 

!********************************************************************************** 

! ALLOCATING THE INTERNAL VARIABLES WICH ARE DEPENDENT TO THE INPUT PARAMETERS 

 

 allocate(sigma(L,L),sigmar(L,L),sigmac(L,L),st(L,L),fmin(L,L),stat(L,L)) 

 st=0;sigma=0.0;sigmar=0.0;sigmac=0.0;fmin=0.0;t=1;ta=1 

 tempi=0;i=0;j=0;wri=0;xf=0;yf=0;asp=0;aval=0;i1=1 

 

!********************************************************************************** 

! Reading the time of the system to use as a seed for “Rand” function 

 

 call itime(timeArray)      

 write(*,'(/,a13,2x,i2,a1,i2,a1,i2)')" Start time",timearray(1),":",timearray(2),":",timearray(3) 

 j= rand (timeArray(1)+timeArray(2)+timeArray(3)) 

!********************************************************************************** 

! Selecting the asperity sites regions by calling different subroutines for different configurations  

! BR: Random distributions 

! B16: 16 by 16 randomly distributed blocks  

! B16C: Cascading distribution 

! B16RC: Random Cascading distribution 

 call br(L,st) 
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! Single block of asperity sites in desired size 

! do i=1,44 

! do j=1,45 

!  st(i+100,j+100)=1 

! enddo 

! enddo 

!********************************************************************************** 

! Assigning the residual and failure threshold to all the sites in the lattice containing the asperity sites as 

well as assigning white random noise with the predefined amplitude  

 

 do i=1,L    

  do j=1,L 

   sigmar(i,j)=1.0+noise*(2*rand(0)-1) 

   sigmac(i,j)=2.0 

   sigma(i,j)=sigmar(i,j)+(sigmac(i,j)-sigmar(i,j))*rand(0) 

   if (st(i,j)==1) then 

    sigmac(i,j)=sigmac(i,j)+dsigmaf 

    tempi=tempi+1 

   endif 

   if (sigmac(i,j)<sigma(i,j).or.sigmar(i,j)>sigma(i,j)) then 

    print*,sigmar(i,j),sigmac(i,j),sigma(i,j) 

   endif 

  enddo 

 enddo 

 !********************************************************************************** 

! Printing the input parameters of the model to verify 

 print*, “Number of asperity sites”, tempi 
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 if(syo==1)write(*,'(1x,a13)')'Closed system' 

 if(syo==0)write(*,'(1x,a11)')'Open system' 

 write(*,'(1x,a3,1x,i3)')'L= ',L 

 write(*,'(1x,a3,1x,i5)')'n= ',(2*neib+1)**2-1 

 !write(*,'(1x,a3,1x,i3)')'R= ',neib 

 write(*,'(1x,a7,1x,f3.2)')'alpha= ',alpha 

 write(*,'(1x,a15,1x,f6.2)')'Delta sigma F= ',dsigmaf 

 write(*,'(1x,a7,1x,f5.2)')'Noise= ',noise 

 write(*,'(1x,f5.2,1x,a50)')(1.*tempi/L**2)*100,"percent of the sites are considered as asperities" 

! Check to see if the user wants to start from an existing file of the state of the system or not 

 print*,"Load stress values from an existing file? (y/n)" 

 read*,yes 

 if(yes=='y')then 

  open(99,file=filename,status='old') 

  read(99,'(i3,1x,i3,1x,f6.3)')((x,y,sigma(x,y),j=1,L),i=1,L) 

  close(99) 

  print*,'loads the inputs' 

 endif 

 print*,'Start' 

 x=0;y=0 

!********************************************************************************** 

! MAIN BODY OF THE CODE  

 do 

  stat=0 

!******************************************* 

! Finding the minimum value of sigma(i)-sigmar and adding that amount to all lattice 

  fmin=sigmac-sigma 
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  minv=minval(fmin) 

  minl=minloc(fmin) 

  xf(i1)=minl(1) 

  yf(i1)=minl(2) 

  sigma=sigma+minv 

  stressi(i1)=minv 

  do i=1,L 

   do j=1,L 

    if (sigma(i,j)>=sigmac(i,j)) stat(i,j)=1 

   enddo 

  enddo 

  tempi=1 

  do while (tempi==1) 

   tempi=0 

!******************************************** 

! Failing of the site and distributing its stress to the predefined neighbours 

 

   if (st(minl(1),minl(2))==1) asp(i1)=1  

   sr=(1-alpha)*(sigma(minl(1),minl(2))-sigmar(minl(1),minl(2))) 

   aval(i1)=aval(i1)+1 

   stressr(i1)=stressr(i1)+sr 

   minv=0 

   sigma(minl(1),minl(2))=sigmar(minl(1),minl(2)) 

   stat(minl(1),minl(2))=0 

   sigmar(minl(1),minl(2))=1.0+noise*(2*rand(0)-1) 

 

! **** Choosing different versions of neighborhood  
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! **** Nearest neighbour open boundary 

! **** 

!   do i=1,4 

!    selectcase (i)  

!     case(1) 

!      x=minl(1)-1 

!      y=minl(2) 

!     case (2) 

!      x=minl(1)+1 

!      y=minl(2) 

!         case (3) 

!      x=minl(1) 

!      y=minl(2)-1 

!     case (4) 

!      x=minl(1) 

!      y=minl(2)+1 

!    endselect 

!    if(x>0.and.x<=L.and.y>0.and.y<=L) sigma(x,y)=sigma(x,y)+(sr/4.0) 

!   enddo 

!************************************************* 

!****      Nearest neighbour Close boundary 

!   do i=1,4 

!    selectcase (i)  

!     case(1) 

!      x=minl(1)-1 

!      if (x<=0) x=x+L 

!      y=minl(2) 
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!     case (2) 

!      x=minl(1)+1 

!      if (x>L) x=x-L 

!      y=minl(2) 

!        case (3) 

!      x=minl(1) 

!      y=minl(2)-1 

!      if (y<=0) y=y+L 

!     case (4) 

!      x=minl(1) 

!      y=minl(2)+1 

!      if (y>L)  y=y-L 

!    endselect 

!    sigma(x,y)=sigma(x,y)+(sr/4.0) 

!   enddo 

!************************************************* 

! ****   Next nearest neighbour close boundary 

   do i=minl(1)-neib,minl(1)+neib 

    do j=minl(2)-neib,minl(2)+neib 

     x=i 

     y=j 

     !if(syo==1)then 

      if (i<=0) x=x+L 

      if (i>L)  x=x-L 

      if (j<=0) y=y+L 

      if (j>L)  y=y-L 

      if (x/=minl(1).or.y/=minl(2)) then 
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      sigma(x,y)=sigma(x,y)+(sr/((2.*neib+1)**2-1)) 

      endif 

! ****   Next nearest neighbour open boundary 

     !elseif(syo==0)then 

!      if(x>0.and.x<=L.and.y>0.and.y<=L)then 

!       if (x/=minl(1).or.y/=minl(2)) then 

!      sigma(x,y)=sigma(x,y)+(sr/((2.*neib+1)**2-1)) 

!       endif 

!      endif 

     !endif 

    enddo 

   enddo 

!****************************************** 

! Check to see if there was another site ready to fail before redistribution of stresses 

   tempi1=0 

   do i=1,L 

    do j=1,L  

     if (stat(i,j)==1)then  

      tempi1=1 

      tempi=1 

      minl(1)=i 

      minl(2)=j 

     endif 

    enddo 

   enddo 

! ******************************************* 

! When there is no site before redistribution of stresses check to find the minimum sigma-sigmar again 
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   if (tempi1==0) then 

    do i=1,L 

     do j=1,L  

      if (sigma(i,j)>=sigmac(i,j))then 

          tempi=1 

       stat(i,j)=1 

       minl(1)=i 

       minl(2)=j 

      endif 

     enddo 

    enddo 

    ta=ta+1 

   endif 

   tempi1=0 

  enddo 

  ta=1 

  i1=i1+wri 

  t=t+1 

  if(mod(t,100000)==0) print*,t 

! Check to see if the system has reached to the time step to start collecting the statistics 

  if (t==tsel+1) then 

! Open a file for saving the state of the system at the desired time step 

   i1=1;xf=0;yf=0;aval=0;asp=0;wri=1;stressr=0.;stressi=0. 

open(11,file='S1-L256-a05br-sd005-n1088-sf10-noi010-c.dat', action='write') 

   write(11,'(i3,1x,i3,1x,f6.3)')((i,j,sigma(i,j),j=1,L),i=1,L) 

   close(11) 

  endif 
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! Check to see if the system has reached to the last time step to finish collecting the statistics and exiting 

the loop and start to writing the results inside the output file  

  if (t==tsel+tlen+1) then 

   print*,'1 ',i1 

   open(22,file='L256-a05br-sd005-n1088-sf10-noi010-c.dat',action='write') 

write(22,'(i9,1x,i3,1x,i3,1x,i1,1x,f10.5,1x,f10.8)') 

(aval(j),xf(j),yf(j),asp(j),stressr(j), stressi(j), j=1,tlen) 

   i1=1;xf=0;yf=0;aval=0;asp=0;wri=0;stressr=0.;stressi=0. 

   close(22) 

   print*,'2 ',i1 

  endif 

  if (t==tsel+tlen+1) exit 

 enddo 

!********************************************************************************** 

! PRINTING RESULTS 

 print*, “last time step”,t 

! Writing the time that program stops  

 call itime(timeArray) 

 write(*,'(a13,2x,i2,a1,i2,a1,i2)')" End time",timearray(1),":",timearray(2),":",timearray(3) 

 print*,'done' 

 end 

 

!********************************************************************************** 

! Subroutines for different distributions of asperity sites 

! Random distributions   

subroutine Br(L,status1) 

integer*2 L 

integer n0,dummy,i,j,k,status1(L,L) 
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real rand 

integer*4 timeArray(3) 

call itime(timeArray)     

print*,"**RANDOM DISTRIBUTION**"  

dummy= rand (timeArray(1)+timeArray(2)+timeArray(3)) 

Status1=0;n0=L**2;k=0 

do 

 i=L*rand(0)+1 

 j=L*rand(0)+1 

 do while (status1(i,j)==1) 

  i=L*rand(0)+1 

  j=L*rand(0)+1 

 enddo 

 if (status1(i,j)==0) then 

  status1(i,j)=1 

  k=k+1 

  if (1.*k/n0>0.05) goto 55 ! Specifying the percentage of asperities 

 endif 

enddo 

55 continue 

endsubroutine 

!********************************************************************************** 

! B16: 16 by 16 randomly distributed blocks  

 subroutine B16(L,status1) 

integer L,n0,dummy,i,j,k,m1,n1,m2,n2 ,status1(L,L),ll,temp 

real rand 

integer*4 timeArray(3) 
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call itime(timeArray)   

dummy= rand (timeArray(1)+timeArray(2)+timeArray(3)) 

Status1=0;n0=L**2;k=0;ll=L/256; 

print*,"**FIXED ",ll," by ", ll," BLOCK DISTRIBUTION**"   

do 

 temp=1  

 do while (temp==1)  

  i=L*rand(0)+1 

  j=L*rand(0)+1 

  m=i/ll 

  n=j/ll 

  m1=m*ll 

  n1=n*ll 

  temp=0 

  do m2=m1+1,m1+ll 

   do n2=n1+1,n1+ll 

    if (status1(m2,n2)==1) temp=1 

   enddo 

  enddo 

 enddo  

 do m2=m1+1,m1+ll 

  do n2=n1+1,n1+ll 

   status1(m2,n2)=1 

   k=k+1 

   if (1.*k/n0>0.01) goto 55  ! Specifying the percentage of asperities 

  enddo 

 enddo    
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enddo 

55 continue 

endsubroutine 

!********************************************************************************** 

! B16C: Cascading distribution 

subroutine B16c(L,status1) 

integer L,n0,dummy,i,j,k,m1,n1,m2,n2 ,status1(L,L),jj 

real rand 

integer*4 timeArray(3) 

call itime(timeArray)   

print*,"**CASCADING DISTRIBUTION**"     

dummy= rand (timeArray(1)+timeArray(2)+timeArray(3)) 

Status1=0;n0=L**2;k=0 

do 

 i=L*rand(0)+1 

 j=L*rand(0)+1 

 do while (status1(i,j)==1) 

  i=L*rand(0)+1 

  j=L*rand(0)+1 

 enddo 

 jj=8*rand(0)+1 

 do m2=i+1,i+jj 

  do n2=j+1,j+jj 

   m1=m2 

   n1=n2 

   if (m1>L) m1=m1-L 

   if (n1>L) n1=n1-L 
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   if (status1(m1,n1)==0) then 

    status1(m1,n1)=1 

    k=k+1 

   endif 

   if (1.*k/n0>0.01) goto 55 ! Specifying the percentage of asperities 

  enddo 

 enddo 

enddo 

55 continue 

endsubroutine 

!**********************************************************************************  

! B16RC: Random Cascading distribution 

subroutine B16rc(L,status1) 

integer L,n0,dummy,i,j,k,m1,n1,m2,n2 ,status1(L,L),jj,nn 

real rand,rr 

integer*4 timeArray(3) 

call itime(timeArray)   

print*,"**RANDOM CASCADING DISTRIBUTION**"     

dummy= rand (timeArray(1)+timeArray(2)+timeArray(3)) 

Status1=0;n0=L**2;k=0 

do 

 i=L*rand(0)+1 

 j=L*rand(0)+1 

 do while (status1(i,j)==1) 

  i=L*rand(0)+1 

  j=L*rand(0)+1 

 enddo 



135 

 

 nn=0 

 rr=rand(0) 

 jj=8*rand(0)+1 

 do m2=i+1,i+jj 

  do n2=j+1,j+jj 

   m1=m2 

   n1=n2 

   if (m1>L) m1=m1-L 

   if (n1>L) n1=n1-L 

   if(m1<0.or.n1<0)print*,'Error' 

   if (status1(m1,n1)==0.and.(nn/(jj**2.)<rr).and.rand(0)<0.5) then 

    status1(m1,n1)=1 

    k=k+1 

    nn=nn+1 

    if (1.*k/n0>0.01) goto 55 ! Specifying the percentage of asperities 

   endif 

  enddo 

 enddo 

enddo 

55  continue 

Endsubroutine 
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