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ABSTRACT 

The promotion of steel fibre reinforced concrete (SFRC) as a construction material for 

tunnel linings has prompted a number of researchers to focus on methods of evaluating their 

flexural strength and stiffness.  This thesis presents the results of an experimental and 

numerical investigation of the flexural behaviour of full-scale steel fibre reinforced concrete 

tunnel lining segments.  A series of a three-point flexure tests were performed to evaluate 

the maximum load carrying capacity, the load-deformation behaviour and crack propagation 

characteristics of these segments. The material properties of the steel fibre reinforced 

concrete were also studied, using both destructive and non-destructive methods.  Element 

compression and tension tests were conducted to characterize the compressive and tensile 

strength properties of the SFRC.  Additionally, computed tomographic scanning was 

conducted to analyse and estimate the density fraction and fibre orientation of the fibres in 

SFRC cores.  Three-dimensional finite element analyses were conducted to calibrate a 

concrete damage plasticity constitutive model and provide better understanding of the 

segment flexural behaviour.  The experimental program indicated that the variation in 

structural performance of the segments was likely due to an inhomogeneity of fibre 

distribution and orientation.  Modifying the numerical model to account for these variations 

resulted in a more accurate analysis. Furthermore, from the numerical finite element analysis 

it was found that the non-linear elasto-plastic concrete damage plasticity model in the crack 

zone of the beam was mesh dependent.  Parametric analyses also revealed that the model 

was particularly sensitive to small changes to the tensile material property input parameters. 

Keywords: Steel Fibre Reinforced Concrete, Tunnel Lining Segment, Finite Element 

Modeling, Full Scale Testing, Flexural Strength, Micro CT, Stress-Strain, Cracking. 
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1INTRODUCTION 

1.1 Overview    

Applications of steel fibre reinforced concrete (SFRC) have increased in civil 

infrastructure due to enhanced tensile behaviour, increased toughness and better crack 

arrestment properties (Burgers 2006).  These advantageous material characteristics are of 

particular interest for application to tunnel support systems.  Therefore, designers, 

contractors and other stake-holders of the tunnelling industry are becoming more 

interested in employing SFRC due to its structural, durable and long-term characteristics. 

In addition, the application of SFRC tunnel lining segments can result in material, labour, 

and manufacturing cost savings.  However, there is currently a lack of clear design 

guidelines and construction procedures for SFRC members and tunnel linings in 

particular.  As a result, SFRC members are often over-conservatively designed or even 

avoided, and replaced with more traditional reinforced concrete sections.  

An efficient way to determine the load carrying capacity of a tunnel lining is to perform 

full-scale tests on full ring segmented linings.   However, such methods are case specific, 

and can be highly expensive and time consuming.  In addition, it is difficult to apply the 

range of loads that may be experienced in the field within a laboratory environment.  

Finite element modelling is a good complementary technique to prototype testing, but can 

still lack key predictive components; it can be difficult to take into account and model a 

number of aspects, such as non-homogeneity and non-linearity in materials, initiation and 
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propagation of cracking in the structure, and appropriate boundary and loading 

conditions. 

To further develop these methods and provide greater understanding for use in design, 

this study has examined the flexural resistance and crack development of SFRC tunnel 

lining segments using experimental and numerical methods.  The research was conducted 

on prototype scale segments, which eliminates discrepancies encountered through model 

experimental testing.  Full-scale experimental tests, using a three-point flexure setup, 

were performed on SFRC tunnel segments to establish the load and displacement 

characteristics, crack bridging properties and material behaviour.  Furthermore, a 

numerical analysis was performed using the ABAQUS (Version 6.8.1), finite element 

software to provide further interpretation of the full-scale testing and to calibrate the 

concrete damage plasticity constitutive model in the finite element coding.  

This study will enhance the coupling between prototype testing and numerical modelling, 

and develop improved methods that will more accurately predict the load carrying 

capacity and cracking of SFRC tunnel linings.  In addition, it will assist in developing a 

calibrated method of predicting the performance of future SFRC tunnel liners, subject to 

different forms of loading, as well as providing support for the development of new 

design methods.  
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1.2 Objectives 

i. To review the state-of-the-art literature for steel fibre reinforced concrete 

technology used for segmented tunnel linings, compile a summary of SFRC 

tunnel lining test methods and evaluate current design methods to identify 

areas requiring improvement.  

ii. To evaluate the flexure load carrying capacity of full scale SFRC segmented 

tunnel linings using three-point bending tests and compile a database of 

behaviour covering load-displacement, load-strain and crack propagation 

response.   

iii. To generate a non-linear elasto-plastic finite element model to interpret the 

observed behaviour in the laboratory testing and to calibrate an advanced 

concrete damage plasticity constitutive model for cracked SFRC concrete, in 

an attempt to contribute to methods of design of SFRC members.   

iv. To monitor and assess crack initiation and propagation of SFRC segments 

during flexural loading. 

v. To investigate the effects of fibres on the strength and stiffness properties of 

SFRC, using standard laboratory tests and investigate the distribution of the 

fibres from the lining casting process using computed tomography scanning.  

vi. To link the material properties and spatial distribution of fibres through the 

casted lining segments to the observed results in the experimental flexure 

tests.  
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1.3 Structure of the Thesis  

This thesis consists of six chapters.  Following the introductory chapter, Chapter 2 

presents a detailed literature survey of current tunneling methods, steel fibre reinforced 

concrete material properties, constitutive models and usage, full and reduced scale 

experimental SFRC tunnel lining testing and numerical modelling analysis methods.  

In Chapter 3, the testing procedures, for the experimental and numerical investigations, 

are discussed in detail.  The segment properties and geometry, material properties, 

laboratory testing system (e.g. support frame, loading frame, loading cell actuator and 

data acquisition), finite element simulation technique and material testing methods are all 

described.   

Chapter 4 presents the obtained experimental testing results. This includes load-

deflection, load-strain, and crack propagation behaviour from the full scale tunnel lining 

segment testing.  Furthermore, image analysis was used to determine the crack initiation, 

propagation and to quantify the crack mouth opening displacement.  Lastly, computed 

tomography scanning was employed to establish the internal fibre structure of the 

concrete mix, resulting from the casting process. 

In Chapter 5, the flexural resistance and material behaviour of SFRC tunnel lining 

segments is analyzed using the finite element software ABAQUS.  The experimental 

results are compared with the finite element analysis to provide greater understanding and 

to calibrate the constitutive model.  Further interpretation of the results is provided by a 

modified study that elucidates the effects of the fibre distribution through the lining 
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thickness.  Furthermore, a sensitivity analysis is performed to quantify the effects that 

variability of input parameters in a numerical model have on the model output.  

Chapter 6 summarizes conclusions from the research and provides recommendations for 

future studies. 
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2LITERATURE SURVEY 

2.1 Introduction 

This chapter presents a detailed literature survey of the mechanical properties of steel 

fibre reinforced concrete, current tunneling design methods, experimental full and 

reduced-scale flexure testing methods of tunnel linings and previous attempts to 

numerically model tunnel linings.  Steel fibre reinforced concrete is a construction 

material that is being used more often in civil infrastructure due to its enhanced 

mechanical properties (e.g. increased toughness and better crack arrestment properties).  

These advantageous material characteristics are particularly of interest in the application 

of tunnel support systems and so new industry projects and research studies have been 

emerging at an increasing rate.  

The main objectives of this chapter are: (i) to provide a background for steel fibre 

reinforced concrete material characteristics, (ii) to outline the various uses of tunnels and 

summarize the equipment and methods used in current tunneling practices, (iii) to review 

previous experimental testing methods for assessing the flexural capacity of tunnel lining 

segments and (iv) examine the approaches taken with the finite element numerical model 

for analysis of segmented tunnel linings. 
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2.2 Steel Fibre Reinforced Concrete 

Steel fibre reinforced concrete (SFRC) is a heterogeneous structural material comprising 

of typical concrete elements, with the addition of steel fibres to provide tensile resistance.  

These fibres are discontinuous discrete entities and are distributed and oriented randomly 

(nominally uniformly) throughout the concrete matrix.  SFRC can be used by itself, or in 

conjunction with conventional reinforcing bars, depending on the application (Banthia, 

2001).  

2.2.1 Steel Fibre Characteristics  

SFRC is a composite material, with the ultimate performance being directly affected by 

the concrete mixture design, material selection and casting quality control (i.e. fibre type, 

fibre aspect ratio
1
, volume fraction and uniform distribution). A description of how each 

of these components plays a role in dictating the material behaviour is discussed below.  

ASTM A820-06 (Standard Specification for Steel Fibres for Fibre-Reinforced Concrete) 

provides a classification of five general types of steel fibres based upon their 

manufacturing process: 

1. Type I, cold-drawn wire 

2. Type II, cut sheet 

3. Type III, melt-extracted 

4. Type IV, mill cut 

5. Type V, modified cold-drawn wire 

 

Type I fibers have tensile strengths ranging from 1000 to 3000 MPa, while Types II, III, 

IV, and V have a tensile strength as low as 350 MPa.  Fiber shapes range from round 

                                                 
1 Aspect ratio is the ratio of length to diameter for the fibre ( l/d ) 
2 Balling is an effect where fibres entangle into large clumps or balls in a mixture 
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wires with deformed ends (Type I), rectangular or square rod shapes with dimples (Type 

II), triangular cross-section and twisted (Type V), or crescent cross-section and 

corrugated (Type V), as well as other shapes. They also come in different lengths, 

ranging from 5 mm to more than 50 mm.  Longer fibers tend to perform better, however 

they can be more difficult to mix well into the concrete. To solve this problem, 

manufacturers often bundle fibers using water-soluble glue to achieve better dispersion in 

concrete during mixing (Burgers, 2006). 

For conventionally mixed fibre reinforced concrete, a higher aspect ratio of fibres results 

in superior post-peak performance due to the high pullout resistance of the fibres. 

However, research shows that a high aspect ratio of fibres can lead to a balling
2
 effect 

during mixing, resulting in loss of flexural resistance and consequently an adverse effect. 

Generally, aspects ratios of steel fibres between 20 and 100 are used in concrete mixtures 

(ACI 544.1R-96, 1996, ACI 544.3R-2, 1998).  To maintain high pullout resistance while 

reducing the aspect ratio, a number of approaches are employed: enlarging or hooking the 

fibre ends, roughening the surface of the fibres, or crimping to produce a wavy, rather 

than straight fibre.  Figure 2.1 illustrates hooked end, waved, and straight fibres. 

 

Figure 2.1 - Fibre shape (Ghoraishi et. al., 2011) 

                                                 
2 Balling is an effect where fibres entangle into large clumps or balls in a mixture 
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The amount of fibres introduced into the mixture (or fibre volumetric fraction), also plays 

a vital role in the overall material behaviour.  Toughness (total area under the load-

deflection response) increases with a higher fibre volume dosage.  Figure 2.2 shows that 

the addition of fibres to plain concrete greatly increases the toughness of the material 

Fibre dosage typically ranges from 0.1 to 3%; fibre content in excess of 3% may also 

result in poor workability (Chanh, 1999).   

Moreover, increased volume fraction of steel fibres in concrete improves and increases 

the energy absorption capacity leading to enhanced post-peak ductility.  The exact 

optimization of steel fibres needs to be performed to achieve the desired results and 

minimize the material costs.   

 

Figure 2.2 - Toughness of SFRC with varying fibre volume (Chanh, 1999) 
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Furthermore, quality control employed during casting is a critical component in achieving 

the desired material properties.  Even with an ideally designed concrete mixture, the 

structure’s overall performance can prove to be inadequate without the presence of proper 

quality control.   

One of the main obstacles in obtaining a uniformly distributed fibre matrix is avoiding 

the balling phenomenon.   Balling may be attributed to a number of factors: 

i. The fibres may already be clumped together before being added to the 

concrete mixture.  They should be passed through a screen, as normal 

mixing action will separate these clumps. 

ii. The addition of fibres may be too quick, preventing them from 

dispersing in the mixer. 

iii. The volume of fibres added may be too high for the corresponding 

aspect ratio. 

iv. The mixing equipment may be damaged, or inefficient in dispersing 

the fibres. 

v. The introduction of fibres to the mixture before all other concrete 

constituents are added may cause balling. 

Due to these potential complications, great care must be taken during the mixing phase 

(Chanh, 1999). 
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Another barrier commonly encountered while casting fresh SFRC is the influence of the 

pouring and compacting process on the distribution and orientation of fibres.  Typically, 

fibres are distributed evenly in all directions throughout the concrete matrix   However, in 

the casting process of tunnel lining segments, the concrete flows from the middle of the 

formwork down to the edges due to the formwork’s downward curvature (De Waal, 

1999).  As a result, the fibre percentage experiences a gravity effect and tends to be 

denser near the intrados of the segment.  This effect actually provides higher tensile 

resistance when the intrados section is subjected to tension; however it has the inverse 

effect when the extrados region is subject to tension.  Figure 2.3 illustrates this effect.   

Researchers (eg. Edgington et al.,1972; Stroeven et al., 1977; Stroeven et al.,1979; 

Soroushian et al., 1990; Toutanji et al.,1998) have also concluded that external vibrations 

during the compaction process contribute to the segregation and overall orientation of 

fibres.  The use of an internal vibrator for compaction of the concrete can disturb the 

orientation of the fibres locally if applied for an extended duration.  Additionally, the 

application of an external vibrator tends to orient the fibres perpendicular to the direction 

of the vibration (De Waal, 1999).  As a result of this inhomogeneous orientation of the 

fibres, the material properties may not be the same in every direction and may vary at 

different locations of the structure.  Hence great care must be taken during the casting 

process to ensure even distribution and isotropic orientation of fibres (Gettu et al., 2004). 

 

Figure 2.3 - Effect of segment production on the fibre orientation (De Waal, 1999) 
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2.2.2 Steel Fibre Reinforced Concrete Stress Block Diagrams 

In the design of the concrete elements, the location and magnitude of the compressive and 

tensile stresses acting on the element is of great importance. Simplified stress blocks have 

proven to be an excellent tool in achieving this.  Figure 2.5 shows the typical stresses 

acting on a steel fibre reinforced concrete beam with respect to four main cracking 

phases. 

In phase 1, the stress-displacement relationship can be idealised as linear elastic. There is 

no crack in the tensile zone (T1) and the maximum tensile stress is reached at strain MS. 

In this phase, the fibre geometry usually has no influence on the load capacity, hence the 

maximum tensile stresses are only related to the concrete strength and fibre ratio 

(Banthia, 2001).    

In phase 2, cracking is initiated in the concrete resulting in a loss of strength in the 

fracture zone (FZ). Once the crack starts opening (around 0.1 to 0.2 mm), the fibres with 

long embedment lengths are still capable of carrying extra load, but shorter fibres begin 

to pull-out. By the end of phase 2, the crack is well established and most fibres have 

exceeded their peak loads and begin to slip from the concrete matrix (Banthia, 2001).  

With respect to the stress block, the deflection behaviour of the prism changes from 

elastic to more or less elasto-plastic, with a hinge developing in the mid-span.    

Phase 3 initiates when the main concrete crack has formed and the fibres resisting the 

opening are doing so primarily through fibre-pullout.  Naturally, not all fibres that cross 

the crack provide resistance, since many are not sufficiently anchored.  As the crack 

width increases, the neutral axis moves upward towards the compression zone.  
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Eventually, with increasing crack opening, most fibres will pull-out with no residual 

force and that brings phase 3 to an end.  

During phase 4, the concrete near the notch carries no tensile stress, but the load is carried 

by the part of the section in which the fibres are still engaged and the neutral axis depth 

moves closer to the compressive zone. 

 

 

Figure 2.4 - Load-deflection curve of different cracking phases of steel fibre reinforced 

concrete beam (Tlemat et al., 2006) 
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Figure 2.5 - Schematic representation of a steel fibre reinforced concrete beam under 

flexural loading (Tlemat et al., 2006) 
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2.2.3 Comparison of SFRC and Reinforced Concrete 

It is well known that plain concrete has a low tensile strength and strain capacity at 

fracture (Chanh, 1999). This deficiency is traditionally overcome by including reinforcing 

bars or pre-stressed steel members.  The design of conventional reinforced segmented 

tunnel linings is successful in providing the required tensile resistance, however it 

possesses certain limitations. The complex geometric shape results in difficult assembly 

of the rebar cage as shown in Figure 2.6. Mass production of tunnel lining segments 

typically requires an additional fabrication unit to accommodate the assembly of these 

rebar cages, consequently increasing manufacturing, labour and material costs.   

A study performed in an effort to compare the cost saving benefits of replacing current 

forms of concrete with SFRC, concluded that approximately 25% cost saving benefits are 

achievable with respect to material costs alone (Venkatesh et al., 2006).  The addition of 

labour intensive rebar fabrication and installation in the forms may also result in a 

schedule impact, increasing the costs further.  

 

Figure 2.6 - Typical tunnel lining rebar cage assembly 
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For certain concrete applications, conventional rebar proves to be a more suitable 

alternative.  However, in specific loading conditions, SFRC has the ability to perform 

better and can completely replace conventionally reinforced concrete (Burgers, 2006; 

Moccichino et al., 2006).  Moreover, in the case of tunnel linings, the internal forces are 

mainly a combination of bending moments and hoop forces, which make SFRC an ideal 

substitute.  Steel fibres not only increase the structural capacity of concrete, but also 

improve long term durability issues.  Additionally, steel fibres can be introduced directly 

into the concrete batch during the mixing stage.  This greatly improves the production 

time, removes the necessary quality control inspection of steel rebars and provides large 

cost saving benefits.   

In comparison to conventional reinforced concrete, SFRC has superior resistance to 

cracking and crack propagation.  Unlike reinforcing rebars, which are located in a single 

plane, steel fibres are distributed throughout the concrete mixture.  The fibres are able to 

hold the structure’s matrix together, even after extensive cracking, providing a high 

resistance against spalling (e.g. Chanh, 1999; Machimo et al., 2002; Moccichino et al., 

2006).  The main purpose of steel fibres is to regulate micro and macro cracking.  They 

restrict the formation and propagation of cracks at their origin. Furthermore, the enhanced 

durability properties of SFRC limit the onset of corrosion.  Since the fibres are dispersed, 

the absence of contact between them does not allow the initiation of corrosive current, 

leading to formation of corrosion products. Moreover, the fire protection performance of 

concrete is also increased with the use of steel fibres, by limiting the cracking and 

spalling (Chen et. al., 2004).  Considering all these beneficial properties, SFRC proves to 

be a suitable material for use in precast tunnel lining segments.    
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2.3 Tunnelling 

Tunneling has been a form of creating underground infrastructure for thousands of years.  

Throughout this period, there have been many advancements in technology improving the 

safety, efficiency and overall productivity of tunneling systems.  

Many different applications of tunnels exist, serving different purposes.  The most 

common form, transportation tunnels (i.e. roadway, subway, and pedestrian) offer a more 

convenient means of access from one location to another or in some cases to locations not 

previously accessible.  Other applications of tunneling are pressure tunnels, which are a 

crucial component in the operation of hydroelectric power plants. Their purpose is to 

divert water from an upstream reservoir to a hydro-electric power house, carrying very 

large outward pressures. Micro tunnels are also employed in the routing of 

telecommunication cables.   

Tunneling operations consist of the excavation of soil/rock which results in increased in-

situ stresses due to the loosed native soil. As such, additional reinforcement is employed 

in areas of low in-situ strength, or where cover is inadequate.  Reinforcing the tunnel 

walls are often done with rock bolts, wire mesh, and concrete lining, depending on the in-

situ condition present (i.e. soil/rock type, stress state, water table location).  In the 

application of pressure tunnels, steel linings grouted with concrete may be used.  Figure 

2.7 illustrates the basic different types of linings; the lined section, the semi-lined section, 

and the unlined section. 
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Figure 2.7 - Tunnel lining reinforcement sections (Rancourt et al., 2007) 

 

Several different methods of tunneling are used depending on the characteristics of the 

tunnel being built (i.e. depth, length and location).  The process of drilling and blasting 

(D&B) revolutionised tunneling technology and continues to be the most common form 

of tunneling to date. As the name suggests, the process of D&B consists of drilling a 

number of holes at the tunnel face, filling them with explosives and detonating the 

explosives causing the rock to collapse.  The rubble is removed and the exposed surface 

is reinforced appropriately.  This process is repeated, until the tunnel is constructed.  

Cut-and-cover tunneling is often employed in shallow tunnels, such as those commonly 

used in subway, railway and metro systems.   The process involves excavating a trench 

the length of the tunnel, constructing the tunnel inside it, carefully back-filling the trench 

and reinstating the surface.    

The tunnel boring machine is an increasingly common method of tunneling and is 

described in the following section. 
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2.3.1 Tunnel Boring 

A tunnel boring machine (TBM) is a circular cross-section machine used to excavate 

tunnels through a variety of soils and rock strata.   In unstable ground conditions, 

concrete segments are erected in place forming a lining as the TBM advances. The tunnel 

lining contributes greatly towards the serviceability, increased mechanical and ultimate 

capacity of the excavated area and reduces uncertainties during and after construction by 

increasing the factor of safety (Mashimo et al., 2002).  The TBM has advantages of 

limiting disturbances to the surrounding ground, which is crucial when tunnelling in soft 

unstable soils.  It is also favorable when tunneling in residential areas, where drill and 

blast techniques may cause disturbances to the local population.  Furthermore, by 

producing a smooth tunnel wall, the cost of lining the tunnel is highly reduced.  The main 

disadvantage of using a TBM as a method of tunneling is the large overhead costs due to 

the complexity of this machinery.  However, as modern tunnels become longer, TBMs 

actually prove to be a more economical solution compared to D&B due to their efficiency 

and resulting shorter project time frame. 

The double shield TBM is nowadays the most commonly used machine for highly 

sophisticated operations and is suitable for a variety geological conditions.  It consists of 

a front shield, telescopic gripper shield, and has the ability to operate in the following two 

modes: 

i) In stable ground, gripper pads are propped against the side wall of the 

tunnel to provide forward thrust capabilities and allow for segment 

installation to occur simultaneously during excavations. 
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ii) In fractured ground, the thrust is shifted to thrust cylinders that push off 

the concrete tunnel segments behind the machine.  This prevents damage 

to fragile tunnel walls, which could induce large disturbances.  In this 

process however, excavation and segment installation are performed 

independently and thus tunnel productivity is diminished.  

The TBM has revolutionized the tunnelling industry by making tunnelling safer, a more 

economical solution for creating underground space and by opening the possibility of 

creating tunnels where it was not feasible before (Spencer et al., 2009). Figure 2.8 

demonstrates a typical TBM. 

 

Figure 2.8 - Tunnel Boring Machine 
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2.3.2 Steel Fibre Reinforced Concrete Tunnel Lining  

SFRC is nowadays extensively used in civil infrastructure due to its enhanced mechanical 

and durability performance. It has been successfully employed in various applications 

including rock slope stabilization, footings, offshore structures, slabs on grade, hydraulic 

structures, architectural panels, precast segments and shotcrete technology (Banthia, 

2001) 

The application of SFRC in the construction of tunnel lining segments (TLS) has been 

predominantly applied in Europe, Australia, and the UAE beginning in the early 1990’s 

(Hansel et al., 2011).  Typical tunnel inner diameters range from 2.8 – 9.2 m in diameter, 

having lining thicknesses of 150 – 400 mm thick.   Table 2.1 provides a list of major 

tunnel projects utilizing SFRC as a primary material in the fabrication of concrete tunnel 

linings.  To date, Canada has no history of SFRC use as a material in tunnel lining 

applications.  

In 2008, the municipality of Toronto, Ontario initiated a preliminary investigation to 

evaluate the novel properties of SFRC for the tunnelling industry.  A 150 m long test 

section of the new 8.6 km long Toronto York Spadina Subway Extension is planned to 

consist of solely steel fibre reinforced concrete tunnel lining.  This will be the first 

employment of this innovative material in Canada.  
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Tunnel 

Country   

(Year of 

Construction) 

Inner 

Diameter 

(m) 

Lining 

Thickness 

(mm) 

Length 

(km) 

Number of 

Segments per 

Ring 

Channel 

Tunnel Rail 

Britain & 

France (1994) 
7.5 350 37.9 9 + key 

Oenzberg 

Tunnel 
Switzerland 

(2004) 

12.3 480 3.16 - - - - - 

Hofoldinger 

Stollen 

Germany 

(2004) 
3.3 180 17.5 6 

Wehrhahn 

Line 

Germany 

(2014) 
9.2 450 3.40 7 + key 

Step Tunnel 
 Abu Dhabi 

(2018) 
6.3 280 42.0 - - - - - 

Copenhagen 
Denmark 

(2009) 
4.2 300 3.90 5 + key 

2nd 

Heinenoord 

 Netherlands 

(1999) 
7.6 350 1.35 7 + key 

Gold Coast 
Australia 

(2009) 
2.8 150 2.00 6 

Fanaco Italy 3.0 200 4.82 - - - - - 

Metrosud Italy 5.8 300 2.64 - - - - - 

Heathrow U.K.       

(1995) 

4.5 150 1.40 - - - - - 

Jubilee U.K.      

(1996) 

4.4 200 2.40 - - - - - 

Essen Germany 7.3 400 1.20 - - - - - 

Lotschberg Switzerland 4.5 220 1.10 - - - - - 

 

Table 2.1 - History of steel fibre reinforced concrete tunnels (Hansel et al., 2011) 
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2.3.3 In-situ Shotcrete Tunnel Linings 

Shotcrete is a form of sprayed concrete typically used in the repair of existing structures, 

or as preliminary/permanent structural support.  Concrete is pneumatically projected 

through a hose onto a surface at high velocity, where it is compacted on impact. It is 

commonly used when formwork is costly, impractical or access to the working area is 

limited. In the case of tunnel linings, the area is first excavated and then lined with 

shotcrete.  The shotcrete serves as structural support to the unreinforced surroundings.  

Shotcrete linings between 100 – 150 mm thick begin to act as rock stabilizer, and linings 

with thickness more than 250 mm can be designed using the same approaches as used for 

precast concrete linings (Brekke et al., 1987).   The main disadvantage of shotcrete is the 

lack of achieved quality control.  Since this technique is performed in the field, under 

difficult conditions, material defects are more likely to occur.   

2.3.4 Precast Segment Tunnel Linings  

Precast concrete tunnel liners are produced by casting concrete in reusable molds, 

allowing them to cure in a controlled environment.  The casting beds for precast 

operations can be used repeatedly with small maintenance (if needed), which makes the 

cost of formwork/unit lower than on site production.  Once fully cured, the segments can 

be stacked in a storage yard until ready for transportation to the construction site.  During 

excavation, they are simultaneously assembled inside the shield of the TBM to form a 

ring.  Unlike shotcrete, or cast in place liners, precast segments have the benefit of being 

jointed; ultimately lowering the overall stiffness of the structure. Thus, the tunnel absorbs 

external forces by deforming, and hence is subjected to lower moments (El Naggar, et al., 

2008). 
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Figure 2.9 - Precast segment linings (a) a stacked full tunnel ring, (b) storage yard 

 

The main disadvantage of precast concrete tunnel lining segments is the minimal 

allowable tolerance, which in turn requires very high quality control.  If a tunnel segment 

is out of line by only a few millimetres, the joint alignment may be compromised and the 

lining may not be able to be properly assembled. As a result, it is crucial that a high level 

of quality control be present throughout the fabrication timeline of each segment.  Mock-

up tests are often performed, which involve assembling a small section (typically 2-3 

rings) in a controlled environment to ensure high production quality.  Figure 2.10 

illustrates a mock-up test.  Quality strength performance tests are also performed every 

few batches, as to ensure proper concrete mixing and minimal design strength 

requirements.  Tensile and compressive tests are often done at time of casting, 28 days, 

56 days, and before delivery to site, to ensure the segments meet design specifications.   

a) b) 
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Figure 2.10 - Tunnel ring assembly mock up 

 

 

Figure 2.11 - Segmented tunnel liner casting bed 
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2.3.5 Forces Acting on Tunnel Linings 

Prior to doing full scale testing or finite element modeling, it is crucial to first determine 

the type of loads acting on the tunnel lining system.  The bending stresses present within 

the tunnel liner are a direct cause of the moments acting on the tunnel structure (Figure 

2.12).   Typically in isotropic ground conditions, the maximum moments are present at 

the springline of the tunnel.  Moreover, the magnitude of these moments is also 

dependent on the stiffness of the liner.  Jointed tunnels have a much lower stiffness in 

comparison to continuous liners because the in-situ stresses acting on the liner are 

absorbed by the ability of the joints to rotate (El Naggar et al.,2008). 

 

 

Figure 2.12 - Typical moments acting on a tunnel liner (Mashimo et al., 2002)  

 

Additionally, the tunnel liner may be subjected to higher stress states when weak soil 

conditions are present, or when ground supports fail.  According to Mashimo et al., 

(2002), there are three critical loading scenarios where the tunnel liner may experience 

larger than expected stresses: 

Springline 
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i) An increase in earth pressure due to loosened or weak soil at the tunnel crown, 

resulting mainly in an increase of axial forces  

ii) Loosened ground in conjunction with loss of support or confinement of the 

lining ring at the crown and shoulders causing bending moments at the tunnel 

shoulders. 

iii) Large uniform pressures acting on the lining due to very weak ground 

conditions resulting in a combination of axial and bending forces. 

 

Moreover, a tunnel liner may be subject to higher bending stresses if care is not taken 

during installation.  A tunnel is typically excavated with a slightly larger diameter than 

the outside diameter of the tunnel ring.  Post installation, a layer of concrete or grout is 

backfilled between the tunnel lining and soil wall to create an integrated supporting 

structure.   When inadequate grout filling between the structure and soil surface is 

present, the tunnel lining is consequently subjected to flexural stresses, as illustrated in 

Figure 2.13.    

  

 

Figure 2.13 - Bending due to inadequate grout filling (Gettu et. al., 2004) 
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Furthermore, after the casting and curing phase, segments are set down and stacked on 

supports. Timber blocks are usually placed between segments taking care that they are 

aligned with the supports.  It is possible that eccentric placing of segments due to 

differences in the location of supporting blocks between segment layers, may results in 

additional bending moments.  Such additional forces can lead to unplanned cracks or 

deformations, particularly in long segments used in big diameter tunnels.  The loading 

effects due to storage of the segments can be calculated according to the formulas shown 

in Figure 2.14, where M = the maximum moment at the centre of the beam (kN∙m), w = 

width of the segment (m), d = depth of the segment (m), L = length of the segment (m), 

and γ = specific weight of concrete (kN/m
3
).   

 
Figure 2.14 - Moment loads acting on stored segments 

L (m) 

M = w * d * γ 
 
* L

2 
/ 8 (kN∙m) 
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2.4 Previous Structural Testing 

2.4.1 Full Scale Testing 

2.4.1.1 Moccichino et al. (2006) 

Full-scale bending tests were performed on tunnel segment specimens, to compare the 

flexural performance of SFRC elements with respect to the conventionally reinforced 

ones.   The tunnel segments analyzed were modelled after the Brenner Base Tunnel, 

located between Italy and Austria, which were designed for the application of 

mechanized tunnelling with a TBM double shield machine.  The segments considered in 

the study had a thickness of 200 mm, a width of 1500 mm, a length of 3640 mm and a 

compressive strength of 75 MPa.  A line load was applied through a load distribution 

frame using an electromechanical actuator with a maximum load of 1000 kN.  Vertical 

displacements were measured by using three linear variable displacement transducers 

(LVDTs) placed at the intrados midspan of the segment.  The crack openings were 

recorded with two LVDTs located at the central intrados of the segment.  Finally, the 

applied load was measured using a load cell placed between the frame and the segment.  

The test setup is shown in Figure 2.15. 

             

Figure 2.15 - Schematic diagram of the flexure test (Moccichino et al., 2006) 
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Figure 2.16 and Figure 2.17  show the load against displacement and load against crack 

width relationship, respectively.  For a traditional reinforced concrete segment, it can be 

seen that the first cracking develops at an applied load of 70 kN, while the segment yields 

at 125 kN.  Eventually strain hardening occurs up to a failure load of 175 kN. 

 

Figure 2.16 - Flexural test: load vs. midspan displacement (Moccichino et al., 2006) 

 

Figure 2.17 - Flexural test: load vs. crack width (Moccichino et al., 2006) 

RC - 1st Crack (70 kN) 
 

SFRC - 1st Crack (95 kN) 
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The response of the SFRC segments is somewhat different. The segment experiences a 

higher initial stiffness with the first crack being detected at an applied load of 95 kN.  

Following this stage, the stiffness remains nearly constant up to a carrying load of 120 kN 

due to the stress being transmitted along the cracks by the fibre reinforcement.  The 

segment reached a failure load at 140 kN, after which strain softening developed.    

Although the flexural capacity of the RC segment was higher in comparison to the SFRC, 

some considerations have to be taken into account for the particular case of this structure.  

For precast tunnel segments, the structure is typically subjected to higher stresses during 

the construction phase rather than the service stage.  Therefore, it is prudent to limit 

concrete cracking, during the curing and assembly steps. With respect to tunnel linings, 

the onset of cracking can represent an alternative ultimate state (Moccichino et al., 2006).  

The main finding in this study was that SFRC can be substituted for traditional 

reinforcement; in particular the segment performance is improved by the fibre presence 

mainly in terms of crack opening control.  
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2.4.1.2 Poh et al. (2009) 

Several full scale laboratory tests were performed to explore the potential of using SFRC 

in a mass rapid transit tunnel.  The flexural tests were specified to investigate the load 

carrying capacity of conventional plain concrete and SFRC tunnel lining segments. The 

segments had a length, width, height, and thickness of 2359 mm, 1400 mm, 600 mm, and 

350 mm, respectively.  Each segment was supported by a roller system on one end and a 

horizontally restrained roller on the other end. Incremental loads of 10 kN were applied to 

a force distributing beam at midspan of the segment. The deflections were measured at 

midspan with the use of dial gauges and cracking was visually observed throughout the 

loading sequence.  The test setup is shown in Figure 2.18. 

 

Figure 2.18 - Flexural test set-up and instrumentation (Poh et al., 2009) 

The test program comprised of three specimens for both conventional plain concrete and 

SFRC (30 kg/m
3
 and 40 kg/m

3
 of steel fibre).  The experimental results for the plain 

concrete segments showed an initial elastic behaviour up to an applied load of 130 kN.  

The segment failed abruptly in a brittle manner at the peak load without showing any 
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characteristics of residual strength.   Figure 2.19 shows the load-deflection behaviour of 

the plain concrete. The SFRC segments on the other hand exhibited a higher initial 

cracking load as the steel fibres began to provide a bridging effect in between the cracks. 

The failing load of the SFRC segments was 85% and 92% of the initially developed 

cracking load for segments having steel fibre 30 kg/m
3
 and 40 kg/m

3
, respectively.  

 

Figure 2.19 - Plain concrete flexure test: load-midspan displacement (Poh et al., 2009)  

 

Figure 2.20 - SFRC flexure test: load- midspan displacement (Poh et al., 2009) 
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2.4.1.3 Mashimo et al. (2002) 

Mashimo et al., (2002) carried out experimental tests to determine the load carrying 

capacity of tunnel linings.  Three different loading arrangments were used, intended to 

simulate different ground conditions.  Full scale models of both unreinforced and steel 

fibre reinforced segments were  studied.  The concrete specimens whose shape was a 

semi-circle, had diameter, width and thickness of 9700 mm, 1000 mm, and 300 mm, 

respectively. In the case of SFRC, the lengths of fibre used were 50 mm and 60 mm and 

the mixture ratio was 0.5 %.   

 

Figure 2.21 - Various loadings simulating different ground conditions (Mashimo et al., 

2002) 
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Three different loading arrangements shown in Figure 2.21 were considered to observe 

the influence of axial load only, bending load and the combined action of axial and 

bending loads. These are depicted by loading scenario (A), (B), and (C), respectively.  

Loading case (A) was designed to simulate the increase in earth pressure at the tunnel 

crown due to loosened or weak soil.  Loading case (B) was an attempt to examine the 

effects of concentrated loads at the tunnel crown due to loss of support of the lining ring 

at the crown and shoulders.  Finally, loading case (C) represents a tunnel subjected to 

large uniform pressures acting on the lining, due to very weak ground conditions 

(Mashimo et al., 2002).   The supporting structure consisted of two jacks per section 

placed equally at a 300 mm distance from the top and bottom edges of the 1000 mm wide 

specimens.  Loading plates were placed between the two jacks to adequately distribute 

the applied load and simulate realistic ground conditions.  

For loading case (A), the unreinforced specimen experienced a failure load of 390 

kN/jack, whereas the segment reinforced with steel fibres, withstood a maximum load of 

330 kN/jack.  The difference in the collapse load resulted from the difference in the 

compressive strength of each segment. The compressive strengths of the unreinforced and 

reinforced segments were 26 MPa and 20 MPa, respectively.  Consequently, the results 

indicate that the load carrying capacity was dominated by the concrete compressive strength 

of the concrete and the effect of steel fibre-reinforcing had minimal effect. 
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Loading case (B) demonstrated a collapse load of 100 kN/jack for the unreinforced 

section, which had a compressive strength of 27 MPa. The fibre reinforced segments 

failed at loads of 115 kN/jack and 155 kN/jack with compressive strengths of 23.7 MPa 

and 28.3 MPa, respectively. Based on these load test results, it can be suggested that the 

addition of steel fibre reinforcement increases the load carrying capacity of the segments 

by 15% to 55%. 

Lastly, the collapse load for case (C) was 250 kN/jack and 290 kN/jack for the 

unreinforced, and reinforced segments, respectively. The load carrying capacity increase 

of only 16% can be attributed to the reinforced segment having a lower compressive 

strength by 12.5%, as in case (A) 

Mashimo et al., (2002) observed that the most critical loading case overall was when the 

bending loads were dominant and that the addition of SFRC helped increase the load 

carrying capacity. Furthermore, it was concluded that the length and the type of fibre 

have an influence on the load carrying capacity.  Fibres of smaller length have a slighter 

larger load carrying capacity.  It was also found that the spalling of concrete from lining 

can be controlled by using fibre reinforced concrete.  
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2.4.1.4 Ahn (2011) 

A comparison between structural behaviour of plain concrete and concrete equipped with 

a fire retardant thin spray-on liner (TSL) layer was performed.  Several full-scale tests 

were conducted to study the load-carrying capacity of segmented tunnel linings subjected 

to a uniaxial loading and to investigate the effects of TSL on the load-carrying capacity, 

subject to the same loading.    The segments considered in this study had a compressive 

strength of 40 MPa, an outer diameter of 5000 mm, a width of 610 mm and a thickness of 

150 mm, and length of approximately 1800 mm.  The test setup consisted of a hydraulic 

actuator, capable of generating a maximum load of 250 kN, supported by two vertical 

steel columns.  The vertical load was applied to a 110 mm wide, 620 mm long and 25.4 

mm thick steel loading plate which transferred the concentrated point load to a uniaxial 

line load acting on the segment extrados.  Each segment was supported by a fixed 

connection on one end and a pin connection on the other.  An LVDT was placed at the 

midspan of the segment in order to measure the load vs. displacement.  Two LVDTs were 

also placed horizontally on the roller end of the segments to ensure uniform loading 

throughout the test.  The experimental setup is shown in Figure 2.22. 

Figure 2.23 compares the midspan load-displacement behaviour of the concrete segments 

with and without the TSL coating.  The initial linear-elastic response of the uncoated 

segment and the TSL coated segments was similar up to a loading of approximately 50 

kN. After this point, it can be seen that the TSL coated segments had slightly higher load 

capacity compared to the uncoated segment reaching a load of 68 kN.  Post-peak, 

differences in the load carrying capacity of the uncoated and the TSL coated segments 

gradually decreased  
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Figure 2.22 - Experimental setup (Ahn, 2011) 
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Figure 2.23 - Load-displacement comparison of plain and TSL covered tunnel lining 

segments subjected to flexural loading (Ahn, 2011) 
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2.4.2  Small Scale Testing 

2.4.2.1 Aruga et al., (2007) 

In an attempt the study the deformation and cracking of reinforced and unreinforced 

tunnel linings due to earth pressures, the Railway of Technical Research Institute of Japan 

(RTRI) has performed several experimental tests to assess the structural performance of 

concrete tunnel linings.   

Due to the high costs associated with full-scale testing, a 1/30 bench scale test was 

proposed as a scaled physical model system.   The testing setup consisted of a semi-

circular reaction frame, eleven radially spaced loading units and a pair of stoppers to 

prevent movement of the sidewalls.  Loading cells were positioned at each of the loading 

units to record the reaction forces throughout the test. In addition, curved loading plates 

were placed between the load cells and the tunnel segment, to achieve adequate contact 

and to ensure uniform loading.  Displacements were measured with seven displacement 

gauges which were positioned on the intrados of the test segment at angles of 

approximately 45°.  Furthermore, strain gauges were spaced evenly along the intrados, 

and extrados of the lining model, which allowed for estimation of bending moments 

acting on the specimen, deduced from measured strain.  Moreover, the segments tested 

had a width, thickness, and outer diameter of 20 mm, 10 mm, and 320 mm, respectively 

with a concrete compressive strength of 27 MPa. Figure 2.24 shows the testing setup.   

The study focused on examining four cases of tunnel linings consisting of reinforced and 

plain concrete.  In addition, segments having physical damage with 20 mm wide and 10 

mm deep fragmented sections were also evaluated. According to the testing results from 
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Aruga et al., (2007), the intact reinforced concrete lining and the plain concrete lining 

sustained very similar load carrying capacities in the initial loading stages prior to 

cracking.  However, once tensile cracking and compressive crushing initiated in the plain 

concrete segment, its structural performance was greatly diminished in comparison to the 

reinforced section.  The superior post-crack behaviour of the reinforced segment was 

attributed to the addition of steel reinforcement, which improved post peak strength 

characteristics of the concrete. In the case of the damaged concrete liners, both types of 

linings demonstrated a major decrease in the load carrying capacity after tensile cracking 

occured.  However, like the intact linings, the reinforced concrete segments displayed 

better post-failure behaviour, whereas the plain concrete liner failied in a brittle manner.  

From the test data presented, the post-cracking performance of the reinforced concrete 

liner was shown to be greater than that of the plain concrete.  In addition, the durability of 

the reinforced concrete lining was substantially better. 

 

Figure 2.24 - A bench-scale model (1/30) test setup (Aruga et al., 2007) 
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2.5 Numerical Modelling 

2.5.1 Ahn (2011) 

Ahn (2011) performed several experimental three point bending flexure tests on 

segmented tunnel linings to investigate their load-carrying capacities.  A non-linear 

elasto-plastic finite element analysis was then performed in an attempt to simulate the 

experimental results.  ABAQUS, a finite element package was used in the analysis. 

ABAQUS provides two general concrete models which are capable of modeling plain and 

reinforced concrete; the concrete smeared cracking (CSC) model and the concrete 

damaged plastic (CDP) model.  Both models were investigated and it was determined that 

the CSC model had issues converging before reaching ultimate failure, preventing the 

investigation of the post-peak behaviour of concrete.  The CDP model captured the peak 

and part of the post-peak strain-softening behaviour and was hence chosen to be used in 

the study.  Table 2.2 summarizes the material input parameters used in the CDP model 

for concrete and the elasto-plastic strain hardening model for the steel reinforcement.  

Parameter 
Material 

Concrete Rebar (C45 Steel) 

Initial tangent elastic modulus (E) 27,800 MPa 210,000 MPa 

Poisson’s ratio (υ) 0.2 0.3 

Density 2500 kg/m
3
 8030 kg/m

3
 

Unconfined compressive strength(fcu) 40 MPa - - - - - - 

Initial Yield Stress (σy) 20 MPa 280 MPa 

Tensile failure stress (σtf) 3.3 MPa 800 MPa 

Model Behaviour CDP
3 

EP-S
4
 

        3Concrete Damaged Plasticity; 4Elastoplastic strain-hardening 

Table 2.2 - ABAQUS material input parameters (Ahn, 2011) 
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The 3D finite element model was generated following the dimensions of the full size 

segmented liner and consisted of 12,599 10-noded tetrahedron elements. Boundary 

conditions were applied to the segment ends in order to simulate a fixed and roller 

support, with U1 = U2 = U3 = 0 and U2 = 0, respectively. The finite element model 

geometry of the segmented concrete liner is shown in Figure 2.25 

 

Figure 2.25 - Finite element geometry of the segmented concrete liner (Ahn, 2011) 

 

 

Figure 2.26 - A comparison between experimental and finite element results (Ahn, 2011) 
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Figure 2.26 illustrates a comparison of the load vs. midspan displacement between the 

experimental and numerical results.  In the initial loading stage (up to 40 kN), the slope 

of the FE results was slightly steeper, signifying a higher stiffness.  The results began to 

agree with each other once yielding of the material was reached.  The slightly higher 

loading of the FE model could have been attributed to differences such as non-

homogeneity and non-linearity in the material properties, inadequate function of the 

supports, and potential initiation of micro cracking in the concrete liners.  Due to only 

minor differences in the flexural behaviour, it was concluded that a nonlinear FE analysis 

using Concrete Damaged Plastic (CDP) model in ABAQUS was very effective in 

predicting the displacement and the strain behaviour of segmented concrete tunnel lining 

subjects to uniaxial line loading. 
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2.5.2 Sorelli et al., (2005) 

A study was performed by Sorelli et al., (2005) to investigate the possibilities of using 

SFRC tunnel lining segments as an alternative to conventional RC segments.  Because 

the behaviour of both materials is fairly different, it was of interest to review and examine 

classical design methods in terms of post-cracking performance with experimental and 

numerical methods.   

Three SFRC segments were cast in industrial conditions to capture realistic material 

variation caused by flow direction, gravitational forces, and compacting processes during 

the casting phase. To assess the level of heterogeneity of the SFRC segments, tensile tests 

were performed on 36 cylinder cores, drilled from the locations shown in Figure 2.27.  

Based on the post-cracking tensile tests performed on the cylinders, areas of the segment 

with higher concentrations of fibres were distinctly recognized.  It was observed that 

specimens taken from areas belonging to “row 1” and “column C” exhibited higher 

residual strength, signifying a higher concentration of fibres.  The flow direction of the 

fresh concrete pumped into the vertically standing moulds, resulted in the uneven fibre 

distribution.     

  

Figure 2.27 - Experimental tensile test response (Sorelli et al., 2005) 
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The segments being modelled had an inner diameter, thickness and length of 6.3 m, 0.3 

m, and 1.42 m, respectively.  The configuration of the loading was based on the irregular 

fibre distribution and was considered the most critical arrangement.  Two hydraulic jacks 

applied concentrated loads at the intrados corners, while the segment was restrained at the 

extrados midspan.  The layout of the test setup is shown in Figure 2.28(a).   

The finite element mesh was composed of 11,391 brick elements consisting of 14,000 

nodes and utilized the Concrete Smeared Cracking model. The scatter of fibres with 

respect to the different locations of the segment was taken into account while generating 

the FE model.  Zones with higher concentrations of fibres were prescribed different post-

cracking tensile relations to optimize the accuracy of the analysis.  A solid homogenous 

model was also reproduced and it was found that the fibre distribution had a significant 

effect on the global behaviour of the SFRC structure.  Figure 2.28(b) illustrates a good 

agreement between the heterogeneous model and the experimental results and also 

highlights the behavioural deviation, when modelling a SFRC structure as a homogenous 

member.  In addition, the CSC model used failed to converge just beyond the peak 

loading, preventing the investigation of the full post-peak behaviour.  

                

Figure 2.28 - (a) Test setup, (b) Experimental and finite element response (Sorelli et al., 

2005)  
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2.6 Summary 

Over the last few decades, steel fibre reinforced concrete has become increasingly 

popular due to its enhanced mechanical properties and cost saving benefits, particularly in 

the application of tunnel support systems.  Its physical and mechanical properties have 

been known to increase concrete toughness, and limit crack initiation and propagation 

preventing chemical seepage and in turn limiting spalling action.  Additionally, benefits 

of replacing current forms of concrete with SFRC can result in approximately 25% cost 

saving benefits with respect to material costs alone, and greatly minimize production time 

(Venkatesh et al., 2006).  Furthermore, sophisticated tunnel boring machines have 

recently allowed for the excavation of native earth and installation of concrete segments 

to be installed simultaneously, resulting in quicker project delivery time.  With the 

potential increase of steel fibre reinforced concrete in tunnel applications, more accurate 

analyses of tunnel liner behaviour are therefore of great interest.  

Based on previous studies performed and reported in the literature, a uniaxial line load 

causing flexure has been found to represent one of the most critical loading cases for 

tunnel linings (Mashimo et al., 2002) and proves to be a feasible method for evaluating 

the flexural response of full-scale segmented concrete tunnel linings in the laboratory.  

Superior flexural behaviour of a SFRC lining is primarily due to advantageous material 

properties (i.e. increased toughness, crack control), which are highly reliant on a 

uniformly distributed fibre matrix.  Inadequate quality control employed during the 

casting process (e.g. the balling effect, excessive vibration, the gravity phenomenon) can 

lead to poor fibre distribution and orientation, consequently affecting the material’s 

overall structural performance.   
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Furthermore, numerical attempts to replicate experimental flexure tests of tunnel 

segments using the Concrete Smeared Cracking model have only been successful in 

capturing the behaviour up to the peak loading.  However, the Concrete Damage 

Plasticity model in finite element software has been shown to capture the post-peak 

ductility of reinforced concrete and is the most appropriate model for the analysis of steel 

fibre reinforced concrete tunnel liners. 

 

 

 

 



                                                                                          Chapter 3  

 

 

 

3METHODOLOGY 

3.1 Introduction 

In this chapter, the methodology and experimental testing procedures are presented.  The 

design of the flexural test system comprising of a loading unit, loading frame, reaction 

frame and instrumentation is discussed.  The experimental method was used to study the 

load-displacement, load-strain, and crack propagation behaviour of steel fibre reinforced 

concrete tunnel liner segments subjected to uniaxial flexure loading conditions. 

Moreover, several cores were drilled from random positions of two key segments, 

comprising of two separate concrete batches.  Unconfined compressive and tensile tests, 

along with flexural beam tests were performed to determine the steel fibre reinforced 

concrete material properties.  Analytical solutions of the compressive and tensile stress-

strain behaviour are derived and compared to the experimental material testing to validate 

their approximations.  Finally, non-destructive methods for evaluating the SFRC material 

and spatial characteristics by means of computed tomography scanning are examined.  

The primary objectives of this chapter are: (i) to describe the method used in evaluating 

the flexural behaviour of steel fibre reinforced concrete tunnel liners, (ii) to determine and 

validate the compressive and tensile stress-strain characteristics of SFRC using 

experimental and analytical methods, (iii) investigate the concrete models in finite 

element software ABAQUS which are capable of analyzing the non-linear elasto-plastic 

behaviour of SFRC and (iv) to describe the non-destructive methods undertaken to study 

the fibre distribution using CT scanning.   
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3.2 Segment and Site Description 

 In 2008, the city of Toronto embarked on expanding its subway system between the City 

of Toronto and The Regional Municipality of York (see Figure 3.1).  The 8.6 km long 

extension is planned to consist of approximately 6.6 km of underground tunnel to 

accommodate the Toronto York Spadina Subway Extension (TYSSE).   A small 150 m 

test section comprising of 100 rings of SFRC segmented tunnel linings will also be 

included.  This section will be subject to in-situ monitoring over the next decade to 

investigate its long term performance.  The SFRC tunnel lining segments studied were 

designed by Hatch Mott MacDonald and fabricated by Armtec Pre-Con Manufacturing 

Ltd. in Woodstock, Ontario in Canada.  

The tunnel lining consists of four segments and two key segments, which bolt together to 

form a ring.  The rings are connected together with dowels in the longitudinal direction to 

form the tunnel lining. The internal diameter of the ring is 5400 mm, the lining thickness 

is 235 mm and the nominal width is 1500 mm. The segment specifications are 

summarized in Table 3.1.   Figure 3.2 shows the segment geometry and dimensions.   

The concrete mixture utilized Dramix 80/60 steel fibres conforming to ASTM A820-06 at 

a dosage density of 57 kg/m
3
 resulting in a 2% overall mixture per volume.   The exact 

concrete mixture designed by Armtec Pre-Con remains confidential and is not disclosed 

in this thesis.  
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Figure 3.1 - Toronto-York Spadina subway extension map (TTC) 
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Figure 3.2 - Detail drawing of segment tunnel lining (HMM) 

 

Number of segments 6 + 2 key segments 

Thickness 235 mm 

Medium ring depth 1500 mm 

External diameter 5.87 m 

Internal diameter 5.40 m 

Angle per segments 67.5°, key segment 45° 

Table 3.1 - Geometrical properties of TTC Spadina Line extension tunnel lining 

 



CHAPTER 3.                                                                                                                          52 

 

 

The properties of the steel fibres used are summarised in Table 3.2 and the geometry of 

the steel fibres is given in Figure 3.3. 

 

Fabricator Bekaert - Dramix 

Type of steel Carbon 

Shape Hooked 

Cross section Circular 

Ultimate tensile strength (MPa) >1050 

Dosage 57kg/m
3
 

Length (mm) 60  

Diameter (mm) 0.75  

Aspect ratio (l/d) 80 

Table 3.2 - Steel fibre specifications 

 

 

 

Figure 3.3 - Geometry of the Dramix -80/60- steel fibre 
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3.3 Arrangement for Conducting Flexure Test 

3.3.1 Experimental Loading System 

Each segment was tested in an extrados up orientation as shown in Figure 3.4. A uniaxial 

line load was applied at the middle of the segment using the hydraulic actuator. The 

hydraulic actuator could generate a maximum force of 1,450 kN with a maximum travel 

distance of 508 mm and had the ability to record load output to an accuracy of 10 N. The 

applied load, and movement of the actuator was controlled automatically by a computer 

system during both loading and unloading.  The load-displacement was monitored during 

the test and recorded for future analysis.    

The loading unit consisted of a two roller floor supports, a loading frame and a hydraulic 

actuator supported by two steel columns.  The individual components are described in 

detail in the following sections. 

 

Figure 3.4 - Experimental system 
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3.3.2 Loading Frame 

A loading frame was used to transmit a point loading from the actuator to a uniformly 

distributed line load acting on the concrete tunnel lining segment.  The loading was 

applied at the midspan oriented at 90° to the central axis of the segment. Figure 3.5 shows 

an isometric view of the frame.  It consists of a six W150x37, and three W310x24 

strategically staggered I-beams with reinforcing web stiffeners.  A steel loading plate of a 

110 mm width, 620 mm length and 25.4 mm thickness was welded to the top of the frame 

to evenly transmit the load from the actuator to the frame.   

 

 

Figure 3.5 - Loading frame 
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The loading frame was designed based on a wiffle tree frame design (Moccichino et al., 

2006).  This type of frame adequately distributes the force from a single point load, to a 

uniformly distributed line load as shown in Figure 3.6.  A single force, P, is distributed 

into two point loads of ½ P.  These forces are then distributed further into four loads of 

magnitude ¼ P.  These four point loads are then applied to a 150 mm wide, 25.4 mm 

thick, and 2000 mm long plate.  Attached to this plate are three evenly spaced semi-

circular rollers with a diameter of 25.4 mm.  A rubber strip liner was placed between the 

frame and segment to accommodate for any out of plane shifting of the frame and to 

ensure uniform loading.     

 

Figure 3.6 - Frame force distribution  
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3.3.3 Reaction Frame 

The support system for the test setup consisted of two reaction frames spaced 2438 mm 

(8 feet) apart.  Each reaction frame was bolted to the structures laboratory concrete slab 

floor with 50.8 mm (2 inch) diameter bolts, to prevent any movement.  The frame 

comprised of a 25.4 mm (1 inch) thick rolled steel section fastened to a large I beam with 

a series of bolts.  The roller allowed for displacement in the longitudinal direction but 

prevented any vertical movement. Figure 3.7 depicts the fundamental support system. 

 

 

 

Figure 3.7 - Support system layout 
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3.3.4 Test Procedures 

The following summarizes the test procedures used in determining the flexural response 

of SFRC tunnel lining segments: 

i) For each test, the segment was lifted using a 10 ton capacity overhead crane 

and placed on two support beams, which were fixed to the testing floor. 

ii) Strain gauges were bonded to the segment’s extrados surface with a strong 

epoxy at six specific locations.  

iii) A 6.35 mm thick strip of stiff rubber was placed on the loading zone followed 

by the steel loading frame.  The frame was positioned in the middle of the 

segment directly centered under the loading actuator. 

iv) Three LVDTs were placed at the midpoint of the segment to record vertical 

displacement; one in the centre and one on each edge to ensure uniform 

loading.  Two LVDTs were also positioned on both ends of the segment 

recording horizontal displacement to ensure uniform loading. 

v) The actuator was brought into contact with the loading frame.  The loading 

rate was set to 5 mm/min and the segment was loaded until failure. 

vi) Cracks were monitored and mapped during the testing using a digital camera 

for future analysis. 

vii) Post-failure, the actuator was unloaded, the gauges removed and the segment 

was broken up for later disposal. 
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3.4 Instrumentation of Segments 

3.4.1 Displacement Transducers 

To accurately estimate the flexural response of the tunnel segments, proper loading 

symmetry and boundary conditions needed to be established.  Three LVDTs (D-1 to D-3) 

were used on the centreline of the individual segments to measure displacements at the 

midspan.  In addition, two LVDTs (D-4 to D-7) were placed horizontally on each end of 

the specimen to verify that the segment was deforming symmetrically and to ensure that 

no torsion was present. Figure 3.8 illustrates the LVDT layout.  The displacement 

transducers used were manufactured by Penny & Giles, having a maximum travel 

distance of 100 mm and a tolerance of ± 0.01 mm.   

3.4.2 Strain Gauges 

Strain measurements were also recorded during the test to provide estimates of localized 

load-strain responses.  Eight strain gauges were fixed using high strength epoxy to the 

surface of the lining to provide strain estimates.  The strain gauges were labelled S-1, S-2 

and so on. Gauges S-1 to S-6 were bonded on the outer surface (extrados) while gauges 

S-7, S-8 were positioned on the intrados face.  Post-test, the strain data was interpreted 

and load-strain graphs were plotted.   Figure 3.8 illustrates the location of the strain 

gauges, which were located at ¼ points along the section.  The uniaxial strain gauges 

used were manufactured by Showa Measurement Instrument Co.  The gauge length was 

30 mm, the sensitivity was 1  and the measurable strain ranged from 2% to 4% 

maximum.  
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Figure 3.8 - Strain gauge and transducer layout 
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3.4.3 Crack Monitoring 

The crack initiation and propagation at the midspan of the segment was monitored and 

analyzed for test SFRC-5 and SFRC-6 at the location shown in Figure 3.9.  Photographs 

were taken at 60 second intervals using a Canon high resolution SLR camera, capturing 

the propagation of the crack during loading of the segment in a 150 mm wide and 235 

mm high area. Image processing software, ImageJ, was used to analyze this propagation 

(Abramoff et al., 2004) 

 

Figure 3.9 - Crack monitoring area 

 

By modifying the intensity threshold of certain objects, and magnifying the image, the 

crack mouth opening displacement (CMOD) was determined with very high precision.  

Referring to Figure 3.10(b) a line was drawn at the magnified CMOD location.  From 

this, a profile plot was generated.  The profile plot showed the grey scale intensity along 

the drawn line.  The grey scale value was lowest where the crack was present and this is 

clearly shown in Figure 3.11.   The pixel distance of the crack opening was converted to 

“real world” coordinates by proportioning the pixel distance of a known reference length.  

This process was repeated for every subsequent photograph and the CMOD propagation 

throughout the test was plotted. 
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Figure 3.10 - (a) crack propagation (SFRC-6), (b) magnified image of CMOD 

 

 

Figure 3.11 - Gray scale intensity profile plot of crack width (SFRC-6) 

a) 
b) 

Crack Profile Line 
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3.4.4 Computed Tomography 

Computed tomography (CT) scanning allows for non-destructive two- and three-

dimensional interior imaging of objects; it is used predominantly in medicine, biology 

and material sciences.  It has effectively been employed previously in evaluating the 

interior structure of concrete mixes and for estimating the volume fraction of its 

constituents (e.g. Caliskan, 2007, Ghaffar et al., 1992). The device attempts to relate 

changes in penetration of a particle, or x-ray beam through an object, to the density of 

that object.  The data is then transmitted to a highly sophisticated computer processor, 

which transposes the data into a three-dimensional computer model.  Using this 

technique, it was attempted to analyse and estimate the density fraction and fibre 

orientation of fibres in the SFRC cores. 

Post-failure of tests SFRC-2 and SFRC-3, a core was extracted near the failure plane.  

The nominal core dimensions were 235 mm in length and 96 mm in diameter.  A medical 

grade CT scanner was used in the analysis as shown in Figure 3.12  The CT scanning 

parameters utilized are presented in Table 3.3.  

Afterwards, MicroView (3D image viewer software) was used in the visualization and 

analysis of the scanned cores.  By altering the threshold and brightness of the 3D image, a 

distinction between fibres and other concrete elements is clearly visible.  Utilizing gray-

scale histogram profiles, the percentage of fibres in a given area can be determined.  

Furthermore, each core was divided into five subsections. In each subsection, the fibre 

fraction was determined using MicroView, allowing for the development of a fibre 

distribution profile with respect to segment thickness.     
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Figure 3.12 - General view of computed tomography scanning machine (Caliskan, 2007)  
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Figure 3.13 - Typical steel fibre reinforced concrete core computed tomography image 

 

 

Scanner GE Locus Ultra 

X-ray exposure  120 kV and 20 mA  

Exposure time  16 sec  

Number of views 900 

Effective pixel size 0.154 mm 

Scan technique 360 degrees 

Table 3.3 - Setting used for CT scanning of cores 
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3.5 Finite Element Numerical Analysis  

3.5.1 ABAQUS Concrete Model 

ABAQUS offers several different models of inelastic behaviour to represent a wide range 

of potentially brittle materials, such as metals, soils, cast iron, and concrete.  

Unfortunately, there is no specific model available for the modelling of SFRC structures. 

Nonetheless, the material behaviour of a particular model can be modified and adjusted in 

such a way as to appropriately represent the desired material behaviour (Pevsner et al., 

2005). There are two main types of constitutive models available in ABAQUS for the 

inelastic behaviour of concrete: the concrete damaged plasticity model (CDP) and the 

concrete smeared crack model (CSC). 

The CDP model is a continuum, plasticity-based, damage model for concrete.  It provides 

a general capability for modeling concrete using concepts of isotropic damaged elasticity 

in combination with isotropic tensile and compressive plasticity to represent the inelastic 

behaviour of concrete.  It is designed to be used for applications in which the structure is 

subjected to monotonic, cyclic, or dynamic loading. It assumes that the main failure 

mechanisms are tensile cracking and compressive crushing of the concrete material. This 

model consists of a combination of non-associated multi-hardening plasticity and 

isotropic damaged elasticity to describe the irreversible damage occurring during the 

fracturing. The post-failure behaviour for direct straining is modelled with tension 

softening parameters which define the strain softening behaviour for cracked concrete. 

This behaviour also allows the effects of the reinforcement interaction with concrete to be 

simulated in a simple manner (ABAQUS Analysis User’s Manual, 2006). 
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The CSC model is intended to model concrete behaviour for monotonic loading, however 

for fairly low confining pressures, less than four to five times the maximum stress that 

can be carried by the concrete in uniaxial compression.  Accordingly, this model has been 

noted to have issues converging past the yielding point of concrete (Ahn, 2011).   

The CDP model requires compressive and tensile input parameters to accurately model 

the material behaviour.  The uniaxial compressive response is linear-elastic until the 

value of initial yield, σc0, is reached.  The material experiences a hardening effect, 

ultimately reaching a maximum compressive stress, σcu, followed by a softening branch.  

If the concrete specimen is unloaded from any point on the strain softening branch, of the 

stress strain curve, the unloading response is weakened.  The elastic stiffness of the 

material is considered damaged, as some residual stress remains present (Figure 3.14a).  

The uniaxial tensile stress-strain response is initially linear-elastic, with the same 

modulus of elasticity as in compression.  As the tensile failure stress, σt0, is reached, 

cracking initiates in the concrete.  Following this, a post-failure strain softening 

behaviour ensues, which can be modelled in ABAQUS with tension stiffening 

parameters. The tension stiffening can be specified by means of post failure stress-strain 

(σ-ε) relation (discussed in Section 3.7.3) or by applying a fracture energy cracking (σ-ω) 

criterion developed from flexure beam testing. 
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Figure 3.14 - Uniaxial loading concrete response (a) compression and (b) tension 

(ABAQUS, 2006) 

 

a) 

b) 
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In addition to the compressive and tensile parameters that identify the stress-strain 

relationship, parameters based upon the microstructure of the concrete must also be 

identified.  The CDP model includes the dilation angle Ѱ, flow potential eccentricity m, 

initial biaxial/uniaxial ratio σc0/σb0 , the ratio of the second stress invariant on the tensile 

meridian to that on the compressive meridian Kc, and the viscosity parameter μ. These 

parameters are related to the yield surfaces of the individual finite concrete elements.  As 

mentioned previously, concrete has different yield stress in compression and tension; in 

essence, a yield surface attempts to envelope these stresses in order to create an 

interaction relationship.  The yield surface of the concrete damage plasticity model is 

given in Figure 3.15 where the enclosed area represents the elastic states of stress.  In 

plane stress conditions, the yield function presents a shape that is close to the real 

behaviour of concrete (Burgers, 2006). 

 

Figure 3.15 - Bi-linear yield surface of concrete (ABAQUS, 2006) 
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In this study, it was desirable to capture the material behaviour up to and past the peak 

loading and so the concrete damage plasticity model, which exhibits a non-linear 

ascending curve followed by a softening post peak response, was chosen.  The default 

finite element CDP model parameters were used in this analysis and are summarized in 

Table 3.4. The first two parameters (dilatation angle and eccentricity) control the plastic 

straining response of the material and since the later segment analyses will be 

unrestrained, there should be little change with the dilation angle and eccentricity. The 

next two parameters (σc0/σb0 and Kc) determine the shape and size of the bi-linear yield 

surface.  Since the response of the segments will be predominately uniaxial, it is not 

anticipated that there will be significant changes to the analyses by varying these 

parameters. The viscosity has been set to zero and this assumes that there are no strain 

rate effects. 

Material Properties  Value 

Unconfined compressive strength (fcu) 60 MPa 

Young’s Modulus (E) 37.2 GPa  

Poisson’s Ratio (ν) 0.15 

Density (ρ) 3000 kg/m
3
 

CDP Parameters Value 

Dilation angle (Ѱ) 36.31° 

Viscosity Parameter (μ) 0 

Eccentricity (m) 0.1 

σc0/σb0 1.16 

Kc 0.67 

Table 3.4 - Material and concrete damage plasticity (CDP) parameters 
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3.5.2 Loading and Boundary Conditions 

The geometric properties of the tunnel segment were modeled to fit the prototype 

dimensions.  The segment details (eg. bolt pockets, shear key, grout pocket) were initially 

modelled however mesh concentrations at the corners of these details resulted in 

convergence issues and so it was decided to disregard them in the modelling process.  

The segment width, thickness and internal diameter were 1500 mm, 235 mm, and 2700 

mm, respectively.  The loading and boundary conditions implemented into ABAQUS 

simulated the experimental test setup. At one end of the segment, a pin support was 

produced by setting the allowable displacement, U1=U2=U3=0, limiting movements in 

all three directions. On the other end, a roller support was simulated with U2=0, 

preventing any vertical displacement, but allowing transverse movement.  Both ends were 

free to rotate and were spaced 2,438 mm apart following the experimental setup.  A 150 

mm wide and 1500 mm long rigid plate was configured at the midspan of the segment.  A 

displacement controlled loading of 20 mm was used, simulating the laboratory loading 

applied.  Figure 3.16 shows the boundary conditions and load distribution applied.  

 

 

 

Figure 3.16 - Boundary conditions and loading distribution 

Pin Roller 

Loading Surface 
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3.5.3 Mesh Development 

The elements used and their size/arrangement in a finite element mesh plays a significant 

role in a numerical simulation.  ABAQUS uses an array of points defined as nodes which 

form a grid called a mesh.  The structural and material properties are programmed within 

this mesh and determine how the structure will react to certain loading condition.  

Generally, an element with a higher number of nodes (higher order element) yields a 

more accurate analysis.  ABAQUS offers 3D element types: tetrahedral, wedge, and 

hexahedral (brick).  Figure 3.17 illustrates each element, along with the number of 

associated nodes.  The tetrahedral element is limited to only four nodes per element and 

risks severe locking of tetrahedrals when exposed to problems with plasticity and acute 

bending (Puso et al., 2006).  It takes five tetrahedral elements to fill the volume of one 

brick element and hence many more elements are required to produce a converged 

solution. In comparison, an eight-noded hexahedral (brick) element has higher 

capabilities of converging due to its increased node count, resulting in a more accurate 

analysis.  Due to this, linear isoparametric hexahedral elements were chosen as the 

element type in this study. 

                 

a) Tetrahedral (4 nodes)             b) wedge (6 nodes)              c) hexahedral (8 nodes) 

Figure 3.17 - Element types: tetrahedral, wedge, and hexahedral 



CHAPTER 3.                                                                                                                          72 

 

 

Furthermore, the controlled cracking of concrete is one of the most important aspects of 

SFRC non-linear behaviour.  One desirable attribute of the finite element method is 

convergence of the solution with reasonable mesh refinement. However, finite element 

solutions are known to have difficulty converging if the materials being modeled contain 

softening formulations (Murray et al., 2007).  Researchers conducting numerical methods 

to perform the non-linear analysis of concrete structural members have noted certain 

computational difficulties that arise due to mesh dependency influences.  In particular, the 

element size within a SFRC model has been found to affect the structural behavioural 

response, such as the load-displacement and load-strain characteristics, and ultimate load 

capacity (Shayanfar et al., 1997).  This is because the load response behaviour is highly 

dependent on the cracking propagation and crack width.  If a finite element within the 

cracking zone is too coarse, the response may appear to be stiffer than in reality, because 

only one crack is being modeled within the element length, when in reality there are two.  

If the stress remains constant, the resultant deformations would be much lower if only 

one crack was being modelled (Burgers 2006).   On the other hand, a finer mesh results in 

a much longer computation time, but yields a more accurate analysis.  Additionally, if a 

mesh is refined too much in a non-linear analysis of concrete, the response may actually 

appear softer than in reality (Tlemat et al., 2005).  To overcome these issues, it is 

necessary to produce an appropriately sized mesh to efficiently capture the cracking 

behaviour (Tlemat et al., 2005; Jankowiak et al., 2005; Noel et al., 2012).  This can be 

achieved by employing an inverse analysis method, which consists of refining the mesh 

size until the numerical behaviour matches the experimental test data (eg. Tlemat et al., 

2005; Burgers 2006).   
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Lastly, the softening behaviour of a material is defined as the reduction in strength with 

continued straining once a damage threshold is reached.  Murray et al., (2007) used 

regulation of softening with respect to mesh size, i.e. material parameters are also a 

function of the element size.  It was found that regulation in compression decreased 

brittleness, while regulation in tension increased brittleness (as the mesh was refined).  

Hence, if an analysis is conducted with a mesh that is too crude, there is a tendency to 

under predict tensile damage and over predict compressive damages. 
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3.6 Compressive Material Properties 

3.6.1  Analytical Solution 

Various closed form equation models describing the compressive stress-strain 

relationship have been proposed by Barros and Figueiras (1999), Bencardino et al., 

(2007), Ezeldin and Balaguru (1992), and Nataraja et al., (1999); they all have relatively 

similar approximations of the concrete behaviour subjected to uniaxial compression 

(Burgers, 2006).  Generally, steel fibres only have minor effects on the ultimate 

compressive strength of concrete, slightly increasing or decreasing its magnitude, 

depending on the characteristics of the fibres themselves (ACI 544.1R-96, 1996, ACI 

544.3R-2, 1998).  However, to ensure full accuracy, a solution used to model SFRC was 

still employed.  The compressive stress-strain behaviour of the SFRC concrete was based 

on analytical solutions for plain concrete (Carreira et al., 1985). Slight modifications to 

the base curve were then employed to fit the SFRC parameters (Luiz Alvaro de Oliveira 

Junior et. al, 2010).  The procedure undertaken is described below.  

1.  Peak strain for plain 60 MPa concrete 

                   
   

   
-         -  

 

 
           [Eq. 3.1]  

Where o = the strain at peak stress, fc’ = unconfined compressive strength (MPa) , f 
* 
= 1 

MPa.  The strain at peak stress for 60 MPa plain concrete is determined using equation 

3.1.   This equation shows a strong correlation between the compressive strength (fc’) and 

strain at peak stress (o) to experimental results for concrete with a wide range of 

compressive strength (i.e. from 10 MPa to 100 MPa). 
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2.  Determining the fibre influence factor  

                            
 ’

    
                      [Eq. 3.2] 

Where   = fibre influence factor, Vf = steel fibre volumetric fraction (%), fc’ = 

compressive strength (MPa) 

3. Determining the stress at arbitrary strain 

    
       

 

   
 

     
 

   
  

                         [Eq. 3.3] 

Where c = compressive stress (MPa), fc’ = compressive strength (MPa),    arbitrary 

strain,  = strain at peak stress, and  = fibre influence factor.  Using Eq. 3.1, 3.2 and 

3.3, concrete stresses at any strain can be calculated. The calculated stress-strain 

behaviour of 60 MPa concrete is plotted in Figure 3.18. 

 

Figure 3.18 - Stress-strain curve for 60 MPa concrete used in the finite element analysis 
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4. Elastic modulus of 60 MPa concrete (Vandewalle et al., 2003)
                       

 

           
  

 

                                              [Eq. 3.4] 

Where Ec = modulus of elasticity (MPa), fc’ = unconfined compressive strength (MPa).  

For a 60 MPa concrete, the modulus of elasticity is 37.2 GPa.    
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3.6.2 Experimental Cylinder Strength Tests 

To validate the theoretical compressive stress-strain model of the SFRC material, uniaxial 

compressive strength tests were performed. Eight cylinder cores were drilled from a 

SFRC key segment using a CAT core-bore drilling machine.  The cores were taken from 

random locations of the segment to represent the average material strength. Each core had 

a nominal length of 235 mm and diameter of 96 mm.  Unconfined compression tests were 

performed on the cylinders to characterize the compressive stress-strain behaviour of the 

SFRC according to ASTM C39-10 (Standard Test Method for Compressive Strength of 

Cylindrical Concrete Specimens). 

 

 

Figure 3.19 - Coring machine setup 
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To minimize end effects (stress concentrations), each specimen was cut using a diamond 

blade saw, to achieve flat orthogonal ends. The resulting nominal dimensions of each 

core were 200 mm in length and 96 mm diameter.  In addition, sulfur caps were produced 

at the end of each specimen, according to ASTM C617-10 (Standard Practice for Capping 

Cylindrical Concrete Specimens), to ensure uniform stress propagation. Furthermore, 

four cores were equipped with axial strain gauges bonded vertically in the centre of each 

specimen to record strain change during compression. These tests were performed using a 

computer controlled axial compressive machine.  Figure 3.20 illustrates the prepared 

cores for the cylinder compression tests. 

 

Figure 3.20 - Concrete cylinders equipped with sulfur caps and vertical strain gauge 

The average compressive strength for the SFRC core specimen was 61.92 MPa. 

According to ASTM C42/C 42 M-04, the core strengths are generally representing 85% 

of the corresponding standard cured cylinder. Therefore, a factor of 1.17 was applied to 

the core strength to get the equivalent cylinder strength.  Table 3.5 shows the average 

strength and standard deviation of the core strength and equivalent cured cylinder 

strength for SFRC.  
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The average standard cured cylinder strength of the SFRC was 72.41 MPa with a 

standard deviation of 7.34 MPa.  Additionally, according to ASTM C39-10 and ASTM 

C670, the allowable compressive strength range of eight specimens sized 200 mm by 100 

mm is 13.76 %.  From the experimental testing, a range of 38.35% in the standard cured 

cylinder strength is present, demonstrating a degree of variability across the segment.  

Furthermore, the minimum strength from the eight specimens was 62.24 MPa, 

conforming to a minimum design criterion of 60 MPa.  Because the eight cores were 

retrieved from random locations of the segment, this suggests the possibility of even 

lower concrete strength in certain locations.  Thus, a design compressive strength of 60 

MPa was chosen as a conservative approach.     

 

   Specimen 
Core strength 

(MPa) 

Standard cured cylinder 

strength (MPa) 

C-1 63.41 74.19 

C-2 63.60 74.41 

C-3 55.56 65.01 

C-4 60.27 70.52 

C-5 73.62 86.11 

C-6 53.23 62.24 

C-7 67.96 79.44 

C-8 57.68 67.39 

Average 61.92 72.41 

Standard Deviation 6.28 7.34 

 
Table 3.5 - Concrete core compressive strength results 
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Moreover, specimens C5-C8 were also employed with strain gauges.  The gauges were 

placed vertically at the centre of the specimens to capture the most representative strain 

field by avoiding stress concentration effects near boundary conditions.  The uniaxial 

strain gauges used were manufactured by Showa Measurement Instrument Co.  The 

gauge length was 30 mm, the sensitivity was 1  and the measurable strain ranged from 

2% to 4% maximum.  The resulting stress-strain relationship deduced from the 

experimental compressive strength tests is plotted in Figure 3.21.  It can be concluded 

that the theoretical stress-strain curve (from Figure 3.18) is representative of the 

compressive strength of the SFRC concrete tunnel lining segments and will thus be used 

in characterising the compressive material properties in later chapters.   

 

 

Figure 3.21 - Cylinder core compressive stress-strain  
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3.7 Tensile Material Properties 

The concrete damage plasticity model (CDP) in ABAQUS requires the tensile behaviour 

of concrete to be well characterized with tension stiffening parameters.  The tension 

stiffening can be specified by means of a post-failure stress-strain (σ-ε) relation or by 

applying a fracture energy cracking (σ-ω) criterion which relates the tensile stress with 

the crack width displacement (ABAQUS Analysis User’s Manual, 2006).  The σ-ε design 

method proposed by Vandewalle et al., (2003) in Section 3.7.2 was used for 

approximating the stress-strain parameters from experimental three-point bending beam 

tests.  

3.7.1 Flexural Beam Testing 

The tension stiffening parameters required to define the concrete damage plasticity model 

in finite element software ABAQUS, can be deduced from flexural beam tests following 

ASTM C1609M-10 (Standard Test Method for Flexural Performance of Fiber-Reinforced 

Concrete). This method is particularly of interest when analysing complex materials such 

as steel fibre reinforced concrete.  

The use of SFRC is continuing to increase, but this development is being hindered by a 

general lack of theoretical knowledge and methods for its design, particularly under 

flexural loading.  Generally there is currently a lack of analytical design methods for 

determining the tensile behaviour of SFRC (Jones et al., 2008).  Thus, the mechanical 

properties of SFRC must be determined empirically by means of standardized laboratory 

tests.  Three-point bending tests on notched beam specimens are often performed to 

characterise the flexural performance of SFRC.  Figure 3.22 illustrates a standardized test 

setup. 
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Figure 3.22 - Standardized flexural beam test setup (Jankowiak et al., 2005) 

In the middle of the span, the specimen may be notched (typically 2-3 mm wide) to a 

depth of 25 mm (RILEM TC 50).  As the beam is loaded, the notch tends to “open up” 

and a crack originates at the notch tip, propagating vertically upward.  The widening 

crack is measured using a clip gauge placed across the notch location.  The degree of 

crack opening is characterized as the crack mouth opening displacement (CMOD) and is 

an index for evaluating the crack opening during the fracture of concrete.  The load-

CMOD curve or load-deflection curve obtained from testing can be used to approximate 

the stress-strain relation of the material using fracture mechanics theories following 

Vandewalle et al., (2003), as discussed in Section 3.7.3.  This approximation 

characterises the uniaxial tensile properties of the SFRC necessary for the numerical 

analysis using the CDP model.  
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3.7.2 Experimental Beam Tests  

Three-point beam bending tests were performed by TEC Services on 150 mm wide, 150 

mm deep, and 500 mm long SFRC beams as per ASTM C1609-10 and ASTM C78-10 

(Standard Test Method for Flexural Strength of Concrete Using Simple Beam with Third 

Point Loading) to characterise the tensile behaviour of the SFRC material.  As per ASTM 

C1609-10, the beam tests did not have a notch at the midspan.  The test setup used is 

illustrated in Figure 3.23.  Steel rods were used as roller supports at ⅓ points with a 

spacing of 450 mm. Furthermore, two loading blocks spaced 150 mm apart were used to 

apply a uniform displacement controlled loading at a rate of 0.05 mm/min. Net deflection 

values for data acquisition and loading rate control were obtained at the midspan of the 

beam.  Load and deflection data was collected electronically and is plotted in Figure 3.24. 

 

 

Figure 3.23 - Beam testing apparatus as per ASTM C78-10 (2010) 
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Figure 3.24 - Typical beam test load-deflection data (TEC Services, 2010) 
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3.7.3 Tensile Stress-Strain Approximation  

Several constitutive models exist for determining the tensile behaviour of SFRC concrete 

(Barros and Figueiras, 1999; Tlemat et al., 2006; Lok and Pei, 1998; Lok and Xiao, 

1999).  The residual strength of SFRC is much higher than that of plain concrete and also 

has a greater effect on the overall behaviour of the material; care must be therefore taken 

when using a model to approximate the tensile behaviour.  Vandewalle et al., (2003) 

proposed a “σ-ε design method” as an attempt to characterise the softening behaviour of 

SFRC using experimental beam test data. Figure 3.25  illustrates this bi-linear 

approximation of the post-cracking behaviour for SFRC.   

 

 

Figure 3.25 - Bi-linear approximation of the post-cracking behaviour of SFRC 

 

The methods proposed by Vandewalle et al., (2003) were used in approximating the 

uniaxial stress-strain tensile parameters based on the stress-deflection data established 

from these beam tests.  The procedure undertaken is described below.  
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1. Find limit of proportionality, FL, and residual flexural loads, FR1, FR4 (Figure 3.24)  

The limit of proportionality, FL, is defined as the load directly following the linear-elastic 

response.  However, if there is no clear end of the linear-elastic portion, then the limit of 

proportionality is defined as the maximum load sustained up to a displacement of 0.05 

mm (Barros and Figueiras, 1999).  

The residual flexural loads, FR1, FR4 are defined as the loads that correspond to the beam 

deflections δ1 = 0.46 mm, and δ4 = 3.00 mm, respectively for a standard sized beam.    

 

Parameter Stress (MPa) Corresponding Load (kN) 

FL 7.80 57.58 

FR1 9.00 66.43 

FR4 4.00 29.53 

Table 3.6 - Limit of proportionality and residual flexural loads 

 

2.  Establish the flexural tensile strength, ft, and residual flexural strengths fR1, fR2 

The residual flexural tensile strength is determined from: 

    
     

    
                                     [Eq. 3.5] 

Where fRi = residual flexural tensile strength (MPa), FRi = load recorded at specified 

displacement (kN), b = width of the specimen (mm), h = height of the specimen (mm),      

L = span of the specimen (mm).   
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The corresponding span, width, and height of the beam tests conducted were 450 mm, 

150 mm, and 150 mm, respectively.  By implementing the flexural loads from Table 3.6 

into Eq.3.5, the following flexural parameters are deduced: ft = 11.51 MPa, fR1 =13.28 

MPa and fR4 = 5.90 MPa.   

3. Determine the size factor, kh 

The size factor can be found from:  

          
      

    
                          [Eq. 3.6] 

Where kh = size factor, h = height of the specimen |12.5 ≤ h ≤ 60| (cm). The size 

dependant safety factor takes into account the test beam size and modifies the 

characteristic tensile behaviour accordingly.  Given a 150 mm beam height, the 

corresponding size factor = 0.97. 

4. Determine the tensile stress values σ1, σ2, σ3 

                                       [Eq. 3.7] 

                                  [Eq. 3.8] 

                                                     [Eq. 3.9] 

Where σi = stress (MPa), Ci = stress coefficients, fRi = residual flexural tensile strength 

(MPa), h = height of the specimen (m), kh = size factor, ft = flexural tensile strength 

(MPa)   

The stress coefficients are used to relate the stress-strain parameters and the 

experimentally determined flexural strengths. The stress coefficients used in this study 
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were taken from ACI 544 XXE (2008), and are as follows: C1 = 0.52, C2 = 0.36, C3 = 

0.27. These coefficients can be modified with inverse analysis of the experimental data, 

to achieve a better fitting tensile behaviour. 

Implementing the previously calculated variables into Eq. 3.7-3.9, this yields the 

following tensile stress values, σ1 = 8.42 MPa, σ2 = 4.63 MPa, and σ3 = 1.54 MPa. 

5. Determine the modulus of elasticity Ec 

The modulus of elasticity is determined from: 

          
  

 

                                 [Eq. 3.9] 

Where Ec = modulus of elasticity (MPa),  fc’ = compressive strength of concrete (MPa).  

Given a 60 MPa concrete, the resulting modulus of elasticity is 37.2 GPa. 

6. Determine tensile strain values, ε1, ε2,and ε3 

The tensile strain value, ε1, is obtained by using Hooke’s law.  The strain values ε2, and ε3 

are approximated using Vandewalle et al., 2003. 

   
  

  
                                [Eq. 3.7] 

                                    [Eq. 3.8] 

                                                 [Eq. 3.9] 

The resulting approximation for the tensile stress-strain behaviour is shown in Figure 

3.26.   
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Figure 3.26 - Approximated SFRC tensile stress-strain behaviour 

 

The uniaxial tensile stress-strain numerical input parameters are outlined in Table 3.7 

Parameter Input 

σ1 (MPa) 8.42 

σ2 (MPa) 4.63 

σ3 (MPa) 1.54 

ε1 0.000 

ε2 0.0001 

ε3 0.025 

 

Table 3.7 - Tension stiffening stress-strain input parameters 
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Loading Surfaces 

3.7.4 Verification of Tensile Parameters 

To validate the derived empirical tensile parameters, the experimental testing performed 

by TEC Services was modelled in ABAQUS, to attempt to reproduce the stress-

displacement behaviour of the flexural beam tests.  The model width, thickness and 

length were 150 mm, 150 mm and 500 mm, respectively.  The loading and boundary 

conditions implemented in the finite element model replicated the experimental test setup 

as per ASTM C1609-10. At one end of the beam, a pin support was used by setting the 

allowable displacement, U1=U2=U3=0, limiting movement in all three directions.  On 

the other end, a roller support was simulated with U2=0, preventing any vertical 

displacement (but allowing transverse movement).   The loading was applied evenly on 

two surfaces spaced 150 mm apart as shown in Figure 3.27. 

 

  

Figure 3.27 - Finite element beam test model (425 elements)  

The main objective of performing the flexural beam tests was to characterize the tensile 

behaviour of the SFRC.  It is desirable to accurately obtain the mechanical properties of 

SFRC from these tests and implement them into the ABAQUS finite element code to 

Roller Support 

Fixed Support 
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model the full-scale SFRC tunnel lining segments.    However, for the derived material 

properties to be valid from one model to the other, a consistent mesh size must be used 

due to this element and crack width size dependency phenomenon.  As such, a mesh 

sensitivity analysis was performed using three different sized meshes to ensure that the 

model was converging properly and that the mesh was appropriately refined.  

Furthermore, to minimize the computation time often associated with a highly refined 

mesh, local refinement was only attributed to the zone within the vicinity of the expected 

cracking location.  Three-dimensional coarse, medium and fine meshes were produced 

having 108, 425, and 3500 elements respectively as shown in Figure 3.6.   

 

Mesh (a) 108 elements 

 

Mesh (b) 425 elements 

 

Mesh (c) 3,500 elements 

Figure 3.28 - Finite element model with (a) coarse, (b) medium, and (c) fine meshes 

15 mm 

30 mm 

50 mm 
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The stress-displacement response of the beam tests with the three mesh sizes is plotted in 

Figure 3.29.  For all of the models, the initial response is linear-elastic, until a stress of 

approximately 7.5 MPa, where the specimen starts to experience strain hardening.  Once 

the maximum stress of approximately 8.5 MPa is reached, the material begins to strain 

soften.  It was found that the concrete damage plasticity model used in ABAQUS had 

some numerical convergence issues beyond a post-peak midspan deflection of 

approximately 33% of the total post-peak response, but still predicted the initial portion 

of the softening zone of the curve using the 30 mm mesh  size.  

 

 

Figure 3.29 - Comparison of varying mesh size with experimental beam test behaviour 
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The finite element model using a medium sized mesh with 30 mm elements shows very 

good agreement with the experimental results and so it can be concluded that the uniaxial 

tensile stress-strain parameters approximated from Vandewalle et al., (2003) are a good 

representation of the characteristic tensile properties of the SFRC.  For modelling of the 

full-scale SFRC tunnelling lining segments, an equivalent mesh size of 30 mm (compared 

to flexure beam model) will be used and this assumes that the characteristic length scales 

of the crack in the beam (i.e. width) are approximately the same size as that in the full 

scale model.  

3.7.5 Experimental Split Cylinder Tests 

In addition to using flexural beam test methods to characterize the uniaxial tensile stress-

strain properties of the steel fibre reinforced concrete, split cylinder tests were also 

carried out as per ASTM C496M-04 (Standard Test Method for Splitting Tensile Strength 

of Cylindrical Concrete Specimens) on three cores specimens retrieved at random 

locations of the key segment.  The average splitting tensile strength was 7.96 MPa for the 

SFRC as summarized in Table 3.8.  The average tensile strength determined from the 

core samples appears to be approximately 9% lower than that deduced from the flexural 

beam tests, suggesting lower strength concrete in the full-scale segments with respect to 

the flexure beams or differences between the two experimental approaches.  

Specimens Tensile strength (MPa) 

T-1 7.66 

T-2 8.06 

T-3 7.37 

Average 7.69 

Table 3.8 - Tensile split cylinder strength results  
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3.8 Summary 

A review of previous studies revealed that a uniaxial line load causing flexure represents 

one of the most critical loading cases for tunnel linings (Mashimo et al., 2002) and 

proved to be a feasible method for evaluating the flexural response of full-scale tunnel 

lining segments. An experimental loading system was developed, comprising of a loading 

frame, two roller floor supports and a hydraulic actuator supported by two steel columns.  

The experimental method was used to study the load-displacement, load-strain, and crack 

propagation behaviour of steel fibre reinforced concrete tunnel liner segments subjected 

to uniaxial flexure loading conditions. Complementary standardized compressive and 

tensile cylinder and flexure beam tests were also performed to deduce the SFRC material 

properties in an attempt to replicate the segmented flexure tests with numerical methods.  

Additionally, computed tomography analysis techniques were employed to analyse and 

estimate the density fraction and fibre orientation of fibres in cored SFRC specimens. 

MicroView (3D image viewer software) was used in the visualization and analysis of the 

scanned cores, which used grey scale histogram profiles to capture the percentage of 

fibres in divided subsection.  Finally, ABAQUS finite element models capable of 

analyzing the non-linear elasto-plastic behaviour of SFRC were investigated.      

It was observed that the composition of SFRC has some variation in different locations of 

the tunnel segments. Hence a sufficient number of compressive and tensile tests must be 

done to accurately characterize the range of material properties.  Additionally, it was of 

interest to numerically study the post-peak performance of SFRC tunnel lining segments 

and the concrete damage plasticity model in ABAQUS proved to be most appropriate 

model to do so, as the concrete smeared cracking model failed to converge past the peak 
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loading.  Moreover, from uniaxial cylinder compression tests and flexural beam tests, the 

stress-strain relationship can be established and utilized as input parameters in numerical 

analyses.  From the finite element analysis of the beam tests, it was found that the mesh 

size was important.  Thus an identical mesh size will be needed to be used for the full-

scale segment modelling, to ensure the deduced tensile properties of the material are 

valid. 
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4EXPERIMENTAL RESULTS 

4.1 Introduction 

In this chapter, seven simply supported flexural tests performed on SFRC tunnel lining 

segments are described.  The first test, SFRC-P, was a trial test to optimize the testing 

methodology and logistics.  From this trial test it was expected to verify the loading rate, 

strain and displacement response from the test segments and the failure point of the 

segment.   The following six flexural tests and supporting laboratory work had primary 

objectives: (i) to estimate the flexural capacity of SFRC tunnel linings by means of a 

three point bending test, (ii) to monitor the crack propagation and attempt to relate the 

loading applied to the crack mouth opening displacement magnitude, (iii)  to characterize 

the toughness indices of the SFRC segment and compare the toughness and post-peak 

strain softening of the SFRC segments to other SFRC and plain concrete specimens, (iv) 

to use computed tomography scan imaging as a non-destructive analysis tool to determine 

internal steel fibre content and orientation and (v) to provide analysis and interpretation of 

the observed results.  
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4.2 Load-Deflection Response 

4.2.1 Pilot Test ( SFRC-P) 

The first test, SFRC-P, was a pilot test done to optimize the testing methodology and 

logistics.  From this trial test, the loading rate, strain and displacement responses from the 

test segments were verified.  A load-controlled loading was used for the pilot test with a 

loading rate of rate of 5 kN/min.  As seen in Figure 4.1, the load-displacement reaction 

followed a linear response up to an applied load of approximately 60 kN.  The specimen 

began to yield from this point until it reached a maximum carrying capacity of 112 kN, 

failing abruptly.  SFRC is known for its post-peak ductility and enhanced crack control, 

and it was proposed that the loading rate chosen was potentially too high to capture the 

post-peak softening branch.  To achieve the desired full response of the segments, it was 

decided to change the loading to a displacement-controlled loading for the remainder of 

the tests.  

 

Figure 4.1 - Load-displacement response of pilot test SFRC-P 
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4.2.2 Tests SFRC-1 to SFRC-6 

The load vs. midspan displacement diagrams of the flexural bending tests (SFRC-1 to -6) 

are presented in Figure 4.2(a) to Figure 4.2(f) for the central midspan LVDTs (D-1 to D-

3).  There is good agreement between LVDTs D-1 to D-3, which show very similar 

displacements, illustrating that no significant torsion was occurring.  Each test illustrates 

an initial elastic behaviour similar to that of plain concrete. The displacements increased 

linearly with applied load as the segments began to yield and started deforming 

plastically. With sufficient plastic deformation, a hairline crack developed near the 

midspan of the segments, where stresses were highest.  The material experienced a 

hardening effect, ultimately reaching a maximum compressive stress, followed by a 

softening branch.  Previous research (De Waal, 1999; Banthia, 2001; Poh et al., 2009) 

indicates that when the initial crack developed, the fibres begin to tense up as the concrete 

experiences non-linear strain hardening.  Once the peak load was reached, the stress is 

supported by the fibres, which act as crack arresters, bridging the crack formation.   The 

matrix was held together by the fibres as a long softening branch continued.   
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Figure 4.2 - Load-vertical deflection curves of the segments  

a) SFRC-1, b) SFRC-2, c) SFRC-3, d) SFRC-4, e) SFRC-5, f) SFRC-6  
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The load vs. midspan deflection response of each test is summarized and compared in 

Figure 4.3, to illustrate the behavioural variations.  Each segment experienced a similar 

type of behaviour; however there was a degree of variation with respect to first crack load 

and peak load.  SFRC-1 experienced the lowest failure load of 105 kN with a 

corresponding 1
st 

crack loading of 88 kN.  SFRC-6 withstood the highest loading of 147 

kN with a corresponding 1
st
 crack load of 124 kN.  A 40% variation in peak loading was 

present between SFRC-1 and SFRC-6.  The 1
st
 crack load to peak load ratio of all six 

tests was quite consistent, having a range of 80 – 85% of the peak load.  It is significantly 

higher than that of conventionally reinforced concrete and this is thought to be due to the 

fibre crack arresting properties (Caratelli et al., 2011; Moccichino et al., 2006) 

The average and standard deviation of the first crack load, displacement at first crack 

load, peak load, and displacement at peak load is summarized in Table 4.1 below.   

Generally speaking, an approximate variation of 10% is present with respect to the first 

crack load and peak load, and 19% with respect to the displacement at first crack load and 

displacement at peak load.  From the average and standard deviation data, test SFRC-4 

seems to approximately represent the average behaviour of the segments and is chosen as 

a representative test in future analyses.  
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First Crack 

Load (kN) 

Displacement 

at First Crack 

Load (mm) 

Peak Load 

(kN) 

Displacement 

at Peak Load 

(mm) 

SFRC-1 88 4.6 105 9.2 

SFRC-2 108 4.7 128 10.3 

SFRC-3 98 4.7 120 10.2 

SFRC-4 103 4.6 121 8.4 

SFRC-5 100 2.4 125 5.4 

SFRC-6 124 4.4 147 8.0 

Average 103.50 4.23 124.33 8.58 

Standard 

Deviation 
10.98 0.83 12.46 1.66 

S.D. / AVG. 10.6% 19.6% 10.1% 19.3% 

Table 4.1 - Average and standard deviation of segment flexure test behaviour 

 

 

Figure 4.3 - A vertical displacement-load comparison for LVDT D-1 (central midspan) 
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Furthermore, it was observed that for each test, only one end of the segment moved 

horizontally; even though both ends were free to translate.  Displacement gauges D-6 and 

D-7 experienced nearly zero movement throughout the test.  This phenomenon can be 

attributed due to slight irregularities of the support reaction frames and the segments.  For 

each test, the support of the translating end was that with the least resistance and therefore 

experienced movement alone.  For the purpose of further analysis, the “fixed” end is 

assumed to have a pin connection.  Figure 4.4 shows the horizontal displacement for two 

displacement gauges, D-4 and D-5.  The similarity in displacement behaviour 

demonstrates that the segment was loaded symmetrically. Accordingly, it was confirmed 

that the testing methodology developed and the results obtained can be utilized as a 

benchmark to evaluate the load-carrying capacity.  It is noted that for test SFRC-6, the 

segment moved slightly out of plane during loading due to improper placement of the 

lining on the support frame and may account for the higher flexural strength observed.  

As a result, gauge D-5 experiences higher translations compared to D-4 at a post-peak 

loading of approximately 80 kN. 
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Figure 4.4 - Load-transverse deflection curves of the segments  

a), SFRC-1, b) SFRC-2, c) SFRC-3, d) SFRC-4, e) SFRC-5, f) SFRC-6 
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4.3 Load-Strain Response 

4.3.1 Pilot Test (SFRC-P) 

The pilot test had two strain gauges mounted on the intrados surface of the segment to 

measure the tensile strain.  Shortly after loading (approximately 50 kN), the gauges 

experienced very high strains, exceeding the strain capacity and provoking immediate 

failure of the strain gauges at a midspan deflection of approximately 1.3 mm (22.6 % of 

total deflection).  Consequently, only the elastic tensile behaviour was captured and no 

useable data beyond that point was produced. Hence the remainder of the tests only 

consisted of six gauges on the extrados (compressive face).  

 

 

Figure 4.5 - Pilot test (SFRC-P) tensile strain vs. load 
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4.3.2 Tests SFRC-1 to SFRC-6 

The load vs. strain data for test SFRC-1 to SFRC-6 is presented in Figure 4.6(a) to Figure 

4.6(f).  Strains measured at S-1, S-2, S-5, and S-6 showed very good consistency amongst 

all six tests.  Gauges S-1 and S-5 in test SFRC-2, experienced slightly higher strain 

readings after a loading of 120 kN.  Symmetrically, gauges S-1, S-5 and S-2,S-6 provide 

near identical readings, illustrating that uniform load distribution was applied and that 

stresses were distributed evenly within the segment.  

Gauges S-3 and S-4 were located at the midspan of the segment and experienced much 

higher compressive strains due to the nature of the loading. Generally, the strain reading 

show fairly good consistency experiencing an average strain of 500 με.  Test SFRC-6 

shows quite a bit of variability between two strain readings and this can be attributed to 

the possible uneven loading.    
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Figure 4.6 - Load-strain curves of the segments 

a) S-1, b) S-2, c) S-3, d) S-4, e) S-5, f) S-6  
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4.4 Crack Propagation Analysis 

The cracking pattern and crack propagation monitored for tests SFRC-5 and SFRC-6 is 

described in this section. Photographs of the crack movement during test SFRC-5 are 

presented in Figure 4.7 (a) to Figure 4.7 (f).   At a loading of approximately 100 kN, a 

single hairline crack forms in the midspan of the segment and propagates upward in a 

near vertical line as the load is increased.   The load vs. displacement curve with the 

corresponding images is shown in Figure 4.8.   

The load vs. displacement and subsequent images for SFRC-6 are shown in Figure 4.9 

and Figure 4.10, respectively. The segment lining for SFRC-6 withstood a peak load of 

approximately 22 kN higher than that of SFRC-5.  Consequently, the first hairline crack 

is observed at a slightly higher load level of 124 kN.  The crack originates at a distance of 

10 cm away from the midspan of the segment and propagates inward at an angle of 60°.  

It is postulated that a lower percentage of fibres is distributed in this region, causing the 

crack to originate there.  

The first crack is observed at 79% and 84 % of the peak load for SFRC-5 and SFRC-6, 

respectively.  The delay in cracking can be attributed to the SFRC crack arresting 

properties. During loading, the steel fibres provide superior resistance to cracking and 

crack propagation.  Once extensive cracking develops, the fibres hold the concrete matrix 

together, possessing increased extensibility and tensile strength (both at first and ultimate 

crack).  A large strain softening zone post peak is typical in SFRC, which results in 

strong post cracking ductility (Burgers, 2006). 
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Figure 4.7 - Crack width propagation at midspan load deflection (SFRC-5) 

a) 4.2mm, b) 6.7mm, c) 9mm, d) 12.5mm, e) 16.5mm, f) 24.4mm 
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Figure 4.8 - Crack width at specified load-displacement (SFRC-5) 

 

 

Figure 4.9 - Crack width at specified load-displacement (SFRC-6) 
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Figure 4.10 - Crack width propagation at midspan load deflection (SFRC-6) 

a) 6.1mm, b) 9.8mm, c) 14.8mm, d) 16.6mm, e) 20.2mm, f) 23.1mm 
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Using Image J software analysis, the crack mouth opening displacement (CMOD) was 

determined at midspan displacements throughout the duration of both SFRC-5 and 

SFRC-6.  The midspan downward displacement vs. the crack width is plotted in Figure 

4.11 and presents an approximately linear correlation.  Due to its higher load-carrying 

capacity, the cracking of segment SFRC-6 initiates at a larger displacement than that of 

segment SFRC-5.  

 

Figure 4.11 - CMOD vs. midspan deflection (SFRC-5 & 6) 
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4.5 Fracture Energy and Toughness Characterization 

Toughness is defined as a material’s ability to absorb energy, and deform plastically 

without fracturing. The toughness and post-peak strain softening of the concrete can be 

characterized by toughness indices I5 and I10 following RILEM TC162-TDF (2000).  The 

indices I5 and I10 are calculated as ratios of the area under the load-crack mouth opening 

displacement curve up to 5, and 10 times the CMOD corresponding to its first peak load 

and divided by the area under the load-CMOD curve up to the CMOD with respect to the 

first peak load (Chen et al., 2011).  The toughness indices can also be determined from 

the load-deflection response, although previous studies supported several advantages of 

utilizing the load-CMOD response as a basis for toughness measurement (i.e. it is 

difficult to find the point of the limit of proportionality from the load deflection curves; 

Gopalaratnam et al., 1991; Bryars et al., 1994; Gopalaratnam and Gettu 1995; Barr et al., 

1995; Barr et al., 1996).   

Rather than using the CMOD to characterize the fracture energy of SFRC which is 

structure dependent (i.e. size, shape of specimen), the toughness indices are normalized to 

give an accurate representation of the effect of fiber reinforcement in enhancing the crack 

growth resistance of cementitious composites (Chen et al., 2011).   
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Figure 4.12 - Load-CMOD curve with toughness indices points (SFRC-5) 

 

Figure 4.13 - Load-CMOD curve with toughness indices points (SFRC-6) 
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Figure 4.14 - Toughness indices of specimens (Deng et al., 2006) 

The load-CMOD curves used in the derivation of the toughness indices, I5 and I10 for tests 

SFRC-5 and SFRC-6 are presented in Figure 4.12 and Figure 4.13, respectively. The test 

segment SFRC-5 failed just before reaching the necessary CMOD to determine the 

toughness index I10 (6.5 mm), hence the load-CMOD curve was extrapolated marginally.   

According to a study done by Deng et al., (2006), who experimentally investigated the 

toughness indices of plain and fibre reinforced concrete, it was found that the fibre 

reinforced concrete toughness index I5 was 3.8 - 4.2 times and I10 was 5.8 - 6.8 times that 

of plain concrete.  A comparison of the toughness indices between the experimental 

segment tests SFRC-5, SFRC-6 and results obtained from Deng et al., (2006) on plain (P-

1 and P-2)  and fibre reinforced concrete (F-1 and F-2)  is summarized in Figure 4.14. 
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As can be seen from the results, the steel fiber reinforced concrete specimens from both 

studies are distinguished from plain concrete by their superior toughness and ability to 

absorb large amounts of energy.  Furthermore, for the SFRC specimens F-1 and F-2, with 

a similar volume fraction of fibres as the designed experimental segments (2%) appear to 

have slightly higher toughness indices.  Once cracking has initiated, the cracks cannot 

extend without stretching and debonding the fibers from the concrete matrix.  As a result, 

a large additional crack energy is absorbed before complete separation of the specimen 

occurs.  Fibres with better bond characteristics (i.e. deformed fibres, or fibres with greater 

aspect ratio) give higher toughness values than do smooth, straight fibres at the same 

volumetric concentrations.  Variation of fibre distribution and orientation will result in 

variable fibre volume concentrations and may also lower the material toughness. 
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4.6 Concrete Core Computed Tomography Scanning 

The tensile behaviour of SFRC is greatly dependent on the fibre type, dosage, dispersion 

and orientation with respect to stress fields.  The first two items can be controlled quite 

easily, however certain difficulties may arise when attempting to homogenously 

distribute the fibres within the concrete matrix.  Failure generally occurs at locations 

where stresses are either the highest, reinforcement is not sufficient, or a combination of 

both.  When care is not taken during the casting phase, design specifications may not be 

met and structural failure can occur at much lower loads than anticipated.  Given the 

observed variation of flexural response, it was of interest to examine the internal structure 

of select precast tunnel lining segments.   

Figure 4.15 illustrates a comparison of fibre distribution and orientation between SFRC-1 

and SFRC-2, along with the corresponding volume fraction of fibres per section.  SFRC-2 

shows a higher peak load, and larger tensile softening, than SFRC-1.  It is interesting to 

note that in both segments there is a general increase in fibre volume fraction with 

distance from the extrados.  Since the segments were constructed extrados up, there 

appears to be a gravity effect in their distribution and orientation as was also observed by 

De Waal (1999).  It is also interesting that in core SFRC-2, there is a lack of any fibres in 

the top portion of the specimen (0%) suggesting excessive vibration techniques used 

during the casting phase.  The use of self-consolidating concrete may be helpful in 

guaranteeing a more uniform dispersion of fibres, thanks to both its rheological stability 

and self-placability, which leads to the elimination of compaction by vibration (Ferrara et 

al., 2008).   Additionally, the orientation of fibres in core SFRC-2 appears to be angled 

downward at approximately 30º from the horizontal.  This general orientation seems to be 
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in the tensile hoop stress direction of the segments and may improve the tensile resistance 

by activating the full pullout strength capacity of the fibres, perpendicular to the crack 

propagation direction. 

 

Figure 4.15 - Computed tomography fibre density (%) and orientation (SFRC-1 & -2) 

 

 

Figure 4.16 - Load-midspan displacement (SFRC-1 & -2) 
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4.7 Summary 

In this chapter, the flexural behaviour of steel fibre reinforced concrete segments using a 

uniaxial line loading was evaluated.  An initial pilot test, SFRC-P, was performed to 

optimize the testing methodology and logistics. From this trial test it was expected to 

verify the loading rate, strain and displacement response and failure point from the test 

segment.  Using the optimized criteria developed from the pilot test, six additional flexure 

tests were performed and the load-displacement, load-strain and crack propagation 

behaviour was recorded.  The crack propagation was monitored and recorded for flexure 

tests SFRC-5 and SFRC-6.  Using Image J software analysis, the crack mouth opening 

displacement (CMOD) was determined and plotted against the corresponding load being 

applied.  From this, toughness indices were obtained, which were used to characterize and 

compare the toughness and post-peak strain softening of the SFRC segments and other 

SFRC and plain concrete specimens.  Finally, computed tomography scanning was used 

to examine the internal steel fibre content and orientation of select precast tunnel lining 

segments.  

From the pilot test, SFRC-P, it was found that the rate dependency associated with a load-

controlled loading caused the segment to fail in a brittle manner, preventing post-peak 

strain softening.  Thus, displacement-controlled loading was used for tests SFRC-1 to 

SFRC-6 to capture the post-peak softening behaviour of the flexure tests.  From the load-

displacement and load-strain data collected during the testing program, it was concluded 

that the testing methodology developed (Chapter 3) for determining the flexural 

behaviour of steel fibre reinforced concrete tunnel segments was sufficiently well 

designed.  Each segment was tested in a similar manner, yet variation in the peak loading 
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of 40% was present, suggesting possible non-uniformity in the material composition.  

Computed tomographic scan imaging of select precast tunnel lining segments revealed a 

variation of fibre distribution and orientation, verifying the effects of a possible gravity 

phenomenon present during the casting phase.  Furthermore, an analysis of the toughness 

indices of test SFRC-5 and SFRC-6 revealed similar toughness characterisation between 

SFRC specimens from other studies and outlined its superior toughness performance in 

comparison to plain concrete. 
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5FINITE ELEMENT MODELING 

5.1 Introduction 

This chapter explores the finite element analysis performed to simulate the flexural 

behaviour of steel fibre reinforced concrete tunnel lining segments.  The experimental 

load-displacement and load-strain behaviour of the representative test SFRC-4 was 

compared to numerical results in an attempt to provide further insight into the behaviour 

and calibration of the constitutive model.  ABAQUS, one of most powerful commercial 

finite element software tools available was chosen to perform the nonlinear analysis 

utilizing the concrete damage plasticity model (CDP) to simulate the inelastic mechanical 

behaviour.  The compressive and tensile stress-strain material models deduced in Chapter 

3 were used in the analysis.   

Additionally, a modified model was generated to further analyse the non-homogenous 

fibre distribution, particularly the lack of fibres in the extrados region.  The top ⅓ 

extrados section was modelled as plain concrete (0% fibres), following the analysis 

performed on the core samples in Section 4.6 using computed tomography scanning 

techniques.  Furthermore, a sensitivity analysis was conducted by varying the pertinent 

strength, elastic and tensile stress-strain parameters, and element mesh size to study the 

impact on the results.  
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5.2 Tunnel Lining Segment Response Predictions 

The tunnel lining segments were modelled in ABAQUS with the material properties 

deduced from the uniaxial compressive cylinder and flexural beam tests in Chapter 3.  

Due to the mesh dependency phenomenon associated with non-linear finite element 

analysis, a brick element mesh size of 30 mm was used, identical to that of the flexure 

beam model from which the material properties were established. Furthermore, to 

minimize computation time, a coarser mesh was applied outside the cracking zone where 

mesh dependency is not as significant.  The tunnel lining segment model consisted of 

12,528 C3D8 linear brick elements.  A mesh sensitivity analysis was performed and is 

shown in Appendix A to analyse the effects of mesh coarseness on the resultant peak 

loadings and displacements.  The results demonstrate that as the number of elements 

increase and the mesh becomes finer, the model converges to a solution. 

 

Figure 5.1 - Finite element lining segment model (12,528 elements) 

FE results using ABAQUS were compared to the experimental results of a representative 

test SFRC-4 as shown in Figure 5.2 to Figure 5.4. Due to the geometric symmetry, the 

strains calculated at S-1, S-2, S-5, and S-6 along with strains at S-3 and S-4 showed 
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identical results.  Thus, the displacements computed at D-1, and the strains calculated at 

S-2, and S-3, were compared with those measured from test SFRC-4.  Additionally, the 

complete post-peak strain softening behaviour could not be predicted because the 

concrete damage plasticity finite element model calculations did not converge after a 

displacement of approximately 17 mm. 

Figure 5.2 presents a comparison between the experimental and numerical load-deflection 

response at location D-1.  The behaviour is similar in shape, but the finite element results 

in a 41% higher load carrying capacity in comparison to the representative experimental 

testing.  This is thought to be due to differences in the expected and actual fibre 

distributions and orientation in the tunnel lining segments.  The tensile parameters used in 

the FE model were deduced from the beam flexure tests, which were considered to have a 

higher quality control during casting.  Furthermore, given no distinct curvature in the test 

beam geometry, the fibre gravity distribution phenomenon should not occur.  Since the 

fibre distribution and orientation in the beams was potentially different to that of the 

segments, potentially higher material strength would be found.  

The load vs. strain data is presented in Figure 5.3 and Figure 5.4.  The FE results 

illustrate a much steeper slope, which indicates that the FE model is experiencing a stiffer 

response. The load vs. strain at the midpoint of the segment is linear elastic until a 

loading of approximately 120 kN, after which yielding occurs and segment failure 

follows.  Lower strains are shown at an equivalent loading magnitude, revealing higher 

strength characteristics in the FE model.  Due to the lack of uniform fibre distribution in 

the experimental tunnel lining segments, the steel fibre crack arresting performance in the 

numerical approximation is limited and thus larger strains result in the prediction. 
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Figure 5.2 - A comparison between experimental and finite element results (at D-1) 

 

 

Figure 5.3 - A comparison between experimental and finite element results (at S-2) 
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Figure 5.4 - A comparison between experimental and finite element results (at S-3) 
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5.3 Modified Analysis Study 

Given the assumed variability in the distribution and orientation of the fibres in the 

segments, likely due to the influence of mixing or the compaction process, a modified 

study was performed to study these effects on the overall flexure capacity of segmented 

tunnel linings.  A similar model was used in the numerical analysis as in the previous 

section, however the variation of fibre density with respect to depth was taken into 

account.  With respect to the core samples taken, it was decided to model the top ⅓ 

extrados thickness of the segment (78.3 mm) as plain concrete, representing a measure of 

0% fibres as shown in Figure 5.5.  

From the tensile stress-strain parameters deduced in Section 3.7.3, the SFRC had a 

maximum tensile strength of 8.42 MPa, after which a crack developed and the fibres 

began to hold the matrix together resulting in a strain softening behaviour.  In plain 

concrete however, once the material cracks, it cannot carry any additional load and so 

failure occurs at the ultimate tensile strength of 8.42 MPa.  Table 5.1 outlines the tensile 

stress-strain parameters used in modeling the plain concrete section. 

 

Figure 5.5 - Finite element lining model with top section modelled as plain concrete 
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Stress (MPa) Strain (ε) 

0 0 

8.42 0.000144 

0 0.000144 

Table 5.1 - Tensile stress-strain parameters for plain concrete  

 

Figure 5.6 presents a comparison between the experimental, numerical (original) and the 

numerical (modified) load-deflection response at location D-1. Similar to the original 

numerical modelling, the CDP finite element model calculations did not converge after a 

displacement of approximately 14 mm, failing to capture the entire post-peak strain 

softening behaviour. 

The modified model follows a linear elastic behaviour up to a loading of approximately 

70 kN, after which the material begins to yield, similar to the original numerical study.  

However, the load carrying capacity is 64% lower than that of the original numerical 

response, withstanding a peak load of 108 kN.  After reaching a displacement of 

approximately 12.5 mm, the model experiences a sudden drop of load.  It is thought that 

as cracking ensues, the neutral axis shifts up into the plain concrete zone, which can carry 

minimal tensile stress. The lack of reinforcement in the top section of the segment 

reduced the segment’s load carrying capacity and diminished the post-peak performance.   

In addition, the modified model shows very good agreement in comparison to the 

representative experimental test SFRC-4.  The initial elastic response is somewhat stiffer 

and the peak-load is within 10% of that of the experimental testing.  Hence, a lower 

modulus of elasticity is present in the experimental testing.  By modelling the top ⅓ 
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extrados thickness as plain concrete with no fibre reinforcement, an overly conservative 

approach was taken.  Nonetheless, it proves to be a good exercise in demonstrating the 

effects of inhomogeneous distribution of fibre reinforcement on the flexural behaviour of 

steel fibre reinforced concrete tunnel lining segments. 

The load vs. strain data is presented in Figure 5.7 and Figure 5.8.  The strain response at 

location S-2 appears to be softer than the original numerical analysis, however it shows 

very good agreement in comparison to the experimental testing. Similar behaviour is 

exhibited at the midspan strain gauge S-3.   

 

  

Figure 5.6 - A comparison between experimental, finite element and modified finite 

element results (at D-1) 
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Figure 5.7 - A comparison between experimental, finite element and modified finite 

element results (at S-2) 

 

Figure 5.8 - A comparison between experimental, finite element and modified finite 

element results (at S-3) 
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5.4 Sensitivity Analysis  

To ensure that a representative numerical model of the tunnel linings was developed, it is 

important to validate the model input parameters.  Sensitivity analyses are often 

performed to quantify the effects that varying the material parameters of a numerical 

model have on the model outputs.  Each of the material parameters included in the 

numerical model are listed in Table 5.2 below.  These input parameters were varied as a 

means to gain insight into the model behaviour and to quantify their effects on the overall 

numerical response.  Where possible the input parameters were varied in excess of the 

observed variations in the experimental tests, with typically a ± 30% modification to the 

original values used for the modelling.  The concrete damage plasticity model input 

parameters were not investigated in this study due to time constraints.  From the 

numerical sensitivity analysis performed, it was established that the elastic modulus and 

the stress-strain tension stiffening parameters had the most significant impact on the 

model outputs.  The other results of this exercise are shown in Appendix B.   

Material Properties  Significant Impact? 

Compressive Stress-Strain
3
  

Tensile Stress-Strain
4
  

Young’s Modulus (E)  

Poisson’s Ratio (ν)  

Density (ρ)  

Table 5.2 - Material parameter impact on the model output 

 

                                                 
3 Defined by 33 pairs of points from Figure 3.18 
4 Defined by 4 pairs of points from Figure 3.26 
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5.4.1 Modified Modulus of Elasticity Parameter  

From the comparison of experimental and numerical results in previous sections, it was 

found that the numerical behaviour showed a much stiffer initial response in comparison 

to the representative experimental test SFRC-4.  Thus, it was of interest to study the 

variability in modelling output with a ± 50% change in the modulus of elasticity.  The 

modified parameters are summarized in Table 5.3 below.  

Modification Modulus of Elasticity (Ec) 

- 50 % 18.6 GPa 

Original 37.2 GPa 

+ 50% 55.8 GPa 

Table 5.3 - Modified modulus of elasticity input parameters 

From Figure 5.9, it is shown that an increase in the modulus of elasticity by 50%, results 

in a stiffer initial elastic response of the segment.  At a loading of 60 kN, the original 

finite element response results in a midspan displacement of approximately 0.6 mm.   By 

decreasing or increasing the modulus of elasticity by 50%, the resultant midspan 

displacements are approximately 1.2 mm and 0.3 mm (or +50% and –50%), respectively.  

This stiffness continues up to a peak loading of approximately 171, kN after which the 

material experiences a post-peak strain softening behaviour similar to that of the original 

numeral response.   By decreasing the modulus of elasticity by half, the load-

displacement response follows a similar pattern, but with a softer response.  The change 

in stiffness due to the modified modulus of elasticity input parameter can be validated by 

examining the output responses in the elastic region.  The exercise demonstrates that in 

the elastic zone, the output behaviour is directly proportional to the modulus of elasticity 
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parameter.  Furthermore, the variability of the uniaxial compressive cylinder strength in 

Section 3.6.2 results in a corresponding range of moduli of elasticity from 37.6 GPa and 

41.9 GPa (11.4%) determined from Eq. 3.4.  Based on the changes shown in the 

sensitivity analysis, it can be concluded that the observed experimental range of modulus 

of elasticity (given the compressive strength variability) has relatively small effects on the 

predicted outputs.   

 

 

 Figure 5.9 - Comparison between original and modified finite element analysis with 

input modulus of elasticity (± 50%) at D-1 
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5.4.2 Modified Tensile Stress-Strain Parameters 

The tensile stress-strain properties used in the numerical analysis of the tunnel segments 

were estimated from flexural beam test data.  Due to the possible variability of material 

properties between the test beams and the full-scale tunnel segments, and potential errors 

in the approximation of the constitutive model, it is interesting to study the effects of 

modifying the tensile stress-strain input parameters to see the effects on the output 

responses of the numerical model.  The stress component of the deduced tensile stress-

strain parameters was modified by ±30% and the results are summarized in Figure 5.10 

and Table 5.4. 

 

Figure 5.10 - Modified approximation of SFRC tensile stress input parameters 

 

 Parameter - 30 % Original + 30% 

A σ1 (MPa) 5.89 8.42 10.95 

B σ2 (MPa) 3.24 4.63 6.02 

C σ3 (MPa) 1.08 1.54 2.00 

 ε1 0.000 0.000 0.000 

 ε2 0.0001 0.0001 0.0001 

 ε3 0.025 0.025 0.025 

Table 5.4 - Modified tension stiffening stress numerical input parameters 
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The load-displacement behaviour from the modified tensile stress numerical results is 

plotted in Figure 5.11.  The elastic region of the overall load-displacement curves remains 

unaffected by modifications done to the tension stiffening parameters, until crack 

formation initiates at a maximum tensile strength, ft.  Altering the stress component in the 

tensile stress-strain behaviour by ± 30% directly correlates to the load where the non-

linear plastic behaviour begins.  Furthermore, the peak load is also increased or decreased 

from the initial numerical analysis by approximately ± 30%, respectively.    

  

Figure 5.11 - Comparison between original and modified finite element results at D-1 

with modified tensile softening stress (± 30%) 
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Additionally, the strain component of the deduced tensile stress-strain parameters was 

modified by ±30% and is summarized in Figure 5.12 and Table 5.5. 

 

 

Figure 5.12 - Modified approximation of SFRC tensile strain input parameters 

 

 

 Parameter - 30 % Original + 30% 

A ε1 0.000 0.000 0.000 

B ε2 0.0007 0.0001 0.0013 

C ε3 0.0175 0.025 0.0325 

 σ1 (MPa) 8.42 8.42 8.42 

 σ2 (MPa) 4.63 4.63 4.63 

 σ3 (MPa) 1.54 1.54 1.54 

 

Table 5.5 - Modified tension stiffening strain numerical input parameters 
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The load-displacement behaviour from the modified tensile strain numerical results is 

plotted in Figure 5.13.  Similar to the modified tensile stress results, the initial elastic 

behaviour remains unaffected up to the maximum tensile strength, ft.  By altering the 

strain component in the tensile stress-strain behaviour by ± 30% the yield and failure 

surface is correspondingly affected.  Smaller strain inputs indicate that the material 

reaches it maximum tensile capacity at lower strains and thus begins to fail at lower 

deformations.  This represents a diminished crack arresting capacity of steel fibres as 

cracks begin to propagate at lower stress values.   

 

 

Figure 5.13 - Comparison between the original and finite element results at D-1 with 

modified tensile softening strain (± 30%) 
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It is also of interest to study the effect of the slope of the tensile stress-strain relationship, 

since this controls the rate of the material’s strain softening.  The initial slope of the bi-

linear approximation (AB) was modified by ± 30% and this is summarized in Figure 5.14 

and Table 5.6. 

 

Figure 5.14 - Modified approximation of SFRC tensile stress-strain slope (AB) input 

parameters 

 Parameter - 30 % Original + 30% 

A σ1 (MPa) 8.42 8.42 8.42 

B σ2 (MPa) 5.80 4.63 3.50 

C σ3 (MPa) 1.54 1.54 1.54 

 ε1 0.000 0.000 0.000 

 ε2 0.0001 0.0001 0.0001 

 ε3 0.025 0.025 0.025 

Table 5.6 - Modified tension stiffening slope (AB) numerical input parameters 
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provides a different post-peak strain softening behaviour.  With more material softening, 

the post-peak brittleness increases and the material more quickly fails to resist the stress 

acting on the specimen after the peak loading and loses strength with greater 

displacement.  

 

Figure 5.15 - Comparison between the original and modified finite element results at D-1 

with modified tensile stress strain slope (AB) (± 30%) 
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5.5 Location of the Neutral Axis 

The neutral axis is defined as the axis where the transition of tensile to compressive stress 

or strain is located due to bending (Caratelli et al., 2011).  From the SFRC stress block 

diagrams presented in Section 2.2.2, the neutral axis can be visually determined by the 

location of the crack tip as it propagates with increased loading.  Using the Image J 

software analysis, the crack tip location was determined from various midspan 

displacements throughout the duration of test SFRC-5.  The modified numerical study 

(varying fibre density with depth of the segment) was also used to determine the location 

of the neutral axis.  By examining the change from tensile to compressive strain (in plane) 

at specific points during the analysis, the location of the neutral axis was determined.  A 

comparison between the experimental and modified finite element neutral axis movement 

at the midspan of the tunnel lining segment is presented in Figure 5.17 and in Appendix 

C.   

Although the numerical and experimental results presented have some potential errors the 

results shown give quite good agreement.  Initially, the neutral axis is approximately 

located at the centroid of the tunnel segment prior to being subjected to any additional 

stresses.  As the tunnel segment is loaded, cracking initiates in the tensile region and the 

crack begins to propagate towards the extrados of the segment.  Once the crack tip 

reaches the initial location of the neutral axis, the neutral axis begins to shift upward into 

the compression zone and closer to the extrados of the segment.  The quality of this 

comparison suggests that the numerical modelling is producing strain-softening and 

tensile behaviour in the correct zones during loading and provides further confirmation of 

the approach. 
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Figure 5.16 - Finite element tensile and compressive strain plot 

 

  

Figure 5.17 - Comparison between the experimental and modified finite element neutral 

axis movement at the midspan of the tunnel lining segment  
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5.6 Summary 

A non-linear elasto-plastic finite element analysis was conducted to compare the load- 

displacement and load-strain behaviour of SFRC tunnel segments with the measured 

experimental data from a full-scale representative test SFRC-4.  The concrete damage 

plasticity model available in software ABAQUS was used in the analysis utilizing the 

compressive and tensile stress-strain models deduced in Chapter 3 as input parameters.  

Additionally, a modified model was generated to analyse the effects of non-homogenous 

fibre distribution, particularly the lack of fibres in the extrados region.  The top ⅓ 

extrados section was modelled as plain concrete (0% fibres), following the analysis 

performed on the core samples in Section 4.6 using computed tomography scanning 

techniques.  Furthermore, in an attempt to quantify the effects that variability of the 

parameters in the CDP numerical model have on the model output, a sensitivity analysis 

was conducted by varying the modulus of elasticity by ± 50% and the tensile stress-strain 

parameters by ± 30%. 

It was observed that the original numerical model predicted a higher strength capacity 

with respect to the experimental results, suggesting that the beam tests from which the 

uniaxial tensile stress-strain parameters were deduced had higher strength and stiffness 

characteristics.  By modelling the inhomogeneous fibre distribution in the extrados 

section of the segment, it was found that the modified numerical results underestimated 

the experimental response, however it demonstrated much better agreement in 

comparison to the original numerical analysis.  Thus for the finite element numerical tool 

to accurately predict “real life” structural behaviour, there is a need for realistic material 

composition to be replicated in the model.   
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Furthermore, varying the modulus of elasticity (Ec) by ± 50%, had little effect on the 

overall flexural behaviour of steel fibre reinforced concrete tunnel linings.  Examining the 

range of Ec of the segments (11.4%) deduced from experimental cylinder compression 

tests, it was concluded that the variability of Ec had a negligible effect on the numerical 

output, based on the minor changes experienced from the sensitivity analysis.  In 

comparison, the numerical model is highly sensitive to changes in the tensile stress-strain 

input parameters, and so great care must be taken when deducing these material 

properties from representative flexural beam tests. 
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6SUMMARY AND CONCLUSIONS 

6.1 Summary 

The usage and range of applications of steel fibre reinforced concrete (SFRC) have 

recently increased in civil infrastructure due to a greater appreciation of the enhanced 

tensile behaviour, increased toughness and better crack arrestment properties. In Chapter 

2, the state-of-the-art literature for SFRC technology used in segmented tunnel linings 

was discussed.  Tunnel lining tests and design methods were also evaluated to identify 

areas of interest. 

In Chapter 3, a method was developed to study the load-displacement, load-strain, and 

crack propagation behaviour of SFRC tunnel lining segments subjected to uniaxial 

flexure loading conditions using three-point bending tests.  Standardized compressive 

cylinder and flexure beam tests were performed to deduce the SFRC material properties 

and to aid replication of the segmented flexure tests using numerical methods.   

Chapter 4 presents the experimental results from flexure tests performed on the tunnel 

lining segments. Image analysis software was used to determine the crack initiation and 

propagation and computed tomography scanning was used to establish the internal fibre 

structure of the concrete mix, resulting from the casting process.   

Chapter 5 describes the non-linear elasto-plastic finite element model used to estimate the 

structural response of the experimental flexure testing of the tunnel lining.  A modified 

study was performed to study the effect of inadequate fibre distribution in the lining 
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segment on the overall flexural behaviour. Furthermore, a sensitivity analysis was 

conducted by varying the modulus of elasticity and the tensile softening stress-strain 

parameters to quantify the effects that variability of the parameters in the numerical 

model have on the model outputs.   

From this study, the following conclusions were made: 

i. A uniaxial line load was found to be an appropriate method for evaluating the 

flexural response of full-scale segmented concrete tunnel linings. 

 

ii. Displacement-controlled loading is the optimal loading condition for 

capturing the post-peak ductility of SFRC segments in flexural loading. 

 

iii. For a lining with an internal diameter of 5400 mm, thickness of 235 mm, 

width of 150 mm, and a volumetric fraction of fibres = 2%, the mean value of 

the first crack load and peak load was 103.5 kN and 124.3 kN respectively, 

with standard deviations of 10.9 kN and 12.4 kN.  The mean value of 

displacement at first crack load and displacement at peak load was 4.23 mm 

and 8.58 mm respectively, with standard deviations of 0.83 mm and 1.66 mm.    

 

iv. Unconfined compression tests were performed on eight SFRC core cylinders 

resulting in mean values of standard cured cylinder strength of 72.41 MPa 

with a standard deviation of 7.34 MPa.   Split cylinder tests were performed 

on three core specimens resulting in a mean value of tensile strength of 7.69 

MPa.  
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v. Computed tomography scanning verified that the variation of fibre distribution 

in the SFRC segments ranged from 0% to 1.86 %, with the majority of fibres 

being located at the intrados of the segments.  

 

vi. A gravity distribution phenomenon appears to be present in the casting of 

tunnel lining segments due to its geometric curvature, concrete placement or 

vibratory methods.   

 

vii. The concrete damage plasticity model in the finite element software ABAQUS 

seems to be an appropriate model for the analysis of steel fibre reinforced 

concrete tunnel liners, enabling the capture of the majority of the post-peak 

performance. 

 

viii. The concrete damage plasticity finite element model is mesh dependent; an 

appropriate mesh size needs to be used in the segment modelling based on the 

derivation of tensile properties from a flexural beam model. 

 

ix. The numerical model of the segments initially predicted higher strength 

characteristics with respect to the experimental results, suggesting that the 

numerical model required some modification to account for the actual 

distribution of the reinforcing fibres through the segment depth.   

 

x. The numerical model of the tunnel linings (and SFRC models in general) are 

highly sensitive to changes in the tensile stress-strain input parameters and 

great care must be taken when deducing these material properties from 

representative flexural beam tests. 
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6.2 Recommendations for Future Work 

The following is a list of recommendations for further research: 

i. Further analysis of the spatial distribution and orientation of fibres in tunnel 

lining segments by means of core CT scanning to properly characterize the 

pouring and compaction phenomenon effect on fibre dispersion. 

 

ii. Analyse the internal structure and fibre distribution of the flexure beam tests 

from which the uniaxial tensile stress-strain parameters are deduced and 

compare to the full-scale segment specimens.  

 

iii. Numerical modelling of the spatial distribution of steel fibre volume 

percentages should be performed to more accurately analyse the effects of 

fibre variation from the gravity distribution phenomenon. 

 

iv. Better measurement and characterization of the tensile properties of SFRC 

from the load-crack mouth opening displacement relationships and 

development of associated constitutive models. 

 

v. Improved mesh dependent fibre concrete stress-strain constitutive models and 

improved numerical discretization schemes that regulate mesh dependency 

effects for strain-softening problems.   

 

vi. Study the damage and micro-cracking of tunnel lining segments caused by 

long-term storage and transportation and in-situ loading. 
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APPENDIX A – Mesh Sensitivity Analysis  

A finite element mesh sensitivity analysis was performed to analyse the effects of 

generating a coarser mesh on the resultant peak loading.  The tunnel lining segment 

modelled in Section 5.2 consisted of 12,528 C3D8 linear brick elements.  Due to the 

mesh dependency phenomenon associated with non-linear finite element analysis, a brick 

element mesh size of 30 mm was used in the analysis, identical to that of the flexure 

beam model from which the material properties were established. 

The effects of coarser meshes with a smaller number of elements were analysed and the 

results are plotted in Figure A.1.  It was found that as the number of elements increase, 

and the mesh becomes finer, the model converges to a solution of approximately 168 kN.  

Given the converging solution, the long computation time (3-6 hours) and lack of high 

ram computer equipment, further refinements of the mesh was not attempted. 

 

Figure A.1 - Number of mesh elements vs. peak numerical load  
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APPENDIX B – Input Parameter Sensitivity Analysis 

In any finite element analysis, certain parameters can have significant or minor impacts 

on the output behaviour of the numerical model.  A sensitivity analysis was performed on 

the concrete damage plasticity input parameters to quantify their impact on the flexural 

behaviour of the steel fibre reinforced concrete tunnel liners.  Each material parameter 

was analysed and a summary of its impact on the output model is presented in Table B.1.  

 

Material Properties  Significant? 

Compressive Stress-Strain  

Tensile Stress-Strain  

Young’s Modulus (E)  

Poisson’s Ratio (ν)  

Density (ρ)  

Table B.1 - Parameter impact on the model output 
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Compressive Stress-Strain  

The compressive strength of concrete from which the compressive stress-strain 

relationship is deduced was modified by ± 50%.  By increasing the compressive strength 

by 50%, it was shown that the model failure was governed by tensile cracking due to the 

flexural nature of the loading and that an increase in compressive strength had no bearing 

on the failure.  By decreasing the compressive strength of the concrete by 50%, a similar 

behaviour is experienced up to the peak loading.  Post-peak, the low compressive strength 

causes the segment to fail in a combination of tensile cracking and compressive crushing 

of the material.  In comparison to the observed compressive strength from the laboratory 

tests with a corresponding standard deviation of 7.34 MPa, the alteration of the 

compressive stress-strain has little impact on the output behaviour of the model.  

 

Figure B.1 - Comparison between experimental and finite element results at D-1 with 

modified compressive stress-strain relationship (± 50%) 
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Poisson’s Ratio  

The Poisson’s ratio is an elastic constant that is a measure of the compressibility of a 

material perpendicular to the applied stress, or the ratio of latitudinal to longitudinal 

strain.  Typically the Poisson’s ratio for concrete ranges between 0.1 – 0.2 (Bencardino et 

al., 2007), hence 0.15 was chosen as the representative value.   Figure B.2 demonstrates 

that modification of the Poisson’s ratio ranging from 0.1 to 0.2 had no impact on the 

output behaviour of the model.  

 

  

Figure B.2 - Comparison between experimental and finite element results at D-1 with 

modified Poisson’s ratio (± 0.5) 
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Steel Fibre Reinforced Concrete Density 

The structural capacity of the steel fibre reinforced concrete tunnel lining segments may 

be affected by the material density and self-weight due to the large size of the lining.  

During storage and transportation, the self-weight of the segments can initiate cracking in 

the tensile region and cause stress fractures.  A sensitivity analysis was executed to 

analyse the effects of the SFRC material self-weight on the flexural load-carrying 

capacity of the lining segments.  Extreme cases of ignoring the self weight of the 

specimen (i.e. ρ = 0 kg/m
3
), and increasing it by 100% were examined and the results 

plotted in Figure B.3.  By varying the density input parameters by ± 100 %, the peak 

loading resulted in only a ± 4.8 % change, demonstrating that only minor impacts on the 

output of the model are caused by material density compared to the applied flexural 

loads. 

 

Figure B.3 - Comparison between experimental and finite element results at D-1 with 

modified concrete density (± 100%) 
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APPENDIX C – Neutral Axis Location Analysis 

The location of the neutral axis with midspan displacement of the tunnel lining segments 

was determined from the experimental and numerical analyses.  Table C.1 summarizes 

the experimental and numerical neutral axis location at different midspan displacements.  

Figure C.1 visually demonstrates the neutral axis movement as the compressive zone 

becomes subjected to tensile straining. 

 

Experimental Neutral Axis Analysis 

Midspan Displacement 

(mm) 

Distance of Neutral Axis from 

Intrados (mm) 

4.2 117.0 

6.7 168.4 

9.0 196.8 

12.5 203.8 

16.5 213.7 

24.4 215.4 

Numerical Neutral Axis Analysis 

Midspan Displacement 

(mm) 

Distance of Neutral Axis from 

Intrados (mm) 

3.2 131.0 

6.8 175.6 

10.3 188.6 

15.9 205.2 

Table C.1 - Summary of experimental and numerical neutral axis location against 

displacement 
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Figure C.1 - Numerical strain plot diagrams  
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