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Abstract 

Sprint interval training (SIT) improves maximal oxygen uptake (V�O2max) and exercise 

performance but not maximal cardiac output (Q�max). The brevity of typical SIT bouts (30-

seconds) might hinder improvements in Q�max. The purpose of this study was to determine 

whether extended duration SIT (up to 45 second bouts) improves Q�max.  Pre-/Post-SIT (or 

control) V�O2max, Q�max, maximum stroke volume (SVmax), maximum heart rate, arterial-

mixed venous oxygen difference, and 5-minute run distance were measured. SIT progressed 

from 4x30s to 7x45s “all-out” efforts (4 min recovery) over 6 wk (3x/wk) on a manually 

driven treadmill. Following SIT, V�O2max improved (pre-=3.6±0.8 vs post=3.8±0.8 L·min-1
; 

p=0.012). Increases in Q�max (pre-= 26.13±5.09 vs post=27.10±4.82 L·min-1; p=0.166) and 

SVmax (pre-= 138±27 vs post=144±28 mL·beat-1; p=0.095) were not significant. These data 

suggest 6 wk of extended SIT bouts (up to 45 s) does not increase Q�max significantly and 

the observed increase in V�O2max was due primarily to non-significant improvements in 

Q�max and SVmax. 
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Chapter 1  

1 Introduction 

Sprint interval training (SIT) is a low-volume, time efficient, exercise training method 

capable of rapidly improving exercise performance (Burgomaster, Hughes, 

Heigenhauser, Bradwell, & Gibala, 2005). Although there are a variety of formats, 

typically, SIT consists of 4 to 6 bouts of 30-second “all-out” exercise bouts separated by 

4 minutes of rest/recovery.  SIT is vastly different from traditional high-volume 

endurance training (ET; constant-load, submaximal exercise maintained for an extended 

period of time), as SIT requires ~14 to 23 minutes (of which only 2 to 3 is actual 

exercise) while ET usually requires 30 to 60 minutes (of which all is exercise). SIT is 

performed at supramaximal intensity (~150-200% maximal aerobic power) and ET is 

typically performed between 60-80% of maximal aerobic power. Despite these obvious 

differences, SIT and ET result in similar V�O2max and exercise performance 

improvements (Gibala et al., 2006; MacPherson, Hazell, Olver, Paterson, & Lemon, 

2011). 

Several types of exercise training elicit key central and peripheral physiological 

adaptations (Blomqvist & Saltin, 1983; Holloszy & Booth, 1976). Central adaptations 

occur within the cardiovascular system (resulting in increased oxygen delivery) and 

peripheral adaptations occur at the level of the muscle (resulting in greater oxygen 

extraction and utilization). The improved delivery, extraction, and utilization of oxygen 

alter energy substrate utilization and metabolite production resulting in both improved 

capacities and exercise performance. 

Sprint interval training and ET both cause peripheral adaptations, although greater with 

SIT, but differ most with regards to central adaptations (Gibala et al., 2006; MacPherson 

et al., 2011). Maximal cardiac output (Q�max), an important factor in oxygen delivery, is 

improved with ET but not SIT (MacPherson et al., 2011). Improvements in Q�max appear 

to be related to training volume (volume = intensity x duration) (Daussin et al., 2007; 

Helgerud et al., 2007). It is possible that SIT does not improve Q�max because exercise 
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interval duration is insufficient (MacPherson et al., 2011). Time efficiency and potency 

of SIT make it an attractive training method, but unfortunately the adaptations are not all 

encompassing (only peripheral adaptations are obtained). Thus, in order to obtain both 

central and peripheral adaptations, SIT may complement, but not replace ET. 

Interestingly, other, less intense forms of interval training utilizing longer duration 

intervals have been shown to improve Q�max (Daussin et al., 2007).  This suggests that 

supramaximal intensity is not a requirement for central adaptations but some exercise 

duration is. However, neither the necessary intensity nor the duration is clear at the 

present time. Previous studies have not used 45-second intervals. It is possible that 

extending SIT bouts to 45-seconds while maintaining an “all-out” intensity would 

provide a time-efficient method of training that might affect Q�max. 

The purpose of the current study was to determine if 6 weeks of modified SIT (duration 

of sprint intervals was lengthened from 30 up to 45 seconds) improves exercise 

performance and maximal cardiac output (Q�max). Maximal oxygen uptake, Q�max, and 

5-minute run performance were assessed pre- and post-training, in healthy, young, male 

and female participants. It was hypothesized that the modified SIT protocol would 

generate improvements in Q�max, resulting in improved maximal oxygen uptake and 

exercise performance. 

1.1 Exercise performance, maximal oxygen uptake, and 
exercise training 

Exercise performance is determined by the integration of various body systems 

(respiratory, cardiovascular, and neuromuscular) (Bangsbo, Mohr, Poulsen, Perez-

Gomez, & Krustrup, 2006). A progressive exercise training program providing sufficient 

frequency, volume, intensity, and duration will lead to improved exercise performance 

(Baar, 2006). Manipulating these 4 variables determines the degree to which each system 

is influenced and where adaptive responses occur (Jones & Carter, 2000). Maximal 

oxygen uptake (V�O2max) is a general indicator of fitness and is often used to assess the 

effectiveness of a training program (Poole, Wilkerson, & Jones, 2008). 
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Maximal oxygen uptake is the greatest  amount of oxygen that can be taken up, delivered 

to, and utilized by muscle tissue to perform exercise (measured as an absolute value: 

L·min-1; or, measured relative to body mass: mL·kg-1·min-1) (Åstrand, 1956; Jones & 

Carter, 2000). Oxygen uptake (V�O2) is the product of cardiac output (Q�; surrogate for 

total oxygen delivery) and arterio-venous oxygen difference (i.e. oxygen 

extraction/utilization) (Bevegård, 1962; González-Alonso, 2008). 

Cardiac output is the volume of blood ejected from the heart per minute (measured in 

L·min-1). It is the product of stroke volume (SV) and heart rate (HR), and is considered to 

be the “central” component of any training response because the respiratory system is 

seldom limiting (Bassett & Howley, 2000). 

Arterio-venous oxygen difference (a-vO2diff) is a measure of oxygen extraction by the 

muscle. Oxygen content of blood is measured at the arterial and venous levels (i.e. before 

and after the capillary bed in the muscle where oxygen extraction takes place) (Clausen, 

Klausen, Rasmussen, & Trap-Jensen, 1973). The difference between arterial and venous 

oxygen content provides a measure of oxygen extraction. Changes in a-vO2diff following 

exercise training reflect adaptations that occur at the muscle (i.e. improved extraction or 

utilization) (Coyle et al., 1984; Ekblom, Åstrand, Saltin, Stenberg, & Wallström, 1968). 

These changes are considered to be “peripheral” changes (Daussin et al., 2008). 

Exercise training can elicit adaptations that occur centrally and/or peripherally (Coffey & 

Hawley, 2007; Daussin et al., 2008). These adaptations increase V�O2max as well as 

exercise performance (Ekblom et al., 1968; Gunnarsson & Bangsbo, 2012; Jones & 

Carter, 2000). Endurance training (ET) and interval training (IT) are training methods 

used to elicit these changes. The degree of influence exerted on central and peripheral 

aspects is determined by the frequency, volume, intensity, and duration of the training 

method used (Baar, 2006; Buchheit & Laursen, 2013; Laursen, 2010).  

1.2 Endurance training 

As mentioned above, endurance training is exercise which is performed at a constant, 

submaximal intensity for an extended period of time (Jones & Carter, 2000). Endurance 
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training is aerobic and relies mainly on a mix of  lipid and carbohydrate oxidation via the 

oxidative system (relatively little energy is contributed from ATP-PCr and glycolytic 

systems) (Jeukendrup, 2002; Spriet, 2002). Endurance training needs to be performed 

several times per week (at least 2-3) in order to adequately stress the body and promote 

positive adaptations (Laursen & Jenkins, 2002). Typically, high-volume (long duration) 

training results in both peripheral and central adaptations, such as increased Q�max and a-

vO2diff, and produces improvements in both V�O2max and exercise performance (Coffey 

& Hawley, 2007; Holloszy & Booth, 1976) 

1.3 Interval training 

Interval training differs from traditional ET in that it is a discontinuous workload. Interval 

training is characterized by repeated blocks (bouts) of vigorous exercise separated by 

periods of rest or lower intensity exercise utilized for recovery in preparation for the next 

interval of vigorous exercise (Laursen & Jenkins, 2002). The combinations of exercise 

intensities, work to “rest” ratios, and number of intervals are endless and many IT 

protocols exist (Buchheit & Laursen, 2013). As a result, the frequency, volume, intensity, 

and duration of each protocol may differ, which makes comparisons between training 

methods challenging (Laursen, 2010). Additionally, identifying which factor is 

responsible for driving certain adaptive responses is often unclear (Laursen, 2010). 

Various terms for types of IT exist, including moderate intensity interval training (MIT), 

high intensity interval training (HIIT), speed-endurance training (SET), and sprint 

interval training (SIT) (Burgomaster et al., 2005; Iaia & Bangsbo, 2010; Keteyian, 2012; 

Talanian, Galloway, Heigenhauser, Bonen, & Spriet, 2007). Recently, SIT, a specific 

interval training method, has gained significant popularity with both researchers and 

athletes. Typically, SIT is characterized by 4-6 bouts of 30-second “all-out” exercise 

separated by 4 minutes of rest/recovery (Burgomaster et al., 2005; MacPherson et al., 

2011). Research studies have utilized Wingate cycling tests or “manual” mode treadmill 

sprinting as an exercise mode primarily but any exercise mode will work. Energy during 

the 30-second bouts is produced primarily from anaerobic sources but as the number of 

bout repeats increases there is a shift towards a greater aerobic contribution (Bogdanis, 

Nevill, Boobis, & Lakomy, 1996). Additionally, the 4 minute recovery period relies 
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heavily on oxidative metabolism. Similarly to ET, SIT results in comparable 

improvements in exercise performance; however, these improvements in exercise 

performance are likely caused by peripheral adaptations, as 6 weeks of SIT does not 

increase Q�max (Gibala et al., 2006; MacPherson et al., 2011). Sprint interval training is a 

low-volume, time efficient, intense training method that increases exercise performance 

and V�O2max (via greater a-vO2diff , but not Q�max) (MacPherson et al., 2011). 

1.4 Central adaptations 

According to the Fick principle, an increase in Q�max will increase V�O2max unless 

extraction decreases (Stray-Gundersen et al., 1986). Cardiac output is the product of SV 

and HR (so Q�max is the product of SVmax and HRmax) (Stray-Gundersen et al., 1986). In 

response to exercise training, HRmax does not increase; instead HRmax decreases or is 

unchanged (Blomqvist & Saltin, 1983). Therefore, any increase in Q�max must be the 

result of increased SVmax (Ekblom & Hermansen, 1968).  

Stroke volume is directly related to end-systolic and end-diastolic myocardial fibre 

length. In order to increase SV, end-diastolic fibre length must be greater and/or end-

systolic fibre length must be lesser (Kiil, 1978). Stroke volume can be modulated by 

intrinsic (e.g. cardiac dimensions, response to inotropic agents) and extrinsic (e.g. blood 

volume, peripheral resistance) elements which impact upon factors affecting myocardial 

fibre length (Blomqvist & Saltin, 1983; Kiil, 1978). The main factors that affect 

myocardial fibre length are: 1) preload; 2) afterload; 3) inotropy; and 4) myocardial 

dimensions and performance. 

Preload refers to factors that affect myocardial fibre length prior to contraction; end-

diastolic volume is the principal measure of preload. The importance of preload in 

relation to SV can be seen at rest and during exercise in a supine position and during 

acute blood volume expansion. A supine position imposes a large preload on the heart 

due to reduced gravitational effects (more of the body is at or above heart level) and 

results in greater SV when compared to an upright position at both rest or during exercise 

for a given workload (Hopper, Coggan, & Coyle, 1988; Poliner et al., 1980). Acute 

expansion of blood volume, with whole blood or saline solution, leads to greater end-



6 

 

diastolic volumes and improves SV (Convertino, 1991; Kanstrup & Ekblom, 1982; 

Robinson, Epstein, Kahler, & Braunwald, 1966). In response to training there is an 

increase in blood volume so preload also increases (Kjellberg, Rudhe, & Sjöstrand, 1949; 

Sawka, Convertino, Eichner, Schnieder, & Young, 2000). Increased preload improves SV 

through the Frank-Starling mechanism whereby increasing left-ventricular end-diastolic 

volume leads to myocardial stretching which improves contractility, producing an 

increased SV (Ferguson, Gledhill, Jamnik, Wiebe, & Payne, 2001; Konhilas, Irving, & de 

Tombe, 2002). 

Afterload refers to the external forces which oppose the shortening of myocardial fibres 

(Kiil, 1978). If afterload is decreased, SV will increase (because end-systolic fibre length 

will decrease) (Blomqvist & Saltin, 1983). Afterload is mainly determined by peripheral 

resistance (Jaski, Fifer, Wright, Braunwald, & Colucci, 1985). Exercise training also 

leads to increased capillarization and improvements in the ability to vasodilate (Jensen, 

Bangsbo, & Hellsten, 2004; Rakobowchuk et al., 2008). These adaptations have a 

number of beneficial effects, among them, is a decrease in peripheral resistance (Booth & 

Thomason, 1991; Laughlin & Roseguini, 2008). 

Inotropy refers to the response of the myocardium to substances which affect 

contractility. Inotropic agents include calcium, catecholamines, and glucagon (Kiil, 

1978). Increased inotropy leads to increased force and velocity of contraction (Ross, 

Covell, Sonnenblick, & Braunwald, 1966). Stroke volume will increase in response to 

increased inotropy (Blomqvist & Saltin, 1983). Exercise training can enhance myocardial 

inotropy (Ehsani, Ogawa, Miller, Spina, & Jilka, 1991).   

Myocardial performance is determined by structural or functional changes within the 

myocardium itself that affect contractile force (Blomqvist & Saltin, 1983). Intrinsic 

contractile performance is difficult to measure but studies in rats have shown contractile 

performance, calcium handling, and myosin ATPase improvements with exercise training 

(Baldwin, Cooke, & Cheadle, 1977; Penpargkul, Repke, Katz, & Scheuer, 1977). 

Exercise training also leads to myocardial hypertrophy and an increased left ventricle 

mass to body mass ratio (Kingwell, Arnold, Jennings, & Dart, 1998; Wisløff, Helgerud, 
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Kemi, & Ellingsen, 2001). Myocardial hypertrophy is beneficial, and not pathological, as 

long as left ventricular (LV) volume is not reduced simultaneously (Pluim, Zwinderman, 

van der Laarse, & van der Wall, 2000; Vinereanu et al., 2001). Endurance and interval 

training lead to myocardial hypertrophy which does not impede LV volume (Maron & 

Pelliccia, 2006; Pelliccia et al., 2002). Weightlifters and people suffering from 

hypertension also develop myocardial hypertrophy but this occurs with heart wall 

thickening which reduces LV volume and hampers cardiac performance and function 

(Haykowsky, Dressendorfer, Taylor, Mandic, & Humen, 2002; Vinereanu et al., 2001). 

There are several ways of measuring adaptations to the central system.  It is often 

difficult to determine exactly which factor is responsible for increases in SV (Blomqvist 

& Saltin, 1983). Most studies have used animals or isolated muscle fibres and attempted 

to distinguish between the different factors and how they affect SV (Glower et al., 1985; 

Sagawa, 1978; Sonnenblick & Downing, 1963). Measuring the independent contribution 

of preload, afterload, inotropy, and myocardial performance is difficult, while measuring 

Q� is more practical. Cardiac output can be measured invasively (direct Fick method, 

dye-dilution, thermodilution) and non-invasively (acetylene breathing methods, carbon 

dioxide rebreathe, Doppler ultrasound, impedance). Invasive techniques pose greater 

risks, require medical and technical assistance, and are not always practical during 

maximal exercise (Warburton, Haykowsky, Quinney, Humen, & Teo, 1999). Less 

invasive techniques, particularly open-circuit acetylene methods, are reliable, 

reproducible, correlate well with values produced from invasive methods, and are 

applicable to conditions of maximal exercise. Acetylene is a gas which is soluble in blood 

and inert (does not bind with haemoglobin). Typically, inspired and expired acetylene 

concentrations are measured by a mass spectrometer over a number of breaths and rate of 

disappearance is calculated. As cardiac output increases, the rate of acetylene 

disappearance increases. An open circuit acetylene method is an effective and reliable 

method for measuring maximal cardiac output during exercise (Johnson et al., 2000).    

1.5 Peripheral adaptations 

Peripheral adaptations are those that occur at the muscle and allow oxygen to be 

extracted/utilized to a greater extent (ultimately increasing a-vO2diff). Changes in muscle 
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metabolism (glycolytic capacity, oxidative capacity, substrate utilization), glycogen 

storage, ion transporters, fibre type, haemoglobin/myoglobin concentration, and capillary 

density reflect peripheral adaptations (Coffey & Hawley, 2007; Holloszy & Coyle, 1984; 

Iaia & Bangsbo, 2010). 

Improvements in muscle metabolism are related to the energy system stressed by the 

exercise task. Peripherally, endurance training results mainly in improvements to the 

oxidative capacity of the muscle whereas interval training augments glycolytic and/or 

oxidative capacity of muscle (depending on which interval training method is used) 

(Gollnick & Saltin, 1982; Hawley, 2002; Kubukeli, Noakes, & Dennis, 2002; 

MacDougall et al., 1998).  

Glycolysis is an energy liberating process that involves the breakdown of 

glucose/glycogen. Glycolysis takes place in the cell cytoplasm and does not require 

oxygen to be present. The net result of glycolysis alone is the production of  2 mol of 

ATP per mol of glucose (Alberts et al., 2004). Glycolytic capacity is often assessed by 

measuring the concentration and activity of various glycolytic enzymes. Most commonly, 

phosphofructokinase, pyruvate kinase, lactate dehydrogenase, glyceraldehyde-3-

phosphate dehydrogenase, or aldolase are measured (MacDougall et al., 1998; Mujika & 

Padilla, 2001; Parra, Cadefau, Rodas, Amigó, & Cussó, 2000). Generally, glycolytic 

capacity is unaffected by ET but increases in response to interval training (Gollnick et al., 

1973; MacDougall et al., 1998). 

The oxidative energy system includes the citric acid cycle and electron transport chain. 

This system relies on a special organelle, called the mitochondria, and oxygen to produce 

energy. Fat, carbohydrate, and protein can be used as energy sources (fat and 

carbohydrate being used most often during exercise) (Brooks & Mercier, 1994). Energy 

production from oxidation is very efficient (oxidation of 1 mol of glucose produces ~30 

mol of ATP) but the rate of production is slower in comparison to other energy systems 

because of the limitation of oxygen delivery (Alberts et al., 2004; Flück & Hoppeler, 

2003). Different enzymes from the citric acid cycle or electron transport system as well 

as the number, size, and function of muscle mitochondria are used often as measures of 
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oxidative capacity. Specifically, studies often investigate the activity and/or concentration 

of citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, succinate dehydrogenase, 

pyruvate dehydrogenase, malate dehydrogenase, and cytochrome c oxidase (Dudley, 

Abraham, & Terjung, 1982; Irrcher, Adhihetty, Joseph, Ljubicic, & Hood, 2003; Mujika 

& Padilla, 2001). Oxidative capacity increases in response to both ET and SIT (Gibala et 

al., 2006; Ingjer, 1979; MacDougall et al., 1998). 

In addition to affecting muscle glycolytic and oxidative capacity, exercise training can 

influence substrate utilization. Following training, glucose (GLUT4) and fatty acid 

(FAT/CD36 and FABPpm) transporter contents increase, muscle glycogen content 

increases, intramuscular triglyceride content increases, and there is a shift in substrate 

utilization with an increase in the relative contribution of fat and a decrease in the relative 

contribution of carbohydrate at a given workload (Burgomaster et al., 2005; Hawley, 

2002; Holloszy & Booth, 1976; Juel, 2006).  

In addition to GLUT4 and fatty acid transporters, there are other sarcolemmal transport 

proteins that are affected by exercise. Ion transporters, such as Na+/K+-ATPase, NKCCl, 

NHE1, MCT1, MCT4, La+/H+, and Na+/HCO3-, exist to prevent disruptions in cellular 

homeostasis (Juel, 2006). The transition from rest to exercise imposes an immediate 

increased energy demand. The resulting metabolic products and processes cause ionic 

imbalances which disrupt cellular homeostasis and have a tremendous influence on 

muscle function (Cairns & Lindinger, 2008). Changes in muscular ionic concentrations, 

muscle pH, and metabolite concentrations affect muscle membrane potential, muscle 

excitability, muscle contractility, and contribute to muscular fatigue (Allen, Lamb, & 

Westerblad, 2008). Exercise training can increase the muscle content of ion transporter 

proteins which improves exercise performance by delaying or sequestering ion imbalance 

related fatigue (Iaia et al., 2008; Juel, 2006; Juel et al., 2004). Endurance training and 

interval training promote increased protein content of most ion transporters (Juel & 

Halestrap, 1999; Juel, 2006; McKenna, 1995). 

An important determinant of oxygen uptake at the muscle is the oxygen carrying capacity 

of the blood. In blood, 98% of oxygen is bound to haemoglobin (oxyhaemoglobin), and 
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the remainder is dissolved. Haemoglobin binds oxygen at the lung and transports it to the 

muscle where it is off-loaded to muscle (Wilmore & Costill, 2004a). Conditions during 

exercise leads to the Bohr effect where the affinity of haemoglobin for oxygen is 

decreased in the presence lower pH, increased temperature, and the increase in certain 

exercise-related metabolites (Krustrup, Hellsten, & Bangsbo, 2004). The Bohr effect 

promotes oxygen off-loading at the muscle without having much effect on loading in the 

lung due to the shape of the oxygen-haemoglobin dissociation curve (Thomson, 

Dempsey, Chosy, Shahidi, & Reddan, 1974). Increases in production of red blood cells 

and haemoglobin are induced by the hormone erythropoietin (whether endogenous or 

exogenous) (Silverthorn, 2004). Increases in haemoglobin, irrespective of changes in 

blood volume, improve exercise performance and oxygen uptake (Kanstrup & Ekblom, 

1984). A molecule similar to haemoglobin, myoglobin, is found in muscle tissue. Oxygen 

binds to myoglobin (oxymyoglobin) facilitating oxygen transport to the mitochondria 

(myoglobin also acts as an oxygen store) (Wilmore & Costill, 2004b). Theoretically, an 

increase in myoglobin could improve V�O2max but studies have produced equivocal 

results thus far (Coyle et al., 1984; Jürgens, Papadopoulos, Peters, & Gros, 2000). 

The formation of new blood vessels is called angiogenesis. Angiogenesis occurs in 

response to mechanical (e.g. shear stress, muscle stretch) and chemical (e.g. VEGF, 

bFBF, NO, MMPs, integrins) stimuli that are produced during exercise (Egginton, 2009). 

Of particular importance to the exercise response is the proliferation of new muscle 

capillaries. Increased muscle capillary density improves gas and metabolite exchange 

between blood and muscle by 1) increasing surface area of capillary in muscle, 2) 

increasing blood transit time in capillary beds, and 3) reducing the diffusion distance 

between blood and muscle cells (Iaia et al., 2011; Saltin, 2009). 

1.6 Summary, purpose, hypothesis 

Recently, SIT has received much attention because it is a time-efficient method of 

training and, despite its low volume, results in similar oxidative and exercise performance 

improvements as ET (Gibala et al., 2006; MacPherson et al., 2011). However, SIT does 

not elicit improvements in Q�max (MacPherson et al., 2011). The purpose of this study 

was to determine if 6 weeks of a modified SIT protocol, that utilizes longer work periods 
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(45 instead of 30 seconds), would elicit improvements in Q�max. We hypothesized that 

45-second intervals would be a sufficient duration to improve Q�max. 



12 

 

Chapter 2  

2 Methods 

2.1 Participants 

Twenty men and 18 women volunteered for this study. Twenty-eight (14 men; 14 

women) performed sprint interval training and 10 (6 men; 4 women) acted as sedentary 

controls (Table 1).  Participants were recreationally active and had not performed interval 

training for at least 3 months prior to the start of the study. All were given a letter of 

information regarding this study. Several control subjects were not able to complete the 

post testing due to noise complaints during the treadmill testing.  As a result, the control 

group is small than planned.   Experimental procedures and potential risks were outlined 

before participants each gave his/her written consent to participate. In addition, 

participants completed a PAR-Q to screen for any potential contraindications to exercise.  

This study was approved by the University of Western Ontario ethics board. 

Table 1. Participant characteristics. 

 Age (y) Height (cm) Body Mass (kg) V�O2max (L·min
-1

) 

SIT (n=28) 23.0 ± 4.1 170.3 ± 7.6 71.7 ± 11.1 3.6 ± 0.8 

CON (n=10) 23.8 ± 2.3 170.3 ± 7.8 69.9 ± 12.8 3.8 ± 0.9 

*P<0.05; SIT = sprint interval training; CON = control. 

2.2 Study design 

Participants: Participants were placed randomly into either the sprint interval training 

(SIT) or the control (CON) group. All were familiarized with the testing procedures prior 

to the study. Pre- and post-testing consisted of a maximal incremental treadmill test, a 

constant load verification test, a 5-minute manual treadmill performance run, and body 

composition analyses. These exercise tests were used to assess V�O2max, Q�max, a-

v�O2diff, SVmax, HRmax and exercise performance. Body composition was measured via 

air displacement plethysmography (BodPod®) and used to normalize V�O2max, Q�max, 

a-v�O2diff, and SVmax relative to lean mass.  Post-training testing began between 48 and 
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72 hours after the final training session. Prior to testing, participants refrained from 

alcohol, nicotine, and caffeine for 12 hours and fasted for 3 hours. 

Training: Participants assigned to the training group performed 18 sessions of modified 

SIT over 6 weeks (Table 2).  Specifically, training was performed 3 times per week and 

sessions were separated by at least 48 hours. Training sessions consisted of “all out” 

sprints on a manual treadmill (Desmo Pro; Woodway, Waukesha, WI), progressing from 

4 x 30-second sprints to  7 x 45-second sprints. Sprints were separated by 4 minutes of 

active rest/recovery. Training took place on a treadmill set in manual mode. Manual 

mode is an un-motorized mode in which the tread is propelled solely by the muscular 

actions of the exerciser. 

Table 2. Sprint interval training program. 

Day # of sprints Sprint duration (s) 

1,2 4 30 

3,4 4 35 

5,6 4 40 

7,8,9 4 45 

10,11,12 5 45 

13,14,15 6 45 

16,17,18 7 45 

s = seconds 

Familiarization: Prior to the initial testing, participants visited the lab to complete a PAR-

Q questionnaire (Thomas, Reading, & Shephard, 1992). During this visit participants 

were introduced to the lab, the testing equipment, and all procedures to be used. 

Controls: Individuals assigned to the control group did not partake in any exercise 

training. Controls performed the battery of tests twice. These testing periods were 

separated by 6 weeks. 
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2.3 Tests 

Maximal Incremental Exercise Test: This test was performed on a motorized treadmill 

(Model TM310, Trackmaster; Jas Fitness System, Newton, KS). Following 5 minutes of 

seated rest, participants were familiarized with our open-circuit acetylene cardiac output 

measurement and 4 resting cardiac output measurements were taken (2 seated followed 

by 2 standing measurements). Resting measurements provided submaximal reference 

values and served as practice for participants. Next, participants performed a 5-minute 

warm-up jog at 9.7 (for men) or 8.0 km·h-1 (for women). Immediately following the 

warm-up, participants began the incremental exercise test. The test started at a speed of 

10.5 (for men) or 8.9 km·h-1 (for women) and increased 0.8 km·h-1 every minute until 

participants reached volitional exhaustion. V�O2 (mass spectrometry) and heart rate 

(ECG) were measured continuously throughout the test. A cardiac output measurement 

was taken when participants indicated they were near exhaustion (approximately 30 

seconds remaining).    

Constant Load Verification Test: Following the maximal incremental exercise test, 

participants were given 5 minutes of active rest/recovery. Then, they began running at a 

speed equal to 90% of the final speed achieved during the incremental test. Speed 

remained constant throughout the test and participants were instructed to run as long as 

possible. Another cardiac output measurement was taken 2 minute into the verification 

test and used as a submaximal reference value and a third cardiac output measurement 

was taken when participants indicated they were nearing exhaustion (approximately 30 

seconds remaining). V�O2 (mass spectrometry) and HR (ECG) were measured 

continuously throughout the test.  This test was used to confirm that the V�O2 and 

Q�max values from the incremental test were in fact maximal. 

Five Minute Performance Run: Participants completed a 5-minute run for distance on a 

treadmill (Desmo Pro; Woodway, Waukesha, WI) in manual mode. They were instructed 

to run as far as possible in 5 minutes. Feedback on the remaining time was provided. 

Heart rate, speed, and distance were recorded continuously (MED-PRO; Woodway, 

Waukesha, WI). After the test was explained a short demonstration of running in manual 
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mode was given. Two 5-minute runs were completed (separated by at least 24 hours) and 

the greatest distance covered was recorded to minimize any learning effect. 

Body Composition: Air displacement plethysmography (BodPod®) was used to assess 

body density. Participants were tested following a 3 hour fast. They wore approved 

clothing (compression shorts for men, bathing suit or compression shorts plus sports bra 

for women), placed a lycra cap on their head to minimize hair volume, and removed all 

jewelry. Thoracic air volume was predicted using an equation from the BodPod® 

software. Body density was used in the Siri equation to calculate body composition (% 

fat mass and % lean mass) (Siri, 1961). 

2.4 Measurements 

Oxygen uptake, heart rate, and cardiac output were measured. Stroke volume and arterial-

mixed venous oxygen difference were calculated. 

Oxygen Uptake (V�O2): V�O2 was measured continuously during the maximal 

incremental test and verification test. A low dead space (90 mL) bidirectional turbine 

(VMM-110; Alpha Technologies, Laguna Beach, CA), calibrated prior to testing with a 

3.003 L syringe, was used to measure inspired and expired flow rates. The mass 

spectrometer (1100 Spectrometer; Perkin-Elmer, Ontario, Canada) used was calibrated 

with precision-analyzed gas mixtures. Inspired and expired gases were sampled 

continuously (50 Hz) and analyzed for concentrations of O2, CO2, and N2. As reported 

previously, changes in gas concentrations were aligned with gas volumes by measuring 

the time delay for a square-wave bolus of gas passing the turbine to the resulting changes 

in fractional gas concentrations as measured by the mass spectrometer. Breath-by-breath 

alveolar gas exchange was calculated by using algorithms of Beaver et al. (Beaver, 

Lamarra, & Wasserman, 1981). V�O2 values were averaged over 20 seconds. The 

greatest averaged value was taken as V�O2max. During pre-testing, 5 out of 38 

participants showed a plateau in V�O2 (oxygen uptake increased <50% of the estimated 

oxygen requirement), 20 out of 38 reached an RER greater than 1.15, and 31 out of 38 

achieved 95% of their age-predicted HRmax. During post-testing, 12 out of 38 participants 

showed a plateau in V�O2 (oxygen uptake increased <50% of oxygen requirement), 20 
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out of 38 reached an RER greater than 1.15, and 28 out of 38 achieved 95% of their age-

predicted HRmax. 

Heart Rate (HR): HR was monitored continuously by electrocardiogram (three-lead 

arrangement) using PowerLab L132/ML880 (ADInstruments, Colorado Springs, CO, 

USA) and recorded using LabChart v7.1  (ADInstruments, Colorado Springs, CO, USA). 

HR was calculated using a human ECG macro that was included with the software. 

Cardiac Output (Q�): An acetylene (C2H2) non-rebreathing technique (breathing a C2H2 

gas mixture in an open-circuit system) was used to measure Q� at rest and during 

exercise.  

For acetylene non-rebreathing, participants were connected to a one-way valve assembly 

with a two-way valve on the inspired side. One input was room air and the other a gas 

mixture containing known concentrations of acetylene ((C2H2) (0.698%), helium (He) 

(8.99%), O2 (21%), and N2 (BAL)). The gas mixture was released from the gas tank into 

a plastic bag (Douglas bag; Hans Rudolph, Inc.). This plastic bag was subsequently 

attached to the valve leading to the mouth piece. At the end of expiration the valve was 

turned and inspired air changed from room air to the acetylene mixture. Concentrations of 

C2H2 and He were then measured continuously for 10 breaths by mass spectrometry. 

Digitized signals were interpreted by a commercially available software program (BIPS). 

After 10 breaths, the valve was switched from acetylene mixture back to room air at the 

end of expiration. Q� was calculated based on computer analysis of the rate of 

disappearance of acetylene (Johnson et al., 2000). 

Stroke Volume (SV): Using HR and Q� values, SV was calculated as 

SV = Q� ÷ HR 

 

Arterial-mixed venous oxygen difference (a-v�O2diff): Using V�O2 and Q� values, a-

v�O2diff was calculated as: 

a-v�O2diff = V�O2 ÷ Q� 
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2.5 Statistical analysis 

Statistical analyses were performed using SigmaPlot for Windows (Version 12.0). All 

data, except 5-minute run ∆d, were analyzed using a two-way repeated measures 

ANOVA. Tukey’s HSD test was used for post-hoc analysis of any significant interactions 

or main effects. A two-tailed, paired t-test was used to analyze 5-minute run ∆d. 

Significance was set at a P < 0.05. Data are presented as means ± standard deviation 

(SD). All results are presented as group data, but when applicable (findings diverge from 

group results), sex differences are reported. 

2.6 Excluded data points 

During post-testing, 2 subjects (a male SIT participant and a male CON participant) had 

non-physiological Q�max values. During post-testing for another subject (a female SIT 

participant), we had technical issues while measuring Q�max. An error occurred with the 

computer calculations and a Q� value was never produced. Maximal oxygen uptake and 

HRmax data had an n of 38 but, due to the issues mentioned above, Qmax, SVmax, and a-

v�O2diff had an n of 35. Additionally, one male control subject who participated in the 

fall/winter went home for winter holidays before performing his post-testing 5-minute 

runs. As a result, the 5-minute run data had an n of 37.  
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3 Results 

3.1 Maximal oxygen uptake (V�O2max; mL·kg lean mass-

1·min-1) 

Group Data V�O2max: There was a significant group by time interaction (p=0.032). There 

was a 2.3 mL·kg lean mass-1·min-1
 increase in V�O2max following SIT (pre-=64±6.9 

post=66±6.1 mL·kg lean mass-1·min-1
; p=0.024) and V�O2max did not change following 

control (pre-=65±6.9 post=63±7.4 mL·kg lean mass-1·min-1; p=0.244) conditions. 

V
O

2
m

a
x 
(m

L
·k

g
 l
e

a
n
 m

a
s
s

-1
·m

in
-1

)

0

45

50

55

60

65

70

75

80

85
PRE-

POST-

individual data

SIT CON

.

 

Figure 1. Maximal oxygen uptake (V�O2max; mL·kg lean mass
-1

·min
-1

) before (PRE) 

and after (POST) 6 weeks of SIT and CON conditions. Group data. Values are 

means ± SD. *P < 0.05 (POST significantly greater than PRE). SIT = sprint interval 

training; CON = control; lines are individual data. 

Sex Differences V�O2max: There was a significant group by time interaction for V�O2max 

(p=0.013). There was a 3.3 mL·kg lean mass-1·min-1
 increase in V�O2max following SIT 

(pre-=64±6.3 post=67±7.2 mL·kg lean mass-1·min-1
; p=0.015) and V�O2max did not 
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change following control (pre-=67±8.7 post=64±9.6 mL·kg lean mass-1·min-1; p=0.150) 

conditions in men. 

There were no main or interaction effects for V�O2max in women (p≥0.427). There was 

no change in V�O2max following SIT (pre-=64±7.6 post=66±4.9 mL·kg lean mass-1·min-

1; p=0.604) or control (pre-=63±1.8 post=62±3.2 mL·kg lean mass-1·min-1; p=0.604) 

conditions in women. 

3.2 Maximal oxygen uptake (V�O2max; L·min-1) 

Group Data V�O2max: There was a significant group by time interaction (p=0.014). There 

was a 0.14 L·min-1
 increase in V�O2max following SIT (pre-=3.62±0.78 vs 

post=3.76±0.80 L·min-1
; p=0.012) and V�O2max did not change following control (pre-

=3.82±0.92 vs post=3.69±0.84 L·min-1; p=0.160) conditions. 

Sex Differences V�O2max:  There was a significant group by time interaction for 

V�O2max in men (p=0.004). There was a 0.18 L·min-1
 improvement in V�O2max 

following SIT (pre-=4.22±0.59 vs post=4.40±0.61 L·min-1; p=0.018) in men. There was a 

0.24 L·min-1 decline in V�O2max following control (pre-= 4.38±0.71 vs post=4.13±0.76 

L·min-1; p=0.035) conditions in men. 

There were no main or interaction effects for V�O2max in women (p≥0.363). There was 

no significant change in V�O2max following SIT (pre-=3.03±0.40 vs post=3.13±0.30 

L·min-1; p=0.788) or control (pre-= 2.98±0.35 vs post=3.04±0.44 L·min-1; p=0.788) 

conditions in women.  

3.3 Maximal cardiac output (Q�max; mL·kg lean mass-1·min-

1) 

Group Data Q�max: There were no main or interaction effects for Q�max (p≥0.136). 

There was no change in Q�max following SIT (pre-=466±56.9 vs post=484±58.4 mL·kg 

lean mass-1·min-1; p=0.181) or control (pre-=447±65.2 vs post=439±62.5 mL·kg lean 

mass-1·min-1; p=0.181) conditions. 
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Sex Differences Q�max: There were no main or interaction effects for Q�max (p≥0.066). 

There was no change in Q�max following SIT (pre-=467±54 vs post=477±49 mL·kg lean 

mass-1·min-1; p=0.245) or control (pre-=426±71 vs post=409±66 mL·kg lean             

mass-1·min-1; p=0.245) conditions in men. 

There were no main or interaction effects for Q�max (p≥0.436). There was no change in 

Q�max following SIT (pre-=464±61 vs post=490±68 mL·kg lean mass-1·min-1; p=0.484) 

or control (pre-=474±54 vs post=475±37 mL·kg lean mass-1·min-1; p=0.484) conditions in 

women. 

3.4 Maximal cardiac output (Q�max; L·min-1) 

Group Data Q�max: There were no main or interaction effects for Q�max (p≥0.166). 

There was no significant change in Q�max following SIT (pre-= 26.13±5.09 vs 

post=27.10±4.82 L·min-1; p=0.166) or control (pre-= 25.23±4.53 vs post= 24.68±2.92 

L·min-1; p=0.166) conditions. 
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Figure 2. Maximal cardiac output (Q�max; L·min
-1

) before (PRE) and after (POST) 

6 weeks of SIT and CON conditions. Group data. Values are means ± SD. SIT = 

sprint interval training; CON = control; lines are individual data. 
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Sex Differences Q�max: There was a main effect of group on Q�max (SIT=31±2.6 vs 

CON=27±3.2 L·min-1; p=0.010) in men.  There was no change in Q�max following SIT 

(pre-= 30±2.7 vs post=31±2.6 L·min-1; p=0.145) or control (pre-= 28±4.5 vs post=26±1.1 

L·min-1; p=0.145) conditions in men. 

There were no main or interaction effects for Q�max (p≥0.200). There was no change in 

Q�max following SIT (pre-= 22±2.7 vs post=23±3.4 L·min-1; p=0.671) or control (pre-= 

22±3.0 vs post= 23±4.0 L·min-1; p=0.671) conditions in women. 

3.5 Maximum heart rate (HRmax; beats·min-1) 

Group Data HRmax: There were no main or interaction effects for HRmax (p≥0.135). There 

was no change in HRmax following SIT (pre-= 190±8 vs post= 189±8 beats·min-1; 

p=0.243) or control (pre-= 185±7 vs post= 186±6 beats·min-1; p= 0.243) conditions. 

3.6 Maximum stroke volume (SVmax; mL·kg lean mass-

1·beat-1) 

Group Data SVmax: There were no main or interaction effects for SVmax (p≥0.109). There 

was no significant change in SVmax following SIT (pre-=2.5±0.3 vs post=2.6±0.3 mL·kg 

lean mass-1·beat-1; p=0.109) or control (pre-=2.4±0.4 vs post=2.4±0.3 mL·kg lean mass-

1·beat-1; p=0.109) conditions. 

3.7 Maximum stroke volume (SVmax; mL·beat-1) 

Group Data SVmax: There were no main or interaction effects for SVmax (p≥0.095). There 

was no significant change in SVmax following SIT (pre-= 138±27 vs post=144±28 

mL·beat-1; p=0.095) or control (pre-=137±27 vs post=134±17 mL·beat-1; p=0.095) 

conditions. 
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Figure 3. Maximum stroke volume (SVmax; mL·beat
-1

) before (PRE) and after 

(POST) 6 weeks of SIT and CON conditions. Group data. Values are means ± SD. 

SIT = sprint interval training; CON = control; lines are individual data. 

3.8 Arterial-mixed venous oxygen difference (a-v�O2diff; mL 
O2·100mL blood-1·kg lean mass-1) 

Group Data a-v�O2diff: There were no main or interaction effects for a-v�O2diff 

(p≥0.683). There was no change in a-v�O2diff following SIT (pre-=0.25±0.05 vs 

post=0.25±0.05 mL O2·100mL blood-1·kg lean mass-1; p=0.843) or control (pre-

=0.26±0.04 vs post=0.25±0.04 mL O2·100mL blood-1·kg lean mass-1; p=0.843) 

conditions. 

3.9 Arterial-mixed venous oxygen difference (a-v�O2diff; mL 
O2·100mL blood-1) 

Group Data a-v�O2diff: There were no main or interaction effects for a-v�O2diff 

(p≥0.292). There was no change in a-v�O2diff following SIT (pre-=13.8±1.6 vs 

post=13.8±1.9 mL O2·100mL blood-1; p=0.803) or control (pre-= 14.5±1.5 vs 

post=14.4±2.2 mL O2·100mL blood-1; p=0.803) conditions. 
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Figure 4. Arterial-mixed venous oxygen difference (a-v�O2diff; mL O2·100mL blood
-

1
) before (PRE) and after (POST) 6 weeks of SIT and CON conditions. Group data. 

Values are means ± SD. SIT = sprint interval training; CON = control; lines are 

individual data. 

3.10  Five minute run: total distance (m) 

Group Data Total Distance Run: There was a significant group by time interaction 

(p<0.001) for total distance run (m). There was no improvement in total distance run 

following SIT (pre-=701.1±146.2 vs post=717.0±151.5 m; p=0.087) and there was a 60.3 

m decrease in total distance run following control (pre-=777.8±181.3 vs 

post=717.5±149.8 m; p<0.001) conditions. 

Sex Differences Total Distance Run: There were no main or interaction effects for total 

distance run in women (p≥0.370). There was no change in total distance run following 

SIT (pre-=583.2±67.7 vs post=595.0±62.8 m; p=0.370) or control (pre-=626.8±75.0 vs 

post=616.8±122.6 m; p=0.370) conditions in women. 
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Figure 5. Total distance run (m) during 5-minute run before (PRE) and after 

(POST) 6 weeks of SIT and CON conditions. Group data. Values are means ± SD. 

*P < 0.05 (POST significantly less than PRE). SIT = sprint interval training; CON = 

control. 

3.11  Five minute run: change in distance (∆d; m) 

Group Data ∆d: There was a significant ∆d achieved during the 5 min run following SIT 

compared with control conditions (SIT=15.94±42.39 vs CON=-60.27±62.76 m; 

p=0.0002).  

Sex Differences ∆d: There was no change in ∆d achieved during the 5 min run following 

SIT compared with control conditions in women (SIT=11.71±36.74 vs  CON=-

10.00±58.31 m; p=0.370). 
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4 Discussion 

The major findings from the present study were that increasing sprint interval exercise 

bout duration from 30 to 45 seconds resulted in an improved V�O2max.  Also, there was a 

4% non-significant increase in Q�max whereas a-v�O2diff was essentially unchanged 

following training. Distance completed in the 5-minute run was not improved but there 

was likely a real improvement in exercise performance with SIT that was masked by the 

nature of that particular test (see below for details). 

4.1 Effect on V�O2max 

As in other SIT studies, V�O2max was increased following training. However, in the 

present study, V�O2max was only increased by 3% which is smaller than the 7 to 12% 

increases seen by others (Burgomaster et al., 2008; MacDougall et al., 1998; MacPherson 

et al., 2011). Participants’ baseline V�O2max in this study was 3.6 L·min-1, compared to 

3.6, 3.7, and 2.8 L·min-1 found in similar studies by MacPherson, MacDougall, and 

Burgomaster, respectively. The sex of participants affects the absolute V�O2max 

measured; due to a smaller blood volume and greater proportion of fat mass, typically 

females have lower V�O2max values than males. While the baseline values between 

studies appear similar, the values may actually represent different training statuses based 

on the composition of each population. The present study included 14 men and 14 

women trainees. Burgomaster studied men and women but baseline V�O2max was only 

2.8 L·min-1, MacPherson included more men than women, and MacDougall studied men 

exclusively. Our baseline values appear similar to these related studies despite the greater 

proportion of female participants, which may be expected to reduce the mean V�O2max. 

The fact that baseline V�O2max was not lower than similar studies involving more males 

might indicate that our participants were actually more trained (for example, men in the 

SIT group had a baseline V�O2max of 4.2 L·min-1) before the SIT intervention. Changes 

in V�O2max in response to training are smaller in trained individuals. 
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In young, trained, healthy humans, breathing normoxic air, cardiac output is often cited 

as the factor which imposes the greatest limit to V�O2max (Bergh, Ekblom, & Åstrand, 

2000). Increasing cardiac output (via blood volume expansion, pericardectomy) leads to 

an instantaneous increase in V�O2max (Kanstrup & Ekblom, 1982; Stray-Gundersen et 

al., 1986). If subjects in the present study had a relatively high training status, it is 

possible that the training stimulus to peripheral systems is diminished, and that training 

improvements are driven mainly by changes in Q�max.  This would explain the small 

observed increase in V�O2max, and agrees with the higher than expected baseline 

V�O2max. 

4.2 Effect on Q�max 

Following SIT, participants showed a trend toward increased Q�max (4%) which did not 

reach statistical significance (p=0.166). In agreement with previous research, HRmax did 

not change following training (Blomqvist & Saltin, 1983). As Q�max is the product of 

HRmax and SVmax, the unchanged HRmax indicates that the trend for Q�max to increase was 

likely related to increased SVmax. In support of this, there was a 5% non-significant 

increase in SVmax following SIT (p=0.095). While neither change reached significance, 

there was considerable variability about each mean (SIT Q�max: pre-= 26.13±5.09 vs 

post=27.10±4.82 L·min-1; SIT SVmax: pre-= 138±27 vs post=144±28 mL·beat-1). It is 

possible that a real change occurred but it is undetectable due to the variability. 

Additionally, the other components that might contribute to an increase in V�O2max 

(HRmax and a-v�O2diff) were not even approaching significant p values (SIT HRmax 

p=0.243; SIT a-v�O2diff p=0.803). Thus, our conclusion is that Q�max and SVmax likely 

increased in response to SIT and were the driving forces in producing a greater V�O2max.   

More subjects and/or a more homogeneous response would be needed to determine this 

definitively. 

An exercise training program must impose a certain level of volume load (increased 

cardiac output during training) in order to elicit improvements in Q�max (Abergel et al., 

2004; Ehsani et al., 1991). MacPherson et al. (2011) showed that, during a 30-second SIT 

bout, heart rate increases from 140 to 185 beats·min-1. Hazell observed that during an SIT 

session, using 30-second bouts with 4 minutes of rest, average HR was 149 beats·min-1 
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for the entirety of the training session including recovery periods (Hazell, Olver, 

Hamilton, & Lemon, 2012). So apparently SIT drives heart rate to near maximal values 

during the exercise bout and remains elevated during the “rest/recovery” periods between 

bouts. By extending the exercise bout by 15 seconds, there would be a great increase in 

volume load on the heart because HR would be near maximal during the entirety of the 

added 15 seconds. Additionally, the exercise was performed at supramaximal intensities 

so metabolic products as well as increased neural outflow could result in a further 

elevated HR during “rest/recovery” in comparison to 30-second SIT. We did not alter the 

length of the “rest” period (4 minutes) which means the ratio of work:rest was greater 

compared to 30-second bouts. A greater work:rest ratio will be another factor 

contributing to an increased average HR (and cardiac volume load) during each training 

session. 

Sprint interval training is known to be a potent stimulus for a number of other 

adaptations. For example, after 1 training session there is elevated PGC-1α and evidence 

of mitochondrial biogenesis occurring (Little, Safdar, Bishop, Tarnopolsky, & Gibala, 

2011). However as mentioned, SIT, using 30-second bouts does not appear to result in 

improvements in Q�max. The current study suggests that using 45-second bouts could 

provide a minimal stimulus because there is a trend for an increased Q�max. It is possible 

that a longer program (e.g. 8 weeks) would result in significant changes to Q�max because 

the stimulus, if real, appears to be weak. Perhaps slightly longer exercise bouts (e.g. 60-

80 seconds) could provide a sufficient stimulus. 

4.3 Effect on a-v�O2diff 

In contrast to the findings of MacPherson et al. (2011), who showed that 30-second SIT 

bouts caused an increase in a-v�O2diff, there was no change in a-v�O2diff when 45-second 

exercise bouts were used. Our baseline a-v�O2diff values were similar to those of 

MacPherson (~14 mL O2·100mL blood-1). However, like V�O2max, a-v�O2diff tends to be 

smaller in women. Our study involved a greater proportion of women than MacPherson. 

It is possible that, as with V�O2max, our a-v�O2diff values were great initially due to a 

greater training status. 
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Improvements in a-v�O2diff reflect increased extraction/utilization at the muscle. Sprint 

interval training using 30-second bouts increase oxidative and glycolytic enzyme 

concentrations and as a result increases a-v�O2diff (Burgomaster, Heigenhauser, & 

Gibala, 2006; MacPherson et al., 2011). If our subjects were indeed more trained as 

suggested they would have already experienced increases in enzyme 

concentrations/activity prior to the study and therefore would be expected to experience a 

reduced training adaptation. Importantly, it is also possible that 45-second bouts provide 

a stimulus that differs from 30-second bouts. Sprint interval training is unique in that the 

effort is constant (“all-out” or supramaximal) but power output (or running speed in our 

case) varies throughout the exercise bout. The first 10 seconds are characterized by a 

large power output and then power output is considerably lower for the remaining 20 to 

35 seconds. Hazell et al. (2010) showed that 10-second SIT bouts produced 

improvements in aerobic and anaerobic exercise performance that were similar to 

improvements seen with 30-second bouts. Perhaps SIT is a potent and effective training 

method largely due to the great power outputs produced during the initial 10 seconds of 

each bout while the remaining 20 seconds have a negligible effect on training 

adaptations. Helgerud et al. (2007) had subjects perform 1 of 4 training programs 

(Submaximal endurance training, endurance training at maximal lactate steady state, 1:1 

short interval training bouts at 90-95% V�O2max, and 1:1 long interval training bouts at 

90-95% V�O2max). Training frequency and total work were matched, the greatest 

improvements in V�O2max were associated with higher exercise intensities (interval 

training was greater than endurance training). SIT is performed at “all-out” intensities 

and that could be the key to its effectiveness. Because there is an inverse relationship 

between exercise volume and intensity, by increasing the duration of SIT bouts, we 

increased the volume and decreased intensity. It is possible that this minimized 

improvements in V�O2max via a decreased effect on peripheral adaptations. Interestingly, 

the greater exercise volume vs 30-second bouts may stimulate Q�max but, based on our 

data, insufficiently so to observe a significant increase.  Apparently, longer bouts are 

necessary.  Consequently, our choice of 45-second sprint bouts and their effect on both 

exercise intensity and duration may have contributed to the smaller than expected 

increase in V�O2max observed.   
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4.4 Effect on 5-minute run 

The 5-minute run was used to assess the effect of training on exercise performance. Total 

distance run during the 5 minutes did not change with training and there was a decrease 

following control conditions. 

However, following completion of the study, a number of participants reported that they 

had modified their pacing strategy and/or effort for the 5-minute run because of the 

knowledge that it was extremely challenging gained during the initial testing. The tread 

poses greater than normal resistance so running in manual mode is more difficult than 

running freely on a road or track. Also, participants must use their upper body to push on 

the treadmill’s handles in order to properly propel the tread. Running in manual mode is 

more similar to pushing a sled than running freely. This combination of resistance on the 

tread and upper body effort made the test quite difficult as indicated.  Consistent with this 

possibility is the observed decreased performance in the control group on the post test.  

This might explain why the 5-minute run total distance did not improve significantly in 

the SIT group. As mentioned, there was a main effect of time (pre>post) on total distance 

run which supports participants’ reports of changing their pacing strategy due to the 

extreme demands/effort required for the test. During their first run they did not know how 

hard the test would be and gave a maximal effort. After having completed the test once, 

participants may have attempted to minimize the associated discomfort by altering their 

strategy (i.e. pacing themselves), resulting in a poorer performance. 

To clarify any coexisting effects of training improvements and voluntary pacing, the post 

study distance run was compared to the pre-training performance (post-training distance 

– pre-training distance; ∆d in metres run) to obtain a better representation of performance 

changes following SIT (Figure 6). Consistent with pacing affecting the outcome, the 

majority of control participants actually decreased their performance (∆d was decreased) 

while SIT participants exhibited a greater range of responses (with most participants 

showing improvement or little to no change).  If altered pacing strategy (which 

participants in both groups reported) is responsible for the control group’s reduction in 

∆d, then the SIT group was likely exposed to this effect as well.  With this in mind, the 

preservation of running performance (and even a trend for improvement), despite the 
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negative effect of pacing, may represent a significant improvement in training status 

without a significant improvement in absolute distance run. 
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Figure 6. Individual changes in distance run (∆d) during 5-minute run. SIT = sprint 

interval training; CON = control. Each bar represents one participant. 

In order to assess exercise performance, a 5-minute run on this type of manually driven 

treadmill is likely a poor test due to the effort it requires and the discomfort it produces, 

which may obscure real physiological changes.  Tests which have successfully been used 

to assess exercise performance, such as the Yo-Yo intermittent recovery test, cycling time 

trials, and running time trials, should be used in future studies to measure exercise 

performance (Burgomaster et al., 2006; Iaia et al., 2008; MacPherson et al., 2011) . 

4.5 Summary 

Thirty-eight recreationally active men and women performed 6 weeks of SIT, progressing 

from 4x30s to 7x45s bouts, (n=28) or acted as controls (n=10). Pre- and post-training (or 

post-control conditions), testing assessed V�O2max, Q�max, HRmax, SVmax, a-v�O2diff, and 

exercise performance (5-minute run). The primary finding from this study was that longer 

SIT bouts (up to 45-seconds) do not significantly increase Q�max. Maximal oxygen 
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uptake increased significantly as a result of insignificant increases in Q�max and SVmax 

with no effect on a-v�O2diff. The five minute run ∆d following SIT suggests a positive 

effect from training, despite an overall non-significant difference in absolute distance.  

Limitations of the treadmill running task may have obscured any underlying training 

effect, and a future studies should employ a different task. 

4.6 Future directions 

Based on the findings from this study, longer duration sprint interval training (up to 45-

seconds) should not be a replacement for ET. Rather, athletes should use a combination 

of SIT and ET in order to obtain the gamut of adaptations. Future studies should use 

untrained individuals in hopes of uncovering real changes in V�O2max, Q�max, and a-

v�O2diff that may have been obscured by the training status of participants in the current 

study. Studying the effects of an SIT program which uses a combination of various 

exercise bout lengths (e.g. 10-second, 30-second, and 60-second bouts) would be of 

interest. This would help determine if sprint interval exercise could effectively elicit 

central and peripheral adaptations concurrently. Additionally, due to the unique power 

profile of SIT exercise bouts, it would be of interest to compare time- and work-matched 

exercise training using constant-load exercise bouts to SIT exercise bouts. 

 

4.7 Conclusion 

Lengthening the duration of SIT bouts, from 30 to 45 seconds over 6 weeks of training (3 

times/week) promotes non-significant central adaptations (increase in Q�max and SVmax) 

which result in a modest increase in V�O2max. Peripheral adaptations were minimal. In 

addition, it is likely that exercise performance is improved with 45-second exercise bouts; 

however, 5-minute treadmill running test for distance, at least on the manual treadmill 

used here, is not a reliable measurement of exercise performance. 
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Appendix B: Letter of information. 

 
  

LETTER OF INFORMATION REGARDING RESEARCH 

 
 

Title of Study:  The effect of sprint interval training on selected 
cardiovascular measures and exercise performance in men 
and women 

  
You are being invited to participate in a research study conducted by P.W.R. 
Lemon (PhD), Stephanie Reid (BSc), Alan Smith (BSc), Terry Olver (MSc), Alex 
Stevens (BHK), and Craig Hamilton (BSc), from the Exercise Nutrition Research 
Laboratory in the School of Kinesiology at the University of Western Ontario.   
 
If you have any questions or concerns about the research, please feel free to 
contact Stephanie, Alan, Terry, Alex or Craig at (519) 661-2111 x 88164 or Dr. 
Lemon (519) 661-2111 x 88139. 
 
PURPOSE OF THE STUDY 
 
The purpose of this research experiment is to determine if six weeks of sprint 
interval training (SIT) will improve selected cardiovascular measures and 
exercise performance in men and women. 
 
INCLUSION/EXCLUSION CRITERIA 
 
In order to be eligible to participate in this study you must be a healthy, 18 to 35 
year old male or female. 
 
You will be excluded from this study if you are: injured, diabetic, currently 
undergoing a similar training program or have any contraindications to this type 
of exercise. 
 
PROCEDURES 
 
If you volunteer to participate in this study, we will ask you to do the following 
things: 
 

1. Complete a health survey (PAR-Q) to assess your current physical 
capability. 

2. Record a 3-day dietary record for the weeks that pre- and post-training 
testing are completed. 
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3. Undergo an assessment of various cardiovascular and exercise 
measures, before and after training, that will include: determination of 
body composition (BodPod® - involves sitting comfortably in a chamber 
for about 5 minutes while the space your body takes up is measured), a 
multi-stage exercise test on a treadmill (maximal oxygen uptake test), 
blood pressure, femoral blood flow, cardiac output, pulse wave velocity, 
blood velocity, arterial compliance, femoral artery diameter, heart rate, a 
2km run for time on a track.  

4. Complete 6 weeks of sprint interval training (3 days/week). Each session 
will consist of 4 (wk 1 and 2), 5 (wk 3 and 4), or 6 (wk 5 and 6) 1 minute 
“all out” running efforts on an outdoor track, with each effort separated by 
4 minutes of no exercise. 

 
Testing will be conducted in the Exercise Nutrition Research Laboratory, the 
Neurovascular Research Laboratory, and the Canadian Centre for Activity and 
Aging.  Training will be conducted on the outdoor track at the TD Waterhouse 
Stadium. 
 
TIME INVOLVED 
 
The study will take place over eight weeks. There will be six weeks of training 
and 2 weeks of testing (pre- and post-training). 
 
Pre- and post-training testing will take place during the first and eighth week of 
the study and will take place over 4 days. Day one will involve being familiarized 
with the procedures that will be done and completion of a dietary record. On day 
two, body composition and maximal oxygen uptake tests will be completed. On 
day three, resting cardiovascular measures will be taken (blood pressure, 
femoral blood flow, cardiac output, pulse wave velocity, blood velocity, arterial 
compliance, and femoral artery diameter). On day four, a 2 km timed run will be 
completed. 
 
Training will take place from week 2 to week 7. It will occur 3 days per week. The 
number of intervals per session will increase over the course of the training 
program. Subjects will complete 4 intervals per session during weeks 2 and 3, 5 
intervals during weeks 4 and 5, and 6 intervals during weeks 6 and 7. At the end 
of weeks 3 and 5 subjects will be reassessed for changes in resting 
cardiovascular measures (blood pressure, femoral blood flow, and cardiac 
output).  
 
POTENTIAL RISK AND DISCOMFORTS 
 
All exercise involves some health risk (primarily cardiovascular or hydration-
related) but lack of activity has been shown to more hazardous to one’s health.  
Further, these concerns are much reduced in young, healthy individuals.  This 
type of exercise is completed by many Western students in kinesiology classes, 
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in intramural sports, and by Mustang athletes.  Participants will be encouraged to 
adequately hydrate. There are no risks associated with the finger cuff method for 
measuring blood pressure. When the cuff is inflated subjects may experience 
numbness but this is reversed immediately upon deflation of the cuff. Adhesive 
electrodes will be applied to the skin for ECG.  Some individuals may experience 
a slight skin reaction in response to the adhesive. This typically clears up in a few 
days. There are no known risks associated with ultrasound.  
 
 
 
POTENTIAL BENEFITS 
 
Your aerobic fitness will likely improve using this training protocol.  
 
COMPENSATION 
 
You will not be compensated for your participation in this study. 
 
CONFIDENTIALITY 
 
Any information that is obtained in connection with this study that can identify you 
will remain confidential and will be disclosed only with your permission.  This 
information will be collected on a master list that will be kept in a password 
protected file with access to only the investigators in this study.  All data will be 
collapsed before results are printed (only group averages and variability).  All 
participants will be assigned an arbitrary number to ensure anonymity.  Mean 
data will be stored in a password protected file for comparison with future 
studies.  Raw data will not be released to any other parties. 
 

PARTICIPATION AND WITHDRAWAL 
 
You can choose whether to be in this study or not.  If you are a student and you 
volunteer, you may withdraw at any time without any effect on your status at 
UWO.  If you are not a student at UWO, you may withdraw from the study at any 
time.  You may also refuse to answer any questions you feel are inappropriate 
and still remain in the study.  The investigator may withdraw you from this 
research if circumstances arise which warrant doing so. 
  
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE SUBJECTS 
 
We plan to publish this study in a reputable academic journal upon the 
completion of the research.  The information published in a journal or subsequent 
studies will not identify you in any way.  Copies of such articles will be available 
upon request.  
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SUBSEQUENT USE OF DATA 
 
These data may be used in subsequent studies but the data will have no 
personal identifiers. 
 
You will receive a copy of the consent form after it has been signed.  You do not 
waive any legal rights by signing the consent form. 
 
 
This letter is for you to keep.  If you have any questions about this research 
project, feel free to call us (Dr. Peter Lemon / Stephanie Reid, Alan Smith, Terry 
Olver, Alex Stevens or Craig Hamilton – 519-661-2111 ext. 88164) for 
clarification.  Further, if you have any questions about the conduct of this study or 
your rights as a research subject you may contact the Office of Research Ethics 
at The University of Western Ontario at 519-661-3036 or at ethics@uwo.ca. 
 
Sincerely, 
 
 
Dr. Peter Lemon / Stephanie Reid / Alan Smith / Terry Olver / Alex Stevens /. 
Craig Hamilton 
Principal Investigators  
RM 2235 3M Centre UWO, Exercise Nutrition Research Laboratory 
plemon@uwo.ca, sreid73@uwo.ca, asmit92@uwo.ca tolver@uwo.ca, 
asteve62@uwo.ca, chamilt@uwo.ca 
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Appendix C: Informed consent statement form. 

INFORMED CONSENT STATEMENT 
 

The effect of sprint interval training on selected cardiovascular measures and 
exercise performance in men and women 

 

Investigator: P.W.R. Lemon (Stephanie Reid and Alan Smith) 
    
I have read the accompanying "Letter of Information”, have had the nature 
of the study explained to me and I agree to participate.  All questions have 
been answered to my satisfaction. 
 
By signing below, I agree to participate in this study. 
                                                         
Name of Participant (please print): 
 
_______________________________________ 
   
Signature of Participant: 
 
______________________________      Date: ____________________ 

 
                                
Name of Person Obtaining Informed Consent: 

 
 _____________________________________ 

 
Signature of Person Obtaining Informed Consent: 

 
________________________________    Date:____________________ 

 
  
 
 
RE-RECRUITMENT IN FUTURE STUDIES 
 
If you wish to participate in future studies in the Exercise Nutrition Research Lab, 
please include your current contact information below. 

 
I wish to be contacted for future studies in the Exercise Nutrition Research 
Laboratory. 

 
 
Yes_____ (check mark), No _____ (check mark)  
 
If yes, email __________________  Date:_____________________ 
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