
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-1-2013 12:00 AM

Numerical evaluation of aerodynamic roughness of the built Numerical evaluation of aerodynamic roughness of the built

environment and complex terrain environment and complex terrain

Daniel S. Abdi
The University of Western Ontario

Supervisor

Girma T. Bitsuamlak

The University of Western Ontario

Graduate Program in Civil and Environmental Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Daniel S. Abdi 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Civil Engineering Commons

Recommended Citation Recommended Citation
Abdi, Daniel S., "Numerical evaluation of aerodynamic roughness of the built environment and complex
terrain" (2013). Electronic Thesis and Dissertation Repository. 1705.
https://ir.lib.uwo.ca/etd/1705

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F1705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1705?utm_source=ir.lib.uwo.ca%2Fetd%2F1705&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

NUMERICAL EVALUATION OF AERODYNAMIC ROUGHNESS OF

THE BUILT ENVIRONMENT AND COMPLEX TERRAIN

(Thesis format: Monograph)

by

Daniel Abdi

Graduate Program in Civil and Environmental Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Daniel Shawul Abdi 2013

Abstract

Aerodynamic drag in the atmospheric boundary layer (ABL) is affected by the structure and

density of obstacles (surface roughness) and nature of the terrain (topography). In building

codes and standards, average roughness is usually determined somewhat subjectively by exam-

ination of aerial photographs. For detailed wind mapping, boundary layer wind tunnel (BLWT)

testing is usually recommended. This may not be cost effective for many projects, in which

case numerical studies become good alternatives. This thesis examines Computational Fluid

Dynamics (CFD) for evaluation of aerodynamic roughness of the built environment and com-

plex terrain.

The present study started from development of an in-house CFD software tailored for ABL

simulations. A three-dimensional finite-volume code was developed using flexible polyhedral

elements as building blocks. The program is parallelized using MPI to run on clusters of

processors so that micro-scale simulations can be conducted quickly. The program can also

utilize the power of latest technology in high performance computing, namely GPUs. Various

turbulence models including mixing-length, RANS, and LES models are implemented, and

their suitability for ABL simulations assessed.

Then the effect of surface roughness alone on wind profiles is assessed using CFD. Cases

with various levels of complexity are considered including simplified models with roughness

blocks of different arrangement, multiple roughness patches, semi-idealized urban model, and

real built environment. Comparison with BLWT data for the first three cases showed good

agreement thereby justifying explicit three-dimensional numerical approach. Due to lack of

validation data, the real built environment case served only to demonstrate use of CFD for such

purposes.

Finally, the effect of topographic features on wind profiles was investigated using CFD.

This work extends prior work done by the research team on multiple idealized two-dimensional

topographic features to more elaborate three-dimensional simulations. It is found that two-

dimensional simulations overestimate speed up over crests of hills and also show larger recir-

culation zones. The current study also emphasized turbulence characterization behind hills.

Finally a real complex terrain case of the well-known Askervein hill was simulated and the

results validated against published field observations. In general the results obtained from the

current simulations compared well with those reported in literature.

Keywords: Computational fluid dynamics, Aerodynamic roughness, Complex terrain, At-

mospheric boundary layer, Parallel CFD, Turbulence modeling

ii

Co-Authorship Statement

In Chapter 3, a conference paper titled ’Application of an artificial neural network model

for boundary layer wind tunnel profile development’ is extracted and published with Simon

Levin, who provided the BLWT data for training and validation of the ANN model.

Other papers have been extracted from the cores of Chapters 3,4,5 and submitted for pub-

lishing in Journal articles.

iii

Acknowlegements

I would like to thank my major advisor Dr. Girma T. Bitsuamlak for supervising my work

here at Western and also at FIU where the research is started. This work would not have been

possible with out his active support and daily involvement. I would also like to express my

sincere gratitude to Dr. Ashraf El Damatty, Dr Horia M. Hangan, Dr. Fernando Miralles, Dr.

Arindam G. Chowdhury and Dr. Ping Zhu for their constructive input in the completion of this

research.

I would like to acknowledge the Civil and Environmental Engineering Department at West-

ern and FIU, CEATI International Inc., and the National Science Foundation (NSF) for their

financial support of my doctoral research.

I would also like to thank the SHARCNET and MAIDROC high performance computa-

tional facility centers that were instrumental for the completion of the study. The help and the

moral support I have received from my friends and colleagues is also appreciated.

Finally, I would like to thank my parents and sisters for their unconditional love, encour-

agement and support to my academic career.

iv

Contents

Abstract ii

Co-Authorship Statement iii

Acknowlegements iv

Nomenclature x

Abbreviations xiii

List of Figures xvi

List of Tables xxii

1 Introduction 1
1.1 Overview . 1

1.1.1 Methods for investigation of atmospheric flow over topography 1
1.1.2 Effect of roughness on atmospheric boundary layer flow 3

1.2 Objectives and scope . 4

2 Background 7
2.1 Atmospheric boundary layer . 7
2.2 Modification of ABL by topographic features 8
2.3 Modification of ABL by surface roughness . 11
2.4 ABL stratification and stability . 13
2.5 Coriolis force . 14
2.6 Statistics on wind turbulence . 15

2.6.1 Spectral content of wind . 17
2.6.2 Mean wind speed and turbulence intensity models 19

2.6.2.1 The log law model . 19
2.6.2.2 The power law model . 20

2.7 Surface roughness models . 20
2.7.1 Empirical formulas . 20
2.7.2 BLWT methodology . 25
2.7.3 CFD methodology . 27

2.8 Computational wind engineering . 28
2.9 Overview of CFD . 29

v

2.9.1 Governing equations . 30
2.9.1.1 Mass conservation law . 30
2.9.1.2 Momentum conservation law 30

2.9.2 Turbulence models . 32
2.9.2.1 Reynolds Averaged Navier Stokes 32
2.9.2.2 Linear eddy viscosity models 33
2.9.2.3 Non-linear eddy viscosity models 36
2.9.2.4 Reynolds stress models (RSM) 36
2.9.2.5 Modeling flow near wall . 37
2.9.2.6 Large eddy simulations . 39

2.9.3 Finite volume discretization . 39
2.9.3.1 Convection discretization 41
2.9.3.2 Diffusion discretization . 43
2.9.3.3 Source term discretization 43
2.9.3.4 Temporal discretization . 44

2.9.4 Boundary conditions . 45
2.9.5 Calculation of flow field . 46

3 Implementation of 3D CFD program 48
3.1 Tensors . 48
3.2 Fields . 50
3.3 Equation discretization . 51
3.4 Overview of components of CFD tool . 52

3.4.1 Partial differential equation solvers . 52
3.4.1.1 Wall distance solver . 52
3.4.1.2 Potential flow solver . 53
3.4.1.3 Parabolic diffusion solver 54
3.4.1.4 Transport equation solver 54
3.4.1.5 Navier-Stokes solver . 54

3.4.2 Meshing . 55
3.4.3 Solution and turbulence modeling . 55
3.4.4 Parallelization . 56

3.5 Development of high performance CFD code 57
3.5.1 Domain decomposition . 57
3.5.2 Platform for high end simulation . 57
3.5.3 Parallel computing . 59

3.5.3.1 Coarse grained parallelism 59
3.5.3.2 Fine grained parallelism . 60

3.5.4 Relaxation algorithms . 60
3.5.5 Preconditioning . 62
3.5.6 Parallel implementations . 64
3.5.7 Asynchronous implementation . 67
3.5.8 Scalability study . 69

3.5.8.1 Coarse-grained scalability study 69
3.5.8.2 Fine grained scalability study 69

vi

3.5.9 Validation with benchmark problems 71
3.5.9.1 Lid-driven cavity . 71
3.5.9.2 Flow around a bluff body . 74

4 Numerical evaluation of roughness effects 77
4.1 Complexity 0: Empty domain . 78

4.1.1 Computational domain . 78
4.1.2 Boundary conditions . 79
4.1.3 Simulation for different cases . 81

4.2 Complexity 1: Homogeneous roughness evaluation 84
4.2.1 Test setup . 84
4.2.2 Analysis . 86

4.3 Complexity 2: Inhomogeneous roughness evaluation 88
4.3.1 Homogeneous roughness wind speed models 89

4.3.1.1 Roughness estimation . 89
4.3.1.2 Models . 90

4.3.2 The ESDU model . 91
4.3.2.1 Wind speed model (ESDU 82026) 91
4.3.2.2 Turbulence intensity model (ESDU 84030) 92

4.3.3 The WS model . 93
4.3.3.1 Wind speed model . 93
4.3.3.2 Turbulence intensity model 94

4.3.4 Comparison of WS and ESDU models 94
4.3.5 Three dimensional CFD simulations 96

4.3.5.1 Simulations on a row of roughness elements 97
4.3.5.2 Simulation of a BLWT with spires and barriers 99
4.3.5.3 Simulation of multiple cases with a virtual Wind tunnel . . . 101
4.3.5.4 Simulation of WS cases using simplified 3D models 105

4.4 Complexity 3: Semi-idealized built environment 109
4.4.1 Computational domain setup and grid generation 109
4.4.2 Boundary conditions . 110
4.4.3 Results and discussion . 110

4.5 Complexity 4: Built environment . 114
4.5.1 Computational domain setup and grid generation 115
4.5.2 Boundary conditions . 115
4.5.3 Results and discussion . 115

4.6 Prediction with artificial neural networks . 118
4.6.1 Data acquisition . 118
4.6.2 Artificial neural network model . 120
4.6.3 Results and discussion . 121

4.6.3.1 Wind profile prediction . 121
4.6.3.2 Estimation of tunnel surface roughness and spire dimensions . 121

4.6.4 Conclusions . 121

5 Numerical evaluation of orographic effects 124

vii

5.1 Wind speed up over topography . 125
5.1.1 Building codes and standards . 125
5.1.2 Numerical studies . 126
5.1.3 Analytical study of flow over low hills 128
5.1.4 BLWT studies . 130
5.1.5 Description of test cases of the current study 130
5.1.6 Ground surface representation and mesh generation 133
5.1.7 Computational domain setup . 134
5.1.8 Grid independence study . 135
5.1.9 Results and discussion . 135
5.1.10 Conclusions . 138

5.2 Turbulence structure . 148
5.2.1 Background . 148
5.2.2 Turbulence models . 150

5.2.2.1 Mixing length model . 150
5.2.2.2 K-epsilon models . 151
5.2.2.3 LES models . 152

5.2.3 Wall models . 153
5.2.4 Simulation results and discussions . 154

5.2.4.1 Effect of turbulence models 154
5.2.4.2 Roughness effects . 169
5.2.4.3 Scheme sensitivity . 171

5.2.5 Conclusions . 172
5.3 Wind flow simulations on real complex terrain 173

5.3.1 Askervein hill case study . 174
5.3.1.1 Computational domain setup and grid generation 174
5.3.1.2 Grid independence study . 176
5.3.1.3 Different turbulence models 176
5.3.1.4 Comparison with field measurements 178

5.3.2 A second complex hill simulation . 179

6 Conclusions and future work 182
6.1 High performance CFD code . 182
6.2 Effect of roughness . 183
6.3 Effect of topographic features . 184
6.4 Future work . 186

Bibliography 196

A Plots of wind speed model 197

B Artificial neural network source code 225

C CFD program 234
C.1 Brief information on usage . 234

viii

C.2 Source code . 238

Curriculum Vitae 418

ix

Nomenclature

α Power law coefficient

∆ LES filter width

∆S Relative speed up ratio

∆t Time step

ε Turbulent energy dissipation rate

ĝ Peak factor

κ von Karmann constant

λ f Frontal area density ratio

λp Planar area density ratio

µ Dynamic viscosity

ν Kinematic viscosity

νt Turbulent viscosity

Ω Vorticity

U Mean wind speed

φ Any flow variable

ρ Density of air

τ Surface shear stress

τReynolds Surface Reynolds shear stress

x

τxy, τxz, τyz Surface shear stresses on different planes

Ad Total area of obstacles

A f Frontal area of obstacles

Ap Planar area of obstacles

c, d Inverse power law coefficients of ASCE-7

CD Drag coefficient

Cs Smagorinsky constant

Cks Roughness constant

Co Courant number

d Displacement height

F Body force

fc Coriolis parameter

G Gradient height

g Gravitational acceleration 9.8 m/s2

H Height of obstacle such as hill or blocks

I Integral time scale

Iu Longitudinal turbulence intensity

Iv Vertical turbulence intensity

Iw Transverse turbulence intensity

k Turbulent kinetic energy

Ks Sand grain roughness

Lu Longitudinal length scale of turbulence

lmix, lm Mixing length

xi

Mt Topographic modification factor

p Pressure

Pe Peclet number

Re Reynolds number

Ro Rossby number

T Deviatoric component of stress tensor

U Instantaneous wind speed

u′ Fluctuating component of wind speed

U+ Dimensionless velocity

U∗ Friction velocity

Up Horizontal velocity component at the first near wall cell

V Vertical velocity component

v′ Fluctuating component of vertical wind speed

W Transverse velocity component

w′ Fluctuating component of transverse wind speed

x Longitudinal axis

X f Fetch length

y Transverse axis

y+ Dimensionless wall coordinate

Yp Perpendicular distance to the wall from nearest cell

z Vertical axis

z0 Surface roughness length

zre f Reference height at which wind speed is measured

xii

Abbreviations

ABL Atmospheric Boundary Layer.

ANN Artificial Neural Network.

AS/NZS 1170-2 Australian/New Zealand Standard.

ASCE7 American Society of Civil Engineers - 7.

BLWT Boundary Layer Wind Tunnel.

CCNN Cascade Correlation Neural Network.

CFD Computational Fluid Dynamics.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

CWE Computational wind engineering.

DNS Direct Numerical Simulation.

ESDU Engineering Science Data Unit.

Eurocode I European Standard.

FDM Finite Difference Method.

FEM Finite Element Method.

FSUR Fractional Speed Up Ratio.

FVM Finite Volume Method.

xiii

GPGPU General Purpose Graphic Processing Unit.

GPU Graphic Processing Unit.

HPC High Performance Computing.

IBL Internal Boundary Layer.

IHRC International Hurricane Research Center.

LDV Laser Doppler Velocimetry.

LES Large Eddy Simulation.

MPI Message Passing Interface.

MPNN Multilayer Perceptron Neural Network.

NBCC National Building Code of Canada.

PBiCG Preconditioned Bi Conjugate Gradient.

PCG Preconditioned Conjugate Gradient.

PDE Partial Differential Equation.

PISO Pressure Implicit with Splitting Operators.

PIV Particle Image Velocimetry.

RANS Reynolds Averaged Navier-Stokes.

Re Reynolds number.

RMS root mean square.

Ro Rosby number.

RWDI Rowan Williams Davies and Irwin Incorporation.

S-BLWT Symmetric Virtual Boundary Layer Wind Tunnel.

SHARCNET Shared Hierarchial Academic Research Computing Network.

xiv

SIMPLE Semi Implicit Method for Pressure Linked Equations.

SOR Successive Over Relaxation.

TVD Total Variation Diminishing.

USGS United States Geological Survey.

V-BLWT Virtual Boundary Layer Wind Tunnel.

WAsP Wind Atlas Analysis Application Program.

WRF Weather Research and Forecasting.

WS Wang and Sthatopoulos Model.

xv

List of Figures

2.1 Structure of Atmospheric Boundary Layer (ABL) (Crasto (2007)) 8

2.2 Speed up on isolated hill (National Building Code of Canada (NBCC) 1995) . . 9

2.3 Hills, escarpments and valleys of different slope 10

2.4 Double hills, funneling between two hills, and speed up inside a valley 11

2.5 Effect of stability on wind flow over hill . 14

2.6 Time series of wind turbulence (left) and its spectrum (right) (Stull 1988) . . . 16

2.7 The von Karman-Harris spectra for longitudinal wind speed 18

2.8 Roughness length and displacement height for square and staggered blocks

(Peterson 1994) . 22

2.9 Comparison of different empirical models for roughness length 23

2.10 Displacement height for different convexity 24

2.11 Roughness length for different convexity . 25

2.12 The law of the wall expressed with wall coordinates y+ and U+ 37

3.1 Contour map of wall distance from the surface of a 2D hill 53

3.2 MAIDROC tesla cluster at FIU with 2 x 64=128 cores 58

3.3 SHARCNET cluster, a network of high-performance computers 58

3.4 A 5-point stencil with halo layer for exchanging information between processors 65

3.5 Red-black colored graph for parallel Gauss-Siedel 66

3.6 Graphic Processing Unit (GPU) speed up relative to Central Processing Unit

(CPU) for fixed number of iterations . 70

3.7 Streamlines for different Reynolds numbers showing progressive formation of

eddies at the bottom right corner→ bottom left corner→ top right corner . . . 72

3.8 Streamlines (left) and pressure contours (right) of lid-driven cavity flow at

Re=1000 . 72

3.9 Horizontal(u) and vertical(v) velocity profiles along mid vertical and horizontal

sections respectively . 73

xvi

3.10 Solution of 3D lid-driven cavity problem solved parallely with 16 sub-domains

(left), and the resulting 3D iso-surface plot that shows the flow pattern (right) . 73

3.11 Grid for a cube in a boundary layer case of Kose & Dick (2010) 74

3.12 Plots of instantaneous and mean velocity contours showing vortex shading be-

hind the cube . 75

3.13 Pressure coefficients along vertical section of cube. Adapted from Bitsuamlak

et al. (2010) . 75

4.1 Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-1 83

4.2 Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-2 83

4.3 Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-3 83

4.4 Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-4 83

4.5 Plan of three symmetric configurations: Staggered arrays(left), regular arrays

(middle) and 450 wind attack on uniform array (right) 85

4.6 Plan of regular array of cubes with height H and spacing 1.5H also showing

location of probes . 85

4.7 Spatial variation of velocity profiles: longituidinal (left) and transverse(right) . 87

4.8 Sample measured and logarithmic fitted velocity profiles 87

4.9 Comparison of CFD with different roughness models 87

4.10 Effect of staggered placement on z0 (left) and comparison of CFD and Theurer

model for d (right) . 87

4.11 Schematics of the growth of internal boundary layer for single roughness change 89

4.12 Schematics of change in velocity profile for three roughness patches.(Wang &

Stathopoulos 2007b) . 93

4.13 Comparison of Wang and Sthatopoulos Model (WS) and Engineering Science

Data Unit (ESDU) models on selected cases 96

4.14 A look inside of a 3D symmetrical computational domain for regular array of

cubes. The 2D plan of the model is previously explained in Fig.4.5 97

4.15 Velocity contours for different roughness characteristics showing isolated (open-

terrain), wake-interference (sub-urban) and skimming flow (urban). 98

4.16 Virtual Boundary Layer Wind Tunnel (V-BLWT) simulation results with sur-

face roughness blocks . 100

4.17 Virtual Boundary Layer Wind Tunnel (BLWT) simulation with spires, barrier

and roughness blocks . 102

4.18 Comparison of U and Iu profiles for different roughness features 103

xvii

4.19 Open country(OC), Suburban(S) and Urban(U) roughness representation 103

4.20 Inlet and outlet horizontal velocity profiles for open surface roughness 104

4.21 Perspective view computational domain of a virtual BLWT 105

4.22 Horizontal velocity comparison of CFD with existing models for cases 1-8 . . . 106

4.23 Turbulence intenisy comparison of CFD with existing models for cases 1-8 . . . 107

4.24 Horizontal velocity contour for V-BLWT configuration of cases 1-8 108

4.25 Semi-idealized urban model from CEDVAL database 111

4.26 Plan of the semi-idealized urban model . 111

4.27 Inside view of the mesh generated for the semi-idealized urban model 111

4.28 Velocity contours at different elevations . 112

4.29 Velocity vectors at the core of the urban canyon 112

4.30 Comparison between Computational Fluid Dynamics (CFD) and BLWT for

some of probe locations inside the model . 113

4.31 Surface model of a region in downtown Miami 116

4.32 Building edges and corresponding mesh generated by snappyHexMesh 116

4.33 Velocity contours at 5m height for different grid sizes in the vertical direction . 117

4.34 Velocity contours at different heights . 117

4.35 Rowan Williams Davies and Irwin Incorporation (RWDI) wind tunnel working

Section, spire and roughness blocks . 119

4.36 Neural network model with CCNN architecture for roughness estimation: 3

input, 20 hidden and 2 output neurons . 120

4.37 Measured versus predicted velocity and turbulence intensity profiles 122

5.1 Transmission line with multiple towers crossing a hill 125

5.2 Speed up factors at x=0(crest), x = L/2 and x = L of a 2D steep hill using

various building codes. 127

5.3 Speed up factors at x=0(crest), x = L/2 and x = L of a 2D shallow hill using

various building codes. 127

5.4 Flow regimes for flow over a low hill. Adapted from Jackson & Hunt (1975) . . 130

5.5 Wind speed up over a single hill (NBCC) . 131

5.6 An escarpment . 132

5.7 Double hills . 132

5.8 An isolated valley . 133

5.9 Computational domain for double 2D hills . 134

xviii

5.10 Mesh refinement around hills: Background mesh (top-left), box refinement

around hill (bottom-left), Planar view of refinement for triple hills (top-right),

and close up view of layers towards the ground (bottom-left). 136

5.11 Grid independence study on single 2D hill: wind profiles at crest (left) and

close-up view of maximum speed up region(right) 136

5.12 Single shallow hill Fractional Speed Up Ratio (FSUR) color maps and line

plots and comparison of 2D and 3D simulation results 139

5.13 Single steep hill FSUR color maps and line plots and comparison of 2D and

3D simulation results . 140

5.14 Double shallow hills FSUR color maps and line plots and comparison of 2D

and 3D simulation results . 141

5.15 Double steep hills FSUR color maps and line plots and comparison of 2D and

3D simulation results . 142

5.16 Triple shallow hills FSUR color maps and line plots and comparison of 2D and

3D simulation results . 143

5.17 Triple steep hills FSUR color maps and line plots and comparison of 2D and

3D simulation results . 144

5.18 Single shallow valley FSUR color maps and line plots and comparison of 2D

and 3D simulation results . 145

5.19 Single steep valley FSUR color maps and line plots and comparison of 2D and

3D simulation results . 146

5.20 Empty domain FSUR color maps and line plots 147

5.21 Escarpement FSUR color maps and line plots 147

5.22 Horizontal velocity fluctuation on upstream(dotted) and crest(solid) of sinu-

soidal hills (Miller & Davenport 1998) . 148

5.23 Horizontal normal stress σh/U∞ profiles(Takeshi et al. 1999) 149

5.24 Mean horizontal velocity for shallow and steep a) isolated hill b) double hills

c) triple hills d) isolated valley at 20m height from full scale simulations 156

5.25 Results for single shallow hill: TKE, horizontal velocity U,fluctuations u’ and

w’, and Reynolds stresses . 157

5.26 Results for single steep hill: TKE, horizontal velocity U,fluctuations u’ and w’,

and Reynolds stresses . 158

5.27 Results for escarpment: TKE, horizontal velocity U,fluctuations u’ and w’, and

Reynolds stresses . 159

xix

5.28 Results for double shallow hills: TKE, horizontal velocity U,fluctuations u’

and w’, and Reynolds stresses . 160

5.29 Results for double steep hills: TKE, horizontal velocity U,fluctuations u’ and

w’, and Reynolds stresses . 161

5.30 Results for triple shallow hills: TKE, horizontal velocity U,fluctuations u’ and

w’, and Reynolds stresses . 162

5.31 Results for triple steep hills: TKE, horizontal velocity U,fluctuations u’ and w’,

and Reynolds stresses . 163

5.32 Results for single shallow valley: TKE, horizontal velocity U,fluctuations u’

and w’, and Reynolds stresses . 164

5.33 Results for single steep valley: TKE, horizontal velocity U,fluctuations u’ and

w’, and Reynolds stresses . 165

5.34 Horizontal velocity contour plots for model scale simulations (Re=12000) us-

ing LES and RANS models . 166

5.35 Instantaneous velocity contours of Large Eddy Simulation (LES) simulations

for all the 2D hills: single shallow hill, single steep hill, double shallow hill,

double steep hill, triple shallow hill, triple steep hill 167

5.36 Mean velocity contours of LES simulations for all the 2D hills: single shallow

hill, single steep hill, double shallow hill, double steep hill, triple shallow hill,

triple steep hill . 168

5.37 Mean velocity contours of Reynolds Averaged Navier-Stokes (RANS) simula-

tions for all the 2D hills: single shallow hill, single steep hill, double shallow

hill, double steep hill, triple shallow hill, triple steep hill 169

5.38 Mean horizontal velocity for shallow and steep a) isolated hill b) double hills

c) triple hills d) isolated valley at 20m height from model scale simulations . . . 170

5.39 Mean velocity and TKE for different roughness lengths 171

5.40 Mean velocity and TKE comparison for different convection discretization schemes172

5.41 Contour map of Askervein hill showing Line-A and the hill top (HT) 175

5.42 Elevation map of Askervein hill including surrounding 175

5.43 Coarse and fine meshes of Askervein hill with surrounding hills 177

5.44 Normalized horizontal velocity for different size of grids 177

5.45 Normalized horizontal velocity for different turbulence models 178

5.46 Normalized horizontal velocity comparison with field measurements 179

xx

5.47 A randomly selected complex hill with sharp edges and its mesh (top), elevation

contour (bottom) . 180

5.48 Contours of horizontal velocity and TKE . 181

A.1 Horizontal velocity comparison of CFD with existing models for cases 1-8 . . . 198

A.2 Horizontal velocity comparison of CFD with existing models for cases 9-16 . . 199

A.3 Horizontal velocity comparison of CFD with existing models for cases 17-24 . 200

A.4 Horizontal velocity comparison of CFD with existing models for cases 25-32 . 201

A.5 Horizontal velocity comparison of CFD with existing models for cases 33-40 . 202

A.6 Horizontal velocity comparison of CFD with existing models for cases 41-48 . 203

A.7 Horizontal velocity comparison of CFD with existing models for cases 49-56 . 204

A.8 Horizontal velocity comparison of CFD with existing models for cases 57-64 . 205

A.9 Horizontal velocity comparison of CFD with existing models for cases 65-69 . 206

A.10 Turbulence intenisy comparison of CFD with existing models for cases 1-8 . . . 207

A.11 Turbulence intenisy comparison of CFD with existing models for cases 9-16 . . 208

A.12 Turbulence intenisy comparison of CFD with existing models for cases 17-24 . 209

A.13 Turbulence intenisy comparison of CFD with existing models for cases 25-32 . 210

A.14 Turbulence intenisy comparison of CFD with existing models for cases 33-40 . 211

A.15 Turbulence intenisy comparison of CFD with existing models for cases 41-48 . 212

A.16 Turbulence intenisy comparison of CFD with existing models for cases 49-56 . 213

A.17 Turbulence intenisy comparison of CFD with existing models for cases 57-64 . 214

A.18 Turbulence intenisy comparison of CFD with existing models for cases 65-69 . 215

A.19 Horizontal velocity contour for V-BLWT configuration of cases 1-8 216

A.20 Horizontal velocity contour for V-BLWT configuration of cases 9-16 217

A.21 Horizontal velocity contour for V-BLWT configuration of cases 17-24 218

A.22 Horizontal velocity contour for V-BLWT configuration of cases 25-32 219

A.23 Horizontal velocity contour for V-BLWT configuration of cases 33-40 220

A.24 Horizontal velocity contour for V-BLWT configuration of cases 41-48 221

A.25 Horizontal velocity contour for V-BLWT configuration of cases 49-56 222

A.26 Horizontal velocity contour for V-BLWT configuration of cases 57-64 223

A.27 Horizontal velocity contour for V-BLWT configuration of cases 65-69 224

xxi

List of Tables

2.1 Revised Davenport roughness classification (Wieringa 1992) 12

2.2 Summary of empirical formulas for roughness parameters 25

3.1 Speed ups for 256 x 256 case . 70

3.2 Speed ups for 1024 x 1024 case . 70

4.1 Multiple roughness patch cases considered . 95

4.2 Roughness features dimensions . 119

4.3 Measured and Artificial Neural Network (ANN) predicted roughness length

bottom spire width difference . 123

5.1 NBCC parameters for speed up ratio . 126

5.2 Wind speed data at 10m height . 179

xxii

Chapter 1

Introduction

1.1 Overview

Computational wind engineering (CWE) is an inter-disciplinary field that uses Computational

Fluid Dynamics (CFD) as the basic tool for studying wind effects on structures and the built

environment in general. Some commonly conducted CWE studies include design of buildings

for wind loads, assessment of wind hazards due to hurricanes and tornadoes, wind energy pro-

duction assessment, pollutant dispersion in the built environment etc. Advances in computing

technology allow for conducting bigger and more refined simulations with in a short time, thus

CFD programs should be written to exploit future computing hardware. New numerical model

development and validation with experiment is also an important aspect of CWE. The current

work focuses on aspects of CWE regarding atmospheric simulations in the boundary layer and

exploiting future computing hardware to accelerate CFD simulations. The particular subject of

study is estimation of aerodynamic roughness, which is important in the development of mod-

els that represent atmospheric processes ranging from the mircoscale to the mesoscale (Hansen

1993).

1.1.1 Methods for investigation of atmospheric flow over topography

Numerical modeling of the atmosphere has been successfully used for weather prediction

(NWP) since it was first introduced by Richardson (1922). One such NWP model is the

Weather Research and Forecasting (WRF) model that is used for weather forecasting as well

as research in extreme weather conditions such as hurricanes. NWP simulations concern the

upper part of the atmosphere and usually have resolutions in the order of 5km. The resulting

resolution is usually too coarse to fully understand flow behavior near the ground in a complex

1

2 Chapter 1. Introduction

terrain or urban exposures, and as such cannot be directly used for wind engineering purposes

that require more detail about wind flow characteristics. Despite these limitations, mesoscale

(≥ 5km) simulations can be used as boundary conditions for detailed microscale (≤ 5km) sim-

ulations. Also if the terrain is flat and has no obstacles, extrapolation of results from a height

of 4km to the ground may be acceptable (Rasoulli 2010). However that is rarely the case, and

such extrapolations on complex terrain are often incorrect. Therefore it is necessary to conduct

micro-scale simulations that take in to consideration topographic features and built environ-

ment as a whole when detailed wind flow characteristics are required, which is the topic of the

current research.

Among experimental methods in wind engineering, Boundary Layer Wind Tunnel (BLWT)

testing is industry accepted and most widely used for studying wind flow characteristics in an

area of size 5-30 km, mainly because it is relatively cheaper and takes less time compared to

field investigations. Numerical simulation is an attractive alternative to BLWT that can fur-

ther reduce the associated cost and time of investigation. BLWT studies over scaled models of

microscale size have been used to obtain detailed wind maps. Many such studies have been

carried out at University of Western Ontario BLWTs. A recent study conducted on complex

terrain used recent technology for instrumentation, namely Particle Image Velocimetry (PIV),

to make simultaneous measurements of the wind field (Rasoulli 2010). Commonly used in-

strumentation methods, such as hot-wire anemometers and Laser Doppler Velocimetry (LDV),

are limited to point measurements unlike the PIV method. The PIV method, despite low sam-

pling rate, has been found to give comparable results with the other instrumentation techniques.

The major problems in BLWT testing are model preparation, terrain roughness modeling, and

instrumentation.

Field observations of wind characteristics using cup-anemometers placed at specific loca-

tions usually take months to complete and are also expensive. Moreover data is gathered only

at specific locations in the area, hence the data for rest of the study area have to be extrapo-

lated from those few point measurements at meteorological towers. However field measure-

ments have been successfully used to measure maximum wind speed up factors over hills,

escarpments, ridges and other topographic features. The results from these experiments are

incorporated in building codes and standards such as American Society of Civil Engineers - 7

(ASCE7) and National Building Code of Canada (NBCC). Extensive field measurements over

a real complex terrain is rarely conducted due to associated high cost and time needed for the

investigation, but in some cases such data is necessary for benchmarking CFD simulations and

BLWT testing. For example, Taylor & Teunisson (1986) conducted extensive field measure-

1.1. Overview 3

ments over the Askervein hill which is now commonly used as a benchmark for validating

complex terrain CFD codes. Larger scale field studies have been conducted by Grant & Mason

(1990), that have studied boundary layer structure over complex terrain by flying balloons at

high altitudes and taking simultaneous measurements.

1.1.2 Effect of roughness on atmospheric boundary layer flow

A typical urban surface is extremely complex, with towns and cities consisting of large build-

ings with various shapes, sizes, and distributions which protrude into the atmosphere and inter-

fere with the atmospheric aerodynamic and radiative heat transfer processes (Arnfield 2003).

According to the modeling results of Coceal & Belcher (2005), either a change of building

density or a change of building height has a direct impact on the mean flow, with the largest

difference occurring near ground level. Buildings exert a resistive drag on the air flow and also

complicate interactions through turbulent wakes and mutual sheltering. Therefore the rela-

tionship between wind profiles, roughness length and surface morphological characteristics is

important. Surface roughness characteristics of an urbanized area can be predicted from wind

speed data obtained from meteorological towers (EPA 1987). Wind speed measurements at

different locations and height can be collected for long periods of time from which roughness

parameters can be calculated.

In current practice, codes and building standards such as ASCE7-05 provide 3-s gust basic

design wind speeds for open terrain conditions at 10m elevation, derived largely from meteo-

rological stations at nearby airports. The wind speed at a particular study site will then have

to be derived from the basic wind speeds through proper exposure corrections that reflect the

roughness of the ground surface. The ground surface roughness lengths are usually estimated

visually by examining aerial photographs or satellite images for each wind direction. These

visually estimated values will be used in the logarithmic wind velocity profiles at a particular

study site. For inhomogeneous upwind terrain condition and dense urban areas this task is even

more complicated. Usually simplistic formulas are used to approximate the drag force based

on average frontal and planar area of the obstacles (Counihan 1971, Lettau 1969, MacDonald

et al. 1998, Theurer 1993). Some wind consulting offices use the Engineering Science Data

Unit (ESDU) wind speed model (ESDU-82026 1993). ESDU uses equations fitted to data

obtained by the Deaves & Harris (1978) numerical model over changes in surface roughness

using a very simplified form of flow equation. An equivalent roughness can be obtained by

considering the fetch length and associated roughness length for a particular wind direction.

This equivalent roughness is then applied at the floor of a wind tunnel to generate wind test

4 Chapter 1. Introduction

profiles. In some case the change of roughness can be dramatic. For example, in downtown

Miami the characteristic of the wind coming from the ocean will experience a sudden change

from open (ocean) to urban (coastal community) and then to suburban within a few miles.

These local, small scale roughness changes have significant effect on the velocity as well as

turbulence profile (Wang & Stathopoulos 2007a).

1.2 Objectives and scope

The major objective of this thesis is to evaluate aerodynamic roughness of the built environment

and complex topography by conducting micro-scale numerical simulations. To achieve this

goal several specific goals will be pursued.

1. To develop a high performance CFD software tailored for Atmospheric Boundary Layer

(ABL) simulations over the built environment and complex topography. The program

will be parallelized using Message Passing Interface (MPI) to run on a cluster of proces-

sors such as the Shared Hierarchial Academic Research Computing Network (SHAR-

CNET) cluster at Western. Latest technology in High Performance Computing (HPC),

namely Graphic Processing Units (GPUs), will be exploited using NVIDIA’s Compute

Unified Device Architecture (CUDA). Different turbulence models suitable for ABL

simulation will be implemented and tested for suitability of complex terrain simula-

tions. The turbulence models to be implemented include linear mixing-length model,

many Reynolds Averaged Navier-Stokes (RANS) models including k-epsilon and RNG

k-epsilon, and the Smagornisky Large Eddy Simulation (LES) model. The code will

be validated against well known benchmark cases including problems specific to wind

engineering. The scope of the program does not include mesh generation for complex

terrain even though structured mesh generation for simple models is supported. Instead

the program imports mesh from advanced meshing software such as ‘snappyHexMesh’

of OpenFOAM or Gambit meshing software of ANSYS Fluent. The program will use

flexible polyhedral meshing format that are robust for CFD simulations and also allow

for easy refinements in regions of interest.

2. To analyze the effect of roughness on wind speed and turbulence using CFD simulations.

Different levels of complexity of roughness element configuration will be considered.

First simplified models with regularly arranged blocks, similar to the case in a BLWT,

will be tested for wind coming from different directions. The simulation results will then

1.2. Objectives and scope 5

be compared against empirical formulas that use average frontal and planar area density

ratios. Then the problem of multiple roughness patches on the upstream side of a build-

ing will be investigated. It is known that the roughness patches closest to the building

have the most effect on wind loading (pressure distribution). In literature this effect has

been tested mainly in BLWT but numerical modeling attempts were usually limited to

simplified 2D simulations that model the effect of roughness using empirical formulas.

This work will investigate 3D explicit modeling of roughness elements. First a Virtual

Boundary Layer Wind Tunnel (V-BLWT) will be simulated by replicating all the rough-

ness features such as spires, barrier and roughness blocks to examine the effect of each

roughness element. Then spires and barrier will be dropped in the latter simulations, with

the blocks remaining as the only roughness feature. Instead a fully developed boundary

layer profile is directly applied at the inlet to account for the effect of the removed rough-

ness features. This setup will be used to evaluate the effect of multiple roughness patches

on wind profile using many test setups found in literature. Furthermore for roughness

blocks that are arranged in a regular manner, the inherent symmetry is exploited to re-

duce the computational domain to a single row of blocks. Finally the complexity of the

test models will be increased further so that they become more and more representative

of a real urban environment. A semi-urbanized model from CEDVAL-LES (2011) will

be used for validation against BLWT data.

3. To analyze the effect of topographic features on wind flow using CFD simulations. To-

pographic features are responsible for most of the modification of ABL flow. This fact

is recognized in building codes and standards through specification of wind speed up

factors based on the slope and height of orography for simple hill, escarpment and valley

geometries. Most codes do not have recommendations for multiple topographic features

placed one after the other. This work will extend the work done by Bitsuamlak et al.

(2004) on multiple topographic features using 2D simulations to a more elaborate 3D

CFD simulations and using various turbulence models. Comparisons will be made with

results available in literature. Then simulation on a real complex topography for which

field measurements are available will be conducted for validation. Parametric studies will

be conducted for different resolutions of grid, different turbulence models and dimension

of the computational domain.

The thesis is organized as follows. Following the introduction in Chapter 1, brief literature

review is carried out on the effect of roughness and topographic features in Chapter 2. The

chapter also discusses background on CFD and its applications in wind engineering. Most

6 Chapter 1. Introduction

relevant literature to the objectives of this thesis are discussed at the beginning of the follow-

ing sections. Chapter 3 discusses the implementation and validation of a high performance

CFD software using C++ and MPI/CUDA for parallelization. Chapter 4 analyzes the effect

of roughness on wind speed using different arrangement of roughness elements. After gaining

enough experience with simplistic models, a full virtual wind tunnel is simulated using dif-

ferent roughness features through which the effect of multiple roughness patches is assessed.

Then the complexity of the model is increased further to an idealized built environment to com-

plete the study on urban flow characterization. Chapter 5 discusses the study on the effect of

topographic features on wind flow. Simulations on 2D and 3D isolated and multiple hills are

carried out . Speed up factors are calculated along lines at different heights which is a useful

information for design of long-span structures such as transmission towers. The turbulence

structure behind hills is examined using different turbulence models. Chapter 6 summarizes

the findings and conclusions of this research work.

Chapter 2

Background

2.1 Atmospheric boundary layer

The Atmospheric Boundary Layer (ABL) is the lowest portion of the atmosphere (1-2 km) that

is under the direct influence of the surface of the earth and responds to surface forcing in an

hour or less. It is one order of magnitude smaller than the troposphere (∼ 10km), that consists

of about 80% of the atmosphere, and two orders of magnitude smaller than the atmosphere (∼

100km). In this region flow quantities display rapid fluctuations, unlike in the free atmosphere

that is turbulence free. The terrain shape, roughness, thermal conditions, evaporation are some

factors that affect behavior of the ABL. The free atmosphere, shown in Fig. 2.1, is the region

above the ABL where the effect of surface friction is negligible and the wind is geostrophic, i.e

purely driven by pressure gradient and Coriolis force. The transition zone between the ABL

and free atmosphere, from 100m to 1km, is known as the Ekman layer (Outer layer). It is a

part of the ABL because surface friction still plays a role, but the effect of Coriolis force can

no longer be ignored as in the surface layer. Usually Boundary Layer Wind Tunnel (BLWT)

can not accommodate for Coriolis force hence the height up to which ABL can be simulated

accurately is limited to 100m. However micro-scale simulations on complex terrain that fall in

the Ekman layer and upper portions of the ABL should incorporate Coriolis effect.

A typical characteristic of an ABL flow, compared to uniform flow, is the development of

a gradient in the tangential wind speed due to a no-slip condition at the surface. The dragging

action of the surface on the wind, also known as aerodynamic drag, takes away momentum

from the wind causing a velocity (momentum) deficit near the surface. The effect extends few

hundred meters above the surface in which wind speed increases from zero at the ground to

a maximum value at the gradient height above which it remains constant with height. The

7

8 Chapter 2. Background

Figure 2.1: Structure of ABL (Crasto (2007))

roughness of the surface determines the gradient height above which the effect of surface drag

is negligible. The power-law and log-law are commonly used to approximate mean wind speed

profiles with in the surface layer for given surface roughness conditions.

2.2 Modification of ABL by topographic features

Topographical features such as escarpments, embankments, ridges, cliffs and hills can have a

more profound effect on the flow in the ABL than any other single factor. It is known that

wind speed increases significantly at the top of hills and ridges as shown in Fig.2.2. This phe-

nomenon is exploited in wind energy to place wind turbines at optimal locations for maximum

power production. Wind speed increases up the slope and reaches maximum at the crest or

slightly upwind of it. Depending on the degree of steepness of the slope, flow separation may

occur on the leeward side. It can also occur on the upstream side or any other location where

there is a significant change in slope.

Building codes such as American Society of Civil Engineers - 7 (ASCE7) take into consid-

eration the speed up effect over hills by the use of topographic multipliers (Mt in equation 2.1).

The value of Mt is calculated from coefficients (K1 = f (H),K2 = f (x),K3 = f (z)) that are read

2.2. Modification of ABL by topographic features 9

Figure 2.2: Speed up on isolated hill (NBCC 1995)

from a table for given dimensions of a topographic feature.

Mt =
Uz(at topographic feature)
Uz(at flat ground upstream)

Mt = 1 + K1K2K3 (2.1)

ASCE7 states that wind speed-up effects shall be included in the design when all the following

conditions are met.

1. The hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topo-

graphic features of comparable height for 100 times the height of the topographic feature

(100H) or 2 mi, whichever is less. This distance shall be measured horizontally from the

point at which the height H of the hill, ridge, or escarpment is determined.

2. The hill, ridge, or escarpment protrudes above the height of upwind terrain features

within a 2 mi radius in any quadrant by a factor of two or more.

3. The structure is located in the upper one-half of a hill or ridge or near the crest of an

escarpment.

4. H/L ∼ 0.2 and H is greater than or equal to 15 ft (4.5 m) for Exposures C and D and 60

ft (18 m) for Exposure B.

It is clear that the code is rather limited and does not extend beyond simple topographical

features. Other codes such as NBCC also have similar limitations. These codes usually recom-

mend BLWT experiments for complex terrains that do not meet the criteria.

10 Chapter 2. Background

Wind speed up over topography has both a good and bad side to wind engineers. The

increase in wind speed over hills and escarpments causes structural failures if not properly

accounted for. The wind load increases in proportion to the square of wind speed (∼ U2),

thus a 20% increase in wind speed translates to a 40% increase in wind load. For this reason,

buildings and standards such as NBCC and ASCE7 provide guidelines for calculating wind

speed up over idealized topography. Some of the orographic features for which codes provide

guidelines are shown in Fig. 2.3. Most building codes do not have provisions for multiple

Figure 2.3: Hills, escarpments and valleys of different slope

hills and valleys placed consecutively. The wind speed typically reduces from the second hill

towards associated with an increase in turbulence (Miller & Davenport 1998). When hills are

placed side by side, funneling effects could significantly increase wind load for a structure

placed in between the hills. Similar scenario is also observed inside a valley as shown in

Fig. 2.4. These cases are not covered well in building codes and standards. An advantage of

wind speed up over topographic features is that wind energy production can be maximized by

placing wind turbines at locations where the wind speed is maximum (e.g. crest of hills) and

the turbulence intensity is lowest. It is common to conduct Computational Fluid Dynamics

(CFD) simulations to get a detail wind map of the area for micro-sitting (e.g.Uchida & Ohya

(2008)). For these reasons, wind farm locations are usually located along shorelines, at highest

elevations and area at which the surface cover is minimum (e.g. open roughness).

2.3. Modification of ABL by surface roughness 11

Figure 2.4: Double hills, funneling between two hills, and speed up inside a valley

2.3 Modification of ABL by surface roughness

Aerodynamic roughness comprises of both the effect of the terrain surface and its roughness

elements. For a no-slip surface condition, the wind velocity drops from a large value at the

free stream to zero at the surface, with in what is known as a boundary layer. The vertical

gradient of horizontal velocity is a function of surface roughness. If the surface is smooth,

the boundary layer is very thin. However as the surface roughness increases, the surface shear

stress and hence velocity deficit in the wind profile also increase. A rough surface imposes

larger aerodynamic drag than a smooth surface. For turbulence generated by wind shear, the

magnitude of the surface Reynolds stress can be used as a scaling parameter. The shear stress

and friction velocity are defined as shown in equations 2.2 and 2.3. The friction velocity U∗ is

incorporated in the log-law wind speed model as a scaling term.

|τReynolds| = [τxz
2 + τyz

2]1/2 (2.2)

U2
∗ = |τReynolds|/ρ = [u′w′

2
+ v′w′

2
]
1/2

(2.3)

There is a disparity in the definition of roughness parameters z0 and d. Panofsky & Dutton

(1984) believed that the surface roughness length z0 represents the size of the eddies produced

12 Chapter 2. Background

Table 2.1: Revised Davenport roughness classification (Wieringa 1992)

Class Z0(m) Type Landscape description
1 0.0002 Sea open water, tidal flat, snow with fetch above 3 km
2 0.005 Smooth featureless land, ice
3 0.03 Open flat terrain with grass or very low vegetation, airport

runway
4 0.1 Roughly open cultivated area, low crops, obstacles of height H sep-

arated by at least 20 H
5 0.25 Rough open landscape, scattered shelter belts, obstacles sep-

arated by 15 H or so
6 0.5 Very rough landscape with bushes, young dense forest etc sepa-

rated by 10 H or so
7 1.0 Closed open spaces comparable with H, eg mature forest,

low-rise built-up area
8 ≥ 2 Chaotic irregular distribution of large elements, eg city center,

large forest with clearings

from the wind moving over a rough surface: the larger the eddies the larger the z0 and vice

versa. It can also be defined as the height above the physical surface at which flow starts to

occur (Gardner 2004, Stangroom 2004). At this height z0, the velocity is theoretically zero even

though turbulence maybe present. Roughness length can be as high as 5m in city centers and

large forests (Hansen 1993, Wieringa 1992). Building codes and standards such ASCE7-02

provide tables from which values of z0 and α can be read based on land-use categories. This

method can be quite effective in establishing representative roughness lengths (Hansen 1993).

Hansen also suggests that this method can be expanded to include terrain features such as hills

in a form (pressure) drag contribution. Three roughness categories (namely open, suburban

and urban) are commonly considered for the purpose of determining wind loads on structures.

Davenport et al. (2000) has proposed fine grained classification of terrain roughness using eight

classes. Wieringa (1992) updated the Davenport roughness classification as shown in Table 2.1

There is also some disparity in the definition of the displacement height. This thesis uses

the definition that the zero plane displacement height d is the height above the surface at which

turbulent exchanges begin to occur, and is comparable to the depth of trapped air (Hansen

1993, Monteith 1965, Stangroom 2004, Thom 1972). In a closed city center, the density of the

obstacles may prevent any flow effects from occurring between the buildings, thereby forming

a canopy layer where the air is effectively trapped inside. A phenomenon known as ‘skimming

flow’ occurs, where the ground plane is effectively displaced up by an amount d in to the rough-

2.4. ABL stratification and stability 13

ness elements. The displacement height does not change the shape of the velocity profile but

only displaces it upward by an amount d. The roughness length in this case is measured from

the plane of zero-displacement or in other words at z0 + d above the ground. Both roughness

length and displacement height are directly incorporated in the log-law wind speed model. The

power law model has a similar parameter (α) to reflect the effect of surface roughness on wind

speed.

Raupach et al. (1991) defines rough flow as one whose shear stress is dominated by drag

of roughness elements, compared to smooth flow whose shear stress is dominated by viscous

drag. A rough ABL flow has the following layers that are depicted in Fig. 2.1.

1. Roughness sublayer in which velocity is influenced by the roughness elements. It is

about 2 to 3 times the average height of roughness elements (H). With in this region a

canopy layer may be present when the roughness elements are big; forest canopy, urban

canopy etc. As discussed in previous sections, the velocity is zero at height of d + z0.

2. Surface layer (∼ 100m) in which wind speed varies only with height, i.e. horizontally

homogeneous, as governed by the log-law. The shear stress with in this region is con-

stant.

2.4 ABL stratification and stability

Atmospheric stability refers to the resistance of the atmosphere to vertical motion. Temperature

usually decreases at a roughly constant rate, commonly known as lapse rate, as one goes away

from the surface of earth. This situation leads to an unstable atmospheric condition due to

lighter air being at the bottom of cooler air. The lighter air moves upwards and denser air

moves downwards due to the action of gravity. A circulation with in the ABL ensues as long

as the surface keeps being heated. This is the case in the day time where the sun continuously

heats the surface of the earth. During the nighttime,the earth looses its heat through radiation

and the air at the bottom also cools down thereby a stable ABL is formed.

Stability plays an important role on wind flow over hills and other topographic features

where the air is forced to move upwards. As the wind moves towards the crest on the upwind

side, whether the flow remains attached or separated afterwards depends on stability. In a

stable condition, the air remains attached to the surface because it has higher density than the

surrounding air at the crest. For a neutral condition where the gradient of temperature is zero,

the wind moves straight horizontally once it reaches the crest. For an unstable condition, the

14 Chapter 2. Background

wind moves straight upwards until it reaches heights where the surrounding air has the same

temperature as the moving air parcels. Flow over a hill for the the three ABL stability cases,

namely stable, unstable and neutral, are shown in Fig. 2.5.

Figure 2.5: Effect of stability on wind flow over hill

A neutral ABL is assumed in this work because vertical velocity is negligible compared

to horizontal velocity for moderate to high wind speeds. Therefore the governing wind flow

equations used for this work ignore stability effects by making hydrostatic assumption Stan-

groom (2004), Xabier (2009). For situations where buoyant forces are important, it can be

incorporated by introducing density variations due to temperature. An important simplifica-

tion known as Boussinesq’s approximation allows density variations to be ignored in all parts

of the governing equations except where they are multiplied with gravity. Despite the serious

simplification, the model is found to be very accurate for buoyancy driven flows in the ABL.

As a result, buoyancy effects can be incorporated to the governing equations as a body force.

2.5 Coriolis force

Earth’s rotation introduces fictitious forces on a moving mass of air that exist only in a rotating

frame of reference. These forces are known as Coriolis and Centrifugal forces. The Centrifugal

force acts outwards and is usually ignored in ABL simulations. The Coriolis force acts perpen-

dicular to the velocity of wind and deflects it either to the right or left depending on location (

latitude (φ)). The bulk of moving air is deflected to the right of its direction of motion on the

northern hemisphere, to the left of its direction of motion on the southern hemisphere, and re-

mains unaffected on the equator. The wind speed also affects the amount of deflection because

the object has to be in motion to experience these fictitious forces. Similar to Reynolds number

(Re), a parameter known as the Rosby number (Ro) is defined to quantify the magnitude of

Coriolis force relative to inertial forces.

Ro =
U

L fc
(2.4)

2.6. Statistics on wind turbulence 15

where fc is the Coriolis parameter fc = 2Ωsinφ, Ω is angular velocity of earth’s rotation,

φ latitude, and L is length scale. A small Rossby number of Ro ∼ 1 indicates dominance of

Coriolis force over inertial forces, hence its contribution can not be ignored. Before conducting

micro-scale simulations on a hill or any other topographic feature, the Rossby number should

be calculated to check whether the effect of Coriolis force can be ignored or not.

2.6 Statistics on wind turbulence

Most engineering flows around bluff bodies, such as buildings and other structures with sharp

edges, are turbulent. A laminar flow becomes turbulent above a certain critical Reynolds num-

ber. Reynolds number is defined as the ratio of inertial forces to viscous forces.

Re =
ρUL
µ

(2.5)

Turbulent flows are intrinsically unsteady even with constant imposed boundary conditions.

A turbulent flow has the following characteristics:

1. Irregularity: Turbulent flow consists of eddies of different size (scale) ranging from the

largest eddies whose size is dictated by the geometry (boundary layer thickness), down

to the smallest energy dissipating eddies of Kolmogorov scale whose size is a function

of viscosity of the fluid.

2. Diffusivity: As a flow becomes more turbulent, the boundary layer thickness also in-

creases. Rapid mixing and increased mass, momentum, heat transfer occurs. A flow that

is irregular but does not spread (not diffusive) is not turbulent.

3. High Reynolds number: Turbulent boundary layer flow occur at high Reynolds number

in the order of 105 − 106 or higher, where the inertial terms dominate viscous terms. At

very low Reynolds numbers, viscous forces dominate inertial forces, and the resulting

flow is known as creeping flow (Stokes flow).

4. Three dimensional and anisotropic: Turbulent flows consist of rotational vortices. Vortex

stretching is at the core of the turbulent energy cascade in which energy is transfered from

large to small eddies.

5. Dissipative: The smallest scales dissipate kinetic energy into internal energy. Unless the

flow is maintained by incoming flow at boundaries turbulence will eventually die out.

16 Chapter 2. Background

Figure 2.6: Time series of wind turbulence (left) and its spectrum (right) (Stull 1988)

Wind flow is turbulent and hence can only be described using statistical methodology. A

time series of wind speed and its frequency content are shown in Fig. 2.6. The mean and root

mean square (RMS) fluctuations of wind are usually used to describe wind intensity. Field ob-

servations using cup anemometers mounted on meteorological towers can provide point mea-

surements at high frequency, that go a long way to characterize wind flow in an area. The

fluctuating component of velocity is usually specified via turbulence intensity, in which the

fluctuating component is normalized with the mean velocity.

Iu =
σu

U
(2.6)

U′ = U + ĝσu (2.7)

In building codes and standards, the peak wind load to be used for design purposes is calculated

from a peak factor (g), mean wind speed and RMS fluctuation. Different averaging times can

be used to calculate the mean wind speed. Peak 3-sec gust, 5-sec gust, 1min, 10 min, 1 hour

averages are commonly used for different purposes in wind engineering. Wind speed averaged

over 3 sec can be 1.53 times as large as the hourly average. Mean wind speed in the ABL tend

to follow a standard Gaussian distribution while peak values follow extreme value distributions.

Thus given records of wind speed from field observations, the probability of occurrence of any

wind speed can be determined from the properties of the underlying distributions. Peak factors

are used in building codes and standards to calculate peak wind loads.

2.6. Statistics on wind turbulence 17

2.6.1 Spectral content of wind

The largest scales of turbulence extract kinetic energy from the mean flow. Through the cascade

process this energy is transferred to progressively smaller scales until it is totally dissipated to

internal energy. All scales of turbulence dissipate some amount of energy through friction but

it is assumed that about 90% of the energy is dissipated at the smallest Kolmogorov scales. For

a given rate of energy dissipation ε per unit mass and kinematic viscosity ν, the velocity , time

and length scales of the smallest eddies are as follows

U = (νε)1/4, L = (ν3/ε)1/4, T = (ν/ε)1/2 (2.8)

The energy dissipation ε at the smallest scales can be estimated from that obtained from

the largest scales of turbulence. Kolmogorov introduced the idea that the smallest scales of tur-

bulence are the same for every turbulent flow while the largest scales are affected by geometry.

In wave number space the energy of eddies from κ to κ + dκ can be expressed as E(κ) dκ

The total kinetic energy contained in all eddies can be found by integrating over the whole

wave number space. The wave number of an eddy is proportional to the inverse of its radius

(κ ∼ 1/r)

K =

∫ ∞

0
E (κ) dκ (2.9)

In the intermediate range (inertial range) the energy coming from the largest eddies is in

equilibrium with the energy transferred to the smaller eddies. The inertial region exists for

all fully turbulent flows (high Re). Kolmogorov, through dimensional analysis, came up with

a relation for the energy contained by eddies in the inertial region. The energy in this range

exhibits what is known as a ‘−5/3 decay’:

E(κ) = constant ∗ ε2/3 ∗ κ−5/3 (2.10)

The Kolmogorov law is often used in experiment, large eddy simulation and direct numerical

simulation, to verify that a flow has become fully turbulent.

To understand the turbulence (fluctuations) in wind better, it is convenient to transform wind

speed measurements in time domain to the frequency domain using Fourier decomposition.

The resulting spectral density function provides a description of the frequency content of wind

speed fluctuations. The most commonly used spectrum for longitudinal velocity component is

the von Karman-Harris spectral density shown in Fig.2.7. The spectral density equations for

18 Chapter 2. Background

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nL
u
 / U

nS
u
(n

)
/

σ u2

von Karman − Harris spectrum

Figure 2.7: The von Karman-Harris spectra for longitudinal wind speed

the three velocity components are

nS u(n)
σ2

u
=

4nu

(1 + 70.8n2
u)5/6 (2.11)

nS v(n)
σ2

v
=

4nv(1 + 755.2n2
v)

(1 + 283.2n2
v)11/6 (2.12)

nS w(n)
σ2

w
=

4nw(1 + 755.2n2
w)

(1 + 283.2n2
w)11/6 (2.13)

where ni = nLi/U

The time scale of turbulence is calculated by integrating auto-correlation of fluctuations at

a fixed location. The integral time scale indicates the rate at which turbulence decays at a given

location.

f (τ) =
u′(t)u′(t + τ)

u′2
(2.14)

I =

∫ ∞

0
f (τ)dτ (2.15)

Another important property of wind turbulence in relation to wind loading on structures

concerns its spatial variation. If the wind speeds at two different heights do not reach peak

values simultaneously, it is possible to get a reduction in design wind loads. Cross-correlation

of velocity components at different heights reveal approximate size of coherent structures or

2.6. Statistics on wind turbulence 19

eddies. The length scale of turbulence Lu is calculated by first calculating cross-correlation

coefficients using equation 2.16 and then calculating the area under the curve by integration.

f (ζ) =
u′(x)u′(x + ζ)

u′2
(2.16)

Lu =

∫ ∞

0
f (ζ)dζ (2.17)

2.6.2 Mean wind speed and turbulence intensity models

2.6.2.1 The log law model

Wieringa (1993) proposed a semi-empirical equation for wind speed in neutral conditions and

homogeneous roughness, commonly known as the log-law model. The model has some theo-

retical basis because it can be derived from mixing length theory making reasonable simplify-

ing assumptions. It gives good estimates of wind speed within the inertial sublayer i.e. with

in the lowest 100m of ABL. The aerodynamic roughness length (z0) is used as a correction for

the effect of roughness.

U(z) =
u∗
κ

[
ln

(z − d
z0

)]
(2.18)

The model can be modified to account for atmospheric stability by adding an extra term to it.

U(z) =
u∗
κ

[
ln

(z − d
z0

)
+ ψ(z, z0, L)

]
(2.19)

where L is the Monin-Obukhov stability parameter. Similarly Deaves & Harris (1978) modified

the model to account for Coriolis effect and make it applicable in the outer region as well.

U(z) =
u∗
κ

[
ln

(z − d
z0

)
+ 5.75(

z
G

) − 1.88(
z
G

)
2
− 1.33(

z
G

)
3

+ 0.25(
z
G

)
4]

(2.20)

where G = u∗/6 fc is the gradient height. The equation can be simplified to

U(z) =
u∗
κ

[
ln

(z − d
z0

)
+

34.5 fcz
u∗

]
(2.21)

The corresponding equation for turbulence intensity is

Iu(z) =
k

ln
(z−d

z0

) (2.22)

20 Chapter 2. Background

where k is a coefficient dependent on roughness. It takes values of 1, 0.92, 0.88 for smooth,

open and closed roughness respectively.

2.6.2.2 The power law model

An alternative wind speed model for the upper portion of the surface layer is the power law

model. This simpler wind speed formula is commonly used in wind power calculations in

which wind turbines reach heights of ≥ 50m. Given wind speed measurements at a reference

height (usually 10m) , the power law can be used to calculate wind speed at any other height

using the following equation. Because the power law index α is usually chosen to fit the upper

portion of the surface layer better, its prediction in the lowest portion could be relatively poor

compared to that of the log-law. The power law index α is a function of roughness of terrain

and turbulence. This method does not have a theoretical background unlike the log-law.

U(z) = Ure f (
z − d
zre f

)α (2.23)

Similarly an inverse power law equation is used to estimate turbulence intensity profile in

ASCE 7. The coefficients c and d are dependent on the roughness of the terrain and can be read

from a table.

Iu(z) = c(
z

zre f
)−d (2.24)

2.7 Surface roughness models

Aerodynamic roughness can be estimated analytically, experimentally (full scale and wind

tunnel) and numerically. A brief review of literature of roughness estimation is given in the

following sections.

2.7.1 Empirical formulas

For well defined obstacle shapes, surface roughness parameters can be determined from density

of obstacles, frontal (wall) area and/or planar (floor) area densities. Grimmond & Oke (1999)

review various empirical models to determine aerodynamic characteristics of a site through

analysis of its surface form (morphometry). Different roughness models have been proposed

in literature to determine roughness parameters z0 and d based on average area density of

obstacles. This section discuses some of well known empirical formulas for estimating z0.

2.7. Surface roughness models 21

A simple approximation for z0 can be obtained from average height of obstacles: buildings,

bridges, crops, forests etc. A value of c = 0.1 have been found to give good results in many

situations however it is established that z0 is generally not constant.

z0

H
= c (2.25)

Theurer (1993) noted that z0 and d are related to two secondary parameters of the obstacles.

λ f =
A f

Ad
(2.26)

λp =
Ap

Ad
(2.27)

Lettau (1969) provided an empirical formula to determine z0 from frontal area density ratio of

obstacles
z0

H
= 0.5λ f (2.28)

Peterson (1994) tested this model in wind tunnel and found good agreement when roughness

elements do not interfere strongly with each other. For λ f or λp greater than 20 to 30 % , the

model fails to give good predictions due to interference between obstacles and development

of displacement height d that is not accounted for in Lettau’s expression. For example when

the surface is completely covered with obstacles (λp = 1), Lettau’s expression predicts a

maximum roughness length. But in reality a new smooth surface displaced with a height of

d = H is formed and z0 → 0. Raupach (1992) have shown that peak value of roughness length

occur in the range of 0.2 < λ f < 0.3, with z0 → 0 as λ f → 1.

Counihan (1971) measured z0 in wind tunnel from velocity profiles over regular arrays of

cubic elements and arrived at an expression that includes the effect of limited fetch length.

z0

H
= 8.2

H
X f

+ 1.08λp − 0.08 (2.29)

X f is the fetch length. In Counihan’s experiment A f = 0.6 Ap from whichλ f can be obtained

with which it is better correlated than it is with λp. For large fetch lengths, his equation reduces

to
z0

H
= 1.08λp − 0.08 = 1.08λ f − 0.08 (2.30)

He claimed this expression is valid 0.06 < λ f < 0.15 . Similar results as that of Lettau’s are

obtained for λ f < 0.06. Both the above models fail to capture the non-linear reduction of z0
H

22 Chapter 2. Background

Figure 2.8: Roughness length and displacement height for square and staggered blocks (Peter-
son 1994)

as λ f goes beyond 0.3. Hall et al. (1996) conducted wind-tunnel experiments over arrays of

0.1m cubes placed in a regular and staggered manner. They measured mean velocity profiles

for X f ∼ 22H and varying λp, and calculated z0 and d using similar methods as that used by

Peterson (1994). The variation of these parameters with λp is shown in Fig. 2.8. Theurer

(1993) found expressions for z0 and d from full scale measurements in cities and wind tunnel

experiments.
d
H

= 1.67λp (2.31)

z0

H
= 1.6λ f (1 − 1.67λp) (2.32)

These equations are valid for up to λp < 0.6. Theurer limited λ f to 0.25 to avoid skimming

flow effects. For cubical obstacles Theurer’s expression for z0 becomes quadratic with a peak

value of 0.24 as show in Fig. 2.9. All of the above methods fail to perform adequately in urban

areas where λ f exceeds 20%.

MacDonald et al. (1998) proposed an improved model which tackles the following limita-

tions of the Lettau’s model: low roughness element densities, lack of non-linear decrease of

z0 at high area density, drag differences caused by different obstacle shapes or layouts. The

model is derived from Lettau’s expression which they proved can be derived from fundamental

principles assuming negligible wake interference between surface obstacles. Then the mean

velocity approaching each obstacle can be obtained using log-law, which is the main reason

2.7. Surface roughness models 23

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Area density

z0
 /

H

Lettau
Counihan
Theurer
Macdonald

Figure 2.9: Comparison of different empirical models for roughness length

why the Lettau’s expression fails to give good results for high area density ratios, in which

wake interference effect is significant. The final expression after including the drag effect by

different obstacle shapes is given below

z0

H
= exp(−(0.5

cd

k2λ f)−0.5) (2.33)

For CD = 1.2 (Engineering Science Data Unit (ESDU) recommendation for cube) and κ = 0.4,

the above expression is simplified

z0

H
= exp(−(0.52λ f)−0.5) (2.34)

This expression shows better agreement with the Counihan’s relation as shown in Fig. 2.9.

However it still predicts monotonic increase of z0 with λ f . Hall et al. (1996) have shown that

z0 reaches a peak around λ f = 20% from wind tunnel experiments. The derivation is redone

with the logarithmic law which considers the effect of displacement height d.

z0

H
= (1 −

d
H

) exp(−(0.5
cd

k2 ((1 −
d
H

)λ f)−0.5) (2.35)

Jackson (1981) has shown that the minimum displacement height is the height of an equiv-

alent surface obtained by flattening out the obstacles in to a smooth one with a uniform cross-

24 Chapter 2. Background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Area density

z 0 /
H

A = 1
A = 2
A = 5
A = 10
A = 20

Figure 2.10: Displacement height for different convexity

sectional area, d
H >= λp. Approximate values for d can be obtained by the following equations

that satisfy the requirement that d = 0 at λ = 0, and d = H at λ=1.The parameter A controls

the convexity of the curve as shown in Fig. 2.10.

d
H

= 1 + A−λ(λ − 1) (2.36)

Using this model, MacDonald et al. (1998) found excellent agreement with Hall’s wind tunnel

data collected for staggered array obstacles. However the square array data is over-predicted

due to enhanced sheltering effect. Various correction factors on the drag coefficient can be

applied to account for different obstacle shapes and flow conditions: factor for velocity profile

shape (ks), incident turbulent intensity (ki), turbulent length scales (kl), incident wind angle

(kθ), and round corners (kr).

C′d = Cdβ = Cdkskiklkθkr (2.37)

This modified drag coefficient can be used to determine z0. Using β = 0.55, they were able to

get good fit to the wind tunnel data for the staggered array.

The empirical roughness models we have discussed so far are summarized in Table 2.2. For

a terrain with high density of obstacles of uniform height, ‘skimming flow’ occurs in which the

roughness length continuously decreases to zero while the displacement height increases. The

Lettau (1969) and Counihan (1971) models disregard this effect, hence their use is limited to

2.7. Surface roughness models 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Area density

z 0 /
H

A = 1
A = 2
A = 5
A = 10
A = 20

Figure 2.11: Roughness length for different convexity

Table 2.2: Summary of empirical formulas for roughness parameters

Model z0
H

d
H

Lettau (1969) 0.5λ f None
Counihan (1971) 1.08λ f − 0.08 None
Theurer (1993) 1.6λ f (1 − 1.67λp) 1.6λp

MacDonald et al. (1998) (1 − d
H) exp(−(0.5 cd

k2 ((1 − d
H)λ f)−0.5) 1 + A−λ(λ − 1)

low density of obstacles not more than 30%. Peak values of z0 occur approximately at area

density ratio of 20%.

2.7.2 BLWT methodology

Peterson (1994) conducted wind tunnel tests on different models to evaluate surface roughness

parameters from observed velocity profiles. Using the database of wind tunnel tests on three

refinery models and two uniform roughness modes, the Lettau, Counihan and simplified Couni-

han models are evaluated. Among the seven different methods tested to determine roughness

length z0 from velocity profiles, only two were deemed adequate. Using statistical analysis to

evaluate predicted roughness by the above mentioned methods, he found out that the Lettau

model provides good estimates within a factor of 0.5-1.5 and 95% confidence.

First profiles of mean wind speed and turbulence intensity are obtained at several loca-

tions on the center line, left and right of center line. Then three different methods are used to

26 Chapter 2. Background

determine roughness length from velocity profiles.

1. The first method uses best fit to the logarithmic profile without displacement height.

ln(z) =
k

u∗
u(z) + ln(z0) (2.38)

a linear fit can be done to obtain z0 and u* simultaneously.

2. EPA (1987) on-site meteorological program provides the following relation for determi-

nation roughness length from turbulence intensity measurements.

z0 =
z

exp(u
u′)

(2.39)

for 20z0 < z < 100z0.

3. Lo (1990)’s method: Technically this is the best method to estimate the actual roughness

length. However it has deficiencies in that the estimation is based on measurements

at only two heights, which can introduce large errors from small statistical errors. By

applying the logarithmic profile with displacement height at two points Lo arrived at the

following equations using normalized variables with respect to Un+1 and Zn+1.

z0 =
(zn − d)α

(1 − d)β
(2.40)

(1 − A − d)ln(1 − d) − (1 − d)+

(A − 1 + d)[αln(zn − d) − βln(1 − d) +
(zn − d)α

(1 − d)β
] = 0

(2.41)

α =
1

1 − un
, β =

un

1 − un
, and A =

∫ 1

0
U(z)dz (2.42)

The solution proceeds by first solving iteratively for the displacement height from the second

equation, and then the roughness length is determined from the first equation. Peterson also

discussed other methods which can be used for roughness evaluation, among which two are

found to be adequate. One of them is Lo’s method with some modifications to avoid the

problem of statistical errors.

Zaki et al. (2010) conducted wind tunnel measurements of roughness parameters of build-

ing arrays with random geometries. The randomness is featured in the form of vertical ran-

2.7. Surface roughness models 27

domness of height of blocks, and horizontal randomness of the rotation angle of each block.

The study has found that the ‘skimming flow’ effect observed at high area density ration with

uniform height elements is absent when the height of roughness elements show variations. This

effect is attributed to the fact that flows around the taller blocks do not interfere with each other

due to large separation on average, and also because randomly rotated blocks are less streamed

than a regular arrays.

2.7.3 CFD methodology

Many researchers have used CFD to study aerodynamic drag using different arrangement of

obstacles: shapes, size and layouts. The height and arrangement of roughness elements in wind

tunnels is fixed in accordance with the required roughness that produces a desired velocity and

turbulence intensity profiles at the turntable. When the terrain has multiple roughness patches

or obstacle shapes are not clearly defined, analytical methods are difficult to use and in general

do not give good results. In that case CFD can be used to conduct simulations, from the results

of which can be estimated roughness parameters for different angle of wind attack. Explicit

roughness modeling, as opposed to implicit modeling via wall functions, is used throughout

this work (Chapter 4) to investigate the effect of homogeneous and inhomogeneous roughness

on wind profiles.

Idealized models can be used to replace a complex built environments with simplified mod-

els that have equivalent aerodynamic roughness. Usually cubes with a regular or staggered

arrangement and certain packing density are used in areas where resolving detailed flow char-

acteristics is not required. This homogeneous model is exploited in CFD and Wind tunnel

models where the area with in a certain radius of the study object is modeled as perfectly

as possible, while the rest of the area is replaced with blocks that have similar aerodynamic

properties. The next higher level modeling adds desired features of typical urban environment

which is heterogeneous and morphologically consistent with the actual environment. This kind

of models have been used in urban pollution and pedestrian comfort studies using CFD (e.g.

(CEDVAL-LES 2011)).

Rasheed (2010) conducted CFD simulations to compare complex urban environment with

a simplified model consisting of regular array of cubes. This is similar to the case in BLWT

where the less important buildings away from the test building are modeled with regular array

of roughness blocks. This transformation is necessary to take advantage of existing urban pa-

rameterization models that are developed for regular array of obstacles. The simplification also

helps in increasing quality of meshes because the usually problematic tetrahedral meshes can

28 Chapter 2. Background

be avoided. He found that the stream wise velocity components for the two models show good

agreement but turbulent kinetic energy profiles show significant differences.

To summarize the above reviews,

1. Most empirical models fail to correctly predict roughness parameters for high area den-

sity ratios. The Macdonald model seems to give the best results in this regard and can be

modified to account for other factors through the inclusion of drag coefficient.

2. Wind tunnel testing and full scale testing have been used to study and validate roughness

models. In most BLWT testing of a built environment, detailed wind flow characteristics

are sought inside the built environment instead of just average roughness parameters.

3. Simplification of model by transformation to an equivalent regular array of blocks can

be helpful if mean quantities are of the most interest.

2.8 Computational wind engineering

CFD can be used to analyze problems involving complex flow by solving governing partial

differential equations of fluid flow. In wind engineering, experimental methods such as full

scale and boundary wind tunnel tests have been the most successful ones so far. In other related

fields such as aeronautical and mechanical engineering, CFD has been highly successful.

Computational wind engineering (CWE) is relatively young compared to other fields where

CFD has made considerable progress. One cannot ignore the ever increasing computational

power of computers which has motivated use of complex mathematical models that allow ac-

curate flow predictions. For instance, Large Eddy Simulation (LES) has been mostly unused

for high-Reynolds number flows due to its high computational demand. Nowadays it is be-

coming more and more common due to availability of high end computers and improvements

in CFD modeling techniques. The commonly used Reynolds Averaged Navier-Stokes (RANS)

models are known to give poor results in adverse pressure gradient flows, but LES gives very

good results for separated flows that dominate bluff body aerodynamics.

CWE have also proven to be a reliable supplement to experimental methods. For instance

it has been successfully used in the design and daily tests of the Wall of Wind (WoW) facility

at Florida International University (Bitsuamlak 2006). Other applications where it has proven

successful include: prediction of pedestrian level wind flows (Blocken & Carmeliet 2004),

estimation of wind load on main wind force resisting system (Wright & Easom 2003), and

2.9. Overview of CFD 29

simulation of flows over complex topography for micro-sitting (e.g. using Wind Atlas Analysis

Application Program (WAsP)). A review of the current state of art in CFD for wind engineering

applications is summarized in (Bitsuamlak 2006, Dagnew & Bitsuamlak 2013).

2.9 Overview of CFD

The governing equations of fluid flow are the Navier-Stokes equations for momentum conser-

vation and the continuity equation for mass conservation. These equations are coupled and

non-linear that makes obtaining analytical solution very difficult, if not impossible, for most

practical engineering problems. Also most flows of wind engineering interest are turbulent in

nature, which is inherently chaotic, hence seeking for closed form solutions for these problems

is rather meaningless. Statistically averaged solution of turbulence can be obtained by the use

of so called ‘turbulence models’. RANS have proven to be quite successful in this aspect for

many engineering problems. An engineer is usually satisfied with the averaged property of

the flow in many cases. For those particular cases where accurate results are required, better

turbulence models can be used to capture instantaneous properties of turbulence at least for

the largest eddies. A method exists that is able to capture all eddying motions down to the

smallest scales (Kolmogorov scales), but it has a huge computational demand for many high-

Re flows that are common in wind engineering. This aspect of compromise between accuracy

and computational requirements manifests itself in other stages of CFD as well.

The mathematical model consists of governing partial differential equations of conservation

laws and specified boundary conditions. Usually the equations are solved numerically by first

dividing the whole domain into smaller regions and then forming linear equations that relate

the quantities in each cell. There are mesh free methods that can solve the equations directly

on the specified geometry without the need for discretization but these methods are still in

development stage and not commonly used. The discretization method gives a set of algebraic

equations at a number of discrete points in space and time. The Finite Volume Method (FVM),

Finite Element Method (FEM) and the Finite Difference Method (FDM) are a few of these

numerical methods. The most commonly used discretization method for fluid flows is FVM.

Its popularity comes from the fact that conservation of mass and momentum is achieved in

each cell during all stages of solving. The conservative nature of FVM is more appealing to

engineers and gives a certain level of confidence on the results obtained from simulation carried

out on coarse grids. Another advantage of the FVM over FDM is the relative ease in which

it can be used on unstructured grids. Ideally structured meshes are preferable for fluid flow

30 Chapter 2. Background

simulations, but that is rarely the case in many practical problems.

2.9.1 Governing equations

The governing equations relevant to wind flow over complex terrain and built environment are

described in this section. Many conservation laws applicable to other fields of engineering are

excluded from the discussion. Thus an incompressible and dry atmosphere that is neutrally

stratified is assumed.

2.9.1.1 Mass conservation law

The principle of mass conservation states that the fluid going out of a closed system is equal to

the fluid getting into the system. This principle is expressed by the continuity equation shown

below
∂U
∂x

+
∂V
∂y

+
∂W
∂z

= 0 (2.43)

The above expression assumes that the density of the fluid is constant. This assumption is

acceptable for wind engineering applications. Boundary layer wind flow is usually incom-

pressible even in the case of many extreme cases like hurricanes and cyclones. In aerospace

applications, where the fluid is compressible, the form of the continuity equation which con-

serves ρU is used instead.

2.9.1.2 Momentum conservation law

This law states that if a closed system is not affected by external forces, its total momentum

can not change. This law is basically an expression of Newton’s second law to fluid motion.

When Newton’s law is combined with the assumption that the fluid stress is the sum of diffusive

viscous stress which is proportional to velocity gradient, and a pressure term, it gives rise to a

set of equations known as the Navier-Stokes equations. These equations are used to describe

the physics of fluid flow such as weather, ocean currents, pipe flow, and air flow in and around

a moving or stationary obstacle.

ρ
DV
Dt

= −∇p + ∇.T + ~F (2.44)

ρ(
∂V
∂t

+ V.∇V) = −∇p + ∇.T + ~F (2.45)

2.9. Overview of CFD 31

The right hand side represents the forces applied on a closed domain of fluid. Surface forces

applied due to the normal pressure gradient and viscous shear stresses are explicitly repre-

sented. The additional term on the right hand side ~F represents body forces per unit volume.

For instance, it can be used to represent the effect of gravity and Coriolis force as shown in

Eq.(2.46)-(2.48). For large scale movement of air in the atmosphere and oceanic movements,

Coriolis force is an important contributor and is included in weather prediction systems.

dU
dt

=
−1
ρ

∂p
∂x

+ f V + τvx (2.46)

dV
dt

=
−1
ρ

∂p
∂y

+ f U + τvy (2.47)

dW
dt

=
−1
ρ

∂p
∂z
− g + τvw (2.48)

The hydrostatic assumption, where the atmosphere is assumed to be free from vertical ac-

celeration, is commonly used in wind engineering. As discussed in section 2.4, temperature

variations affect density of air and thus non-hydrostatic model of the atmosphere is appropriate

for meso-scale or global simulations in meteorological applications.

0 =
−1
ρ

∂p
∂z
− g (2.49)

The left hand-side of Eq.(2.44) is momentum in material derivative form. This is an important

concept in fluid dynamics where the Eulerian frame of reference is commonly used. Changes

in fluid properties at a fixed location are observed instead of following trajectory of particles

as in Lagrangian frame of reference. However once the solution is obtained through Eulerian

frame of reference, trajectories (streamlines) can be computed for visualization purposes.

At very low Reynolds numbers, viscous forces dominate inertial forces, and the resulting

flow is known as creeping flow (Stokes flow). The limiting case of Navier-Stokes equations

where the inertial terms are dropped, for flow approaching Re→ 0, form the Stokes equations.

The other limiting case where the viscous terms are dropped instead, for flow approaching

Re → ∞, result in the Euler equations. The flow in the upper portions of the atmosphere can

be modeled using Euler equations, but inside the ABL viscous effects cannot be ignored, hence

full Navier-Stokes equations should be solved there.

32 Chapter 2. Background

2.9.2 Turbulence models

A major problem with the otherwise very important set of equations is difficulty of getting a

closed form solution except for very simple cases. This is due to the convective acceleration

term V.∇V in Eqs.(2.45) that introduces non-linearity and also couples all components of ve-

locity. As a result the vast majority of flows can be studied only numerically after discretization

of the domain and governing equations. Steady state solutions are usually sufficient for most

wind engineering applications. However in cases where peak values of pressure and velocity

are required, unsteady solutions can be carried out using unsteady RANS (uRANS) or LES

turbulence models. The numerical solution of turbulent flows is extremely difficult. The most

straight forward solution of turbulent flows involves using a very fine mesh and a laminar flow

solver (i.e. no turbulence model) to resolve all flow scales, also known as Direct Numerical

Simulation (DNS). The smallest mesh size required to resolve all flow scales is proportional to

Kolmogorov length scale η.

η =
(ν3)1/4

ε
(2.50)

The number of floating point operations required for a DNS solution is proportional to cube

of Reynolds number (Re3) , resulting in very high computational cost. The most powerful

computers cannot solve practical flows with large Reynolds number which in the case of wind

engineering is in the order of Re ∼ 106. Hence this method is rarely used in practice and

its use is limited to fundamental research in developing and verifying new turbulence models.

RANS equations are used in practice where knowledge of average quantities is sufficient. LES

is a computationally expensive alternative that is starting to gain ground for studying bluff

body aerodynamics. DNS, which do not use turbulence models, have only been carried out

for very simple cases. Moreover the engineer is mostly interested in the mean quantities of

flow parameters and sometimes in peak values, and not in instantaneous values. Hence it is

convenient to break down the turbulent quantities into mean and fluctuating components using

Reynolds decomposition. Different turbulence models are discussed in the following sections.

2.9.2.1 Reynolds Averaged Navier Stokes

For a steady flow the mean can be calculated over an infinite ∆t or a value large enough that

exceeds the time scales of the largest eddies. For unsteady flow, the average of instantaneous

values of the flow quantity over a large number of repeated identical experiments, so called

ensemble average, is used.

U = U + u (2.51)

2.9. Overview of CFD 33

p = p + p (2.52)

Using the Reynolds decomposition for all variables and substituting into the instantaneous

Navier Stokes equations, modified equations for the mean values can be obtained which has

an additional term that accounts for the effect of turbulent fluctuations on the mean flow. This

new equations are the RANS equations.

∇.U = 0 (2.53)

∂U
∂t

+ ∇.(UU) = g −
1
ρ
∇p + ∇.ν∇U + U′U′ (2.54)

The new term that appears on the right hand side is the Reynolds stress tensor R = U′U′

which depends on the velocity fluctuations induced by turbulence. The Reynolds stress tensor

is a symmetric tensor with six components which are unknown. But we have only four equa-

tions (three momentum equations for each direction and continuity equation). This problem is

known as the turbulence closure problem. To close the system of equations turbulence models

are used to model the Reynolds stress tensor in terms of known quantities. RANS turbulence

models can be categorized as:

• Linear eddy viscosity models

• Non-linear eddy viscosity models

• Reynolds stress models

2.9.2.2 Linear eddy viscosity models

The Reynolds stress tensor R is computed using the Boussinesq assumption which prescribes

linear relation between R and viscous stresses.

−ρU′U′ = 2µtS −
2
3
ρkI (2.55)

where S is the mean strain rate and k is the mean turbulent kinetic energy.

k =
U′.U′

2
(2.56)

34 Chapter 2. Background

S=

(
∇U + (∇U)T

)
2

−
∇.U

3
(2.57)

The new viscosity term νt is called turbulence viscosity (eddy viscosity). It can be solved in

many ways by solving additional transport equations. Earlier models approximated turbulence

viscosity directly from the flow variables without solving additional equations.

1. Zero equation models:

The eddy viscosity is computed using an algebraic equation to close the system of equations.

No additional transport equations are solved hence the name zero-equation. One such model for

boundary layer type flows is the mixing length model developed by Prandtl. Using dimensional

analysis

νt(m2/s) ∼ U(m/s) ∗ l(m) (2.58)

where U and l are characteristics of the largest turbulence scales. In the mixing length model

velocity gradient is used as the velocity scale.

νt = lmix
2
|
∂U
∂y
| (2.59)

A problem with this model is that the mixing length is unknown; hence the model is hardly

used in practice nowadays. There are other algebraic models commonly used in aerospace

engineering to get quick results when robustness in design iterations is more important than

capturing all details of turbulence. The Baldwin-Lomax and Cebeci-Smith are such models

which prescribe the eddy viscosity in terms of local boundary layer velocity profile.

2. One equation models:

All zero equation models can not properly account for history effects of turbulence due to

convection and diffusion of turbulent kinetic energy. The one equation models solve a transport

equation, which is usually turbulent kinetic energy k. Prandtl’s one equation model is shown

below.

µt = ρk1/2l (2.60)

∂k
∂t

+ ∇. (ρVk) = ∇.

([
µlam +

µt

σk

]
∇k

)
+ µtG − ρCD

k3/2

l
(2.61)

where G is the turbulence generation rate G = 2S.S and CD = 0.08, σk= 1.

The last two terms on the right hand side account for production and destruction of turbulent

kinetic energy respectively. The length scale is, for example, taken to be proportional to the

2.9. Overview of CFD 35

boundary layer thickness. However, the main disadvantage of one equation models is that the

length scale is not universal for all type of flows.

3. Two equation models:

Two equation models are most commonly used RANS models in industry. Usually one of

the equations solved is turbulent kinetic energy k as was the case for one equation models.

The other equation is solved to determine the length scale of turbulence, which was a major

problem of the one equation models. The turbulent dissipation ε or specific dissipation ω are

common choices for the second transport equation. The standard k-epsilon model equation for

high Reynolds number flow are shown below

µt = ρCµ

k2

ε
(2.62)

∂k
∂t

+ ∇. (ρVk) = ∇.

([
µlam +

µt

σk

]
∇k

)
+ µtG − ρε (2.63)

∂ε

∂t
+ ∇. (ρVε) = ∇.

([
µlam +

µt

σε

]
∇ε

)
+ C1εµtG

ε

k
− C2ερ

ε2

k
(2.64)

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.0 (2.65)

Wilcox proposed a series of k-omega models that solve specific dissipation (omega) equation

to determine length scales. Omega is proportional to the ratio of ε and k i.e. ω α ε / k. This

helps in regions of low turbulence where both ε and k goes to zero. In the standard k-epsilon

equation the non-linear term (ε2/k) causes stability problems as k approaches zero.

µt =
k
ω

(2.66)

∂k
∂t

+ ∇. (ρVk) = ∇.
([
µlam + σ∗µt

]
∇k

)
+ µtG − ρβ∗ωk (2.67)

∂ω

∂t
+ ∇. (ρVω) = ∇.

([
µlam + σµt

]
∂ω

)
+ αµtG

ω

k
− ρβω2 (2.68)

β =
3
40
, β∗ =

9
100

, α =
5
9
, σ =

1
2
, σ∗ =

1
2
, ε = β∗ωk (2.69)

The Boussinesq approximation has an inherent weakness manifested in commonly used two

36 Chapter 2. Background

equation models. In strongly accelerated / decelerated flows and flows with strong curvature

the assumption is not valid. Hence the models are incapable of correctly predicting strongly

rotating flows. Usually an overproduction of turbulent kinetic energy is observed in those

regions. To solve this problem, different modifications to two equation models have been

proposed. Normally turbulent kinetic production P in the k equation is specified as

P = 2µt(S .S) (2.70)

Kato & Launder (1993) proposed an ad-hoc modification to this term by introducing vorticity

Ω into the equation. The modified P equation is

P = 2µt

(√
(S .S) ∗ (Ω.Ω)

)
(2.71)

This modification can be applied to all two equation models to alleviate the problem of over

production of turbulent kinetic energy in strongly rotating zones. Other modifications on the

standard k-epsilon equation to include swirling component of the flow resulted in two mod-

ified turbulence models Realizable k-epsilon and RNG (Renormalization Group) k-epsilon.

The effect of spin on turbulence, which was missing from the standard k-epsilon model, is

incorporated in the equations.

2.9.2.3 Non-linear eddy viscosity models

The linear Boussinesq approximation is dropped in favor of a non-linear relation that includes

vorticity to improve the poor performance observed in the two equation model near flow stag-

nation zones. Hence the Reynolds stress is rewritten as

−ρU′U′ = 2µt f (S ,Ω, . . .) (2.72)

2.9.2.4 Reynolds stress models (RSM)

This is the most elaborate RANS turbulence model which directly calculates Reynolds stresses

without the need of modeling. Transport equation for the Reynolds stress (six) is solved to-

gether with an equation for dissipation rate (one). The seven additional transport equations

make the method very expensive compared to the two equation models, however the benefit

obtained from correct solution in rotating flows may balance the cost in some cases. A detailed

discussion of this method can be found in Launder et al. (1975).

2.9. Overview of CFD 37

10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

y+

U
+

U+=y+

U+=(1/κ) ln(Ey+)

Figure 2.12: The law of the wall expressed with wall coordinates y+ and U+

2.9.2.5 Modeling flow near wall

Close to walls where turbulence is generated, a fine mesh should be used to resolve the details

of turbulent motion due the prevailing sharp gradients. This imposes heavy computational

requirements even when using two equation RANS models. The behavior of fully developed

turbulent boundary layer flow near wall regions is well established from experiments. Hence, a

significant saving on computation can be obtained by developing wall models (wall functions)

to predict the near wall behavior for high Reynolds number flows. The law of the wall was first

published by Theodore von Karman. The flow adjacent to the wall is dominated by viscous

stresses (linear sub-layer) while the one on the top is dominated by turbulent Reynolds stresses

(log law layer). In the middle is a buffer layer where both stresses are equally important. For

a smooth no-slip wall the logarithmic law of the wall is shown in Fig.2.12. The equations

describing the flow near wall are prescribed using dimensionless quantities u+ and y+. The

viscous and log-law layer are separated at y+ value of about 11.

y+ =
u∗y
ν

(2.73)

u+ =
U
u∗

(2.74)

38 Chapter 2. Background

u+ =

y+, viscous layer
1
κ
ln(Ey+) , log-law layer

(2.75)

where y the perpendicular distance between the nearest wall and center of nearest cell. For

smooth walls values of E = 9.8 and κ = 0.41 are commonly used. In high Reynolds number

RANS models, the production and rate of dissipation of kinetic energy are calculated and fixed

at the nearest cell to the wall. During the solution phase, the turbulent kinetic energy k from the

previous iteration is used to calculate a wall function friction velocity u∗ as follows. This is a

different friction velocity than atmospheric boundary layer friction velocity used in the log-law.

u∗ = C1/4
µ k1/2 (2.76)

Then the turbulent dissipation (ε) or specific dissipation (ω) rates can be calculated as follows

to be used for k-epsilon and k-omega models respectively.

ε =
u∗3

κy
(2.77)

ω =
u∗

κy
√

Cµ

(2.78)

Then a Dirichlet boundary condition is applied at the nearest cell to the wall with the above

values. The turbulent energy production at the walls is calculated using an eddy viscosity

coefficient

µt = u∗
y+

u+
(2.79)

The log-law can be modified for rough wall surfaces by adding an extra term on the right hand

side ∆B which is a function of sand grain roughness Ks. Nikurdase (1933) conducted extensive

experiments on rough wall surfaces and found out that the log-law has still the same slope when

plotted on semi-log scale i.e 1/κ. The plot is just shifted by an amount ∆B which is 0 for smooth

walls.

u+ =
1
κ

ln
(
Ey+) − ∆B (2.80)

For fully rough flow with (K+
s ≥ 90), the following approximation for ∆B is suggested by

Cebeci and Bradshaw. K+
s is dimensionless sand grain roughness (Ksu ∗ /ν).

∆B =
1
κ

ln(1 + Cks K+
s) (2.81)

2.9. Overview of CFD 39

2.9.2.6 Large eddy simulations

In LES, the small universal eddies are filtered out and modeled using sub-grid scale models

(SGS models). This filtering process can be thought of as separating the velocity field into

a resolved and sub-grid component. The filtering operation is convolution of velocity with a

filtering kernel G.

ui(~x) =

∫
G(~x − ~ε)u(~ε)d~ε (2.82)

ui = ui + u′i (2.83)

The simplest kernel is a box filter which results in the grid itself acting as a spatial filter. That

means the values of velocity on the grid are the filtered values. This implicit filtering is easy

to program and is commonly used. For dynamic SGS models explicit filtering with a different

filtering kernel such as Gaussian filter is used. Applying the filtering on the Navier-Stokes

equation results in filtered equations with an addition stress term (SGS stress).

∂ui

∂t
+ u j

∂ui

∂x j
= −

1
ρ

∂p
∂xi

+
∂

∂x j
([ν + νt]

∂ui

∂x j
) (2.84)

The sub-grid scale turbulence models usually employ the Boussinesq hypothesis to calculate

the deviatoric part of the SGS stress.

τi j −
1
3
τkkδi j = −2µtS i j (2.85)

The sub-grid scale turbulent viscosity for the Smagorinsky - Lilly model

µsgs = ρ(Cs4)2
∣∣∣S ∣∣∣ (2.86)

where the filter width ∆ = (Volume)1/3 and the constant Cs = 0.1 – 0.2

2.9.3 Finite volume discretization

The three most common ways of discretizing the governing equations are the Finite Difference

Method, Finite Volume Method and Finite Element Method. In FDM the partial derivatives are

replaced with terms usually taken from truncated Taylor series. Its disadvantage is difficulty of

applying the method to an irregular grid. The FVM and FEM work with integral forms of the

governing equations, and thus can be easily extended to support irregular grids. Moreover the

40 Chapter 2. Background

FVM balances fluxes across faces of cells and hence governing conservation equations (mass,

momentum and energy) are always satisfied locally and globally at any stage of the solution.

This property makes FVM preferable for engineers which are used to conservation laws. In

FEM Galerkin’s method of weighted residuals, where the weights have the same form as the

shape function, is used. FEM is more mathematically involved than FVM and also the terms of

the algebraic equations does not have any physical significance unlike the FVM approach. All

approaches can be viewed as variations of method of weighted residuals: FDM as collocation

method using Dirac-Delta weights where wi = 1 at nodes and zero everywhere else, FVM as

a subdomain method where w = 1 in a subdomain and the integral of the weighted residual is

forced to zero for each subdomain, and FEM as the Galerkin variation of weighted residuals.

From here only the FVM approach is discussed.

In FVM, the differential form of a general transport equation is converted to integral form

by integrating over a closed control volume

∂ρφ

∂t
+ ∇. (ρφu) = ∇. (Γ∇φ) + S φ (2.87)

∮
∂ρφ

∂t
+

∮
∇. (ρφu) =

∮
∇. (Γ∇φ) +

∮
S φ (2.88)

The volume integrals for the convection and diffusion terms can be re-written into a surface

integral form by using Gauss’s theorem∮
∇.adV =

∮
n.adA (2.89)

∂

∂t

(∮
ρφdV

)
+

∫
A

n. (ρφu) dA =

∫
A

n. (Γ∇φ) dA +

∮
S φdV (2.90)

where n the surface normal vector. For transient simulation, integration in time is applied on

top. Because time is a one way coordinate, solution marches forward from initial prescribed

conditions at t0. Temporal discretization is division of the total time in to small time steps of

∆t.

The accuracy of the discretization method depends on the assumed variation of φ in space

and time around the center of the control volume. If a stepwise profile, where a constant value

of φ is assumed throughout the control volume, a first order accurate discretization scheme is

arrived. To get second and higher order accuracy, a profile assumption , such as piece wise

linear, that couples the values of φ in adjacent control volumes is required. Not all terms of

2.9. Overview of CFD 41

the equation above have to be discretized the same way. For instance, the convection term

is usually discretized with first order accurate stepwise profile, while the diffusion term uses

second order accurate piece wise linear profile. Which ever method is used, the model should

posses certain properties to be useful.

1. Consistency: Truncation error should vanish as ∆t → 0 and ∆x→ 0

2. Stability: Errors in the course of the simulation should not magnify, and cause diver-

gence.

3. Conservation: Conservation of physical quantities on both local and global scales.

4. Boundedness: Solutions must lie within proper bounds dictated by the boundary values.

5. Realizability: The solutions obtained should be realistic

2.9.3.1 Convection discretization

As mentioned before, Gauss’s theorem can be used to convert the volume integral into a surface

integral with interpolated quantities at the surface (Jasak (1996))∮
∇. (ρUφ) dV =

∑
S .(ρUφ) f

=
∑

S .(ρU) fφ f

=
∑

F fφ f

(2.91)

where F represent the mass flux though the face, and S the surface normal vector with magni-

tude equal to the area of the face.

F = S .(ρU) f (2.92)

Three basic discretization schemes are considered below. φ f represents the value at the shared

face between two control volumes P and N.

1. Central difference scheme (CDS) : Second order accurate but unbounded

φ f = fxφP + (1 − fx)φN (2.93)

2. Upwind scheme (UDS): Bounded but first order accurate

φ f =

φP, F ≥ 0

φN , F < 0
(2.94)

42 Chapter 2. Background

3. Blended scheme (BS): A compromise between accuracy and boundedness by blending

the above two methods

φ f = γφP + (1 − γ)φN (2.95)

4. Hybrid scheme: Picks either of CDS or UDS depending on how strong convection is

compared to diffusion. The Peclet number is defined as Pe = F/D where D is diffusion

conductance D = γ/δx. The method takes advantage of the good properties of CDS and

UDS; it is bounded and has better accuracy than UDS, however its accuracy is still first

order.

φ f =

CDS , |Pe| ≤ 2

UDS , |Pe| > 2
(2.96)

5. Total Variation Diminishing (TVD) schemes: The schemes discussed so far are either

unbounded (e.g. CDS) or of first order accuracy (e.g. Hybrid). There is a need for

high resolution(HR) schemes that are bounded and non-oscillatory. These schemes are

especially important for shock predictions, in which all the previous schemes can give

false predictions when used on coarse grids. A class of HR schemes known as TVD

schemes start from implicit UDS scheme for the sake of boundedness, and then add

explicit source term (difference of higher order scheme (HOS) and UDS scheme) to

improve accuracy in each iteration via what is known as a ‘deferred correction’ approach.

In this sense, all the previous convection discretization schemes are implicit because

the final values are obtained after exactly one iteration without correction. Deferred

correction can also be used in other situations where it is difficult or impossible to handle

terms implicitly. For example non-orthogonality of mesh can be handled by starting

from the assumption of orthogonality and then adding explicit corrective terms in every

iteration. Before the time step is updated to the next one, the deferred corrections should

be iterated until convergence (or acceptable level of accuracy) with the only changes

coming from deferred corrections.

φ f = UDS (2.97)

S u =
∑[

(HOS − UDS) ∗ F
]

(2.98)

If the HOS is CDS then the TVD scheme becomes a bounded central difference scheme.

Other TVD schemes are Linear upwind scheme (LUD), Monotone Upstream-centered

2.9. Overview of CFD 43

Schemes for Conservation Laws (MUSCL), VanLeer etc.

2.9.3.2 Diffusion discretization

The diffusion term is discretized similarly with the central difference scheme.∮
∇.

(
ρΓφ∇φ

)
dV =

∑
S .(ρΓφ∇φ) f

=
∑

(ρΓφ) f S .(ρΓφ) f

(2.99)

where the surface gradient is approximated by

S .(∇φ)f=|S|
φN − φP

|d|
(2.100)

For non-orthogonal meshes such as tetrahedrons and pyramids, a deferred correction approach

is used as discussed in the previous section. S is split into two components one always parallel

to the line connecting the centroids (∆) and another chosen in different ways (k).

S.(∇φ)f=∆.(∇φ)f+k.(∇φ)f (2.101)

S = ∆ + k (2.102)

This splitting can be done in three different ways

1. Minimum correction: makes the correction as small as possible by making ∆ and k
orthogonal to each other, i.e ∆.k = 0.

2. Orthogonal correction: This approach keeps the contribution of φP and φN same as that

on an orthogonal mesh despite the amount of non-orthogonality, i.e. |∆| = |S| .

3. Over-relaxed: This approach increases the contribution of φP and φN with non-orthogonality

in such a way that S.∆ = 0.

The non-orthogonal correction may not preserve boundedness of a scheme, hence the cor-

rection should be limited or completely abandoned if preservation of boundedness is more

important (Jasak 1996).

2.9.3.3 Source term discretization

Source term may have non-linear terms which need transformation to linear forms (lineariza-

tion). For example, the k − ε turbulence mode has a highly non-linear dissipation term in the

44 Chapter 2. Background

transport equation for dissipation ε. The linearization can be carried out in many ways that

give different values of S u and S p. Convergence rate and stability of solution depends on the

selected linearization scheme.

S φ (φ) = S u + S pφ (2.103)

∮
S φ (φ) dV = S uVP + S pVPφP (2.104)

2.9.3.4 Temporal discretization

Temporal discretization of spatial derivatives can be carried out in three ways.

1. Implicit: Current values of φ are assumed to persist through out the time step. The ad-

vantage of this method is that it is bounded and unconditionally stable, however since the

unknown current φ values are coupled with each other, a set of simultaneous equations

need to be solved at each time step.

2. Explicit: Old values of φ are assumed to persist through the time step. The new φ values

depend only on the old values, hence explicit updates can be carried out. However it

comes with a price of using small time step ∆t to insure stability of solution. The Courant

number Co = U.∆t/∆x should be less than one for stability.

3. Crank Nicholson: A linear variation of φ between old and new values is assumed with

in the time step to get a second order accurate scheme. It is unconditionally stable but

unbounded. Patankar (1980) notes that unconditionally stability refers to the fact that the

oscillations will eventually die out, not to the absence of them

The above discretization concern the time at which the values of spatial derivatives are to be

evaluated. The first time derivative itself use implicit first order Euler scheme, that becomes

second-order accurate if the Crank Nicholson scheme is used for the spatial derivatives.

∂

∂t

∮
ρφdV =

(ρφV)i − (ρφV)i−1

∆t
(2.105)

Higher order Runge-Kutta or other implicit/explicit time integration schemes can be used for

more accuracy. First and second time derivatives can also be discretized with backward differ-

encing scheme that require values of φ in the previous two time steps. This results in second

order scheme for the first derivative and only first order for the second derivative.

∂

∂t

∮
ρφdV =

3(ρφV)i − 4(ρφV)i−1 + (ρφV)i−2

2∆t
(2.106)

2.9. Overview of CFD 45

∂

∂t

∮
ρ
∂φ

∂t
dV =

(ρφV)i − 2(ρφV)i−1 + (ρφV)i−2

∆t2 (2.107)

2.9.4 Boundary conditions

Boundary conditions are required to obtain a well-posed problem and complete the solution.

The basic boundary conditions are the Dirichlet type where the value of φ is prescribed and the

Neumann type where the value of the gradient ∇φ is prescribed. Other boundary conditions can

be derived from these basic boundary conditions. Some of those implemented in the software

are discussed below

1. Dirichlet: Fixed values applied on faces of a boundary. This include different profiles

such as uniform, power-law, log-law, parabolic etc. In addition, these boundary condi-

tions have turbulence intensity parameters to change their values with time. The fluctua-

tions can take on a prescribed turbulence intensity profile or simple random fluctuations

about a mean value of φ. Correlated fluctuations such as one that satisfies the von Kar-

man spectrum can also be imposed but are not implemented in current software.

2. Neumann: The value of φ at the boundary face is calculated from its value at the adjacent

cell center and the specified gradient.

φb = φP + dn.(∇φ)b (2.108)

The value at the boundary φb can be eliminated from the set of equations by substituting

the above equation for a given value of gradient.

3. Symmetry: When the domain is symmetrical in geometry and boundary conditions, the

flow is also symmetrical with no flux through the symmetry plane. Hence this boundary

condition sets the normal component ∇φn to 0. In this case φb can not be eliminated from

the set of equation, hence a deferred correction approach is used instead such that the

boundary condition is obeyed gradually with iterations.

4. Cyclic: This boundary condition is applied when the domain wraps around and the value

at one end is the same as the value at the other. This is implemented the same as the

Neumann methods above where half of the cells in the boundary are used as inputs to the

other half for all flow quantities.

46 Chapter 2. Background

5. Ghost: When a decomposed domain is solved in parallel, the values at the boundary are

exchanged through ghost cells. This is similar to cyclic boundary condition but is a two

way update.

6. Derived: Other derived boundary conditions such as Robin, turbulence generating wall

boundary conditions etc.

2.9.5 Calculation of flow field

Once the set of algebraic equations relating values of φ at control volume centers are obtained,

we set out to solve the equations but there are some more difficulties to overcome. First the

convective acceleration term in the momentum equations, i.e. ‘velocity being transported by

itself’, results in non-linear terms with squared velocities. However this non-linearity is not a

problem for iterative solvers that work on linearized equations formed from guessed values U.

In other words one of the U’s is treated explicitly and is no more different than other coeffi-

cients. What is problematic is the apparent absence of an equation for obtaining pressure, that

appears only in the momentum equation. If the pressure was specified directly, the momentum

equation could be solved with no difficulty. Instead the pressure field is indirectly specified

through the continuity equation, which couples pressure and velocity.

For efficiency reasons segregated solvers are commonly used. Each component of velocity

and pressure (via continuity equation) are solved separately. This decoupling of pressure and

velocity can sometimes result in few problem that are discussed later. To ensure convergence

towards a solution, a strategy to iteratively link the equations is required. If direct methods are

used, all the components can be solved simultaneously. However the cost of direct solution

is significantly larger than that of iterative solvers both in terms of memory and floating point

operations.

A related problem is the representation of the pressure gradient term. If both u and p are

stored at the centers of same control volumes, part of the pressure gradient term will cancel out.

This results in a situation where pressure is being effectively solved at twice a coarser grid than

velocity. This is a partial decoupling of pressure and velocity which can result in unrealistic

oscillating solutions between alternating grids (checkerboard pattern). This problem can be

solved by storing pressure and velocity at adjacent grid points (staggered grid) to prevent the

decoupling. This has been the preferred method for decades but it is problematic for imple-

mentation in non-orthogonal and unstructured grids. Also two grids have to be maintained for

solution of velocity and pressure.

2.9. Overview of CFD 47

In collocated grid arrangement, all the variables are stored at the same location and is

very convenient for programmers. Collocated grids have become popular since the discovery

of Rhie and Chow interpolation for pressure velocity coupling. The velocity at the faces is

interpolated in such a way that pressure and velocity remain coupled. This method is usually

seen as a correctional approach between the pressure gradient at the face and the interpolated

pressure gradient (Ferziger & Peric (2001))

u j = u j − 4

 1
Au j

p

(∂p
∂x j
− (

∂p
∂x j

)) (2.109)

First the momentum equations are solved with old pressure values. This stage is the momen-

tum prediction step which is necessary when there are other scalar transport equations to be

solved. To solve for pressure using continuity equation the pressure contribution to momentum

is separated from the rest. Following Ferzigers notations

[U] =
H
A
−

1
A
∇[p] (2.110)

U∗ =
H
A

(2.111)

H represents contributions from neighboring cells, previous time step, other sources but the

pressure gradient term. Applying the divergence operator to the above equation, and setting

the left hand side to 0 due to continuity, we arrive at pressure Poisson equation

∇. ([U∗]) = ∇.(
1
A
∇

[
p
]
) (2.112)

Once the pressure equation is solved, velocity that satisfy continuity can be obtained by adding

back the pressure contribution. This is the explicit velocity correction step.

The two commonly used segregated solvers are Semi Implicit Method for Pressure Linked

Equations (SIMPLE) for steady state simulations and Pressure Implicit with Splitting Opera-

tors (PISO) for transient simulations. The major difference between these two methods is that

PISO solves the pressure equation more than once, while SIMPLE relies on a severe under-

relaxation of pressure equation for convergence. For steady state simulations, non-linearity

of the system becomes more important than pressure-velocity coupling since changes of φ

between successive iteration is large anyway.

Chapter 3

Implementation of 3D CFD program

The basics of the Computational Fluid Dynamics (CFD) program developed in this work is

briefly described in the following sections. The program solves continuum mechanics prob-

lems using the Finite Volume Method (FVM). An Object Oriented Programming approach

(OOP) using C++ is used which is inspired by the design of OpenFOAM (Jasak et al. 2007,

OpenFOAM 2013, Weller et al. 1998). This helps to significantly reduce the time required

to write new solvers for any Partial Differential Equation (PDE). The code developed in this

work is about 7300 lines and is available in Appendix C.2. The development started from the

lowest units of tensor and field manipulations. The reason for this choice is to gain expertise

in developing CFD software and also have the utmost freedom in implementing performance

enhancements using latest technology such as Graphic Processing Units (GPUs). The code

has been parallelized to run on a homogeneous cluster of Central Processing Units (CPUs) and

also on a single GPU. Validation is an important step in development of any CFD program.

Therefore for every new feature added to the program, such as turbulence models or new dis-

cretization methods, validation has been carried out with well known benchmark cases. Some

of the test cases are described at the end of the chapter.

3.1 Tensors

Problems in continuum mechanics can be concisely expressed using tensors and associated lin-

ear field operations. For example the second order stress and strain tensors can be represented

by a 3x3 array. The program represents tensors using template classes with parameters de-

scribing the rank of a tensor and a parameter specifying storage for each element of the tensor.

Storage can be either single precision or double precision. Common operations for all rank

48

3.1. Tensors 49

tensors such as addition, subtraction, dot product etc are optimized by unrolling loops to allow

parallel operations on each element of the tensor. Use of templates for representing tensors

allows production of optimized code for each instance of the template with as little effort as

possible. In older CFD codes using FORTRAN, separate code had to be written even for the

case of increasing the precision of solution.

An example illustrating this advantage is shown below for calculating the dot product of

any size tensor.

1 template <int N>

2 struct Unroll {

3 static FORCEINLINE Scalar dot(const Scalar* p,const Scalar* q) {

4 return (*p) * (*q) + Unroll<N - 1>::dot(p + 1,q + 1);

5 }

6 }

Operations specific to a given rank tensor such as finding the transpose, symmetric, skew

tensors of a second rank tensor are implemented taking into consideration the known size and

nature of the tensor. For example, most tensors encountered in fluid mechanics are symmetric

which reduces the number of elements that need to be stored from nine to six. Such optimiza-

tion are taken advantage of whenever possible.

Some of the implemented tensor operations are:

1. Inner product: The dot product on two vectors, double inner product on two second rank

tensors and triple inner product on third rank tensors all give a scalar. This is concisely

implemented as shown in the above code snippet. Other inner products yield vectors and

tensors that requires special handling. For example, inner product of a vector and second

rank tensor gives a vector, and that of two second rank tensors yield a second rank tensor.

2. Outer product: The outer product of two vectors yield a second rank tensor while that of

a vector and second rank tensor give a third rank tensor.

3. Exclusive operations to a tensor of given rank :

• First rank tensors: Cross product

• Second rank tensors: Transpose, symmetric and skew components, hydrostatic and

deviatoric components etc.

A = 1/2 ∗ (A + AT) + 1/2 ∗ (A − AT) = symm(A) + skew(A)

A = A − 1/3(trace(A)) + 1/3(trace(A)) = dev(A) + hyd(A)
(3.1)

50 Chapter 3. Implementation of 3D CFD program

3.2 Fields

A tensor represent values of physical quantities or their derivatives at a point in space and time.

Solution of a PDE such as the Navier-Stokes equations involves discretization of the domain

into what is commonly known as a grid or mesh. The set of tensors of each point in the domain

forms a tensor field of the physical quantity over the mesh that varies both in space and time.

Thus a tensor field is implemented as an array (vector) of tensors of size equal to the number of

nodes or faces of the mesh. The values may be stored at cell centers, vertices or face centers.

All tensor operations for single grid points are extended for the tensor fields as well. Important

differential operations on tensor fields that are required to formulate any PDE are described in

the following paragraphs.

1. Gradient: The derivative (gradient) of a continuously differentiable scalar field gives a

second rank tensor field (vector field) .

grad(s) = ∇s = (
∂s
∂x
,
∂s
∂y
,
∂s
∂z

) (3.2)

Similarly the gradient of a second or higher rank tensor field can be derived by taking

the gradient of each scalar component to get a tensor field one rank higher.

2. Divergence: Divergence operation on a vector field gives a scalar field that represents the

net outward flow at each grid point.

div(v) = ∇.V =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

(3.3)

Similarly the divergence of a second rank or more tensor field yields a tensor field one

rank lower.

3. Curl: The curl of a vector field represent the rotation (vorticity) of the flow field.

curl(v) = ∇xV = (
∂w
∂y
−
∂v
∂z
,
∂u
∂z
−
∂w
∂x
,
∂v
∂x
−
∂u
∂y

) (3.4)

4. Laplacian: Laplacian is the divergence of gradient of a tensor field.

lap(S) = ∇.∇S = ∇2 =
∂2S
∂x2 +

∂2S
∂y2 +

∂2S
∂z2 (3.5)

3.3. Equation discretization 51

5. Temporal derivative: The total derivative measures the rate of change of a quantity φ as

an infinitesimally small volume of material (particle) moves .

Dφ
Dt

= lim
4t→∞

4φ

4t
(3.6)

In fluid mechanics the rate of change observed at a fixed point in space, i.e spatial time

derivative ∂φ/∂t, is preferred
Dφ
Dt

=
∂φ

∂t
+ U.∇φ (3.7)

3.3 Equation discretization

The partial differential equations for fluid flow can be compactly expressed by field operators

discussed in the previous section. Equation discretization involves conversion of components

of the PDE (first time derivative, convection, diffusion and source term) into linear algebraic

equations. Also non-linear source terms have to be converted in to an equivalent linear form.

The final set of equations can then be represented in matrix form as

[A]{φ} = {B} (3.8)

where [A] is a matrix of coefficients , φ is a vector of the unknown quantity at cell centers and

b is a vector of source terms.

A field operation can be explicit in which case a tensor field is transformed into another

without contributing to the coefficient matrix. The gradient (∇), divergence (∇.) and curl (∇x)

operation are examples of such explicit operations. On the other hand, the operation can be

implicit in which case values of φ at neighboring cells are coupled through the coefficient

matrix A. The coefficient matrix is extremely sparse with zeros filling up most of the matrix.

This is because when two cells do not share the same face the corresponding coefficients are

both set to zero . Various specialized methods for efficient storage and solution of sparse

matrices are available. The storage method used in this work is suitable for polyhedral meshes

in which a control volume can contain any number of faces. After finite volume discretization,

coefficients are obtained for each cell : ap for the parent cell and an for each of the neighboring

cells sharing a face with the parent.

apφp=
∑

anφn+S (3.9)

52 Chapter 3. Implementation of 3D CFD program

The sparse matrix format used in this study stores ap and an separately in different scalar fields.

Hence the non-zero elements are not stored resulting in tremendous saving of memory, and also

solution with fixed point iterative methods becomes straight forward. This form of matrix rep-

resentation is not suitable for computations on the GPU, hence another type of representation

known as Compressed Sparse Row (CSR) is used instead. CSR is a popular general purpose

format that stores non-zero values and corresponding column indices.

Finite volume discretization integrates each term of the PDE in a control volume. The

volume integration is converted into a surface integral (summation) over the faces of the poly-

hedral mesh. ∮
V
∇ ∗ φ dV =

∮
S

dS ∗ φ =
∑

S ∗ φ (3.10)

where S is the surface area vector and (*) represents any tensor operation.

3.4 Overview of components of CFD tool

A short summary of the components of the developed CFD program is given in the following

sections. The software is developed in C++ using an object oriented programming approach

(OOP). Classes are provided for different field calculus such as divergence, laplacian, temporal

derivative etc. This makes the software suitable for solving PDE other than Navier-Stokes

equations. Templates are extensively used to avoid duplication of code. The design of the

program keeps the implementation of the physics (Navier stokes equations, turbulence model

etc) isolated from other parts of the program, so that different mathematical models can be tried

conveniently.

3.4.1 Partial differential equation solvers

Writing solvers for many PDEs becomes easy once the basic field and tensor operations are

programed. These include divergence, laplacian, temporal derivative, gradient among others.

Some of the PDE solvers implemented that were necessary for this work are briefly described

as follows

3.4.1.1 Wall distance solver

It is necessary to calculate the distance of a grid cell to the nearest wall for some turbulence

models and other applications. This can be obtained by solving a differential equation first

proposed by Spalding (1994). The following equations are solved with boundary conditions

3.4. Overview of components of CFD tool 53

Figure 3.1: Contour map of wall distance from the surface of a 2D hill

for φ set as Dirichlet at ground surface and Neumann elsewhere.

∇.∇φ = −V (3.11)

Then the distance to nearest wall is calculated as

y =
√
∇φ.∇φ + 2φ − |∇φ| (3.12)

These two equations are implemented as follows. This is the simplest solver implemented but

other complex solvers do not pose more difficulty.

1 void Mesh::calc_walldist(Int step,Int n_ORTHO) {

2 ScalarCellField& phi = yWall;

3 /*poisson equation*/

4 ScalarFacetField one = Scalar(1);

5 for(Int k = 0;k <= n_ORTHO;k++)

6 Solve(lap(phi,one) == -cV);

7 /*wall distance*/

8 VectorCellField g = grad(phi);

9 yWall = sqrt((g & g) + 2 * phi) - mag(g);

10 /*write it*/

11 yWall.write(step);

12 }

An example simulation result using this solver for a 2D hill is shown in Fig. 3.1.

3.4.1.2 Potential flow solver

In potential flow theory, the velocity field is assumed to be gradient of velocity potential V = ∇φ

and also that the fluid is inviscid (no viscosity ν = 0) and irrotational (no vorticity ∇xV = 0).

54 Chapter 3. Implementation of 3D CFD program

For an incompressible flow where ∇.V = 0, the previous two equations reduce to a single

Laplace equation from which all flow parameters can be determined

∇.∇φ = 0 (3.13)

The specified initial flow field will inevitably not satisfy continuity due to imposed boundary

conditions (∇.V , 0), hence a pressure Poisson equation is solved and the velocity is corrected

with the gradient of p, which is the velocity potential φ. At the end of solution, continuity

equation will be satisfied so that ∇.V = 0. This solver can be used for initializing flow field as

exemplified by its use in OpenFOAM (2013).

∇.∇p = ∇.U

U − = ∇p
(3.14)

3.4.1.3 Parabolic diffusion solver

The parabolic heat equation is solved using implicit or explicit temporal discretization schemes.

The steady state version drops the temporal derivative to becomes Laplace’s equation for tem-

perature, in which case under-relaxation is necessary to avoid divergence of solution.

dT
dt

= −α ∗ ∇.∇T (3.15)

3.4.1.4 Transport equation solver

Once the flow field (velocity) field is established, transport of pollutants, dies and even turbulent

flow quantities themselves (k and epsilon) can be obtained by solving a ‘transport’ equation

for any tensor.
∂ε

∂t
+ ∇.(ρVε) = ∇.µ∇ε (3.16)

3.4.1.5 Navier-Stokes solver

The details of this solver will be explained in the following sections but it basically solves

transport equation for momentum and the continuity equation. Source terms in the form of

surface and body forces such as pressure gradient, Coriolis force and others are added to the

momentum transport equations. Different turbulence models are used for closure.

∂V
∂t

+ ∇.(VV) = −∇p + ∇.ν∇V + F (3.17)

3.4. Overview of components of CFD tool 55

3.4.2 Meshing

The issue of mesh generation is a vast topic beyond the scope of this study however we give

a glimpse of what is required. It is known that the quality of mesh plays a major role in the

quality of simulation results. For finite volume discretization, Hexahedral elements are known

to give much better results compared to tetrahedrals. Hexahedral grid leads to faster solutions

and requires lower cell count than tetrahedral grid, while keeping the same quality of results.

Unfortunately most of the existing grid generation software is adapted to finite element codes

in which tetrahedral elements are popular. Tetrahedral grid can be generated for a complex

terrain using algorithms such as Delaunay triangulation. This has proven to be successful in

the finite element field, but not so much in the finite volume field mainly due to the problems

mentioned above. It is also very difficult , if not impossible, to generate Hexahedral meshes

for an irregular geometry. Tetrahedral meshing of an irregular geometry is relatively easy and

many free software are available for that purpose. Automatic hexahedral mesh generation

suitable for finite volume solutions is still an active research area. This study does no attempt

to produce a grid generator for complex surfaces but simply adds support to import grid from

other grid generating software. For 2D grids, body fitted grid methodology using transfinite

interpolation is used which has proved rather useful in some of the 2D hill simulations. The

same method is used for simple 3D mesh generation when the surface is not too complex.

This tool was enough for most of the study cases considered in this research such as simple

rectangular buildings, staggered/regular array of cubes etc. To improve quality of grid with

elongated and skewed cells, special care is taken during the discretization steps to account for

mesh non-orthogonality and skewness as suggested in Jasak (1996).

3.4.3 Solution and turbulence modeling

Boundary layer wind flow is incompressible even in the case of many extreme cases such as

hurricanes and cyclones. Like many other engineering flows, it is also of a high Reynolds type

flow. Hence the program is geared towards solving an incompressible Navier Stokes equation

at high Reynolds number. An incompressible pressure based solver is used as opposed to a

general type compressible density based solver. The Navier Stokes equations are non-linear

and coupled at the same time. Both problems can be tackled using segregated iterative solvers,

in which partial solution of velocity and pressures are sought one after the other. For this study,

the Semi Implicit Method for Pressure Linked Equations (SIMPLE) and Pressure Implicit with

Splitting Operators (PISO) algorithms are implemented.

56 Chapter 3. Implementation of 3D CFD program

The linear solvers that are implemented include Successive Over Relaxation (SOR), Pre-

conditioned Conjugate Gradient (PCG) and Preconditioned Bi Conjugate Gradient (PBiCG)

methods. An algebraic multi grid solver (AMG) is planned for the future. The turbulence

model implemented include many high-Re versions of Reynolds Averaged Navier-Stokes (RANS)

models and the Smagorinsky Large Eddy Simulation (LES) model. The standard k-epsilon

model has proven to be a cost effective solution to many wind engineering flows. However

it fails to give accurate results in regions of flow separation such as at corners of buildings.

Many large scale experiments have been conducted at the Wall of Wind (WoW) facility at FIU

which consistently demonstrated this deficiency of RANS models. LES models, including the

simplest one implemented in this study (Smagorinsky model), have shown good agreements

with experimental data. The use of sub-grid scale (SGS) two equation models without the use

of wall functions gives the best results, but the temporal and spatial resolution requirements for

high-Re flows limits its applicability.

3.4.4 Parallelization

Even for simulation on a simple cubical building, the computational demand may be very high

depending on the accuracy required (Kose & Dick 2010). Flow around bluff bodies is extremely

unsteady and turbulent and require fine resolution in both time and space. For instance, Lim

et al. (2009) used about 10 million cells to model a flow around a single building for a flow

with a Reynolds number of 20,000. This Reynolds number (Re) is in fact too low compared

to typical values of a few millions in wind engineering. Hence simulation of realistic situation

would require much more grid cells. The demand for simulations on complex terrain is even

more severe. Therefore parallel computing can be helpful in a wide spectrum of flow problems.

The CFD software developed is parallelized using the Message Passing Interface (MPI)

communication protocol to exchange information between different sub-domains. The com-

munication is kept as low as possible to account for the relatively slow Ethernet network con-

nections that are common in commodity clusters. The software is also parallelized to run on

the state-of-the-art High Performance Computing (HPC) technology using General Purpose

Graphic Processing Units (GPGPUs). A speed up of up to 100 times as fast as a serial ver-

sion has been reported in literature (Julien & Senocak 2009). However this was for simple

benchmark problems that are not representative of simulations carried out in practical wind

engineering. Nowadays, regular desktop computer with GPUs of up to thousands of cores can

be bought for couple of hundred dollars and give cluster-level performance. The top-most su-

percomputers in the world use both GPUs and CPUs to reach peak performance in the order of

3.5. Development of high performance CFD code 57

peta FLOPS (Meuer 2013).

3.5 Development of high performance CFD code

Large scale simulation of wind flow over complex topography requires tremendous amount of

computational resources: CPU hours and memory. Also the use of mesh refinement close to

walls or use of more complex turbulence models, for example LES instead of K-epsilon model,

will add to the computational demand. As mentioned before, even simulations around a single

building may require tens of millions of grid cells to fully resolve the flow. Hence it is usually

necessary to take a cut in accuracy of flow simulations close to walls by assuming the law of

the wall to hold there. Parallel computation on cluster of machines can help to get quick results

without degrading quality of results.

3.5.1 Domain decomposition

Complex terrain simulations produce mega bytes of data at each time step of the simulation,

making it impossible to simulate the whole domain all in one computer. The high performance

CFD software uses domain decomposition methods in which each processor takes care of part

of the terrain, while exchanging information during the solution stage. Domain decomposition

is a ‘divide and conquer’ strategy that is commonly used when either the problem is too big to

fit in memory or the sub-domains are easily solved than the original. The method is extensively

used in aerospace engineering to conduct finite element and finite volume CFD simulations on

parts of an air-plane. The program uses a non-overlapping domain decomposition methods to

parallelize the solution of the Navier Stokes equations. The details of the parallelization are

given in the following sections.

3.5.2 Platform for high end simulation

From 2009-2012, the Tesla-128 cluster at Florida international university is used for develop-

ment and validation of the code. The cluster is composed of 64 nodes as shown in Fig. 3.3,

each with a fast Ethernet interface and a gigabit Ethernet interface. All 64 nodes are connected

by a 48-way fast Ethernet switch. From May 2012 onwards, the multi-institutional Shared

Hierarchial Academic Research Computing Network (SHARCNET) is used. It is much more

powerful than the Tesla cluster and also have GPU clusters on which the code is tested.

58 Chapter 3. Implementation of 3D CFD program

Figure 3.2: MAIDROC tesla cluster at FIU with 2 x 64=128 cores

Figure 3.3: SHARCNET cluster, a network of high-performance computers

3.5. Development of high performance CFD code 59

3.5.3 Parallel computing

Coarse grained parallelism in a distributed memory cluster is traditionally achieved by domain

partitioning strategies. The whole domain is partitioned into smaller sub-domains which are

assigned to one processor in a cluster. In this study a non-overlapping type of domain decom-

position method is implemented where information such as pressure and velocity is exchanged

at the boundary through ghost cells during the calculation phase. The MPI is used to exchange

information between sub-domains.

GPGPU are overtaking CPUs in the HPC market. They are especially suitable for solving

linear system of equations such as those obtained from fluid flow problems. Julien & Senocak

(2009) reported speed ups of up to 100 times compared to a CPU implementation. The program

is parallelized using NVIDIAs Compute Unified Device Architecture (CUDA) programming

toolkit to harness the fine grained parallelism offered by GPUs. Both methods of parallelization

are combined at the solver level so that a mixed CPU-GPU computation is possible. Finally

the speed up numbers obtained for different size problems are compared.

3.5.3.1 Coarse grained parallelism

Parallel computing using domain decomposition (DD) methods have been used extensively in

finite element methods used in aerospace engineering. Even when the computational resources

were very limited, the decomposed sub-domains are solved one by one on a regular desk-

top computer by imposing special boundary conditions suitable for the kind of problem being

solved. Some of the non-overlapping DD methods are the Dirichlet - Neuman, Neumann-

Neumann, and other adaptive variations of these methods suitable for hyperbolic convection

problems. While the motivation for these methods was to solve large size problems which

do not fit in the memory space of a desktop computer, our motivation in this study is to ex-

ploit concurrency using a cluster capable of holding the whole computational domain. Thus

synchronization between the sub-domains is done while all sub-domains are being solved si-

multaneously. The domain partitioning strategy adopted in this study is done in two ways. First

synchronizing all the working processors at each and every iteration of the solver using barriers

MPI Barrier(). Gropp et al. (1999) describes a way of parallelizing Poisson equation using

this method. An asynchronous communication method is also implemented and tested in this

study. The details of this unique implementation is given later in this chapter.

60 Chapter 3. Implementation of 3D CFD program

3.5.3.2 Fine grained parallelism

GPUs are the latest technology in HPC that broadens the scope of graphic co-processors to

number crunching besides rendering graphics. GPUs with hundreds of processors are very

cheap to set up compared to cluster of CPUs. GPGPU computing is at its infancy compared

to distributed computing using MPI. However, excellent acceleration of the fluid simulations

on GPUs have been reported in many fields including wind engineering (Corrigan et al. 2009,

Julien & Senocak 2009, Selvama & Landrus 2010).

The first generation of GPGPUs were difficult to program because one has to use graphics

rendering operation to do number crunching as well. This changed with the introduction of

NVIDIAs CUDA programming language and OpenCL which are extensions to traditional pro-

gramming languages such as C. NVIDIAs CUDA programming language is used to parallelize

three solvers SOR, PCG and PBiCG. These three solvers are used to solve incompressible

Navier-Stokes equations, Poisson pressure equation and transport equations used in turbulence

modeling. Among the above equations, the solution of the elliptic Poisson-pressure equation

is the most time consuming which makes it a good candidate for computation on the GPU.

All of the solvers mentioned can be implemented on the GPU with relative ease, but in some

cases sacrifices are made for ease of implementation and better parallelization. Algorithms that

are hard to parallelize on the GPU include pre-conditioners of the Incomplete Cholesky type.

Selvama & Landrus (2010) reported speed up of up to 24x using a simple Jacobi precondi-

tioner thus that is also used in our program. Corrigan et al. (2009) reported a speed up of upto

33x times over the equivalent serial code on an unstructured grid. Use of shared memory and

coalesced memory access are reported to accelerate GPU solver significantly, but no attempt

is made in this study to optimize implementations to the fullest. In general structured grid

solvers have a regular memory access pattern that can be exploited during optimization, but

unstructured grid requires re-numbering to ensure two neighboring cells remain close in mem-

ory. Most of the comparisons in literature on CPU vs GPU computations are done on structured

grid that heavily benefit from the above memory optimization techniques, hence those reported

numbers may not be representative of expected performance on practical problems that use

unstructured grids.

3.5.4 Relaxation algorithms

Relaxation methods are iterative methods suitable for solving sparse linear systems of equa-

tions. Although they are hardly used for solving system of equations all by themselves, they

3.5. Development of high performance CFD code 61

can be good preconditioners for other methods that have fast convergence properties. All re-

laxation algorithms can be formulated as updates of a solution vector starting from initial guess

x0 as follows

x(k+1) = T x(k) + c (3.18)

Given a decomposition of matrix A = L + D + U, the most common relaxation methods namely

Jacobi, Gauss-Seidel and Successive over relaxation (SOR) are formulated as follows.

Jacobi:

x(k+1) = D−1(b − (U + L)x(k)) (3.19)

Gauss-Seidel:

x(k+1) = (L + D)−1(b − Ux(k)) (3.20)

SOR:

x(k+1) = (1 − ω)x(k) + (ω)x(k)
GS (3.21)

Jacobi is inherently parallel because the new values are computed solely from old values.

The stencil used to compute new value of the jth component xk
j depends on the type of differ-

ential equation being solved, nonetheless all the values are taken from the old iteration. This

method is easily parallelizable with the only challenge coming from stencils which have points

lying in a different processor. The Gauss-Seidel method uses values from the current iteration

as they become available, adding to the challenge of parallelization. Depending on the order of

computation, different results can be obtained leading to different Gauss-Seidel methods. This

is problematic for validation of parallelly computed results against serially computed results.

However Gauss-Seidel method has superior convergence properties than Jacobi,and is proven

to converge twice as fast asymptotically. The SOR method is an extension of Gauss-Seidel

method that tries to further accelerate convergence by over-relaxation. It combines newly

computed values and old ones with a factor ω > 1. The method is equivalent to the basic

Gauss-Seidel for ω = 1.

The sequential nature of Gauss-Seidel can be broken by selecting specific order of compu-

tation that allows for parallel computation. One such method is the wavefront ordering where

all points on the same diagonal are calculated in parallel. The downside of this method is that

it is difficult to load balance because of unequal length of the diagonals. The degree of paral-

lelism increases from the shortest diagonals at corners to the longest diagonal in the middle.

Another alternative is to use graph coloring algorithms to form computation stencils of nodes

containing of only one color. For example in simple two dimensional grid for solving Poisson

equation, red-black coloring of adjacent nodes give 5-point stencils of same color neighbors.

62 Chapter 3. Implementation of 3D CFD program

First updates for stencils with red points at the center are done parallely and then the same can

be done for the black nodes. A third alternative is to not care about order of updates at all. This

method is sometimes known as chaotic relaxation Chazan & Miranker (1969). The stochastic

behavior limits analysis of convergence properties. The method may also diverge solely due to

the way updates are done, even though the convergence conditions of the Gauss Seidel method

are met.

SOR is convergent for 0 < ω < 2 for symmetric positive definite (SPD) matrices. A value

of ω = 1.7 gives good acceleration for many problems, while maintaining convergence proper-

ties. However we are mostly interested in faster convergence rather than just convergence,thus

higher values may be used. A symmetric version of the method does a forward SOR sweep

followed by another sweep in reversed order. This usually converges slower than standard SOR

with optimal ω value. The motivation for this method is the symmetry of the iteration matrix

which allows it to be used as a pre-conditioner for SPD matrices. The convergence rate of

fast solvers such conjugate gradient method (CG) and generalized minimal residual (GMRES)

is highly dependent on the condition number of the matrix. Infact all the above relaxation

methods are too slow for practical calculations so they are mostly used as preconditioners or

as smoothers to remove low frequency errors.

3.5.5 Preconditioning

Matrix preconditioning is a procedure to reduce the condition number of the matrix so that

it becomes more suitable to numerical algorithms. The preconditioner M is usually a partial

inverse of the matrix itself that can be calculated fast enough. The range of possible precondi-

tioners is from the identity matrix I to the actual matrix inverse itself A−1. The former is a no

preconditioning case, while the later is an extreme case where the solution can be found in one

iteration. There are a bunch of preconditioners in between with different cost-to-benefit ratio

and suitability for parallelization. The procedure of preconditioning is outlined in algorithm

1 with one of fastest solvers for sparse linear systems: the preconditioned conjugate gradient

method. The preconditioning is applied on the residual by multiplication with the precondi-

tioner M−1. In practice this procedure is done in such way that neither the matrix M nor its

inverse need to be stored, because it will be dense even for sparse matrix A. Also the matrix

is not inverted , rather forward and backward substitutions are used to solve triangular system

Mzk+1 = rk+1 where M is usually some incomplete LU-factorization of A. For diagonally dom-

inant matrices,the Jacobi preconditioner M = D is effective. The preconditioner scales rows of

the matrix such that elements on the diagonal are one. This method is good for parallel precon-

3.5. Development of high performance CFD code 63

Algorithm 1 Preconditioned conjugate gradient
procedure PCG(A)

r ← b − Ax0

z0 ← M−1r0

p0 ← z0

while r , small do
αk ←

rT
k zk

pT
k Apk

xk+1 ← xk + αk pk

rk+1 ← rk − αkApk

zk+1 ← M−1rk+1 . Preconditioning: solve Mzk+1 = rk+1

βk ←
zT

k+1rk+1

zT
k rk

pk+1 ← zk+1 + βk pk

end while
return x

end procedure

ditioning because a processor can compute relevant slice of the preconditioner by itself. Also

sequentially computed result will be exactly the same as its parallelly computed counter part

which may be an important advantage during solver development stage. The symmetric gauss

siedel preconditioner is given in equation 3.22. Here L and U are not exact LU decompositions

but the upper and lower triangular parts of A = L + D + U. Thus usually only the inverse of the

diagonal is stored, and that is usually done for efficiency reasons i.e. to avoid division in the

inner loops.

M = (D + L)D−1(D + U) (3.22)

Similarly the SSOR preconditioner can be formulated by introducing ω. Optimal value of ω

will lead to lower number of iterations for solution.

M =
1

2 − ω
(
D
ω

+ L)D−1(
D
ω

+ U) (3.23)

The SSOR preconditioner is among the best general preconditioners for sparse matrices, and

usually gives much better results than the Jacobi preconditioner. However it is very difficult

to parallelize due to the sequential nature of gauss-siedel sweeps.So far the preconditioners

discussed formulate M from components of A itself: D , L, U. Better preconditioners can be

obtained by conducting an incomplete factorization of A.

M = L∗D∗U∗ (3.24)

64 Chapter 3. Implementation of 3D CFD program

The standard LU or Cholesky factorization is followed with dropping of elements that do not

have a corresponding entry in A. If all such elements are dropped i.e. no fill-ins allowed,

the preconditioner so obtained is ILU-0. For SPD matrices the cholesky decomposition is

applied in a similar manner. Incomplete factorization methods require separate storage of

the preconditioner matrix, which in the case of 0 fill ins is same size as the matrix A itself,

but are among the best general preconditioners for sparse matrices. Better preconditioners

that do not preserve the same sparsity as matrix A can be obtained, but the cost-benefit ratio

should be examined because the factorization stage consumes significant amount of time. To

avoid computation and storage of off-diagonal elements, one could opt for finding incomplete

factorization of only the diagonal elements. This method , also known as the D-ILU, assumes

the off diagonal components are same as the original matrix A and the preconditioner becomes

M = (D∗ + L)D−1
∗ (D∗ + U) (3.25)

3.5.6 Parallel implementations

The suitability of relaxation algorithms and preconditioners for parallel implementation has

been discussed in the previous sections. The Jacobi sweeps are the simplest to parallelize but

even those are not embarrassingly parallel due to the need for values of neighboring points

which could be in a separate processor. A 5-point stencil with off processor neighbors is

shown in Fig. 3.4. If the value of the neighbor on core 2 is fetched every time it is needed,

the parallel performance will degrade due to frequent small chunk exchanges. This problem

can be solved by exchanging values for a layer of cells around the boundary,halo layer, at

once.With this change, the calculation for a stencil at the border become exactly same us those

in internal cells. After each Jacobi sweep, each processor updates values at the halo layer

from the neighboring processor. Wide halo layers (two or more halos) may be used when

the stencil encompasses neighbors two or more steps away from the central cell. Thicker

layers also help to reduce the communication overhead since the inner halo layer’s values

can be locally updated without exchanging data in every iteration (Fredrick & Marc 2010).

With this approach and an n-halo layer,communication need to be done only once every n-

th iteration. Information exchange can be done using MPI send call with a corresponding

MPI recieve in each processor ordered in such a way that when one processor sends halo layer

values, the other should await for the message with a corresponding receive call. Besides

the complication associated with order of messages, this blocked communication method adds

additional synchronization points that are avoidable. Minimizing synchronization points is

3.5. Development of high performance CFD code 65

Figure 3.4: A 5-point stencil with halo layer for exchanging information between processors

crucial for good performance in massively parallel systems. Both problems can be solved

using asynchronous communication via MPI isend and MPI irecieve calls as outlined below.

The synchronization is done once with an MPI Waitall call at the end instead of being at every

send and receive call as in the synchronous case.

Algorithm 2 Asynchronous communication
procedure Exchange

for all to← neighbors do
MPI isend(to)
MPI irecieve(to)

end for
MPI Waitall()

end procedure

The difficulties associated with parallelizing Gauss-Siedel and SOR algorithms have been

discussed in previous sections. Using graph coloring algorithms, one sweep of SOR can be

broken down to two or more equivalent sweeps that can be applied in parallel. The wavefront

method exploits parallelizability on the diagonals as shown in Fig. 3.5. A source of concern

with these methods is load balancing of work between different processors. The coloring al-

gorithm should ensure approximately equal amount of nodes is assigned to each color on all

processors, otherwise the time spent waiting for other processors to finish their share of work

becomes a bottleneck. The wavefront method is predisposed to have unequal work at different

diagonals thus it inherently suffers from this problem. An advantage of wavefront method over

graph coloring is that it preserves the original order, and thus have the same convergence rate

as its sequential counterpart. It is known that re-ordered gauss siedel converges slower than the

66 Chapter 3. Implementation of 3D CFD program

sequential counterpart that has a natural ordering. The first sweep in a red-black Gauss-Seidel

is basically a Jacobi iteration since no values from the current iteration are used. Thus the

overall red-black algorithm will have convergence rate equivalent to a Jacobi-GS sweeps. The

wavefront method uses values from the current iteration, but it offers significantly less paral-

lelization than graph coloring algorithms do. Asynchronous Gauss Siedel (chaotic) relaxation

may be easier alternative that can avoid the above complications if convergence can be ensured

somehow.Besides ease of implementation, asynchronous method do not need to exchange halo

layer values at every iteration thereby completely avoiding the associated latency. Synchro-

nization is avoided at all stages of solution, however the method may take larger number of

iterations to converge, or sometimes not converge at all. Halo layers are updated randomly, i.e.

as the neighbor processor sends them,therefore it is difficult to analyze convergence property of

chaotic relaxation methods. Parallelization of PCG solver involve different stages with varying

Figure 3.5: Red-black colored graph for parallel Gauss-Siedel

degree of difficulty.These stages are outlined in the pseudo code below in algorithm 3. The

scalar operation SAXPY (y ← α ∗ x + y) is embarrassingly parallel with no communication

required whatsoever.However matrix-vector product and preconditioning stage are very diffi-

cult to parallelize and are usually bottlenecks of performance. The EXCHANGE operation

at the beginning makes sure that halo layers have the latest values before local matrix-vector

multiplications are done. The operation has an implicit barrier at the end that further adds to

synchronization overheads. The local DOT products can be done in parallel however the en-

suing summation of local products i.e. REDUCE operation introduces many synchronization

points. This operation is commonly done through smart algorithms that are able to do the cal-

culation in O(log2(N)) time. The matrix preconditioning stage is difficult to parallelize except

for the simplest case where Jacobi preconditioner is used. Due to complexity of implementing

a parallel preconditioning algorithm that gives same result as its sequential counterpart, domain

decomposition method with local matrix preconditioning are commonly used. Similar to the

3.5. Development of high performance CFD code 67

case with asynchronous gauss siedel method, this may result in more number of iterations for

convergence.

Algorithm 3 Parallel PCG
EXCHANGE(p)
z← M ∗ p
oor ← DOT (p, z)
oor ← REDUCE(oor)
α← or

oor

x← S AXPY(x, p, alpha)
r ← S AXPY(r, z,−alpha)
z← M−1 ∗ r
oor ← or

or ← DOT (r, z)
or ← REDUCE(type, or)
β← or

oor

p← S AXPY(p, z, beta)

3.5.7 Asynchronous implementation

In the previous section different methods of implementing a parallel algorithm that strictly fol-

low the same computational path as the sequential counterparts have been discussed. The work

associated for strict implementation of this requirement can sometimes be overwhelming. At

times a significant reduction in complexity can be achieved by relaxing this requirement. For

example opting for asynchronous gauss siedel avoids the need for complex algorithms such as

graph coloring and wavefront method. Local preconditioning through domain decomposition

avoids the need for a parallel ILU preconditioner with graph coloring or wavefront method.

The number of synchronization points introduced for parallelizing PCG solver also suggests

scalability issues on massively parallel systems. Given all the above problems, it is worthwhile

to investigate asynchronous algorithms. In these methods, each processor does its own calcu-

lations with no synchronization whatsoever. As long as halo layers are updated regularly, one

processor could be solving fluid equations while the other solves solid equations, one proces-

sor could be using PCG and the other SOR etc.. This complete freedom comes at the price of

increased number of iterations or even divergence of solution, non-reproducibility in the sense

that sequential computation follows different path than its parallel counterpart. However its ad-

vantage regarding scalability can be a deciding factor with the ever increasing computational

power with thousands of processors,and load balancing problems due to non-uniformity of

clusters.An asynchronous implementation of solvers is outlined in algorithm 4. Processors do

68 Chapter 3. Implementation of 3D CFD program

not exchange information at designated synchronization points, unlike the case of synchronous

computation where information is exchanged at the end of each iteration and other places. Each

processor continually probes for messages from its neighbors by MPI iprobe. When a proces-

sor receives a halo layer data from neighboring processor, it sends back data of its own halo

layer at the shared boundary or an END message to indicate convergence on its local problem.

Each processor also keeps count of how many of its neighbors reached convergence and then

stops calculations when all of them and itself reach convergence.

Algorithm 4 Asynchronous solution
Initialize halo layer exchange
nConverged = 0
while converge is not reached do

Do one sweep of solver asynchronously: Jacobi,SOR, PCG etc.
while nConverged , nNeighbors do

MPI iprobe(message)
if message is NULL then

Do nothing
else if message is HALO then

MPI recieve(HALO)
Update halo layer
Calculate residual
if Converged then

if END not sent before then
MPI send(END)
Mark we have sent END message

end if
else

MPI send(HALO)
end if

else if message is END then
MPI recieve(END)
nConverged = nConverged + 1
if END not sent before then

MPI send(END)
Mark we have sent END message

end if
end if

end while
end while

3.5. Development of high performance CFD code 69

3.5.8 Scalability study

Scalability study with number of computing units is a necessary step to evaluate the efficiency

of parallelization. A badly parallelized program can give very poor performance due to poor

algorithm, nature of the problem, communication latency etc Numerical calculations in CFD

usually give good parallel speed ups due to the relative ease CFD can be parallelized. An

embarrassingly parallel problem does not incur any performance loss due to communication

alone. However, CFD computations do require communication of pressure, velocity and other

quantities at the boundaries of the domain and quite frequently too. For an iterative solver, ,

communication at each step of the iteration is usually necessary.

3.5.8.1 Coarse-grained scalability study

The speed up of the coarse grained parallelism using message passing was tested on a cluster

of the following specification; 2 cores per node, AMD 1.6GHz 2GB RAM, fast Ethernet con-

nection. The lid-driven problem is run with a grid 256 x 256 decomposed into sub-domains.

Run time is measured from the start of loading the cases to end of iterations. The loading

time is decreased from the total run time which otherwise would have biased the result. For

example, the one node test took too long to load the case compared to that of sixteen node case

as shown in the table 3.1. The speed up to 16 processors is very good but it starts to flatten

out onwards as evidenced by the 36 processors case. The total number of cells is 64k which

is relatively small, hence better speed up numbers are expected with cases of bigger size. The

cavity problem is run again with a grid of 1024 x 1024 resulting in a total of 1 million cells.

As expected, much better scaling numbers are obtained for larger number of processors due to

a larger computation to communication ratio. The 36 processors case showed an improvement

of 50%, and the 25 processor case a 16% increase. The single processor case could not solve

this bigger problem due to memory constraints; hence the percentages are calculated relative

to 16 processors case. This test demonstrates an advantage of domain decomposition to solve

large problems which are impossible to do on one processor. And also the point where the

scaling shows diminishing returns differs based on the problem size.

3.5.8.2 Fine grained scalability study

Speedup test for the fine grained parallelism is conducted on an Intel quad core with one Nvidia

Quadro FX 3700m workstation GPU and Intel Core 2 quad 3.0 GHZ cpu. The GPU has 128

processors and 1 GB memory. The test is done separately for the SOR and conjugate gradient

70 Chapter 3. Implementation of 3D CFD program

Table 3.1: Speed ups for 256 x 256 case

Processors Time(ms) Speed-up
1 1427135 1.00
2 772862 1.85
4 427012 3.34
9 198425 7.19
16 124985 11.42
25 92477 15.43
36 84422 16.90

Table 3.2: Speed ups for 1024 x 1024 case

Processors Time(ms) Speed-up Improvement
16 4100112 1
25 2819571 1.45 15.61%
36 2037217 2.01 51.98%

0 100 200 300 400 500 600 700
1.5

2

2.5

3

3.5

4

4.5

5

S
p

ee
d

 u
p

Iterations per time step

Figure 3.6: GPU speed up relative to CPU for fixed number of iterations

3.5. Development of high performance CFD code 71

solvers. In general, the SOR solver shows a much better scaling than the PCG solver because

it does more iteration per time step. In each time step, matrices are copied from the CPU to the

GPU which severely degrades performance. To compensate for this latency the solver should

be doing many iterations in each time step. Otherwise most of the number crunching will be

done by the CPU and performance may not improve at all or even degrade in some cases.

A steady-state problem getting close to overall convergence or a transient problem with very

small time step (e.g.LES simulations) are some examples where GPU may not scale well. Pre-

allocation of workspace once on the device (for all the matrices and vectors that will be used

inside the iterations) and updating directly on the device has been used by Julien & Senocak

(2009) to avoid this latency.

For a 3D lid driven cavity test with a grid of 128 x 128 x 32, a speedup in the range of

1.3 - 5 relative to the single CPU is obtained on the machine specified above. This is rather

disappointing compared to what is reported in literature, but it should be noted that the number

of iterations done per time step was relatively small in both cases especially towards the end.

To illustrate this point, the above problem is solved with fixed number of iterations per time as

shown in Fig. 3.6. Latency between host and device memory and between shared and global

memory in the device are bottlenecks for GPU solvers. Both optimizations were not done for

our implementation.

3.5.9 Validation with benchmark problems

3.5.9.1 Lid-driven cavity

The well known lid-driven cavity test is used to validate the implementation of both fine grained

and coarse grained parallelism. The streamline plots for this two dimensional flow at different

Reynolds number and a grid of 128 x 128 are shown in Figs. 3.7-3.8. Botella & Peyret (1998)

conducted spectral analysis of the lid-driven cavity flow for CFD benchmarking purpose.

Plots of u on vertical section and v on horizontal section show excellent agreement as shown

in Fig. 3.9. Streamlines and pressure contours for higher Reynolds number are also com-

pared with the plots found in Goyon (1996). The flow structure for the primary and secondary

vortices shows very good similarity. Validation of the parallel code for both CPU and GPU

implementations is done indirectly by comparing the result of decomposed cases against the

serial code’s result, which is already validated. Different problems with different number of

sub-domains have been tested and the results are in good agreement which proved that both

parallel implementations are correct. For illustration, a 2D and 3D lid-driven cavity problems

72 Chapter 3. Implementation of 3D CFD program

(a) Re=100 (b) Re=1000 (c) Re=3200

(d) Re=5000 (e) Re=7500

Figure 3.7: Streamlines for different Reynolds numbers showing progressive formation of ed-
dies at the bottom right corner→ bottom left corner→ top right corner

Figure 3.8: Streamlines (left) and pressure contours (right) of lid-driven cavity flow at Re=1000

3.5. Development of high performance CFD code 73

Figure 3.9: Horizontal(u) and vertical(v) velocity profiles along mid vertical and horizontal
sections respectively

(a) Decomposed domain (b) Iso-surface

Figure 3.10: Solution of 3D lid-driven cavity problem solved parallely with 16 sub-domains
(left), and the resulting 3D iso-surface plot that shows the flow pattern (right)

74 Chapter 3. Implementation of 3D CFD program

are solved decomposed into 16 sub-domains as shown in Fig. 3.10. In all cases, no mismatches

are observed at interfaces, that indicate iterations in each sub-domain have been done until full

convergence is reached. The implementation has also been tested on more complex problems

with unstructured mesh. The result found from the asynchronous implementation are in agree-

ment with that of synchronous implementation in all cases. As discussed in previous sections,

asynchronous algorithm may sometimes diverge where a synchronous algorithm would not,

and this has been observed in some of the other tests

Figure 3.11: Grid for a cube in a boundary layer case of Kose & Dick (2010)

3.5.9.2 Flow around a bluff body

The RANS and LES turbulence models are validated with a practical wind engineering appli-

cation of flow around a bluff body, namely a cube immersed in a boundary layer. The external

pressure distribution around the cube is sought using RANS and LES turbulence models. The

setup used for this test is similar to the one used by Kose & Dick (2010); cube height H = 4 cm,

bulk velocity 10 m/s and molecular viscosity at 10−5 kg/ms, and Re = 40000. The mesh con-

sists of about 200000 cells. The cells are expanded away from the cube as shown in Fig. 3.11.

Appropriate boundary conditions are applied as specified in Kose & Dick (2010); Richard and

hoxey inlet profiles for k − ε model and a turbulent inlet with random fluctuations for the LES

model, symmetry boundry conditon on the left,right and top walls, a pressure-outlet condi-

ton, and simulations are carried out using standard k-epsilon and Smagornisky LES turbulence

models. A Smagorinsky LES model with a time step of 2x10−4 sec is used for the simulation.

3.5. Development of high performance CFD code 75

(a) LES (b) RANS

Figure 3.12: Plots of instantaneous and mean velocity contours showing vortex shading behind
the cube

Figure 3.13: Pressure coefficients along vertical section of cube. Adapted from Bitsuamlak
et al. (2010)

76 Chapter 3. Implementation of 3D CFD program

Formation of Karman vortex street behind the cube is captured by the simulation as shown in

the instantaneous profile of Fig. 3.12. Pressure coefficients are calculated for a vertical section

passing through center lines of the front, top and back faces of the cube. From LES simulations

pressure values can be obtained at any instant of time, while RANS gives only time averaged

(mean) pressure values. The pressure values are normalized by the dynamic head according to

Eq. 3.26. The reference pressure P0 is usually taken as atmospheric pressure.

Cp =
P − P0

ρU2 (3.26)

The pressure coefficient (Cpe) distributions from the current study are shown in Fig. 3.13 along

with other experimental and CFD investigations by many researchers including Bitsuamlak

et al. (2010). The results from the current CFD study on the upstream side of the onset of

flow separation lie with in the shaded area that signifies limits of acceptable range. The current

standard k-epsilon model over shoots at the leading edge, where flow separation occurs, similar

to the results of Wright & Easom (2003) who used the same turbulence model. This confirms

the suspicion that RANS models can indeed have problems at flow separation zones. On the

other hand, the current LES model gives reasonable values even at the leading edge. On the

top wall, the current LES model seem to underestimate the suction pressure compared to k− ε.

This could be due to the use of a simple LES model with a constant Cs that needs to be adjusted

based on the flow behaviour.

Chapter 4

Numerical evaluation of roughness effects

Atmospheric Boundary Layer (ABL) flow is affected by aerodynamic roughness that consists

of the effect of surface cover (roughness) as well as the shape of the terrain (topography). This

chapter examines the effect of roughness alone by conducting Computational Fluid Dynamics

(CFD) simulations over various roughness setups. Given velocity and turbulence intensity

measurements at a certain location, it is possible determine roughness parameters z0 and d

by fitting suitable profiles of either the log-law or power-law type. Some methods of fitting,

with different degree of accuracy, have been discussed in section 2.7.2. Therefore the task of

determining roughness parameters can be considered to be equivalent to determining velocity

and turbulence intensity profiles either from field observations or numerical simulations, which

is the case in the current work. The investigation of roughness effects is conducted beginning

from the lowest level of complexity, namely a flat terrain, and progresses to the case of a real

built environment. Each model will be validated against existing literature and wind tunnel

tests when available.

1. Complexity 0: Preliminary investigations on an empty domain

2. Complexity 1: Regularly arranged array of blocks similar to that used in wind tunnels.

Empirical formulas for estimating roughness parameters based on density of obstacles

are compared with current CFD results.

3. Complexity 2: The effect of inhomogeneous roughness, i.e. multiple roughness patches

upstream of a site, is evaluated using three dimensional CFD simulations and results

are compared against existing wind speed models. The simulations are carried out in a

Virtual Boundary Layer Wind Tunnel (V-BLWT) by duplicating all roughness features

used namely spires, blocks and barrier. Sixty nine cases tested by Wang & Stathopoulos

77

78 Chapter 4. Numerical evaluation of roughness effects

(2007a) in wind tunnel are simulated and results are compared with wind speed models.

4. Complexity 3: The flow characteristics in a semi-idealized urban environment is studied

by conducting model scale simulations and results are compared with existing Boundary

Layer Wind Tunnel (BLWT) test data

5. Complexity 4: Simulations over a real urban environment are conducted in an area in

Downtown Miami. There is usually a lack of validation data for such kind of simulations

thus the only qualitative discussion of results is made.

Finally Artificial Neural Network (ANN) are considered as an alternative to setup roughness

features in an actual BLWT for a required wind profiles at the turn table. A neural network is

trained with half of the dataset obtained from Rowan Williams Davies and Irwin Incorporation

(RWDI), and then the model is tested for prediction ability on the rest of the dataset.

4.1 Complexity 0: Empty domain

CFD enjoys a wide spread use in the wind engineering community however many parame-

ters that influence the simulation results are not well understood (Franke & Hirsch 2004). A

rather trivial case that is commonly used to demonstrate disparity between simulation results of

different CFD software is the case of an empty domain. Since there are no obstacles, the char-

acteristics of the wind should be maintained along the whole length of the domain. It may seem

at first that simulation on an empty terrain is trivial but is quite challenging. The problem stems

from difficulty of achieving horizontally homogeneous flow unless proper boundary conditions

are used (Blocken et al. 2007, Hargreeves & Wright 2007, Richards & Hoxey 1993). This in-

vestigation also helps to outline the steps involved in a typical Computational wind engineering

(CWE) simulation.

4.1.1 Computational domain

The computational domain used for this experiment is the same as the one used by Hargreeves

& Wright (2007). It has dimensions of 5000m X 100m X 500m. The domain is meshed

with 500x50x5 cells and the mesh is expanded in the the vertical direction in such a way

that the the size of nearest cell to the ground is 1m. This satisfied the Yp > Ks criterion for

roughness conditions of z0 = 0.01m. A reference wind speed of 10m/s at a height of 6m is used.

Different boundary conditions at the ground surface, inlet and top of the domain are tested until

4.1. Complexity 0: Empty domain 79

a horizontally homogeneous flow is obtained using k-epsilon turbulence model. Hargreeves

& Wright used commercial CFD software CFX and Fluent to demonstrate the problem of

ABL simulations on an empty fetch. Boundary conditions are modified progressively through

user defined functions (UDF) until a horizontally homogeneous flow is obtained for all flow

quantities (U,k and ε). Here similar procedure is followed to check if the software developed

in this work can overcome the problem.

4.1.2 Boundary conditions

Boundary conditions are very important for any CFD simulation because they are cutoff planes

that divide the area we are interested in simulating from that we do not want to include in

the simulation. In other words they are used to incorporate the influence of the surrounding

to our model. The type of boundary condition also affects the placement of the cutoff planes

relative to the central region where obstacles are placed. For example, it is well known that

use of symmetry boundary condition at the top and sides of the domain introduces artificial

accelerations unless blockage ratio is kept to a minimum. The computational domain is usually

divided into three regions (Blocken et al. 2007), namely, the central region where the obstacle

is modeled as best as possible, and the upstream and downstream regions where the effect of

obstacles is modeled by regular roughness elements. The other issue concerns consistency

of boundary conditions with the wind profiles specified at the inlet and the turbulence model

(O’Sullivan et al. 2011, Richards & Hoxey 1993).

At the inlet of the computational domain fully developed equilibrium velocity and turbu-

lence intensity profiles are applied. The inlet profiles should be consistent with the upstream

surface roughness characteristics (Miller & Davenport 1998, Wieringa 1993), and they should

be maintained within the computational domain until the flow reaches the face of the test build-

ing. This is very important for determination of wind load on buildings, that will be signifi-

cantly different if, for instance, a uniform velocity profile is used instead of logarithmic profile.

A peculiar problem in ABL simulations is that maintaining horizontal homogeneity is very

difficult to achieve with current breed of CFD software. Richards & Hoxey (1993) have in-

vestigated this problem thoroughly and suggested boundary conditions (Eqs. 4.1-4.3) to be

specified at the inlet that will ensure horizontal homogeneity for the standard k-epsilon turbu-

lence model. Their formulas have been used by the wind engineering community for many

years. However, it is not enough to specify just inlet conditions to get a stream-wise homoge-

neous flow. The wall functions used at the surface should be compatible with the roughness

of the upstream fetch outside the domain. Otherwise an internal boundary layer will develop

80 Chapter 4. Numerical evaluation of roughness effects

starting from the inlet at which the roughness change occurs.

u =
u∗
κ

ln
z + z0

z0
(4.1)

k =
u∗2

√
Cµ

(4.2)

ε =
u∗3

κ(z + z0)
(4.3)

Richards & Hoxey found that the transport equations for the standard k-epsilon model can be

satisfied with above relations only when a different σε is used than the standard value of 1.3.

The formula for calculating σε given vonKarman constant is

σε =
κ2

(Cε2 −Cε1)
√

Cµ

(4.4)

Nikurdase’s modified log-law equations 4.5-4.6 are used as rough wall functions in many CFD

code. As described in Blocken et al. (2007), the first cell’s center should be placed higher than

the equivalent sand grain roughness height i.e. Yp > Ks. This constraint is in conflict with

using a fine mesh close to walls where high velocity gradients are present.

u+ =
1
κ

ln(Ey+) − ∆B (4.5)

∆B =
1
κ

ln(1 + CksK+
s) (4.6)

For a horizontally homogeneous flow, i.e. one in which same velocity profile is maintained,

the wall function should approximately yield the same profile as the inlet profile as specified

by Richards and Hoxey.
u+ = 1

κ
ln z+z0

z0
, Inlet

u+ = 1
κ

ln(Ey+

1+CksK+
s
) , Wall (4.7)

Equating the above two equations we get relations between Ks and z0

z + z0

z0
=

Ey+

1 + CksK+
s

4.1. Complexity 0: Empty domain 81

z
z0

=
Ey

CksKs

Ks =
Ez0

Cks

Ks ∼ 20z0 (4.8)

At the sides and top of the domain, a symmetry boundary condition that prevents inflow or

outflow is usually applied. This boundary conditions results in a parallel flow at the boundary

which could sometimes lead to artificial acceleration if enough space is not provided between

the obstacles and the boundary plane. To solve this problem the domain is sized in such a way

that blockage ratio is set at a certain limit below which the effect is minimal. Another solution

is to replace the boundary condition with one that allows flow outwards through the boundary

(Franke & Hirsch 2004).

The common use of symmetry boundary condition at the top of the boundary is rather

unfortunate since it ignores the contribution of geo-strophic wind in driving the ABL flow.

Many researchers have noted that use of symmetry boundary condition results in stream-wise

gradients of velocity profile. However there are many reasons why symmetry is assumed in

many wind engineering problems. The major physical reason is that log layer in the ABL

extends only up to a certain depth above which the gradient of velocity becomes zero. Also it

is not known a priori what the values would be set at the top if symmetry boundary condition

is not used. A shear stress boundary condition (τ = ρu2) should be applied at the top to get a

homogeneous (non-decaying) profile (Hargreeves & Wright 2007, Richards & Hoxey 1993).

Another approach used by Blocken et al. (2007) is to apply Dirichlet boundary condition for

velocity and turbulence quantities at the top.

4.1.3 Simulation for different cases

Simulations are conducted by varying the boundary conditions at the ground, inlet and top of

the computational domain, and the results are examined with regard to maintaining a horizon-

tally homogeneous flow. The four different test cases considered are briefly described in the

following sections.

Case 1 - Incompatible wall roughness
The first case applies the Richard and Hoxey boundary conditions at the inlet but assumes a

smooth ground surface thereby creating a situation where the surface roughness exhibits a sud-

82 Chapter 4. Numerical evaluation of roughness effects

den change at the inlet. Due to this incompatibility, stream wise gradients are observed in the

profiles of U, k and epsilon as shown in Fig.4.1. Close to the ground, both the velocity pro-

file and turbulence dissipation show large changes as one goes downstream; while the profiles

towards the top remain somewhat constant. On the other hand, the turbulent kinetic energy

shows variations throughout. The difficult of maintaining the turbulent kinetic energy along

the fetch has been noted by Richards & Hoxey especially on the first cell close to the ground

where many CFD software show peak values.

Case 2 - Compatible wall roughness
When surface roughness conditions compatible with the inlet profiles are applied, both ve-

locity and turbulence intensity profiles are maintained throughout the domain as shown in

Fig.4.2. The sand grain roughness used for the simulation is determined according to the re-

lation Ks = 20z0 = 0.2 and Cks = 0.5. However the calculated turbulent kinetic energy profile

still shows variations from the expected constant vertical profile.

Case 3 - Fixed U,k and ε at the top
From the previous simulations, we observe that the flow quantities at the top show some vari-

ations due to the imposed symmetry boundary condition. Blocken et al. has suggested using

Dirichlet boundary condition to make sure that the flow quantities remain the same at least at

the top of the boundary. The result for this case is shown in Fig. 4.3. While velocity and

turbulence dissipation show an almost perfect fit from start to finish of the fetch, the turbulent

kinetic energy profile show a rather distorted profile compared to the previous cases. Other

simulations have been carried out which confirm the same observation.

Case 4 - Uniform k and epsilon at the inlet
It is customary to specify constant values of k and epsilon at the inlet for convenience. The

assumption is correct for k but not for epsilon. The simulation result for this case shows a

developing epsilon profile along the fetch, before reaching more or less the same values at the

outlet, as shown in Fig.4.4.

So far we have managed to get homogeneous velocity and turbulent dissipation profiles. To

get a homogeneous turbulent kinetic energy profile, further modifications to wall functions are

necessary. Most commercial CFD code do not usually offer wall functions that can maintain

k profile this way, however we note that it is possible to implement modifications to wall

functions to achieve horizontal homogeneity for k as described in Hargreeves & Wright (2007).

4.1. Complexity 0: Empty domain 83

0 5 10 15 20
0

100

200

300

400

500

U(m/s)

h
(m

)

x=0m
x=2500m
x=4000m

0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

k(m2/s2)

h
(m

)

x=0m
x=2500m
x=4000m

10
−4

10
−2

10
0

10
2

0

100

200

300

400

500

e(m2/s3)

h
(m

)

x=0m
x=2500m
x=4000m

Figure 4.1: Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-1

0 5 10 15 20
0

100

200

300

400

500

U(m/s)

h
(m

)

x=0m
x=2500m
x=4000m

1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

k(m2/s2)

h
(m

)

x=0m
x=2500m
x=4000m

10
−4

10
−2

10
0

10
2

0

100

200

300

400

500

e(m2/s3)

h
(m

)

x=0m
x=2500m
x=4000m

Figure 4.2: Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-2

0 5 10 15 20
0

100

200

300

400

500

U(m/s)

h
(m

)

x=0m
x=2500m
x=4000m

1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

k(m2/s2)

h
(m

)

x=0m
x=2500m
x=4000m

10
−4

10
−2

10
0

10
2

0

100

200

300

400

500

e(m2/s3)

h
(m

)

x=0m
x=2500m
x=4000m

Figure 4.3: Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-3

0 5 10 15 20
0

100

200

300

400

500

U(m/s)

h
(m

)

x=0m
x=2500m
x=4000m

1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

k(m2/s2)

h
(m

)

x=0m
x=2500m
x=4000m

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

e(m2/s3)

h
(m

)

x=0m
x=2500m
x=4000m

Figure 4.4: Profiles of horizontal velocity, turbulent kinetic energy and dissipation for case-4

84 Chapter 4. Numerical evaluation of roughness effects

4.2 Complexity 1: Homogeneous roughness evaluation

The next level of complexity concerns uniform (homogeneous) roughness due to array of ob-

stacles. Simulations are carried out on regular and staggered array of blocks for wind coming

from different angles. The arrangements of the roughness blocks considered are all symmetric,

which allows for a reduction of computational domain to a much smaller section of one or two

rows as shown in Fig.4.5. The test setups and results obtained are described in the following

sections.

4.2.1 Test setup

The test setup used in this study is similar to that used by MacDonald et al. (1998). Regular

or staggered arrays of cubes are exposed to wind coming from different directions, and veloc-

ity profiles are recorded at different sections behind the obstacles. Wind speed profiles show

variations in the transverse direction because some of the locations are sheltered by the blocks

while others lie in the gap between the blocks. Therefore multiple measurement points are

considered in the transverse direction, and results are averaged to get a representative veloc-

ity profile for that section. This approximation is acceptable for regular arrays of cubes but

it may be inaccurate for irregular array of obstacles. Close to the ground and right behind an

obstacle, negative velocity profiles can develop due to re-circulation, while at locations close

to center line of gap the velocity is positive. The averaging operation removes these variations

and positive velocity values are observed also at heights where recirculation happens.

The area density ratio for the configurations considered can be approximated by the fol-

lowing formula.

λ =
1

(1 + S
H)2 (4.9)

For example, a spacing S = 1.5H between blocks gives λ = 0.16. The Lettau (1969) model pre-

dicts a roughness length z0 = 0.5λH = 0.08H The test is conducted for various configurations

of obstacles with different spacing, regular and staggered arrangement, rectangular obstacle

shapes, and different wind angle of attacks as shown in Figs.4.5-4.6. Symmetry of arrange-

ment of obstacles is exploited to reduce computational domain. Then models are prepared for

six area density ratios (0.05, 0.11, 0.16, 0.2, 0.33, and 0.5) for every configuration of obstacles

considered. A series of 32 blocks of height 20 m are arranged in different ways, and a steady

state solution of the flow problem is sought.

4.2. Complexity 1: Homogeneous roughness evaluation 85

Figure 4.5: Plan of three symmetric configurations: Staggered arrays(left), regular arrays (mid-
dle) and 450 wind attack on uniform array (right)

Figure 4.6: Plan of regular array of cubes with height H and spacing 1.5H also showing location
of probes

86 Chapter 4. Numerical evaluation of roughness effects

4.2.2 Analysis

The objective is to calculate roughness length and displacement height from velocity and tur-

bulence intensity profiles obtained from CFD simulations. For this purpose average of five

velocity profiles measurements at locations shown in Fig.4.6 is considered instead of a single

profile. First the displacement height is determined iteratively using Eq.(2.41) from Lo (1990).

The value of d obtained using this method is usually satisfactory, however value of z0 is very

sensitive to the selected reference heights because it is based on measurements at two heights

in the inner layer.

As the fetch length becomes larger, the internal boundary layer grows until it becomes

equal or greater than the height of the computational domain. This stabilization of flow is

usually achieved earlier than the last row of blocks. The average velocity within the viscous

layer increases with fetch length, while the velocity in the inner and outer layers decrease. The

roughness length and displacement height obtained from averaged velocity profile measured

at the last row of a series of blocks is shown in Fig.4.8, along with predictions from differ-

ent roughness models. The McDonald roughness model is tested in two ways in which the

displacement height is calculated differently. The first method determines roughness length

from displacement height calculated using Lo (1990)’s equation (McDonald1). The second

method uses d calculated from Theurer (1993)’s equation (McDonald2). The results from the

analysis are briefly summarized as follows. The McDonald1 method gives the best fit to the

CFD calculated result as shown in Fig. 4.9. The Theurer model also shows good fit up to

area density ratio of 20%. Lettau’s and Counihan’s models hugely underestimate the rough-

ness for area density below 20% and overestimate it for area density larger than 20%. The

staggered obstacle arrays and regular arrays with 45 degree wind angle of attack resulted in

higher roughness compared to the simple case of regular arrays as shown in Fig. 4.10. The

staggered placement of obstacles increase roughness due to relatively larger exposure of faces

of the cubes to on coming wind. A regular array of cubic obstacles exposed to a 45 degree

on coming wind is equivalent to a staggered array of triangular obstacles as shown in Fig.4.5.

We can also observe that the deviation of Lettau’s and Counihan’s models from CFD model is

less pronounced on staggered array of blocks compared to the regular arrangement. This is a

reasonable observation because of much less wake interference in staggered arrangment that

has large spacing (small λ), in which case the flow becomes effectively isolated for each block.

However Lettau’s and Counihan’s model still show significant deviations from the CFD model,

which is partly explained by the larger drag imposed by the cubic obstacles (CD = 1.2).

4.2. Complexity 1: Homogeneous roughness evaluation 87

0 5 10 15
0

20

40

60

80

100

U(m/s)

h
(m

)

x=60m
x=120m
x=240m
x=480m
x=960m

−5 0 5 10 15 20
0

20

40

60

80

100

U(m/s)

h
(m

)

y=0m
y=12.5m
y=25m
y=38m
y=50m

Figure 4.7: Spatial variation of velocity profiles: longituidinal (left) and transverse(right)

0 5 10 15 20
0

20

40

60

80

100

U(m/s)

h
(m

)

Actual
Log−law

0 5 10 15
0

20

40

60

80

100

U(m/s)

h
(m

)

Actual
Log−law

Figure 4.8: Sample measured and logarithmic fitted velocity profiles

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

λ

z 0(m
)

CFD
Theurer
Macdonald1
Macdonald2

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

λ

z 0(m
)

CFD
Lettau
Counihan

Figure 4.9: Comparison of CFD with different roughness models

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

λ

z 0(m
)

Regular array
Staggered array

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

λ

d
(m

)

CFD
Theurer

Figure 4.10: Effect of staggered placement on z0 (left) and comparison of CFD and Theurer
model for d (right)

88 Chapter 4. Numerical evaluation of roughness effects

4.3 Complexity 2: Inhomogeneous roughness evaluation

Proper evaluation of wind speed and turbulence intensity profiles is important for correct deter-

mination of wind loads on buildings. Both profiles are sensitive to upwind roughness changes

especially close to the building. In design of structures usually a level terrain is first assumed,

and then departures from this caused by topographic changes and surface roughness inhomo-

geneities are assessed. The significance of the effect of inhomogeneous roughness within the

pertinent fetch was overlooked in building codes and standards before the Engineering Science

Data Unit (ESDU) model is introduced.The earliest investigation of this effect was carried

out by Deaves (1981), Deaves & Harris (1978) using CFD simulations over single changes of

roughness. The result of this work is incorporated in the ESDU model which is recommended

methodology in many building codes and standards for the case of multiple roughness changes

close to building.

Recently Wang & Stathopoulos (2007a) put forward wind speed and turbulence inten-

sity models that improved upon the ESDU model. Their model, henceforth called Wang and

Sthatopoulos Model (WS), is validated with wind tunnel experiments and simplified 2D CFD

simulations over multiple roughness changes. The motivation for this work is that the ESDU

model can sometimes overestimate wind speed by as much as 20% , which means a 40% in-

crease in wind load. In this work the performance of three dimensional CFD simulations for

predicting wind speed and turbulence intensity profile will be compared with the above men-

tioned models.

Inhomogeneous roughness within the pertinent fetch length of the building site affects

both wind speed and turbulence intensity profiles. The boundary layer for multiple rough-

ness changes is stratified with an upper boundary layer up to the gradient height G and as many

inner boundary layers as there are patches, with a possible transitional layer in between. The

case of a single roughness change with a transition layer is shown in Fig. 4.11. Three distinct

regions can be seen namely the outer layer, the transition layer and Internal Boundary Layer

(IBL).

Deaves & Harris divide the flow horizontally in to three regions.

• x < 0: The upstream region where flow is characterized solely by roughness conditions

there.

• 0 < x < F: The region of influence of the roughness change where IBL is still growing

on the new roughness z0. The friction velocity U∗(x) is a function of distance from

transition point.

4.3. Complexity 2: Inhomogeneous roughness evaluation 89

Figure 4.11: Schematics of the growth of internal boundary layer for single roughness change

• x > F: IBL has fully developed and is in equilibrium with new parameters U∗ and z0.

Similarly at any position in 0 < x < F, the flow can be divided vertically in to three regions.

• 0 < z < zi(x): The flow is in equilibrium with the new surface so any of the homogeneous

wind speed models can be used to determine using the new surface roughness parameters.

• zi(x) < z < zt(x): The flow here is neither in equilibrium with the new roughness nor does

it retain upstream character. Velocity profiles should be smoothly interpolated between

z < zi and z > zt.

• z > zt(x): The upstream flow is unmodified as the disturbance has not reached there yet.

In the following sections, a review of different models for both homogeneous and inhomoge-

neous terrain is given.

4.3.1 Homogeneous roughness wind speed models

4.3.1.1 Roughness estimation

An estimate for roughness length in a homogeneous terrain can be obtained from Davenport

roughness classifications. If the obstacles are big with measurable dimensions e.g.buildings, a

better estimate can be found using empirical formulas as discussed in 2.7.1. A brief overview

of simple formulas to approximate roughness parameters follows. Given mean height of obsta-

cles: buildings,bridges, crops,forests etc., roughness length is estimated as

z0

H
= c1 (4.10)

90 Chapter 4. Numerical evaluation of roughness effects

where c1 = 0.1 gives good results in many situations, however it is established that z0 is not

constant. Similarly an approximation for the zero-plane displacement height is

d
H

= c2 (4.11)

where c2=0.75. Lettau (1969) provided an empirical formula to determine z0 from frontal area

density ratio of obstacles
z0

H
= 0.5λ f (4.12)

This simple approximation fails to give good results for moderately dense regions. MacDonald

et al. (1998) suggested a model that tackles limitations of Lettaus and other similar empirical

models. The MacDonald model improvements include a non-linear decrease of z0 at high area

density ratio , and different obstacle shapes and layouts.

4.3.1.2 Models

The log-law and power law wind speed models have been discussed in section 2.6.2.1 and

2.6.2.2, but we repeat the relevant equations here for convenience.

U(z)
u∗ = 1

κ
ln(z−d

z0
)

U = Ure f (z−d
zre f

)α

Iu(z) = c(z
zre f

)−d

(4.13)

Homogeneous roughness wind speed models from ESDU 82026 ,that are based on the work of

Deaves & Harris (1978), incorporate the effect of Coriolis force. The simplified homogeneous

model (for z ≤ 300m) has an additional term over the log-law model that relates with the

gradient height G.
U(z)
u∗

=
1
κ

(ln(
z
z0

) +
34.5 fcz

u∗
) (4.14)

And the corresponding model for turbulence intensity is given as follows

Iu(z) =
u(z)
U(z)

=
u(z)
u∗

u∗
U(z)

(4.15)

u(z)
u∗

=
7.5η[0.538 + 0.09 ln(z

zn
)]η16

1 + 0.156 ln(u∗
fcz0

)
(4.16)

4.3. Complexity 2: Inhomogeneous roughness evaluation 91

η = 1 −
6 fczu

u∗
(4.17)

4.3.2 The ESDU model

The set of equations provided in ESDU-82026, ESDU-84030, for determining wind speed and

turbulence intensity respectively for multiple roughness changes, are based on numerical work

of Deaves (1981). A comparison of the Deaves model with the log-law and power-law for het-

erogeneous terrain can be found in Nicholas (1997). The ESDU model is now adopted in sev-

eral building codes and standards such as American Society of Civil Engineers - 7 (ASCE7) and

National Building Code of Canada (NBCC). Deaves conducted CFD simulations using simple

eddy-viscosity (mixing length) models for turbulence closure. Contemporary CFD studies

dropped the second horizontal derivatives rendering the Navier-stokes equations parabolic and

solutions were carried out by ‘marching’. Deaves solved the full elliptic set of equations in

which Coriolis force is also included using an approximation that allows the equations to re-

main two dimensional.

4.3.2.1 Wind speed model (ESDU 82026)

A set of equations for U and Iu are proposed for both homogeneous and inhomogeneous ter-

rain. For inhomogeneous terrain with n roughness patches the following set of equations are

provided, however ESDU recommends the use of the equations for up to a maximum of three

patches. This is partially due to lack of sufficient experimental validation for four or more

patches.

The velocity profile within each IBL , gn <= z <= gn−1, can be calculated using the follow-

ing equation

U(z) = Kx2Kx3Kx4 · · ·KxnUn(z) (4.18)

The coefficient K is a terrain dependent coefficient calculated differently for smooth to rough

(S-R) and rough to smooth transitions (R-S) as follows

Kxi =

1 + 0.67R0.85
i fS−R

1 − 0.41Ri fR−S

(4.19)

Ri =
[ln (z0,i−1

z0,i
)]

(u∗
f u∗

)βi
(4.20)

92 Chapter 4. Numerical evaluation of roughness effects

β =

0.23, for S-R

0.14, for R-S
(4.21)

fS−R =

0.1143E2 − 1.372E + 4.087 if E ≤ 5.5

0 if E > 5.5
(4.22)

fR−S =

0.0192E2 − 0.550E + 2.477 if E ≤ 5.6

0 if E > 5.6
(4.23)

E = log10 X, where X = X2 + X3 + · · · + Xi (4.24)

Then the IBL depths gi(x) can be determined by continuity requirement at each transition.

Two profiles can be combined into one continuous profile using the following equation

gi(x) = exp(
Kxi(

u∗,i
u∗,i−1

) ln(z0,i) − ln(z0,i−1)

Kxi(
u∗,i

u∗,i−1
) − 1

) (4.25)

4.3.2.2 Turbulence intensity model (ESDU 84030)

Here equations are provided for determining turbulence intensity profile for inhomogeneous

roughness.

Iu(x) =
u(x)

u
u
u∗

u∗
U(z)

U(z)
U(z, x)

(4.26)

u − u(x)
u − u′

=

cos2[π
2

4 (ζ−0.25
0.8)], for 0.25 ≤ ζ ≤ 1.85, S − R

cos2[π
2

4 (ζ−0.1
0.8)], for 0.10 ≤ ζ ≤ 1.70,R − S

(4.27)

where u′, u and u(x) are the upwind, far-downwind and local values of fluctuating velocities

respectively.

ζ =
ln(x) − ln(g′)
ln(g) − ln(g′)

(4.28)

g′

z0,(n,n−1)
= (

z
10z0,(n,n−1)

)5/3 (4.29)

4.3. Complexity 2: Inhomogeneous roughness evaluation 93

Figure 4.12: Schematics of change in velocity profile for three roughness patches.(Wang &
Stathopoulos 2007b)

g
z0,n

=

(z

0.36z0,n
)4/3, for S − R

(z0,n−1

z0,n
)(z

0.07z0,n
), for R − S

(4.30)

4.3.3 The WS model

4.3.3.1 Wind speed model

The WS model assumes the stratification of the IBL for each patch follows the power law

model. Unlike the ESDU model , each segment of the wind profile has a wind speed curve

dictated by the power law index of the corresponding patch as shown in Fig. 4.12. The IBL

growth is assumed to follow a power law with coefficient 0.8.

g0(x) = G

gn(x) = 0.5z0.2
0,(n,n−1)x

0.8
n , where z0,(n,n−1) = max(z0,n, z0,n−1)

(4.31)

The wind speed model for each segment of the profile is

U(z) = U(gn(x))(
z

zgn

)
αn

, where gn+1 ≤ z ≤ gn (4.32)

94 Chapter 4. Numerical evaluation of roughness effects

4.3.3.2 Turbulence intensity model

The corresponding model for turbulence intensity requires that the IBL be subdivided into

a transitional and equilibrium sublayer. The total IBL depth g(x), including the transitional

sublayer, is still to follow a 0.8 power law but the equilibrium sub-layer depth is assumed to

follow a 0.72 and 0.4 power law for smooth-rough and rough-smooth transitions respectively.

g′n(x) =

0.5z0.2
0,(n,n−1)x

0.72
n , for S − R

0.5z0.2
0,(n,n−1)x

0.40
n , for R − S

(4.33)

The turbulence intensity profiles are then obtained using the following equations based on

inverse power law.

Iu(z) =

Iun(10)(z
10)−0.4, for gn+1 ≤ Z ≤ gn

Iu(gn)(z−gn
g′n−gn

)(Iu(g′n) − Iu(gn)), for gn ≤ Z ≤ g′n
(4.34)

Letchford et al. (2001) noted that in general turbulence intensity requires shorter fetch length

to forget the upwind patch influence than wind speed.

4.3.4 Comparison of WS and ESDU models

The WS model discussed in the previous section was verified using boundary layer wind tunnel

tests on sixty-nine cases of multiple roughness patch detailed in Table 4.1. A roughness patch

is characterized by three parameters namely length, distance to building site, and roughness

length or (l, x, z0). The letters c, s and u represent open, sub-urban and urban roughness patches

respectively. The number following the letters represent the length of the patch in meters. For

the patch upstream of all other patches, a relatively long fetch length of 2km is assumed. The

basic single patch roughness cases are case-1 for open terrain, case-8 for sub-urban and case-

55 for urban. First a simple program is written to compare the performance of WS and ESDU

models using the formulas discussed in the previous sections. Sample results for some of the

cases is given in Fig. 4.13. For the open terrain patch there is a good agreement between

the two models, but a significant difference is observed for the sub-urban and urban patches.

The ESDU model gives conservative results which can overestimate the velocity by as much

as 20% as is confirmed by Wang & Stathopoulos, which was one of the motivations for the

development of their model.

4.3. Complexity 2: Inhomogeneous roughness evaluation 95

Table 4.1: Multiple roughness patch cases considered

1 c 2000 2 c 2000 u 125 s 250 u 125
3 c 2000 s 1000 4 s 2000 c 250 s 125 c 125
5 s 2000 c 125 s 125 6 s 2000 u 500
7 c 2000 u 125 s 125 u 125 s 125 8 s 2000
9 s 2000 c 125 10 s 2000 c 125 s 250 c 125
11 s 2000 c 250 s 250 12 s 2000 c 125 s 125 c 125 s 525
13 c 2000 s 125 u 125 s 125 u 125 14 c 2000 s 125
15 s 2000 c 250 16 s 2000 c 375 s 125
17 s 2000 c 125 s 250 18 s 2000 u 500 s 500
19 c 2000 s 125 c 125 s 125 20 c 2000 s 250
21 s 2000 c 375 22 s 2000 c 250 s 125
23 s 2000 u 125 s 125 u 125 s 125 24 s 2000 c 500 s 500
25 c 2000 s 125 u 250 s 125 26 c 2000 s 375
27 s 2000 c 500 28 s 2000 u 250 s 125
29 s 2000 u 125 s 125 u 125 30 c 2000 u 125
31 c 2000 u 125 c 125 u 125 32 c 2000 s 500
33 s 2000 c 750 34 s 2000 c 125 s 125 c 125 s 125
35 s 2000 u 250 36 c 2000 u 250
37 c 2000 u 125 c 250 u 125 38 c 2000 s 750
39 s 2000 c 125 s 125 c 250 40 c 2000 u 375
41 u 2000 c 375 42 u 2000 c 250 u 125
43 c 2000 s 1500 44 s 2000 c 500 s 2750
45 c 2000 u 500 46 u 2000 c 500
47 u 2000 c 125 u 125 c 125 u 125 48 c 2000 s 2250
49 s 2000 c 125 s 125 c 125 s 125 c 125 s

125 c 125 s 125
50 c 2000 u 1000

51 u 2000 c 1000 52 u 2000 c 250 u 250
53 s 2000 c 1500 54 s 2000 c 500 s 1000
55 u 2000 56 u 2000 c 125 s 125 c 125 s 125
57 u 2000 c 500 u 500 58 s 2000 c 2250
59 s 2000 c 125 s 125 c 125 s 125 c 125 s

125 c 125 s 1125
60 u 2000 c 125

61 u 2000 s 500 62 c 2000 u 375 c 250
63 s 2000 c 250 s 250 c 250 s 250 64 u 2000 c 1500
65 u 2000 c 250 66 u 2000 c 375 u 125
67 c 2000 u 1500 68 u 2000 c 2000
69 c 2000 u 2000

96 Chapter 4. Numerical evaluation of roughness effects

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−1

U/U∞

z/
δ

WS
ESDU

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−8

U/U∞

z/
δ

WS
ESDU

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−28

U/U∞

z/
δ

WS
ESDU

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−55

U/U∞

z/
δ

WS
ESDU

Figure 4.13: Comparison of WS and ESDU models on selected cases

4.3.5 Three dimensional CFD simulations

The conventional method of using wall functions for roughness model has problems when the

surface is very rough. Blocken et al. (2007) discusses the problems and gives recommenda-

tions for very rough surfaces in which the requirement that the first cell’s Yp > Ks can not be

satisfied. There is a conflict with the requirement that a fine mesh need be used close to the

wall to resolve the high gradients. In this case, Blocken et al. suggests explicit modeling of

roughness elements. This has been done by Miles & Westbury (2003) and leads to a significant

improvement of the computed results compared to the results obtained with an approach flow

over a smooth flat wall. The roughness blocks used in CFD simulations correspond to those

used in wind tunnel study, using only smooth wall boundary conditions. The disadvantage

of this methodology is that computational resources are wasted on less important part of the

computational domain rather than improving the model of the primary object of study.

4.3. Complexity 2: Inhomogeneous roughness evaluation 97

Figure 4.14: A look inside of a 3D symmetrical computational domain for regular array of
cubes. The 2D plan of the model is previously explained in Fig.4.5

4.3.5.1 Simulations on a row of roughness elements

The first step is to determine configurations of roughness elements that yield a desired profile at

a target downstream location. This iterative process could sometimes be time consuming if data

is not available from previous wind tunnel tests. If a regular array of blocks arranged in simple

manner (aligned or staggered) is used to represent roughness explicilty, the inherent symmetry

can be exploited to reduce the computational domain. A typical symmetrical computational

domain is shown in Fig. 4.14. It is clear that simulating one raw of obstacle arrays is sufficient

if a time averaged turbulence model, such as the k-epsilon model, is used. A section passing

through the center of the cubes and another one passing through the center of the open space

between two raws gives same result as the one shown in the Fig. 4.15. A two dimensional

simulation can be used, but it results in larger spacing of roughness blocks because the blocks

are assumed to be continuous in the transverse direction.

An approximate formula to relate roughness length with average frontal and planar area of

obstacles can be found in MacDonald et al. (1998). The spacing and height of blocks using

the formula are usually good estimates for starting the iterative process. The first simula-

tions conducted are for homogeneous roughness patches of open-country, sub-urban and urban

roughness characteristics. Steady state simulations with k-epsilon turbulence model are con-

ducted on a 2km long domain for each of the roughness patches. The result of this preliminary

analysis are shown in Fig. 4.15.

We can observe the three possible flow regimes first predicted by Oke (1998). The first

roughness configuration is representative of open terrain (B/H ∼ 24) is in an isolated flow

regime. The wake and the separation bubble behind each obstacle is fully developed with re-

98 Chapter 4. Numerical evaluation of roughness effects

(a) open-no interference

(b) suburban - wake interference

(c) urban-skimming

(d) multiple-patches

(e) Mesh

(f) Full domain simulation

Figure 4.15: Velocity contours for different roughness characteristics showing isolated (open-
terrain), wake-interference (sub-urban) and skimming flow (urban).

4.3. Complexity 2: Inhomogeneous roughness evaluation 99

attachment occurring before the next element. With increasing density, the roughness elements

become close enough so that the wake behind an obstacle starts to interfere with that of the

downstream obstacle. The suburban roughness configuration (B/H ∼ 5) seems to be in this

wake interference regime. If the density increases further to a very rough urban setting (B/H ∼

1.7), the flow begins to skim over the elements. Our simulations used a constant height of

H = 10m for the blocks, varying only the spacing B for different roughness. As a result the

skimming flow effect is more pronounced than it would have been if variable height blocks

were used.

In all cases the bulk of the flow is forcibly displaced up and over the obstacle, which causes

acceleration or a jet, but once over it is able to expand again and decelerates accordingly. This

flow region, disturbed because of the presence of the obstacle, is called the displacement zone.

Jimenez (2004) emphasizes the importance of the blockage ratio σ/h to the development of a

logarithmic profile. The ratio measures the direct effect of the roughness on the logarithmic

layer. For our simulations the boundary layer height δ = 500m and height of blocks H = 10m,

hence δ/h = 50. Jimenez notes that the ratio should be larger than 40 before similarity laws

can be expected, and experimental results suggest that it should be greater than 80. Flows with

higher blockage fractions retain few of the mechanisms of normal wall turbulence, and can

better be described as flow over obstacles. Hence it is important to make sure the blockage

ratio is with in the acceptable range.

4.3.5.2 Simulation of a BLWT with spires and barriers

Before we conduct a case by case study of multiple roughness patches, we simulate a virtual

wind tunnel with and without raised roughness blocks. The flow in a wind tunnel is bounded

by walls all around, unlike the case of ABL flow where symmetry boundary is usually assumed

at the sides and top of the domain. It is appropriate to use a no-slip boundary condition on all

walls since boundary layers develop on all four sides. The wind tunnel in University of Western

Ontario has a length of 26m, a width of 2.4m and a variable height from the inlet (1.55m) to

the exit (2.15m). The roughness features are spires , barrier and roughness blocks. We first

simulate the case where none of these roughness features are used, and evaluate the change in

velocity profile due to the expansion of the tunnel alone. This simulation is similar to that of a

smooth pipe flow. A grid with about 2.6 million cells (480x40x40) is used which is found to

be enough for a grid independent result.

Next we simulate with roughness blocks of 0.1m high placed in a staggered manner. As we

can see from Fig. 4.16 and 4.18, the boundary layer thickness on the bottom surface increases

100 Chapter 4. Numerical evaluation of roughness effects

(a) Inside look of surface(left) and close-up of surface mesh(right)

(b) Cross-section of velocity contours: empty domain(left) and with roughness blocks (right)

(c) Planar section of velocity contours

Figure 4.16: V-BLWT simulation results with surface roughness blocks

4.3. Complexity 2: Inhomogeneous roughness evaluation 101

due to addition of the blocks. This is associated with an increase in turbulent kinetic energy. A

planar view at half of blocks height shows that each block develops a wake. The interference

effect in staggered arrangement is not as pronounced as that of a regular arrangement where

the sheltering effect is maximum. We can observe that the first couple of rows have the longest

wakes where the wind adjusts to the new roughness conditions.

Next three spires and a barrier are added to help in development of boundary layer as soon

as possible. If a uniform flow enters the tunnel, it is expected that a boundary layer will develop

6H downstream of the spires. Figure 4.17 shows the mesh and result of the analysis after the

addition of these new roughness features. It can be observed that the boundary layer depth and

turbulent kinetic energy has significantly increased compared to using roughness blocks alone.

The dimension of spires and height of barrier have a significant effect over the profile at the

turntable. The wake from spires is very elongated as shown in Fig. 4.17.

4.3.5.3 Simulation of multiple cases with a virtual Wind tunnel

First we consider an approach of simulating a whole boundary layer wind tunnel similar to

that done in section 4.3.5.2 but without using spires and barrier as shown in Fig. 4.21. Also

the V-BLWT used for this case is from Wang & Stathopoulos’s study, Concordia University

BLWT. Roughness blocks are used to model suburban and urban roughness, while carpet is

used for open country roughness. Some of the V-BLWT setups for multiple roughness patches

are shown in Appendix A. We do not incorporate spires,barriers or grids to the models to save

on simulation time. Fully developed boundary layer velocity and turbulence intensity profiles

are applied at the inlet of the V-BLWT instead. The wind tunnel has a length of 12.2m, width

of 1.8m and height of 1.8m. Open country roughness is is directly incorporated by the use of

wall functions. This method has a limitation in that the nearest cell to the wall should be big

enough, but since z0 = 0.024 is small the requirement is satisfied. For the suburban and urban

roughness blocks are used as shown in Fig. 4.19. The blocks used in Wang & Stathopoulos’s

study were 1in cubes for suburban (S), and 1.5in cubes for urban (U). This results in too many

roughness elements for the simulation, so it is decided to double the size of the cubes to 2 in and

3 in respectively. The number of roughness blocks is as a result reduced by four times. This

is in accordance with formulas that use area density ratios to determine average roughness

characteristics. The modified block sizes result in the same planar and frontal area density

ratios as the original, hence they are equivalent. For this simulations we consider blocks to be

the only roughness features, and no spires, grids or barriers are used. Instead of a uniform wind

profile as used at wind tunnel inlet, an ABL boundary layer profile is applied. The inlet velocity

102 Chapter 4. Numerical evaluation of roughness effects

(a) Velocity contour details close to spires, barrier and roughness blocks

(b) Contour of U at mid vertical section

(c) Contour of U at height of blocks

Figure 4.17: Virtual BLWT simulation with spires, barrier and roughness blocks

4.3. Complexity 2: Inhomogeneous roughness evaluation 103

0 2 4 6 8 10
0

0.5

1

1.5

2

U(m/s)

z(
m

)

0 20 40 60 80
0

0.5

1

1.5

2

Iu(%)

z(
m

)

No roughness features
Blocks
Spires+Barrier+Blocks

Figure 4.18: Comparison of U and Iu profiles for different roughness features

profile is logarithmic with the gradient height fixed at 600mm and Ug = 12.5m/s. The length

scale of the BLWT simulations is 1:400 and time scale is 3:400. A preliminary simulation is

Figure 4.19: Open country(OC), Suburban(S) and Urban(U) roughness representation

carried out on an open country roughness. A sand grain roughness of Ks = 20z0 = 0.48 is

used for the wall function.The result is shown in Fig. 4.20. There are two problems with this

simulation. First the first cell height Yp = 0.48 is too high compared to the boundary layer

thickness δ = 0.6m. The problem of matching roughness in wind tunnel problems is a well

known problem. For the simulation of the 69 cases of Wang & Stathopoulos a much lower

roughness is assumed for the carpet so that the Yp > Ks condition is met. The first simulations

we carried out with Ks = 0.48 for open carpet turned out to be bad where a bulge in the velocity

profile is observed close to the ground. Using a lower roughness for OC corrected this problem

much better fit are obtained except for the cases where open country roughness dominates the

other patches. Second one should not expect horizontal homogeneity as the case of an empty

domain because of the no-slip boundary conditions used at the top and side walls.

104 Chapter 4. Numerical evaluation of roughness effects

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U(m/s)

z(
m

)

U
inlet

U
outlet

Figure 4.20: Inlet and outlet horizontal velocity profiles for open surface roughness

The results for the 69 cases are given in the following pages and Appendix A. We can

observe that in most of the cases the V-BLWT fits the data much better than ESDU model.

This is in contrast to the result found by Wang & Stathopoulos using numerical model with 2D

simulations, which gave closer result to the ESDU model. The reason for this difference is not

the simplified 2D model rather the difference in the shear stress modeling at the wall. Wang

& Stathopoulos assumed a model of shear stress variation with fetch suggested by Bradley

(1968).

u∗(x) ∼ x−0.1 (for S-R) (4.35)

Garrat (1989) found that the shear stress initially increase to about twice its equilibrium value

for S-R change, and decreases to about half its final value for R-S change.

u∗(x) ∼ 2x−0.1u∗ (for S-R)

u∗(x) ∼ 0.4x−0.1u∗ (for R-S)
(4.36)

These equations were directly incorporated in Wang & Stathopoulos’s numerical model. Our

approach does not model shear stress but let it develop from the simulation. Also we should

note that it is difficult to incorporate Wang’s numerical approach into an existing CFD software

due to the shear stress model. The other difference concerns turbulence models. Wang’s numer-

ical model uses linear eddy viscosity (mixing length) model for turbulence closure, while the

current approach uses two equation Reynolds Averaged Navier-Stokes (RANS) model, namely

standard k − ε model. We believe that these two differences , primarly the shear stress model,

are the reasons for better result found from virtual wind tunnel simulations.

4.3. Complexity 2: Inhomogeneous roughness evaluation 105

4.3.5.4 Simulation of WS cases using simplified 3D models

The results of the V-BLWT simulations suggest that computational effort can be reduced by

taking advantage of symmetry of arrangement of the roughness elements. This is especially

true for the rows in the middle that are farthest from the side walls. If the wind tunnel was in-

finitely wide, i.e. in the transverse direction, full symmetry can be achieved at all rows. Hence

we can exploit the symmetry by considering only two rows with the sides of the domain cutting

through the centerline of the rows. If the arrangement was a regular, one row of blocks would

have sufficed as outlined in the preliminary investigations and shown in Fig. 4.5. The Sym-

metric Virtual Boundary Layer Wind Tunnel (S-BLWT) represents an infinitely wide BLWT

where as the V-BLWT represents an actual BLWT with limited width in which the side walls

retard the flow for a no-slip boundary condition. If the side walls of V-BLWT are also slip

walls (symmetry), then the result of V-BLWT and S-BLWT should be exactly the same.

All the 69 cases of Wang are simulated again with this new setup , i.e. S-BLWT. The

simulation time decreases tremendously since the width of the tunnel is decreased by almost

35 times. The results are shown along with the V-BLWT simulation results. We can observe

that both wind speed and turbulence intensity results for the S-BLWT and V-BLWT are very

close to one another. In some cases the V-BLWT wind speed result matches Wang’s wind

tunnel results better than the S-BLWT, hence V-BLWT is the better model for reproducing

actual wind tunnel results. However the S-BLWT may actually be better in the grand scheme

of things, because wind speed models over multiple roughness patches assume infinitely wide

patches. Both Wang and ESDU model only take into consideration the length of patch (l) and

not width of it(b).

Figure 4.21: Perspective view computational domain of a virtual BLWT

106 Chapter 4. Numerical evaluation of roughness effects

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−1

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−2

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−3

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−4

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−5

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−6

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−7

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−8

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure 4.22: Horizontal velocity comparison of CFD with existing models for cases 1-8

4.3. Complexity 2: Inhomogeneous roughness evaluation 107

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−1

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−2

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−3

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−4

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−5

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−6

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−7

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−8

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure 4.23: Turbulence intenisy comparison of CFD with existing models for cases 1-8

108 Chapter 4. Numerical evaluation of roughness effects

(a) BLWT case-1

(b) BLWT case-2

(c) BLWT case-3

(d) BLWT case-4

(e) BLWT case-5

(f) BLWT case-6

(g) BLWT case-7

(h) BLWT case-8

Figure 4.24: Horizontal velocity contour for V-BLWT configuration of cases 1-8

4.4. Complexity 3: Semi-idealized built environment 109

4.4 Complexity 3: Semi-idealized built environment

So far the cases considered focused on determination of average roughness characteristics of

highly idealized built environment models. This is acceptable in cases where detailed wind

flow characteristics inside the built environment are not of high importance. For example, in

BLWT testing, the building of interest and its surrounding with in a short radius are modeled as

best as possible, whilst the rest of the model is replaced with regular array of blocks that have

similar roughness characteristics as the original model. The next higher level of complexity

concerns flow in a semi-idealized urban canopy model. Wind tunnel test results are available,

for the purpose of validation, from CEDVAL-LES (2011) for the urban model to be considered

here. CEDVAL-LES is a compilation of wind-tunnel datasets intended to be used for validation

of Large Eddy Simulation (LES)-based numerical flow and dispersion models. The database

consists of both time series and and time-averaged statistics against which LES and RANS

models can be validated. This study uses RANS turbulence models thus only the time-averaged

statistics is used.

The semi-idealized urban model is shown in Fig. 4.25. Hertwig et al. (2012) mentions

that the model is so chosen to be heterogeneous and morphologically consistent with a typical

central European city characteristics. It has sharp building corners, open courtyards, plazas and

complex intersections etc. The on-line database has two cases, one where all roofs are flat and

the other where some of the buildings have slanted roofs. The flat roofs case is chosen for this

study.

4.4.1 Computational domain setup and grid generation

The computational domain is setup similar to Hertwig et al. (2012), who conducted numerical

simulations using various CFD software and compared the results with the CEDVAL-LES

database. The model tested in the boundary layer wind tunnel has a scale of 1:225, with the full

scale size representing an area of about 1320m X 820m X 24m. The size of the computational

domain is 1672m X 1140m X 144m. First a background mesh of 191 X 118 X 41 is applied

which is then transfered to snappyHexMesh for molding the urban model from the STL file

of the building surfaces. All the three stages of snappyHexMesh are used but there were still

some visible problems at the edges of inclined walls as shown in Figs. 4.26-4.27. The total

number of cells generated by snappyHexMesh is about 4 million.

110 Chapter 4. Numerical evaluation of roughness effects

4.4.2 Boundary conditions

At the inlet a logarithmic profile with Ure f = 6.537m/s at a height of Hre f = 144m is applied.

A homogeneous roughness of z0 = 0.06m is used for the ground, and hence the friction velocity

is U∗ = 0.346m/s. At the sides of the computational domain a symmetry boundary condition

is used, and at the top the values of U, k and ε are fixed to the same value used for the inlet

at the same height: U = 6.537m/s, k = 1.057m2/s2, ε = 0.0049m2/s3. The profiles of k and

ε are determined according to Richards & Hoxey (1993) formulas. At the outlet an outflow

boundary condition is used.

4.4.3 Results and discussion

Plots of velocity contours at different heights with in the urban canopy of height 24m is shown

in Fig. 4.28. We can observe that wind flow inside the built environment is complex due to the

sharp corners, open yards, intersections and other features. The wind speed decreases and flow

becomes more chaotic close to the ground thus grid refinement in the lower portions helps to

capture the complex flow behavour better. As mentioned before, the purpose of this simulation

is to assess performance of CFD for prediction of detailed wind flow characteristics inside a

built environment. For this reason, mean wind speed profiles at many locations inside the core

are compared with measurements in wind tunnel of the same model.

The wind field is sampled at 40 locations distributed uniformly across the area in an 5

rows X 8 columns. Densely spaced measurements are also available at the core of the model

to characterize street canyon flow, but this work compared only normalized vertical velocity

profiles at the 40 locations. A comparison between wind tunnel and CFD results are shown in

Fig. 4.30. We can observe that there is in general a good agreement between the current CFD

results using RANS model and the BLWT measurement. At some of the probe locations, some

deviations are observed especially close to the ground where surface roughness effects have

pronounced effect. Also use of additional layers of grid that are aligned with the surface can

improve the accuracy of results, but as is the case in many CFD simulations there is a trade-off

between accuracy and simulation time. The good agreement obtained here also serves as a

verification of the current CFD code’s RANS model, k-epsilon in this particular case, for built

environment studies. The LES model can be verified using this model in the future using the

instantaneous measurements in the database for which it is primarily intended for.

4.4. Complexity 3: Semi-idealized built environment 111

Figure 4.25: Semi-idealized urban model from CEDVAL database

Figure 4.26: Plan of the semi-idealized urban model

Figure 4.27: Inside view of the mesh generated for the semi-idealized urban model

112 Chapter 4. Numerical evaluation of roughness effects

(a) At 2m

(b) At 9m (c) At 12m

(d) At 18m (e) At 24m

Figure 4.28: Velocity contours at different elevations

Figure 4.29: Velocity vectors at the core of the urban canyon

4.4. Complexity 3: Semi-idealized built environment 113

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−29

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−30

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−31

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−32

U/U∞

z/
δ

WT
CFD

WT
CFD

WT
CFD

WT
CFD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−37

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−38

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−39

U/U∞

z/
δ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
probe−40

U/U∞

z/
δ

WT
CFD

WT
CFD

WT
CFD

WT
CFD

Figure 4.30: Comparison between CFD and BLWT for some of probe locations inside the
model

114 Chapter 4. Numerical evaluation of roughness effects

4.5 Complexity 4: Built environment

CFD simulations in urban environment can be grouped in to two categories (Blocken & Carmeliet

2004) : (a) fundamental studies on simple and generic building configurations (b) applied stud-

ies on complex case studies. Fundamental studies on isolated cases help to understand flow

behavior in and around a building, and also to validate CFD codes against wind tunnel or

field measurements. Applied studies on specific urban setting have been conducted by many

researchers despite the lack of extensive validation. Blocken et al. (2009) have reviewed the

status of CFD in building performance studies of outdoor environment. The four main appli-

cations areas are summarized as follows.

• Pedestrian level wind comfort is an important consideration for high rise buildings. Usu-

ally wind tunnel studies are done to take point measurements of wind velocity at pedes-

trian height 1.8m. Area measurement techniques such as sand erosion can be used to

spot the problematic points where hot wires are to be placed. CFD can be used to avoid

at least this preliminary stage of the investigation. A case study of CFD simulation for

pedestrian comfort in a University campus is described in Blocken et al. (2011).

• Air pollutant dispersion around buildings have been carried out using CFD on micro-

scale level of about 5km horizontal length. Due to complexity of the phenomenon, stud-

ies are usually focused on two simplified models : urban street canyon and isolated

building. Although studies have been carried out on complex urban environments, there

is a lack of extensive validation which is usually the case for complex models.

• Wind driven rain (WDR) studies on buildings also benefit from CFD simulations albeit

not as much as wind comfort studies do. The physical modeling of WDR requires ex-

pensive CFD techniques such as Lagrangian particle tracking of raindrops and LES tur-

bulence model for accurate simulation, however RANS turbulence model are commonly

used in practice.

• Convective heat and mass transfer studies on buildings using CFD requires accurate mod-

eling of the boundary layer. Using wall functions as is used for other CFD simulations

can overestimate heat transfer coefficients significantly. High Reynolds number simula-

tion without wall function require very fine grids. Therefore the simulations are usually

limited to simple cubic models.

The previous section focused on validation of CFD on semi-idealized built environment.

The next higher level of complexity is a real built environment that is classified as Complexity

4.5. Complexity 4: Built environment 115

5 by CEDVAL-LES dataset. For this study, validation data is not available hence its purpose is

for demonstration of the procedures to be followed. The built environment is an area in down-

town Miami which has some high rise buildings. The computational domain has dimensions

4.3km X 4.3km X 2km. Micro-scale simulations of this magnitude need to consider the effect

of Coriolis force since some buildings penetrate well into the Ekman layer. However this is

ignored for the current simulations. The boundary layer height is chosen to be 2km to reduce

blockage effect due to high rise buildings with heights ≥ 200m as shown in Fig. 4.34.

4.5.1 Computational domain setup and grid generation

First a background mesh of 120 X 120 X 60 cells is generated, which is then transferred to

snappyHexMesh for refinement close to the ground. The final grid consisted of 2.3 million

cells. The meshing process involves three stages : clipping, snapping to surface, and layer

additions for better boundary layer simulations. The layer addition was problematic for this

particular case, producing cells of high skewness and similar low quality cells, so the result

after the snapping stage is retained. Snapshot of the background STL surface edges of building

and the corresponding mesh is shown in 4.32.

4.5.2 Boundary conditions

At the inlet a logarithmic velocity profile for a rough surface condition is assumed mainly

because no field observation data is available and the upstream terrain resembles a mildly

rough environment from visual inspection. If field observation data was available for the inlet

profile, the correct procedure is to make logarithmic fitting of inlet velocity profile followed by

modification of the k-epsilon model constants (Blocken et al. 2011, Martinez 2011). Symmetry

boundary conditions are assumed for the sides and top of the computational domain, and a no-

slip ground surface with roughness of z0 = 0.1 is assumed.

4.5.3 Results and discussion

Velocity contour plots at pedestrian level and higher are shown in figures 4.34. The simulations

are re-run with different grid sizes to check grid independence of results. The number of cells

in the vertical direction is changed to 30 and 90 cells for a total of 1.2 million cells and 3.2

million cells respectively. The smaller case result shows some qualitative differences with the

current case of 2.3 million cells obtained using 60 cells in the vertical direction, however the

larger case did not show much difference with the current result. Therefore it can be said

116 Chapter 4. Numerical evaluation of roughness effects

Figure 4.31: Surface model of a region in downtown Miami

Figure 4.32: Building edges and corresponding mesh generated by snappyHexMesh

that grid independence has been reached with the current grid size of 60 cells in the vertical

direction. The fact that a detailed information can be retrieved from CFD analysis, compared

to just point probes in wind tunnel or full scale investigations, is what makes them attractive

for many engineering applications. However the lack of validation data, as is the case in this

simulation as well, and expertise in CFD modeling leave something to be desired.

The velocity contour at different elevations show that wind speed increases with height.

Also only few of the buildings reach the height of 200m, hence the planar density area ratio of

obstacles, a parameter that affects roughness, also decreases with height. Micro-scale simula-

tions of built environment of this size, that do not cover the whole area, pose a problem with

regard to the boundary conditions. Here we can see that at the sides of the domain there are

many buildings thus assuming symmetry boundary condition is not appropriate.

4.5. Complexity 4: Built environment 117

(a) 30 cells in z-direction (b) 60 cells in z-direction (c) 90 cells in z-direction

Figure 4.33: Velocity contours at 5m height for different grid sizes in the vertical direction

(a) At 20m (b) At 50m

(c) At 100m (d) At 200m

Figure 4.34: Velocity contours at different heights

118 Chapter 4. Numerical evaluation of roughness effects

4.6 Prediction with artificial neural networks

It is clear the V-BLWT methodology presented in this research is costly in terms of com-

putational resources, though less expensive than conducting actual BLWT experiments. An

approach followed by Bitsuamlak et al. (2004) to reduce the number of simulations is use of

neural networks. From a database of simulation results, a reduced model can be built using

artificial neural network that can capture non-linear relationships among different parameters.

For a quick estimation, the reduced model can be used to get expected outcomes of simulation.

The current work did not produce enough V-BLWT data to be used for this purpose, hence a

similar study using actual BLWT data is carried out to investigate the relation between rough-

ness elements and wind profiles using a reduced model. From the developed model, roughness

element configuration can be predicted from the observed wind velocity and turbulence inten-

sity measurements and vice versa. The details of the procedures folllowed are briefly described

in the following sections and in more detail in Abdi et al. (2009).

4.6.1 Data acquisition

The neural network model is first trained with velocity and turbulence intensity measurements,

and then the resulting model is used for prediction of configuration of roughness elements.

Wind profile data was collected in a recently commissioned BLWT at RWDI USA LLC in

Miramar, Florida. The unique characteristic of BLWTs is an extended working section down-

wind of the contraction over which an appropriate wind profile is developed. This particular

wind tunnel is a closed-circuit tunnel with a 40 ft long and 8 ft wide working section upwind

of the wind tunnel model, which is mounted on a turntable at the end of the working section.

The ceiling height varies from 6 ft to 7ft above the turntable. This wind tunnel employs the

spire-roughness technique to develop the wind profile, as described by Irwin (1979).

Figure 4.35 shows the working section of the BLWT. Three trapezoidal spires extending

from the wind tunnel floor to ceiling are situated at the entrance to the working section. The

floor is covered with triangular roughness elements in 40 staggered rows 1 ft apart. Spires of

various dimensions can be interchanged manually as necessary, while the roughness elements

are raised lowered by means of mechanical actuators controlled from the wind tunnel control

room in order to save testing time. Massing models of the test building, present and future

surrounding buildings are mounted on the turntable at the end of the working section, which

can rotate 360 degrees to simulate wind from any direction. In the use of the spire-roughness

technique for boundary layer wind flow simulation, the fundamental question to be answered

4.6. Prediction with artificial neural networks 119

Figure 4.35: RWDI wind tunnel working Section, spire and roughness blocks

is the following: ‘What size, shape, location and number of spires, and what floor roughness

height is needed to recreate a particular target atmospheric boundary layer wind profile in the

wind tunnel?’ While there are a multitude of combinations of spire sizes, shapes, locations

and floor roughness heights, the problem was reduced to a manageable size through previous

experience. Three trapezoidal spires spaced on the centerline and 18in from the tunnel wall,

and uniform floor roughness were kept constant. Thus, the remaining design variables were the

top and bottom spire widths, and the uniform floor roughness height. These design variables are

summarized in Table 4.2, along with the variable ranges that were used. It was desired to collect

data for various combinations of these variables in order to train and test the artificial neural

network model. Pressure data were collected with a ‘pitot rake’ positioned at the centerline of

Table 4.2: Roughness features dimensions

Variables Range
Spire top width 5in-8in
Spire bottom width 10in-19.5in
Block height 0in-3in in increment of 0.5in

the working section, at the upwind edge of the turntable. The rake consisted of 53 pitot tubes.

The pitot tubes were spaced at 0.5in intervals up to 5in above the tunnel floor, at 1in intervals

up to 30in, and at 2in intervals from 30in to 66in above the tunnel floor. At a typical model

scale of 1:400, the uppermost measurement location equates to a full-scale height of 2200 ft.

The pressure data were sampled at 512 Hz for 36 seconds. From these time series of pressure,

longitudinal velocities and longitudinal turbulence intensities were determined. The velocity

ratio was defined as the ratio of the mean velocity at a particular pitot to the mean velocity of the

pitot at a reference height of 60in above the tunnel floor. The turbulence intensity was defined

120 Chapter 4. Numerical evaluation of roughness effects

Figure 4.36: Neural network model with CCNN architecture for roughness estimation: 3 input,
20 hidden and 2 output neurons

as the ratio of the r.m.s to the mean velocity at a particular pitot. Thus, for each combination

of design variable values, profiles of velocity ratio and turbulence intensity from 1in to 66in

above the wind tunnel floor were determined.

4.6.2 Artificial neural network model

The most practical design considerations to build and train a neural network include the selec-

tion of an appropriate internal error criterion, efficiency of learning algorithm as well as choice

of network topology and optimum stopping criterion for maximum performance. In the present

work the neural network tool for prediction of wind profiles or estimation of roughness height

and spire dimensions required to generate a specific target profiles is developed based on the

cascade correlation algorithm using object-oriented methodology following the methodology

described in Bitsuamlak et al. (2006). The architecture of a Cascade Correlation Neural Net-

work (CCNN) is shown in Fig. 4.36. In this algorithm new hidden neurons are installed one at

time during run-time as required from a pool of candidate hidden neurons, which are initialized

to different weights and trained separately in the background. Note that the candidate neurons

are not connected to the rest of CCNN during training. Thus, for each new hidden neuron, the

present algorithm tries to maximize the magnitude of the correlation between the new neurons

output and the residual error signal of the CCNN. Installation of new hidden neurons is auto-

matically stopped when the network meets the error criteria or exceeds the maximum number

of hidden neurons set by the user. For validation and comparison purposes a second flavor of

Neural networks is also tested. The Multilayer Perceptron Neural Network (MPNN) uses a

4.6. Prediction with artificial neural networks 121

supervised learning technique called back propagation. The major difference with the CCNN

method is that the CCNN method works by installing new neurons while MPNN continually

adjusts weights of neural network until a desired level of accuracy is reached. The C++ code

for the MPNN method is given in Appendix B.

4.6.3 Results and discussion

4.6.3.1 Wind profile prediction

The neural network is trained with the database and then used to predict mean longitudinal ve-

locity and turbulence intensity profiles from four input parameters, namely, height above which

velocity measurements are taken, roughness length, top and bottom spire widths. Samples are

taken randomly from the available data to train the ANN and then predictions are made on the

remaining data. Some of the inputs are normalized with respect to the maximum values for

better efficiency. Comparison of the predicted velocity profile and turbulence intensity with

observed values showed a very good match, as is shown in the figures 4.37.

4.6.3.2 Estimation of tunnel surface roughness and spire dimensions

The inverse problem of determining roughness length and width of spire is done in the same

way as the forward problem but by switching the inputs and outputs. Thus for the inverse

ANN modeling the following three inputs are used: Target mean longitudinal velocity profile,

target turbulence intensity, and height above which velocity measurements are taken. The

outputs include the roughness length (of the wind tunnel floor), and the ratio of width of spire

at height z divided by the bottom spire width. The inverse modeling is noticed to require more

iteration to converge to the solution for a given tolerance (mean square error). For one test

setup, the spire widths and roughness length are kept the same while measurements of velocity

are conducted at different height. Hence, it is expected that the inverse ANN model to predict

a single value of roughness length and Top and Bottom width of a Spire. Table 4.3 shows the

comparison of the measured and ANN predicted values. These values can be used as starting

values for further wind tunnel verification thus reducing cycle in the trial and error process.

4.6.4 Conclusions

Artificial neural networks are used to predict wind velocity and turbulence intensity profiles in

a wind tunnel for a given floor roughness and spire dimensions with the objective of assisting

122 Chapter 4. Numerical evaluation of roughness effects

Figure 4.37: Measured versus predicted velocity and turbulence intensity profiles

4.6. Prediction with artificial neural networks 123

Table 4.3: Measured and ANN predicted roughness length bottom spire width difference

Test set 1 Actual value Predicted value
Spire width difference 12in 10.2in
Floor roughness 2in 2.2in
Test set 2
Spire width difference 5in 6.2in
Floor roughness 1in 1.1in

the flow management process. The neural network model is trained with part of the wind tunnel

data collected for various roughness length and spire dimensions. The results predicted by the

neural network model have shown excellent agreement with the observed data for both mean

longitudinal velocity and turbulence intensity profiles considered in this study. The inverse

problem of determining roughness length and spire dimensions has also shown good agreement

despite the relatively difficult nature of the problem due to discrete-valued parameters. In future

other family error optimization techniques appropriate step functions can be used to improve

learning efficiency and performance the inverse ANN models for discrete outputs. The CCNN

network is found to be more efficient than MPNN because relatively fewer number of iterations

are required for a given tolerance level.

Chapter 5

Numerical evaluation of orographic effects

This chapter focus on evaluating the effect of topographic features such as hills, valleys and

escarpments on wind speed and turbulence using Computational Fluid Dynamics (CFD). Wind

loading standards provide guidelines to determine wind speed up over hills as a function of the

hill slope. The provision is usually for an isolated and symmetrical hill that is a highly idealized

scenario (Miller & Davenport 1998). Real topography contains three dimensional topographic

features and thus not symmetrical, and also are surrounded by other topographic features and

thus not isolated. Design made on complex terrain without considering these deficiencies may

be overly conservative in some cases and unsafe in other cases.

First we consider wind speed alone and calculate speed up ratios over many topographic

features . We start from simulation on a flat terrain similar to what is done in the previous chap-

ter, and then progressively add topographical features in both 2D and 3D domain. The effect

of orography on wind speed is compared by calculating fractional speed up ratios. Multiple

topographic features placed one after the other are also investigated to gain insight on shelter-

ing effects. For all the 2D test cases considered, corresponding 3D simulations are carried out

using axi-symmetric version of the 2D topographic features and results are compared against

each other.

The second part of this chapter discusses turbulence structure over topographic features.

Different turbulence models such as mixing-length model, two-equation Reynolds Averaged

Navier-Stokes (RANS), and Large Eddy Simulation (LES) models are compared with one an-

other with regard to their ability to predict recirculation zones. Also qualitative comparisons

are made with results available in literature. The effect of roughness on wind speed ups and

root mean square (RMS) fluctuations is assessed using equivalent sand grain roughness ap-

proach. In general roughness impacts RMS fluctuation estimations more than it does wind

124

5.1. Wind speed up over topography 125

Figure 5.1: Transmission line with multiple towers crossing a hill

speed. Therefore careful consideration of all simulation parameters is mandatory for charac-

terization of the turbulence structure behind topographic features.

5.1 Wind speed up over topography

5.1.1 Building codes and standards

Several building codes and standards incorporate the effect of topography on wind speed using

simplified models of isolated two dimensional hills, escarpments and valleys. Design of struc-

tures for wind loads requires accurate estimation of wind speed and turbulence intensity at dif-

ferent heights of the site. For infrastructures that span a large length, such as transmission lines,

wind speed information is required at many locations. The structure crosses different speed-up

regions as shown in Fig.5.1. If the site consists of outstanding orography such as hills and

escarpments, the fractional speed up ratio can be high depending on the slope of the orography.

Even on hills with gentle slope the speed up can be large enough to cause structural damages

if not properly accounted for. Thus many national codes such as National Building Code of

Canada (NBCC), American Society of Civil Engineers - 7 (ASCE7), Australian/New Zealand

Standard (AS/NZS 1170-2), and European Standard (Eurocode I), provide general guidelines

to estimate topography multiplication factors for wind speed over hills and escarpments. As

discussed in section 2.2, these codes give recommendations only for simple topographic fea-

tures. Experimental methods is recommended for a complex terrain that is not covered well

in building codes. Methods that can be used to estimate wind speed up factors include : field

measurements, boundary-layer wind tunnel testing, analytical methods and numerical meth-

ods. This work focuses on a numerical CFD approach to asses the effect of orography features

on wind speed.

The Fractional Speed Up Ratio (FSUR), Eq.(5.1), quantifies the effect of orography on the

horizontal component of velocity at a given height relative to its value on a flat terrain at the

126 Chapter 5. Numerical evaluation of orographic effects

same height. If there are no topographic features, FSUR should be 1 at every location. At the

top and upstream side of hills and ridges, FSUR> 1 indicating a speed up, while FSUR< 1 on

the leeward side where back flow occurs. Maximum values of FSUR are reached at crest of

hills or a little upstream of it.

FS UR =
U(z)
Uo(z)

(5.1)

NBCC defines a relative speed up ratio (∆S = 1−FSUR) as follows

∆S = ∆S max
(
1 −

|x|
κ1L

)
e−βz/L (5.2)

where the values of the parameters are taken from the Table 5.1. To show application example

Table 5.1: NBCC parameters for speed up ratio

κ1

Hill shape ∆S max β x < 0 x > 0
2D ridges(or valleys with H < 0) 2.2H/L 3 1.5 1.5
2D escarpments 1.3H/L 2.5 1.5 4
3D axi-symmetrical hills 1.6H/L 4 1.5 1.5

of the above mentioned national codes, wind speed-up ratio ∆S over isolated hills of dimen-

sions L=800, H=200 (steep hill) and L=1600, H=200 (shallow hill) under open country (C)

exposure are considered. The formulas provided in the national codes are complicated, thus a

program is written to plot speed up factors at different locations with in the lowest 200m of the

Atmospheric Boundary Layer (ABL) as shown in Figs. 5.2 - 5.3. We can immediately observe

that NBCC and ASCE7 codes give FSUR estimates that are higher than that of AS/NZS 1170-2

and Eurocode I. This is most likely due to the underlying approaches used to generate the codal

provisions. Some may have used Boundary Layer Wind Tunnel (BLWT) based methods while

others use analytical/numerical approaches.

5.1.2 Numerical studies

A number of numerical studies over complex terrain have been conducted since Jackson &

Hunt (1975) first analyzed flow over isolated hills of low slope using linearized forms of fluid

flow equations by analytical means. Their approach is still in use for large scale wind mapping

where a quick estimation is required for micro-siting or other purposes. One such program de-

veloped at Risφ-DTU is the Wind Atlas Analysis Application Program (WAsP), that includes

complex terrain flow model with roughness change, and a separate wake model. On complex

5.1. Wind speed up over topography 127

0 0.2 0.4
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

0 0.2 0.4
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

0 0.1 0.2
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

NBCC
ASCE−7
AS/NZS
EUROCODE

Figure 5.2: Speed up factors at x=0(crest), x = L/2 and x = L of a 2D steep hill using various
building codes.

0 0.1 0.2
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

0 0.1 0.2
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

0.02 0.04 0.06 0.08
0

20

40

60

80

100

120

140

160

180

200

∆ S

z(
m

)

NBCC
ASCE−7
AS/NZS
EUROCODE

Figure 5.3: Speed up factors at x=0(crest), x = L/2 and x = L of a 2D shallow hill using various
building codes.

128 Chapter 5. Numerical evaluation of orographic effects

terrain with high hills and mountains, linear models fail to predict flow separation behind obsta-

cles. Therefore such programs should not be used without modification when flow separation

is expected. Castro et al. (2003), Maurizi et al. (1998) conclude that even non-linear steady

state numerical models (CFD) have problems in recirculation regions, because orography can

induce unsteadiness. The early studies using linear models (Deaves & Harris 1978, Jackson &

Hunt 1975, Miller & Davenport 1998) are motivated by limitations in computational resources,

but the problem is still present in case of micro-scale wind simulations conducted for micro-

siting of turbines. This work investigates the simplest turbulence model, Prandtl mixing length

model, besides more complex RANS and LES models. Complex turbulence models such as

LES should be used when accurate information is required about turbulent structure and its ef-

fects. Some examples of use of LES in literature: pollutant dispersion studies (Lee et al. 2002),

complex terrain studies (Dupont et al. 2008, Feng & Fernando 2011, Iizuka & Kondo 2006,

Tamura et al. 2007, Tsang et al. 2009), wind loading (Dagnew & Bitsuamlak 2013). There are

many studies carried out using RANS turbulence modes: isolated hills (Chung & Bienkiewicz

2004, Takeshi & Hibi 2002), multiple hills in succession(Bitsuamlak et al. 2004, Carpenter

& Locke 1999, Lee et al. 2002), real complex topography such as Askervein hill (Rasoulli &

Hangan 2013, Stangroom 2004).

5.1.3 Analytical study of flow over low hills

Guidelines for estimation of wind speed up over crest of 2D hills in neutrally stratified flows

started with the seminal work of Jackson & Hunt (1975). They derived formulas for estimating

fractional speed up ratio (∆S) for a low hill of arbitrary shape defined by z = h f (x/L) where h

and L are the characteristic height and length of the hill as shown in Fig.5.4. L is defined as the

upstream length where the height of the hill is half the maximum. A theory is developed for

the boundary layer flow over such a hill with surface roughness of z0 subjected to the following

conditions
L
z0
→ ∞

h
L

=
1
8

(
z0

L
)
0.1

δ

L
�

2κ2

ln(δz0
)

5.1. Wind speed up over topography 129

where δ is the boundary layer height. The incident profile is defined with logarithmic law in

the boundary layer

U0(z) = (u∗/κ) ln(z/z0)

and a constant value outside the boundary layer

U0(z) = (u∗/κ) ln(δ/z0)

Also the boundary layer region is divided in to two regions, namely inner and outer region, in

which the velocities are calculated differently via ’perturbation’ approach.

1. In the inner region of height l, the velocity above the surface of the hill henceforth termed

as displacement ∆z = z − h f (x/L) is calculated from the upstream velocity at same

displacement above level ground, and a perturbation of ∆û.

u = u0(∆z) + ∆û

2. In the outer region, the velocity is assumed to be a perturbation of the incident velocity

at the same height z, not displacement height ∆z.

u = u0(z) + ∆u

In this region the flow is assumed to be essentially inviscid and thus governed by potential

flow theory.

The vertical velocity v can be determined from continuity relations. The boundary conditions

in the boundary layer are such that as z → ∞ both ∆u and v go to zero, and at z = l the ve-

locities match with that of the inner layer. Then the two dimensional navier stokes equation

is linearized by omitting the non-linear terms, followed by substitution of appropriate order

scales for the inner and outer region to arrive at the velocity perturbations from which FSUR is

determined. Detail mathematical analysis of the solution can be found in the paper. This sem-

inal work has been extended to 3D hills by Mason & Sykes (1979) and used in wind mapping

software such as WAsP. The major disadvantage of this method is that it can not be used for

steep hill where non-linear models are more appropriate to capture recirculation behind hills.

But the fact that solutions can be obtained very quickly makes them still attractive at least for

preliminary investigations of micro-siting or similar purposes. Improvements to the model can

be obtained by using a better turbulence model than the mixing-length model used by Jackson

130 Chapter 5. Numerical evaluation of orographic effects

& Hunt, avoiding linear approximations of equations and solving the equations numerically in-

stead etc. The current work investigates non-linear models (CFD) for the calculation of speed

up ratios and turbulence intensity using different turbulence models.

Figure 5.4: Flow regimes for flow over a low hill. Adapted from Jackson & Hunt (1975)

5.1.4 BLWT studies

Miller & Davenport (1998) provided guidelines for the wind speed-up evaluation over com-

plex two dimensional surfaces based on a wind tunnel study. Ishihara et al. (1999) presented

the results of measurements of wind speed over a circular hill with a maximum slope of about

62.5%. Cao & Tamura (2007) studied the roughness blocks effect on the atmospheric bound-

ary layer flow over a two dimensional low hill with and without a sudden roughness change.

The effects of the roughness blocks were clarified by comparing the flow characteristics over

hill models, with emphasis on wind speed-up and turbulence structure. Adding or removing

roughness blocks on the hill surface or inflow area changes the velocity deficit and creates a

completely different turbulence structure in the wake. Lubitz & White (2007) presented a wind

tunnel and field investigation of the effect of local wind direction on speed-up over hills. Other

wind tunnel investigations include: Arya et al. (1987), Ayotte & Hughes (2004), Carpenter

& Locke (1999), Castro et al. (2003), Ferreira et al. (1995), Finnigan et al. (1990), Gong &

Ibbetson (1989), Snyder & Britter (1987).

5.1.5 Description of test cases of the current study

The first case considered is that of flat terrain with no topographic features. While this sounds

rather pointless, Richards & Hoxey (1993) and others have demonstrated the difficulty of sim-

5.1. Wind speed up over topography 131

ulating wind flow over a featureless terrain. If the inlet wind speed and turbulence intensity

profiles are incompatible with wall functions used at the ground, horizontal gradients may de-

velop. Therefore this benchmark case should result in an FSUR of one through out the domain

when proper boundary conditions are applied. Any other value indicate artificial speed ups due

to inconsistent boundary conditions.

The second set of cases considered are single hills of two dimensions classified as shallow

and steep from here on. Both hills have the same height but the shallow hill has twice the

length. This geometric configuration has been used by Bitsuamlak et al. (2004), Carpenter &

Locke (1999). The expected speed up over a 2D hill is depicted in Figure 5.5. The simulations

are carried out at full scale dimensions where the height of the hlls H = 200 giving rise to

a high Reynolds number (Reh). This is not a problem when RANS models are used for the

simulation, but for LES simulations either the dimension of the hills or the viscosity has to be

reduced by the order of 1:1000 to make simulations feasible on current desktop computers.

Figure 5.5: Wind speed up over a single hill (NBCC)

Many equations are available to define shapes of hills that may have significantly different

effects on the FSUR obtained (Bitsuamlak et al. 2004). This study uses cosine hills with curves

defined below. Both hills have the same height(H), and the half length (L) of the hills are

L = 4H and L = 2H for the shallow and steep hills respectively. The maximum slope angles

are 380 and 210 for the steep and shallow hill respectively, hence according to Finnigan (1988)

flow separation is expected for both cases because the maximum slopes are above critical angle

of θcr = 160.

z = H
(
cos(

πx
L

)
)2 (5.3)

Some national codes also provide recommendations for 3D hills, hence we consider axi-

symmetric version of most topographic features considered in this study. It is expected that

the wind speed over the hill will decrease on the 3D hill because of more freedom in the span

132 Chapter 5. Numerical evaluation of orographic effects

wise direction, while in the 2D hill case all the fluid has to go over the top of the hill. De-

pending on the actual shape of the orography, a 2D or 3D model may be appropriate. However

the simplicity and conservative FSUR estimate of 2D hills usually makes them preferable in

practice.

The third case is that of an escarpment with a constant slope as shown in Figure 5.6. A three

dimensional version of this case, a frustum, may be possible but only the 2D case is considered

in the present study. The slope of the escarpment is chosen to be 1:2, which is the same setup

used by Glanville & Kwok (1997).

Figure 5.6: An escarpment

The fourth set of cases considered are double and triple hills. Multiple topographic features

are not covered in national codes but it is implied that the wind speed up factors applicable for

the first hill are to be applied for the following hills as well. The flow characteristics for the

second and third hills are fundamentally different from that of an isolated hill, because of flow

separation on the upstream hills. As already discussed before, there is a reduction in wind speed

associated with more turbulence on the leeward side of the upstream hills. FSUR for the second

hill are typically reduced by 20-30%. National codes such as NBCC use an overly conservative

approach that may have severe economical consequences in the design of structures for wind

loads (Horsfield et al. 2002).

Figure 5.7: Double hills

The last set of cases concerns wind flow over valleys where a slow down is expected unlike

the hill cases. A recirculation zone forms inside the valley, therefore wind speed reduces

associated with an increase in turbulence similar to what happens on the leeward side of a hill.

5.1. Wind speed up over topography 133

Figure 5.8: An isolated valley

5.1.6 Ground surface representation and mesh generation

The first step in ABL simulation is to prepare a model of the actual terrain as best as possi-

ble. While most of the cases considered here are simplistic, the procedure that is followed is

applicable to complex geometry cases. It is assumed that geometric information is available in

(x,y,z) point-cloud format, from which surface of the terrain can be produced by triangulation

methods. The data maybe collected by field surveying and depending on the resolution accurate

reproduction of the orography features maybe possible. For large areas that span kilometers

,high resolution LiDAR (light detection and ranging) data can be used if available.

Once the model of the surface is generated usually in STL (Stereo Lithography) format,

the computational domain can be meshed with emphasis (refinement) on orographic features.

There are many tools available to generate tetrahedral meshes that are suitable for finite element

methods, but such non-orthogonal meshes are not suitable for finite volume CFD calculations.

Hexahedral (or polyhedral) elements are preferred whenever possible. In most cases purely

Hexahedral mesh for arbitrary surface is not possible. Therefore tetrahedral elements with a

layer of elements parallel to the surface close to the wall , and Hexahedrons away from the sur-

face are used. The meshing component of OpenFOAM cfd software known as snappyHexMesh

is used to mesh an arbitrary terrain.This tool saves the user time by avoiding a lot of manual

work, and it is worth explaining the process of meshing using snappyHexMesh. There are four

stages in the meshing process. First a background mesh is generated as shown in Figure 5.10,

with refinement regions around the hills. Then cells outside of the computational domain are

removed. After this stage, the surface boundary is roughly established but it is not smooth

enough. Thus a third stage of snapping to the surface is applied by moving vertices. Some of

the cells near the surface may be of deformed shapes (tetrahedrals etc). It is crucial to have a

body-fitted gridded closer to the wall for convergence and better accuracy, thus a final stage of

adding layers of cells parallel to the surface is done.

While it is very difficult to generate a good mesh for an arbitrary 3D terrain, let alone one

that satisfies orthogonality requirement, it is possible to produce high quality mesh for the 2D

cases as described in Bitsuamlak et al. (2004). The method of meshing used in the present study

generates non-orthogonal but body fitted grid. A correction for non-orthogonality is added as

134 Chapter 5. Numerical evaluation of orographic effects

a source term using an approach known as deferred correction for non-orthogonality (Jasak

1996). In both the 2D and 3D grids the grid is stretched in the vertical direction so that the first

cell height is roughly equal to 2Ks.

5.1.7 Computational domain setup

The computational domain is setup following recommendations for the use of CFD in wind

engineering (Franke & Hirsch 2004). The domain may be broken down into three regions:

upstream, central and downstream regions. The length of the upstream region is fixed at 5H

from the center of the first orography. It is recommended to use short distances for the upstream

region to avoid horizontal gradients that may develop with inconsistent wall and inlet boundary

conditions. In the upstream and downstream regions no obstacles are placed and effect of

roughness is taken care of through wall function modifications. The mesh in the central region

may be refined to capture the change in wind flow characteristics that occur there. The outlet

of the domain is placed far away at 12H from the last orography so that zero gradient boundary

condition can be assumed for all flow quantities: ∂φ/∂x = 0. The distance between hills is

fixed at 8H-4L which is zero for the shallow hill case and 4L for the steep hill case. This

separation is selected to compare with results available in literature. The sides and top of the

computational domain are placed 6H from the center of the hill to reduce blockage effect. The

Figure 5.9: Computational domain for double 2D hills

boundary conditions to be applied are as follows. At the inlet the Richard and Hoxey equations

for an open terrain roughness of z0 = 0.024 are used. At the outlet zero gradient is assumed

for all flow quantities. At the top of the boundary a Dirichlet boundary condition is assumed

in which the horizontal component of velocity is fixed to gradient velocity Ug. If the top of

the domain is not placed at sufficient distance from the hill top, symmetry boundary condition

should be used. The fact that the gradient velocity is known and that a driving shear stress is

required to avoid horizontal gradients makes Dirichlet boundary condition appropriate. At the

5.1. Wind speed up over topography 135

sides a symmetry boundary conditions is still used.

5.1.8 Grid independence study

Grid independence study for a single 2D hill case is carried out as a benchmark for selection of

grid sizes for the other cases. The number of cells in the vertical and horizontal directions are

changed to estimate their effect on speedup at the hill top. The speed up values obtained for

the different cases are more or less the same. In all the cases stretching in the vertical direction

is done in such a a way that the first cell size is the same for all cases. The result for the

coarsest mesh is not far away from the result for fine mesh confirming grid independence. A

zoomed in plot of velocity at the top of the hill is shown in Figure 5.11 that indicates coarser

meshes tend to slightly underestimate speed up. Using extra cells in the vertical direction gives

better results than using them to resolve along wind flow. This is due to the fact that resolving

near wall flow with high velocity gradient in the vertical direction requires finer grids. For

example a coarser 117 X 72 grid shows better performance than a finer 294 X 36 grid because

the latter though finer, applied fineness in the wrong direction. However, it is not possible

to refine indefinitely in the vertical direction because of limits imposed by the wall function

treatment, compatibility of wall roughness with inlet profiles, aspect ratio of cells close to wall

etc. In general using more number of cells improves solution,but computation time becomes

a constraint. It is possible to solve the 2D cases considered in this work with the finest grid

considered, however simulations over 3D topography and/or complex turbulence models such

as LES will require major grid optimization to get results within a reasonable time frame.

5.1.9 Results and discussion

First the benchmark case of an empty fetch of 17H X 7H = 3400m X1400m is analyzed with

inlet boundary conditions as specified in 4.1-4.3. The velocity profile is more or less sustained

throughout the domain as shown in Figure 5.20. The FSUR is 1 in most of the domain except

towards the ground where it is difficult to sustain the inlet profile. The inlet velocity profile

used for this case follows the log-law equation through out the height of the domain which is

rather unrealistic for a height of 1400m. The only reason for this choice is to be consistent

with Richards & Hoxey (1993) rough wall functions that have a log-law format. For the other

cases to be considered, a gradient height of 270m above the ground is assumed above which

the velocity is assumed constant. A disadvantage of the later is that the discontinuity in the

velocity gradient at 270m is felt downstream, as will be clear in forthcoming plots of velocity

136 Chapter 5. Numerical evaluation of orographic effects

Figure 5.10: Mesh refinement around hills: Background mesh (top-left), box refinement around
hill (bottom-left), Planar view of refinement for triple hills (top-right), and close up view of
layers towards the ground (bottom-left).

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

200

400

600

800

1000

1200

U/U∞

z(
m

)

117x72
117x36
234x72
164x72
294x36
294x72

1.22 1.24 1.26 1.28 1.3 1.32 1.34

50

100

150

200

250

300

U/U∞

z(
m

)

117x72
117x36
234x72
164x72
294x36
294x72

Figure 5.11: Grid independence study on single 2D hill: wind profiles at crest (left) and close-
up view of maximum speed up region(right)

5.1. Wind speed up over topography 137

profiles.

The second 2D orography considered is an escarpment with a slope of 1:2. Flow separation

and recirculation are observed at the top and foot of the escarpment as shown in Figure 5.21.

Speed up factors of 2 and 1.8 are observed at 10m and 30m above the crest of the escarpment.

Larger values of FSUR may be found at lower depths but those are not to be trusted. In general

the values obtained in the present study match with published literature such as CFD solutions

of Carpenter & Locke (1999), and analytical solutions of Weng et al. (2000).

From here on, the cases are analyzed using both 2D and 3D orography model. As discussed

previously, it is expected that the FSUR values for the 3D cases will be lower than the 2D hills

and this is exactly what is obtained for all cases. Plots of FSUR along the center line of the

hills at 30m from the ground are shown in Figures 5.12-5.19. A difference of about 20% is

observed at the extreme points of hills and valleys where the difference is the largest.

Results for isolated shallow and deep hills are given in Figures 5.12-5.13. A gradual in-

crease of wind speed up the hill followed by a slow down and recirculation on the leeward side

are observed. The color plots for the 3D case also show that FSUR reaches peak values on the

sides of the hill as well. Th recirculation zone behind the steep hill is larger than behind the

shallow hills. Also the 3D cases simulations show a much smaller recirculation zone than their

2D counterparts. After a drop due to recirculation, the FSUR gradually increases to 1 on the

downstream. At the outlet ,which is 12H away from the lee of the hill, FSUR reaches values

of greater than 0.9 for all the cases. The peak FSUR at 10m above the crest are 1.6 and 1.8 for

the shallow and steep 2D hills respectively. The 3D cases show lower values ,by about 15%, of

FSUR at the top of the hill as expected.

The next set of simulation results is that of double hills Figures 5.14-5.15. The purpose of

this simulation is to determine by how much the FSUR drops from the first hill to the second.

For the 2D simulations a drop of about 20% is observed, slightly larger for the steep hill case.

This is in accordance with the result of Bitsuamlak (2004). However the 3D simulations do not

show that big of a drop which can be explained by reduced sheltering in the lateral direction.

For the shallow hill cases where the second hill starts off where the first one stopped, there is a

continuity in the FSUR from the first to the second hill. But in between the steep hills there is

a long recirculation zone where the FSUR remains roughly constant.

The case of triple hills is investigated further to see if there is further drop in FSUR. The

results ,Figures 5.16-5.17,show that there is not a significant drop in FSUR from the second to

the third hill. This is again in accordance with results from literature. Therefore this shows that

the approach taken by NBCC to design structures on sheltered hills for the same wind load as

138 Chapter 5. Numerical evaluation of orographic effects

the those on the first hill is an overly conservative approach.

The last set of cases analyzed are single valleys with big recirculation zones. Analysis

of separated flow requires a better turbulence model as is done in Bitsuamlak (2004) but the

standard k − ε model is used for the present study. The wind speed first decreases reaching

negative values in the case of steep valley, and then the wind is sped up the second slope

reaching or exceeding FSUR = 1 at the ridge. The 3D valleys show less recirculation similar

to the case with hills.

5.1.10 Conclusions

A numerical procedure for computing speed up factors for different orography have been de-

scribed, starting from meshing a complex terrain to post-processing the results. The results

obtained using CFD procedure are generally in agreement with those found in literature. Three

dimensional orography show reduced FSUR and also reduced recirculation in the lee compared

to their 2D counterparts. Steeper slope leads to higher speed up factors over the crest and larger

re-circulation zones. The reduction in wind speed up due to sheltering effects from hills in suc-

cession has also been investigated. While there is a significant drop in FSUR from the first to

the second hill, not much drop is observed from the third hill onwards.

The result obtained from 3D simulation is significantly different from that obtained from

2D simulations to justify the associated cost of simulation. In general the speed up on 3D to-

pographic features are found to be less than those obtained from corresponding 2D simulation.

This is attributed to the fact that the flow has more freedom in the lateral direction in a 3D

simulation.

5.1. Wind speed up over topography 139

0 500 1000 1500 2000 2500 3000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Figure 5.12: Single shallow hill FSUR color maps and line plots and comparison of 2D and
3D simulation results

140 Chapter 5. Numerical evaluation of orographic effects

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000
−0.5

0

0.5

1

1.5

2

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Figure 5.13: Single steep hill FSUR color maps and line plots and comparison of 2D and 3D
simulation results

5.1. Wind speed up over topography 141

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2

Figure 5.14: Double shallow hills FSUR color maps and line plots and comparison of 2D and
3D simulation results

142 Chapter 5. Numerical evaluation of orographic effects

0 1000 2000 3000 4000 5000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

0

0.5

1

1.5

2

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2

Figure 5.15: Double steep hills FSUR color maps and line plots and comparison of 2D and 3D
simulation results

5.1. Wind speed up over topography 143

0 1000 2000 3000 4000 5000 6000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2
Hill 3

Figure 5.16: Triple shallow hills FSUR color maps and line plots and comparison of 2D and
3D simulation results

144 Chapter 5. Numerical evaluation of orographic effects

0 1000 2000 3000 4000 5000 6000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 1000 2000 3000 4000 5000 6000
−0.5

0

0.5

1

1.5

2

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2
Hill 3

Figure 5.17: Triple steep hills FSUR color maps and line plots and comparison of 2D and 3D
simulation results

5.1. Wind speed up over topography 145

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2
Hill 3

Figure 5.18: Single shallow valley FSUR color maps and line plots and comparison of 2D and
3D simulation results

146 Chapter 5. Numerical evaluation of orographic effects

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(m)

F
S

U
R

z=30m 3D hill
z=30m 2D hill

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(m)

F
S

U
R

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

0

10
1

10
2

10
3

10
4

FSUR

y(
m

)

Hill 1
Hill 2
Hill 3

Figure 5.19: Single steep valley FSUR color maps and line plots and comparison of 2D and
3D simulation results

5.1. Wind speed up over topography 147

0 500 1000 1500 2000 2500 3000
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

x(m)

FS
UR

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

0.9 0.92 0.94 0.96 0.98 1 1.02
10

0

10
1

10
2

10
3

10
4

FSUR

y(m
)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

200

400

600

800

1000

1200

1400

x=0m
x=850m
x=1700m
x=2550m
x=3400m

Figure 5.20: Empty domain FSUR color maps and line plots

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x(m)

FS
UR

z=10m
z=30m
z=100m
z=240m
z=1200m
z=2000m

1 1.2 1.4 1.6 1.8 2
10

0

10
1

10
2

10
3

10
4

FSUR

y(m
)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

500

1000

1500

2000

2500

x=0m
x=1050m
x=2100m
x=3150m
x=4200m

Figure 5.21: Escarpement FSUR color maps and line plots

148 Chapter 5. Numerical evaluation of orographic effects

5.2 Turbulence structure

5.2.1 Background

A fact that is usually overlooked in design codes is that turbulence intensity profiles are also

significantly increased over crests of hills as much as wind speed. Some codes either ignore

this fact or make suggestions for the overall turbulence intensity to be reduced. Miller & Dav-

enport (1998) argue no allowance for reduction of turbulence intensity should be made at the

very least, given the significant increase in local turbulence intensity at crest of hills as shown

in Figure 5.22. The horizontal turbulence intensity increases significantly from the first to the

second hill, and also the same phenomenon is observed for the vertical turbulence intensity as

well. Miller & Davenport (1998) also used computational approach to evaluate speed ups using

Figure 5.22: Horizontal velocity fluctuation on upstream(dotted) and crest(solid) of sinusoidal
hills (Miller & Davenport 1998)

a Mixed Spectral Finite Difference (MSFD) method. The method is computationally economic

and can give good predictions on speed ups but it is limited to hills with slop not more than

30%. The current work also investigates accuracy and economy of different turbulence mod-

els for general computation of turbulence intensity over complex terrain. Carpenter & Locke

(1999) have also investigated flow over multiple hills using wind tunnel and CFD approaches.

They concluded that CFD shows good agreement with experimental data for the mean flow

quantities but the agreement for RMS fluctuation was poor. Takeshi et al. (1999) have con-

ducted wind tunnel studies to evaluate the turbulence structure over a steep cosine-squared hill

with a slope of 320. They observed pronounced wind speed up at the midway slope besides the

one that occurs at the crest. Then the flow separates at the crest and re-attaches at the lee foot.

5.2. Turbulence structure 149

The variation of turbulence structure over the hill is better described from the plots of normal

Reynolds stress components as shown in Fig. 5.23. This work also produces similar plots for

Reynolds stress components for multiple topographic features from CFD analysis. Roughness

Figure 5.23: Horizontal normal stress σh/U∞ profiles(Takeshi et al. 1999)

has a more severe effect on the turbulence structure than on the wind speed. Shuyang & Tet-

suro (2006, 2007) have investigated this effect of roughness on wind flow over hills using wind

tunnel experiments. Roughness is modeled by placing blocks over the hills. In analytical

and numerical methods roughness is usually modeled using Nikurdase’s approach where the

roughness is assumed to be continuous and dense. Real hills are usually covered by isolated

and relatively larger roughness blocks, and also roughness changes in the wind direction are

common. Thus experimental investigation gives more accurate results against which analytical

and numerical methods could be compared. They concluded that for low hills of up to a slope

of 0.21 , the roughness conditions greatly influence the turbulence structure.

Atmospheric boundary layer simulations are usually carried out using RANS or other more

economical turbulence models. Some work on the use of large eddy simulations (LES) to study

turbulence structure over hills can be found in Dupont et al. (2008), Feng & Fernando (2011).

In general the accuracy of LES technique and sub-grid scale models is not well studied. Feng

& Fernando (2011) have tested Smagorinsky and Lagrangian dynamic SGS models against ex-

perimental results. They have found that the Smagorinsky model grossly over-predicts the size

of the re-circulation bubble behind hills. Also the Smagorinky model under-predicts the speed

up at the crest. The dynamic models improved the latter problem but some of the dynamic

models also under-predicted the size of the recirculation bubble. The simulations are usually

carried out on a model scale that reduces the Reynolds number by orders of magnitude.

150 Chapter 5. Numerical evaluation of orographic effects

5.2.2 Turbulence models

The choice of turbulence model is important for the simulation of the separated flow behind

hills. When considering ABL flows, RANS models have the most appeal due to their low

computational cost while still providing reasonable results close to experimentally observed

results. The most commonly used RANS model is the standard k-epsilon model, which is

known to have problems in adverse pressure gradient conditions. Modifications to the model

to improve its performance in that regard resulted in RNG k-epsilon and Realizable k-epsilon

models among others. The wall functions used can also be modified to consider effect of

pressure gradient on velocity profile. Advanced turbulence models such as LES and DNS

can be used to resolve the flow all the way to viscous layer. This usually requires too much

computational cells to be feasible for practical flows with high Reynolds numbers. Hybrid

models of RANS and LES have been proposed to get the best of the two approaches. Wall

functions or RANS models can be used to model near wall flow, while the more accurate LES

model is used away from the wall to resolve large scale eddies.

In both RANS and LES approaches, the flow equations are solved for averaged quantities

(temporal, ensemble or spatial), while the effect of turbulence or sub-grid scales is modeled.

The RANS models approximate the unknown Reynolds stress terms using turbulence viscosity

hypothesis. The turbulence viscosity νt is determined from representative velocity and length

scales of the largest energy carrying eddies.

νt = u∗l∗ (5.4)

R = νt|S | = νt

√
2S i jS i j (5.5)

On the other hand subgrid scale stress models of LES model the smallest unresolved scales

hence the length and velocity scales are chosen to represent those smaller scales instead. There-

fore selection of turbulence model in RANS is relatively more important than that for LES.

Different turbulence models used in this study are briefly discussed in the following sections.

5.2.2.1 Mixing length model

The mixing length model is the simplest turbulence model that is known to give good results

for simple two dimensional flows such as wakes, jets, mixing layers and boundary layers. The

length scale is dependent on the type of flow. For boundary layer type flows with high Re and

zero-pressure gradient, Prandtl’s mixing length lm = κy gives a good approximation. However

5.2. Turbulence structure 151

in adverse pressure gradient conditions such as the wake behind the hill, a stable boundary

layer assumption is incorrect thus mixing length models do not work well.

l∗ = lm (5.6)

u∗ = lm|S | (5.7)

νt = l2
m|S | (5.8)

The mixing length for a boundary layer can be modified to incorporate the viscous and buffer

layers as well. For ABL flows with high Reynolds number the boundary layer is very thin thus

the linear approximation for mixing length is acceptable.The distance from the ground surface

y can be obtained by solving the following differential equations proposed by Spalding (1994).

∇.∇φ = −V (5.9)

y =
√
∇φ.∇φ + 2φ − |∇φ| (5.10)

The boundary conditions for φ are Dirichlet at ground surface and Neumann elsewhere. This

partial differential equation is solved only once at start up, similar to orthogonal grid genera-

tion, hence it is not as costly as solving an additional set of turbulence equations for instance.

5.2.2.2 K-epsilon models

The first improvement to the mixing length model is to calculate the velocity scale from the

turbulent kinetic energy k. One equation turbulence models solve a transport energy equation

for k from which velocity scale is determined.

u∗ = ck1/2lm (5.11)

To make the model complete, i.e. one that does not require flow dependent specification,

the length scale has to be calculated from the flow as well. Two equation models such as

k-epsilon and k-omega solve one additional transport equation for turbulence dissipation or

similar quantity to determine time/length scales. The most commonly used two equation model

in practice i.e. standard k-epsilon model is known to give very good results in many engineering

152 Chapter 5. Numerical evaluation of orographic effects

applications. However it is known to give inaccurate results in regions of high acceleration /

deceleration such as flow separation points and wake regions, where turbulence production is

over predicted. To address this problem many modifications to the standard model have been

proposed. The simplest of which is an ad hoc modification suggested by Kato and Launder to

replace one of the S’s in equation 5.5 by vorticity ω.

R = νt

√
2S i jωi j (5.12)

More formal approaches to the problem have lead to different RANS models with moderate de-

grees of success. Renormalization group k-epsilon and Realizable k-epsilon models have been

tested in this study to evaluate the re-attachment length of flow behind a single two dimensional

hill.

5.2.2.3 LES models

In LES the effect of the larger eddies is explicitly solved while that of smaller scales is modeled

using an eddy-viscosity approach similar to that used in RANS models. The major difference

with RANS is that LES models the smallest scales that are below a certain filter width. In finite

volume calculation the grid itself is usually taken as a filter for convenience. The simplest

subgrid scale stress models (SGS) is that of Smagorinsky first developed for meteorological

applications. The model is similar to mixing length model where the length scale is substituted

by a new dimension calculated from the grid itself as shown in formulas below.

lm = Cs∆ (5.13)

∆ =
3√
V (5.14)

The Smagorinsky coefficient CS is determined experimentally to be usually between 0.1 and

0.2.The length scale at the surface of walls should be zero but the above equation for lm gives

non-zero values. A damping function can be used to reduce the length scale towards zero close

to the wall. This can be achieved by integrating Prandtl mixing length to the model as follows.

lm = min(Cs∆, κy) (5.15)

5.2. Turbulence structure 153

For low Reynolds number flows with thick viscous and buffer zones, Van Driest damping can

be applied as follows.

lm = min(Cs∆[1 − exp(−y+/A+)], κy) (5.16)

For high Reynolds number flows, LES with near wall resolution is very costly. The number

of grids required is estimated to be about Re1.76 (Pope 2000). Wall models can be used to

reduce this cost. Unlike wall damping modifications that are applied to all control volumes,

wall functions are applied only to the cell closest to the wall. If wall functions are used, the

length scale and hence the filter width become in order of flow length scale. As a result, the

number of grids becomes independent of the Reynolds number.

5.2.3 Wall models

High Reynolds number flows have thin viscous layers that necessitates use of very fine grids

to resolve all near wall behavior. To reduce computational resources, wall model are usually

used in practical high-Re flows. Flow quantities at the first cell nearest to the wall are directly

specified to satisfy the universal log-law equation, instead of being solved. There are two

approaches of wall function implementation. In the first approach, named the standard wall

function, the first cell close to the wall is placed in the logarithmic region (y+ ≥ 30). The

friction velocity u∗ is then calculated iteratively from the log law equation using Up and yp of

the first cell. Then the wall shear stress τw = ρu2
∗ can be directly specified as a source term in

the momentum equation, or equivalently in the form of modified effective viscosity.

U
u∗

=
1
κ

ln(
Eu∗yp

ν
) (5.17)

τw = ρu∗uw =
ρu∗Upκ

ln(Ey+)
(5.18)

The turbulence kinetic energy k and dissipation ε are also specified at the first cell closest to

the wall.

k =
u2
∗√
Cµ

(5.19)

ε =
u3
∗

κy
(5.20)

The above approach has problems in re-circulating flows where the friction velocity is zero, by

definition, at separation and re-attachment points. To solve this problem Launder & Spalding

154 Chapter 5. Numerical evaluation of orographic effects

(1974) proposed to calculate the friction velocity from k instead of using the log-law.

u∗ = C1/4
µ

√
k (5.21)

The transport equation for turbulent kinetic energy is solved with a modified production term

that incorporates velocity gradient term that satisfies the log law. Then turbulence dissipation

ε is fixed at the first cell close to wall. While this method can only be used with models that

have equation for turbulent kinetic energy k, the standard wall function method can be used

also in LES models with no k equation. Both wall functions discussed above are not applicable

in flows with adverse pressure gradient such as wake behind a hill. Advanced wall functions

suitable for LES simulations are described in Eugene (2006).

5.2.4 Simulation results and discussions

5.2.4.1 Effect of turbulence models

The selection of turbulence model is important for the prediction of turbulence structure in the

wake region. Comparison between the mixing length, standard k-epsilon and RNG k-epsilon

and LES turbulence models is shown in Fig. 5.24. The RNG k-epsilon and standard k-epsilon

models give close results in most part of the hill except in the wake where the former predicts

more recirculation (lower velocity) and longer re-attachment length. On the other hand, the

mixing length model and in some cases LES, under-predict the presence of recirculation zone

behind the hill in most cases. It is known the mixing length model is not reliable for studying

the wake structure, however its prediction of wind speed up at the crest is acceptable. The

LES simulation was carried out with a wall function and Prandtl damping function, hence it

can hardly be called a large eddy simulation as is commonly done. The wall models dominate

all other flow behavior, and the larger eddies in the outer region does not have much influence

on the recirculation zone. Resolving the flow down to the viscous layer, as in a typical LES

simulation, requires a lot of computational cells. For the current simulation that has Reynolds

number of Reh ∼ O(108) based on hill height of 200m, about O(1014) cells are required. The

usual remedy for this problem is to simulate a model scale, e.g at 1:1000, that violates the

Reynolds number by orders of magnitude, similar to the case in wind tunnel testing. This has

been done by many researchers (Dupont et al. 2008, Feng & Fernando 2011, Iizuka & Kondo

2006, Tamura et al. 2007, Tsang et al. 2009) at a Reynolds number of about O(104) without

using wall models. The purpose of those LES simulations was to validate wind tunnel results

of a scaled model, and LES has shown good agreement with the experimental results. Typically

5.2. Turbulence structure 155

large recirculation zones are observed at lower Reynolds number compared to the current full

scale simulations that displayed smaller recirculation zones.

It was then decided to conduct LES simulations without using wall functions at model scale

of about 1:10000 with H=40mm. The Reynolds number is about Re = 12000 similar to the case

studied in Tamura et al. (2007). For the LES simulations a longer computational domain is used

so that the inflow at the inlet can be specified by recycling result from a location downstream

of hill. Inflow turbulence is usually generated using ‘precursor’ simulations for as many time

steps as the actual simulation. Recycling avoids the need to store results and usually gives

good results if the source plane for turbulence is placed far from the inlet. Another method is

to artificially synthesize turbulence that has required spatial and temporal correlation, i.e. from

inverse Fourier transform of von Karman spectrum. Simply applying random and uncorrelated

correlations is not appropriate for wind engineering applications. The simulation results show

large recirculation zones with long re-attachment length of about 6H as shown in Fig. 5.34.

This is in agreement with the result of Tamura et al. who found it to be about 5.8H using

using numerical LES simulations and about 5.4H experimentally in wind tunnels. The RNG

k-epsilon model show much shorter re-attachment length of about 4H but it is still significantly

larger than the re-circulation zones observed at high-Re flow with full scale dimensions.

5.2.4.1.1 Model scale LES and RANS simulations In the previous section, the effect of

Reynolds number on the results of LES simulations, in particular the recirculation behind hills,

is demonstrated over a test case obtained from (Tamura et al. 2007). Next all the cases of the

current study are simulated at model scale of 1:10000 so that the LES simulations are feasible

without the use of wall functions. The Reynodls number calculated based on the height of the

hill is about Reh = 30000. A RANS simulation is done in parallel using the best performing

model so far, namely the RNG k-epsion model. The computational domain is extended in the

longitudinal direction so that the ‘recycling method’ can be used for inlet turbulence generation

as discussed before. The results of these simulations are shown in Figs. 5.35-5.38.

We can immediately see that both the LES and RANS simulations show larger recirculation

zone for the steep hill cases at this relatively low Reynolds number of 30000. This is in accor-

dance with the results of Tamura et al. (2007) that used a hill which has more or less the same

slope as the current study’s steep hills. However differences are observed between LES and

RANS for the case of shallow hills in which LES shows much bigger recirculation than that of

RANS simulations. The wall functions used for the RANS simulations play an important role

in the accuracy of results. It is known that wall functions work well at high Reynolds numbers

156 Chapter 5. Numerical evaluation of orographic effects

0 5 10 15
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 5 10 15
−0.5

0

0.5

1

1.5

2

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 5 10 15 20 25
0

0.5

1

1.5

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 10 20 30
0

0.5

1

1.5

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 10 20 30
−0.5

0

0.5

1

1.5

2

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 5 10 15
0

0.2

0.4

0.6

0.8

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x/H

U
/U

∞

ML
KE
RNG−KE
RLZ−KE
LES

Figure 5.24: Mean horizontal velocity for shallow and steep a) isolated hill b) double hills c)
triple hills d) isolated valley at 20m height from full scale simulations

5.2. Turbulence structure 157

0 5 10 15
12

14

16

18

20

22

24

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14u‘/U∞

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.25: Results for single shallow hill: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

158 Chapter 5. Numerical evaluation of orographic effects

0 5 10 15
5

10

15

20

25

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.05

0.1

0.15
u‘/U∞

x/H

z/
H

0 5 10 15
0

1

2

3

4

5

6

7

0.05

0.1

0.15

w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.26: Results for single steep hill: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

5.2. Turbulence structure 159

0 5 10 15 20
10

15

20

25

30

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15 20
0

2

4

6

8

10

12

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 5 10 15 20
0

2

4

6

8

10

12

0.02

0.04

0.06

0.08

0.1

0.12
u‘/U∞

x/H

z/
H

0 5 10 15 20
0

2

4

6

8

10

12

0.02

0.04

0.06

0.08

0.1

0.12

0.14w‘/U∞

0

2

4

6

8

10

12

x/H

z/
H

U/U∞

0

2

4

6

8

10

12

x/H

z/
H

<u‘u‘>/U∞
2

0

2

4

6

8

10

12

x/H

z/
H

<w‘w‘>/U∞
2

0

2

4

6

8

10

12

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.27: Results for escarpment: TKE, horizontal velocity U,fluctuations u’ and w’, and
Reynolds stresses

160 Chapter 5. Numerical evaluation of orographic effects

0 5 10 15 20 25
10

12

14

16

18

20

22

24

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14u‘/U∞

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.28: Results for double shallow hills: TKE, horizontal velocity U,fluctuations u’ and
w’, and Reynolds stresses

5.2. Turbulence structure 161

0 5 10 15 20 25
5

10

15

20

25

30

35

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.05

0.1

0.15

u‘/U∞

x/H

z/
H

0 5 10 15 20 25
0

1

2

3

4

5

6

7

0.05

0.1

0.15

w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.29: Results for double steep hills: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

162 Chapter 5. Numerical evaluation of orographic effects

0 10 20 30
10

12

14

16

18

20

22

24

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12

0.14u‘/U∞

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.05

0.1

0.15w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.30: Results for triple shallow hills: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

5.2. Turbulence structure 163

0 10 20 30
5

10

15

20

25

30

35

40

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

1

1.2

U/U∞

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.05

0.1

0.15

u‘/U∞

x/H

z/
H

0 10 20 30
0

1

2

3

4

5

6

7

0.05

0.1

0.15

w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.31: Results for triple steep hills: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

164 Chapter 5. Numerical evaluation of orographic effects

0 5 10 15
6

8

10

12

14

16

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15

0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

U/U∞

x/H

z/
H

0 5 10 15

0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1
u‘/U∞

x/H

z/
H

0 5 10 15

0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12w‘/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.32: Results for single shallow valley: TKE, horizontal velocity U,fluctuations u’ and
w’, and Reynolds stresses

5.2. Turbulence structure 165

0 5 10 15
0

5

10

15

20

x/H

T
K

E
/U

∞
2 (

X
 1

0−
3)

z/H=0.05

x/H

z/
H

0 5 10 15
−1

0

1

2

3

4

5

6

7

0.2

0.4

0.6

0.8

U/U∞

x/H

z/
H

0 5 10 15
−1

0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12u‘/U∞

x/H

z/
H

0 5 10 15
−1

0

1

2

3

4

5

6

7

0.02

0.04

0.06

0.08

0.1

0.12
w‘/U∞

−1

0

1

2

3

4

5

6

7

x/H

z/
H

U/U∞

−1

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘u‘>/U∞
2

−1

0

1

2

3

4

5

6

7

x/H

z/
H

<w‘w‘>/U∞
2

−1

0

1

2

3

4

5

6

7

x/H

z/
H

<u‘w‘>/U∞
2

Figure 5.33: Results for single steep valley: TKE, horizontal velocity U,fluctuations u’ and w’,
and Reynolds stresses

166 Chapter 5. Numerical evaluation of orographic effects

(a) Grid for the hill of Tamura et al. (2007)

(b) LES instantaneous velocity

(c) LES mean velocity

(d) RNG k-epsilon mean velocity

Figure 5.34: Horizontal velocity contour plots for model scale simulations (Re=12000) using
LES and RANS models

5.2. Turbulence structure 167

and non-separated flows, however their accuracy decreases with Reynolds number, which in

the current case is a drop by a factor of 104 compared to the previous full scale simulations.

Griffiths & Middelton (2010) stresses the influence of the wall function on accuracy, while

comparing two CFD software (RAMS and FLUENT) with regard to modeling separated flow

behind hills. They also observed that better agreements are found for the steepest hill cases,

similar to the findings of the current study.

Figure 5.35: Instantaneous velocity contours of LES simulations for all the 2D hills: single
shallow hill, single steep hill, double shallow hill, double steep hill, triple shallow hill, triple
steep hill

5.2.4.1.2 Extracting fluctuations from simulations For LES turbulence models, the RMS

fluctuations can be directly obtained, however RANS turbulence models keep only mean flow

168 Chapter 5. Numerical evaluation of orographic effects

Figure 5.36: Mean velocity contours of LES simulations for all the 2D hills: single shallow
hill, single steep hill, double shallow hill, double steep hill, triple shallow hill, triple steep hill

quantities so it has to be inferred from Reynolds stresses. A simple method is to assume

isotropic turbulence (u′ = v′ = w′), and calculate it from TKE as u′ =
√

2/3k. A better

method is to extract it from normal Reynolds stress components (< u′u′ >). The linear eddy

viscosity assumption used in RANS models gives RMS fluctuations that are proportional to

the mean straining field components. On the other hand, if the six Reynolds stress components

were directly solved, as is done in Reynolds stress models (RSM), better estimates of RMS

fluctuations can be obtained. The result using the RNG k-epsilon model and second approach

of calculating RMS fluctuations are shown in Figs. 5.25-5.33. For a succession of multiple

hills, we can observe that TKE at the crest increases significantly from the first hill to the

5.2. Turbulence structure 169

Figure 5.37: Mean velocity contours of RANS simulations for all the 2D hills: single shallow
hill, single steep hill, double shallow hill, double steep hill, triple shallow hill, triple steep hill

second. The increase in TKE from the second to the third hill is not significant. The variation of

Reynolds normal and shear stress components shows similar pattern to those found in literature

for isolated and multiple hills.

5.2.4.2 Roughness effects

The effect of roughness on simulation results is briefly assessed. Both wind speed and tur-

bulence structure are affected by roughness of the terrain surface (Shuyang & Tetsuro 2006,

2007). For CFD simulations, Nikurdase type equivalent sand-grain roughness (Ks) is com-

monly used. As noted in literature review, this method is not realistic but it is simple to im-

170 Chapter 5. Numerical evaluation of orographic effects

0 5 10 15
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 5 10 15
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 10 20 30
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 10 20 30
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

RANS
LES

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x/H

U
/U

∞

RANS
LES

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x/H

U
/U

∞

RANS
LES

Figure 5.38: Mean horizontal velocity for shallow and steep a) isolated hill b) double hills c)
triple hills d) isolated valley at 20m height from model scale simulations

5.2. Turbulence structure 171

plement in CFD codes.The standard wall function is modified with an additional term that is

dependent on Ks to incorporate the effect of roughness. Blocken et al. (2007) discusses differ-

ent issues concerning use of wall functions. The inlet velocity and turbulence intensity profiles

should be compatible with the wall function used at the ground surface to avoid development

of stream-wise gradients. For this study four roughness classes are considered: smooth terrain

(Z0=0.005), open (Z0=0.024), roughly open (Z0=0.1) and very rough (Z0=0.42). The results

for mean velocity and turbulence kinetic energy at z=10m are shown in Fig. 5.39. It can be ob-

served that roughness affects turbulent kinetic energy more than it does wind speed. Significant

TKE increases are observed on the crest and wake of the hill with each increase in roughness

class.

0 5 10 15
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

z0=0.024
z0=0.1
z0=0.42

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

x/H

T
K

E
/U

∞
2

z0=0.024
z0=0.1
z0=0.42

Figure 5.39: Mean velocity and TKE for different roughness lengths

5.2.4.3 Scheme sensitivity

The sensitivity of results, especially the turbulence structure behind hills, to the selected dis-

cretization schemes is briefly assessed. Simulations are carried out with different convection

discretization schemes. The commonly used upwind scheme (UDS), while being very stable,

is very dissipative and may perform very poorly in the re-circulation bubble. For equal number

of control volumes, second order and other higher order schemes can give much better results.

Higher order schemes can have higher dispersive errors and give unrealistic results with wig-

gles. To avoid this problem while maintaining second order, the higher order schemes are flux

limited to satisfy a Total Variation Diminishing (TVD) criteria. The isolated hill problem is

again analyzed for four different convection schemes applied to all terms: upwind (UDS), un-

bounded central difference (CDS), bounded QUICK and SUPERBEE. We can observe that the

result for wind speed does not show much difference. However the TKE plot shows that the

172 Chapter 5. Numerical evaluation of orographic effects

higher order schemes show significant differences at the crest and wake. The CDS scheme, be-

ing unbounded, seem to overshoot TKE at the crest and lee foot. Therefore the use of bounded

schemes is important. Martinez (2011) have done similar work but it is not clear if the signifi-

cantly different result observed at the lee foot is due to the schemes being unbounded.

0 5 10 15
−0.5

0

0.5

1

1.5

x/H

U
/U

∞

uds
cds
quick
superbee

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

x/H
T

K
E

/U
∞

2

uds
cds
quick
superbee

Figure 5.40: Mean velocity and TKE comparison for different convection discretization
schemes

5.2.5 Conclusions

The study of turbulence structure in the wake of hills using CFD requires more effort than

estimating speed up factors at the crest of hills. Significant increase in local turbulence intensity

is observed at crest of hills. Also if a second hill is in the wake of another hill, the second

hill shows significantly larger RMS fluctuations at its crest. From the third hill onwards, the

increase in TKE is not as large. The current CFD result reinforces the statement made by Miller

& Davenport (1998) that no reduction in turbulence intensity should be made at sheltered hills.

The turbulence model used for simulation play a significant role in the accuracy and econ-

omy of the simulation. The simplest model considered in this study, the mixing length model,

under-predicts the size of the recirculation zone. RNG k-epsilon model gives better estimates

than the standard k-epsilon model for prediction in the wake region. The LES results showed

reduced recirculation zone but this is mostly due to the use of wall functions used for the current

high-Re of O(108) simulations. To have confidence in this observation, a model scale LES sim-

ulation without wall functions is carried out at Re of 104. The result show large re-circulation

bubble with long re-attachment lengths that are in line with result from literature.

The effect of surface roughness is briefly investigated by changing sand grain roughness

Ks. It is found that roughness affect both wind speed ups over the crest and RMS fluctuations

5.3. Wind flow simulations on real complex terrain 173

in the wake, but its effect on the RMS fluctuations is more pronounced.

5.3 Wind flow simulations on real complex terrain

So far we have considered only idealized topographic features with a smooth shape. In a

real complex environment, this kind of ideal topography is rarely found. In this section we

conduct simulations over a real topography and validate our results with field observations.

The Askervein hill is the standard benchmark for validation of CFD code for complex terrain

simulations, hence we begin the study by conducting wind flow simulations over this hill and

then validate the results using field observation data of Taylor & Teunisson (1986). Then we

proceed simulating an even more complex terrain to highlight the associated difficulties. The

chosen complex hill has sharp edges and steep slope. Data is not available to validate the

results for this case, because it was chosen randomly from USGS database for demonstration.

In general lack of field observation data is a problem that plagues complex terrain studies.

The slopes of topographic features and roughness of the terrain are important factors that

affect wind speed up over hills. A terrain is classified as complex when it has a steep slope

leading to significant flow separation and other complex phenomenon on the leeward side.

Wind codes incorporate these effects using simplified terrain models that are not representative

of a real complex terrain. Besides the slope, the terrain roughness also plays a role to retard the

wind near the ground.

CFD codes incorporate the effect of roughness usually through equivalent sand grain rough-

ness (Ks) after Nikurdase who first proposed the idea. A continuous and dense roughness is

assumed, and a corresponding shear stress is applied as a body force to the nearest cell to the

wall. If the ground surface model consists of distinct patches with variable roughness charac-

teristics such as grass, buildings, parking lots etc., then averaged roughness parameters Ks and

Cs over the patch are specified for each patch. On the other hand, if roughness data is avail-

able in a contour format, Ks and Cs are applied to each boundary face after the computational

domain is discretized. In any case the variance of surface roughness should either be explicitly

modeled (for bigger obstacles) as done in the previous section or implicitly modeled through

rough wall functions. An implementation for OpenFOAM for the second approach is discussed

in Xabier (2009).

174 Chapter 5. Numerical evaluation of orographic effects

5.3.1 Askervein hill case study

CFD codes for micro-scale model simulations are usually validated against a well known case

of wind flow over the Askervein hill. The hill has been subjected to extensive field measure-

ments in the 1980s, making it ideal for CFD benchmarking studies in literature (Castro et al.

2003, Crasto 2007, Martinez 2011, Stangroom 2004). However it is hardly complex by the

definition we gave before : nearly two dimensional, isolated ellipsoidal hill with a gentle slope

varying from 12% to 25%. Contour map of the hill is shown in 5.42. Other hills may pose

a challenge in meshing and modeling of variable roughness characteristics, though automatic

meshing for complex terrain is a difficult task anyway.

The TU03-B data set from Taylor & Teunisson (1986) is used to validate our CFD results.

The data set was acquired while the wind was blowing at 210 degree clockwise for more than

three hours. The wind direction is almost perpendicular to the hill for this particular case. The

hill is 116m high and has elliptical shape as shown in the contour plot of Fig. 5.42. It is located

in an area where there are no major buildings or other obstacles, hence a constant roughness

is assumed thereby simplifying the analysis. The value of the roughness length z0 was also

measured during the field investigation and found to range from 0.01m to 0.05m. This study

used z0 = 0.03m.

The surrounding is flat on the upwind side of the hill and is hilly on the down side. A

reference site is located 3km south west of the hill. The wind flow is relatively un-perturbed

by the surrounding at the location hence the inlet of the computational domain is placed there.

The instrument towers for the field observations are located along a line passing through HT

and inclined at 2200.

5.3.1.1 Computational domain setup and grid generation

The dimension of the computational domain is set at 10km X10km X 2km around the hill

center similar to that used by Stangroom (2004). A smaller height of 1km is also tested and

found to be satisfactory. The hill is 116m high hence a 1km computational domain has a gap

of about 9H between the hill top and the top of the domain. This is more than enough to

satisfy the recommendations of Franke & Hirsch (2004) with regard to blockage effects. The

blockage ratio is about 2% for a 1km boundary layer. The terrain data for the hill is available

in triangulated STL file format which is in ready to use format for many commercial CFD

software. Usually the problem lies in generating a grid from such complex surface model.

Automatically generating a good mesh consisting of mostly hexahedral elements is still an

active research area. One such meshing tool that significantly reduces involvement of the user

5.3. Wind flow simulations on real complex terrain 175

Figure 5.41: Contour map of Askervein hill showing Line-A and the hill top (HT)

Figure 5.42: Elevation map of Askervein hill including surrounding

is snappyHexMesh (Weller et al. 1998). The meshing for Askervein hill and all other complex

surfaces in this study are done by this tool. It is able to generate an unstructured mesh of mostly

176 Chapter 5. Numerical evaluation of orographic effects

hexahedral elements from a given digital surface model. A description of the steps involved

and meshing refinements close to the hill is found in Martinez (2011). Mesh refinement is done

around the hill in two boxes similar to the idealized isolated hill case considered in Fig. 5.10,

and also seven boundary layers are added on top of the ground surface to avoid convergence

problems due to skewed and other low quality cells. The main difficulty with snappyHexMesh

is that it requires a background mesh with an aspect ratio of one. This requirement leads to

excessively high number of cells, most of them being placed where they are not much required.

It is important to place as many cells as possible in places where flow variables change very

rapidly i.e. have the highest gradient.

5.3.1.2 Grid independence study

Simulations are carried out for different grid sizes to check the sensitivity of the results with

the grid size. The grids used are generated in a two step manner. First a relatively coarse back

background meshes of 30 X 30 X 8, 50 X 50 X 13, 100 X 100 X 24, and 120 X 120 X 32 are

generated, and then refinements are applied close to the hills and the ground surface to cap-

ture the boundary layer flow better. The number of cells that snappyHexMesh produced after

application of boundary layers and other refinements are 150k, 520k, 2.5million and 4million

cells respectively. These numbers are significantly larger than those of corresponding back-

ground meshes, thereby highlighting the importance of mesh refinement in important regions

for efficient simulation. The TU03-B data set, which was recorded along line A and while the

wind was blowing at 210 degrees from north, is used for the simulations. The result of this

grid independence study is shown in Fig. 5.44. Along most of the uphill slope the speed up

remains the same for all grids, but starting from the crest through the wake zone significant

differences are observed. This is especially true for the coarsest grid considered i.e 30 X 30.

For the purpose of determining maximum wind speed up at the crest, the 50 X 50 grid gives

acceptable results. However it shows some differences with 100 X 100 and 120 X 120 grids

for the flow in the leeward side of the hill. Therefore we can conclude that the 100x100 case

gives grid independent results for the flow over the whole length of the hill.

5.3.1.3 Different turbulence models

Another factor that has similar consequences as the grid resolution is the turbulence model.

The standard k-epsilon turbulence model is commonly used for wind engineering applications,

however it is known that steady RANS models give good predictions only on the upwind side.

The unsteady effects on the lee side are not captured by RANS models, and it may be important

5.3. Wind flow simulations on real complex terrain 177

Figure 5.43: Coarse and fine meshes of Askervein hill with surrounding hills

−800 −600 −400 −200 0 200 400
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Horizontal distance(m) along line A

N
o

rm
al

iz
ed

 s
p

ee
d

 a
t

10
m

120x120
100x100
50x50
30x30

Figure 5.44: Normalized horizontal velocity for different size of grids

to use unsteady models for better understanding of re-circulation zones behind hills according

to Castro et al. (2003). This study tests only RANS models even though LES simulations were

attempted without success due to convergence problems. Three turbulence models namely

mixing length, k-epsilon and RNG k-epsilon model are used. The results are shown in Fig.

5.45. The k-epsilon model does not show significant differences with RNG k-epsilon model

in most part of the hill except at the strongest areas of re-circulation towards the bottom of

the lee. The mixing length model shows differences with the above models both at the crest

and the lee but in general it is not very much off as one might expect from the simplicity of

the model. The reason for this observation could be that Askervein hill has a relatively gentle

slope, that is favorable for linear models such as mixing length model. Nonetheless the results

highlight the importance of the turbulence model to resolve the flow in the wake region. The

178 Chapter 5. Numerical evaluation of orographic effects

−800 −600 −400 −200 0 200 400

0.8

1

1.2

1.4

1.6

1.8

2

Horizontal distance(m) along line A

N
o

rm
al

iz
ed

 s
p

ee
d

 a
t

10
m

Mixing Length
KE
RNG−KE

Figure 5.45: Normalized horizontal velocity for different turbulence models

grid independence study conducted in the previous section has also stressed the importance of

this region.

5.3.1.4 Comparison with field measurements

The TU03-B data set along line A is used for validation of the best performing RANS model.

The velocity data from the field observations is shown in Table 5.2. As we can see from Fig.

5.46, there is generally a good agreement on the upwind side of the hill, but significant differ-

ences are observed on the leeward side of the hill. This is mainly due to flow separation and

unsteady flow characteristics that can not be captured with time-averaged turbulence models

(Castro et al. 2003). Hence large eddy simulations may give better results. This has been inves-

tigated by many researchers including Castro et al. (2003), Crasto (2007) who concluded the

superiority of LES if enough small scales are resolved and appropriate boundary conditions are

used. However LES is rarely used in practice for simulation over complex terrain solely due to

excessive cost of computation. In any case, our simulation results using RANS models were

able to predict presence of recirculation zones to a certain extent, with the best results coming

from the RNG k-epsilon turbulence model using the finest grid.

5.3. Wind flow simulations on real complex terrain 179

−800 −600 −400 −200 0 200 400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Horizontal distance(m) along line A

N
o

rm
al

iz
ed

 s
p

ee
d

 a
t

10
m

CFD
Experimental

Figure 5.46: Normalized horizontal velocity comparison with field measurements

Table 5.2: Wind speed data at 10m height

Distance from HT Wind speed (m/s)
RS 8.6
-850 7.8
-500 6.7
-350 7.2
-200 10.5
-100 13.2
HT 16.2
100 12.0
200 5.6
400 3.0

5.3.2 A second complex hill simulation

The primary reason for choosing Askervein hill is availability of field observation data for vali-

dation, but the hill can hardly be considered complex compared to other hills found elsewhere.

In this section simulations are carried out on a steep and complex hill downloaded from freely

available United States Geological Survey (USGS) database. Another source of terrain/built

environment data, usually in point cloud format, is the International Hurricane Research Center

(IHRC) that provides LiDAR data for parts of Florida. One can download terrain and rough-

ness data for a square grid of about 5000ft X 5000ft. The point cloud data can be converted to

180 Chapter 5. Numerical evaluation of orographic effects

digital surface data (STL format) using triangulation techniques (e.g. Delaunay), after which

a grid can be generated with the surface used as the base of the computational domain. The

grid generation procedures is already described in the previous section of meshing idealized

3D hills, namely using snappyHexMesh, thus no additional effort is required. This is an impor-

tant advantage in automatic meshing and analysis of random complex topography that would

otherwise have required a lot of manual work to generate grid of acceptable quality.

The purpose of this work is not validation but to assess and demonstrate problems that

may be encountered for a randomly chosen complex topography. The first difficulty arises

from choosing a hill that is not surrounded too much by other topographic features. It is to

be recalled that the previous case of Askervein hill is ideally placed on a flat terrain which

has uniform roughness. It is not common to find such an ideally placed hill in a complex

topography, therefore the boundary conditions used for a more realistic topography are usually

complicated than that of Askervein’s. The hill chosen for this exercise did not have such perfect

conditions, but we assumed it is surrounded by a flat terrain anyway. The ground surface is cut

by a horizontal plane at 1m height (shown in Fig. 5.47) to get a smooth surface and establish

a zero-plane where logarithmic profiles are applied. The second problem concerns roughness

that was assumed to be constant for the Askervein hill case. The current hill is in an area where

vegetation and small ponds exist hence the assumption of constant roughness, as in the case of

Askervein hill, is not accurate. Nonetheless, here again we make a simplifying assumption of

constant roughness of z0 = 0.01.

Figure 5.47: A randomly selected complex hill with sharp edges and its mesh (top), elevation
contour (bottom)

5.3. Wind flow simulations on real complex terrain 181

The computational domain and boundary conditions are set up following Franke & Hirsch’s

recommendations. Velocity and turbulence quantities are assumed at the inlet since field data

is not available for comparison. Then simulations are carried out with the standard k-epsilon

turbulence model. A planar section of velocity and turbulent kinetic energy contours are shown

in Fig. 5.48. The flow is complex due to multiple sharp ridges, but a distinct recirculation

zone, though small in size, is observed behind one of the hills. If the area is to be used for

micro-sitting wind turbines it is crucial that such locations with high turbulence intensity and

recirculating flow are avoided.

(a) Horizontal velocity

(b) Turbulence intensity

(c) Horizontal velocity profile

Figure 5.48: Contours of horizontal velocity and TKE

Chapter 6

Conclusions and future work

This section gives brief summary of the conclusions and findings of the current research work.

The theme of the research has been numerical simulations on complex terrain and urban en-

vironment for various wind engineering purposes. The large scale nature of the project makes

numerical simulations and wind tunnel testing as the most feasible investigation techniques.

While field observations can potentially provide better quality data, the associated cost and the

time required to carry out the investigations limit their use , except in very few cases where

field observation data is required for validation purposes. The relative ease with which many

numerical simulations (parametric study) can be carried out makes them suitable at least in the

preliminary stage of investigations of micro-siting studies and similar purposes. Atmospheric

boundary layer flow is affected by presence of topographic features such as hills, escarpments

and valleys as well as surface roughness characteristics. This research has investigated these

two factors separately in Chapter 4 and Chapter 5 using Computational Fluid Dynamics (CFD)

methodology.

The current research has three main themes pursued in Chapter 3 to Chapter 5. The findings,

conclusions and unique contributions in each chapter are briefly summarized in the following

sections.

6.1 High performance CFD code

This research work started from development of an in-house CFD software tailored for Atmo-

spheric Boundary Layer (ABL) simulations, through which the author has gained expertise on

the components of CFD software. The final outcome is a 7300 lines of CFD code that has all

the necessary features for ABL simulation over a complex topography. The program is a three

182

6.2. Effect of roughness 183

dimensional finite volume code and uses polyhedral elements as building blocks. The pro-

gram is parallelized using Message Passing Interface (MPI) to run on a cluster of processors

such as the Shared Hierarchial Academic Research Computing Network (SHARCNET) clus-

ter at Western. It can also utilize the latest technology in high performance computing such as

Graphic Processing Units (GPUs). Different turbulence models suitable for ABL simulation are

implemented and tested for suitability of complex simulations. The turbulence models imple-

mented include linear mixing-length model, many Reynolds Averaged Navier-Stokes (RANS)

models including k-epsilon and RNG k-epsilon, and the Smagornisky Large Eddy Simulation

(LES) model. The code is validated against well known benchmark cases including problems

specific to wind engineering.

Contribution:
A common problem regarding large scale simulations is scaling of algorithms on supercomput-

ers. CFD is usually parallelized using domain decomposition strategies in which a processor

is responsible for a part of the terrain and information (pressure and velocity) is exchanged

at the interfaces. Usually the parallelization scheme is done with blocking calls, where every

processor is forced to synchronize at the end of each iteration. As far as the author’s knowl-

edge goes, industry standard CFD software such as Fluent and OpenFOAM suffer from scaling

issues related to synchronized communication. This work has investigated a unique approach

of asynchronous communication where processors can be at different stages of solution, and

exchange of pressure and velocity is not necessarily forced. This has the potential to avoid

bottlenecks incurred by synchronization calls, and allow for scaling on larger cluster of com-

puters.

6.2 Effect of roughness

Chapter 4 have investigated the effect of roughness alone on wind characteristics. First simpli-

fied models with roughness blocks of different arrangement, similar to the case in a boundary

layer wind tunnel, are simulated using the developed software. The simulation results are com-

pared against empirical formulas that use average frontal and planar area density ratios. Then

the problem of multiple roughness patches on the upstream side of a building is investigated.

This work has investigated 3D explicit modeling of roughness elements. First a Virtual Bound-

ary Layer Wind Tunnel (V-BLWT) is simulated by replicating all the roughness features such

as spires, barrier and roughness blocks to examine the effect of each element. Then spires and

184 Chapter 6. Conclusions and future work

barrier are dropped in the latter simulations with the blocks as the only roughness features and

a boundary layer profile applied at the inlet. This setup is used to evaluate the effect of multiple

roughness features on wind profile using many test setups found in literature. The results are

compared with Boundary Layer Wind Tunnel (BLWT) data and existing wind speed models.

Furthermore for roughness elements that are arranged in a regular manner, the inherent sym-

metry is exploited to reduce the computational domain significantly. The results obtained are

almost the same as that of the full virtual wind tunnel simulation. Finally a semi idealized ur-

ban environment is simulated and results validated against existing BLWT tests of the model,

with which good agreements are obtained. Finally a complex models that is representative of

real built environment is simulated.

Contribution:
Surface roughness is usually incorporated into CFD codes using an equivalent sand grain

roughness concept. However this approach can not be used when the roughness elements

are large due to conflicting requirements as outlined in Blocken et al. (2007). This work has

investigated one of the approaches suggested in that work, namely explicit modeling of rough-

ness elements for sub-urban and urban surfaces. The effect of multiple roughness patches is

investigated using this approach and the results obtained are found to be in good agreement

with existing wind speed models. A second contribution is an extensive use of virtual bound-

ary layer wind tunnel to conduct simulations on multiple array of blocks. Even though it is

found later that a simplified model with a single row of obstacles is enough for the purpose

at hand, the virtual wind tunnel approach can be used for more complex cases. The progres-

sive approach taken to investigate roughness effects starting from the simplest case of empty

domain to a real built environment is unique.

6.3 Effect of topographic features

Topographic features such as hills, valleys and escarpments significantly modify ABL flow.

While recommendations for idealized models (isolated and symmetrical) can be found in build-

ing codes and standards, complex cases are not covered well. This work extends original work

done by Bitsuamlak et al. (2004) using 2D simulations on multiple topographic features to

a more elaborate 3D CFD simulations. Many turbulence models, ranging from the simplest

mixing-length to LES models, have been investigated . In general, the 2D simulation overesti-

mate the speed up over crests of the hill and also has larger recirculation bubbles compared to

6.3. Effect of topographic features 185

their 3D counterparts. Fractional Speed Up Ratio (FSUR) comparisons with results available

in literature show good agreement. The next phase of the work involved conducting simula-

tion on a real complex topography with field measurements that are used validate simulation

results. The Askervein hill is selected for this study because of availability of validation data

and a relatively simple digital surface model. Parametric studies are conducted for different

resolutions of grid, different turbulence models and dimension of the computational domain.

The results obtained show good agreement with field measurements concerning wind speed up

over the upstream side, but distinct differences are observed in the wake of the hill. This is

attributed to weakness of RANS turbulence models that are not able to capture the unsteady

effects in recirculation zones. On upstream side of the hill, the simplest turbulence model gives

comparable results with the more complex RANS models. This is mainly because of the gentle

slope of the Askervein hill where linear models have the potential to perform as well as more

complex turbulence models.

Contribution:
Effect of 3D orography on wind flow has been investigated using CFD simulations over ideal-

ized and real complex terrain models. Jackson (1981) first analyzed flow over an isolated hill

analytically using linearized forms the governing equations. Their model is applicable only to

low hills where recirculation zones are absent. In light of this original work, the current work

has investigated the simplest turbulence model for non-linear CFD, i.e. mixing length model,

along with along with more complex RANS and LES turbulence models. The mixing length

model have been found to give good predictions of speed up over the crest and upstream side

of hills. The simulations carried out in this study are done at full scale dimensions where the

hill height is H = 200m. In literature, model scale simulations at 1:100 to 1:10000 are usually

carried out. This is mainly because these simulations are meant for validating correspond-

ing wind tunnel tests at the same scale. This work has shown that there can be a significant

Reynolds number effect for the LES simulations. LES simulations on an isolated hill carried

out at Reynolds number (Re) = O(104) show significantly larger recirculation bubble compared

to one carried out at full scale dimensions with wall functions and also to results obtained from

RANS models as well.

186 Chapter 6. Conclusions and future work

6.4 Future work

Potential improvements and possible extensions of the present study are:

1. The current software can be run on homogeneous cluster of CPUs or a single GPU. Its

capability can be extended to heterogeneous accelerator based many-core architecture.

This will allow simulations of ever bigger atmospheric problems with better accuracy on

current/future generation High Performance Computing (HPC) clusters.

2. A neutrally stratified atmospheric boundary layer (dry atmosphere) is assumed for all the

micro-scale simulations conducted in this study. For domain sizes of ∼ 10km, hydrostatic

assumptions does not hold anymore. Therfore future research which considers stability

of the atmosphere can be conducted to include non-hydrostatic effects due to density

(temperature) variations.

3. The effect of Coriolis force has also been neglected but it is known that flow in the Ekman

layer (> 100m) and above is significantly affected by it depending on the location of oro-

graphic features (via Rosby number) and altitude above which FSUR is computed. Thus

investigation of Coriolis effects on ABL flows over topography is a potential extension

of the current study.

4. While the Askervein hill is used to validate the case of flow over a real complex terrain,

validation data for the corresponding real built environment case, namely the Downtown

Miami case, was not available. This is a problem that plagues such studies in general,

thus in the future simulations over a built environment of which field measurements are

available can be conducted for validation.

References

Abdi, D., Levin, S. & Bitsuamlak, G. (2009), ‘Application of an artificial neural network model

for boundary layer wind tunnel profile development’, 11th Americas conference on wind

Engineering .

Arnfield, A. (2003), ‘Two decades of urban climate research: a review of turbulence, exchanges

of energy and water, and the urban heat island’, Internation Journal of Climatology 23, 1 –

26.

Arya, S., Capuano, M. & Fagen, L. (1987), ‘Some fluid modeling studies of flow and dis-

persion over two-dimensional low hills’, Atmospheric Environment - Part A General topics

21(4), 753 – 764.

Ayotte, K. & Hughes, D. (2004), ‘Observations of boundary-layer wind-tunnel flow over iso-

lated ridges of varying steepness and roughness’, Boundary Layer Metereology 112(3), 525

– 56.

Bitsuamlak, G. (2004), Evaluating the effect of topographic elements on wind flow: A com-

bined numerical simulation neural network approach, PhD thesis, Concordia University.

Bitsuamlak, G. (2006), ‘Application of computational wind engineering: A practical perspec-

tive’, Third National Conference in Wind Enginering .

Bitsuamlak, G., Dagnew, A. & Chowdhury, G. (2010), ‘Computational assessment of block-

age and wind simulator proximity effects for a new full-scale testing facility’, Wind and

Structures 13(1), 21 – 36.

Bitsuamlak, G., Stathopoulos, T. & Bedard, C. (2004), ‘Numerical evaluation of wind flow

over complex terrain: review’, Journal of Aerospace Engineering 17(4), 135 – 145.

Bitsuamlak, G., Stathopoulos, T. & Bedard, C. (2006), ‘Effects of upstream two dimensional

hills on design wind loads: a computational appraoch’, Wind and Structures 9(1), 37 – 38.

187

188 REFERENCES

Blocken, B. & Carmeliet, J. (2004), ‘Pedestrian wind environment around buildings: Literature

review and practical examples’, Journal of Thermal Env. and Building Physics 28(2), 107 –

159.

Blocken, B., Janssen, W. & Hooff, T. (2011), ‘CFD simulation for pedestrian wind comfort and

wind safety in urban areas: General decision framework and case study for the eindhoven

university campus’, Environmental Modelling and Software 28, 15 – 34.

Blocken, B., Stathopaulos, T. & Carmeliet, J. (2007), ‘CFD simulation of the atmospheric

boundary layer: wall function problems’, Journal of Wind Engineering and Ind. Aero.

41(2), 238 – 252.

Blocken, B., Stathopaulos, T., Carmeliet, J. & Hensen, J. (2009), ‘Application of CFD in build-

ing performance simulation for the outdoor environment’, Eleventh International IBPSA

Conference 4(2), 157 – 184.

Botella, O. & Peyret, R. (1998), ‘Benchmark results for the lid driven cavity flow’, Computers

and Fluids 27(4), 421 – 433.

Bradley, E. (1968), ‘A micrometeorological study of velocity profiles and surface drag in the

region modified by a change in surface roughness’, Journal of the Royal Meteorological

Society 94, 361–379.

Cao, S. & Tamura, T. (2007), ‘Effects of roughness blocks on atmospheric boundary layer flow

over a two-dimensional low hill with/without sudden roughness change’, Journal of Wind

Engineering and Ind. Aero. 95(8), 679 – 695.

Carpenter, P. & Locke, N. (1999), ‘Investigation of wind speeds over multiple two-dimensional

hills’, Journal of Wind Engineering and Ind. Aero. 83(1 - 3), 109 – 120.

Castro, F., Palma, J. & Silvia, A. (2003), ‘Simulation of the askervein flow. part 1: Reynolds

averaged navier-stokes equations(k-e turbulence model)’, Boundary Layer Meteorology

107(3), 501.

CEDVAL-LES (2011), ‘Compilation of experimental data for validation of microscale disper-

sion models: www.mi.uni-hamburg.de/cedval-les-v.6332.0.html’, Meterological Institute,

University of Hamburg, Germany .

Chazan, D. & Miranker, W. (1969), ‘Chaotic relaxation’, Linear Algebra and its Applications

2, 199–222.

REFERENCES 189

Chung, J. & Bienkiewicz, B. (2004), ‘Numerical simulation of flow past 2d hill and valley’,

Wind and Structures 7(1), 1–12.

Coceal, O. & Belcher, S. (2005), ‘Mean winds through an inhomogeneous canopy’, Boundary

Layer Meteorology 115(1), 47 – 68.

Corrigan, A., Fernando, C. & Lohner (2009), ‘Running unstructured grid based solvers on

modern graphics hardware’, 19th AIAA Computational Fluid Dynamics .

Counihan, J. (1971), ‘Wind tunnel determination of the roughness length as a function of the

fetch and roughness density of three dimensional roughness elements’, Atmoshpheric Envi-

ronment 5(8), 637 – 642.

Crasto, G. (2007), Numerical simulation of the atmospheric boundary layer, PhD thesis, Uni-

versita degli Studi di Cagliari.

Dagnew, A. & Bitsuamlak, G. (2013), ‘Computational evaluation of wind loads on buildings:

a review’, Wind and Structures 16(6), 629 660.

Davenport, A., Grimmond, C., Oke, T. & Wieringa, J. (2000), ‘Estimating the roughness of

cites and sheltered country’, Proceedings of the 12th American Meteorological Society Con-

ference On Applied Climatology .

Deaves, D. (1981), ‘Computation of wind flow over changes in surface roughness’, Journal of

Wind Engineering and Ind. Aero. 7(1), 65 – 94.

Deaves, D. & Harris, R. (1978), A mathematical model of the structure of strong winds, Report.

Construction Industry Research and Information Association, CIRIA report 76.

Dupont, S., Brunet, Y. & Finnigan, J. (2008), ‘Large eddy simulation of turbulent flow over a

forested hill: Validation and coherent structure identification’, Journal of the Royal Meteo-

rological Society 134(636), 1911 1929.

EPA (1987), ‘On-site meteorological program guidance for regulatory modeling applications’,

USEPA, OAQPS, Research Triangle Park, North Carolina, EPA-450/4-87-013 .

ESDU-82026 (1993), Strong winds in the atmospheric boundary layer, Part 1: hourly-mean

wind speeds., Engineering Science Data Unit.

ESDU-84030 (1993), Longituidinal turbulence intensities over terrain with multiple roughness

changes., Engineering Science Data Unit.

190 REFERENCES

Eugene, D. (2006), The potential of large eddy simulation for the modelling of wall bounded

flows, PhD thesis, Imperial College of Science.

Feng, W. & Fernando, P. (2011), ‘Large eddy simulation of stably stratified flow over a steep

hill’, Boundary Layer Metereology 138(3), 367 – 384.

Ferreira, A. D., Lopes, A. M. G., Viegas, D. X. & Sousa, A. C. M. (1995), ‘Experimental and

numerical simulation of flow around two-dimensional hills’, Journal of Wind Engineering

and Ind. Aero. 54(55), 173 – 181.

Ferziger, J. & Peric, M. (2001), Computational methods for fluid dynamics, third edn, Springer-

Verlag, Berlin.

Finnigan, J. (1988), Air flow over complex terrain, Springer Verlag.

Finnigan, J., Raupach, M., Bradley, E. & Aldis, G. (1990), ‘A wind tunnel study of turbulent

flow over a two-dimensional ridge’, Boundary Layer Metereology 50(1 - 4), 277– 317.

Franke, J. & Hirsch, C. (2004), ‘Recommendations on the use of CFD in wind engineering’,

Proceedings of International Conference in Urban Wind Engineering and Building Aerody-

namics .

Fredrick, B. & Marc, S. (2010), ‘Ghost cell pattern’, Proceedings of the 2010 Workshop on

Parallel Programming Patterns 4.

Gardner, A. (2004), A full-scale investigation of roughness lengths in inhomogeneous terrain

and a comparison of wind prediction models for transitional flow regimes, PhD thesis, Texas

Tech University.

Garrat, J. (1989), ‘The internal boundary layer - a review’, Boundary Layer Meteorology 50(1

- 4), 171 – 203.

Glanville, M. & Kwok, K. (1997), ‘Measurement of topographic multipliers and flow separa-

tion from a steep escarpment. Part II. Model scale measurement’, Journal of Wind Engineer-

ing and Ind. Aero. 69(71), 893 902.

Gong, W. & Ibbetson, A. (1989), ‘A wind tunnel study of turbulent flow over model hills’,

Boundary Layer Metreology 49(1 - 2), 113 148.

Goyon, O. (1996), ‘High reynolds number solutions of navier-stokes equations using incre-

mental unknowns’, Computer Methods in App. Mech. and Engg. 130(3 - 4), 319 335.

REFERENCES 191

Grant, A. & Mason, P. (1990), ‘Observation of boundary layer structure over complex terrain’,

Journal of the Royal Meteorological Society 116, 159 – 186.

Griffiths, A. & Middelton, J. (2010), ‘Simulations of separated flow over two-dimensional

hills’, Journal of Wind Engineering and Ind. Aero. 98(3), 155 – 160.

Grimmond, C. & Oke, T. (1999), ‘Aerodynamic properties of urban areas derived from analysis

of surface form’, Journal of Applied Metreology 38, 1262 – 1292.

Gropp, W., Lusk, E. & Skjellum, A. (1999), Using MPI: Portable Parallel Programming with

the Message Passing Interface, 2nd edition, MIT Press, Cambridge, MA.

Hall, D., Macdonald, R., Walker, S. & Spanton, A. (1996), ‘Measurements of dispersion within

simulated urban arrays: A small scale wind tunnel study’, BRE Client Report CR 178/96 .

Hansen, F. (1993), ‘Surface roughness lengths’, ARL Technical Report U. S. Army, White Sands

Missile Range, NM 88002-5501. .

Hargreeves, D. & Wright, N. (2007), ‘On the use of k-epsilon model in commercial cfd soft-

ware to model the atmospheric boundary layer’, Journal of Wind Engineering and Ind. Aero.

95, 355 – 369.

Hertwig, D., Efthimiou, G., Bartzis, J. & Leitl, B. (2012), ‘Cfd-rans model validation of tur-

bulent flow in a semi-idealized urban canopy’, Journal of Wind Engineering and Ind. Aero.

111, 61 – 72.

Horsfield, J., Chan, C. & Denoon, R. (2002), ‘Towards sustainable development through inno-

vative engineering’, Housing Conference, Wanchai,Hong Kong .

Iizuka, S. & Kondo, H. (2006), ‘Large eddy simulations of turbulent flow over complex terrain

using modified static eddy viscosity models’, Atmospheric Envirnoment 40(5), 925 – 935.

Irwin, H. (1979), ‘Design and use of spires for natural wind simulation’, National Research

Council Canada, National Aeronautical Establishment, Report LTR-LA-233 .

Ishihara, T., Hibi, K. & Oikawa, S. (1999), ‘A wind tunnel study of turbulent flow over a

three-dimensional steep hill’, Journal of Wind Eng. and Ind. Aero 83(1 - 4), 95 – 107.

Jackson, P. (1981), ‘On the displacemtn height in the velocity profile’, Jounral of Fluid Me-

chanics 111, 15 – 25.

192 REFERENCES

Jackson, P. & Hunt, J. (1975), ‘Turbulent wind flow over a low hill’, Jounral of Royal Metre-

ology Society 101, 929 – 955.

Jasak, H. (1996), Error analysis and estimation for the finite Volume method with applications

to fluid flows, PhD thesis, Imperial College of Science.

Jasak, H., Jemcov, A. & Tukovic, Z. (2007), ‘A c++ library for complex physics simulations’,

International Workshop on Coupled Methods in Numerical Dynamics .

Jimenez, J. (2004), ‘Turbulent flow over rough walls’, Annual Rev. Fluid Mechanics 36, 173 –

196.

Julien, C. & Senocak, I. (2009), ‘CUDA Implementation of a Navier-Stokes Solver on Multi-

GPU Desktop Platforms for Incompressible Flows’, 47th AIAA Aerospace Sciences Meeting

and Exhibit .

Kato, M. & Launder, B. (1993), ‘The modeling of turbulent flow around stationary and vibrat-

ing square cylinders’, Proc. 9th Symposium on Turbulent Shear Flows, Kyoto pp. 10.4.1 –

10.4.6.

Kose, D. & Dick, E. (2010), ‘Prediction of pressure distribution on a cubical building with

implicit les’, Journal of Wind Engineering and Ind. Aero. 115(10 - 11), 628 649.

Launder, B., Reece, G. & Rodi, W. (1975), ‘Progress in the development of reynolds-stess

turbulent closure’, Journal of Fluid Mechanics 68(3), 537 – 566.

Launder, B. & Spalding, D. (1974), ‘The numerical computation of turbulent flows’, Compu-

tational Methods App. Mech. Engg 3(2), 269 – 289.

Lee, S., Lim, H. & Park, K. (2002), ‘Wind flow over sinusoidal hilly obstacles located in a

uniform flow’, Wind and Structures 5(6), 515–526.

Letchford, C., Gardner, A., Howard, R. & Schroeder, J. (2001), ‘A comparison of wind pred-

cition models for transitional wind flow regimes using full scale hurricane data’, Journal of

Wind Engineering and Ind. Aero. 89(10), 925 – 945.

Lettau, H. (1969), ‘Note on aerodynamic roughness parameter estimation on the basis of rough-

ness element description’, Journal of Applied Metereology 8, 828 – 833.

Lim, H., Thomas, T. & Castro, I. (2009), ‘Flow around a cube in a turbulent boundary layer’,

Journal of Wind Engineering and Ind. Aero. 97(2), 96–109.

REFERENCES 193

Lo, A. (1990), ‘On the determination of zero-plane displacement height and roughness length

for flow over forest canopies’, Boundary Layer Metereology 51(3), 225 – 268.

Lubitz, W. & White, B. (2007), ‘Wind-tunnel and field investigation of the effect of local wind

direction on speed-up over hills’, Journal of Wind Engineering and Ind. Aero. 95(8), 639 –

661.

MacDonald, R., Griffiths, R. & Hall, D. (1998), ‘An improved method for the estimation of

surface roughness of obstacle arrays’, Atmospheric Environment 32(11), 1857 – 1864.

Martinez, B. (2011), Wind resource in complex terrain with openfoam, Master’s thesis, Tech-

nical University of Denmark.

Mason, P. & Sykes, R. (1979), ‘Flow over an isolated hill of moderate slope’, Journal of the

Royal Meteorological Society pp. 383 – 395.

Maurizi, A., Palma, M. & Castro, J. (1998), ‘Numerical simulation of the atmospheric flow in

a mountainous region of the north of portugal’, Journal of Wind Engineering and Ind. Aero.

74 - 76, 219 – 228.

Meuer, H. (2013), ‘Top 500 supercomputers’.

URL: http://www.top500.org/

Miles, S. & Westbury, P. (2003), ‘Practical tools for wind engineering in the built environment’,

The QNET-CFD network newsletter 2.

Miller, C. & Davenport, A. (1998), ‘Guidelines for the calculation of wind speed ups in com-

plex terrain’, Journal of Wind Engineering and Ind. Aero. 74 - 76, 189 – 197.

Monteith, J. (1965), ‘Evaporation and environment’, Symp Soc Expl Biol pp. 205 – 234.

Nicholas, J. (1997), ‘The deaves and harris abl model applied to heterogeneous terrain’, Jour-

nal of Wind Engineering and Ind. Aero. 66(3), 197 – 214.

Oke, T. (1998), ‘Street design and urban canopy layer climate’, Energy Building 103(1 - 3), 103

– 113.

OpenFOAM (2013), ‘Openfoam, the open source cfd toolbox’.

URL: http://www.openfoam.com/

194 REFERENCES

O’Sullivan, J., Archer, R. & Flay, R. (2011), ‘Consistent boundary conditions for flows within

the atmospheric boundary layer’, Journal of Wind Engineering and Ind. Aero. 99(9), 66 67.

Panofsky, H. & Dutton, J. (1984), Atmospheric turbulence, first edn, John Willey.

Patankar, S. (1980), Numerical heat transfer and fluid flow, first edn, Hemisphere Publishing

Corporation.

Peterson, R. (1994), ‘A wind tunnel evaluation of methods for estimating roughness length at

industrial facilities’, Atmospheric Environment 31(1), 45 – 57.

Pope, S. (2000), Turbulent flows, first edn, Cambridge University Press.

Rasheed, A. (2010), ‘On the effects of complex urban geometries in meso-scale modeling’,

The Fifth International Symposium on Computational Wind Engineering (CWE2010) .

Rasoulli, A. (2010), Experimental and numerical modelling of wind flow over complex topog-

raphy, PhD thesis, University of Western Ontario.

Rasoulli, A. & Hangan, H. (2013), ‘Microscale computational fluid dynamics simulaton for

wind mapping over complex topography terrains’, Journal of Solar Energy Engineering

135(4), 1–18.

Raupach, M. (1992), ‘Drag and drag partitions on rough surfaces’, Boundary Layer Meterology

60(4), 375 – 395.

Raupach, M., Antonia, R. & Rajagopalan, S. (1991), ‘Rough wall turbulent boundary layers’,

Applied Mechanics Review 44(1), 1 – 25.

Richards, P. & Hoxey, R. (1993), ‘Appropriate boundary conditions for computational wind

engineering models using the k-epsilon turbulence model.’, Journal of Wind Engineering

and Ind. Aero. 46, 145 – 153.

Richardson, L. (1922), Weather prediction by numerical process, 1st edn, Cambridge Univ.

Press.

Selvama, P. & Landrus, K. (2010), ‘Gpu computing for wind engineering’, The Fifth Interna-

tional Symposium on Computational Wind Engineering (CWE2010) .

Shuyang, C. & Tetsuro, T. (2006), ‘Experimental study on roughness effects on turbulent

boundary layer flow over a two-dimensional steep hill’, Journal of Wind Engineering and

Ind. Aero. 94(1), 1 – 19.

REFERENCES 195

Shuyang, C. & Tetsuro, T. (2007), ‘Effects of roughness blocks on atmospheric boundary layer

flow over a two dimensional low hill with and without sudden roughness change’, Journal

of Wind Engineering and Ind. Aero. 95(9), 679 695.

Snyder, W. & Britter, R. (1987), ‘A wind tunnel study of the flow structure and dispersion

from sources upwind of three-dimensional hills’, Atompsheric Environment - Part A General

Topics 21(4), 735 – 751.

Spalding, D. (1994), ‘Calculation of turbulent heat transfer in cluttered spaces’, 10th Interna-

tional Heat Transfer Conference .

Stangroom, P. (2004), CFD modeling of wind flows over terrain, PhD thesis, University of

Nottingham.

Stull, R. (1988), An introduction to boundary layer metereology, first edn, Kluwer Academic.

Takeshi, I. & Hibi, K. (2002), ‘Numerical study of turbulent wake flow behind a three-

dimensional steep hill’, Wind and Structures 5(2-4), 317–328.

Takeshi, I., Kazuki, H. & Susumu, O. (1999), ‘A wind tunnel study of turbulent flow over a

three dimensional steep hill’, Journal of Wind Engineering and Ind. Aero. 83, 95 – 103.

Tamura, T., Okuno, A. & Sugio, Y. (2007), ‘LES analysis of turbulent boundary layer over

3d steep hill covered with vegetation’, Journal of Wind Engineering and Ind. Aero. 95(9 -

11), 1463 – 1475.

Taylor, P. & Teunisson, H. (1986), ‘The askervein hill project: 0verview and background data.’,

Boundary Layer Meteorology 39(1-2), 15 – 39.

Theurer, W. (1993), Dispersion of ground level emissions in complex built-up areas, PhD the-

sis, University of Karlsruhe.

Thom, A. (1972), ‘Momentum, mass and heat exchange of vegetation’, Journal of the Royal

Meteorological Society 98, 124 – 134.

Tsang, C., Kwok, K., Hitchcock, P. & Hui, D. (2009), ‘Numerical study of turbulent wake flow

behind a three-dimensional steep hill’, Wind and Structures 5(2-4), 317–328.

Uchida, T. & Ohya, Y. (2008), ‘Micro-siting technique for wind turbine generators by using

large-eddy simulation’, Journal of Wind Engineering and Ind. Aero. 96(10-11), 2121 2138.

196 REFERENCES

Wang, K. & Stathopoulos, T. (2007a), ‘Exposure model for wind loading of buildings’, Journal

of Wind Engineering and Ind. Aero. 95(9-11), 1511–1525.

Wang, K. & Stathopoulos, T. (2007b), Modeling Terrain Effects and Application to the Wind

Loading of Low Buildings, PhD thesis, Concordia University.

Weller, H., Tabor, G., Jasak, H. & Fureby, C. (1998), ‘A tensorial approach to computational

continum mechanics using object oriented techniques’, Computers in Physics 12(6), 620 –

631.

Weng, W., Taylor, P. & Walmsley, J. (2000), ‘Guidelines for airflow over complex terrain:

model developments’, Journal of Wind Engineering and Ind. Aero. 83(2-3), 169 – 186.

Wieringa, J. (1992), ‘Updating the davenport roughness classification’, Journal of Wind Engi-

neering and Ind. Aero. 41(1-3), 357 368.

Wieringa, J. (1993), ‘Representative roughness parameters for homogeneous terrain’, Bound-

ary Layer Meteorology 63, 323 – 363.

Wright, N. & Easom, G. (2003), ‘Non-linear k-e turbulence model results for flow over a

building at full scale’, Applied Math. Model 27(12), 1013 – 1033.

Xabier, P. (2009), Modelling of wind flow over complex terrain using openfoam, Master’s

thesis, University of Guvle.

Zaki, S., Hagishma, A., Tanimoto, J. & Ikegaya, N. (2010), ‘Wind tunnel measurement of

aerodynamic parameters of urban building arrays with random geometries’, The Fifth Inter-

national Symposium on Computational Wind Engineering (CWE2010) .

Appendix A

Plots of wind speed model

197

198 Chapter A. Plots of wind speed model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−1

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−2

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−3

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−4

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−5

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−6

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−7

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−8

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.1: Horizontal velocity comparison of CFD with existing models for cases 1-8

199

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−9

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−10

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−11

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−12

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−13

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−14

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−15

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−16

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.2: Horizontal velocity comparison of CFD with existing models for cases 9-16

200 Chapter A. Plots of wind speed model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−17

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−18

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−19

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−20

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−21

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−22

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−23

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−24

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.3: Horizontal velocity comparison of CFD with existing models for cases 17-24

201

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−25

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−26

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−27

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−28

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−29

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−30

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−31

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−32

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.4: Horizontal velocity comparison of CFD with existing models for cases 25-32

202 Chapter A. Plots of wind speed model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−33

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−34

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−35

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−36

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−37

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−38

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−39

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−40

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.5: Horizontal velocity comparison of CFD with existing models for cases 33-40

203

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−41

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−42

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−43

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−44

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−45

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−46

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−47

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−48

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.6: Horizontal velocity comparison of CFD with existing models for cases 41-48

204 Chapter A. Plots of wind speed model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−49

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−50

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−51

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−52

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−53

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−54

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−55

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−56

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.7: Horizontal velocity comparison of CFD with existing models for cases 49-56

205

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−57

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−58

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−59

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−60

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−61

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−62

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−63

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−64

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.8: Horizontal velocity comparison of CFD with existing models for cases 57-64

206 Chapter A. Plots of wind speed model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−65

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−66

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−67

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−68

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
case−69

U/U∞

z/
δ

WS
ESDU
V−BLWT
S−BLWT

Figure A.9: Horizontal velocity comparison of CFD with existing models for cases 65-69

207

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−1

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−2

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−3

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−4

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−5

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−6

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−7

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−8

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.10: Turbulence intenisy comparison of CFD with existing models for cases 1-8

208 Chapter A. Plots of wind speed model

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−9

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−10

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−11

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−12

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−13

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−14

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−15

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−16

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.11: Turbulence intenisy comparison of CFD with existing models for cases 9-16

209

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−17

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−18

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−19

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−20

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−21

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−22

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−23

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−24

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.12: Turbulence intenisy comparison of CFD with existing models for cases 17-24

210 Chapter A. Plots of wind speed model

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−25

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−26

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−27

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−28

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−29

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−30

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−31

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−32

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.13: Turbulence intenisy comparison of CFD with existing models for cases 25-32

211

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−33

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−34

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−35

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−36

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−37

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−38

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−39

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−40

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.14: Turbulence intenisy comparison of CFD with existing models for cases 33-40

212 Chapter A. Plots of wind speed model

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−41

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−42

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−43

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−44

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−45

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−46

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−47

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−48

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.15: Turbulence intenisy comparison of CFD with existing models for cases 41-48

213

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−49

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−50

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−51

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−52

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−53

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−54

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−55

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−56

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.16: Turbulence intenisy comparison of CFD with existing models for cases 49-56

214 Chapter A. Plots of wind speed model

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−57

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−58

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−59

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−60

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−61

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−62

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−63

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−64

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.17: Turbulence intenisy comparison of CFD with existing models for cases 57-64

215

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−65

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−66

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−67

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−68

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
case−69

Iu(%)

z/
δ

WS
V−BLWT
S−BLWT

Figure A.18: Turbulence intenisy comparison of CFD with existing models for cases 65-69

216 Chapter A. Plots of wind speed model

(a) BLWT case-1

(b) BLWT case-2

(c) BLWT case-3

(d) BLWT case-4

(e) BLWT case-5

(f) BLWT case-6

(g) BLWT case-7

(h) BLWT case-8

Figure A.19: Horizontal velocity contour for V-BLWT configuration of cases 1-8

217

(a) BLWT case-9

(b) BLWT case-10

(c) BLWT case-11

(d) BLWT case-12

(e) BLWT case-13

(f) BLWT case-14

(g) BLWT case-15

(h) BLWT case-16

Figure A.20: Horizontal velocity contour for V-BLWT configuration of cases 9-16

218 Chapter A. Plots of wind speed model

(a) BLWT case-17

(b) BLWT case-18

(c) BLWT case-19

(d) BLWT case-20

(e) BLWT case-21

(f) BLWT case-22

(g) BLWT case-23

(h) BLWT case-24

Figure A.21: Horizontal velocity contour for V-BLWT configuration of cases 17-24

219

(a) BLWT case-25

(b) BLWT case-26

(c) BLWT case-27

(d) BLWT case-28

(e) BLWT case-29

(f) BLWT case-30

(g) BLWT case-31

(h) BLWT case-32

Figure A.22: Horizontal velocity contour for V-BLWT configuration of cases 25-32

220 Chapter A. Plots of wind speed model

(a) BLWT case-33

(b) BLWT case-34

(c) BLWT case-35

(d) BLWT case-36

(e) BLWT case-37

(f) BLWT case-38

(g) BLWT case-39

(h) BLWT case-40

Figure A.23: Horizontal velocity contour for V-BLWT configuration of cases 33-40

221

(a) BLWT case-41

(b) BLWT case-42

(c) BLWT case-43

(d) BLWT case-44

(e) BLWT case-45

(f) BLWT case-46

(g) BLWT case-47

(h) BLWT case-48

Figure A.24: Horizontal velocity contour for V-BLWT configuration of cases 41-48

222 Chapter A. Plots of wind speed model

(a) BLWT case-49

(b) BLWT case-50

(c) BLWT case-51

(d) BLWT case-52

(e) BLWT case-53

(f) BLWT case-54

(g) BLWT case-55

(h) BLWT case-56

Figure A.25: Horizontal velocity contour for V-BLWT configuration of cases 49-56

223

(a) BLWT case-57

(b) BLWT case-58

(c) BLWT case-59

(d) BLWT case-60

(e) BLWT case-61

(f) BLWT case-62

(g) BLWT case-63

(h) BLWT case-64

Figure A.26: Horizontal velocity contour for V-BLWT configuration of cases 57-64

224 Chapter A. Plots of wind speed model

(a) BLWT case-65

(b) BLWT case-66

(c) BLWT case-67

(d) BLWT case-68

(e) BLWT case-69

Figure A.27: Horizontal velocity contour for V-BLWT configuration of cases 65-69

Appendix B

Artificial neural network source code

225

226 Chapter B. Artificial neural network source code

1 /*

2 Multilayer perception method using backpropagation

3 */

4 #include <stdio.h>

5 #include <math.h>

6 #include <stdlib.h>

7 #include <time.h>

8 #include <string.h>

9 #include<time.h>

10

11 /*

12 Neuron activation functions

13 */

14 __inline double activation(double x) {

15 return (1 / (1 + exp(-x)));

16 }

17 __inline double derivative(double x) {

18 return x * (1 - x);

19 }

20 /*

21 weight

22 */

23 struct WEIGHT {

24 double val;

25 double inc;

26 WEIGHT() {

27 val = (2.0 * rand()) / RAND_MAX - 1.0;

28 inc = 0.0;

29 }

30 };

31 /*

32 neuron

33 */

34 typedef struct NEURON {

35 double in;

36 double out;

37 double delta;

38 WEIGHT* weight;

39 NEURON() {

40 in = 0.0;

41 out = 0.0;

227

42 delta = 0.0;

43 weight = NULL;

44 }

45 void malloc(int sz) {

46 weight = new WEIGHT[sz];

47 }

48 void free() {

49 delete[] weight;

50 }

51 } *PNEURON;

52

53 /*

54 Artifical neural network class

55 */

56 class ANN {

57 public:

58 int n_layers;

59 int* n_neurons;

60 PNEURON* neurons;

61 double momentum;

62 double step;

63

64 public:

65 ANN(int,const int*,double,double);

66 ˜ANN();

67 void feed_forward(double*);

68 void back_propagate(double*);

69 double mse(double*);

70 };

71

72

73 ANN :: ANN(int nlayers,const int* nneurons,double a,double b) {

74 register int i,j;

75

76 //momentum and step size

77 momentum = a;

78 step = b;

79

80 //set number of layers

81 n_layers = nlayers;

82

228 Chapter B. Artificial neural network source code

83 //allocate layers

84 n_neurons = new int[n_layers];

85 for(i = 0;i < n_layers;i++)

86 n_neurons[i] = nneurons[i];

87

88 //allocate neurons

89 neurons = new PNEURON[n_layers];

90 for(i = 0;i < n_layers;i++) {

91 neurons[i] = new NEURON[n_neurons[i]];

92 for(j = 0;j < n_neurons[i];j++) {

93 neurons[i][j].malloc(n_neurons[i - 1] + 1);

94 }

95 }

96 }

97

98

99 ANN :: ˜ANN() {

100 register int i,j;

101

102 //number of neurons in each layer

103 delete[] n_neurons;

104

105 //all neurons

106 for(i = 0;i < n_layers;i++) {

107 for(j = 0;j < n_neurons[i];j++)

108 neurons[i][j].free();

109 delete[] neurons[i];

110 }

111 delete[] neurons;

112 }

113

114 void ANN::feed_forward(double* input) {

115 register int i,j,k;

116 double sum;

117

118 //input layer

119 for(i = 0;i < n_neurons[0];i++) {

120 neurons[0][i].in = input[i];

121 neurons[0][i].out = input[i];

122 }

123

229

124 //other layers

125 for(i = 1;i < n_layers;i++) {

126 for(j = 0;j < n_neurons[i];j++) {

127 sum = 0;

128 for(k = 0;k < n_neurons[i - 1];k++) {

129 sum += neurons[i][j].weight[k].val * neurons[i - 1][k].out;

130 }

131 neurons[i][j].in = sum;

132 neurons[i][j].out = activation(sum);

133 }

134 }

135 }

136 void ANN::back_propagate(double* target) {

137 register int i,j,k;

138 double sum;

139 PNEURON pneuron;

140

141 //output layer

142 for(i = 0;i < n_neurons[n_layers - 1];i++) {

143 sum = target[i] - neurons[n_layers - 1][i].out;

144 neurons[n_layers - 1][i].delta = derivative(neurons[n_layers - 1][i].out) * sum;

145 }

146

147 //other layers

148 for(i = n_layers - 2; i > 0; i--) {

149 for(j = 0;j < n_neurons[i]; j++) {

150 sum = 0;

151 for(k = 0;k < n_neurons[i + 1]; k++){

152 sum += neurons[i + 1][k].weight[j].val * neurons[i + 1][k].delta;

153 }

154 neurons[i][j].delta = derivative(neurons[i][j].out) * sum;

155 }

156 }

157

158 //modify weights

159 for(i = 1;i < n_layers;i++){

160 for(j = 0;j < n_neurons[i]; j++){

161 pneuron = &neurons[i][j];

162 for(k = 0;k <= n_neurons[i - 1]; k++){

163 pneuron->weight[k].val += momentum * pneuron->weight[k].inc;

164 pneuron->weight[k].inc = step * pneuron->delta * neurons[i - 1][k].out;

230 Chapter B. Artificial neural network source code

165 pneuron->weight[k].val += pneuron->weight[k].inc;

166 }

167 }

168 }

169 }

170

171 //calculate mean square error

172 double ANN::mse(double *target) {

173 double mse = 0;

174 for(int i = 0;i < n_neurons[n_layers - 1];i++){

175 mse += pow(target[i] - neurons[n_layers - 1][i].out, 2);

176 }

177 return (mse / 2);

178 }

179

180 /*

181 constants to be modified

182 depending on file input.

183 */

184 static int NINPUT = 4;

185 static int NOUTPUT = 1;

186 static int NTOTAL = NINPUT + NOUTPUT;

187 static const double INERTIA = 0.1;

188 static const double STEP = 0.9;

189 static float TOLERANCE = 0.0003f;

190 static const int MAX_ITER = 6144;//(1 << 14);

191 static const int NLAYERS = 4;

192 static int NNEURONS[] = {

193 NINPUT,

194 4,

195 4,

196 NOUTPUT

197 };

198 char in_name[26] = "input.txt";

199 const char out_name[] = "out.xls";

200 /*

201 main

202 */

203 void main() {

204 double**data, *pdata;

205 double val,val_avg;

231

206 float valf;

207 int i,j,count,SIZE;

208 int training_start = 0;//2 * 51;

209

210 //time

211 srand((unsigned)(time(NULL)));

212 clock_t start,end;

213 start=clock();

214

215 //open file

216 FILE* pf = fopen(in_name,"r");

217

218 //determine size and allocate space

219 count = 0;

220 while(fscanf(pf,"%f",&valf) != EOF) count++;

221 SIZE = count / NTOTAL;

222 data = new double*[SIZE];

223 for(i = 0;i < SIZE;i++)

224 data[i] = new double[NTOTAL];

225

226 //read data

227 fseek(pf,0L,SEEK_SET);

228 count = 0;

229 while(fscanf(pf,"%f",&valf) != EOF) {

230 data[count / NTOTAL][count % NTOTAL] = valf;

231 count++;

232 }

233

234

235 //close file

236 fclose(pf);

237

238 //create ANN

239 ANN *bp = new ANN(NLAYERS,&NNEURONS[0],INERTIA,STEP);

240

241 //train

242 printf("\nTraining....\n");

243

244 for(i = 0;i < MAX_ITER;i++) {

245 val_avg = 0;

246

232 Chapter B. Artificial neural network source code

247 //loop through training data

248 for(j = training_start;j < SIZE;j++) {

249

250 pdata = data[j];

251

252 bp->feed_forward(pdata);

253 bp->back_propagate(pdata + NINPUT);

254

255 //converged?

256 val = bp->mse(pdata + NINPUT);

257 val_avg += val;

258 }

259 val_avg /= SIZE;

260

261 //display

262 if(i % 16 == 0) {

263 printf("Iteration %d : MSE = %e\t\t\t\r",i,val_avg);

264 if(i % 512 == 0) printf("\n");

265 }

266 //failed

267 if(val_avg <= TOLERANCE) {

268 printf("\nSuccess in %d iterations.\nMSE = %e\n",i,val_avg);

269 break;

270 }

271 }

272

273

274 //predict

275 bool show = false;

276 pf = fopen(out_name,"w");

277

278 printf("\nPrediction....\n");

279

280 //for(i = 0;i < training_start;i++) {

281 for(i = 0;i < SIZE;i++) {

282 pdata = data[i];

283

284 bp->feed_forward(pdata);

285

286 for(j = 0;j < NTOTAL;j++) {

287 if(show) {

233

288 if(j == NINPUT) printf("| ");

289 printf("%f ",pdata[j]);

290 }

291 if(j == NINPUT) fprintf(pf,"\t");

292 fprintf(pf,"%f\t",pdata[j]);

293 }

294

295 if(show) printf("| ");

296 fprintf(pf,"\t");

297

298 for(j = 0;j < bp->n_neurons[bp->n_layers - 1];j++) {

299 if(show) printf("%f ",bp->neurons[bp->n_layers - 1][j].out);

300 fprintf(pf,"%f\t",bp->neurons[bp->n_layers - 1][j].out);

301 }

302 if(show) printf("\n");

303 fprintf(pf,"\n");

304 }

305 fclose(pf);

306

307 //end

308 end = clock();

309 printf("\nTime elapsed = %.2f sec\n",(end - start) / 1000.0f);

310 printf("Done !\n");

311 }

Appendix C

CFD program

C.1 Brief information on usage

The CFD code is compiled into three separate programs for the following purposes

1. Grid generation: mesh Grid can be imported from FlUENT ascii format (.msh)

1 ./mesh -i test.msh -o test

This will import the grid file test.msh and save the result in the file test. The second

option, useful for simple hexahedral grid generation, is to use the built-in grid generator

1 ./mesh block.txt >grid

This will generate grid according to specification in block.txt and save the result in the

filegrid. The specification file basically consists of the vertices, faces and control vol-

umes of the computational domain.

2. Solvers: solver There are currently five solvers implemented as described in Chapter 3

(a) PISO - for Navier-Stokes equations

(b) Walldist - Wall distance solver

(c) Diffusion - Heat diffusion solver

(d) Transport - Transport equation solver

(e) Potential - Potential flow solver

The type of solver and settings for the solvers can be specified in a separate file con-

trols.txt and passed to the solver program

234

C.1. Brief information on usage 235

1 ./solver controls.txt

The contents of controls.txt look like the following

1 general

2 {

3 ######################################

4 # mesh file name and solver type

5 ######################################

6 solver piso

7 mesh grid

8 ######################################

9 # Fluid properties specific to solver

10 ######################################

11 rho 1

12 viscosity 0.1

13 #############################

14 # Time increment

15 #############################

16 state STEADY

17 start_step 0

18 end_step 1

19 write_interval 1

20 dt 0.1

21 ############################

22 # Discretization schemes

23 ############################

24 convection_scheme UDS

25 interpolation_scheme CDS

26 nonortho_scheme OVER_RELAXED

27 time_scheme_factor 1

28 blend_factor 0.2

29 ############################

30 # Solver options

31 ############################

32 method PCG

33 tolerance 1e-5

34 max_iterations 6400

35 SOR_omega 1.7

36 ghost_exchange BLOCKED

37 parallel_method BLOCKED

236 Chapter C. CFD program

38 ############################

39 # Probe locations

40 ############################

41 probe 0 {

42 }

43 }

44 ######################################

45 # PISO options

46 ######################################

47 piso

48 {

49 turbulence_model KE

50 velocity_UR 1

51 pressure_UR 1

52 k_UR 1

53 x_UR 1

54 n_PISO 1

55 n_ORTHO 0

56 }

57 diffusion

58 {

59 DT 1

60 t_UR 0.7

61 }

62 transport

63 {

64 DT 0.1

65 t_UR 1

66 }

67 turbulence

68 {

69 k_UR 0.5

70 x_UR 0.5

71 }

3. Pre/Post processing; prepare This tool is used for pre and post processing results such

as generating VTK file of results for viewing with paraview or similar tool, taking sam-

ples at specified probe points, preparing to run program in parallel via static domain

decomposition, merging decomposed results in to one etc...

1 ./prepare prepare.txt -vtk -start 0 -end 5

C.1. Brief information on usage 237

This converts the results into VTK file format for time steps between 0 and 5. The

contents of prepare.txt look like

1 general

2 {

3 mesh grid

4 decompose 3 {2 1 1}

5 fields 5 { U p k e emu}

6 probe 8 {

7 0 0.5 20

8 28.571 0.5 20

9 57.143 0.5 20

10 85.714 0.5 20

11 114.29 0.5 20

12 142.86 0.5 20

13 171.43 0.5 20

14 200 0.5 20

15 }

16 }

238 Chapter C. CFD program

C.2 Source code

1 #ifndef __TENSOR_H

2 #define __TENSOR_H

3

4 #ifdef _MSC_VER

5 # pragma warning (disable: 4996)

6 #endif

7

8 #include <fstream>

9 #include <iostream>

10 #include <cmath>

11

12 #define __DOUBLE

13

14 #ifdef _MSC_VER

15 # define FORCEINLINE __forceinline

16 #else

17 # define FORCEINLINE __inline

18 #endif

19

20 /*******************

21 * Int is unsigned

22 ******************/

23 typedef unsigned int Int;

24

25 /**************************

26 * scalars

27 *************************/

28 #if defined __DOUBLE

29 # define Scalar double

30 #else

31 # define Scalar float

32 #endif

33

34 /* Arthimetic operators are defined via compound assignment*/

35 #define Operator(T,$) \

36 friend FORCEINLINE T operator $ (const T& p,const T& q) { \

37 T r = p; \

38 r $##= q; \

39 return r; \

C.2. Source code 239

40 }

41 /* Default operator overloads for scalars vs others*/

42 #define OpS($) \

43 template<class T> \

44 FORCEINLINE T operator $ (const T& p,const Scalar& q) { \

45 T r = p; \

46 r $##= q; \

47 return r; \

48 }

49 #define COp($) \

50 template<class T> \

51 FORCEINLINE T operator $ (const Scalar& p,const T& q) { \

52 T r = q; \

53 r $##= p; \

54 return r; \

55 }

56 #define NCOp($) \

57 template<class T> \

58 FORCEINLINE T operator $ (const Scalar& p,const T& q) { \

59 T r = p; \

60 r $##= q; \

61 return r; \

62 }

63 OpS(*);

64 OpS(/);

65 COp(+);

66 COp(*);

67 NCOp(/);

68 NCOp(-);

69 #undef OpS

70 #undef COp

71 #undef NCOp

72 /*other scalar operations*/

73 FORCEINLINE Scalar mag(const Scalar& p) {

74 return fabs(p);

75 }

76 FORCEINLINE Scalar sdiv(const Scalar& p,const Scalar& q) {

77 return p ? (p / q) : 0;

78 }

79 FORCEINLINE Scalar max(const Scalar& p,const Scalar& q) {

80 return (p >= q) ? p : q;

240 Chapter C. CFD program

81 }

82 FORCEINLINE Scalar min(const Scalar& p,const Scalar& q) {

83 return (p <= q) ? p : q;

84 }

85 /*********************************

86 * loop unroller for tensors

87 *********************************/

88 template <int N>

89 struct Unroll {

90 /*macro*/

91 #define Op(name,$) \

92 static FORCEINLINE void name(Scalar* p,const Scalar* q) { \

93 *p $ *q; \

94 Unroll<N - 1>::name(p + 1,q + 1); \

95 }

96 #define SOp(name,$) \

97 static FORCEINLINE void name(Scalar* p,const Scalar q) { \

98 *p $ q; \

99 Unroll<N - 1>::name(p + 1,q); \

100 }

101 #define Fp(name,$) \

102 static FORCEINLINE void name(Scalar* r,const Scalar* p,const Scalar* q) { \

103 *r = ::$(*p,*q); \

104 Unroll<N - 1>::name(r + 1,p + 1,q + 1); \

105 }

106 #define Fp1(name,$) \

107 static FORCEINLINE void name(Scalar* r,const Scalar* p,const Scalar q) { \

108 *r = ::$(*p,q); \

109 Unroll<N - 1>::name(r + 1,p + 1,q); \

110 }

111 #define Fp2(name,$) \

112 static FORCEINLINE void name(Scalar* r,const Scalar* p) { \

113 *r = ::$(*p); \

114 Unroll<N - 1>::name(r + 1,p + 1); \

115 }

116 /*special*/

117 static FORCEINLINE Scalar dot(const Scalar* p,const Scalar* q) {

118 return (*p) * (*q) + Unroll<N - 1>::dot(p + 1,q + 1);

119 }

120 /*define ops*/

121 Op(equ,=);

C.2. Source code 241

122 Op(neg,=-);

123 Op(inc,+=);

124 Op(dec,-=);

125 Op(mul,*=);

126 Op(div,/=);

127 SOp(equ,=);

128 SOp(neg,=-);

129 SOp(inc,+=);

130 SOp(dec,-=);

131 SOp(mul,*=);

132 SOp(div,/=);

133 Fp(sdiv,sdiv);

134 /*from math.h*/

135 Fp2(acos,acos);

136 Fp2(asin,asin);

137 Fp2(atan,atan);

138 Fp(atan2,atan2);

139 Fp2(ceil,ceil);

140 Fp2(cos,cos);

141 Fp2(cosh,cosh);

142 Fp2(exp,exp);

143 Fp2(fabs,fabs);

144 Fp2(floor,floor);

145 Fp2(log,log);

146 Fp2(log10,log10);

147 Fp1(pow,pow);

148 Fp2(sin,sin);

149 Fp2(sinh,sinh);

150 Fp2(sqrt,sqrt);

151 Fp2(tan,tan);

152 Fp2(tanh,tanh);

153 Fp(min,min);

154 Fp(max,max);

155 #undef Op

156 #undef SOp

157 #undef Fp

158 #undef Fp1

159 #undef Fp2

160 };

161

162 template <>

242 Chapter C. CFD program

163 struct Unroll<0> {

164 /*macro*/

165 #define Op(name) \

166 static FORCEINLINE void name(Scalar* p,const Scalar* q) {}

167 #define SOp(name) \

168 static FORCEINLINE void name(Scalar* p,const Scalar q) {}

169 #define Fp(name) \

170 static FORCEINLINE void name(Scalar* r,const Scalar* p,const Scalar* q) {}

171 #define Fp1(name) \

172 static FORCEINLINE void name(Scalar* r,const Scalar* p,const Scalar q) {}

173 #define Fp2(name) \

174 static FORCEINLINE void name(Scalar* r,const Scalar* p) {}

175 /*special*/

176 static FORCEINLINE Scalar dot(const Scalar* p,const Scalar* q) {return 0;}

177 /*define ops*/

178 Op(equ);

179 Op(neg);

180 Op(inc);

181 Op(dec);

182 Op(mul);

183 Op(div);

184 SOp(equ);

185 SOp(neg);

186 SOp(inc);

187 SOp(dec);

188 SOp(mul);

189 SOp(div);

190 Fp(sdiv);

191 /*from math.h*/

192 Fp2(acos);

193 Fp2(asin);

194 Fp2(atan);

195 Fp(atan2);

196 Fp2(ceil);

197 Fp2(cos);

198 Fp2(cosh);

199 Fp2(exp);

200 Fp2(fabs);

201 Fp2(floor);

202 Fp2(log);

203 Fp2(log10);

C.2. Source code 243

204 Fp1(pow);

205 Fp2(sin);

206 Fp2(sinh);

207 Fp2(sqrt);

208 Fp2(tan);

209 Fp2(tanh);

210 Fp(min);

211 Fp(max);

212 #undef Op

213 #undef SOp

214 #undef Fp

215 #undef Fp1

216 #undef Fp2

217 };

218

219 /***************************************

220 * Template Tensor class

221 ***************************************/

222 template <Int SIZE>

223 class TTensor {

224 public:

225 Scalar P[SIZE];

226 public:

227 /*c’tors*/

228 TTensor() {

229 }

230 TTensor(const TTensor& p) {

231 *this = p;

232 }

233 explicit TTensor(const Scalar& p) {

234 Unroll<SIZE>::equ(P,p);

235 }

236 TTensor(const Scalar& xx,const Scalar& yy,const Scalar& zz) {

237 P[0] = xx;

238 P[1] = yy;

239 P[2] = zz;

240 Unroll<SIZE - 3>::equ(&P[3],Scalar(0));

241 }

242 /*accessors*/

243 Scalar& operator [] (Int i) {

244 return P[i];

244 Chapter C. CFD program

245 }

246 const Scalar& operator [] (Int i) const {

247 return P[i];

248 }

249 /*unary ops*/

250 TTensor operator - () {

251 TTensor r;

252 Unroll<SIZE>::neg(r.P,P);

253 return r;

254 }

255 friend Scalar operator & (const TTensor& p,const TTensor& q) {

256 Scalar r = Unroll<SIZE>::dot(p.P,q.P);

257 if(SIZE == 6) r += Unroll<3>::dot(&p.P[3],&q.P[3]);

258 return r;

259 }

260

261 /*unrolled operations*/

262 #define Op(name,$) \

263 TTensor& operator $(const TTensor& q) { \

264 Unroll<SIZE>::name(P,q.P); \

265 return *this; \

266 }

267 #define SOp(name,$) \

268 TTensor& operator $(const Scalar& q) { \

269 Unroll<SIZE>::name(P,q); \

270 return *this; \

271 }

272 #define Fp(name) \

273 friend TTensor name(const TTensor& p,const TTensor& s) { \

274 TTensor r; \

275 Unroll<SIZE>::name(r.P,p.P,s.P); \

276 return r; \

277 }

278 #define Fp1(name) \

279 friend TTensor name(const TTensor& p,const Scalar& s) { \

280 TTensor r; \

281 Unroll<SIZE>::name(r.P,p.P,s); \

282 return r; \

283 }

284 #define Fp2(name) \

285 friend TTensor name(const TTensor& p) { \

C.2. Source code 245

286 TTensor r; \

287 Unroll<SIZE>::name(r.P,p.P); \

288 return r; \

289 }

290 /*define ops*/

291 Op(equ,=);

292 Op(inc,+=);

293 Op(dec,-=);

294 Op(mul,*=);

295 Op(div,/=);

296 SOp(equ,=);

297 SOp(inc,+=);

298 SOp(dec,-=);

299 SOp(mul,*=);

300 SOp(div,/=);

301 Fp(sdiv);

302 /*from math.h*/

303 Fp2(acos);

304 Fp2(asin);

305 Fp2(atan);

306 Fp(atan2);

307 Fp2(ceil);

308 Fp2(cos);

309 Fp2(cosh);

310 Fp2(exp);

311 Fp2(fabs);

312 Fp2(floor);

313 Fp2(log);

314 Fp2(log10);

315 Fp1(pow);

316 Fp2(sin);

317 Fp2(sinh);

318 Fp2(sqrt);

319 Fp2(tan);

320 Fp2(tanh);

321 Fp(min);

322 Fp(max);

323 #undef Op

324 #undef SOp

325 #undef Fp

326 #undef Fp1

246 Chapter C. CFD program

327 #undef Fp2

328 Operator(TTensor,+);

329 Operator(TTensor,-);

330 Operator(TTensor,*);

331 Operator(TTensor,/);

332 /*others*/

333 friend Scalar magSq(const TTensor& p) {

334 return (p & p);

335 }

336 friend Scalar mag(const TTensor& p) {

337 return sqrt(magSq(p));

338 }

339 friend TTensor unit(const TTensor& p) {

340 TTensor r = p;

341 Scalar mg = mag(r);

342 r /= mg;

343 return r;

344 }

345 friend Scalar tr(const TTensor& p) {

346 return p[0] + p[1] + p[2];

347 }

348 friend TTensor dev(const TTensor& p,const Scalar factor = 1.) {

349 TTensor r = p;

350 Scalar t = tr(p) * factor / 3;

351 r[0] -= t;

352 r[1] -= t;

353 r[2] -= t;

354 return r;

355 }

356 friend TTensor hyd(const TTensor& p,const Scalar factor = 1.) {

357 TTensor r(1,1,1);

358 Scalar t = tr(p) * factor / 3;

359 r[0] = t;

360 r[1] = t;

361 r[2] = t;

362 return r;

363 }

364 /*IO*/

365 friend std::ostream& operator << (std::ostream& os, const TTensor<SIZE>& p) {

366 for(Int i = 0;i < SIZE;i++)

367 os << p[i] << " ";

C.2. Source code 247

368 return os;

369 }

370 friend std::istream& operator >> (std::istream& is, TTensor<SIZE>& p) {

371 for(Int i = 0;i < SIZE;i++)

372 is >> p[i];

373 return is;

374 }

375 };

376 /*typedef tensors*/

377 typedef TTensor<3> Vector;

378 typedef TTensor<6> STensor;

379 typedef TTensor<9> Tensor;

380

381 /*Tensor operations*/

382 Vector operator ˆ (const Vector& p,const Vector& q);

383 STensor mul(const Vector& p);

384 Tensor mul(const Vector& p,const Vector& q);

385 Tensor mul(const Tensor& p,const Tensor& q);

386 STensor mul(const STensor& p,const STensor& q);

387 Vector dot(const Vector&,const Tensor&);

388 Vector dot(const Vector&,const STensor&);

389 STensor sym(const Tensor& p);

390 Tensor skw(const Tensor& p);

391 Tensor trn(const Tensor& p);

392 Vector rotate(const Vector& v,const Vector& N,const Scalar& theta);

393

394 /*constants*/

395 namespace Constants {

396 enum {

397 XX, YY , ZZ , XY, YZ , XZ , YX, ZY , ZX

398 };

399 const Int MAX_INT = Int(1 << 31);

400 const Scalar PI = Scalar(3.14159265358979323846264);

401 const Scalar E = Scalar(2.71828182845904523536028);

402 const Scalar MachineEpsilon = (sizeof(Scalar) == 4) ? Scalar(1e-8) : Scalar(1e-15);

403 const Vector I_V = Vector(1,1,1);

404 const Tensor I_T = Tensor(1,1,1);

405 const STensor I_ST = STensor(1,1,1);

406 }

407

408 FORCEINLINE bool equal(const Scalar& p,const Scalar& q) {

248 Chapter C. CFD program

409 return mag(p - q) <= (Constants::MachineEpsilon * pow(10.0,double(sizeof(Scalar))));

410 }

411 FORCEINLINE bool equal(const Vector& p,const Vector& q) {

412 return (equal(p[0],q[0]) && equal(p[1],q[1]) && equal(p[2],q[2]));

413 }

414 /*for symmetry boundary condition*/

415 FORCEINLINE Scalar sym(const Scalar& p,const Vector& n) {

416 return p;

417 }

418 FORCEINLINE Vector sym(const Vector& p,const Vector& n) {

419 Vector en = unit(n);

420 STensor A = Constants::I_ST - mul(en);

421 Vector r = dot(p,A);

422 Scalar magR = mag(r);

423 if(equal(magR,Scalar(0)))

424 return r;

425 return r * (mag(p) / magR);

426 }

427 FORCEINLINE STensor sym(const STensor& p,const Vector& n) {

428 Vector en = unit(n);

429 STensor A = Constants::I_ST - mul(en);

430 STensor r = mul(mul(A,p),A);

431 Scalar magR = mag(r);

432 if(equal(magR,Scalar(0)))

433 return r;

434 return r * (mag(p) / magR);

435 }

436 FORCEINLINE Tensor sym(const Tensor& p,const Vector& n) {

437 Vector en = unit(n);

438 Tensor A = Constants::I_T - mul(en,en);

439 Tensor r = mul(mul(A,p),A);

440 Scalar magR = mag(r);

441 if(equal(magR,Scalar(0)))

442 return r;

443 return r * (mag(p) / magR);

444 }

445 /*

446 * Blending

447 */

448 template <class T>

449 T Interpolate_face (Scalar r,Scalar s, T x00, T x01, T x10,

C.2. Source code 249

450 T x11, T xr0, T xr1, T x0s, T x1s

451) {

452

453 T result =

454 - (1.0 - r) * (1.0 - s) * x00

455 + (1.0 - r) * x0s

456 - (1.0 - r) * s * x01

457 + (1.0 - s) * xr0

458 + s * xr1

459 - r * (1.0 - s) * x10

460 + r * x1s

461 - r * s * x11;

462

463 return result;

464 }

465 template <class T>

466 T Interpolate_cell (Scalar r, Scalar s, Scalar t,

467 T x000, T x001, T x010, T x011,

468 T x100, T x101, T x110, T x111,

469 T xr00, T xr01, T xr10, T xr11,

470 T x0s0, T x0s1, T x1s0, T x1s1,

471 T x00t, T x01t, T x10t, T x11t,

472 T x0st, T x1st, T xr0t, T xr1t, T xrs0, T xrs1

473) {

474

475 T result =

476 (1.0 - r) * (1.0 - s) * (1.0 - t) * x000

477 - (1.0 - r) * (1.0 - s) * x00t

478 + (1.0 - r) * (1.0 - s) * t * x001

479 - (1.0 - r) * (1.0 - t) * x0s0

480 + (1.0 - r) * x0st

481 - (1.0 - r) * t * x0s1

482 + (1.0 - r) * s * (1.0 - t) * x010

483 - (1.0 - r) * s * x01t

484 + (1.0 - r) * s * t * x011

485 - (1.0 - s) * (1.0 - t) * xr00

486 + (1.0 - s) * xr0t

487 - (1.0 - s) * t * xr01

488 + (1.0 - t) * xrs0

489 + t * xrs1

490 - s * (1.0 - t) * xr10

250 Chapter C. CFD program

491 + s * xr1t

492 - s * t * xr11

493 + r * (1.0 - s) * (1.0 - t) * x100

494 - r * (1.0 - s) * x10t

495 + r * (1.0 - s) * t * x101

496 - r * (1.0 - t) * x1s0

497 + r * x1st

498 - r * t * x1s1

499 + r * s * (1.0 - t) * x110

500 - r * s * x11t

501 + r * s * t * x111;

502

503 return result;

504 }

505

506 /*iterator loops*/

507 #define forEach(field,i) \

508 for(register Int i = 0;i < (field).size();i++)

509

510 #define forEachRev(field,i) \

511 for(register int i = (field).size() - 1;i >= 0;i--)

512

513 #define forEachS(field,i,strt) \

514 for(register Int i = strt;i < (field).size();i++)

515

516 #define forEachSRev(field,i,strt) \

517 for(register int i = (field).size() - 1;i >= strt;i--)

518

519 #define forEachIt(cont,field,it) \

520 for(cont::iterator it = (field).begin(); \

521 it != (field).end();++it)

522

523 /*

524 * end

525 */

526 #endif

527 #include "tensor.h"

528

529 using namespace Constants;

530

531 Vector operator ˆ (const Vector& p,const Vector& q) {

C.2. Source code 251

532 Vector r;

533 r[XX] = p[YY] * q[ZZ] - p[ZZ] * q[YY];

534 r[YY] = p[ZZ] * q[XX] - p[XX] * q[ZZ];

535 r[ZZ] = p[XX] * q[YY] - p[YY] * q[XX];

536 return r;

537 }

538 Tensor mul(const Vector& p,const Vector& q) {

539 Tensor r;

540 r[XX] = p[XX] * q[XX];

541 r[YY] = p[YY] * q[YY];

542 r[ZZ] = p[ZZ] * q[ZZ];

543

544 r[XY] = p[XX] * q[YY];

545 r[YZ] = p[YY] * q[ZZ];

546 r[XZ] = p[XX] * q[ZZ];

547

548 r[YX] = p[YY] * q[XX];

549 r[ZY] = p[ZZ] * q[YY];

550 r[ZX] = p[ZZ] * q[XX];

551 return r;

552 }

553 STensor mul(const Vector& p) {

554 STensor r;

555 r[XX] = p[XX] * p[XX];

556 r[YY] = p[YY] * p[YY];

557 r[ZZ] = p[ZZ] * p[ZZ];

558

559 r[XY] = p[XX] * p[YY];

560 r[YZ] = p[YY] * p[ZZ];

561 r[XZ] = p[XX] * p[ZZ];

562 return r;

563 }

564 Tensor mul(const Tensor& p,const Tensor& q) {

565 Tensor r;

566 r[XX] = p[XX] * q[XX] + p[XY] * q[YX] + p[XZ] * q[ZX];

567 r[XY] = p[XX] * q[XY] + p[XY] * q[YY] + p[XZ] * q[ZY];

568 r[XZ] = p[XX] * q[XZ] + p[XY] * q[YZ] + p[XZ] * q[ZZ];

569

570 r[YX] = p[YX] * q[XX] + p[YY] * q[YX] + p[YZ] * q[ZX];

571 r[YY] = p[YX] * q[XY] + p[YY] * q[YY] + p[YZ] * q[ZY];

572 r[YZ] = p[YX] * q[XZ] + p[YY] * q[YZ] + p[YZ] * q[ZZ];

252 Chapter C. CFD program

573

574 r[ZX] = p[ZX] * q[XX] + p[ZY] * q[YX] + p[ZZ] * q[ZX];

575 r[ZY] = p[ZX] * q[XY] + p[ZY] * q[YY] + p[ZZ] * q[ZY];

576 r[ZZ] = p[ZX] * q[XZ] + p[ZY] * q[YZ] + p[ZZ] * q[ZZ];

577

578 return r;

579 }

580 STensor mul(const STensor& p,const STensor& q) {

581 STensor r;

582 r[XX] = p[XX] * q[XX] + p[XY] * q[XY] + p[XZ] * q[XZ];

583 r[XY] = p[XX] * q[XY] + p[XY] * q[YY] + p[XZ] * q[YZ];

584 r[XZ] = p[XX] * q[XZ] + p[XY] * q[YZ] + p[XZ] * q[ZZ];

585

586 r[YY] = p[XY] * q[XY] + p[YY] * q[YY] + p[YZ] * q[YZ];

587 r[YZ] = p[XY] * q[XZ] + p[YY] * q[YZ] + p[YZ] * q[ZZ];

588 r[ZZ] = p[XZ] * q[XZ] + p[YZ] * q[YZ] + p[ZZ] * q[ZZ];

589

590 return r;

591 }

592 Vector dot(const Vector& p,const Tensor& q) {

593 Vector r;

594 r[XX] = q[XX] * p[XX] + q[XY] * p[YY] + q[XZ] * p[ZZ];

595 r[YY] = q[YX] * p[XX] + q[YY] * p[YY] + q[YZ] * p[ZZ];

596 r[ZZ] = q[ZX] * p[XX] + q[ZY] * p[YY] + q[ZZ] * p[ZZ];

597 return r;

598 }

599 Vector dot(const Vector& p,const STensor& q) {

600 Vector r;

601 r[XX] = q[XX] * p[XX] + q[XY] * p[YY] + q[XZ] * p[ZZ];

602 r[YY] = q[XY] * p[XX] + q[YY] * p[YY] + q[YZ] * p[ZZ];

603 r[ZZ] = q[XZ] * p[XX] + q[YZ] * p[YY] + q[ZZ] * p[ZZ];

604 return r;

605 }

606 STensor sym(const Tensor& p) {

607 STensor r;

608 r[XX] = p[XX];

609 r[YY] = p[YY];

610 r[ZZ] = p[ZZ];

611

612 r[XY] = (p[XY] + p[YX]) / 2;

613 r[YZ] = (p[YZ] + p[ZY]) / 2;

C.2. Source code 253

614 r[XZ] = (p[XZ] + p[ZX]) / 2;

615 return r;

616 }

617 Tensor skw(const Tensor& p) {

618 Tensor r;

619 r[XX] = 0;

620 r[YY] = 0;

621 r[ZZ] = 0;

622

623 r[XY] = (p[XY] - p[YX]) / 2;

624 r[YZ] = (p[YZ] - p[ZY]) / 2;

625 r[XZ] = (p[XZ] - p[ZX]) / 2;

626

627 r[YX] = (p[YX] - p[XY]) / 2;

628 r[ZY] = (p[ZY] - p[YZ]) / 2;

629 r[ZX] = (p[ZX] - p[XZ]) / 2;

630 return r;

631 }

632 Tensor trn(const Tensor& p) {

633 Tensor r = p;

634 r[XX] = p[XX];

635 r[YY] = p[YY];

636 r[ZZ] = p[ZZ];

637

638 r[XY] = p[YX];

639 r[YZ] = p[ZY];

640 r[XZ] = p[ZX];

641

642 r[YX] = p[XY];

643 r[ZY] = p[YZ];

644 r[ZX] = p[XZ];

645 return r;

646 }

647 Vector rotate(const Vector& v,const Vector& N,const Scalar& theta) {

648 Vector r;

649 Scalar sum = v & N;

650 Scalar cost = cos(theta), sint = sin(theta);

651 r[XX] = N[XX] * sum * (1 - cost) + v[XX] * cost + (-N[ZZ] * v[YY] + N[YY] * v[ZZ]) *

sint;

652 r[YY] = N[YY] * sum * (1 - cost) + v[YY] * cost + (+N[ZZ] * v[XX] - N[XX] * v[ZZ]) *

sint;

254 Chapter C. CFD program

653 r[ZZ] = N[ZZ] * sum * (1 - cost) + v[ZZ] * cost + (-N[YY] * v[XX] + N[XX] * v[YY]) *

sint;

654 return r;

655 }

656 #ifndef __FIELD_H

657 #define __FIELD_H

658

659 #include <list>

660 #include <sstream>

661 #include "mesh.h"

662 #include "mp.h"

663

664 /***

665 * Control parameters

666 ***/

667 namespace Controls {

668

669 enum Scheme{

670 CDS,UDS,HYBRID,BLENDED,LUD,CDSS,MUSCL,QUICK,

671 VANLEER,VANALBADA,MINMOD,SUPERBEE,SWEBY,QUICKL,UMIST,

672 DDS,FROMM

673 };

674 enum NonOrthoScheme {

675 NONE,MINIMUM, ORTHOGONAL, OVER_RELAXED

676 };

677 enum TimeScheme {

678 EULER, SECOND_ORDER

679 };

680 enum Solvers {

681 JACOBI, SOR, PCG

682 };

683 enum Preconditioners {

684 NOP,DIAG,SORP,DILU

685 };

686 enum CommMethod {

687 BLOCKED, ASYNCHRONOUS

688 };

689 enum State {

690 STEADY, TRANSIENT

691 };

692

C.2. Source code 255

693 extern Scheme convection_scheme;

694 extern Int TVDbruner;

695 extern Scheme interpolation_scheme;

696 extern NonOrthoScheme nonortho_scheme;

697 extern TimeScheme time_scheme;

698 extern Solvers Solver;

699 extern Preconditioners Preconditioner;

700 extern CommMethod ghost_exchange;

701 extern CommMethod parallel_method;

702 extern State state;

703

704 extern Scalar SOR_omega;

705 extern Scalar tolerance;

706 extern Scalar blend_factor;

707 extern Scalar time_scheme_factor;

708 extern Scalar dt;

709

710 extern Int max_iterations;

711 extern Int write_interval;

712 extern Int start_step;

713 extern Int end_step;

714 extern Int n_deferred;

715 extern Int save_average;

716 }

717

718 namespace {

719

720 enum ACCESS {

721 NO = 0, READ = 1, WRITE = 2,READWRITE = 3,STOREPREV = 4

722 };

723

724 }

725 /* ***

726 * Field variables defined on mesh

727 * ***/

728 template <class type,ENTITY entity>

729 class MeshField {

730 private:

731 type* P;

732 int allocated;

733 static Int SIZE;

256 Chapter C. CFD program

734 public:

735 ACCESS access;

736 Int fIndex;

737 std::string fName;

738

739 /*common*/

740 static const Int TYPE_SIZE = sizeof(type) / sizeof(Scalar);

741 static std::list<MeshField*> fields_;

742 static std::list<type*> mem_;

743

744 /*constructors*/

745 MeshField(const char* str = "", ACCESS a = NO) :

746 P(0),allocated(0),access(a),fName(str) {

747 construct(str,a);

748 }

749 MeshField(const MeshField& p) : allocated(0) {

750 allocate();

751 forEach(*this,i)

752 P[i] = p[i];

753 }

754 MeshField(const type& p) : allocated(0) {

755 allocate();

756 forEach(*this,i)

757 P[i] = p;

758 }

759 explicit MeshField(const bool) : allocated(0) {

760 }

761 /*allocators*/

762 void allocate() {

763 if(mem_.empty()) {

764 switch(entity) {

765 case CELL: SIZE = Mesh::gCells.size(); break;

766 case FACET: SIZE = Mesh::gFacets.size(); break;

767 case VERTEX: SIZE = Mesh::gVertices.size(); break;

768 }

769 P = new type[SIZE];

770 } else {

771 P = mem_.front();

772 mem_.pop_front();

773 }

774 allocated = 1;

C.2. Source code 257

775 }

776 void allocate(std::vector<type>& q) {

777 switch(entity) {

778 case CELL: SIZE = Mesh::gCells.size(); break;

779 case FACET: SIZE = Mesh::gFacets.size(); break;

780 case VERTEX: SIZE = Mesh::gVertices.size(); break;

781 }

782 P = &q[0];

783 allocated = 0;

784 }

785 void construct(const char* str = "", ACCESS a = NO) {

786 access = a;

787 fName = str;

788 if(Mesh::gCells.size())

789 allocate();

790 fIndex = Util::hash_function(str);

791 if(fIndex)

792 fields_.push_back(this);

793 }

794 /*d’tor re-cycles memory */

795 ˜MeshField() {

796 if(allocated && !Util::Terminated) {

797 mem_.push_front(P);

798 if(fIndex)

799 fields_.remove(this);

800 }

801 }

802

803 /*static functions*/

804 void readInternal(std::istream&);

805 void read(Int step);

806 void write(Int step);

807

808 /*accessors*/

809 Int size() const {

810 return SIZE;

811 }

812 type& operator [] (Int i) const {

813 return P[i];

814 }

815 /*unary ops*/

258 Chapter C. CFD program

816 MeshField operator - () {

817 MeshField r;

818 forEach(*this,i)

819 r[i] = -P[i];

820 return r;

821 }

822 friend MeshField<Scalar,entity> operator & (const MeshField& p,const MeshField& q) {

823 MeshField<Scalar,entity> r;

824 forEach(r,i)

825 r[i] = p[i] & q[i];

826 return r;

827 }

828 /*unrolled operations*/

829 #define Op($) \

830 MeshField& operator $(const MeshField& q) { \

831 forEach(*this,i) \

832 P[i] $ q[i]; \

833 return *this; \

834 }

835 #define SOp($) \

836 MeshField& operator $(const Scalar& q) { \

837 forEach(*this,i) \

838 P[i] $ q; \

839 return *this; \

840 }

841 #define Fp(name) \

842 friend MeshField name(const MeshField& p,const MeshField& s) { \

843 MeshField r; \

844 forEach(r,i) \

845 r[i] = name(p[i],s[i]); \

846 return r; \

847 }

848 #define Fp1(name) \

849 friend MeshField name(const MeshField& p,const Scalar& s) { \

850 MeshField r; \

851 forEach(r,i) \

852 r[i] = name(p[i],s); \

853 return r; \

854 }

855 #define Fp2(name) \

856 friend MeshField name(const MeshField& p) { \

C.2. Source code 259

857 MeshField r; \

858 forEach(r,i) \

859 r[i] = name(p[i]); \

860 return r; \

861 }

862 /*define ops*/

863 Op(=);

864 Op(+=);

865 Op(-=);

866 Op(*=);

867 Op(/=);

868 SOp(=);

869 SOp(+=);

870 SOp(-=);

871 SOp(*=);

872 SOp(/=);

873 Fp(sdiv);

874 /*from math.h*/

875 Fp2(acos);

876 Fp2(asin);

877 Fp2(atan);

878 Fp(atan2);

879 Fp2(ceil);

880 Fp2(cos);

881 Fp2(cosh);

882 Fp2(exp);

883 Fp2(fabs);

884 Fp2(floor);

885 Fp2(log);

886 Fp2(log10);

887 Fp1(pow);

888 Fp2(sin);

889 Fp2(sinh);

890 Fp2(sqrt);

891 Fp2(tan);

892 Fp2(tanh);

893 Fp(min);

894 Fp(max);

895 /*additional*/

896 Fp2(unit);

897 #undef Op

260 Chapter C. CFD program

898 #undef SOp

899 #undef Fp

900 #undef Fp1

901 #undef Fp2

902 Operator(MeshField,+);

903 Operator(MeshField,-);

904 Operator(MeshField,*);

905 Operator(MeshField,/);

906 /*friend ops*/

907 friend MeshField<Scalar,entity> mag(const MeshField& p) {

908 MeshField<Scalar,entity> r;

909 forEach(r,i)

910 r[i] = mag(p[i]);

911 return r;

912 }

913 friend MeshField dev(const MeshField& p,const Scalar factor = 1.) {

914 MeshField r;

915 forEach(r,i)

916 r[i] = dev(p[i],factor);

917 return r;

918 }

919 friend MeshField hyd(const MeshField& p,const Scalar factor = 1.) {

920 MeshField r;

921 forEach(r,i)

922 r[i] = hyd(p[i],factor);

923 return r;

924 }

925 /*relax*/

926 void Relax(const MeshField& po,Scalar UR) {

927 forEach(*this,i)

928 P[i] = po[i] + (P[i] - po[i]) * UR;

929 }

930 /*read/write all fields*/

931 static void readAll(Int step) {

932 forEachIt(typename std::list<MeshField*>, fields_, it) {

933 if((*it)->access & READ)

934 (*it)->read(step);

935 }

936 }

937 static void writeAll(Int step) {

938 forEachIt(typename std::list<MeshField*>, fields_, it) {

C.2. Source code 261

939 if((*it)->access & WRITE)

940 (*it)->write(step);

941 }

942 }

943 static int count_writable() {

944 int count = 0;

945 forEachIt(typename std::list<MeshField*>, fields_, it) {

946 if((*it)->access & WRITE)

947 count++;

948 }

949 return count;

950 }

951 static void writeVtkCellAll(std::ostream& os) {

952 MeshField<type,CELL>* pf;

953 forEachIt(typename std::list<MeshField*>, fields_, it) {

954 pf = *it;

955 if(pf->access & WRITE) {

956 os << pf->fName <<" "<< TYPE_SIZE <<" "

957 << Mesh::gBCellsStart << " float" << std::endl;

958 for(Int i = 0;i < Mesh::gBCellsStart;i++)

959 os << (*pf)[i] << std::endl;

960 os << std::endl;

961 }

962 }

963 }

964 static void writeVtkVertexAll(std::ostream& os) {

965 MeshField<type,VERTEX> vf;

966 forEachIt(typename std::list<MeshField*>, fields_, it) {

967 if((*it)->access & WRITE) {

968 vf = cds(cds(*(*it)));

969 os << (*it)->fName <<" "<< TYPE_SIZE <<" "

970 << vf.size() << " float" << std::endl;

971 forEach(vf,i)

972 os << vf[i] << std::endl;

973 os << std::endl;

974 }

975 }

976 }

977 /*interpolation*/

978 typedef std::list< MeshField<type,VERTEX> > vertexFieldsType;

979 static vertexFieldsType* vf_fields_;

262 Chapter C. CFD program

980 static void interpolateVertexAll() {

981 vf_fields_ = new vertexFieldsType;

982 vf_fields_->clear();

983 MeshField<type,VERTEX> vf;

984 forEachIt(typename std::list<MeshField*>, fields_, it) {

985 if((*it)->access & WRITE) {

986 vf = cds(cds(*(*it)));

987 vf_fields_->push_back(vf);

988 }

989 }

990 }

991 /*Store previous values*/

992 MeshField* tstore;

993 void initStore() {

994 tstore = new MeshField[2];

995 access = ACCESS(int(access) | STOREPREV);

996 updateStore();

997 }

998 void updateStore() {

999 tstore[1] = tstore[0];

1000 tstore[0] = *this;

1001 }

1002 /*Time history*/

1003 static std::vector<std::ofstream*> tseries;

1004 static std::vector<MeshField*> tavgs;

1005 static std::vector<MeshField*> tstds;

1006

1007 static void initTimeSeries() {

1008 MeshField<type,CELL>* pf;

1009 int sz = fields_.size();

1010 forEachIt(typename std::list<MeshField*>, fields_, it) {

1011 pf = *it;

1012 if(pf->access & WRITE) {

1013 if(Mesh::probeCells.size()) {

1014 std::string name = pf->fName + "i";

1015 std::ofstream* of = new std::ofstream(name.c_str());

1016 tseries.push_back(of);

1017 }

1018 if(Controls::save_average) {

1019 std::string name;

1020 name = pf->fName + "avg";

C.2. Source code 263

1021 MeshField* avg = new MeshField(name.c_str(),READWRITE);

1022 tavgs.push_back(avg);

1023 name = pf->fName + "std";

1024 MeshField* std = new MeshField(name.c_str(),READWRITE);

1025 tstds.push_back(std);

1026 }

1027 }

1028 }

1029 }

1030 static void updateTimeSeries(int i) {

1031 int count = 0;

1032 MeshField<type,CELL>* pf;

1033 forEachIt(typename std::list<MeshField*>, fields_, it) {

1034 pf = *it;

1035 if(pf->access & WRITE) {

1036 if(Mesh::probeCells.size()) {

1037 std::ofstream& of = *tseries[count];

1038 of << i << " ";

1039 forEach(Mesh::probeCells,j)

1040 of << (*pf)[Mesh::probeCells[j]] << " ";

1041 of << endl;

1042 }

1043 if(Controls::save_average) {

1044 MeshField& avg = *tavgs[count];

1045 avg += (*pf);

1046 MeshField& std = *tstds[count];

1047 std += (*pf) * (*pf);

1048 count++;

1049 }

1050 }

1051 if(pf->access & STOREPREV) {

1052 pf->updateStore();

1053 }

1054 }

1055 }

1056 /*IO*/

1057 friend std::ostream& operator << (std::ostream& os, const MeshField& p) {

1058 forEach(p,i)

1059 os << p[i] << std::endl;

1060 os << std::endl;

1061 return os;

264 Chapter C. CFD program

1062 }

1063 friend std::istream& operator >> (std::istream& is, MeshField& p) {

1064 forEach(p,i)

1065 is >> p[i];

1066 return is;

1067 }

1068 };

1069 #define forEachField(X) { \

1070 ScalarCellField::X; \

1071 VectorCellField::X; \

1072 STensorCellField::X; \

1073 TensorCellField::X; \

1074 }

1075 /***********************************

1076 * Specific tensor operations

1077 ***********************************/

1078 /* Default operator overload for scalar fields*/

1079 #define Op(name,F,S) \

1080 template<class T,ENTITY E> \

1081 MeshField<T,E> name(const MeshField<F,E>& p,const MeshField<S,E>& q) { \

1082 MeshField<T,E> r; \

1083 forEach(r,i) \

1084 r[i] = name(p[i],q[i]); \

1085 return r; \

1086 }

1087 Op(operator *,Scalar,T);

1088 Op(operator /,Scalar,T);

1089 Op(operator *,T,Scalar);

1090 Op(operator /,T,Scalar);

1091 #undef Op

1092 /*multiply*/

1093 template <ENTITY E>

1094 MeshField<Tensor,E> mul(const MeshField<Vector,E>& p,const MeshField<Vector,E>& q) {

1095 MeshField<Tensor,E> r;

1096 forEach(r,i)

1097 r[i] = mul(p[i],q[i]);

1098 return r;

1099 }

1100 template <ENTITY E>

1101 inline MeshField<Vector,E> mul(const MeshField<Vector,E>& p,const MeshField<Scalar,E>&

q) {

C.2. Source code 265

1102 return p * q;

1103 }

1104 template <class T,ENTITY E>

1105 MeshField<T,E> mul(const MeshField<T,E>& p,const MeshField<T,E>& q) {

1106 MeshField<T,E> r;

1107 forEach(r,i)

1108 r[i] = mul(p[i],q[i]);

1109 return r;

1110 }

1111 /*dot*/

1112 template <ENTITY E,Int SIZE>

1113 MeshField<Vector,E> dot(const MeshField<TTensor<SIZE>,E>& p,const MeshField<Vector,E>&

q) {

1114 MeshField<Vector,E> r;

1115 forEach(r,i)

1116 r[i] = dot(q[i],p[i]);

1117 return r;

1118 }

1119 template <ENTITY E>

1120 inline MeshField<Scalar,E> dot(const MeshField<Vector,E>& p,const MeshField<Vector,E>&

q) {

1121 return p & q;

1122 }

1123 /*symmetric & skew-symmetric*/

1124 template <ENTITY E>

1125 MeshField<STensor,E> sym(const MeshField<Tensor,E>& p) {

1126 MeshField<STensor,E> r;

1127 forEach(r,i)

1128 r[i] = sym(p[i]);

1129 return r;

1130 }

1131 template <ENTITY E>

1132 MeshField<Tensor,E> skw(const MeshField<Tensor,E>& p) {

1133 MeshField<Tensor,E> r;

1134 forEach(r,i)

1135 r[i] = skw(p[i]);

1136 return r;

1137 }

1138 /*transpose*/

1139 template <ENTITY E>

1140 MeshField<Tensor,E> trn(const MeshField<Tensor,E>& p) {

266 Chapter C. CFD program

1141 MeshField<Tensor,E> r;

1142 forEach(r,i)

1143 r[i] = trn(p[i]);

1144 return r;

1145 }

1146 /* **

1147 * Input - output operations

1148 * **/

1149 template <class T,ENTITY E>

1150 void MeshField<T,E>::readInternal(std::istream& is) {

1151 using namespace Mesh;

1152 /*size*/

1153 char c;

1154 int size;

1155 std::string str;

1156 is >> str >> size;

1157

1158 /*internal field*/

1159 if((c = Util::nextc(is)) && isalpha(c)) {

1160 T value = T(0);

1161 is >> str;

1162 if(str == "uniform")

1163 is >> value;

1164 *this = value;

1165 } else {

1166 char symbol;

1167 is >> size >> symbol;

1168 for(int i = 0;i < size;i++) {

1169 is >> (*this)[i];

1170 }

1171 is >> symbol;

1172 }

1173 }

1174 template <class T,ENTITY E>

1175 void MeshField<T,E>::read(Int step) {

1176 using namespace Mesh;

1177

1178 /*open*/

1179 std::stringstream path;

1180 path << fName << step;

1181 std::ifstream is(path.str().c_str());

C.2. Source code 267

1182 if(is.fail())

1183 return;

1184

1185 /*start reading*/

1186 std::cout << "Reading " << fName

1187 << step << std::endl;

1188 std::cout.flush();

1189

1190 /*internal*/

1191 readInternal(is);

1192

1193 /*boundary*/

1194 char c;

1195 BCondition<T>* bc;

1196 while((c = Util::nextc(is)) && isalpha(c)) {

1197 bc = new BCondition<T>(this->fName);

1198 is >> *bc;

1199 AllBConditions.push_back(bc);

1200 }

1201

1202 /*update BCs*/

1203 updateExplicitBCs(*this,true,true);

1204 }

1205 template <class T,ENTITY E>

1206 void MeshField<T,E>::write(Int step) {

1207 using namespace Mesh;

1208

1209 /*open*/

1210 std::stringstream path;

1211 path << fName << step;

1212 std::ofstream of(path.str().c_str());

1213

1214 /*size*/

1215 of << "size " << sizeof(T) / sizeof(Scalar) << std::endl;

1216

1217 /*internal field*/

1218 of << gBCellsStart << std::endl;

1219 of << "{" << std::endl;

1220 for(Int i = 0;i < gBCellsStart;i++)

1221 of << (*this)[i] << std::endl;

1222 of << "}" << std::endl;

268 Chapter C. CFD program

1223

1224 /*boundary field*/

1225 BasicBCondition* bbc;

1226 BCondition<T>* bc;

1227 forEach(AllBConditions,i) {

1228 bbc = AllBConditions[i];

1229 if(bbc->fIndex == this->fIndex) {

1230 bc = static_cast<BCondition<T>*> (bbc);

1231 of << *bc << std::endl;

1232 }

1233 }

1234 }

1235

1236 /*static variables*/

1237 template <class T,ENTITY E>

1238 std::list<MeshField<T,E>*> MeshField<T,E>::fields_;

1239

1240 template <class T,ENTITY E>

1241 std::list<T*> MeshField<T,E>::mem_;

1242

1243 template <class T,ENTITY E>

1244 Int MeshField<T,E>::SIZE;

1245

1246 template <class T,ENTITY E>

1247 std::vector<std::ofstream*> MeshField<T,E>::tseries;

1248

1249 template <class T,ENTITY E>

1250 std::vector<MeshField<T,E>*> MeshField<T,E>::tavgs;

1251

1252 template <class T,ENTITY E>

1253 std::vector<MeshField<T,E>*> MeshField<T,E>::tstds;

1254

1255 template <class T,ENTITY E>

1256 typename MeshField<T,E>::vertexFieldsType* MeshField<T,E>::vf_fields_;

1257 /* typedefs */

1258 typedef MeshField<Scalar,CELL> ScalarCellField;

1259 typedef MeshField<Scalar,FACET> ScalarFacetField;

1260 typedef MeshField<Scalar,VERTEX> ScalarVertexField;

1261 typedef MeshField<Vector,CELL> VectorCellField;

1262 typedef MeshField<Vector,FACET> VectorFacetField;

1263 typedef MeshField<Vector,VERTEX> VectorVertexField;

C.2. Source code 269

1264 typedef MeshField<Tensor,CELL> TensorCellField;

1265 typedef MeshField<Tensor,FACET> TensorFacetField;

1266 typedef MeshField<Tensor,VERTEX> TensorVertexField;

1267 typedef MeshField<STensor,CELL> STensorCellField;

1268 typedef MeshField<STensor,FACET> STensorFacetField;

1269 typedef MeshField<STensor,VERTEX> STensorVertexField;

1270

1271 /* ***************************************

1272 * global mesh fields

1273 * ***************************************/

1274 namespace Mesh {

1275 extern VectorVertexField vC;

1276 extern VectorFacetField fC;

1277 extern VectorCellField cC;

1278 extern VectorFacetField fN;

1279 extern ScalarCellField cV;

1280 extern ScalarFacetField fI;

1281 extern ScalarCellField yWall;

1282

1283 void initGeomMeshFields(bool = true);

1284 void write_fields(Int);

1285 void read_fields(Int);

1286 void calc_walldist(Int,Int = 1);

1287 }

1288 /***

1289 * matrix class defined on mesh

1290 ***/

1291 template <class type>

1292 struct MeshMatrix {

1293 MeshField<type,CELL>* cF;

1294 MeshField<type,CELL> Su;

1295 ScalarCellField ap;

1296 ScalarFacetField an[2];

1297 Int flags;

1298 enum FLAG {

1299 SYMMETRIC = 1

1300 };

1301 /*c’tors*/

1302 MeshMatrix() {

1303 cF = 0;

1304 flags = 0;

270 Chapter C. CFD program

1305 }

1306 MeshMatrix(const MeshMatrix& p) {

1307 cF = p.cF;

1308 flags = p.flags;

1309 ap = p.ap;

1310 an[0] = p.an[0];

1311 an[1] = p.an[1];

1312 Su = p.Su;

1313 }

1314 MeshMatrix(const MeshField<type,CELL>& p) {

1315 cF = 0;

1316 flags = SYMMETRIC;

1317 ap = Scalar(0);

1318 an[0] = Scalar(0);

1319 an[1] = Scalar(0);

1320 Su = p;

1321 }

1322 /*operators*/

1323 MeshMatrix operator - () {

1324 MeshMatrix r;

1325 r.cF = cF;

1326 r.flags = flags;

1327 r.ap = -ap;

1328 r.an[0] = -an[0];

1329 r.an[1] = -an[1];

1330 r.Su = -Su;

1331 return r;

1332 }

1333 MeshMatrix& operator = (const MeshMatrix& q) {

1334 cF = q.cF;

1335 flags = q.flags;

1336 ap = q.ap;

1337 an[0] = q.an[0];

1338 an[1] = q.an[1];

1339 Su = q.Su;

1340 return *this;

1341 }

1342 MeshMatrix& operator += (const MeshMatrix& q) {

1343 flags &= q.flags;

1344 ap += q.ap;

1345 an[0] += q.an[0];

C.2. Source code 271

1346 an[1] += q.an[1];

1347 Su += q.Su;

1348 return *this;

1349 }

1350 MeshMatrix& operator -= (const MeshMatrix& q) {

1351 flags &= q.flags;

1352 ap -= q.ap;

1353 an[0] -= q.an[0];

1354 an[1] -= q.an[1];

1355 Su -= q.Su;

1356 return *this;

1357 }

1358 MeshMatrix& operator *= (const Scalar& q) {

1359 ap *= q;

1360 an[0] *= q;

1361 an[1] *= q;

1362 Su *= q;

1363 return *this;

1364 }

1365 MeshMatrix& operator /= (const Scalar& q) {

1366 ap /= q;

1367 an[0] /= q;

1368 an[1] /= q;

1369 Su /= q;

1370 return *this;

1371 }

1372 /*binary ops*/

1373 Operator(MeshMatrix,+);

1374 Operator(MeshMatrix,-);

1375 /*is equal to*/

1376 friend MeshMatrix operator == (const MeshMatrix& p,const MeshMatrix& q) {

1377 MeshMatrix r = p;

1378 r -= q;

1379 return r;

1380 }

1381 /*relax*/

1382 void Relax(Scalar UR) {

1383 ap /= UR;

1384 Su += (*cF) * ap * (1 - UR);

1385 }

1386 /*Fix*/

272 Chapter C. CFD program

1387 void Fix(Int c,type value) {

1388 /*diagonal fix*/

1389 ap[c] = 10e30;

1390 Su[c] = value * 10e30;

1391 }

1392 /*IO*/

1393 friend std::ostream& operator << (std::ostream& os, const MeshMatrix& p) {

1394 os << p.ap << std::endl << std::endl;

1395 os << p.an[0] << std::endl << std::endl;

1396 os << p.an[1] << std::endl << std::endl;

1397 os << p.Su << std::endl << std::endl;

1398 return os;

1399 }

1400 friend std::istream& operator >> (std::istream& is, MeshMatrix& p) {

1401 is >> p.ap;

1402 is >> p.an[0];

1403 is >> p.an[1];

1404 is >> p.Su;

1405 return is;

1406 }

1407 };

1408

1409 /*typedefs*/

1410 typedef MeshMatrix<Scalar> ScalarMeshMatrix;

1411 typedef MeshMatrix<Vector> VectorMeshMatrix;

1412 typedef MeshMatrix<Tensor> TensorMeshMatrix;

1413 typedef MeshMatrix<STensor> STensorMeshMatrix;

1414

1415 /* ***************************************

1416 * Implicit boundary conditions

1417 * ***************************************/

1418 template <class T>

1419 void applyImplicitBCs(const MeshMatrix<T>& M) {

1420 using namespace Mesh;

1421 MeshField<T,CELL>& cF = *M.cF;

1422 BasicBCondition* bbc;

1423 BCondition<T>* bc;

1424

1425 /*boundary conditions*/

1426 forEach(AllBConditions,i) {

1427 bbc = AllBConditions[i];

C.2. Source code 273

1428 if(bbc->fIndex == cF.fIndex) {

1429 if(bbc->cIndex == NEUMANN ||

1430 bbc->cIndex == SYMMETRY)

1431 ;

1432 else continue;

1433

1434 bc = static_cast<BCondition<T>*> (bbc);

1435 Int sz = bc->bdry->size();

1436 if(sz == 0) continue;

1437

1438 for(Int j = 0;j < sz;j++) {

1439 Int k = (*bc->bdry)[j];

1440 Int c1 = gFO[k];

1441 Int c2 = gFN[k];

1442 if(bc->cIndex == NEUMANN) {

1443 Vector dv = cC[c2] - cC[c1];

1444 M.ap[c1] -= M.an[1][k];

1445 M.Su[c1] += M.an[1][k] * (bc->value * mag(dv));

1446 M.an[1][k] = 0;

1447 } else if(bc->cIndex == ROBIN) {

1448 Vector dv = cC[c2] - cC[c1];

1449 M.ap[c1] -= (1 - bc->shape) * M.an[1][k];

1450 M.Su[c1] += M.an[1][k] * (bc->shape * bc->value +

1451 (1 - bc->shape) * bc->tvalue * mag(dv));

1452 M.an[1][k] = 0;

1453 } else if(bc->cIndex == SYMMETRY) {

1454 M.ap[c1] -= M.an[1][k];

1455 M.Su[c1] += M.an[1][k] * (sym(cF[c1],fN[k]) - cF[c1]);

1456 M.an[1][k] = 0;

1457 }

1458 }

1459 }

1460 }

1461 }

1462 /* ***************************************

1463 * Explicit boundary conditions

1464 * **************************************/

1465 template<class T,ENTITY E>

1466 void updateExplicitBCs(const MeshField<T,E>& cF,

1467 bool update_ghost = false,

1468 bool update_fixed = false

274 Chapter C. CFD program

1469) {

1470 using namespace Mesh;

1471 BasicBCondition* bbc;

1472 BCondition<T>* bc;

1473 Scalar z = Scalar(0),

1474 zmin = Scalar(0),

1475 zmax = Scalar(0),

1476 zR = Scalar(0);

1477 Vector C(0);

1478

1479 /*boundary conditions*/

1480 forEach(AllBConditions,i) {

1481 bbc = AllBConditions[i];

1482 if(bbc->fIndex == cF.fIndex) {

1483 if(bbc->cIndex == GHOST)

1484 continue;

1485

1486 bc = static_cast<BCondition<T>*> (bbc);

1487 Int sz = bc->bdry->size();

1488 if(sz == 0) continue;

1489

1490 if(update_fixed) {

1491 if(bc->cIndex == DIRICHLET ||

1492 bc->cIndex == POWER ||

1493 bc->cIndex == LOG ||

1494 bc->cIndex == PARABOLIC ||

1495 bc->cIndex == INVERSE

1496) {

1497 Int ci,j;

1498 Scalar r;

1499 if(bc->zMax > 0) {

1500 zmin = bc->zMin;

1501 zmax = bc->zMax;

1502 zR = zmax - zmin;

1503 } else {

1504 zmin = Scalar(10e30);

1505 zmax = -Scalar(10e30);

1506 C = Vector(0);

1507 for(j = 0;j < sz;j++) {

1508 Facet& f = gFacets[j];

1509 forEach(f,k) {

C.2. Source code 275

1510 z = (vC[f[k]] & bc->dir);

1511 if(z < zmin)

1512 zmin = z;

1513 if(z > zmax)

1514 zmax = z;

1515 }

1516 C += fC[j];

1517 }

1518 C /= Scalar(sz);

1519 zR = zmax - zmin;

1520

1521 if(bc->cIndex == PARABOLIC) {

1522 ci = gFN[(*bc->bdry)[0]];

1523 zR = magSq(cC[ci] - C);

1524 for(j = 1;j < sz;j++) {

1525 ci = gFN[(*bc->bdry)[0]];

1526 r = magSq(cC[ci] - C);

1527 if(r < zR) zR = r;

1528 }

1529 }

1530 }

1531 }

1532 }

1533 for(Int j = 0;j < sz;j++) {

1534 Int k = (*bc->bdry)[j];

1535 Int c1 = gFO[k];

1536 Int c2 = gFN[k];

1537 if(bc->cIndex == NEUMANN) {

1538 Vector dv = cC[c2] - cC[c1];

1539 cF[c2] = cF[c1] + bc->value * mag(dv);

1540 } else if(bc->cIndex == ROBIN) {

1541 Vector dv = cC[c2] - cC[c1];

1542 cF[c2] = bc->shape * bc->value +

1543 (1 - bc->shape) * (cF[c1] + bc->tvalue * mag(dv));

1544 } else if(bc->cIndex == SYMMETRY) {

1545 cF[c2] = sym(cF[c1],fN[k]);

1546 } else if(bc->cIndex == CYCLIC) {

1547 Int c22;

1548 if(j < sz / 2)

1549 c22 = gFO[(*bc->bdry)[j + sz/2]];

1550 else

276 Chapter C. CFD program

1551 c22 = gFO[(*bc->bdry)[j - sz/2]];

1552 cF[c2] = cF[c22];

1553 } else {

1554 if(update_fixed) {

1555 T v(0);

1556 z = (cC[c2] & bc->dir) - zmin;

1557 if(bc->cIndex == DIRICHLET) {

1558 v = bc->value;

1559 } else if(bc->cIndex == POWER) {

1560 if(z < 0) z = 0;

1561 if(z > zR) v = bc->value;

1562 else v = bc->value * pow(z / zR,bc->shape);

1563 } else if(bc->cIndex == LOG) {

1564 if(z < 0) z = 0;

1565 if(z > zR) v = bc->value;

1566 else v = bc->value * (log(1 + z / bc->shape) / log(1 + zR / bc->shape));

1567 } else if(bc->cIndex == PARABOLIC) {

1568 z = magSq(cC[c2] - C);

1569 v = bc->value * (z / zR);

1570 } else if(bc->cIndex == INVERSE) {

1571 v = bc->value / (z + bc->shape);

1572 }

1573 if(!bc->first && !equal(mag(bc->tvalue),0)) {

1574 T meanTI = v * (bc->tvalue * pow (z / zR,-bc->tshape));

1575 Scalar rFactor = 4 * ((rand() / Scalar(RAND_MAX)) - 0.5);

1576 v += ((cF[c2] - v) * 0.9 + (meanTI * rFactor) * 0.1);

1577 }

1578 bc->fixed[j] = cF[c2] = v;

1579 } else {

1580 cF[c2] = bc->fixed[j];

1581 }

1582 }

1583 }

1584 bc->first = false;

1585 }

1586 }

1587 /*ghost cells*/

1588 if(update_ghost && gInterMesh.size()) {

1589 exchange_ghost(&cF[0]);

1590 }

1591 }

C.2. Source code 277

1592 /* ***************************************

1593 * Fill boundary from internal values

1594 * **************************************/

1595 template<class T,ENTITY E>

1596 void fillBCs(const MeshField<T,E>& cF,

1597 bool update_ghost = false) {

1598 /*neumann update*/

1599 using namespace Mesh;

1600 forEachS(cF,i,gBCellsStart)

1601 cF[i] = cF[gFO[gCells[i][0]]];

1602 /*ghost cells*/

1603 if(update_ghost && gInterMesh.size()) {

1604 exchange_ghost(&cF[0]);

1605 }

1606 }

1607 /*************************************

1608 * Exchange ghost cell information

1609 *************************************/

1610 template <class T>

1611 void exchange_ghost(T* P) {

1612 using namespace Mesh;

1613 /*blocked exchange*/

1614 if(Controls::ghost_exchange == Controls::BLOCKED) {

1615 MeshField<T,CELL> buffer;

1616 forEach(gInterMesh,i) {

1617 interBoundary& b = gInterMesh[i];

1618 IntVector& f = *(b.f);

1619 if(b.from < b.to) {

1620 //send

1621 forEach(f,j)

1622 buffer[j] = P[gFO[f[j]]];

1623 MP::send(&buffer[0],f.size(),b.to,MP::FIELD);

1624 //recieve

1625 MP::recieve(&buffer[0],f.size(),b.to,MP::FIELD);

1626 forEach(f,j)

1627 P[gFN[f[j]]] = buffer[j];

1628 } else {

1629 //recieve

1630 MP::recieve(&buffer[0],f.size(),b.to,MP::FIELD);

1631 forEach(f,j)

1632 P[gFN[f[j]]] = buffer[j];

278 Chapter C. CFD program

1633 //send

1634 forEach(f,j)

1635 buffer[j] = P[gFO[f[j]]];

1636 MP::send(&buffer[0],f.size(),b.to,MP::FIELD);

1637 }

1638 }

1639 /*Asynchronous exchange*/

1640 } else {

1641 MeshField<T,CELL> sendbuf,recvbuf;

1642 std::vector<MP::REQUEST> request(2 * gInterMesh.size(),0);

1643 Int rcount = 0;

1644 //fill send buffer

1645 forEach(gInterMesh,i) {

1646 interBoundary& b = gInterMesh[i];

1647 IntVector& f = *(b.f);

1648 forEach(f,j)

1649 sendbuf[b.buffer_index + j] = P[gFO[f[j]]];

1650 }

1651

1652 forEach(gInterMesh,i) {

1653 interBoundary& b = gInterMesh[i];

1654 //non-blocking send/recive

1655 MP::isend(&sendbuf[b.buffer_index],b.f->size(),

1656 b.to,MP::FIELD,&request[rcount]);

1657 rcount++;

1658 MP::irecieve(&recvbuf[b.buffer_index],b.f->size(),

1659 b.to,MP::FIELD,&request[rcount]);

1660 rcount++;

1661 }

1662 //wait

1663 MP::waitall(rcount,&request[0]);

1664 //recieve buffer

1665 forEach(gInterMesh,i) {

1666 interBoundary& b = gInterMesh[i];

1667 IntVector& f = *(b.f);

1668 forEach(f,j)

1669 P[gFN[f[j]]] = recvbuf[b.buffer_index + j];

1670 }

1671 }

1672 /*end*/

1673 }

C.2. Source code 279

1674

1675 /* *******************************

1676 * matrix - vector product p * q

1677 * *******************************/

1678 template <class T>

1679 MeshField<T,CELL> operator * (const MeshMatrix<T>& p,const MeshField<T,CELL>& q) {

1680 using namespace Mesh;

1681 MeshField<T,CELL> r;

1682 Int c1,c2;

1683 r = q * p.ap;

1684 forEach(gFacets,f) {

1685 c1 = gFO[f];

1686 c2 = gFN[f];

1687 r[c1] -= q[c2] * p.an[1][f];

1688 r[c2] -= q[c1] * p.an[0][f];

1689 }

1690 return r;

1691 }

1692 /*matrix transopose - vector product pT * q */

1693 template <class T>

1694 MeshField<T,CELL> operator ˆ (const MeshMatrix<T>& p,const MeshField<T,CELL>& q) {

1695 using namespace Mesh;

1696 MeshField<T,CELL> r;

1697 Int c1,c2;

1698 r = q * p.ap;

1699 forEach(gFacets,f) {

1700 c1 = gFO[f];

1701 c2 = gFN[f];

1702 r[c2] -= q[c1] * p.an[1][f];

1703 r[c1] -= q[c2] * p.an[0][f];

1704 }

1705 return r;

1706 }

1707 /* calculate RHS sum */

1708 template <class T>

1709 MeshField<T,CELL> getRHS(const MeshMatrix<T>& p) {

1710 using namespace Mesh;

1711 MeshField<T,CELL> r;

1712 Int c1,c2;

1713 r = p.Su;

1714 forEach(gFacets,f) {

280 Chapter C. CFD program

1715 c1 = gFO[f];

1716 c2 = gFN[f];

1717 r[c1] += (*p.cF)[c2] * p.an[1][f];

1718 r[c2] += (*p.cF)[c1] * p.an[0][f];

1719 }

1720 return r;

1721 }

1722

1723 /* ********************************

1724 * Interpolate field operations

1725 * *******************************/

1726 /*central difference*/

1727 template<class type>

1728 MeshField<type,FACET> cds(const MeshField<type,CELL>& cF) {

1729 using namespace Mesh;

1730 MeshField<type,FACET> fF;

1731 forEach(fF,i) {

1732 fF[i] = (cF[gFO[i]] * (fI[i])) + (cF[gFN[i]] * (1 - fI[i]));

1733 }

1734 return fF;

1735 }

1736 /*upwind*/

1737 template<class type>

1738 MeshField<type,FACET> uds(const MeshField<type,CELL>& cF,const ScalarFacetField& flux)

{

1739 using namespace Mesh;

1740 MeshField<type,FACET> fF;

1741 forEach(fF,i) {

1742 if(flux[i] >= 0) fF[i] = cF[gFO[i]];

1743 else fF[i] = cF[gFN[i]];

1744 }

1745 return fF;

1746 }

1747 /*facet data to vertex data */

1748 template<class type>

1749 MeshField<type,VERTEX> cds(const MeshField<type,FACET>& fF) {

1750 using namespace Mesh;

1751 std::vector<Scalar> cnt;

1752 MeshField<type,VERTEX> vF;

1753 cnt.assign(vF.size(),Scalar(0));

1754 Scalar dist;

C.2. Source code 281

1755

1756 vF = type(0);

1757 forEach(fF,i) {

1758 Facet& f = gFacets[i];

1759 if(gFN[i] < gBCellsStart) {

1760 forEach(f,j) {

1761 dist = 1.f / magSq(gVertices[f[j]] - fC[i]);

1762 vF[f[j]] += (fF[i] * dist);

1763 cnt[f[j]] += dist;

1764 }

1765 } else {

1766 forEach(f,j) {

1767 vF[f[j]] += Scalar(10e30) * fF[i];

1768 cnt[f[j]] += Scalar(10e30);

1769 }

1770 }

1771 }

1772 forEach(vF,i) {

1773 vF[i] /= cnt[i];

1774 if(mag(vF[i]) < Constants::MachineEpsilon)

1775 vF[i] = type(0);

1776 }

1777 return vF;

1778 }

1779 /* **************************

1780 * Integrate field operation

1781 * **************************/

1782 template<class type>

1783 MeshField<type,CELL> sum(const MeshField<type,FACET>& fF) {

1784 using namespace Mesh;

1785 MeshField<type,CELL> cF;

1786 cF = type(0);

1787 forEach(fF,i) {

1788 cF[gFO[i]] += fF[i];

1789 cF[gFN[i]] -= fF[i];

1790 }

1791 return cF;

1792 }

1793 /**

1794 * Gradient field operation.

1795 * gradV(p) = Sum_f (fN * p)

282 Chapter C. CFD program

1796 * grad(p) = gradV(p) / V

1797 * gradV(p) is integrated over the volume so it can be used directly in

1798 * finite volume equations just like div,lap,ddt,src etc...

1799 * grad(p) returns per-unit volume gradient at the centre.

1800 **/

1801

1802 /*Explicit*/

1803 inline VectorCellField gradV(const ScalarFacetField& p) {

1804 return sum(mul(Mesh::fN,p));

1805 }

1806 inline VectorCellField gradV(const ScalarCellField& p) {

1807 return gradV(cds(p));

1808 }

1809 inline TensorCellField gradV(const VectorFacetField& p) {

1810 return sum(mul(Mesh::fN,p));

1811 }

1812 inline TensorCellField gradV(const VectorCellField& p) {

1813 return gradV(cds(p));

1814 }

1815

1816 /*Explicit*/

1817 inline VectorCellField grad(const ScalarFacetField& p) {

1818 VectorCellField f = gradV(p) / Mesh::cV;

1819 fillBCs(f,true);

1820 return f;

1821 }

1822 inline VectorCellField grad(const ScalarCellField& p) {

1823 return grad(cds(p));

1824 }

1825 inline TensorCellField grad(const VectorFacetField& p) {

1826 TensorCellField f = gradV(p) / Mesh::cV;

1827 fillBCs(f,true);

1828 return f;

1829 }

1830 inline TensorCellField grad(const VectorCellField& p) {

1831 return grad(cds(p));

1832 }

1833

1834 /* ***

1835 * Laplacian field operation

1836 * **/

C.2. Source code 283

1837

1838 /*Implicit*/

1839 template<class type>

1840 MeshMatrix<type> lap(MeshField<type,CELL>& cF,const ScalarFacetField& mu) {

1841 using namespace Controls;

1842 using namespace Mesh;

1843 MeshMatrix<type> m;

1844 VectorFacetField K;

1845 Vector dv;

1846 Int c1,c2;

1847 Scalar D = 0;

1848 /*clear*/

1849 m.cF = &cF;

1850 m.flags |= m.SYMMETRIC;

1851 m.Su = type(0);

1852 m.ap = Scalar(0);

1853 forEach(mu,i) {

1854 c1 = gFO[i];

1855 c2 = gFN[i];

1856 dv = cC[c2] - cC[c1];

1857 /*diffusivity coefficient*/

1858 if(nonortho_scheme == NONE) {

1859 D = mag(fN[i]) / mag(dv);

1860 } else {

1861 if(nonortho_scheme == OVER_RELAXED) {

1862 D = ((fN[i] & fN[i]) / (fN[i] & dv));

1863 } else if(nonortho_scheme == MINIMUM) {

1864 D = ((fN[i] & dv) / (dv & dv));

1865 } else if(nonortho_scheme == ORTHOGONAL) {

1866 D = sqrt((fN[i] & fN[i]) / (dv & dv));

1867 }

1868 K[i] = fN[i] - D * dv;

1869 }

1870 /*coefficients*/

1871 m.an[0][i] = D * mu[i];

1872 m.an[1][i] = D * mu[i];

1873 m.ap[c1] += m.an[0][i];

1874 m.ap[c2] += m.an[1][i];

1875 }

1876 /*non-orthogonality handled through deferred correction*/

1877 if(nonortho_scheme != NONE) {

284 Chapter C. CFD program

1878 MeshField<type,FACET> r = dot(cds(grad(cF)),K);

1879 type res;

1880 forEach(mu,i) {

1881 c1 = gFO[i];

1882 c2 = gFN[i];

1883 res = m.an[0][i] * (cF[c2] - cF[c1]);

1884 if(mag(r[i]) > Scalar(0.5) * mag(res))

1885 r[i] = Scalar(0.5) * res;

1886 }

1887 m.Su = sum(r);

1888 }

1889 /*end*/

1890 return m;

1891 }

1892

1893 template<class type>

1894 inline MeshMatrix<type> lap(MeshField<type,CELL>& cF,const ScalarCellField& mu) {

1895 return lap(cF,cds(mu));

1896 }

1897

1898 /* ***

1899 * Divergence field operation

1900 * ***/

1901 /*face flux*/

1902 inline ScalarFacetField flx(const VectorFacetField& p) {

1903 return dot(p,Mesh::fN);

1904 }

1905 inline ScalarFacetField flx(const VectorCellField& p) {

1906 return flx(cds(p));

1907 }

1908 inline VectorFacetField flx(const TensorFacetField& p) {

1909 return dot(p,Mesh::fN);

1910 }

1911 inline VectorFacetField flx(const TensorCellField& p) {

1912 return flx(cds(p));

1913 }

1914 /* Explicit */

1915 inline ScalarCellField div(const VectorFacetField& p) {

1916 return sum(flx(p));

1917 }

1918 inline ScalarCellField div(const VectorCellField& p) {

C.2. Source code 285

1919 return sum(flx(p));

1920 }

1921 inline VectorCellField div(const TensorFacetField& p) {

1922 return sum(flx(p));

1923 }

1924 inline VectorCellField div(const TensorCellField& p) {

1925 return sum(flx(p));

1926 }

1927 /* Implicit */

1928 template<class type>

1929 MeshMatrix<type> div(MeshField<type,CELL>& cF,const ScalarFacetField& flux,const

ScalarFacetField& mu) {

1930 using namespace Controls;

1931 using namespace Mesh;

1932 MeshMatrix<type> m;

1933 Scalar F,G;

1934 m.cF = &cF;

1935 m.flags = 0;

1936 m.Su = type(0);

1937 m.ap = Scalar(0);

1938

1939 /*Implicit convection schemes*/

1940 bool isImplicit = (

1941 convection_scheme == CDS ||

1942 convection_scheme == UDS ||

1943 convection_scheme == BLENDED ||

1944 convection_scheme == HYBRID);

1945

1946 if(isImplicit) {

1947 ScalarFacetField gamma;

1948 if(convection_scheme == CDS)

1949 gamma = Scalar(1);

1950 else if(convection_scheme == UDS)

1951 gamma = Scalar(0);

1952 else if(convection_scheme == BLENDED)

1953 gamma = Scalar(blend_factor);

1954 else if(convection_scheme == HYBRID) {

1955 Scalar D;

1956 Vector dv;

1957 forEach(gFacets,j) {

1958 /*calc D - uncorrected */

286 Chapter C. CFD program

1959 dv = cC[gFN[j]] - cC[gFO[j]];

1960 D = (mag(fN[j]) / mag(dv)) * mu[j];

1961 /*compare F and D */

1962 F = flux[j];

1963 if(F < 0) {

1964 if(-F * fI[j] > D) gamma[j] = 0;

1965 else gamma[j] = 1;

1966 } else {

1967 if(F * (1 - fI[j]) > D) gamma[j] = 0;

1968 else gamma[j] = 1;

1969 }

1970 }

1971 }

1972 forEach(flux,i) {

1973 F = flux[i];

1974 G = gamma[i];

1975 m.an[0][i] = ((G) * (-F * (fI[i])) + (1 - G) * (-max(F,0)));

1976 m.an[1][i] = ((G) * (F * (1 - fI[i])) + (1 - G) * (-max(-F,0)));

1977 m.ap[gFO[i]] += m.an[0][i];

1978 m.ap[gFN[i]] += m.an[1][i];

1979 }

1980 /*deferred correction*/

1981 } else {

1982 forEach(flux,i) {

1983 F = flux[i];

1984 m.an[0][i] = -max(F,0);

1985 m.an[1][i] = -max(-F,0);

1986 m.ap[gFO[i]] += m.an[0][i];

1987 m.ap[gFN[i]] += m.an[1][i];

1988 }

1989

1990 MeshField<type,FACET> corr;

1991 if(convection_scheme == CDSS) {

1992 corr = cds(cF) - uds(cF,flux);

1993 } else if(convection_scheme == LUD) {

1994 VectorFacetField R = fC - uds(cC,flux);

1995 corr = dot(uds(grad(cF),flux),R);

1996 } else if(convection_scheme == MUSCL) {

1997 VectorFacetField R = fC - uds(cC,flux);

1998 corr = (blend_factor) * (cds(cF) - uds(cF,flux));

1999 corr += (1 - blend_factor) * (dot(uds(grad(cF),flux),R));

C.2. Source code 287

2000 } else {

2001 /*

2002 TVD schemes

2003 ˜˜˜˜˜˜˜˜˜˜˜

2004 Reference:

2005 M.S Darwish and F Moukalled "TVD schemes for unstructured grids"

2006 Versteeg and Malaskara

2007 Description:

2008 phi = phiU + psi(r) * [(phiD - phiC) * (1 - fi)]

2009 Schemes

2010 psi(r) = 0 =>UDS

2011 psi(r) = 1 =>CDS

2012 R is calculated as ratio of upwind and downwind gradient

2013 r = phiDC / phiCU

2014 Further modification to unstructured grid to better fit LUD scheme

2015 r = (phiDC / phiCU) * (fi / (1 - fi))

2016 */

2017 /*calculate r*/

2018 MeshField<type,FACET> q,r,phiDC,phiCU;

2019 ScalarFacetField uFI;

2020 {

2021 ScalarFacetField nflux = Scalar(0)-flux;

2022 phiDC = uds(cF,nflux) - uds(cF,flux);

2023 forEach(phiDC,i) {

2024 if(flux[i] >= 0) G = fI[i];

2025 else G = 1 - fI[i];

2026 uFI[i] = G;

2027 }

2028 /*Bruner’s or Darwish way of calculating r*/

2029 if(TVDbruner) {

2030 VectorFacetField R = fC - uds(cC,flux);

2031 phiCU = 2 * (dot(uds(grad(cF),flux),R));

2032 } else {

2033 VectorFacetField R = uds(cC,nflux) - uds(cC,flux);

2034 phiCU = 2 * (dot(uds(grad(cF),flux),R)) - phiDC;

2035 }

2036 /*end*/

2037 }

2038 r = (phiCU / phiDC) * (uFI / (1 - uFI));

2039 forEach(phiDC,i) {

2040 if(equal(phiDC[i] * (1 - uFI[i]),type(0)))

288 Chapter C. CFD program

2041 r[i] = type(0);

2042 }

2043 /*TVD schemes*/

2044 if(convection_scheme == VANLEER) {

2045 q = (r+fabs(r)) / (1+r);

2046 } else if(convection_scheme == VANALBADA) {

2047 q = (r+r*r) / (1+r*r);

2048 } else if(convection_scheme == MINMOD) {

2049 q = max(type(0),min(r,type(1)));

2050 } else if(convection_scheme == SUPERBEE) {

2051 q = max(min(r,type(2)),min(2*r,type(1)));

2052 q = max(q,type(0));

2053 } else if(convection_scheme == SWEBY) {

2054 Scalar beta = 2;

2055 q = max(min(r,type(beta)),min(beta*r,type(1)));

2056 q = max(q,type(0));

2057 } else if(convection_scheme == QUICKL) {

2058 q = min(2*r,(3+r)/4);

2059 q = min(q,type(2));

2060 q = max(q,type(0));

2061 } else if(convection_scheme == UMIST) {

2062 q = min(2*r,(3+r)/4);

2063 q = min(q,(1+3*r)/4);

2064 q = min(q,type(2));

2065 q = max(q,type(0));

2066 } else if(convection_scheme == QUICK) {

2067 q = (3+r)/4;

2068 } else if(convection_scheme == DDS) {

2069 q = 2;

2070 } else if(convection_scheme == FROMM) {

2071 q = (1+r)/2;

2072 }

2073 corr = q * phiDC * (1 - uFI);

2074 /*end*/

2075 }

2076 m.Su = sum(flux * corr);

2077 }

2078 return m;

2079 }

2080

2081 template<class type,ENTITY E>

C.2. Source code 289

2082 inline MeshMatrix<type> div(MeshField<type,CELL>& cF,const MeshField<Vector,E>& rhoU,

const ScalarFacetField& mu) {

2083 return div(cF,div(rhoU),mu);

2084 }

2085

2086 /* *******************************

2087 * Temporal derivative

2088 * *******************************/

2089 template<class type>

2090 MeshMatrix<type> ddt(MeshField<type,CELL>& cF,const ScalarCellField& rho) {

2091 MeshMatrix<type> m;

2092 m.cF = &cF;

2093 m.flags |= m.SYMMETRIC;

2094 if(Controls::time_scheme == Controls::EULER || !(cF.access & STOREPREV)) {

2095 if(Controls::time_scheme != Controls::EULER) cF.initStore();

2096 m.ap = (Mesh::cV * rho) / -Controls::dt;

2097 m.Su = cF * m.ap;

2098 } else if(Controls::time_scheme == Controls::SECOND_ORDER) {

2099 m.ap = (1.5 * Mesh::cV * rho) / -Controls::dt;

2100 m.Su = ((4.0 * cF - cF.tstore[1]) / 3.0) * m.ap;

2101 }

2102 m.an[0] = Scalar(0);

2103 m.an[1] = Scalar(0);

2104 return m;

2105 }

2106 template<class type>

2107 MeshMatrix<type> ddt2(MeshField<type,CELL>& cF,const ScalarCellField& rho) {

2108 MeshMatrix<type> m;

2109 m.cF = &cF;

2110 m.flags |= m.SYMMETRIC;

2111 if(!(cF.access & STOREPREV)) cF.initStore();

2112 m.ap = (Mesh::cV * rho) / -(Controls::dt * Controls::dt);

2113 m.Su = (2.0 * cF - cF.tstore[1]) * m.ap;

2114 m.an[0] = Scalar(0);

2115 m.an[1] = Scalar(0);

2116 return m;

2117 }

2118 /* *******************************

2119 * Linearized source term

2120 * *******************************/

2121 template<class type>

290 Chapter C. CFD program

2122 MeshMatrix<type> src(MeshField<type,CELL>& cF,const ScalarCellField& Sc,const

ScalarCellField Sp) {

2123 MeshMatrix<type> m;

2124 m.cF = &cF;

2125 m.flags |= m.SYMMETRIC;

2126 m.ap = -(Sp * Mesh::cV);

2127 m.an[0] = Scalar(0);

2128 m.an[1] = Scalar(0);

2129 m.Su = (Sc * Mesh::cV);

2130 return m;

2131 }

2132 /* **************************************

2133 * CSR - compressed sparse row format

2134 * * Used for on GPU computation

2135 * * Propably for AMG too

2136 * **************************************/

2137 template <class T>

2138 class CSRMatrix {

2139 public:

2140 std::vector<Int> rows;

2141 std::vector<Int> cols;

2142 std::vector<Scalar> an;

2143 std::vector<Scalar> anT;

2144 std::vector<T> cF;

2145 std::vector<T> Su;

2146 public:

2147 template <class T1>

2148 CSRMatrix(const MeshMatrix<T1>& A) {

2149 using namespace Mesh;

2150 const Int N = A.ap.size();

2151 const Int NN = A.ap.size() +

2152 A.an[0].size() +

2153 A.an[1].size();

2154 register Int i,j,f;

2155

2156 /*resize*/

2157 cF.resize(N);

2158 Su.resize(N);

2159 rows.reserve(N + 1);

2160 cols.reserve(NN);

2161 an.reserve(NN);

C.2. Source code 291

2162 anT.reserve(NN);

2163

2164 /*source term*/

2165 for(i = 0;i < N;i++) {

2166 Su[i] = A.Su[i];

2167 cF[i] = (*A.cF)[i];

2168 }

2169

2170 /*fill matrix in CSR format.Diagonal element

2171 is always at the start of a row */

2172 Int cn = 0;

2173 for(i = 0;i < N;i++) {

2174 Cell& c = gCells[i];

2175

2176 rows.push_back(cn);

2177

2178 an.push_back(A.ap[i]);

2179 anT.push_back(A.ap[i]);

2180 cols.push_back(i);

2181 cn++;

2182

2183 forEach(c,j) {

2184 f = c[j];

2185 if(i == gFO[f]) {

2186 an.push_back(A.an[1][f]);

2187 anT.push_back(A.an[0][f]);

2188 cols.push_back(gFN[f]);

2189 cn++;

2190 } else {

2191 an.push_back(A.an[0][f]);

2192 anT.push_back(A.an[1][f]);

2193 cols.push_back(gFO[f]);

2194 cn++;

2195 }

2196 }

2197 }

2198 /*push extra row*/

2199 rows.push_back(cn);

2200 }

2201 /*IO*/

2202 friend std::ostream& operator << (std::ostream& os, const CSRMatrix& p) {

292 Chapter C. CFD program

2203 os << p.rows << std::endl;

2204 os << p.cols << std::endl;

2205 os << p.an << std::endl;

2206 os << p.Su << std::endl;

2207 return os;

2208 }

2209 friend std::istream& operator >> (std::istream& is, CSRMatrix& p) {

2210 is >> p.rows;

2211 is >> p.cols;

2212 is >> p.an;

2213 is >> p.Su;

2214 return is;

2215 }

2216 /*end*/

2217 };

2218 /* ********************

2219 * End

2220 * ********************/

2221 #endif

2222 #include "field.h"

2223

2224 using namespace std;

2225

2226 namespace Mesh {

2227 VectorVertexField vC;

2228 VectorFacetField fC;

2229 VectorCellField cC;

2230 VectorFacetField fN;

2231 ScalarCellField cV;

2232 ScalarFacetField fI;

2233 ScalarCellField yWall(false);

2234 }

2235 namespace Controls {

2236 Scheme convection_scheme = HYBRID;

2237 Int TVDbruner = 0;

2238 Scheme interpolation_scheme = CDS;

2239 NonOrthoScheme nonortho_scheme = OVER_RELAXED;

2240 TimeScheme time_scheme = EULER;

2241 Scalar time_scheme_factor = 1;

2242 Scalar blend_factor = Scalar(0.2);

2243 Scalar tolerance = Scalar(1e-5f);

C.2. Source code 293

2244 Scalar dt = Scalar(.1);

2245 Scalar SOR_omega = Scalar(1.7);

2246 Solvers Solver = PCG;

2247 Preconditioners Preconditioner = SORP;

2248 State state = STEADY;

2249 Int max_iterations = 500;

2250 Int write_interval = 20;

2251 Int start_step = 0;

2252 Int end_step = 2;

2253 Int n_deferred = 0;

2254 Int save_average = 0;

2255 CommMethod ghost_exchange = BLOCKED;

2256 CommMethod parallel_method = BLOCKED;

2257 }

2258

2259 /*

2260 * Initialize geometric mesh fields

2261 */

2262 void Mesh::initGeomMeshFields(bool remove_empty) {

2263 /*initialize mesh*/

2264 addBoundaryCells();

2265 calcGeometry();

2266 /* remove empty faces*/

2267 if(remove_empty) {

2268 Boundaries::iterator it = gBoundaries.find("delete");

2269 if(it != gBoundaries.end()) {

2270 removeBoundary(gBoundaries["delete"]);

2271 gBoundaries.erase(it);

2272 }

2273 }

2274 /*erase interior and empty boundaries*/

2275 for(Boundaries::iterator it = gBoundaries.begin();

2276 it != gBoundaries.end();) {

2277 if(it->second.size() <= 0 ||

2278 it->first.find("interior") != std::string::npos

2279) {

2280 gBoundaries.erase(it++);

2281 } else ++it;

2282 }

2283 /* Allocate fields*/

2284 vC.allocate(gVertices);

294 Chapter C. CFD program

2285 fC.allocate(_fC);

2286 cC.allocate(_cC);

2287 fN.allocate(_fN);

2288 cV.allocate(_cV);

2289 fI.allocate();

2290 /* Facet interpolation factor to the owner of the face.

2291 * Neighbor takes (1 - f) */

2292 exchange_ghost(&cV[0]);

2293 exchange_ghost(&cC[0]);

2294 forEach(gFacets,i) {

2295 Int c1 = gFO[i];

2296 Int c2 = gFN[i];

2297 Scalar s1 = mag(cC[c1] - fC[i]);

2298 Scalar s2 = mag(cC[c2] - fC[i]);

2299 fI[i] = 1.f - s1 / (s1 + s2);

2300 }

2301 /*Construct wall distance field*/

2302 {

2303 yWall.construct("yWall");

2304 yWall = Scalar(0);

2305 /*boundary*/

2306 BCondition<Scalar>* bc;

2307 forEachIt(Boundaries,gBoundaries,it) {

2308 string bname = it->first;

2309 bc = new BCondition<Scalar>(yWall.fName);

2310 bc->bname = bname;

2311 if(bname.find("WALL") != std::string::npos) {

2312 bc->cname = "DIRICHLET";

2313 bc->value = Scalar(0);

2314 } else if(bname.find("interMesh") != std::string::npos) {

2315 } else {

2316 bc->cname = "NEUMANN";

2317 bc->value = Scalar(0);

2318 }

2319 bc->init_indices();

2320 AllBConditions.push_back(bc);

2321 }

2322 updateExplicitBCs(yWall,true,true);

2323 }

2324 }

2325 /*

C.2. Source code 295

2326 * Read/Write

2327 */

2328 void Mesh::write_fields(Int step) {

2329 forEachField(writeAll(step));

2330 }

2331 void Mesh::read_fields(Int step) {

2332 forEachField(readAll(step));

2333 }

2334 void Mesh::enroll(Util::ParamList& params) {

2335 using namespace Controls;

2336 using namespace Util;

2337

2338 params.enroll("max_iterations",&max_iterations);

2339 params.enroll("write_interval",&write_interval);

2340 params.enroll("start_step",&start_step);

2341 params.enroll("end_step",&end_step);

2342 params.enroll("n_deferred",&n_deferred);

2343

2344 params.enroll("blend_factor",&blend_factor);

2345 params.enroll("tolerance",&tolerance);

2346 params.enroll("dt",&dt);

2347 params.enroll("SOR_omega",&SOR_omega);

2348 params.enroll("time_scheme_factor",&time_scheme_factor);

2349

2350 params.enroll("probe",&Mesh::probePoints);

2351

2352 Option* op;

2353 op = new Option(&convection_scheme,17,

2354 "CDS","UDS","HYBRID","BLENDED","LUD","CDSS","MUSCL","QUICK",

2355 "VANLEER","VANALBADA","MINMOD","SUPERBEE","SWEBY","QUICKL","UMIST",

2356 "DDS","FROMM");

2357 params.enroll("convection_scheme",op);

2358 op = new BoolOption(&TVDbruner);

2359 params.enroll("tvd_bruner",op);

2360 op = new Option(&interpolation_scheme,2,"CDS","UDS");

2361 params.enroll("interpolation_scheme",op);

2362 op = new Option(&nonortho_scheme,4,"NONE","MINIMUM","ORTHOGONAL","OVER_RELAXED");

2363 params.enroll("nonortho_scheme",op);

2364 op = new Option(&time_scheme,2,"EULER","SECOND_ORDER");

2365 params.enroll("time_scheme",op);

2366 op = new Option(&Solver,3,"JACOBI","SOR","PCG");

296 Chapter C. CFD program

2367 params.enroll("method",op);

2368 op = new Option(&Preconditioner,4,"NONE","DIAG","SOR","DILU");

2369 params.enroll("preconditioner",op);

2370 op = new Option(&state,2,"STEADY","TRANSIENT");

2371 params.enroll("state",op);

2372 op = new Option(&ghost_exchange,2,"BLOCKED","ASYNCHRONOUS");

2373 params.enroll("ghost_exchange",op);

2374 op = new Option(¶llel_method,2,"BLOCKED","ASYNCHRONOUS");

2375 params.enroll("parallel_method",op);

2376 op = new Util::BoolOption(&save_average);

2377 params.enroll("average",op);

2378 }

2379 #ifndef __HEX_MESH_H

2380 #define __HEX_MESH_H

2381

2382 #include "mesh.h"

2383

2384 enum {

2385 LINEAR, GEOMETRIC, WALL, MIXED

2386 };

2387 enum {

2388 NONE = 0,ARC,COSINE,QUAD

2389 };

2390

2391 struct Edge {

2392 int type;

2393 Scalar theta;

2394 Scalar L;

2395 Vector N;

2396 Vertex v[8];

2397 Edge() {

2398 type = NONE;

2399 }

2400 };

2401

2402 struct MergeObject {

2403 Vertices vb;

2404 Facets fb;

2405 };

2406

2407 void hexMesh(Int* n,Scalar* s,Int* type,Vector* vp,Edge* edges,Mesh::MeshObject& mo);

C.2. Source code 297

2408 void merge(Mesh::MeshObject&,MergeObject&,Mesh::MeshObject&);

2409 void remove_duplicate(Mesh::MeshObject&);

2410 void merge(Mesh::MeshObject&,MergeObject&);

2411

2412 #endif

2413 #ifndef __MESH_H

2414 #define __MESH_H

2415

2416 #include <string>

2417 #include <vector>

2418 #include <map>

2419 #include "tensor.h"

2420 #include "util.h"

2421

2422 /*Index by ID instead of pointers */

2423 typedef std::vector<Int> IntVector;

2424

2425 /*our basic building blocks */

2426 enum ENTITY {

2427 CELL, FACET, VERTEX

2428 };

2429

2430 /*typdefs*/

2431 typedef Vector Vertex;

2432 typedef IntVector Facet;

2433 typedef IntVector Cell;

2434

2435 typedef std::vector<Vertex> Vertices;

2436 typedef std::vector<Facet> Facets;

2437 typedef std::vector<Cell> Cells;

2438 typedef std::map<std::string,IntVector> Boundaries;

2439

2440 /*global mesh*/

2441 namespace Mesh {

2442 struct interBoundary {

2443 IntVector* f;

2444 Int from;

2445 Int to;

2446 Int buffer_index;

2447 };

2448 struct MeshObject {

298 Chapter C. CFD program

2449 /*vertices , facets and cells */

2450 Vertices v;

2451 Facets f;

2452 Cells c;

2453 /*other info*/

2454 std::string name;

2455 Boundaries bdry;

2456 IntVector fo;

2457 IntVector fn;

2458 std::vector<interBoundary> interMesh;

2459 /*start of boundary cells,facets & vertices*/

2460 Int nv;

2461 Int nf;

2462 Int nc;

2463 /*funcs*/

2464 void write(std::ostream& os);

2465 };

2466

2467 extern std::vector<Vector> _fC;

2468 extern std::vector<Vector> _cC;

2469 extern std::vector<Vector> _fN;

2470 extern std::vector<Scalar> _cV;

2471 extern std::vector<bool> _reversed;

2472

2473 extern MeshObject gMesh;

2474 extern std::string& gMeshName;

2475 extern Vertices& gVertices;

2476 extern Facets& gFacets;

2477 extern Cells& gCells;

2478 extern Boundaries& gBoundaries;

2479 extern IntVector& gFO;

2480 extern IntVector& gFN;

2481 extern Int& gBCellsStart;

2482 extern std::vector<interBoundary>& gInterMesh;

2483 extern Vertices probePoints;

2484 extern IntVector probeCells;

2485

2486 bool faceInBoundary(Int);

2487 void addBoundaryCells();

2488 void calcGeometry();

2489 void removeBoundary(IntVector&);

C.2. Source code 299

2490 void readMesh();

2491 void enroll(Util::ParamList& params);

2492 Int findNearestCell(const Vector& v);

2493 Int findNearestFace(const Vector& v);

2494 void getProbeCells(IntVector&);

2495 void getProbeFaces(IntVector&);

2496 }

2497 /*

2498 * Model for flow close to the wall (Law of the wall).

2499 * 1 -> Viscous layer

2500 * 2 -> Buffer layer

2501 * 3 -> Log-law layer

2502 * The wall function model is modified for rough surfaces

2503 * using Cebecci and Bradshaw formulae.

2504 */

2505 struct LawOfWall {

2506 Scalar E;

2507 Scalar kappa;

2508 Scalar ks;

2509 Scalar cks;

2510

2511 Scalar yLog;

2512

2513 LawOfWall() :

2514 E(9.8),

2515 kappa(0.41),

2516 ks(0),

2517 cks(0.5)

2518 {

2519 init();

2520 }

2521 void init() {

2522 yLog = 11.3f;

2523 for(Int i = 0;i < 20;i++)

2524 yLog = log(E * yLog) / kappa;

2525 }

2526 Scalar getUstar(Scalar nu,Scalar U,Scalar y) {

2527 Scalar a = kappa * U * y / nu;

2528 Scalar yp = a;

2529 for(Int i = 0;i < 10;i++)

2530 yp = (a + yp) / (1 + log(E * yp));

300 Chapter C. CFD program

2531 Scalar ustar = yp * nu / y;

2532 return ustar;

2533 }

2534 Scalar getUp(Scalar ustar,Scalar nu,Scalar yp) {

2535 Scalar up,dB;

2536 Scalar ksPlus = (ustar * ks) / nu;

2537 if(ksPlus < 2.25) {

2538 dB = 0;

2539 } else if(ksPlus < 90) {

2540 dB = (1 / kappa) * log((ksPlus - 2.25) / 87.75 + cks * ksPlus)

2541 * sin(0.4258 * (log(ksPlus) - 0.811));

2542 } else {

2543 dB = (1 / kappa) * log(1 + cks * ksPlus);

2544 }

2545 if(yp > yLog) up = log(E * yp) / kappa - dB;

2546 else up = yp;

2547 return up;

2548 }

2549 void write(std::ostream& os) const {

2550 os << "\tE " << E << std::endl;

2551 os << "\tkappa " << kappa << std::endl;

2552 os << "\tks " << ks << std::endl;

2553 os << "\tcks " << cks << std::endl;

2554 }

2555 bool read(std::istream& is,std::string str) {

2556 using namespace Util;

2557 if(!compare(str,"E")) {

2558 is >> E;

2559 } else if(!compare(str,"kappa")) {

2560 is >> kappa;

2561 } else if(!compare(str,"ks")) {

2562 is >> ks;

2563 } else if(!compare(str,"cks")) {

2564 is >> cks;

2565 } else

2566 return false;

2567 return true;

2568 }

2569 };

2570 /*Boundary condition types*/

2571 namespace Mesh {

C.2. Source code 301

2572 const Int DIRICHLET = Util::hash_function("DIRICHLET");

2573 const Int NEUMANN = Util::hash_function("NEUMANN");

2574 const Int ROBIN = Util::hash_function("ROBIN");

2575 const Int SYMMETRY = Util::hash_function("SYMMETRY");

2576 const Int CYCLIC = Util::hash_function("CYCLIC");

2577 const Int GHOST = Util::hash_function("GHOST");

2578 const Int POWER = Util::hash_function("POWER");

2579 const Int LOG = Util::hash_function("LOG");

2580 const Int PARABOLIC = Util::hash_function("PARABOLIC");

2581 const Int INVERSE = Util::hash_function("INVERSE");

2582 const Int ROUGHWALL = Util::hash_function("ROUGHWALL");

2583 }

2584 struct BasicBCondition {

2585 IntVector* bdry;

2586 Int fIndex;

2587 Int cIndex;

2588 std::string cname;

2589 std::string bname;

2590 std::string fname;

2591 LawOfWall low;

2592 };

2593 template <class type>

2594 struct BCondition : public BasicBCondition {

2595 type value;

2596 Scalar shape;

2597 type tvalue;

2598 Scalar tshape;

2599 Scalar zMin;

2600 Scalar zMax;

2601 Vector dir;

2602 bool first;

2603 bool read;

2604 std::vector<type> fixed;

2605

2606 BCondition(std::string tfname) {

2607 fname = tfname;

2608 reset();

2609 }

2610 void reset() {

2611 value = tvalue = type(0);

2612 shape = tshape = zMin = zMax = Scalar(0);

302 Chapter C. CFD program

2613 dir = Vector(0,0,1);

2614 }

2615 void init_indices() {

2616 bdry = &Mesh::gBoundaries[bname];

2617 fixed.resize(bdry->size());

2618 first = true;

2619 read = false;

2620 fIndex = Util::hash_function(fname);

2621 cIndex = Util::hash_function(cname);

2622 }

2623 };

2624 /*IO*/

2625 template <class type>

2626 std::ostream& operator << (std::ostream& os, const BCondition<type>& p) {

2627 os << p.bname << "\n{\n";

2628 os << "\ttype " << p.cname << std::endl;

2629 if(!equal(mag(p.value),Scalar(0)))

2630 os << "\tvalue " << p.value << std::endl;

2631 if(!equal(p.shape,Scalar(0)))

2632 os << "\tshape " << p.shape << std::endl;

2633 if(!equal(mag(p.tvalue),Scalar(0)))

2634 os << "\ttvalue " << p.tvalue << std::endl;

2635 if(!equal(p.tshape,Scalar(0)))

2636 os << "\ttshape " << p.tshape << std::endl;

2637 if(!equal(p.dir,Vector(0,0,1)))

2638 os << "\tdir " << p.dir << std::endl;

2639 if(p.zMax > 0) {

2640 os << "\tzMin " << p.zMin << std::endl;

2641 os << "\tzMax " << p.zMax << std::endl;

2642 }

2643 if(p.read) {

2644 os << "\tfixed " << p.fixed << std::endl;

2645 }

2646 if(p.cIndex == Mesh::ROUGHWALL)

2647 p.low.write(os);

2648 os << "}\n";

2649 return os;

2650 }

2651 template <class type>

2652 std::istream& operator >> (std::istream& is, BCondition<type>& p) {

2653 using namespace Util;

C.2. Source code 303

2654 std::string str;

2655 char c;

2656

2657 p.reset();

2658 is >> p.bname >> c;

2659

2660 while(c = Util::nextc(is)) {

2661 if(c == ’}’) {

2662 is >> c;

2663 break;

2664 }

2665 is >> str;

2666 if(!compare(str,"type")) {

2667 is >> p.cname;

2668 } else if(!compare(str,"value")) {

2669 is >> p.value;

2670 } else if(!compare(str,"shape")) {

2671 is >> p.shape;

2672 } else if(!compare(str,"tvalue")) {

2673 is >> p.tvalue;

2674 } else if(!compare(str,"tshape")) {

2675 is >> p.tshape;

2676 } else if(!compare(str,"dir")) {

2677 is >> p.dir;

2678 } else if(!compare(str,"zMin")) {

2679 is >> p.zMin;

2680 } else if(!compare(str,"zMax")) {

2681 is >> p.zMax;

2682 } else if(!compare(str,"fixed")) {

2683 is >> p.fixed;

2684 p.read = true;

2685 } else if(p.low.read(is,str)) {

2686 }

2687 }

2688

2689 p.init_indices();

2690 p.low.init();

2691 return is;

2692 }

2693 /*list of all BCS*/

2694 namespace Mesh {

304 Chapter C. CFD program

2695 extern std::vector<BasicBCondition*> AllBConditions;

2696 }

2697 #endif

2698 #ifndef __MSH_MESH_H

2699 #define __MSH_MESH_H

2700

2701 #include "mesh.h"

2702

2703 void readMshMesh(std::istream& is,Mesh::MeshObject& mo);

2704 void writeMshMesh(std::ostream& os,Mesh::MeshObject& mo);

2705

2706 #endif

2707 #include "hexMesh.h"

2708 #include <cmath>

2709

2710 using namespace Mesh;

2711

2712 Vector center(const Vector& v1,const Vector& v2,const Vector& v3) {

2713 Vector v12 = v1 - v2;

2714 Vector v13 = v1 - v3;

2715 Vector v23 = v2 - v3;

2716 Scalar d = 2 * magSq(v12 ˆ v23);

2717 Scalar a = magSq(v23) * (v12 & v13) / d;

2718 Scalar b = magSq(v13) * (-v12 & v23) / d;

2719 Scalar c = magSq(v12) * (v13 & v23) / d;

2720 return a * v1 + b * v2 + c * v3;

2721 }

2722

2723 void ADDV(int w,Scalar m,Vector* vp,Edge* edges,Vector* vd) {

2724 Edge& e = edges[w];

2725 if(e.type == NONE) {

2726 vd[w] = (1 - m) * e.v[0] + (m) * e.v[1];

2727 } else if(e.type == ARC) {

2728 vd[w] = rotate(e.v[0] - e.v[3],e.N,e.theta * m) + e.v[3];

2729 } else if(e.type == COSINE) {

2730 vd[w] = (1 - m) * e.v[0] + (m) * e.v[1] +

2731 pow(cos(3.1416 * (m - 0.5)),2) * e.N;

2732 } else if(e.type == QUAD) {

2733 vd[w] = (1 - m) * e.v[0] + (m) * e.v[1] +

2734 (4 * m * (1 - m)) * e.N;

2735 }

C.2. Source code 305

2736 }

2737 void hexMesh(Int* n,Scalar* s,Int* type,Vector* vp,Edge* edges,MeshObject& mo) {

2738 Int i,j,k,m;

2739

2740 /*for wall division set twice

2741 number of divisions requested*/

2742 for(j = 0;j < 3;j++) {

2743 bool found = false;

2744 for(i = j;i < 12;i+=3) {

2745 if(type[i] == WALL) {

2746 if((n[j] % 2) && (n[j] != 1)) {

2747 found = true;

2748 break;

2749 }

2750 }

2751 }

2752 if(found) {

2753 n[j]++;

2754 for(i = j;i < 12;i+=3) {

2755 s[i] = 1 / s[i];

2756 }

2757 }

2758 }

2759

2760 /*calculate scale*/

2761 Scalar* sc[12];

2762 for(i = 0;i < 12;i++) {

2763 Int nt = n[i / 4];

2764 sc[i] = new Scalar[nt + 1];

2765 if(type[i] == WALL)

2766 s[i] = pow(s[i],Scalar(1./(nt / 2.)));

2767 else

2768 s[i] = pow(s[i],Scalar(1./nt));

2769 }

2770 for(i = 0;i < 12;i++) {

2771 Int nt = n[i / 4];

2772 Scalar r = s[i];

2773 if(nt == 1) {

2774 sc[i][0] = 0;

2775 sc[i][1] = 1;

2776 } else {

306 Chapter C. CFD program

2777 if(type[i] == WALL)

2778 nt /= 2;

2779 for(j = 0;j <= nt;j++) {

2780 if(equal(r,Scalar(1)))

2781 sc[i][j] = Scalar(j) / (nt);

2782 else

2783 sc[i][j] = (1 - pow(r,Scalar(j))) / (1 - pow(s[i],Scalar(nt)));

2784 }

2785 if(type[i] == WALL) {

2786 for(j = 0;j <= nt;j++)

2787 sc[i][j] /= 2;

2788 for(j = 0;j <= nt;j++)

2789 sc[i][j + nt] = Scalar(1.0) - sc[i][nt - j];

2790 }

2791 }

2792 }

2793 for(i = 0;i < 12;i++) {

2794 Edge& e = edges[i];

2795 if(e.type == ARC) {

2796 Vector C = center(e.v[0],e.v[1],e.v[2]);

2797 Vector r1 = e.v[0] - C;

2798 Vector r2 = e.v[1] - C;

2799 e.theta = acos((r1 & r2) / (mag(r1) * mag(r2)));

2800 e.v[3] = C;

2801 e.N = (e.v[2] - e.v[0]) ˆ (e.v[1] - e.v[0]);

2802 e.N = unit(e.N);

2803 } else if(e.type == COSINE || e.type == QUAD) {

2804 Vector mid = (e.v[1] + e.v[0]) / 2;

2805 e.N = e.v[2] - mid;

2806 e.L = mag(mid - e.v[0]) / 2;

2807 }

2808 }

2809 /*variables*/

2810 Int nx = n[0] + 1 , ny = n[1] + 1 , nz = n[2] + 1;

2811 const Int B1 = (nx - 0) * (ny - 1) * (nz - 1);

2812 const Int B2 = (nx - 1) * (ny - 0) * (nz - 1);

2813 const Int B3 = (nx - 1) * (ny - 1) * (nz - 0);

2814 IntVector VI(nx * ny * nz,0);

2815 IntVector FI(B1 + B2 + B3, 0);

2816

2817 /*vertices*/

C.2. Source code 307

2818 Vertex v,v1,v2,vd[12],vf[6];

2819 Scalar rx,ry,rz;

2820

2821 #define I0(i,j,k) (i * ny * nz + j * nz + k)

2822

2823 #define ADDF(w,rr,rs,i00,i01,i10,i11,ir0,ir1,i0s,i1s) { \

2824 vf[w] = Interpolate_face(\

2825 rr,rs, \

2826 vp[i00],vp[i01],vp[i10],vp[i11], \

2827 vd[ir0],vd[ir1],vd[i0s],vd[i1s]); \

2828 }

2829

2830 #define ADDC() { \

2831 v = Interpolate_cell(\

2832 rx,ry,rz, \

2833 vp[0],vp[4],vp[3],vp[7], \

2834 vp[1],vp[5],vp[2],vp[6], \

2835 vd[0],vd[3],vd[1],vd[2], \

2836 vd[4],vd[7],vd[5],vd[6], \

2837 vd[8],vd[11],vd[9],vd[10], \

2838 vf[4],vf[5],vf[2],vf[3],vf[0],vf[1]); \

2839 }

2840

2841 #define ADD() { \

2842 ADDV(0,sc[0][i],vp,edges,vd); \

2843 ADDV(1,sc[1][i],vp,edges,vd); \

2844 ADDV(2,sc[2][i],vp,edges,vd); \

2845 ADDV(3,sc[3][i],vp,edges,vd); \

2846 ADDV(4,sc[4][j],vp,edges,vd); \

2847 ADDV(5,sc[5][j],vp,edges,vd); \

2848 ADDV(6,sc[6][j],vp,edges,vd); \

2849 ADDV(7,sc[7][j],vp,edges,vd); \

2850 ADDV(8,sc[8][k],vp,edges,vd); \

2851 ADDV(9,sc[9][k],vp,edges,vd); \

2852 ADDV(10,sc[10][k],vp,edges,vd); \

2853 ADDV(11,sc[11][k],vp,edges,vd); \

2854 rx = i / Scalar(nx - 1); \

2855 ry = j / Scalar(ny - 1); \

2856 rz = k / Scalar(nz - 1); \

2857 ADDF(0, rx,ry, 0,3,1,2, 0,1,4,5); \

2858 ADDF(1, rx,ry, 4,7,5,6, 3,2,7,6); \

308 Chapter C. CFD program

2859 ADDF(2, rx,rz, 0,4,1,5, 0,3,8,9); \

2860 ADDF(3, rx,rz, 3,7,2,6, 1,2,11,10); \

2861 ADDF(4, ry,rz, 0,4,3,7, 4,7,8,11); \

2862 ADDF(5, ry,rz, 1,5,2,6, 5,6,9,10); \

2863 ADDC(); \

2864 };

2865

2866 /*interior*/

2867 for(j = 1;j < ny - 1;j++) {

2868 for(i = 1;i < nx - 1;i++) {

2869 for(k = 1;k < nz - 1;k++) {

2870 ADD();

2871 mo.v.push_back(v);

2872 VI[I0(i,j,k)] = mo.v.size() - 1;

2873 }

2874 }

2875 }

2876 mo.nv = mo.v.size();

2877

2878 /*boundaries*/

2879 for(i = 0;i < nx; i += (nx - 1)) {

2880 for(j = 0;j < ny;j++) {

2881 for(k = 0;k < nz;k++) {

2882 ADD();

2883 mo.v.push_back(v);

2884 VI[I0(i,j,k)] = mo.v.size() - 1;

2885 }

2886 }

2887 }

2888 for(j = 0;j < ny; j += (ny - 1)) {

2889 for(i = 1;i < nx - 1;i++) {

2890 for(k = 0;k < nz;k++) {

2891 ADD();

2892 mo.v.push_back(v);

2893 VI[I0(i,j,k)] = mo.v.size() - 1;

2894 }

2895 }

2896 }

2897 for(k = 0;k < nz; k += (nz - 1)) {

2898 for(i = 1;i < nx - 1;i++) {

2899 for(j = 1;j < ny - 1;j++) {

C.2. Source code 309

2900 ADD();

2901 mo.v.push_back(v);

2902 VI[I0(i,j,k)] = mo.v.size() - 1;

2903 }

2904 }

2905 }

2906 /*end*/

2907 #undef ADD

2908 #undef ADDF

2909 #undef ADDE

2910

2911 delete[] sc[0];

2912 delete[] sc[1];

2913 delete[] sc[2];

2914

2915 /*faces*/

2916 #define I1(i,j,k) (i * (ny - 1) * (nz - 1) + j * (nz - 1) + k)

2917 #define I2(i,j,k) (i * (ny - 0) * (nz - 1) + j * (nz - 1) + k + B1)

2918 #define I3(i,j,k) (i * (ny - 1) * (nz - 0) + j * (nz - 0) + k + B1 + B2)

2919

2920 #define ADD(a1,a2,a3,a4) { \

2921 Facet f; \

2922 m = I0(i,j,k); \

2923 f.push_back(VI[a1]); \

2924 f.push_back(VI[a2]); \

2925 f.push_back(VI[a3]); \

2926 f.push_back(VI[a4]); \

2927 mo.f.push_back(f); \

2928 };

2929

2930 /*interior*/

2931 for(i = 1;i < nx - 1;i++) {

2932 for(j = 0;j < ny - 1;j++) {

2933 for(k = 0;k < nz - 1;k++) {

2934 ADD(m,m + nz,m + nz + 1,m + 1);

2935 FI[I1(i,j,k)] = mo.f.size() - 1;

2936 }

2937 }

2938 }

2939 for(i = 0;i < nx - 1;i++) {

2940 for(j = 1;j < ny - 1;j++) {

310 Chapter C. CFD program

2941 for(k = 0;k < nz - 1;k++) {

2942 ADD(m,m + 1,m + ny * nz + 1,m + ny * nz);

2943 FI[I2(i,j,k)] = mo.f.size() - 1;

2944 }

2945 }

2946 }

2947 for(i = 0;i < nx - 1;i++) {

2948 for(j = 0;j < ny - 1;j++) {

2949 for(k = 1;k < nz - 1;k++) {

2950 ADD(m, m + ny * nz,m + ny * nz + nz, m + nz);

2951 FI[I3(i,j,k)] = mo.f.size() - 1;

2952 }

2953 }

2954 }

2955 mo.nf = mo.f.size();

2956 /*boundaries*/

2957 for(i = 0;i < nx; i += (nx - 1)) {

2958 for(j = 0;j < ny - 1;j++) {

2959 for(k = 0;k < nz - 1;k++) {

2960 ADD(m,m + nz,m + nz + 1,m + 1);

2961 FI[I1(i,j,k)] = mo.f.size() - 1;

2962 }

2963 }

2964 }

2965 for(j = 0;j < ny;j += (ny - 1)) {

2966 for(i = 0;i < nx - 1;i++) {

2967 for(k = 0;k < nz - 1;k++) {

2968 ADD(m,m + 1,m + ny * nz + 1,m + ny * nz);

2969 FI[I2(i,j,k)] = mo.f.size() - 1;

2970 }

2971 }

2972 }

2973 for(k = 0;k < nz; k += (nz - 1)) {

2974 for(i = 0;i < nx - 1;i++) {

2975 for(j = 0;j < ny - 1;j++) {

2976 ADD(m, m + ny * nz,m + ny * nz + nz, m + nz);

2977 FI[I3(i,j,k)] = mo.f.size() - 1;

2978 }

2979 }

2980 }

2981 /*end*/

C.2. Source code 311

2982 #undef ADD

2983

2984 /*cells*/

2985 for(i = 0;i < nx - 1;i++) {

2986 for(j = 0;j < ny - 1;j++) {

2987 for(k = 0;k < nz - 1;k++) {

2988 Cell c;

2989 m = I1(i,j,k);

2990 c.push_back(FI[m]);

2991 c.push_back(FI[m + (ny - 1) * (nz - 1)]);

2992

2993 m = I2(i,j,k);;

2994 c.push_back(FI[m]);

2995 c.push_back(FI[m + (nz - 1)]);

2996

2997 m = I3(i,j,k);;

2998 c.push_back(FI[m]);

2999 c.push_back(FI[m + 1]);

3000

3001 mo.c.push_back(c);

3002 }

3003 }

3004 }

3005 mo.nc = mo.c.size();

3006 #undef I0

3007 #undef I1

3008 #undef I2

3009 #undef I3

3010 /*remove duplicates*/

3011 int deformed = 0;

3012 for(i = 0;i < 8;i++) {

3013 for(j = i + 1;j < 8;j++) {

3014 if(equal(vp[i],vp[j])) {

3015 deformed = 1;

3016 break;

3017 }

3018 }

3019 }

3020 if(deformed)

3021 remove_duplicate(mo);

3022 /*end*/

312 Chapter C. CFD program

3023 }

3024

3025 /*remove duplicate*/

3026 void remove_duplicate(Mesh::MeshObject& p) {

3027 Int i,j,sz,corr;

3028 int count;

3029 /*vertices*/

3030 sz = p.v.size();

3031 corr = 0;

3032 std::vector<int> dup(sz,0);

3033 for(i = 0;i < sz;i++) {

3034 for(j = sz - 1;j >= i + 1;j--) {

3035 if(equal(p.v[i],p.v[j])) {

3036 dup[i] = -int(j);

3037 if(i < p.nv) corr++;

3038 break;

3039 }

3040 }

3041 }

3042 p.nv -= corr;

3043 //remove duplicate vertices

3044 {

3045 Vertices vt(p.v.begin(), p.v.end());

3046 p.v.clear();

3047 count = 0;

3048 for(i = 0;i < sz;i++) {

3049 if(!dup[i]) {

3050 p.v.push_back(vt[i]);

3051 dup[i] = count++;

3052 }

3053 }

3054 for(i = 0;i < sz;i++) {

3055 if(dup[i] < 0)

3056 dup[i] = dup[-dup[i]];

3057 }

3058 }

3059 /*faces*/

3060 sz = p.f.size();

3061 for(i = 0;i < sz;i++) {

3062 Facet& f = p.f[i];

3063 forEach(f,j)

C.2. Source code 313

3064 f[j] = dup[f[j]];

3065 }

3066 dup.clear();

3067 dup.assign(sz,0);

3068 count = 0;

3069 corr = 0;

3070 for(i = 0;i < sz;i++) {

3071 Facet& f = p.f[i];

3072 forEach(f,j) {

3073 forEachS(f,k,j+1) {

3074 if(f[j] == f[k]) {

3075 f.erase(f.begin() + k);

3076 k--;

3077 }

3078 }

3079 }

3080 if(f.size() < 3) {

3081 dup[i] = -1;

3082 if(i < p.nf) corr++;

3083 } else {

3084 dup[i] = count;

3085 count++;

3086 }

3087 }

3088 p.nf -= corr;

3089 //remove deformed faces

3090 {

3091 Facets ft(p.f.begin(), p.f.end());

3092 p.f.clear();

3093 for(i = 0;i < sz;i++) {

3094 if(dup[i] >= 0) p.f.push_back(ft[i]);

3095 }

3096 }

3097 /*cells*/

3098 sz = p.c.size();

3099 for(i = 0;i < sz;i++) {

3100 Cell& c = p.c[i];

3101 forEach(c,j) {

3102 if(dup[c[j]] < 0) {

3103 c.erase(c.begin() + j);

3104 j--;

314 Chapter C. CFD program

3105 } else

3106 c[j] = dup[c[j]];

3107 }

3108 }

3109 }

3110 /*Merge meshes*/

3111 #define MAXNUM 1073741824

3112

3113 void merge(MeshObject& m1,MergeObject& b,MeshObject& m2) {

3114 Int i,j,found,s0,s1,s2,s3;

3115

3116 //vertices

3117 {

3118 s0 = m1.v.size();

3119 s1 = m2.nv;

3120 s2 = m2.v.size();

3121 s3 = b.vb.size();

3122 m1.v.insert(m1.v.end(),m2.v.begin(),m2.v.begin() + s1);

3123

3124 IntVector locv(s2 - s1,MAXNUM);

3125 for(i = s1;i < s2;i++) {

3126 found = 0;

3127 for(j = 0;j < s3;j++) {

3128 if(equal(m2.v[i],b.vb[j])) {

3129 locv[i - s1] += j;

3130 found = 1;

3131 break;

3132 }

3133 }

3134 if(!found) {

3135 b.vb.push_back(m2.v[i]);

3136 locv[i - s1] += b.vb.size() - 1;

3137 }

3138 }

3139 forEach(m2.f,i) {

3140 Facet& ft = m2.f[i];

3141 forEach(ft,j) {

3142 if(ft[j] >= s1) {

3143 ft[j] = locv[ft[j] - s1];

3144 } else {

3145 ft[j] += s0;

C.2. Source code 315

3146 }

3147 }

3148 }

3149 }

3150 //faces

3151 {

3152 s0 = m1.f.size();

3153 s1 = m2.nf;

3154 s2 = m2.f.size();

3155 s3 = b.fb.size();

3156 m1.f.insert(m1.f.end(),m2.f.begin(),m2.f.begin() + s1);

3157

3158 IntVector index0(s3,0),index1(s2 - s1,0);

3159 Int count = 0;

3160 b.fb.reserve(s3 + s2 - s1);

3161 for(j = 0;j < s3;j++) {

3162 found = 0;

3163 for(i = s1;i < s2;i++) {

3164 if(!index1[i - s1] && equal(m2.f[i],b.fb[j])) {

3165

3166 m1.f.push_back(b.fb[j]);

3167 index0[j] = m1.f.size() - 1;

3168 index1[i - s1] = m1.f.size() - 1;

3169

3170 found = 1;

3171 break;

3172 }

3173 }

3174 if(!found) {

3175 index0[j] = MAXNUM + count;

3176 b.fb[count] = b.fb[j];

3177 count++;

3178 }

3179 }

3180 for(i = s1;i < s2;i++) {

3181 if(!index1[i - s1]) {

3182 index1[i - s1] = MAXNUM + count;

3183

3184 if(count >= s3) b.fb.push_back(m2.f[i]);

3185 else b.fb[count] = m2.f[i];

3186 count++;

316 Chapter C. CFD program

3187 }

3188 }

3189 b.fb.resize(count);

3190

3191 forEach(m1.c,i) {

3192 Cell& ct = m1.c[i];

3193 forEach(ct,j) {

3194 if(ct[j] >= MAXNUM) {

3195 ct[j] = index0[ct[j] - MAXNUM];

3196 }

3197 }

3198 }

3199 forEach(m2.c,i) {

3200 Cell& ct = m2.c[i];

3201 forEach(ct,j) {

3202 if(ct[j] >= s1) {

3203 ct[j] = index1[ct[j] - s1];

3204 } else {

3205 ct[j] += s0;

3206 }

3207 }

3208 }

3209 }

3210 //cells

3211 {

3212 m1.c.insert(m1.c.end(),m2.c.begin(),m2.c.end());

3213 }

3214 }

3215 void merge(Mesh::MeshObject& m,MergeObject& b) {

3216 m.nv = m.v.size();

3217 m.nf = m.f.size();

3218 m.nc = m.c.size();

3219

3220 m.v.insert(m.v.end(),b.vb.begin(),b.vb.end());

3221 m.f.insert(m.f.end(),b.fb.begin(),b.fb.end());

3222 forEach(m.f,i) {

3223 Facet& ft = m.f[i];

3224 forEach(ft,j) {

3225 if(ft[j] >= MAXNUM) {

3226 ft[j] -= MAXNUM;

3227 ft[j] += m.nv;

C.2. Source code 317

3228 }

3229 }

3230 }

3231 forEach(m.c,i) {

3232 Cell& ct = m.c[i];

3233 forEach(ct,j) {

3234 if(ct[j] >= MAXNUM) {

3235 ct[j] -= MAXNUM;

3236 ct[j] += m.nf;

3237 }

3238 }

3239 }

3240 }

3241

3242 #undef MAXNUM

3243 #include <cstring>

3244 #include "mesh.h"

3245 #include "hexMesh.h"

3246 #include "mshMesh.h"

3247

3248 using namespace std;

3249

3250 /*boundary*/

3251 struct Bdry {

3252 string name;

3253 IntVector index;

3254 /*point in polygon*

3255 int pnpoly(Vertices keys,Vertex C) {

3256 Vector ki,kj;

3257 int i, j, nvert = index.size(), c = 0;

3258 for (i = 0, j = nvert-1; i < nvert; j = i++) {

3259 ki = keys[index[i]];

3260 kj = keys[index[j]];

3261 if (((ki[1]>C[1]) != (kj[1]>C[1])) &&

3262 (C[0] < (kj[0]-ki[0]) * (C[1]-ki[1]) /

3263 (kj[1]-ki[1]) + ki[0]))

3264 c = !c;

3265 }

3266 return c;

3267 }*/

3268 };

318 Chapter C. CFD program

3269

3270 /*generate mesh*/

3271 int main(int argc,char* argv[]) {

3272 using namespace Mesh;

3273 using namespace Util;

3274 Vertices keys;

3275 vector<Bdry> Bdrys;

3276 MergeObject bMerge;

3277 string str;

3278 string default_name;

3279 char* i_file_name = argv[1];

3280 char* e_file_name = 0;

3281 bool Import = false;

3282 bool Export = false;

3283 char c;

3284

3285 /*command line arguments*/

3286 for(int i = 1;i < argc;i++) {

3287 if(!strcmp(argv[i],"-i")) {

3288 i++;

3289 Import = true;

3290 i_file_name = argv[i];

3291 } else if(!strcmp(argv[i],"-o")) {

3292 i++;

3293 Export = true;

3294 e_file_name = argv[i];

3295 }

3296 }

3297

3298 /*export to msh file format*/

3299 if(Export) {

3300 ofstream output(e_file_name);

3301 if(Import) str = i_file_name;

3302 else str = "grid";

3303 Mesh::gMeshName = str;

3304 Mesh::readMesh();

3305 Mesh::addBoundaryCells();

3306 Mesh::calcGeometry();

3307

3308 output << hex;

3309 writeMshMesh(output,gMesh);

C.2. Source code 319

3310 output << dec;

3311 return 0;

3312 }

3313

3314 /*input stream*/

3315 ifstream input(i_file_name);

3316

3317 /*import*/

3318 if(Import) {

3319 input >> hex;

3320 readMshMesh(input,gMesh);

3321 input >> dec;

3322

3323 gMesh.write(cout);

3324 return 0;

3325 }

3326

3327 /*read key points*/

3328 if(Util::nextc(input))

3329 input >> keys;

3330

3331 while((c = Util::nextc(input)) != 0) {

3332 char symbol;

3333 if(isdigit(c)) {

3334 /*read indices to keys*/

3335 IntVector index;

3336 input >> index;

3337

3338 Vertices v(index.size(),Vector(0));

3339 forEach(v,i)

3340 v[i] = keys[index[i]];

3341

3342 IntVector n;

3343 Int type;

3344 vector<Scalar> s(12,Scalar(1));

3345 vector<Int> t(12);

3346

3347 input >> str;

3348 if(!compare(str,"linear")) {

3349 input >> n;

3350 type = LINEAR;

320 Chapter C. CFD program

3351 t.assign(12,type);

3352 } else {

3353 if(!compare(str,"geometric")) type = GEOMETRIC;

3354 else if(!compare(str,"wall")) type = WALL;

3355 else if(!compare(str,"mixed")) type = MIXED;

3356 else return 1;

3357

3358 //read divisions

3359 vector<Scalar> ts(s);

3360 vector<Int> tt(t);

3361

3362 Int sz;

3363 input >> n;

3364 input >> sz >> symbol;

3365

3366 if(type == MIXED) {

3367 for(Int i = 0;i < sz ;i++) {

3368 input >> symbol;

3369 switch(symbol) {

3370 case ’l’:

3371 case ’L’:

3372 type = LINEAR;

3373 break;

3374 case ’g’:

3375 case ’G’:

3376 type = GEOMETRIC;

3377 break;

3378 case ’w’:

3379 case ’W’:

3380 type = WALL;

3381 break;

3382 }

3383 tt[i] = type;

3384 input >> ts[i];

3385 }

3386 } else {

3387 for(Int i = 0;i < sz ;i++)

3388 input >> ts[i];

3389 tt.assign(12,type);

3390 }

3391

C.2. Source code 321

3392 input >> symbol;

3393

3394 //assign to each side

3395 Int r = 12 / sz;

3396 for(Int i = 0;i < sz;i++) {

3397 for(Int j = 0;j < r;j++) {

3398 if(i * r + j < 12) {

3399 s[i * r + j] = ts[i];

3400 t[i * r + j] = tt[i];

3401 }

3402 }

3403 }

3404 }

3405

3406 //curved edges

3407 static const int sides[12][2] = {

3408 {0,1}, {3,2}, {7,6}, {4,5},

3409 {0,3}, {1,2}, {5,6}, {4,7},

3410 {0,4}, {1,5}, {2,6}, {3,7}

3411 };

3412 vector<Edge> edges(12);

3413 for(Int i = 0;i < 12;i++) {

3414 edges[i].v[0] = v[sides[i][0]];

3415 edges[i].v[1] = v[sides[i][1]];

3416 }

3417

3418 if((c = Util::nextc(input)) && (c == ’e’)) {

3419 Int sz,side,key;

3420 input >> str;

3421 if(!compare(str,"edges")) {

3422 input >> sz >> symbol;

3423 for(Int i = 0;i < sz;i++) {

3424 input >> str >> side >> key;

3425 Edge& e = edges[side];

3426 e.v[2] = keys[key];

3427 if(!compare(str,"arc")) {

3428 e.type = ARC;

3429 } else if(!compare(str,"cosine")) {

3430 e.type = COSINE;

3431 } else if(!compare(str,"quad")) {

3432 e.type = QUAD;

322 Chapter C. CFD program

3433 } else {

3434 e.type = NONE;

3435 }

3436 }

3437 input >> symbol;

3438 } else {

3439 Bdry b;

3440 b.name = str;

3441 while((c = Util::nextc(input)) && isdigit(c)) {

3442 input >> b.index;

3443 Bdrys.push_back(b);

3444 }

3445 }

3446 }

3447

3448 //generate mesh

3449 MeshObject mo;

3450 hexMesh(&n[0],&s[0],&t[0],&v[0],&edges[0],mo);

3451 merge(gMesh,bMerge,mo);

3452 } else {

3453 /*read boundaries*/

3454 Bdry b;

3455 input >> b.name;

3456 if(b.name == "default") {

3457 input >> default_name;

3458 } else {

3459 while((c = Util::nextc(input)) && isdigit(c)) {

3460 input >> b.index;

3461 Bdrys.push_back(b);

3462 }

3463 }

3464 }

3465 }

3466 /*merge boundary & internals*/

3467 merge(gMesh,bMerge);

3468

3469 /*boundaries*/

3470 forEach(Bdrys,i) {

3471 IntVector list;

3472 IntVector& b = Bdrys[i].index;

3473 Vector N = (keys[b[1]] - keys[b[0]]) ˆ (keys[b[2]] - keys[b[0]]);

C.2. Source code 323

3474 N /= mag(N);

3475 forEachS(gFacets,j,gMesh.nf) {

3476 Facet& f = gFacets[j];

3477 Vector N1 = ((gVertices[f[1]] - gVertices[f[0]])

3478 ˆ (gVertices[f[2]] - gVertices[f[0]]));

3479 N1 /= mag(N1);

3480 Vector H = (gVertices[f[0]] - keys[b[0]]);

3481 Scalar d = mag(N ˆ N1);

3482 Scalar d2 = sqrt(mag(N & H));

3483 if(d <= 10e-4 && d2 <= 10e-4) {

3484 /*

3485 Vector C(0);

3486 forEach(f,m)

3487 C += gVertices[f[m]];

3488 C /= Scalar(f.size());

3489 if(Bdrys[i].pnpoly(keys,C))

3490 */

3491 list.push_back(j);

3492 }

3493 }

3494 if(!list.empty()) {

3495 IntVector& gB = gBoundaries[Bdrys[i].name.c_str()];

3496 IntVector::iterator it = find(gB.begin(),gB.end(),list[0]);

3497 if(it == gB.end()) {

3498 forEach(list,j)

3499 gB.push_back(list[j]);

3500 }

3501 }

3502 }

3503 /*default specified*/

3504 if(!default_name.empty()) {

3505 IntVector& gB = gBoundaries[default_name.c_str()];

3506 forEachS(gFacets,i,gMesh.nf) {

3507 if(!faceInBoundary(i)) {

3508 gB.push_back(i);

3509 }

3510 }

3511 }

3512 /*write it*/

3513 gMesh.write(cout);

3514 return 0;

324 Chapter C. CFD program

3515 }

3516 #include "mesh.h"

3517

3518 using namespace std;

3519

3520 /*global mesh*/

3521 namespace Mesh {

3522 MeshObject gMesh;

3523 std::string& gMeshName = gMesh.name;

3524 Vertices& gVertices = gMesh.v;

3525 Facets& gFacets = gMesh.f;

3526 Cells& gCells = gMesh.c;

3527 Boundaries& gBoundaries = gMesh.bdry;

3528 IntVector& gFO = gMesh.fo;

3529 IntVector& gFN = gMesh.fn;

3530 Int& gBCellsStart = gMesh.nc;

3531 vector<BasicBCondition*> AllBConditions;

3532 std::vector<interBoundary>& gInterMesh = gMesh.interMesh;

3533 Vertices probePoints;

3534 IntVector probeCells;

3535

3536 std::vector<Vector> _fC;

3537 std::vector<Vector> _cC;

3538 std::vector<Vector> _fN;

3539 std::vector<Scalar> _cV;

3540 std::vector<bool> _reversed;

3541 }

3542

3543 /*read mesh*/

3544 void Mesh::readMesh() {

3545 cout << "Reading mesh :" << endl;

3546 ifstream is(gMeshName.c_str());

3547 is >> hex;

3548 is >> gVertices;

3549 cout << " \t" << gVertices.size() << " vertices" << endl;

3550 is >> gFacets;

3551 cout << " \t" << gFacets.size() << " facets" << endl;

3552 is >> gCells;

3553 cout << " \t" << gCells.size() << " cells" << endl;

3554 cout << "Boundaries :" << endl;

3555 while(Util::nextc(is)) {

C.2. Source code 325

3556 IntVector index;

3557 string str;

3558 is >> str;

3559 cout << " \t" << str << endl;

3560 is >> index;

3561

3562 IntVector& gB = gBoundaries[str];

3563 gB.insert(gB.begin(),index.begin(),index.end());

3564

3565 /*internal mesh boundaries*/

3566 if(str.find("interMesh") != std::string::npos) {

3567 interBoundary b;

3568 sscanf(str.c_str(), "interMesh_%x_%x", &b.from,&b.to);

3569 b.f = &gBoundaries[str];

3570 gInterMesh.push_back(b);

3571 }

3572 }

3573 /*start of buffer*/

3574 Int buffer_index = 0;

3575 forEach(gInterMesh,i) {

3576 interBoundary& b = gInterMesh[i];

3577 b.buffer_index = buffer_index;

3578 buffer_index += b.f->size();

3579 }

3580 is >> dec;

3581 }

3582 /*write mesh*/

3583 void Mesh::MeshObject::write(ostream& os) {

3584 os << hex;

3585 os.precision(12);

3586 os << v;

3587 os.precision(6);

3588 os << f;

3589 os << c;

3590 forEachIt(Boundaries,bdry,it)

3591 os << it->first << " " << it->second << endl;

3592 os << dec;

3593 }

3594 /*Is face in boundary*/

3595 bool Mesh::faceInBoundary(Int f) {

3596 forEachIt(Boundaries,gBoundaries,it) {

326 Chapter C. CFD program

3597 IntVector& gB = it->second;

3598 forEach(gB,j) {

3599 if(gB[j] == f)

3600 return true;

3601 }

3602 }

3603 return false;

3604 }

3605 /*add boundary cells*/

3606 void Mesh::addBoundaryCells() {

3607 using namespace Constants;

3608 Int i,index;

3609

3610 /*neighbor and owner cells of face*/

3611 gBCellsStart = gCells.size();

3612 gFO.assign(gFacets.size(),MAX_INT);

3613 gFN.assign(gFacets.size(),MAX_INT);

3614 for(i = 0;i < gBCellsStart;i++) {

3615 forEach(gCells[i],j) {

3616 index = gCells[i][j];

3617 if(gFO[index] == MAX_INT)

3618 gFO[index] = i;

3619 else

3620 gFN[index] = i;

3621 }

3622 }

3623 /*Flag boundary faces not in gBoundaries for auto deletion*/

3624 IntVector& gDelete = gBoundaries["delete"];

3625 forEach(gFN,i) {

3626 if(gFN[i] == MAX_INT) {

3627 if(!faceInBoundary(i))

3628 gDelete.push_back(i);

3629 }

3630 }

3631 /*add boundary cells*/

3632 forEachIt(Boundaries,gBoundaries,it) {

3633 IntVector& facets = it->second;

3634 forEach(facets,j) {

3635 i = facets[j];

3636 /*external patch*/

3637 if(gFN[i] == MAX_INT) {

C.2. Source code 327

3638 Cell c;

3639 c.push_back(i);

3640 gCells.push_back(c);

3641 gFN[i] = gCells.size() - 1;

3642 }

3643 }

3644 }

3645 }

3646 void Mesh::calcGeometry() {

3647 Int i;

3648

3649 /*allocate*/

3650 _fC.assign(gFacets.size(),Vector(0));

3651 _cC.assign(gCells.size(),Vector(0));

3652 _fN.assign(gFacets.size(),Vector(0));

3653 _cV.assign(gCells.size(),Scalar(0));

3654 _reversed.assign(gFacets.size(),false);

3655

3656 /* face centre*/

3657 forEach(gFacets,i) {

3658 Facet& f = gFacets[i];

3659 Vector C(0);

3660 forEach(f,j)

3661 C += gVertices[f[j]];

3662 _fC[i] = C / Scalar(f.size());

3663 }

3664

3665 /* cell centre */

3666 forEach(gCells,i) {

3667 Cell& c = gCells[i];

3668 Vector C(0);

3669 forEach(c,j)

3670 C += _fC[c[j]];

3671 _cC[i] = C / Scalar(c.size());

3672 }

3673 /* face normal */

3674 Vector v1,v2,v3,v;

3675 Scalar magN;

3676 forEach(gFacets,i) {

3677 Facet& f = gFacets[i];

3678 Vector N(0),C(0),Ni;

328 Chapter C. CFD program

3679 Scalar Ntot = Scalar(0);

3680 v1 = _fC[i];

3681 forEach(f,j) {

3682 v2 = gVertices[f[j]];

3683 if(j + 1 == f.size())

3684 v3 = gVertices[f[0]];

3685 else

3686 v3 = gVertices[f[j + 1]];

3687 Ni = ((v2 - v1) ˆ (v3 - v1));

3688 magN = mag(Ni);

3689 C += magN * ((v1 + v2 + v3) / 3);

3690 Ntot += magN;

3691 N += Ni;

3692 }

3693 _fC[i] = C / Ntot; /*corrected face centre*/

3694 v = _fC[i] - _cC[gFO[i]];

3695 if((v & N) < 0) {

3696 N = -N;

3697 _reversed[i] = true;

3698 }

3699 _fN[i] = N / Scalar(2);

3700 }

3701 /* cell volumes */

3702 for(i = 0;i < gBCellsStart;i++) {

3703 Cell& c = gCells[i];

3704 Scalar V(0),Vi;

3705 Vector v = _cC[i],C(0);

3706 forEach(c,j) {

3707 v = _cC[i] - _fC[c[j]];

3708 Vi = mag(v & _fN[c[j]]);

3709 C += Vi * (2 * _fC[c[j]] + _cC[i]) / 3;

3710 V += Vi;

3711 }

3712 _cC[i] = C / V; /*corrected cell centre */

3713 _cV[i] = V / Scalar(3);

3714 }

3715 /*boundary cell centre and volume*/

3716 forEachS(gCells,i,gBCellsStart) {

3717 _cV[i] = _cV[gFO[gCells[i][0]]];

3718 _cC[i] = _fC[gCells[i][0]];

3719 }

C.2. Source code 329

3720 }

3721 /*

3722 * Remove empty boundary

3723 */

3724 void Mesh::removeBoundary(IntVector& fs) {

3725 cout << "Removing faces: " << fs.size() << endl;

3726

3727 Int count;

3728 IntVector Idf(gFacets.size(),0);

3729 IntVector Idc(gCells.size(),0);

3730

3731 /*erase facet reference*/

3732 forEach(fs,i) {

3733 Int f = fs[i];

3734 Cell& co = gCells[gFO[f]];

3735 forEach(co,j) {

3736 if(co[j] == f) {

3737 co.erase(co.begin() + j);

3738 break;

3739 }

3740 }

3741 Cell& cn = gCells[gFN[f]];

3742 forEach(cn,j) {

3743 if(cn[j] == f) {

3744 cn.erase(cn.begin() + j);

3745 break;

3746 }

3747 }

3748 }

3749 /*updated facet id*/

3750 forEach(fs,i)

3751 Idf[fs[i]] = Constants::MAX_INT;

3752 count = 0;

3753 forEach(gFacets,i) {

3754 if(Idf[i] != Constants::MAX_INT)

3755 Idf[i] = count++;

3756 else

3757 gFacets[i].clear();

3758 }

3759 /*erase facets*/

3760 forEach(gFacets,i) {

330 Chapter C. CFD program

3761 if(gFacets[i].size() == 0) {

3762 gFacets.erase(gFacets.begin() + i);

3763 gFO.erase(gFO.begin() + i);

3764 gFN.erase(gFN.begin() + i);

3765 _fC.erase(_fC.begin() + i);

3766 _fN.erase(_fN.begin() + i);

3767 --i;

3768 }

3769 }

3770 /*updated facet id*/

3771 count = 0;

3772 forEach(gCells,i) {

3773 if(gCells[i].size() != 0)

3774 Idc[i] = count++;

3775 else

3776 Idc[i] = Constants::MAX_INT;

3777 }

3778 /*erase cells*/

3779 forEach(gCells,i) {

3780 if(gCells[i].size() == 0) {

3781 gCells.erase(gCells.begin() + i);

3782 _cC.erase(_cC.begin() + i);

3783 _cV.erase(_cV.begin() + i);

3784 --i;

3785 } else {

3786 forEach(gCells[i],j) {

3787 gCells[i][j] = Idf[gCells[i][j]];

3788 }

3789 }

3790 }

3791 /*facet owner and neighbor*/

3792 forEach(gFacets,i) {

3793 gFO[i] = Idc[gFO[i]];

3794 gFN[i] = Idc[gFN[i]];

3795 }

3796 /*patches*/

3797 forEachIt(Boundaries,gBoundaries,it) {

3798 IntVector& gB = it->second;

3799 forEach(gB,i)

3800 gB[i] = Idf[gB[i]];

3801 }

C.2. Source code 331

3802

3803 cout << "Total faces: " << gFacets.size() << endl;

3804 }

3805 /*find nearest cell*/

3806 Int Mesh::findNearestCell(const Vector& v) {

3807 Scalar mindist,dist;

3808 Int bi = 0;

3809 mindist = mag(v - _cC[0]);

3810 for(Int i = 0;i < gBCellsStart;i++) {

3811 dist = mag(v - _cC[i]);

3812 if(dist < mindist) {

3813 mindist = dist;

3814 bi = i;

3815 }

3816 }

3817 return bi;

3818 }

3819 Int Mesh::findNearestFace(const Vector& v) {

3820 Scalar mindist,dist;

3821 Int bi = 0;

3822 mindist = mag(v - _fC[0]);

3823 forEach(gFacets,i) {

3824 dist = mag(v - _fC[i]);

3825 if(dist < mindist) {

3826 mindist = dist;

3827 bi = i;

3828 }

3829 }

3830 return bi;

3831 }

3832 void Mesh::getProbeCells(IntVector& probes) {

3833 forEach(probePoints,j) {

3834 Vector v = probePoints[j];

3835 Int index = findNearestCell(v);

3836 probes.push_back(index);

3837 }

3838 }

3839 void Mesh::getProbeFaces(IntVector& probes) {

3840 forEach(probePoints,j) {

3841 Vector v = probePoints[j];

3842 Int index = findNearestFace(v);

332 Chapter C. CFD program

3843 probes.push_back(index);

3844 }

3845 }

3846 #include "mshMesh.h"

3847 #include <sstream>

3848

3849 using namespace std;

3850

3851 void readMshMesh(std::istream& is,Mesh::MeshObject& mo) {

3852 char symbol,c;

3853 int id,ND,zone,findex,lindex,

3854 type,bctype,ftype,etype,

3855 node_start = 0,facet_start = 0;

3856 map<int,string> bnames;

3857

3858 /*read id*/

3859 while((c = Util::nextc(is)) != 0) {

3860 int braces = 1;

3861 is >> symbol >> id;

3862 switch(id) {

3863 case 0x0:

3864 do{ is >> c; } while(c != ’)’);

3865 break;

3866 case 0x2:

3867 is >> ND >> symbol;

3868 break;

3869 case 0x10:

3870 is >> symbol >> zone;

3871 is >> findex >> lindex;

3872 is >> type >> ND;

3873 is >> symbol >> symbol;

3874 if(zone != 0) {

3875 Vertex v;

3876 for(int i = findex;i <= lindex;i++) {

3877 is >> v;

3878 mo.v.push_back(v);

3879 }

3880 is >> symbol >> symbol;

3881 } else {

3882 node_start = findex;

3883 }

C.2. Source code 333

3884 break;

3885 case 0x12:

3886 is >> symbol >> zone;

3887 is >> findex >> lindex;

3888 is >> type;

3889 if((c = Util::nextc(is)) == ’)’);

3890 else is >> etype;

3891 is >> symbol >> symbol;

3892

3893 while(symbol == ’(’) {

3894 do{ is >> c; } while(c != ’)’);

3895 is >> symbol;

3896 }

3897 if(zone == 0) {

3898 mo.c.resize(lindex);

3899 }

3900 break;

3901 case 0x13:

3902 is >> symbol >> zone;

3903 is >> findex >> lindex;

3904 is >> bctype;

3905 if((c = Util::nextc(is)) == ’)’) ftype = bctype;

3906 else is >> ftype;

3907 is >> symbol >> symbol;

3908

3909 if(zone != 0) {

3910 std::stringstream name;

3911 name << "zone" << zone;

3912 IntVector& gB = mo.bdry[name.str().c_str()];

3913

3914 Facet f;

3915 int n,c0,c1,k;

3916 for(int i = findex;i <= lindex;i++) {

3917 f.clear();

3918 is >> n;

3919 for(int j = 0;j < n;j++) {

3920 is >> k;

3921 f.push_back(k - node_start);

3922 }

3923 mo.f.push_back(f);

3924 gB.push_back(i - facet_start);

334 Chapter C. CFD program

3925

3926 is >> c0 >> c1;

3927 if(c0 == 0) {

3928 mo.fo.push_back(Constants::MAX_INT);

3929 } else {

3930 mo.fo.push_back(c0 - 1);

3931 }

3932 if(c1 == 0) {

3933 mo.fn.push_back(Constants::MAX_INT);

3934 } else {

3935 mo.fn.push_back(c1 - 1);

3936 }

3937 }

3938 is >> symbol >> symbol;

3939 } else {

3940 facet_start = findex;

3941 }

3942 break;

3943 case 0x39:

3944 case 0x45:

3945 is >> symbol >> dec >> zone >> hex;

3946 {

3947 string str;

3948 char buf[64];

3949 is >> str;

3950 int i = 0;

3951 do{ is >> c; } while(c != ’)’ && (buf[i++] = c));

3952 buf[i] = 0;

3953 bnames[zone] = buf;

3954 }

3955 default:

3956 while((c = Util::nextc(is))) {

3957 is >> c;

3958 if(c == ’(’) braces++;

3959 else if(c == ’)’) {

3960 braces--;

3961 if(!braces) break;

3962 }

3963 }

3964 break;

3965 }

C.2. Source code 335

3966 }

3967 /*rename*/

3968 for(map<int,string>::iterator it = bnames.begin();it != bnames.end();++it) {

3969 std::stringstream name;

3970 name << "zone" << dec << it->first;

3971 Boundaries::iterator it1 = mo.bdry.find(name.str().c_str());

3972 if(it1 != mo.bdry.end()) {

3973 mo.bdry[it->second] = it1->second;

3974 mo.bdry.erase(it1);

3975 }

3976 }

3977 /*add cells*/

3978 Int co,cn;

3979 forEach(mo.f,i) {

3980 co = mo.fo[i];

3981 cn = mo.fn[i];

3982 if(co != Constants::MAX_INT)

3983 mo.c[co].push_back(i);

3984 if(cn != Constants::MAX_INT)

3985 mo.c[cn].push_back(i);

3986 }

3987 }

3988 void writeMshMesh(std::ostream& os,Mesh::MeshObject& mo) {

3989 os << "(0 \"ASCII msh file\")" << endl << endl;

3990 os << "(0 \"Dimension:\")" << endl;

3991 os << "(2 3)" << endl << endl;

3992

3993 //vertices

3994 os << "(0 \"Vertices:\")" << endl;

3995 os << "(10 (0 1 " << mo.v.size() << " 0 3))" << endl << endl;

3996 os << "(10 (1 1 " << mo.v.size() << " 1 3)" << endl;

3997 os << "(" << endl;

3998 os.precision(10);

3999 forEach(mo.v,i)

4000 os << scientific << mo.v[i] << endl;

4001 os << "))" << endl << endl;

4002

4003 //facets

4004 os << "(0 \"Facets:\")" << endl;

4005 os << "(13 (0 1 " << mo.f.size() << " 0 0))" << endl << endl;

4006

336 Chapter C. CFD program

4007 Int zone = 1;

4008 Int start = 1;

4009

4010 //internal

4011 Int nInternal = mo.f.size() - (mo.c.size() - mo.nc);

4012 os << "(0 \"Internal faces:\")" << endl;

4013 os << "(39 (" << dec << zone << hex << " interior " << "interior-1"

4014 << ")())" << endl;

4015 os << "(13 (" << zone << " " << start << " "

4016 << nInternal << " 2 0)" << endl;

4017 zone++;

4018 start += nInternal;

4019 os << "(" << endl;

4020 forEach(mo.f,f) {

4021 if(mo.fn[f] >= mo.nc)

4022 continue;

4023 Facet& mf = mo.f[f];

4024 os << mf.size() << " ";

4025 forEach(mf,j)

4026 os << mf[j] + 1 << " ";

4027 if(Mesh::_reversed[f])

4028 os << mo.fo[f] + 1 << " " << mo.fn[f] + 1 << endl;

4029 else

4030 os << mo.fn[f] + 1 << " " << mo.fo[f] + 1 << endl;

4031 }

4032 os << "))" << endl << endl;

4033

4034 //boundary

4035 forEachIt(Boundaries,mo.bdry,it) {

4036 const IntVector& fvec = it->second;

4037 os << "(0 \"" << it->first << "\")" << endl;

4038

4039 string bname = "pressure-inlet";

4040 Int bid = 4;

4041 if(it->first.find("WALL") != std::string::npos) {

4042 bname = "wall";

4043 bid = 3;

4044 }

4045 os << "(39 (" << dec << zone << hex << " " << bname << " " << it->first

4046 << ")())" << endl;

4047 os << "(13 (" << zone << " " << start << " "

C.2. Source code 337

4048 << start + fvec.size() - 1 << " " << bid << " 0)" << endl;

4049 zone++;

4050 start += fvec.size();

4051

4052 os << "(" << endl;

4053 forEach(fvec,i) {

4054 Int f = fvec[i];

4055 Facet& mf = mo.f[f];

4056 os << mf.size() << " ";

4057 forEach(mf,j)

4058 os << mf[j] + 1 << " ";

4059 if(Mesh::_reversed[f])

4060 os << mo.fo[f] + 1 << " 0" << endl;

4061 else

4062 os << "0 " << mo.fo[f] + 1 << endl;

4063 }

4064 os << "))" << endl << endl;

4065 }

4066

4067 //cells

4068 os << "(0 \"Cells:\")" << endl;

4069 os << "(12 (0 1 " << mo.nc << " 0 0))" << endl;

4070 os << "(12 (1 1 " << mo.nc << " 1 0)(" << endl;

4071 for(Int i = 0;i < mo.nc;i++)

4072 os << "4 ";

4073 os << endl << ")())" << endl;

4074 }#ifndef __MP_H

4075 #define __MP_H

4076

4077 #include "mpi.h"

4078 #include "tensor.h"

4079

4080 #if defined __DOUBLE

4081 # define MPI_SCALAR MPI_DOUBLE

4082 #else

4083 # define MPI_SCALAR MPI_FLOAT

4084 #endif

4085

4086 class MP {

4087 public:

4088 enum {

338 Chapter C. CFD program

4089 FIELD, END

4090 };

4091 MP(int argc,char* argv[]);

4092 ˜MP();

4093 public:

4094 typedef MPI_Request REQUEST;

4095

4096 static int n_hosts,host_id,name_len;

4097 static char host_name[512];

4098 static int _start_time;

4099 static void loop();

4100 static void barrier();

4101 static int iprobe(int&,int&);

4102 static void send(int,int);

4103 static void recieve(int,int);

4104 static void printH(const char* format,...);

4105 static void print(const char* format,...);

4106

4107 /*send and recieve messages*/

4108 template <class type>

4109 static void recieve(type* buffer,int size,int source,int message_id) {

4110 const int count = (size * sizeof(type) / sizeof(Scalar));

4111 MPI_Recv(buffer,count,MPI_SCALAR,source,message_id,MPI_COMM_WORLD,MPI_STATUS_IGNORE)

;

4112 }

4113 template <class type>

4114 static void send(type* buffer,int size,int source,int message_id) {

4115 const int count = (size * sizeof(type) / sizeof(Scalar));

4116 MPI_Send(buffer,count,MPI_SCALAR,source,message_id,MPI_COMM_WORLD);

4117 }

4118 template <class type>

4119 static void allsum(type* sendbuf,type* recvbuf,int size) {

4120 const int count = (size * sizeof(type) / sizeof(Scalar));

4121 MPI_Allreduce(sendbuf,recvbuf,count,MPI_SCALAR,MPI_SUM,MPI_COMM_WORLD);

4122 }

4123 template <class type>

4124 static void irecieve(type* buffer,int size,int source,int message_id,void* request) {

4125 const int count = (size * sizeof(type) / sizeof(Scalar));

4126 MPI_Irecv(buffer,count,MPI_SCALAR,source,message_id,MPI_COMM_WORLD,(MPI_Request*)

request);

4127 }

C.2. Source code 339

4128 template <class type>

4129 static void isend(type* buffer,int size,int source,int message_id,void* request) {

4130 const int count = (size * sizeof(type) / sizeof(Scalar));

4131 MPI_Isend(buffer,count,MPI_SCALAR,source,message_id,MPI_COMM_WORLD,(MPI_Request*)

request);

4132 }

4133 static void waitall(int count,void* request) {

4134 MPI_Waitall(count,(MPI_Request*)request,MPI_STATUS_IGNORE);

4135 }

4136 };

4137 #endif

4138 #ifndef __SYSTEM_H

4139 #define __SYSTEM_H

4140

4141 #include <string>

4142 #include <cstdarg>

4143 #ifdef _MSC_VER

4144 # include <windows.h>

4145 # include <process.h>

4146 # include <sys/timeb.h>

4147 #else

4148 # include <unistd.h>

4149 # include <sys/stat.h>

4150 # include <sys/time.h>

4151 #endif

4152

4153

4154 namespace System {

4155 /*get processor id*/

4156 inline int get_pid() {

4157 #ifdef _MSC_VER

4158 return _getpid();

4159 #else

4160 return getpid();

4161 #endif

4162 }

4163 /*system dependent directory operations*/

4164 inline int cd(std::string path) {

4165 #ifdef _MSC_VER

4166 return ::SetCurrentDirectory((LPCTSTR)path.c_str());

4167 #else

340 Chapter C. CFD program

4168 return !::chdir(path.c_str());

4169 #endif

4170 }

4171 inline int mkdir(std::string path) {

4172 #ifdef _MSC_VER

4173 return ::CreateDirectory((LPCTSTR)path.c_str(),NULL);

4174 #else

4175 return !::mkdir(path.c_str(),S_IRWXU);

4176 #endif

4177 }

4178 inline int rmdir(std::string path) {

4179 #ifdef _MSC_VER

4180 return ::RemoveDirectory((LPCTSTR)path.c_str());

4181 #else

4182 return !::rmdir(path.c_str());

4183 #endif

4184 }

4185 /*time*/

4186 inline int get_time() {

4187 #ifdef _MSC_VER

4188 timeb tb;

4189 ftime(&tb);

4190 return int(tb.time * 1000 + tb.millitm);

4191 #else

4192 timeval tb;

4193 gettimeofday(&tb, NULL);

4194 return int(tb.tv_sec * 1000 + tb.tv_usec / 1000);

4195 #endif

4196 }

4197 }

4198

4199 #endif

4200 #include <cstdarg>

4201 #include "mp.h"

4202 #include "system.h"

4203

4204 /*statics*/

4205 int MP::n_hosts;

4206 int MP::host_id;

4207 int MP::name_len;

4208 char MP::host_name[512];

C.2. Source code 341

4209 int MP::_start_time = 0;

4210

4211 /*Initialize*/

4212 MP::MP(int argc,char* argv[]) {

4213 MPI_Init(&argc, &argv);

4214 MPI_Comm_size(MPI_COMM_WORLD, &n_hosts);

4215 MPI_Comm_rank(MPI_COMM_WORLD, &host_id);

4216 MPI_Get_processor_name(host_name, &name_len);

4217 _start_time = System::get_time();

4218 printf("Process [%d/%d] on %s : pid %d\n",

4219 host_id,n_hosts,host_name,System::get_pid());

4220 fflush(stdout);

4221 }

4222

4223 /*finalize*/

4224 MP::˜MP() {

4225 MPI_Finalize();

4226 }

4227

4228 /*send*/

4229 void MP::send(int source,int message_id) {

4230 MPI_Send(MPI_BOTTOM,0,MPI_INT,source,message_id,MPI_COMM_WORLD);

4231 }

4232

4233 /*recieve*/

4234 void MP::recieve(int source,int message_id) {

4235 MPI_Recv(MPI_BOTTOM,0,MPI_INT,source,message_id,MPI_COMM_WORLD,MPI_STATUS_IGNORE);

4236 }

4237

4238 /*barrier*/

4239 void MP::barrier() {

4240 MPI_Barrier(MPI_COMM_WORLD);

4241 }

4242

4243 /*probe for messages*/

4244 int MP::iprobe(int& source,int& message_id) {

4245 int flag;

4246 MPI_Status mpi_status;

4247 MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,&flag,&mpi_status);

4248 if(flag) {

4249 message_id = mpi_status.MPI_TAG;

342 Chapter C. CFD program

4250 source = mpi_status.MPI_SOURCE;

4251 return true;

4252 }

4253 return false;

4254 }

4255 /*print*/

4256 void MP::printH(const char* format,...) {

4257 printf("%d [%d] ",System::get_time() - _start_time,host_id);

4258 va_list ap;

4259 va_start(ap, format);

4260 vprintf(format, ap);

4261 va_end(ap);

4262 fflush(stdout);

4263 }

4264 void MP::print(const char* format,...) {

4265 va_list ap;

4266 va_start(ap, format);

4267 vprintf(format, ap);

4268 va_end(ap);

4269 fflush(stdout);

4270 }

4271 #ifndef __PREPARE_H

4272 #define __PREPARE_H

4273

4274 #include "field.h"

4275 #include "vtk.h"

4276

4277 namespace Prepare {

4278 int decomposeXYZ(Mesh::MeshObject&,Int*,Scalar*);

4279 void decomposeFields(std::vector<std::string>& fields,std::string,Int);

4280 int merge(Mesh::MeshObject&,Int*,std::vector<std::string>& fields,std::string,Int);

4281 int convertVTK(Mesh::MeshObject&,std::vector<std::string>& fields,Int);

4282 int probe(Mesh::MeshObject&,std::vector<std::string>& fields,Int);

4283 }

4284

4285 #endif

4286 #include "mesh.h"

4287 #include "prepare.h"

4288 #include "system.h"

4289

4290 using namespace std;

C.2. Source code 343

4291

4292 /*decompose application*/

4293 int main(int argc,char* argv[]) {

4294 /*message passing object*/

4295 MP mp(argc,argv);

4296 ifstream input(argv[1]);

4297

4298 /*read mesh & fields*/

4299 vector<string> fields;

4300 vector<Int> n;

4301 vector<Scalar> axis(4);

4302 axis[0] = 1;

4303 Util::ParamList params("general");

4304 params.enroll("mesh",&Mesh::gMeshName);

4305 params.enroll("fields",&fields);

4306 params.enroll("decompose",&n);

4307 params.enroll("axis",&axis);

4308 params.enroll("probe",&Mesh::probePoints);

4309 params.read(input);

4310

4311 /*Mesh*/

4312 if(mp.n_hosts > 1) {

4313 stringstream s;

4314 s << Mesh::gMeshName << mp.host_id;

4315 if(!System::cd(s.str()))

4316 return 1;

4317 }

4318 Mesh::readMesh();

4319

4320 /*cmd line*/

4321 int work = 0;

4322 Int start_index = 0;

4323 for(int i = 1;i < argc;i++) {

4324 if(!strcmp(argv[i],"-merge")) {

4325 work = 1;

4326 } else if(!strcmp(argv[i],"-vtk")) {

4327 work = 2;

4328 } else if(!strcmp(argv[i],"-probe")) {

4329 work = 3;

4330 } else if(!strcmp(argv[i],"-poly")) {

4331 Vtk::write_polyhedral = true;

344 Chapter C. CFD program

4332 } else if(!strcmp(argv[i],"-start")) {

4333 i++;

4334 start_index = atoi(argv[i]);

4335 }

4336 }

4337

4338 Mesh::initGeomMeshFields(work != 0);

4339 cout << "fields " << fields << endl;

4340 atexit(Util::cleanup);

4341

4342 /*do work*/

4343 if(work == 1) {

4344 Prepare::merge(Mesh::gMesh,&n[0],fields,Mesh::gMeshName,start_index);

4345 } else if(work == 2) {

4346 Prepare::convertVTK(Mesh::gMesh,fields,start_index);

4347 } else if(work == 3) {

4348 Prepare::probe(Mesh::gMesh,fields,start_index);

4349 } else{

4350 Prepare::decomposeXYZ(Mesh::gMesh,&n[0],&axis[0]);

4351 Prepare::decomposeFields(fields,Mesh::gMeshName,start_index);

4352 }

4353 return 0;

4354 }

4355 #include <sstream>

4356 #include "prepare.h"

4357 #include "system.h"

4358

4359 using namespace std;

4360 using namespace Mesh;

4361

4362 /*duplicate fields*/

4363 template <class T>

4364 void duplicateFields(istream& is,ostream& of) {

4365 MeshField<T,CELL> f;

4366

4367 /*internal*/

4368 f.readInternal(is);

4369

4370 /*index file*/

4371 IntVector cLoc;

4372 ifstream index("index");

C.2. Source code 345

4373 index >> cLoc;

4374

4375 /*write it out*/

4376 of << "size "<< sizeof(T) / sizeof(Scalar) << endl;

4377 of << cLoc.size() << endl;

4378 of << "{" << endl;

4379 forEach(cLoc,j)

4380 of << f[cLoc[j]] << endl;

4381 of << "}" << endl;

4382

4383 /*boundaries*/

4384 char c;

4385 string bname,cname;

4386 while((c = Util::nextc(is)) && isalpha(c)) {

4387 BCondition<T> bc(" ");

4388 is >> bc;

4389 of << bc << endl;

4390 }

4391

4392 /*interMesh boundaries*/

4393 while((c = Util::nextc(index)) && isalpha(c)) {

4394 BCondition<T> bc(" ");

4395 index >> bc;

4396 of << bc << endl;

4397 }

4398 }

4399 /*decompose fields*/

4400 void Prepare::decomposeFields(vector<string>& fields,std::string mName,Int start_index

) {

4401 int size;

4402 std::string str;

4403

4404 for(Int ID = start_index;;ID++) {

4405 /*cd*/

4406 stringstream path;

4407 path << mName << ID;

4408 if(!System::cd(path.str()))

4409 break;

4410

4411 /*for each field*/

4412 forEach(fields,i) {

346 Chapter C. CFD program

4413 /*read at time 0*/

4414 string str = "../" + fields[i] + "0";

4415 ifstream is(str.c_str());

4416 if(!is.fail()) {

4417 str = fields[i] + "0";

4418 ofstream of(str.c_str());

4419

4420 /*seekg to beg*/

4421 is >> str >> size;

4422 is.seekg(0,fstream::beg);

4423

4424 /*fields*/

4425 switch(size) {

4426 case 1 : duplicateFields<Scalar>(is,of); break;

4427 case 3 : duplicateFields<Vector>(is,of); break;

4428 case 6 : duplicateFields<STensor>(is,of); break;

4429 case 9 : duplicateFields<Tensor>(is,of); break;

4430 }

4431 /*end*/

4432 }

4433 }

4434 /*go back*/

4435 System::cd("..");

4436 }

4437 }

4438 /*decompose in x,y,z direction*/

4439 int Prepare::decomposeXYZ(Mesh::MeshObject& mo,Int* n,Scalar* nq) {

4440

4441 using Constants::MAX_INT;

4442 Int i,j,ID,count,total = n[0] * n[1] * n[2];

4443 Vector maxV(Scalar(-10e30)),minV(Scalar(10e30)),delta;

4444 Vector axis(nq[0],nq[1],nq[2]);

4445 Scalar theta = nq[3];

4446 Vector C;

4447

4448 /*decomposed mesh*/

4449 MeshObject* meshes = new MeshObject[total];

4450 IntVector* vLoc = new IntVector[total];

4451 IntVector* fLoc = new IntVector[total];

4452 IntVector* cLoc = new IntVector[total];

4453 for(i = 0;i < total;i++) {

C.2. Source code 347

4454 vLoc[i].assign(mo.v.size(),0);

4455 fLoc[i].assign(mo.f.size(),0);

4456 }

4457

4458 /*max and min points*/

4459 forEach(mo.v,i) {

4460 C = rotate(mo.v[i],axis,theta);

4461 for(j = 0;j < 3;j++) {

4462 if(C[j] > maxV[j]) maxV[j] = C[j];

4463 if(C[j] < minV[j]) minV[j] = C[j];

4464 }

4465 }

4466 delta = maxV - minV;

4467 for(j = 0;j < 3;j++)

4468 delta[j] /= Scalar(n[j]);

4469

4470 /*decompose cells*/

4471 MeshObject *pmesh;

4472 IntVector *pvLoc,*pfLoc,blockIndex;

4473

4474 blockIndex.assign(gBCellsStart,0);

4475

4476 for(i = 0;i < gBCellsStart;i++) {

4477 Cell& c = mo.c[i];

4478

4479 /* add cell */

4480 C = rotate(_cC[i],axis,theta);

4481 C = (C - minV) / delta;

4482 ID = Int(C[0]) * n[1] * n[2] +

4483 Int(C[1]) * n[2] +

4484 Int(C[2]);

4485 pmesh = &meshes[ID];

4486 pvLoc = &vLoc[ID];

4487 pfLoc = &fLoc[ID];

4488 pmesh->c.push_back(c);

4489 cLoc[ID].push_back(i);

4490 blockIndex[i] = ID;

4491

4492 /* mark vertices and facets */

4493 forEach(c,j) {

4494 Facet& f = mo.f[c[j]];

348 Chapter C. CFD program

4495 (*pfLoc)[c[j]] = 1;

4496 forEach(f,k) {

4497 (*pvLoc)[f[k]] = 1;

4498 }

4499 }

4500 }

4501 /*add vertices & cells*/

4502 for(ID = 0;ID < total;ID++) {

4503 pmesh = &meshes[ID];

4504 pvLoc = &vLoc[ID];

4505 pfLoc = &fLoc[ID];

4506

4507 count = 0;

4508 forEach(mo.v,i) {

4509 if((*pvLoc)[i]) {

4510 pmesh->v.push_back(mo.v[i]);

4511 (*pvLoc)[i] = count++;

4512 } else

4513 (*pvLoc)[i] = Constants::MAX_INT;

4514 }

4515

4516 count = 0;

4517 forEach(mo.f,i) {

4518 if((*pfLoc)[i]) {

4519 pmesh->f.push_back(mo.f[i]);

4520 (*pfLoc)[i] = count++;

4521 } else

4522 (*pfLoc)[i] = Constants::MAX_INT;

4523 }

4524 }

4525 /*adjust IDs*/

4526 for(ID = 0;ID < total;ID++) {

4527 pmesh = &meshes[ID];

4528 pvLoc = &vLoc[ID];

4529 pfLoc = &fLoc[ID];

4530

4531 forEach(pmesh->f,i) {

4532 Facet& f = pmesh->f[i];

4533 forEach(f,j)

4534 f[j] = (*pvLoc)[f[j]];

4535 }

C.2. Source code 349

4536

4537 forEach(pmesh->c,i) {

4538 Cell& c = pmesh->c[i];

4539 forEach(c,j)

4540 c[j] = (*pfLoc)[c[j]];

4541 }

4542 }

4543 /*inter mesh faces*/

4544 IntVector* imesh = new IntVector[total * total];

4545 Int co,cn;

4546 forEach(mo.f,i) {

4547 if(gFN[i] < gBCellsStart) {

4548 co = blockIndex[gFO[i]];

4549 cn = blockIndex[gFN[i]];

4550 if(co != cn) {

4551 imesh[co * total + cn].push_back(fLoc[co][i]);

4552 imesh[cn * total + co].push_back(fLoc[cn][i]);

4553 }

4554 }

4555 }

4556

4557 /*write meshes to file */

4558 for(ID = 0;ID < total;ID++) {

4559 pmesh = &meshes[ID];

4560 pvLoc = &vLoc[ID];

4561 pfLoc = &fLoc[ID];

4562

4563 /*create directory and switch to it*/

4564 stringstream path;

4565 path << mo.name << ID;

4566

4567 System::mkdir(path.str());

4568 if(!System::cd(path.str()))

4569 return 1;

4570

4571 /*v,f & c*/

4572 ofstream of(mo.name.c_str());

4573 of << hex;

4574 of << pmesh->v << endl;

4575 of << pmesh->f << endl;

4576 of << pmesh->c << endl;

350 Chapter C. CFD program

4577

4578 /*bcs*/

4579 forEachIt(Boundaries,mo.bdry,it) {

4580 IntVector b;

4581 Int f;

4582 forEach(it->second,j) {

4583 f = (*pfLoc)[it->second[j]];

4584 if(f != Constants::MAX_INT)

4585 b.push_back(f);

4586 }

4587 /*write to file*/

4588 if(b.size()) {

4589 of << it->first << " ";

4590 of << b << endl;

4591 }

4592 }

4593

4594 /*index file*/

4595 ofstream of2("index");

4596 of2 << cLoc[ID] << endl;

4597

4598 /*inter mesh boundaries*/

4599 for(j = 0;j < total;j++) {

4600 IntVector& f = imesh[ID * total + j];

4601 if(f.size()) {

4602 of << "interMesh_" << ID << "_" << j << " ";

4603 of << f << endl;

4604 of2 << "interMesh_" << ID << "_" << j << " "

4605 << "{\n\ttype GHOST\n}" << endl;

4606 }

4607 }

4608

4609 of << dec;

4610 /*go back*/

4611 if(!System::cd(".."))

4612 return 1;

4613 }

4614

4615 /*delete*/

4616 delete[] meshes;

4617 delete[] imesh;

C.2. Source code 351

4618 delete[] vLoc;

4619 delete[] fLoc;

4620 delete[] cLoc;

4621 return 0;

4622 }

4623 /*read fields*/

4624 template <class T>

4625 void readFields(istream& is,void* pFields,const IntVector& cLoc) {

4626 MeshField<T,CELL>& f = *((MeshField<T,CELL>*)pFields);

4627 Int size;

4628 char symbol;

4629 is >> size >> symbol;

4630 for(Int j = 0;j < size;j++) {

4631 is >> f[cLoc[j]];

4632 }

4633 is >> symbol;

4634 }

4635 /*create fields*/

4636 void createFields(vector<string>& fields,void**& pFields,Int start_index) {

4637 std::string str;

4638 Int size;

4639

4640 /*for each field*/

4641 pFields = new void*[fields.size()];

4642 forEach(fields,i) {

4643 /*read at time 0*/

4644 stringstream path;

4645 path << fields[i] << start_index;

4646 str = path.str();

4647

4648 ifstream is(str.c_str());

4649 if(!is.fail()) {

4650 /*fields*/

4651 is >> str >> size;

4652 switch(size) {

4653 case 1 : pFields[i] = new ScalarCellField(fields[i].c_str(),READWRITE); break;

4654 case 3 : pFields[i] = new VectorCellField(fields[i].c_str(),READWRITE); break;

4655 case 6 : pFields[i] = new STensorCellField(fields[i].c_str(),READWRITE); break;

4656 case 9 : pFields[i] = new TensorCellField(fields[i].c_str(),READWRITE); break;

4657 }

4658 /*end*/

352 Chapter C. CFD program

4659 }

4660 }

4661 }

4662 /*open fields*/

4663 Int checkFields(vector<string>& fields,void**& pFields,Int step) {

4664 Int count = 0;

4665 forEach(fields,i) {

4666 stringstream fpath;

4667 fpath << fields[i] << step;

4668 ifstream is(fpath.str().c_str());

4669 if(is.fail())

4670 continue;

4671 count++;

4672 break;

4673 }

4674 if(count)

4675 Mesh::read_fields(step);

4676 return count;

4677 }

4678 /*Reverse decomposition*/

4679 int Prepare::merge(Mesh::MeshObject& mo,Int* n,

4680 vector<string>& fields,std::string mName,Int start_index) {

4681 /*create fields*/

4682 void** pFields;

4683 createFields(fields,pFields,start_index);

4684

4685 /*indexes*/

4686 Int total = n[0] * n[1] * n[2];

4687 IntVector* cLoc = new IntVector[total];

4688 std::string str;

4689 Int size;

4690

4691 for(Int ID = 0;ID < total;ID++) {

4692 stringstream path;

4693 path << mName << ID;

4694 str = path.str() + "/index";

4695 ifstream index(str.c_str());

4696 index >> cLoc[ID];

4697 }

4698

4699 /*for each time step*/

C.2. Source code 353

4700 Int step = start_index;

4701 Mesh::read_fields(step);

4702 for(step = start_index + 1;;step++) {

4703 Int count = 0;

4704 for(Int ID = 0;ID < total;ID++) {

4705 stringstream path;

4706 path << mName << ID;

4707 forEach(fields,i) {

4708 stringstream fpath;

4709 fpath << fields[i] << step;

4710 str = path.str() + "/" + fpath.str();

4711 ifstream is(str.c_str());

4712 if(is.fail())

4713 continue;

4714 count++;

4715 /*read*/

4716 is >> str >> size;

4717 switch(size) {

4718 case 1 : readFields<Scalar>(is,pFields[i],cLoc[ID]); break;

4719 case 3 : readFields<Vector>(is,pFields[i],cLoc[ID]); break;

4720 case 6 : readFields<STensor>(is,pFields[i],cLoc[ID]); break;

4721 case 9 : readFields<Tensor>(is,pFields[i],cLoc[ID]); break;

4722 }

4723 }

4724 }

4725 if(count == 0) break;

4726 Mesh::write_fields(step);

4727 }

4728

4729 return 0;

4730 }

4731 /*Convert to VTK format*/

4732 int Prepare::convertVTK(Mesh::MeshObject& mo,vector<string>& fields,Int start_index) {

4733 /*create fields*/

4734 void** pFields;

4735 createFields(fields,pFields,start_index);

4736

4737 /*for each time step*/

4738 for(Int step = start_index;;step++) {

4739 if(!checkFields(fields,pFields,step))

4740 break;

354 Chapter C. CFD program

4741

4742 /*write vtk*/

4743 Vtk::write_vtk(step);

4744 }

4745

4746 return 0;

4747 }

4748 /*Probe values at certain locations*/

4749 int Prepare::probe(Mesh::MeshObject& mo,vector<string>& fields,Int start_index) {

4750 /*probe points*/

4751 IntVector probes;

4752 getProbeFaces(probes);

4753 ofstream of("probes");

4754

4755 /*create fields*/

4756 void** pFields;

4757 createFields(fields,pFields,start_index);

4758

4759 /*for each time step*/

4760 for(Int step = start_index;;step++) {

4761 if(!checkFields(fields,pFields,step))

4762 break;

4763

4764 /*Interpolate*/

4765 forEachField(interpolateVertexAll());

4766

4767 /*write probes*/

4768 #define ADD(v,value,weight) { \

4769 dist = magSq((v) - probeP); \

4770 dist = weight / (dist + 1.0f); \

4771 sum += (value) * dist; \

4772 sumd += dist; \

4773 }

4774 #define SUM(X) { \

4775 Cell& c = gCells[X]; \

4776 forEach(c,m) { \

4777 Facet& f = gFacets[c[m]]; \

4778 forEach(f,j) { \

4779 ADD(gVertices[f[j]],(*it)[f[j]],1.0); \

4780 } \

4781 } \

C.2. Source code 355

4782 }

4783 #define WRITE(T) { \

4784 std::list<MeshField<T,CELL>*>::iterator it1 = \

4785 MeshField<T,CELL>::fields_.begin(); \

4786 for(MeshField<T,CELL>::vertexFieldsType::iterator it = \

4787 (MeshField<T,CELL>::vf_fields_)->begin(); it != \

4788 (MeshField<T,CELL>::vf_fields_)->end(); ++it,++it1) { \

4789 T sum(0.0); \

4790 Scalar sumd(0.0); \

4791 ADD(cC[c1],(*(*it1))[c1],2.0); \

4792 ADD(cC[c2],(*(*it1))[c2],2.0); \

4793 SUM(sc); \

4794 of << (sum/sumd) << " "; \

4795 } \

4796 }

4797 forEach(probes,i) {

4798 Int fi = probes[i];

4799 Int c1 = gFO[fi];

4800 Int c2 = gFN[fi];

4801 Vector probeP = probePoints[i];

4802 Scalar dir = ((fC[fi] - probeP) & fN[fi]),dist;

4803 Int sc;

4804 if(dir >= 0) sc = c1;

4805 else sc = c2;

4806

4807 of << step << " " << i << " " << probePoints[i] << " ";

4808

4809 WRITE(Scalar);

4810 WRITE(Vector);

4811 WRITE(STensor);

4812 WRITE(Tensor);

4813

4814 of << endl;

4815 }

4816 #undef WRITE

4817 #undef SUM

4818 #undef ADD

4819 }

4820

4821 return 0;

4822 }#ifndef __UTIL_H

356 Chapter C. CFD program

4823 #define __UTIL_H

4824

4825 #include "tensor.h"

4826 #include <map>

4827 #include <vector>

4828 #include <algorithm>

4829 #include <cstdarg>

4830

4831 /*vector IO*/

4832 template <class T>

4833 std::ostream& operator << (std::ostream& os, const std::vector<T>& p) {

4834 os << p.size() << std::endl;

4835 os << "{ " << std::endl;

4836 forEach(p,i)

4837 os << p[i] << std::endl;

4838 os << "}" << std::endl;

4839 return os;

4840 }

4841 template <class T>

4842 std::istream& operator >> (std::istream& is, std::vector<T>& p) {

4843 Int size;

4844 char symbol;

4845 is >> size >> symbol;

4846 p.resize(size);

4847 forEach(p,i)

4848 is >> p[i];

4849 is >> symbol;

4850 return is;

4851 }

4852

4853 std::ostream& operator << (std::ostream& os, const std::vector<Int>& p);

4854

4855 /*equal vectors*/

4856 template <class T>

4857 bool equal(std::vector<T>& v1,std::vector<T>& v2) {

4858 Int j;

4859 forEach(v1,i) {

4860 for(j = 0;j < v2.size();j++) {

4861 if(v1[i] == v2[j])

4862 break;

4863 }

C.2. Source code 357

4864 if(j == v2.size())

4865 return false;

4866 }

4867 return true;

4868 }

4869

4870 /*Utililty functions*/

4871 namespace Util {

4872 extern bool Terminated;

4873 Int hash_function(std::string s);

4874 int nextc(std::istream&);

4875 void cleanup();

4876

4877 /*string compare*/

4878 inline int compare(std::string& s1,std::string s2) {

4879 std::string t1 = s1,t2 = s2;

4880 std::transform(t1.begin(),t1.end(),t1.begin(),toupper);

4881 std::transform(t2.begin(),t2.end(),t2.begin(),toupper);

4882 return (t1 != t2);

4883 }

4884

4885 /*general string option list*/

4886 namespace A {

4887 struct Option {

4888 Int* val;

4889 std::vector<std::string> list;

4890 Option(void* v,Int N, ...) {

4891 val = (Int*)v;

4892 std::string str;

4893 list.assign(N,"");

4894 va_list ap;

4895 va_start(ap, N);

4896 for(Int i = 0;i < N;i++) {

4897 str = va_arg(ap,char*);

4898 list[i] = str;

4899 }

4900 va_end(ap);

4901 }

4902 Int getID(std::string str) {

4903 forEach(list,i) {

4904 if(!Util::compare(list[i],str))

358 Chapter C. CFD program

4905 return i;

4906 }

4907 std::cout << "Unknown parameter : " << str << std::endl;

4908 return 0;

4909 }

4910 friend std::istream& operator >> (std::istream& is, Option& p) {

4911 std::string str;

4912 is >> str;

4913 *(p.val) = p.getID(str);

4914 return is;

4915 }

4916 friend std::ostream& operator << (std::ostream& os, const Option& p) {

4917 os << p.list[*(p.val)];

4918 return os;

4919 }

4920 };

4921 }

4922 using A::Option;

4923

4924 /*bool option*/

4925 struct BoolOption : public Option {

4926 BoolOption(void* v) :

4927 Option(v,2,"NO","YES")

4928 {

4929 }

4930 };

4931

4932 /*parameters*/

4933 template <typename T>

4934 class Parameters{

4935 std::map<std::string,T*> list;

4936 public:

4937 void enroll(std::string str,T* addr) {

4938 list[str] = addr;

4939 }

4940 bool read(std::string str,std::istream& is,bool out) {

4941 typename std::map<std::string,T*>::iterator it = list.find(str);

4942 if(it != list.end()) {

4943 is >> *(it->second);

4944 if(out) std::cout << *(it->second);

4945 return true;

C.2. Source code 359

4946 }

4947 return false;

4948 }

4949 };

4950 extern void read_params(std::istream&,std::string = "");

4951

4952 /*parameters list*/

4953 struct ParamList {

4954 std::string name;

4955 static std::map<std::string,ParamList*> list;

4956

4957 ParamList(std::string n) : name(n) {

4958 list[name] = this;

4959 }

4960 ˜ParamList() {

4961 list.erase(name);

4962 }

4963

4964 #define addParam(T,N) \

4965 Parameters<T> params_##N; \

4966 void enroll(std::string str,T* addr) { \

4967 params_##N.enroll(str,addr); \

4968 }

4969 addParam(Int,Int);

4970 addParam(Scalar,Scalar);

4971 addParam(Vector,Vector);

4972 addParam(STensor,STensor);

4973 addParam(Tensor,Tensor);

4974 addParam(std::string,string);

4975 addParam(Option,Option);

4976 addParam(std::vector<Int>,vec_int);

4977 addParam(std::vector<std::string>,vec_string);

4978 addParam(std::vector<Scalar>,vec_scalar);

4979 addParam(std::vector<Vector>,vec_vector);

4980 #undef addParam

4981

4982 void read(std::istream& is,std::string str,bool out) {

4983 #define readp(N) params_##N.read(str,is,out)

4984 if(readp(Int));

4985 else if(readp(string));

4986 else if(readp(Option));

360 Chapter C. CFD program

4987 else if(readp(Scalar));

4988 else if(readp(Vector));

4989 else if(readp(Tensor));

4990 else if(readp(STensor));

4991 else if(readp(vec_int));

4992 else if(readp(vec_scalar));

4993 else if(readp(vec_vector));

4994 else if(readp(vec_string));

4995 else if(out) {

4996 std::cout << "UNKNOWN";

4997 }

4998 #undef readp

4999 }

5000 void read(std::istream& is) {

5001 read_params(is,name);

5002 }

5003 };

5004 /*end*/

5005 }

5006

5007 #endif

5008 #include <string>

5009 #include "util.h"

5010

5011 using namespace std;

5012

5013 namespace Util {

5014 bool Terminated = false;

5015

5016 std::map<std::string,ParamList*> ParamList::list;

5017 }

5018

5019 Int Util::hash_function(std::string s) {

5020 Int h = 0;

5021 const char* p = s.c_str();

5022 while(*p) { h = 31 * h + *p++; }

5023 return h;

5024 }

5025 int Util::nextc(std::istream& is) {

5026 char c;

5027 is >> c;

C.2. Source code 361

5028 while(c == ’#’) {

5029 while((c = is.get()) && c != ’\n’);

5030 is >> c;

5031 }

5032 if(is.eof())

5033 return 0;

5034 is.putback(c);

5035 return c;

5036 }

5037 void Util::cleanup () {

5038 Terminated = true;

5039 printf("Exiting application\n");

5040 }

5041 void Util::read_params(istream& is,std::string block) {

5042 string str;

5043 char c;

5044 bool output = block.empty();

5045

5046 #define READ() { \

5047 c = Util::nextc(is); \

5048 if(!c) goto END; \

5049 else if(c == ’}’) { \

5050 is >> c; \

5051 break; \

5052 } else is >> str; \

5053 }

5054

5055 while(true) {

5056 READ();

5057 is >> c;

5058

5059 map<string,ParamList*>::iterator it = ParamList::list.find(str);

5060 if((it == ParamList::list.end()) ||

5061 (!block.empty() && compare(str,block))) {

5062 int braces = 1;

5063 while((c = Util::nextc(is))) {

5064 is >> c;

5065 if(c == ’{’) braces++;

5066 else if(c == ’}’) {

5067 braces--;

5068 if(!braces) break;

362 Chapter C. CFD program

5069 }

5070 }

5071 continue;

5072 }

5073

5074 if(output) cout << str << "\n{\n" << endl;

5075 ParamList* params = it->second;

5076 while(true) {

5077 READ();

5078 if(output) cout << "\t" << str << " = ";

5079 params->read(is,str,output);

5080 if(output) cout << endl;

5081 }

5082 if(output) cout << "}\n" << endl;

5083 if(!block.empty())

5084 break;

5085 }

5086 END:

5087 is.clear();

5088 is.seekg(0,ios::beg);

5089 }

5090

5091 std::ostream& operator << (std::ostream& os, const std::vector<Int>& p) {

5092 Int sz = p.size();

5093 if(sz >= 16) os << sz << endl << "{ ";

5094 else os << sz << "{ ";

5095 for(Int i = 0;i < sz;i++) {

5096 if(sz >= 16 && (i % 16) == 0)

5097 os << endl;

5098 os << p[i] << " ";

5099 }

5100 if(sz >= 16) os << endl << "}";

5101 else os << "}";

5102 return os;

5103 }

5104

5105

5106 #ifndef __VTK_H

5107 #define __VTK_H

5108

5109 #include "field.h"

C.2. Source code 363

5110

5111 namespace Vtk {

5112 void write_vtk(Int);

5113 extern bool write_polyhedral;

5114 extern bool write_cell_value;

5115 }

5116

5117 #endif

5118 #include "vtk.h"

5119

5120 using namespace std;

5121 using namespace Mesh;

5122

5123 bool Vtk::write_polyhedral = false;

5124 bool Vtk::write_cell_value = true;

5125

5126 static Int cell_count(Cell& c) {

5127 Facet* f;

5128 Int i,nFacets = c.size(),nVertices = 0,nTotal;

5129 for(i = 0;i < nFacets;i++) {

5130 f = &gFacets[c[i]];

5131 nVertices += f->size();

5132 }

5133 nTotal = nFacets + nVertices + 2;

5134 return nTotal;

5135 }

5136

5137 static void cell_vtk(std::ofstream& of, Cell& c) {

5138 Facet* f;

5139 Int i,j,nFacets = c.size(),nVertices = 0,nTotal;

5140 for(i = 0;i < nFacets;i++) {

5141 f = &gFacets[c[i]];

5142 nVertices += f->size();

5143 }

5144 nTotal = nFacets + nVertices + 2;

5145

5146 /*write*/

5147 of << nTotal - 1 << " " << nFacets << " ";

5148 for(i = 0;i < nFacets;i++) {

5149 f = &gFacets[c[i]];

5150 of << f->size() << " ";

364 Chapter C. CFD program

5151 for(j = 0;j < f->size();j++) {

5152 of << (*f)[j] << " ";

5153 }

5154 }

5155 of << endl;

5156 }

5157

5158 void Vtk::write_vtk(Int step) {

5159 Int total;

5160 stringstream path;

5161 path << gMeshName << step << ".vtk";

5162 ofstream of(path.str().c_str());

5163 if(write_polyhedral)

5164 of << "# vtk DataFile Version 2.0" << endl;

5165 else

5166 of << "# vtk DataFile Version 1.0" << endl;

5167 of << Mesh::gMeshName << endl;

5168 of << "ASCII" << endl;

5169 of << "DATASET UNSTRUCTURED_GRID" << endl;

5170 /*Geometry*/

5171 Int i;

5172 of << "POINTS " << gVertices.size() << " float" << endl;

5173 of.precision(12);

5174 forEach(gVertices,i)

5175 of << gVertices[i] << endl;

5176 of.precision(6);

5177 if(write_polyhedral) {

5178 /*polyhedral cells*/

5179 total = 0;

5180 for(i = 0;i < gBCellsStart;i++)

5181 total += cell_count(gCells[i]);

5182

5183 of << "CELLS " << gBCellsStart << " " << total << endl;

5184 for(i = 0;i < gBCellsStart;i++)

5185 cell_vtk(of,gCells[i]);

5186

5187 of << "CELL_TYPES " << gBCellsStart << endl;

5188 for(i = 0;i < gBCellsStart;i++)

5189 of << 42 << endl;

5190 } else {

5191 /*hexahedral cells*/

C.2. Source code 365

5192 of << "CELLS " << gBCellsStart << " " << gBCellsStart * 9 << endl;

5193 for(i = 0;i < gBCellsStart;i++) {

5194 Cell& c = gCells[i];

5195 Facet f1 = gFacets[c[0]];

5196 Facet f2 = gFacets[c[1]];

5197 of << f1.size() + f2.size() << " ";

5198 forEach(f1,j)

5199 of << f1[j] << " ";

5200 forEach(f2,j)

5201 of << f2[j] << " ";

5202 of << endl;

5203 }

5204 of << "CELL_TYPES " << gBCellsStart << endl;

5205 for(i = 0;i < gBCellsStart;i++) {

5206 of << "12" << endl;

5207 }

5208 }

5209 /*Fields*/

5210 total = ScalarCellField::count_writable() +

5211 VectorCellField::count_writable() +

5212 STensorCellField::count_writable() +

5213 TensorCellField::count_writable();

5214 if(write_cell_value) {

5215 of << "CELL_DATA " << gBCellsStart << endl;

5216 of << "FIELD attributes "<< total + 1 << endl;

5217 forEachField(writeVtkCellAll(of));

5218 of << "cellID 1 " << Mesh::gBCellsStart << " int" << endl;

5219 for(Int i = 0;i < Mesh::gBCellsStart;i++) of << i << endl;

5220 }

5221 of << "POINT_DATA " << gVertices.size() << endl;

5222 of << "FIELD attributes "<< total << endl;

5223 forEachField(writeVtkVertexAll(of));

5224 }

5225 #ifndef __SOLVE_H

5226 #define __SOLVE_H

5227

5228 #include "field.h"

5229

5230 void Solve(const MeshMatrix<Scalar>&);

5231 void Solve(const MeshMatrix<Vector>&);

5232 void Solve(const MeshMatrix<STensor>&);

366 Chapter C. CFD program

5233 void Solve(const MeshMatrix<Tensor>&);

5234

5235 #endif

5236 #include "solve.h"

5237

5238 /* ***

5239 * Solve system of linear equations iteratively

5240 * ***/

5241 template<class type>

5242 Scalar getResidual(const MeshField<type,CELL>& r,

5243 const MeshField<type,CELL>& cF,

5244 bool sync) {

5245 type res[2];

5246 res[0] = type(0);

5247 res[1] = type(0);

5248 for(Int i = 0;i < Mesh::gBCellsStart;i++) {

5249 res[0] += (r[i] * r[i]);

5250 res[1] += (cF[i] * cF[i]);

5251 }

5252 if(sync) {

5253 type global_res[2];

5254 MP::allsum(res,global_res,2);

5255 res[0] = global_res[0];

5256 res[1] = global_res[1];

5257 }

5258 return sqrt(mag(res[0]) / mag(res[1]));

5259 }

5260

5261 template<class type>

5262 void SolveT(const MeshMatrix<type>& M) {

5263

5264 using namespace Mesh;

5265 MeshField<type,CELL> r,p,AP;

5266 MeshField<type,CELL> r1(false),p1(false),AP1(false);

5267 MeshField<type,CELL>& cF = *M.cF;

5268 MeshField<type,CELL>& buffer = AP;

5269 ScalarCellField D = M.ap,iD = (1 / M.ap);

5270 Scalar res,ires;

5271 type alpha,beta,o_rr = type(0),oo_rr;

5272 Int j,iterations = 0;

5273 bool converged = false;

C.2. Source code 367

5274 register Int i;

5275

5276 /****************************

5277 * Parallel controls

5278 ***************************/

5279 bool print = (MP::host_id == 0);

5280 int end_count = 0;

5281 bool sync = (Controls::parallel_method == Controls::BLOCKED)

5282 && gInterMesh.size();

5283 std::vector<bool> sent_end(gInterMesh.size(),false);

5284

5285 /****************************

5286 * Identify solver type

5287 ***************************/

5288 if(print) {

5289 if(M.flags & M.SYMMETRIC)

5290 MP::printH("SYMM-");

5291 else

5292 MP::printH("ASYM-");

5293 if(Controls::Solver == Controls::JACOBI)

5294 MP::print("JAC :");

5295 else if(Controls::Solver == Controls::SOR)

5296 MP::print("SOR :");

5297 else {

5298 switch(Controls::Preconditioner) {

5299 case Controls::NOP: MP::print("PCG :"); break;

5300 case Controls::DIAG: MP::print("DIAG-PCG :"); break;

5301 case Controls::SORP: MP::print("SOR-PCG :"); break;

5302 case Controls::DILU: MP::print("DILU-PCG :"); break;

5303 }

5304 }

5305 }

5306 /****************************

5307 * Initialization

5308 ***************************/

5309 if(Controls::Solver == Controls::PCG) {

5310 if(!(M.flags & M.SYMMETRIC)) {

5311 /* Allocate BiCG vars*/

5312 r1.allocate();

5313 p1.allocate();

5314 AP1.allocate();

368 Chapter C. CFD program

5315 } else {

5316 if(Controls::Preconditioner == Controls::SORP) {

5317 /*SOR and GS*/

5318 iD *= Controls::SOR_omega;

5319 D *= (2.0 / Controls::SOR_omega - 1.0);

5320 } else if(Controls::Preconditioner == Controls::DILU) {

5321 /*D-ILU(0)*/

5322 for(i = 0;i < gBCellsStart;i++) {

5323 Cell& c = gCells[i];

5324 forEach(c,j) {

5325 Int f = c[j];

5326 Int c1 = gFO[f];

5327 Int c2 = gFN[f];

5328 if(i == c1) {

5329 if(c2 > i) D[c2] -=

5330 (M.an[0][f] * M.an[1][f] * iD[c1]);

5331 } else {

5332 if(c1 > i) D[c1] -=

5333 (M.an[0][f] * M.an[1][f] * iD[c2]);

5334 }

5335 }

5336 }

5337 iD = (1 / D);

5338 }

5339 /*end*/

5340 }

5341 }

5342 /****************************

5343 * Jacobi sweep

5344 ***************************/

5345 #define JacobiSweep() { \

5346 AP = iD * getRHS(M); \

5347 for(i = 0;i < gBCellsStart;i++) \

5348 cF[i] = AP[i]; \

5349 }

5350 /****************************

5351 * Forward/backward GS sweeps

5352 ****************************/

5353 #define Sweep_(X,B,i) { \

5354 Cell& c = gCells[i]; \

5355 type ncF = B[i]; \

C.2. Source code 369

5356 forEach(c,j) { \

5357 Int f = c[j]; \

5358 if(i == gFO[f]) \

5359 ncF += X[gFN[f]] * M.an[1][f]; \

5360 else \

5361 ncF += X[gFO[f]] * M.an[0][f]; \

5362 } \

5363 ncF *= iD[i]; \

5364 X[i] = X[i] * (1 - Controls::SOR_omega) + \

5365 ncF * (Controls::SOR_omega); \

5366 }

5367 #define ForwardSweep(X,B) { \

5368 for(i = 0;i < gBCellsStart;i++) \

5369 Sweep_(X,B,i); \

5370 }

5371 #define BackwardSweep(X,B) { \

5372 for(int i = gBCellsStart - 1;i >= 0;i--) \

5373 Sweep_(X,B,i); \

5374 }

5375 /***********************************

5376 * Forward/backward substitution

5377 ***********************************/

5378 #define Substitute_(X,B,i,forw,tr) { \

5379 Cell& c = gCells[i]; \

5380 type ncF = B[i]; \

5381 forEach(c,j) { \

5382 Int f = c[j]; \

5383 Int c1 = gFO[f]; \

5384 Int c2 = gFN[f]; \

5385 if(i == c1) { \

5386 if((forw && (c2 < c1)) || \

5387 (!forw && (c1 < c2))) { \

5388 ncF += X[c2] * M.an[1 - tr][f]; \

5389 } \

5390 } else { \

5391 if((forw && (c2 > c1)) || \

5392 (!forw && (c1 > c2))) \

5393 ncF += X[c1] * M.an[0 + tr][f]; \

5394 } \

5395 } \

5396 ncF *= iD[i]; \

370 Chapter C. CFD program

5397 X[i] = ncF; \

5398 }

5399 #define ForwardSub(X,B,TR) { \

5400 for(i = 0;i < gBCellsStart;i++) \

5401 Substitute_(X,B,i,true,TR); \

5402 }

5403 #define BackwardSub(X,B,TR) { \

5404 for(int i = gBCellsStart - 1;i >= 0;i--) \

5405 Substitute_(X,B,i,false,TR); \

5406 }

5407 #define DiagSub(X,B) { \

5408 for(i = 0;i < gBCellsStart;i++) \

5409 X[i] = B[i] * iD[i]; \

5410 }

5411 /***********************************

5412 * Preconditioners

5413 ***********************************/

5414 #define precondition_(R,Z,TR) { \

5415 using namespace Controls; \

5416 if(Preconditioner == Controls::NOP) { \

5417 Z = R; \

5418 } else if(Preconditioner == Controls::DIAG) { \

5419 DiagSub(Z,R); \

5420 } else { \

5421 if(Controls::Solver == Controls::PCG) { \

5422 Z = type(0); \

5423 ForwardSub(Z,R,TR); \

5424 Z = Z * D; \

5425 BackwardSub(Z,Z,TR); \

5426 } \

5427 } \

5428 }

5429 #define precondition(R,Z) precondition_(R,Z,0)

5430 #define preconditionT(R,Z) precondition_(R,Z,1)

5431 /***********************************

5432 * SAXPY and DOT operations

5433 ***********************************/

5434 #define Taxpy(Y,I,X,alpha_) { \

5435 for(i = 0;i < gBCellsStart;i++) \

5436 Y[i] = I[i] + X[i] * alpha_; \

5437 }

C.2. Source code 371

5438 #define Tdot(X,Y,sum) { \

5439 sum = type(0); \

5440 for(i = 0;i < gBCellsStart;i++) \

5441 sum += X[i] * Y[i]; \

5442 }

5443 /***********************************

5444 * Synchronized sum and exchange

5445 ***********************************/

5446 #define SUM_ALL(typ,var) if(sync) { \

5447 typ t; \

5448 MP::allsum(&var,&t,1); \

5449 var = t; \

5450 }

5451 #define EXCHANGE(var) if(sync) { \

5452 exchange_ghost(&var[0]); \

5453 }

5454 /***********************************

5455 * Residual

5456 ***********************************/

5457 #define CALC_RESID() { \

5458 r = M.Su - M * cF; \

5459 forEachS(r,k,gBCellsStart) \

5460 r[k] = type(0); \

5461 precondition(r,AP); \

5462 forEachS(AP,k,gBCellsStart) \

5463 AP[k] = type(0); \

5464 res = getResidual(AP,cF,sync); \

5465 if(Controls::Solver == Controls::PCG) { \

5466 Tdot(r,AP,o_rr); \

5467 SUM_ALL(type,o_rr); \

5468 p = AP; \

5469 if(!(M.flags & M.SYMMETRIC)) { \

5470 r1 = r; \

5471 p1 = p; \

5472 } \

5473 } \

5474 }

5475 /***********************

5476 * Initialize residual

5477 ***********************/

5478 CALC_RESID();

372 Chapter C. CFD program

5479 ires = res;

5480 /**

5481 * Initialize exchange of ghost cells just once.

5482 * Lower numbered processors send message to higher ones.

5483 ***/

5484 if(!sync) {

5485 end_count = gInterMesh.size();

5486 forEach(gInterMesh,i) {

5487 interBoundary& b = gInterMesh[i];

5488 if(b.from < b.to) {

5489 IntVector& f = *(b.f);

5490 forEach(f,j)

5491 buffer[j] = cF[gFO[f[j]]];

5492 MP::send(&buffer[0],f.size(),b.to,MP::FIELD);

5493 }

5494 }

5495 }

5496 /* **************************

5497 * Iterative solution

5498 * *************************/

5499 while(iterations < Controls::max_iterations) {

5500 /*counter*/

5501 iterations++;

5502

5503 /*select solver*/

5504 if(Controls::Solver == Controls::JACOBI) {

5505 /*Jacobi solver*/

5506 p = cF;

5507 JacobiSweep();

5508 for(i = 0;i < gBCellsStart;i++)

5509 AP[i] = cF[i] - p[i];

5510 /*end*/

5511 } else if(Controls::Solver == Controls::SOR) {

5512 /*Asynchronous SOR solver*/

5513 p = cF;

5514 ForwardSweep(cF,M.Su);

5515 for(i = 0;i < gBCellsStart;i++)

5516 AP[i] = cF[i] - p[i];

5517 /*end*/

5518 } else if(M.flags & M.SYMMETRIC) {

5519 /*conjugate gradient*/

C.2. Source code 373

5520 EXCHANGE(p);

5521 AP = M * p;

5522 Tdot(p,AP,oo_rr);

5523 SUM_ALL(type,oo_rr);

5524 alpha = sdiv(o_rr , oo_rr);

5525 Taxpy(cF,cF,p,alpha);

5526 Taxpy(r,r,AP,-alpha);

5527 precondition(r,AP);

5528 oo_rr = o_rr;

5529 Tdot(r,AP,o_rr);

5530 SUM_ALL(type,o_rr);

5531 beta = sdiv(o_rr , oo_rr);

5532 Taxpy(p,AP,p,beta);

5533 /*end*/

5534 } else {

5535 /* biconjugate gradient*/

5536 EXCHANGE(p);

5537 EXCHANGE(p1);

5538 AP = M * p;

5539 AP1 = M ˆ p1;

5540 Tdot(p1,AP,oo_rr);

5541 SUM_ALL(type,oo_rr);

5542 alpha = sdiv(o_rr , oo_rr);

5543 Taxpy(cF,cF,p,alpha);

5544 Taxpy(r,r,AP,-alpha);

5545 Taxpy(r1,r1,AP1,-alpha);

5546 precondition(r,AP);

5547 preconditionT(r1,AP1);

5548 oo_rr = o_rr;

5549 Tdot(r1,AP,o_rr);

5550 SUM_ALL(type,o_rr);

5551 beta = sdiv(o_rr , oo_rr);

5552 Taxpy(p,AP,p,beta);

5553 Taxpy(p1,AP1,p1,beta);

5554 /*end*/

5555 }

5556 /* ***

5557 * calculate norm of residual & check convergence

5558 * **/

5559 EXCHANGE(cF);

5560 res = getResidual(AP,cF,sync);

374 Chapter C. CFD program

5561 if(res <= Controls::tolerance

5562 || iterations == Controls::max_iterations)

5563 converged = true;

5564 PROBE:

5565 /* **

5566 * Update ghost cell values. Communication is NOT forced on

5567 * every iteration,rather a non-blocking probe is used to

5568 * process messages as they arrive.

5569 **/

5570 if(!sync)

5571 {

5572 int source,message_id;

5573 /*probe*/

5574 while(MP::iprobe(source,message_id)) {

5575 /*find the boundary*/

5576 Int patchi;

5577 for(patchi = 0;patchi < gInterMesh.size();patchi++) {

5578 if(gInterMesh[patchi].to == source)

5579 break;

5580 }

5581 interBoundary& b = gInterMesh[patchi];

5582 /*parse message*/

5583 if(message_id == MP::FIELD) {

5584 IntVector& f = *(b.f);

5585 /*recieve*/

5586 MP::recieve(&buffer[0],f.size(),source,message_id);

5587 forEach(f,j)

5588 cF[gFN[f[j]]] = buffer[j];

5589 /*Re-calculate residual.*/

5590 CALC_RESID();

5591 if(res > Controls::tolerance

5592 && iterations < Controls::max_iterations)

5593 converged = false;

5594 /* For communication to continue, processor have to send back

5595 * something for every message recieved.*/

5596 if(converged) {

5597 /*send END marker*/

5598 if(!sent_end[patchi]) {

5599 MP::send(source,MP::END);

5600 sent_end[patchi] = true;

5601 }

C.2. Source code 375

5602 } else {

5603 /*send back our part*/

5604 forEach(f,j)

5605 buffer[j] = cF[gFO[f[j]]];

5606 MP::send(&buffer[0],f.size(),source,message_id);

5607 }

5608 } else if(message_id == MP::END) {

5609 /*END marker recieved*/

5610 MP::recieve(source,message_id);

5611 end_count--;

5612 if(!sent_end[patchi]) {

5613 MP::send(source,MP::END);

5614 sent_end[patchi] = true;

5615 }

5616 }

5617 }

5618 }

5619 /* ***

5620 * Wait untill all partner processors send us

5621 * an END message i.e. until end_count = 0.

5622 * ***/

5623 if(converged) {

5624 if(end_count > 0) goto PROBE;

5625 else break;

5626 }

5627 /********

5628 * end

5629 ********/

5630 }

5631

5632 /*solver info*/

5633 if(print)

5634 MP::print("Iterations %d Initial Residual "

5635 "%.5e Final Residual %.5e\n",iterations,ires,res);

5636

5637 /*barrier*/

5638 MP::barrier();

5639

5640 /*update boundary conditons*/

5641 updateExplicitBCs(cF);

5642 }

376 Chapter C. CFD program

5643 /***************************

5644 * Explicit instantiations

5645 ***************************/

5646 void Solve(const MeshMatrix<Scalar>& A) {

5647 applyImplicitBCs(A);

5648 SolveT(A);

5649 }

5650 void Solve(const MeshMatrix<Vector>& A) {

5651 applyImplicitBCs(A);

5652 SolveT(A);

5653 }

5654 void Solve(const MeshMatrix<STensor>& A) {

5655 applyImplicitBCs(A);

5656 SolveT(A);

5657 }

5658 void Solve(const MeshMatrix<Tensor>& A) {

5659 applyImplicitBCs(A);

5660 SolveT(A);

5661 }

5662 /* ********************

5663 * End

5664 * ********************/

5665 #include "field.h"

5666 #include "turbulence.h"

5667 #include "mp.h"

5668 #include "system.h"

5669 #include "solve.h"

5670

5671 using namespace std;

5672

5673 /*general properties*/

5674 namespace GENERAL {

5675 Scalar density = 1;

5676 Scalar viscosity = 1e-5;

5677 Scalar conductivity = 1e-4;

5678 Vector gravity = Vector(0,0,-9.81);

5679

5680 void enroll(Util::ParamList& params) {

5681 params.enroll("rho",&density);

5682 params.enroll("viscosity",&viscosity);

5683 params.enroll("conductivity",&conductivity);

C.2. Source code 377

5684 params.enroll("gravity",&gravity);

5685 }

5686 };

5687

5688 /*solvers*/

5689 void piso(istream&);

5690 void diffusion(istream&);

5691 void potential(istream&);

5692 void transport(istream&);

5693 void walldist(istream&);

5694

5695 /**

5696 \verbatim

5697 Main application entry point for different solvers.

5698 \endverbatim

5699 */

5700 int main(int argc,char* argv[]) {

5701

5702 /*message passing object*/

5703 MP mp(argc,argv);

5704 ifstream input(argv[1]);

5705

5706 /*main options*/

5707 Util::ParamList params("general");

5708 string sname;

5709 params.enroll("solver",&sname);

5710 params.enroll("mesh",&Mesh::gMeshName);

5711 Mesh::enroll(params);

5712 GENERAL::enroll(params);

5713 params.read(input);

5714

5715 /*Mesh*/

5716 if(mp.n_hosts > 1) {

5717 stringstream s;

5718 s << Mesh::gMeshName << mp.host_id;

5719 if(!System::cd(s.str()))

5720 return 1;

5721 }

5722 Mesh::readMesh();

5723 Mesh::initGeomMeshFields();

5724 atexit(Util::cleanup);

378 Chapter C. CFD program

5725

5726 /*call solver*/

5727 if(!Util::compare(sname,"piso")) {

5728 piso(input);

5729 } else if(!Util::compare(sname,"diffusion")) {

5730 diffusion(input);

5731 } else if(!Util::compare(sname,"transport")) {

5732 transport(input);

5733 } else if(!Util::compare(sname,"potential")) {

5734 potential(input);

5735 } else if(!Util::compare(sname,"walldist")) {

5736 walldist(input);

5737 }

5738

5739 return 0;

5740 }

5741 /**

5742 Iteration object that does common book keeping stuff

5743 for all solvers.

5744 */

5745 class Iteration {

5746 private:

5747 Int starti;

5748 Int endi;

5749 Int i;

5750 Int n_deferred;

5751 Int idf;

5752 public:

5753 Iteration() {

5754 Int step = Controls::start_step / Controls::write_interval;

5755 starti = Controls::write_interval * step + 1;

5756 endi = Controls::end_step;

5757 n_deferred = Controls::n_deferred;

5758 i = starti;

5759 idf = 0;

5760

5761 Mesh::read_fields(step);

5762 Mesh::getProbeCells(Mesh::probeCells);

5763 forEachField(initTimeSeries());

5764 }

5765 bool start() {

C.2. Source code 379

5766 return (i == starti);

5767 }

5768 bool end() {

5769 if(i > endi)

5770 return true;

5771 /*iteration number*/

5772 if(MP::host_id == 0) {

5773 if(Controls::state == Controls::STEADY)

5774 MP::printH("Step %d\n",i);

5775 else

5776 MP::printH("Time %f\n",i * Controls::dt);

5777 }

5778 return false;

5779 }

5780 void next() {

5781 idf++;

5782 if(idf <= n_deferred)

5783 return;

5784

5785 /*update time series*/

5786 forEachField(updateTimeSeries(i));

5787

5788 /*write result to file*/

5789 if((i % Controls::write_interval) == 0) {

5790 Int step = i / Controls::write_interval;

5791 Mesh::write_fields(step);

5792 }

5793

5794 /*increment*/

5795 i++;

5796 }

5797 ˜Iteration() {

5798 }

5799 static Int get_start() {

5800 return Controls::start_step / Controls::write_interval;

5801 }

5802 static Int get_end() {

5803 return Controls::end_step / Controls::write_interval;

5804 }

5805 };

5806 /**

380 Chapter C. CFD program

5807 \verbatim

5808 Navier stokes solver using PISO algorithm

5809 ˜˜˜

5810 References:

5811 Hrvoje Jasak, "Error analysis and estimation of FVM with

5812 applications to fluid flow".

5813 Description:

5814 The PISO algorithm is used to solve NS equations on collocated grids

5815 using Rhie-Chow interpolation to avoid wiggles in pressure field.

5816

5817 Prediction

5818 ˜˜˜˜˜˜˜˜˜˜

5819 Discretize and solve the momenum equation with current values of pressure.

5820 The velocities obtained will not satisfy continuity unless exact pressure

5821 happened to be specified.

5822

5823 Correction

5824 ˜˜˜˜˜˜˜˜˜˜

5825 Step 1)

5826 Determine velocity with all terms included except pressure gradient source

contribution.

5827 ap * Up = H(U) - grad(p)

5828 Up = H(U) / ap - grad(p) / ap

5829 Droping grad(p) term:

5830 Ua = H(U) / ap

5831 One jacobi sweep is done to find Ua.

5832 Step 2)

5833 Solve poisson pressure equation to satisfy continuity with fluxes calculated

5834 from interpolated Ua.

5835 div(Up) = 0

5836 div(1/ap * grad(p)) = div(H(U)/ap)

5837 lap(p,1/ap) = div(Ua)

5838 Step 3)

5839 Correct the velocity with gradient of newly found pressure

5840 U -= grad(p)

5841 These steps are repeated two or more times for transient solutions.

5842 For steady state problems once is enough.

5843 \endverbatim

5844 */

5845 void piso(istream& input) {

5846 /*Solver specific parameters*/

C.2. Source code 381

5847 Scalar& rho = GENERAL::density;

5848 Scalar& viscosity = GENERAL::viscosity;

5849 Scalar velocity_UR = Scalar(0.8);

5850 Scalar pressure_UR = Scalar(0.5);

5851 Int n_PISO = 1;

5852 Int n_ORTHO = 0;

5853

5854 /*piso options*/

5855 Util::ParamList params("piso");

5856 params.enroll("velocity_UR",&velocity_UR);

5857 params.enroll("pressure_UR",&pressure_UR);

5858 params.enroll("n_PISO",&n_PISO);

5859 params.enroll("n_ORTHO",&n_ORTHO);

5860

5861 VectorCellField U("U",READWRITE);

5862 ScalarCellField p("p",READWRITE);

5863

5864 /*turbulence model*/

5865 ScalarFacetField F;

5866 bool Steady;

5867 Turbulence_Model::RegisterTable(params);

5868 params.read(input);

5869 Turbulence_Model* turb =

5870 Turbulence_Model::Select(U,F,rho,viscosity,Steady);

5871 turb->enroll();

5872

5873 /*read parameters*/

5874 Util::read_params(input);

5875

5876 /*wall distance*/

5877 if(turb->needWallDist())

5878 Mesh::calc_walldist(Iteration::get_start());

5879

5880 /*time*/

5881 Scalar time_factor = Controls::time_scheme_factor;

5882 Steady = (Controls::state == Controls::STEADY);

5883

5884 /*Calculate for each time step*/

5885 Iteration it;

5886 ScalarCellField po = p;

5887 VectorCellField gP = -gradV(p);

382 Chapter C. CFD program

5888 F = flx(rho * U);

5889

5890 for(;!it.end();it.next()) {

5891 /*Form Navier-stokes equation*/

5892 VectorMeshMatrix M;

5893

5894 /*convection*/

5895 {

5896 ScalarFacetField mu = rho * viscosity;

5897 M = div(U,F,mu);

5898 }

5899

5900 /*viscous/turbulent stress*/

5901 turb->addTurbulentStress(M);

5902

5903 /*relax if steady state otherwise add time contribution*/

5904 if(Steady)

5905 M.Relax(velocity_UR);

5906 else {

5907 /*crank nicolson*/

5908 if(!equal(time_factor,1)) {

5909 VectorCellField po = M * U;

5910 M *= time_factor;

5911 M.Su -= (1 - time_factor) * po;

5912 }

5913 /*time derivative*/

5914 M += ddt(U,rho);

5915 }

5916

5917 /*solve momentum equation*/

5918 Solve(M == gP);

5919

5920 /*1/ap*/

5921 ScalarCellField api = (1 / M.ap);

5922 fillBCs(api,true);

5923 ScalarCellField rmu = rho * api * Mesh::cV;

5924

5925 /*PISO loop*/

5926 for(Int j = 0;j < n_PISO;j++) {

5927 /* Ua = H(U) / ap*/

5928 U = getRHS(M) * api;

C.2. Source code 383

5929 updateExplicitBCs(U,true);

5930

5931 /*solve pressure poisson equation to satisfy continuity*/

5932 {

5933 ScalarCellField rhs = div(rho * U);

5934 for(Int k = 0;k <= n_ORTHO;k++)

5935 Solve(lap(p,rmu) += rhs);

5936 }

5937

5938 /*explicit velocity correction : add pressure contribution*/

5939 gP = -gradV(p);

5940 U -= gP * api;

5941 updateExplicitBCs(U,true);

5942 }

5943

5944 /*update fluctuations*/

5945 updateExplicitBCs(U,true,true);

5946 F = flx(rho * U);

5947

5948 /*solve turbulence transport equations*/

5949 turb->solve();

5950

5951 /*explicitly under relax pressure*/

5952 if(Steady) {

5953 p.Relax(po,pressure_UR);

5954 gP = -gradV(p);

5955 po = p;

5956 }

5957 }

5958

5959 /*write calculated turbulence fields*/

5960 if(turb->writeStress) {

5961 ScalarCellField K("Ksgs",WRITE);

5962 STensorCellField R("Rsgs",WRITE);

5963 STensorCellField V("Vsgs",WRITE);

5964 K = turb->getK();

5965 R = turb->getReynoldsStress();

5966 V = turb->getViscousStress();

5967 Mesh::write_fields(Iteration::get_end());

5968 }

5969 }

384 Chapter C. CFD program

5970 /**

5971 \verbatim

5972 Diffusion solver

5973 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

5974 Solver for pdes of parabolic heat equation type:

5975 d(rho*u)/dt = lap(T,rho*DT)

5976 \endverbatim

5977 */

5978 void diffusion(istream& input) {

5979 /*Solver specific parameters*/

5980 Scalar& rho = GENERAL::density;

5981 Scalar DT = Scalar(1);

5982 Scalar t_UR = Scalar(1);

5983

5984 /*diffusion*/

5985 Util::ParamList params("diffusion");

5986 params.enroll("DT",&DT);

5987 params.enroll("t_UR",&t_UR);

5988

5989 ScalarCellField T("T",READWRITE);

5990

5991 /*read parameters*/

5992 Util::read_params(input);

5993

5994 /*time*/

5995 Scalar time_factor = Controls::time_scheme_factor;

5996 bool Steady = (Controls::state == Controls::STEADY);

5997

5998 /*Calculate for each time step*/

5999 ScalarFacetField mu = rho * DT;

6000

6001 for(Iteration it;!it.end();it.next()) {

6002 ScalarMeshMatrix M;

6003

6004 M = -lap(T,mu);

6005

6006 if(Steady)

6007 M.Relax(t_UR);

6008 else {

6009 if(!equal(time_factor,1)) {

6010 ScalarCellField po = M * T;

C.2. Source code 385

6011 M *= time_factor;

6012 M.Su -= (1 - time_factor) * po;

6013 }

6014 M += ddt(T,rho);

6015 }

6016

6017 Solve(M);

6018 }

6019 }

6020 /**

6021 \verbatim

6022 Transport equation solver

6023 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

6024 Given a flow field (U) and values of a scalar at the boundaries,

6025 the solver determines the distribution of the scalar.

6026 dT/dt + div(T,F,mu) = lap(T,mu)

6027 \endverbatim

6028 */

6029 void transport(istream& input) {

6030 /*Solver specific parameters*/

6031 Scalar& rho = GENERAL::density;

6032 Scalar DT = Scalar(4e-2);

6033 Scalar t_UR = Scalar(1);

6034

6035 /*transport*/

6036 Util::ParamList params("transport");

6037 params.enroll("DT",&DT);

6038 params.enroll("t_UR",&t_UR);

6039

6040 VectorCellField U("U",READWRITE);

6041 ScalarCellField T("T",READWRITE);

6042

6043 /*read parameters*/

6044 Util::read_params(input);

6045

6046 /*time*/

6047 Scalar time_factor = Controls::time_scheme_factor;

6048 bool Steady = (Controls::state == Controls::STEADY);

6049

6050 /*Calculate for each time step*/

6051 ScalarFacetField F,mu = rho * DT,gamma;

386 Chapter C. CFD program

6052

6053 for(Iteration it;!it.end();it.next()) {

6054 ScalarMeshMatrix M;

6055

6056 F = flx(rho * U);

6057 M = div(T,F,mu)

6058 - lap(T,mu);

6059

6060 if(Steady)

6061 M.Relax(t_UR);

6062 else {

6063 if(!equal(time_factor,1)) {

6064 ScalarCellField po = M * T;

6065 M *= time_factor;

6066 M.Su -= (1 - time_factor) * po;

6067 }

6068 M += ddt(T,rho);

6069 }

6070 Solve(M);

6071 }

6072 }

6073 /**

6074 \verbatim

6075 Potential flow solver

6076 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

6077 In potential flow the velocity field is irrotational (vorticity = curl(U) = 0).

6078 This assumption fails for boundary layers and wakes that exhibit strong vorticity,

6079 but it can still be used to initialize the flow field for further simulations.

6080

6081 For incompressible flow

6082 div(U) = 0

6083 Velocity is the gradient of velocity potential phi

6084 U = grad(phi)

6085 div(grad(phi)) = 0

6086 lap(phi) = 0

6087 phi is pressure for this solver. The initial flow field will inevitably not

satisfy

6088 continuity due to imposed boundary conditons. Therefore we solve a pressure poisson

6089 equation and then correct the velocity with the gradient of p.

6090 lap(p) = div(U)

6091 U -= grad(p)

C.2. Source code 387

6092 \endverbatim

6093 */

6094 void potential(istream& input) {

6095 /*Solver specific parameters*/

6096 Int n_ORTHO = 0;

6097

6098 /*potential*/

6099 Util::ParamList params("potential");

6100 params.enroll("n_ORTHO",&n_ORTHO);

6101

6102 VectorCellField U("U",READWRITE);

6103 ScalarCellField p("p",READ);

6104

6105 /*read parameters*/

6106 Util::read_params(input);

6107

6108 /*set internal field to zero*/

6109 for(Int i = 0;i < Mesh::gBCellsStart;i++) {

6110 U[i] = Vector(0,0,0);

6111 p[i] = Scalar(0);

6112 }

6113 updateExplicitBCs(U,true);

6114 updateExplicitBCs(p,true);

6115

6116 for(Iteration it;it.start();it.next()) {

6117 /*solve potential equation*/

6118 ScalarCellField divU = div(U);

6119 ScalarFacetField one = Scalar(1);

6120 for(Int k = 0;k <= n_ORTHO;k++)

6121 Solve(lap(p,one) == divU);

6122

6123 /*correct velocity*/

6124 U -= grad(p);

6125 updateExplicitBCs(U,true);

6126 }

6127 }

6128 /**

6129 \verbatim

6130 Wall distance

6131 ˜˜˜˜˜˜˜˜˜˜˜˜˜

6132 Reference:

388 Chapter C. CFD program

6133 D.B.Spalding, Calculation of turbulent heat transfer in cluttered spaces

6134 Description:

6135 Poisson equation is solved to get approximate nearest wall distance.

6136 lap(phi,1) = -cV

6137 The boundary conditions are phi=0 at walls, and grad(phi) = 0 elsewhere.

6138 \endverbatim

6139 */

6140 void walldist(istream& input) {

6141 /*Solver specific parameters*/

6142 Int n_ORTHO = 0;

6143

6144 /*walldist options*/

6145 Util::ParamList params("walldist");

6146 params.enroll("n_ORTHO",&n_ORTHO);

6147 Util::read_params(input);

6148

6149 /*solve*/

6150 Mesh::calc_walldist(Iteration::get_start(),n_ORTHO);

6151 }

6152 void Mesh::calc_walldist(Int step,Int n_ORTHO) {

6153 ScalarCellField& phi = yWall;

6154 /*poisson equation*/

6155 {

6156 ScalarFacetField one = Scalar(1);

6157 for(Int k = 0;k <= n_ORTHO;k++)

6158 Solve(lap(phi,one) == -cV);

6159 }

6160 /*wall distance*/

6161 {

6162 VectorCellField g = grad(phi);

6163 yWall = sqrt((g & g) + 2 * phi) - mag(g);

6164 }

6165 /*write it*/

6166 yWall.write(step);

6167 }

6168 #include <cuda.h>

6169 #include "solve.h"

6170

6171 /*number of threads in a block*/

6172 static const Int nThreads = 128;

6173

C.2. Source code 389

6174 /*Matrix vector multiply*/

6175 template <class T>

6176 __global__

6177 void cudaMul(const Int* const rows,

6178 const Int* const cols,

6179 const Scalar* const an,

6180 const Int N,

6181 const T* const x,

6182 T* y

6183) {

6184 Int i = blockIdx.x * blockDim.x + threadIdx.x;

6185 if (i < N) {

6186 const Int start = rows[i];

6187 const Int end = rows[i + 1];

6188 T res = an[start] * x[cols[start]];

6189

6190 for (Int j = start + 1; j < end; j++)

6191 res -= an[j] * x[cols[j]];

6192 y[i] = res;

6193 }

6194 }

6195 /*jacobi solver*/

6196 template<class T>

6197 __global__

6198 void cudaJacobi(const Int* const rows,

6199 const Int* const cols,

6200 const Scalar* const an,

6201 const T* const cF,

6202 T* const cF1,

6203 const T* const Su,

6204 T* r,

6205 const Int N,

6206 Scalar omega

6207) {

6208 Int i = blockIdx.x * blockDim.x + threadIdx.x;

6209 if (i < N) {

6210 const Int start = rows[i];

6211 const Int end = rows[i + 1];

6212 T res = Su[i], val = cF[i];

6213

6214 for (Int j = start + 1; j < end; j++)

390 Chapter C. CFD program

6215 res += an[j] * cF[cols[j]];

6216 res /= an[start];

6217

6218 r[i] = -val;

6219 val *= (1 - omega);

6220 val += res * (omega);

6221 r[i] += val;

6222 cF1[i] = val;

6223 }

6224 }

6225 /*Taxpy*/

6226 template<class T,class T1>

6227 __global__

6228 void cudaTaxpy(const Int N,

6229 const T1 alpha,

6230 const T* const x,

6231 const T* const y,

6232 T* const z

6233) {

6234 Int i = blockIdx.x * blockDim.x + threadIdx.x;

6235 if (i < N) {

6236 T temp;

6237 temp = x[i];

6238 temp *= alpha;

6239 temp += y[i];

6240 z[i] = temp;

6241 }

6242 }

6243 /*Txmy*/

6244 template<class T,class T1>

6245 __global__

6246 void cudaTxmy(const Int N,

6247 const T* const x,

6248 const T1* const y,

6249 T* const z

6250) {

6251 Int i = blockIdx.x * blockDim.x + threadIdx.x;

6252 if (i < N) {

6253 T temp;

6254 temp = x[i];

6255 temp *= y[i];

C.2. Source code 391

6256 z[i] = temp;

6257 }

6258 }

6259 /*Tdot*/

6260 template <class T>

6261 __global__

6262 void Tdot(const T* const a,

6263 const T* const b,

6264 T* const c,

6265 const Int N

6266) {

6267 __shared__ T cache[nThreads];

6268 Int tid = threadIdx.x + blockIdx.x * blockDim.x;

6269 Int cacheIndex = threadIdx.x;

6270

6271 T temp = T(0),val;

6272 while (tid < N) {

6273 val = a[tid];

6274 val *= b[tid];

6275 temp += val;

6276 tid += blockDim.x * gridDim.x;

6277 }

6278 cache[cacheIndex] = temp;

6279

6280 __syncthreads();

6281

6282 Int i = blockDim.x / 2;

6283 while (i != 0) {

6284 if (cacheIndex < i)

6285 cache[cacheIndex] += cache[cacheIndex + i];

6286 __syncthreads();

6287 i /= 2;

6288 }

6289

6290 if (cacheIndex == 0)

6291 c[blockIdx.x] = cache[0];

6292 }

6293 template<class T>

6294 __host__

6295 T cudaTdot(T* x,

6296 T* y,

392 Chapter C. CFD program

6297 T* d_sum,

6298 T* sum,

6299 const Int nBlocks32,

6300 const Int N

6301) {

6302 Tdot <<< nBlocks32, nThreads >>> (x,y,d_sum,N);

6303 cudaMemcpy(sum,d_sum,nBlocks32 * sizeof(T),cudaMemcpyDeviceToHost);

6304 T c = T(0);

6305 for (Int i = 0; i < nBlocks32; i++)

6306 c += sum[i];

6307 return c;

6308 }

6309 /***

6310 * Template class to solve equations on GPU

6311 * Solver must do many iterations to compensate

6312 * for the latency caused by copying matrix

6313 * from host to device.

6314 ***/

6315 template<class T>

6316 __host__

6317 void SolveT(const MeshMatrix<T>& M) {

6318 const Int N = Mesh::gBCellsStart;

6319 const Int Nall = M.ap.size();

6320 const Int nBlocks = (N + nThreads - 1) / nThreads;

6321 const Int nBlocks32 = ((nBlocks > 32) ? 32 : nBlocks);

6322

6323 //info

6324 if(M.flags & M.SYMMETRIC)

6325 MP::printH("Symmetric : ");

6326 else

6327 MP::printH("Asymmetric : ");

6328 if(Controls::Solver == Controls::SOR)

6329 MP::print("SOR :");

6330 else

6331 MP::print("PCG :");

6332

6333 /*******************************

6334 * variables on host & device

6335 *******************************/

6336 Int* d_rows;

6337 Int* d_cols;

C.2. Source code 393

6338 Scalar* d_an;

6339 Scalar* d_anT;

6340 Scalar* d_pC;

6341 T* d_cF;

6342 T* d_Su;

6343 //PCG

6344 T* d_r,*d_r1;

6345 T* d_p,*d_p1,*d_AP,*d_AP1;

6346 T alpha,beta,o_rr,oo_rr;

6347 T local_res[2];

6348 //reduction

6349 T* sum,*d_sum;

6350

6351 /*********************************

6352 * allocate memory on device

6353 ********************************/

6354 {

6355 CSRMatrix<T> A(M);

6356 cudaMalloc((void**) &d_rows,A.rows.size() * sizeof(Int));

6357 cudaMalloc((void**) &d_cols,A.cols.size() * sizeof(Int));

6358 cudaMalloc((void**) &d_an, A.an.size() * sizeof(Scalar));

6359 cudaMalloc((void**) &d_cF, Nall * sizeof(T));

6360 cudaMalloc((void**) &d_Su, Nall * sizeof(T));

6361

6362 cudaMemcpy(d_rows ,&A.rows[0] ,A.rows.size() * sizeof(Int), cudaMemcpyHostToDevice);

6363 cudaMemcpy(d_cols ,&A.cols[0] ,A.cols.size() * sizeof(Int), cudaMemcpyHostToDevice);

6364 cudaMemcpy(d_an ,&A.an[0] ,A.an.size() * sizeof(Scalar), cudaMemcpyHostToDevice);

6365 cudaMemcpy(d_cF ,&A.cF[0] ,Nall * sizeof(T), cudaMemcpyHostToDevice);

6366 cudaMemcpy(d_Su ,&A.Su[0] ,Nall * sizeof(T), cudaMemcpyHostToDevice);

6367

6368 cudaMalloc((void**) &d_r, Nall * sizeof(T));

6369 cudaMalloc((void**) &d_sum, nBlocks32 * sizeof(T));

6370 sum = (T*) malloc(nBlocks32 * sizeof(T));

6371

6372 if(Controls::Solver == Controls::SOR) {

6373 cudaMalloc((void**) &d_AP,Nall * sizeof(T));

6374 cudaMemcpy(d_AP,d_cF,Nall * sizeof(T),cudaMemcpyDeviceToDevice);

6375 } else if(Controls::Solver == Controls::PCG) {

6376 cudaMalloc((void**) &d_p, Nall * sizeof(T));

6377 cudaMalloc((void**) &d_AP, Nall * sizeof(T));

6378 {

394 Chapter C. CFD program

6379 ScalarCellField pC = 1./M.ap;

6380 cudaMalloc((void**) &d_pC,N * sizeof(Scalar));

6381 cudaMemcpy(d_pC,&pC[0],N * sizeof(Scalar),cudaMemcpyHostToDevice);

6382 }

6383 if(!(M.flags & M.SYMMETRIC)) {

6384 cudaMalloc((void**) &d_r1, Nall * sizeof(T));

6385 cudaMalloc((void**) &d_p1, Nall * sizeof(T));

6386 cudaMalloc((void**) &d_AP1, Nall * sizeof(T));

6387 cudaMalloc((void**) &d_anT,A.anT.size() * sizeof(Scalar));

6388 cudaMemcpy(d_anT,&A.anT[0],A.anT.size() * sizeof(Scalar), cudaMemcpyHostToDevice);

6389 }

6390 }

6391 }

6392

6393 /*CG*/

6394 if(Controls::Solver == Controls::PCG) {

6395 cudaMemset(d_r,0,Nall * sizeof(T));

6396 cudaMemset(d_p,0,Nall * sizeof(T));

6397 cudaMul <<< nBlocks, nThreads >>> (d_rows,d_cols,d_an,N,d_cF,d_AP);

6398 cudaTaxpy <<< nBlocks, nThreads >>> (N,Scalar(-1),d_AP,d_Su,d_r);

6399 cudaTxmy <<< nBlocks, nThreads >>> (N,d_r,d_pC,d_p);

6400 o_rr = cudaTdot(d_r,d_p,d_sum,sum,nBlocks32,N);

6401 }

6402 /*BiCG*/

6403 if(!(M.flags & M.SYMMETRIC) && (Controls::Solver == Controls::PCG)) {

6404 cudaMemcpy(d_r1,d_r,Nall * sizeof(T), cudaMemcpyDeviceToDevice);

6405 cudaMemcpy(d_p1,d_p,Nall * sizeof(T), cudaMemcpyDeviceToDevice);

6406 }

6407 //iterate until convergence

6408 Scalar res = 0;

6409 Int iterations = 0;

6410

6411 /* **************************

6412 * Iterative solvers

6413 * *************************/

6414 while(iterations < Controls::max_iterations) {

6415 /*counter*/

6416 iterations++;

6417

6418 /*select solver*/

6419 if(Controls::Solver == Controls::SOR) {

C.2. Source code 395

6420 iterations++;

6421 cudaJacobi <<< nBlocks, nThreads >>> (d_rows,d_cols,d_an,d_cF,d_AP,d_Su,d_r,N,

Controls::SOR_omega);

6422 cudaJacobi <<< nBlocks, nThreads >>> (d_rows,d_cols,d_an,d_AP,d_cF,d_Su,d_r,N,

Controls::SOR_omega);

6423 } else if(M.flags & M.SYMMETRIC) {

6424 /*conjugate gradient : from wiki*/

6425 cudaMul <<< nBlocks, nThreads >>> (d_rows,d_cols,d_an,N,d_p,d_AP);

6426 oo_rr = cudaTdot(d_p,d_AP,d_sum,sum,nBlocks32,N);

6427 alpha = sdiv(o_rr , oo_rr);

6428 cudaTaxpy <<< nBlocks, nThreads >>> (N,alpha,d_p,d_cF,d_cF);

6429 cudaTaxpy <<< nBlocks, nThreads >>> (N,-alpha,d_AP,d_r,d_r);

6430 oo_rr = o_rr;

6431 cudaTxmy <<< nBlocks, nThreads >>> (N,d_r,d_pC,d_AP);

6432 o_rr = cudaTdot(d_r,d_AP,d_sum,sum,nBlocks32,N);

6433 beta = sdiv(o_rr , oo_rr);

6434 cudaTaxpy <<< nBlocks, nThreads >>> (N,beta,d_p,d_AP,d_p);

6435 /*end*/

6436 } else {

6437 /* biconjugate gradient : from wiki */

6438 cudaMul <<< nBlocks, nThreads >>> (d_rows,d_cols,d_an,N,d_p,d_AP);

6439 cudaMul <<< nBlocks, nThreads >>> (d_rows,d_cols,d_anT,N,d_p1,d_AP1);

6440 oo_rr = cudaTdot(d_p1,d_AP,d_sum,sum,nBlocks32,N);

6441 alpha = sdiv(o_rr , oo_rr);

6442 cudaTaxpy <<< nBlocks, nThreads >>> (N,alpha,d_p,d_cF,d_cF);

6443 cudaTaxpy <<< nBlocks, nThreads >>> (N,-alpha,d_AP,d_r,d_r);

6444 cudaTaxpy <<< nBlocks, nThreads >>> (N,-alpha,d_AP1,d_r1,d_r1);

6445 oo_rr = o_rr;

6446 cudaTxmy <<< nBlocks, nThreads >>> (N,d_r,d_pC,d_AP);

6447 cudaTxmy <<< nBlocks, nThreads >>> (N,d_r1,d_pC,d_AP1);

6448 o_rr = cudaTdot(d_r1,d_AP,d_sum,sum,nBlocks32,N);

6449 beta = sdiv(o_rr , oo_rr);

6450 cudaTaxpy <<< nBlocks, nThreads >>> (N,beta,d_p,d_AP,d_p);

6451 cudaTaxpy <<< nBlocks, nThreads >>> (N,beta,d_p1,d_AP1,d_p1);

6452 }

6453

6454 /* ***

6455 * calculate norm of residual & check convergence

6456 * **/

6457 local_res[0] = cudaTdot(d_r,d_r,d_sum,sum,nBlocks32,N);

6458 local_res[1] = cudaTdot(d_cF,d_cF,d_sum,sum,nBlocks32,N);

396 Chapter C. CFD program

6459 res = sqrt(mag(local_res[0]) / mag(local_res[1]));

6460

6461 /*check convergence*/

6462 if(res <= Controls::tolerance)

6463 break;

6464 }

6465

6466 /*****************************

6467 * Copy result back to cpu

6468 *****************************/

6469 //copy result

6470 cudaMemcpy(&((*M.cF)[0]), d_cF, N * sizeof(T), cudaMemcpyDeviceToHost);

6471

6472 //update boundary conditons

6473 updateExplicitBCs(*M.cF);

6474

6475 //info

6476 MP::print("Iterations %d Residue: %.5e\n",iterations,res);

6477 /*********************************

6478 * free device memory

6479 ********************************/

6480 {

6481 cudaFree(d_rows);

6482 cudaFree(d_cols);

6483 cudaFree(d_an);

6484 cudaFree(d_cF);

6485 cudaFree(d_Su);

6486

6487 cudaFree(d_r);

6488 cudaFree(d_sum);

6489 free(sum);

6490

6491 if(Controls::Solver == Controls::SOR) {

6492 cudaFree(d_AP);

6493 } else if(Controls::Solver == Controls::PCG) {

6494 cudaFree(d_p);

6495 cudaFree(d_AP);

6496 cudaFree(d_pC);

6497 if(!(M.flags & M.SYMMETRIC)) {

6498 cudaFree(d_r1);

6499 cudaFree(d_p1);

C.2. Source code 397

6500 cudaFree(d_AP1);

6501 cudaFree(d_anT);

6502 }

6503 }

6504 }

6505 /******************

6506 * END

6507 ******************/

6508 }

6509

6510 /***************************

6511 * Explicit instantiations

6512 ***************************

6513 void Solve(const MeshMatrix<Scalar>& A) {

6514 applyImplicitBCs(A);

6515 SolveT(A);

6516 }

6517 void Solve(const MeshMatrix<Vector>& A) {

6518 applyImplicitBCs(A);

6519 SolveT(A);

6520 }

6521 void Solve(const MeshMatrix<STensor>& A) {

6522 applyImplicitBCs(A);

6523 SolveT(A);

6524 }

6525 void Solve(const MeshMatrix<Tensor>& A) {

6526 applyImplicitBCs(A);

6527 SolveT(A);

6528 }

6529 /* ********************

6530 * End

6531 * ********************/

6532 #ifndef __TURBULENCE_H

6533 #define __TURBULENCE_H

6534

6535 #include "field.h"

6536 #include "solve.h"

6537 /**

6538 \verbatim

6539 Description of RANS turbulence models

6540 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

398 Chapter C. CFD program

6541 Navier Stokes without source term:

6542 d(rho*u)/dt + div(rho*uu) = -grad(p) + div(mu*gu)

6543 RANS:

6544 d(rho*U)/dt + div(rho*UU) + div(rho*u’u’) = -grad(P) + div(mu*gU)

6545 d(rho*U)/dt + div(rho*UU) = -grad(P) + div(mu*gU) - div(rho*u’u’)

6546 d(rho*U)/dt + div(rho*UU) = -grad(P) + div(V + R)

6547 where Viscous (V) and Reynolds (R) stress tensors are

6548 V = mu*gU

6549 R = -rho*u’u’

6550 Boussinesq model for R:

6551 Traceless(R) = 2 * emu * Traceless(S)

6552 where S = (gU + gUt) / 2

6553 R - R_ii/3 = 2 * emu * (S - S_ii/3)

6554 R = 2 * emu * (S - S_ii/3) + R_ii/3

6555 = 2 * emu * ((gU + gUt)/2 - gU_ii/3) + R_ii/3

6556 = emu * gU + emu * (gUt - 2/3*gUt_ii) + R_ii/3

6557 = emu * gU + emu * dev(gUt,2) - 2/3*rho*k*I

6558 Viscous and Reynolds stress together:

6559 V + R = {mu * gU} + {emu * gU + emu * dev(gUt,2) - 2/3*rho*k*I}

6560 = (mu + emu) * gU + emu * dev(gUt,2) - 2/3*rho*k*I

6561 = (eff_mu) * gU + emu * dev(gUt,2) - 2/3*rho*k*I

6562 Volume integrated V+R i.e force:

6563 div(V + R) = div(eff_mu*gU) + div(emu * dev(gUt,2)) - div(2/3*rho*k*I)

6564 Implicit Explicit Absored in pressure

6565 p_m = p + 2/3*k*rho

6566 Final RANS equation after substituting div(V+R):

6567 d(rho*U)/dt + div(rho*UU) = -grad(P) + div(V + R)

6568 d(rho*U)/dt + div(rho*UU) = -grad(P_m) + div(eff_mu*gU) + div(emu * dev(gUt,2))

6569 Since the k term is absorbed into the pressure gradient, we only need models for

6570 turbulent diffusivity emu.

6571

6572 Base turbulence model:

6573 This default class has no turbulence model so it is a laminar solver.

6574 Only the viscous stress V is added to the NS equations. Turbulence models

6575 derived from this class add a model for Reynold’s stress R usually by solving

6576 some turbulence transport equations.

6577 \endverbatim

6578 */

6579 struct Turbulence_Model {

6580

6581 VectorCellField& U;

C.2. Source code 399

6582 ScalarFacetField& F;

6583 Scalar& rho;

6584 Scalar& nu;

6585 bool& Steady;

6586

6587 Util::ParamList params;

6588 bool writeStress;

6589 /*constructor*/

6590 Turbulence_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu,

bool& tSteady) :

6591 U(tU),

6592 F(tF),

6593 rho(trho),

6594 nu(tnu),

6595 Steady(tSteady),

6596 writeStress(false),

6597 params("turbulence")

6598 {

6599 }

6600 /*overridable functions*/

6601 virtual void enroll() {

6602 using namespace Util;

6603 Option* op = new BoolOption(&writeStress);

6604 params.enroll("writeStress",op);

6605 };

6606 virtual void solve() {};

6607 virtual void addTurbulentStress(VectorMeshMatrix& M) {

6608 ScalarFacetField mu = rho * nu;

6609 M -= lap(U,mu);

6610 };

6611 /* V */

6612 STensorCellField getViscousStress() {

6613 STensorCellField V = 2 * rho * nu * sym(grad(U));

6614 return V;

6615 }

6616 /* R */

6617 virtual STensorCellField getReynoldsStress() {

6618 return STensor(0);

6619 }

6620 /* TKE */

6621 virtual ScalarCellField getK() {

400 Chapter C. CFD program

6622 return Scalar(0);

6623 }

6624 /* Turbulence model selection */

6625 static Int turb_model;

6626 static bool bneedWallDist;

6627 static bool needWallDist() { return bneedWallDist;}

6628 static void RegisterTable(Util::ParamList& params);

6629 static Turbulence_Model* Select(VectorCellField& U,ScalarFacetField& F,

6630 Scalar& rho,Scalar& nu,bool& Steady);

6631 };

6632 /**

6633 * Eddy viscosity models based on Boussinesq’s assumption

6634 * that the action of Reynolds and Viscous stress are similar.

6635 */

6636 struct EddyViscosity_Model : public Turbulence_Model {

6637 ScalarCellField eddy_mu;

6638 enum Model {

6639 SMAGORNSKY,BALDWIN,KATO

6640 };

6641 enum WallModel {

6642 NONE,STANDARD,LAUNDER

6643 };

6644 Model modelType;

6645 WallModel wallModel;

6646

6647 /*constructor*/

6648 EddyViscosity_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu

,bool& tSteady) :

6649 Turbulence_Model(tU,tF,trho,tnu,tSteady),

6650 eddy_mu("emu",READWRITE),

6651 modelType(SMAGORNSKY),

6652 wallModel(STANDARD)

6653 {

6654 }

6655 /*Register options*/

6656 virtual void enroll() {

6657 using namespace Util;

6658 Option* op = new Option(&modelType,3,

6659 "SMAGORNSKY","BALDWIN","KATO");

6660 params.enroll("modelType",op);

6661 Turbulence_Model::enroll();

C.2. Source code 401

6662 }

6663 /*eddy_mu*/

6664 virtual void calcEddyViscosity(const TensorCellField& gradU) = 0;

6665

6666 /* V + R */

6667 virtual void addTurbulentStress(VectorMeshMatrix& M) {

6668 TensorCellField gradU = grad(U);

6669 calcEddyViscosity(gradU);

6670 setWallEddyMu();

6671 fillBCs(eddy_mu);

6672

6673 ScalarCellField eff_mu = eddy_mu + rho * nu;

6674 M -= lap(U,eff_mu);

6675 M -= div(eddy_mu * dev(trn(gradU),2));

6676 };

6677 /* R */

6678 virtual STensorCellField getReynoldsStress() {

6679 STensorCellField R = 2 * eddy_mu * dev(sym(grad(U))) -

6680 STensorCellField(Constants::I_ST) * (2 * rho * getK() / 3);

6681 return R;

6682 }

6683 /* S2 */

6684 ScalarCellField getS2(const TensorCellField& gradU) {

6685 ScalarCellField magS;

6686 if(modelType == SMAGORNSKY) {

6687 STensorCellField S = sym(gradU);

6688 magS = S & S;

6689 } else if(modelType == BALDWIN) {

6690 TensorCellField O = skw(gradU);

6691 magS = O & O;

6692 } else {

6693 STensorCellField S = sym(gradU);

6694 TensorCellField O = skw(gradU);

6695 magS = sqrt((S & S) * (O & O));

6696 }

6697 return (2 * magS);

6698 }

6699 /*Fix near wall cell values*/

6700 void FixNearWallValues(ScalarMeshMatrix& M) {

6701 using namespace Mesh;

6702 BasicBCondition* bbc;

402 Chapter C. CFD program

6703 forEach(AllBConditions,d) {

6704 bbc = AllBConditions[d];

6705 if(bbc->fIndex == eddy_mu.fIndex && bbc->cIndex == Mesh::ROUGHWALL) {

6706 IntVector& wall_faces = *bbc->bdry;

6707 if(wall_faces.size()) {

6708 Int f,c1;

6709 forEach(wall_faces,i) {

6710 f = wall_faces[i];

6711 c1 = gFO[f];

6712 M.Fix(c1,(*M.cF)[c1]);

6713 }

6714 }

6715 }

6716 }

6717 }

6718 /* Wall functions */

6719 void setWallEddyMu() {

6720 using namespace Mesh;

6721 BasicBCondition* bbc;

6722 forEach(AllBConditions,d) {

6723 bbc = AllBConditions[d];

6724 if(bbc->fIndex == eddy_mu.fIndex && bbc->cIndex == Mesh::ROUGHWALL) {

6725 IntVector& wall_faces = *bbc->bdry;

6726 LawOfWall& low = bbc->low;

6727 if(wall_faces.size()) {

6728 forEach(wall_faces,i) {

6729 applyWallFunction(wall_faces[i],low);

6730 }

6731 }

6732 }

6733 }

6734 }

6735 /*overridable*/

6736 virtual void applyWallFunction(Int f,LawOfWall& low) = 0;

6737 };

6738 /**

6739 * Base two equation K-X turbulence model

6740 */

6741 struct KX_Model : public EddyViscosity_Model {

6742 /*model coefficients*/

6743 Scalar Cmu;

C.2. Source code 403

6744 Scalar SigmaK;

6745 Scalar SigmaX;

6746 Scalar C1x;

6747 Scalar C2x;

6748

6749 Scalar k_UR;

6750 Scalar x_UR;

6751

6752 /*turbulence fields*/

6753 ScalarCellField k;

6754 ScalarCellField x;

6755 ScalarCellField Pk;

6756

6757 /*constructor*/

6758 KX_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu,bool&

tSteady,const char* xname) :

6759 EddyViscosity_Model(tU,tF,trho,tnu,tSteady),

6760 k_UR(0.7),

6761 x_UR(0.7),

6762 k("k",READWRITE),

6763 x(xname,READWRITE)

6764 {

6765 wallModel = LAUNDER;

6766 }

6767 /*TKE*/

6768 virtual ScalarCellField getK() { return k; }

6769 /*Register options*/

6770 virtual void enroll() {

6771 using namespace Util;

6772 params.enroll("k_UR",&k_UR);

6773 params.enroll("x_UR",&x_UR);

6774 EddyViscosity_Model::enroll();

6775 }

6776 /* k-x model specific over-ridables*/

6777 virtual void calcEddyMu() = 0;

6778 virtual Scalar calcX(Scalar ustar,Scalar kappa,Scalar y) = 0;

6779 virtual Scalar getCmu(Int i) {

6780 return Cmu;

6781 }

6782 /* eddy viscosity*/

6783 virtual void calcEddyViscosity(const TensorCellField& gradU) {

404 Chapter C. CFD program

6784 calcEddyMu();

6785 Pk = getS2(gradU) * eddy_mu;

6786 }

6787 /* wall function */

6788 virtual void applyWallFunction(Int f,LawOfWall& low) {

6789 using namespace Mesh;

6790 Int c1 = gFO[f];

6791 Int c2 = gFN[f];

6792

6793 /*calc ustar*/

6794 Scalar ustar;

6795 Scalar y = mag(unit(fN[f]) & (cC[c1] - cC[c2]));

6796 if(wallModel == STANDARD) {

6797 ustar = low.getUstar(nu,mag(U[c1]),y);

6798 k[c1] = pow(ustar,2) / sqrt(getCmu(c1));

6799 } else if(wallModel == LAUNDER) {

6800 ustar = pow(getCmu(c1),Scalar(0.25)) * sqrt(k[c1]);

6801 }

6802 x[c1] = calcX(ustar,low.kappa,y);

6803

6804 /* calculate eddy viscosity*/

6805 Scalar yp = (ustar * y) / nu;

6806 Scalar up = low.getUp(ustar,nu,yp);

6807 eddy_mu[c1] = (rho * nu) * (yp / up - 1);

6808

6809 /* turbulence generation and dissipation */

6810 if(wallModel == LAUNDER) {

6811 Scalar mag_dudy = mag((U[c2] - U[c1]) / y);

6812 Scalar mag_dudy_log = ustar / (low.kappa * y);

6813 Pk[c1] = (mag_dudy * mag_dudy_log) * eddy_mu[c1];

6814 }

6815 };

6816 };

6817

6818 #endif

6819 #ifndef __MIXING_LENGTH_H

6820 #define __MIXING_LENGTH_H

6821

6822 #include "turbulence.h"

6823

6824 struct MixingLength_Model : public EddyViscosity_Model {

C.2. Source code 405

6825 /*model coefficients*/

6826 Scalar mixingLength;

6827 Scalar C;

6828 Int wallDamping;

6829

6830 /*mixing length field*/

6831 ScalarCellField lm;

6832 Scalar kappa;

6833

6834 /*constructor*/

6835 MixingLength_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

6836

6837 /*others*/

6838 virtual void enroll();

6839 virtual void calcEddyViscosity(const TensorCellField& gradU);

6840 virtual void applyWallFunction(Int f,LawOfWall& low);

6841 virtual ScalarCellField getK();

6842 virtual void calcLengthScale() {

6843 lm = mixingLength;

6844 }

6845 };

6846

6847 #endif

6848 #include "mixing_length.h"

6849 /**

6850 \verbatim

6851 References:

6852 Book by Pope pg. 369

6853 Description:

6854 Velocity and time scales are modelled as:

6855 l* = lm

6856 u* = lm * |S|

6857 eddy_nu = u*l*

6858 = (lmˆ2) * |S|

6859 Generalization of the mixing length model for 3D flows:

6860 by Smagorinsky (1963).

6861 eddy_nu = (lmˆ2) * sqrt(2 * (S & S))

6862 by Baldwin & Lomax (1978)

6863 eddy_nu = (lmˆ2) * sqrt(2 * (O & O))

6864 The turbulent kinetic energy k can be approximated by equating turbulent

6865 viscosity eddy_nu with the one from Prandtl/Smagorinsky one equation models.

406 Chapter C. CFD program

6866 u* = C * kˆ1/2

6867 eddy_nu = C * kˆ1/2 * lm

6868 Equating with the above eqn yields

6869 k = (lm / C)ˆ2 * (2 * (S & S))

6870

6871 For high-Re flows, the mixing length close to the wall is set :

6872 lm = kappa * y_wall

6873 Thus for Smagornsky LES model

6874 lm = min(Cs * Delta, kappa * y_wall)

6875 \endverbatim

6876 */

6877 MixingLength_Model::MixingLength_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar

& trho,Scalar& tnu,bool& tSteady) :

6878 EddyViscosity_Model(tU,tF,trho,tnu,tSteady),

6879 mixingLength(0),

6880 C(0.55),

6881 kappa(0.41),

6882 wallDamping(1)

6883 {

6884 }

6885 void MixingLength_Model::enroll() {

6886 using namespace Util;

6887 params.enroll("mixing_length",&mixingLength);

6888 Option* op = new BoolOption(&wallDamping);

6889 params.enroll("wall_damping",op);

6890 params.enroll("kappa",&kappa);

6891 params.enroll("C",&C);

6892 EddyViscosity_Model::enroll();

6893 }

6894 ScalarCellField MixingLength_Model::getK() {

6895 return pow(lm / C,2.0) * getS2(grad(U));

6896 }

6897 void MixingLength_Model::calcEddyViscosity(const TensorCellField& gradU) {

6898 calcLengthScale();

6899 if(wallDamping)

6900 lm = min(kappa * Mesh::yWall,lm);

6901 eddy_mu = rho * pow(lm,Scalar(2)) * sqrt(getS2(gradU));

6902 }

6903 void MixingLength_Model::applyWallFunction(Int f,LawOfWall& low) {

6904 using namespace Mesh;

6905 Int c1 = gFO[f];

C.2. Source code 407

6906 Int c2 = gFN[f];

6907

6908 /*calc ustar*/

6909 Scalar ustar = 0.0;

6910 Scalar y = mag(unit(fN[f]) & (cC[c1] - cC[c2]));

6911 if(wallModel == STANDARD)

6912 ustar = low.getUstar(nu,mag(U[c1]),y);

6913

6914 /* calculate eddy viscosity*/

6915 Scalar yp = (ustar * y) / nu;

6916 Scalar up = low.getUp(ustar,nu,yp);

6917 eddy_mu[c1] = (rho * nu) * (yp / up - 1);

6918 }

6919

6920

6921 #ifndef __KE_H

6922 #define __KE_H

6923

6924 #include "turbulence.h"

6925

6926 struct KE_Model : public KX_Model {

6927 /*constructor*/

6928 KE_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

6929

6930 /*others*/

6931 virtual void enroll();

6932 virtual void solve();

6933 virtual void calcEddyMu() {

6934 eddy_mu = (rho * Cmu * k * k) / x;

6935 };

6936 virtual Scalar calcX(Scalar ustar,Scalar kappa,Scalar y) {

6937 return pow(ustar,Scalar(3)) / (kappa * y);

6938 }

6939 };

6940

6941 #endif

6942 #include "ke.h"

6943 /*

6944 References:

6945 http://www.cfd-online.com/Wiki/Standard_k-epsilon_model

6946 */

408 Chapter C. CFD program

6947 KE_Model::KE_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu,

bool& tSteady) :

6948 KX_Model(tU,tF,trho,tnu,tSteady,"e")

6949 {

6950 Cmu = 0.09;

6951 SigmaK = 1;

6952 SigmaX = 1.314;

6953 C1x = 1.44;

6954 C2x = 1.92;

6955 }

6956 void KE_Model::enroll() {

6957 using namespace Util;

6958 KX_Model::enroll();

6959 params.enroll("Cmu",&Cmu);

6960 params.enroll("SigmaK",&SigmaK);

6961 params.enroll("SigmaE",&SigmaX);

6962 params.enroll("C1e",&C1x);

6963 params.enroll("C2e",&C2x);

6964 }

6965 void KE_Model::solve() {

6966 ScalarMeshMatrix M;

6967 ScalarFacetField mu;

6968

6969 /*turbulent dissipation*/

6970 mu = cds(eddy_mu) / SigmaX + rho * nu;

6971 M = div(x,F,mu)

6972 - lap(x,mu);

6973 M -= src(x,

6974 (C1x * Pk * x / k), //Su

6975 -(C2x * rho * x / k) //Sp

6976);

6977 if(Steady)

6978 M.Relax(x_UR);

6979 else

6980 M += ddt(x,rho);

6981 FixNearWallValues(M);

6982 Solve(M);

6983 x = max(x,Constants::MachineEpsilon);

6984

6985 /*turbulent kinetic energy*/

6986 mu = cds(eddy_mu) / SigmaK + rho * nu;

C.2. Source code 409

6987 M = div(k,F,mu)

6988 - lap(k,mu);

6989 M -= src(k,

6990 Pk, //Su

6991 -(rho * x / k) //Sp

6992);

6993 if(Steady)

6994 M.Relax(k_UR);

6995 else

6996 M += ddt(k,rho);

6997 if(wallModel == STANDARD)

6998 FixNearWallValues(M);

6999 Solve(M);

7000 k = max(k,Constants::MachineEpsilon);

7001 }

7002 #ifndef __KW_H

7003 #define __KW_H

7004

7005 #include "turbulence.h"

7006

7007 struct KW_Model : public KX_Model {

7008 /*constructor*/

7009 KW_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

7010

7011 /*others*/

7012 virtual void enroll();

7013 virtual void solve();

7014 virtual void calcEddyMu() {

7015 eddy_mu = (rho * k) / x;

7016 };

7017 virtual Scalar calcX(Scalar ustar,Scalar kappa,Scalar y) {

7018 return ustar / (kappa * y * sqrt(Cmu));

7019 }

7020 };

7021

7022 #endif

7023 #include "kw.h"

7024 /*

7025 References:

7026 http://www.cfd-online.com/Wiki/Wilcox%27s_k-omega_model

7027 */

410 Chapter C. CFD program

7028 KW_Model::KW_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu,

bool& tSteady) :

7029 KX_Model(tU,tF,trho,tnu,tSteady,"w")

7030 {

7031 Cmu = 0.09;

7032 SigmaK = 2;

7033 SigmaX = 2;

7034 C1x = 5./9;

7035 C2x = 3./40;

7036 }

7037 void KW_Model::enroll() {

7038 using namespace Util;

7039 KX_Model::enroll();

7040 params.enroll("Cmu",&Cmu);

7041 params.enroll("SigmaK",&SigmaK);

7042 params.enroll("SigmaW",&SigmaX);

7043 params.enroll("C1w",&C1x);

7044 params.enroll("C2w",&C2x);

7045 }

7046 void KW_Model::solve() {

7047 ScalarMeshMatrix M;

7048 ScalarFacetField mu;

7049

7050 /*turbulent dissipation*/

7051 mu = cds(eddy_mu) / SigmaX + rho * nu;;

7052 M = div(x,F,mu)

7053 - lap(x,mu);

7054 M -= src(x,

7055 (C1x * Pk * x / k), //Su

7056 -(C2x * x * rho) //Sp

7057);

7058 if(Steady)

7059 M.Relax(x_UR);

7060 else

7061 M += ddt(x,rho);

7062 FixNearWallValues(M);

7063 Solve(M);

7064 x = max(x,Constants::MachineEpsilon);

7065

7066 /*turbulent kinetic energy*/

7067 mu = cds(eddy_mu) / SigmaK + rho * nu;;

C.2. Source code 411

7068 M = div(k,F,mu)

7069 - lap(k,mu);

7070 M -= src(k,

7071 Pk, //Su

7072 -(Cmu * x * rho) //Sp

7073);

7074 if(Steady)

7075 M.Relax(k_UR);

7076 else

7077 M += ddt(k,rho);

7078 if(wallModel == STANDARD)

7079 FixNearWallValues(M);

7080 Solve(M);

7081 k = max(k,Constants::MachineEpsilon);

7082 }

7083 #ifndef __LES_H

7084 #define __LES_H

7085

7086 #include "mixing_length.h"

7087

7088 struct LES_Model : public MixingLength_Model {

7089 /*model coefficients*/

7090 Scalar Cs;

7091

7092 /*constructor*/

7093 LES_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

7094

7095 /*others*/

7096 virtual void enroll();

7097 virtual void calcLengthScale();

7098 };

7099

7100 #endif

7101 #include "les.h"

7102 /*

7103 References:

7104 http://www.cfd-online.com/Wiki/Smagorinsky-Lilly_model

7105 */

7106 LES_Model::LES_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,Scalar& tnu

,bool& tSteady) :

7107 MixingLength_Model(tU,tF,trho,tnu,tSteady),

412 Chapter C. CFD program

7108 Cs(0.11)

7109 {

7110 }

7111 void LES_Model::enroll() {

7112 params.enroll("Cs",&Cs);

7113 MixingLength_Model::enroll();

7114 }

7115 void LES_Model::calcLengthScale() {

7116 ScalarCellField delta = pow(Mesh::cV,Scalar(1./3));

7117 lm = Cs * delta;

7118 }

7119

7120

7121 #ifndef __REALIZABLEKE_H

7122 #define __REALIZABLEKE_H

7123

7124 #include "turbulence.h"

7125

7126 struct REALIZABLE_KE_Model : public KX_Model {

7127 /*model coefficients*/

7128 ScalarCellField CmuF;

7129 ScalarCellField C1;

7130 ScalarCellField magS;

7131 Scalar A0;

7132

7133 /*constructor*/

7134 REALIZABLE_KE_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

7135

7136 /*others*/

7137 virtual void enroll();

7138 virtual void solve();

7139 virtual void calcEddyMu() {

7140 eddy_mu = (rho * CmuF * k * k) / x;

7141 };

7142 virtual Scalar calcX(Scalar ustar,Scalar kappa,Scalar y) {

7143 return pow(ustar,Scalar(3)) / (kappa * y);

7144 }

7145 virtual Scalar getCmu(Int i) {

7146 return CmuF[i];

7147 }

7148 virtual void calcEddyViscosity(const TensorCellField& gradU);

C.2. Source code 413

7149 };

7150

7151 #endif

7152 #include "realizableke.h"

7153

7154 /*

7155 References:

7156 http://www.cfd-online.com/Wiki/Realisable_k-epsilon_model

7157 http://www.laturbolenza.com/?p=92

7158 */

7159 REALIZABLE_KE_Model::REALIZABLE_KE_Model(VectorCellField& tU,ScalarFacetField& tF,

Scalar& trho,Scalar& tnu,bool& tSteady) :

7160 KX_Model(tU,tF,trho,tnu,tSteady,"e"),

7161 CmuF(0.09),

7162 A0(4.04)

7163 {

7164 SigmaK = 1.0;

7165 SigmaX = 1.2;

7166 C2x = 1.9;

7167 }

7168 void REALIZABLE_KE_Model::enroll() {

7169 using namespace Util;

7170 KX_Model::enroll();

7171 params.enroll("SigmaK",&SigmaK);

7172 params.enroll("SigmaE",&SigmaX);

7173 params.enroll("C2e",&C2x);

7174 }

7175 void REALIZABLE_KE_Model::calcEddyViscosity(const TensorCellField& gradU) {

7176 /*calculate CmuF*/

7177 STensorCellField S = sym(gradU);

7178 {

7179 TensorCellField O = skw(gradU);

7180 ScalarCellField Ustar = sqrt((S & S) + (O & O));

7181 ScalarCellField Sbar = sqrt(S & S);

7182 ScalarCellField W = ((mul(S,S) & S) / pow(Sbar,3.0)) * sqrt(6.0);

7183 W = min(max(W,-1.0),1.0);

7184 ScalarCellField As = sqrt(6.0) * cos(acos(W) / 3.0);

7185 CmuF = 1.0 / (A0 + As * Ustar * k / x);

7186 CmuF = min(CmuF,0.09);

7187 }

7188 /*calculate C1*/

414 Chapter C. CFD program

7189 magS = sqrt((S & S) * 2.0);

7190 {

7191 ScalarCellField eta = magS * (k / x);

7192 C1 = max(eta/(eta + 5.0),0.43);

7193 }

7194 /*calculate viscosity*/

7195 KX_Model::calcEddyViscosity(gradU);

7196 }

7197 void REALIZABLE_KE_Model::solve() {

7198 ScalarMeshMatrix M;

7199 ScalarFacetField mu;

7200

7201 /*turbulent dissipation*/

7202 mu = cds(eddy_mu) / SigmaX + rho * nu;

7203 M = div(x,F,mu)

7204 - lap(x,mu);

7205 M -= src(x,

7206 (C1 * rho * magS * x), //Su

7207 -(C2x * rho * x / (k + sqrt(nu * x))) //Sp

7208);

7209 if(Steady)

7210 M.Relax(x_UR);

7211 else

7212 M += ddt(x,rho);

7213 FixNearWallValues(M);

7214 Solve(M);

7215 x = max(x,Constants::MachineEpsilon);

7216

7217 /*turbulent kinetic energy*/

7218 mu = cds(eddy_mu) / SigmaK + rho * nu;

7219 M = div(k,F,mu)

7220 - lap(k,mu);

7221 M -= src(k,

7222 Pk, //Su

7223 -(rho * x / k) //Sp

7224);

7225 if(Steady)

7226 M.Relax(k_UR);

7227 else

7228 M += ddt(k,rho);

7229 if(wallModel == STANDARD)

C.2. Source code 415

7230 FixNearWallValues(M);

7231 Solve(M);

7232 k = max(k,Constants::MachineEpsilon);

7233 }

7234 #ifndef __RNG_KE_H

7235 #define __RNG_KE_H

7236

7237 #include "ke.h"

7238

7239 struct RNG_KE_Model : public KE_Model {

7240 /*model coefficients*/

7241 Scalar eta0;

7242 Scalar beta;

7243 /*calculate C2eStar*/

7244 ScalarCellField C2eStar;

7245

7246 /*constructor*/

7247 RNG_KE_Model(VectorCellField&,ScalarFacetField&,Scalar&,Scalar&,bool&);

7248

7249 virtual void enroll();

7250 virtual void solve();

7251 virtual void calcEddyViscosity(const TensorCellField& gradU);

7252 };

7253

7254 #endif

7255 #include "rngke.h"

7256 /*

7257 References:

7258 http://www.cfd-online.com/Wiki/RNG_k-epsilon_model

7259 */

7260 RNG_KE_Model::RNG_KE_Model(VectorCellField& tU,ScalarFacetField& tF,Scalar& trho,

Scalar& tnu,bool& tSteady) :

7261 KE_Model(tU,tF,trho,tnu,tSteady),

7262 eta0(4.38),

7263 beta(0.012)

7264 {

7265 Cmu = 0.0845;

7266 SigmaK = 0.7194;

7267 SigmaX = 0.7194;

7268 C1x = 1.42;

7269 C2x = 1.68;

416 Chapter C. CFD program

7270 }

7271 void RNG_KE_Model::enroll() {

7272 using namespace Util;

7273 KE_Model::enroll();

7274 params.enroll("eta0",&eta0);

7275 params.enroll("beta",&beta);

7276 }

7277 void RNG_KE_Model::calcEddyViscosity(const TensorCellField& gradU) {

7278 /*calculate C2eStar*/

7279 {

7280 ScalarCellField eta = sqrt(getS2(gradU)) * (k / x);

7281 C2eStar = C2x + Cmu * pow(eta,3.0) * (1 - eta / eta0) /

7282 (1 + beta * pow(eta,3.0));

7283 C2eStar = max(C2eStar,0.0);

7284 }

7285 /*calculate viscosity*/

7286 KE_Model::calcEddyViscosity(gradU);

7287 }

7288 void RNG_KE_Model::solve() {

7289 ScalarMeshMatrix M;

7290 ScalarFacetField mu;

7291

7292 /*turbulent dissipation*/

7293 mu = cds(eddy_mu) / SigmaX + rho * nu;;

7294 M = div(x,F,mu)

7295 - lap(x,mu);

7296 M -= src(x,

7297 (C1x * Pk * x / k), //Su

7298 -(C2eStar * rho * x / k) //Sp

7299);

7300 if(Steady)

7301 M.Relax(x_UR);

7302 else

7303 M += ddt(x,rho);

7304 FixNearWallValues(M);

7305 Solve(M);

7306 x = max(x,Constants::MachineEpsilon);

7307

7308 /*turbulent kinetic energy*/

7309 mu = cds(eddy_mu) / SigmaK + rho * nu;

7310 M = div(k,F,mu)

C.2. Source code 417

7311 - lap(k,mu);

7312 M -= src(k,

7313 Pk, //Su

7314 -(rho * x / k) //Sp

7315);

7316 if(Steady)

7317 M.Relax(k_UR);

7318 else

7319 M += ddt(k,rho);

7320 if(wallModel == STANDARD)

7321 FixNearWallValues(M);

7322 Solve(M);

7323 k = max(k,Constants::MachineEpsilon);

7324 }

Curriculum Vitae

Name: Daniel Abdi

Post-Secondary Addis Ababa University, Addis Ababa, Ethiopia
Education and 1998 - 2003 B.Sc
Degrees:

Indian Institute of Technology, India, Roorkee
2004 - 2006 M.Tech.

Florida International University, Miami , FL
2009 - 2012

University of Western Ontario, London, ON
2012 - 2013 Ph.D.

Honours and Chi Epsilon
Awards: 2010-2012

Related Work Research Assistant at Florida International University
Experience: 2009 - 2012

Reasearch Assistant at The University of Western Ontario
2012 - 2013

Publications:

• D. Abdi and G. Bitsuamlak. (2013), Asynchronous parallelization of CFD solver, Com-

puters and Fluids (submitted)

• D. Abdi and G. Bitsuamlak. (2013), Numerical evaluation of the effect of multiple rough-

ness changes, Wind and Structures (submitted)

• D. Abdi and G. Bitsuamlak. (2013), Effect of turbulence models on wind simulations in

complex terrain, Journal of Wind and Industrial Aero (submitted)

418

C.2. Source code 419

• D. Abdi and G. Bitsuamlak. (2013), Development of computational tools for large scale

wind simulations, ATC-SEI Advances in Hurricane Engineering Conference

• D. Abdi and G. Bitsuamlak. (2012), Assessing the effect of boundary conditions on

simulating atmospheric boundary layer, 2012 Joint Conference EMI/PMC.

• D. Abdi and G. Bitsuamlak. (2010), Estimation of surface roughness using CFD, The

Fifth International Symposium on Computational Wind Engineering (CWE2010).

• D. Abdi, S. Levin, and G. Bitsuamlak (2009), Application of an artificial neural network

model for boundary layer wind tunnel profile development, 11th Americas conference on

wind engineering.

• D.Abdi and G.Bitsuamlak. (2013), Numerical evaluation of roughness effects using ur-

ban models of different complexity, 2013, CWE2014 (abstract submitted)

	Numerical evaluation of aerodynamic roughness of the built environment and complex terrain
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowlegements
	Nomenclature
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Overview
	Methods for investigation of atmospheric flow over topography
	Effect of roughness on atmospheric boundary layer flow

	Objectives and scope

	Background
	Atmospheric boundary layer
	Modification of ABL by topographic features
	Modification of ABL by surface roughness
	ABL stratification and stability
	Coriolis force
	Statistics on wind turbulence
	Spectral content of wind
	Mean wind speed and turbulence intensity models
	The log law model
	The power law model

	Surface roughness models
	Empirical formulas
	BLWT methodology
	CFD methodology

	Computational wind engineering
	Overview of CFD
	Governing equations
	Mass conservation law
	Momentum conservation law

	Turbulence models
	Reynolds Averaged Navier Stokes
	Linear eddy viscosity models
	Non-linear eddy viscosity models
	Reynolds stress models (RSM)
	Modeling flow near wall
	Large eddy simulations

	Finite volume discretization
	Convection discretization
	Diffusion discretization
	Source term discretization
	Temporal discretization

	Boundary conditions
	Calculation of flow field

	Implementation of 3D CFD program
	Tensors
	Fields
	Equation discretization
	Overview of components of CFD tool
	Partial differential equation solvers
	Wall distance solver
	Potential flow solver
	Parabolic diffusion solver
	Transport equation solver
	Navier-Stokes solver

	Meshing
	Solution and turbulence modeling
	Parallelization

	Development of high performance CFD code
	Domain decomposition
	Platform for high end simulation
	Parallel computing
	Coarse grained parallelism
	Fine grained parallelism

	Relaxation algorithms
	Preconditioning
	Parallel implementations
	Asynchronous implementation
	Scalability study
	Coarse-grained scalability study
	Fine grained scalability study

	Validation with benchmark problems
	Lid-driven cavity
	Flow around a bluff body

	Numerical evaluation of roughness effects
	Complexity 0: Empty domain
	Computational domain
	Boundary conditions
	Simulation for different cases

	Complexity 1: Homogeneous roughness evaluation
	Test setup
	Analysis

	Complexity 2: Inhomogeneous roughness evaluation
	Homogeneous roughness wind speed models
	Roughness estimation
	Models

	The ESDU model
	Wind speed model (ESDU 82026)
	Turbulence intensity model (ESDU 84030)

	The WS model
	Wind speed model
	Turbulence intensity model

	Comparison of WS and ESDU models
	Three dimensional CFD simulations
	Simulations on a row of roughness elements
	Simulation of a BLWT with spires and barriers
	Simulation of multiple cases with a virtual Wind tunnel
	Simulation of WS cases using simplified 3D models

	Complexity 3: Semi-idealized built environment
	Computational domain setup and grid generation
	Boundary conditions
	Results and discussion

	Complexity 4: Built environment
	Computational domain setup and grid generation
	Boundary conditions
	Results and discussion

	Prediction with artificial neural networks
	Data acquisition
	Artificial neural network model
	Results and discussion
	Wind profile prediction
	Estimation of tunnel surface roughness and spire dimensions

	Conclusions

	Numerical evaluation of orographic effects
	Wind speed up over topography
	Building codes and standards
	Numerical studies
	Analytical study of flow over low hills
	BLWT studies
	Description of test cases of the current study
	Ground surface representation and mesh generation
	Computational domain setup
	Grid independence study
	Results and discussion
	Conclusions

	Turbulence structure
	Background
	Turbulence models
	Mixing length model
	K-epsilon models
	LES models

	Wall models
	Simulation results and discussions
	Effect of turbulence models
	Roughness effects
	Scheme sensitivity

	Conclusions

	Wind flow simulations on real complex terrain
	Askervein hill case study
	Computational domain setup and grid generation
	Grid independence study
	Different turbulence models
	Comparison with field measurements

	A second complex hill simulation

	Conclusions and future work
	High performance CFD code
	Effect of roughness
	Effect of topographic features
	Future work

	Bibliography
	Plots of wind speed model
	Artificial neural network source code
	CFD program
	Brief information on usage
	Source code

	Curriculum Vitae

