
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

November 2013 

Joint Use of On-board Reconfigurable Antenna Pattern and Joint Use of On-board Reconfigurable Antenna Pattern and 

Adaptive Coding and Modulation in Satellite Communications at Adaptive Coding and Modulation in Satellite Communications at 

High Frequency Bands High Frequency Bands 

Marco Luccini 
The University of Western Ontario 

Supervisor 

Prof. S. Primak 

The University of Western Ontario 

Graduate Program in Electrical and Computer Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Marco Luccini 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Systems and Communications Commons, and the Systems Engineering and 

Multidisciplinary Design Optimization Commons 

Recommended Citation Recommended Citation 
Luccini, Marco, "Joint Use of On-board Reconfigurable Antenna Pattern and Adaptive Coding and 
Modulation in Satellite Communications at High Frequency Bands" (2013). Electronic Thesis and 
Dissertation Repository. 1699. 
https://ir.lib.uwo.ca/etd/1699 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=ir.lib.uwo.ca%2Fetd%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=ir.lib.uwo.ca%2Fetd%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1699?utm_source=ir.lib.uwo.ca%2Fetd%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Joint Use of On-board Reconfigurable

Antenna Pattern and Adaptive Coding and

Modulation in Satellite Communications at

High Frequency Bands

(Thesis format: Monograph)

by

Marco Luccini

Graduate Program
in

Engineering
Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Luccini 2013



Abstract
The Telecommunication market is driven by the increasing need of the end users for
multimedia services which require high data rates. Within the fixed satellite service,
frequency bandwidths wide enough to carry such high data rates are to be found in
Ka band (26 − 40 GHz), and Q/V bands (40 − 50 GHz). However, at Ka band and
above, transmitted signals can be severely affected by tropospheric attenuation for
substantial percentages of time, resulting in the degradation of the quality and of the
availability of communication services. Fade Mitigation Techniques (FMTs) must be
used to counteract these severe propagation impairments.

In this thesis we explore the joint use of two of the most promising techniques,
known as Reconfigurable Antenna and Adaptive Coding and Modulation, which up
to now has been separately developed. Some of our accomplishments include, but are
not limited to: a methodology to describe rain attenuation conditions for multiple
users in large geographical areas, a tractable framework for the generation of corre-
lated time series of rain attenuation for multiple receiving stations, the comparison
of performance between fixed antenna systems and Reconfigurable Antenna system
coupled with Adaptive Coding and Modulation.

Keywords: Satellite Communications, Fade Mitigation Techniques, Re-
configurable Antenna, Adaptive Coding and Modulation, Rain
Attenuation Modelling, Attenuation Measurements
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Chapter 1
Introduction

1.1 Motivations

Satellite and Terrestrial Telecommunication systems greatly benefit from the use of

high frequencies (Super High Frequency (SHF) band and above in this thesis). The

main advantage is the availability of larger bandwidths, required for the increasing

demand of multimedia services. In addition, higher frequency bands require smaller

antenna size for a fixed gain, or conversely, the higher antenna gain for a fixed size,

which certainly represent concrete benefits. Moreover, the possibility of using on-

board antennas with reconfigurable directivity is attractive for satellite systems whose

coverage area is subdivided in spot beams for frequency reuse or regional services.

Frequencies up to the W band are envisaged for the future Earth to satellite

links [3]. A clear statement of the interest in using the W band is the decision

of the Federal Communications Commission of the U.S.A. “to promote non-Federal

Government development and use of the ’millimeter wave’ spectrum in the 71-76

GHz, 81-86 GHz and 92-95 GHz bands on a shared basis with Federal Government

operations. These bands are available for use in a broad range of new products

and services, including high-speed, point-to-point wireless local area networks and

broadband Internet access. Highly directional, ’pencil-beam’ transmissions can be

engineered in close proximity to one another without causing interference”.

The drawback of radiowaves at frequencies above the Ka band (Q/V and W

bands) is the consistent increase of the impairments caused by the lower part of the
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atmosphere (troposphere). Consequently, research activities on tropospheric propa-

gation up to 50 GHz were carried with many experimental and theoretical studies.

Currently the research focus is moving above 50 GHz: some preliminary experiments

have been carried out in the past few years [4, 5].

Due to the strong propagation impairments, the design of Telecommunication

(TLC) systems at Ka band and above, particularly the satellite based systems, must

rely on advanced techniques to counteract atmospheric fades. The classical approach

of a fixed system margin would lead to unrealistic over-dimensioning on-board power

level and receiving ground terminal front ends. It is therefore necessary to implement

specific techniques to counteract these degrading effects. The extensive use of Fade

Mitigation Techniques (FMTs), such as site diversity or on board adaptive power

allocation, from the propagation point of view, Adaptive Coding and Modulation

(ACM) and Data Rate Adaptation (DRA), from the information-theoretical point of

view, is mandatory [2]. Some reduction in terms of Quality of Service (QoS) should

also be accepted.

Two different classes of FMTs that can complement each other are envisaged

in this thesis. On one side those techniques which take into account the spatial and

temporal de-correlation of the atmospheric attenuation caused by meteorological phe-

nomena, from the other side those based on the dynamic selection of the transmission

modulation/coding pair ACM and/or on the data rate. The choice of the most appro-

priate technique and its implementation is based on the intensive use of propagation

models, able to mimic the quality of the radio channel with sufficient accuracy.

In this respect, the models able to represent the spatial distribution of atmo-

spheric attenuation over large (continental) areas and derived from the simple knowl-

edge of basic meteorological information are of specific interest for both Broadcasting

Satellite Service (BSS) and Interactive Multi Media Broadband Service (IMMBS)
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scenarios. For these application scenarios, important models are those which are able

to provide the attenuation time series experienced by different end-users spread over

the service area. Useful models should simulate high resolution data in space and

time based on available low resolution meteorological data. In addition, they should

be able to reproduce with good accuracy first order and second order statistics (such

as fade slope and fade duration) for multiple locations, including the correct spatial

correlation of atmospheric attenuation.

This thesis addresses the problem of the joint use of two FMTs for fixed satellite

communications: the on board reconfigurable antenna pattern coupled with ACM.

The problem is analyzed in its entirety: we consider the use of reconfigurable antenna

and ACM in conjunction of a developed model to simulate the propagation environ-

ment based on meteorological data. 1 To the best of our knowledge, this is the first

attempt to take into account all these techniques together.

A complex satellite system, characterized by a reconfigurable antenna front-

end, able to spatially arrange power distribution according to the actual time-variant

propagation needs will be referred to On-Board Dynamic Power Allocation (OBDPA)

system. In such system the power is allocated only in the amount that is needed to

support required QoS, thereby allowing management of the limited on-board avail-

able resources. The antenna adaptation procedure relies on updated meteorological

information, provided to the reconfiguration algorithm on a regular basis. On the

other side, ACM is a sophisticated form of information rate control in which single

user information rate is adapted by changing modulation type and coding rate, while

maintaining a constant symbol rate. The aim of this technique is to dynamically

select, based on the current channel quality, the transmission Modulation and Cod-

1. The focus here is on the rain effects which are the biggest contributors to signal
attenuation.
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ing (ModCod) pair which maximizes spectral efficiency satisfying the required Bit

Error Rate (BER)/Frame Error Rate (FER) performance.

In order to test the joint use of the above techniques there is the need of a

model which provides attenuation information at single user level with high resolution

in time and space. The model should be able to reproduce correct statistics on the

short and long-term basis. On the short basis, the simulated attenuation evolution

should reproduce with the highest accuracy single rain events evolution (within 6-

hours time interval), which is comparable to a communication session duration. Long

term statistics represent sites specific meteorological conditions over time period of a

few years. Moreover, the need of considering multiple users not co-located and subject

to spatially correlated attenuation conditions appeared evident. In this thesis we

developed a novel model for the generation of correlated time series of rain attenuation

for multiple users in a large geographical area. As input information, this model uses

a large database of rain attenuation measurements available [6]. The focus on rain

attenuation is motivated by the consideration that it represents the most significant

source of signal degradation of medium/high availability TLC systems above 10 GHz

(Chapter 2). Furthermore, the model is trimmed and refined to reproduce the spatial

rain attenuation information which are provided to the OBDPA system. Finally,

the model is used in a case study evaluation of the performance of the OBDPA

system with and without ACM. In this framework, the main objective of the study

is to develop, validate and apply the channel model while evaluating overall system

performance. The outcome of this study could potentially be applied to the following

scenarios (among others):

• the design and analysis of the Satellite Communication System before its de-

ployment, which requires the use of channel models and input data whose com-
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putational complexity must be traded off with the accuracy they provide;

• the system operational stage, during which the model may be used to activate

specific mitigation technique. In this case, requirements are in terms of real

time or about real time application, of ability to identify the actual state of the

radio channel and of the confidence interval of the performances.

1.2 Outline

This thesis is divided into the following Chapters.

Chapter 2 presents the atmospheric attenuation effects which have to be dealt

with in radiowave propagation for and Earth-to-satellite communication links. The

specific attenuation of the different atmospheric components is discussed, among with

current statistical models to evaluate the attenuation contribution. Special attention

id dedicated to rain attenuation modelling and accuracy of selected prediction models

is evaluated.

In Chapter 3 we propose a novel methodology to obtain correlated time series

of rain attenuation for multiple users, starting from a database of real measurements.

Climatological parameters define the rain attenuation distribution, while a correlation

model based on the user distances is included in assigning rain events occurrence and

rain average attenuation. The model is tested both for single sites and joint sites

statistical results, as well as on the first order and second order attenuation statistics.

Chapter 4 discusses the possible FMTs available for a Multimedia Fixed Satellite

Communications (SatCom) scenario. Special attention is focused on the description

of two techniques: the reconfigurable antenna system OBDPA and Adaptive Coding

and Modulation ACM in satellite transmissions.
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In Chapter 5, the application of the rain time series model to the OBDPA

system is presented. Time series of rain attenuation are generated to evaluate, jointly

with the OBDPA system simulation results, the Signal to Noise plus Interference

Ratio (SNIR) evolution for each user in the coverage area. Once the SNIR time series

are obtained, final results in terms of spectral efficiency and throughput are derived

considering both the use of constant rate transmission (no feedback channel) and

ACM transmissions.

Chapter 6 outlines the conclusions of the thesis work.

1.3 Contributions

The contributions of the thesis are as follows.

1.3.1 Contributions of Chapter 2

(1) A complete survey presenting the modelling of atmospheric attenuation is thor-

oughly discussed;

(2) Specifically concerning rain attenuation, the most accurate models to predict rain

attenuation distribution are discussed and their accuracy assessed by compar-

ison with reference statistical model ITU-R P.618-10 against a comprehensive

database of measurements.

1.3.2 Contributions of Chapter 3

(1) The overview of the most recent models to obtain time series of rain attenuation

samples for multiple sites is presented;
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(2) The model proposed by the author is introduced and comprehensively discussed,

with special attention to the methodology to impose the correct spatial corre-

lation and temporal evolution of the time series for a large number of sites;

(3) The model performances are assessed. Single site I order and II order attenuation

statistics are presented against reference models, in terms of joint statistics of

multiple sites the rain decorrelation index is presented.

1.3.3 Contributions of Chapter 4

(1) The overview of the possible Fade Mitigation Techniques applicable to the Mul-

timedia Fixed SatCom scenario is presented;

(2) The OBDPA system and ACM for multibeam satellite systems are introduced

and detailed;

(3) The joint deployment of the two techniques is motivated to possibly improve the

overall system performance

1.3.4 Contributions of Chapter 5

(1) The proposed model of rain attenuation time series is applied to the simulation

of two “on-demand” rain conditions according to the meteorological information

used in the optimization of the OBDPA system;

(2) Attenuation time series are simulated for a large number of users into one spot

of the OBDPA system
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(3) The user SNIR and Spectral Efficiency (SE) are defined as proper figure of merit

to assess the effects of OBDPA coupled with constant transmission schemes

(CCM) and adaptive schemes ACM.

(4) Results in terms of users SNIR distribution, SE distribution, throughput and

availability are generated for different transmission schemes. The advantage of

the OBDPA coupled with ACM is investigated.
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Chapter 2

Atmospheric attenuation: propagation

effects and attenuation modelling

2.1 Introduction

Radiowave propagation plays an important part in the design and performance of

space communications systems.The degrading effect of precipitation in the transmis-

sion path is a major concern associated with space communication systems, particu-

larly for those operating above 10 GHz. At these frequencies, absorption and scatter-

ing caused by rain, hail, ice crystals, or wet snow can cause a reduction in transmitted

signal amplitude (attenuation) which reduces the reliability and performance of the

space communication link. Other effects can be generated by precipitation on the

earth-space path. They include depolarization, rapid amplitude and phase fluctua-

tions (scintillations), antenna gain degradation, and bandwidth coherence reduction.

Even apparent “clear sky” conditions can produce propagation effects which

can degrade or change the transmitted radio wave. Constituent gases in the earth’s

atmosphere, particularly oxygen and water vapor, interact with the radio wave and

reduce the signal amplitude by an absorption process. Turbulence or rapid tempera-

ture variations in the transmission path can cause amplitude and phase scintillations

or depolarize the wave. Clouds, fog, dirt,sand, and even severe air pollution can cause
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observable propagation effects. Finally, background sky noise is always present and

contributes directly to the noise performance of the communications receiver system.

The relative importance of the radio-wave propagation factors discussed above

depends to a large extent on the frequency of operation of the earthspace link and the

required system availability, as well as on the local climatology, local geography, type

of transmission, and elevation angle to the satellite. Generally, the effects become

more significant as the frequency increases and as the elevation angle decreases. The

randomness and general unpredictability of the phenomena which produce the propa-

gation effects adds a further dimension of complexity and uncertainty in the elevation

of radio-wave propagation in space communications, and statistical approaches have

been found to be most useful to evaluate many of the problem areas [7].

The next paragraphs focus on the description of the main propagation impair-

ments for fixed satellite links and the current models to predict their impact in terms

of signal attenuation. Sec. 2.2 describes the atmospheric medium, Sec. 2.3 presents

the main atmospheric sources of propagation impairments: gaseous absorption, hy-

drometeors absorption and scattering and tropospheric scintillation are described.

Sec. 2.4 presents a survey of the statistical models currently in use to predict the

attenuation distribution of the different atmospheric components. In Sec. 2.5 the

conclusions of this Chapter are reported.

2.2 Structure of the atmosphere

The atmosphere propagation medium can be modeled as a three-dimensional half

space bounded by the Earth’s surface, with pressure and density decreasing exponen-

tially with altitude forced by gravity. The variation of atmospheric temperature with

height, instead, exhibits a cycling pattern, caused by solar and Earth’s radiation, and
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the atmosphere is commonly divided into layers according to their thermal state. The

vertical changes in temperature are important in constraining weather events to the

lowermost region of the atmosphere.

The troposphere, from the Earth’s surface to 11-12 km above, is characterized

by decreasing temperature with respect to height, which is mainly a consequence of

heating from the surface, so the closer the air is to the ground, the warmer it becomes.

The rate of change of air temperature with height (lapse rate) is generally about 6.5o

C per kilometer, but the actual lapse rate varies with location, season, time of day,

weather conditions. The upper boundary of the troposphere is called tropopause.

The height of the tropopause is very dependent on geographical latitude and season,

being around 16 km height at the equator, and as low as 8 km at the poles. In

the lowest 1-2.5 km of the troposphere, the Planetary Boundary Layer Planetary

Boundary Layer (PBL), the atmosphere is directly influenced by the Earth’s surface

and responds to surface influences with a timescale of an hour or less [8], causing

heavy variances of meteorological parameters like temperature, wind and humidity.

The troposphere is followed by the stratosphere (from about 11-12 km to 50 km),

where temperature increases due to strong absorption of solar ultraviolet radiation by

the ozone layer, located near 25 km above the earth’s surface. Because warmer air lies

above cooler air in this region, there are few overturning air currents and, thus, the

stratosphere is a region of little mixing. Together with the troposphere, they account

for 99.9% of the Earth’s atmosphere.

Between around 50 – 90 km altitude, in the so-called mesosphere, temperature

decreases again, and this is the coldest region of the atmosphere. Finally, in the ther-

mosphere, above 80- 90 km, temperature ranges up to 2000 K caused by absorption of

energetic ultraviolet and X- ray radiation. The assumption of local thermodynamic

equilibrium is not valid in the thermosphere. The ionosphere is the lower part of
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the thermosphere, and extends from about 80 to 400 km in height. It is electrically

charged as short wave solar radiation ionizes the gas molecules. The electrical struc-

ture of the ionosphere is not uniform, the thickness changing from night (weaken)

to the day depending on solar radiation, and it is generally divided in a number of

layers. A generalized model of the vertical structure of the atmosphere is given by

the 1976 U. S. Standard Atmosphere [9]. It provides temperature, pressure and den-

sity profiles that represent average conditions in mid latitudes for altitudes between

5 km below sea level and 1000 km above sea level. Annual, seasonal and monthly

averages of temperature, pressure and water-vapour pressure as a function of altitude

are provided by ITU-R [10].

For the purposes of this study, the region of interest is the lower part of the

atmosphere, because it contains the bulk of the total atmospheric mass and the mete-

orological phenomena, and therefore exercises the greatest influence, with the excep-

tion of the radio signal effects introduced by the ionosphere. Hence for computational

purposes, only the lowermost 60 km of the atmosphere needs to be considered. Also,

when horizontal variations are evaluated to occur on larger spatial scales than the

considered geographical area, the atmosphere is customarily taken to be a horizontally

homogeneous, slab medium.

Air is a mixture of several gaseous species. The standard mixture contains ni-

trogen (78%), oxygen (21%) and argon (1%), together accounting for about 99, 96%

of the dry air’s volume. These gases are permanent, well-mixed species in the lowest

80 km, such that partial density and pressure of each species obey the exponential

decrease with height that follows from the hydrostatic balance and the gas law (scale

height typically of 6-9 km). This also applies to long-lived minor species like carbon

dioxide, methane, nitrous oxide, and a number of inert gases. Concentrations of other

species are variable in space and time, depending on their generation mechanisms.
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The most important is water vapour. Water vapour is primarily found in the tro-

posphere. In fact, nearly one half of total water vapour in the atmosphere is found

between sea level and 1.5 km. Less than 5− 6% of water vapour is found above 5 km

and less than 1% is found in the stratosphere. Water vapour influences weather and

climate in two ways: (1) it plays a fundamental role in Earth’s hydrological cycle,

since the formation of clouds, fog, and precipitation depends on its condensation,

and (2) it is the dominant greenhouse gas in the atmosphere. Water vapour has a

large latent heat associated with its change of phase and represents a major source

of energy for circulation systems associated with the weather and climate.

The influence of the atmosphere on electromagnetic waves in the microwave

band is generally divided in the clear-air effects of atmospheric gases and their asso-

ciated refractive index changes, like signal delay, ray bending, absorption, reflection

and tropospheric scattering, and in the effects produced by liquid and solid particles

(clouds, precipitation, aerosols), like attenuation, cross polarization and scattering.

Modeling of these effects is the topic of the next sections.

2.3 Atmospheric attenuation components

2.3.1 Gaseous Absorption

Absorption of electromagnetic energy by the gases in the atmosphere results from

the quantum physical behavior of atmospheric constituent molecules. The energy

of a molecule is determined by the sum of its translational, rotational, vibrational

and electric energy: E = Et + Er + Ev + Ee, with Er < Et < Ev < Ee. Except

for translational energy, these energies are quantized and can only assume discrete
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values. Allowed energy states are well defined and depend on the structure of the

specific molecule.

At microwave frequencies, absorption by atmospheric gases is dominated by

oxygen and water vapour. The absorption spectrum of water vapour at these fre-

quencies is caused by rotational transitions induced by the interaction of the external

field with the molecule’s permanent electric dipole moment, with resonance lines at

22.235 GHz, 83.310 GHz, and several frequencies above 300 GHz. Oxygen produces

a family of rotational lines due to transitions in the magnetic dipole spin-rotation

around 60 GHz and an isolated line at 118.75 GHz. However, emission and absorp-

tion due to a single change of energy state is practically never monochromatic, but a

spectral line is broadened over a certain frequency. This line broadening is caused by

the finite natural lifetime of the energy state (natural broadening), collision between

molecules (pressure or collision broadening), and the Doppler effect due to thermal

motion of molecules in space (Doppler broadening). Natural broadening is negligi-

ble compared to the other broadening mechanisms, collision broadening is dominant

below 20 km in altitude, while in the upper atmosphere Doppler broadening is dom-

inant. The frequency dependence of the absorption has been found to depend on an

empirical line width constant which is a function of temperature, pressure and the

humidity of the atmosphere [11] . All of these parameters are highly variable with

altitude, location, season of the year, and time of day.

Attenuation due to oxygen and water vapour in atmosphere is generally de-

scribed by the specific attenuation in dB/km, which is calculated by the sum of

contributions of each energy transitions of the two molecules. The total gaseous
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attenuation Aa dB in atmosphere along the path r0 km is given by:

Aa =

r0∫
0

{γo(r) + γv(r)}dr, dB (2.1)

where γo and γv are the specific attenuation of oxygen and water vapour in dB/km,

respectively.

Zenith attenuation is evaluated by considering, in first approximation, an expo-

nential decay of oxygen and water vapour concentration with altitude. An equivalent

height in atmosphere is introduced to describe the path length of the radiowave in

atmosphere. Consequently, Eq. 2.1 is simplified into:

Aa = γoho + γvhv, dB (2.2)

The definition of ho, hv, out of the absorption band around 60 GHz, depends on the

frequency and ground temperature.

For slant paths through the atmosphere, the attenuation is given by the cose-

cant of the elevation angle, down to about 6o of elevation angle, where the cosecant

law breaks down because of earth curvature and refraction effects. Below 6o, the

attenuation is obtained by ray tracing the path through the atmosphere starting at

the surface height and obtaining the line integral of attenuation along the ray path.

Above 6o of elevation, the equivalent path length can be derived by:

L =
2h√

sin2(θ) + 2h/R + sin(θ)
(2.3)

where θ represents the elevation angle and h the equivalent height of oxygen or water

vapour.
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The correct procedure for obtaining the gas attenuation consists in calculating

the gaseous specific attenuation for each point of the path, for example by using the

Microwave Propagation Model [12], which allows to evaluate with high accuracy the

above attenuation contributions from vertical profiles of pressure, temperature and

relative humidity.

In addition to physical models, which rely on the complete knowledge of the

vertical profiles of the atmospheric parameters, other models have been developed

[13, 14]. Such models are generally characterized by a simplified formulation and are

based on surface or integrated meteorological parameter, much more readily available

with respect to the vertical profiles. Those simplified methods are valid only in defined

frequency intervals, such as the spectral transmission windows of the atmosphere,

and are based on a-priori assumptions of the vertical profiles of the meteorological

parameters (standard or typical atmospheres). The International Telecommunication

Union (ITU) defined a statistical procedure to evaluate the attenuation due to oxygen

and water vapour with sufficient accuracy in the most of the satellite transmission

cases [13]. The yearly averaged gaseous attenuation at the zenith can be calculated,

according to ITU-R Recommendation [13], by multiplying the approximated gaseous

specific attenuation at ground level, which is a function of ground water vapour

density, temperature and pressure, by its effective height, which depends only on

frequency and pressure. The climatic input parameters of the models (the surface air

temperature, the water vapour density and the total water vapour content), are now

available in global maps from ITU-R (on a yearly basis) [15]
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2.3.2 Absorption and scattering by hydrometeors

Hydrometeor is the general term referring to the products of condensed water vapour

in the atmosphere, observed as rain, hail, ice, cloud, fog or snow. The presence of hy-

drometeors in the radio wave path, particularly rain, can produce major impairments

to space communications, especially for frequencies higher than 10 GHz. Rain drops

both absorb (attenuate) and scatter radio wave energy. Together with clouds and fog

they have a significant impact in the design of terrestrial and space communication

systems. Main effects account attenuation and depolarization of the received signal,

their contribution is considerably higher than snow and hail.

2.3.2.1 Clouds and Fog

Athough rain is the most significant hydrometeor affecting radiowave propagation, the

influence of clouds, fog, hail, and snow can also be present on an earth-space path.

Clouds and fog generally consist of water droplets of less than 0.1 mm in diameter,

and this allows the Rayleigh approximation to be used in the calculation of the specific

attenuation of clouds and fog up to about 100 GHz. With this approximation, cloud

attenuation is found to be proportional to the liquid water content rather than the

drop size distribution [7].

Clouds attenuation is highly variable, depending on their liquid water content.

In the ITU-R model [16], the dependence of clouds specific attenuation on droplets

temperature is taken into account by defining the liquid water content reduced to

0oC, that, integrated as a function of height, results in the reduced total liquid water

content measured in ( kg
m2 or mm). Global statistics of this parameter have been

calculated by using global data from European Centre of Medium-Range Weather

Forecast (ECMWF) numerical analysis and are provided through global maps [16].



Chapter 2: Atmospheric attenuation: propagation effects and attenuation modelling 18

Cloud attenuation is then obtained as a function of the reduced liquid water content,

the frequency, the elevation angle and the dielectric constant of the water. There is

no particular frequency limitation up to 100 GHz as for specific attenuation due to

liquid water.

From theoretical calculation and experimental measurements, it appears that

cloud attenuation is equivalent to very light rainfall attenuation and, during rain

which exceeds 10 mm/h, the rain attenuation will be the dominant factor in the total

attenuation experienced on the path [7].

Concerning fog, it results from the condensation of atmospheric water vapour

into suspended water droplets, with a typical density of 0.4 g
m3 with peaks at 1 g

m3 .

Fog layers seldom exceed 50 - 100 m in thickness, hence fog attenuation can usually

be considered negligible for radio-wave communications on a slant path [7].

2.3.2.2 Rain Attenuation

The classic theory for rain attenuation assumes that the energy of the radio wave is

subject to an exponential decay due to the rain fields. Rain droplets result in absorp-

tion and diffusion of the incident radio wave energy, with independent contributions

which may be integrated [17].

The attenuation due to a rain volume L can be expressed by:

A =

L∫
0

γdx [dB] (2.4)

where γ is the specific attenuation of the rain volume, expressed in dB/km. Con-

sidering a plane wave with transmitted power density Pt, incident on a volume of

uniformly distributed spherical water drops of radius a, extending over a length L,
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the received power Pr is given by:

Pr = Pte
−kL (2.5)

where k is the attenuation coefficient for the rain volume, expressed in km−1. The

attenuation will be:

A = 10 log
Pt
Pr

= 4.343kL dB (2.6)

The attenuation coefficient k can be obtained as the product between the water

droplets density per unit volume, ρ, and the attenuation cross-section of drops Qt,

equal to the ratio between the lost power density and the total incident power density:

k = ρQt (2.7)

Qt is the sum of the cross-sections for absorption and diffusion, it is function of the

drop radius r, the wavelength of the radio wave λ and the complex refractive index

of the water drop m. Assuming n(r) the probability density function of drops with

radius r, k can be expressed as:

k =

∫
Qt(r, λ,m)n(r)dr (2.8)

n(r)dr can be interpreted as the number of drops per unit volume with radii between

r and r + dr. The specific attenuation γ is then derived from Eq. 2.6, with L = 1:

γ = 4.343

∫
Qt(r, λ,m)n(r)dr dB/km (2.9)

The above result emphasizes the dependence of rain attenuation on drop sizes,

drop size distribution, rain rate and attenuation cross-section. The first three pa-
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rameters are characteristics of the rain structure only, the attenuation cross-section

introduces the dependence on the frequency and temperature. All the parameters ex-

hibit time and spatial variability which are not deterministic, or directly predictable.

Hence, most analyses of rain attenuation must resort to statistical means to evaluate

the impact of rain on communication systems.

Qt can be obtained by referring to the classical scattering theory of Mie for a

plane wave radiation upon an absorbing sphere [18]: if the wavelength is considerably

larger than the dimension of the drop (2πr � λ) the Rayleigh cross-section is

Qt =
8π2

λ
r3Im

[
m2 − 1

m2 + 2

]
(2.10)

The drop size distribution, n(r), depends on the rain rate and type of storm

activity, it has been found to be well represented by an exponential function:

n(r) = N0e
−Λr = N0e

−[cR−d]r (2.11)

where R is the rain rate in mm/h and r the drop radius in mm. N0, c, d are

constants to be determined from measured distribution and describe different kinds

of rain. The rain drop diameter is typically between 0.1 and 10 mm. Values of Λ

and N0 are reported in [19] for the model by Marhsall-Palmer and in [20] for the

Joss-Waldvogel model.

Given the distribution of drop diameters and the rain cross section description,

the specific attenuation of rain is derived:

γ = 4.343N0

∫
Qt(r, λ,m)e−Λrdr dB/km (2.12)

obtaining the total rain attenuation for the path L by integration of Eq. 2.12 over
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the extent of the rain volume. This integration procedure is not a straight task since

Qt and r distribution generally vary along L and these variabilities must be included

in the calculation.

For this reason, the rain attenuation is predicted with a more direct relationship

with the rain rate (also referred as rain intensity) at the earth surface. The rain

specific attenuation is well approximated by the relation:

γ = aRb dB/km (2.13)

where a and b are frequency and temperature dependent constants which approximate

the complex behaviour of the complete representation given by Eq. 2.12, from which

Eq. 2.13 can be directly inferred.

The use of Eq. 2.13 is applied in most of the present models to predict rain

attenuation from rain rate, several sources of tabulation for the a and b parameters as

function of frequency and temperature are available. Figure 2.1 shows the coefficients

as function of frequency as derived from different models: Joss, Gamma distribution

and Recommendation ITU-R P.838.3 [21].

2.3.2.3 Depolarization by rain and ice

If the use of dual polarization is foreseen, the depolarization (XPD) introduced by

the non-spherical particles (drops and ice crystals) must be taken into account. In

particular, the physical parameters that cause XPD are the anisotropy (i.e. the

polarization-dependent forward scattering of the particles) and the angle of the sym-

metry axes of the particles with respect to the polarization plane (canting angle).

In [22], it is shown that depolarization at a given frequency can be scaled to a differ-

ent one by scaling the corresponding anisotropies. The hydrometeor axes however are
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Figure 2.1: K,α coefficients as function of frequency [GHz]. Comparison among
current Recommendation ITU-R P.838-3 and other distributions Joss (Thunder,

green line crossed) and Gamma (µ parameter ±3).

not equi-aligned and the dispersion of these orientations is, generally, beneficial (re-

duce) to XPD, although the phenomenon becomes much more complex and difficult

to describe. A further difficulty is due to the co-presence of water and ice-particles

along the path.

To a first approximation, we can simplify the formulation of the problem by

assuming that all the hydrometeors have rotational symmetry and are equi-oriented.

Two particular planes, named “principal planes” are then identified: the one deter-

mined by the common orientation of the hydrometeor axes and the propagation direc-

tion and the perpendicular one containing also the propagation direction (as shown

in Fig. 2.2). When the electric field strength is parallel to one of these two planes,

the wave propagates through the medium without being depolarized.
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The dependence of the measured XPD in circular polarization on copolar at-

tenuation (CPA) has been found experimentally at 50 GHz (Italsat experiment) to

follow the linear relationship [23]:

XPD = 0.5 · CPA− 33; (2.14)

This simple model takes into account both rain and ice effects but it should be

validated at higher frequencies. In fact, similarly to attenuation, also XPD worsens

dramatically with the increase in frequency.

!

Figure 2.2: Principal planes in a medium composed by anisotropic particles

2.3.3 Atmospheric Scintillation

Tropospheric scintillation is due to small-scale refractive index non-homogeneities

induced by atmospheric turbulence along the propagation path. As a result, rapid
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fluctuations of the received signal amplitude affect satellite links above about 10 GHz.

The intensity of tropospheric scintillation is usually quantified in terms of the

signal standard deviation calculated during a stationary period of few minutes, which

depends on the turbulence structure index, increases with the frequency and with

the path length and decreases when the antenna size increases because of aperture

averaging. Scintillation can be due also to the variation of the arrival angle of the main

ray which increases when the beam width decreases due to the effect of the antenna

radiation pattern. The present model recommended by ITU-R [24] is applicable up

to a frequency of at least 20 GHz but it has been noticed [25] that it is not in very

good agreement with measurements at various sites at Ka and Q/V bands (up to 50

GHz), possibly due to the variation of the angle of arrival of the main signal which

likely play a role for highly directive antennas (as in the case of very high frequencies).

The relative impact of angle-of-arrival fluctuations on measured scintillations requires

further study.

Scintillation can also occur inside rain and, in this case they are mixed with

the fast fluctuations induced by rain itself. A model based on a theoretical approach,

using Tatarskii’s theory [26] of scintillation in clear sky, has been proposed and tested

for different sites and frequency up to V band [27]. Scintillation, apart from their

impact on the performance of communications systems (especially those with low-

margin) [28], may interfere with tracking systems or Fade Mitigation Techniques.

2.4 Statistical description of attenuation

Statistical models for attenuation components are required because of the complexity

of physical models, which often are related to local observation and, for example,
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require radiosonde observations (RAOBS) to obtain vertical profiles of atmospheric

constituents.

In this Section, the current statistical models for predicting the total atmo-

spheric attenuation are introduced. Examples of attenuation distribution for the

different components are presented for a test Earth-satellite link, for a range of fre-

quencies between 20 and 90 GHz. A very simple evaluation of the required system

margin to achieve a certain system availability is obtained.

Due to the importance of rain attenuation in the total attenuation definition, a

deeper analysis about rain attenuation models is presented. The analysis presents the

most important aspects of rain attenuation modelling and includes the assessment of

the attenuation prediction error of selected models.

2.4.1 Gaseous attenuation

An effective alternative to the calculation of the path attenuation due to gases is of-

fered by models currently adopted in the ITU-R Recommendation P.676-9 [13]. Such

model introduce simplified (yet accurate) formulations relying on effective parameters

which embed information on the vertical profiles of water vapour and oxygen concen-

trations. Specifically, the mean yearly distribution of total zenith attenuation due to

oxygen can be calculated by multiplying the oxygen specific attenuation at ground

level by an effective height, which, in turn, is a function of frequency and pressure.

As for water vapour, recommendation ITU-R P.676-9 includes the calculation of the

total zenith attenuation in reference conditions at 20.6 GHz as a function of the wa-

ter vapour total content (global maps of this parameter are available in [29], to be

afterwards multiplied by a frequency scaling factor. As a final step, the slant path

attenuation due to oxygen or water vapour, is obtained by scaling the zenith attenu-
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ation through the cosecant law, under the plausible assumption of local homogeneity

of the atmosphere.

Fig. 2.3 shows the ITU-R predicted Complementary Cumulative Distribution

Functions (CCDFs) of gaseous (oxygen and water vapour) attenuation in Ka band

(20 GHz), Q/V band (40 and 50 GHz) and W band (70, 80 and 90 GHz) for Spino

d’Adda, along a 37.7o slant path (to a GEO satellite at 13oE). At 1% of the yearly

time (system availability of 99%) the fade margin is about 1 dB in Ka and Q bands

and between 2.5 and 4 dB in the V and W bands.

!
Figure 2.3: CCDFs of slant path gaseous (oxygen and water vapour) attenuation at
20 (black), 40 (blue), 50 (light blue), 70 (green), 80 (red) and 90 (magenta) GHz for
the site of Spino d’Adda, Italy (lat. 45.4o N, lon. 9.5o E, alt. 84 m a.s.l.) along a

37.7o slant path. Prediction according to ITU-R Rec. P.676-9

2.4.2 Cloud attenuation

As for gases, simplified models have been proposed by the ITU-R to estimate on

a global basis the CCDFs of the attenuation due to clouds. Specifically, in Rec-

ommendation P.840-5 [16], the dependence of cloud specific attenuation on droplets
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temperature is taken into account by defining the liquid water content reduced to

0oC. This latter parameter depends on the frequency and its statistics are calculated

by ITU-R in the 20-50 GHz frequency band (but can be recalculated in different fre-

quency bands) and distributed through global maps. The cloud attenuation is then

obtained as a function of the reduced liquid water total content, the water permit-

tivity, the frequency and the elevation angle. Fig. 2.4 depicts the ITU-R predicted

CCDFs of cloud attenuation in the Ka band (20 GHz), the Q/V band (40 and 50

GHz) and the W band (70, 80 and 90 GHz) for the site of Spino d’Adda along a 37.7o

slant path. At 1% of the time (system availability of 99%), the fade margin is about

0.4 dB in Ka band, rising in the range between 4 and 6 dB for frequencies in W band.

!
Figure 2.4: CCDFs of slant path clouds attenuation at 20 (black), 40 (blue), 50
(light blue), 70 (green), 80 (red) and 90 (magenta) GHz for the site of Spino

d’Adda, Italy (lat. 45.4o N, lon. 9.5o E, alt. 84 m a.s.l.) along a 37.7o slant path.
Prediction according to ITU-R Rec. P.840-5
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2.4.3 Rain attenuation

Attenuation due to rain is the most relevant propagation effect relevant to the design

of satellite telecommunication systems. All available methods of attenuation predic-

tion attempt to relate the Cumulative Distribution Function (CDF) of attenuation

along a slant path to the cdf of ground rainfall intensity. To this purpose a set of

assumptions are however necessary; among them, those with stronger impact are:

• the relationship between specific attenuation and rainfall intensity;

• the model describing the rainfall rate CDF;

• the vertical and horizontal profiles of rainfall intensity.

The several methods available today in the literature [30] substantially differ

from one to another mainly for the different hypotheses made about the above as-

sumptions. These issues become more and more important increasing the frequency,

owing to the magnifying effect of these parameters on all the phenomena related to

rain.

2.4.3.1 Relationship between specific attenuation and rainfall intensity

As described in Sec. 2.3.2.2, most of the models refers to the relation in Eq. 2.13 to

derive the specific rain attenuation from the value of rain intensity R in mm/h.

In 2.13, k and α are coefficients which depend on the frequency, elevation angle,

drop temperature and drop size distribution Drop Size Distribution (DSD). Indeed,

non marginal differences in the specific rain attenuation may come from the variation

of the DSD that occurs from event to event and, sometimes, also during the same

event. As an example, Fig. 2.5 shows the relationship between rain intensity and

specific attenuation at 20 GHz: each curve in the figure represents a different DSD
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model. The current ITU-R Reccomendation [21] is compared to other distributions

in order to show the DSD effect on rain specific attenuation. At 20 GHz there is a

weak dependence on the rain intensity, which is instead more pronounced at higher

frequency bands [3]. There is instead a significant difference among the considered

models: at 10 mm/h the peak to peak relative variation in the specific attenuation is

about 40%.
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Figure 2.5: Specific rain attenuation (dB/km) at 20 GHz (horizontal polarization)
as function of rain rate (mm/h) for several DSD models

2.4.3.2 Rainfall rate prediction models

The main input of rain attenuation prediction models is the rainfall CDF, whose

values, tightly linked to the local climatology, have a directly impact on the predicted

attenuation statistics. The International Telecommunication Union ITU recommends
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the use of rainfall rate CDFs with 1-minute integration time in order to properly

estimate also extreme fade values. The 1-minute integration time is not the standard

time interval used in meteorological applications, for which there is no interest in

rapid changes of rain intensity, but rather in reliable average quantities (half-hourly,

hourly, daily, monthly or yearly cumulated rain). Therefore, rain gauge data routinely

collected for meteorological purposes and covering long observation periods are easily

available worldwide, whilst specialized measurements for propagation applications are

carried out on spot basis at specific sites (usually associated to other experimental

activities on electromagnetic propagation).

This fact has driven research efforts towards the development of procedures

aimed at deriving rain rate CDFs with 1-minute time resolution from the knowledge

of rain rate CDFs with much longer integration time or from the knowledge of general

meteorological conditions.

The rainfall rate prediction model currently recommended by the ITU-R [31]

its a meteorology based method and relies on global long-term meteorological maps.

Specifically, the method estimates the 1-minute integrated rainfall rate CDF world-

wide from the simple knowledge of the site’s geographical coordinates and receives

as input the mean yearly local amounts of the convective and stratiform rain (Mc

and Ms, respectively), together with the 6-hour rainy probability (Pr6). All this

information is extracted from the ERA-40 database, provided by the ECMWF.

In general, the CCDF of rain attenuation is directly related to the local rain

rate CCDF, which is highly variable from site to site.

2.4.3.3 Vertical and horizontal profiles of rainfall intensity

As far as the rain profile is concerned, the issue covers two different, but related,

aspects: the vertical and the horizontal profile. The first one is peculiar of the slant-
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path links and is related to the estimation of the rain height, of the bright-band effects

and, to a minor extent, of the polarisation mismatching induced by the ice-clouds,

particularly important at low elevation angle.

The attempts to solve the problem of rain profile have often led to the definition

of ‘effective’ rain heights. A significant refinement of the rain height modelling for

the estimation of the rain induced attenuation has been afterwards introduced in [32],

in which the authors have proposed a method to derive two different stratiform and

convective rain heights by properly taking into account the monthly mean values of the

0oC isotherm heights (conditioned to the presence of rain) and the associated monthly

mean values of the convective-over-total rain amount ratio. In fact, stratiform events

are typically associated with a lower vertical extent with respect to convective ones,

in which rain drops are pushed well beyond the 0oC isotherm height by the strong

updrafts and downdrafts. In addition, stratiform precipitations are usually coupled

with a definite melting layer ( the layer just below the 0oC isotherm height where

the falling snowflakes and ice particles melt into water drops ), whose effect, in terms

of signal attenuation, can be taken in due account through the introduction of an

“equivalent rain height” to be added to the stratiform rain height.

Also the modelling of the horizontal profile has originated a lot of different

proposals during the past decades. Several analytical profile have been proposed in

order to adequately model the rainfall spatial distribution within a single cell, among

which the exponential [32] (SC-ExCell model) and the hybrid Gaussian-exponential

[33] (HYCELL) ones are worth being cited. Among the various proposals, the ExCell

and the HYCELL models also include methodologies that allow to derive of the correct

rain cells’ probability of occurrence from the knowledge of the local rainfall rate CDF

and, as a result, they permit the statistical estimation of the attenuation induced on

a radio link by the synthetic rain cells.
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2.4.3.4 Rain attenuation models

The prediction of rain attenuation CDF starting from the rainfall intensity CDF

has been the subject of a big effort carried out by many researchers in the last three

decades. Several methods have been developed and their performance evaluated using

statistics from propagation experiments at frequencies up to 50 GHz. The difference

between the performances of the various methods is often negligible and their errors

are of the order of the year-to-year variability of precipitation (around 20− 30%).

SC-ExCell [32], ITU-R Rec. P.618-10 [24], SST [34] are methods that appear to

be the best according to the most recent testing activity [35]. The above mentioned

models, especially the physically based ones, can be probably applied up to 90 GHz

without significant performance degradation even if the accuracy assessment is not

possible due to lack of data above 50 GHz. The tested frequency range extends from

1 to 50 GHz. Their application to links with elevation angle down to 5 degrees should

not present any problem, since the spatial structure of precipitation is taken into

account in the models; a comparison with low elevation beacon measurements would

assess possible performance degradation.

Among the effects to be specifically taken into account in the design of medium/low

availability systems, the melting layer, typically present during stratiform events (low

rain fades), is of key importance at frequencies above 50 GHz. The melting layer can

be modeled as a slab, with typical thickness around 600 m, around the altitude of the

0o C isoterm curve. This layer shows peculiar attenuation characteristic due to the

transition of water molecules from ice to rain. The melting layer contribution to rain

attenuation can be described as a function of the rain intensity underneath and of the

transmission frequency, for this reason its contribution is normally included in rain

attenuation models. The calculations for the attenuation contribution could be car-



Chapter 2: Atmospheric attenuation: propagation effects and attenuation modelling 33

ried out with an anisotropic model of the transition layer, which considers a medium

consisting of absorbing and scattering hydrometeors like ice, melting ice and rain

drops [36]. The model requires as input the initial density of the melting particles,

the frequency, the DSD and the rain intensity below the melting layer.

2.4.4 Comparison of rain attenuation models

Attenuation due to rain is the main drawback to the propagation at frequencies above

10 GHz because the hydrometeor dimensions become comparable with the wavelength

of the incident wave.

In order to address the rain attenuation modelling for in the present study, the

performances of selected models are assessed against a reference database of measure-

ments. The model performances are described by the following figure of merit:

ε(p) =
Ap(p)− Am(p)

Am(p)
· 100 (2.15)

where Ap(p) is the predicted attenuation at probability p, Am(p) the measured (or

reference) attenuation at the same probability. The mean percentage error and Root

Mean Square Error (RMSE) were evaluated for the selected models. Special emphasis

is given to the SC-ExCell prediction method [32] and the two layer SST [34] because

of their very good overall performance. The first method describes the meteorological

environment as an ensemble of synthetic isolated rain cells with the inner spatial dis-

tribution of rain intensity that follows an exponential behaviour and takes separately

into account the contribution to attenuation due to stratiform and to convective rain.

Moreover, the contribution due to the melting layer is added only to stratiform rain

as an equivalent rain slab whose height depends markedly of frequency. The model

has been successfully tested in [35] up to the frequency of 50 GHz. In the two layer
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SST method, rain is modelled as two layers of precipitation of different depth: the

layer closer to ground whose height is latitude dependent according to ITU-R rules is

filled by rain, while the second one, 400 m in depth, is filled by melting hydrometeors

and equivalently represented by a rain rate value 3.134 times higher than the rain

intensity below. More details can be found in [34].

The two above mentioned models were tested against other statistical models,

among which the Recommendation [24]. The database DBSG3 [37] provides the refer-

ence measured attenuation statistics: the part of the database relative to experiments

at frequencies above 17 GHz was considered for this activity.

The attenuation prediction accuracy of the SC-ExCell happened to be improved

in the framework of this activity when applying the ITU-R P.838-3 Recommendation

[21] γ − R relationship. It was found in fact that the above relation enhances the

attenuation values at low intensity level and it is relatively close to the one proposed

as Joss- thunderstorm and to the Gamma DSD with µ = −2. This last DSD was

found to be the most suitable one to account for the instantaneous frequency scaling

at the Italsat frequencies [Private communication]. Accordingly, this made possible to

modify the prediction model, by eliminating the awkward rain plateau. Final results

in terms of attenuation prediction error show a good agreement with the reference

results. The model accuracy has been verified according in the probability range

from 0.01% to 5% (typical probability of rain attenuation in mid-latitude regions).

Special attention was dedicated to the model accuracy at high probability values,

corresponding to low rain rates.

In a first test, the rain rate distribution P (R) is derived from the Recommenda-

tion ITU-R P.837-5 [31]. As it can be appreciated from Fig. 2.6, where the normalized

RMSE is plotted as a function of the probability value in the range 0.01%˘5%, the

chosen models present similar performance with the ITU-R P.618-10 being this one
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a bit better on the overall and in particular in the probability range 0.1%− 5%, that

represents the most critical range correspondent to low rain rates and close to the

probability of rain. However, it must be noticed that the ITU-R model has been

validated and optimized on the attenuation measurements of the DBSG3 database.

The comparison was made on the available experiments at frequencies between 17

and 50 GHz, considering all the possible elevation angles between 5o and 90o degrees

and latitudes.
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Figure 2.6: RMSE of SC-ExCell and SST models compared with reference model
ITU-R P.618-10 and the average RMSE of the considered statistical models.

Both the SC-ExCell and SST performs with reasonable RMSE up to a prob-

ability of 1%, being the SC-ExCell slightly better. Above 1%, in the critical range

for rain attenuation, both the models show a larger error compared to the reference

ITU-R Recommendation. The mean value of the prediction error is shown in Fig. 2.7.

It is clear that, especially for high probability values, i.e. low rain rates, both SST

and SC-ExCell models underestimate the rain attenuation. The agreement between
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Figure 2.7: ME of SC-ExCell and SST models compared with reference model
ITU-R P.618-10.

the models and the reference error is very high up to a probability of 2%, which is

very close to the probability of rain, P0, value of the sites considered. It is worth to

note that at high probability the underestimation of a prediction model is much more

realistic that an overestimation. In fact, the reference measured CDF are more likely

to be biased for an excess attenuation because of the not adequate identification of

the 0 dB level.

The two models were also tested in predicting rain attenuation from measured

rain rate P (R) in the reference database DBSG3. Results in this case are almost

equivalent for the SC-ExCell and SST model: Fig. 2.8 shows the RMSE and Fig. 2.9

shows the average error against the measured attenuation values. With respect to

the SC-ExCell model, the SST suffers from a more significant underestimation but it

has the advantage to be very efficient as for the computation time.

In conclusion, concerning rain attenuation prediction models, both the SC-
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Figure 2.8: RMSE of SC-ExCell and SST models compared with reference model
ITU-R P.618-10. Attenuation predicted from measured rain and compared with

measured attenuation in DBSG3 database.

ExCell and SST offer a good accuracy in the evaluation of rain attenuation distribu-

tion compared to the statistical prediction model ITU-R P.618-10, up to the frequency

of 50 GHz and for a wide range of elevation angles (5o− 90o). Performances are sim-

ilar both considering statistical input rain distribution P (R) from ITU-R map [31]

compared and measured P (R) available in the database DBSG3. The SC-ExCell ex-

hibits a better RMSE especially at higher probabilities (low rain rates) but requires

a longer computational time.

An example of application of SC-ExCell is provided in Fig. 2.10, which depicts

the CCDFs of rain attenuation for a slant path at 37.7o at Spino d’Adda, Italy, for

different frequencies.



Chapter 2: Atmospheric attenuation: propagation effects and attenuation modelling 38

10
−2

10
−1

10
0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mean Error Vs. Probability − Probability Range 0.01 − 5% − Freq. 17−50 GHz − Elev. 0−90

Probability [%]

N
o
rm

a
liz

e
d
 M

e
a
n
 E

rr
o
r

 

 

ITU−R618−9

SC−ExCell (α, k ITU−R 838−3)

SST model

Figure 2.9: ME of SC-ExCell and SST models compared with reference model
ITU-R P.618-10. Attenuation predicted from measured rain and compared with

measured attenuation in DBSG3 database.

2.4.5 Combination of propagation effects

In system design, the combination of the multiple sources of simultaneously occurring

atmospheric attenuation must be considered, especially for those systems operating

with low margins. Total attenuation (dB) represents the combined effect of gas,

clouds, rain and scintillation. According to Recommendation ITU-R P.618-10 [24], it

requires one or more of the following parameters.

• AG(p): gaseous attenuation due to water vapour and oxygen for a fixed proba-

bility (dB), as estimated by Recommendation ITU-R P.676-9 [13];

• AC(p): attenuation due to clouds for a fixed probability (dB), as estimated by

Recommendation ITU-R P.840-4 [16];
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!
Figure 2.10: CCDFs of slant path rain attenuation at 20 (black curve), 40 (blue
curve), 50 (light blue curve), 70 (green curve), 80 (red curve) and 90 (magenta

curve) GHz for the site of Spino d’Adda, Italy (lat. 45.4o N, long. 9.5o E, alt. 84 m
a.s.l.) along a 37.7o slant path (according to the SC-ExCell model)

• AR(p): attenuation due to rain for a fixed probability (dB), for example esti-

mated from SC ExCell model [38];

• AS(p): attenuation due to tropospheric scintillation for a fixed probability (dB),

as estimated by Recommendation ITU-R P.618-10 [24];

where p is the probability of attenuation being exceeded, in the range between 50%

and 0.001%.

According to [24], a general method for calculating total attenuation for a given

probability, AT (p), is given by:

AT (p) = AG(p) +
√

(AR(p) + AC(p))2 + AS(p)2 (2.16)
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where

AG(p) = AG(1%) for p < 1% (2.17)

AC(p) = AC(1%) for p < 1% (2.18)

(2.19)

The two previous equations take account of the fact that a large part of the

cloud attenuation and gaseous attenuation is already included in the rain attenuation

prediction for time percentages below 1%. In terms of the overall accuracy of the

total attenuation estimation by Eq. 2.16, it is function of the accuracy over the

single components and cannot be easily calculated. Difficult is also to measure the

total attenuation of a beacon link (single carrier frequency) and to derive the single

attenuation components. A common procedure is to evaluate the accuracy of the

attenuation estimation for the single components. This work has been carried for the

most recent rain attenuation models, which are of significant to the development of

this thesis work.

2.5 Conclusions

This chapter presents a comprehensive overview of the effects of the atmosphere on

radiowaves with operational frequency from 20 (Ka) to 90 GHz (W band). Specifically,

the attenuation due to gases, clouds and rain have been separately illustrated, briefly

the impact of depolarization and scintillations has been also introduced.

As for propagation under non-rainy conditions, state-of-the-art models, which

rely on solid physical bases, show satisfactory prediction accuracy in the frequency

range up W band. While models are well tested up to 50 GHz, a further increase in
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frequency requires more work in terms of validation of rain attenuation, depolarization

and scintillation models.

Considering rain attenuation, models which exhibit overall good performances

compared to the reference prediction model ITU-R P. 618-10 [24] have been described

and their accuracy has been assessed. The described models have been tested up to

a frequency of 50 GHz, due to their strong physical basis their use above 50 GHz

is definitely possible, but is not a topic of interest for this work. The SC-ExCell

model [32] is selected as the one that gives better performance in predicting the rain

attenuation distribution for a specific link.

The attenuation statistics (especially the attenuation CCDF) can be directly

translated in system margin requirements to guarantee a maximum target outage

probability. Considering an outage probability of 1%, where usually also a rain contri-

bution has to be added being the probability of rain typically in the range 5−10%, the

fade margin associated to non-precipitating atmosphere for the site of Spino d’Adda

along a 37.7o slant path is approximately 1.5 dB in the Ka band (similar values are

expected for other European sites with continental climate), rising up to 8-9 dB in

the W band. Such attenuation levels are calculated by simply adding the attenuation

values reported in Fig. 2.3 and 2.4, as recommended by ITU-R with the procedure

described in Sec. 2.4.5.

For lower outage probabilities 0.1%− 0.001%, corresponding to a system avail-

ability of 99.9%−99.999%, significant margins have to be accounted due to the heavy

fades imposed by rain events. The modelling of these events appear, consequently,

very important.

Results show that the attenuation levels for high availability systems (but in

some cases also for low availability systems) become critical: the classical approach
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for system design based on fixed power margin is no longer effective and adequate

FMTs are required to achieve the desired QoS.

Fortunately, rain events are characterized by a limited spatial extension, espe-

cially considering large geographical areas. As well, the events duration is limited

according to their temporal evolution. From this point of view, joint statistics of

rain attenuation and, especially, time series of rain attenuation values appear of great

interest.
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Chapter 3

Generating correlated time series of rain

attenuation for multiple sites

3.1 Introduction

In satellite communications, the utilization of high frequencies, such as the Ka band

and beyond, is becoming necessary to avoid highly congested lower frequency bands

and to achieve larger bandwidth availability. This solution is being considered for

many developing High Throughput Satellite (HTS) systems. It is already in use for

example in the KA-SAT launched by EutelSat [39] and Hylas-2, recently launched by

Avanti Communications [40].

An immediate drawback at those frequencies is that the transmission link suf-

fers from many limitations imposed by the propagation in atmosphere. Satellite low

margin systems need to be designed accounting FMT to counteract difficult propa-

gation conditions in the atmosphere. Among those, rain attenuation represents the

most severe and critical aspect especially if high availability is requested.

For this reason, considering the service area of a satellite system for Multimedia

Telecommunication or Broadcasting, joint statistics of rain attenuation in multiple

locations are of great importance in the study of satellite networks which foresee the

use of high frequency bands and FMTs. Looking at those applications, the possibility

of generating long time series of rain attenuation, with the succession of rain and no
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rain periods constrained to climatological information, appears of particular interest

for statistical purposes.

In this Chapter a model to describe concurrent rain conditions at many stations

in a large geographical area is presented. The model aims at preserving the spatial

correlation of rain attenuation and its dynamic.

The model allows to obtain time series of rain attenuation for simulation pur-

poses, properly arranged in rainy and not-rainy times in order to resemble the joint

rain conditions for a large number of users in the geographical area of interest. In

this work, the attention was focused on rain attenuation only, which represents the

worst contribution to total attenuation for high availability satellite transmissions.

The obtained time series are of practical interest for the design of advanced

TLC systems and communications link assessment: for example to describe the use of

different modulation and codes for Adaptive Coding and Modulation (ACM) systems

according to attenuation conditions.

The Chapter is organized as follows. Sec. 3.2 provides the main issues addressed

in the model definition. Sec. 3.3 introduces recent works on the research topic, Sec.

3.4 introduces the proposed approach to the problem of modelling multisite rainy

conditions. Sec. 3.5 presents the database of measurements which has been used

as reference for the time series generation, Sec. 3.6 and relative subsections present

the algorithm and the processes involved to generate correlated rain attenuation time

series for multiple sites. Sec. 3.7 is devoted to assess the performance of the proposed

methodology in terms of long-term statistics of rain attenuation, adaptability to dif-

ferent sites in Europe, the spatial distribution of rain and fade duration statistics.

Sec. 3.8 presents this Chapter conclusions.
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3.2 The TS model: map

The purpose of this work was to develop an advanced rain attenuation time series

simulator for multiple sites. The proposed model has the particular feature of refer-

ring to a large database of acquired measurements, which are properly processed and

arranged to reproduce different sites attenuation characteristics. The main charac-

teristic is that attenuation values are not artificially reproduces but belong to real

measured rain events. A mathematical model is required to assign measured time

series to the different sites and to preserve: a) the spatial correlation among sites b)

the rain events time evolution.

For this reason, the following processes are defined:

• Rain state assigning process : it is a multidimensional random process which

assigns rain states to the considered sites with a temporal step of 1 hour. Rainy

states depend on some climatological information related to the sites of interest.

The most important characteristic developed at this stage are: a method to

impose the correct spatial correlation of rainy states; a model for the temporal

correlation of rainy states.

• Rain time series assigning process : it is a method to arrange and distribute the

attenuation measurements present in the reference database to the rainy states

identified by the previous process. The method purpose is twofold: on one side,

attenuation time series must reproduce the attenuation statistical distribution of

the considered sites; on the other side attenuation time series should be spatially

correlated according to the rainy sites distance. Given the time evolution of the

conditioning process, resulting time series are composed of rainy events with

duration multiple of the basic time period (1 hour).
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The two independent processes allow to obtain correlated time series of rain

attenuation for each considered sites, imposing the correct spatial correlation of rain

events occurrence and attenuation. Time series are generated for each site for a

specific simulation duration (1 year for example), aiming to reproduce the long-term

statistics of attenuation specific for each site. The time resolution is the same of the

original measurements and equal to 1 sample/sec.

The proposed model is deeply discussed in the following, along with its per-

formance assessment against reference statistical models available to public domain.

A direct comparison with time series generators developed by other authors has not

been possible in terms of final results.

3.3 Overview of recent developments in the

research topic

In this section, recent models devoted to the modelling of multisite rain attenuation

conditions are reported. Only the models able to generate time series for multiple

sites (space-time channel simulators) has been considered.

The modelling of rainfall events with their physical characteristics is not a new

research topic but still receives significant interest [41]: it is a cross-disciplinary re-

search area which finds applications not only in communications [42, 43]. Purely

mathematical models present the main difficulties in the need to take into consider-

ation the complete statistical and dynamic information of the rain process. Among

these, Markov models for similar applications are discussed in [44].

Very recently new models to describe multisite rain attenuation conditions has

been developed, marking the importance of this research topic for propagation studies.
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Those models require a parameterization reflecting the rain rate or rain attenuation

distribution for the considered link as well as parameters describing the spatial and

temporal correlation of the rain and rain attenuation fields. These models are of great

importance to provide reliable inputs for FMTs and Radio Resource Management

(RRM) design and optimization. Below, the most recent models are listed and briefly

presented.

Authors of [45] proposed a model to generate spatially and temporally correlated

rain attenuation fields for propagation studies. It lies on a non-linear transformation of

random Gaussian fields constructed in the Fourier plane. A methodology is proposed

to derive spatio-temporal correlation parameters from radar data and the applicability

of the mathematical framework for a large geographical area is discussed. The model

is based on a combination of random fields and reanalysis data to generate rain field

with a resolution of 1 km in space and 6 min in time. Those rain attenuation fields are

afterwards converted into rain attenuation fields and interpolated at high resolution

using the methodology of [46]. This approach has been extended to the simulation of

total attenuation fields.

Authors of [47] use a single fractal representation of the rain fields to obtain

time series of rain attenuation. The temporal evolution is obtained by advection of

the rain field whose parameterization has been derived from a set of weather radar

data in the UK. Another approach based on radar data is presented in [48]. In

that work, authors make use of operational weather radar data to downscale time

series of rain attenuation on various types of link. The downscaling technique relies

on multiplicative cascades and enables to get time series of rain attenuation at one

second of resolution.

In [49] a continuous multidimensional stochastic model simulating rain atten-

uation in multiple links is introduced. The model aims to generate time series of
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rain attenuation by generalizing the Maseng-Bakken model [50] to multiple radio

links, modelling their spatial behaviour. The model reproduces quite encouraging

results concerning the long-term properties of rain attenuation (outage probabilities),

however further testing in relation to second-order properties of rain attenuation at

different sites is being carried by authors. The limitation of the model’s applicability

in Earth–space diversity systems is 10–30 GHz for the frequency, 5-60o for the eleva-

tion angle, 0.001%–5% for the exceedance probability, and for rain attenuation values

greater than 1 dB. Concerning the spatial dimension, 1.7–200 km is the range stated

for the site separation distance. Authors referred also to the simulation of the orbital

diversity systems, with angular separation up to 50o.

In [51], the rain attenuation dynamics in time and space are discussed start-

ing from a set of diversity measurements obtained by a star-like network at 42 GHz.

By combining the spatial and temporal correlation properties of rain attenuation,

a simulation model to generate multiple rain attenuation time series based on the

Maseng-Bakken model is developed. The model is validated by comparing the statis-

tical and angular diversity properties of the model with those of measurements and

theoretical diversity gain for small distances (few km), with a target application of

generating time series of rain attenuation for cellular wireless access systems.

These very recent works prove the importance of accurately describing concur-

rent rain attenuation conditions on multiple radio links. The reported works aim at

generating time series at 1 sec time resolution, either by direct mathematical mod-

elling or by over sampling procedures of larger scale rain fields information.

As described above, many of the proposed models lies on the mathematical

framework developed by T. Maseng and P. M. Bakken and described in [50]. The M-B

dynamic single-site model is based on the Log-Normal distribution of rain attenuation.

A non linear transformation allows to describe rain attenuation or intensity as a one-
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dimensional Gaussian stationary Markov process. The Markovian assumption is the

simplest probabilistic concept that takes into account the dependency on the last

observation solely. The phenomenological description that is obtained by a first-order

Stochastic Differential Equation (SDE) has proved to be consistent with experimental

results [52]. However, the M–B model refers to a specific single link and does not

incorporate the spatial variability of rain attenuation. The M–B model has been

adopted by the ITU-R as Recommendation ITU-R P.1853 [53].

The model allows the stationary distribution function of rain attenuation to be

described by two parameters, average attenuation µα and standard deviation σα of

logα. The time dependence is described by a single parameter β.

The stationary distribution of the rain attenuation of the model is lognormal,

therefore is characterized by two parameters which can be determined from long-term

attenuation statistics. The additional parameter β allows to model the rate of change

of attenuation in time. When β is known, the model can be used to calculate dynamic

properties of rain attenuation such as fade duration statistics and typical profiles of

rain attenuation as function of time.

The analytical expression

Rα(τ) = µ2
α exp(σ2

α(1 + ρ(τ))) (3.1)

gives the correlation in time of the rain attenuation obtained by the model, given that

the Gaussian variable x(t) input to the model exhibits the exponential correlation:

ρ(τ) = exp(−β|τ |). (3.2)

The M-B [50] represents a stochastic dynamic description of rain attenuation for a
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single site. The model is applicable only during rainy periods because no dynamic

transition mechanism between rainy weather and clear sky conditions has been incor-

porated. An advantage of the model is its simplicity in the rain attenuation distribu-

tion and the time-evolution dynamic.

3.4 The proposed approach to multisite modelling

An alternative solution to obtain time series of rain attenuation is the use of real

data collected from propagation experiments. The idea of referring to real acquired

measurements has the attractive advantage that all the features of the simulated

process (i.e. the rain event) are real and are not artificially reproduced. Even though

the series are truly measured, their practical use requires a statistical description of

the rain attenuation based on a mathematical model. The use of a large dataset of

rain attenuation measurements for simulation purposes is suggested in [6]. Authors

provide an extensive assessment of the possibility to reproduce first order and second

order attenuation statistics for a generic radio link starting from the desired long-term

CDF of rain attenuation. The model proposed in [6] select a set of rain events from

the database of measurements, which represent the correct rain attenuation statistics

for the single site. Series are composed only by rain attenuation values. The model

assumes that the complete dataset of rain attenuation events measured at a specific

site contains the rain attenuation events potentially measured at a different site, even

if at the two sites their occurrence can be different.

Authors of [54, 55] proposed the use of time series extracted from the same

database of measurements as in [6], but aiming to describe rain attenuation condi-

tions in multiple sites. The study proposed in [55] lies on the two-processes description

in [54]: one describing the rain event occurrence and the second the rain event atten-
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uation. The straight mathematical methodology presents some limitations especially

in terms of the convergence time to reach the long-term desired rain attenuation CDF,

which makes the model not applicable for the purpose of generating time series of

duration equal or longer than one year. Moreover, while the long-term convergence

was discussed, some issues concerning time dynamics and spatial correlation of rain

events remained unsolved.

The work developed targets a methodology to generate time series of rain and

no rain attenuation for multiple sites and should be considered as an extension of the

framework proposed in [55]. To a difference with respect to that work, a time evolu-

tion among rainy states is introduced, and a new methodology to impose the correct

spatial correlation of rain occurrence among the sites is developed. As a consequence,

a better accuracy in reproducing the correct CCDF of rain attenuation is achieved

by generating time series of duration equal or longer than one year. Moreover, the

correct spatial correlation among rainy times and their average attenuation is ob-

tained. Finally, a temporal evolution model based on the correlation time interval is

introduced.

Similarly to [49], the proposed methodology assumes time stationarity and spa-

tial isotropy of the driving random processes which model the advent and duration

of a rain event. The instantaneous attenuation evolution within the event duration

is instead described by actual measured series, preserving the correct attenuation dy-

namic within the time frame duration. The use of measured time series of rain events

and their correlation are specific characteristics of the proposed model compared to

those introduced in 3.3. Moreover, the developed efficient methodology allows to

generate and allocate time series for a large number of users, with high flexibility in

terms of geographical distances (small and large scale simulations).
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3.5 Database of data

The rain attenuation measurements which compose the reference dataset were col-

lected in the station at Spino d’Adda, Italy, during the ITALSAT experiment in the

period 1994− 2000. The characteristics of Spino d’Adda station can be found in [56].

The reference dataset contains only rain attenuation values (1 sample/sec),

collected at a frequency of 18.7, 39.6, 49.5 GHz with elevation 37.7o. Measurements

were processed to identify the rain events, gas and clouds components have been

separated. The database contains more than 9·106 samples of rain attenuation events,

roughly equivalent to 2547 “rainy” hours. Zeros, corresponding to not rainy times, are

not present in the database. In order to separate rain attenuation from scintillation,

a low-pass filter (cut-off frequency 0.025 Hz) has been used [6]. A scaling procedure

was introduced to adapt the values to the desired frequency to be simulated. More

detailed information about the measurements database are reported in [55].

A widely assumed model to describe the rain attenuation cumulative distribu-

tion function is the Log-Normal distribution [55]. The Gaussian description has the

desirable property that the statistical distribution of rain attenuation is simply de-

scribed by the first two moments (mean value and variance) of the distribution. The

Log-Normal approximation well describes rain attenuation up to moderate values,

Fig. 3.1 shows the CCDF of rain attenuation at Spino d’Adda, Italy, for a link at

39 GHz, elevation 37.7o. The long-term rain attenuation curve is obtained by the

SC-ExCell model [32], the Log-Normal distribution exhibits a high accuracy down to

a probability value of almost 10−3%, which is equivalent to a time of 6 minutes per

year. This level of probability is considered satisfactory for most of the applications

and the purpose here discussed. For each site of interest, the Log-Normal curve, ob-

tained by a fitting of the attenuation distribution provided by the SC-ExCell model,
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represents the reference distribution of attenuation to be satisfied by the time series

generated by the proposed model.

Figure 3.1: Complementary Cumulative Distribution Function (CCDF) of rain
attenuation for a satellite link at 39.6 GHz, elevation 37.7o at Spino d’Adda (Italy)
as derived from the reference model SC-ExCell (blue solid line) and the Log-Normal
approximation (green dashed line). The agreement of the Log-Normal model is high
almost down to a probability of 2 · 10−3%, roughly equivalent to 10 minutes/year.

3.6 Model and Algorithm description

In this section, we describe the algorithm which allows to obtain a set of correlated

rain attenuation time series for satellite links over a large geographical area. The aim

of the developed model is to generate time series of concurrent rain events to simulate

the conditions of rainy/not rainy times for a set of stations over a general reference

area of 250 km × 250 km.
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Three issues are newly addressed here which extend and refine the framework

proposed in [55], in order to generate correlated time series which include not rainy

periods. Firstly, a multidimensional random Gaussian process is used to generate

rainy times with time step 1 hour, a temporal and spatial correlation is imposed to

the rainy events. Secondly, for the purpose of generating concurrent time series for

many stations, an efficient approach in generating the joint statistics among sites is

developed, based on the mutual attenuation correlation to be imposed among the

subset of rainy stations. Thirdly, the statistics (single and mutual) should be reason-

ably accurate even for a single simulated year, which accounts a limited number of

rainy time according to each single site rain probability. For this reason, the choice

of the series is optimized to reproduce the desired CDF with a maximum number of

series.

The proposed model consists of two independent mathematical processes, which

are detailed in the following sections. The first conditioning process assigns rain/no

rain time over the possible stations, correlating the rainy times according to a spe-

cific spatial distribution and imposing a correlation interval for rain events. The

second conditioned process generates the correlated time series of rain attenuation

from available data, only for the links in rainy conditions. The independence of the

two processes was already addressed and discussed in [54]. The spatial correlation of

rain events and rain attenuation is imposed in the two processes separately according

to [24,54].

The model generates time series of rainy and non rainy times for multiple sites

at the same time, the time evolution is arranged in basic periods of 1 hour duration

called “epoch”, similarly to [55]. Rainy events are characterized by a random num-

ber of “epochs” according to the rain process time correlation interval. Each rainy

“epoch” is filled with a time series of rain attenuation extracted by the database of
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measurements. The choice of 1 hour for the “epoch” duration is supported by statis-

tics of the rainy events recorded in the database, which exhibit a correlation interval

slightly above 30 min [57]. The choice of a larger time period allows enough dynamic

of rain attenuation within the “epoch” duration, which is discussed later in terms of

fade duration statistics.

The series of measurements are arranged to reproduce the attenuation char-

acteristics of the desired links. The main variable involved in the series selection is

the average rain attenuation over the epoch duration ae. The model inputs are the

following: the geographical information of the stations (latitude, longitude, height

above sea level), the link parameters (frequency, polarization, elevation angle), the

probability of rain and the rain rate exceeded cumulative distribution function [31]

and the spatial rain correlation, both in terms of rain probability and attenuation

probability [24]. Those statistical information allow to reproduce the rain attenua-

tion complementary cumulative distribution function ( from now on referred as P (A))

of each station by a proper selection of measured “epochs”. The model carefully re-

produces the correct single site and joint statistics of attenuation over the selected

area for a specific simulated time (1 year or more).

3.6.1 Rain parameters definition

The first step of the algorithm is to define the characteristics of rain attenuation for the

set of stations of interest and identify a proper set of measurement series to reproduce

the desired statistics, in order to suitably exploit the rain attenuation database. Given

a set of N stations in the geographical area of interest, their geographical coordinates

and height above sea level are defined. The spatial rain correlation characteristics are

derived according to the models in [54] and the ITU Recommendation P.618-10 [24],
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based on the geographical distances among the stations (a matrix of mutual distances

DM is defined).

Rain attenuation for the satellite link depends on frequency, polarization, link

geometry (elevation and equivalent length) and rain intensity [38]. Those information,

together with the rain rate complementary cumulative distribution function [31], are

used in the SC-ExCell model [32] to obtain the rain attenuation P (A) for each the

desired link.

The Log-Normal assumption for rain attenuation allows to refer to the proper-

ties of Gaussian processes, which are of particular interest in evaluating the probability

of rain attenuation values and in directly imposing the correlation of rain distribution.

For each station, the rain attenuation P (A) derived from SC-ExCell, condi-

tioned to the rainy time, is fitted to a Log-Normal distribution, deriving the mean

value µa and variance σ2
a for each of the N links. The objective is now to select a set

of series to reproduce the desired attenuation statistics. The parameter of interest is

the average rain attenuation over the “epoch” duration, defined as:

āe,i =

∫ t0+T
t0

a(t)dt

T
, (3.3)

where ae,i is the average attenuation over the “epoch” for the i-th station, T = 30

min represents the “epoch” time duration, a(t) is the instantaneous rain attenuation

as provided in the database of measurements. The same definition holds for different

“epoch” durations. The distribution of the time-averaged values is still Gaussian and

differs from the instantaneous distribution only in its variance σ2
a [55]. In order to well

reproduce the attenuation distribution, the Log-Normal P (A) N(µā, σ
2
ā) is divided

in K intervals (classes) of equal size over the attenuation dimension. A number of

classes K = 15 was chosen by numerical simulation to cover the attenuation range,
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the dimension of each class is fixed and related to the attenuation distribution to be

represented. A minimum and maximum values of attenuation Amin and Amax are

defined to limit the tails of the probability distribution, they depend on the target

P (A) to be represented. In order to correctly reproduce the desired P (A), the area of

each interval is translated into a discrete number of occurrence, which corresponds to

a number of series to be extracted from the database, with average attenuation value

belonging to the specific class. Given a maximum number of series Smax for each

station, the number of occurrence Sk for each attenuation class is properly scaled to

satisfy:

Smax =
K∑
k=1

Sk, (3.4)

where Smax corresponds to the rain probability over the simulation time, i.e. the

climatological probability of rain attenuation P0 obtained by [31]. This first selection

process results in a set of Smax time series (Auxiliary Dataset, AD) for each station,

which are selected from the database of measurements according to their average

value ae,i and reproduce the target long-term attenuation distribution P (A) of each

station.

At this stage, no spatial correlation among the selected series is imposed. The

AD contains a set of series which reproduce the desired statistics of attenuation for

each site of interest. The spatial and temporal correlation among the stations are

imposed by the procedure proposed in the next subsections.

3.6.2 Rain state variable assigning process (conditioning

process)

Considering N stations randomly placed in the reference geographical area, the state

of all the stations at each epoch is described a N -dimensional binary variable which
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defines the condition “rainy” or “not rainy”, depending whether a threshold value at

each site is exceeded or not exceeded.

The “rainy” or “not rainy” state is assigned by means of the probability density

function of an N -dimensional continuous variable ri, with i = 1, .., N , and by an N

dimensional thresholds ti, chosen according to the probability of rain for each location

and according to the correlation information. The continuous “rain state variable” ri

for the ith location can be selected with a high degree of freedom. The assumption

here is a Gaussian multi-variate variable normalized to zero mean and unit variance,

with covariance matrix imposed to represent the desired joint statistics presented.

For the purposes of the proposed model, the conditioning process reproduces the link

attenuation probability P0 of each single station and the rainy time space correlation

among the N stations set for a typical time series duration of 1 simulated year. The

threshold ti, which defines whether the station condition is “rainy” or “not rainy” is

chosen to fulfil:

P (ti) =

ti∫
−∞

p(ri)dri = 1− P0,i, (3.5)

where P0,i is the probability of having rain in the ith station.

According to the variable ri and the set threshold ti, a binary process zi is

obtained to describe rainy conditions at each “epoch”:

zi = Tz(ri) =

 1 : ri > ti

0 : ri < ti

(3.6)

The hard threshold imposed to the continuous variable ri is actually a non-linear

transformation Tz, which results in a binary process in which 1 corresponds to a rainy

“epoch”, 0 to a non-rainy “epoch”. The imposed threshold has a significant effect on
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the correlation characteristics of the resulting process zi [58]. For this reason, defining

the output process the one after the non-linear transformation, the correlation of the

input process ri was analytically derived from the knowledge of the desired correlation

of the output process zi, which describes the rain events.

This issue was solved by referring to the general theory of noise clipping [58,

59]. Particularly, the correlation of a random Gaussian process after the non-linear

transformation can be rewritten as:

Mz(d) =
1

σ2

∞∑
n=1


∞∫
−∞

Tz(r)Φ
n+1

( r
σ

)
dr


2

Rr(d)n

n!
, (3.7)

where Rr(d) is the correlation of the input process and Φn+1 is the nth derivative of

the standard Gaussian density function:

p(ξ) =
1√
2π

exp

{
−ξ

2

2

}
. (3.8)

The Rodrigues formula [60] allows to rewrite the nth derivative by using the Hermite

polynomials. In this way, the series in Eq. 3.7 becomes a polynomial of order n in

which, at any given d, the unknown is the input correlation Rr(d). The convergence

of the series is guaranteed by an infinite number of Hermite polynomials in the ex-

pansion in Eq. 3.7. Simulations considering different clipping threshold shown that

the correlation function converges very fast with a small number of expansion terms,

except from the samples close to d = 0. This is expected from theory, according to

which the convergence at unity is guaranteed by the infinite number of terms in Eq.

3.7. A study of the error of the correlation function as function of the distance d was

carried, allowing to choose the most convenient number of terms in the series to be

nexp = 20. The polynomial resulting from Eq. 3.7 is consequently solved to obtain
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the input process correlation, which is then imposed in the N -dimensional continuous

variable r:

Fig. 3.2 shows the result of the pre-filtering process described above. It was

applied to the simulation of rainy conditions over 500 stations randomly placed in

a geographical area of 250 km × 250 km around Spino d’Adda station, Italy, as

shown in Fig. 3.3. The simulated time is 1 year, equivalent to 17520 “epochs” of 30

minutes each. The desired correlation among rainy times is given by the following

expression [24,54]:

ρs(d) = 0.7 exp

(
− d

86

)
+ 0.3 exp

(
− d

700

)2

. (3.9)

It is clear from the figure that the correlation evaluated from the generated binary

sequences well follow the reference curve of Eq. 3.9, also for critical high correlation

values (distances smaller than 50 km). According to the proposed reference model,

the de-correlation distance for rain events can be considered to be around 250 km.

The time dynamics of the rain attenuation for the link i is modeled by a first

order lowpass filter Hi(z), with impulse response [50]:

Hi(z) =

√
1− ρ2

i

1− ρiz−1
, (3.10)

where ρi is the temporal rain attenuation for link i:

ρi(τ) = exp(−βi|τ |), (3.11)

in which τ is the time interval between two samples and βi is the dynamic parameter

for the link i. The calculation of the dynamic parameter from experimental data
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is discussed in [1]. The effect of β is directly related to the duration of the rainy

states, time correlation within the rainy states is already present in the measured

time series. For this reason, we assumed the dynamic parameter β = 2 · 10−4, value

that is generally applicable to describe the correlation interval of stratiform rain

events.

By the same pre-filtering procedure explained before, the correlation of Eq.

3.11 is correctly imposed to the binary conditioning process. The complete study of

the pre-filtering method here summarized is reported in Appendix A. The condition-

ing process allows to generate spatially correlated rainy time among the N stations

considered, with temporal evolution controlled for each link by the β parameter.
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Figure 3.2: Spatial correlation of rain events obtained by the conditioning process
compared with the desired reference correlation.
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Figure 3.3: Representation of stations in the geographical area of interest. 500
stations are randomly placed in the area 250 km × 250 km centred at Spino d’Adda.

Red circles show the rainy stations at a single “epoch” as obtained by the rain
assigning process (conditioning process). Note the well defined rainy area
consequence of the spatial correlation imposed in the assigning process.

3.6.2.1 On temporal evolution of rainy states

The temporal evolution of single sites rainy states is described here based on the

dynamic parameter β (s−1) [50], used in Eq. (3.10). The value of β is discussed here

based on different analysis.

The dynamic parameter β describes the time evolution of the rain attenuation

process. It is defined as the correlation interval of the process, according to the

exponential correlation coefficient:

ρ = exp(−β∆t); (3.12)



Chapter 3: Generating correlated time series of rain attenuation for multiple sites 63

where ∆t is the time interval between two process samples. It is the same model

used in [50] to describe the rate of change of attenuation in time. A small value of β

corresponds to slowly varying rain attenuation dynamics. For a given rain event, the

parameter β can be associated to the physical characteristics Vm, Dm respectively the

average advection velocity (m/s) of the rain structure and its diameter (m) according

to [61]:

β ≈ Vm
Dm

(s−1). (3.13)

Small values of V are associated with rain events having low maximum rainfall inten-

sities corresponding to stratiform rain. Large values of V are associated to convective

rain, characterized by large maximum rainfall. The dynamic parameter β can be

derived from experimental results [1, 45, 57] or from specific optimization processes.

The correlation time is derived from radar data in [45] while authors of [62] derived

the dynamic parameter to optimize the model fade duration statistics.

In the study described in [1], β is extracted by measurements in different ex-

periment in North-western Europe. The β parameter influences in particular the

autocorrelation and consequently the Power Spectral Density (PSD) of rain attenua-

tion A(t), as well as the first two conditional moments of rain attenuation [50]. The

method to infer β from acquired data relying on the second order conditional moment

of A(t), K2A(A) is the most direct one and favoured to estimate the parameter value

on a long-term basis. The analytical expression of K2A(A) is given by:

K2A(A) =
E
{

(A(t+ ∆t)− A(t))2
}

∆t
= 2βA2σ (3.14)

where σ is the standard deviation of logA(t). First, the influence of the scintilla-

tion (low amplitude but fast dynamics) has to be removed in order to isolate rain
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attenuation (significant amplitude but low dynamics with respect to scintillation). A

low-pass filtering with cut-off frequency 0.025 Hz is normally used. Then, a set of

attenuation thresholds (0 to 10 dB for example) and discrete time lags (1 to 100 s)

is chosen: K2A(A,∆t) is evaluated for each time lag and attenuation threshold. A

linear regression based on the relation:

√
∆t ·K2A(A) = γ(∆t)A (3.15)

allows to evaluate the slope γ(∆t) = 2βσ2∆t for each ∆t for a specific attenuation

range (typically 2 < A < 10 dB). A final linear regression is made on (∆t, γ
2

2σ2
) which

gives the estimation of the β parameter.

The resulting estimation of β based on a set of experiment listed in Table

3.1 is discussed in [1]. The study shows that a typical value of β = 2 · 10−4 does

not strongly affect the dynamics of the rain attenuation compared to experimentally

derived values. The conclusion reported in [1] is that, without any local information

on the dynamic parameter, a rough estimate of β for a link in the North-western

Europe, for elevation angles between 25o and 38o and frequencies between 12 and 50

GHz is 10−4s−1.
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Table 3.1: Estimated β values from different experiments in North-western
Europe [1]

Name Country
Freq.

[GHz]

Elev.

[deg.]
β [s−1] Duration

Spino d’Adda Italy 18.7 37.8 9.5 · 10−5 7 years

” ” 39.6 ” 1.03 · 10−4 ”

” ” 49.5 ” 6.5 · 10−5 ”

Sparsholt U.K. 19 29.9 3.15 · 10−4 46 months

” ” 40 ” 2.6 · 10−4 ”

Louvian

la Neuve
Belgium 12.5 27.6 3.6 · 10−4 21 months

” ” 30 ” 2.44 · 10−4 ”

Lessive Belgium 12.5 27.8 3.13 · 10−4 2 years

” ” 20 ” 2.43 · 10−4 ”

OberpfaffenhofenGermany 40 34.8 1.53 · 10−4 4 years

Gometz

la ville
France 20 30.32 2.57 · 10−4 1 years

” ” 30 ” 1.99 · 10−4 ”

Le Folie

Bessin
France 20 30.33 1.74 · 10−4 1 years

” ” 30 ” 1.45 · 10−4 ”

In addition, a study on the ITALSAT beacon measurements of rain attenuation

is reported in [57] for the data relative to the year 1994 and frequency 18.7 GHz.

Table 3.2 shows the values of the dynamic parameter β = 1/Tcorr. Must be noted
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that authors of [57] considered Tcorr as the time interval after which the correlation

coefficient is ρ = 0.5. Consequently, the derived correlation interval is smaller than

the value for which ρ = 1/e. The time correlation interval is extracted by 425 rain

events recorded during year 1994, with average duration 54 min. The yearly average

rain attenuation is 2.62 dB and a threshold for convective events is set at 7 dB.

Table 3.2: Estimated β values from Spino d’Adda beacon measurements

Name Statistic
Freq.

[GHz]

Elev.

[deg.]

Tcorr

[min]
β [s−1]

Spino d’Adda
above

2.62 dB
18.7 37.8 27.9 5.9 · 10−4

Spino d’Adda above 7 dB 18.7 37.8 27.6 6 · 10−4

Spino d’Adda
above (54

min, 2.62 dB)
18.7 37.8 36.1 4.5 · 10−4

From Tab. 3.2 it is clear that the correlation time interval considering attenua-

tion A > 2.62 is very similar to the one obtained for A > 7 dB is typical of convective

events. Unfortunately, no results are discussed for lower thresholds of attenuation.

Interesting is the longer correlation interval for events with duration above 54 min,

which is more applicable to stratiform phenomena. Also must be noted that correla-

tion interval would be longer if evaluated for ρ = 1/e instead of ρ = 0.5.

In conclusion, a reasonable value of the dynamic parameter to describe rain

attenuation time evolution is β = 2·10−4 [1]. This value allows to model the evolution

of attenuation due to stratiform events, which are the longer in time. When available,

the value of the β parameter can be extracted by local data, especially referring to

the average velocity Vm and the average spatial dimension of rain structures Dm.

The value of β is used to model the correlation interval of the rainy states in the
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simulated process. The desired time correlation is added to the binary sequences

previously generated, resulting in a binary space/time correlated multidimensional

process. Different correlation can values be easily included in the model, resulting in

different time evolution of the spatially correlated binary sequences.

3.6.3 Rain time series assigning process

(conditioned process)

Within this second process, the identified series in the auxiliary dataset (AD) are

arranged to show the correct spatial correlation for the stations characterized by

concurrent rainy times, as resulting from the previous conditioning process in Sec.

3.6.2. The desired spatial correlation of rain attenuation is the one proposed as

reference in [24,54]:

ρs(d) = 0.94 exp

(
− d

30

)
+ 0.06 exp

(
−
(

d

500

2
))

. (3.16)

The following passages allows to impose the desired correlation in terms of average

rain attenuation ae,i among the selected series in the auxiliary dataset defined in

Sec. 3.6.1. Being i = 1, .., R the number of sites under rainy conditions at a given

“epoch” according to the conditioning process, a set of uncorrelated average atten-

uation values ae,i for the rainy stations is extracted from the previously identified

auxiliary datasets. The desired mutual correlation among stations, related to the

matrix of mutual distances DM, is given by matrix RM from Eq. 3.16. Consider-

ing ξ = [ae,1, ae,2, ..., ae,R] as a realization of an independent random process ξ, the

desired correlation among samples is imposed by a Cholesky decomposition of the

correlation matrix RM. The new process ζ is defined as:
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ζ = ξAT ; (3.17)

where the A is the Cholesky decomposition of the desired correlation matrix:

RM = ATA. (3.18)

The correlation of the new process ζ becomes:

E[ζζT ] = ATAE[ξξ2] = RMσ2
ξ , (3.19)

which is the desired spatial correlation RM weighted by the variance of the original

random process ξ. The output process ζ is a new set of average rain attenuation

values over the “epoch” duration, which statistically exhibits the desired correlation

properties. The linear transformation in Eq. 3.17 applied to a Gaussian process

results in a new Gaussian process [63], thus not affecting the desired statistic of

rain attenuation previously obtained. Given the vector ζ of desired rain attenuation

for the stations, a maximum likelihood procedure allows to choose the best set of

available series, obtaining a vector ζ̃ which minimizes the mean square error with ζ.

In this way, the auxiliary dataset of series, whose statistic well represent the target

site Pi(A), are arranged in time to show the proper correlation, as close as possible

to the theoretical one imposed by the Cholesky decomposition. In a mathematical

formulation, the final set of average rain attenuation values ζ̃ satisfies:

ζ̃ = x : min
K∑
i=1

(ζi − xi)2. (3.20)
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The error in terms of attenuation correlation obtained by the maximum likelihood

selection is limited when a large auxiliary set is available, while the benefit of this

approach is more relevant since the auxiliary set guarantee the correct reconstruction

of each single site Pi(A).

The following figures show the results obtained by the described correlating

procedure. Fig. 3.4 shows the correlation among the simulated rain conditions for

the station of Spino d’Adda and 5 other stations at different distances. For each

station, a set of 1000 series of rain attenuation samples are selected and arranged to

describe the target spatial correlation among the stations. The duration of each series

is the “epoch” duration of 30 minutes, consequently a number of 1000 series represent

with good approximation the probability of rain over 1 year for a site similar to Spino

d’Adda.

The correlation of the ideal rain process ζ, obtained by applying the Cholesky

decomposition in Eq. 3.17, is compared with the reference correlation function in Eq.

3.16. As clear, the rain attenuation correlation is well described by the series assigned

to the other stations: the resulting correlation is well centred around the theoretical

values of matrix RM for the 10 realizations shown in the figure.

Fig. 3.5 shows the final correlation obtained after the maximum likelihood

selection, evaluated for 10 different realizations. The figure compares the correlation

of the initial auxiliary set ξ with the correlation of ζ̃ at the end of the procedure.

As expected, series of the process ξ are uncorrelated, since chosen to satisfy each

single site Pi(A) disregarding the other sites. The desired correlation is imposed

by arranging the available series in accordance to the theoretical spatial correlation

of the rainy stations at any given “epoch”. The result is the same set of series,

properly arranged to show the correct spatial correlation (triangles in figure) among

the concurrent rainy stations.
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Figure 3.4: Spatial correlation of rain attenuation compared with the desired
reference correlation. Example of 6 stations at different distances, 10 realizations.

The performance of the whole algorithm, considering the different processes

involved, are discussed in the next Section. The whole algorithm is summarized in

the Appendix.

3.7 Numerical simulations

Numerical simulations presented in this section have the purpose of testing the de-

scribed algorithm considering the following aspects: the accuracy of the attenuation

statistics resulting from the generated series compared to reference curves, the adapt-

ability to different test sites and the spatial/temporal correlation of instantaneous

rain attenuation for multiple sites time series generation. The reference curves of
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Figure 3.5: Spatial correlation of rain attenuation: result of the Cholesky
decomposition and Maximum Likelihood (ML) selection of series. Uncorrelated
series (blue crosses) and correlated series after ML selection (green triangles).

rain attenuation statistics are derived according to current available models [31, 38],

the multiple sites rain correlation is tested against the results presented in [2]. The

simulation parameters are described in the following paragraphs.

3.7.1 Rain attenuation statistics: adaptability to different

geographical sites

The described model generates a series of measurements which belong to the atten-

uation statistic curve of the desired simulated Earth to satellite link. Firstly, the

accuracy in reproducing the long-term attenuation statistics is assessed for different
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simulation durations, in order to validate the series selection algorithm.

Considering the objective of simulating one year of rain/no rain conditions for a

set of stations, the number of rain attenuation series depends on the “epoch” duration

and on the year probability of rain attenuation P0 for the selected site. Considering a

fixed “epoch” duration of 30 minutes, one year is equivalent to 17520 “epochs”, among

those a number between 400 and 1000, depending on the site P0, are rainy series. In

the following figures is shown the attenuation distribution obtained by the generated

time series, considering 1 simulated year and the average of 3, 5 and 10 years. The

reference curve is the long-term attenuation distribution obtained by the SC-Excell

model [32] for the specific location and satellite link. A satellite link at 20 GHz is

considered, with a geostationary satellite positioned at longitude 16o East. The model

was tested for three location in Europe reflecting different climatological conditions:

Spino d’Adda, Italy (high P0) Fig. 3.6, Prague, Czech Republic (cold climate and

rainy, high P0) Fig. 3.7 and Madrid, Spain (warm climate and dry, low P0) Fig. 3.8.

Figures show the attenuation distribution obtained by the model generated

series for a different number of simulated year. The generated series well approximate

the long-term rain attenuation distribution by averaging a small number of simulated

years. For all the sites, the starting point of the curves is determined by the station

P0. The initial part of the attenuation distribution is very well resolved by a single

realization down to a probability between 5 10−2% (Spino d’Adda, worst case) and

10−2% (Prague, best case). It is a significant result considering that the quantile

10−2% is equivalent to 1 hour/year and that the curve is obtained using a number

of rainy time series reflecting the site P0. A stable statistic at probability 10−3%

(6 minutes/year) is gained by averaging 5 to 10 single years, which is reasonable

for a long-term statistic. Must also be considered that the attenuation distribution

of a single year of measurements exhibits a significant deviation from the long-term
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Figure 3.6: Complementary Cumulative Distribution Function (CCDF) of rain
attenuation at Spino d’Adda (Lat. 45.4 N, Lon. 9.5 E), Italy. Link at 20 GHz.
Reference attenuation from physical model SC-ExCell (solid line) compared with
time series of a single year realization and the average of multiple years. Higher

stability at low probability values is achieved by averaging multiple years. A good
stability down to probability of 10−2% is already obtained averaging 3 years,
stability at 10−3% (6 min/year) is gained by averaging 5 to 10 single years.

reference, as shown in [56] for the data collected as Spino d’Adda. From a qualitative

point of view, the single year distribution obtained by the proposed model appears

reasonable and within the standard deviation of single years measurements [56].

Concerning the climatological characteristics of the chosen locations, the accu-

racy in reproducing the different attenuation distributions is significant: the algorithm

properly select the attenuation series and their occurrence to reproduce the desired

attenuation statistic. These results represent a sensible improvement of the conver-
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Figure 3.7: Complementary Cumulative Distribution Function (CCDF) of rain
attenuation at Prague (Lat. 50.1 N, Lon. 14.3 E), Czech Republic. Link at 20 GHz.
Reference attenuation from physical model SC-ExCell (solid line) compared with a
single year realization and the average of multiple years time series. The selected
series well reproduce the attenuation statistic also in this case by averaging a small

number of year realizations. A good stability down to probability of 10−3% (6
min/year) is already obtained averaging 3 simulated years.

gence issues of a single site statistic described in [55].

The joint attenuation distribution among many sites is discussed in the next

paragraph, with special attention to the resulting correlation of both rain events and

attenuation among the different stations.

3.7.2 Site Diversity results

We considered a set of dual-site diversity test cases, in order to compare the joint

exceedance probabilities obtained by the proposed model with the site diversity joint
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Figure 3.8: Complementary Cumulative Distribution Function (CCDF) of rain
attenuation at Madrid (Lat. 40.4 N, Lon. 3.7 W), Spain. Link at 20 GHz.

Reference attenuation from physical model SC-ExCell (solid line) compared with
single year time series realization and the average of multiple years time series. In
this case the station exhibits lower attenuation values in the statistical distribution.
Also in this case, the curve is well represented by the selected “epochs” statistic. A
good stability down to the probability of 10−3% (6 min/year) is obtained averaging

5 simulated years.

probabilities obtained by the ITU-R statistical model [24]. Stations are located at

different distances (6, 19, 22 and 40 km) to test different levels of resulting rain

attenuation correlation coefficient (respectively 0.82, 0.55, 0.51, 0.3 according to 3.16).

Results are the average of 3 simulated years.

Figure 3.9 shows the results for a dual-site in Chibolton (U.K.). The distance

between the simulated stations is 6 km, leading to a high degree of attenuation cor-

relation (0.82) among the simulated time series. The agreement between the joint
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statistics of the TS model and the ITU-R model curves is satisfactory. The oscillat-

ing behaviour of the joint curve for very low probabilities (10−3%) is due to the lack

of joint attenuation values in the generated series.
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Figure 3.9: Dual-diversity results in Chibolton, U. K. Distance 6 km

Fig. 3.10 and Fig. 3.11 show the same curves for dual-sites at 19 and 22 km.

In this cases the correlation coefficient of rain attenuation is close to 0.5, results show

a good agreement between the TS model and the ITU-R statistical reference. The

single site exceedance probability is well represented, the joint probability well follows

the reference curve almost down to 10−3%, except from the case of Toulouse, where

the statistic obtained by the chosen TS exhibits a little lack of joint attenuation higher

than 10 dB due to the chosen set of series.

The last case is a dual-diversity in Prague, with distance 40 km corresponding

to a correlation coefficient ρ = 0.3 3.16. The rain attenuation joint exceedance prob-
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Figure 3.10: Dual-diversity results in Toulouse, France. Distance 19 km

ability is shown in Fig. 3.12. Statistics obtained by the generated time series exhibit

a good accuracy with the reference ITU-R model.

The obtained results exhibit a good statistical behaviour imposed by the series

correlation, considering that series are not generated “ex-novo” but are “chunks” of

recorded rain events suitably arranged in time and space according to their average

attenuation values. Since the original purpose of the model is to describe concurrent

rain attenuation conditions for many users over a large area, in order to prove the

validity of the imposed spatial dependence the χ index is introduced and discussed

in the next paragraph.



Chapter 3: Generating correlated time series of rain attenuation for multiple sites 78

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

Attenuation [dB]

P
ro

b
a

b
ili

ty
 [

%
]

 

 

ITU−R single

ITU−R joint

TS single 

TS joint

Figure 3.11: Dual-diversity results in Spino d’Adda, Italy. Distance 22 km

3.7.3 Rain decorrelation: Statistical Dependence Index χ

The rain attenuation spatial correlation is tested over one simulated year of time

series obtained with the methodology previously explained. Results are provided in

terms of the statistical dependence index χ described below and are assessed against

an independent data set derived from the NIMROD C-band radar network.

The rainfall correlation between two sites can be assessed by means of a custom-

ary correlation coefficient but also through the statistical dependence index χ [54],

defined in terms of rain intensity as:

χ =
P (r1 > r̃, r2 > r̃)

P (r1 > r̃)P (r2 > r̃)
=

N(r1 > r̃, r2 > r̃)

N(r1 > r̃)N(r2 > r̃)
Ntot, (3.21)

where
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Figure 3.12: Dual-diversity results in Prague, Czech Republic. Distance 40 km

• r1 and r2 indicate the rain intensity in site 1 and 2,

• N(r1 > r̃, r2 > r̃) is the total number of samples for which both r1 and r2

exceed the rain threshold r̃,

• N(r1 > r̃) is the total number of samples for which r1 exceeds r̃ regardless of

r2,

• N(r2 > r̃) is the total number of samples for which r2 exceeds r̃ regardless of

r1,

• Ntot is the total number of samples

The advantages originating from the use of the statistical dependence index

are [54]:
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• It is less noisy of the correlation coefficient which depends on all rain rate values,

also on those typically less accurately measurable (e.g. samples of rain intensity

equal to few mm/h .,

• It allows to directly calculate the two-site joint statistics from the knowledge of

the marginal statistics of the two sites.

For these reasons, the χ index appears to be the most adequate indicator of

the spatial decorrelation of rain. In order to evaluate the χ index, the model time

series are converted from attenuation measurements into rain intensity referring to

the well-known relation [38]:

AL = kRαL [dB], (3.22)

where AL is the attenuation in dB for a link of length L, R is the rain intensity in

mm/h, coefficients α, k are obtained from ITU-R Recommendation [21]. Considering

the frequency of transmission of 20 GHz, the α parameter is very close to 1, thus Eq.

3.22 can be easily inverted with minimum loss of accuracy. The rain intensity values

are obtained by generating time series of rain attenuation taking into account a link

elevation of 90o, resulting in a link length L equal to the actual rain height.

Referring to Eq. 3.21, the threshold r̃ to evaluate the statistical index χ is

chosen to obtain statistically meaningful result, consequently a good trade-off between

measurements stability and rain variability. The threshold selected is r̃ = 3 mm/h,

which allows to compare the χ results with the average χ obtained by processing the

NIMROD network data in [2]. The NIMROD network is an extensive independent

weather radar dataset managed by the UK Meteorological Office. It was shown in [2]

that the average χ evaluated from the NIMROD network well represents the behaviour
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of other measurements previously obtained in Europe in two distinct experimental

campaigns [64, 65]. The good agreement between the three data types is a hint of

the fact that the rainfall average spatial correlation tends to be similar throughout

Europe. For these reasons, the average χ computed from the NIMROD network in [2]

is chosen as reference result for rain decorrelation over the simulated area. Details

of the NIMROD radar network and the data processing to obtain the statistical

dependence index used as reference can be found in [66].

The following figures show the χ index, as function of distance, evaluated from

the time series of rain attenuation generated accordingly to the methodology previ-

ously discussed.

The test area to evaluate the rain decorrelation is a spot of 250 km× 250 centred

around the reference station of Spino d’Adda, Italy. A number of N = 500 stations

are randomly displaced in the area. The time duration of a single realization is one

simulated year, composed by “epochs” of rain attenuation and no rain (attenuation

equal to zero) .

Fig. 3.13 shows the χ index obtained by simulations compared with the refer-

ence average trend obtained by NIMROD data. Results are the average of 10 inde-

pendent realizations of one simulated year. The statistical dependence χ is evaluated

for the N stations considering 8 secondary stations at different distances among the

N simulated. For graphical clarity only the subset of stations is represented. Refer-

ring to Eq. 3.21, the two colors plotted (circles and crosses) represent two different

primary stations among the possible tested; this is to prove that the mutual corre-

lation among all the stations is well imposed and not biased by a specific reference

station. The model results show a good agreement with the reference curve, with an

expected difference in the starting point (χ index at distance 0 km), which depends

only on the probability of having rain rate larger than the threshold r̃ for the single
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site: P3 = P (r > 3).
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Figure 3.13: χ index obtained from the proposed model compared to the average χ
index obtained by the NIMROD network. Simulation of 1 year (17520 epochs of 30
minutes, 910 rainy epochs), average of 10 different realizations. Two stations (circles
and crosses) are selected as primary for the evaluation of the χ index to show the

correct mutual correlation of rain events.

Fig. 3.14 shows the effect of the conditioned process previously discussed in

Sec. 3.6.3. Circles in the figure correspond to the χ index evaluated from the cor-

related time series of rain attenuation, after the conditioned process. Red dots in

the figure correspond instead to the χ index evaluated from series generated only by

the conditioning process, with no correlation of attenuation imposed. The curves are

normalized to the same P3 of rain intensity. Consequently the starting point of sim-

ulated results is equal to 1 and for comparison purposes also the reference curve was

scaled by the same value P3. The effect of the conditioned process, responsible of the

spatial attenuation correlation, is evident at small and large distances: at distances
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up to 50 km, the rain attenuation correlation is significant (please see Fig. 3.5) and

the difference between the two simulated χ is more evident. It appears clear that the

conditioned process well arrange the single site attenuation series in order to achieve

the correct spatial correlation of rain attenuation. It is also interesting to note that,

for distances between 50 and 200 km, there is no significant difference between the

two processes. In other words, given a set of time series representing the long-term

attenuation distribution of a number of sites, for those distances the only important

process is the one that generates correlated rainy times over the stations (i.e. the con-

ditioning process), disregarding the spatial correlation of rain attenuation. Moreover,

for distances greater than 250 km, the effect of the conditioned process becomes again

important, resulting in a better decorrelation of rain attenuation compared to the re-

sults of the conditioning process only. This figure shows that the process explained in

Sec. 3.6.3 well impose the desired correlation of rain attenuation and, consequently,

of rain intensity.

Moreover, that the statistical dependence index takes into account both the rain

distribution over the area (concurrent rainy/not rainy times) and the rain attenuation,

which are the two independent processes considered in the proposed model. The χ

index shows that the model framework works properly, especially the combination

of the two independent processes which assign rainy times and the rain attenuation

time series.

3.7.4 Fade duration statistics

Finally, we discuss fade duration statistics to prove that the generated series are

reliable in terms of attenuation fades intervals. Fades duration statistics are of concern

for the evaluation of parameters associated with the risk of failure of a variety of
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Figure 3.14: χ index obtained from the proposed model compared to the average χ
index obtained by the NIMROD network. The χ index obtained from the

conditioning process (red dots) is compared with the χ index resulting from the
complete model (circles). The effect of the conditioned process, which imposes rain

attenuation correlation, is evident for small distances (up to 50 km) where the
impact of rain attenuation correlation is higher. It is also interesting the more

accurate decorrelation achieved for large distances: the result of the two processes of
the model better represent the expected rain decorrelation than the single

conditioning process.

telecommunication systems. Fade duration is defined as the time interval between

two crossings above the same attenuation threshold. In the context of availability

criteria, of particular interest is the distinction between fades of shorter or longer

duration than 10 s. Knowledge of the distribution of fade duration as function of

fade depth is also a prerequisite for the application of risk concepts in the provision

of telecommunication services [67].

Fade duration statistics are defined by two different distribution functions [67]:
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• Prob(d > D|a > A), the probability of occurrence of fades duration d longer

thanD (s), given that the attenuation a is greater than A (dB). This probability

can be estimated from the ratio of the number of fades of duration longer than

D to the total number of fades observed, given that the threshold A is exceeded;

• F (d > D|a > A), the cumulative exceedance probability, or equivalently, the

total fraction (between 0 and 1) of fade time due to fades of duration d longer

thanD (s), given that the attenuation a is greater than a (dB). This probability

can be estimated from the ratio of the total fading time due to fades of duration

longer than D given that the threshold A is exceeded, to the total exceedance

time of threshold.

The latter statistics has been considered to test the proposed model. Fade

duration statistics are evaluated from the obtained time series according to:

F (A|D) =
NS(D)

NTOT
(3.23)

where NS(D) is the total time the attenuation A (dB) is exceeded composed of

intervals longer than D (s) and NTOT the total time the attenuation A is exceeded.

The ITU-R model for fades duration [67] is taken as reference in terms of prediction

accuracy. The ITU-R model [67] is expected to be valid for durations longer than 1

s and requires the following parameters:

• f : frequency (GHz): 10− 50 GHz;

• ϕ: elevation angle (degrees): 5− 60o

• A: attenuation threshold (dB)
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Table 3.3: List of the DBSG3 considered experiments

Name Country Lat.
[deg]

Lon.
[deg]

Alt.
[m]

Duration
[dd]

Freq.
[GHz]

Elev.
[deg.]

Ottawa CAN 45.34 284.11 81 362.74 20.19 27.32
Chibolton UK 51.13 358.57 89 365 20.7 28
Sparsholt UK 51.08 358.61 119 365 20.7 28
Dundee UK 56.45 357.02 49 365 20.7 23.29

The proposed model was tested against a set of experimental data, results

have been compared with the predicted statistics of the ITU-R model for the same

experiments. Measured statistics of fade duration are obtained from the DBSG3

database [37], a set of 9 experimental statistics for 4 different sites, listed in Tab.

3.3, have been selected. The experiments were chosen based on the availability of

statistical data at the frequencies close to 20 GHz.

Time series of rain attenuation for the considered links were generated by the

proposed model. Statistics were obtained for different duration (60 120 180 300 600

900 1200 1500 1800 2400 s) and for different attenuation thresholds (3 5 10 15 20 25

dB). The statistics obtained by the time series and the ITU-R model are compared

with those of the experimental data, the overall results are presented in terms of

average error and RMSE error of the figure of merit ε(D,A) [68]:

ε(D,A) = ln

(
100%− Fp(D|A)

100%− Fm(D|A)

)
(3.24)

Tab. 3.4 shows the overall error obtained by averaging over all the attenuation

values and thresholds, for all the stations considered. The proposed model exhibits a

mean error and RMSE very similar to the ITU-R statistical prediction, proving that

fades duration statistics obtained from the correlated series are reliable.
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Model Mean error RMS error
ITU-R -0.45 0.66
TS -0.48 0.69

Table 3.4: Fade Durations Test Results

3.8 Conclusions

This chapter describes a model to generate time series of rain attenuation values (1

sample/s) for multiple receiving stations in a large geographical area by adapting a

single set of experimental rain attenuation measurements. The reference rain atten-

uation measurements are obtained from a large database collected at Spino d’Adda,

Italy, during ITALSAT propagation campaign (from 1994 to 2000). The task espe-

cially addressed in this work is to reproduce concurrent attenuation time series for

a large number of stations with the desired rain statistics and correlation, both in

terms of rain occurrence and rain attenuation.

The proposed model consists of two independent processes, one assigning the

rainy time to the stations and the other assigning concurrent rain attenuation values

for the identified “rainy” stations. A mathematical description based on a multidimen-

sional Gaussian model allows to suit the measured values to the different locations,

arranging the attenuation time series with the desired spatial correlation. The ob-

tained time series are composed of basic periods of fixed length (1 hour in this case,

which was found to be a good trade off between the correlation interval of events).

The generated time series is composed of discrete periods either of real rain measure-

ments or no rain intervals, with a time resolution equal to 1 sample/sec. An important

advantage of the proposed model is that, within the basic period duration, the char-

acteristics of the rain process are defined by the real measurements. The basic period

duration defines the update timing of the model: at every period (“epoch”) rainy
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stations are properly identified and series of ran attenuation measurements assigned.

The temporal evolution of the rainy events is driven by an exponential correlation

model and the spatial correlation of rain events and attenuation is correctly imposed.

The model has been tested on its ability to reproduce the long-term rain statis-

tics of single stations with different climatological characteristics and for different

simulation durations. In addition to the first-order statistics of rain attenuation, the

model is able to reproduce the spatial distribution of rain attenuation: concurrent

rain conditions over multiple sites have been verified by the evaluation of joint at-

tenuation CDF and by measuring the decorrelation index of rain among the stations

(χ index). From a temporal point of view, a validation in terms of fade duration

statistics is proposed.

Results obtained by simulations are compared with current models, showing

a good agreement and proving the model validity. Especially, long-term statistics

are well reproduced for a wide range of probability levels with a limited number of

simulated year-long time series. In terms of space diversity, joint attenuation CDF

are reproduced with good accuracy compared to ITU-R statistical model. Looking at

multiple sites, the rain correlation among multiple stations well matches independent

reference measurements, validating the mutual correlation processes implemented.

Finally, fade duration statistics show the same accuracy of current statistical model

for a set of radio links with available measurements. In conclusion, the model here

proposed is suitable for simulating accurate concurrent rain attenuation conditions

for multiple sites, taking into consideration the spatial correlation of rain events and

attenuation.

The knowledge of concurrent attenuation values over a large geographical area

can be used to verify the effectiveness of proper Fade Mitigation Techniques FMTs

for current and new SatCom systems. In this perspective, the joint use of the gen-
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erated time series with other FMT, such as Adaptive Modulation and Coding and

Reconfigurable Antenna [69] is introduced and discussed in the next Chapters.
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Chapter 4

Fade Mitigation Techniques

4.1 Introduction to Fade Mitigation Techniques for

satellite transmissions

A serious challenge for satellite communications systems operating in Ka or higher

bands is represented by the atmospheric propagation impairments. In fact, at those

frequencies the additional attenuation due to meteorological phenomena is so high

that it may not be practically feasible to reach the required link availability and

system capacity by classical means.

As discussed in Chapter 2, the major impairment for medium/high availability

systems is certainly represented by rain attenuation but also gaseous absorption and

scintillation may have significant effects. It is worth noting that rain attenuation

affects a specific location only for a small percentage of time in a year.

The simplest solution for counteracting the atmospheric impairments is to over-

size the system elements. This approach is not always feasible and is, however, un-

economical. In fact, even when it is feasible, the system over sizing represent a waste

of resources for the most of the time, i.e. when the satellite link is in clear sky con-

ditions, because it can not exploited to obtain additional benefits. For these reasons,

in the course of the years, several Fade Mitigation Techniques (FMTs) have been

devised to cope with the atmospheric phenomena.
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The focus is on a Geostationary Earth Orbit (GEO) multibeam broadband

satellite system for interactive applications, where users are not mobile. The forward

link is defined as the communications link between the ground GateWay station (GW)

and User Terminal (UT). The GW sends through the satellite transponder one carrier

per beam to the multiple receivers located within each satellite beam and, therefore, a

certain division of the power allocation and Time Division Multiple Access (TDMA)

is necessary. The beam frequency plan is designed according to a specific frequency

reuse scheme.

After a brief introduction to those techniques which appear more interesting for

the Multimedia Fixed SatCom scenario, two of them, the On-Board Dynamic Power

Allocation (OBDPA) and Adaptive Coding and Modulation (ACM), are discussed in

more details. Their joint use to support higher system capacity is proposed.

4.2 Review of most important Fade Mitigation

Techniques

Several FMTs strategies have been devised in the course of years to make easier

the migration towards higher frequency band in satellite telecommunication systems.

Below is a shortlist of the effective techniques in counteracting atmospheric fading in

the forward link of a Multimedia Fixed SatCom scenario:

• Site Diversity

• Power Control

• On-Board Dynamic Power Allocation OBDPA

• Adaptive Coding and Modulation ACM
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The Site Diversity technique, Power Control and other FMTs not applicable to

the proposed scenario are briefly introduced in the following, while separate sections

are dedicated to the OBDPA and ACM.

4.2.1 Site Diversity

Site diversity is a helpful technique that can greatly reduce the additional link margins

necessary to overcome the atmospheric impairments for systems operating in Ka band

or higher frequencies. This technique relies on the use of two or more distant earth

stations transmitting and/or receiving the same information for increasing the overall

link availability. In fact the presence of more than one earth station allows to receive

or transmit the signal using the earth station that is currently experiencing the best

atmospheric propagation conditions.

From system point of view, the effect of site diversity on the link budget is equiv-

alent to a reduction of the margins needed for achieving the required link availability.

This reduction, generally expressed by the diversity improvement factor, directly de-

pends on the decorrelation of the atmospheric fading on the ground station sites.

According to propagation measurements, full spatial decorrelation of fading requires

distances between sites which approaches 1000 km. However, distances in the order

of 15 to 30 km may be enough to reduce fading correlation to acceptable levels. An

example of the possible link margin reduction is shown in Chapter 3, Sec. 3.7.2, where

the joint rain attenuation distribution CCDF is shown for a single site diversity (two

stations) at distances ranging between few km and 40 km.

Site diversity introduces additional system level complexity due to the need to

coordinating between the two cooperating ground stations. The coordination between

the two ground stations can be less or more critical depending if Receiving (Rx)-only
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or Transmitting (Tx) site diversity is employed. Rx-only site diversity can avoid most

of the coordination problem. The rational for such an approach is that on-board

power is more costly than ground stations power. Thus up-link attenuation may be

compensated by over sizing the ground station available power margin. Down-link

attenuation will instead be counteracted by the site diversity. In this case, the de-

modulated streams of both ground stations will be sent to a suitable access controller

which will select one of them basing on their quality. Tx site diversity is, instead,

more complex to implement due to the need of a mechanism for the synchronization of

the transmission chain of the ground stations working in diversity mode. The critical

point of the coordination is also dependent on whether it is allowed to have a short

interruption of the service when the transmission is switched from one ground station

to the other one.

Due to the need of two cooperating ground stations located at several km from

each other, this technique is not generally economically viable for counteracting fading

at user terminals because of the required low cost of such terminals. In fact, the saving

in terminal cost deriving from a possible smaller sizing of the terminal (in terms of

EIRP and G/T) made possible by site diversity is completely offset by the cost of the

communication infrastructure required for supporting the site- diversity operation.

Viceversa, for the larger gateway stations used in a star network scenario or for

professional ground stations (e.g. for internet data trunking), the station sizing saving

may be economically significant to justify the additional cost of the site-diversity

infrastructure.

At this regard it shall also be mentioned that site diversity is seen as particularly

suited for the GWs in the Broadcast and Multimedia Fixed SatCom scenarios where

the availability of the feeder-link shall be much higher than that of user-link. The

concept of smart diversity implies a network of interconnected GWs. If one GW
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becomes unavailable due to rain fade (or for any other reason), traffic is switched

to other ones within the network. The system capacity in this scenario depends

on the number of active feeder links at the same time, which depend on their joint

attenuation conditions. This is a very recent topic under investigation [70,71].

4.2.2 Power Control

Power control is among the most important and most used FMTs. It is in fact

quite simple to implement but also very effective, making it a worth solution for

counteracting atmospheric fading. Power control is typically performed at the ground

GW stations to control up-link power (UPC). Down- link power control instead is

currently not generally utilized due to constraints in on-board power management.

This technique relies on an extra power margin available at the ground station,

which is exploited when fades are detected in the earth-to-satellite link. Different im-

plementation techniques are available according to the kind of traffic to be supported

and the control loop to be used. For the Forward-Link of both Broadcast and Mul-

timedia Fixed SatCom scenarios, up-link power control could be operated according

to several strategies:

• Open loop PC utilizing the estimation of up-link fading based on the Signal to

Noise Ratio (SNR) measurement of a beacon signal. This approach is affected

by the frequency scaling error, being the beacon frequency likely in a different

frequency band;

• Open loop PC utilizing the up-link fading estimation based on the radiometer

measurement of the sky temperature increase. This technique has the disadvan-

tage that radiometer calibration is difficult and the equipment costs are high.

The solution based on downlink beacon measurement is to be preferred.
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• Closed loop PC based on on-board measurement of the received level. This

measurement could be done indirectly through the status (gain) of the on-

board amplifier employed to stabilize output power even in presence of strongly

attenuated up-link signal. Such status could be inserted in the telemetry stream

forwarded to ground. Inaccuracies may be present due to the gain instabilities

of the transponder receiving chain and affect the returning information.

4.2.3 Other FMTs

Others FMT are available as possible solutions to counteract atmospheric attenu-

ation in Earth-to-satellite links, but do not find application in the forward link of

Multimedia Fixed SatCom scenario.

Angular diversity is generally used in mobile satellites/users scenarios or where

a constellation of satellite is in place (Low Earth Orbit (LEO)). Time diversity

it generally used in mobile communications. The application of time diversity for

fixed UT, due to the rain de-correaltion time, would lead to excessive delay in the

transmissions. Frequency diversity is hardly employable due to the high required

bandwidth and the costs of multi-frequency receivers. Data Rate Adaptation which

foresee a variable symbol rate cannot be applied due to the fixed channel bandwidth.

Table 4.1 provides a summary of the possible FMTs considered for the proposed

scenario. Major details on the applicability of the techniques here reported can be

found in [2]. The rest of the Chapter is dedicated to a more detailed explanation of

the OBDPA system and ACM transmission schemes.
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FMT Applicable Notes
Site Diversity Yes It can effectively mitigate the fading in the up-link

and increase the link availability
Uplink Power Control Yes Effective in up-link, control loop required
Angular Diversity No Not applicable. Generally used

in mobile communications
Time diversity No Not applicable. Generally used

in mobile communications
Frequency diversity No Hardly employable due to

the high required bandwidth
On-Board Dynamic Yes It can effectively increase
Power Allocation link availability and capacity
Adaptive Coding Yes It can effectively increase
and Modulation link availability and capacity

Data Rate Adaptation No Not applicable since the channel
bandwidth is fixed

Table 4.1: FMTs applicable to the forward-link of Multimedia Fixed SatCom
scenario

4.3 The On-Board Dynamic Power Allocation

System (Reconfigurable Antenna)

Among other, the OBDPA system is one of the most promising techniques to overcome

the attenuation effects when there is strong precipitation affecting the satellite-earth

link. The reconfigurable technique take advantage of the spatial and time decorre-

lation of the rainfall processes to reallocate dynamically in both time and space the

system power margin among the users.

The OBDPA system accounts a multi-feed antenna which illuminate the service

area with multiple beams. The power radiated by the feeds can dynamically modified

in time according to the time variant attenuation conditions. This kind of antenna is

applicable in both Broadcasting scenarios and Multimedia SatCom scenario, with dif-
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ferent characteristics in terms of coverage of the service area and system performance

evaluation [69,72].

Propagation impairments such as signal attenuation and scintillation, if faced

with the traditional satellite system design, would lead to an oversized antenna front-

end. In fact, the classical approach to design satellite system is based on a clima-

tological fixed-front end antenna design, aimed at coping with the worst-case fading

occurrences all over the service area. Actually, due to the localized nature of the most

of the meteorological phenomena such as rain, bad propagation conditions never occur

simultaneously across the whole service area. It is in fact more frequent the case in

which only a small fraction of the service area is affected by severe fading, as it can be

experienced in the usual situation of localized meteorological fronts evolving in time.

In Ka band (20 to 30 GHz), expected total attenuation may exceeds 6 dB and 10 dB

respectively at probabilities p = 1% and p = 0.1% of the year time (reference ITU-R

model [24] for a Earth-space slant path with elevation 37.7o, temperate areas).

Because of this characterization, a fixed front-end would need a significant power

extra-budget to accomplish the required availability performance, which would be

actually necessary only when predicted “bad” propagation conditions happen, leading

to a waste of resources for most of the time. On the contrary, a reconfigurable antenna

front-end could be better exploited, if able to spatially arrange power distribution

according to the actual time-variant propagation needs. The power would be allocated

only in the amount and in the area where it is really needed, thereby allowing a

considerable economy in the management of the limited on-board available resources,

targeting the same system availability.

In a reconfigurable antenna system the power available on board is dynamically

allocated on the ports of a multibeam antenna by means of a Beam Forming Net-

work (BFN), composed of Multi Port Amplifiers (MPAs). The radiation patter is in
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essentially controlled by a set of excitation coefficients (as many as the antenna feeds)

which ensure the required power at each port and which are related among each other

by the MPA structure. To properly identify the optimum distribution of power flux

on the ground and, accordingly, to select the proper set of excitation coefficients, the

system needs to process current meteorological data for the service area.

The above system involves a great number of design aspects: technological

devices design, meteorological data processing, system control operations. One of

the key issues in the design of the front-end is its optimization on the basis of the

fading distribution detected across the service area. The attenuation conditions for

the service area are in turn predicted according to another key strategy based on the

collection and appropriate processing of meteorological weather information, obtained

from the ECMWF [73] predictions. Once the fading distribution is available from

predictions, the radiation of the on-board power is reconfigured by a proper BFN,

defined by components such as phase shifters and amplifiers. The BFN reconfiguration

is carried out according to the outcome of an optimization procedure, driven by merit

figures based on such fading predictions. For the Multimedia Fixed SatCom scenario,

the link SNIR has been proposed as merit figure for the BFN optimization, since

taking into account interference among co-channel beams is mandatory due to the

adoption of frequency reuse schemes [74].

4.3.1 The service area model

As basic system configuration, a multibeam satellite system with N feeds is consid-

ered, which generates a set of spots with the arrangement represented in Fig. 4.1.

The service area (Europe in this case) is divided into a regular grid of Ns subareas,

called “pixels”. For each pixel its area dimension, latitude and longitude coordinates
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are defined. The area is served by N beams, which are fed by an independent signal

directed to the users located within the spot (different colors refer to the different

allocated frequency bands, distributed among the spots in order to minimize inter-

beam interference). Regardless to the number, position and shape of the beams we

will make reference to a well defined transfer function relating the power injected in

a beam-port to the power density incident on any point of the Earth served by the

corresponding spot:

Si = Ti,jPj (4.1)

which relates the power Pj (W) injected on the jth beam port to the power flux Si

( W
m2 ) incident on the ith point on the Earth among the Ns ones chosen to sample the

served region (as in Fig. 4.1). The T matrix describes the satellite system geometry,

it is strictly dependent upon: the position of the satellite with respect to the service

area, the multibeam directivity function and the geometrical distribution of the grid

of ground receiver stations used to sample the service area. Therefore, each element

of Ti,j takes into account the antenna directivity function in the direction of the ith

point and its distance from the satellite. Ti,j is defined once, considering the antenna

characteristics, the satellite position and the grid of served users.

4.3.2 Antenna design

4.3.2.1 Multi Port Amplifiers

The most important aspect of the OBDPA system is to efficiently share the radiated

power, reducing inter-beam interference and allowing high flexibility in the power

allocation among antenna ports. The adaptive beamforming network is composed

of N elements, one per each antenna feeds, clustered by a set of MPA devices. The

MPA is a multi-input and multi-output system that is capable to amplify multiple
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input signals at the same time by using shared amplifiers. The multiple input signals

and outputs are amplified separately via different output ports to reduce any mutual

interference.

The MPA scheme is a well known and consolidated technique to carry out

power reconfiguration among spot beams. The technique has been implemented in the

Japanese satellite WINDS for an experiment strictly related to power reconfiguration

aimed to the compensation of Ka-band rain attenuation.

The general scheme of the antenna is shown in Fig. 4.3, where each beam is

radiated by a single feed via distributed amplification and final composition of the

different amplified contributions. The amplified contributions are collected by a High-

Power BFN (HP-BFN) which has the goal to focus the whole power on the single feed

in charge for radiating the current beam.

The classical layout of the HP-BFN is based on a set of MPA, composed by

a number of hybrid couplers properly connected to each other. The basic assembly,

named Butler-Like Matrix (BLM) because similar to Butler Matrix layout with the

exception that phase shifters between successive layers of hybrid couplers are not

present. Apart from the trivial BLM with 2 inputs and 2 outputs, i.e. a single hybrid

coupler, the lowest level of BLM is the one with 4 inputs and 4 outputs, also called

4 × 4; it is shown in Fig. 4.2, where a number of 4 Hybrid couplers 3dB/90o is

recognized.
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Figure 9-12 a) Ground stations and service area b) Frequency Reuse Scheme for the beamforming network 

 

The numerical values that have been defined to devise the system data are reported in the following 
table: 

 

Table 9-1 Reconfigurable System Parameters 

Number of feeds 72 

Number of pixels 1988 

MPA order 4 x 4 

Transmission Line Loss [dB] 0.5 

LNA Temperature [K] 150 

Symbol Rate [MBaud] 45 

Rx Station Gain [dB] 42 

Radiated Power [W] 2000 

The reconfigurable system makes use of meteorological data as the inputs of the optimization 
process which are provided by the ERA40 Database. This database collects files which give the 

Figure 4.1: Coverage area over Europe: reference grid points and multibeam
antenna scheme [2]
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2.3 Antenna Design 7

Figure 2.3. Spots distribution and coverage area for satellite longitude 16◦ East.

frequencies. The matter of a Reconfigurable Antenna is to efficiently share the radi-
ated power reducing inter-beam interference and allowing high flexibility in the power
allocation among antenna ports. The adaptive beamforming network is composed of M
elements clustered by a set of MPA devices. The MPA is a multi-input and multi-output
system that is capable to amplify multiple input signals at the same time by using shared
amplifiers. The multiple input signals and outputs are amplified separately via different
output ports to reduce any mutual interference. An example is reported in fig. 2.4, where
an MPA elements of order 4x4 is shown [17]. The device is composed of an input and an
output hybrid matrix (made of 3dB, 90◦ hybrid couplers) and a set of 4 shared power
amplifiers. Commonly the order of a MPA is 4x4 or 8x8.

In such a system, the available on board power is firstly equally divided among the
MPAs and afterwards a set of coefficients assign the power to the 4 (or 8) ports that
belong to the same MPA. In order to best exploit the power allocation between the
ports of an MPA, the weather condition detected inside the spots covered by that feeds
should be not correlated. So, in case there is high rain intensity over two spots of the
MPA, the needed power could be subtracted to the spot that are not interested by rain
events. Usually, we considered a frequency reuse scheme reported in fig. 2.5, where each
color identifies the area covered by elements clustered in a single MPA. This scheme,
by assuming the maximum distance between elements with the same frequency, tries to
ensure the higher dissimilar weather condition among these feeds.

Figure 2.4. Functional block diagram of a
4-ports MPA [17] Figure 2.5. Map of reuse frequency colorFigure 4.2: MPA general scheme

As a result, the available on board power is firstly equally divided among the

MPAs and afterwards a set of coefficients assign the power to the 4 (or 8) ports that

belong to the same MPA. Reconfiguration is actuated in MPA scheme by means of a

variation of the carrier level among the different beams at the MPA input.

In order to best exploit the power allocation between the ports of an MPA, the

weather condition detected inside the spots covered by the MPA feeds should be not

correlated. Consequently, in case there is high rain intensity over one spot linked to an

MPA, the needed power could be subtracted to the same MPA remaining spots. As a

consequence, the spot assignment to each MPA assumes the maximum geographical

distance between elements of the same MPA, trying to ensure the highest dissimilar

weather conditions among the feeds. In this way, the co-frequency interference among

the same MPA beams is also minimized.
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4.3.2.2 Antenna Front-End

The front-end architecture for the TLC antenna under analysis is based on fixed

amplifiers it is divided into 2 main sections:

• the reconfiguration control section is composed by a set of beam amplifiers and

it is responsible for supplying the amplification section with optimum amplitude

distribution among beams according to the selected criterion;

• the amplification section is composed of MPAs of 4× 4 order.

From a reconfiguration point of view, the optimum beam amplitude distribution

is obtained by a single amplitude-only optimization including all the beams [74].

4.3.3 Antenna Optimization

4.3.3.1 Dynamic Optimization

In Fig. 4.4 the main steps of the adaptive antenna control are reported. The core

of the reconfigurable system is constituted by the dynamic optimization of the ex-

citation coefficients of the antenna BFN coefficients. This process is devoted to the

identification of the optimum power flux distribution over the service area to re-

duce the slant path attenuation effect. The optimization procedure is called dynamic

since it updates the flux profile each time new meteorological information for the ser-

vice area are available. The first step is the elaboration of the meteorological input

information to estimate the atmospheric attenuation over the service area. The mete-

orological reference database is composed of numerical weather predictions supplied

by the ECMWF [73]. It provides vertical profiles of different atmospheric parameters

(humidity, temperature, etc.) and surface integrated values (cumulated rain, etc.) 4

times a day with 6-hours intervals, with a spatial resolution of 1.125o × 1.125o. The
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elaboration purpose is to match the input meteo data to the grid of the service area,

generating a snapshot of meteorological conditions. The snapshot is simply an instan-

taneous description (6-hours duration) which collects the parameters of “clear sky”

attenuation (clouds, water vapor and oxygen) and rain attenuation contributions, for

each pixel in the grid. Rain, if present in the pixel, is described in statistical terms by

a spatial distribution of rain. Once the service area has been set and the elaboration

completed, each ith pixel of the grid is modeled by a curve, which provides the infor-

mation of the fraction of the pixel area subject to attenuation higher than a specific

threshold. These functions, different if we consider a rainy or not rainy pixels, are

calculated for each specific snapshot.

Regarding rain attenuation, two meteorological parameters provided by ECMWF

predictions allow to estimate the rain distribution over the pixel area: the cumulated

rain amount mt in the observation period and the fraction of convective rain β. A

spatial rain modelling is needed to derive the rain distribution over the pixel area

and over the 6-hours period, starting from the two above integral information. A

rain field generator [66] is used to calculate the rain rate CCDF in space, while the

SC-ExCell [32] model derives the rain attenuation distribution. The obtained distri-

bution identifies the fractional area of a given pixel where a certain attenuation value

is exceeded.

The goal of the OBDPA system is the compensation of the degradation due

to atmospheric attenuation (clear-sky and rain) by means of a flexible reallocation

of available power resources over the set of beams. The previous meteorological

elaboration provides a map of attenuation distribution over the service area which

should be overcome by radiated power flux, in order to improve the user receiving

conditions.

The optimization algorithm aims to achieve the power distribution which best
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cope with the described attenuation conditions. The definition of the appropriate

optimization strategy actually consists in the definition of a suitable merit figure

which is mostly representative of the global system performance. Considering the

Multimedia Fixed SatCom scenario, the real performance of a multibeam antenna

operated in frequency-reuse is the received carrier power at any ground user weighted

by the noise power and interference [74]. The pixel SNIR for the considered service

area is defined as:

SNIRi =
1

1
SNR(wj ,ai)

+ 1
SIR(wj ,wk 6=j)

(4.2)

where the dependency with the pixel attenuation ai and the interference of co-

frequency beams is shown. For a given power available on board, the flux Si,dB

incident on the generic pixel ith is given by:

Si,dB = Pj,dB + Tij,dB − Ai,p,dB
dBW
m2

(4.3)

in which Pj,dB is the power injected in the port j, expressed in dBW, Ai,p,dB is the

total atmospheric attenuation in dB affecting the ith pixel link at a certain probability

value p, Tij,dB it the transfer matrix element defined in Eq. 4.1. The SNIR definition

in Eq. 4.2 takes into account two components: the SNR dependent on the radiated

power and attenuation on the link; the Signal to Interference Ratio (SIR) dependent

on the interference due to co-frequency beams and defined by the antenna design

and power configuration. Therefore, once the attenuation distribution on the ground

pixels has been evaluated, it can be provided as input to the dynamic optimization

routines.

The optimization algorithm of the power flux distribution aims at maximizing

the SNIR in the most critical point of the service area, given a total radiated power.
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The choice of the worst pixel in the area as reference for the optimization at each

iteration is not the only solution possible. It is chosen since it provides to the optimizer

the information of the worst pixel in the service area, information which could be lost

by considering the average SNIR. By acting on the worst pixel, the optimization

ensures to increase the area SNIR low level. The dynamic optimization process is

performed at every new meteorological snapshot, available on a regular time frame

(every 6 hours if ECMWF data are considered). The routine implemented consist

in a standard gradient descent optimization algorithm. The optimizer takes as input

also the information regarding the antenna architecture (number of feeds, available

power, and MPA order). The optimization works on the N transmission coefficients,

responsible for the radiated power in each beam. Because of the interference term,

the SNIR of any considered pixel is dependent not only the power radiated in the

beam to which the pixel belongs, but also on the power radiated on the co-frequency

beams around, according to the specific frequency reuse scheme in place (Fig. 4.1).

At every iteration, a new map of interference among the beams is obtained and a new

iteration is started. The optimization procedure ends when the relative gain of new

iterations is no more significant. The dynamic optimization results in a set of optimal

coefficients wopt which drive the power radiated in each of the N beam. Finally, the

OBDPA system performances are evaluated by a proper post-processing.

Must be underlined that the optimization procedure based on the worst pixel

SNIR is not the most sophisticated approach to the problem. Different solutions can

be envisaged, especially by adding side constraints the optimization process should

satisfy. The proposed solution represents the first approach to the problem and it is

definitely open to future development and refining [69].
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4.3.3.2 Climatological optimization: optimal fixed transmission coeffi-

cients

A different kind of optimization for the multibeam antenna is the one that takes into

account long-term prediction of attenuation distribution to derive the optimal set of

fixed transmission coefficients. In this case no dynamic optimization procedure is

present: the radiated power is fixed in time but not uniform over the service area,

according to the attenuation statistics. This solution is adopted in traditional satellite

antennas exploiting fixed front end. In such cases, the optimization of the antenna

pattern is performed once before the launch of the satellite.

This optimization algorithm, called climatological optimization, is the same as

the dynamic case except for the service area attenuation map, which is based on long-

term statistics. For a fixed probability value, the climatological optimization generates

a set of antenna coefficients which minimizes the on-board power requirements to

account for free-space losses and climatological attenuation.

The optimization takes into account the cumulative distribution functions CDF

of attenuation P (A) for each pixel of the service area. The needed P (A) can be derived

by menas of one of the many attenuation prediction methods available in the scientific

literature, some of those like ITU-R [24] or SC-ExCell [32] have been presented in

Chapter 2. From the knowledge of the P (A), the climatological optimization takes

into account the total atmospheric attenuation (clear sky and rain attenuation) which

is exceeded in each pixel of the service area for a percentage of annual time (usually

are considered 0.1%, 0.5% and 1.0%).

Fig. 4.5 and Fig. 4.6 show an example of the climatological attenuation pre-

dicted by the ITU-R model P.618-10, respectively at a probability levels 0.1% and

0.2% over the service area in Fig. 4.1. The optimization procedure, explained in [69],
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aims at the minimum system power margin to serve the worst point in the service

area.
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Figure 4.3: Antenna scheme. 1 feed per beam, MPA scheme 4× 4. The 4 feeds
relative to red beams 32,34,7,9 in the service area are shown.
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2.4 Optimization Procedure 9

Figure 2.7. Dynamic optimization process

procedure. During adaptive optimization it is of principal relevance, while assigning an
adequate amount of power to the rainy pixels, to ensure a sufficient power flux for any
pixel which is interested only by clear-sky attenuation. These pixels correspond to the
most (and more critical) part of the covered area. Indeed, when the pixel margin mi

available at the i-th pixel is not sufficient even to balance the clear-sky attenuation, all
the users inside that pixel are lost. Then the optimization procedure takes place. The
main goal is to minimize the user that cannot enjoy the Broadcasting service and it can
be achieved by two distinct optimization procedures:

• Power Flux optimizer : given as input the theoretical distribution of power flux,
the optimizer try to reproduce the same distribution according to the antenna
technological constraints;

• NNS minimizer : the figure of merit to be minimized is the total Number of Non
Served users across the service area.

Both the optimizer takes as input also the information regarding the antenna archi-
tecture (number of feeds, available power, and MPA order). More details about the
reconfigurable operation and software implementation will be reported in the follow-
ing chapter. Finally, with the post-processing the real reconfigurable performance is
evaluated.

2.4.2 Climatologic Optimization

Traditional satellite antennas exploit fixed front end system design to accomplish the
long term climatological statistics of attenuation. For this system, the optimization of
the antenna pattern is performed one time for ever before the launch of the satellite.
This optimization, called Climatologic Optimization, generates a set of antenna coeffi-
cients which minimizes the on-board power requirements to account for free-space losses
and climatological attenuation. The climatological attenuation represents the total at-
mospheric attenuation (clear sky and rain attenuation) which is exceeded in each pixel
of the service area for a percentage of annual time (usually are considered 0.1%, 0.5%
and 1.0%). The attenuation values are calculated according to ITU recommendations
[2]. In fig. 2.8 two examples of climatological attenuation maps provided as input to the
optimization procedure are shown.

The performance of the climatological optimization is used as basis for compare the
reconfigurable antenna performance. Since the dynamic coefficients are updated accord-
ing to the instantaneous weather condition, we expect better results in terms of NNS

Figure 4.4: Representation of the dynamic optimization process
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Figure 4.5: Climatological attenuation exceeded for 0.1% of annual time. Service
area, model ITU-R P.618-10

Figure 4.6: Climatological attenuation exceeded for 0.2% of annual time. Service
area, model ITU-R P.618-10

The climatological optimization, which results in fixed feed excitation coeffi-

cients, is usually considered to assess the advantage of the dynamic optimization

process previously explained. In the following, the antenna optimized based on the

long-term attenuation statistics is referred simply as fixed antenna.
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4.4 Adaptive Coding and Modulation for

Multibeam satellite systems

ACM is a sophisticated form of data rate control in which information rate is adapted

by changing modulation and coding rate while maintaining a constant symbol rate

on the channel.

The aim of this technique is to dynamically select, based on the current chan-

nel quality, the best transmissionModCod pair to maximize the spectral efficiency

satisfying the required BER or FER. According to this principle, when the link is

in clear sky conditions the transmitting ground station employs ModCods with high

spectral efficiency requiring high SNIR to be decoded, aiming to achieve the highest

available information rate. Conversely, when the link is affected by heavy rain, trans-

mitting ground station employs ModCods with low spectral efficiency, but requiring

low SNIR, aiming to preserve the link availability. The main advantages of ACM

with respect to conventional approaches are:

• Increase of system throughput : generally, in SatCom systems operating in Ka or

higher bands, high additional link margins are considered in the system design

phase in order to guarantee the required link availability. These margins would

be wasted for the most of the time, i.e. when the ground station is in clear

sky conditions. Those margins can be exploited by ACM to sustain a more

efficient transmission by adopting more complex ModCods, in order to increase

the system throughput;

• Increase of link availability : the employment of low spectral efficiency ModCods

requiring low SNIR allows to increase the link availability. Concerning this

aspect, it is important to note that when low spectral efficiency ModCods are
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employed, the data rate is reduced and it may be not adequate to support

the provided service. In fact, the minimum data rate required by the service

determines the minimum spectral efficiency and, therefore, the higher bound

for the link availability achievable with ACM.

The ModCod selection procedure requires the transmission ground station to

estimate, before transmitting, the quality of the radio link in terms of the end user

SNIR. The most straight-forward solution to this issue envisages a measurement

of the link quality by means of pilot symbols sequences, which are reported back

to the transmitting station. In realistic conditions, the SNIR measurements cannot

be directly employed in the selection procedure because they might resemble out-

dated channel conditions. The problem of channel estimation and accurate channel

prediction and information represents a significant issue in the implementation of this

technique.

Given the purpose of this work to assess the joint use of OBDPA and ACM, the

procedure followed by the user to inform the transmitting station, as well as the format

of this information, are not discussed in here. The assumptions made hereinafter are

that the transmission stations keep track of channel variations occurring to user’s

terminals, and that the physical layer configuration used in the forward transmission

to each individual user are known both at the transmitting and receiving sides. This

is a common assumption for the assessment of the ACM transmission strategies, since

it represents the theoretical case of application [75, 76]. More detail in the channel

estimation procedure and feedback may be found in [77].
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4.4.1 Adaptive Physical layer model

The Adaptive Physical Layer (APL) considered on the forward link is based on adapt-

ing both the coding rate and the modulation format ACM to best match the user

SNIR, making the received data rate location and time dependent.

Referring to the previous antenna OBDPA system description, the received

SNIR in the jth beam is a stochastic process ξjtot(t, u, v) where t is the time and

(uj , vj) are the variables modelling the receiver position, such that (uj , vj) ∈ Bj , with

Bj the jth satellite beam. The approach chosen to describe adaptive transmission

system performance follows the one proposed in [75,76].

A TDMA system is considered. The generic qth frame is addressing a subset of

users over the coverage region, whose SNIR at reception time shall allow correct de-

coding of the frame, with FER below the required threshold. The required minimum

energy per bit over noise plus interference spectral density Eb/Nt = Eb/(N0 + I0) at

the user terminal depends on its physical layer configuration and will be identified

with γreq(r,M), which depends on the modulation constellation M and the coding

rate r. For the following system level analysis, the details of the framing structure

are inessential and therefore are not described: for simplicity the index qth for the

frame dependency is omitted.

The user terminal SNIR, which represents the chip over noise plus interference

spectral density Es/Nt, for a generic user location x = (uj , vj) in the beam j of the

coverage area is defined as [75]:

Es
Nt

(x, a(x), fR, Np) =
CCS(x)a(x)

Rs{N0(a(x)) + I0(x, a(x), fR, Np)}
(4.4)

where CCS(x) is the clear-sky received power at location x, 0 < a(x) ≤ 1 is the

propagation fading power loss random variable. N0(a(x)) is the noise power spectral
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density at the receiver input, which is also function of the fading attenuation due

to the antenna noise temperature definition. I0(x, a(x), fR, Np) is the interference

power spectral density at location x, which accounts the power radiated over the

co-frequency beam in the service area.

Recalling the relation between Es/Nt and Eb/Nt:

Es
Nt

=
Eb
Nt
· r log2M (4.5)

that holds for each modulation format of cardinality M and given the chip energy as

Ec = Es/Ls, it follows that for a certain location x, affected at a given instant by

the fading attenuation a(x), the link closure condition is verified when

Ec
Nt

(x, a(x), fR, Np) ≥
r log2M

Ls
γreq(r,M) (4.6)

which defines the minimum SNIR to guarantee a correct transmission for a given

modulation scheme. Parameters r,M define the coding rate and modulation con-

stellation, the parameter Ls is related to the spreading factor and is greater than 1

if spreading occurs. The most suitable figure of merit to describe the transmission

performances to user terminals in TDMA mode is their spectral efficiency ηu, which

for correct decoding is defined as [75]:

ηu =
RbNp
RcfR

(4.7)

where Rb, Rc are respectively the bit rate and chip rate, Np is the number of po-

larizations used (if applicable) and fR the frequency reuse scheme. Higher spectral

efficiency results in higher data rate, thus the target of ACM technique is to select

the physical layer parameter for maximizing the data rate at the generic location x
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conditioned to a given fading process realization a(x). Since the bit rate is dependent

on user location and propagation channel conditions, the optimization of the physical

layer parameters is performed on each active link. The corresponding punctual op-

timized link efficiency conditioned to atmospheric fading a and the polarization and

frequency reuse factors (Np; fR) can be computed as [75]:

ηl(x, a(x), Np, fR) = maxr,M,Ls

{
RbNp
fRRc

|κEc
Nt

(x, a(x), Np, fR) ≥ γreq(r,M)

}
(4.8)

where r, M and Ls are the adaptive physical layer parameters described in the pre-

vious section, κ = Ls
r log2M

. The spectral efficiency for the user u in the location x

can be calculated by considering the distribution of the fading random variable a(x),

either by averaging the link efficiency for a large number of independent realizations

or by directly introducing the fading Probability Distribution Function (PDF). The

average beam efficiency can be obtained by averaging over the all single user ηl:

ηb(Np, fR) =
1

Nu

Nu∑
1

ηl(xu, a(xu), Np, fR). (4.9)

Eqs. (4.8) and (4.9) are function of the user SNIR, which has to be evaluated by

expanding Eq. 4.4. In the DVB-S2 standard, a discrete set of ModCods are defined

as function of the minimum SNIR to support them targeting a certain FER. The use

of the ACM mode with highest spectral efficiency at any given value of SNIR leads

to:

Rb(t, x) =


0 : ξ(t, x) < γ1

ηmR : γ1 ≤ ξ(t, x) < γm+1

ηMR : ξ(t, x) > γM

(4.10)
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where ξ(t, x) is the time-location dependent user SNIR, ηm are the different

spectral efficiencies and γm the SNIR thresholds defined in increasing order. This

quantization of the continuous model in Eq. 4.6 results in a power/spectral efficiency

granularity: the continuous variable ξ(t, x) results in a discrete achievable spectral

efficiency ηu.

Considering the standard DVB-S2 [78], the set of ModCods and their required

ξ values are reported in Tab. 4.2.

Mod. Inner code rate r ξ (bits/s/Hz) γ (dB)
QPSK 1/2 0.99 1.01

3/5 1.19 2.23
2/3 1.32 3.10
3/4 1.49 4.04
4/5 1.59 4.68
5/6 1.66 5.18

8PSK 3/5 1.78 5.61
2/3 1.98 6.72
3/4 2.23 8.01

16APSK 2/3 2.64 9.07
3/4 2.97 10.31
4/5 3.17 11.14
5/6 3.30 11.71

32APSK 3/4 3.60 12.66
4/5 3.86 13.63
5/6 4.03 14.28
8/9 4.30 15.68
9/10 4.35 16.04

Table 4.2: Table of ModCod, Spectral Efficiency (SE) and SNIR threshold according
to the DVB-S2 standard. The SNIR thresholds are defined targeting a system

packet error rate equal to 10−7

In any case, the performance achievable with ACM are closely related to the

temporal and spatial variation of the channel attenuation. For this reason, the fading

process distribution a(x) must be introduced.
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In this section a methodology for evaluating the performance of ACM trans-

mission scheme for a multibeam satellite system is briefly introduced. In ACM, the

physical layer parameters are adjusted according to the actual user attenuation con-

ditions (SNIR) to maximize the user spectral efficiency. The ACM scheme described

is based on the DVB-S2 standard [78], which provides the minimum SNIR thresholds

to activate the ModCods. The relationship between SNIR and spectral efficiency in

Eq. allows to directly include the radiated beam power to the resulting user spec-

tral efficiency. From this point of view, the proposed description appears the most

suitable to address the advantage of ACM coupled with theOBDPA system

4.5 Conclusions

This Chapter presents the possible FMTs suitable for Multimedia Fixed SatCom

services, with special attention focused on the OBDPA system and ACM. The ACM

technique may take advantage of other FMTs like the proposed OBDPA. In fact the

ACM performances closely depend on the available user SNIR, which is the merit

figure maximized by the OBDPA optimization system.

The two methodologies aim respectively at providing the best SNIR user dis-

tribution on the coverage area (based on a specific optimization procedure) and to

maximize the achievable user spectral efficiency, which is itself function of the user’s

SNIR, by optimizing the user transmission formats. It is clear that the two methodolo-

gies augment each other: jointly deployed, they will improve performance. Especially,

the re-distribution of radiated power may increase the effectiveness of the ACM tech-

niques. The following Chapter provides the result of the simulated use of the two

techniques.
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Chapter 5

Joint use of On-board Dynamic Power

Allocation and ACM

5.1 Introduction

The aim of this section is to introduce a methodology to assess the effects of the

joint use of OBDPA system and ACM, considering a multibeam satellite system for

interactive multimedia broadband services in Ka band.

Moreover, the obtained SE by OBDPA is compared to the one obtained in static

conditions, i.e. in case of antenna front-end optimized in order to counteract at its

best the (long-term) climatological attenuation related to the selected system merit

figures.

The spectral efficiency function would be suitable as merit function for opti-

mization since it is directly linked to the achievable throughput, but unfortunately,

due to its discontinuous nature, it is not worth using it as is in an optimization based

on continuous functions. In order to achieve both accuracy and continuity the SNIR

figure can be assumed as merit function since, in the end, an improved signal quality

directly leads to an increased system capacity; an increase in the system throughput

is instead achieved only if a higher efficiency ModCod is available and in use, i.e. its

SNIR activation threshold is exceeded.
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5.2 TLC antenna system and optimization

algorithm

An hypothetical Telecommunication satellite system operating at 19.7 GHz is con-

sidered to service the Europe area. The TLC antenna system is constituted by a

beamforming network of feeds driven by a set of Multi Port Amplifier (MPA). An

optimization algorithm has been realized in order to implement an adaptive process.

This optimizer modifies the excitation coefficients of the MPA devices, to achieve the

best SNIR profile over the served region, according to the meteorological data. To

estimate the weather condition over the service area and to evaluate the performances

of the system, the overall region has been sampled with a grid of points, called also

“pixels”, as it is shown in Fig. 5.1

The reconfigurable system makes use of meteorological data as the inputs of the

optimization process which are provided by the ERA40 Database [15]. This database

collects information about weather conditions of the service area, provided as a set

climatological information available every 6 hours. Once processed, those information

allow to predict the meteorological conditions on the service area for the next 6 hours

period. Rain attenuation conditions are obtained by means of two mathematical

models:

• Rain field generator: calculate the space-time CCDF of the rain rate, i.e. the

fraction of points where the 1-min averaged rain rate exceeds given thresholds

during the 6-hour ERA40 slot;

• ExCell model [32]: turns the CCDF of rain rate into the CCDF of slant-path

attenuation by simulating the evolution of the precipitation cells
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An optimization algorithm has been realized in order to implement an adaptive

process to cope with the weather evolution. This optimizer modifies the excitation

coefficients of the MPA devices, trying to achieve the best Signal-to-Noise plus Inter-

ference Ratio profile over the served region, according to the meteorological data. To

estimate the weather condition over the service area and to evaluate the performances

of the system, the overall region has been sampled with a grid of points, called also

“pixels”, as it is shown in Fig. 5.1(a). The frequency reuse scheme of the antenna

feeds has been depicted in Fig. 5.1(b). The geostationary satellite is located at Long.

33o E.

In the remaining part of the Chapter, one of the depicted beams in Fig. 5.1 will

be analyzed as a test case. The excitation coefficient wj for the beam j is function

of all the other beam coefficient wi 6=j . Hence, the analysis of a single beam includes

the situation experienced over the whole service area.

The SNIR figure is chosen as Merit Function for the assessment of the recon-

figuration performance of the RA coupled with ACM. The SNIR is defined as:

SNIR =
C(u, v)

N0Rs + I(u, v)
(5.1)

where

C(u, v) = Gr(u, v)Ap(u, v)Am(u, v)PnGtn(u, v) (5.2)

is the carrier power actually received by the ground terminal, while

I(u, v) = Gr(u, v)Ap(u, v)Am(u, v)[
∑
i

PiGti(u, v)] (5.3)

is the aggregated co-channel interfering power actually received by the ground termi-

nal. Specifically:
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Figure 9-12 a) Ground stations and service area b) Frequency Reuse Scheme for the beamforming network 

 

The numerical values that have been defined to devise the system data are reported in the following 
table: 

 

Table 9-1 Reconfigurable System Parameters 

Number of feeds 72 

Number of pixels 1988 

MPA order 4 x 4 

Transmission Line Loss [dB] 0.5 

LNA Temperature [K] 150 

Symbol Rate [MBaud] 45 

Rx Station Gain [dB] 42 

Radiated Power [W] 2000 

The reconfigurable system makes use of meteorological data as the inputs of the optimization 
process which are provided by the ERA40 Database. This database collects files which give the 

Figure 5.1: Service area Grid G6, satellite position 33oE. Pixels distribution (a) and
beam division with frequency reuse scheme 4 (b) [2]

• Pn: Nominal power assigned to beam

• Gtn(u, v): Gain of the beam in the ground terminal direction (u, v)

• ∑i PiGti(u, v): Sum of EIRP values extended to co-channel beams

• Pi: Power assigned to the co-channel interfering beam i
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• Gti(u, v): Gain of the co-channel interfering beam i in the ground terminal

(u, v) direction

• Ap(u, v) =
(

λ
4πR(u,v)

)2
: Free-space path attenuation in the ground terminal

direction (u, v)

• Am(u, v): Tropospheric fading in the ground terminal (u, v) direction

• Gr(u, v): Ground terminal antenna gain in the satellite direction

• N0: Received Noise power density

• Rs: Symbol Rate

The received noise power density is equal to:

N0 = KTs(u, v) (5.4)

where

• Ts(u, v) = Ta(u, v) + Tr: System temperature

• Ta(u, v) = Tm(1− Am(u, v)): Receiving antenna temperature

• Tm ≈ 270 K: from Recommendation ITU-R P.618-10 [24]

• Tr = 290(10(Lt/10) − 1) + TLNA10(Lt/10): Receiver temperature

• Lt ≈ 0.5 dB: Transmission line loss (typical)

• TLNA ≈ 150 K: LNA temperature (typical)
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5.2.1 Antenna optimization

The OBDPA optimization algorithm evaluates the optimal beam excitation coef-

ficients to maximize a specific merit function, starting from the knowledge of the

predicted attenuation of each pixel in the area. As detailed in Chapter 4, a dynamic

optimization and climatological optimization are possible.

Concerning the dynamic optimization, the instantaneous weather information

are elaborated by the system on a 6 hours basis (4 snapshots per day). Once the

system receives the updated information concerning the weather conditions, a tropo-

spheric attenuation value is calculated for each pixel of the service area. Subsequently

the available power is reallocated, through the optimization of the excitation coef-

ficients of the antenna. Such optimization modules consist of a standard gradient

optimization algorithm aimed at maximizing the worst-case SNIR level computed on

the selected grid of ground terminals.

The climatological optimization is based on the same gradient method and merit

figure, with the only difference that the attenuation condition of the service area is

derived by a long term attenuation distribution at probability 0.1%.

5.3 Free-space considerations

Firstly, the analysis of radiated power in free-space is beneficial to better understand

the characteristics of the considered antenna system. The following graphs show the

radiated power of the reconfigurable antenna system, the SNR distribution, SIR and

SNIR distribution obtained over the service area by equal excitation coefficients. This

analysis is proposed to underline the effect of SIR and SNR on the resulting SNIR

across the service area. The proposed consideration led to the choice of a specific
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beam in the centre of the service area, to simulate the users attenuation conditions

and test the transmission techniques.

The system parameters are adopted for the simulation are reported in Tab. 5.1.

Parameter Value
Frequency [GHz] 19.7
Number of feeds 72
Number of pixels 1988

MPA order 4x4
Transmission Line Loss (typical) [dB] 0.5

LNA Temperature (typical) [K] 150
Symbol rate [Mbaud] 45

Receiving station gain [dB] 42
Radiated Power [W] 2000

Table 5.1: OBDPA system and simulation parameters

The free-space propagation analysis is carried assuming a fixed antenna front-

end, where the 72 feeds are powered by the same radiated power (1/72 of the total

radiated power). Referring to the system plan reported in Fig. 5.1, the received power

flux distribution on the Earth expressed in dBW
m2 is shown in Fig. 5.2. Regarding the

power flux radiated over the region, it could be relevant to note that also balancing

the excitation coefficients of the radiating feeds, there are pixels which suffer more

for the system design. As shown in Fig. 5.2, the ground stations which are located

on the edge of the served region and on the border of the spots receive an impinging

power that could be from 3 to 6 dBW
m2 less than in the central part of the spots.

As previously shown in Eq. 5.1, there is an inverse dependence from sum of

the SIR and the SNR with respect to the SNIR values. To appreciate the effects of

both these parameters, an analysis has been conducted for both separately. The SIR

represents the ratio between the desired received signal power and the interference
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Figure 9-13 Power Flux distribution in Free Space condition [dBW/m2] assuming uniform excitation 
coefficients 

 

Regarding the power flux radiated over the region, it could be relevant to note that also balancing 
the excitation coefficients of the radiating feeds, there are pixels which suffer more for the system 
design. As shown in Figure 9-13 , the ground station which are located on the edge of the served 
region and on the border of the spots receive an impinging power that could be from 3 to 6 dBW/m2 
less than in the central part of the spot. 
As previously shown in Eq. (9.9), there is an inverse dependence from sum of the Signal-to-
Interference Ratio (SIR) and the Signal-to-Noise Ratio (SNR) with respect to the SNIR values. To 
appreciate the effects of both these parameters, an analysis has been conducted for both separately. 
The SIR represents the ratio between the desired received signal power and the interference effects 
due to the signal generated by different sources working at the same frequency. The spatial 
distribution of these values has been depicted in Figure 9-14. It is relevant to note that the higher 
values of SIR are placed in the edge of the coverage area where the interference effects are 
noticeably reduced. The lower values of the distribution are located at the intersection of the 
adjacent spots with values of 15 dB less than the higher ones.  
 

!

Figure 9-14 Spatial SIR distribution in Free Space condition assuming uniform excitation coefficients 

 

Figure 5.2: Power flux distribution in free-space conditions dBW
m2 assuming uniform

excitation coefficients.

effects due to the signal generated by different sources working at the same frequency.

The spatial distribution of these values has been depicted in Fig. 5.3. It is relevant to

note that the higher values of SIR are placed in the edge of the coverage area where

the interference effects are noticeably reduced. The lower values of the distribution

are located at the intersection of the adjacent spots in the center of the service area,

with values approximately 15 dB less than the higher ones. From this distribution it

is clear that the spots more affected by the interference term are those in the center

of the service area.

The other elements which characterize the SNIR factor are expressed by the

SNR profile. These factors depend from the useful signal power received by the

antenna and the noise introduced by the receiver equipment and the atmospheric

effects. The expected spatial distribution of SNR should show higher values in the

center of the beams, with an expected limited decay on the borders of the service

area. Fig. 5.4 confirms this description.

As can be seen in Fig. 5.4, the space distribution of these values in each pixel

(end user terminal) maintains a strict dependence from the distance of that pixel from
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Figure 9-13 Power Flux distribution in Free Space condition [dBW/m2] assuming uniform excitation 
coefficients 

 

Regarding the power flux radiated over the region, it could be relevant to note that also balancing 
the excitation coefficients of the radiating feeds, there are pixels which suffer more for the system 
design. As shown in Figure 9-13 , the ground station which are located on the edge of the served 
region and on the border of the spots receive an impinging power that could be from 3 to 6 dBW/m2 
less than in the central part of the spot. 
As previously shown in Eq. (9.9), there is an inverse dependence from sum of the Signal-to-
Interference Ratio (SIR) and the Signal-to-Noise Ratio (SNR) with respect to the SNIR values. To 
appreciate the effects of both these parameters, an analysis has been conducted for both separately. 
The SIR represents the ratio between the desired received signal power and the interference effects 
due to the signal generated by different sources working at the same frequency. The spatial 
distribution of these values has been depicted in Figure 9-14. It is relevant to note that the higher 
values of SIR are placed in the edge of the coverage area where the interference effects are 
noticeably reduced. The lower values of the distribution are located at the intersection of the 
adjacent spots with values of 15 dB less than the higher ones.  
 

!

Figure 9-14 Spatial SIR distribution in Free Space condition assuming uniform excitation coefficients 

 Figure 5.3: Spatial SIR distribution in free-space conditions assuming uniform
excitation coefficients.

the centre of the relative spot. The profile values are almost constant over the served

region, except for the boundary values that have even 6 dB minor than the higher

ones. The SNIR profile obtained from the previous parameters has been represented

in Fig. 5.5. This distribution, produced by means of a uniform set of excitation

coefficients for the antenna feeds, represents the starting point for the optimization

process in absence of any atmospheric effects. Finally, two distinct areas could be

discerned: in the central part of the region are located the lower values of the profile

(circa 16 dB), while there are pixels located on the edge of the coverage area that

benefit in terms of SNIR values (around 20 dB). This discrepancy between these two

areas depends from the preliminary system design and defines a system characteristic,

which is important to take into account for the study of the user quality of service.

In conclusion for what concerns the free-space analysis, there are spots which

a priori suffer more for the antenna configuration and the system definition, while

others take advantage for the antenna design. The above distributions show that

spots in the center of the service area are those subject to higher radiated power, but

also higher interference due to to the co-frequency beams, as clear from Fig. 5.5. This
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The other elements which characterize the SNIR factor are expressed by the SNR profile. These 
factors depend from the useful signal power received by the antenna and the noise introduced by the 
receiver equipment and the atmospheric effects.  

 

 

Figure 9-15 Spatial SNR distribution in Free Space condition assuming uniform excitation coefficients 

 

As can be seen in Figure 9-15 the space distribution of these values in each pixel (end user 
terminal) maintains a strict dependence from the distance of that pixel from the centre of the relative 
spot. The profile values are almost constant over the served region, except for the boundary values 
that have even 6 dB minor than the higher ones. 

The SNIR profile obtained from the previous parameters has been represented in Figure 9-16. This 
distribution, produced by means of a uniform set of excitation coefficients for the antenna feeds, 
represents the starting point for the optimization process in absence of any atmospheric effects. 
Finally, two distinct areas could be discerned: in the central part of the region are located the lower 
values of the profile (circa 16 dB), while there are pixels located on the edge of the coverage area 
that benefit in terms of SNIR values (around 20 dB). This discrepancy between these two areas 
depends from the preliminary system design. 

 

Figure 5.4: Spatial SNR distribution in free-space conditions assuming uniform
excitation coefficients.

results in an overall lower SNIR values for users located in those spots. Consequently,

a spot located in the center of the service area appears to be the most interesting to

test the proposed transmission techniques, due to its lower SNIR characteristics.

5.4 Simulation setup

This section presents the results obtained by simulating the transmission with OBDPA

antenna coupled with Constant Coding and Modulation (CCM) and ACM. The pur-

pose of this section is to assess the performances of the different transmission schemes

by proper merit figures, with particular interest regarding the benefits of OBDPA cou-

pled with CCM transmission and ACM transmissions.

In the case of OBDPA system, the previous analysis shows that the SNIR

distribution on one spot of the service area in Fig. 5.1 is influenced by:

• the multibeam antenna design;

• the radiated power on the specific spot (function of its predicted attenuation);
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Figure 9-16 Spatial SNIR distribution in Free Space condition assuming uniform excitation coefficients 

 

In conclusion for what concerns the free space analysis, there are spots which a priori suffer more 
for the antenna configuration and the system definition, while others take advantage for the antenna 
design. These effects will be investigated more in details, snapshot by snapshot and for a long 
period of analysis. 

 

9.4.4 Simulation Results 

 This section presents the simulation results of the performance of the rain field generators when 
inserted in the optimization algorithm of a OBDPA. Two different input meteorological database 
have been considered: 

 

• a single instant of a day (snapshot): the 15 July 1992 at 18:00 and 9 March 1992 at 12:00; 

• long period of time (one year): the 1992.  

 

As anticipated, the output data provided by these models have been processed by the optimizer of 
the reconfigurable system. The power radiated with the optimum set of coefficients gives rise to a 
distribution of SNIR values over the served region which was assumed as the figure of merit to 
evaluate and compare the two rain generators performances. Referring to the system efficiency it 
was possible to identify close effects for both the ONERA and Polimi models. 

The system parameters considered to define the environment to be simulated are reported in Table 
9-1. The operation of the antenna has been examined for a set of six different percentage outage 
values:  out% = [ 0.1, 0.2, 0.5, 1, 2 5 ] [%], which represents the fraction of time of  the system 
unavailability. Each of these percentage values allows the Analysis Tool SW to elaborate the 
attenuation distribution at the ground terminals, making use of the slicing procedure [ESTEC 
Contract AT Manual, 2008]. These attenuation maps are saved and used as unique starting point of 
the optimization procedure.  

This verification activity is constituted by three main parts: the analysis over single snapshots 
carried out to verify the optimizer performances (5.4.3.1), the statistical analysis over a long period 

Figure 5.5: Spatial SNIR distribution in free-space conditions assuming uniform
excitation coefficients.

• the radiated power by co-frequency beams (interference);

• the power distribution on the whole service area;

consequently, the radiated power on one single spot is dependent on the attenuation

of the whole service area. The analysis of the radiated power over a single spot would

indirectly take into account the overall area attenuation situation. In the following,

a single spot of the service area has been selected to study the performances of the

transmission schemes in terms of the final user SNIR distribution. Referring to the

free-space analysis presented in Sec. 5.3, the spot number 32 in Fig. 5.1 is chosen for

the following analysis.

In order to test the different transmission techniques, the user rain attenuation

conditions have to be simulated referring to a consistent meteorological information,

which drive the antenna coefficients optimization. The selected input meteorological

database are the ECMWF 6-hours predictions of cumulated rain over the service

area. Those information can be described as pictures (“snapshots”) of the predicted

rain conditions valid for a 6-hours interval for a specific day. The selected “snapshots”
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have to be processed to be applicable to the pixel reference grid in Fig. 5.1 by a

specific pre-processing scheme.

A selection of test cases was performed among the meteorological data available

for the year 2000, with the aim of representing different kind of rain conditions over

the selected spot:

• snapshot 001228ss01 (Dec. 28, 2000): stratiform rain (low/moderate rain in-

tensity), wide spread across the service area;

• snapshot 000715ss01 (July 15, 2000): convective rain (moderate/high rain in-

tensity), multiple cells across the service area;

The following figures show the cumulated rain over the 6-hour period relatively

to each of the above snapshot, the circle represents the selected beam where the

attenuation user’s conditions will be simulated.

By a proper pre-processing, the cumulated rain information is translated in the

attenuation CCDF for each pixel of the service area [66]. The spot rain attenuation

CCDF, necessary to simulate the user’s rain attenuation time series by the model

Figure 5.6: Snapshot 001228ss01: processed cumulated rain amount over the service
area. Large stratiform rain area
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Figure 5.7: Snapshot 000715ss01: processed cumulated rain amount over the service
area. Multiple convective rain cells

described in Chapter 3, is then derived by the average of the pixels attenuation

CCDF belonging to the spot.

The resulting CCDF of rain attenuation, P (A), for the spot area in the two

cases is shown in Fig. 5.8. It represents the fraction of space and time of the spot

area in Fig. 5.9 subject to attenuation values higher than the thresholds.

The different rainy conditions are clearly visible in Fig.5.8: wide stratiform rain

(green curve), characterized by high covered area (starting point of the curve p0),

wide convective rain (red curve), characterized by highest attenuation values. The

Log-Normal approximation of the rain attenuation P (A)s is shown with circle lines.

The approximation holds well down to 10−3, which is set as the area probability limit.

In terms of spatial resolution, given a typical spot dimension of 300 km × 300 km,

the probability 10−3 is equivalent to a square of less than 10 km × 10 km.

Given the Log-Normal approximation, the model presented in Chapter 3 is

applied to simulate the users’ rain attenuation conditions inside the spot area.
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S1:0012128ss01 − wide stratiform rain

S2:0007115ss01 − wide convective rain

S1: LogN fit

S2: LogN fit

Figure 5.8: Rain attenuation P (A) relative to different snapshot of meteorological
prediction information. The attenuation distribution gives the spatiotemporal
information (coverage area) relative to the selected spot. Two different rainy

conditions are described: wide stratiform rain (green curve), wide convective rain
(red curve). For each P (A), the circle-lines represent the approximation by the

Log-normal distribution of rain attenuation needed for the TS model.

5.4.1 User’s rain conditions simulation

First of all, a proper grid of users is to be defined in order to properly impose clima-

tological characteristics and the desired spatial correlation of rain attenuation. The

OBDPA system processes a cumulative information of rain, which describes the por-

tion of the pixel area subject to certain rain attenuation. Given the specific spot of

interest, the P (A) curves in Fig. 5.8 represent the aggregate information, in space

and time dimension, of the NP pixels in the spot. The aim is to transform that

information in a set of time series of rain attenuation, which represent the evolution

over the 6 hours of the rain conditions across the area. To accomplish this task, a
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grid of users is created for which rain conditions will be simulated. Fig. 5.9 shows

the geographical area corresponding to spot 32 in Fig. 5.1.
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Figure 5.9: Grid of 500 users distributed in the spot n.32 region. Red users
corresponds to the pixel grid of the RA system

The shape of the area represents the spot-footprint of the multibeam antenna.

Its shape is elliptical and stretched because of the satellite position at latitude 0o

(geo-stationary), longitude, 33o E.

The application of the Time Series (TS) model to the simulation of “on-demand”

P (A) at 6 hours is explained in the following. The added value of the proposed

modelling is the possibility of describing the time evolution over the area during the

6 hours starting from the spot P (A integral information. This task is accomplished

by assigning correlated “rainy” states among users on a hourly basis, then selecting

proper time series of rain attenuation values for each user in “rainy” state, as described

in Chapter 3.
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Looking at the attenuation distributions in Fig. 5.8, cach P (A) starting point

(p0) is equivalent to the total fraction of the spot area in Fig. 5.9 covered by rain

during the 6 hours. Referring to the rainy states assigning process in Sec. 3.6.2, a

binary process is generated for each stations and mutual spatial correlation among

rainy states imposed. Statistics of the generated process at 6-hours intervals are

calculated to find the closest fraction of rainy area to the p0 of interest. The resulting

6-hours binary evolution is then selected to provide the information of the rainy users

for each single hour in the spot area in Fig. 5.9.

The total number of rainy users Nr is equivalent to the number of rain time

series of 1 hour duration to be extracted from the database of measured attenuation

to reproduce the target spot P (A). This task is accomplished by applying the same

methodology exposed in Sec. 3.6.1 and 3.6.3. Firstly, a set of Nr series of 1 hour

duration are selected to model the P (A), secondly the rain time series assigning

process is in charge of selecting the most suitable time series for the rainy users every

hour, to model the correct spatial correlation of the average rain attenuation over

the hour. Resulting from this mathematical framework is a statistical description

of the rain spatiotemporal distribution over the spot area for the selected 6-hours

period, which resembles the meteorological attenuation distribution used to drive the

OBDPA system.

The application of this modelling to realistic meteorological conditions is dis-

cussed In the next Sections.

5.5 Simulation methodology

The system analysis is carried by simulating the rain attenuation conditions for mul-

tiple users in the selected spot, obtained by implementing the TS model described
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in Chapter 3. The purpose of the simulation is to prove the effects of the OBDPA

for constant and adaptive ModCod transmissions, with the aim of assessing the ad-

vantage obtained by the variable power radiated on the spot, optimized according to

the actual meteorological condition of the whole service area. The obtained results

are compared with a fixed optimized antenna, i.e. an antenna whose radiated power,

optimized for the long-term attenuation distribution, does not change in time.

For both CCM and ACM transmission modes, the methodology implemented

for the simulation consists in the following steps:

• For the selected 6-hours period, generating a rain attenuation distribution over

the beam area which reflects the meteorological information available to the

OBDPA system and which drive its re-configuration, i.e. optimization of the

excitation coefficients w responsible for the radiation over the whole service;

• Computing the SNIR in Eq. (5.1), SE in Eq. (4.8) for the OBDPA system, for

each user in the selected beam j, according to the 6-hours optimized radiated

power f(wj);

• Computing the SNIR in Eq. (5.1), SE in Eq. (4.8) for the fixed antenna system,

for each user in the selected beam j, according to the long-term optimized

radiated power f(wj) ;

• Computing the user throughput according to Eq. (4.10) and availability (per-

centage of time Eq. 4.6 is verified over the 6-hours interval), according to the

available transmission scheme, for both OBDPA system and fixed antenna;

• Averaging the results over the 6-hours time period, defining a proper figure

of merit to judge the advantage of the OBDPA. The average value is calcu-
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lated taking into account both rainy and not rainy time in the hypothesis of a

continuous service.

5.6 Simulation results

The following figures show the obtained SNIR distribution, SE distribution and

throughput analysis for the spot 32 in the service area, according to the predicted

meteorological conditions described above. The transmission system performances

are evaluated in the following cases:

• Fixed front end antenna system: CCM and ACM

• OBDPA system: CCM and ACM

Concerning the modulation and coding, the reference scheme is the one pro-

posed in the DVB-S2 [78] standard. DVB-S2 is envisaged for broadcast services and

TLC services including standard and High Definition Television (HDTV), interactive

services including Internet access, and (professional) data content distribution. The

standard main features in terms of modulation schemes, spectral efficiency and SNIR

thresholds are summarized in Tab 5.2.

5.6.1 Test case 1: Wide stratiform rain

In this first example, a wide stratiform rain over the service area is considered. Rain is

characterized by a large extension and low to moderate rain rates. This information is

derived by the cumulated rainfall amount over the 6 hours period derived by ECMWF

predictions [73] and shown in Fig. 5.6.
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Mod. Inner code rate r ξ (bits/s/Hz) SNIR (dB)
QPSK 1/2 0.99 1.01

3/5 1.19 2.23
2/3 1.32 3.10
3/4 1.49 4.04
4/5 1.59 4.68
5/6 1.66 5.18

8PSK 3/5 1.78 5.61
2/3 1.98 6.72
3/4 2.23 8.01

16APSK 2/3 2.64 9.07
3/4 2.97 10.31
4/5 3.17 11.14
5/6 3.30 11.71

32APSK 3/4 3.60 12.66
4/5 3.86 13.63
5/6 4.03 14.28
8/9 4.30 15.68
9/10 4.35 16.04

Table 5.2: ModCod, SE and required SNIR according to the DVB-S2 standard.
Required SNIR is targeting a quasi-error free transmission goal of 10−7 packet error

rate

5.6.1.1 Rain attenuation modelling

The first step is to describe the rain attenuation conditions over the service area by a

proper processing, to make them applicable to the OBDPA system. Considering the

single beam area and the time evolution period of 6 hours, the first task is to expand

in space and time the integral information of the attenuation distribution, in order to

describe each single user conditions on the service area at any given moment within

the 6 hours time frame.

This task is accomplished by the TS model as previously introduced. Consider-

ing the green curve in Fig. 5.8, it describes the rain attenuation conditions, in space

and time, on the service area for the selected meteorological “snapshot”. Fig. 5.10
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shows the simulated rainy states over the reference area for the considered curve. Red

circles are the users subject to rain in the reference grid at each hour: “rainy” users

results from a single realization of a random process, which takes into account the

spatial correlation among users (based on their distance) and the temporal correlation

interval of stratiform rain events (Chapter 3).
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Figure 5.10: Test case I: snapshot 001228ss01. Spatio/temporal evolution of the
number of rainy stations during the 6-hours period. Blue crosses represents the

simulated users in the area, red circles the fraction of users under rain at each hour.
It is clearly visible the spatial feature of rainy states and its temporal evolution.

From Fig. 5.10 it is clear that the considered 6 hours are characterized by

a significant rain event, which almost covers the spot area completely (high p0).

The rain attenuation distribution P (A) obtained by the time series selected by the

TS model is shown in Fig. 5.11, together with the target P (A) obtained by the

meteorological information processing.

As clear from Fig. 5.11, the obtained time series of rain attenuation well de-
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Figure 5.11: Test case I: snapshot 001228ss01. Rain attenuation distribution in
space/time. Green line is the target distribution as derived from meteorological

information for the 6 hour period, the red line is the simulated rain arranged in time
series of 1 hour for all the rainy users. The starting point of the curve is the total

fraction of users which experience rain attenuation

scribe the target rain attenuation distribution over the spot area. The rain evolution

modelling in Fig. 5.10 well matches the information of the fraction of rainy area over

the spot in the 6 hours time. It is clearly visible the spatial correlation among “rainy”

users (red dots) and their time evolution over the hours.

5.6.1.2 SNIR and user channel capacity assessment

Given the rain attenuation conditions simulated above, firstly the user’s SNIR is cal-

culated. The time series of SNIR are obtained for each users considering the time

series of rain attenuation and the signal power and interference generated by the

transmitting antenna, according to Eq. 5.1. Two antennas area considered: a fixed

one, optimized for the long term rain attenuation statistics, and the reconfigurable

one (OBDPA), whose radiated power is optimized according to the simulated mete-
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Figure 5.12: Average user SNIR values
obtained for Fixed and OBDPA system

Figure 5.13: Average user SNIR gain of
the OBDPA system. The OBDPA
provides an average higher SNIR to

almost all the simulated users

orological 6-hours prediction.

Fig. 5.12 shows the average user SNIR in the spot over the 6 hours period. The

SNIR values are calculated according to the definition in Eq. 5.1. The advantage of

the OBDPA system is clearly visible by the blue crosses which are consistently above

the red dots. This can be appreciated by looking at the average gain SNIROBDPA−

SNIRFixed, which is greater than zero for almost all the simulated users. The CDF

of the average users SNIR values is shown in Fig. 5.14: the shift of the distribution

towards higher values of SNIR is the effect of the higher power radiated on the spot

by the OBDPA system.

The channel capacity for each users is derived by:

C = log2(1 + γ) (5.5)

where γ is the user SNIR time series. Referring to Tab. 5.2, the achieved SE of the

systems is obtained by considering the best allowed transmission scheme. Given the

SNIR time evolution of each users, the theoretical SE is obtained as in Eq. 4.8 by the
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Figure 5.14: Test case I: snapshot 001228ss01. CDF of average SNIR users values in
the simulated spot. The average SNIR per user is obtained over the 6-hours period.

Fixed front end antenna (red) compared with OBPDA system (blue)

highest modcod supported in Tab. 5.2. The average user channel capacity and SE

over the time period are shown in Fig. 5.15. Values are obtained simply averaging

over the 6-hours and taking into account both rain and no rain conditions.

The blue crosses represent the average SE of the OBDPA compared with the

red dots of the fixed front-end antenna. A blue cross above the line marked by red

dot means an increase in the SE of the specific user. Fig. 5.15 shows that the channel

capacity achieved by the OBDPA is in general higher than the one obtained by a fixed

front end antenna. In terms of SE (left part of Fig. 5.15), a saturation effect is visible

due to the highest transmission scheme in place, as well as significant gain between

the red dots and blue crosses on the left part of the graph. The few exceptions (blue

crosses below the red dots) represent a subset of users which experience either a very

deep rain fade or significant interference. Since the OBDPA system is not able to

resolve single users but only the spot attenuation conditions, some users may incurr

in a SNIR degradation resulting from the combination of local attenuation and co-

frequency beams interference. Must be noticed that a degradation in SNIR does not



Chapter 5: Joint use of On-board Dynamic Power Allocation and ACM 142

result automatically in a user outage, which depends on the transmission scheme in

place.

In order to better appreciate the effect of the OBDPA in rain fades, the min-

imum value of users SE is considered, for fixed and OBDPA system. It is expected

that the OBDPA would provide an extra power margin to compensate rain fades

occurring at users, thus reducing their SE degradation. This is shown in Fig. 5.16,

where the SE time series is plotted as function of time. Two random users are selected

in the spot area, they experience a visible rain fade in distinct moments of time. The

OBDPA (blue line) outperform the fixed antenna by reducing the rain fade impact

on the SE curve. Considering now all the users, the minimum SE experienced by

the users during the 6-hours is calculated for the two antennas in place. Results are

shown in Fig.5.17.
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Figure 5.15: Test case I: snapshot 001228ss01. Scatter plot of channel capacity
(right) and spectral efficiency (left). Fixed antenna (red) and OBDPA (blue). The
blue crosses above the line defined by the red dots represent a gain in terms of

channel capacity or SE.
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Figure 5.16: Test case I: snapshot 001228ss01. Time evolution of SE for two selected
users in the spot, subject to two separate rain fades. The extra margin provided by
the OBDPA system results in a less severe degradation of users SE due to rain fades

5.6.1.3 Throughput and availability analysis

In order to better assess the effects of the two power allocation schemes on the sys-

tem performances, throughput and user availability have been evaluated accounting

CCM and ACM transmission, with and without OBDPA. Throughput is obtained

by the integral of the achieved SE over the 6-hours period, according to Eq. (4.10).

Availability is defined as the percentage of time over 6-hours the required SNIR for

the link closure definition in Eq. (4.6) is not achieved. In CCM mode, two constant

modcod are selected:

• CCM1 8 PSK(2/3): low SE mode [79]

• CCM2 32 APSK (5/6): aggressive mode (roughly doubled SE than previous)

Concerning the ACM transmission mode, ideal channel feedback to the transmitter is

considered: the best supported modcod is selected at each sample of the SNIR time
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Figure 5.17: Test case I: snapshot 001228ss01. Minimum value of SE for each users
for fixed and OBDPA system (Left). Reduction of SE worst

degradation:(SEOBDPA − SEfixed) (right). Average ∆SE = 0.4

series (ideal channel feedback to the transmitter). Fig. 5.18 shows the average user

throughput obtained by the proposed transmission modes.
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Figure 5.18: Test case I: snapshot 001228ss01. Average user throughput for CCM
and ACM, with OBDPA (right) and fixed antenna (left)

On the left side, a fixed front end antenna is shown. The average throughput

per user is calculated as the SE of the selected modcod multiplied by the times

the user SNIR is above the required modcod threshold. In the CCM case, different

values of average throughput results from outages during the 6-hour simulated period.

The more aggressive scheme (green dots) results in higher throughput for most of the

users, but some users experience severe outages (red circle) in the 6-hours time period:

their SNIR time series does not support the high mode selected. Different results are

obtained when ACM is in place (light green triangles): ideally the best supported

modcod is always selected leading to an increase in throughput and limiting the user
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outages. This at the cost of added system complexity to provide the receiver channel

information to the transmitter. On the right side of Fig. 5.18, the same transmission

schemes coupled with OBDPA are shown. While there is no sensible difference in

the lowest constant transmission rate (blue dots), the higher constant rate (green

dots) is better supported: no users experience complete outage and a better user

availability can be appreciated with no users experiencing severe outages. Looking

at ACM modes, green triangles exhibit a lower variation compared to the ACM and

fixed antenna. In this case, a more stable throughput among the users is achieved.

The previous considerations find support in the following results. Fig. 5.19

shows the user outage obtained by the high constant rate transmission (CCM2), in

case of a fixed antenna (blue) and the OBDPA system (red). The outage is the

percentage of time the high constant rate is not supported over the 6 hours. It is

clear the benefit of the OBDPA in terms of reduced user outage for the constant rate

selected. Considering the outage distribution over users, the same advantage is shown

in Fig. 5.20, where the probability of users having outage higher than thresholds is

shown. In the considered period, no users experience cumulative outage longer than

5% over the 6-hours when OBDPA is used. Especially for CCM, the benefit of OBDPA

is a reduction of almost 50% of users experiencing outage.

Fig. 5.20 shows that the coupled use of ACM and OBDPA does not lead to

a sensible increase in user availability: a similar level is already obtained by the

ACM use only. Instead, the effect of OBDPA is more visible in the modcod usage

distribution. Fig. 5.21 shows the overall availability of modcods in time for all the

users. The effect of theOBDPA system is to increase the availability curve for high

modcods, thus allowing their use to more users and for a larger fraction of time. The

same result can be observed in the histogram of modcod distribution in Fig. 5.22.

In general, a reduction in terms of overall use of lower modcod, evaluated for all the
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users, is visible. A usage increase appears consequently in the highest modcod bar.
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Figure 5.19: Test case I: snapshot 001228ss01. User outage for high CCM, fixed
fron-end compared to OBDPA antenna.
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Figure 5.20: Test case I: snapshot 001228ss01. CCDF of user outage for high CCM
and ACM, fixed antenna compared to OBDPA antenna.
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Figure 5.21: Test case I: snapshot 001228ss01. Availability of modcod (percentage of
time evaluated for all the users). Comparison between fixed antenna (red) and

OBDPA antenna (blue)

Fig. 5.23 shows the advantage in terms of throughput for the simple ACM (fixed

front-end) and the ACM with OBDPA. The previous consideration in terms of higher

modcod usage is appreciable also by looking at the throughput gain obtained by the

joint use of OBDPA and ACM compared to the case of simple ACM, shown in Fig.

5.23. Looking at the throughput statistics, an interesting result is that the average

throughput gain is in the order of 5% but the standard deviation of user’s throughput

is reduced of almost 50%, leading to a more uniform aggregated throughput over the

whole spot.
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Figure 5.22: Test case I: snapshot 001228ss01. Modcod histogram of overall usage
(time evaluated for all the users). Comparison between fixed front end (red) and

OBDPA antenna (blue)
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Figure 5.23: Test case I: snapshot 001228ss01. Average user throughput gain using
ACM coupled with OBDPA
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5.6.2 Test case 2: Multiple convective cells

A similar analysis is carried on a different rain distribution over the whole service area,

characterized by multiple convective rain cells, i.e. multiple localized areas subject to

moderate/strong rain intensity (Fig. 5.7). This is considered as a critical case for the

OBDPA system since a large amount of power has to be redistributed over different

service spots. The rain attenuation distribution on the spot is described by the red

curve in Fig.5.8: it can be noted the presence of higher attenuation values and a lower

integral of rain covered area compared to the previous case.

5.6.2.1 Rain attenuation modelling

As previously explained, integral information related to rain attenuation distribution

provided by the curve in Fig. 5.8 is expanded in space and time according to the

method in Sec. 5.4.1, in order to describe each single user conditions on the spot

area at any given moment within the 6 hours time frame. Fig. 5.24 shows the sim-

ulated rainy states over the reference area for the considered curve. Red circles are

the users subject to rain in the reference grid at each hour: “rainy” users results from

a single realization of a random process, which takes into account the spatial corre-

lation among users (based on their distance) and the temporal correlation interval of

stratiform rain events (Chapter 3).

The simulated area in Fig. 5.24 exhibits a different rain distribution than the

previous case, limited to the first 4 hours and characterized by separate rainy areas

(red circles). The overall amount of rainy users is defined by the p0 value of the

attenuation distribution shown in Fig. 5.25. This information is used to derive a

random binary process for each user, with a duration of 6 hours, which assigns the

user rainy states preserving the spatial correlation among users and the temporal
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correlation of rain (Sec. 5.4.1). The rain attenuation distribution P (A), which is

obtained by the current spot predictions and drives the antenna reconfiguration, is

reproduced by the time series selected by the TS model, as shown in Fig. 5.25.

5.6.2.2 SNIR and user channel capacity assessment

The time series of SNIR are obtained for each users considering the time series of rain

attenuation and the signal power and interference generated by the transmitting an-

tenna, according to Eq. 5.1. A fixed antenna and the OBDPA system are considered.

The CCDFs of the average users SNIR are shown in Fig. 5.26 for the two cases.

Concerning the achieved channel capacity and SE, their average value is shown

in Fig. 5.27. With respect to the previous case, it is clearly visible a subset of user

whose average capacity appears to be reduced by the OBDPA system (blue crosses

below the red line of fixed antenna capacity). On the other hand, a large number of

users show higher average capacity to be exploited. Interesting is also to look at the

minimum value of users SE over the 6-hours period in Fig. 5.28. There is a significant

reduction in the worst SE degradation for the major number of users, while a worse

degradation must be accounted on others.

The investigation on the worse users in the spot area shown that the responsible

for the capacity degradation (and consequently SE reduction) is to be found the

the interference due to co-frequency beams. Fig. 5.29 shows the OBDPA antenna

excitation coefficients for the whole service area. Co-frequency beams 9 and 34 are

characterized by high radiated power which generates high levels of interference in

the upper-left spot area, where the users with low channel capacity are located.
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5.6.2.3 Throughput and availability analysis

The previous considerations help to explain the analysis of throughput and availabil-

ity, which have been evaluated for CCM and ACM transmission, with and without

OBDPA. The same definition of throughput and availability as in the previous case

is considered. As previously done, in CCM mode, two constant modcod are selected:

• CCM1 8 PSK(2/3): low SE mode [79]

• CCM2 32 APSK (5/6): aggressive mode (roughly doubled SE than previous)

Concerning the ACM transmission mode, ideal channel feedback to the trans-

mitter is considered: the best supported modcod is selected at each sample of the

SNIR time series (ideal channel feedback to the transmitter). Fig. 5.30 shows the

average user throughput obtained by the proposed transmission modes. On the left

side, a fixed front end antenna is shown. The average throughput per user is cal-

culated as the SE of the selected modcod multiplied by the times the user SNIR is

above the required modcod threshold. In the CCM case, different values of average

throughput results from outages during the 6-hour simulated period. The more ag-

gressive scheme (green dots) results in higher throughput for most of the users, with

some severe outages of a subset of users. Different results are obtained when ACM is

in place (light green triangles): ideally the best supported modcod is always selected

leading to an increase in throughput and limiting the user outages. This at the cost

of added system complexity to provide the receiver channel information to the trans-

mitter. On the right side of Fig. 5.30, the same transmission schemes coupled with

OBDPA are shown. As expected, there is no sensible difference in the lowest constant

transmission rate (blue dots). In this case, also the higher constant rate (green dots)

is worse supported with a larger number of users who experience complete outage.
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Looking at ACM modes, green triangles exhibit a higher variation compared to the

ACM and fixed antenna, while maintaining a good system availability. Also in this

case, among the served users, a more stable throughput is achieved.

In terms of user availability, the CCDF of outage probability among users is

shown in Fig. 5.31. For a system with no OBDPA, outage affects roughly the 10%

of the users with CCM, less than the 2% in case of ideal ACM. The OBDPA in this

case results in a higher outage distribution affecting users with low SNIR.
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Figure 5.24: Test case II: snapshot 000715ss01. Spatiotemporal evolution of the
number of rainy stations during the 6-hours period
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Figure 5.25: Test case I: snapshot 000715ss01. Rain attenuation distribution in
space/time. Green line is the target distribution as derived from meteorological

information for the 6 hour period, the red line is the simulated rain arranged in time
series of 1 hour for all the rainy users. The starting point of the curve is the total

fraction of users which experience rain attenuation
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Figure 5.26: Test case II: snapshot 000715ss01. CCDF of average user SNIR for
fixed antenna (red) and OBDPA system (blue). The average value is evaluated over

the 6-hours time period
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Figure 5.27: Test case II: snapshot 000715ss01. Scatter plot of user average channel
capacity (right) and average SE (left) for fixed antenna (red dots) and OBDPA

(blue crosses). The blue crosses above the line defined by the red dots represent a
gain in terms of channel capacity or SE.
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Figure 5.28: Test case II: snapshot 000715ss01. On the left: minimum value of user
SE for the considered 6 hours period. Fixed antenna (red) compared with OBDPA
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value. Average increase ∆SE = 0.35

Figure 5.29: Test case II: snapshot 000715ss01. Values of OBDPA antenna
excitation coefficients across the whole service area
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Figure 5.30: Test case II: snapshot 000715ss01. Average user throughput for CCM
and ACM, with OBDPA (right) and with fixed antenna (right)
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Figure 5.32: Test case II: snapshot 000715ss01. Histogram of modcod overall usage
for fixed (red) and OBDPA system (blue)

The effect of OBDPA with ACM is more visible in the modcod distribution in

Fig. 5.32. It appears that the dynamic power allocation results in a higher use of

lower modcods, possibly related to users with lower SE. Translating this information

in terms of throughput for ideal ACM, the user’s gain in Fig. 5.33 shows both positive

and negative variations, the negative related to those group of users affected by lower

SNIR and SE. Considering the throughput statistics over the spot, the variation of

the average user throughput is not relevant (−0.2%) while a sensible increase in the

throughput standard deviation among users is noted +58%, due to the presence of

both positive and negative throughput gains. Considering only the positive through-

put gains, the standard deviation of the final throughput with OBDPA is reduced by

a factor of 3 compared to the case of ACM transmission with no OBDPA.
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Figure 5.33: Test case II: snapshot 000715ss01. Average user throughput gain using
ACM coupled with OBDPA

5.7 Conclusions

In this Chapter the performance of different transmission strategies over one spot of

a multibeam antenna system with OBDPA has been derived and discussed.

A multibeam satellite system has been considered, transmission may occurr in

CCM mode, ACM and OBDPA may be introduced in support to the previous tech-

niques and compared to a fixed antenna system. A grid of users has been defined on

the service area, rain attenuation conditions, reflecting real meteorological informa-

tion made available by ECMWF, have been reproduced on the target spot area by

means of the TS model previously introduced.

The SNIR for each users have been defined and selected as a proper figure of
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merit to assess the user’s conditions in the service area. The users SNIR depend on the

current antenna radiated power, link attenuation (rain), interference of co-frequency

beams.

One spot in the center of the coverage area has been selected to assess the system

performances, based on free-space considerations related to the antenna in place. Two

rain attenuation conditions have been selected to test different transmission schemes,

in order to assess users service quality in terms of availability and throughput in case

of:

• CCM transmission with and without OBDPA

• ACM transmission with and without OBDPA

The first scenario is characterized bu a widespread rain distribution (stratiform

rain) across the service area. The TS model in use allows to simulate the correlated

rain attenuation conditions of multiple users in the spot, in order to test the effects

of the different transmission schemes on the simulated users.

The most important system results show that CCM at aggressive rates suffers

of users complete outage, which is reduced and avoided by the introduction of the

antenna power optimization. The ideal ACM transmission mode is able to almost

completely reduce the users outage, at the cost of the very high complexity required

to provide accurate user’s link state information to the transmitter. The effect of the

OBDPA on the ACM is not in terms of user’s availability but average throughput gain.

By looking at the distribution of modcod usage, it is clear that the OBDPA provides a

significant advantage in supporting higher modcods. In terms of throughput statistics,

it is important to note that the joint use of ACM and OBDPA leads to an increase

of the average throughput of roughly 6%, characterized by a substantial decrease in

the throughput standard deviation among users close to 50% for the analyzed case.
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The second scenario considered is characterized by multiple cells of convective

rain over the service area. The critical aspect in this case is that the OBDPA needs

to redirect power on many different areas. The antenna performances appears to be

limited in this scenario. The analysis of the power radiated by the optimized front-

end shows a good increase in the available users SE, while a group of users are subject

to SE degradation. The reason is to be found in the system interference generated by

co-frequency beams, which has a dominant effect compared to the rain attenuation.

The power dynamic allocation is driven by the lowest SNIRs in the whole area, thus

the available power on single beam considered is constrained and degradation of users

may occur.

Concerning users outage, in this scenario a CCM system is limited by the users

with lowest SNIR. On the opposite, with ACM it is possible to cope with the power

limitation imposed by the OBDPA and maintain a very low user outage. By looking

at the time evolution of users conditions, the OBDPA results in a consistent limiting

action towards the SE degradation due to heavy fades. The average gain is around

10% of the achievable SE.

The average throughput gain evaluated on the simulated users depends on the

user SE resulting from the dynamic power allocation: in this case the overall gain is

close to 0% due to the loss in SE of a group of users. Instead, the reduction of the

standard deviation of throughput who experience a positive gain is reduced by 30%.

By investigating the presented results one can observe the effects of dynamic

power adaptation in different transmission modes. When a feedback link is not avail-

able (one directional applications), the CCM transmission may incurr temporary

outages (rain fades) or complete outages for users which are subject to high interfer-

ence (the required SNIR to support the transmission is not achieved in the observed

period). In this scenario, the OBDPA results in reduced outage probability for the
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users not subject to high interference.

In case ACM is available (under the assumption of a complex feedback system),

results presented above show that the power adaptation effectively support ACM

transmission schemes. When extra power margin is available, its effect coupled with

ACM results in:

• a reduced heavy fades in the 6 hours time (i.e. higher minimum user SE) gain

∆SEmin ≈ +10%

• a higher ModCod support: total probability of highest ModCod usage +20%

for stratiform rain case and +5% for convective rain;

• a reduced standard deviation of average throughput among some users is ob-

served: −50% for stratiform rain and −30% for convective rain;

In other situations, performances are limited due to the presence of a subset of

users limited by system interference. For those users, a reduction in throughput is

observed while users availability is preserved by ACM transmission schemes.

The analysis here presented covers a single spot of the service area considered

for the multibeam satellite system. By general considerations regarding the whole

service area, no significant variations are expected by the analysis of different spots,

at least concerning the center part of the service area (spots on the margins are less

subject to interference and are characterized by better user conditions simply by the

antenna design). The analysis proposed here and the generated results are devel-

oped on single meteorological events, thus are not exhaustive to provide an overall

performance assessment of the OBDPA system. It appears also difficult to select a

significant subset of different meteorological conditions to be able to derive conclu-

sive performance results. The two proposed meteorological situations discussed above
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appears of interest due to their rain characteristics in relationship with the OBDPA

system. The techniques tested on those short studies can be directly applied to the

investigation of long-term simulations, in order to take into account a large ensemble

of meteorological conditions and to improve the understanding of the OBDPA system.

This future development will be subject of a stand-alone study.
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Chapter 6

Conclusions

In this thesis, we have explored a number of topics connected to the joint use of two

Fade Mitigation Techniques to counteract rain attenuation for satellite communica-

tions in the Ka frequency band. Our goal has been to further the research in these

areas in two directions: on one hand we have investigated the joint use of FMTs,

on the other to support the use and realization of OBDPA systems, by proving their

potential advantage coupled with already in-use ACM techniques. Below we summa-

rize the work presented in the thesis and give our recommendation for extending the

research.

Following the introduction in Chapter 1, Chapter 2 presents a comprehensive

survey on the modelling of atmospheric attenuation; specifically concerning rain at-

tenuation, the most accurate models to predict rain attenuation distribution have

been discussed and their accuracy was assessed by comparison with the reference

statistical model ITU-R P.618-10 and a comprehensive database of measurements.

Physical based models such as SC-ExCell and SST perform well over a wide proba-

bility range in the prediction of the attenuation distribution, both starting from local

climatological information or statistical climatological maps.

It has been found that, in order to address multiple users attenuation conditions,

vectors of time series which describe the rain attenuation evolution in time are needed.

Especially, concerning multisite representation, the problem of spatial correlation
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among sites at different distances arises. The spatial correlation reflects the natural

characteristics of rain events being limited in spatial extension, according to the kind

of rain present (stratiform and convective).

Chapter 3 is devoted to the description and comprehensive discussion of the

model proposed by the authors to describe rain attenuation conditions for multiple

users. A novel method to generate time series of rain attenuation has been presented.

The method accurately reproduces the desired spatial correlation. A model for the

time evolution of rain events is also introduced. The performance of the proposed

method are assessed: single site attenuation statistics of first and second order are

tested against reference models. The de-correlation index has been analyzed and a

good agreement between the simulated and reference results has been found.

Chapter 4 explores the characteristics of the Reconfigurable Antenna system

(OBDPA system) and ACM transmission techniques with application to the prob-

lem at hand. The OBDPA system is described as well as the dynamic optimization

which aims at maximizing the worst SNIR over the service area. Ideal ACM trans-

mission schemes aims at maximizing the system SE at any instant by the adapting

the transmission format to the user SNIR condition. Consequently, the active fade

compensation provided by OBDPA system has potential to increase the effectiveness

of the ACM techniques.

In Chapter 5 we have applied the novel model for rain attenuation to the joint

use of the OBDPA and ACM. The two FMTs are tested on real rain attenuation

conditions described by meteorological data and simulated by the proposed model.

The figure of merit to describe the transmission system performance is the user SNIR,

evaluated considering the simulated rain attenuation and the optimized power radia-

tion coefficients of the OBDPA.

The analysis presented here covers a single spot of the service area considered
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for the multibeam satellite system. By general considerations regarding the whole

service area, no significant variations are expected by the analysis of different spots,

at least concerning the center part of the service area (spots on the margins are less

subject to interference and are characterized by better user conditions simply by the

antenna design).

The TS model for rain attenuation generates time series of rain attenuation

values (with time resolution 1 sample/s) for multiple receiving stations in the service

spot area, by adapting a single set of experimental rain attenuation measurements.

It represents one of the few solutions to the problem of modelling concurrent rain

attenuation conditions for multiple sites, with the unique characteristics of referring

to a database of real acquired measurements. By the analysis of the obtained time

series it has been observed that joint rain attenuation statistics among the simulated

users are accurately reproduced, in terms of spatial correlation of rain attenuation

and its time evolution, both on short and long term.

The model has been applied to generate “on-demand” rain attenuation condi-

tions based on the real meteorological information used in the OBDPA system. The

model allows to translate integral meteorological information into a time/space evo-

lution of rain over the selected time period of 6 hours, with desired statistical features

in terms of spatiotemporal correlation of rain. The application of the TS model to

the OBDPA system allows to simulate the end users states of the system in terms of

rain attenuation, gaining a new spatial and temporal resolution for the overall system

analysis. The quite simple mathematical framework makes the model an efficient so-

lution to simulate joint rain conditions over the 6-hours time intervals of the OBDPA

system.

By investigating generated system performance traces, the effects of dynamic

power adaptation in different transmission modes have been studied. When a feedback
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link is not available (one directional communications), the CCM transmission may

incurr in temporary or complete outages (rain fades) for the users which do not achieve

the required link closure SNIR in the observed period. In this scenario, the OBDPA

results in reduced outage probability for the users not subject to high interference.

In the case when ACM is available, i.e. under the assumption of a complex

feedback system, the obtained results show that the power adaptation effectively

support ACM transmission schemes. When extra power margin is available, its effect

coupled with ACM results in the following additional benefits, as applied to studied

scenarios:

• reduced heavy fades in the 6 hours time (i.e. higher minimum user SE): gain

in SEmin has been shown in ≈ 10%;

• higher ModCod index support: total probability of highest ModCod usage in-

creased by 20% (stratiform rain) and 5% (multiple convective rain cells);

• reduced standard deviation of average throughput among users: −50% overall

for stratiform rain case and −30% in convective rain for those users who benefits

from the extra power allocated by OBDPA system.

From the analysis of the generated SNIR and SE time series in the selected

scenarios, it can be observed that the system at high SNR might be limited by the

inter-beam interference. A subset of users may incurr in throughput reduction, while

their availability is preserved by ACM transmission schemes. In order to improve the

system performance, we presume that the OBDPA system optimization procedure

may require additional ACM induced constraints.

The analysis here proposed and the generated results results are developed on

single meteorological events, thus are not exhaustive to get an overall performance
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assessment of the OBDPA system. It appears also difficult to select a significant subset

of different meteorological conditions to derive conclusive performance results. The

two proposed meteorological situations previously discussed have been selected due

to their rain characteristics in relationship with the OBDPA system. The techniques

tested on those short studies can be directly applied to the investigation of long-

term simulations, in order to take into account a large ensemble of meteorological

conditions and to improve the understanding of the OBDPA system. This future

development will be subject of a stand-alone study.

Considering the results discussed above, we believe that the developed method-

ology appears of great interest applied to the OBDPA and ACM, even for single mete-

orological conditions, for the possibility of assessing link and space availability of the

different ModCods. The proposed methodology, able to simulate “on-demand” me-

teorological conditions, may be applicable the satellite system cross-layer scheduling

analysis and simulation [76]. From this point of view, the generated rain attenuation

conditions, with the proper spatiotemporal correlation, are a significant feature of the

proposed modelling.

The methodology presented in this work is currently used to perform a long-

term assessment of the joint use of the two presented techniques, in order to obtain

more solid results in term of SNIR and SE gain.
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Appendix A
On the Correlation Characteristics of Binary

Random Processes

A.1 Introduction

The motivations for the study here reported rose during the development of a model

to generate time series of rain attenuation for multiple sites on a large geographical

area. The model under development is based on two independent processes, one

assigning rain times (basic period of fixed length of 1 hour) and the second assigning

rain attenuation sequences. Dealing with multiple sites, the interest of the model is

firstly to reproduce the spatial/temporal variation of rain attenuation sequences.

Information of the spatial correlation of rain times and intensity are found

in [24], especially the description of the probability of concurrent rain over different

sites and its correlation, dependent on distance.

In the framwork of the model, the following process was developed in order to

assign rainy and not rainy times. Considering N stations randomly placed in the

reference geographical area, the state of the N stations at each time is described by

means of an N -dimensional binary variable which defines the condition “rainy” or “not

rainy”, with the associated multi-variate probability function.

The state is assigned by means of the probability density of an N -dimensional

continuous variable ri, with i = 1, .., N , and by anN dimensional thresholds ti, chosen

according to the correlated probability of rain for each location. The continuous “rain

state variable” ri for the ith location can be selected with a high degree of freedom.
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The assumption here is a Gaussian multi-variate variable normalized to zero mean and

unit variance, with covariance matrix imposed to represent the desired joint statistics

presented in [24]. The rain assigning process, tested on a long time, must reproduce

the rain probability P0 of each single station, as well as the space correlation of rainy

and not-rainy events among the N stations set

The threshold ti, which defines whether the condition on the site is“rainy” or

“not rainy”, is chosen to fulfill:

P (ti) =

ti∫
−∞

p(ri)dri = 1− P0,i, (A.1)

where P0,i is the probability of having rain in the ith stations. According to the

variable ri and the set threshold ti, a binary process zi is obtained to describe rainy

conditions:

zi = Tz(ri) =

 1 : ri > ti

0 : ri < ti

, (A.2)

The hard threshold imposed to the continuous variable is actually a non-linear trans-

formation Tz, which results in a binary process in which 1 corresponds to a rainy

hour, 0 to a non-rainy hour.

It was found that the non-linear transformation Tz has a significant effect on the

correlation characteristics of the resulting process zi. Fig. A.1 shows the correlation

of the input continuous variables and the one obtained after the clipping process,

which is sensibly lower than expected.

In the framwork of the time series model, we are interested in imposing the

correct correlation to the binary sequences zi obtained from the transformation Tz.

Consequently, defining the output process the one after the non-linear transformation,
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Figure A.1: Correlation of the random noise sequences and resulting correlation
after clipping

the correlation of the input process ri must be derived from the knowledge of the

desired correlation of the output process zi, which describes the rain events.

This issue could be solved by referring to the general theory of noise clipping,

deeply discussed in [58,59]. Particularly, the correlation of a random Gaussian process

after the non-linear transformation is the topic discussed in this work. Starting from

the general results about the spectrum of clipped noise, the case arisen in the model

development is addressed here. The solution to this particular case is derived by the

use of a series expansion of results in [58, 59]. The proposed series expansion allows

one to invert the effect of the non-linear transformation, deriving the correct input

correlation for a given target function after clipping.

The proposed solution is discussed in terms of its accuracy in reproducing the
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target function. The dependence of the result on the order of the series expansion

and the threshold used for clipping is also addressed. Finally, this study is applied

to the problem exposed above, obtaining the correct correlation among the binary

random sequences generated by the transformation Tz

A.2 Second-moment function of a clipped process

and the Normal Surface

Referring to [58], given a random process y, the non-linear transformation Tz under

analysis can be represented by:

z = Tg(y) =

 β(y − ts)v : y > ts

0 : y < ts

, (A.3)

which relates the dynamic characteristics between input y and output z processes.

β is an appropriate scale factor and ts is the specific clipping threshold. Clearly,

different threshold values leads to different clipping processes. According to [58], the

second-moment function of the output is specifically:

Mz(t) = E{z1z2} =
β2Ψ−1

2π
(1−k2)−1/2

∞∫
0

∫
yv1y

v
2 exp−(y21+y22−2y1y2k)/2Ψ(1−k2) dy1dy2

(A.4)

where Ψ = y2
1 = y2

2 and k = k(t) is the normalized covariance function of a broadband

input noise process.

The equivalent result is found in [59], which refers to the statistical concept

of Normal Surface. In noise problems, we can take X and Y to be the unclipped
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amplitude in two moments of time, respectively at t = 0 and t = t1. Then, r(t) is

the correlation function of the unclipped noise. Statistical reasoning is justified since

the noise distribution is Gaussian with zero mean and unit variance. If a distorting

apparatus is present, i.e. a clipper, such that after distortion the amplitude is f(X)

rather than X, then the resulting correlation function is given by:

Rz(t) =
1

2π(1− r2)

1/2
∞∫
−∞

∞∫
−∞

f(X)f(Y ) exp
−
(
X2+Y 2−2rXY

2(1−r2)

)
dXdY (A.5)

In both Eq. A.4 and A.5 the correlation after the clipping process depends on the

integral of a bi-dimensional PDF of the variables involved, which appears to be the

key point of the expressions.

If the processes involved are Gaussian, the integral of the bi-dimensional Gaus-

sian PDF could be solved analytically only for those limits which take advantage of

the PDF symmetry. This is the case of extreme clipping, which involves the function

f(X) in Eq. A.5 defined as:

f(X) = 1, (X > 0); f(X) = −1, (X < 0) (A.6)

Assuming a normalization such that after clipping the variance of the process is unity,
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Eq. A.5 becomes:

R(t) =
1

2π(1− r2)

1/2
 ∞∫

0

∞∫
0

exp−α dXdY

+

0∫
−∞

0∫
−∞

exp−α dXdY

−
∞∫

0

0∫
−∞

exp−α dXdY

−
0∫

−∞

−∞∫
0

exp−α dXdY

 ,

(A.7)

where

α = (X2 + Y 2 − 2rXY )/2(1− r2). (A.8)

The integration in polar coordinates X = ρ cosφ, Y = ρ sinφ brings to the result [59]:

R(t) =
2(1− r2)1/2

π

π/2∫
0

dφ

1− r sin 2φ
− 1 =

2

π
sin−1(r) (A.9)

which describe the relationship between the input correlation r and the output cor-

relation after the clipping process in Eq. A.6.

In order to assess the effect of different clipping function, especially the one

of interest for this work, there is the need to evaluate the integral of the Normal

Surface for limits different from 0 or ∞. This leads to the issue of representing the

integral of the PDF in such a way to allow its evaluation. Specifically, we look for a

representation to be inverted to derive the correct correlation to impose to the input

process given the desired correlation of the output binary sequences. To solve this
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task one could expand the PDF by means of a proper series of orthogonal functions.

A.3 Orthogonal expansion of probability densities:

the Edgeworth series

In practical cases one has to deal with a probability density p1(x) which looks similar

to a Gaussain on defined by Eq.

p(x) = N(x,m, σ) =
1√
2πσ

exp

[
−
(
x−m
σ

)2
]

(A.10)

Two Characteristics features of such distributions can be summarized as follows:

1. Unimodality, i.e. the PDF has a single maximum, and

2. The PDF has tails extending to infinity on both sides of the maximum, which

decay fast when the magnitude of the argument approaches infinity.

In this case it is always possible to approximate such PDFs using a series of Hermitian

or Laguerre polynomials.

A.3.1 The Edgeworth Series

The possibility of expanding a general function by a series of terms is mainly driven

by the necessity of simplify calculations. In this case a PDF p(x) under consideration

is approximated by the following series:

p(x) = p0(x)
∞∑
n=0

1

n!

bn
σn

Hn

(
x−m
σ

)
(A.11)
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where p0(x) is the Gaussian PDF in Eq. A.10 with mean value m and variance σ2

and Hn(z) stands for the Hermitian polynomials [60].

A.3.2 Rodrigues formula and Hermite polynomials

Hermitian polynomials, named after the French mathematician Charles Hermite (1822

- 1901), is a family of polynomial functions which is the solution of a special case of

differential equation appearing in the analysis of harmonic oscillators in quantum

mechanics. They appear in the Edgeworth series because tey can be used to evaluate

the nth order partial differential equation of a Gaussian kernel. By recalling Eq.

A.19, it appears clear how Hermitian polynomials are related to the solution of the

considered problem.

Referring to the Rodrigues formula [60], Hermitian polynomials are defined as:

Hn(z) = (−1)n exp
[
z2

2

]
dn

dzn exp
[
−z22

]
n = 0, 1, ... (A.12)

Hermitian polynomials are orthogonal with weight p0(x), i.e.

∞∫
−∞

Hn(z)Hm(z)p0(z)dz = n!δm,n =

 n! m = n

0 m 6= n
, (A.13)

the coefficients bn in Eq. A.11 can be calculated as:

bn = σn
∞∫
−∞

p(x)Hn

(
x−m
σ

)
dx = σnE

[
Hn

(
x−m
σ

)]
(A.14)

This expansion is based on the theorem of functional analysis reported in [63], which

states that if p(x) is an arbitrary function such that:
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∞∫
−∞
|p(x)|2dx <∞ (A.15)

then

lim
N→∞

∞∫
−∞

∣∣∣∣∣p(x)− p0(x)
∞∑
n=0

1

n!

bn
σn

Hn

(
x−m
σ

)∣∣∣∣∣
2

dx = 0 (A.16)

In practice the function p(x) is known only with a certain degree of accuracy.

Thus, the sum in Eq. A.11 can be truncated after a finite number N of terms. The

number N depends on the values of m,σ of the target distribution.

According to these literature results, it is reasonable to expand the expression

of the Normal Surface according to the Rodrigues formula in Eq. A.12. Then the

resulting series could be inverted to obtain the correct correlation to impose to the

initial process

A.4 Hard thresholding problem

In this section we focus on the problem of the extreme clipping of a noise sequence [59]

for a given threshold. The clipping result is a binary sequence defined as follows.

Given a standard process y with a specific correlation ry(τ), the non linear transfor-

mation in this case is given by:

z = Tg(y) =

 1 : y > ts

0 : y < ts

, (A.17)

which generates a binary sequence with a new correlation function Rz(τ).



Appendix A: On the Correlation Characteristics of Binary Random Processes 189

In the case of the considered transformation, Eq. A.4 is approximated by the

series [63]:

Rz(τ) =
1

σ2

∞∑
n=1


∞∫
−∞

g(ξ)Φn+1
(
ξ

σ

)
dξ


2

rn(t)

n
(A.18)

in which the term Φn+1 represents the nth derivative of the Gaussian distribution,

i.e.

Φn+1(z) =
∂n

∂zn

(
1√
2π

exp−1

2
z2
)

(A.19)

Expression A.19 involves the nth derivative of a Gaussian kernel, which can be

conveniently represented by Rodrigues formula [60] and Hermite Polynomials.

The clipping threshold enters directly as the limit of the integral in Eq. A.18.

Before considering a general clipping threshold ts, it is useful to address the case

for ts = 0. This is a special case since the threshold of transformation is equal to

the mean value of the original noise sequence. The integral expressed by Eq. A.4 is

symmetrical with respect to the mean value of the variable distribution and can be

solved in a closed form. Specifically, referring to Eq. A.18, we have:

Rz(τ) =
1

σ2

∞∑
n=1


∞∫
−∞

g(ξ)Φn+1
(
ξ

σ

)
dξ


2
ry(τ)n

n

=
1

σ2

∞∑
n=1


∞∫

0

1Φn+1
(
ξ

σ

)
dξ


2
ry(τ)n

n

=
1

σ2

∞∑
n=1

{Φn(∞)− Φn(0)}2 ry(τ)n

n

(A.20)

The use of Rodrigues formula [60] allows to express Φn(x) as:
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Φn(x) =
∂n−1

∂xn−1
w(x) = (−1)n

(
1

σ
√

(2)

)n−1

Hn−1

(
x

σ
√

2

)
w(x); (A.21)

with w(x) being the Gaussian distribution w(x) = 1√
2π

exp
{
−x22

}
;

In this particular case, the closed form solution of the integral is given by [63]:

Rz(τ) =
1

σ2

∞∑
n=1

|Φn(0)|2 ry(τ)n

n!
=

1

2π

R∫
0

dx√
1− x2

=
2

π
sin−1 ry(τ); (A.22)

which is the same result obtained by the use of the normal surface in [59]. This partic-

ular result is useful to assess the quality of the polynomial representation, especially

to assess the necessary number of terms in the series to well represent the original

correlation ry(τ).

For thresholds different from ts = 0 no close expressions are present for the value

of the integral in Eq. A.18. On the other hand, Eq. A.18 is general for any clipping

threshold ts: the value of the integral can be obtained with arbitrary accuracy using

the series expansion according to Eq. A.16.

A.5 Numerical Simulations

In this section the results previously described are implemented. The original sta-

tionary process y(d) is a random sequence with exponential correlation, i.e.

ry(d) = exp− d

D0
(A.23)



Appendix A: On the Correlation Characteristics of Binary Random Processes 191

where τ0 represents the correlation interval. The problem of interest involves a spatial

correlation, D0 can be considered as the correlation distance.

Given a broadband noise process, the first goal is to generate a random process

with the desired correlation function in Eq. A.23. Referring to the work in [80],

a simple AR filter was used to impose the correct correlation to a white Gaussian

process, with zero mean and unit variance. The estimation of the correlation of the

generated process requires attention. The quality of the estimation is dependent

of the number of independent samples available, leading to the need of simulating

process samples for large multiples of the correlation interval D0. Averaging different

realizations must be introduced, leading to the definition of a variance of correlation

function σry .

As explained in the previous section, the output correlation can be approxi-

mated by a series expansion of n terms involving the input correlation ry(d)n and a

set of weights based on Hermitian polynomials, as in Eq. A.20 and Eq. A.21.

We considered a first example with threshold ts = 0. Since random gaussian

processes with zero mean are used as input, this first threshold corresponds to clipping

at the mean value of the process. Eq. A.22 allows to have an analytical reference to

assess the accuracy of the expansion of Rz(τ), the process correlation after clipping.

Given the threshold ts = 0, Φn(0) can be expressed by Hermite polynomials Hen(0)

according to the Rodrigues formula. The value of Hen(0) is given by [60]:

Hn(0) =

 (−1)m
(2m!)
m! : n = 2m

0 : n = 2m+ 1
, (A.24)

from which results that odd terms of the series are equal to 0.

The following figures show the obtained correlation after clipping, compared
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with the expected sin−1 function in Eq. A.22.
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Figure A.2: Approximation of clipped process correlation (output) by Hermitian
series expansion of order N = 6. Note the slow convergence at correlation values

close to 1

Figure A.2 shows the original exponential correlation, the expected correlation

after hard thresholding as from Eq. A.22, the correlation of the clipped generated

process with its error deviation ±2σry , and the results of the series expansion with

Hermite polynomials in Eq. A.18. The series expansion converges fast for high values

of distance lags, the convergence at lag 0 requires instead a large number of elements

in the series. This is expected, since for small distances coefficients are close to 1.

Fig. A.3 shows the approximation error as function of distance and the expansion

order N . Convergence is quite fast except from the very beginning, the accuracy
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Figure A.3: Estimated Correlation at threshold 0

increases sensibly up to N = 50, slowing its progress for larger N . A reasonable

error is already obtained with few elements (N = 6) and it is definitely acceptable

for N ≥ 20.

A set of threshold different from for the non-linear transformation is then de-

fined. These thresholds define the value above which the input random process is

assigned to a value 1 of the output binary sequence. In order to assess the effect

of the clipping process, three thresholds are defined equal to 0, σ, 2σ. The effect of

clipping at different thresholds is shown in Fig. A.4. Given the input correlation,

the greater the threshold the larger is the effect on the correlation of output binary

sequence. This is reasonable since an higher threshold generates few “ones” in the

output sequence and the importance of those ones in the correlation evaluation be-

comes higher: a little difference in the number of “ones” has a large effect on the
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correlation evaluation. This is also confirmed by the results described in [58] about

the spectrum of clipped noise at different thresholds (recalling the strong relationship

between spectrum and correlation).
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Figure A.4: Output correlation of clipped process for three different thresholds:
0, σ, 2σ

A better accuracy for correlation values close to 1 is achieved by an higher

number of terms in the expansion. Considering a threshold of 2σ, which results in

a strong effect on output correlation, Fig. A.5 shows the convergence of the series

for different expansion orders: N = 6, 10, 20. The percentage error evaluated with

the reference curve is shown in Fig. A.6. Both figures are a zoom on small distances

1− 50 km which is the area of slower convergence.

Must be taken into consideration that increasing the expansion order leads to

numerical and computational difficulties due to the presence of Hermitian polynomials

of order N (which grow fast) and the need to evaluate N ! to scale them. Approxima-
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Figure A.5: Convergnce for different expansion order: N = 6, 10, 20

tions of Hermitian polynomials can be found in [60] only for special cases. Moreover,

the error at distance 0 appears to be reasonable already at order N = 20 as clear

from Fig. A.6, leading to the choice of this order of expansion for the purposes of

this work.

Once the accuracy of the series expansion is assessed for a fixed N , we want

to solve the inverse problem of deriving the input correlation given a desired output

correlation imposed to the binary sequences. This problem can be seen as a pre-

filtering operation to correct the effect of the clipping process between the input and

output series. Given the series expansion, this means to solve a N th order equation

in which the unknown variable is the input correlation at a specific distance d.

Referring to the case of threshold ts = 0, thanks to the symmetry of the Gaus-

sian PDF with zero mean, the integral of the PDF can be easily solved analytically
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Figure A.6: Percentage error of convergnce for different expansion order:
N = 6, 10, 20

to obtain the result in Eq. A.22. This result provides an analytical result fro the

pre-filtering problem in this specific case. Fig. A.7 shows the pre-filtered correlation

function as obtained by the Hermitian expansion equation. The error at values close

to 1 of the expansion for limited order N appears also in the inversion, with correla-

tion values greater than 1 which are clearly not possible. Apart from the initial values,

the pre-filtered correlation follows well the reference analytical result, validating the

proposed procedure.

The pre-filtered correlation for the three different thresholds is shown in Fig.

A.8, where it is clear the dependence between the correlation to be imposed as input

and the threshold used for the non linear clipping.

Finally, Fig. A.9 shows the relationship between the desired correlation of the
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Figure A.7: Pre-filtering: solution obtained by inverting the Hermitian expansion of
order N = 20 compared with analytical solution for the special case of ts = 0

binary sequences and the one to impose at the random processes before the non-linear

clipping. Again, it is evident the effect of the different clipping thresholds as well as

the error introduced by the limited series expansion (input correlation greater then 1

when the desired correlation is close to unity).

The issue due to the limited series expansion can be solved by not considering

the first few samples of correlation at the very small distances, as shown in the next

section. A more complete solution would be to try to fit the pre-filtered curve avoiding

the initial distances and forcing the fit to be 1 at d = 0. The fitting possibility by a

simple function is under consideration at the time of this report and is left as a future

development.
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A.6 Application to the rain model problem -

Pre-filtering example

Referring to the rain model described in Sec. A.1, the aim is to generate a set of

binary sequences (one for each station in the area) which exhibit the desired spatial

correlation of rain. Given N stations in the area, we generate N Gaussian random

processes (zero mean and unit variance). The “rain event” condition is imposed when

the random variable exceed a defined threshold ts,i dependent on the rain probability

of the station i (see Sec. A.1).

Referring to the description above and Fig. A.1, the desired correlation among

the binary sequences is not the one to be imposed to the input random processes before
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Figure A.9: Relationship between the desired correlation to be shown by the output
binary sequences and the required correlation to be imposed to the input Gaussian

random processes

clipping. Here the input spatial correlation is derived by inverting the series expansion

which takes into account the effect of the clipping. Firstly, the series expansion of the

desired correlation is evaluated by means of the Hermitian polynomials. The input

correlation value is simply the only positive root of the polynomial obtained by the

expansion. Fig.A.10 shows the result obtained for the same test case in Fig. A.1.

In order to obtain the desired correlation (blue dash) of the binary sequences

after the clipping process, we derived the correlation to be imposed to the Gaussian

random processes at input (red - dotted). Because of the limited number of terms in

the Hermitian expansion, the start of the curve is not well resolved and the correlation

values are greater than unity for the first distances. Since it is known that correlation

at lag 0 is equal to 1, the inversion can be performed not considering the first distance
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Figure A.10: Test case of rain model: resulting output correlation of binary
sequences after hard thresholding

values (in the case considered Dmin = 10 km). In the figure, blue crosses show the

correlation of binary sequences generated after the clipping process: the correlation

values corresponding to the red dots were imposed to the input random processes to

obtain the correct correlation after clipping. Note that the accuracy of the solution

is very high even for a single realization.

A.7 Other Interesting Applications

This work could be useful when it is required to work with many variables whose

state can be modelled as a binary sequence. Particularly interesting are applications

in Biology, when many cases of study need to model the presence or absence of a

specific condition. In those cases, being able to impose a desired correlation among
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the test variables is important [81].

More related to the field of communications the study of Cognitive Radio Sys-

tems [82]. Wireless communications are subject to signal fading and interference

due to propagation conditions and the presence of other users in the same area. A

binary variable related to each user can state the level of interference or fading by

which the user is affected. As and example of this research field, in [83] the case of

Interference-aware power allocation in Cognitive Radio Networks is addressed.

According to the authors, the mathematical framework of the proposed model

can be of interest for other physical studies. In biology, the activation of ion channel

gating is characterized by the correlation dynamic of the channels [84, 85]; further-

more, in wind power generation the spatial correlation among the active wind sites

represents a significant aspect in modelling partially dependent wind farms [86].

A.8 Conclusions

In this work the author developed the analysis of the correlation characteristics of

random processes subject to an hard-thresholding. This problem has to be tackled

because of the need of generating binary sequences with a desired correlation function,

starting from random noise sequences.

Referring to the theory of noise clipping, a general expression for the correla-

tion after a clipping process (non-linear transformation) was found. The expression,

derived for very general transformations, must be adapted to match the binary trans-

formation of interest. Particularly, the need of a clipping threshold different from

zero imposed to find a suitable way to solve the integral of a Gaussian kernel. The

problem tackled was to derive the effect of the non linear transformation in such a way
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to properly invert it, in order to derive the necessary correlation before the clipping

given the desired output correlation function.

The solution to this problem was found in a series expansion of the value of

the integral by means of a suitable set of orthogonal polynomials. The accuracy of

the result was assessed both for different clipping thresholds and the order of the

series expansion. The series expansion allowed to derive the correct correlation of the

input random sequences to obtain a desired correlation function after the clipping.

Knowing the desired correlation, the input one is derived by a “pre-filtering” operation.

Finally, this procedure was tested for an example case related to a model to generate

correlated series of rain attenuation with accurate final results.
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