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Abstract

Cluster randomization trials have become increasingly popular when theoretical, ethical
or practical considerations preclude the use of traditional trials that randomize individual
subjects. Although some methods for analyzing clustered ordinal data have been brought
to wide attention, these are less developed as compared to methods for analyzing
clustered continuous or binary outcome data. The aim of this thesis is to refine existing
strategies which may be applicable to clustered ordinal data as well as extensions which
have been previously considered only for clustered binary responses. The approaches
include adjusted Cochran-Armitage tests using an ICC estimator, and correction and
modification strategies to improve the small-sample performance of the Wald test and
score test in GEE for clustered ordinal data. The type I error and power for these test

statistics are investigated using a simulation study.

Simulation results show that kappa-type estimators had less bias than ICC estimators
when cluster sizes were fixed and small for p = 0.005 or p = 0.01. Conversely, ANOVA
ICCs had relatively smaller bias in the case of variable cluster sizes. In addition, small-
sample performance of GEE robust Wald tests are improved by using adjustments and
corrections. The adjusted test Wpc; is recommended in terms of type I error and power.

The discussion is illustrated using data from a school-based cluster randomization trial.

Keywords: cluster randomization; correlated ordinal outcome; ICC estimator; Cochran-
Armitage test; GEE; small-sample
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Chapter 1

1 Introduction

1.1 Cluster Randomization Trials

When allocation of individual participants is possible, the randomized clinical trial is
generally regarded as the gold standard for the evaluation of interventions in health
research. Over the past two decades, random assignment at higher levels of aggregation
has become increasingly popular when theoretical, ethical or practical considerations
preclude the use of traditional trials that randomize individual subjects (Donner and Klar,
2000, pp. 5). Trials which assign interventions at higher levels of aggregation are referred
to as cluster randomization trials. The units of randomization may be families,

classrooms, worksites, hospitals or communities.

The reasons for adopting cluster randomization are various, including greater
administrative efficiency and the possibility of less experimental contamination (Donner
and Klar, 2000; p2-4). There is also, at times, no alternative to cluster randomization as
for community intervention trials when the intervention is delivered at the community
level, e.g. intervention programmes that use mass media to promote smoking cessation.
Gail et al. (1992), for instance, designed the COMMIT (Community Intervention Trial
for Smoking Cessation) to study public education and media campaign programmes to
accelerate smoking cessation among heavy smokers and to reduce smoking prevalence.
As discussed by Gail et al. (1992), these community-based interventions have the
potential to affect every smoker in the community. Thus, the intervention precluded

individual randomization within communities.

An important feature of cluster randomization trials is that responses of subjects from the
same cluster tend to be more alike than responses of subjects from different clusters and
thus they are not statistically independent (i.e. are correlated). Within-cluster similarities
in response lead to a reduction in effective sample size, and consequently ignoring
clustering at the design stage may lead to an underpowered study and a loss of precision

for estimating the intervention effect (Donner and Klar, 2000; p6). Furthermore, the



confidence interval for the estimated intervention effect will be too narrow and could lead
to a spuriously statistically significant test result. Therefore, the correlation among
responses of individuals in the same cluster must be taken into account in both the design

and the statistical analysis.

A review conducted more than a decade ago (Simpson et al., 1995) found that design and
analysis issues associated with cluster randomization trials were not recognized widely
enough. They found that only 4 of 21 trials they reviewed accounted for between-cluster
variability in sample size or power calculations, and 12 of 21 trials took account of the
effect of clustering in the analysis. Although the number of published randomization
trials continues to increase, Varnell et al. (2004) reported that there has been little
improvement in the quality of reporting cluster randomization trials from 1998 through

2002.

Fortunately, a recent review (Eldridge et al., 2008) suggests that there has been
considerable improvement in the reported design and analysis of cluster randomization
trials in primary care trials. Eldridge et al. (2008) reported that 21 of 34 trials they
reviewed accounted for clustering in sample size calculations, and 30 of 34 trials took
account of clustering effects in analysis. However, this progress is not universal. For
instance, Murray et al. (2008) reviewed 75 articles describing applications of cluster
randomization trials to cancer research in 41 journals from 2002 to 2006. They reported

that only 45 percent of the articles used the appropriative methods to analyze the results.

1.2 Scales of measurements

Steven (1946) defined measurement as “the assignment of numerals to objects or events
according to rules”. He proposed four scales of measurement: ratio, interval, ordinal and

nominal.

Outcomes measured on ratio and interval measurement scales are typically continuous.
Differences between numeric values are meaningful for both ratio and interval
measurements. Ratio scale measurements have the additional property of a meaningful

zero score indicating the absence of the quantity being measured (Porta et al., 2008).



Donner and Klar (2000) provide examples of analyses where the study outcomes in
cluster randomization trials are continuous and measured on a ratio scale. For example,
change in cholesterol level (mmol/L) was the primary endpoint measured on students
who participated in the Child and Adolescent Trial for Cardiovascular Health (CATCH) —

a school randomized trial (Luepker et al., 1996).

Outcomes measured on an ordinal scale may be classified into ordered qualitative
categories. However the interval between ordered categories is typically unknown and
possibly unmeasurable for ordinal scale outcomes thus distinguishing them from interval
and ratio scale measurements. An example is provided by Kim et al., (2005) in their
cluster randomization trial which evaluated treatment of rheumatoid arthritis using an
adjectival scale (Streiner and Norman, 2003 pp. 33-35). The outcome of interest was

patient self-assessment of their attitude classified into three categories: poor, fair or good.

Data measured on a nominal scale are unordered and thus only gives identification values
or labels to various categories. Objects with the same value are the same on some
attribute or attributes. The values of the scale have no numeric' meaning in the way that
one usually thinks about numbers. Cook and Demets (2008) observed that randomized
trials rarely have nominal categorical outcomes with three or more levels. They noted that
“an unordered categorical variable with three or more levels is usually not a suitable
outcome measure because there is no clear way to decide if one treatment is superior to
another". Binary data are a special case of nominal data with only two categories. An
example of binary data is provided by Murray et al. (1992) in their study to evaluate the
effect of school-based interventions in reducing adolescent tobacco use. One of the

outcomes was if students reported using smokeless tobacco or not.

1.3 Ordinal outcome data

In this thesis attention is limited to analyses of ordinal data obtained from cluster

randomization trials.



1.3.1  Number of categories

Ordinal endpoints for randomized trials often use health measurement scales. One should
then limit attention to scales which have had their psychometric properties validated.
Even then there may be more than one possible choice of scale. The decision as to which
scale should be selected as the endpoint will depend, in part, on the number of ordinal

categories.

Suppose it is reasonable that the ordinal outcome measures some underlying continuous
psychological construct (e.g. pain). Then selection of a more finely graded outcome
should increase power to detect an intervention effect to the extent that subjects can
discriminate between categories. In practice, there is likely little gain in power by
increasing the number of categories beyond about five. This may reflect, in part, the
difficulty people have in classifying objects or experiences into much more than seven

levels (Schaeffer and Presser, 2003; Streiner and Norman, 2003, p28-29).

Decisions about the number of categories also have implications for data analysis. For
example, the weighted kappa statistic varies as a function of category number (Brenner

and Kliebsch, 1996).

1.3.2  The Television, School, and Family Smoking Prevention and
Cessation Project

The primary outcome in most cluster randomization trials is binary or quantitative

(Donner and Klar, 2000; p128). However ordinal data have also been used in a number of

cluster randomization trials. Examples of such trials are provided in Table 1.1.



Table 1.1: Examples of recent cluster randomization trials with ordinal outcomes

Number of
Reference Cluster Outcome Levels of outcome
Levels
Flay et al. 1995 school smoking intention increased, no change, or decreased 3
Marinacci et al. .
5001 school frequency of condom use always, often or sometimes, never 3
antisocial behavior in the
Patton et al. none, once, more than once 3
school past 6 months
2006 - ; ;
tobacco use in past month none, once to three times, more than three times 3
Glasgow et al eneral . . .
g & . patient satisfaction yes, doubtful or no 3
2005 practitioner
medical . . .
Byng et al. 2004 ) severity of mental illness none, mild, moderate, or severe 4
practices
Klepp et al. communication with AIDS .
bp school ) never to more than 4 times 4
1997 in the past month
. no injection, injection but no borrowing, borrowing but
McCusker et medical . J J g 8
) drug-use behavior bleach always used, bleach used sometimes, bleach 5
al.1992 practices
never used
Howard-Pitnet class nutritional attitude strongly agree to strongly disagree 5
etal. 1997 glyag gl g
I , hysical disease, probable physical disease, medicall
Rosendal et al. hysicians classification of the patient Ean lained sym IOtoms merr)\t?all illness, no physical ! 5
2003 phy problem P yme » no phy
symptoms
Seligman et al. . L. ) . . - o
200g5 physicians physician satisfaction very dissatisfied to very satisfied 6
Watson et al. families severity of iniur minor, moderate, serious, severe, critical, or 6
2005 y jury unsurvivable




Flay et al. (1995) report on a school-based smoking prevention programme. Seventh-
grade students were randomized by school into a school-based social resistance
curriculum or a television-based tobacco use prevention and cessation programme using a
factorial design. Study outcomes of interest included measures of tobacco and health
knowledge, coping skills and the prevalence of tobacco use. There were 7351 students
who participated in the pretest assessment. These students came from 340 classrooms

drawn from 47 schools.

Study outcomes included a tobacco and health knowledge scale defined as the number of
correct answers to seven questions. Hedeker and Gibbons (1996) described application of
a mixed effects ordinal logistic regression model to examine the effect of intervention on
tobacco and health knowledge. For these analyses outcomes were grouped into quartiles
given by 0-1, 2, 3 and 4-7 correct answers. These data will be used to illustrate methods

of analysis for correlated ordinal outcomes. Detailed analyses are provided in Chapter 7.

1.4 Analysis of Independent Ordinal Outcomes

1.4.1  Overview of Statistical Approaches

Analytic methods for clustered ordinal outcomes are largely extensions of analytic
methods for independent ordinal outcomes. Methods for analysis of independent ordinal
outcome data may be classified into three approaches: non-parametric, simple linear
regression and ordinal logistic regression. Moreover, attention is restricted to methods
comparing two independent samples. Additionally, a distinct classification is provided by
Agresti and Coull (2002) where they distinguish methods for clustered ordinal outcomes
by inequality constraints. However, they noted that inequality-constrained methods are

not prominent in the literature and software used for data analysis.

Non-parametric methods may be preferred for testing the effect of intervention when the
assumption of normality is questionable. Corresponding two sample approaches include
the sign test, the Mann-Whitney-U test, and the Wilcoxon rank sum test. Note that the

Wilcoxon rank sum test is equivalent to the Mann-Whitney-U test.



Another common strategy for ordinal data analysis is the assignment of scores to
categories and then simply treating the scores as continuous and fitting these using linear
models which assume outcomes are normally distributed. This approach has the virtue of
familiarity, yielding easily interpretable, albeit potentially misleading, coefficients;
however, limitations may arise from ignoring either the discrete nature or the potentially
skewed distribution of ordinal data, thus violating the normality assumption. When
models for continuous data are directly applied to ordinal data, a further problem is that
the ceiling and floor effects of the dependent variable can result in biased estimates of the
regression coefficients (McKelvey, 1975; Hedeker and Gibbons, 1994). The robustness
and power of this strategy were investigated through computer simulation by Sullivan
and D’ Agostino (2003). Interestingly, the type I error rates obtained for tests of the effect
of intervention were at the nominal level when two sample t-tests were used and when an

analysis of covariance (ANCOVA) model with a common slope was fit.

The ordinal nature of the study data may be more appropriately accounted for using
generalized linear models (GLM). A popular model for ordinal outcome data is the
proportional odds model using cumulative logits (McCullagh, 1980; Hosmer and
Lemeshow, 2000, pp. 297), which assumes identical proportionality for each logit
(Agresti, 2001). This model is also called the cumulative logit model. In contrast, non-
proportional odds ratio extensions of this model permit a separate effect for each logit
(Peterson & Harrell, 1990; Agresti, 2001). In addition to the logit link, other link
functions possible for ordinal data include the probit link and the complementary log-log
link (McCullagh, 1980). These are not discussed further as they are not commonly

applied to analyses of epidemiologic data.

When the cumulative logit models fit poorly, one may alternatively fit adjacent-category
logits or continuation-ratio logits for ordinal data. Note that the adjacent-category logit
model is a special case of the baseline-category logit model which is commonly used for
nominal outcome data as a polytomous logistic regression. Liu and Agresti (2005)
reviwed recent developments of analysis for ordinal outcomes and reported that the most

popular model for ordinal responses uses logits of cumulative probabilities.



Statistical inferences may be conducted using Wald, score or likelihood-ratio methods.
The Wald test uses information from the curvature of the log-likelihood function and the
distance between the parameter estimate and the null parameter value. The score test is
based on the slope and curvature of the log-likelihood function only at the null parameter
value. It does not require the computation of a parameter estimate. The likelihood-ratio
test combines the information about the log-likelihood function at both the null value and
estimated value of the parameter. Hauck and Donner (1977) showed the Wald tests for
coefficients from a logistic regression model may behave in an aberrant manner in that
power can decrease even as the estimated regression coefficient gets larger. This behavior
of Wald tests is particularly likely when the sample size is small. They recommended that

the likelihood ratio test be used instead.

These model-based tests are often equivalent, at least in special cases, to well known non-
parametric test statistics. For instance, the score test from a proportional odds model for a
two-group comparison is identical to the Wilcoxon rank sum test (McCullagh, 1980).
However, some adjustment for these tests will be needed when applied to clustered

ordinal data.

1.4.2  Scoring Ordinal Outcomes

The statistical methods which have been reviewed may be distinguished by the method
used to account for the inherent order of the categories or equivalently by the choice of
inequality constraint (Agrest and Coull, 2002). This is accomplished for non-parametric
and parametric methods by imposing a scoring scheme to the qualitative ordered
categories while ordinal logistic regression accounts for ordinality by imposing

constraints on the odds ratios.

Some authors have argued for application of non-parametric methods based on the false
assumption that it is then not necessary to impose an arbitrary choice of score (Graubard
and Korn, 1987). This overstates the situation as non-parametric methods score

qualitative ordered categories using mid-ranks — a function of the data.



Methods of assigning scores have been described by Armitage (1955) and by Graubard
and Korn (1987):

1. Scores may be linearly related to a quantitative measurement when the ordinal
outcome is obtained by degrading a variable which is more finely measured, e.g.
using midpoints of categories formed by grouping scores from a health

measurement scale into quartiles.

2. When no natural category scores are available equally spaced scores are often
selected to detect linear components of the intervention effect although rank scores

may then also be used.

3. Sensitivity analysis is recommended to explore the effect of scores on study

conclusions.

Furthermore, Kimeldorf et al. (1992) reviewed the statistical tests to compare ordinal
outcomes from two samples and the scores adapted for each test. They further proposed
an approach to obtain the minimum and maximum values of these test statistics over all
possible assignments of scores. Thus if the range of the minimum and maximum values
includes the critical value of the tests statistic, they suggested that one must be aware to

justify the choice of scores used in the analysis.

In this thesis, I will consider the effect of score choice on validity and power of
extensions of the Cochran-Armitage test which adjusts for clustering. Additionally I will
compare the Cochran-Armitage test statistic to the Wilcoxon rank sum test exploring

relationships between these methods.

1.5 Analysis of Clustered Ordinal Outcomes

1.5.1  Overview of Statistical Approaches

The degree of similarity among responses within a cluster is typically measured by the
intracluster correlation coefficient (ICC). Denoted by the Greek letter p, it may be
interpreted as the proportion of overall variation in responses that can be accounted for by

between-cluster variation. A more comprehensive measure of the effect of clustering is
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given by the design effect DE = 1+(m-1)p. This parameter measures the amount by which
one must increase a standard variance estimate to allow for clustering, and therefore also
is often referred to as the variance inflation factor. One can use design effects to adjust
standard statistical approaches for clustered data at both the design and analysis stage
(e.g., Donner and Donald, 1988). One advantage of this relatively simple approach is that
it avoids intensive computation. Additionally, Scott and Holt (1982) derived a design
effect for the variance of estimated regression coefficients from a linear regression

model, while Neuhaus and Segal (1993) extended this result to logistic regression.

The unit of analysis for clustered data may be at either the cluster level or the individual
level. Schools were randomly assigned to the intervention groups as part of the Child and
Adolescent Trial for Cardiovascular Health (CATCH, Zucker at al, 1995). One of the
secondary objectives of this trial was to evaluate the effect of training food service
personnel on the dietary quality of food services (e.g., to decrease fat content). This
outcome variable was collected from school lunch menus and thus the analysis was
necessarily conducted at the school level. On the other hand, health outcomes analyses
were conducted at the individual level. Advantages of cluster-level analyses include the
possible construction of exact statistical inferences and valid tests of significance when
there are small numbers of clusters; whereas individual-level analysis allows direct
examination of cluster-level and individual-level predictors and provides more efficient
estimates of the effect of intervention when cluster sizes are variable, assuming
adjustment for effects of clustering (Donner and Klar, 2000; p80). A unique challenge for
ordinal outcomes, however, is the specification of an appropriate cluster-level summary

statistic. Because of this challenge we limit attention to individual level analyses.

Some standard non-parametric methods have been extended to the case of clustered
ordinal outcome data. Rosner et al. (2003 and 2006), Rosner and Grove (1999) and
Brunner and Langer (2000) extended the Wilcoxon rank sum test and the Wilcoxon
signed rank test to clustered data. Furthermore Jung and Kang (2001) derived a test
statistic unifying the Wilcoxon rank sum test and the Cochran-Armitage trend test for

clustered ordinal data.
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Modeling approaches have also been extended to correlated ordinal data. As in the case
of independent ordinal data, an approach for analyzing clustered ordinal data is to treat
ordinal responses as continuous and then apply more familiar approaches to the clustered
continuous responses. However, Hedeker and Gibbons (1994) claimed that this strategy
could bias estimated regression coefficients due to the floor and ceiling effects of
outcomes. Moreover, Fielding et al. (2003) compared parameter estimates obtained using
multilevel linear models and multilevel ordinal models by analyzing data on educational
examination grades. They reported that the magnitude and precision of fixed effect
estimates were quite similar between the two models. However, random effect estimates
with continuous outcomes are somewhat sensitive to the choice of score and their
precision differs from that of ordinal models. These differences need to be further

examined using simulation.

Extensions of generalized linear models for analysis of correlated data may be classified
as population-average models (e.g., marginal model), cluster-specific models (e.g.,
generalized linear mixed models) or transition models. Discussions of these models for
binary data include Diggle et al. (1994), Pendergast et al. (1996), and Heagerty and Zeger
(2000). In addition, Agresti and Natarajan (2001) provided a comprehensive review of

marginal and cluster-specific models for ordinal outcome data.

Generally, transition models focus on the dependence of a response on previously
observed responses and treat them as explanatory variables of the current response. So
they are always used for repeated measurement analysis. Thus transition modeling

methods will not be considered in this study.

On the other hand, cluster-specific models focus on cluster-level effects while marginal
models emphasize the average effect at the population level. Therefore, marginal models
are more relevant in analyses of data arising from cluster randomization trials than
cluster-specific models. Particularly, our interest is on the intervention effect on average
population level. Hence, more attention is given to marginal models than cluster-specific

models in this study.



12

In addition, there has been considerable attention given to their limitations. Agresti and
Natarajan (2001), for instance, noted maximum likelihood fitting methods require
intensive computation. Other marginal modeling strategies, for instance, Dirichlet-
multinomial modeling method, could reduce the required intensive computation because
the number of parameters does not vary with cluster size. As an alterative, the generalized
estimating equation (GEE) approach requires specification of only the first two moments
but the associated robust variance estimator is biased downward when there are few
clusters (e.g., Murray et al., 2004). For cluster-specific models, maximum likelihood
become challenging when there are more than five random effects. In particular, the use
of Gauss-Hermite quadrature approach for approximating the likelihood function will be
limited (Hedeker, 2003). However, admittedly the challenge to fitting mixed effects
models noted by Hedeker (2003) is of limited concern for most cluster randomization
trials as then concern typically focuses on only a single between-cluster source of random

variation.

1.5.2  Estimation of the Intracluster Correlation Coefficient (ICC)

1.5.2.1  Estimation for Clustered Continuous and Binary Data

Various estimators of the ICC have been reviewed in the literature (Donner, 1986; Ridout
et al., 1999). There are at least three frequently used estimators of the ICC for clustered
continuous and binary data. These include the one-way analysis of variance (ANOVA)
estimator, the method of moments estimator and the fully parametric approach estimator.
Klar (1993, p57-61) gave detailed discussions on these three methods for clustered binary

outcomes.

1.5.2.2 Estimation for Clustered Ordinal Data

Approaches for estimating the ICC for continuous and binary data could be extended to
clustered ordinal data. For example, the ANOVA methods could be used for clustered
ordinal data by assigning scores to ordered categories. Moment-based methods, such as
estimator obtained from marginal proportional odds logistic models using the GEE

approach (Liptisz et al., 1994) have also been proposed. Additionally, one could estimate
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the ICC for clustered ordinal data by assuming that the study outcome follows a

Dirichlet-multinomial distribution (Lui et al., 1999).

1.5.3  Non-parametric Approaches

Non-parametric methods occupy an important role given that they perform well without
the need to make distributional assumptions. Simple adjustments to standard methods
also allow them to be applied to clustered ordinal data. For example, Rosner and Grove
(1999) generalized the Wilcoxon rank sum test to account for clustering by introducing
four separate correlation parameters into the variance formula; Brunner and Langer
(2000) extended the same test by formulating nonparametric hypotheses by means of the
marginal distribution of treatment effects. Rosner et al. (2003 and 2006) generalized
variance formulae for the Wilcoxon rank sum test and the Wilcoxon signed rank test that

account for clustering effects.

1.5.4  Marginal Models
1.5.4.1 Maximum likelihood (ML) fitting

The likelihood function for a marginal logit model may be constructed as the multinomial
joint probabilities while the marginal model refers to marginal probabilities. Thus it may
involve complicated computation to fit marginal models using ML directly. One approach
treats the model as a set of constraints on the cell probabilities and then maximizes the
likelihood subject to these constraints (Lang and Agresti, 1994). This method is also
referred as Lagrange’s method (Aitchison and Silvey, 1988; Haber, 1985; Haber and
Brown, 1986). As such the marginal model could be equivalently expressed as the
constraint model, and Haber (1985) used a Newton-Raphson algorithm to maximize the
corresponding Lagrangian likelihood equation. Additionally, Glonek and McCullagh
(1995) and Glonek (1996) presented a one-to-one correspondence between joint
probabilities and a loglinear model that is composed of marginal probabilities and higher-
order loglinear parameters. The likelihood is then maximized in terms of the two sets of
models. One is the model specified for the marginal probabilities and the other is the one
specified for the high-order parameters. Agresti and Natarajan (2001) provide a detailed

review of maximum likelihood approaches under marginal models.
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In addition, the Dirichlet-multinomial distribution has been used to model clustered
ordinal outcome data. For example, Chen and Li (1994) proposed a quasi-likelihood
approach to model the association between two proportions under Dirichlet-multinomial
distributions, and Lui et al. (1999) described interval estimators for the ICC and odds

ratio for this model.

1.5.4.2 Generalized Estimation Equation (GEE) Approach

Lipsitz et al. (1994a) extended GEE methodology (Liang and Zeger, 1986) to marginal
modeling with an ordinal response. Using a multivariate generalization of quasi-
likelihood, the GEE regression estimators are consistent and the covariance estimators
which use the sandwich form (e.g. sandwich estimator) are robust even with
misspecification of the assumed covariance structure (Liang and Zeger, 1986). Statistical
inferences may be accomplished using Wald or score test statistics. An alterative to the
sandwich estimator is a model-based variance estimator, which is based on the assumed
covariance structure. The sandwich estimator uses empirical evidence from the data to
adjust the model-based variance in case the assumed covariance structure differs from the

true one.

In spite of the wide use of GEE, small-sample performances of sandwich (robust)
variance estimators for binary data have been investigated (e.g., Kauermann and Carroll,
2001; Feng and Braun, 2002). In particular, simulation studies show that the sandwich
variance estimator tends to underestimate the true variance when the number of clusters
is less than 50 (e.g., Mancl and DeRouen, 2001). Consequently, the type I error for the
Wald chi-square test using the sandwich estimator is inflated and the resulting confidence
interval tends to be too narrow. In contrast to the liberal behaviors of robust Wald tests,
Guo et al. (2005) reported that in this case the robust score test using the sandwich

estimators has smaller test sizes than the nominal level.

1.5.4.3 Sandwich Estimator Corrections for Clustered Binary Data

A variety of small-sample adjustments and modifications for the sandwich variance
estimator have been proposed and compared. Mancl and DeRouen (2001) applied the

Student’s t- or F-distribution instead of the normal or chi-square distribution for
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significance testing. Lipsitz et al. (1994b) recommended using the one step GEE
estimators instead of the fully iterated estimators when the binary responses are highly
correlated. Additionally, resampling methods, such as the jackknife and bootstrap, have

also been considered (Lipsitz et al. 1994; Sherman and le Cessie, 1997; Feng et al. 1996).

In the sandwich estimator, the unknown covariance matrix is estimated by residuals.
When the number of clusters is small, the residuals tend to be negatively biased leading
to underestimation of the covariance matrix. Mancl and DeRouen (2001) proposed a bias-

corrected sandwich estimator by modifying the residual.

In addition, when the number of clusters is small, standard normal critical values are no
larger appropriate. Kauermann and Carroll (2001) used a function of the variance of the
sandwich estimator to adjust the normal distribution quantiles. Pan and Wall (2002)
proposed a more general approach, adjusting the approximate t- or F-test by the

variability of the sandwich estimator.

1.5.5  Cluster-specific Models

Cluster-specific models represent an extension of the generalized linear model that
permits random effects as well as fixed effects (Agresti, 2002). The inclusion of random

effects allows specification of the correlation between observations within a cluster.

The likelihood is a function of the marginal distribution obtained after integrating out the
unobservable random effects. This integral rarely has a closed form and therefore it is
necessary to approximate the likelihood function. Hedeker and Gibbons (1994) derived
the Gauss-Hermite quadrature approximating the integral by a weighted sum at certain
points. In order to increase its efficiency, Liu and Pierce (1994) proposed an adaptive
version of Gauss-Hermite quadrature. As an alternative, the quasi-likelihood method, one
of the Laplace approximation methods, avoids the integration problem and is feasible for
large data sets (Breslow and Clayton, 1993). However, it performs poorly when the
variance components are large (McCulloch, 1997). Other approaches for approximating
the integration over the random effects include Gibbs sampling (Zeger and Karim, 1991),

a combination of  Monte Carlo with Newton-Raphson (McCulloch, 1997) or EM
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algorithm (Booth and Hobert, 1999), and simulating the likelihood function directly by
MCMC (McCulloch, 1997).

Instead of assuming a parametric distribution for the random effects, Aitkin (1999) and
Santos and Berridge (2000) proposed a non-parametric mixing distribution to specify the
distribution of random effects, as approximated by some mass points. Hartzel et al.
(2001) combined this with the EM algorithm. Morel and Nagaraj (1993) further proposed

a finite mixture distribution to model clustered categorical data.

1.6 Testing Assumptions of Ordinal Outcome Data

Armitage (1955) and Cochran (1954) derived two chi-square test statistics: one assesses
the deviations from linearity of the outcome data, and the other tests the trend among
binomial proportions of ordered groups. The statistic for testing the deviation from
linearity could be obtained from the difference between the Pearson test statistic for
association .and the trend test statistic. An analogous examination of ordinality was
considered by Imrey et al. (1981) and Brant (1990) in the context of assessing

assumptions of proportionality for ordinal logistic regression models.

For clustered data, Donner and Donald (1988) derived an adjusted Pearson chi-square test
and an adjusted chi-square trend test. Consequently, both the Pearson and trend test
statistics have been extended for clustered data. However, whether the statistic testing
ordinality of clustered ordinal data could be simply obtained from the difference between
those two statistics is a future topic. An analogous examination of ordinality is extending
assumption assessment in ordinal regression model for independent data to clustered data.
For example, Stiger et al. (1999) considered both a score test and a Wald test for
assessing the assumption of proportional odds in the proportional odds model fitted with

GEE.

1.7 Scope of the Thesis

Cluster randomization trials are often distinguished by the size of the unit randomized.
Trials randomizing small units (e.g. families) typically enroll large numbers of such

clusters. Conversely economic and practical constraints typically limit the number of
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clusters recruited to community intervention trials. In this thesis I limit attention to
community intervention trials since these tend to have greater statistical challenges. For
example, the validity of statistical inferences is often problematic when there are few

large clusters.

The number of ordinal categories used in most practical applications ranges from three to
five (Brenner and Kliebsch, 1996). In this thesis we restrict our attention to ordinal data

with three categories. Extension of all methods to more categories is straightforward.

There are three designs that are most frequently used in cluster randomization trials:
completely randomized, matched-pair and stratified. The completely randomized design
is suited to trials that have a fairly large number of clusters; whereas matching or
stratification is more desirable in studies with few clusters. Furthermore regression
models described in this proposal may be directly extended to the stratified design. The
challenge of extending the methods discussed here to pair-matched designs poses
problems that are an area for future research and will not be discussed further here. The
discussion will also be focused on models where there is a single binary, cluster-level

covariate, i.e., trials where there is one experimental and one control group.

Among the methods reviewed above, the primary emphasis of my research is on non-
parametric methods, marginal modeling, and cluster-specific modeling as applied to
clustered ordinal data. For model-based methods, we limit attention to cumulative logit

links.

1.8 Objectives

Only limited research has been carried out exploring the unique challenges of analyzing
ordinal outcome data arising from cluster randomization trials. The principle challenge is
that methods need to account for dependencies in outcome among cluster members.
Although methods for analyzing clustered ordinal data were brought to wide attention in
the last two decades, such methods are not as developed as methods for analyzing

clustered continuous or binary outcome data. In this research, I will highlight refinements
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of existing strategies which may be applicable to clustered ordinal data as well as

extensions which have been previously considered only for clustered binary responses.

Analytically, I will formulate a Cochran-Armitage test statistic for clustered ordinal
outcomes data estimating an intracluster correlation coefficient for correlated ordinal
data. This approach does not require complex computation or software proposed by other
methods. In addition, I will develop some correction and modification strategies to
improve the small-sample performance of the Wald test and score test in GEE for

clustered ordinal data.

In addition to this analytic work, I will conduct simulation studies comparing the
performance of model-based methods on bias and standard errors of estimators as well as
type I error and statistical power. Furthermore, 1 will evaluate the small-sample
performance of the score and Wald tests applied in GEE for clustered ordinal outcome
data. To improve their performance, I will extend small-sample adjustments proposed for
the sandwich variance estimators to clustered ordinal outcome data and present a

comparison of their properties.

Finally I will use data from the Television, School, and Family Smoking Prevention and
Cessation Project (TVSFP) to illustrate results. From the literature review, data from the
TVSFP have been widely used as examples in studies involving clustered ordinal
outcome data. Hedeker et al. (1994), for instance, analyzed data from the TVSFP by
using a linear random effects model; and Hedeker and Gibbons (1994), Sashegyi et al.
(2000), and Raman and Hedeker (2005) analyzed it by using ordinal random effects
models. In addition, Yang (2001, pp. 107-125) and Fitzmaurice et al. (2004, pp. 5) used it

to illustrate methods in their books.
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Chapter 2

2  Estimating Intracluster Correlation Coefficient

2.1 Introduction

One of the defining features of a cluster randomization trial is the similarity among
responses within a cluster, which is measured by the intracluster correlation coefficient p.
To discuss methods of analysis for clustered data, the natural starting point is the

estimation of the intracluster correlation coefficient (ICC).

Various estimations of the ICC for clustered continuous and binary outcome data have
been proposed, as reviewed by Donner (1986) and Ridout et al. (1999). One could extend
methods for estimating the ICC for clustered continuous and binary outcomes to ordinal
outcomes. For example, Lipsitz et al. (1994) extended Liang and Zeger’s (1986) GEE
approach to the proportional odds model for ordinal outcome data and proposed a
moment ICC estimator. Moreover, Lui et al. (1999) generalized numerous early works
(Tamura and Young, 1987; Elston, 1977; Yamamoto and Tanagimoto, 1992) and derived
stabilized moment estimator, the “unbiased” moment ICC estimator, and the ANOVA

estimator under a Dirichlet-multinomial model.

A simulation study conducted by Ridout et al. (1999) examined 20 different ICC
estimators for clustered binary outcomes and identified the ANOVA ICC estimator as
one of the three most accurate estimators with respect to both the bias and the mean
square error. Moreover, Yamamoto and Yanagimoto (1992) compared the ANOVA ICC
estimator for binary data with the MLE estimator, the moment estimator, the ‘unbiased’
estimator, and the stabilized estimator under a beta-binomial model. They reported that
the ANOVA estimator is generally preferable to the MLE and other moment estimators
in terms of the bias and mean squared error. Additionally, Donner and Donald (1988)
compare the ANOVA estimator with the moment estimator for their uses in their adjusted
Pearson chi-square test for clustered binary data. Simulation results show that the former

tends to be consistently more accurate than the latter with respect to mean squared error.
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In addition to binary outcome data, the ANOVA estimator is frequently used for clustered
ordinal outcome data by assigning scores to ordered categories. For instance, Lui et al.
(1999) and Lui (2002) derived interval estimators of the ICC and the odds ratio for
clustered ordinal outcomes by using the ANOVA ICC estimator under Dirichlet-
multinomial distribution. The virtues of using the ANOVA estimator also include that it
does not require any specialized software and sophisticated numerical procedure as other
model-based approaches do (e.g., the GEE procedure). Thus, these findings and
favourable properties lead us to consider using the ANOVA estimator to measure the ICC

for clustered ordinal outcome data in our research.

In addition, the estimation of the ICC for clustered outcomes could arise from the
literature on the close relationship between measures of intracluster correlation and
interobserver agreement. Fleiss and Cuzick (1979) developed a kappa-type ICC estimator
for correlated binary outcome data using direct probability calculation. Ridout et al.
(1999) reported that the kappa-type ICC estimator by Fleiss and Cuzick (1979) and the
ANOVA estimator are two of the three most accurate ICC estimators in terms of bias and
mean square errors. Moreover, Mak (1988) proposed another kappa-type ICC estimator
and noted that his kappa-type ICC estimator may yield higher efficiency than the

ANOVA estimator when p is not close to zero. In this chapter we will propose a kappa-

type ICC estimator for clustered ordinal outcome data.

The remainder of the chapter is organized as follows. Section 2.2 gives notations used in
this thesis. Section 2.3 gives a detailed description of the ANOVA ICC estimator and
then briefly introduces other ICC estimators for clustered ordinal data. In section 2.4 we
propose a kappa-type ICC estimator and explore its properties and relationships with the
ANOVA estimator. In section 2.5 we summary the ICC estimators presented here in a

table.

2.2 Notations

To establish notations, consider a cluster randomization trial in which n; clusters are
randomly assigned to each of the treatment group and control group (i = I or 2). We

suppose there are m;; observations in the ijth cluster (j = 1,2, ..., n;). Outcomes for each
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observation may be classified into one of K ordinal categories. Let Yy = 1 if the /th

observation in the jth cluster from the ith group falling into the kth category and 0

otherwise, [ =1,2, ...,m,, k=12, ....K.

We also use the following notations throughout this thesis:

m; the total number of observations

M =

2 n
i=1

j=1

2
N = Zn . » the total number of clusters
i=1

M, = Zm,j , the total number of observations in the ith group
j=1

Y, =S, , the assigned score of the kth category in which the ijith observation falls

Y, the indicator of outcomes where Yy = 1 if Yy fall in the kth category and O

otherwise

Y, =) Y, , the number of observations in the ijth cluster falling into the kth category
=1

Y, = Z ZYW , the number of observations from the ith group in the category k
j=1 1=1
2 n; My

Y, = Z Y, , the number of observations falling in category k
i=1 j=1 I=1

Y.=D> Y. / m,; , the numerical mean in the ijth cluster

n; My

Y, /n;, the numerical mean in the ith group
j=1 1=1

7

n; My

Y = Z ZY /N , the mean scores all over clusters

il

<

=l j=1

S, , the score associated with the category k.
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2.3 Methods of Estimation

Techniques of the ICC estimation for ordinal outcome data have been less well developed
since estimations of the ICC for clustered ordinal data are not as straightforward as those
for clustered continuous and binary outcome data. One of the challenges is to define a

method of describing the ordinality.

One of the commonly used methods for dealing with ordinality is to assign scores to
ordinal categories. For instance, the moment-based estimators Lui et al. (1999) proposed
need scores corresponding to ordinal categories. The ANOVA approach may be directly
applied to estimate the ICC for clustered ordinal data by imposing scores to ordered
categories. Stiger et al. (1998) gave a detailed discussion on the assignment of integers
when using ANOVA method to analyze ordinal data. Also, methods of scoring ordinal
outcomes have been briefly introduced in section 1.4.2. In addition, one may assign
weights to define the difference between ordinal distance. Cohen (1968) derived a
weighted kappa statistic for ordinal data by using weights to describe the degree of
disagreements among categories. Another method is to impose restrictions on odds ratios
or probabilities to imply the ordinality. For example, one may derive the ICC estimators
under ordinal regression models, e.g., the moment-based ICC estimator obtained from

proportional odds models using GEE procedures.

The ICC estimators may be obtained by combining the above methods. For example, one
has to assign both scores and weights to ordinal categories in order to obtain the weighted
kappa statistic; to obtain the estimators from ordinal logistic regression models, it may be
necessary to restrict odds ratios or probabilities and assign scores to categories.
Additionally, there are close relationships among the three methods of imposing
ordinality. For instance, Fleiss and Cohen (1973) established the equivalence of Cohen’s

weighted kappa with the quadratic weight and the two-way ANOVA ICC estimator.

In section 2.3.1, we introduce the ANOVA ICC estimation for clustered ordinal
outcomes; in section 2.3.2, we briefly describe other estimation methods that have been

used.
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2.3.1 ANOVA method

Let Y, denotes the ordinal score assigned to the ijlth observation. Consider a nested

analysis of variance model given by Y,

=u+a +y,+€;. Random cluster effects,
denoted by 7, , are assumed to be normally distributed with mean 0 and variance o’,ie.
¥;~N(0,07). We similarly assume the error terms &, ~N(0,07). The ICC, p, may be
interpreted as “the proportion of overall variation in response that can be accounted for

by the between-cluster variation” (Donner and Klar, 2000, pp.8), i.e.,

0.2

c

cl+o’

The corresponding ANOVA table, which may be used to test the significance of the

treatment effect, is shown in Table 2.1.

Table 2.1: Analysis of variance corresponding to a completely randomized design in

which clusters are assigned to each of two intervention groups

Degrees of freedom | Sum of squares (SS) | Mean square (MS)
Group 1 SS5G MSG
2
Clusters Z(ni -1 e MSC
i=1
2
Errors M- ) n SSE MSE
i=1
Total M — SST

Here MSC and MSE are the between-cluster and within-cluster mean squares

respectively, given by
2 _ _ 2
MSC=)>"m;(Y;-Y)* IO n —-2)
i=l j=1 i=l

and

2 n omy

MSE =" > (Y, -Y,)* (M —ini).

i=l j=1 I=1
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Then the estimated ANOVA estimator p, could be written as

b= MSC — MSE
A MSC + (m, —1)MSE

2.1

where

2.3.2  Other methods

In addition to the ANOVA approach, the ICCs for cluster ordinal outcome data are often
estimated by using model-based approaches. For instance, Lipsitz et al. (1994) proposed
a moment-based approach to estimate p using generalized estimating equations (GEE) in

proportional odds models. Let A, be a diagonal matrix with the binary variances on the

main diagonal, i.e.,

Aijl = Diag[{f)ijll (I- ﬁijll )""’ﬁij,K—l,l (1- ﬁij,K—l,l)}]

and the residual matrix

Here f’ljk, =1if ¥,

3 . . N ' ,
;i =k and O otherwise, and P, =[F,,;, B,y Pk, 1 - Under a simple

case of an exchangeable correlation structure, Lipsitz et al. (1994) derived

2 n

A
22282,

A _ i=l j=1 t>s
pGEE - 2 n

[Z Zimu (m; =D]=3

i=l j=1
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where ¢, is estimated by substituting in Al.j, and I3l.ﬂ from a previous step of the Fisher

scoring algorithm. We will further introduce the GEE approach in Chapter 4.

The ICC estimators may also be obtained by assuming a Dirichlet-multinomial model,

e.g., a moment-based ICC estimator p,, by Lui et al. (1999). Consider n clusters are
drawn from one single population and there are m ; observations in the jth cluster. Let the

moment proportion estimator be

n Mm;

2 210,.5,)

A _ j=l 1=l
P = -

Z m;
j=1

where 1(Y,,S,)=11f Y, =§,,and I(Y,,S,) =0, otherwise. Then the stabilized moment
ICC estimator is given by
K 5 A K A,
(n=DIX_S{P — (8B’
A k=1 k=1

Pu = K R K R -1
MSC-(1-@)[Y SIP ~ (. SB)’]
k=1 k=1

where ¢ is a shrinkage constant.

In addition to moment-based estimators, the ICC could also be estimated by using the
MLE approach under dirichlet-multinomial models (Narayanan, 1991; Chuang and Cox,
1985; Paul et al. 2005). However, numerous authors (Tamura and Young, 1986; Tamura
and Young, 1987; Yamamoto and Yanagimoto, 1992) noted that the MLE estimator
generally underperforms the ANOVA and moment estimators for clustered binary

outcome data with respect to the bias.

Additionally, one could derive the ICC estimator from the full likelihood function in a
multivariate Plackett model (Molenberghs and Lesaffre, 1994). However, this approach

requires sophisticated numerical procedures and it is difficult to implement in practice.
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2.4 The ICC and the Measurement of Agreement

2.4.1 Introduction

The kappa statistic was developed to estimate interrater agreement for categorical
outcomes, where interest focuses on the similarity among ratings obtained on the same
subject. Scott (1955) proposed a chance-corrected measure of agreement between two
raters by assuming that the marginal distribution of proportions over categories is equal
for all raters. This index is often referred as Scott’s z. Furthermore, Cohen (1960)
extended Scott’s 7w under the assumption of independent and potentially different
marginal distribution of proportions for each rater. This statistic has come to be known as
Cohen’s kappa. In this study, we restrict our interests to Scott’s 7 and Cohen’s kappa. For

other agreement measurements one could refer to the review by Banerjee et al. (1999).

Cohen (1968) generalized his kappa statistic to a weighted kappa by quantifying the
severity of disagreement among ordinal categories. The most commonly used weights are
“linear weights” and “quadratic weights” (Fleiss and Cohen, 1973). Furthermore, the
weighted kappa statistic using quadratic weights is identical to the ICC estimator derived
from a two-way ANOVA under the assumption that the subjects and the two rates are
random samples from a universe of subjects and raters, respectively. As such, the

relationship between kappa statistics and the ICC estimators has been built.

However, it is not appropriate to apply Cohen’s weighted kappa to estimate the ICC in
cluster randomization trials because there is rarely a natural order among cluster
members. For instance, the jth subject from the ith cluster is a different individual in each
cluster. Thus it is not possible to estimate separate marginal distributions for each rater.
As an alternative, Scott’s 7 assumes that the same marginal distribution of proportions for
each rater. Therefore it is appropriate to use extensions of Scott’s 7 to estimate the ICC
for ordinal data in cluster randomization trials. The only exception would be the trials
where cluster members can be ordered in some fashion so that the jth cluster member is
the same in each cluster. For example, in the context of family randomization trials one
could have the first subject is mother, the second one is dad and the third one is the first

born child etc.
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Note that both Scott’s 7 and Cohen’s kappa are derived from one single population, while
the ICC estimates discussed here are from cluster randomization trials where there is one
treatment group and one control group. As such one of challenges is to extend kappa

statistics to two populations.

In next section, we propose a kappa-type ICC estimator for clustered ordinal data,

denoted as P, . In particular, we extend Scott’s x statistic by using Abraira and De

Vargas’s (1999) approach. Generally there are three improvements in the new kappa-type
ICC estimator compared with Scott’s 7: one is that weights are used to define the distance
between ordinal categories; the second is that it suits well for variable cluster sizes by

using pairwise agreement; and the third is that it allows treatment effects.

2.4.2 Kappa-type ICC Estimator

Scott’s m was originally derived to measure agreement between two raters for

multinomial outcomes. Let p,, denotes the proportion of subjects placed in the kth
category by the first rater, p,, denotes the proportion of subjects placed in the kth
category by the second rater, and p, the proportion of the entire subjects falling in the

kth category. Then, the kappa statistic proposed by Scott (1955) is defined as

Here

K
p, = Z P
k=1

denotes the proportion of observed agreement and

5 putpe )
pﬁZ[—'kZ k'j

k=1

denotes the proportion of chance-expected agreement.
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To extend Scott’s 7 (1955) to clustered ordinal outcomes from trials where there is one

treatment group and one control group, it is necessary to calculate P, and P, for each
group separately. Let w, be the weight corresponding to the agreement between
category g and h ( g,h =1,2,...,K ), with the conditions:

0<w, <lfor g=hand w, =1forg #h.

For the jth cluster from the ith group, the number of weighted agreements is:

zwkk zjk Yy 1)+22Wgh e Vi -

g=I1 h>g

and the number of possible pairs for the ijth cluster is:

Then the estimated proportion of weighted agreement for the jth cluster in the ith group is

given by:

zwkk uk t/k 1)+zzwgh ijg t/h

g=1 h>g

—m;(m; —1)

2

Consequently the average observed weighted proportion of agreement for the ith group is

given by
1 K
R 1 & E z llk ljk -D+ Z z Wgh ijg llh
Pio — n_ k=1 1 g=1 h>g (23)
$ B my; (m; —1)

Similarly the average expected proportion of pairwise agreement for the ith group is

given by
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1 K K K
E kZI: WkkYig (Yzh - 1) + ZZ WgthgYih

ﬁie — = 1 g=1 h>g . (24)\
MM, 1)

Thus the resulting kappa-type ICC estimator for the ith group is

A A

A _pio_pie

i A~ .
l_pie

To combine kappa-type ICC estimates of the two groups, Fleiss (1980, pp. 220-222)

suggested an overall value

where the weight w, =1— ﬁie.

Therefore the kappa-type ICC estimator for clustered ordinal outcomes is calculated with

equation (2.5), using equation (2.3) and (2.4).

2.4.3 Connections with the ANOVA ICC Estimator

Assuming one single population, Fleiss and Cohen (1973) reported the identity between
the ANOVA ICC estimator and the weighted kappa when there are only two observations
in each cluster, using the quadratic weight

_(g—h)’

=1 C@
W =l= (e TpE @9

Additionally, Fleiss (1981, pp. 226-pp.227) presented the asymptotical equivalence
between the ANOVA ICC estimator and the kappa when outcomes have only two

categories and cluster sizes are varying.
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In previous sections we already derived the ICC estimator p and p, assuming the trials

where there is one treatment group and one control group,. Here we explore the

relationship between these two statistics.

Substituting w,, into equation (2.3) and (2.4), f’io and ﬁie may be rewritten as

my;

2 Z(ZY; - muYu)
1

P =1- =
v 2 n,(m; —1)(K —1)*

=

and

ZZZY; - 2Mi7iz
]3 —1_ j=1 1=l
“ (M, —1)(K —1)?

Thus the kappa-type ICC estimator in Equation (2.5) could be written as

In order to compare P, in (2.7) with p,in (2.1), we restrict ourselves to a balanced

cluster randomization trial (i.e.,m; =mand n; =n). Thus P, and P, reduce to

23 Y ¥ -mY 7))
f’, -1- j=1 I=1 Jj=1
© (m-1)(K-1)n

and
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Z(ZZYUZI _mnzz)
13 =1 j=1 =1
“ (mn—1)(K —1)*

respectively. Therefore the kappa-type ICC estimator in equation (2.7) reduces to

A MSC — MSE
P = — . (2.8)
MSC + (m—-1)MSE
1-1/n

The ANOVA ICC estimator in equation (2.1) reduces to

A MSC — MSE

- . 2.9
P MSC + (m —1)MSE 29)

Thus the two estimators are asymptotically equivalent as the number of clusters becomes
large in a balanced trial. This result parallels Fleiss (1981, pp.226-227) and Fleiss and

Cohen (1973)’s conclusions.

2.4.4  Properties
2.4.41 Reduction to Scott's =

Scott’s = was originally derived to measure agreement between two raters and assumes

that all disagreements among two different categories are equal. To reduce p, to Scott’s

7 we have to extend the original Scott’s 7 to allow the treatment effect first. We also need
to limit our attention to the trials where there are two observations in a cluster (i.e.,

m;; =2 ) and the outcomes have two categories (K = 2) only. Thus the weight w,, in g,

is equal to 1 when g =/ and O otherwise.

For the ith group, the proportion of observed agreement in Scott’s x is:

R 1 & 5
P, :EZ(YM —Y;,)

i J=l

and the proportion of chance-expected agreement is:
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P, = ( +Y3).

Note that Y,

;i and Y, here denotes the number of observations from the ijth cluster

falling into the kth category, rather than the score assigned to the ijth observation.

Then Scott’s £ which allows the treatment effect is given by

>
i
I\
i
N
Il
—_
|
i
X
-
i
X

(2.10)

overall —

The kappa-type ICC estimator P, in equation (2.5) reduces to

1—22 ul ti2)2

p.=1- ENEL 7 . (2.11)

2

_24 (2 ) Vi ’2)+Z 2(2n,

i=1

Thus p, is asymptotically equal to 7, ,,, as the cluster number n, becomes large.

When the number of clusters in each group is equal, i.e., n, = n, the relationship between

Scott’s 7 and the kappa-type estimator could be shown more clearly as:

1_722( i lJ2

A lljl

overall — (2 12)
1—7 Y;+Y))
8n’ ; 2
and
1 2 n
z ( i lJ2
p.=1- ”;‘ - (2.13)

2

+

4n (2n Z( i+ ¥ 2n -1



33

On the other hand, since Scott’s 7 was originally derived from one single population, it

may be of interest to derive the relationship of the two statistics by assuming one single

population only (i.e., i =1 and n, =n). Thus Scott’s 7 is given by

1 2n 5
= 2 (Y=Y
A o=1- - . (214

1
1—167(Y12+Y22)

Let p'. denotes the kappa-type ICC estimator from one single population, given by

1 2n )
1= gn 2 =)

pP=1- I
- (Y +Y)+
4n(4n—-1) dn—1

(2.15)

The relationship between 7 and p',. parallels that from one single population.

In summary, we discussed the relationship between Scott’s 7 and the kappa-type ICC
estimator in this section. We first extended the original Scott’s 7 to allow treatment
effects. In order to simplify the formulas and show the relationship more clearly, we
further assume equal number of clusters in each group. We also derived the relationship
between the two statistics from one single population. We concluded that two statistics

are asymptotically equivalent as the number of clusters becomes larger.

2.4.42 Minimum value

Fleiss (1981, pp. 225) derived a kappa statistic for binary data by applying the identity
between intracluster correlation coefficients and kappa statistics. He further showed that

his kappa statistic reaches the minimum value
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when there is no variation across clusters in the proportion of positive ratings. Here

_ M . . . - A .
m = N Similarly, we derive the minimum value of P, in this section.

When there is no variation among clusters in the proportions, under the alternative

hypothesis that there is treatment effect, we have

Yo 5
- Tk
l.j

]

for all i,j, with P, not equal to either O or 1. Let ¥, => > Y5 —Y’M,. Then p, in

ijl
j=1 1=l

equation (2.5) reaches its minimum value:

2 & m.
A. -y
N = S n(m; =M,
pk‘(min) = 1 - l 2] : i (2.16)
S
o (M, -1

To simplify the formula, we further assume there are equal number of clusters in each

group and equal number of observations in each cluster. Thus the minimum value of g,

in equation (2.16) reduces to

N _1—1/n

Kk (min) =

(2.17)

Note that p,;, may be negative while the probability of obtaining a negative value

becomes small as cluster sizes are large. Since negative ICC values are usually
considered implausible in most application areas, it is common to set negative values to

Z€ro.

The minimum value in (2.16) or (2.17) is derived under the alternative hypothesis that
there is treatment effect. However, under the null hypothesis of no treatment effect, i.e.,

Y, — _— — Y
Zik P, =P and B, = Mk’ the minimum value of p, is given by

n;
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When there are equal number of clusters in each group (n, =n) and equal number of

observation in each cluster (m; = m), it reduces to

~ 1-1/n

K(min) — m—1
It is equivalent to P, ., in equation (2.17).

2.4.4.3 Using midranks as scores

The calculation of kappa-type ICC estimator p, requires imposing scores to account for
the order of the categories. We have briefly discussed methods of scoring in section 1.4.2.
One of the scoring schemes, the equally spaced score, is frequently applied to obtain the
ANOVA ICC estimator p,. As such we can use it in the kappa-type estimator so that J
could be related to P, . In addition, the score using midranks is one of methods that are

commonly used in statistical procedures such as the Wilcoxon rank sum test. In
particular, the Wilcoxon rank sum test and the Cochran-Armitage test are equivalent

when midranks are assigned as scores. Therefore we also calculate p,_ by applying

midranks as scores in this thesis so that different statistical methods may be unified in the

next chapters.

Using equally spaced scores, for example, scores 1,2,...K , the score for the kth category is
S, =k . Thus the quadratic weight in equation (2.5) is given by
(g—h)’

Wgh=l—m. (219)

By substituting it into p, in equation (2.5), we may obtain the kappa-type ICC estimator

with scores 1,2,...K .
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Using midranks as scores, we have to calculate midranks for each group first. Under the
alternative hypothesis that there are treatment effects, the midranks scoers from the two
groups are different. Thus the midrank score for the kth category in the ith group is given

by

~

-1
Su =D Y, +(Y, +1)/2. (2.20)

1

oy
]

Consequently, the weight in the ith group is given by

(Sig - Sih)z
w. =

igh 1_ . PN (221)
¢ (max(S,,,S,,,..S; ) —min(S,,S,5,....8 4 )

In contrast, under the null hypothesis of no treatment effects, the midrank scores for the

kth category from the two groups are identical, given by

=~

-1
Su =S, =2V, +(¥, +)/2. (222)

1

o
Il

Consequently, the quadratic weight is given by

(S, -5,

. (223
(max(S,,S,,...S ) —min(S,, S,,....S ) (229

Wigh :Wgh: 1 -

By substituting the weight w,,in (2.22) and (2.23) into p,, we may obtain the kappa-

igh
type ICC estimator with midrank scores under the alternative hypothesis and the null

hypothesis correspondingly.

2.5 Summary

In section 2.3, we introduced methods which have been used to estimate the ICC for
clustered ordinal data. In particular, we gave a detailed description of the ANOVA
method.

In section 2.4, we proposed a kappa-type ICC estimator P, by extending Scott’s by

Abraira and Vargas’s approach for clustered ordinal outcome data. Moreover, p, was
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shown to be asymptotically equal to the ANOVA ICC estimator p, as the number of
clusters becomes large. We further discussed p,.’s properties, including its reduction to

Scott’s z, the minimum value, and options of imposed scores.

To summarize the ICC estimators discussed in this chapter, we list all ICC estimators
Table 2.2. We will conduct simulation studies to evaluate p, and p, and their

relationships and properties in Chapter 6.



Table 2.2: Summary of the ICC estimators discussed in Chapter 2

38

Special cases

Minimum values

m,=m=2 Under H , Under H
Estimator | Method General case m; =m !
no=n n,=n General m; =m | General | My =M
' k=2 case n.=n case n.=n
N . Equation (2.1) .
P ANOVA ICC estimator and (2.7) Equation (2.9)
kappa-type ICC . . . .
A . . . . Equation Equation | Equation | Equation
P estlmat(?r from two Equation (2.5) Equation (2.8) Equation (2.13) (2.16) (2.17) (2.18) (2.17)
populations
kappa-type ICC
,ﬁ'K estimator from one Equation (2.15)
single population
7 Scott’s 7 Equation (2.2) Equation (2.14)
7 Scott’s from two Equation (2.10) Equation (2.12)

overall

populations
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Chapter 3

3  Adjusted Cochran-Armitage Tests for Clustered Ordinal
Qutcomes

3.1 Introduction

In the previous chapter, we have presented methods for estimating the ICC for clustered
ordinal outcome data. In the following chapters we discuss methods for analysis of
clustered ordinal outcome data. We start with direct adjustment approaches which adapt

simple corrections to the Cochran-Armitage test statistic for clustering effects.

The Cochran-Armitage trend test is a well-known approach for comparing binomial
proportions among ordered groups. For independent ordinal outcome data, the Cochran-
Armitage test statistic may equivalently be used to compare ordinal scores for two
samples (Yates, 1948; Armitage, 1955). However, for clustered outcome data, the
Cochran-Armitage trend test for comparing binary data can not be directly used to

compare ordinal data.

She et al. (2010) extended the Cochran-Armitage test to genetic data from designs
involving multistage cluster sampling. For each individual, they assigned the inverse of
the product of the selection probabilities across all the stages of sampling as the weight.
Then they adjusted all observed size in the Cochran-Armitage test statistic by the

weights. However, its application to clustered ordinal outcomes was not discussed.

To extend the Cochran-Armitage test statistic for correlated ordinal data, Jung and Kang
(2001) proposed a variance for the difference of scores between two groups that is
obtained by standardizing the correlated scores. Although this approach takes into
account the dependencies within clusters, the intraclass correlation coefficient (ICC) does

not need to be specified.

Donner and Donald (1988) applied simple correction procedures to the Cochran-
Armitage test to compare correlated binary outcomes on an ordinal cluster-level

covariate. Their method, which utilizes an ICC for clustered binary data, offers such
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advantages as simplicity and easy implementation. It does not necessarily require
complicated computation and specified software. However, unlike the situation for
independent outcome data, one cannot directly apply this adjusted test statistic to
analyses of correlated ordinal data since the ICC for correlated binary outcome data is not
equal to the ICC for correlated ordinal outcome data. Therefore a new ICC for correlated
ordinal data must be used to obtain an adjusted version of the Cochran-Armitage trend

test in this case.

In addition to Donner and Donald’s approach, we extend the Cochran-Armitage trend test
to clustered data using a weighted least squares approach. The Cochran-Armitage test
was originally derived from a simple linear probability model by using the ordinary least
squares approach (OLS) (Cochran, 1954; Armitage, 1955). However, the underlying
assumptions of the OLS procedure are violated in cluster randomization trials where
clustering induces a correlation among observations. In this case a more efficient
estimator obtained by the weighted least square (WLS) approach may be used instead as
an extension of the OLS procedure although the bias of estimator is unaffected by the
choice of using OLS or WLS approach. Thus we adjust the Cochran-Armitage test to
clustered outcome data by extending the OLS approach to a WLS approach.

In this chapter, we develop three simple adjustments to the regular Cochran-Armitage
chi-square statistics for clustered binary data and clustered ordinal data respectively. The
first one is Donner and Donald (1988)’s adjustment which is obtained by modifying the
observed sample sizes of both the point estimate and its variance estimate in the test
statistic; the second one is distinct in that it adjusts only the variance estimator in the
statistic; the third one derives the statistic using a WLS approach. We list all six statistics
in Table 3.1. The subscript ‘CB’ denotes clustered binary and ‘CO’ denotes clustered
ordinal. In addition, the subscript ‘(1)’ denotes the first adjustment method described

above, ‘(2)’ the second adjustment method, and ‘(3)’ the third adjustment method.

The rest of the chapter is organized as follows. In section 3.2, we describe the Cochran-

Armitage test for independent ordinal outcome data; in section 3.3, we present three
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adjusted Cochran-Armitage tests for clustered binary outcome data; in section 3.4, we

develop three adjusted Cochran-Armitage trend tests for clustered ordinal outcome data.

3.2 Cochran-Armitage Test for Independent outcomes

Suppose there are G ordered groups consisting of subjects having binary outcomes. Let

S, be a score variable which is associated with the ith group, i=1,2,...,G. Let A, denotes

the number of successes in the ith group and M, denotes the total number of

observations in the ith group. Then the proportion of successes in group i is given by

A_Ai
2=V,

Table 3.1: Summary of the Cochran-Armitage trend tests in Chapter 3

TefSt. Method Approach Formula Outcome
statistic data
) Cochran-Armitage . . Independent
X test Ordinary least squares Equation (3.1) data
2 Donner and Adjusting point estimator .
Xcs-0) | ponald's test and its variance estimator Equation (3.3)
2 An Alternative to Adjusting the variance
Xcs—2) | Donner and timat | Equation (3.5)
Donald’s Test estimate only C!ustered
Weighted-Least- binary data
;(éB_WLS Square Cochran- Weighted least squares Equation (3.7)
Armitage Test
2 Donner and Adjusting point estimator .
Xco-0) | Donald’s test and its variance estimator Equation (3.9)
2 An Alternative to Adjusting the variance
Xco-2) | Donner and estimate only Equation (3.11) | Clustered
Donald’s Test ordinal data
2 Weighted-Least-
X co-ws Square Cochran- Weighted least square Equation (3.13)
Armitage Test
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Let S, be the score variable associated with the ith group. Then the linear probability

model Cochran and Armitage used to evaluate the trend in the proportion of success 13,

with S, is
E(P)=a+ B,
where & and [ are the intercept and slope parameters. Since our objective is to test the

null hypothesis of no trend, i.e., H,: =0, we omit inferences about & and only focus

on f in this research.

In the case of independent outcomes, the ordinary least squares estimator of f is given

by

iM,»(ﬁ,»—F)(& -5)
B: i=1

iMi(Si -5)*
i=1

Here S denotes the mean values of S given by

G
> M,

T _ =l

S =" ,
M,

=)

and P denotes the overall proportion of success given by

Moo
<
=S

1l
LN

el
[

Under the null hypothesis H, : f =0, the corresponding least squares variance estimator

A

of B is
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Var(B) =— P(l—P)_ |
D M(S,-S)

Thus a one degree of freedom Cochran-Armitage trend test statistic is given by

Zzzf " :BziMi(Si—E)Z/ﬁ(l—F). 3.1
var(f) i=1

It may also be derived from a simple linear model regressing a binary outcome on an

ordinal covariate (Bland, 2000; pp243):
Y =a+/S,.

Here Y,=1 if the ith observation is a “success” and 0 otherwise. Moreover, it is also

equivalent to the score statistic obtained from logistic regression analyses with a single

covariate (Cox, 1958).

Additionally, the Cochran-Armitage test is related to a variety of non-parametric and
model-based methods. For example, it is equivalent to the Wilcoxon rank sum test when
the scores are set equal to the midranks. It is also equivalent to the Mantel extension test
(Mantel, 1963), explaining why it is frequently called the Cochran-Armitage-Mantel
trend test. We will further discuss relationships between the Cochran-Armitage test and

other test statistics in Chapter 5.

3.3 Adjusted Cochran-Armitage test for clustered binary
outcome data

3.3.1 Donner and Donald’s Test

We assume that it is of interest to compare G groups consisting of observed binary
outcomes. Suppose that n; clusters (i=1,2,..., G) are randomlzed to the ith group. Let m;
denote the size of the ijth (j=1,2,..., n;) cluster and a; = ZY the number of successes
in the ijth cluster. Denote the total number of individuals i 1n the zth group by M, Zm
and the corresponding total number of successes by A = Za . Then P. /( /M.

denotes the proportion of successes in the ith group. The’ resulting data layout is
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presented in Table 3.2. This table was originally developed by Donner and Banting
(1989).

Table 3.2: Data lay-out for adjusted cochran-armitage test for clustered binary

outcomes
Number of | Number of Number (.)f . PI’OpOFtIO.I’l of .
Group . Observations with Observations with
Clusters Observations . .
Characteristic Characteristic
1 n, i & P=AIM
MFZ% AFZ% oo
i=1 i=1
n, n, R
2 n, Mzzzmzj AZZZaZj P,=A /M2
j=1 Jj=1
G g Mg =2 mg A =2 Fo=Aq I Mg
Jj=1 j=1
G G .
Total N M, =M DY A=A P=A/M
i=1 i=1

The linear probability model used to test the trend for clustered binary outcome data is

written as
E(P)=0.+p.S,. (3.2)

To adjust the test statistic y” to clustered binary data, Donner and Donald (1988)

replaced the observed sample size M, by M,/C,, . Here 5,.(3) denotes the design

effect, also referred to as “variance inflation factor” indicating the variance of the success

rate in each group increases as a result of clustering, given by

D mylL+(m; =1)p,]
Cin = = =1+(m, —Dpy.

nl
Z m;
=
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Here p, is an estimator of the ICC for clustered binary data and m,, = ij / ZmU .

Thus the slope parameter estimator of . is given by

J‘U>
cn
|
el
N

i
i=1
IBCB -1 = -

G
Z M" (S, -58)
i=1 Cz(B)

Under the null hypothesis H,, : . =0, the corresponding variance estimator is

—~ P(1-P
Var(ﬁcg_(l)): G ( )

Mi
2.¢

i=1 i(B)

Consequently the Cochran-Armitage trend test for clustered binary outcome data is given

by

2

G C,
PO I T
Var(ﬁcg—(n)

Ct(B)
To estimate the unknown ICC parameter p, for clustered binary data, Donner and

G
Donald (1988) considered the use of the ANOVA approach. Let M = ZZmu denotes

i=1 j=1

G
the total individuals in the study, N = Zn . denotes the total clusters, and
i=1

A

PAA:aij/mij

J

denotes the proportion of successes in the ijth cluster. Then the mean square errors
between and within clusters in the case of binary outcome data are given, respectively,

by:
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MSC ===

and

MSC =-

1l
—_

Jj=1

M —-N

Then the ANOVA ICC estimator for clustered binary outcomes is given by

. MSC-MSW
¥ MSC + (m, —1)MSW

G
where my = (M =Y > m; I M) /(G -2).

i=1 j=1

In general, the ANOVA estimator and the moment estimators are two simple approaches
which do not involve sophisticated computation. Thus Donner and Donald (1988)
compared these two statistics and simulation results showed that the ANOVA estimator
tended to be more accurate than the moment-based estimator in terms of mean square
error. Hence the ANOVA ICC estimator p, was considered by Donner and Donald
(1988) to use in their adjusted Cochran-Armitage test.

Note that there is a typographical error in Donner and Donald (1988)’s paper. They
denoted M, as the number of clusters randomly assigned to the ith group. Actually, it
should be correctly referred to the number of observations in the ith group. This

typographical error was corrected by Donner and Banting (1988).

When individuals in a cluster are statistically independent of each other, i.e., p, =0,
Donner and Donald (1988)’s adjusted test statistic ;(égf(l) reduces to the regular Cochran-
Armitage test statistic y”. Additionally, when there are only two groups, e.g., G=2,

2
Xcs-) reduces to
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2 _
Keg—ay =

MM, (M, M,\&#-P)
M, +M )\ C, C,)P1-P)

It is identical to the adjusted Pearson chi-square test proposed by Donner and Donald
(1988).

. 2
Moreover, when cluster sizes are constant, ¥, reduces to

G — A
(D (S, =S)E~P)M, T .
ZéB—(l) = i:IG _ = 1t Z—l — (3.4)
P(U-P)Y (S, ~ 81 M,[1+(m-1)p,] T~ DPs
i=1

It is simply the division of the regular Cochran-Armitage test statistic by 1+ (m —1)p, .

3.3.2 An Alternative to Donner and Donald’s Test

There are a variety of ways to adjust a test statistic for a clustering effect. For example,
adjustments of the C-A test to clustered binary outcomes include Donner and Donald
(1988), Rao and Scott (1992), Fung et al. (1994), Jung and Kang (2001), Stefanescu and
Turnbull (2003) and She et al. (2010).

In addition, there are two general ways to adjust the test statistic which is obtained by
dividing the point estimator by its variance estimator. One is to adjust the variance
estimate only, and the other is to adjust both the point estimator and its variance estimate.
Related discussions include Scott and Holt (1982), Donner and Klar (2001, pp.90-91) and
Zou (2002, pp.29-32). In particular, Scott and Holt (1982) discussed these two
adjustments for clustered continuous outcome data in the context of linear regression.
They compared the OLS parameter estimate and its variance estimate with the weighted
least-squares (WLS) parameter estimate and the corresponding variance estimate. They
reported that the OLS variance estimator is seriously biased and then affects the
hypothesis testing procedures. Thus it should be substituted by the WLS variance
estimator in order to guarantee validity. However, the OLS estimators of regression

coefficients remain unbiased and are fairly efficient when the ICC is small and cluster
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sizes are large. Thus both the OLS and WLS estimators of regression coefficients may be

used in test procedures based on them.

The C-A trend test statistic is derived by dividing the parameter estimator by its variance
estimator in the context of linear trend model. Donner and Donald (1988) modified the C-
A test statistic by adjusting observed sample sizes in both the numerator and denominator
of the standard C-A statistic for clustering effect. Hence both the point estimator of /.
and its variance estimator are adjusted by the variance inflation factor a( - In this
section, we propose an approach which is also based on a simple adjustment of the
standard C-A test. However, unlike Donner and Donald’s (1988) method, this approach

only adjusts the variance estimator while not adjusting the point estimator of £, .

Thus the slope estimate in the linear probability trend model (3.2) is given by

G —
> M (P -P)S,-3)
:BCB—(Z) == G

D M(S,-S)

Under H, its corresponding adjusted variance estimator is

— — G — —
P(1- P)Z M(S,—=S)’C,y,
Var(ﬂcg—a)) = =

[i M(S,—-S)'T
i=1

Therefore the adjusted trend test statistic is given by

ZCB—(Z)Z = = G _ — (3.5)
P(l1- P)Z(Si -85)’M,C,,,

i=1
. 2
When the cluster sizes are equal, ¥, ,, reduces to

2

2 4
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It is identical to )(éB_(l) in equation (3.4). We will further compare 123_(1) and 123_(2) in

case of varying cluster sizes by simulated data in Chapter 6. Their performance will be

evaluated in terms of simulated Type I error and power.

In addition to the two adjustments presented here, Stefanescu and Turnbull (2003)
generalized the C-A test to assess the trend among clusters. To relate their test statistic to
statistics proposed here, we need to assume the sizes of the clusters are equal in each
group. Thus their statistic testing for trend among clusters could be linked to Donner and

Donald’s (1988) statistic testing for trend among groups.

Stefanescu and Turnbull (2003)’s test statistic is given by

G f— A —
[>.(S, =SB -PM,T
Hop =——— . (3.6
P(1-P)Y (S, —8)*M,C,s,
i=1

It is identical to ;(237(2) in equation (3.5).

3.3.3  Weighted Least Squares Cochran-Armitage Test

The Cochran-Armitage trend test was originally derived from a linear probability model
by using the ordinary least squares (OLS) approach (Cochran, 1954; Armitage, 1955).
However, when the OLS approach is applied to cluster randomization trials the variance
estimates may be seriously biased and therefore inference procedures based on these
estimates can be misleading. As a result, the WLS approach is often used as an extension

of OLS to account for clustering effects.

It is straightforward to understand the underlying nature of the use of weighted least
squares approach in cluster randomization trials. For instance, a proper weight is given to
a cluster according to its variance so that more variable observations in a cluster
contribute less to data information than do less variable observations in a cluster. Hence,
we consider this approach in extending the Cochran-Armitage test to clustered outcome

data in this section.
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More over, one appealing feature of the WLS approach is that it does not require complex
computation and specialized software. It also has close connections with more
sophisticated methods. For example, maximum likelihood estimation (MLE) algorithms
(e.g., Fisher scoring algorithm) often consist of iterative use of WLS. Also, Agresti et al
(1991) reported that when the marginal models for categorical outcomes hold, MLE and
WLS estimates are asymptotically equivalent with large cell expected frequencies.
Additionally, Miller et al. (1993) illustrated that the WLS estimate is the first iteration

result of the GEE procedure.

In this section we derive the adjusted C-A test for clustered binary data using the

weighted least squares (WLS) approach.

Under the null hypothesisH,:P =P, =..=P;=P, Y, has a variance of

il

o’ =P(1-P). Let V,; represent the variance matrix for a single cluster given by

[}

‘/ij = 0-2{(1_,03)1"‘,03]}

where [ denotes a m; Xm,; identity matrix and J the m,xm; matrix all of whose
elements are 1. Let V be a block-diagonal variance matrix with non-zero m; Xm,; blocks
V. We denote Was the M X M weight matrix for the WLS approach, where

w=v",

Then still consider the model used to evaluate the trend for clustered binary data in (3.2).

The WLS estimator of . is given by

Besws = 2 .

Here
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n

G m.. G B
2.8 ' NP .

o a [+ Omy; —1D)p,] an

G m.. G ;
ij z ij

el N (m,j —Dpgl e (m,j —Dp,]

Seli

The derivation of chms is provided in Appendix A. Under H ,, the corresponding

estimated variance is
P(1-P)

Z<S -5 Z

Var(ﬁCB wis) =

1+(mlj _1)pB

Consequently the chi-square trend test statistic derived from the WLS approach is given

by

. > (S, -S) (B -P) I’
2 _ CB—WLS2 _ Z Zl"'(m,/_l)pza
XCB—WLS -

Var(ﬁcB—WLS) P(l P)Z(S S) Zl +(
m..

(3.7)

i 1)/’3

As an alternative to using the weight W =V ' one may use the observed cluster sizes

. ., My
m,, or the “effective sample size” =

i(B)

as the weight. However, the most efficient WLS

estimator of S uses W =V ', which we adopted here.

In the special case of p, =0, the WLS trend test reduces to the regular Cochran-
Armitage test. When the cluster sizes are constant, i.e., m; =m, P=P , and §=5 , the

WLS trend test statistic reduces to

M, 2

e A,
Aep-wes = G M :1+(m—1)A '
PA=P)Y (8 =8) — 1 —— .

1+(m—1)p,
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Furthermore, when there are only two groups and the cluster sizes are constant as well,

the statistic gy ,,, reduces to

2
Z CB-WLS ~—

MM, (M, M,)F-P)
M, +M ) C, C,)P1-P)

It is identical to Donner and Donald (1988)’s adjusted Pearson Chi-square statistic.
In addition, we derive the relationship between the WLS C-A test statistic and the score

test statistic derived from a binary logistic regression by using the GEE. When there are

only two groups, ¥z, u.s reduces to

. __ (B-B)
;L/CB—WLS - - - 2 1 :
P1-P)) ——

P Z’zu

=R

The score test statistic, which is derived from a binary logistic regression using the GEE

and assuming an exchangeable working correlation matrix, is given by

(E_ﬁz)z

~ . & 1
P(1-P))y
i1 Zﬂ
C

=R

2 —
IGEE (score) —

ZYIJ /Cii
where P :T—.

Zmy /Cij
=1

3.4 Adjusted Cochran-Armitage Test for Clustered Ordinal
Qutcomes

We presented three adjusted C-A trend tests for clustered binary data in the previous
section. In this section, we correspondingly extend these three methods to clustered

ordinal outcome data.
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3.4.1 Extension of Donner and Donald’s Test

We assume that it is of interest to compare two groups consisting of ordinal outcomes.
Suppose n; clusters are randomly assigned to the ith group, i=1 or 2, where there are m;
observations in the ijth cluster. Each observation may have an outcome in any of K
categories. Let ¥, be the number of observations falling into the kth category from the
ijth cluster, j=1,..,n, and k =1,...,K . Let Ay denote the number of observations falling

into the kth category from the ijth cluster that have the characteristic. Then

and

Hence the proportion of successes from the kth category is given by

S

P ="t
k Yk
The resulting data layout is presented in Table 3.3 and 3.4.

Let P' denote the overall proportion of successes given by
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Table 3.3: Data lay-out for adjusted Cochran-Armitage test for clustered ordinal

outcomes
Number of
Number of .
) . observations L
Number of observations in . Proportion in the
Group | Cluster . with
observations the kth e kth category
categor characteristic in
gory the kth category
1 my, Y Ay Py =AYy,
2 myp, Yy Ay Py = Ay 1Yy
1
n, m, Yk Alnlk Ik = A1n1/< /lek
1 My, Yy Ay o = Aoy /Yoy
2 My, Yoo Ay Py = Ay 1Yy,
2
n, my,, Yo A2n2k P2n2k = A2n2k /Y2n2k
2 2 2
Total | N MZZ m; Yk:Z Y Ak:zzAijk P=ATY,
=l j=1 i=l j=1 i=l j=1

Table 3.4: Data lay-out for clustered ordinal outcomes in the ijth cluster

Number of observations with Number of observations without
Outcome L L. Total
characteristic characteristic
= Aijl Yijl - Aijl Yijl
k=2 Ay Yo =4 ij2
k=K Ain Yin - Av’j Yin
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M=

Ak

pl=rt—.
QY.

k=1

—_

Let S, denote the score associated with the kth category and

K
_ szYk

S': k=1

K

QY

k=1

Here we use the superscript * to distinguish P' and S' with P and S calculated for

clustered binary outcomes in section 3.3.

The model used to test trend among ordered categories, or the equivalence between the

ordinal outcomes from the two groups, is given by

E(P)=a.+p.S, (3.8)

with the null hypothesis H,: . =0. Let p, denote the ICC estimator for clustered

ordinal outcomes and then the variance inflation factor in the ith group may be written as

> 1+ (my; 1), ]
=1

n;
Z m;
J=1

C,

i0) =

Thus the adjusted slope estimator in model (3.8) is given by

S e

20 2 (S =SB -P)

5 i=l j=1 k=1 Cio)
Beo-y = 2 1k v
z Z(Sk_SV)Z _’]k
i=1 j=1 k=1 Cio

Under H,, the corresponding variance estimator is



56

var(Beo-y) == n,.
=1

1

j=1 k=1 C,‘(o)

Consequently, the adjusted C-A test for clustered ordinal outcome data is given by

e C,

- i=l j=1 k=1 i
Tow = p = o w Ly O
var(feo_ P'A-P)Y. > DS, —-8) ="

i=l j=1 k=1 Ci(O)

It may be easily shown that the statistic )(éo_( ;) follows a chi-square distribution with one

degree of freedom under H .

Note that the linear trend model for clustered ordinal outcomes in (3.8) is same as the one
for clustered binary outcomes in (3.2), except that the subscript ‘4’ in (3.8) denotes the
kth category in which the ordinal outcomes fall while the subscript ‘i’ in the model (3.2)

denotes the ith group in which cluster are randomized. As such the null hypotheses in
these two linear trend models are identical, given by H,: . =0. We presume this
identity between the two models and their null hypotheses since the same hypothesis is
used for independent binary and ordinal outcomes. The appropriateness of this
presumption may need further considerations while it assures the most convenient way to

handle the question at hand.

However, the underlying meaning of the models and the corresponding null hypothesis in
each model depend on what outcomes the ICC is adopted to estimate. If we adopt p, to
analyze clustered binary outcomes, the models in (3.2) and (3.8) would be used to test the
trend among G (i=1,2,...,G) groups or trend among K (k=1,2,...,K) categories. The
corresponding null hypothesis is that there is no trend among G (i=1,2,...,G) groups or
there is no trend among K (k=1,2,...,K) categories. In contrast, if we substitute in p, to
analyze clustered ordinal outcomes, the models in (3.2) and (3.8) would test the equality

between the ordinal outcomes between the two groups. Thus the corresponding null
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hypothesis is interpreted as there is no difference between ordinal outcomes from two

samples.

Methods of estimating the ICC p, have been discussed previously in Chapter 2. In this

research we restrict our attention to the ANOVA ICC estimator and the kappa-type
estimator presented in section 2.3 and 2.4. We will then evaluate the performance of the
adjusted Cochran-Armitage test with the use of these two ICC estimators in simulation

studies.

In the special case of p, =0, the statistic ;(éof(l) reduces to the regular Cochran-
Armitage test statistic. When cluster sizes are equal, i.e., m; =m, the adjusted trend test

statistic reduces to

>

» " (S, =SB, - PY,, TP ,

2 =l =1 k=1 4
KXoy = P— = —.  (3.10)
) 5 - S o 1+(m—-1
PA-P)YY 35, -5, 1+ m-np,] DR

i=l j=1 k=l

M:
»Mw

Additionally, when the outcomes have only two categories and cluster sizes are constant

as well, }[éo_( ;) reduces to Donner and Donald (1988)’s adjusted Pearson test statistic.

3.4.2 Extension of An Alternative to Donner and Donald’s Test

We now extend the adjusted C-A statistic 123_(2) to clustered ordinal data. Consider the

linear trend model in (3.8). Then the slope estimator without adjusting is given by

Under H,, the corresponding variance estimator is



. (3.11)
Z(Sk $)Y, i« Cico)

The statistic has all the properties of ;(éof(l) in equation (3.9).

3.4.3 Extension of Weighted Least Squares Cochran-Armitage

Test

58

Under the null hypothesis H,, : P, = B, = P, Y, has a variance of o’ =P(1-P).Let V;

represent the variance matrix for a single cluster given by

V; =0 (1= po)I + p,J )

where I denotes a m; Xm, identity matrix and J the m; xXm; matrix all of whose

element are 1. Let V be a block-diagonal variance matrix with non-zero m; Xm; blocks

V. We denote W as the M x M weight matrix for the WLS approach, where

w=v",

From the linear model in (3.8), the WLS estimator of /. is given by

=

>

A i=l j=1 k

ﬁCO—WLS 2 :rll, K
ZZZ(Sk S

~.
LR
~
LR
p—
+
~
S
=
—
S~
A}
)

where
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Y

i K
T D 35 3) O
al

oo L+ (my - Dp,
Y ’

ijk

o 1+ (m; —Dp,

Here we use the superscript * to distinguish P' and S for ordinal outcomes with P and

S for binary outcome. Under the null hypothesis, the corresponding variance estimator is

given by

;;r(/?co—wm) = z .

Consequently, the WLS trend test statistic for clustered ordinal outcome data is given by

20 W Y.

[Z<S I V0 A 0) gl g —
= 1+ -1
ZCO—WLSZ = o IOy )P0 . (3.13)

ﬁ'(l—ﬁ')Z(s -8 Z Z i

i=1 j11+( l]_l)po

In the special case of p, =0, ¥¢, s Teduces to the regular C-A test. When m; =m,

Xéo-ws reduces to

[Z( -8B, - P )Z Z e p
o o L+ (my —1 2
ZCO—WLSZ _ k= 1 =l (m, ),00 . X . (3.14)

P~ P)Z(S —S)Z Z1+( Uk—l)p 1+ (m=Dp,

When the outcomes have only two categories and the cluster size is constant, ¥, s

reduces to Donner and Donald (1988)’s adjusted Pearson chi-square test statistic.

In section 3.3.3, we reviewed the close relationship between the WLS approach with
other sophisticated methods. We also built the approximate equivalence between 7,

and the score test statistic using the GEE approach in a binary logistic regression. We will
further derive the relationship between these two statistics for clustered ordinal outcomes

in Chapter 5.
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3.5 Discussion

Although it is necessary to also develop methodology to address very general questions,
including the analysis of covariates, it remains helpful to derive direct adjustments to
regular methods which are simple and easily implemented. The adjustment approaches
presented here can be calculated using any standard computer software designed for
independent data. Furthermore, the principle underlying the adjustments in this chapter
has been applied to a variety of problems involving clustered data. For example, Donner
and Banting (1989) and Rao and Scott (1992) adopted it to the Pearson chi-square

statistic and the Mantel-Haenszel chi-square statistic.

An assumption behind the adjustment approaches proposed in section 3.3 for clustered
binary outcomes is that the correlation between any two observations in the same cluster
is exchangeable, or the average of correlations among observations in a cluster remains

constant across clusters. The random allocation of clusters in cluster randomization trials

assures this assumption is reasonable, at least under H . Similar assumption may be

guaranteed for adjustment approaches for clustered ordinal outcomes, at least under H .

A

In addition to C,, one may estimate the design effect by regarding the success rate P as

a ratio rather than as a proportion (Cochran, 1977). Then the design effect estimator d, is

defined as the ratio of the estimated variance of IA’I to its estimated variance assuming
independent data. Rao and Scott (1992) proposed an adjusted Cochran-Armitage test by
using d, . However, their method estimates the design effect separately in each group so it
1s well-suited for non-randomization trials. Therefore, C_’l , rather than d,, is adopted to

account for the clustering effect in this thesis since our research interests focus on

randomization trials.
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Chapter 4

4 Marginal and cluster-specific models

4.1 Introduction

In Chapter 3, we proposed simple adjustments to Cochran-Armitage tests for
comparisons between clustered ordinal outcomes from two groups. In this chapter, we
present marginal and cluster-specific models, two typical modeling-based methods for
the analysis of correlated categorical data. In particular, algebraic background is provided
with emphases on the GEE and cluster-specific extension of proportional odds models

with one single cluster-level covariate.

This chapter differs from the earlier work in two ways. Firstly, most earlier studies
illustrated their methods using a general form of covariate structure and model links (e.g.,
Lipsitz et al., 1994; Rabe-Hesketh et al. 2002), or did not focus directly on cluster
randomization trials (e.g., Hedeker, 2003; Raman and Hedeker, 2005). Very few studies
gave explicit technical results in the context of a single cluster-level covariate and the
cumulative logit link, the link most commonly used for ordinal outcomes arisen from
epidemiologic studies. However, algebraic formulae related to modelling methods for
correlated ordinal outcomes are more complicated than those for binary outcomes. As
such, the illustration of modelling approaches for clustered ordinal outcomes requires
more explicit details. In this chapter, we present an analytic investigation of marginal and
cluster-specific extensions of ordinal logistic regression models applicable to cluster

randomization trials.

Secondly, few earlier studies described both fitting procedures and hypothesis testing.
Rather their focus has been on either fitting approaches in the two models only (e.g.,
Agresti and Natarajan, 2001), or hypothesis testing only (e.g., Boos, 1992). Moreover,
most existing model-dependent statistical tests were illustrated particularly for correlated
binary data (e.g., Rotnitaky and Jewell, 1990). Extensions of them to correlated ordinal

outcomes were implied only.
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The remainder of the chapter is organized as follows. In section 4.2 we discuss the GEE
extension of the proportional odds models including its robust Wald test and score test.
Section 4.3 briefly discusses the cluster-specific extension of proportional odds models.
Section 4.4 discusses relationships among the magnitudes of fixed effects parameters and
the variances of their estimates as obtained from marginal and cluster-specific models.

Section 4.5 presents ICC estimation in the two models.

4.2 GEE extension of proportional odds logistic regression

We introduced Lipsitz et al.’s (1994) GEE approach for analyses of correlated ordinal
outcomes in section 1.5.4.2. Here we adapt their approach to proportional odds models

with a single binary cluster-level covariate.

4.2.1 Model formulation

Following Lipsitz et al. (1994), we denote Z,, as the cumulative indicator of a K-level

il

ordinal outcome whereZ,, =1 if ¥, <k or Z, =0 if ¥, >k. Here k =1.2,..K and

ijlk
I=12,...,m, where m; denotes cluster size for the ijth cluster. Letting y,, = P(Y;, <k)
be the cumulative probability that has the form E(Z,)=y, , then
Zy =12y, Zjss Ziyry]' and ¥y =Vrs Viga s Vi)l - As such, we transform the
ordinal score Y, to a new set of K -1 binary indicators Z, with cumulative

probabilities ,, corresponding to the cumulative logit link.

A marginal model based on cumulative logits has the form

logitly, 1= X, . (4.1)

Here X, denotes a (K—1)XK design matrix for the /th observation in the ijth cluster
and B =|q,,a,,....a;_,, S]' denotes a K x1 parameter vector. The intercept parameter,
o, corresponds to the kth cumulative logit and it is increasing as k increases. The

intervention effect parameter, [ denotes the log(odds ratio) of the cumulative

probabilities comparing the experimental to the control group. Since the model in (4.1)
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has the same effects £ for each logit, the cumulative odds ratio is also constant for each

logit. In this study, we are interested in the intervention effect parameter £ only.

422 Estimation and inference

LetX, =[X";.X")5,... X", I'  denote  the m;(K—-1)xK  design matrix,

zZ,=172,.2,,...2, 1 the m(K-1) cumulative response vector, and

Vi =7 ""’7'51'”1,-,' I' the cumulative probabilities for the ijth cluster. Let B, denote
a [m;(K —D]x[m;(K —1)] diagonal matrix with the marginal variances of the elements

of Z,,¥u(1=%), on the main diagonal and zeros elsewhere. We further assume a

[m,; (K —D]x[m;(K —1)] working covariance matrix V, for the ijth cluster, given by

‘/ij = Bt;'/zRisz;/z (42)

where R, isa [m;(K —1)]x[m;(K —1)] working correlation matrix. Then the diagonal

blocks of V is the (K —1) X (K —1) multinomial covariance matrix for Z,,,

Vi = Diagly 1= 7,7 ;- (4.3)
The remaining elements ofV; contain the covariance between pairs Z, and Z, (

LLh=12,.,m,

lj;k, g =12,...,K—1). Additionally, the true covariance matrix of Zij 18

given by
COV(ZU) = Bl;/zRgBt;/z (4 4)

where Rg isa [m;(K—-1D]x[m;(K—-1)] true correlation matrix of the ijth cluster. The

working covariance V; in equation (4.2) is identical to the true covariance cov(Z;) in

(4.4) only when the working correlation matrix R; is identical to Rg .

Lipsitz et al. (1994) derived a generalized estimating equation in the form of
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n n

r=330, =330,z -7,1=0  @45)

i=l j=1 i=l j=1

where D, =0y, /08" = B;X . These estimating equations have the same form as the

V.

likelihood equations for logistic regression models, except that definitions of D i

ij
Z, and y, have special meaning and structures for correlated ordinal outcomes as

ij

presented above.

Using equation (4.5), a Fisher scoring algorithm was suggested to obtain ,3 in
conjunction with the estimated correlation parameters in the working correlation at each
iteration procedure. Therefore, given a starting value for B, the mth iteration procedure

is given by

2 n; 2
2 1) *‘( ) A (m) Y7 —1(m) 3 (m) 7-1 A1 (m) Y7 —1(m) P
g MY D VSDMTY S DV (Z, - 7). (4.6)

i=l j=1 i=1 j=1

Here D{™and V™ are estimated by substituting 4" and the correlation estimators in
R, at the mth step. In particular, Lipsitz et al. (1994) extended Liang and Zeger (1986)’s

method of moments approach to estimate the correlation parameters. We further discuss

this in section 4.5.

The sandwich (robust) covariance matrix of model parameter vector ,3 * can be shown to

be
Ve =V,,VV,. @&7)
Here V,, denotes the model-based covariance of ,3 ", given by

n

iZD’ V.'D, " (4.8)

i=l j=1

and
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i 2
7 vr—1 1y ,
o= z 1D1j Vi cov(Z)Vy Dy = ZZUI;fUI;f- (4.9)

=l j= i=1 j=I

A

Specifically, we are interested in testing the null hypothesis H,, : #=0. The estimator /3
is the Kth element of B " . Correspondingly, its model-based variance estimator \721\rM (,5’)

and robust variance estimator varu (,B) are the (K,K)th element of VM and VR

respectively. As such, the model-based Wald test statistic under H, : =0 has the form

W, =AL2A~ 2 (4.10)
vary (f)

and the robust Wald test statistic is given by

A

B >
WR == " /f - 4.11
varg () 4. GAD

In chapter 6, we will evaluate these model-based test statistics by simulation using SAS

procedures. Therefore we limit attention to those statistics routinely available in SAS.

Since only the independence working correlation is available for multinomial models in
PROC GENMOD, the Wald test statistics in (4.10) and (4.11) are considered assuming

independence working correlation only in this study.

Next we introduce the score test obtained from equation (4.5). Corresponding to H,, we
decompose the parameter vector 3~ to (f3, ,B('l) ), where [ is the parameter being tested
in the null hypothesis and S, is a (K—1)X1 parameter vector with elements ¢, .
Similarly, we decompose the generalized estimating equation (4.5) to T = (T, T;;,)’,
decompose V,, to four submatrices A (i.e., var, (,3) ), Aons Ay and A, and

decompose V, to four submatricesJ , (i.e., VarR(,B)), Jonr» Jaoy and J,
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corresponding to £ and B, -We first obtain the estimate ﬁ(l) under H, by solving T},

then substitute ﬁ(l) into T,

(0, under H, to yield the numerator of the score statistic, i.e.,

~

T,

0, - Hence the model-based score test statistic for H : =0 is given by

S, =T varu (B) ~ x2 (4.17)

and the robust score test statistic is given by

~ —~—2 A
S :T(?))VBIM(IB) >

———~ % . (4.18)
varz (f)

Here vary (5’) and \f/;rze(,g) are obtained by substituting =& and S =0 into

varu (,3) and vary (,3) respectively.

Proofs giving the distributions of the above statistics are completely analogous to those
for binary data. Thus we refer below to other authors who have provided corresponding
results in the case of binary outcomes. In particular, Liang and Zeger (1986) showed that
the robust Wald statistic asymptotically follows a chi-square distribution; Rotnitzky and
Jewell (1990) demonstrated that the model-based Wald statistic has an asymptotic chi-
square distribution if working correlations are correctly specified; furthermore, Rotnitzky

and Jewell (1990) and Geys et al. (1999) provided the proof that the robust and the

model-based score statistic have asymptotic chi-square distributions under H .

Rotnitzky and Jewell (1990) reported that robust Wald and score statistics for binary data
may suffer unstable computational results if the cluster sizes are large and the number of
clusters is small. This is because that the residual estimator of cov(Z;), the middle piece
of sandwich estimators, is a quite variable estimator. Therefore simpler statistics, i.e., the
model-based Wald or score statistic, may be used as an alternative if the working
correlation matrix is correctly specified. However, their distributions under H|, are

complicated. Therefore adjustments have been proposed to model-based statistics so that

they could be easily evaluated as approximate chi-square distributions (e.g., Rotnitzky
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and Jewell, 1990; Geys et al, 1999). Their extensions to clustered ordinal data are outside

the present scope of this research.

As discussed for GEE Wald tests, only the independence working correlation is available
for multinomial models in PROC GENMOD. As such, we only consider the robust score

tests assuming the independence working correlation in this study.

4.3 Cluster-specific extension of proportional odds logistic
regression

4.3.1 Model formulation

In cluster-specific models, cluster effects are considered by adding a random effect term,

which is commonly assumed to follow a normal distribution. Let the random variable

u; ~N(0, o?) denote the random effect of the ijth cluster. Then a cluster-specific model

for clustered ordinal outcomes with cumulative logit link is given by
logitl P(Y,, <k)]= X, +u,. (4.19)

Model (4.19) may be fit by maximum likelihood, which is discussed as follows. Here
X, denotes a (K —1)X K design matrix for the /th observation in the ijth cluster and
B =l a,....a, , B denotes a K x1 parameter vector. The intercept parameter, ¢,

corresponds to the kth cumulative logit and it is increasing as k increases. The

intervention effect parameter, £ denotes the log(odds ratio) of the cumulative

probabilities comparing the experimental to the control group.

Let Y, denote a m; X1response vector of scores for the ijth cluster over the set of m,
observations. The likelihood function of Y, conditional on the random effects has the

form

my  K—1

1 V. B =TT pi - 4:20)
[

=1 k=1
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Here Y, =1 1if Y, falls into the kth category and O otherwise, and
Py =Py =11x,,u;). We further define p, as a difference of cumulative
probabilities with the inverse cumulative logits link. That is,

1 1
1+exp(Xiﬂ(k_1),3* +uy) 1+exp(Xlﬂk,B* +u,) '

Piwc = Vi = Vijge—y =

The likelihood function of the ijth cluster after integrating out the random effects is given

by

h¥y) =10, Ty, B0, 07 )du,  (4.21)

where ¢(0,07°) represents the normal density function of u; .Then a full likelihood

function is given by

=11

2 n;
i=1

h(Y;). (4.22)
j=1
However, the integrals in (4.22) don’t have a closed form expression and numerical

approximations are required, which are discussed in the next section.

4.3.2 Estimation and inference

Agresti and Natarajan (2001) reviewed approximation methods for the likelihood

function in (4.22), and they suggested that the best method is Gauss-Hermite quadrature.

As an alternative, the PQL approach (Breslow and Clayton, 1993) has also been
commonly used in cluster-specific models. Bellamy et al. (2005) argued that it may be a
reasonable choice for cluster randomization trials where there are small numbers of large
clusters. However, this approach tends underestimate regression coefficients as well as
variance components for binary outcome data (Breslow and Clayton, 1993; Jang and
Lim, 2006). Liu and Agresti (2005) claimed that similar problems may exist for ordinal

outcome data.
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As such, only the Gauss-Hermite quadrature approximation approach is considered for
estimation of cluster-specific models. However, the Gauss-Hermite quadrature approach
is not dealt with in detail since our interest focuses on marginal models, especially the

GEE approach (see section 4.1).

In Gauss-Hermite quadrature, the likelihood function is approximated by a weighted sum

of a specified number of quadrature points Q, with the weight w, . Optional choices of

points and weights have been reported. For example, Stroud and Sechrest (1966) list

optimal points and weights for the standard normal univariate distribution.

The Gauss-Hermite quadrature approximation of (4.21) is the weighted sum

WY =S 1Y, 10, 8w, (424)

Here g is the number of quadrature points. The accuracy of the approximation increases
as g becomes larger. The ML estimates of 8 and ¢ and their variance estimates can

then be obtained by evaluating the approximated likelihood function using standard

algorithms.

Then the corresponding Wald test statistic for H : 8. =0 has the form

N 2
Wo=—Po 4o
vares (B )

where S, denotes the intervention effect parameter in the cluster-specific model (4.19).

Since only the Wald test is available for cluster-specific in SAS procedures, we do not

consider the score tests in cluster-specific model.

In addition to the Gauss-Hermite quadrature, the adaptive version of Gauss-Hermite
quadrature has been proposed. It increases the efficiency of the ordinary Gauss-Hermite
quadrature so that fewer quadrature points are required. For details one could refer to Liu

and Pierce (1994), Pinheiro and Chao (2006), and Rabe-Hesketh et al. (2005).
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4.4 Relationship between Marginal and Cluster-specific
Models

Although both marginal and cluster-specific models can be viewed as extensions of

generalized linear models to correlated data, they have different interpretations,

estimating methods and in general, yield different results. In this section, we discuss

relationships between the two models in terms of magnitudes and standard errors of the

estimated intervention effect parameter.

Let S, and S, denote intervention effect parameters in marginal and cluster-specific

models respectively. When the outcomes are binary, Zeger et al. (1988) showed that the

approximate relationship between the two parameters has the form

B =[l6V3n52f o +1] gy @)

under the assumption that the random effect distribution is normal. Here o represents

the variance of the random effect, i.e., U; ~ N(O, 0'2) . In addition, Neuhaus et al. (1991)

derived a similar relationship which is valid under any random effect distribution. They

used a first-order Taylor series approximation about S.; =0 and obtain

By =[1=p(0]fes  (4.28)

Please note that equation (4.28) was derived under the assumption of any random effect

distribution, and ©(0) is the intracluster correlation obtained under the null hypothesis

,Bcszo'

Since o7 is a function of the intracluster correlation P, (4.27) and (4.28) illustrate a
qualitatively similar relationship between f,, and f.. Both of them show that for
clustered binary data f,, is smaller than S and the discrepancy between f,, and S
increases as the intracluster correlation increases. However, in community intervention
trials, the discrepancy between £, and B, would be very little since ICCs in

community intervention trials tend to be near zero (see section 6.2).
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Neuhaus (1993) also discussed the relationship between variances of ﬁM and ,ECS for
clustered binary outcomes. Under the null hypothesis, the relationship between these

variances assuming an independence working correlation structure is given by

s _1-p0)
var(f,,) = I+ p(0) var(fB.5), (4.29)

and with the exchangeable working correlation structure, is given by

var(f3,,) = (1—- p(0))* var(B,,) . (4.30)

In community intervention trials, small values of ICCs would decrease the difference

between variances of estimated regression coefficients from the two models.

For clustered ordinal outcomes, Ten Have et al. (1996) extended Zeger et al.’s (1988)
approach and showed that the relationship between the magnitudes of fixed effect
estimates for clustered ordinal outcomes parallels that reported for clustered binary

outcomes. As such, in community intervention trials £,, would be slightly smaller than

B as the ICCs tend to be near zero.

However, the analytical derivation of the relationship between the variances is more
complicated. Therefore Ten Have et al. (1996) compared variances using real data. They
concluded that the relationship between the variances arising from the two models for

binary outcomes does not hold for ordinal outcomes.

Ten Have et al.’s (1996) conclusions are based on empirical comparisons. Although
example datasets are useful for illustration purposes, simulation studies are needed to
provide more evidence under varying parameter combinations (e.g., varying number of
clusters and ICCs) to assess the performance of different statistical techniques. In chapter

6, we will examine Ten Have et al.’s (1996) conclusions using simulation.
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4.5 |CC estimation

In section 2.3, we reviewed ICC estimating methods for clustered ordinal outcomes. In
this section, we further discuss estimation of the ICC under GEE and cluster-specific

extensions of proportional odds logistic regressions.

4.5.1 ICC estimation under marginal models

As introduced in section (2.3.2), Lipsitz et al. (1994) derived the moment ICC estimator
in GEE approach for correlated ordinal outcomes. For an exchangeable correlation

structure, the ICC estimator in model (4.1) is given by

2
A A
PIPIPICAL

Pops = ——L . (43D

1
Here the m;(K —1) residual vector ¢, = B,*[Z, — ;] corresponds to the cumulative

logit links and B, is the submatrix of matrix B; corresponding to the /th individual in
the 7jth cluster. When there is substantial variation in cluster size, the precision of the ICC

estimator in (4.31) may not be optimal since it gives too much weight to large groups

(Donner, 1986).

4.5.2 |CC estimation in cluster-specific models

Rodriguez and Goldman (2001) extended the classical derivation of the ANOVA ICC for
continuous data to binary outcomes based on a latent-variable formulation of generalized
linear mixed models. Agreti (2010, page 283-284) further discussed the ICC for
correlated ordinal outcomes using the latent variable formulation in cluster-specific

models.

Given the random effect term u; ~ N (0, o) and the error term & ~ N(O, O'ijz.,) , the ICC

estimator in model (4.19) assuming a common correlation structure has the form
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o o

T +22/3

Pos = (4.32)

- 2 2
(o2 +O'ijl

This implies a nonnegative ICC among clustered observations and it tends to increase as

the variance ¢ of the random effect increases.

4.6 Summary

In this chapter we presented marginal and cluster-specific models which will be
investigated by simulation. In section 4.2, we introduced the GEE extension of
proportional odds logistic regressions. In section 4.3, we briefly introduced cluster-
specific extensions of proportional odds logistic regressions. In section 4.4, we discussed
relationships between marginal and cluster-specific models. In section 4.5, the estimation

of the ICC under the two models was introduced.
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Chapter 5
5  Adjustments to the small-sample performance of GEE

5.1 Introduction

As reviewed in section 1.5.4, correction and modification strategies have been proposed
to improve the small-sample performance of the GEE approach for correlated binary
data. However, their extensions to correlated ordinal data have not been considered. In
this chapter, we develop modified GEE procedures for ordinal outcome data to improve

small-sample performance of hypothesis tests.

The specific objective of this chapter is to algebraically extend correction and
modification strategies developed for binary outcome data to ordinal outcome data. For
convenience, we simply classify adjustments to the robust Wald test into two categories:
one based on bias-corrections of the sandwich estimator and the other based on degrees-
of-freedom adjustments for the test distributions. As such, we consider five bias-
corrected approaches and four degree-of-freedom approaches to the robust Wald test and
one modified score test. We list all test statistics in Table 5.1. The subscript ‘BC’ denotes
bias-corrected and ‘df” denotes degree-of-freedom adjusted. In addition, the subscript ‘M’

denotes model-based and ‘R’ denotes robust.

Most attention given to small samples adjustments in marginal models applicable to
cluster randomization trials has focused on a single cluster-level binary covariate and
cumulative logit links. Although the test statistics presented in this chapter are derived
similarly to those for binary outcomes, detailed attention is given to technical issues that

arise in the case of ordinal data.

The remainder of the chapter is organized as follows. In section 5.2, we adapt small-
sample adjustments to the robust Wald tests for ordinal outcomes. In section 5.3, we

present modified score tests for ordinal outcomes.



Table 5.1: Small-sample adjustments to Wald and Score tests in Chapter 5

S tIt?::ic Test name Formula dis t;l;lisilttion Equation
W, Model-based Wald test ,82 / var u ( IB) le Equation (4.10)
W, Robust Wald test ,82 / var #( B) le Equation (4.11)
Wi Bias-corrected Wald test: Approach 1 ,82 / \7a\r e ( IB) le Equation (5.7)
Wi Bias-corrected Wald test: Approach 2 ,32 / \725‘ 5o ,3) le Equation (5.10)
Wecs Bias-corrected Wald test: Approach 3 Bz / \7a\r e ( IB\) 112 Equation (5.16)
Weca Bias-corrected Wald test: Approach 4 Bz / \73} sca( IB\) 112 Equation (5.19)
Wies Bias-corrected Wald test: Approach 5 Bz / \73} Bcs( B) )(12 Equation (5.23)
Wy Degrees-of-freedom-adjusted Wald test: Approach 1 Bz (N-K)/ \73} r( IB) N )(12 Equation (5.24)
Wys Degrees-of-freedom-adjusted Wald test: Approach 2 ,82 / \73} r( B) F vk Equation (5.25)
Wy Degrees-of-freedom-adjusted Wald test: Approach 3 ,82 / \73} r( B) F, Equation (5.26)
Wy, Degrees-of-freedom-adjusted Wald test: Approach 4 ,82 / \73} r( B) F, Equation (5.36)
Sy Model-based score test 7:(3) vary ( ,3) le Equation (4.17)
Sk Robust score test f(é) \//;1*;4 ( [;’) / varg ( ﬁ’) le Equation (4.18)
Ssc Modified robust score test f(é) \//;r; ( ﬂA) N /varg ( /;’)( N-1) le Equation (5.38)

75
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5.2 Adjustments to the Wald test
5.2.1 Bias-corrected approaches

Approach 1.

To calculate the sandwich estimator in equation (4.7), the estimated residuals

A

h,=2Z;—7,; are commonly used to estimate cov(Zl.j) ,1.e.,

coV(Z,) = iyf = (Zy — P)(Zy = 7). (5.1)
However, the residuals 7, tend to be too small so 7,7 is a biased estimator of cov(Z,).

To derive the approximate bias of the residual estimator, Mancl and DeRouen (2001)

considered a first-order Taylor expansion of the residual 7, given by

By=r+ aﬁ,u/i’ -B). (2

and the first-order approximation

D* * 2\ &
B =B =v,> > DV Z,-y;,). (53).

i=l j=1

Substituting (5.3) into (5.2), we derive the expectation of rl,r ; as

E(%#;)=; —H,)cov(Z,)(I, —HU)+Z D H,cov(Z)H],, (54)

i=l d#j

where H DUVmD,,V is an expression for the leverage of the ijth cluster (Preisser and

Qagqish, 1996), 1 p is the identity matrix with the same dimension as H , and the

ij’

summation Zd;:,- in (5.4) isoverall d =1,2,...,n, # j. By definition, the elements of

H ; are between zero and one, so we assume that the contribution to the bias of the sum
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in Equation (5.4) is negligible. As such, the expectation of 77", could be approximated

by
E@f )= —Hy)cov(Z,)(I; —H;)'. (5.5)

A bias-corrected sandwich variance estimator then has the form

i=l j=1

Ve =V, (ZZDUV (I, —H) 'rr, (I, —H)"'V.'D, jVM, (5.6)
where E(V,.,) = var(§).

Letting vary, (,3) be the (K,K)th element in V,., denoting the corrected sandwich

variance of ,3, the corresponding bias-corrected Wald test under the null hypothesis

H,: =0 has the form
02
w, -y 57
VEll‘BCl(,B)

Approach 2.

Kauermann and Carroll (2001) proposed an alternative bias-corrected sandwich estimator
for binary outcomes. One of its distinctions as compared to Mancl and DeRouen’s (2001)

approach is that it assumes a correctly specified working covariance, i.e., V; =cov(Z;)

and E(r;r';)=V,. Also, it does not drop the summation term in (5.4). Next we derive an

alternative bias correction to ordinal data based on Kauermann and Carroll’s (2001)
work. However, this new approach simplifies Kauermann and Carrol’s method and leads

to a result more comparable with other corrections.

We assume a correctly specified working correlation matrix, and substitute the first-order

Taylor expansions of ﬁ’ —f into equation (5.2). Thus the expectation of 7.7, is

approximated by
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EG#,)=cov(Z I, ~H,}. (5.8)

i

The corrected residual estimator may then be written as (I -H, )7” 7. A bias-corrected

sandwich estimator for clustered ordinal outcomes is then given by

_ . —1 —1/2 .y _ -1/2y /-1
C2 V ZZDU Hij) rij'rij(lij Hij) Vij Dij M, (5.9
i=l j=1
where E(V,.,)=var(f"). Letting \7a\r3cz(,5’) be the (K,K)th element in VBCZ, the

corresponding bias-corrected Wald test under the null hypothesis H,, : =0 has the form

Wy, =AL2A ~ 1. (5.10)
VaI‘Bcz(ﬁ)

For clustered binary outcomes, Lu et al. (2007) reported that the Mancl and DeRouen
estimator overestimates the true variance while the Kauermann and Carrol estimator

reduces this overcorrection. Also, when cluster sizes are small (e.g.mij <10), the

Kauermann and Carrol estimator is preferred in terms of confidence interval coverage.
However, when cluster sizes are moderate to large, the Mancl and DeRouen estimator
performs better than the Kauermann and Carroll estimator in terms of coverage, even in
trials with as few as 10 clusters (Lu et al., 2007). Note that these conclusions are reported

for clustered binary outcomes only. In chapter 6, we will investigate the performance of

\7a\r3c1( ,5’) and \7a\r3cz ( ,5’) to find if similar results hold for clustered ordinal outcomes.

Approach 3.

We derived \72:1‘301(,8) and ;;rgcz(,g) by combining a first order Taylor expansion of
residuals 7, together with the Taylor expansion of S . Similarly, we could combine a

Taylor expansion of estimating equations U together with expansion of B to derive

the bias of the sandwich estimator (Fay and Graubard, 2001). Substituting
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A % 2 & _
B -5 zVMZZD'iVil(zij_%j)

i=l j=1

into the Taylor expansion of estimating equations

L oU, .
Uij zUij - aﬂi B =), 511
we obtain
EU,U'";)
=cov(U;) —cov(U,;)V,, D', V.'D, = D', V,'D,V,, cov(U,)

2 m (5.12)
+D', V,'DV, (D> cov(U )WV, D', V;'D,

i=1 j=1

Assuming a correctly specified working correlation matrix, we have

cov(U,;)=EWUU;)=D'

jy

V.'D,. (5.13)

i

2
Replacing Y > cov(U;) in (5.12) by (5.13) yields

i=1 j=1
EWU,U',)=cov(U,)(I,—¥,) (5.14)

e 1S not a symmetric

where W, =D'.V.'D,V, . Since it is possible that [ , — ¥ ,
matrix, we may be unable to use (/; — ‘I’ij)_”2 to correct the bias of the approximation in
(5.16). As Fay and Graubard (2001) proposed, we therefore select a constant b and define
A, asa KX K diagonal matrix with ddth element equal to {1 —min(b, [y, 1,4 )}_”2 , where

b <1. Here we refer the choice of the constant b to Fay and Graubard (2001). A bias-

corrected variance estimator is then given by

2 2
Vies =V, [z ZCOV(UUU,;)}VM =V, ( AD V' r, VU.‘IDUAUJVM , (5.15)
i=1

i=1 j=1 =l j=1
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where E(V,.,) = var($") assuming a correctly specified working correlation.

Letting \7a\r3c3( ,B) be the (K,K)th element in VBC3, the corresponding bias-corrected Wald

test under the hypothesis H, : =0 has the form

,Bz

W, ==
pe varcs ()

~x . (5.16)

Approach 4.

Alternatively, we combine derivation procedures for Var3c1(,3) and Var3c3(,3) and

develop another corrected sandwich estimator. In particular, we decompose the

summation term of (5.12) and re-express the approximation (5.12) as

EU,0",)

=cov(U,)—cov(U, )V, D', V;'D,—D',V:'D,V, covU;)+ D', V;' DV, cov(U, )V, D', V"D,
2

+D',V,'DV,, > > cov(U, V,,D',V;'D,
i=1 d+j

(5.17)

Neglecting the summation term in (5.17), the expectation of U ijl} ; has the form

EWU,U',)=I;—¥,)cov(U, )1, - ¥,
Then a bias-corrected sandwich estimator is given by
b 1 1 1 1
VBC4 :VM ZZ(IU _‘Pij)_ D'ijvij_ rijr'ij Vij_ Dij(lij _‘Pij)_ VM (5.18)

i=1 j=1

A

where E(V,.,)=var(f). Letting ;errgm(ﬁ) be the (K,K)th element in V., the

corresponding bias-corrected Wald test under the hypothesis H,,: =0 has the form
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N

B )
WBC S (519)
varscs(f)

In summary, derivations of varsc2(f) and varses(f) require an assumption of a

correctly specified correlation matrix, and do not drop the summation term in (5.4) and

(5.17) respectively. In contrast, derivations of \7a\r3c1(,5’) and \7a\r3c4(,5’) do not require

this assumption, but they drop the summation term in (5.4) and (5.17) respectively.

In addition, VarBC4(,5’) gives a larger variance estimator than Vachs(,B’) since the

diagonal elements in Aij are between 0 to 1. As such, based on conclusions derived from

the binary case (Lu et al., 2007), V,., may overestimate the true variance. However,

when the cluster size is moderate to large, the impact of overcorrection of varsca( ,8) may
counteract the high variability of the sandwich estimator. This is also one of motivations

for deriving W, . In the simulation study, we will further compare these adjustments to

confirm our algebraic results.

Approach 5.

We also extend the Pan (2001) modification of the sandwich estimator to ordinal data.
Pan (2001) reported that the residual estimator r,r'; is not an optimal estimator of
cov(Z;) in terms of consistency and efficiency since it is based on observations from

only one cluster. Instead of r,r';, he used Liang and Zeger (1986)’s estimator by pooling

i

information across all clusters.

Following Liang and Zeger (1986), we could estimate the unspecified correlation R, in

equation (4.4) by
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2 n

NS B (Z, -y NZ, - ¥,) B, IN . (5.20)

i=1 j=1

Then from equation (4.4) we have

2
cov(Z;) = B;”(ZZB;”(ZU. — ¥ )NZ,—7,) B;" /NJB,;” . (5.21)

i=1 j=1

Substituting (5.21) intoV/,,, the bias-corrected sandwich variance estimator is given by

VBCS

n

2 2 .(5.22
=V [ZZD'U‘@'_IB;/{ZZB;/Z(ZH — V) (Zy = 7;) By /NJB;/ZVU_IDU]VM 022

i=1 j=1 i=1 j=I

Letting \7a\r3c5 ( B) be the (K,K)th element in VBCS , the corresponding bias-corrected Wald

test under the hypothesis H, : =0 has the form

A

Wyps =t

BC5 —

2
varzes () d

Proofs giving the chi-square distribution of the Wald statistic (5.23) are not as
straightforward as those for the other four corrected statistics. We refer detailed proof

procedures to Pan (2001).

5.2.2 Degrees-of-freedom adjusted approaches

In the previous section, we derived five bias-corrected sandwich variance estimators for
robust Wald tests. In this section, we present four adjustments to the Wald tests in terms

of degrees-of-freedom. We start with the simplest one.

Approach 1.
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Hinkley (1977) and MacKinnon and White (1985) proposed a modification for
heteroskedasticity-consistent variance estimators for continuous outcomes. Mancl and
DeRouen (2001) adapted this approach for binary outcomes, what they called the degree-
of-freedom approach, by multipling the sandwich estimator by a factor N /(N — P).

We adapt this approach for ordinal data by using the same factor. Here P is equal to K,

which denotes the number of categories of responses. Consequently, the corresponding

Wald test statistic for the hypothesis H,: =0 is given by

w _N-K B
TN var(B)

~x. (5.24)

Approach 2.

It is well known that a ¢-test is preferred to a normal test when the true variance is
estimated. Similarly, we could evaluate a test statistic which follows an F distribution
rather than a chi-square distribution in order to reduce the effects of confidence interval
undercoverage and inflated type I error caused by the use of sandwich estimators.
Moreover, according to the equivalence between the ¢ and the F statistics with numerator
degrees of freedom 1, the F-test is used instead of the #-test here so that test statistics

presented here could be extended to more general situations.

Several approaches to determine the denominator degrees of freedom in the F-test have
been proposed. First, we could consider N — K as the denominator degrees of freedom in
the F-distribution to lower the inflated test size (Mancl and Derouen, 2001). Therefore,

under the hypothesis H,: =0 the usual Wald test statistic has the distribution

02
W B

== - F _ (525)
dar2 COVR (ﬂ) ILN-K

Approach 3.
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Fay and Graubard (2001) proposed an approximate denominator degrees of freedom in

the F-distribution by taking account of the variability in the sandwich estimator.

Extending their approach to ordinal data, the robust Wald test statistic under H,: =0

has an F distribution

IBZ

w ==
covr(f)

0 ~F,, (5.26)

where the denominator degrees of freedom in (5.26), d is estimated by a function of the

variance of the sandwich estimator. Here we give its principle estimating procedures.

Given

ﬁ* :VMZZUU ’

the numerator in the Wald test statistic (5.34) has the form

A 2 n 2 n
(CBY=CV, 23U DU V,C. (527)

i=1l j=I i=l j=1

We assume the term C'V,, U has mean 0 and the variance Q.jz. . Fay and Graubard (2001)

showed that
n; 2
22 CVU; 2 3 UV, C
i=l j=1 > nt=1 Jj=1 ~112 (528)

>0

i=l j=1

as N — oo . Substituting (5.27) into (5.28), the numerator in the Wald statistic of (5.26)

has an asymptotic chi-square distribution with 1 degree-of-freedom. That is,

(ZCL ~ 2. (529
229

i=1 j=1
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Moreover, Fay and Graubard (2001) showed that the denominator term in the Wald

statistic also has an asymptotic chi-square distribution. Let U =[U,,".U,,".....U;",..U,, |
be a KNX1 vector, M a NK xNK block diagonal matrix with ijth block equal to
v,ccv,, G=1I,-QV,F'" assuming [, an KxK identity matrix,
F=[I1z,..1;] a KN x K matrix, and

Q= [Dn'VlIlDll’D12'V1;D12"“D17'V17_1D """ ’D'an Vi

2n,

D,, ] a KN XK matrix. Fay and

Graubard (2001) showed that

CV,'C=U'G'MGU

and
cv:'cd U'GMGUd
T T a ~ %, (5.30)
228 29
i=1l j=1 i=1 j=1
where
' 2
{trace(I'G'MG)} (5.31)

" trace(TG' MGTG' MG)

and I denotes the estimated covariance matrix with block diagonal (

uuu',,,u,u', "“’UanU'2n2 )-

Approach 4.

Alternatively, Pan and Wall (2002) proposed a more general approach to estimate the
approximate F-distribution by taking account of the variability of the sandwich estimator.

Extending their approach to ordinal data, the robust Wald test statistic under H,: =0

has an F distribution
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N

,Bz
Wdf4 ==X = E!d,, (5-32)
varz(f)
where the denominator degrees of freedom in (5.40), d’ is used to distinguish to the
denominator degrees of freedomdin (5.26). Next we give principle estimating

procedures of d” in (5.32).

Following Pan and Wall (2002), we defined the symbol ® as the Kronecker product of

two matrices, and vec(U) as an operation which stacks the columns of U below one

another. Denote the middle part of V,, as

P, =vec(D', V" cov(Z,)V:'D,),

iy

which has the mean vector

n;

P=>>PIN

i=

—_

j=l
and the empirical covariance estimator

G=3 3 (P, - F)B,-PYIN(N -1).

i=l j

Following Pan and Wall (2002),

vec(Vy) = (V,, ®V,))D > P,

i=1 j=1

and its corresponding covariance matrix is
cov(vec(V,) =N2(V,, ®V,)GV, ®V,). (533)

The estimated variance of VarR(,B) , denoted as %7, is the (K?,K”) element in

cov(vec(Vy)).
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Let the mean and variance of \7a\rR (,3) be u, and o} respectively. Pan and Wall (2002)

showed that varz (,5’) has an approximate chi-square distribution

2 — A
e varz(f3)

o212 _2uvare(B) £ (5.34)
d’- .
M oy

2

Here d’ = Hr . On the other hand, under H, : S =0 we have

o l2

Py (535)

R

Combining (5.34) and (5.35), Pan and Wall (2002) built an F statistic in the form of

N

2
£ N
Hr __F i
— N - A ,d’ :
M/d, varz (f) 1
o

It is interesting to note that the resulting test statistic is exactly the same as the usual

Wald test statistic. Consequently, under H,: =0 the Wald test statistic has an

approximate F distribution,

F, . (536)

where d' is approximated by

d'=2var(B) 1%

Approach 5.
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Combining degrees-of-freedom adjusted approaches 1 and 2 (i.e., equations 5.24 and

5.25), we derive the Wald test statistic for the hypothesis H,: =0 given by

_N-K_F

W, = P _F
TN vare(B)

vk (537

5.3 Adjustments to the score test

Guo et al. (2005) reported that in contrast to the liberal behaviour of the Wald test, the
score test tends to have a smaller test size than the nominal level. They further developed
a simple modification to correct this conservative performance of the score test. In this

section we adapt their approach to correlated ordinal outcomes.

In the robust score statistic (4.18), both the f(o) term and the var,( ,3) term are based on
the calculation of U, and this correlation may cause the conservative performance of the

robust score test. However, the correlation can be reduced by using the sample variance

estimator,

NS W, -0, -0,

i=1 j=1

2 2. — A
rather than ZZU U ,; , to estimate the variance term COV(ZZU U ;.) in varg(f). Let
i=1 j=1 i=1 j=1

2 n; 2 n;
U = Z ZU ; | N . The sample variance estimator of COV(ZZU U ;.) is given by
i=1 j=1 i=1 j=1
2 n; _ —, N _ 1 2 n; ,
DD W, -U)U,;-U) zTZ UU,. (538)

i=1 j=1

Consequently, the modified score test statistic for the hypothesis H,, : f =0is given by

72 vart (f
N Tovaru(h) 2 (539
N-1 varz(f)

Spe =
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When the total number of clusters N is large, the modified score test statistic in (5.38) is
similar to the regular score statistic in (4.18). When N is small, the factor N/N —1

reduces the conservativeness of the regular score statistic.

5.4 Summary

In this chapter, we derived small-sample corrections and modifications of GEE for
clustered ordinal outcome data. In particular, we presented five bias-corrected
approaches, four degrees-of-freedom-adjusted approaches for the Wald test, and one

modified score test. Their performance will be evaluated by simulation in chapter.
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Chapter 6
6  Simulation Study: Design

6.1 Introduction

In previous chapters we described statistical approaches for analyses of clustered ordinal
outcome data. In this chapter, we outline a simulation study to evaluate the performance

of these approaches.

There are two primary objectives. One is to evaluate the accuracy and efficiency of the
ANOVA and kappa-type ICC estimators in terms of bias and standard errors. The other is
to investigate the 19 test statistics in terms of Type I error and power. These test statistics
were presented in the previous chapters, including three direct-adjusted Cochran-
Armitage test statistics described in Chapter 3, one GEE model-based, one GEE robust
Wald test and one GEE robust score statistic from marginal extensions of proportional
odds models, one test statistic from random-effect proportional odds models (i.e., cluster-
specific model), one t test statistic from random-effect linear models, and 11 modified

GEE test statistics discussed in chapter 5.

The rest of the chapter is organized as follows. A detailed discussion of the parameters
used to define the study is given in section 6.2. The methods used to generate the data are
presented in section 6.3. Finally, the statistics being evaluated are reviewed in section 6.4.
The design of the simulation study follows the guidelines proposed by Burton et al.
(2006).

6.2 Parameters used in simulation

The performance of statistical methods considered in this study may depend on the values
of the following parameters: the number of clusters per group, cluster sizes, variation in
cluster size, the correlation structure among the observations within the same cluster, and
proportion of observations falling into each category. These parameters are discussed as

follows.
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Ordinal outcomes with three categories are most commonly used in health related studies
(see Table 1.1). We therefore restrict our attention to clustered ordinal outcome data with

three categories.

As discussed in chapter 1, our interest focuses on community intervention trials since
most statistical challenges are posed by trials involving a small number of large clusters.
For example, we will investigate the performance of the GEE approach when the total

number of clusters is less than 40. Furthermore, attention is limited to equal numbers of

clusters for each group, with n, =n =10 and 20 clusters per group. This decision reflects

typical practice in cluster randomization trials (e.g., Klar, 1993, p175; Zou, 2002, p64 ).

Zou et al. (2005) chose 120 as one of the mean cluster sizes for community intervention
trials in their study, corresponding to the mean cluster size in trials reported by Murray et
al. (1992). In our example data, the mean cluster size is 57. For our simulation study, we

selected mean cluster sizes of 50 and 120.

There tends to be considerable variability in cluster size in most cluster randomization
trials. The variability of cluster sizes may be measured by an imbalance parameter 4,

denoted by

1

1t Ve ©.h

where CV is the coefficient of variation of the cluster sizes. The parameter A is equal to
one if there is no variability in cluster size and decreases as the imbalance degree in
cluster size increases. A value of 4=0.8 was found using data from community
intervention studies reported by Murray et al. (1992), Villar et al. (2001) , Zou et al.
(2005) and the Television School and Family Smoking Prevention and Cessation Project
(TVSFP) study (Flay, et al., 1988). Aside from A = 0.8, we also included the case A =1
since the ANOVA and kappa-type ICC estimators investigated in this simulation are
asymptotically equivalent when the cluster sizes are constant and the number of clusters

is large (see section 2.4.3).
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Campbell et al. (2005) calculated 220 ANOVA ICCs from 21 datasets and reported a
range from 0O to 0.415 with median 0.048. It is known that the ICC value for community
intervention trials is much smaller than that for family-type trials. Thus, Hannan et al.
(1994) reported that the ICC estimators in his community intervention trial ranged from
0.002 to 0.120 for heart disease risk factors. Donner and Klar (1996) and Zou et al.
(2005) selected 0.005 and 0.01 as ICC values representing community type trials in their

studies. Correspondingly, we set p =0.005 and 0.01 in this simulation. We also included
the case p =0, where outcome data are independent, as a benchmark against which to

evaluate the impact of clustering.

The intervention effect was measured using the log cumulative odds ratio in this study.
The cumulative odds ratio & was chosen as 1.1 and 1.5 for power comparisons as in
previous studies (Donner and Donald, 1987; Zhang, 2009). In this simulation study, we
consider € =1.2 for the power comparisons and € =1 for the Type I error comparisons,
equivalent to 0.079 and O in terms of log odds ratio respectively. In addition, the
probabilities of subjects falling into the three categories are close to (0.2, 0.3, 0.5) in the
example data (TVSFP). To resemble the example data, we set the expected probabilities

in the intervention group, (7,,7,,7,), as (0.2, 0.3, 0.5). As such, the corresponding

expected probabilities in the control group are (0.23, 0.31, 0.46) and (0.2, 0.3, 0.5)

respectively, corresponding to =1.2 and € =1.

There were 48 parameter combinations used in this simulation. For each parameter
combination, we generated 1000 independent sets of clustered ordinal data. For each data
set, we simulated data for the intervention and control group separately. To reach 1000
replicates, any iteration where iterative procedures failed to converge was replaced by
additional data. The full set of parameter values used in this simulation is summarized in

Table 6.1.
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Table 6.1: Simulation parameters for cluster randomization simulation study

Parameters Values
Number of ordinal categories (K ) 3
Number of clusters per group (n, =n, =n) 10, 20
Mean cluster size (1) 50, 120
Imbalance degree (A4) 08,1
ICC(p) 0, 0.005, 0.01
Probabilities in the intervention group (7,,7,,7;) (0.2,0.3,0.5)
Cumulative odds ratio (&) 1,1.2

6.3 Generation of data

6.3.1 Cluster sizes

Three general approaches for generating variable cluster sizes have been used in the
literature. The simplest approach is to pre-specify cluster sizes for simulation. For
example, in Mancl and Derouen (2001)’s simulation study evaluating their bias-corrected
GEE approach, they set 16, 32, or 64 observations in each cluster in order to correspond

to a study with 4, 8, or 16 tooth sites in each of the four quadrants of the mouth.

An alternative approach is to assume an empirical distribution of cluster sizes which
could be obtained from earlier studies. For instance, Kupper et al. (1986) presented a
distribution of cluster sizes (i.e., mouse litters) applicable to dose response modelling in
teratologic studies, also used by Ridout et al. (1999) in their simulation study. However,
this approach does not allow the average cluster size and the degree of imbalance to be

varied.

Donner and Koval (1987) used a more technically sophisticated approach to generate
cluster sizes, combining the advantages of the above two approaches. They generated
cluster sizes from a negative binomial distribution truncated below one. This approach
specifies both the mean cluster size and the degree of imbalance while not restricting the
clusters to a few pre-selected sizes. The probability function of the truncated negative

binomial distribution generating cluster sizes m; is given by
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(R+m, —1)!

=Ry F/QT@ DT 0=1+P . (62)

P(my)

Here the values of (R, P) in (6.2) can be obtained by solving the following nonlinear

equations corresponding to the mean and imbalance parameters:

RPQO*
u=RC (63
and
- * (64
1+ P+ RP

respectively. Then various cluster sizes m;; can be generated from the truncated negative

binomial distribution (6.2) determined by x# and 4.

Since the lower bound of cluster sizes for the truncated negative binomial distribution in
equation (6.2) is 1, this approach may yield cluster sizes which are equal or close to 1.
However, the minimum cluster size of a community intervention trial is much greater
than 1. As such, Zou et al. (2005) used the discrete uniform distribution to generate
cluster sizes for community intervention trials. In this simulation study we chose the

discrete uniform distribution to generate cluster sizes.

The probability function of the uniform distribution U(m,,m,) has the form

1

m, —m, +1

(6.5)

P(my) = smy =m,m +1,...m,

with mean

p=(m+m)2  (6.6)

and variance
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o’ =(m,—m)(m, —m, +2)/12.  (6.7)

One can determine the values of (m,,m,) by solving equations (6.6) and (6.7) given u

and o which could be derived by equation (6.1). Then various cluster sizes could be
generated from the uniform distribution defined in equation (6.5) determined by the

respective mean cluster size and imbalance parameters x# and A .

The resulting data are then restricted in range with lower bound m, and upper bound m,, .

Therefore, the values of the simulated cluster sizes fall into the suitably chosen range of (

m,,m,). We list values of (m,,m,) in Table 6.2 corresponding to the values of ¢ and A4

presented in Table 6.1. When A =1, the trial has fixed cluster sizes equal to u .

Table 6.2: Values of simulation parameters (m,mn) corresponding to given (u,4)

H A o m, m,
50 0.8 25 7.2 92.8
120 0.8 60 16.6 223.4

6.3.2  Generating clustered ordinal outcome data

The multivariate normal distribution has been widely used to generate correlated
categorical data. For example, Jung and Kang (2001) generated clustered ordinal data by

generating multivariate normal data with correlation parameter p and then discretizing

the data using appropriate cut-off values.

In addition, Gange (1995) proposed a procedure for generating multivariate categorical
outcomes using an iterative proportional fitting algorithm. However, his approach needs
specification of the joint distribution and higher order associations, and requires an
iterative procedure to fit the corresponding log-linear models. Also, Biswas (2004)
developed algorithms to generate correlated ordinal outcomes for some specific

correlation structures. However, generalizations of his algorithms to other correlation
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structures are doubtful. Moreover, the algorithm itself lacks practical meaning, and

Biswas (2004) did not provide evaluations for his approach using simulation.

Demirtas (2006) proposed a method for generating multivariate ordinal outcomes with
specified marginal distribution and correlation structure. His method relies on simulating
correlated binary outcomes as an intermediate step and then converting them to correlated
ordinal outcomes. However, it is computationally burdensome as it requires iterative

procedures to compute the proper correlations for binary data.

Correlated ordinal outcome data may also be generated from cluster-specific models.
However, the odds ratios from a mixed effects model are larger on average as they are
estimating a different (larger) parameter compared to those from marginal models (e.g.,
Ten Have et al., 1996). Since we are primarily interested in examining the statistical
properties of marginal models (e.g., GEE), a marginal model was used to simulate

clustered ordinal outcome data in this study.

In particular, correlated binary data may be generated from the beta-binomial distribution
(e.g., Donner and Klar, 1996; Donner et al., 1994; Bellamy et al., 2000). This simple
method could be extended to generate correlated ordinal data by using a dirichlet-
multinomial distribution (e.g., Tsou and Shen, 2008; Lui et al., 1999). This simplicity can
be obtained since attention here has been limited to trials where responses of all cluster
members are assumed to be equally correlated with a single cluster-level covariate (i.e.,
intervention vs. control). Therefore, we simulated clustered ordinal outcome data from a

Dirichlet-multinomial distribution in this study.

In the remainder of this section we describe the Dirichlet-multinomial distribution and its

use in generating correlated ordinal outcomes.

Let ¥, = (Y,,.Y

410 Y2, Y;3) be the vector of counts for the ijth cluster, where Y, denotes the

number of subjects in the ijth cluster falling into the kth category. Let B, = (P, F;,, F;3) ,

i1 Lij2o

where P, is the probability of a subject in the ijth cluster falling into the kth category. To
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account for the variation between clusters, we further assume that P, = (F;,, P,,, F;;) are

from a Dirichlet distribution of the form

HOX020) pocpripoc (68)
rere)re,) = - °

where 6, >0. Then given P;, ordinal outcomes Y, =(¥;;,Y,,,

Y,;) have a trinomial

distribution with parameters m; and F,. Consequently, the resulting data has a Dirichlet-

trinomial distribution of the form

mU!F(el +6,+06, )F(Yijl + el)F(YijZ + 62)F(Yzj3 +6;)
Y 1YY 00m; + 6, + 6, + 6,)I'(6,)1'(6,)I'(6;) '

it Lo Liae

P(Y;, Y0, Y3 = (6.9)

In equation (6.8), the mean of P, is given by

E(P)=m,=6,/6,+6,+6,) (6.10)
and the constant ICC is of the form
p=1/(1+6+6,+6,). (6.11)

Therefore, we can determine the values of (8,,6,,6,) given the values of 7, and p by

solving equations (6.10) and (6.11).

In summary, the data generation in this study may be described by the following steps:

1. Set up the values of the mean cluster size x and imbalance parameter A ;

2. Generate various cluster sizes m;; from the uniform distribution (6.5);

3. Given (7,,7,,7,) and p, calculate values of (6,,6,,6,) through equations

(6.10) and (6.11);

4. Generate proportions (P, F,,, P,;;) from a Dirichlet distribution in (6.8) with

i1

parameters (8,,6,,6,) for each cluster;
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5. Generate correlated ordinal outcomes (Y,,,Y;,,Y;;) from a multinomial

distribution with parameters m;; and (F;,, P,,, F;;) for each cluster.

6.4 Evaluation measures

The evaluation measures used to compare the performance of the proposed approaches

were computed as following:

1) Average value of estimates;

2) Relative bias computed as the deviation of the average observed value from the
true value (parameter) divided by the true value . Positive relative bias represents an
overestimate of the parameter and negative bias represents an underestimate of the
parameter. The relative bias is not applicable for the ICC estimate when its true value

1S set as zero.

3) The standard errors of estimated regression coefficients (log odds ratio) were
computed as the empirical standard error of 1000 estimate values. Note that the
standard error of estimated regression coefficients (log odds ratio) from GEE

extensions of ordinal logistic regression is obtained from the sandwich estimator.

4) The type I error rate was calculated as the proportion of simulation samples
generated under the null hypothesis which have p-values less than or equal to the

nominal 5% significance level.

5) The statistical power was calculated as the proportion of simulation samples

generated under the alternative hypothesis which have p-values less than or equal to
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the nominal 5% significance level, given that the corresponding test statistic provides

a valid type I error rate.

Since 1000 iterations were used, the approximate 95% confidence interval for a five
percent rejection rate is (0.031, 0.069). Therefore, the statistical test is overly
conservative for type I error rates less than 0.03, and overly liberal for type I error rates
greater than 0.07 (Bradley, 1978). Power comparisons were limited to those test statistics

with valid type I error rates.

6.4.1  Investigation of the ICC estimators

In this objective, we evaluated properties of the ANOVA and kappa-type ICC estimator.
Both spaced scores (i.e.,1,2,3) and midrank scores were considered in calculating the
ICC estimators, as summarized in Table 6.3. The subscript ‘M’ denotes the ICC estimator
calculated by using midranks. In addition, since Cohen’s regular kappa & (Cohen, 1960)
is also a frequently used statistic measuring the agreement of ordinal outcomes, we
compared properties of p, and P, to K& as well. The ICC estimators, defined in Chapter
2, are compared were listed in Table 6.3 in terms of the average, relative bias, range, and

standard error.

Since negative ICCs are generally considered implausible in the context of cluster
randomization trials, negative ICC estimators are usually set to zero. In the present study,

we also followed this practice.

Table 6.3: ICC estimators evaluated in simulation study

ICC estimator With scores 1,2,3 With midrank scores
ANOVA ICC estimator o Paon
Kappa-type ICC estimator pK Ibk(M)

6.4.2 Evaluation of test statistics

Adjusted Cochran-Armitage tests
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We evaluated the performance of three direct-adjusted Cochran-Armitage test statistics

for clustered ordinal outcome data. Both p, and p, were used as estimates of the ICC in

the test statistics. In addition, since both equally-spaced score and midrank scores were

considered for p_ and p,, adjusted Cochran-Armitage test statistics were also calculated

using these two scoring schemes respectively. The twelve test statistics evaluated under
this objective are listed in Table 6.4, and compared in terms of Type I errors and

statistical power.

As reviewed in section 1.5.1, Jung and Kang (2001) proposed another simple adjustment

to the Cochran-Armitage test for clustered ordinal outcomes. We also compared adjusted

Cochran-Armitage tests to Jung and Kang (2001)’s approach (i.e., 7, and }[,2( M))-

Table 6.4: Adjusted Cochran-Armitage test statistics evaluated in simulation

With o,  With g With p,,,,  With p, .,

Adjusted Cochran-Armitage test (1) an ;(il ,Zjl(M) Zil(M)
Adjusted Cochran-Armitage test (Il) ;(jz Ziz ,‘{me) Ziz(M)
WLS Cochran-Armitage test ;(fn ;(,é ,‘{me) ,1’,?3(,,,,)

Comparisons of model-based approaches

Test statistics from marginal extensions of proportional odds regression models and
mixed-effect proportional odds regression models (i.e., cluster-specific models) were
compared in terms of type I error rates and power. In particular, marginal models were
fitted by the GEE approach using an independent working correlation. Since mixed
effects linear models are commonly used to fit clustered ordinal outcomes, we also
compared marginal and cluster-specific models to random effects linear models, where
the test statistic is the t-statistic expressed as the ratio of the parameter estimate to its
standard error. The SAS procedures used in the above marginal, cluster-specific, and
random effects linear models were PROC GENMOD, PROC NLMIXED, and PROC
GLIMMIX respectively. The test statistics under this objective are listed as the first four
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statistics in Table 6.5, denoted as W,,, W,, ;(és ,and T

Linear

correspondingly. They were

previously defined in Chapter 4.

Table 6.5: Model-based test statistics evaluated in simulation study

Test statistic Test name

W, Model-based Wald test statistic

W, Robust Wald test statistics

Sk Robust score test statistic

;(és Chi-square test statistic from cluster-specific models
T, .o T-test statistic from random effects linear model
Wit Bias-corrected robust Wald test: Approach 1

Wi Bias-corrected robust Wald test: Approach 2

Wacs Bias-corrected robust Wald test: Approach 3

Wica Bias-corrected robust Wald test: Approach 4

Woes Bias-corrected robust Wald test: Approach 5

Wdf1 Degrees-of-freedom-adjusted Wald test: Approach 1
Wd_fz Degrees-of-freedom-adjusted Wald test: Approach 2
Wa,f3 Degrees-of-freedom-adjusted Wald test: Approach 3
Wy, Degrees-of-freedom-adjusted Wald test: Approach 4
Wa,f5 Degrees-of-freedom-adjusted Wald test: Approach 5
Ssc Modified robust score test

In particular, we give special attention to the magnitudes of the regression coefficient
estimate ,3 and its standard error in the marginal and cluster-specific models (Ten Have

et al., 1996), as discussed in section 4.4. Note that the standard error of estimated
regression coefficients (i.e., log odds ratios) from GEE extensions of ordinal logistic

regression is obtained from the sandwich estimator. The estimates are listed in Table 6.6.
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Table 6.6: Regression coefficient estimates and their standard errors from marginal

and cluster-specific models

Approaches Parameter estimate  Standard errors
Marginal models :BGEE SE(IBGEE)
Cluster-specific models ,Bcs SE(,BCS)

Evaluation of small-sample adjustments to GEE

Five bias-corrected and four degrees-of-freedom-adjusted approaches for the robust Wald
test and one correction approach for the robust score test discussed in Chapter 5 were

investigated. Therefore, including four model-based test statistics discussed previously

(e., W, , W, W, and T,

Linear

), a total of 16 model-based test statistics were compared

and summarized in Table 6.5. They were previously defined in Chapter 5.

6.5 Computation implementation

All the computer programs for the simulation study were written in SAS V.9.2 (SAS
Institute, Inc, Cary, NC) and run on a PC Workstation. Specifically, the methods of GEE,
cluster-specific models, and random effects models were carried out with SAS
procedures PROC GENMOD, PROC NLMIXED, and PROC GLIMMIX and

correspondingly.



103

Chapter 7

7 Simulation Results

7.1 Introduction

In Chapter 6 we described the design of the simulation study which was used to
investigate and compare statistical approaches presented in earlier chapters. In this
chapter, the results of this study are presented and tabulated in the order of objectives

outlined in Section 6.4.

In particular, there are five sections in this chapter. Section 7.2 compares the ANOVA,
kappa-type ICC estimators, and Cohen’s (1960) regular kappa estimates in terms of
relative bias and standard errors. Section 7.3 discusses the type I error rate and power of
the adjusted Cochran-Armitage tests. The modelling tests from marginal extensions of
proportional odds ratio models and mixed-effects ordinal regression models (i.e., cluster-
specific models) and their adjustments are discussed in Section 7.4. The bias of estimated
regression coefficients as obtained from marginal and cluster-specific models and their

standard errors are summarized in section 7.5.

In previous studies, attention was given to convergence problems for the iterative
procedures. However, there was no problem reaching convergence when running the
computer programs in this simulation study, probably because the cluster sizes were
large, i.e., 50 and 120. This conclusion is consistent with Zhang’s (2009) results. In her
simulation study, the SAS procedure PROC GLIMMIX was used to fit the cluster-
specific models for clustered binary outcome data, and convergence problems only
occurred when generating data in which the cluster size is 15, i.e., the smallest size used

in the study.

7.2 Estimation of Intracluster Correlation Coefficients

Simulation results for the regular kappa estimator, two ANOVA ICC estimators, and two
kappa-type ICC estimators are displayed in Table 7.1 through Table 7.12. The parameters

of interest include the cumulative odds ratio 8, number of clusters from each group n,
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mean cluster size u, imbalance degree for cluster size 4 and intracluster correlation
coefficient p . Each table displays the results for ICC estimators for each parameter

combination.

Overall, Cohen (1960)’s regular kappa estimator k had the least number of negative

values compared to the ANOVA estimators (p, and p,,,,) and kappa-type ICC
estimators (py and g, ,,, ). In addition, all five estimators had less negative values for

fixed clustered sizes than for variable cluster sizes.

When cluster sizes were fixed (shown in Table 7.1 through Table 7.6), all four

estimators P4, 24 » Pk and P, ,,, had a similar number of negative estimates. However,
when cluster sizes were variable (shown in Table 7.7 through Table 7.12), p, and P, ,,,
had a smaller number of negative estimators than p, and p,,,,, with the difference

between the numbers of negative values becoming larger when the cluster size u or the
number of clusters n increased. In addition, using midrank scores led to slightly less

negative kappa-type estimators.

In addition, negative ICC estimators are set to zero since negative ICCs are generally
considered implausible in the context of cluster randomization trials. This practice may

elevate the resulted average of ICC estimates.

Simulation results after truncating the negative ICC estimators are displayed in the last
two columns in Table 7.1 through Table 7.12. Overall, all ICC estimators were closer to
the true values when either cluster sizes or the number of clusters become large. To be
more specific, kappa-type estimators were more close to the true values than ANOVA
estimators when cluster sizes were fixed and small. Conversely, ANOVA ICCs had
relatively smaller bias in the case of variable cluster sizes. In addition, using midrank
scores yielded less biased estimators for kappa-type ICCs in the case of variable cluster
sizes. The standard errors of the all ICC estimators (not shown) were approximately zero

to three decimal places for most parameter combinations.
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7.3 Adjusted Cochran-Armitage Tests

In Chapter 3, we discussed three adjusted C-A tests for analysis of clustered ordinal data.
In the case of fixed cluster sizes, all three test statistics provided equivalent results. We
therefore only listed one simulation result for all three statistics. In contrast, for variable

cluster sizes, we listed results for each of the three adjusted C-A statistics separately.

As discussed in Section 6.2.4, for nominal level 0.05 the empirical rate will be regarded
as satisfactory provided it lies in the range (3.1, 6.9)%. Overall power is discussed only

for those tests which have acceptable Type I error.

7.3.1  Type | Error rates

Estimated type I error rates in the case of fixed cluster sizes presented in Table 7.13 show
that all adjusted C-A test statistics maintain the nominal significance level of 5%
reasonably well, with the type I error rates for variable cluster sizes listed in Table 7.14.
The observed significance levels of 0.069 or higher and 0.031 or lower are highlighted.
Overall, the three adjusted C-A tests produced similar type I error rates when using the
same ICC estimator. However, when p = 0.01, the C-A tests using kappa-type estimators
resulted in liberal type I error rates. Inversely, when p = 0 and u = 120, the C-A tests
using kappa-type estimators resulted in conservative type I error rates. In addition, tests
using the ANOVA ICC estimators produced inflated type I errors when m = 50, n = 10
and p = 0.01.

7.3.2 Power

Tables 7.15 and 7.16 present the statistical power results for the three adjusted C-A tests
in the case of fixed cluster sizes and variable cluster sizes respectively. The evaluation of
power is only sensible when the corresponding test statistic has a valid Type I error rate.
Thus, the adjusted C-A tests at parameter combinations which showed liberal or

conservative type I error rates were excluded.

Overall, the power of adjusted C-A tests was consistently larger for data with fixed

cluster sizes than for data with variable cluster sizes. Also, the power of the adjusted C-A
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tests increased when cluster sizes and cluster numbers increased. Inversely, the power

tended to decrease when the magnitude of the ICC increased.

In particular, when cluster sizes are fixed, adjusted C-A tests using kappa-type ICC

estimates have the greatest power. However, when cluster sizes are variable, the WLS C-

A tests (i.e., 1j3( ) using ANOVA ICC estimates with midrank scores have the greatest

power among the tests which are valid.

7.4 Model-based Methods
7.4.1  Type | Error Rates

Tables 7.17 and 7.18 present the observed type I error rates of the modelling tests for

fixed and variable cluster sizes respectively. Overall, the GEE model-based test W,, and
GEE robust Wald test W, tend to result in a liberal type I error rate, especially when the

number of clusters is equal to 10. As expected, the liberal behaviors of GEE robust Wald

tests were consistently improved by all GEE adjusted methods.

For fixed cluster sizes, type I error rates for all adjusted methods maintained the nominal
level for all parameter combinations. However, for variable cluster sizes, the rejection
rates of the adjusted methods Wgca, Wpes, Wy, and Wyp were still high under most
parameter combinations with n=70. In contrast, Wy; and Wyy overcorrected the GEE
robust Wald test and resulted in overly conservative type I errors under most parameter
combinations. The adjustment methods Wpc;, Wpes and Wyss showed fairly unbiased type

I error rates at all parameter combinations investigated.

The type I error rates of robust score tests were valid under all parameter combinations.

The adjusted score tests tended to elevate them as expected.

7.4.2 Power

Tables 7.19 and 7.20 present the power of the modelling tests for fixed and variable

cluster sizes respectively. Overall, the power of all tests tended to decrease when the
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magnitude of the true ICCs increased. Conversely, the power tended to increase when the

number of clusters and the cluster sizes became large.

For fixed cluster sizes, the adjusted method Wpc, yielded the highest statistical power
among the methods that were valid. For variable cluster sizes, however, the power of

Wpc; was the greatest among the methods that were valid.

7.5 Relationship between Marginal and Cluster-specific
Models

Table 7.21 and 7.22 show the estimated regression coefficients of the marginal and
cluster-specific models and their corresponding standard errors. Under most parameter
combinations, as expected, the absolute values of the marginal model coefficient
estimates are smaller than the cluster-specific model coefficient estimates. The standard
errors of estimates from the marginal models are also smaller than those from the cluster-
specific models. In particular, the discrepancy between estimates from the two models
tends to increase when the fixed cluster size becomes larger. However, this trend does not

hold for variable cluster sizes.



108

Table 7.1: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1, intracluster correlation p =
0, and fixed cluster size A =1

Descriptive statistics
Parameters Descriptive statistics (setting negative
estimates to zero)

P n pl Average Minimum Maximum Perce:ntage of Average

(x 100) (x 100) (x 100) negative values (x 100)
K -0.10 -1.21 1.66 0.59 0.14
ol 0.00 -1.52 2.38 0.54 0.27
10 | Par, | 0.00 -1.5 2.36 0.53 0.27
o 0.00 -1.37 2.15 0.54 0.24
ﬁK(M) 0.00 -1.35 2.18 0.53 0.24
>0 K -0.04 -0.91 1.11 0.56 0.11
D, 0.02 -1.13 1.74 0.52 0.20
20 | Paw | 0.03 -1.14 1.73 0.52 0.20
o 0.02 -1.07 1.66 0.52 0.19
Peasy | 0.02 -1.08 1.65 0.52 0.19
g -0.04 -0.49 0.66 0.62 0.06
o 0.00 -0.61 1.13 0.55 0.11
10 ﬁA(M) 0.00 -0.61 0.99 0.53 0.11
D, 0.00 -0.55 1.02 0.55 0.10
Py | 0.00 -0.55 0.89 0.54 0.10
120 K -0.02 -0.36 0.45 0.57 0.05
ol 0.00 -0.5 0.97 0.55 0.08
20 | Pay | 0.00 -0.47 0.91 0.54 0.08
D, 0.00 -0.48 0.92 0.55 0.07
ﬁK(M) 0.00 -0.44 0.86 0.54 0.07

A

'ICC estimators X , P A [)A(M) . Pr_and [)K(M) were denoted in Section 6.4.1 and Table

6.3.
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Table 7.2: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size u per group, cumulative odds ratio # = 1.2, intracluster correlation p
= 0, and fixed cluster size A =1

Descriptive statistics
Parameters Descriptive statistics (setting negative
estimates to zero)

P n pl Average Minimum Maximum Percejntage of Average

(x 100) (x 100) (x 100) negative values (x 100)
K 0.04 -1.15 2.26 0.49 0.21
D, -0.02 -1.51 2.79 0.55 0.26
10 | Par, | -0.01 -1.43 2.87 0.56 0.26
0. -0.02 -1.36 2.52 0.55 0.23
Peay | -0.01 -1.29 2.62 0.56 0.23
>0 Is 0.06 -0.96 1.61 0.45 0.16
o -0.03 -1.25 1.99 0.56 0.16
20 ﬁA(M) -0.03 -1.13 1.89 0.57 0.16
D, -0.03 -1.19 1.9 0.56 0.16
ﬁK(M) -0.03 -1.07 1.81 0.57 0.16
K 0.10 -0.44 1.17 0.37 0.14
D, 0.02 -0.57 1.52 0.52 0.12
10 ﬁA(M) 0.02 -0.58 1.49 0.53 0.12
D, 0.01 -0.51 1.37 0.52 0.11
Peary | 0.01 -0.52 1.37 0.53 0.11
120 K 0.11 -0.27 0.66 0.24 0.13
ol -0.01 -0.49 0.77 0.53 0.07
20 | Pay | -0.01 -0.49 0.73 0.54 0.07
D, -0.01 -0.46 0.73 0.53 0.07
Peay | -0.01 -0.47 0.69 0.54 0.07

'ICC estimators X , P A [)A(M) . Pr_and [)K(M) were denoted in Section 6.4.1 and Table

6.3.
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Table 7.3: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1, intracluster correlation p =
0.005, and fixed cluster size 1 =1

Descriptive statistics

Parameters Descriptive statistics (setting negative
estimates to zero)
P n ,01 Average R.elative Minimum Maximum Perce.ntage of Average R.elative
(x100) bias (x 100) (x 100) negative values | (x 100) bias
K 0.39 -0.22 -1.09 2.51 0.27 0.47 -0.07
D, 0.54 0.08 -1.54 4.34 0.29 0.66 0.31
10 ﬁA(M) 0.54 0.09 -1.66 4.26 0.29 0.66 0.32
o 0.49 -0.03 -1.39 3.93 0.29 0.59 0.18
ﬁK(M) 0.49 -0.01 -1.49 3.83 0.29 0.60 0.20
>0 K 0.46 -0.09 -0.53 2.17 0.12 0.48 -0.05
o 0.50 0.01 -0.78 2.87 0.20 0.55 0.11
20 ﬁAW) 0.51 0.02 -0.74 2.73 0.20 0.56 0.12
o 0.48 -0.04 -0.75 2.73 0.20 0.53 0.06
ﬁK(M) 0.49 -0.03 -0.69 2,61 0.20 0.53 0.07
K 0.43 -0.14 -0.35 1.34 0.01 0.44 -0.13
D, 0.49 -0.03 -0.50 2.22 0.12 0.51 0.01
10 ﬁA(M) 0.48 -0.03 -0.53 2.28 0.13 0.50 0.01
D, 0.44 -0.12 -0.45 2.00 0.12 0.46 -0.09
ﬁK(M) 0.44 -0.13 -0.48 2.07 0.13 0.45 -0.09
120 K 0.46 -0.08 -0.13 1.21 0.01 0.46 -0.08
D, 0.50 0.00 -0.26 1.63 0.03 0.50 0.00
20 ﬁAW) 0.50 0.00 -0.23 1.57 0.03 0.50 0.00
D, 0.47 -0.05 -0.25 1.55 0.03 0.48 -0.05
ﬁK(M) 0.47 -0.05 -0.22 1.49 0.03 0.48 -0.05
'ICC estimators £ , '[) A, D M) > p «, and ﬁ,(( u, were denoted in Section 6.4.1 and Table

6.3.
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Table 7.4: Properties of ICC estimators: based on 1000 simulations of trials with n clusters of size
u per group, cumulative odds ratio & = 1.2, intracluster correlation p = 0.005, and fixed cluster

sizeA=1

Descriptive
statistics (setting

Parameters Descriptive statistics negative estimates
to zero)
P n P 1 Average Rfelative Minimum  Maximum Z?:\C:gn;;\g/ee Average R.elative
(x 100)  bias (x 100) (x 100) values (x 100) | bias
g 0.52 0.05 -0.93 2.69 0.20 0.57 0.15
ol 0.52 0.04 -1.54 3.82 0.27 0.63 0.26
10 ﬁA(M) 0.52 0.04 -1.59 3.98 0.28 0.63 0.26
D, 0.47 -0.06 -1.38 3.45 0.27 0.57 0.14
ﬁK(M) 0.47 -0.06 -1.43 3.60 0.28 0.57 0.14
>0 K 0.56 0.12 -0.59 2.15 0.07 0.57 0.14
D, 0.49 -0.02 -1.17 2.57 0.19 0.54 0.08
20 ,bA(M) 0.49 -0.03 -1.08 2.55 0.19 0.54 0.07
o 0.46 -0.07  -111 2.45 0.19 0.51 0.02
ﬁK(M) 0.46 -0.07 -1.03 2.40 0.19 0.51 0.02
g 0.54 0.08 -0.17 1.82 0.02 0.54 0.09
D, 0.48 -0.04 -0.46 2.43 0.13 0.50 -0.01
10 ﬁA(M) 0.48 -0.03 -0.48 2.53 0.13 0.50 0.00
D, 0.43 -0.14 -0.41 2.20 0.13 0.45 -0.10
ﬁK(M) 0.44 -0.13 -0.43 2.29 0.12 0.45 -0.10
120 g 0.60 0.19 -0.08 1.51 0.00 0.60 0.19
D, 0.50 0.01 -0.39 1.56 0.04 0.51 0.01
20 ﬁA(M) 0.50 0.00 -0.42 1.59 0.04 0.51 0.01
D, 0.48 -0.04 -0.37 1.48 0.04 0.48 -0.04
ﬁK(M) 0.48 -0.05 -0.40 1.51 0.04 0.48 -0.04

1 . ~ 2, A
ICC estimators X , pA, Pac) >

6.3.

A

Pk, and P, Were denoted in Section 6.4.1 and Table
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Table 7.5: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1, intracluster correlation p =

0.01, and fixed cluster size A =1

Descriptive statistics of
ICC estimators after

Parameters Descriptive statistics of ICC estimators . .
truncatlng negatlve
estimates

P n 1 Average Relative Minimum  Maximum Z?LC:n;;\gIE Average | Relative
P | (x100) bias (x 100) (x 100) 8 (x 100) | bias
values
% 0.86 -0.14 -0.69 3.42 0.09 0.88 -0.12
o 1.04 0.04 -1.50 5.46 0.14 1.09 0.09
o Py 1.03 0.03 -1.35 6.14 0.14 1.08 0.08
1
D, 0.94 -0.06 -1.35 4.95 0.14 0.98 -0.02
50 P 0.93 -0.07 -1.23 5.63 0.14 0.98 -0.02
2 0.94 -0.06 -0.34 2.50 0.02 0.95 -0.05
D, 1.03 0.03 -0.48 3.49 0.05 1.04 0.04
20 Paany 1.03 0.03 -0.55 3.64 0.05 1.04 0.04
D, 0.98 -0.02 -0.45 3.32 0.05 0.99 -0.01
Py 0.98 -0.02 -0.52 3.40 0.05 0.99 -0.01
% 0.91 -0.09 -0.05 2.30 0.00 0.91 -0.09
D, 1.00 0.00 -0.32 3.61 0.02 1.01 0.01
Paq) 1.01 0.01 -0.39 3.63 0.02 1.01 0.01
10
D, 0.91 -0.09 -0.28 3.26 0.02 0.91 -0.09
Py 0.91 -0.09 -0.35 3.28 0.02 0.91 -0.09
120
% 0.95 -0.05 0.14 2.20 0.00 0.95 -0.05
D4 0.98 -0.02 -0.15 2.60 0.00 0.98 -0.02
20 Paan) 0.98 -0.02 -0.09 2.49 0.00 0.98 -0.02
i 0.93 -0.07 -0.14 2.47 0.00 0.93 -0.07
Py 0.94 -0.06 -0.08 2.37 0.00 0.94 -0.06
'ICC estimators X , P A [)A(M), Pk, and [)K(M) were denoted in Section 6.4.1 and Table

6.3.
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Table 7.6: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1.2, intracluster correlation p
= (.01, and fixed cluster size 1 =1

Descriptive

statistics (setting

Parameters Descriptive statistics negative estimates
to zero)
P n P ! Average R.elative Minimum  Maximum Z?:\C:gn;;\g/ee Average R.elative
(x 100) bias (x 100) (x 100) values (x 100) bias
i 0.99 -0.01 -0.64 3.70 0.06 1.01 0.01
D, 1.01 0.01 -1.22 4.79 0.16 1.06 0.06
10 | Paun 1.01 0.01 -1.12 4.51 0.16 1.06 0.06
o 0.91 -0.09 -1.09 4.34 0.16 0.96 -0.04
ﬁK(M) 0.91 -0.09 -0.99 4.09 0.16 0.96 -0.04
>0 K 1.05 0.05 -0.33 3.37 0.01 1.05 0.05
D, 0.98 -0.02 -0.80 3.23 0.06 0.99 -0.01
20 ﬁA(M) 0.98 -0.02 -0.90 3.48 0.06 1.00 0.00
D, 0.93 -0.07 -0.76 3.08 0.06 0.95 -0.05
ﬁK(M) 0.94 -0.06 -0.84 331 0.06 0.95 -0.05
K 1.02 0.02 -0.14 2.82 0.00 1.02 0.02
o 0.93 -0.07 -0.37 4.13 0.03 0.94 -0.06
10 ﬁAW) 0.94 -0.06 -0.39 4.02 0.03 0.94 -0.06
D, 0.84 -0.16 -0.33 3.73 0.03 0.85 -0.15
ﬁK(M) 0.85 -0.15 -0.35 3.60 0.03 0.85 -0.15
120 i 1.10 0.10 0.25 2.28 0.00 1.10 0.10
D, 1.01 0.01 -0.01 2.48 0.00 1.01 0.01
20 ﬁAW) 1.01 0.01 0.00 2.44 0.00 1.01 0.01
o 0.96 -0.04 -0.01 2.36 0.00 0.96 -0.04
ﬁK(M) 0.96 -0.04 0.00 2.33 0.00 0.96 -0.04

'ICC estimators £ , P

6.3.

A, Py » p «,and P, were denoted in Section 6.4.1 and Table
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Table 7.7: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size u per group, cumulative odds ratio 6 = 1, intracluster correlation p =
0, and variable cluster size 4 = (.8

Descriptive
statistics (setting

Parameters Descriptive statistics negative
estimates to zero)
P n P 1 Average R.elative Minimum Maximum Z?:\C:gn;;\g/ee Average R.elative
(x100) bias (x 100) (x 100) values (x 100) | bias
I -0.12 -1.25 -1.41 1.48 0.63 0.13 -0.73
o -0.04 -1.07 -1.72 2.76 0.56 0.25 -0.50
10 ﬁA(M) -0.08 -1.16 -1.74 2.54 0.58 0.23 -0.54
D, -0.06 -1.12 -7.83 8.01 0.53 0.90 0.79
50 ﬁK(M) -0.04 -1.08 -6.33 6.07 0.53 0.74 0.48
K -0.06 -1.12 -0.93 1.08 0.59 0.10 -0.79
o -0.02 -1.04 -1.61 1.74 0.55 0.19 -0.63
20 | Pay | -0.05 -1.09 -1.56 1.62 0.57 0.17 -0.65
o 0.05 -0.90 -4.87 6.12 0.50 0.69 0.37
ﬁK(M) 0.03 -0.94 -3.87 4.93 0.51 0.56 0.13
K -0.04 -1.07 -0.50 0.81 0.60 0.06 -0.89
D 0.00 -1.00 -0.76 1.26 0.53 0.11 -0.78
10 | Pawy | -0.02 -1.04 -0.74 1.18 0.57 0.10 -0.80
o 0.04 -0.91 -5.06 9.51 0.50 0.57 0.14
ﬁK(M) 0.03 -0.94 -3.73 6.99 0.52 0.44 -0.11
120 I -0.02 -1.05 -0.38 0.42 0.60 0.04 -0.91
o) -0.01 -1.01 -0.42 0.83 0.53 0.07 -0.85
20 ﬁA(M) -0.02 -1.03 -0.45 0.81 0.55 0.07 -0.86
D, -0.04 -1.08 -3.76 3.27 0.51 0.37 -0.25
ﬁK(M) -0.03 -1.06 -2.94 2.74 0.51 0.29 -0.41
'ICC estimators £ , p A, D M) > p «, and ﬁ,(( u, were denoted in Section 6.4.1 and Table

6.3.
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Table 7.8: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size u per group, cumulative odds ratio # = 1.2, intracluster correlation p
= 0, and variable cluster size 4 = 0.8

Descriptive

statistics (setting

Parameters Descriptive statistics negative estimates
to zero)
P n P 1 Average R.elative Minimum Maximum z?:lc:gn;;\g/ee Average Rfelative
(x100)  bias (x 100) (x 100) values (x 100) bias

i 0.01 -0.98 -1.43 2.00 0.50 0.20 -0.61
D, -0.01 -1.02 -1.79 2.71 0.54 0.26 -0.48
10 ﬁAW) -0.06 -1.11 -2.02 2.99 0.56 0.24 -0.51
o -0.04 -1.08 -8.41 6.67 0.51 0.92 0.83
ﬁK(M) -0.05 -1.10 -6.78 6.09 0.52 0.76 0.52
>0 K 0.07 -0.86 -0.79 1.45 0.44 0.17 -0.66
D, -0.01 -1.02 -1.52 1.73 0.53 0.18 -0.63
20 ﬁA(M) -0.03 -1.07 -1.52 1.56 0.56 0.17 -0.66
D, -0.08 -1.16 -5.21 5.98 0.54 0.62 0.24
Pe, | -0.08 -1.15 -4.18 5.46 0.53 0.52 0.03
K 0.08 -0.84 -0.55 1.25 0.38 0.13 -0.74
D, 0.00 -0.99 -0.77 1.19 0.53 0.11 -0.77
10 ﬁAW) -0.02 -1.03 -0.76 1.28 0.56 0.11 -0.79
D, 0.00 -1.00 -4.55 5.37 0.50 0.55 0.10
ﬁK(M) 0.00 -1.01 -3.63 4.27 0.50 0.45 -0.11
120 i 0.12 -0.77 -0.28 0.66 0.24 0.14 -0.73
D, 0.01 -0.99 -0.53 0.86 0.50 0.08 -0.83
20 ﬁAW) 0.00 -1.01 -0.54 0.84 0.52 0.08 -0.84
D, 0.03 -0.94 -3.44 2.90 0.50 0.39 -0.21
ﬁK(M) 0.02 -0.96 -2.91 2.53 0.49 0.32 -0.36

1 . ~ 2, A
ICC estimators X , pA, Pac) >

6.3.

A

Pk, and P, Were denoted in Section 6.4.1 and Table
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Table 7.9: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1, intracluster correlation p =
0.005, and variable cluster size A = (0.8

Descriptive
statistics (setting

Parameters Descriptive statistics .
negative
estimates to zero)
U n | Average Relative Minimum Maximum Z?:\C;n;;ss Average | Relative
P | (x100) bias (x100)  (x 100) & (x 100) | bias
values
K 0.36 -0.29 -1.48 3.29 0.28 0.43 -0.13
ﬁA 0.47 -0.06 -1.73 491 0.32 0.61 0.21
10 | Pawn 0.42 -0.16 -1.62 4.87 0.34 0.58 0.15
,5,( 0.33 -0.34 -9.04 7.68 0.45 1.13 1.26
50 P 0.36 -0.28 -7.17 6.72 0.44 0.98 0.96
K 0.42 -0.15 -0.58 1.96 0.16 0.45 -0.10
ﬁA 0.49 -0.03 -0.94 2.84 0.22 0.54 0.08
20 le(M) 0.46 -0.07 -0.87 2.72 0.22 0.52 0.04
,5,( 0.43 -0.14 -4.84 7.08 0.41 0.93 0.87
P 0.43 -0.13 -4.09 6.10 0.40 0.81 0.63
K 0.44 -0.12 -0.35 1.69 0.01 0.45 -0.11
Py 0.51 0.01 -0.58 2.47 0.14 0.53 0.06
10 | Pan 0.49 -0.02 -0.59 2.49 0.16 0.52 0.04
,5,( 0.37 -0.25 -6.53 6.44 0.43 0.85 0.69
120 lbzc(M) 0.39 -0.21 -4.52 4.90 0.40 0.72 0.45
K 0.46 -0.07 -0.10 1.34 0.01 0.46 -0.07
ﬁA 0.51 0.01 -0.25 1.55 0.04 0.51 0.02
20 | Paon 0.50 -0.01 -0.30 1.55 0.04 0.50 0.00
P 0.45 -0.10 -2.93 4.18 0.34 0.70 0.41
P 0.46 -0.08 -2.11 3.42 0.29 0.62 0.25
'ICC estimators £ , p A, D M) > p «, and ﬁ,(( u, were denoted in Section 6.4.1 and Table

6.3.
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Table 7.10: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size u per group, cumulative odds ratio # = 1.2, intracluster correlation p
= (0.005, and variable cluster size A = (0.8

Descriptive
statistics (setting

Parameters Descriptive statistics . .
negative estimates
to zero)

U n | Average Relative Minimum Maximum CP)?LC:?S\%E Average | Relative
P | (x100) bias (x100)  (x 100) & (x 100) | bias
values
K 0.48 -0.03 -1.37 3.90 0.21 0.54 0.09
yo 0.46 -0.09 -1.81 3.70 0.32 0.59 0.18
10 | Paan 0.42 -0.16 -1.90 3.86 0.33 0.57 0.14
Pe 0.37 -0.27 -7.85 13.72 0.43 1.14 1.28
50 P 0.38 -0.23 -6.48 10.45 0.42 1.01 1.02
i 0.56 0.12 -0.62 2.07 0.07 0.57 0.14
D4 0.50 0.01 -1.03 3.14 0.20 0.55 0.11
20 pA(M) 0.48 -0.04 -0.97 3.14 0.21 0.54 0.07
P 0.46 -0.08 -5.62 7.01 0.40 0.95 0.90
P 0.47 -0.05 -4.82 6.11 0.38 0.86 0.73
i 0.55 0.10 -0.26 2.44 0.03 0.55 0.11
P, 0.52 0.04 -0.68 2.44 0.12 0.54 0.07
10 | Paan 0.50 0.00 -0.68 2.63 0.13 0.52 0.04
Dy 0.56 0.11 -4.22 6.32 0.36 0.91 0.82
120 pK(M) 0.54 0.08 -3.49 4.80 0.33 0.80 0.61
K 0.58 0.15 -0.13 1.54 0.01 0.58 0.15
o 0.51 0.01 -0.32 1.79 0.05 0.51 0.02
20 | Paon 0.49 -0.01 -0.36 1.82 0.06 0.50 0.00
Dy 0.49 -0.01 -4.24 4.31 0.33 0.74 0.48
P 0.49 -0.01 -3.40 3.83 0.29 0.67 0.34

1 . ~ 2, A
ICC estimators X , pA, Pac) >

6.3.

A

Pk, and P, Were denoted in Section 6.4.1 and Table
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Table 7.11: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size 4 per group, cumulative odds ratio # = 1, intracluster correlation p =
0.01, and variable cluster size 1 = 0.8

Descriptive
statistics (setting

Parameters Descriptive statistics negative
estimates to zero)
U n P 1 Average Rfelative Minimum Maximum Z?LC;;;;\%E Average R.elative
(x 100) bias (x 100) (x 100) values (x 100) | bias
g 0.86 -0.14 -0.91 3.16 0.10 0.88 -0.12
o 1.02 0.02 -1.38 5.87 0.17 1.08 0.08
10 ﬁA(M) 0.97 -0.03 -1.42 6.30 0.19 1.05 0.05
D, 0.93 -0.07 -8.12 14.54 0.37 1.57 0.57
Doy | 0.94 -0.06 -6.55 12.02 0.35 1.41 0.41
>0 K 0.90 -0.10 -0.35 2.69 0.02 0.91 -0.09
o 0.97 -0.03 -0.75 3.64 0.07 0.98 -0.02
20 ﬁA(M) 0.95 -0.05 -0.87 3.75 0.07 0.97 -0.03
o 0.91 -0.09 -5.80 7.25 0.33 1.30 0.30
ﬁK(M) 0.93 -0.07 -4.51 6.22 0.28 1.20 0.20
K 0.88 -0.12 -0.08 2.38 0.00 0.88 -0.12
D, 0.98 -0.02 -0.46 3.26 0.03 0.99 -0.01
10 ﬁA(M) 0.96 -0.04 -0.50 3.42 0.04 0.96 -0.04
o 0.81 -0.19 -4.08 8.13 0.32 1.18 0.18
ﬁK(M) 0.84 -0.16 -3.02 5.65 0.27 1.07 0.07
120 g 0.95 -0.05 0.17 2.06 0.00 0.95 -0.05
D, 1.00 0.00 -0.06 2.75 0.00 1.00 0.00
20 ﬁA(M) 0.98 -0.02 -0.11 2.76 0.00 0.98 -0.02
D, 0.97 -0.03 -3.56 4.61 0.23 1.13 0.13
ﬁK(M) 0.96 -0.04 -2.29 4.22 0.16 1.05 0.05

1 . ~ 2, A
ICC estimators X , pA, Pac) >

6.3.

Pk, and P, Were denoted in Section 6.4.1 and Table
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Table 7.12: Properties of ICC estimators: based on 1000 simulations of trials with n
clusters of size u per group, cumulative odds ratio # = 1.2, intracluster correlation p
= (.01, and variable cluster size 1 = 0.8

Descriptive
Parameters Descriptive statistics statist.ics (setting
negative
estimates to zero)
U n P 1 Average Rfelative Minimum Maximum z;e:lc:gn;;\g/ee Average Rfelative
(x 100) bias (x 100) (x 100) values (x 100) | bias
g 0.96 -0.04 -1.31 4.06 0.09 0.98 -0.02
o 0.98 -0.02 -1.38 5.29 0.18 1.05 0.05
10 /3A(M) 0.93 -0.07 -1.42 5.14 0.19 1.01 0.01
D, 0.94 -0.06 -8.24 10.83 0.37 1.53 0.53
ﬁK(M) 0.93 -0.07 -7.06 10.05 0.35 1.40 0.40
>0 K 1.07 0.07 -0.30 2.87 0.01 1.07 0.07
o 1.02 0.02 -0.83 3.86 0.06 1.04 0.04
20 ﬁA(M) 0.99 -0.01 -0.76 3.73 0.07 1.01 0.01
o 0.97 -0.03 -7.76 8.38 0.31 1.33 0.33
ﬁK(M) 0.95 -0.05 -6.88 7.28 0.29 1.24 0.24
K 1.01 0.01 -0.25 2.69 0.00 1.01 0.01
D, 1.00 0.00 -0.88 4.18 0.05 1.00 0.00
10 ﬁA(M) 0.98 -0.02 -0.75 5.34 0.01 0.98 -0.02
o 0.91 -0.09 -5.80 6.21 0.29 1.22 0.22
ﬁK(M) 0.92 -0.08 -4.93 5.57 0.25 1.13 0.13
120 g 1.06 0.06 0.21 2.23 0.00 1.06 0.06
D4 0.97 -0.03 -0.09 2.61 0.00 0.97 -0.03
20 /3A(M) 0.96 -0.04 -0.10 2.71 0.00 0.96 -0.04
D, 0.91 -0.09 -2.56 4.56 0.24 1.05 0.05
ﬁK(M) 0.91 -0.09 -2.07 4.06 0.19 0.99 -0.01

1 . ~ 2, A
ICC estimators X , pA, Pac) >

6.3.

N

Pk, and P, Were denoted in Section 6.4.1 and Table
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Table 7.13: Type I error rates of adjusted Cochran-Armitage test statistics1: based on 1000 simulations of trials with n clusters

of size u per group, cumulative odds ratio 6, intracluster correlation p, and fixed cluster sizes (overly liberal or conservative

type I error rates are in bold font)

Parameters Adjusted test statistics’
‘u n p zil Zil ZJZ Zf&l(M) zlil(M) ZJZ(M)

0 0.046 0.047 0.061 0.048 0.048 0.056

10 0.005 | 0.050 0.051 0.051 0.047 0.048 0.051

50 0.01 0.056 0.058 0.047 0.050 0.053 0.050
0 0.033 0.034 0.040 0.031 0.032 0.036

20 0.005 | 0.051 0.052 0.052 0.051 0.054 0.049

0.01 0.047 0.047 0.044 0.044 0.046 0.041

0 0.042 0.044 0.047 0.038 0.038 0.048

10 0.005 | 0.059 0.065 0.051 0.053 0.056 0.050

120 0.01 0.056 0.058 0.045 0.052 0.058 0.044
0 0.044 0.044 0.056 0.049 0.049 0.061

20 0.005 | 0.051 0.051 0.046 0.052 0.053 0.045

0.01 0.054 0.057 0.051 0.056 0.058 0.050

2 2
! Adjusted test statistics £a1, X1

2

X ’fow)’ ;(,il(M), and ;{JZ(M)were denoted in Section 6.4.2 and Table 6.4,

and negative ICC estimators in the calculation of adjusted test statistics were set to zero
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Table 7.14: Type I error rates of adjusted Cochran-Armitage test statistics1: based on 1000 simulations of trials with n clusters
of size u per group, intracluster correlation p, and variable cluster size 4 = 0.8 (overly liberal or conservative type I error rates

are in bold font)

Parameters Adjusted test statistics

2 2 2 2 2 2 2 2 2 2 2 2 2
H n p X X | X | Xa Xioo | Xis | Zaon | Kooy | Xwson | Zaon | Xeoon | Zeon | 20 yATS

0 0.046 | 0.046 | 0.046 | 0.041 | 0.041 | 0.041 | 0.046 | 0.046 | 0.046 | 0.036 | 0.036 | 0.036 | 0.059 | 0.058

50 10 0.005| 0.05 | 0.05 |0.051 | 0.057 |0.057 | 0.058 | 0.056 | 0.056 | 0.056 | 0.06 0.06 0.06 0.058 | 0.058
0.01 | 0.074 | 0.074 | 0.077 | 0.077 | 0.077 | 0.078 | 0.071 | 0.071 | 0.073 | 0.073 | 0.073 | 0.076 | 0.06 | 0.058

0 0.044 | 0.044 | 0.044 | 0.034 | 0.034 | 0.034 | 0.042 | 0.042 | 0.044 | 0.032 | 0.032 | 0.032 | 0.054 | 0.052

20 0.005 | 0.06 |0.06 |0.06 |0.051 |0.051 |0.053 | 0.071 [ 0.071 | 0.072 | 0.062 | 0.062 | 0.064 | 0.061 | 0.065
0.01 | 0.06 |0.06 |[0.062 |0.071|0.071 | 0.071 | 0.052 | 0.052 | 0.055 | 0.057 | 0.057 | 0.059 | 0.057 | 0.049

0 0.04 | 0.04 |0.042 | 0.025 | 0.025 | 0.025 | 0.043 | 0.043 | 0.045 | 0.032 | 0.032 | 0.032 | 0.053 | 0.056
10 0.005 | 0.057 | 0.057 | 0.057 | 0.064 | 0.064 | 0.064 | 0.056 | 0.056 | 0.058 | 0.063 | 0.063 | 0.063 | 0.048 | 0.045
0.01 | 0.062 | 0.062 | 0.067 | 0.104 | 0.104 | 0.106 | 0.058 | 0.059 | 0.064 | 0.094 | 0.094 | 0.095 | 0.047 | 0.044
0 0.042 | 0.042 | 0.042 | 0.03 | 0.03 | 0.03 | 0.043 | 0.043 | 0.045 | 0.031 |0.031 |0.032 | 0.05 | 0.053
20 0.005 | 0.054 | 0.054 | 0.06 | 0.069 | 0.069 | 0.069 | 0.061 | 0.061 | 0.063 | 0.07 0.07 0.071 | 0.055 | 0.052
0.01 | 0.048 | 0.048 | 0.053 | 0.082 | 0.082 | 0.083 | 0.051 | 0.051 | 0.054 | 0.077 | 0.077 | 0.078 | 0.04 | 0.041

120

! Adjusted test statistics were denoted in Section 6.4.2 and Table 6.4, and negative ICC estimators in the calculation of adjusted

test statistics were set to zero.




Table 7.15: Power of adjusted Cochran-Armitage test statistics: based on 1000 simulations of trials with n clusters of size u

per group, intracluster correlation p, and fixed cluster size 1 =1

Parameters Adjusted test statistics’

H n P X X X Xa Xa X
0 0.305 0.307 0.325 0.300 0.306 0.326
10 0.005 | 0.293 0.299 0.282 0.302 0.308 0.287
50 0.01 0.245 0.260 0.215 0.257 0.263 0.221
0 0.557 0.558 0.577 0.554 0.556 0.577
20 0.005 | 0.506 0.510 0.496 0.507 0.511 0.498
0.01 0.419 0.423 0.398 0.425 0.432 0.409
0 0.608 0.610 0.602 0.618 0.620 0.606
10 0.005 | 0.492 0.503 0.456 0.500 0.506 0.463
120 0.01 0.363 0.382 0.337 0.375 0.393 0.333
0 0.918 0.918 0.922 0.921 0.922 0.928
20 0.005 | 0.745 0.751 0.728 0.760 0.765 0.742
0.01 0.600 0.611 0.584 0.610 0.625 0.587

! Adjusted test statistics were denoted in Section 6.4.2 and Table 6.5, and negative ICC estimators in the

calculation of adjusted test statistics were set to zero.

122
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Table 7.16: Power of adjusted Cochran-Armitage test statistics: based on 1000 simulations of trials with n clusters of size x4 per

group, intracluster correlation p, and variable cluster size /1 = 0.8

Parameters Adjusted test statistics’
Ko n P X | X | X X | Xe | Xe | Xa | Xo | X | xa | Xe | Xa X | X
0 0.292 | 0.292 | 0.292 | 0.236 | 0.236 | 0.238 | 0.3 0.3 0.3 0.252 | 0.252 | 0.255 | 0.317 | 0.312

50 10 0.005 0.281 | 0.281 | 0.283 | 0.234 | 0.234 | 0.238 | 0.283 | 0.283 | 0.285 | 0.236 | 0.236 | 0.238 | 0.254 | 0.27
0.01 0.256 | 0.256 | 0.26 0.232 | 0.231 | 0.238 | 0.253 | 0.253 | 0.255 | 0.239 | 0.239 | 0.247 | 0.232 | 0.231
0 0.562 | 0.562 | 0.563 | 0.481 | 0.481 | 0.485 | 0.578 | 0.578 | 0.578 | 0.496 | 0.496 | 0.506 | 0.593 | 0.599
20 0.005 0.506 |0.506 | 0.509 | 0.442 | 0.442 | 0.448 | 0.501 | 0.501 | 0.503 | 0.451 | 0.451 | 0.457 | 0.499 | 0.494
0.01 0.412 | 0.411 | 0423 | 0.405 | 0405 | 0.408 | 0.413 | 0.413 | 0.423 | 0413 | 0.413 | 0.42 0.386 | 0.384

0 0.598 | 0.598 | 0.599 | 0.468 | 0.468 | 0.475 | 0.605 | 0.605 | 0.606 | 0.502 | 0.502 | 0.505 | 0.609 | 0.611
10 0.005 0.447 | 0.445 | 0454 | 0.396 | 0.396 | 0.406 | 0.453 | 0.453 | 0.465 | 0.419 | 0.418 | 0.428 | 0.391 | 0.395
0.01 0.345 | 0.343 | 0.355 | 0.342 | 0.342 | 0.36 0.338 | 0.338 | 0.352 | 0.356 | 0.356 | 0.369 | 0.307 | 0.299
0 0.891 | 0.891 | 0.891 | 0.799 | 0.799 | 0.81 0.894 | 0.894 | 0.894 | 0.826 | 0.826 | 0.83 0.889 | 0.894
20 0.005 0.727 |0.727 | 0.738 | 0.668 | 0.668 | 0.684 | 0.732 | 0.732 | 0.741 | 0.685 | 0.684 | 0.695 | 0.71 0.713
0.01 0.561 | 0.561 | 0.579 | 0.568 | 0.567 | 0.584 | 0.571 | 0.571 | 0.585 | 0.58 0.58 0.606 | 0.549 | 0.551

120

! Adjusted test statistics were denoted in Section 6.4.2 and Table 6.5, and negative ICC estimators in the calculation of adjusted test

statistics were set to zero.




Table 7.17: Type I error rates of model-based test statistics: based on 1000 simulations of trials with n clusters of size 4 per

group, intracluster correlation p, and fixed cluster size 4 = 0.8. (overly liberal or conservative type I error rates are in bold
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font)
Parameters Model-based test statistics!
“ n p WM WR WBCI WBCZ WBC3 WBC4 WBCS Wdfl Wdf 2 Wdf3 Wdf4 VVde SR SBC 4 és TLinmr
0 0.048 0.077 0.052 | 0.061 0.056 0.052 | 0.055 | 0.054 | 0.056 | 0.057 | 0.057 | 0.047 0.053 | 0.055 | 0.031 | 0.039
10 0.005 | 0.072 0.064 0.047 | 0.054 0.050 0.047 | 0.052 | 0.050 | 0.050 | 0.050 | 0.050 | 0.037 0.048 | 0.051 | 0.039 | 0.050
50 0.01 | 0.105 0.084 0.057 | 0.067 0.063 0.057 | 0.063 | 0.061 | 0.063 | 0.063 | 0.063 | 0.052 0.057 | 0.063 | 0.054 | 0.059
0 0.045 0.057 0.048 | 0.053 0.053 0.048 | 0.052 | 0.051 | 0.053 | 0.052 | 0.052 | 0.046 0.049 | 0.052 | 0.035 | 0.034
20 0.005 | 0.082 0.070 0.059 | 0.059 0.059 0.059 | 0.058 | 0.059 | 0.059 | 0.059 | 0.059 | 0.054 0.059 | 0.059 | 0.050 | 0.053
0.01 | 0.111 0.072 0.055 | 0.062 0.062 0.055 | 0.068 | 0.061 | 0.062 | 0.062 | 0.062 | 0.051 0.056 | 0.060 | 0.060 | 0.067
0 0.055 0.077 0.040 | 0.059 0.055 0.040 | 0.038 | 0.047 | 0.050 | 0.052 | 0.052 | 0.029 0.040 | 0.051 | 0.047 | 0.041
10 0.005 | 0.103 0.062 0.041 | 0.056 0.051 0.041 | 0.040 | 0.047 | 0.048 | 0.050 | 0.050 | 0.028 0.040 | 0.048 | 0.051 | 0.044
120 0.01 |0.181 0.082 0.061 | 0.073 0.065 0.059 | 0.058 | 0.064 | 0.066 | 0.068 | 0.068 | 0.050 0.059 | 0.067 | 0.069 | 0.068
0 0.043 0.063 0.056 | 0.060 0.058 0.056 | 0.056 | 0.055 | 0.055 | 0.055 | 0.055 | 0.047 0.053 | 0.055 | 0.050 | 0.041
20 0.005 | 0.109 0.063 0.050 | 0.056 0.054 0.050 | 0.046 | 0.054 | 0.054 | 0.054 | 0.054 | 0.044 0.051 | 0.054 | 0.054 | 0.055
0.01 |0.190 0.074 0.054 | 0.062 0.062 0.054 | 0.049 | 0.056 | 0.060 | 0.060 | 0.060 | 0.049 0.055 | 0.061 | 0.065 | 0.065

! Model-based test statistics were denoted in Section 6.4.2 and Table 6.5.




Table 7.18: Type I error rates of model-based test statistics: based on 1000 simulations of trials with n clusters of size 4 per
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group, intracluster correlation p, and variable cluster size 4 = 0.8 (overly liberal or conservative type I error rates are in bold

font)
Parameters Model-based test statistics®
“ n p WM WR WBCI WBCZ WBC3 WBC4 WBCS Wdfl Wdf 2 Wdf3 Wdf4 Wdfs N R \) BC y4 és TLinear
0 0.052 0.084 0.049 | 0.061 0.056 0.049 | 0.052 | 0.056 | 0.058 | 0.016 | 0.016 | 0.045 0.043 | 0.050 | 0.030 | 0.038
10 0.005 | 0.082 0.099 0.058 | 0.075 0.066 0.058 | 0.068 | 0.066 | 0.071 | 0.016 | 0.016 | 0.055 0.056 | 0.066 | 0.055 | 0.059
50 0.01 |0.121 0.101 0.065 | 0.081 0.076 0.065 | 0.072 | 0.078 | 0.079 | 0.017 | 0.017 | 0.055 0.055 | 0.068 | 0.065 | 0.073
0 0.059 0.079 0.058 | 0.068 0.064 0.058 | 0.068 | 0.065 | 0.067 | 0.038 | 0.038 | 0.054 0.056 | 0.059 | 0.044 | 0.050
20 0.005 | 0.084 0.065 0.052 | 0.060 0.058 0.052 | 0.055 | 0.057 | 0.057 | 0.032 | 0.032 | 0.047 0.047 | 0.049 | 0.051 | 0.059
0.01 | 0.114 0.057 0.049 | 0.050 0.050 0.049 | 0.055 | 0.049 | 0.049 | 0.029 | 0.029 | 0.047 0.046 | 0.049 | 0.054 | 0.053
0 0.050 0.101 0.063 | 0.080 0.077 0.063 | 0.056 | 0.073 | 0.077 | 0.018 | 0.018 | 0.055 0.057 | 0.065 | 0.036 | 0.040
10 0.005 | 0.139 0.093 0.058 | 0.080 0.074 0.058 | 0.059 | 0.072 | 0.073 | 0.016 | 0.016 | 0.053 0.054 | 0.062 | 0.052 | 0.057
120 0.01 |0.216 0.101 0.067 | 0.088 0.082 0.067 | 0.062 | 0.083 | 0.084 | 0.027 | 0.027 | 0.062 0.065 | 0.069 | 0077 | 0.081
0 0.041 0.062 0.056 | 0.062 0.060 0.056 | 0.033 | 0.052 | 0.052 | 0.028 | 0.028 | 0.045 0.047 | 0.049 | 0.033 | 0.038
20 0.005 | 0.147 0.075 0.068 | 0.080 0.074 0.068 | 0.055 | 0.067 | 0.068 | 0.036 | 0.036 | 0.054 0.058 | 0.064 | 0.063 | 0.068
0.01 |0.231 0.062 0.051|0.057 0.055 0.051 | 0.051 | 0.047 | 0.050 | 0.029 | 0.029 | 0.046 0.045 | 0.046 | 0.054 | 0.060

"Model-based test statistics were denoted in Section 6.4.2 and Table 6.5.




Table 7.19: Power of model-based test statistics: based on 1000 simulations of trials with n clusters of size u per group,

intracluster correlation p, and fixed cluster size 1 =1
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Parameters Model-based test statistics'
H n p WBCl WBC 2 W3c3 W3c4 WBCS Wdfl Wdf 2 Wdf3 Wdf4 Wdfs S R S BC x és X 12
0 0.304 0.347 0.337 0.303 | 0.263 | 0.324 | 0.333 | 0.332 | 0.332 | 0.267 0.305 | 0.331 | 0.254 | 0.277
10 0.005 | 0.262 0.295 0.284 0.262 | 0.262 | 0.276 | 0.279 | 0.281 | 0.281 | 0.242 0.263 | 0.280 | 0.259 | 0.270
50 0.01 0.250 0.288 0.274 0.250 | 0.253 | 0.263 | 0.268 | 0.270 | 0.270 | 0.225 0.256 | 0.271 | 0.262 | 0.275
0 0.579 0.598 0591 0.579 |0.571 | 0.590 | 0.593 | 0.593 | 0.593 | 0.570 0.580 | 0.591 | 0.550 | 0.554
20 0.005 | 0518 0541 0.535 0.518 |0.510 | 0.527 | 0.533 | 0.534 | 0.534 | 0.503 0.520 | 0.531 | 0.525 | 0.532
0.01 0.405 0.435 0426 0.405 | 0.408 | 0.415 | 0.424 | 0.427 | 0.427 | 0.395 0.410 | 0.421 | 0.426 | 0.430
0 0.621 0.657 0.646 0.621 | 0.590 | 0.636 | 0.643 | 0.643 | 0.643 | 0.587 0.621 | 0.644 | 0.561 | 0.612
10 0.005 | 0.447 0.484 0.472 0.447 | 0.439 | 0.461 | 0.567 | 0.467 | 0.467 | 0.400 0.446 | 0.466 | 0.455 | 0.483
120 0.01 0.350 0.376 0.368 0.349 | 0.351 | 0.362 | 0.365 | 0.364 | 0.364 | 0.317 0.349 | 0.365 | 0.368 | 0.373
0 0.908 0.915 0913 0.908 | 0.906 | 0.911 | 0.913 | 0.913 | 0913 | 0.901 0.908 | 0.912 | 0.898 | 0.910
20 0.005 |0.736 0.748 0.747 0.735 | 0.736 |0.744 | 0.747 | 0.746 | 0.746 | 0.718 0.736 | 0.745 | 0.753 | 0.752
0.01 0.602 0.617 0.611 0.602 | 0.600 | 0.608 | 0.611 | 0.610 | 0.610 | 0.591 0.602 | 0.610 | 0.618 | 0.617

"Model-based test statistics were denoted in Section 6.4.2 and Table 6.6.




Table 7.20: Power of model-based test statistics: based on 1000 simulations of trials with n clusters of size u per group,

intracluster correlation p, and variable cluster size 4 = 0.8

Parameters Model-based test statistics"

H n p Wici Wacs Wics defS Sk Sse Zés le
0 0.309 0.309 0.286 | 0.293 0.300 | 0.328 | 0.266 | 0.295

10 0.005 | 0.256 0.256 0.262 | 0.240 0.253 | 0.279 | 0.259 | 0.274

50 0.01 | 0.230 0.230 0.242 | 0.222 0.227 | 0.250 | 0.241 | 0.250
0 0.568 0.568 0.550 | 0.562 0.568 | 0.583 | 0.534 | 0.545

20 0.005 | 0.455 0.455 0.454 | 0.444 0.451 | 0.463 | 0.457 | 0.465
0.01 | 0.397 0.397 0.401 | 0.389 0.396 | 0.407 | 0.406 | 0.417

0 0.592 0.592 0.491 | 0.569 0.592 | 0.626 | 0.556 | 0.585

10 0.005 | 0.397 0.397 0.371 | 0.378 0.384 | 0.409 | 0.439 | 0.446

120 0.01 |0.316 0.316 0.292 | 0.301 0.312 | 0.335 | 0.347 | 0.360
0 0.903 0.903 0.814 | 0.899 0.902 | 0.908 | 0.888 | 0.896

20 0.005 | .0706 .0706 0.664 | 0.694 0.709 | 0.723 | 0.734 | 0.736
0.01 |0.562 0.562 0.545 | 0.552 0.561 | 0.570 | 0.601 | 0.594

"Model-based test statistics were denoted in Section 6.4.2 and Table 6.6.
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Table 7.21: Regression Coefficient Estimates and their Standard Errors from marginal and cluster models: based on 1000

simulations of trials with n clusters of size u per group, intracluster correlation p, and fixed cluster size 4 = 1

Parameters Regression Coefficient Estimates Standard Errors
‘U n p ﬁGEE ﬁCS SE(ﬁGEE) SE(IBCS)
0 0.001 0.000 0.112 0.124
10 | 0.005 | 0.004 0.005 0.125 0.131
50 0.01 | 0.003 0.002 0.136 0.141
0 -0.005 -0.005 0.082 0.087
20 | 0.005 | -0.004 -0.004 0.091 0.093
=1 0.01 | 0.002 0.002 0.100 0.101
0 -0.006 0.145 0.073 0.081
10 | 0.005 | -0.002 0.085 0.092 0.094
120 0.01 | -0.003 0.031 0.107 0.109
0 0.000 0.134 0.053 0.058
20 | 0.005 | 0.000 0.049 0.066 0.067
0.01 | -0.005 0.022 0.078 0.079
0 0.182 0.182 0.112 0.124
10 | 0.005 | 0.180 0.181 0.124 0.130
50 0.01 | 0.190 0.191 0.136 0.140
0 0.185 0.185 0.082 0.087
20 | 0.005 | 0.194 0.194 0.091 0.093
0=12 0.01 | 0.182 0.183 0.099 0.100
o 0 0.183 0.236 0.072 0.079
10 | 0.005 | 0.182 0.212 0.092 0.093
120 0.01 | 0.184 0.201 0.107 0.108
0 0.185 0.225 0.052 0.056
20 | 0.005 | 0.180 0.193 0.066 0.066
0.01 | 0.183 0.182 0.078 0.078
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Table 7.22: Regression Coefficient Estimates and their Standard Errors from marginal and cluster models: based on 1000

simulations of trials with n clusters of size u per group, intracluster correlation p, and variable cluster size 1 = 0.8

Parameters Regression Coefficient Estimates Standard Errors
“ n p B Bes SE(Bope) | SE(Bes)
0 -0.005 -0.005 0.111 0.126
10 0.005 0.000 0.001 0.126 0.134
50 0.01 0.002 0.002 0.139 0.144
0 -0.002 -0.002 0.082 0.088
20 0.005 -0.002 -0.002 0.093 0.095
=1 0.01 -0.002 -0.003 0.104 0.105
N 0 0.000 0.000 0.072 0.081
10 0.005 0.003 0.003 0.093 0.096
120 0.01 -0.008 -0.007 0.110 0.111
0 -0.001 -0.001 0.053 0.057
20 0.005 -0.001 -0.001 0.069 0.069
0.01 -0.002 -0.003 0.082 0.082
0 0.182 0.182 0.111 0.126
10 0.005 0.184 0.185 0.126 0.134
50 0.01 0.188 0.190 0.139 0.144
0 0.183 0.183 0.080 0.087
20 0.005 0.182 0.182 0.092 0.094
9=12 0.01 0.185 0.186 0.102 0.103
o 0 0.180 0.280 0.071 0.081
10 0.005 0.182 0.183 0.093 0.096
120 0.01 0.184 0.185 0.110 0.111
0 0.184 0.184 0.053 0.056
20 0.005 0.183 0.193 0.068 0.068
0.01 0.183 0.185 0.082 0.081
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Chapter 8

8 Example: A school-based smoking prevention cluster
randomization trial

8.1 Introduction

In this chapter, we use data from a school-based smoking prevention study to illustrate
application of methods described in previous chapters. The Television School and Family
Smoking Prevention and Cessation Project (TVSFP) is a cluster randomization trial,
which was designed to test the independent and combined effects of a classroom
curriculum and television programming for social resistance skills training, smoking

prevention, and smoking cessation (Flay, et al., 1988).

The initial study was conducted from 1986 to 1988. It consisted of 7351 students in
seventh grade in 340 classrooms within 47 schools from Los Angeles and San Diego.
Students were randomized to five study conditions: 1) a social-resistance (SR) classroom
curriculum, 2) a TV intervention, 3) a health-information-base attention-control
curriculum, 4) a SR curriculum combined with a TV intervention (SR+TV), and 5) a no-
intervention group. Randomization for this study was at the school level while the

intervention was delivered to students in the classroom.

For this illustration, a subset of the TVSFP data was used. This subset included 1600
students from 135 classrooms and 28 Los Angeles schools. A tobacco and health
knowledge scale (THKS) score was one of the primary study outcome variables and the
one chosen for this study. The score was defined as the number of correct answers to
seven questions on tobacco and health knowledge. According to Hedeker and Gibbons’s
(1994) study, three ordinal classifications were created for illustrative purposes,
corresponding to 0-1, 2-3, and 4-7 correct answers. We further categorize the original
study conditions into two groups: a TV intervention group (TV=yes) vs. non- TV group
(TV=no). Moreover, our analysis will be limited to inferences about the effect of this

school-based intervention on the ordinal THKS score.
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The same data set was previously analyzed using a mixed effects model for ordinal
outcomes (Hedeker and Gibbons, 1996) as well as binary outcomes (Gibbons and
Hedeker, 1997). Also, Hedeker and Gibbons (1994) and Raman and Hedeker (2005) fit
the data with mixed-effects ordinal probit and logistic regressions respectively. However,
their investigations only focused on the analysis of cluster-specific models. In addition,
their studies investigated the effects of all four conditions (SR, TV, TV+SR, and the non-
intervention group) with the outcome THKS scores classified into four ordinal categories

corresponding to 0-1, 2, 3, and 4-7 correct answers.

The rest of the chapter is organized as follows. Section 8.2 reviews the methods applied
to the example data and Section 8.3 describes the results of the analysis. Conclusions and

discussion are presented in Section 8.4.

8.2 Methods

Several summary statistics were calculated for the data. Table 8.1 shows descriptive
statistics of the school size broken down by condition groups. In addition, student
frequencies for three ordinal categories of the THKS are given in Table 8.2. The degree

of imbalance in cluster size in each group was obtained as discussed in Chapter 6.

Estimates of the ICC were calculated for the THKS score among students within schools.
These estimates were obtained by adapting one-way ANOV A and kappa-type methods as
described in Sections 2.2 and 2.3.

Results from three adjusted Cochran-Armitage tests of the effect of TV intervention were
compared and displayed in Table 8.4.Two types of ICC estimators were used to calculate
the degree of variance inflation induced by clustering. In addition, results from thirteen
model-based tests are compared and displayed in Table 8.5, including five bias-corrected
and four degrees-of-freedom-adjusted approaches for the GEE Wald test and one
corrected approach for the GEE score test. Comparisons between different methods of
analysis focus on the statistical significance of associations between the TV intervention

effect and the outcome THKS scores.
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In addition, marginal and cluster-specific extensions of proportional odds models were
compared in terms of strength of effect as measured by the magnitude of model
parameter estimates and their standard errors. In particular, the marginal model was fitted
by the GEE approach using an independent working correlation. The cluster-specific
model was fitted by the Gauss-Quadrature approach. The SAS procedures PROC
GENMOND and PROC NLMIXED (SAS V.9.2, SAS Institute, Inc, Cary, NC) were

employed to fit the marginal and cluster-specific models respectively.

8.3 Results

8.3.1 Descriptive Analyses

In the TVSFP study, fourteen schools were randomized to each group. The descriptive
statistics for the cluster (school) sizes in each group are listed in Table 8.1. School sizes

in the non-TV group are more variable than those in the TV group.

The student frequencies for the three-category THKS scores are displayed in Table 8.2
for each group. The estimated cumulative odds ratio of the THKS scores comparing the

TV group with the non-TV group is 0.966, which is close to one.

Table 8.1: Descriptive statistics of school size per intervention group in the TVSFP

Intervention Number of Standard

Mean L Minimum  Maximum Imbalance
group schools deviation
Non-TV group 21 57.2 38.7 23 137 0.69
TV group 7 57.1 221 18 94 0.87

Table 8.2: Frequencies of three-category THKS scores per intervention group (%)

Intervention Group THKS score
0-1 2-3 4-7 Total
Non-TV group 179 402 220 801
(22.4) (50.2) (27.4) (100%)
176 396 227 799

TV group (22.0) (49.6) (28.4) (100%)
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8.3.2 ICC Estimation

Estimates of ICC for the THKS scores among students within schools are listed in Table
8.3. The two ANOVA ICC estimators are smaller than the two kappa-type ICC
estimators. In addition, ICC estimators obtained by using scores 1, 2 and 3 are larger than
those using midranks for both ANOVA and kappa-type estimators. This is probably due,
in part, to the large discrepancies between the scores 1, 2, or 3 with midrank scores in this
example. In particular, the midrank scores are 1, 4 and 8 for the three ordinal categories,

as compared to scores 1, 2, and 3.

Table 8.3: Estimated ICCs for the THKS scores among students within schools

ANOVA method ~ ANOVA method Kappa approach Kappa approach

using scores 1,2 using midrank using scores 1,2 or  using midrank

or3(p,) scores (D 4 ) 3(p0,) scores (D))
ICC. 0.059 0.058 0.127 0.080
estimates

8.3.3  Adjusted Cochran-Armitage Tests

Three adjusted Cochran-Armitage tests using both ANOVA and kappa-type ICC
estimators with midrank scores were applied to examine the effect of the TV intervention
group. The corresponding six test statistics and their p-values are listed in Table 8.4. All
test statistics and their p-values are quite similar to each other and indicate a non-
significant TV program effect on the THKS scores. This generally agrees with the results

reported earlier (e.g., Hedeker and Gibbons, 1994; Raman and Hedeker, 2005).
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Table 8.4: Adjusted Cochran-Armitage test statistics for the effect of the TV
intervention using ANOVA and kappa-type ICC estimators

Methods Methods Test. . Test statistics
statistics value (p-value)
Donner and Donald’s test Zém(l) 0.026 (0.87)
i i An Alternative to Donner 2
Using ANOVA ICC estimator Xeo- 0.025(0.87)

with midrank scores (0, ) and Donald’s Test

Weighted-Least-Square

2
Cochran-Armitage Test Xco-wis 0.030(0-86)

Donner and Donald’s test Zéo—(l) 0.020(0.88)

Using kappa-type ICC estimator ~ An Alternative to Donner

2

Weighted-Least-Square

2
Cochran-Armitage Test Xco-wis 0.023(0.88)

8.3.4  Adjusted Model-based Tests

A marginal proportional odds model is now fit to the example data, where the THKS
score is modeled in terms of a dummy-coded (no=0 and yes=1) TV effect. Thirteen
model-based test statistics and their corresponding p-values which evaluate the TV

invention effect are listed in Table &.5.

All test results show a non-significant TV effect on the outcome THKS score. This
conclusion is in agreement with previous reports (e.g., Hedeker and Gibbons, 1994;
Raman and Hedeker, 2005). Adjusting and modifying robust tests did not affect
inferences concerning the effect of the TV intervention program. However, the five
sandwich bias correction approaches enlarged the robust variance estimates as we
illustrated in Chapter 5. Also, the four degree-of-freedom-adjusted approaches slightly

reduced the magnitude of inflated type I errors by adjusting the approximate F-test.

The test statistic obtained from the robust score test (S5,=0.0300 with p=0.8610) is
smaller than that generated from the robust Wald test (W,=0.0309 with p=8606). After

adjusting, the modified score test has a slightly smaller p-value (p=0.8584) which is

consistent with discussions in previous chapters.
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Table 8.5: Test statistics for the TV intervention effect from the marginal extensions

of cumulative logit model for the THKS scores (SAS procedure: PROC GENMOD)

Test Test statistics value (p-

Tests .
statistic  value)

Model-based Wald test W, 0.1333 (0.7153)
Robust Wald test W, 0.0309 (0.8606)
Robust score test Sk 0.0300 (0.8610)
Bias-corrected Wald test: Approach 1 Wee 0.0250 (0.8745)
Bias-corrected Wald test: Approach 2 Wies 0.0277 (0.8677)
Bias-corrected Wald test: Approach 3 Wics 0.0271 (0.8693)
Bias-corrected Wald test: Approach 4 Weca 0.0250 (0.8745)
Bias-corrected Wald test: Approach 5 Waces 0.0267 (0.8702)
Degrees-of-freedom-adjusted Wald test: Approach 1 W 0.0276 (0.8684)
Degrees-of-freedom-adjusted Wald test: Approach 2 Wy, 0.0309 (0.8622)
Degrees-of-freedom-adjusted Wald test: Approach 3 W5 0.0276 (0.8639)
Degrees-of-freedom-adjusted Wald test: Approach 4 Wy 0.0309 (0.8606)
Degrees-of-freedom-adjusted Wald test: Approach 5 Ws 0.0308 (0.8697)
Modified robust score test Ssc 0.0300 (0.8584)

8.3.5 Relationship between marginal and cluster-specific models

Marginal and cluster specific models are now fitted to the example data. The parameter
estimates and standard errors are listed in Table 8.6. The TV effect estimate is obtained
as 0.0344 in the marginal model, which is close to the TV effect estimate obtained as
0.0166 in the cluster-specific model. In addition, the standard error of the TV effect
estimate from the marginal model is 0.1958, which is smaller than the standard error
0.2096 from the cluster-specific model. This parallels results previously reported for

binary data.
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Table 8.6: Parameter estimates (log odds ratios) of the TV effect from marginal and

mixed effects logistic regression models with cumulative logit for the THKS scores

Log odds ratio in the marginal model  Log odds ratio in the mixed effects
(standard error) model (standard error)

0.0344 (0.1958) 0.0166 (0.2096)

Term

TV
intervention

8.4 Discussion

Although mixed effects categorical modeling methods have been previously applied to
the same example data, there are some differences. For example, previous studies
(e.g.,Hedeker and Gibbons, 1994) considered that the schools were randomized to four
study conditions (i.e., SR, TV, TV+SR, and the non-intervention group), while our study
considered only two groups, i.e., the TV and non-TV group. In addition, previous studies
(e.g., Raman and Hedeker, 2005) divided THKS scores into four ordinal classifications
corresponding to 0-1, 2, 3, and 4-7 correct responses, while we grouped the THKS scores
into three ordinal classifications. Some studies also considered cluster effects at both the
class level and school level, while we considered cluster effects at the school level only.
These differences may lead to some discrepancy in results between our study and
previous studies. Also, previous studies (e.g., Raman and Hedeker, 2005) evaluated the
intervention program effects while controlling for the baseline information. However, this
research focuses on analysis with a single cluster-level covariate only, i.e., the TV
intervention effect. Therefore, we did not consider the baseline smoking information

here.

The ICC estimator within schools was 0.013 in Raman and Hedeker (2005)’s study (four
category ordinal outcomes and three-level cluster effect at school and class level), 0.022
in Hedeker and Gibbon (1996)’s study (continuous outcomes and two-level cluster effect
at clsss effect), and 0.026 in Gibbons and Hedeker (1997)’s study (three levels, binary).
They are all smaller than the calculated values of the ANOVA and kappa ICC estimators.
The reasons may be due to the different model variables in the current study and previous

studies.
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As discussed in Chapter 5, the GEE score test tends to have a smaller test size than

nominal, in contrast to the liberal behaviour of the GEE Wald test. However, the score
test statistic (5,=0.0300) is slightly smaller the Wald test statistic (W,=0.0309). This

may be explained by research showing that the conservative behavior of robust score

tests is reduced as the number of clusters increases (i.e., n=30) (Guo et al., 2005).

The regression coefficient estimates (log odds ratio) from both marginal and cluster-
specific models are close to zero. Combined with the small ICC, this may explain why
the two coefficient estimates are very similar to each other. The same reason may also
explain why the analytic relationship discussed in Chapter 5 does not hold in this

example.
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Chapter 9

9 Conclusions

The primary objective of this thesis was to develop and evaluate methods that analyze
correlated ordinal data obtained from cluster randomization trials. Attention was
restricted to completely randomized community intervention trials assuming a single
binary, cluster-level covariate. The purpose of this chapter is to summarize the most
important findings of this thesis in Section 9.1, discuss potential limitations and suggest

areas for future research in Section 9.2.

9.1 Summaries

9.1.1 Main Findings

Properties of methods compared used three approaches: algebraic computation,
simulation and a case study. The complexity of most methods restricts algebraic
comparisons to fairly simple situations where there are equal numbers of clusters with
fixed cluster sizes (i.e., a balanced trial). Their properties were also compared by

simulation and using data from a cluster randomization trial.

A major contribution of this thesis is the derivation of the kappa-type ICC estimators and
evaluation of their small sample properties. Similar evaluations were conducted for
Cohen’s kappa and the ANOVA ICC estimator. Both spaced scores (i.e., 1,2,3) and
midrank scores were considered to calculate the ANOVA and kappa-type estimators. The
algebraic comparison was presented in Chapter 2. It was shown that the ANOVA and
kappa-type ICC estimators were asymptotically equivalent in a balanced trial as the
number of clusters becomes large. Simulation results showed that kappa-type estimators
were more close to the true values than ICC estimators when cluster sizes were fixed and
small for p = 0.005 or p = 0.01 . Conversely, ANOVA ICCs had relatively smaller bias in
the case of variable cluster sizes. In addition, midrank scores reduced the biases of both
kappa and ANOVA ICC estimators for p = 0.005 or p = 0.01 when cluster sizes are

variable and small (i.e., u = 50).



139

Another contribution of this thesis is the derivation of the adjusted Cochran-Armitage test
statistics obtained by directly applying simple correction terms accounting for clustering.
The algebraic comparisons in Chapter 3 show that the three adjusted statistics are
identical in a balanced trial. Simulation results indicated that statistics using both kappa-
type and ANOVA ICC estimators generated satisfactory type I error rates at the 5%
nominal level when cluster sizes were fixed. When cluster sizes were variable, however,
the adjusted statistics using ANOVA ICC estimators resulted in satisfactory type I error
rates under most parameter combinations. Among the tests which have valid type I error

rates, the statistical power of the WLS C-A test using midrank ANOVA estimates (i.e.,
X%) was slightly higher than that of other test statistics while the difference not more

than 2%. One possible reason may be the WLS approach yielded the more precise

parameter estimates than the first two adjusted statistics which used the OLS approach.

Finally, the small-sample performance of GEE robust tests were improved by the
adjustment approaches derived in Chapter 5. A total of sixteen model-based test statistics
were compared in the simulation study. For fixed cluster sizes, all test statistics, except
GEE model-based and robust Wald statistics, showed generally satisfactory type I error
rates at the 5% nominal level. However, for variable cluster sizes, only the robust score
test and the adjustment methods Wpg¢q , Wpegand Wyps were shown to maintain the
overall satisfactory type I error rates. Among the methods that resulted in valid type I
error rates, the adjusted method Wp.,yielded the highest statistical power for fixed

cluster sizes, and Wy, yielded the highest power for variable cluster sizes.

91.2 Recommendations and Discussions

Our results indicate that adjusted Cochran-Armitage tests are reasonable choices for
testing the intervention effect for ordinal outcome data obtained from cluster
randomization trials when there are no complex analyses required (e.g., analysis of
covariates). In particular, the WLS adjusted C-A test obtained using the midrank
ANOVA ICC estimator performs best, especially for variable cluster sizes, in terms of

type I error and power.
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Small-sample performance of GEE robust Wald tests are seen to be improved by using
adjustments and corrections. In particular, the adjusted test Wpc; is the most appropriate

method in terms of type I error and power.

In contrast to the liberal behaviour of the GEE robust Wald test, the GEE robust score
test tends to have a smaller test size than the nominal level. However, our simulation and
example study results are not consistent with this discussion of the conservative behavior
of robust score test. In particular, the robust score test statistic S, yields satisfactory type
I error rates under all parameter combinations in our simulation study. Also, our example

study showed the p-value generated by S, (i.e., 0.8610) is very similar to the p-value the

GEE robust Wald test statistic generated (i.e., 0.8606). The above discrepancy between
the discussions in Chapter 5 and our study results may be explained by the fact that the
total number of clusters in our study is close to 30. According to Guo et al. (2005)’s
research, the type 1 error rate of robust score tests approaches 0.05 as the number of

clusters from two groups increases to 30.

In addition, we discussed in Chapter 4 that the regression coefficient estimate from
marginal models is smaller than that from cluster-specific models. However, this
relationship is seen in our simulation study to hold only for the parameter combinations
where the log odds ratio € is set to 1.2. One possible reason is that the regression
coefficient estimates (log odds ratio) from both marginal and cluster-specific models are
close to zero in both the example data and the simulation study with 8 = 1. Combined
with the small ICC, this may explain why the two coefficient estimates are very similar to

each other.

9.2 Limitations and Future Research

First, a potential topic for future research is to unify different methods of analysis of
clustered ordinal outcomes data. For instance, the model-based tests are often equivalent,
at least in special cases, to well known non-parametric test statistics. The challenge is that

some adjustment for these tests will be needed when applied to clustered ordinal data.
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In particular, the Cochran-Armitage test statistic is equivalent to the score statistic
obtained from logistic regression analyses with an ordinal covariate (Cox, 1958). The
Wilcoxon rank sum test when applied to compare two multinomial distributions with
ordered categories is equivalent to the score test for proportional odds models using a
binary covariate (McCullagh, 1980). Moreover, the two approaches are equivalent when
the scores in the Cochran-Armitage trend test are set equal to the midrank for each group,
as defined in the Wilcoxon rank sum test (Rosner, 2000; pp401). As such the Cochran-
Armitage trend test unifies different methods that have been proposed to analyze

independent ordinal data.

For clustered ordinal data, Jung and Kang (2001) derived a test statistic unifying the
Wilcoxon rank sum test and the Cochran-Armitage trend test. In addition, Natarajan et al.
(2012) formulated an estimating equations score test from the proportional odds model as
an extension of the Wilcoxon rank sum test. As such, Jung and Kang’s (2001) method
could similarly unify different methods for the analysis of clustered ordinal outcome data
as the Cochran-Armitage trend test does for the analysis of independent ordinal outcome
data. In future research, Jung and Kang’s method could be further explored to connect

methods for the analysis of clustered ordinal outcome data.

Second, we have focused on methods that may be applied to the completely randomized
design in this research. Although the extensions of these methods to stratified cluster
randomization trials is fairly straightforward, the challenge of extending the methods to
pair-matched designs poses problems that are an area for future research (Klar and
Donner, 1997). One approach would be to break the matches for the design-based
matching and apply the methods discussed above. Detailed evaluation of this approach,

including the loss in power if the matching is effective, is needed.

Third, the approaches presented here were developed specially for the case of one
intervention group and one control group. However, many trials contain more than two
intervention groups. For example, the TVFSP data in our example originally had four
intervention groups. The methods presented here may usefully be extended to trials with

more than two intervention groups.
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Fourth, the simulation study has only considered data with equal numbers of clusters per
intervention group. This design restriction was made in order to understand the
performance of the methods in simple scenarios. However, there is often considerable
variation in the number of clusters in practice. An equal number of clusters per
intervention group generally leads to an increase in efficiency as compared to unequal
allocation (Donner and Klar, 2000, p.59). Further research is required to assess our

findings to more general settings such as studies having unbalanced cluster numbers.

Fifth, we deliberately focused on community intervention trials, which typically enrol a
small number of large clusters. This focus reflects the relatively greater methodological
challenge of statistical inferences arising in these studies. For example, the validity of
statistical inferences is often problematic when there are few large clusters. Therefore, as
Koepsell et al. (1991, 1992) and Donner and Klar (2000, p100) suggested, particular care
must be taken when applying methods requiring a large number of clusters (e.g., GEE
using robust variance estimators) to community intervention trials. Conversely, the
methods discussed in this thesis could be naturally applied to trials having a large number

of small clusters, for example, for example, families.

Finally, the simulation study evaluating marginal and cluster-specific extensions of
ordinal logistic regression models is limited to models with cumulative logit links.
Although the most popular model for ordinal responses uses logits of cumulative
probabilities (Lui and Agresti, 2005), other types of links (e.g., adjacent-category logits
or continuation-ratio logits) may also be of interest for ordinal data analysis. Therefore
further study may be helpful to broaden our findings to these other ordinal response

regression models.
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Appendix A

Matrix version derivation of weighted least squares Cochran-
Armitage estimation

The linear probability model used to test the trend for clustered binary outcome data is

written as E(f’) =a.+ .S . Wedenote P, as a (Z m;) X1 outcome vector and S, as a
j=1

2% Zmu score matrix. Then P = [PII,PZ',...P(;I and S = [SIV,S;,...S'GI. By minimizing

J=1

the weighted square of the error terms
G
ZW(Pl —Oc _/Bc XS,')Z
i=1
the WLS estimator of £, is given by
B.=(S'WS)'SWP

where W was defined in Section 3.3.3.

Letting ¢;; = 1 + (m;; — 1)p, then

G M G n; -1
ml-j mU
Y S; -4
Ci c
< - j c - ij
’ -1 _ i=1 j=1 =1 j=1
[SWSI™ = G n; G n
m
L l
i=1 j=1 Y =1 =1
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and
— G nl -
-~ m;;
2.
i=1 j=1 €ij
, | = =
SWP=| . n; )
SiPi ) —
c - Cij
Li=1 ]:1 i
So the numerator of S-p_y/s 1S given by
G N
ml 5¢ ml
TP R
Ci Ci
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The denominator of ,[?CB_WLS is given by
G
ZZWjZ“Z ij
i=1j= Cij i=1 j=1 Cl] j Cl]
G N
m;;
22 Z@<WZ

Cij

i=1j=1 i=1

Thus the WLS estimator is given by
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