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Abstract 

Cluster randomization trials have become increasingly popular when theoretical, ethical 

or practical considerations preclude the use of traditional trials that randomize individual 

subjects. Although some methods for analyzing clustered ordinal data have been brought 

to wide attention, these are less developed as compared to methods for analyzing 

clustered continuous or binary outcome data. The aim of this thesis is to refine existing 

strategies which may be applicable to clustered ordinal data as well as extensions which 

have been previously considered only for clustered binary responses. The approaches 

include adjusted Cochran-Armitage tests using an ICC estimator, and correction and 

modification strategies to improve the small-sample performance of the Wald test and 

score test in GEE for clustered ordinal data. The type I error and power for these test 

statistics are investigated using a simulation study. 

 

Simulation results show that kappa-type estimators had less bias than ICC estimators 

when cluster sizes were fixed and small for ρ = 0.005 or ρ = 0.01. Conversely, ANOVA 

ICCs had relatively smaller bias in the case of variable cluster sizes. In addition, small-

sample performance of GEE robust Wald tests are improved by using adjustments and 

corrections. The adjusted test WBC1 is recommended in terms of type I error and power. 

The discussion is illustrated using data from a school-based cluster randomization trial. 

 

Keywords: cluster randomization; correlated ordinal outcome; ICC estimator; Cochran-

Armitage test; GEE; small-sample 
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  Chapter 1

 Introduction 1

1.1 Cluster Randomization Trials  

When allocation of individual participants is possible, the randomized clinical trial is 

generally regarded as the gold standard for the evaluation of interventions in health 

research. Over the past two decades, random assignment at higher levels of aggregation 

has become increasingly popular when theoretical, ethical or practical considerations 

preclude the use of traditional trials that randomize individual subjects (Donner and Klar, 

2000, pp. 5). Trials which assign interventions at higher levels of aggregation are referred 

to as cluster randomization trials. The units of randomization may be families, 

classrooms, worksites, hospitals or communities. 

The reasons for adopting cluster randomization are various, including greater 

administrative efficiency and the possibility of less experimental contamination (Donner 

and Klar, 2000; p2-4). There is also, at times, no alternative to cluster randomization as 

for community intervention trials when the intervention is delivered at the community 

level, e.g. intervention programmes that use mass media to promote smoking cessation. 

Gail et al. (1992), for instance, designed the COMMIT (Community Intervention Trial 

for Smoking Cessation) to study public education and media campaign programmes to 

accelerate smoking cessation among heavy smokers and to reduce smoking prevalence. 

As discussed by Gail et al. (1992), these community-based interventions have the 

potential to affect every smoker in the community. Thus, the intervention precluded 

individual randomization within communities.  

An important feature of cluster randomization trials is that responses of subjects from the 

same cluster tend to be more alike than responses of subjects from different clusters and 

thus they are not statistically independent (i.e. are correlated). Within-cluster similarities 

in response lead to a reduction in effective sample size, and consequently ignoring 

clustering at the design stage may lead to an underpowered study and a loss of precision 

for estimating the intervention effect (Donner and Klar, 2000; p6). Furthermore, the 
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confidence interval for the estimated intervention effect will be too narrow and could lead 

to a spuriously statistically significant test result. Therefore, the correlation among 

responses of individuals in the same cluster must be taken into account in both the design 

and the statistical analysis.  

A review conducted more than a decade ago (Simpson et al., 1995) found that design and 

analysis issues associated with cluster randomization trials were not recognized widely 

enough. They found that only 4 of 21 trials they reviewed accounted for between-cluster 

variability in sample size or power calculations, and 12 of 21 trials took account of the 

effect of clustering in the analysis. Although the number of published randomization 

trials continues to increase, Varnell et al. (2004) reported that there has been little 

improvement in the quality of reporting cluster randomization trials from 1998 through 

2002.  

Fortunately, a recent review (Eldridge et al., 2008) suggests that there has been 

considerable improvement in the reported design and analysis of cluster randomization 

trials in primary care trials. Eldridge et al. (2008) reported that 21 of 34 trials they 

reviewed accounted for clustering in sample size calculations, and 30 of 34 trials took 

account of clustering effects in analysis. However, this progress is not universal. For 

instance, Murray et al. (2008) reviewed 75 articles describing applications of cluster 

randomization trials to cancer research in 41 journals from 2002 to 2006. They reported 

that only 45 percent of the articles used the appropriative methods to analyze the results.  

1.2 Scales of measurements 

Steven (1946) defined measurement as “the assignment of numerals to objects or events 

according to rules”. He proposed four scales of measurement: ratio, interval, ordinal and 

nominal.  

Outcomes measured on ratio and interval measurement scales are typically continuous. 

Differences between numeric values are meaningful for both ratio and interval 

measurements. Ratio scale measurements have the additional property of a meaningful 

zero score indicating the absence of the quantity being measured (Porta et al., 2008). 
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Donner and Klar (2000) provide examples of analyses where the study outcomes in 

cluster randomization trials are continuous and measured on a ratio scale. For example, 

change in cholesterol level (mmol/L) was the primary endpoint measured on students 

who participated in the Child and Adolescent Trial for Cardiovascular Health (CATCH) – 

a school randomized trial (Luepker et al., 1996). 

Outcomes measured on an ordinal scale may be classified into ordered qualitative 

categories. However the interval between ordered categories is typically unknown and 

possibly unmeasurable for ordinal scale outcomes thus distinguishing them from interval 

and ratio scale measurements. An example is provided by Kim et al., (2005) in their 

cluster randomization trial which evaluated treatment of rheumatoid arthritis using an 

adjectival scale (Streiner and Norman, 2003 pp. 33-35). The outcome of interest was 

patient self-assessment of their attitude classified into three categories: poor, fair or good. 

Data measured on a nominal scale are unordered and thus only gives identification values 

or labels to various categories. Objects with the same value are the same on some 

attribute or attributes. The values of the scale have no 'numeric' meaning in the way that 

one usually thinks about numbers. Cook and Demets (2008) observed that randomized 

trials rarely have nominal categorical outcomes with three or more levels. They noted that 

“an unordered categorical variable with three or more levels is usually not a suitable 

outcome measure because there is no clear way to decide if one treatment is superior to 

another''. Binary data are a special case of nominal data with only two categories. An 

example of binary data is provided by Murray et al. (1992) in their study to evaluate the 

effect of school-based interventions in reducing adolescent tobacco use. One of the 

outcomes was if students reported using smokeless tobacco or not. 

1.3 Ordinal outcome data 

In this thesis attention is limited to analyses of ordinal data obtained from cluster 

randomization trials. 
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1.3.1 Number of categories 

Ordinal endpoints for randomized trials often use health measurement scales. One should 

then limit attention to scales which have had their psychometric properties validated. 

Even then there may be more than one possible choice of scale. The decision as to which 

scale should be selected as the endpoint will depend, in part, on the number of ordinal 

categories.  

Suppose it is reasonable that the ordinal outcome measures some underlying continuous 

psychological construct (e.g. pain). Then selection of a more finely graded outcome 

should increase power to detect an intervention effect to the extent that subjects can 

discriminate between categories. In practice, there is likely little gain in power by 

increasing the number of categories beyond about five. This may reflect, in part, the 

difficulty people have in classifying objects or experiences into much more than seven 

levels (Schaeffer and Presser, 2003; Streiner and Norman, 2003, p28-29). 

Decisions about the number of categories also have implications for data analysis. For 

example, the weighted kappa statistic varies as a function of category number (Brenner 

and Kliebsch, 1996). 

1.3.2 The Television, School, and Family Smoking Prevention and 
Cessation Project 

The primary outcome in most cluster randomization trials is binary or quantitative 

(Donner and Klar, 2000; p128). However ordinal data have also been used in a number of 

cluster randomization trials. Examples of such trials are provided in Table 1.1. 
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Table 1.1: Examples of recent cluster randomization trials with ordinal outcomes 

 

Reference  Cluster Outcome  Levels of outcome  
Number of 

Levels 

Flay et al. 1995  school smoking intention  increased, no change, or decreased  3 

Marinacci et al. 

2001 
 school frequency of condom use  always, often or sometimes, never  3 

Patton et al. 

2006 

 
school 

antisocial behavior in the 

past 6 months 

 

 
none, once, more than once  3 

 tobacco use in past month  none, once to three times, more than three times  3 

Glasgow et al 

2005 
 

general 

practitioner 
patient satisfaction  yes, doubtful or no  3 

Byng et al. 2004  
medical 

practices 
severity of mental illness  none, mild, moderate, or severe  4 

Klepp et al. 

1997 
 school 

communication with AIDS 

in the past month 

 

 
never to more than 4  times  4 

McCusker et 

al.1992 
 

medical 

practices 
drug-use behavior  

no injection, injection but no borrowing, borrowing but 

bleach always used, bleach used sometimes, bleach 

never used 

 

 

 

5 

Howard-Pitnet 

et al. 1997 

 

 
class nutritional attitude  strongly agree to strongly disagree  5 

Rosendal et al. 

2003 
 physicians 

classification of the patient 

problem 
 

physical disease, probable physical disease, medically 

unexplained symptoms mental illness, no physical 

symptoms 

 

 

 

5 

Seligman et al. 

2005 
 physicians physician satisfaction  very dissatisfied to very satisfied  6 

Watson et al. 

2005 
 families severity of injury  

minor, moderate, serious, severe, critical, or 

unsurvivable 

 

 
6 
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Flay et al. (1995) report on a school-based smoking prevention programme. Seventh-

grade students were randomized by school into a school-based social resistance 

curriculum or a television-based tobacco use prevention and cessation programme using a 

factorial design. Study outcomes of interest included measures of tobacco and health 

knowledge, coping skills and the prevalence of tobacco use. There were 7351 students 

who participated in the pretest assessment. These students came from 340 classrooms 

drawn from 47 schools. 

Study outcomes included a tobacco and health knowledge scale defined as the number of 

correct answers to seven questions. Hedeker and Gibbons (1996) described application of 

a mixed effects ordinal logistic regression model to examine the effect of intervention on 

tobacco and health knowledge. For these analyses outcomes were grouped into quartiles 

given by 0-1, 2, 3 and 4-7 correct answers. These data will be used to illustrate methods 

of analysis for correlated ordinal outcomes. Detailed analyses are provided in Chapter 7. 

1.4 Analysis of Independent Ordinal Outcomes 

1.4.1 Overview of Statistical Approaches 

Analytic methods for clustered ordinal outcomes are largely extensions of analytic 

methods for independent ordinal outcomes. Methods for analysis of independent ordinal 

outcome data may be classified into three approaches: non-parametric, simple linear 

regression and ordinal logistic regression. Moreover, attention is restricted to methods 

comparing two independent samples. Additionally, a distinct classification is provided by 

Agresti and Coull (2002) where they distinguish methods for clustered ordinal outcomes 

by inequality constraints. However, they noted that inequality-constrained methods are 

not prominent in the literature and software used for data analysis. 

Non-parametric methods may be preferred for testing the effect of intervention when the 

assumption of normality is questionable. Corresponding two sample approaches include 

the sign test, the Mann-Whitney-U test, and the Wilcoxon rank sum test. Note that the 

Wilcoxon rank sum test is equivalent to the Mann-Whitney-U test. 
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Another common strategy for ordinal data analysis is the assignment of scores to 

categories and then simply treating the scores as continuous and fitting these using linear 

models which assume outcomes are normally distributed. This approach has the virtue of 

familiarity, yielding easily interpretable, albeit potentially misleading, coefficients; 

however, limitations may arise from ignoring either the discrete nature or the potentially 

skewed distribution of ordinal data, thus violating the normality assumption. When 

models for continuous data are directly applied to ordinal data, a further problem is that 

the ceiling and floor effects of the dependent variable can result in biased estimates of the 

regression coefficients (McKelvey, 1975; Hedeker and Gibbons, 1994). The robustness 

and power of this strategy were investigated through computer simulation by Sullivan 

and D’Agostino (2003). Interestingly, the type I error rates obtained for tests of the effect 

of intervention were at the nominal level when two sample t-tests were used and when an 

analysis of covariance (ANCOVA) model with a common slope was fit.  

The ordinal nature of the study data may be more appropriately accounted for using 

generalized linear models (GLM). A popular model for ordinal outcome data is the 

proportional odds model using cumulative logits (McCullagh, 1980; Hosmer and 

Lemeshow, 2000, pp. 297), which assumes identical proportionality for each logit 

(Agresti, 2001). This model is also called the cumulative logit model. In contrast, non-

proportional odds ratio extensions of this model permit a separate effect for each logit 

(Peterson & Harrell, 1990; Agresti, 2001). In addition to the logit link, other link 

functions possible for ordinal data include the probit link and the complementary log-log 

link (McCullagh, 1980). These are not discussed further as they are not commonly 

applied to analyses of epidemiologic data. 

When the cumulative logit models fit poorly, one may alternatively fit adjacent-category 

logits or continuation-ratio logits for ordinal data. Note that the adjacent-category logit 

model is a special case of the baseline-category logit model which is commonly used for 

nominal outcome data as a polytomous logistic regression. Liu and Agresti (2005) 

reviwed recent developments of analysis for ordinal outcomes and reported that the most 

popular model for ordinal responses uses logits of cumulative probabilities. 
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Statistical inferences may be conducted using Wald, score or likelihood-ratio methods. 

The Wald test uses information from the curvature of the log-likelihood function and the 

distance between the parameter estimate and the null parameter value. The score test is 

based on the slope and curvature of the log-likelihood function only at the null parameter 

value. It does not require the computation of a parameter estimate. The likelihood-ratio 

test combines the information about the log-likelihood function at both the null value and 

estimated value of the parameter. Hauck and Donner (1977) showed the Wald tests for 

coefficients from a logistic regression model may behave in an aberrant manner in that 

power can decrease even as the estimated regression coefficient gets larger. This behavior 

of Wald tests is particularly likely when the sample size is small. They recommended that 

the likelihood ratio test be used instead.  

These model-based tests are often equivalent, at least in special cases, to well known non-

parametric test statistics. For instance, the score test from a proportional odds model for a 

two-group comparison is identical to the Wilcoxon rank sum test (McCullagh, 1980). 

However, some adjustment for these tests will be needed when applied to clustered 

ordinal data.   

1.4.2 Scoring Ordinal Outcomes 

The statistical methods which have been reviewed may be distinguished by the method 

used to account for the inherent order of the categories or equivalently by the choice of 

inequality constraint (Agrest and Coull, 2002). This is accomplished for non-parametric 

and parametric methods by imposing a scoring scheme to the qualitative ordered 

categories while ordinal logistic regression accounts for ordinality by imposing 

constraints on the odds ratios. 

Some authors have argued for application of non-parametric methods based on the false 

assumption that it is then not necessary to impose an arbitrary choice of score (Graubard 

and Korn, 1987). This overstates the situation as non-parametric methods score 

qualitative ordered categories using mid-ranks – a function of the data.  
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Methods of assigning scores have been described by Armitage (1955) and by Graubard 

and Korn (1987): 

1. Scores may be linearly related to a quantitative measurement when the ordinal 

outcome is obtained by degrading a variable which is more finely measured, e.g. 

using midpoints of categories formed by grouping scores from a health 

measurement scale into quartiles.     

2. When no natural category scores are available equally spaced scores are often 

selected to detect linear components of the intervention effect although rank scores 

may then also be used. 

3. Sensitivity analysis is recommended to explore the effect of scores on study 

conclusions. 

Furthermore, Kimeldorf et al. (1992) reviewed the statistical tests to compare ordinal 

outcomes from two samples and the scores adapted for each test. They further proposed 

an approach to obtain the minimum and maximum values of these test statistics over all 

possible assignments of scores. Thus if the range of the minimum and maximum values 

includes the critical value of the tests statistic, they suggested that one must be aware to 

justify the choice of scores used in the analysis.  

In this thesis, I will consider the effect of score choice on validity and power of 

extensions of the Cochran-Armitage test which adjusts for clustering. Additionally I will 

compare the Cochran-Armitage test statistic to the Wilcoxon rank sum test exploring 

relationships between these methods. 

1.5 Analysis of Clustered Ordinal Outcomes 

1.5.1 Overview of Statistical Approaches 

The degree of similarity among responses within a cluster is typically measured by the 

intracluster correlation coefficient (ICC). Denoted by the Greek letter ρ , it may be 

interpreted as the proportion of overall variation in responses that can be accounted for by 

between-cluster variation. A more comprehensive measure of the effect of clustering is 
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given by the design effect DE = 1+(m-1)ρ. This parameter measures the amount by which 

one must increase a standard variance estimate to allow for clustering, and therefore also 

is often referred to as the variance inflation factor. One can use design effects to adjust 

standard statistical approaches for clustered data at both the design and analysis stage 

(e.g., Donner and Donald, 1988). One advantage of this relatively simple approach is that 

it avoids intensive computation. Additionally, Scott and Holt (1982) derived a design 

effect for the variance of estimated regression coefficients from a linear regression 

model, while Neuhaus and Segal (1993) extended this result to logistic regression.  

The unit of analysis for clustered data may be at either the cluster level or the individual 

level. Schools were randomly assigned to the intervention groups as part of the Child and 

Adolescent Trial for Cardiovascular Health (CATCH, Zucker at al, 1995). One of the 

secondary objectives of this trial was to evaluate the effect of training food service 

personnel on the dietary quality of food services (e.g., to decrease fat content). This 

outcome variable was collected from school lunch menus and thus the analysis was 

necessarily conducted at the school level. On the other hand, health outcomes analyses 

were conducted at the individual level. Advantages of cluster-level analyses include the 

possible construction of exact statistical inferences and valid tests of significance when 

there are small numbers of clusters; whereas individual-level analysis allows direct 

examination of cluster-level and individual-level predictors and provides more efficient 

estimates of the effect of intervention when cluster sizes are variable, assuming 

adjustment for effects of clustering (Donner and Klar, 2000; p80). A unique challenge for 

ordinal outcomes, however, is the specification of an appropriate cluster-level summary 

statistic. Because of this challenge we limit attention to individual level analyses. 

Some standard non-parametric methods have been extended to the case of clustered 

ordinal outcome data. Rosner et al. (2003 and 2006), Rosner and Grove (1999) and 

Brunner and Langer (2000) extended the Wilcoxon rank sum test and the Wilcoxon 

signed rank test to clustered data. Furthermore Jung and Kang (2001) derived a test 

statistic unifying the Wilcoxon rank sum test and the Cochran-Armitage trend test for 

clustered ordinal data. 
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Modeling approaches have also been extended to correlated ordinal data. As in the case 

of independent ordinal data, an approach for analyzing clustered ordinal data is to treat 

ordinal responses as continuous and then apply more familiar approaches to the clustered 

continuous responses. However, Hedeker and Gibbons (1994) claimed that this strategy 

could bias estimated regression coefficients due to the floor and ceiling effects of 

outcomes. Moreover, Fielding et al. (2003) compared parameter estimates obtained using 

multilevel linear models and multilevel ordinal models by analyzing data on educational 

examination grades. They reported that the magnitude and precision of fixed effect 

estimates were quite similar between the two models. However, random effect estimates 

with continuous outcomes are somewhat sensitive to the choice of score and their 

precision differs from that of ordinal models. These differences need to be further 

examined using simulation. 

Extensions of generalized linear models for analysis of correlated data may be classified 

as population-average models (e.g., marginal model), cluster-specific models (e.g., 

generalized linear mixed models) or transition models. Discussions of these models for 

binary data include Diggle et al. (1994), Pendergast et al. (1996), and Heagerty and Zeger 

(2000). In addition, Agresti and Natarajan (2001) provided a comprehensive review of 

marginal and cluster-specific models for ordinal outcome data. 

Generally, transition models focus on the dependence of a response on previously 

observed responses and treat them as explanatory variables of the current response. So 

they are always used for repeated measurement analysis. Thus transition modeling 

methods will not be considered in this study.  

On the other hand, cluster-specific models focus on cluster-level effects while marginal 

models emphasize the average effect at the population level. Therefore, marginal models 

are more relevant in analyses of data arising from cluster randomization trials than 

cluster-specific models. Particularly, our interest is on the intervention effect on average 

population level. Hence, more attention is given to marginal models than cluster-specific 

models in this study. 



12 

 

 

 

In addition, there has been considerable attention given to their limitations. Agresti and 

Natarajan (2001), for instance, noted maximum likelihood fitting methods require 

intensive computation. Other marginal modeling strategies, for instance, Dirichlet-

multinomial modeling method, could reduce the required intensive computation because 

the number of parameters does not vary with cluster size. As an alterative, the generalized 

estimating equation (GEE) approach requires specification of only the first two moments 

but the associated robust variance estimator is biased downward when there are few 

clusters (e.g., Murray et al., 2004). For cluster-specific models, maximum likelihood 

become challenging when there are more than five random effects. In particular, the use 

of Gauss-Hermite quadrature approach for approximating the likelihood function will be 

limited (Hedeker, 2003). However, admittedly the challenge to fitting mixed effects 

models noted by Hedeker (2003) is of limited concern for most cluster randomization 

trials as then concern typically focuses on only a single between-cluster source of random 

variation. 

1.5.2 Estimation of the Intracluster Correlation Coefficient (ICC) 

1.5.2.1 Estimation for Clustered Continuous and Binary Data 

Various estimators of the ICC have been reviewed in the literature (Donner, 1986; Ridout 

et al., 1999). There are at least three frequently used estimators of the ICC for clustered 

continuous and binary data. These include the one-way analysis of variance (ANOVA) 

estimator, the method of moments estimator and the fully parametric approach estimator. 

Klar (1993, p57-61) gave detailed discussions on these three methods for clustered binary 

outcomes.  

1.5.2.2 Estimation for Clustered Ordinal Data 

Approaches for estimating the ICC for continuous and binary data could be extended to 

clustered ordinal data. For example, the ANOVA methods could be used for clustered 

ordinal data by assigning scores to ordered categories. Moment-based methods, such as 

estimator obtained from marginal proportional odds logistic models using the GEE 

approach (Liptisz et al., 1994) have also been proposed. Additionally, one could estimate 



13 

 

 

 

the ICC for clustered ordinal data by assuming that the study outcome follows a 

Dirichlet-multinomial distribution (Lui et al., 1999).  

1.5.3 Non-parametric Approaches 

Non-parametric methods occupy an important role given that they perform well without 

the need to make distributional assumptions. Simple adjustments to standard methods 

also allow them to be applied to clustered ordinal data. For example, Rosner and Grove 

(1999) generalized the Wilcoxon rank sum test to account for clustering by introducing 

four separate correlation parameters into the variance formula; Brunner and Langer 

(2000) extended the same test by formulating nonparametric hypotheses by means of the 

marginal distribution of treatment effects. Rosner et al. (2003 and 2006) generalized 

variance formulae for the Wilcoxon rank sum test and the Wilcoxon signed rank test that 

account for clustering effects.  

1.5.4 Marginal Models  

1.5.4.1 Maximum likelihood (ML) fitting 

The likelihood function for a marginal logit model may be constructed as the multinomial 

joint probabilities while the marginal model refers to marginal probabilities. Thus it may 

involve complicated computation to fit marginal models using ML directly. One approach 

treats the model as a set of constraints on the cell probabilities and then maximizes the 

likelihood subject to these constraints (Lang and Agresti, 1994).  This method is also 

referred as Lagrange’s method (Aitchison and Silvey, 1988; Haber, 1985; Haber and 

Brown, 1986). As such the marginal model could be equivalently expressed as the 

constraint model, and Haber (1985) used a Newton-Raphson algorithm to maximize the 

corresponding Lagrangian likelihood equation. Additionally, Glonek and McCullagh 

(1995) and Glonek (1996) presented a one-to-one correspondence between joint 

probabilities and a loglinear model that is composed of marginal probabilities and higher-

order loglinear parameters. The likelihood is then maximized in terms of the two sets of 

models. One is the model specified for the marginal probabilities and the other is the one 

specified for the high-order parameters. Agresti and Natarajan (2001) provide a detailed 

review of maximum likelihood approaches under marginal models.  
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In addition, the Dirichlet-multinomial distribution has been used to model clustered 

ordinal outcome data.  For example, Chen and Li (1994) proposed a quasi-likelihood 

approach to model the association between two proportions under Dirichlet-multinomial 

distributions, and Lui et al. (1999) described interval estimators for the ICC and odds 

ratio for this model. 

1.5.4.2 Generalized Estimation Equation (GEE) Approach  

Lipsitz et al. (1994a) extended GEE methodology (Liang and Zeger, 1986) to marginal 

modeling with an ordinal response. Using a multivariate generalization of quasi-

likelihood, the GEE regression estimators are consistent and the covariance estimators 

which use the sandwich form (e.g. sandwich estimator) are robust even with 

misspecification of the assumed covariance structure (Liang and Zeger, 1986). Statistical 

inferences may be accomplished using Wald or score test statistics. An alterative to the 

sandwich estimator is a model-based variance estimator, which is based on the assumed 

covariance structure. The sandwich estimator uses empirical evidence from the data to 

adjust the model-based variance in case the assumed covariance structure differs from the 

true one.  

In spite of the wide use of GEE, small-sample performances of sandwich (robust) 

variance estimators for binary data have been investigated (e.g., Kauermann and Carroll, 

2001; Feng and Braun, 2002). In particular, simulation studies show that the sandwich 

variance estimator tends to underestimate the true variance when the number of clusters 

is less than 50 (e.g., Mancl and DeRouen, 2001). Consequently, the type I error for the 

Wald chi-square test using the sandwich estimator is inflated and the resulting confidence 

interval tends to be too narrow. In contrast to the liberal behaviors of robust Wald tests, 

Guo et al. (2005) reported that in this case the robust score test using the sandwich 

estimators has smaller test sizes than the nominal level. 

1.5.4.3 Sandwich Estimator Corrections for Clustered Binary Data 

A variety of small-sample adjustments and modifications for the sandwich variance 

estimator have been proposed and compared. Mancl and DeRouen (2001) applied the 

Student’s t- or F-distribution instead of the normal or chi-square distribution for 



15 

 

 

 

significance testing. Lipsitz et al. (1994b) recommended using the one step GEE 

estimators instead of the fully iterated estimators when the binary responses are highly 

correlated. Additionally, resampling methods, such as the jackknife and bootstrap, have 

also been considered (Lipsitz et al. 1994; Sherman and le Cessie, 1997; Feng et al. 1996). 

In the sandwich estimator, the unknown covariance matrix is estimated by residuals. 

When the number of clusters is small, the residuals tend to be negatively biased leading 

to underestimation of the covariance matrix. Mancl and DeRouen (2001) proposed a bias-

corrected sandwich estimator by modifying the residual. 

In addition, when the number of clusters is small, standard normal critical values are no 

larger appropriate. Kauermann and Carroll (2001) used a function of the variance of the 

sandwich estimator to adjust the normal distribution quantiles. Pan and Wall (2002) 

proposed a more general approach, adjusting the approximate t- or F-test by the 

variability of the sandwich estimator.  

1.5.5 Cluster-specific Models 

Cluster-specific models represent an extension of the generalized linear model that 

permits random effects as well as fixed effects (Agresti, 2002). The inclusion of random 

effects allows specification of the correlation between observations within a cluster.  

The likelihood is a function of the marginal distribution obtained after integrating out the 

unobservable random effects. This integral rarely has a closed form and therefore it is 

necessary to approximate the likelihood function. Hedeker and Gibbons (1994) derived 

the Gauss-Hermite quadrature approximating the integral by a weighted sum at certain 

points. In order to increase its efficiency, Liu and Pierce (1994) proposed an adaptive 

version of Gauss-Hermite quadrature. As an alternative, the quasi-likelihood method, one 

of the Laplace approximation methods, avoids the integration problem and is feasible for 

large data sets (Breslow and Clayton, 1993). However, it performs poorly when the 

variance components are large (McCulloch, 1997). Other approaches for approximating 

the integration over the random effects include Gibbs sampling (Zeger and Karim, 1991), 

a combination of   Monte Carlo with Newton-Raphson (McCulloch, 1997) or EM 
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algorithm (Booth and Hobert, 1999), and simulating the likelihood function directly by 

MCMC (McCulloch, 1997).  

Instead of assuming a parametric distribution for the random effects, Aitkin (1999) and 

Santos and Berridge (2000) proposed a non-parametric mixing distribution to specify the 

distribution of random effects, as approximated by some mass points. Hartzel et al. 

(2001) combined this with the EM algorithm. Morel and Nagaraj (1993) further proposed 

a finite mixture distribution to model clustered categorical data.  

1.6 Testing Assumptions of Ordinal Outcome Data 

Armitage (1955) and Cochran (1954) derived two chi-square test statistics: one assesses 

the deviations from linearity of the outcome data, and the other tests the trend among 

binomial proportions of ordered groups. The statistic for testing the deviation from 

linearity could be obtained from the difference between the Pearson test statistic for 

association .and the trend test statistic. An analogous examination of ordinality was 

considered by Imrey et al. (1981) and Brant (1990) in the context of assessing 

assumptions of proportionality for ordinal logistic regression models.  

For clustered data, Donner and Donald (1988) derived an adjusted Pearson chi-square test 

and an adjusted chi-square trend test. Consequently, both the Pearson and trend test 

statistics have been extended for clustered data. However, whether the statistic testing 

ordinality of clustered ordinal data could be simply obtained from the difference between 

those two statistics is a future topic. An analogous examination of ordinality is extending 

assumption assessment in ordinal regression model for independent data to clustered data.  

For example, Stiger et al. (1999) considered both a score test and a Wald test for 

assessing the assumption of proportional odds in the proportional odds model fitted with 

GEE. 

1.7 Scope of the Thesis 

Cluster randomization trials are often distinguished by the size of the unit randomized. 

Trials randomizing small units (e.g. families) typically enroll large numbers of such 

clusters. Conversely economic and practical constraints typically limit the number of 
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clusters recruited to community intervention trials. In this thesis I limit attention to 

community intervention trials since these tend to have greater statistical challenges. For 

example, the validity of statistical inferences is often problematic when there are few 

large clusters.  

The number of ordinal categories used in most practical applications ranges from three to 

five (Brenner and Kliebsch, 1996).  In this thesis we restrict our attention to ordinal data 

with three categories. Extension of all methods to more categories is straightforward.   

There are three designs that are most frequently used in cluster randomization trials: 

completely randomized, matched-pair and stratified. The completely randomized design 

is suited to trials that have a fairly large number of clusters; whereas matching or 

stratification is more desirable in studies with few clusters. Furthermore regression 

models described in this proposal may be directly extended to the stratified design. The 

challenge of extending the methods discussed here to pair-matched designs poses 

problems that are an area for future research and will not be discussed further here. The 

discussion will also be focused on models where there is a single binary, cluster-level 

covariate, i.e., trials where there is one experimental and one control group. 

Among the methods reviewed above, the primary emphasis of my research is on non-

parametric methods, marginal modeling, and cluster-specific modeling as applied to 

clustered ordinal data.  For model-based methods, we limit attention to cumulative logit 

links.  

1.8 Objectives 

Only limited research has been carried out exploring the unique challenges of analyzing 

ordinal outcome data arising from cluster randomization trials. The principle challenge is 

that methods need to account for dependencies in outcome among cluster members. 

Although methods for analyzing clustered ordinal data were brought to wide attention in 

the last two decades, such methods are not as developed as methods for analyzing 

clustered continuous or binary outcome data. In this research, I will highlight refinements 
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of existing strategies which may be applicable to clustered ordinal data as well as 

extensions which have been previously considered only for clustered binary responses.  

Analytically, I will formulate a Cochran-Armitage test statistic for clustered ordinal 

outcomes data estimating an intracluster correlation coefficient for correlated ordinal 

data. This approach does not require complex computation or software proposed by other 

methods. In addition, I will develop some correction and modification strategies to 

improve the small-sample performance of the Wald test and score test in GEE for 

clustered ordinal data. 

 In addition to this analytic work, I will conduct simulation studies comparing the 

performance of model-based methods on bias and standard errors of estimators as well as 

type I error and statistical power. Furthermore, I will evaluate the small-sample 

performance of the score and Wald tests applied in GEE for clustered ordinal outcome 

data. To improve their performance, I will extend small-sample adjustments proposed for 

the sandwich variance estimators to clustered ordinal outcome data and present a 

comparison of their properties. 

Finally I will use data from the Television, School, and Family Smoking Prevention and 

Cessation Project (TVSFP) to illustrate results. From the literature review, data from the 

TVSFP have been widely used as examples in studies involving clustered ordinal 

outcome data. Hedeker et al. (1994), for instance, analyzed data from the TVSFP by 

using a linear random effects model; and Hedeker and Gibbons (1994), Sashegyi et al. 

(2000), and Raman and Hedeker (2005) analyzed it by using ordinal random effects 

models. In addition, Yang (2001, pp. 107-125) and Fitzmaurice et al. (2004, pp. 5) used it 

to illustrate methods in their books. 
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  Chapter 2

 Estimating Intracluster Correlation Coefficient 2

2.1 Introduction 

One of the defining features of a cluster randomization trial is the similarity among 

responses within a cluster, which is measured by the intracluster correlation coefficient ρ. 

To discuss methods of analysis for clustered data, the natural starting point is the 

estimation of the intracluster correlation coefficient (ICC).  

Various estimations of the ICC for clustered continuous and binary outcome data have 

been proposed, as reviewed by Donner (1986) and Ridout et al. (1999). One could extend 

methods for estimating the ICC for clustered continuous and binary outcomes to ordinal 

outcomes. For example, Lipsitz et al. (1994) extended Liang and Zeger’s (1986) GEE 

approach to the proportional odds model for ordinal outcome data and proposed a 

moment ICC estimator. Moreover, Lui et al. (1999) generalized numerous early works 

(Tamura and Young, 1987; Elston, 1977; Yamamoto and Tanagimoto, 1992) and derived 

stabilized moment estimator, the “unbiased” moment ICC estimator, and the ANOVA 

estimator under a Dirichlet-multinomial model.  

A simulation study conducted by Ridout et al. (1999) examined 20 different ICC 

estimators for clustered binary outcomes and identified the ANOVA ICC estimator as 

one of the three most accurate estimators with respect to both the bias and the mean 

square error. Moreover, Yamamoto and Yanagimoto (1992) compared the ANOVA ICC 

estimator for binary data with the MLE estimator, the moment estimator, the ‘unbiased’ 

estimator, and the stabilized estimator under a beta-binomial model. They reported that 

the ANOVA estimator is generally preferable to the MLE and other moment estimators 

in terms of the bias and mean squared error. Additionally, Donner and Donald (1988) 

compare the ANOVA estimator with the moment estimator for their uses in their adjusted 

Pearson chi-square test for clustered binary data. Simulation results show that the former 

tends to be consistently more accurate than the latter with respect to mean squared error.  
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In addition to binary outcome data, the ANOVA estimator is frequently used for clustered 

ordinal outcome data by assigning scores to ordered categories. For instance, Lui et al. 

(1999) and Lui (2002) derived interval estimators of the ICC and the odds ratio for 

clustered ordinal outcomes by using the ANOVA ICC estimator under Dirichlet-

multinomial distribution. The virtues of using the ANOVA estimator also include that it 

does not require any specialized software and sophisticated numerical procedure as other 

model-based approaches do (e.g., the GEE procedure). Thus, these findings and 

favourable properties lead us to consider using the ANOVA estimator to measure the ICC 

for clustered ordinal outcome data in our research.  

In addition, the estimation of the ICC for clustered outcomes could arise from the 

literature on the close relationship between measures of intracluster correlation and 

interobserver agreement. Fleiss and Cuzick (1979) developed a kappa-type ICC estimator 

for correlated binary outcome data using direct probability calculation. Ridout et al. 

(1999) reported that the kappa-type ICC estimator by Fleiss and Cuzick (1979) and the 

ANOVA estimator are two of the three most accurate ICC estimators in terms of bias and 

mean square errors. Moreover, Mak (1988) proposed another kappa-type ICC estimator 

and noted that his kappa-type ICC estimator may yield higher efficiency than the 

ANOVA estimator when ρ is not close to zero. In this chapter we will propose a kappa-

type ICC estimator for clustered ordinal outcome data.  

The remainder of the chapter is organized as follows. Section 2.2 gives notations used in 

this thesis. Section 2.3 gives a detailed description of the ANOVA ICC estimator and 

then briefly introduces other ICC estimators for clustered ordinal data. In section 2.4 we 

propose a kappa-type ICC estimator and explore its properties and relationships with the 

ANOVA estimator. In section 2.5 we summary the ICC estimators presented here in a 

table. 

2.2 Notations 

To establish notations, consider a cluster randomization trial in which ni clusters are 

randomly assigned to each of the treatment group and control group (i = 1 or 2). We 

suppose there are ijm  observations in the ijth cluster ( j = 1,2, …, in ). Outcomes for each 
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observation may be classified into one of K  ordinal categories. Let Yijlk 
= 1 if the lth 

observation in the jth cluster from the ith group falling into the kth category and 0 

otherwise, l =1,2, …, ijm , k =1,2, …, K .  

We also use the following notations throughout this thesis: 
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2.3 Methods of Estimation 

Techniques of the ICC estimation for ordinal outcome data have been less well developed 

since estimations of the ICC for clustered ordinal data are not as straightforward as those 

for clustered continuous and binary outcome data. One of the challenges is to define a 

method of describing the ordinality.   

One of the commonly used methods for dealing with ordinality is to assign scores to 

ordinal categories. For instance, the moment-based estimators Lui et al. (1999) proposed 

need scores corresponding to ordinal categories. The ANOVA approach may be directly 

applied to estimate the ICC for clustered ordinal data by imposing scores to ordered 

categories. Stiger et al. (1998) gave a detailed discussion on the assignment of integers 

when using ANOVA method to analyze ordinal data. Also, methods of scoring ordinal 

outcomes have been briefly introduced in section 1.4.2. In addition, one may assign 

weights to define the difference between ordinal distance. Cohen (1968) derived a 

weighted kappa statistic for ordinal data by using weights to describe the degree of 

disagreements among categories. Another method is to impose restrictions on odds ratios 

or probabilities to imply the ordinality. For example, one may derive the ICC estimators 

under ordinal regression models, e.g., the moment-based ICC estimator obtained from 

proportional odds models using GEE procedures.  

The ICC estimators may be obtained by combining the above methods. For example, one 

has to assign both scores and weights to ordinal categories in order to obtain the weighted 

kappa statistic; to obtain the estimators from ordinal logistic regression models, it may be 

necessary to restrict odds ratios or probabilities and assign scores to categories. 

Additionally, there are close relationships among the three methods of imposing 

ordinality. For instance, Fleiss and Cohen (1973) established the equivalence of Cohen’s 

weighted kappa with the quadratic weight and the two-way ANOVA ICC estimator.   

In section 2.3.1, we introduce the ANOVA ICC estimation for clustered ordinal 

outcomes; in section 2.3.2, we briefly describe other estimation methods that have been 

used. 
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2.3.1 ANOVA method 

Let ijlY  denotes the ordinal score assigned to the ijlth observation. Consider a nested 

analysis of variance model given by ijlijiijlY εγαµ +++= . Random cluster effects, 

denoted by ijγ , are assumed to be normally distributed with mean 0 and variance 2

cσ , i.e. 

ijγ ~ ),0( 2

cN σ . We similarly assume the error terms ijlε ~ ),0( 2

eN σ . The ICC, ρ , may be 

interpreted as “the proportion of overall variation in response that can be accounted for 

by the between-cluster variation” (Donner and Klar, 2000, pp.8), i.e.,   

22

2

ec

c

σσ

σ
ρ

+
=  . 

The corresponding ANOVA table, which may be used to test the significance of the 

treatment effect, is shown in Table 2.1. 

Table 2.1: Analysis of variance corresponding to a completely randomized design in 

which clusters are assigned to each of two intervention groups 

 Degrees of freedom Sum of squares (SS) Mean square (MS) 

Group 1 SSG MSG 

Clusters ∑
=

−
2

1

)1(
i

in  SSC MSC 

Errors ∑
=

−
2

1i

inM  SSE MSE 

Total 1−M  SST  

 

Here MSC and MSE are the between-cluster and within-cluster mean squares 

respectively, given by 
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Then the estimated ANOVA estimator 
Aρ  could be written as 

MSEmMSC

MSEMSC
A

)1(
ˆ

0 −+

−
=ρ                        (2.1) 

where 
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2.3.2 Other methods 

In addition to the ANOVA approach, the ICCs for cluster ordinal outcome data are often 

estimated by using model-based approaches. For instance, Lipsitz et al. (1994) proposed 

a moment-based approach to estimate ρ using generalized estimating equations (GEE) in 

proportional odds models. Let ijlA  be a diagonal matrix with the binary variances on the 

main diagonal, i.e.,   

)}]ˆ1(ˆ),....ˆ1(ˆ[{ˆ
,1,,1,11 lKijlKijlijlijijl PPPPDiagA −− −−=  

and the residual matrix 

]ˆ[ˆˆ 2

1

ijlijlijlijl PYAe −=
−

. 

Here 1ˆ =ijklP  if kYijl =  and 0 otherwise, and ]'ˆ,...,ˆ,ˆ[ˆ
)1(21 lKijlijlijijl PPPP −= . Under a simple 

case of an exchangeable correlation structure, Lipsitz et al. (1994) derived  
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where ijlê  is estimated by substituting in ijlÂ  and ijlP̂  from a previous step of the Fisher 

scoring algorithm. We will further introduce the GEE approach in Chapter 4.            

The ICC estimators may also be obtained by assuming a Dirichlet-multinomial model, 

e.g., a moment-based ICC estimator 
Mρ̂  by Lui et al. (1999). Consider n clusters are 

drawn from one single population and there are jm  observations in the jth cluster. Let the 

moment proportion estimator be 

∑

∑∑
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= =
=

n

j

j

n

j

m

l

kjl

k

m

SY

P

j

1

1 1

),(1

ˆ  

where 1),(1 =kjl SY  if kjl SY = , and 0),(1 =kjl SY , otherwise. Then the stabilized moment 

ICC estimator is given by 

 

where ϕ  is a shrinkage constant.  

In addition to moment-based estimators, the ICC could also be estimated by using the 

MLE approach under dirichlet-multinomial models (Narayanan, 1991; Chuang and Cox, 

1985; Paul et al. 2005). However, numerous authors (Tamura and Young, 1986; Tamura 

and Young, 1987; Yamamoto and Yanagimoto, 1992) noted that the MLE estimator 

generally underperforms the ANOVA and moment estimators for clustered binary 

outcome data with respect to the bias.  

Additionally, one could derive the ICC estimator from the full likelihood function in a 

multivariate Plackett model (Molenberghs and Lesaffre, 1994). However, this approach 

requires sophisticated numerical procedures and it is difficult to implement in practice.                   
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2.4 The ICC and the Measurement of Agreement 

2.4.1 Introduction 

The kappa statistic was developed to estimate interrater agreement for categorical 

outcomes, where interest focuses on the similarity among ratings obtained on the same 

subject. Scott (1955) proposed a chance-corrected measure of agreement between two 

raters by assuming that the marginal distribution of proportions over categories is equal 

for all raters. This index is often referred as Scott’s π. Furthermore, Cohen (1960) 

extended Scott’s π under the assumption of independent and potentially different 

marginal distribution of proportions for each rater. This statistic has come to be known as 

Cohen’s kappa. In this study, we restrict our interests to Scott’s π and Cohen’s kappa. For 

other agreement measurements one could refer to the review by Banerjee et al. (1999). 

Cohen (1968) generalized his kappa statistic to a weighted kappa by quantifying the 

severity of disagreement among ordinal categories. The most commonly used weights are 

“linear weights” and “quadratic weights” (Fleiss and Cohen, 1973). Furthermore, the 

weighted kappa statistic using quadratic weights is identical to the ICC estimator derived 

from a two-way ANOVA under the assumption that the subjects and the two rates are 

random samples from a universe of subjects and raters, respectively. As such, the 

relationship between kappa statistics and the ICC estimators has been built. 

However, it is not appropriate to apply Cohen’s weighted kappa to estimate the ICC in 

cluster randomization trials because there is rarely a natural order among cluster 

members. For instance, the jth subject from the ith cluster is a different individual in each 

cluster. Thus it is not possible to estimate separate marginal distributions for each rater. 

As an alternative, Scott’s π assumes that the same marginal distribution of proportions for 

each rater. Therefore it is appropriate to use extensions of Scott’s π to estimate the ICC 

for ordinal data in cluster randomization trials. The only exception would be the trials 

where cluster members can be ordered in some fashion so that the jth cluster member is 

the same in each cluster. For example, in the context of family randomization trials one 

could have the first subject is mother, the second one is dad and the third one is the first 

born child etc.  
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Note that both Scott’s π and Cohen’s kappa are derived from one single population, while 

the ICC estimates discussed here are from cluster randomization trials where there is one 

treatment group and one control group. As such one of challenges is to extend kappa 

statistics to two populations.  

In next section, we propose a kappa-type ICC estimator for clustered ordinal data, 

denoted as κρ̂ . In particular, we extend Scott’s π statistic by using Abraira and De 

Vargas’s (1999) approach. Generally there are three improvements in the new kappa-type 

ICC estimator compared with Scott’s π: one is that weights are used to define the distance 

between ordinal categories; the second is that it suits well for variable cluster sizes by 

using pairwise agreement; and the third is that it allows treatment effects. 

2.4.2 Kappa-type ICC Estimator 

Scott’s π was originally derived to measure agreement between two raters for 

multinomial outcomes. Let •kp
 
denotes the proportion of subjects placed in the kth 

category by the first rater, kp•  denotes the proportion of subjects placed in the kth 

category by the second rater, and kp  the proportion of the entire subjects falling in the 

kth category. Then, the kappa statistic proposed by Scott (1955) is defined as  

e

eo

p

pp

−

−
=

1
π .     (2.2) 

Here 

∑
=

=
K

k

kko pp
1

 

denotes the proportion of observed agreement and 

∑
=

•• 






 +
=

K

k

kk
e

pp
p

1

2

2
 

denotes the proportion of chance-expected agreement. 
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To extend Scott’s π (1955) to clustered ordinal outcomes from trials where there is one 

treatment group and one control group, it is necessary to calculate oP
 
and eP

 
for each 

group separately. Let ghw
 

be the weight corresponding to the agreement between 

category g and h ( Khg ,...,2,1, = ), with the conditions: 

10 <≤ ghw for hg = and 1=ghw for hg ≠ . 

For the jth cluster from the ith group, the number of weighted agreements is: 

∑∑∑
= >=

+−=
K

g

ijh

K

gh

ijgghijkijk

K

k

kkij YYwYYwNA
11

)1(
2

1
, 

and the number of possible pairs for the ijth cluster is: 

)1(
2

1
−ijij mm . 

Then the estimated proportion of weighted agreement for the jth cluster in the ith group is 

given by: 

)1(
2

1

)1(
2
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1 1

−

+−∑ ∑∑
= = >
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K

k

K

g

K

gh

ijhijgghijkijkkk

mm

YYwYYw

. 

Consequently the average observed weighted proportion of agreement for the ith group is 

given by 

∑
∑ ∑∑

=

= = >

−

+−

=
in

j
ijij
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K

gh

ijhijgghijkijkkk

i

io
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n
P

1

1 1

)1(
2

1

)1(
2

1

1ˆ        (2.3). 

Similarly the average expected proportion of pairwise agreement for the ith group is 

given by 
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Thus the resulting kappa-type ICC estimator for the ith group is 

ie

ieio
i

p
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−

−
=κρ .          

To combine kappa-type ICC estimates of the two groups, Fleiss (1980, pp. 220-222) 

suggested an overall value  
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where the weight iei Pw ˆ1−= .  

Therefore the kappa-type ICC estimator for clustered ordinal outcomes is calculated with 

equation (2.5), using equation (2.3) and (2.4).  

2.4.3 Connections with the ANOVA ICC Estimator  

Assuming one single population, Fleiss and Cohen (1973) reported the identity between 

the ANOVA ICC estimator and the weighted kappa when there are only two observations 

in each cluster, using the quadratic weight 

2

2

)1(

)(
1

−

−
−=

K

hg
wgh .     (2.6) 

Additionally, Fleiss (1981, pp. 226-pp.227) presented the asymptotical equivalence 

between the ANOVA ICC estimator and the kappa when outcomes have only two 

categories and cluster sizes are varying.  
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In previous sections we already derived the ICC estimator κρ̂  and 
Aρ̂  assuming the trials 

where there is one treatment group and one control group,. Here we explore the 

relationship between these two statistics.  

Substituting ghw
 
into equation (2.3) and (2.4), ioP̂

 
and ieP̂

 
may be rewritten as 
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Thus the kappa-type ICC estimator in Equation (2.5) could be written as 
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In order to compare κρ̂  in (2.7) with 
Aρ̂ in (2.1), we restrict ourselves to a balanced 

cluster randomization trial (i.e., mmij = and nni = ). Thus ioP̂
 
and ieP̂

 
reduce to 
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respectively. Therefore the kappa-type ICC estimator in equation (2.7) reduces to 

n

MSEm
MSC

MSEMSC

/11
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−
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−
=κρ .        (2.8) 

The ANOVA ICC estimator in equation (2.1) reduces to 

MSEmMSC

MSEMSC
A

)1(
ˆ

−+

−
=ρ .       (2.9) 

Thus the two estimators are asymptotically equivalent as the number of clusters becomes 

large in a balanced trial. This result parallels Fleiss (1981, pp.226-227) and Fleiss and 

Cohen (1973)’s conclusions.  

2.4.4 Properties 

2.4.4.1 Reduction to Scott’s π  

Scott’s π was originally derived to measure agreement between two raters and assumes 

that all disagreements among two different categories are equal. To reduce κρ  to Scott’s 

π we have to extend the original Scott’s π to allow the treatment effect first. We also need 

to limit our attention to the trials where there are two observations in a cluster (i.e., 

2=ijm ) and the outcomes have two categories ( 2=K ) only. Thus the weight ghw  in κρ̂  

is equal to 1 when hg =  and 0 otherwise. 

For the ith group, the proportion of observed agreement in Scott’s π is: 

∑
=
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j
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i
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P
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21 )(
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1ˆ  

and the proportion of chance-expected agreement is: 
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Note that 1ijY  and 2ijY  here denotes the number of observations from the ijth cluster 

falling into the kth category, rather than the score assigned to the ijth observation.  

Then Scott’s π̂ which allows the treatment effect is given by 
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The kappa-type ICC estimator κρ̂  in equation (2.5) reduces to  
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Thus κρ̂  is asymptotically equal to overallπ
 
as the cluster number in

 
becomes large.  

When the number of clusters in each group is equal, i.e., nni = , the relationship between 

Scott’s π  and the kappa-type estimator could be shown more clearly as: 
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On the other hand, since Scott’s π was originally derived from one single population, it 

may be of interest to derive the relationship of the two statistics by assuming one single 

population only (i.e., 1=i  and nni = ). Thus Scott’s π̂ is given by 
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Let κρ 'ˆ
 denotes the kappa-type ICC estimator from one single population, given by  
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The relationship between π  and κρ '  parallels that from one single population. 

In summary, we discussed the relationship between Scott’s π and the kappa-type ICC 

estimator in this section. We first extended the original Scott’s π to allow treatment 

effects. In order to simplify the formulas and show the relationship more clearly, we 

further assume equal number of clusters in each group. We also derived the relationship 

between the two statistics from one single population. We concluded that two statistics 

are asymptotically equivalent as the number of clusters becomes larger. 

2.4.4.2 Minimum value  

Fleiss (1981, pp. 225) derived a kappa statistic for binary data by applying the identity 

between intracluster correlation coefficients and kappa statistics. He further showed that 

his kappa statistic reaches the minimum value  
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when there is no variation across clusters in the proportion of positive ratings. Here 

N

M
m = . Similarly, we derive the minimum value of κρ̂  in this section.  

When there is no variation among clusters in the proportions, under the alternative 

hypothesis that there is treatment effect, we have 
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ψ . Then κρ̂  in 

equation (2.5) reaches its minimum value: 
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To simplify the formula, we further assume there are equal number of clusters in each 

group and equal number of observations in each cluster. Thus the minimum value of κρ̂  

in equation (2.16) reduces to 

1

/11
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κρ .     (2.17) 

Note that (min)
ˆ

κρ
 
may be negative while the probability of obtaining a negative value 

becomes small as cluster sizes are large. Since negative ICC values are usually 

considered implausible in most application areas, it is common to set negative values to 

zero. 

The minimum value in (2.16) or (2.17) is derived under the alternative hypothesis that 

there is treatment effect. However, under the null hypothesis of no treatment effect, i.e.,  
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k = , the minimum value of κρ̂  is given by  
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When there are equal number of clusters in each group ( nni = ) and equal number of 

observation in each cluster ( mmij = ), it reduces to  
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 It is equivalent to (min)
ˆ

κρ  in equation (2.17).  

2.4.4.3 Using midranks as scores 

The calculation of kappa-type ICC estimator κρ̂  requires imposing scores to account for 

the order of the categories. We have briefly discussed methods of scoring in section 1.4.2. 

One of the scoring schemes, the equally spaced score, is frequently applied to obtain the 

ANOVA ICC estimator 
Aρ̂ . As such we can use it in the kappa-type estimator so that κρ̂  

could be related to 
Aρ̂ . In addition, the score using midranks is one of methods that are 

commonly used in statistical procedures such as the Wilcoxon rank sum test. In 

particular, the Wilcoxon rank sum test and the Cochran-Armitage test are equivalent 

when midranks are assigned as scores. Therefore we also calculate κρ̂  by applying 

midranks as scores in this thesis so that different statistical methods may be unified in the 

next chapters. 

Using equally spaced scores, for example, scores K,...2,1 , the score for the kth category is 

kSk = . Thus the quadratic weight in equation (2.5) is given by 
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By substituting it into κρ̂ in equation (2.5), we may obtain the kappa-type ICC estimator 

with scores K,...2,1 . 
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Using midranks as scores, we have to calculate midranks for each group first. Under the 

alternative hypothesis that there are treatment effects, the midranks scoers from the two 

groups are different. Thus the midrank score for the kth category in the ith group is given 

by 
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Consequently, the weight in the ith group is given by 
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In contrast, under the null hypothesis of no treatment effects, the midrank scores for the 

kth category from the two groups are identical, given by 
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Consequently, the quadratic weight is given by 
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By substituting the weight ighw in (2.22) and (2.23) into κρ̂ , we may obtain the kappa-

type ICC estimator with midrank scores under the alternative hypothesis and the null 

hypothesis correspondingly. 

2.5 Summary 

In section 2.3, we introduced methods which have been used to estimate the ICC for 

clustered ordinal data. In particular, we gave a detailed description of the ANOVA 

method.  

In section 2.4, we proposed a kappa-type ICC estimator κρ̂  by extending Scott’s by 

Abraira and Vargas’s approach for clustered ordinal outcome data. Moreover, κρ̂  was 
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shown to be asymptotically equal to the ANOVA ICC estimator 
Aρ̂  as the number of 

clusters becomes large. We further discussed κρ̂ ’s properties, including its reduction to 

Scott’s π, the minimum value, and options of imposed scores.  

To summarize the ICC estimators discussed in this chapter, we list all ICC estimators 

Table 2.2. We will conduct simulation studies to evaluate 
Aρ̂  and κρ̂  and their 

relationships and properties in Chapter 6. 
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Table 2.2: Summary of the ICC estimators discussed in Chapter 2 

Estimator Method  General case 

Special cases Minimum values 

mmij =  

nni =  

 

 

2== mmij  

nni =  

2=k  

Under 
AH  Under 0H  

General 

case 

mmij =  

nni =  

General 

case 

mmij =  

nni =  

Aρ̂  ANOVA ICC estimator  
Equation (2.1) 

and (2.7) 
Equation (2.9)       

κρ̂  

kappa-type ICC 

estimator from two 

populations 

 

 
Equation (2.5) Equation (2.8)  Equation (2.13) 

Equation 

(2.16) 

Equation 

(2.17) 

Equation 

(2.18) 

Equation 

(2.17) 

κρ 'ˆ  

kappa-type ICC 

estimator from one 

single population 

 

 
   Equation (2.15)     

π̂  Scott’s π̂   Equation (2.2)   Equation (2.14)     

overallπ̂  
Scott’s from two 

populations 
 Equation (2.10)   Equation (2.12)     
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  Chapter 3

 Adjusted Cochran-Armitage Tests for Clustered Ordinal 3
Outcomes 

3.1 Introduction 

In the previous chapter, we have presented methods for estimating the ICC for clustered 

ordinal outcome data. In the following chapters we discuss methods for analysis of 

clustered ordinal outcome data. We start with direct adjustment approaches which adapt 

simple corrections to the Cochran-Armitage test statistic for clustering effects.  

The Cochran-Armitage trend test is a well-known approach for comparing binomial 

proportions among ordered groups. For independent ordinal outcome data, the Cochran-

Armitage test statistic may equivalently be used to compare ordinal scores for two 

samples (Yates, 1948; Armitage, 1955). However, for clustered outcome data, the 

Cochran-Armitage trend test for comparing binary data can not be directly used to 

compare ordinal data. 

She et al. (2010) extended the Cochran-Armitage test to genetic data from designs 

involving multistage cluster sampling. For each individual, they assigned the inverse of 

the product of the selection probabilities across all the stages of sampling as the weight.  

Then they adjusted all observed size in the Cochran-Armitage test statistic by the 

weights. However, its application to clustered ordinal outcomes was not discussed. 

To extend the Cochran-Armitage test statistic for correlated ordinal data, Jung and Kang 

(2001) proposed a variance for the difference of scores between two groups that is 

obtained by standardizing the correlated scores. Although this approach takes into 

account the dependencies within clusters, the intraclass correlation coefficient (ICC) does 

not need to be specified.  

Donner and Donald (1988) applied simple correction procedures to the Cochran-

Armitage test to compare correlated binary outcomes on an ordinal cluster-level 

covariate. Their method, which utilizes an ICC for clustered binary data, offers such 
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advantages as simplicity and easy implementation. It does not necessarily require 

complicated computation and specified software. However, unlike the situation for 

independent outcome data, one cannot directly apply this adjusted test statistic to 

analyses of correlated ordinal data since the ICC for correlated binary outcome data is not 

equal to the ICC for correlated ordinal outcome data. Therefore a new ICC for correlated 

ordinal data must be used to obtain an adjusted version of the Cochran-Armitage trend 

test in this case.  

In addition to Donner and Donald’s approach, we extend the Cochran-Armitage trend test 

to clustered data using a weighted least squares approach. The Cochran-Armitage test 

was originally derived from a simple linear probability model by using the ordinary least 

squares approach (OLS) (Cochran, 1954; Armitage, 1955). However, the underlying 

assumptions of the OLS procedure are violated in cluster randomization trials where 

clustering induces a correlation among observations. In this case a more efficient 

estimator obtained by the weighted least square (WLS) approach may be used instead as 

an extension of the OLS procedure although the bias of estimator is unaffected by the 

choice of using OLS or WLS approach. Thus we adjust the Cochran-Armitage test to 

clustered outcome data by extending the OLS approach to a WLS approach.  

In this chapter, we develop three simple adjustments to the regular Cochran-Armitage 

chi-square statistics for clustered binary data and clustered ordinal data respectively. The 

first one is Donner and Donald (1988)’s adjustment which is obtained by modifying the 

observed sample sizes of both the point estimate and its variance estimate in the test 

statistic; the second one is distinct in that it adjusts only the variance estimator in the 

statistic; the third one derives the statistic using a WLS approach. We list all six statistics 

in Table 3.1. The subscript ‘CB’ denotes clustered binary and ‘CO’ denotes clustered 

ordinal. In addition, the subscript ‘(1)’ denotes the first adjustment method described 

above, ‘(2)’ the second adjustment method, and ‘(3)’ the third adjustment method. 

The rest of the chapter is organized as follows. In section 3.2, we describe the Cochran-

Armitage test for independent ordinal outcome data; in section 3.3, we present three 
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adjusted Cochran-Armitage tests for clustered binary outcome data; in section 3.4, we 

develop three adjusted Cochran-Armitage trend tests for clustered ordinal outcome data.  

 

3.2 Cochran-Armitage Test for Independent outcomes 

Suppose there are G ordered groups consisting of subjects having binary outcomes. Let 

iS
 
be a score variable which is associated with the ith group, i=1,2,…,G. Let iA

 
denotes 

the number of successes in the ith group and iM
 

denotes the total number of 

observations in the ith group. Then the proportion of successes in group i is given by 

i

i
i M

A
P =ˆ . 

Table 3.1: Summary of the Cochran-Armitage trend tests in Chapter 3 

Test 

statistic 
Method Approach  Formula 

Outcome 

data 

2χ  
Cochran-Armitage 

test 
Ordinary least squares  Equation (3.1) 

Independent 

data 

2

)1(−CBχ  
Donner and 

Donald’s test 

Adjusting point estimator 

and its variance estimator 

 

 
Equation (3.3) 

Clustered 

binary data 

2

)2(−CBχ  

An Alternative to 

Donner and 

Donald’s Test 

Adjusting the variance 

estimate only 

 

 
Equation (3.5) 

2

WLSCB−χ
Weighted-Least-

Square Cochran-

Armitage Test 

Weighted least squares  Equation (3.7) 

     

2

)1(−COχ  
Donner and 

Donald’s test 

Adjusting point estimator 

and its variance estimator 

 

 
Equation (3.9) 

Clustered 

ordinal data 

2

)2(−COχ  

An Alternative to 

Donner and 

Donald’s Test 

Adjusting the variance 

estimate only 

 

 
Equation (3.11) 

2

WLSCO−χ

 

Weighted-Least-

Square Cochran-

Armitage Test 

Weighted least square  Equation (3.13) 
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Let iS
 
be the score variable associated with the ith group. Then the linear probability 

model Cochran and Armitage used to evaluate the trend in the proportion of success iP̂

with iS   is 

ii SPE βα +=)ˆ(  

where α  and β  are the intercept and slope parameters. Since our objective is to test the 

null hypothesis of no trend, i.e., 0:0 =βH , we omit inferences about α  and only focus 

on β  in this research.    

In the case of independent outcomes, the ordinary least squares estimator of β  is given 

by 

∑

∑

=

=

−

−−

=
G

i

ii

G

i

iii

SSM

SSPPM

1

2

1

)(

))(ˆ(

β̂ . 

Here S  denotes the mean values of S given by  

∑

∑

=

==
G

i

i

G

i

ii

M

SM

S

1

1 , 

and P  denotes the overall proportion of success given by 

∑

∑

=

==
G

i

i

G

i

ii

M

PM

P

1

1

ˆ

. 

Under the null hypothesis 0:0 =βH , the corresponding least squares variance estimator 

of β̂  is 
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�

2

1

(1 )ˆvar( )

( )
G

i i

i

P P

M S S

β

=

−
=

−∑
.         

Thus a one degree of freedom Cochran-Armitage trend test statistic is given by 

�

2
2 2 2

1

ˆ
ˆ ( ) / (1 )

ˆvar( )

G

i i

i

M S S P P
β

χ β
β =

= = − −∑  .          (3.1) 

It may also be derived from a simple linear model regressing a binary outcome on an 

ordinal covariate (Bland, 2000; pp243): 

ii SY βα += . 

Here iY =1 if the ith observation is a “success” and 0 otherwise. Moreover, it is also 

equivalent to the score statistic obtained from logistic regression analyses with a single 

covariate (Cox, 1958). 

Additionally, the Cochran-Armitage test is related to a variety of non-parametric and 

model-based methods. For example, it is equivalent to the Wilcoxon rank sum test when 

the scores are set equal to the midranks. It is also equivalent to the Mantel extension test 

(Mantel, 1963), explaining why it is frequently called the Cochran-Armitage-Mantel 

trend test. We will further discuss relationships between the Cochran-Armitage test and 

other test statistics in Chapter 5. 

3.3 Adjusted Cochran-Armitage test for clustered binary 
outcome data  

3.3.1 Donner and Donald’s Test 

We assume that it is of interest to compare G groups consisting of observed binary 

outcomes. Suppose that in
 
clusters (i=1,2,…, G) are randomized to the ith group. Let ijm

 
denote the size of the ijth (j=1,2,…, in ) cluster and ∑

=

=
ijm

l

ijlij Ya
1

 the number of successes 

in the ijth cluster. Denote the total number of individuals in the ith group by ∑
=

=
in

j

iji mM
1  and the corresponding total number of successes by ∑

=

=
in

j

iji aA
1

. Then iii MAP /ˆ =  

denotes the proportion of successes in the ith group. The resulting data layout is 
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presented in Table 3.2. This table was originally developed by Donner and Banting 

(1989).  

Table 3.2: Data lay-out for adjusted cochran-armitage test for clustered binary 

outcomes 

Group  
Number of 

Clusters 

Number of 

Observations 

 

 

Number of 

Observations with 

Characteristic 

 

 

 

Proportion of 

Observations with 

Characteristic 

1 

 

 

 

 

 

1n  

 

 

∑
=

=
in

j

jmM
1

11  
 

 ∑
=

=
in

j

jaA
1

11  
 

 
111 /ˆ MAP =  

 

    

2  2n  ∑
=

=
2

1

22

n

j

jmM   ∑
=

=
2

1

22

n

j

jaA   2/ˆ
22 MAP =  

. 

. 

. 
 

 

 

 

. 

. 

. 

. 

. 

. 
 

 

 

 

. 

. 

. 
 

 

 

 

. 

. 

. 
 

G   Gn  ∑
=

=
Gn

j

GjG mM
1

  ∑
=

=
Gn

j

GjG aA
1

  
GGG MAP /ˆ =  

Total  N  MM
G

i

i =∑
=1

  ∑
=

=
G

i

i AA
1

  MAP /=  

 

The linear probability model used to test the trend for clustered binary outcome data is 

written as 

iCCi SPE βα +=)ˆ( .   (3.2) 

To adjust the test statistic 
2χ  to clustered binary data, Donner and Donald (1988) 

replaced the observed sample size iM  by )(/ Bii CM . Here )(BiC
 
denotes the design 

effect, also referred to as “variance inflation factor” indicating the variance of the success 

rate in each group increases as a result of clustering, given by  

BAin

j

ij

n

j

Bijij

Bi m

m

mm

C
i

i

ρ

ρ

ˆ)1(1

]ˆ)1(1[

1

1

)( −+=

−+

=

∑

∑

=

=
. 
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Here 
Bρ̂  is an estimator of the ICC for clustered binary data and ∑∑

==

=
ii n

j

ij

n

j

ijAi mmm
11

2
/ .  

Thus the slope parameter estimator of Cβ  is given by 

∑

∑

=

=

−

−

−−

=
G

i

i

Bi

i

G

i

ii

Bi

i

CB

SS
C

M

SSPP
C

M

1

2

)(

1 )(

)1(

)(

))(ˆ(

β̂ . 

Under the null hypothesis 0:0 =CH β , the corresponding variance estimator is  

�
(1)

2

1 ( )

(1 )ˆvar( )

( )
CB G

i
i

i i B

P P

M
S S

C

β −

=

−
=

−∑
. 

Consequently the Cochran-Armitage trend test for clustered binary outcome data is given 

by 

�

2

2
1(1) ( )2

(1)
2

(1)

1 ( )

ˆ[ ( )( ) ]
ˆ

ˆvar( ) (1 ) ( )

G
i

i i

iCB i B

CB G
iCB

i

i i B

M
S S P P

C

M
P P S S

C

β
χ

β

=−

−

−

=

− −

= =

− −

∑

∑
.         (3.3) 

To estimate the unknown ICC parameter 
Bρ̂  for clustered binary data, Donner and 

Donald (1988) considered the use of the ANOVA approach.  Let ∑∑
= =

=
G

i

n

j

ij

i

mM
1 1  

denotes 

the total individuals in the study, ∑
=

=
G

i

inN
1

denotes the total clusters, and 

ijijij maP /ˆ =  

denotes the proportion of successes in the ijth cluster. Then the mean square errors 

between and within clusters in the case of binary outcome data are given, respectively, 

by:  
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GN

PPm

MSC

G

i

n

j

iijij

i

−

−

=

∑∑
= =1 1

2)ˆˆ(

 

and  

NM

PPm

MSC

G

i

n

j

ijijij

i

−

−

=

∑∑
= =1 1

)ˆ1(ˆ

. 

Then the ANOVA ICC estimator for clustered binary outcomes is given by  

MSWmMSC

MSWMSC
B

)1(
ˆ

0 −+

−
=ρ  

where )2/()/(
1 1

2

0 −−= ∑∑
= =

GMmMm i

G

i

n

j

ij

i

.  

In general, the ANOVA estimator and the moment estimators are two simple approaches 

which do not involve sophisticated computation. Thus Donner and Donald (1988) 

compared these two statistics and simulation results showed that the ANOVA estimator 

tended to be more accurate than the moment-based estimator in terms of mean square 

error. Hence the ANOVA ICC estimator 
Bρ̂  was considered by Donner and Donald 

(1988) to use in their adjusted Cochran-Armitage test. 

Note that there is a typographical error in Donner and Donald (1988)’s paper. They 

denoted iM  as the number of clusters randomly assigned to the ith group. Actually, it 

should be correctly referred to the number of observations in the ith group. This 

typographical error was corrected by Donner and Banting (1988). 

When individuals in a cluster are statistically independent of each other, i.e., 0=Bρ , 

Donner and Donald (1988)’s adjusted test statistic 
2

)1(−CBχ  reduces to the regular Cochran-

Armitage test statistic 
2χ . Additionally, when there are only two groups, e.g., G=2, 

2

)1(−CBχ
 
reduces to  
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)1(

)ˆˆ(

)(

2

21

2

2

1

1

21

212

)1(
PP

PP

C

M

C

M

MM

MM
CB

−

−








+

+
=−χ . 

It is identical to the adjusted Pearson chi-square test proposed by Donner and Donald 

(1988).  

Moreover, when cluster sizes are constant, 
2

)1(−CBχ
 
reduces to   

 
B

G

i

Bii

G

i

iii

CB
m

mMSSPP

MPPSS

ρ

χ

ρ

χ
ˆ)1(1

]ˆ)1(1[)()1(

])ˆ)(([
2

1

2

1

2

2

)1(
−+

=

−+−−

−−

=

∑

∑

=

=
−    (3.4) 

It is simply the division of the regular Cochran-Armitage test statistic by
Bm ρ̂)1(1 −+ . 

3.3.2 An Alternative to Donner and Donald’s Test 

There are a variety of ways to adjust a test statistic for a clustering effect. For example, 

adjustments of the C-A test to clustered binary outcomes include Donner and Donald 

(1988), Rao and Scott (1992), Fung et al. (1994), Jung and Kang (2001), Stefanescu and 

Turnbull (2003) and She et al. (2010). 

In addition, there are two general ways to adjust the test statistic which is obtained by 

dividing the point estimator by its variance estimator. One is to adjust the variance 

estimate only, and the other is to adjust both the point estimator and its variance estimate. 

Related discussions include Scott and Holt (1982), Donner and Klar (2001, pp.90-91) and 

Zou (2002, pp.29-32). In particular, Scott and Holt (1982) discussed these two 

adjustments for clustered continuous outcome data in the context of linear regression. 

They compared the OLS parameter estimate and its variance estimate with the weighted 

least-squares (WLS) parameter estimate and the corresponding variance estimate. They 

reported that the OLS variance estimator is seriously biased and then affects the 

hypothesis testing procedures. Thus it should be substituted by the WLS variance 

estimator in order to guarantee validity. However, the OLS estimators of regression 

coefficients remain unbiased and are fairly efficient when the ICC is small and cluster 



48 

 

 

 

sizes are large. Thus both the OLS and WLS estimators of regression coefficients may be 

used in test procedures based on them.  

The C-A trend test statistic is derived by dividing the parameter estimator by its variance 

estimator in the context of linear trend model. Donner and Donald (1988) modified the C-

A test statistic by adjusting observed sample sizes in both the numerator and denominator 

of the standard C-A statistic for clustering effect. Hence both the point estimator of Cβ

and its variance estimator are adjusted by the variance inflation factor )(BiC . In this 

section, we propose an approach which is also based on a simple adjustment of the 

standard C-A test. However, unlike Donner and Donald’s (1988) method, this approach 

only adjusts the variance estimator while not adjusting the point estimator of Cβ .  

Thus the slope estimate in the linear probability trend model (3.2) is given by  

∑

∑

=

=
−

−

−−

=
G

i

ii

G

i

iii

CB

SSM

SSPPM

1

2

1
)2(

)(

))(ˆ(

β̂ . 

Under 0H , its corresponding adjusted variance estimator is  

�

2

( )

1
(2)

2 2

1

(1 ) ( )
ˆvar( )

[ ( ) ]

G

i i i B

i
CB G

i i
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β =
−

=

− −

=

−

∑
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. 

Therefore the adjusted trend test statistic is given by 

∑

∑

=

=
−

−−

−−

=
G

i

Biii

G

i

iii

CB

CMSSPP

MPPSS

1

)(

2

1

2

2

)2(

)()1(

])ˆ)(([

χ .              (3.5) 

When the cluster sizes are equal, 
2

)2(−CBχ
 
reduces to 

B

CB
m ρ

χ
χ

ˆ)1(1

2
2

)2(
−+

=− . 
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It is identical to 
2

)1(−CBχ
 
in equation (3.4). We will further compare 

2

)1(−CBχ
 
and 

2

)2(−CBχ
 
in 

case of varying cluster sizes by simulated data in Chapter 6. Their performance will be 

evaluated in terms of simulated Type I error and power. 

In addition to the two adjustments presented here, Stefanescu and Turnbull (2003) 

generalized the C-A test to assess the trend among clusters. To relate their test statistic to 

statistics proposed here, we need to assume the sizes of the clusters are equal in each 

group. Thus their statistic testing for trend among clusters could be linked to Donner and 

Donald’s (1988) statistic testing for trend among groups.  

Stefanescu and Turnbull (2003)’s test statistic is given by 

∑

∑

=

=

−−

−−

=
G

i

Biii

i

G

i

ii

ST

CMSSPP

MPPSS

1

)(

2

2

12

)()1(

])ˆ)(([

χ .       (3.6) 

It is identical to 
2

)2(−CBχ
 
in equation (3.5). 

3.3.3 Weighted Least Squares Cochran-Armitage Test  

The Cochran-Armitage trend test was originally derived from a linear probability model 

by using the ordinary least squares (OLS) approach (Cochran, 1954; Armitage, 1955). 

However, when the OLS approach is applied to cluster randomization trials the variance 

estimates may be seriously biased and therefore inference procedures based on these 

estimates can be misleading. As a result, the WLS approach is often used as an extension 

of OLS to account for clustering effects.  

It is straightforward to understand the underlying nature of the use of weighted least 

squares approach in cluster randomization trials. For instance, a proper weight is given to 

a cluster according to its variance so that more variable observations in a cluster 

contribute less to data information than do less variable observations in a cluster. Hence, 

we consider this approach in extending the Cochran-Armitage test to clustered outcome 

data in this section. 
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More over, one appealing feature of the WLS approach is that it does not require complex 

computation and specialized software. It also has close connections with more 

sophisticated methods. For example, maximum likelihood estimation (MLE) algorithms 

(e.g., Fisher scoring algorithm) often consist of iterative use of WLS. Also, Agresti et al 

(1991) reported that when the marginal models for categorical outcomes hold, MLE and 

WLS estimates are asymptotically equivalent with large cell expected frequencies. 

Additionally, Miller et al. (1993) illustrated that the WLS estimate is the first iteration 

result of the GEE procedure.  

In this section we derive the adjusted C-A test for clustered binary data using the 

weighted least squares (WLS) approach.  

Under the null hypothesis PPPPH G ==== ...: 210 , ijlY
 

has a variance of 

)1(
2

PP −=σ . Let ijV  represent the variance matrix for a single cluster given by  

})1{(
2

JIV BBij ρρσ +−=  

where I denotes a ijij mm ×
 

identity matrix and J the ijij mm ×
 

matrix all of whose 

elements are 1. Let V be a block-diagonal variance matrix with non-zero ijij mm ×
 
blocks 

ijV . We denote W as the MM × weight matrix for the WLS approach, where  

1−=VW . 

Then still consider the model used to evaluate the trend for clustered binary data in (3.2). 

The WLS estimator of Cβ
 
is given by  
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Here  
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The derivation of WLSCB−β̂  is provided in Appendix A. Under 0H , the corresponding 

estimated variance is  

  �

2

1 1
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Consequently the chi-square trend test statistic derived from the WLS approach is given 

by 
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As an alternative to using the weight 
1−=VW , one may use the observed cluster sizes 

ijm
 
or the “effective sample size” 

)(Bi

ij

C

m
 as the weight. However, the most efficient WLS 

estimator of β  uses 
1−= VW , which we adopted here.  

In the special case of 0=Bρ , the WLS trend test reduces to the regular Cochran-

Armitage test. When the cluster sizes are constant, i.e., mmij = , PP =
~

, and SS =
~

, the 

WLS trend test statistic reduces to  
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Furthermore, when there are only two groups and the cluster sizes are constant as well, 

the statistic 2

WLSCB−χ  reduces to  

)1(

)ˆˆ(

)(

2

21

2

2

1

1

21

212

PP

PP

C

M

C

M

MM

MM
WLSCB

−

−








+

+
=− �χ . 

It is identical to Donner and Donald (1988)’s adjusted Pearson Chi-square statistic.  

In addition, we derive the relationship between the WLS C-A test statistic and the score 

test statistic derived from a binary logistic regression by using the GEE. When there are 

only two groups, 2

WLSCB−χ
 
reduces to 

∑
∑=

=

−

−

−
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212
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m
PP

PP
χ . 

The score test statistic, which is derived from a binary logistic regression using the GEE 

and assuming an exchangeable working correlation matrix, is given by 

∑
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=
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.  

3.4 Adjusted Cochran-Armitage Test for Clustered Ordinal 
Outcomes 

We presented three adjusted C-A trend tests for clustered binary data in the previous 

section. In this section, we correspondingly extend these three methods to clustered 

ordinal outcome data. 
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3.4.1 Extension of Donner and Donald’s Test  

We assume that it is of interest to compare two groups consisting of ordinal outcomes. 

Suppose in
 
clusters are randomly assigned to the ith group, i=1 or 2, where there are ijm

 

observations in the ijth cluster. Each observation may have an outcome in any of K 

categories. Let ijkY
 
be the number of observations falling into the kth category from the 

ijth cluster, inj ,...,1=
 
and Kk ,...,1= . Let ijkA

 
denote the number of observations falling 

into the kth category from the ijth cluster that have the characteristic. Then  

∑∑
= =

=
2

1 1i

n

j

ijkk

i

AA  

and 

∑∑
= =

=
2

1 1i

n

j

ijkk

i

YY . 

Hence the proportion of successes from the kth category is given by 

k

k
k

Y

A
P =ˆ . 

The resulting data layout is presented in Table 3.3 and 3.4.  

Let 'P  denote the overall proportion of successes given by 
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Table 3.3: Data lay-out for adjusted Cochran-Armitage test for clustered ordinal 

outcomes 

Group Cluster 
Number of 

observations  

 

 

Number of 

observations in 

the kth 

category 

Number of 

observations 

with 

characteristic in 

the kth category 

Proportion in the 

kth category 

1 

1 11m   kY11  kA11  
kkk YAP 111111 /ˆ =  

2 12m   kY12  kA12  
kkk YAP 121212 /ˆ =  

. 

. 

. 
. 
. 
. 

 
 
 

. 

. 

. 
. 
. 
. 

. 

. 

. 

1n  
11nm   knY

11  knA
11  

knknkn YAP
111 111 /ˆ =  

2 

1 21m   kY21  kA21  
kkk YAP 212121 /ˆ =  

2 22m   kY22  kA22  
kkk YAP 222222 /ˆ =  

. 

. 

. 
. 
. 
. 

 
 
 

. 

. 

. 
. 
. 
. 

. 

. 

. 

2n  22nm   knY
22  knA

22  
knknkn YAP

222 222 /ˆ =  

Total N  ∑∑
= =

=
2

1 1i

n

j

ij

i

mM   ∑∑
= =

=
2

1 1i

n

j

ijkk

i

YY  ∑∑
= =

=
2

1 1i

n

j

ijkk

i

AA  
kkk YAP /ˆ =  

 

Table 3.4: Data lay-out for clustered ordinal outcomes in the ijth cluster 

Outcome 
Number of observations with 

characteristic 

 

 

Number of observations without 

characteristic 

 

 
Total 

1=k  1ijA   11 ijij AY −   1ijY  

2=k  2ijA   22 ijij AY −   2ijY  
. 
. 
. 
 

. 

. 

. 
 

 
 
 

. 

. 

. 
 

 
 
 

. 

. 

. 
 

Kk =  ijKA   ijKijK AY −   ijKY  
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P

1

1' . 

Let kS  denote the score associated with the kth category and  

∑

∑

=

==
K

k

k

K

k

kk

Y

YS

S

1

1' . 

Here we use the superscript ’ to distinguish 'P  and 'S  with P  and S  calculated for 

clustered binary outcomes in section 3.3.  

The model used to test trend among ordered categories, or the equivalence between the 

ordinal outcomes from the two groups, is given by 

kCCk SPE βα +=)ˆ(           (3.8) 

with the null hypothesis 0:0 =CH β . Let Oρ̂
 
denote the ICC estimator for clustered 

ordinal outcomes and then the variance inflation factor in the ith group may be written as  

∑
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=
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. 

Thus the adjusted slope estimator in model (3.8) is given by 
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1 1
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=β . 

Under 0H , the corresponding variance estimator is  
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Consequently, the adjusted C-A test for clustered ordinal outcome data is given by 

�

2
2

2
1 1 1(1) ( )2

(1) 2
2(1)

1 1 1 ( )
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ˆvar( )
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= =

− −

∑∑ ∑

∑∑ ∑
      (3.9) 

It may be easily shown that the statistic 
2

)1(−COχ  follows a chi-square distribution with one 

degree of freedom under 0H .  

Note that the linear trend model for clustered ordinal outcomes in (3.8) is same as the one 

for clustered binary outcomes in (3.2), except that the subscript ‘k’ in (3.8) denotes the 

kth category in which the ordinal outcomes fall while the subscript ‘i’ in the model (3.2) 

denotes the ith group in which cluster are randomized. As such the null hypotheses in 

these two linear trend models are identical, given by 0:0 =CH β . We presume this 

identity between the two models and their null hypotheses since the same hypothesis is 

used for independent binary and ordinal outcomes. The appropriateness of this 

presumption may need further considerations while it assures the most convenient way to 

handle the question at hand. 

However, the underlying meaning of the models and the corresponding null hypothesis in 

each model depend on what outcomes the ICC is adopted to estimate. If we adopt 
Bρ  to 

analyze clustered binary outcomes, the models in (3.2) and (3.8) would be used to test the 

trend among G (i=1,2,…,G) groups or trend among K (k=1,2,…,K) categories. The 

corresponding null hypothesis is that there is no trend among G (i=1,2,…,G) groups or 

there is no trend among K (k=1,2,…,K) categories. In contrast, if we substitute in Oρ  to 

analyze clustered ordinal outcomes, the models in (3.2) and (3.8) would test the equality 

between the ordinal outcomes between the two groups. Thus the corresponding null 
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hypothesis is interpreted as there is no difference between ordinal outcomes from two 

samples.   

Methods of estimating the ICC Oρ
 
have been discussed previously in Chapter 2. In this 

research we restrict our attention to the ANOVA ICC estimator and the kappa-type 

estimator presented in section 2.3 and 2.4. We will then evaluate the performance of the 

adjusted Cochran-Armitage test with the use of these two ICC estimators in simulation 

studies.  

In the special case of 0=Oρ , the statistic 
2

)1(−COχ
 

reduces to the regular Cochran-

Armitage test statistic. When cluster sizes are equal, i.e., mmij = , the adjusted trend test 

statistic reduces to 
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Additionally, when the outcomes have only two categories and cluster sizes are constant 

as well, 
2

)1(−COχ
 
reduces to Donner and Donald (1988)’s adjusted Pearson test statistic. 

3.4.2 Extension of An Alternative to Donner and Donald’s Test 

We now extend the adjusted C-A statistic 
2

)2(−CBχ
 
to clustered ordinal data. Consider the 

linear trend model in (3.8). Then the slope estimator without adjusting is given by  
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Under 0H , the corresponding variance estimator is  
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Consequently the trend test statistic for clustered ordinal outcomes is given by 
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The statistic has all the properties of 
2

)1(−COχ  in equation (3.9).   

3.4.3 Extension of Weighted Least Squares Cochran-Armitage 
Test 

Under the null hypothesis PPPH kijk ==:0 , ijlY has a variance of )1(
2

PP −=σ . Let ijV
 

represent the variance matrix for a single cluster given by  

})1{(
2

JIV OOij ρρσ +−=  

where I denotes a ijij mm ×
 
identity matrix and J  the ijij mm ×

 
matrix all of whose 

element are 1. Let V be a block-diagonal variance matrix with non-zero ijij mm ×
 
blocks 

ijV . We denote W  as the MM × weight matrix for the WLS approach, where  

1−=VW . 

From the linear model in (3.8), the WLS estimator of Cβ  is given by 
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where 
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Here we use the superscript ’ to distinguish '
~
P  and '

~
S  for ordinal outcomes with P

~
 and 

S
~

 for binary outcome. Under the null hypothesis, the corresponding variance estimator is 

given by 
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Consequently, the WLS trend test statistic for clustered ordinal outcome data is given by 
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In the special case of 0=Oρ , 2

WLSCO−χ
 
reduces to the regular C-A test. When mmij = , 

2
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reduces to 
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When the outcomes have only two categories and the cluster size is constant, 2

WLSCO−χ  

reduces to Donner and Donald (1988)’s adjusted Pearson chi-square test statistic. 

In section 3.3.3, we reviewed the close relationship between the WLS approach with 

other sophisticated methods. We also built the approximate equivalence between 2

WLSCB−χ
 

and the score test statistic using the GEE approach in a binary logistic regression. We will 

further derive the relationship between these two statistics for clustered ordinal outcomes 

in Chapter 5. 
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3.5 Discussion 

Although it is necessary to also develop methodology to address very general questions, 

including the analysis of covariates, it remains helpful to derive direct adjustments to 

regular methods which are simple and easily implemented. The adjustment approaches 

presented here can be calculated using any standard computer software designed for 

independent data. Furthermore, the principle underlying the adjustments in this chapter 

has been applied to a variety of problems involving clustered data. For example, Donner 

and Banting (1989) and Rao and Scott (1992) adopted it to the Pearson chi-square 

statistic and the Mantel-Haenszel chi-square statistic. 

An assumption behind the adjustment approaches proposed in section 3.3 for clustered 

binary outcomes is that the correlation between any two observations in the same cluster 

is exchangeable, or the average of correlations among observations in a cluster remains 

constant across clusters. The random allocation of clusters in cluster randomization trials 

assures this assumption is reasonable, at least under oH . Similar assumption may be 

guaranteed for adjustment approaches for clustered ordinal outcomes, at least under oH .  

In addition to iC , one may estimate the design effect by regarding the success rate iP̂
 
as 

a ratio rather than as a proportion (Cochran, 1977). Then the design effect estimator id  is 

defined as the ratio of the estimated variance of iP̂  to its estimated variance assuming 

independent data. Rao and Scott (1992) proposed an adjusted Cochran-Armitage test by 

using id . However, their method estimates the design effect separately in each group so it 

is well-suited for non-randomization trials. Therefore, iC  , rather than id , is adopted to 

account for the clustering effect in this thesis since our research interests focus on 

randomization trials. 
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  Chapter 4

 Marginal and cluster-specific models  4

4.1 Introduction 

In Chapter 3, we proposed simple adjustments to Cochran-Armitage tests for 

comparisons between clustered ordinal outcomes from two groups. In this chapter, we 

present marginal and cluster-specific models, two typical modeling-based methods for 

the analysis of correlated categorical data. In particular, algebraic background is provided 

with emphases on the GEE and cluster-specific extension of proportional odds models 

with one single cluster-level covariate.  

This chapter differs from the earlier work in two ways. Firstly, most earlier studies 

illustrated their methods using a general form of covariate structure and model links (e.g., 

Lipsitz et al., 1994; Rabe-Hesketh et al. 2002), or did not focus directly on cluster 

randomization trials (e.g., Hedeker, 2003; Raman and Hedeker, 2005). Very few studies 

gave explicit technical results in the context of a single cluster-level covariate and the 

cumulative logit link, the link most commonly used for ordinal outcomes arisen from 

epidemiologic studies. However, algebraic formulae related to modelling methods for 

correlated ordinal outcomes are more complicated than those for binary outcomes. As 

such, the illustration of modelling approaches for clustered ordinal outcomes requires 

more explicit details. In this chapter, we present an analytic investigation of marginal and 

cluster-specific extensions of ordinal logistic regression models applicable to cluster 

randomization trials. 

Secondly, few earlier studies described both fitting procedures and hypothesis testing. 

Rather their focus has been on either fitting approaches in the two models only (e.g., 

Agresti and Natarajan, 2001), or hypothesis testing only (e.g., Boos, 1992). Moreover, 

most existing model-dependent statistical tests were illustrated particularly for correlated 

binary data (e.g., Rotnitaky and Jewell, 1990). Extensions of them to correlated ordinal 

outcomes were implied only. 
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The remainder of the chapter is organized as follows. In section 4.2 we discuss the GEE 

extension of the proportional odds models including its robust Wald test and score test. 

Section 4.3 briefly discusses the cluster-specific extension of proportional odds models. 

Section 4.4 discusses relationships among the magnitudes of fixed effects parameters and 

the variances of their estimates as obtained from marginal and cluster-specific models. 

Section 4.5 presents ICC estimation in the two models. 

4.2 GEE extension of proportional odds logistic regression 

We introduced Lipsitz et al.’s (1994) GEE approach for analyses of correlated ordinal 

outcomes in section 1.5.4.2. Here we adapt their approach to proportional odds models 

with a single binary cluster-level covariate.  

4.2.1 Model formulation 

Following Lipsitz et al. (1994), we denote ijlkZ  as the cumulative indicator of a K-level 

ordinal outcome where 1=ijlkZ
 
if kYijl ≤

 
or 0=ijlkZ

 
if kYijl > . Here Kk ,...2,1= and 

ijml ,...,2,1=
 
where ijm

 
denotes cluster size for the ijth cluster. Letting )( kYP ijlijlk ≤=γ

 

be the cumulative probability that has the form ijlkijlkZE γ=)( , then 

]',...,,[ )1(21 −= Kijlijlijlijl ZZZZ  and ]'...,,[ )1(21 −= Kijlijlijlijl γγγγ . As such, we transform the 

ordinal score ijlY
 

to a new set of 1−K  binary indicators ijlkZ
 

with cumulative 

probabilities ijlγ
 
corresponding to the cumulative logit link.  

A marginal model based on cumulative logits has the form  

*
][log βγ ijlijl Xit = .   (4.1) 

Here ijlX  denotes a KK ×− )1(  design matrix for the lth observation in the ijth cluster 

and ]',,...,,[ 121

* βαααβ −= K  denotes a 1×K  parameter vector. The intercept parameter, 

kα  corresponds to the kth cumulative logit and it is increasing as k increases. The 

intervention effect parameter, β  denotes the log(odds ratio) of the cumulative 

probabilities comparing the experimental to the control group. Since the model in (4.1) 
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has the same effects β  for each logit, the cumulative odds ratio is also constant for each 

logit. In this study, we are interested in the intervention effect parameter β  only. 

4.2.2 Estimation and inference 

Let ]'',...,','[ 21 ijijmijijij XXXX =  denote the KKmij ×− )1(
 

design matrix, 

]'',...,','[ 21 ijijmijlijij ZZZZ =  the )1( −Kmij  
cumulative response vector, and 

]'',...,','[ 21 ijijmijijij γγγγ =
 
the cumulative probabilities for the ijth cluster. Let ijB

 
denote 

a )]1([)]1([ −×− KmKm ijij  diagonal matrix with the marginal variances of the elements 

of ijZ , )1( ijlkijlk γγ − , on the main diagonal and zeros elsewhere. We further assume a 

)]1([)]1([ −×− KmKm ijij  
working covariance matrix ijV

 
for the ijth cluster, given by  

2/12/1

ijijijij BRBV =      (4.2) 

where ijR
 
is a  )]1([)]1([ −×− KmKm ijij  

working correlation matrix. Then the diagonal 

blocks of  ijV  is the )1()1( −×− KK  multinomial covariance matrix for ijlZ , 

ijlijlijlijl DiagV '][ γγγ −= .  (4.3) 

The remaining elements of ijV contain the covariance between pairs ijlkZ and ijhgZ  (

1,...,2,1,;,...,2,1, −== Kgkmhl ij ). Additionally, the true covariance matrix of ijZ is 

given by 

2/102/1
)cov( ijijijij BRBZ =   (4. 4) 

where 
0

ijR
 
is a  )]1([)]1([ −×− KmKm ijij  

true correlation matrix of the ijth cluster. The 

working covariance ijV
 
in equation (4.2) is identical to the true covariance )cov( ijZ

 
in 

(4.4) only when the working correlation matrix ijR  is identical to 
0

ijR .  

Lipsitz et al. (1994) derived a generalized estimating equation in the form of 
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where ijijijij XBD =∂∂= *
/ βγ . These estimating equations have the same form as the 

likelihood equations for logistic regression models, except that definitions of ijD  , ijV , 

ijZ  and ijγ
 
have special meaning and structures for correlated ordinal outcomes as 

presented above.   

Using equation (4.5), a Fisher scoring algorithm was suggested to obtain β̂  in 

conjunction with the estimated correlation parameters in the working correlation at each 

iteration procedure. Therefore, given a starting value for
*β , the mth iteration procedure 

is given by 
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Here 
)(ˆ m

ijD and 
)(ˆ m

ijV
 
are estimated by substituting *β̂  and the correlation estimators in 

ijR
 
at the mth step. In particular, Lipsitz et al. (1994) extended Liang and Zeger (1986)’s 

method of moments approach to estimate the correlation parameters. We further discuss 

this in section 4.5.  

The sandwich (robust) covariance matrix of model parameter vector *β̂  can be shown to 

be  

MMR VVVV 0= .     (4.7) 

Here 
MV  denotes the model-based covariance of *β̂ , given by 

11
2

1 1

][
−−

= =

∑∑ ′= ijij

i

n

j

ijM DVDV
i

      (4.8) 

and  
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= =

′=′′=
2
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0 )cov(
i

n

j

ijijijijijij

i

n

j

ij

ii

UUDVZVDV .   (4.9) 

 

Specifically, we are interested in testing the null hypothesis 0:0 =βH . The estimator β̂  

is the Kth element of *β̂ . Correspondingly, its model-based variance estimator � ˆvar ( )M β  

and robust variance estimator � ˆvar ( )M β  are the (K,K)th element of 
MV̂  and 

RV̂  

respectively. As such, the model-based Wald test statistic under 0:0 =βH
 
has the form 

�

2
2

1

ˆ
~

ˆvar ( )
M

M

W
β

χ
β

=    (4.10) 

and the robust Wald test statistic is given by 

�

2
2

1

ˆ
~

ˆvar ( )
R

R

W
β

χ
β

= .    (4.11) 

In chapter 6, we will evaluate these model-based test statistics by simulation using SAS 

procedures. Therefore we limit attention to those statistics routinely available in SAS.  

Since only the independence working correlation is available for multinomial models in 

PROC GENMOD, the Wald test statistics in (4.10) and (4.11) are considered assuming 

independence working correlation only in this study.  

Next we introduce the score test obtained from equation (4.5). Corresponding to 0H , we 

decompose the parameter vector 
*β  to ),( )1(

′′ββ , where β  is the parameter being tested 

in the null hypothesis and )1(β
 
is a 1)1( ×−K  parameter vector with elements kα . 

Similarly, we decompose the generalized estimating equation (4.5) to ),( )1()0(
′′′= TTT , 

decompose MV  to four submatrices )00(A (i.e., )ˆ(var βM
), )01(A , )10(A

 
and )11(A , and 

decompose 
RV  to four submatrices )00(J  (i.e., )ˆ(var βR

), )01(J , )10(J
 

and )11(J , 
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corresponding to β  and )1(β .We first obtain the estimate )1(

~
β

 
under 0H

 
by solving )1(T , 

then substitute )1(

~
β

 
into )0(T

 
under 0H  to yield the numerator of the score statistic, i.e., 

)0(

~
T . Hence the model-based score test statistic for 0:0 =βH  is given by 

�2 2

(0) 1
ˆvar ( ) ~MMS T β χ= �     (4.17) 

and the robust score test statistic is given by 

�

�

2
2

(0) 2

1

ˆvar ( )
~

ˆvar ( )

M

R

R

T
S

β
χ

β
=
�

.   (4.18) 

Here � ˆvar ( )M β  and � ˆvar ( )R β  are obtained by substituting αα ~=  and 0=β  into 

� ˆvar ( )M β  and � ˆvar ( )M β  respectively. 

Proofs giving the distributions of the above statistics are completely analogous to those 

for binary data. Thus we refer below to other authors who have provided corresponding 

results in the case of binary outcomes. In particular, Liang and Zeger (1986) showed that 

the robust Wald statistic asymptotically follows a chi-square distribution; Rotnitzky and 

Jewell (1990) demonstrated that the model-based Wald statistic has an asymptotic chi-

square distribution if working correlations are correctly specified; furthermore, Rotnitzky 

and Jewell (1990) and Geys et al. (1999) provided the proof that the robust and the 

model-based score statistic have asymptotic chi-square distributions under 0H .  

Rotnitzky and Jewell (1990) reported that robust Wald and score statistics for binary data 

may suffer unstable computational results if the cluster sizes are large and the number of 

clusters is small. This is because that the residual estimator of )cov( ijZ , the middle piece 

of sandwich estimators, is a quite variable estimator. Therefore simpler statistics, i.e., the 

model-based Wald or score statistic, may be used as an alternative if the working 

correlation matrix is correctly specified. However, their distributions under 0H  are 

complicated. Therefore adjustments have been proposed to model-based statistics so that 

they could be easily evaluated as approximate chi-square distributions (e.g., Rotnitzky 
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and Jewell, 1990; Geys et al, 1999). Their extensions to clustered ordinal data are outside 

the present scope of this research. 

As discussed for GEE Wald tests, only the independence working correlation is available 

for multinomial models in PROC GENMOD. As such, we only consider the robust score 

tests assuming the independence working correlation in this study. 

4.3 Cluster-specific extension of proportional odds logistic 
regression 

4.3.1 Model formulation 

In cluster-specific models, cluster effects are considered by adding a random effect term, 

which is commonly assumed to follow a normal distribution. Let the random variable 

),0(~
2σNuij  

denote the random effect of the ijth cluster. Then a cluster-specific model 

for clustered ordinal outcomes with cumulative logit link is given by 

ijijlijl uXkYPit +=≤ *
)]([log β .      (4.19) 

Model (4.19) may be fit by maximum likelihood, which is discussed as follows. Here 

ijlX  denotes a KK ×− )1(  design matrix for the lth observation in the ijth cluster and 

]',,...,,[ 121

* βαααβ −= K  denotes a 1×K  parameter vector. The intercept parameter, kα  

corresponds to the kth cumulative logit and it is increasing as k increases. The 

intervention effect parameter, β  denotes the log(odds ratio) of the cumulative 

probabilities comparing the experimental to the control group. 

Let ijY denote a 1×ijm response vector of scores for the ijth cluster over the set of ijm
 

observations. The likelihood function of ijY
 
conditional on the random effects has the 

form 

∏∏
=

−

=

=
ij

ijlk

m

l

K

k

Y

ijlkijij puYl
1

1

1

* ),|( β .     (4.20) 
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Here 1=ijlkY  if ijlY
 

falls into the kth category and 0 otherwise, and 

),|1( ijijlijlkijlk uxYPp == . We further define ijlkp
 

as a difference of cumulative 

probabilities with the inverse cumulative logits link. That is,  

)exp(1

1

)exp(1

1
**

)1(

)1(

ijijlkijkijl

kijlijlkijlk
uXuX

p
++

−
++

=−=
−

−
ββ

γγ . 

The likelihood function of the ijth cluster after integrating out the random effects is given 

by 

 ∫
+∞

∞−
= ijijijijij duuuYlYh ),(*),|()( 2σφβ    (4.21) 

where ),0(
2σφ  represents the normal density function of iju .Then a full likelihood 

function is given by 

∏∏
= =

=
2

1 1

)(
i

n

j

ij

i

YhL .     (4.22) 

However, the integrals in (4.22) don’t have a closed form expression and numerical 

approximations are required, which are discussed in the next section. 

4.3.2 Estimation and inference 

Agresti and Natarajan (2001) reviewed approximation methods for the likelihood 

function in (4.22), and they suggested that the best method is Gauss-Hermite quadrature.  

As an alternative, the PQL approach (Breslow and Clayton, 1993) has also been 

commonly used in cluster-specific models. Bellamy et al. (2005) argued that it may be a 

reasonable choice for cluster randomization trials where there are small numbers of large 

clusters. However, this approach tends underestimate regression coefficients as well as 

variance components for binary outcome data (Breslow and Clayton, 1993; Jang and 

Lim, 2006). Liu and Agresti (2005) claimed that similar problems may exist for ordinal 

outcome data.  
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As such, only the Gauss-Hermite quadrature approximation approach is considered for 

estimation of cluster-specific models. However, the Gauss-Hermite quadrature approach 

is not dealt with in detail since our interest focuses on marginal models, especially the 

GEE approach (see section 4.1).  

In Gauss-Hermite quadrature, the likelihood function is approximated by a weighted sum 

of a specified number of quadrature points hQ
 
with the weight hw . Optional choices of 

points and weights have been reported. For example, Stroud and Sechrest (1966) list 

optimal points and weights for the standard normal univariate distribution. 

The Gauss-Hermite quadrature approximation of (4.21) is the weighted sum  

∑
=

≈
q

h

hhijij wQYlYh
1

*
),|()( β    (4.24) 

Here q is the number of quadrature points. The accuracy of the approximation increases 

as q becomes larger. The ML estimates of 
*β  and σ  and their variance estimates can 

then be obtained by evaluating the approximated likelihood function using standard 

algorithms.  

Then the corresponding Wald test statistic for 0:0 =CSH β  has the form 

�

2
2

1

ˆ
~

ˆvar ( )

CS
CS

CS CS

W
β

χ
β

= ,   (4.25) 

where CSβ  denotes the intervention effect parameter in the cluster-specific model (4.19). 

Since only the Wald test is available for cluster-specific in SAS procedures, we do not 

consider the score tests in cluster-specific model. 

In addition to the Gauss-Hermite quadrature, the adaptive version of Gauss-Hermite 

quadrature has been proposed. It increases the efficiency of the ordinary Gauss-Hermite 

quadrature so that fewer quadrature points are required. For details one could refer to Liu 

and Pierce (1994), Pinheiro and Chao (2006), and Rabe-Hesketh et al. (2005). 
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4.4 Relationship between Marginal and Cluster-specific 
Models 

Although both marginal and cluster-specific models can be viewed as extensions of 

generalized linear models to correlated data, they have different interpretations, 

estimating methods and in general, yield different results. In this section, we discuss 

relationships between the two models in terms of magnitudes and standard errors of the 

estimated intervention effect parameter.  

 Let 
Mβ  and CSβ

 
denote intervention effect parameters in marginal and cluster-specific 

models respectively. When the outcomes are binary, Zeger et al. (1988) showed that the 

approximate relationship between the two parameters has the form  

( )
CSM βσπβ

2/1
2

2

115/316
−





 +≈   (4.27) 

under the assumption that the random effect distribution is normal. Here 
2σ  represents 

the variance of the random effect, i.e., ),0(~
2σNuij . In addition, Neuhaus et al. (1991) 

derived a similar relationship which is valid under any random effect distribution. They 

used a first-order Taylor series approximation about 0=CSβ
 
and obtain  

CSM βρβ )]0(1[ −≈
.
    (4.28) 

Please note that equation (4.28) was derived under the assumption of any random effect 

distribution, and )0(ρ  is the intracluster correlation obtained under the null hypothesis 

0=CSβ .  

Since 
2σ  is a function of the intracluster correlation ρ , (4.27) and (4.28) illustrate a 

qualitatively similar relationship between 
Mβ  and CSβ . Both of them show that for 

clustered binary data 
Mβ  is smaller than CSβ

 
and the discrepancy between 

Mβ  and CSβ
 

increases as the intracluster correlation increases. However, in community intervention 

trials, the discrepancy between 
Mβ  and CSβ  would be very little since ICCs in 

community intervention trials tend to be near zero (see section 6.2). 
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Neuhaus (1993) also discussed the relationship between variances of 
Mβ̂  and CSβ̂  for 

clustered binary outcomes. Under the null hypothesis, the relationship between these 

variances assuming an independence working correlation structure is given by 

)ˆvar(
)0(1

)0(1
)ˆvar( CSM β

ρ

ρ
β

+

−
≈ ,   (4.29) 

and with the exchangeable working correlation structure, is given by 

)ˆvar())0(1()ˆvar(
2

CSM βρβ −≈ .   (4.30) 

In community intervention trials, small values of ICCs would decrease the difference 

between variances of estimated regression coefficients from the two models. 

For clustered ordinal outcomes, Ten Have et al. (1996) extended Zeger et al.’s (1988) 

approach and showed that the relationship between the magnitudes of fixed effect 

estimates for clustered ordinal outcomes parallels that reported for clustered binary 

outcomes. As such, in community intervention trials 
Mβ  would be slightly smaller than 

CSβ
 
as the ICCs tend to be near zero.  

However, the analytical derivation of the relationship between the variances is more 

complicated. Therefore Ten Have et al. (1996) compared variances using real data. They 

concluded that the relationship between the variances arising from the two models for 

binary outcomes does not hold for ordinal outcomes.  

Ten Have et al.’s (1996) conclusions are based on empirical comparisons. Although 

example datasets are useful for illustration purposes, simulation studies are needed to 

provide more evidence under varying parameter combinations (e.g., varying number of 

clusters and ICCs) to assess the performance of different statistical techniques. In chapter 

6, we will examine Ten Have et al.’s (1996) conclusions using simulation. 
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4.5 ICC estimation  

In section 2.3, we reviewed ICC estimating methods for clustered ordinal outcomes. In 

this section, we further discuss estimation of the ICC under GEE and cluster-specific 

extensions of proportional odds logistic regressions. 

4.5.1 ICC estimation under marginal models 

As introduced in section (2.3.2), Lipsitz et al. (1994) derived the moment ICC estimator 

in GEE approach for correlated ordinal outcomes. For an exchangeable correlation 

structure, the ICC estimator in model (4.1) is given by  

3)]1(
2

1
[

'ˆˆ

ˆ
2

1 1

2

1 1

−−

=

∑∑

∑∑∑

= =

= = >
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i

n

j

i

n

j st

ijtijs

GEE

mm

ee

i

i

ρ .    (4.31) 

Here the )1( −Kmij  
residual vector ]ˆ[ˆˆ 2

1

ijlijlijlijl ZBe γ−=
−

 corresponds to the cumulative 

logit links and ijlB
 
is the submatrix of matrix ijB

 
corresponding to the lth individual in 

the ijth cluster. When there is substantial variation in cluster size, the precision of the ICC 

estimator in (4.31) may not be optimal since it gives too much weight to large groups 

(Donner, 1986).  

4.5.2 ICC estimation in cluster-specific models 

Rodriguez and Goldman (2001) extended the classical derivation of the ANOVA ICC for 

continuous data to binary outcomes based on a latent-variable formulation of generalized 

linear mixed models. Agreti (2010, page 283-284) further discussed the ICC for 

correlated ordinal outcomes using the latent variable formulation in cluster-specific 

models.  

Given the random effect term ),0(~
2σNuij  

and the error term ),0(~
2

ijlijl N σε , the ICC 

estimator in model (4.19) assuming a common correlation structure has the form 
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=
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=

ijl

CS
.   (4.32) 

This implies a nonnegative ICC among clustered observations and it tends to increase as 

the variance 
2σ  of the random effect increases. 

4.6 Summary 

In this chapter we presented marginal and cluster-specific models which will be 

investigated by simulation. In section 4.2, we introduced the GEE extension of 

proportional odds logistic regressions. In section 4.3, we briefly introduced cluster-

specific extensions of proportional odds logistic regressions. In section 4.4, we discussed 

relationships between marginal and cluster-specific models. In section 4.5, the estimation 

of the ICC under the two models was introduced.  
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  Chapter 5

 Adjustments to the small-sample performance of GEE 5

5.1 Introduction 

As reviewed in section 1.5.4, correction and modification strategies have been proposed 

to improve the small-sample performance of the GEE approach for correlated binary 

data. However, their extensions to correlated ordinal data have not been considered. In 

this chapter, we develop modified GEE procedures for ordinal outcome data to improve 

small-sample performance of hypothesis tests.  

The specific objective of this chapter is to algebraically extend correction and 

modification strategies developed for binary outcome data to ordinal outcome data. For 

convenience, we simply classify adjustments to the robust Wald test into two categories: 

one based on bias-corrections of the sandwich estimator and the other based on degrees-

of-freedom adjustments for the test distributions. As such, we consider five bias-

corrected approaches and four degree-of-freedom approaches to the robust Wald test and 

one modified score test. We list all test statistics in Table 5.1. The subscript ‘BC’ denotes 

bias-corrected and ‘df’ denotes degree-of-freedom adjusted. In addition, the subscript ‘M’ 

denotes model-based and ‘R’ denotes robust. 

Most attention given to small samples adjustments in marginal models applicable to 

cluster randomization trials has focused on a single cluster-level binary covariate and 

cumulative logit links. Although the test statistics presented in this chapter are derived 

similarly to those for binary outcomes, detailed attention is given to technical issues that 

arise in the case of ordinal data. 

The remainder of the chapter is organized as follows. In section 5.2, we adapt small-

sample adjustments to the robust Wald tests for ordinal outcomes. In section 5.3, we 

present modified score tests for ordinal outcomes.  
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Table 5.1: Small-sample adjustments to Wald and Score tests in Chapter 5 

Test 

statistic 
Test name Formula 

Test 

distribution 
Equation 

MW  Model-based Wald test �2ˆ ˆ/ var ( )Mβ β  
2

1χ  Equation (4.10) 

RW  Robust Wald test �2ˆ ˆ/ var ( )Rβ β  
2

1χ  Equation (4.11) 

1BCW  Bias-corrected Wald test: Approach 1 �2
1

ˆ ˆ/ var ( )BCβ β  
2

1χ  Equation (5.7) 

2BCW  Bias-corrected Wald test: Approach 2 �2

2
ˆ ˆ/ var ( )

BC
β β  

2

1χ  Equation (5.10) 

3BCW  Bias-corrected Wald test: Approach 3 �2
3

ˆ ˆ/ var ( )BCβ β  
2

1χ  Equation (5.16) 

4BCW  Bias-corrected Wald test: Approach 4 �2
4

ˆ ˆ/ var ( )BCβ β  
2

1χ  Equation (5.19) 

5BCW  Bias-corrected Wald test: Approach 5 �2
5

ˆ ˆ/ var ( )BCβ β  
2

1χ  Equation (5.23) 

1dfW  Degrees-of-freedom-adjusted Wald test: Approach 1 �2ˆ ˆ( ) / var ( )RN K Nβ β−  
2

1χ  Equation (5.24) 

2dfW  Degrees-of-freedom-adjusted Wald test: Approach 2 �2ˆ ˆ/ var ( )Rβ β  KNF −,1  Equation (5.25) 

3dfW  Degrees-of-freedom-adjusted Wald test: Approach 3 �2ˆ ˆ/ var ( )Rβ β  dF ,1  Equation (5.26) 

4dfW  Degrees-of-freedom-adjusted Wald test: Approach 4 �2ˆ ˆ/ var ( )Rβ β  ',1 dF  Equation (5.36) 

MS  Model-based score test �2

(0)
ˆvar ( )MT β�  

2

1χ  Equation (4.17) 

RS  Robust score test � �
2

2

(0)
ˆ ˆvar ( ) / var ( )M RT β β�  

2

1χ  Equation (4.18) 

BCS  Modified robust score test � �
2

2

(0)
ˆ ˆvar ( ) / var ( )( 1)M RT N Nβ β −�  

2

1χ  Equation (5.38) 
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5.2 Adjustments to the Wald test 

5.2.1 Bias-corrected approaches  

Approach 1. 

To calculate the sandwich estimator in equation (4.7), the estimated residuals 

ijijij Zr γ̂ˆ −=  are commonly used to estimate )cov( ijZ , i.e.,  

� ˆ ˆˆ ˆcov( ) ' ( )( ) 'ij ij ij ij ij ij ijZ r r Z Zγ γ= = − − .     (5.1) 

However, the residuals ijr̂  tend to be too small so ijij rr 'ˆˆ  is a biased estimator of )cov( ijZ . 

To derive the approximate bias of the residual estimator, Mancl and DeRouen (2001) 

considered a first-order Taylor expansion of the residual ijr̂ , given by 

)ˆ(ˆ **

*
ββ

β
−

′∂

∂
+=

ij

ijij

r
rr ,     (5.2) 

and the first-order approximation  

∑∑
= =

− −′≈−
2

1 1

1**
)(ˆ

i

n

j

ijijiiM

i

ZVDV γββ .    (5.3). 

Substituting (5.3) into (5.2), we derive the expectation of  ijij rr 'ˆˆ  as 

∑∑
≠=

′+−−≈
jd

idijid

i

ijijijijijijij HZHHIZHIrrE )cov()')(cov()()'ˆˆ(
2

1

,    (5.4) 

where 
1−′= ijijmijij VDVDH  is an expression for the leverage of the ijth cluster (Preisser and 

Qaqish, 1996), ijI  is the identity matrix with the same dimension as ijH , and the 

summation ∑ ≠ jd
in (5.4)  is over all jnd i ≠= ,...,2,1 . By definition, the elements of 

ijH  are between zero and one, so we assume that the contribution to the bias of the sum 
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in Equation (5.4) is negligible. As such, the expectation of  ijij rr 'ˆˆ  could be approximated 

by 

)')(cov()()'ˆˆ( ijijijijijijij HIZHIrrE −−≈ .     (5.5) 

A bias-corrected sandwich variance estimator then has the form  

Mijijijijijijijijij

i

n

j

ijMBC VDVHIrrHIVDVV
i











′−−′= −−−−

= =

∑∑ 1111
2

1 1

1 )(')( ,     (5.6) 

where )var()( *

1 β=BCVE .  

Letting )ˆ(var 1 βBC  be the (K,K)th element in 1BCV , denoting the corrected sandwich 

variance of β̂ , the corresponding bias-corrected Wald test under the null hypothesis 

0:0 =βH  has the form 

�

2
2

1 1

1

ˆ
~

ˆvar ( )
BC

BC

W
β

χ
β

=   .   (5.7) 

Approach 2. 

Kauermann and Carroll (2001) proposed an alternative bias-corrected sandwich estimator 

for binary outcomes. One of its distinctions as compared to Mancl and DeRouen’s (2001) 

approach is that it assumes a correctly specified working covariance, i.e., )cov( ijij ZV =  

and ijijij VrrE =)'( . Also, it does not drop the summation term in (5.4). Next we derive an 

alternative bias correction to ordinal data based on Kauermann and Carroll’s (2001) 

work. However, this new approach simplifies Kauermann and Carrol’s method and leads 

to a result more comparable with other corrections. 

We assume a correctly specified working correlation matrix, and substitute the first-order 

Taylor expansions of  ββ −*ˆ   into equation (5.2). Thus the expectation of  ijij rr 'ˆˆ  is 

approximated by 
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}){cov()'ˆˆ( ijijijijij HIZrrE −= .    (5.8) 

The corrected residual estimator may then be written as ijijij rHI ˆ)(
2/1−− . A bias-corrected 

sandwich estimator for clustered ordinal outcomes is then given by 

Mijijijijijijijijij

i

n

j

ijMBC VDVHIrrHIVDVV
i











−−= −−−−

= =

∑∑ 12/12/11
2

1 1

2 )(')(' ,     (5.9) 

where )var()( *

2 β=BCVE . Letting � 2
ˆvar ( )BC β  be the (K,K)th element in 2

ˆ
BCV , the 

corresponding bias-corrected Wald test under the null hypothesis 0:0 =βH  has the form 

�

2
2

2 1

2

ˆ
~

ˆvar ( )
BC

BC

W
β

χ
β

= .     (5.10) 

For clustered binary outcomes, Lu et al. (2007) reported that the Mancl and DeRouen  

estimator overestimates the true variance while the Kauermann and Carrol estimator 

reduces this overcorrection. Also, when cluster sizes are small (e.g. 10<ijm ), the 

Kauermann and Carrol estimator is preferred in terms of confidence interval coverage. 

However, when cluster sizes are moderate to large, the Mancl and DeRouen estimator 

performs better than the Kauermann and Carroll estimator in terms of coverage, even in 

trials with as few as 10 clusters (Lu et al., 2007). Note that these conclusions are reported 

for clustered binary outcomes only. In chapter 6, we will investigate the performance of 

�
1

ˆvar ( )BC β  and � 2
ˆvar ( )BC β  to find if similar results hold for clustered ordinal outcomes.  

Approach 3. 

We derived � 1
ˆvar ( )BC β  and � 2

ˆvar ( )BC β  by combining a first order Taylor expansion of 

residuals ijr  together with the Taylor expansion of 
*β . Similarly, we could combine a 

Taylor expansion of estimating equations ijU  together with expansion of 
*β  to derive 

the bias of the sandwich estimator (Fay and Graubard, 2001). Substituting 
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1 1
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ijijiiM

i

ZVDV γββ  

into the Taylor expansion of estimating equations 

)ˆ(ˆ ** ββ
β

−
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−≈

ij
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UU ,   (5.11) 

we obtain  

ijijijM

i

m

j

ijMijijij

ijMijijijijijijMijij

ijij

DVDVUVDVD

UVDVDDVDVUU

UUE

ij

1
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1 1

1

11
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)cov('')cov()cov(
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= =

−

−−

∑∑+

−−=

(5.12) 

Assuming a correctly specified working correlation matrix, we have  

ijijijijijij DVDUUEU
1

')()cov(
−=′= .  (5.13) 

Replacing ∑∑
= =

2

1 1

)cov(
i

n

j

ij

i

U  in (5.12) by (5.13) yields 

))(cov()'ˆˆ( ijijijijij IUUUE Ψ−≈      (5.14) 

where mijijijij VDVD
1

'
−=Ψ . Since it is possible that ijijI Ψ− is not a symmetric 

matrix, we may be unable to use 
2/1

)(
−Ψ− ijijI  to correct the bias of the approximation in 

(5.16). As Fay and Graubard (2001) proposed, we therefore select a constant b and define 

ij∆  as a KK ×  diagonal matrix with ddth element equal to { } 2/1
)][,min(1

−
− ddijb ψ , where 

1<b . Here we refer the choice of the constant b to Fay and Graubard (2001). A bias-

corrected variance estimator is then given by 
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where )var()( *

3 β=BCVE  assuming a correctly specified working correlation.  

Letting � 3
ˆvar ( )BC β  be the (K,K)th element in 3

ˆ
BCV , the corresponding bias-corrected Wald 

test under the hypothesis 0:0 =βH  has the form 

�

2
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3 1
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ˆvar ( )
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W
β

χ
β

= .     (5.16) 

Approach 4. 

Alternatively, we combine derivation procedures for � 1
ˆvar ( )BC β  and � 3

ˆvar ( )BC β  and 

develop another corrected sandwich estimator. In particular, we decompose the 

summation term of (5.12) and re-express the approximation (5.12) as 
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i jd
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                                                                                                 (5.17) 

Neglecting the summation term in (5.17), the expectation of  ijijUU ′ˆˆ  has the form 

))(cov()()'ˆˆ( ′Ψ−Ψ−≈ ijijijijijijij IUIUUE . 

Then a bias-corrected sandwich estimator is given by 
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where )var()( *

3 β=BCVE . Letting � 4
ˆvar ( )BC β  be the (K,K)th element in 4

ˆ
BCV , the 

corresponding bias-corrected Wald test under the hypothesis 0:0 =βH  has the form 



81 

 

 

 

�

2
2

4 1

4

ˆ
~

ˆvar ( )
BC

BC

W
β
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= .    (5.19) 

In summary, derivations of � 2
ˆvar ( )BC β  and � 3

ˆvar ( )BC β  require an assumption of a 

correctly specified correlation matrix, and do not drop the summation term in (5.4) and 

(5.17) respectively. In contrast, derivations of � 1
ˆvar ( )BC β  and � 4

ˆvar ( )BC β  do not require 

this assumption, but they drop the summation term in (5.4) and (5.17) respectively.  

In addition, � 4
ˆvar ( )BC β  gives a larger variance estimator than � 3

ˆvar ( )BC β  since the 

diagonal elements in ij∆  are between 0 to 1. As such, based on conclusions derived from 

the binary case (Lu et al., 2007), 4BCV  may overestimate the true variance. However, 

when the cluster size is moderate to large, the impact of overcorrection of � 4
ˆvar ( )BC β  may 

counteract the high variability of the sandwich estimator. This is also one of motivations 

for deriving 4BCW . In the simulation study, we will further compare these adjustments to 

confirm our algebraic results. 

 

Approach 5. 

We also extend the Pan (2001) modification of the sandwich estimator to ordinal data. 

Pan (2001) reported that the residual estimator ijij rr '  is not an optimal estimator of 

)cov( ijZ  in terms of consistency and efficiency since it is based on observations from 

only one cluster. Instead of ijij rr ' , he used Liang and Zeger (1986)’s estimator by pooling 

information across all clusters.  

Following Liang and Zeger (1986), we could estimate the unspecified correlation 0R in 

equation (4.4) by 
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Then from equation (4.4) we have 
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Substituting (5.21) into
RV , the bias-corrected sandwich variance estimator is given by 
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Letting � 5
ˆvar ( )BC β  be the (K,K)th element in 5

ˆ
BCV , the corresponding bias-corrected Wald 

test under the hypothesis 0:0 =βH  has the form 
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W
β

χ
β

= .     (5.23) 

Proofs giving the chi-square distribution of the Wald statistic (5.23) are not as 

straightforward as those for the other four corrected statistics. We refer detailed proof 

procedures to Pan (2001). 

5.2.2 Degrees-of-freedom adjusted approaches  

In the previous section, we derived five bias-corrected sandwich variance estimators for 

robust Wald tests. In this section, we present four adjustments to the Wald tests in terms 

of degrees-of-freedom. We start with the simplest one. 

 

Approach 1. 
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Hinkley (1977) and MacKinnon and White (1985) proposed a modification for 

heteroskedasticity-consistent variance estimators for continuous outcomes. Mancl and 

DeRouen (2001) adapted this approach for binary outcomes, what they called the degree-

of-freedom approach, by multipling the sandwich estimator by a factor )/( PNN − . 

We adapt this approach for ordinal data by using the same factor. Here P is equal to K, 

which denotes the number of categories of responses. Consequently, the corresponding 

Wald test statistic for the hypothesis 0:0 =βH  is given by 
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2

1 1
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ˆvar ( )
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N K
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N

β
χ

β

−
= .     (5.24) 

Approach 2. 

It is well known that a t-test is preferred to a normal test when the true variance is 

estimated. Similarly, we could evaluate a test statistic which follows an F distribution 

rather than a chi-square distribution in order to reduce the effects of confidence interval 

undercoverage and inflated type I error caused by the use of sandwich estimators. 

Moreover, according to the equivalence between the t and the F statistics with numerator 

degrees of freedom 1, the F-test is used instead of the t-test here so that test statistics 

presented here could be extended to more general situations. 

Several approaches to determine the denominator degrees of freedom in the F-test have 

been proposed. First, we could consider KN − as the denominator degrees of freedom in 

the F-distribution to lower the inflated test size (Mancl and Derouen, 2001). Therefore, 

under the hypothesis 0:0 =βH  the usual Wald test statistic has the distribution  

�

2

2 1,
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W F
β

β
−=      (5.25) 

Approach 3. 
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Fay and Graubard (2001) proposed an approximate denominator degrees of freedom in 

the F-distribution by taking account of the variability in the sandwich estimator. 

Extending their approach to ordinal data, the robust Wald test statistic under 0:0 =βH  

has an F distribution  
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W F
β

β
= ,   (5.26) 

where the denominator degrees of freedom in (5.26), d  is estimated by a function of the 

variance of the sandwich estimator. Here we give its principle estimating procedures. 
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the numerator in the Wald test statistic (5.34) has the form  
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We assume the term ijMUVC'  has mean 0 and the variance 
2

ijφ . Fay and Graubard (2001) 

showed that 
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as ∞→N  . Substituting (5.27) into (5.28), the numerator in the Wald statistic of (5.26) 

has an asymptotic chi-square distribution with 1 degree-of-freedom. That is,  
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Moreover, Fay and Graubard (2001)  showed that the denominator term in the Wald 

statistic also has an asymptotic chi-square distribution. Let ]',...',...,','[
221211 nij UUUUU =  

be a 1×KN  vector, M  a NKNK ×  block diagonal matrix with ijth block equal to 

MM VCCV ' , 'FVIG MKN Ω−=  assuming 
KI  an KK ×  identity matrix, 

]',...,,[ KKK IIIF =  a KKN ×  matrix, and 

]'',...,',...','[
222 2

1

22

1
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1111 nnnijijij DVDDVDDVDDVD
−−−−=Ω  a KKN ×  matrix. Fay and 

Graubard (2001) showed that  
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where  

)''(

)}'({ 2

MGGMGGtrace

MGGtrace
d

ΓΓ

Γ
=    (5.31) 

and Γ  denotes the estimated covariance matrix with block diagonal (

22 2212121111 ',...,',' nn UUUUUU ).  

 

Approach 4. 

Alternatively, Pan and Wall (2002) proposed a more general approach to estimate the 

approximate F-distribution by taking account of the variability of the sandwich estimator. 

Extending their approach to ordinal data, the robust Wald test statistic under 0:0 =βH

has an F distribution  
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where the denominator degrees of freedom in (5.40), d ′  is used to distinguish to the 

denominator degrees of freedom d in (5.26). Next we give principle estimating 

procedures of d ′  in (5.32).  

Following Pan and Wall (2002), we defined the symbol ⊗  as the Kronecker product of 

two matrices, and )(Uvec  as an operation which stacks the columns of U below one 

another. Denote the middle part of  
RV  as 
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and the empirical covariance estimator 
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Following Pan and Wall (2002),  
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and its corresponding covariance matrix is 
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MMMMR VVGVVNVvec ⊗⊗= .    (5.33) 

The estimated variance of � ˆvar ( )R β  , denoted as 
2τ̂ , is the ),(

22
KK  element in 

))(cov( RVvec .  



87 

 

 

 

Let the mean and variance of � ˆvar ( )R β  be 
Rµ  and 

2

Rσ  respectively. Pan and Wall (2002) 

showed that� ˆvar ( )R β  has an approximate chi-square distribution  
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Combining (5.34) and (5.35), Pan and Wall (2002) built an F statistic in the form of 
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It is interesting to note that the resulting test statistic is exactly the same as the usual 

Wald test statistic. Consequently, under 0:0 =βH  the Wald test statistic has an 

approximate F distribution,  
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where 'd  is approximated by 

�
2

2ˆ ˆ ˆ' 2var ( ) /Rd β τ= . 

Approach 5. 
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Combining degrees-of-freedom adjusted approaches 1 and 2 (i.e., equations 5.24 and 

5.25), we derive the Wald test statistic for the hypothesis 0:0 =βH  given by 
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5.3 Adjustments to the score test 

Guo et al. (2005) reported that in contrast to the liberal behaviour of the Wald test, the 

score test tends to have a smaller test size than the nominal level.  They further developed 

a simple modification to correct this conservative performance of the score test. In this 

section we adapt their approach to correlated ordinal outcomes. 

In the robust score statistic (4.18), both the )0(

~
T  term and the )ˆ(r~va βR

 term are based on 

the calculation of ijU  and this correlation may cause the conservative performance of the 

robust score test. However, the correlation can be reduced by using the sample variance 

estimator, 
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Consequently, the modified score test statistic for the hypothesis 0:0 =βH is given by 
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When the total number of clusters N is large, the modified score test statistic in (5.38) is 

similar to the regular score statistic in (4.18). When N is small, the factor 1/ −NN  

reduces the conservativeness of the regular score statistic. 

5.4 Summary 

In this chapter, we derived small-sample corrections and modifications of GEE for 

clustered ordinal outcome data. In particular, we presented five bias-corrected 

approaches, four degrees-of-freedom-adjusted approaches for the Wald test, and one 

modified score test. Their performance will be evaluated by simulation in chapter. 



90 

 

 

 

  Chapter 6

 Simulation Study: Design 6

6.1 Introduction 

In previous chapters we described statistical approaches for analyses of clustered ordinal 

outcome data. In this chapter, we outline a simulation study to evaluate the performance 

of these approaches.  

There are two primary objectives. One is to evaluate the accuracy and efficiency of the 

ANOVA and kappa-type ICC estimators in terms of bias and standard errors. The other is 

to investigate the 19 test statistics in terms of Type I error and power. These test statistics 

were presented in the previous chapters, including three direct-adjusted Cochran-

Armitage test statistics described in Chapter 3, one GEE model-based, one GEE robust 

Wald test and one GEE robust score statistic from marginal extensions of proportional 

odds models, one test statistic from random-effect proportional odds models (i.e., cluster-

specific model), one t test statistic from random-effect linear models, and 11 modified 

GEE test statistics discussed in chapter 5.  

The rest of the chapter is organized as follows. A detailed discussion of the parameters 

used to define the study is given in section 6.2. The methods used to generate the data are 

presented in section 6.3. Finally, the statistics being evaluated are reviewed in section 6.4. 

The design of the simulation study follows the guidelines proposed by Burton et al. 

(2006). 

6.2 Parameters used in simulation 

The performance of statistical methods considered in this study may depend on the values 

of the following parameters: the number of clusters per group, cluster sizes, variation in 

cluster size, the correlation structure among the observations within the same cluster, and 

proportion of observations falling into each category. These parameters are discussed as 

follows. 
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Ordinal outcomes with three categories are most commonly used in health related studies 

(see Table 1.1). We therefore restrict our attention to clustered ordinal outcome data with 

three categories.  

As discussed in chapter 1, our interest focuses on community intervention trials since 

most statistical challenges are posed by trials involving a small number of large clusters. 

For example, we will investigate the performance of the GEE approach when the total 

number of clusters is less than 40. Furthermore, attention is limited to equal numbers of 

clusters for each group, with == nni 10 and 20 clusters per group. This decision reflects 

typical practice in cluster randomization trials (e.g., Klar, 1993, p175; Zou, 2002, p64 ). 

Zou et al. (2005) chose 120 as one of the mean cluster sizes for community intervention 

trials in their study, corresponding to the mean cluster size in trials reported by Murray et 

al. (1992). In our example data, the mean cluster size is 57. For our simulation study, we 

selected mean cluster sizes of 50 and 120.   

There tends to be considerable variability in cluster size in most cluster randomization 

trials. The variability of cluster sizes may be measured by an imbalance parameter λ , 

denoted by 

21

1

CV+
=λ          (6.1) 

where CV  is the coefficient of variation of the cluster sizes. The parameter λ  is equal to 

one if there is no variability in cluster size and decreases as the imbalance degree in 

cluster size increases. A value of 8.0=λ  was found using data from community 

intervention studies reported by Murray et al. (1992), Villar et al. (2001) , Zou et al. 

(2005) and the Television School and Family Smoking Prevention and Cessation Project 

(TVSFP) study (Flay, et al., 1988). Aside from 8.0=λ , we also included the case 1=λ  

since the ANOVA and kappa-type ICC estimators investigated in this simulation are 

asymptotically equivalent when the cluster sizes are constant and the number of clusters 

is large (see section 2.4.3). 
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Campbell et al. (2005) calculated 220 ANOVA ICCs from 21 datasets and reported a 

range from 0 to 0.415 with median 0.048. It is known that the ICC value for community 

intervention trials is much smaller than that for family-type trials. Thus, Hannan et al. 

(1994) reported that the ICC estimators in his community intervention trial ranged from 

0.002 to 0.120 for heart disease risk factors. Donner and Klar (1996) and Zou et al. 

(2005) selected 0.005 and 0.01 as ICC values representing community type trials in their 

studies. Correspondingly, we set 005.0=ρ  and 0.01 in this simulation. We also included 

the case 0=ρ , where outcome data are independent, as a benchmark against which to 

evaluate the impact of clustering. 

The intervention effect was measured using the log cumulative odds ratio in this study. 

The cumulative odds ratio θ  was chosen as 1.1 and 1.5 for power comparisons as in 

previous studies (Donner and Donald, 1987; Zhang, 2009). In this simulation study, we 

consider  2.1=θ  for the power comparisons and 1=θ  for the Type I error comparisons, 

equivalent to 0.079 and 0 in terms of log odds ratio respectively. In addition, the 

probabilities of subjects falling into the three categories are close to (0.2, 0.3, 0.5) in the 

example data (TVSFP). To resemble the example data, we set the expected probabilities 

in the intervention group, ),,( 321 πππ , as (0.2, 0.3, 0.5). As such, the corresponding 

expected probabilities in the control group are (0.23, 0.31, 0.46) and (0.2, 0.3, 0.5) 

respectively, corresponding to 2.1=θ  and 1=θ . 

There were 48 parameter combinations used in this simulation. For each parameter 

combination, we generated 1000 independent sets of clustered ordinal data. For each data 

set, we simulated data for the intervention and control group separately. To reach 1000 

replicates, any iteration where iterative procedures failed to converge was replaced by 

additional data. The full set of parameter values used in this simulation is summarized in 

Table 6.1. 
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Table 6.1: Simulation parameters for cluster randomization simulation study 

Parameters Values 

Number of ordinal categories ( K ) 3 

Number of clusters per group ( nnn == 21
) 10, 20 

Mean cluster size ( µ ) 50, 120 

Imbalance degree ( λ ) 0.8, 1 

ICC ( ρ ) 0, 0.005, 0.01 

Probabilities in the intervention group ),,( 321 πππ  (0.2, 0.3, 0.5) 

Cumulative odds ratio (θ ) 1, 1.2 

 

6.3 Generation of data 

6.3.1 Cluster sizes 

Three general approaches for generating variable cluster sizes have been used in the 

literature. The simplest approach is to pre-specify cluster sizes for simulation. For 

example, in Mancl and Derouen (2001)’s simulation study evaluating their bias-corrected 

GEE approach, they set 16, 32, or 64 observations in each cluster in order to correspond 

to a study with 4, 8, or 16 tooth sites in each of the four quadrants of the mouth.  

An alternative approach is to assume an empirical distribution of cluster sizes which 

could be obtained from earlier studies. For instance, Kupper et al. (1986) presented a 

distribution of cluster sizes (i.e., mouse litters) applicable to dose response modelling in 

teratologic studies, also used by Ridout et al. (1999) in their simulation study. However, 

this approach does not allow the average cluster size and the degree of imbalance to be 

varied.  

Donner and Koval (1987) used a more technically sophisticated approach to generate 

cluster sizes, combining the advantages of the above two approaches. They generated 

cluster sizes from a negative binomial distribution truncated below one. This approach 

specifies both the mean cluster size and the degree of imbalance while not restricting the 

clusters to a few pre-selected sizes. The probability function of the truncated negative 

binomial distribution generating cluster sizes ijm is given by 
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Here the values of ( PR, ) in (6.2) can be obtained by solving the following nonlinear 

equations corresponding to the mean and imbalance parameters: 
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µ       (6.3) 

and 

RPP ++
=

1

µ
λ    (6.4) 

respectively. Then various cluster sizes ijm  can be generated from the truncated negative 

binomial distribution (6.2) determined by µ  and λ .  

Since the lower bound of cluster sizes for the truncated negative binomial distribution in 

equation (6.2) is 1, this approach may yield cluster sizes which are equal or close to 1. 

However, the minimum cluster size of a community intervention trial is much greater 

than 1. As such, Zou et al. (2005) used the discrete uniform distribution to generate 

cluster sizes for community intervention trials. In this simulation study we chose the 

discrete uniform distribution to generate cluster sizes.  

The probability function of the uniform distribution ),( ul mmU  has the form 

,
1

1
)(

+−
=

lu

ij
mm

mP ullij mmmm ,...,1, +=     (6.5) 

with mean 

2/)( ul mm +=µ         (6.6) 

and variance 
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12/)2)((2 +−−= lulu mmmmσ .       (6.7) 

One can determine the values of ( ul mm , ) by solving equations (6.6) and (6.7) given µ  

and σ  which could be derived by equation (6.1). Then various cluster sizes could be 

generated from the uniform distribution defined in equation (6.5) determined by the 

respective mean cluster size and imbalance parameters µ  and λ .  

The resulting data are then restricted in range with lower bound lm  and upper bound um . 

Therefore, the values of the simulated cluster sizes fall into the suitably chosen range of (

ul mm , ). We list values of  ( ul mm , ) in Table 6.2 corresponding to the values of µ  and λ  

presented in Table 6.1. When λ =1, the trial has fixed cluster sizes equal to µ . 

Table 6.2: Values of simulation parameters (m,m) corresponding to given (µ,λ) 

µ  λ  σ  
lm  um  

50 0.8 25 7.2 92.8 

120 0.8 60 16.6 223.4 

 

6.3.2 Generating clustered ordinal outcome data 

The multivariate normal distribution has been widely used to generate correlated 

categorical data. For example, Jung and Kang (2001) generated clustered ordinal data by 

generating multivariate normal data with correlation parameter ρ  and then discretizing 

the data using appropriate cut-off values.  

In addition, Gange (1995) proposed a procedure for generating multivariate categorical 

outcomes using an iterative proportional fitting algorithm. However, his approach needs 

specification of the joint distribution and higher order associations, and requires an 

iterative procedure to fit the corresponding log-linear models. Also, Biswas (2004) 

developed algorithms to generate correlated ordinal outcomes for some specific 

correlation structures. However, generalizations of his algorithms to other correlation 
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structures are doubtful. Moreover, the algorithm itself lacks practical meaning, and 

Biswas (2004) did not provide evaluations for his approach using simulation.  

Demirtas (2006) proposed a method for generating multivariate ordinal outcomes with 

specified marginal distribution and correlation structure. His method relies on simulating 

correlated binary outcomes as an intermediate step and then converting them to correlated 

ordinal outcomes. However, it is computationally burdensome as it requires iterative 

procedures to compute the proper correlations for binary data.  

Correlated ordinal outcome data may also be generated from cluster-specific models. 

However, the odds ratios from a mixed effects model are larger on average as they are 

estimating a different (larger) parameter compared to those from marginal models (e.g., 

Ten Have et al., 1996). Since we are primarily interested in examining the statistical 

properties of marginal models (e.g., GEE), a marginal model was used to simulate 

clustered ordinal outcome data in this study.  

In particular, correlated binary data may be generated from the beta-binomial distribution 

(e.g., Donner and Klar, 1996; Donner et al., 1994; Bellamy et al., 2000). This simple 

method could be extended to generate correlated ordinal data by using a dirichlet-

multinomial distribution (e.g., Tsou and Shen, 2008; Lui et al., 1999). This simplicity can 

be obtained since attention here has been limited to trials where responses of all cluster 

members are assumed to be equally correlated with a single cluster-level covariate (i.e., 

intervention vs. control). Therefore, we simulated clustered ordinal outcome data from a 

Dirichlet-multinomial distribution in this study.  

In the remainder of this section we describe the Dirichlet-multinomial distribution and its 

use in generating correlated ordinal outcomes. 

Let ),,( 321 ijijijij YYYY =  be the vector of counts for the ijth cluster, where ijkY  denotes the 

number of subjects in the ijth cluster falling into the kth category. Let ),,( 321 ijijijij PPPP = , 

where ijkP  is the probability of a subject in the ijth cluster falling into the kth category. To 
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account for the variation between clusters, we further assume that ),,( 321 ijijijij PPPP =  are 

from a Dirichlet distribution of the form 

1

3

1

2

1

1

321

321 321

)()()(

)( −−−

ΓΓΓ

++Γ θθθ

θθθ

θθθ
ijijij PPP ,      (6.8) 

where 0>kθ . Then given ijP , ordinal outcomes ),,( 321 ijijijij YYYY =  have a trinomial 

distribution with parameters ijm  and ijP . Consequently, the resulting data has a Dirichlet-

trinomial distribution of the form 

)()()()(!!!

)()()()(!
),,(

321321321

332211321

321
θθθθθθ

θθθθθθ

ΓΓΓ+++Γ

+Γ+Γ+Γ++Γ
=

ijijijij

ijijijij

ijijij
mYYY

YYYm
YYYP .    (6.9) 

In equation (6.8), the mean of ijkP  is given by 

)/()( 321 θθθθπ ++== kkijkPE      (6.10) 

and the constant ICC is of the form 

ρ  = )1/(1 321 θθθ +++ .       (6.11) 

Therefore, we can determine the values of ( 321 ,, θθθ ) given the values of kπ  and ρ  by 

solving equations (6.10) and (6.11).  

In summary, the data generation in this study may be described by the following steps: 

1. Set up the values of the mean cluster size µ and imbalance parameter λ ; 

2. Generate various cluster sizes ijm from the uniform distribution (6.5); 

3. Given ),,( 321 πππ  and ρ , calculate values of  ( 321 ,, θθθ )  through equations 

(6.10) and (6.11); 

4. Generate proportions ),,( 321 ijijij PPP  from a Dirichlet distribution in (6.8) with 

parameters ( 321 ,, θθθ )  for each cluster; 
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5. Generate correlated ordinal outcomes ),,( 321 ijijij YYY  from a multinomial 

distribution with parameters ijm and ),,( 321 ijijij PPP  for each cluster. 

6.4 Evaluation measures 

The evaluation measures used to compare the performance of the proposed approaches 

were computed as following:  

1) Average value of estimates; 

2) Relative bias computed as the deviation of the average observed value from the 

true value (parameter) divided by the true value . Positive relative bias represents an 

overestimate of the parameter and negative bias represents an underestimate of the 

parameter. The relative bias is not applicable for the ICC estimate when its true value 

is set as zero. 

3) The standard errors of estimated regression coefficients (log odds ratio) were 

computed as the empirical standard error of 1000 estimate values. Note that the 

standard error of estimated regression coefficients (log odds ratio) from GEE 

extensions of ordinal logistic regression is obtained from the sandwich estimator. 

4) The type I error rate was calculated as the proportion of simulation samples 

generated under the null hypothesis which have p-values less than or equal to the 

nominal 5% significance level. 

5) The statistical power was calculated as the proportion of simulation samples 

generated under the alternative hypothesis which have p-values less than or equal to 
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the nominal 5% significance level, given that the corresponding test statistic provides 

a valid type I error rate. 

Since 1000 iterations were used, the approximate 95% confidence interval for a five 

percent rejection rate is (0.031, 0.069). Therefore, the statistical test is overly 

conservative for type I error rates less than 0.03, and overly liberal for type I error rates 

greater than 0.07 (Bradley, 1978). Power comparisons were limited to those test statistics 

with valid type I error rates.  

6.4.1 Investigation of the ICC estimators 

In this objective, we evaluated properties of the ANOVA and kappa-type ICC estimator. 

Both spaced scores (i.e., 3,2,1 ) and midrank scores were considered in calculating the 

ICC estimators, as summarized in Table 6.3. The subscript ‘M’ denotes the ICC estimator 

calculated by using midranks. In addition, since Cohen’s regular kappa κ̂  (Cohen, 1960) 

is also a frequently used statistic measuring the agreement of ordinal outcomes, we 

compared properties of κρ̂  and 
Aρ̂  to κ̂  as well. The ICC estimators, defined in Chapter 

2, are compared were listed in Table 6.3 in terms of the average, relative bias, range, and 

standard error.  

Since negative ICCs are generally considered implausible in the context of cluster 

randomization trials, negative ICC estimators are usually set to zero. In the present study, 

we also followed this practice.  

Table 6.3: ICC estimators evaluated in simulation study 

 

 

 

6.4.2 Evaluation of test statistics 

Adjusted Cochran-Armitage tests 

ICC estimator With scores 1,2,3 With midrank scores 

ANOVA ICC estimator 
Aρ̂  

)(
ˆ

MAρ  

Kappa-type ICC estimator 
κρ̂  

)(
ˆ

Mkρ  
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We evaluated the performance of three direct-adjusted Cochran-Armitage test statistics 

for clustered ordinal outcome data. Both κρ̂  and 
Aρ̂  were used as estimates of the ICC in 

the test statistics. In addition, since both equally-spaced score and midrank scores were 

considered for κρ̂  and 
Aρ̂ , adjusted Cochran-Armitage test statistics were also calculated 

using these two scoring schemes respectively. The twelve test statistics evaluated under 

this objective are listed in Table 6.4, and compared in terms of Type I errors and 

statistical power. 

As reviewed in section 1.5.1, Jung and Kang (2001) proposed another simple adjustment 

to the Cochran-Armitage test for clustered ordinal outcomes. We also compared adjusted 

Cochran-Armitage tests to Jung and Kang (2001)’s approach (i.e.,
 

2

Jχ  and 
2

)(MJχ ).  

Table 6.4: Adjusted Cochran-Armitage test statistics evaluated in simulation 

 With 
Aρ̂  With κρ̂  With )(

ˆ
MAρ  With )(

ˆ
Mkρ  

Adjusted Cochran-Armitage test (I) 
2

1Aχ  
2

1κχ  
2

)(1 MAχ  
2

)(1 Mκχ  

Adjusted Cochran-Armitage test (II) 
2

2Aχ  
2

2κχ  
2

)(2 MAχ  
2

)(2 Mκχ  

WLS Cochran-Armitage test 
2

3Aχ  
2

3κχ  
2

)(3 MAχ  
2

)(3 Mκχ  

 

Comparisons of model-based approaches 

Test statistics from marginal extensions of proportional odds regression models and 

mixed-effect proportional odds regression models (i.e., cluster-specific models) were 

compared in terms of type I error rates and power. In particular, marginal models were 

fitted by the GEE approach using an independent working correlation. Since mixed 

effects linear models are commonly used to fit clustered ordinal outcomes, we also 

compared marginal and cluster-specific models to random effects linear models, where 

the test statistic is the t-statistic expressed as the ratio of the parameter estimate to its 

standard error. The SAS procedures used in the above marginal, cluster-specific, and 

random effects linear models were PROC GENMOD, PROC NLMIXED, and PROC 

GLIMMIX respectively. The test statistics under this objective are listed as the first four 
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statistics in Table 6.5, denoted as 
MW , 

RW ,
2

CSχ , and LinearT
 
correspondingly. They were 

previously defined in Chapter 4.   

Table 6.5: Model-based test statistics evaluated in simulation study 

Test statistic Test name 

MW  Model-based Wald test statistic  

RW  Robust Wald test statistics  

RS  Robust score test statistic 

2

CSχ  Chi-square test statistic from cluster-specific models 

LinearT
 

T-test statistic from random effects linear model 

1BCW  Bias-corrected robust Wald test: Approach 1 

2BCW  Bias-corrected robust Wald test: Approach 2 

3BCW  Bias-corrected robust Wald test: Approach 3 

4BCW  Bias-corrected robust Wald test: Approach 4 

5BCW  Bias-corrected robust Wald test: Approach 5 

1dfW  Degrees-of-freedom-adjusted Wald test: Approach 1 

2dfW  Degrees-of-freedom-adjusted Wald test: Approach 2 

3dfW  Degrees-of-freedom-adjusted Wald test: Approach 3 

4dfW  Degrees-of-freedom-adjusted Wald test: Approach 4 

5dfW  Degrees-of-freedom-adjusted Wald test: Approach 5 

BCS  Modified robust score test 

 

In particular, we give special attention to the magnitudes of the regression coefficient 

estimate β̂  and its standard error in the marginal and cluster-specific models (Ten Have 

et al., 1996), as discussed in section 4.4. Note that the standard error of estimated 

regression coefficients (i.e., log odds ratios) from GEE extensions of ordinal logistic 

regression is obtained from the sandwich estimator. The estimates are listed in Table 6.6. 
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Table 6.6: Regression coefficient estimates and their standard errors from marginal 

and cluster-specific models 

Approaches Parameter estimate Standard errors 

Marginal models 
GEEβ̂  )ˆ( GEESE β  

Cluster-specific models 
CSβ̂  )ˆ( CSSE β  

 

Evaluation of small-sample adjustments to GEE 

Five bias-corrected and four degrees-of-freedom-adjusted approaches for the robust Wald 

test and one correction approach for the robust score test discussed in Chapter 5 were 

investigated. Therefore, including four model-based test statistics discussed previously 

(i.e., 
MW , 

RW , CSW , and LinearT ), a total of 16 model-based test statistics were compared 

and summarized in Table 6.5. They were previously defined in Chapter 5. 

6.5 Computation implementation 

All the computer programs for the simulation study were written in SAS V.9.2 (SAS 

Institute, Inc, Cary, NC) and run on a PC Workstation. Specifically, the methods of GEE, 

cluster-specific models, and random effects models were carried out with SAS 

procedures PROC GENMOD, PROC NLMIXED, and PROC GLIMMIX and 

correspondingly. 
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  Chapter 7

 Simulation Results 7

7.1 Introduction 

In Chapter 6 we described the design of the simulation study which was used to 

investigate and compare statistical approaches presented in earlier chapters. In this 

chapter, the results of this study are presented and tabulated in the order of objectives 

outlined in Section 6.4.  

In particular, there are five sections in this chapter. Section 7.2 compares the ANOVA, 

kappa-type ICC estimators, and Cohen’s (1960) regular kappa estimates in terms of 

relative bias and standard errors. Section 7.3 discusses the type I error rate and power of 

the adjusted Cochran-Armitage tests. The modelling tests from marginal extensions of 

proportional odds ratio models and mixed-effects ordinal regression models (i.e., cluster-

specific models) and their adjustments are discussed in Section 7.4. The bias of estimated 

regression coefficients as obtained from marginal and cluster-specific models and their 

standard errors are summarized in section 7.5. 

In previous studies, attention was given to convergence problems for the iterative 

procedures. However, there was no problem reaching convergence when running the 

computer programs in this simulation study, probably because the cluster sizes were 

large, i.e., 50 and 120. This conclusion is consistent with Zhang’s (2009) results. In her 

simulation study, the SAS procedure PROC GLIMMIX was used to fit the cluster-

specific models for clustered binary outcome data, and convergence problems only 

occurred when generating data in which the cluster size is 15, i.e., the smallest size used 

in the study. 

7.2 Estimation of Intracluster Correlation Coefficients 

Simulation results for the regular kappa estimator, two ANOVA ICC estimators, and two 

kappa-type ICC estimators are displayed in Table 7.1 through Table 7.12. The parameters 

of interest include the cumulative odds ratio θ, number of clusters from each group n, 
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mean cluster size µ , imbalance degree for cluster size λ  and intracluster correlation 

coefficient ρ . Each table displays the results for ICC estimators for each parameter 

combination. 

Overall, Cohen (1960)’s regular kappa estimator �� had the least number of negative 

values compared to the ANOVA estimators (��� and )(
ˆ

MAρ ) and kappa-type ICC 

estimators (��� and )(
ˆ

Mkρ ). In addition, all five estimators had less negative values for 

fixed clustered sizes than for variable cluster sizes.   

When cluster sizes were fixed (shown in Table 7.1 through Table 7.6), all four 

estimators	���, )(
ˆ

MAρ , ��� and )(
ˆ

Mkρ  had a similar number of negative estimates. However, 

when cluster sizes were variable (shown in Table 7.7 through Table 7.12), ��� and )(
ˆ

MAρ  

had a smaller number of negative estimators than ��� and )(
ˆ

Mkρ , with the difference 

between the numbers of negative values becoming larger when the cluster size µ or the 

number of clusters n increased. In addition, using midrank scores led to slightly less 

negative kappa-type estimators. 

In addition, negative ICC estimators are set to zero since negative ICCs are generally 

considered implausible in the context of cluster randomization trials. This practice may 

elevate the resulted average of ICC estimates. 

Simulation results after truncating the negative ICC estimators are displayed in the last 

two columns in Table 7.1 through Table 7.12. Overall, all ICC estimators were closer to 

the true values when either cluster sizes or the number of clusters become large. To be 

more specific, kappa-type estimators were more close to the true values than ANOVA 

estimators when cluster sizes were fixed and small. Conversely, ANOVA ICCs had 

relatively smaller bias in the case of variable cluster sizes. In addition, using midrank 

scores yielded less biased estimators for kappa-type ICCs in the case of variable cluster 

sizes. The standard errors of the all ICC estimators (not shown) were approximately zero 

to three decimal places for most parameter combinations. 
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7.3 Adjusted Cochran-Armitage Tests 

In Chapter 3, we discussed three adjusted C-A tests for analysis of clustered ordinal data. 

In the case of fixed cluster sizes, all three test statistics provided equivalent results. We 

therefore only listed one simulation result for all three statistics. In contrast, for variable 

cluster sizes, we listed results for each of the three adjusted C-A statistics separately.  

As discussed in Section 6.2.4, for nominal level 0.05 the empirical rate will be regarded 

as satisfactory provided it lies in the range (3.1, 6.9)%. Overall power is discussed only 

for those tests which have acceptable Type I error. 

7.3.1 Type I Error rates 

Estimated type I error rates in the case of fixed cluster sizes presented in Table 7.13 show 

that all adjusted C-A test statistics maintain the nominal significance level of 5% 

reasonably well, with the type I error rates for variable cluster sizes listed in Table 7.14. 

The observed significance levels of 0.069 or higher and 0.031 or lower are highlighted. 

Overall, the three adjusted C-A tests produced similar type I error rates when using the 

same ICC estimator. However, when ρ = 0.01, the C-A tests using kappa-type estimators 

resulted in liberal type I error rates. Inversely, when ρ = 0 and µ = 120, the C-A tests 

using kappa-type estimators resulted in conservative type I error rates. In addition, tests 

using the ANOVA ICC estimators produced inflated type I errors when m = 50, n = 10 

and ρ = 0.01. 

7.3.2 Power 

Tables 7.15 and 7.16 present the statistical power results for the three adjusted C-A tests 

in the case of fixed cluster sizes and variable cluster sizes respectively. The evaluation of 

power is only sensible when the corresponding test statistic has a valid Type I error rate. 

Thus, the adjusted C-A tests at parameter combinations which showed liberal or 

conservative type I error rates were excluded.  

Overall, the power of adjusted C-A tests was consistently larger for data with fixed 

cluster sizes than for data with variable cluster sizes. Also, the power of the adjusted C-A 
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tests increased when cluster sizes and cluster numbers increased. Inversely, the power 

tended to decrease when the magnitude of the ICC increased.  

In particular, when cluster sizes are fixed, adjusted C-A tests using kappa-type ICC 

estimates have the greatest power. However, when cluster sizes are variable, the WLS C-

A tests (i.e., 
2

)(3 MAχ ) using ANOVA ICC estimates with midrank scores have the greatest 

power among the tests which are valid.  

7.4 Model-based Methods 

7.4.1 Type I Error Rates 

Tables 7.17 and 7.18 present the observed type I error rates of the modelling tests for 

fixed and variable cluster sizes respectively. Overall, the GEE model-based test MW  and 

GEE robust Wald test RW  tend to result in a liberal type I error rate, especially when the 

number of clusters is equal to 10. As expected, the liberal behaviors of GEE robust Wald 

tests were consistently improved by all GEE adjusted methods.  

For fixed cluster sizes, type I error rates for all adjusted methods maintained the nominal 

level for all parameter combinations. However, for variable cluster sizes, the rejection 

rates of the adjusted methods WBC2, WBC3, Wdf1, and Wdf2 were still high under most 

parameter combinations with n=10. In contrast, Wdf3 
and Wdf4 overcorrected the GEE 

robust Wald test and resulted in overly conservative type I errors under most parameter 

combinations. The adjustment methods WBC1, WBC4 and Wdf5 
showed fairly unbiased type 

I error rates at all parameter combinations investigated. 

The type I error rates of robust score tests were valid under all parameter combinations. 

The adjusted score tests tended to elevate them as expected. 

7.4.2 Power 

Tables 7.19 and 7.20 present the power of the modelling tests for fixed and variable 

cluster sizes respectively. Overall, the power of all tests tended to decrease when the 
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magnitude of the true ICCs increased. Conversely, the power tended to increase when the 

number of clusters and the cluster sizes became large. 

For fixed cluster sizes, the adjusted method WBC2 yielded the highest statistical power 

among the methods that were valid. For variable cluster sizes, however, the power of 

WBC1 was the greatest among the methods that were valid. 

7.5 Relationship between Marginal and Cluster-specific 
Models 

Table 7.21 and 7.22 show the estimated regression coefficients of the marginal and 

cluster-specific models and their corresponding standard errors. Under most parameter 

combinations, as expected, the absolute values of the marginal model coefficient 

estimates are smaller than the cluster-specific model coefficient estimates. The standard 

errors of estimates from the marginal models are also smaller than those from the cluster-

specific models. In particular, the discrepancy between estimates from the two models 

tends to increase when the fixed cluster size becomes larger. However, this trend does not 

hold for variable cluster sizes. 
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Table 7.1: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0, and fixed cluster size λ = 1 

Parameters Descriptive statistics 

Descriptive statistics 

(setting negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage of 

negative values 

Average 

(× 100) 

50 

10 

κ̂  -0.10 -1.21 1.66 0.59 0.14 

Aρ̂
 0.00 -1.52 2.38 0.54 0.27 

)(
ˆ

MAρ  0.00 -1.5 2.36 0.53 0.27 

κρ̂
 0.00 -1.37 2.15 0.54 0.24 

)(
ˆ

Mκρ  0.00 -1.35 2.18 0.53 0.24 

20 

κ̂  -0.04 -0.91 1.11 0.56 0.11 

Aρ̂
 0.02 -1.13 1.74 0.52 0.20 

)(
ˆ

MAρ  0.03 -1.14 1.73 0.52 0.20 

κρ̂
 0.02 -1.07 1.66 0.52 0.19 

)(
ˆ

Mκρ  0.02 -1.08 1.65 0.52 0.19 

120 

10 

κ̂  -0.04 -0.49 0.66 0.62 0.06 

Aρ̂
 0.00 -0.61 1.13 0.55 0.11 

)(
ˆ

MAρ  0.00 -0.61 0.99 0.53 0.11 

κρ̂
 0.00 -0.55 1.02 0.55 0.10 

)(
ˆ

Mκρ  0.00 -0.55 0.89 0.54 0.10 

20 

κ̂  -0.02 -0.36 0.45 0.57 0.05 

Aρ̂
 0.00 -0.5 0.97 0.55 0.08 

)(
ˆ

MAρ  0.00 -0.47 0.91 0.54 0.08 

κρ̂
 0.00 -0.48 0.92 0.55 0.07 

)(
ˆ

Mκρ  0.00 -0.44 0.86 0.54 0.07 
 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.2: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ 

= 0, and fixed cluster size λ = 1 

Parameters Descriptive statistics 

Descriptive statistics 

(setting negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage of 

negative values 

Average 

(× 100) 

50 

10 

κ̂  0.04 -1.15 2.26 0.49 0.21 

Aρ̂
 -0.02 -1.51 2.79 0.55 0.26 

)(
ˆ

MAρ  -0.01 -1.43 2.87 0.56 0.26 

κρ̂
 -0.02 -1.36 2.52 0.55 0.23 

)(
ˆ

Mκρ  -0.01 -1.29 2.62 0.56 0.23 

20 

κ̂  0.06 -0.96 1.61 0.45 0.16 

Aρ̂
 -0.03 -1.25 1.99 0.56 0.16 

)(
ˆ

MAρ  -0.03 -1.13 1.89 0.57 0.16 

κρ̂
 -0.03 -1.19 1.9 0.56 0.16 

)(
ˆ

Mκρ  -0.03 -1.07 1.81 0.57 0.16 

120 

10 

κ̂  0.10 -0.44 1.17 0.37 0.14 

Aρ̂
 0.02 -0.57 1.52 0.52 0.12 

)(
ˆ

MAρ  0.02 -0.58 1.49 0.53 0.12 

κρ̂
 0.01 -0.51 1.37 0.52 0.11 

)(
ˆ

Mκρ  0.01 -0.52 1.37 0.53 0.11 

20 

κ̂  0.11 -0.27 0.66 0.24 0.13 

Aρ̂
 -0.01 -0.49 0.77 0.53 0.07 

)(
ˆ

MAρ  -0.01 -0.49 0.73 0.54 0.07 

κρ̂
 -0.01 -0.46 0.73 0.53 0.07 

)(
ˆ

Mκρ  -0.01 -0.47 0.69 0.54 0.07 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.3: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0.005, and fixed cluster size λ = 1 

Parameters Descriptive statistics  

Descriptive statistics 

(setting negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage of 

negative values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.39 -0.22 -1.09 2.51 0.27 0.47 -0.07 

Aρ̂
 0.54 0.08 -1.54 4.34 0.29 0.66 0.31 

)(
ˆ

MAρ  0.54 0.09 -1.66 4.26 0.29 0.66 0.32 

κρ̂
 0.49 -0.03 -1.39 3.93 0.29 0.59 0.18 

)(
ˆ

Mκρ  0.49 -0.01 -1.49 3.83 0.29 0.60 0.20 

20 

κ̂  0.46 -0.09 -0.53 2.17 0.12 0.48 -0.05 

Aρ̂
 0.50 0.01 -0.78 2.87 0.20 0.55 0.11 

)(
ˆ

MAρ  0.51 0.02 -0.74 2.73 0.20 0.56 0.12 

κρ̂
 0.48 -0.04 -0.75 2.73 0.20 0.53 0.06 

)(
ˆ

Mκρ  0.49 -0.03 -0.69 2.61 0.20 0.53 0.07 

120 

10 

κ̂  0.43 -0.14 -0.35 1.34 0.01 0.44 -0.13 

Aρ̂
 0.49 -0.03 -0.50 2.22 0.12 0.51 0.01 

)(
ˆ

MAρ  0.48 -0.03 -0.53 2.28 0.13 0.50 0.01 

κρ̂
 0.44 -0.12 -0.45 2.00 0.12 0.46 -0.09 

)(
ˆ

Mκρ  0.44 -0.13 -0.48 2.07 0.13 0.45 -0.09 

20 

κ̂  0.46 -0.08 -0.13 1.21 0.01 0.46 -0.08 

Aρ̂
 0.50 0.00 -0.26 1.63 0.03 0.50 0.00 

)(
ˆ

MAρ  0.50 0.00 -0.23 1.57 0.03 0.50 0.00 

κρ̂
 0.47 -0.05 -0.25 1.55 0.03 0.48 -0.05 

)(
ˆ

Mκρ  0.47 -0.05 -0.22 1.49 0.03 0.48 -0.05 
 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.4: Properties of ICC estimators: based on 1000 simulations of trials with n clusters of size 

μ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ = 0.005, and fixed cluster 

size λ = 1 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative estimates 

to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.52 0.05 -0.93 2.69 0.20 0.57 0.15 

Aρ̂
 0.52 0.04 -1.54 3.82 0.27 0.63 0.26 

)(
ˆ

MAρ  0.52 0.04 -1.59 3.98 0.28 0.63 0.26 

κρ̂
 0.47 -0.06 -1.38 3.45 0.27 0.57 0.14 

)(
ˆ

Mκρ  0.47 -0.06 -1.43 3.60 0.28 0.57 0.14 

20 

κ̂  0.56 0.12 -0.59 2.15 0.07 0.57 0.14 

Aρ̂
 0.49 -0.02 -1.17 2.57 0.19 0.54 0.08 

)(
ˆ

MAρ  0.49 -0.03 -1.08 2.55 0.19 0.54 0.07 

κρ̂
 0.46 -0.07 -1.11 2.45 0.19 0.51 0.02 

)(
ˆ

Mκρ  0.46 -0.07 -1.03 2.40 0.19 0.51 0.02 

120 

10 

κ̂  0.54 0.08 -0.17 1.82 0.02 0.54 0.09 

Aρ̂
 0.48 -0.04 -0.46 2.43 0.13 0.50 -0.01 

)(
ˆ

MAρ  0.48 -0.03 -0.48 2.53 0.13 0.50 0.00 

κρ̂
 0.43 -0.14 -0.41 2.20 0.13 0.45 -0.10 

)(
ˆ

Mκρ  0.44 -0.13 -0.43 2.29 0.12 0.45 -0.10 

20 

κ̂  0.60 0.19 -0.08 1.51 0.00 0.60 0.19 

Aρ̂
 0.50 0.01 -0.39 1.56 0.04 0.51 0.01 

)(
ˆ

MAρ  0.50 0.00 -0.42 1.59 0.04 0.51 0.01 

κρ̂
 0.48 -0.04 -0.37 1.48 0.04 0.48 -0.04 

)(
ˆ

Mκρ  0.48 -0.05 -0.40 1.51 0.04 0.48 -0.04 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.5: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0.01, and fixed cluster size λ = 1 

Parameters Descriptive statistics of ICC estimators 

Descriptive statistics of 

ICC estimators after 

truncating negative 

estimates 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.86 -0.14 -0.69 3.42 0.09 0.88 -0.12 

Aρ̂
 1.04 0.04 -1.50 5.46 0.14 1.09 0.09 

)(
ˆ

MAρ

 
1.03 0.03 -1.35 6.14 0.14 1.08 0.08 

  κρ̂
 0.94 -0.06 -1.35 4.95 0.14 0.98 -0.02 

)(
ˆ

Mκρ

 
0.93 -0.07 -1.23 5.63 0.14 0.98 -0.02 

20 

κ̂  0.94 -0.06 -0.34 2.50 0.02 0.95 -0.05 

Aρ̂
 1.03 0.03 -0.48 3.49 0.05 1.04 0.04 

)(
ˆ

MAρ

 
1.03 0.03 -0.55 3.64 0.05 1.04 0.04 

κρ̂
 0.98 -0.02 -0.45 3.32 0.05 0.99 -0.01 

 )(
ˆ

Mκρ

 
0.98 -0.02 -0.52 3.40 0.05 0.99 -0.01 

120 

10 

κ̂  0.91 -0.09 -0.05 2.30 0.00 0.91 -0.09 

Aρ̂
 1.00 0.00 -0.32 3.61 0.02 1.01 0.01 

)(
ˆ

MAρ

 
1.01 0.01 -0.39 3.63 0.02 1.01 0.01 

κρ̂
 0.91 -0.09 -0.28 3.26 0.02 0.91 -0.09 

)(
ˆ

Mκρ

 
0.91 -0.09 -0.35 3.28 0.02 0.91 -0.09 

20 

κ̂  0.95 -0.05 0.14 2.20 0.00 0.95 -0.05 

Aρ̂
 0.98 -0.02 -0.15 2.60 0.00 0.98 -0.02 

)(
ˆ

MAρ

 
0.98 -0.02 -0.09 2.49 0.00 0.98 -0.02 

κρ̂
 0.93 -0.07 -0.14 2.47 0.00 0.93 -0.07 

)(
ˆ

Mκρ

 
0.94 -0.06 -0.08 2.37 0.00 0.94 -0.06 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.6: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ 

= 0.01, and fixed cluster size λ = 1 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative estimates 

to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.99 -0.01 -0.64 3.70 0.06 1.01 0.01 

Aρ̂
 1.01 0.01 -1.22 4.79 0.16 1.06 0.06 

)(
ˆ

MAρ  1.01 0.01 -1.12 4.51 0.16 1.06 0.06 

  κρ̂
 0.91 -0.09 -1.09 4.34 0.16 0.96 -0.04 

)(
ˆ

Mκρ  0.91 -0.09 -0.99 4.09 0.16 0.96 -0.04 

20 

κ̂  1.05 0.05 -0.33 3.37 0.01 1.05 0.05 

Aρ̂
 0.98 -0.02 -0.80 3.23 0.06 0.99 -0.01 

)(
ˆ

MAρ  0.98 -0.02 -0.90 3.48 0.06 1.00 0.00 

κρ̂
 0.93 -0.07 -0.76 3.08 0.06 0.95 -0.05 

)(
ˆ

Mκρ  0.94 -0.06 -0.84 3.31 0.06 0.95 -0.05 

120 

10 

κ̂  1.02 0.02 -0.14 2.82 0.00 1.02 0.02 

Aρ̂
 0.93 -0.07 -0.37 4.13 0.03 0.94 -0.06 

)(
ˆ

MAρ  0.94 -0.06 -0.39 4.02 0.03 0.94 -0.06 

κρ̂
 0.84 -0.16 -0.33 3.73 0.03 0.85 -0.15 

)(
ˆ

Mκρ  0.85 -0.15 -0.35 3.60 0.03 0.85 -0.15 

20 

κ̂  1.10 0.10 0.25 2.28 0.00 1.10 0.10 

Aρ̂
 1.01 0.01 -0.01 2.48 0.00 1.01 0.01 

)(
ˆ

MAρ  1.01 0.01 0.00 2.44 0.00 1.01 0.01 

κρ̂
 0.96 -0.04 -0.01 2.36 0.00 0.96 -0.04 

)(
ˆ

Mκρ  0.96 -0.04 0.00 2.33 0.00 0.96 -0.04 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.7: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  -0.12 -1.25 -1.41 1.48 0.63 0.13 -0.73 

Aρ̂
 -0.04 -1.07 -1.72 2.76 0.56 0.25 -0.50 

)(
ˆ

MAρ  -0.08 -1.16 -1.74 2.54 0.58 0.23 -0.54 

  κρ̂
 -0.06 -1.12 -7.83 8.01 0.53 0.90 0.79 

)(
ˆ

Mκρ  -0.04 -1.08 -6.33 6.07 0.53 0.74 0.48 

20 

κ̂  -0.06 -1.12 -0.93 1.08 0.59 0.10 -0.79 

Aρ̂
 -0.02 -1.04 -1.61 1.74 0.55 0.19 -0.63 

)(
ˆ

MAρ  -0.05 -1.09 -1.56 1.62 0.57 0.17 -0.65 

κρ̂
 0.05 -0.90 -4.87 6.12 0.50 0.69 0.37 

 )(
ˆ

Mκρ  0.03 -0.94 -3.87 4.93 0.51 0.56 0.13 

120 

10 

κ̂  -0.04 -1.07 -0.50 0.81 0.60 0.06 -0.89 

Aρ̂
 0.00 -1.00 -0.76 1.26 0.53 0.11 -0.78 

)(
ˆ

MAρ  -0.02 -1.04 -0.74 1.18 0.57 0.10 -0.80 

κρ̂
 0.04 -0.91 -5.06 9.51 0.50 0.57 0.14 

)(
ˆ

Mκρ  0.03 -0.94 -3.73 6.99 0.52 0.44 -0.11 

20 

κ̂  -0.02 -1.05 -0.38 0.42 0.60 0.04 -0.91 

Aρ̂
 -0.01 -1.01 -0.42 0.83 0.53 0.07 -0.85 

)(
ˆ

MAρ  -0.02 -1.03 -0.45 0.81 0.55 0.07 -0.86 

κρ̂
 -0.04 -1.08 -3.76 3.27 0.51 0.37 -0.25 

)(
ˆ

Mκρ  -0.03 -1.06 -2.94 2.74 0.51 0.29 -0.41 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.8: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ 

= 0, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative estimates 

to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.01 -0.98 -1.43 2.00 0.50 0.20 -0.61 

Aρ̂
 -0.01 -1.02 -1.79 2.71 0.54 0.26 -0.48 

)(
ˆ

MAρ  -0.06 -1.11 -2.02 2.99 0.56 0.24 -0.51 

κρ̂
 -0.04 -1.08 -8.41 6.67 0.51 0.92 0.83 

)(
ˆ

Mκρ  -0.05 -1.10 -6.78 6.09 0.52 0.76 0.52 

20 

κ̂  0.07 -0.86 -0.79 1.45 0.44 0.17 -0.66 

Aρ̂
 -0.01 -1.02 -1.52 1.73 0.53 0.18 -0.63 

)(
ˆ

MAρ  -0.03 -1.07 -1.52 1.56 0.56 0.17 -0.66 

κρ̂
 -0.08 -1.16 -5.21 5.98 0.54 0.62 0.24 

)(
ˆ

Mκρ  -0.08 -1.15 -4.18 5.46 0.53 0.52 0.03 

120 

10 

κ̂  0.08 -0.84 -0.55 1.25 0.38 0.13 -0.74 

Aρ̂
 0.00 -0.99 -0.77 1.19 0.53 0.11 -0.77 

)(
ˆ

MAρ  -0.02 -1.03 -0.76 1.28 0.56 0.11 -0.79 

κρ̂
 0.00 -1.00 -4.55 5.37 0.50 0.55 0.10 

)(
ˆ

Mκρ  0.00 -1.01 -3.63 4.27 0.50 0.45 -0.11 

20 

κ̂  0.12 -0.77 -0.28 0.66 0.24 0.14 -0.73 

Aρ̂
 0.01 -0.99 -0.53 0.86 0.50 0.08 -0.83 

)(
ˆ

MAρ  0.00 -1.01 -0.54 0.84 0.52 0.08 -0.84 

κρ̂
 0.03 -0.94 -3.44 2.90 0.50 0.39 -0.21 

)(
ˆ

Mκρ  0.02 -0.96 -2.91 2.53 0.49 0.32 -0.36 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.9: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0.005, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.36 -0.29 -1.48 3.29 0.28 0.43 -0.13 

Aρ̂
 0.47 -0.06 -1.73 4.91 0.32 0.61 0.21 

)(
ˆ

MAρ  0.42 -0.16 -1.62 4.87 0.34 0.58 0.15 

  κρ̂
 0.33 -0.34 -9.04 7.68 0.45 1.13 1.26 

)(
ˆ

Mκρ  0.36 -0.28 -7.17 6.72 0.44 0.98 0.96 

20 

κ̂  0.42 -0.15 -0.58 1.96 0.16 0.45 -0.10 

Aρ̂
 0.49 -0.03 -0.94 2.84 0.22 0.54 0.08 

)(
ˆ

MAρ  0.46 -0.07 -0.87 2.72 0.22 0.52 0.04 

κρ̂
 0.43 -0.14 -4.84 7.08 0.41 0.93 0.87 

)(
ˆ

Mκρ  0.43 -0.13 -4.09 6.10 0.40 0.81 0.63 

120 

10 

κ̂  0.44 -0.12 -0.35 1.69 0.01 0.45 -0.11 

Aρ̂
 0.51 0.01 -0.58 2.47 0.14 0.53 0.06 

)(
ˆ

MAρ  0.49 -0.02 -0.59 2.49 0.16 0.52 0.04 

κρ̂
 0.37 -0.25 -6.53 6.44 0.43 0.85 0.69 

)(
ˆ

Mκρ  0.39 -0.21 -4.52 4.90 0.40 0.72 0.45 

20 

κ̂  0.46 -0.07 -0.10 1.34 0.01 0.46 -0.07 

Aρ̂
 0.51 0.01 -0.25 1.55 0.04 0.51 0.02 

)(
ˆ

MAρ  0.50 -0.01 -0.30 1.55 0.04 0.50 0.00 

κρ̂
 0.45 -0.10 -2.93 4.18 0.34 0.70 0.41 

)(
ˆ

Mκρ  0.46 -0.08 -2.11 3.42 0.29 0.62 0.25 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.10: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ 

= 0.005, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative estimates 

to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.48 -0.03 -1.37 3.90 0.21 0.54 0.09 

Aρ̂
 0.46 -0.09 -1.81 3.70 0.32 0.59 0.18 

)(
ˆ

MAρ  0.42 -0.16 -1.90 3.86 0.33 0.57 0.14 

  κρ̂
 0.37 -0.27 -7.85 13.72 0.43 1.14 1.28 

)(
ˆ

Mκρ  0.38 -0.23 -6.48 10.45 0.42 1.01 1.02 

20 

κ̂  0.56 0.12 -0.62 2.07 0.07 0.57 0.14 

Aρ̂
 0.50 0.01 -1.03 3.14 0.20 0.55 0.11 

)(
ˆ

MAρ  0.48 -0.04 -0.97 3.14 0.21 0.54 0.07 

κρ̂
 0.46 -0.08 -5.62 7.01 0.40 0.95 0.90 

)(
ˆ

Mκρ  0.47 -0.05 -4.82 6.11 0.38 0.86 0.73 

120 

10 

κ̂  0.55 0.10 -0.26 2.44 0.03 0.55 0.11 

Aρ̂
 0.52 0.04 -0.68 2.44 0.12 0.54 0.07 

)(
ˆ

MAρ  0.50 0.00 -0.68 2.63 0.13 0.52 0.04 

κρ̂
 0.56 0.11 -4.22 6.32 0.36 0.91 0.82 

)(
ˆ

Mκρ  0.54 0.08 -3.49 4.80 0.33 0.80 0.61 

20 

κ̂  0.58 0.15 -0.13 1.54 0.01 0.58 0.15 

Aρ̂
 0.51 0.01 -0.32 1.79 0.05 0.51 0.02 

)(
ˆ

MAρ  0.49 -0.01 -0.36 1.82 0.06 0.50 0.00 

κρ̂
 0.49 -0.01 -4.24 4.31 0.33 0.74 0.48 

)(
ˆ

Mκρ  0.49 -0.01 -3.40 3.83 0.29 0.67 0.34 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.11: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1, intracluster correlation ρ = 

0.01, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.86 -0.14 -0.91 3.16 0.10 0.88 -0.12 

Aρ̂
 1.02 0.02 -1.38 5.87 0.17 1.08 0.08 

)(
ˆ

MAρ  0.97 -0.03 -1.42 6.30 0.19 1.05 0.05 

  κρ̂
 0.93 -0.07 -8.12 14.54 0.37 1.57 0.57 

)(
ˆ

Mκρ  0.94 -0.06 -6.55 12.02 0.35 1.41 0.41 

20 

κ̂  0.90 -0.10 -0.35 2.69 0.02 0.91 -0.09 

Aρ̂
 0.97 -0.03 -0.75 3.64 0.07 0.98 -0.02 

)(
ˆ

MAρ  0.95 -0.05 -0.87 3.75 0.07 0.97 -0.03 

κρ̂
 0.91 -0.09 -5.80 7.25 0.33 1.30 0.30 

)(
ˆ

Mκρ  0.93 -0.07 -4.51 6.22 0.28 1.20 0.20 

120 

10 

κ̂  0.88 -0.12 -0.08 2.38 0.00 0.88 -0.12 

Aρ̂
 0.98 -0.02 -0.46 3.26 0.03 0.99 -0.01 

)(
ˆ

MAρ  0.96 -0.04 -0.50 3.42 0.04 0.96 -0.04 

κρ̂
 0.81 -0.19 -4.08 8.13 0.32 1.18 0.18 

)(
ˆ

Mκρ  0.84 -0.16 -3.02 5.65 0.27 1.07 0.07 

20 

κ̂  0.95 -0.05 0.17 2.06 0.00 0.95 -0.05 

Aρ̂
 1.00 0.00 -0.06 2.75 0.00 1.00 0.00 

)(
ˆ

MAρ  0.98 -0.02 -0.11 2.76 0.00 0.98 -0.02 

κρ̂
 0.97 -0.03 -3.56 4.61 0.23 1.13 0.13 

)(
ˆ

Mκρ  0.96 -0.04 -2.29 4.22 0.16 1.05 0.05 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.12: Properties of ICC estimators: based on 1000 simulations of trials with n 

clusters of size µ per group, cumulative odds ratio θ = 1.2, intracluster correlation ρ 

= 0.01, and variable cluster size λ = 0.8 

Parameters Descriptive statistics  

Descriptive 

statistics (setting 

negative 

estimates to zero) 

µ  n  
1ρ  

Average 

(× 100) 

Relative 

bias 

Minimum 

(× 100) 

Maximum 

(× 100) 

Percentage 

of negative 

values 

Average 

(× 100) 

Relative 

bias 

50 

10 

κ̂  0.96 -0.04 -1.31 4.06 0.09 0.98 -0.02 

Aρ̂
 0.98 -0.02 -1.38 5.29 0.18 1.05 0.05 

)(
ˆ

MAρ  0.93 -0.07 -1.42 5.14 0.19 1.01 0.01 

  κρ̂
 0.94 -0.06 -8.24 10.83 0.37 1.53 0.53 

)(
ˆ

Mκρ  0.93 -0.07 -7.06 10.05 0.35 1.40 0.40 

20 

κ̂  1.07 0.07 -0.30 2.87 0.01 1.07 0.07 

Aρ̂
 1.02 0.02 -0.83 3.86 0.06 1.04 0.04 

)(
ˆ

MAρ  0.99 -0.01 -0.76 3.73 0.07 1.01 0.01 

κρ̂
 0.97 -0.03 -7.76 8.38 0.31 1.33 0.33 

)(
ˆ

Mκρ  0.95 -0.05 -6.88 7.28 0.29 1.24 0.24 

120 

10 

κ̂  1.01 0.01 -0.25 2.69 0.00 1.01 0.01 

Aρ̂
 1.00 0.00 -0.88 4.18 0.05 1.00 0.00 

)(
ˆ

MAρ  0.98 -0.02 -0.75 5.34 0.01 0.98 -0.02 

κρ̂
 0.91 -0.09 -5.80 6.21 0.29 1.22 0.22 

)(
ˆ

Mκρ  0.92 -0.08 -4.93 5.57 0.25 1.13 0.13 

20 

κ̂  1.06 0.06 0.21 2.23 0.00 1.06 0.06 

Aρ̂
 0.97 -0.03 -0.09 2.61 0.00 0.97 -0.03 

)(
ˆ

MAρ  0.96 -0.04 -0.10 2.71 0.00 0.96 -0.04 

κρ̂
 0.91 -0.09 -2.56 4.56 0.24 1.05 0.05 

)(
ˆ

Mκρ  0.91 -0.09 -2.07 4.06 0.19 0.99 -0.01 

1
 ICC estimators κ̂ , Aρ̂

, )(
ˆ

MAρ , κρ̂ , and )(
ˆ

Mκρ  were denoted in Section 6.4.1 and Table 

6.3. 
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Table 7.13: Type I error rates of adjusted Cochran-Armitage test statistics1: based on 1000 simulations of trials with n clusters 

of size µ per group, cumulative odds ratio θ, intracluster correlation ρ, and fixed cluster sizes (overly liberal or conservative 

type I error rates are in bold font) 

Parameters Adjusted test statistics
1
 

µ  n  ρ  
2

1Aχ
 

2

1κχ
 

2

Jχ
 

2

)(1 MAχ  
2

)(1 Mκχ  
2

)(MJχ  

50 

10 

0 0.046 0.047 0.061 0.048 0.048 0.056 

0.005 0.050 0.051 0.051 0.047 0.048 0.051 

0.01 0.056 0.058 0.047 0.050 0.053 0.050 

20 

0 0.033 0.034 0.040 0.031 0.032 0.036 

0.005 0.051 0.052 0.052 0.051 0.054 0.049 

0.01 0.047 0.047 0.044 0.044 0.046 0.041 

120 

10 

0 0.042 0.044 0.047 0.038 0.038 0.048 

0.005 0.059 0.065 0.051 0.053 0.056 0.050 

0.01 0.056 0.058 0.045 0.052 0.058 0.044 

20 

0 0.044 0.044 0.056 0.049 0.049 0.061 

0.005 0.051 0.051 0.046 0.052 0.053 0.045 

0.01 0.054 0.057 0.051 0.056 0.058 0.050 
 

1
 Adjusted test statistics 

2

1Aχ , 
2

1κχ , 
2

Jχ
,

2

)(1 MAχ , 
2

)(1 Mκχ , and 
2

)(MJχ were denoted in Section 6.4.2 and Table 6.4, 

and negative ICC estimators in the calculation of adjusted test statistics were set to zero 
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Table 7.14: Type I error rates of adjusted Cochran-Armitage test statistics1: based on 1000 simulations of trials with n clusters 

of size µ per group, intracluster correlation ρ, and variable cluster size λ = 0.8 (overly liberal or conservative type I error rates 

are in bold font) 

Parameters Adjusted test statistics
1
 

µ  n  ρ  2

1Aχ  
2

2Aχ  
2

3Aχ  2

1κχ  
2

2κχ  
2

3κχ  
2

)(1 MAχ  
2

)(2 MAχ  
2

)(3 MAχ  
2

)(1 Mκχ  
2

)(2 Mκχ  
2

)(3 Mκχ  
2

Jχ  
2

)(MJχ  

50 10 

0 0.046 0.046 0.046 0.041 0.041 0.041 0.046 0.046 0.046 0.036 0.036 0.036 0.059 0.058 

0.005 0.05 0.05 0.051 0.057 0.057 0.058 0.056 0.056 0.056 0.06 0.06 0.06 0.058 0.058 

0.01 0.074 0.074 0.077 0.077 0.077 0.078 0.071 0.071 0.073 0.073 0.073 0.076 0.06 0.058 

 20 

0 0.044 0.044 0.044 0.034 0.034 0.034 0.042 0.042 0.044 0.032 0.032 0.032 0.054 0.052 

0.005 0.06 0.06 0.06 0.051 0.051 0.053 0.071 0.071 0.072 0.062 0.062 0.064 0.061 0.065 

0.01 0.06 0.06 0.062 0.071 0.071 0.071 0.052 0.052 0.055 0.057 0.057 0.059 0.057 0.049 

120 

10 

0 0.04 0.04 0.042 0.025 0.025 0.025 0.043 0.043 0.045 0.032 0.032 0.032 0.053 0.056 

0.005 0.057 0.057 0.057 0.064 0.064 0.064 0.056 0.056 0.058 0.063 0.063 0.063 0.048 0.045 

0.01 0.062 0.062 0.067 0.104 0.104 0.106 0.058 0.059 0.064 0.094 0.094 0.095 0.047 0.044 

20 

0 0.042 0.042 0.042 0.03 0.03 0.03 0.043 0.043 0.045 0.031 0.031 0.032 0.05 0.053 

0.005 0.054 0.054 0.06 0.069 0.069 0.069 0.061 0.061 0.063 0.07 0.07 0.071 0.055 0.052 

0.01 0.048 0.048 0.053 0.082 0.082 0.083 0.051 0.051 0.054 0.077 0.077 0.078 0.04 0.041 
 

1
 Adjusted test statistics were denoted in Section 6.4.2 and Table 6.4, and negative ICC estimators in the calculation of adjusted 

test statistics were set to zero. 



122 

 

 

 

Table 7.15:  Power of adjusted Cochran-Armitage test statistics: based on 1000 simulations of trials with n clusters of size µ 

per group, intracluster correlation ρ, and fixed cluster size λ = 1 

Parameters Adjusted test statistics
1
 

µ  n  ρ  2

1Aχ  
2

1κχ  
2

Jχ  2

1Aχ ′  
2

1κχ ′  
2

Jχ ′  

50 

10 

0 0.305 0.307 0.325 0.300 0.306 0.326 

0.005 0.293 0.299 0.282 0.302 0.308 0.287 

0.01 0.245 0.260 0.215 0.257 0.263 0.221 

20 

0 0.557 0.558 0.577 0.554 0.556 0.577 

0.005 0.506 0.510 0.496 0.507 0.511 0.498 

0.01 0.419 0.423 0.398 0.425 0.432 0.409 

120 

10 

0 0.608 0.610 0.602 0.618 0.620 0.606 

0.005 0.492 0.503 0.456 0.500 0.506 0.463 

0.01 0.363 0.382 0.337 0.375 0.393 0.333 

20 

0 0.918 0.918 0.922 0.921 0.922 0.928 

0.005 0.745 0.751 0.728 0.760 0.765 0.742 

0.01 0.600 0.611 0.584 0.610 0.625 0.587 

 
1
 Adjusted test statistics were denoted in Section 6.4.2 and Table 6.5, and negative ICC estimators in the 

calculation of adjusted test statistics were set to zero. 
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Table 7.16: Power of adjusted Cochran-Armitage test statistics: based on 1000 simulations of trials with n clusters of size µ per 

group, intracluster correlation ρ, and variable cluster size λ = 0.8 

Parameters Adjusted test statistics
1
 

µ  n  ρ  2

1Aχ  
2

2Aχ  
2

3Aχ  
2

1κχ  
2

2κχ  
2

3κχ  
2

1Aχ ′  
2

2Aχ ′  
2

3Aχ ′  
2

1κχ ′  
2

2κχ ′  
2

3κχ ′  
2

Jχ ′  
2

Jχ ′  

50 10 

0 0.292 0.292 0.292 0.236 0.236 0.238 0.3 0.3 0.3 0.252 0.252 0.255 0.317 0.312 

0.005 0.281 0.281 0.283 0.234 0.234 0.238 0.283 0.283 0.285 0.236 0.236 0.238 0.254 0.27 

0.01 0.256 0.256 0.26 0.232 0.231 0.238 0.253 0.253 0.255 0.239 0.239 0.247 0.232 0.231 

 20 

0 0.562 0.562 0.563 0.481 0.481 0.485 0.578 0.578 0.578 0.496 0.496 0.506 0.593 0.599 

0.005 0.506 0.506 0.509 0.442 0.442 0.448 0.501 0.501 0.503 0.451 0.451 0.457 0.499 0.494 

0.01 0.412 0.411 0.423 0.405 0.405 0.408 0.413 0.413 0.423 0.413 0.413 0.42 0.386 0.384 

120 

10 

0 0.598 0.598 0.599 0.468 0.468 0.475 0.605 0.605 0.606 0.502 0.502 0.505 0.609 0.611 

0.005 0.447 0.445 0.454 0.396 0.396 0.406 0.453 0.453 0.465 0.419 0.418 0.428 0.391 0.395 

0.01 0.345 0.343 0.355 0.342 0.342 0.36 0.338 0.338 0.352 0.356 0.356 0.369 0.307 0.299 

20 

0 0.891 0.891 0.891 0.799 0.799 0.81 0.894 0.894 0.894 0.826 0.826 0.83 0.889 0.894 

0.005 0.727 0.727 0.738 0.668 0.668 0.684 0.732 0.732 0.741 0.685 0.684 0.695 0.71 0.713 

0.01 0.561 0.561 0.579 0.568 0.567 0.584 0.571 0.571 0.585 0.58 0.58 0.606 0.549 0.551 
 

1
 Adjusted test statistics were denoted in Section 6.4.2 and Table 6.5, and negative ICC estimators in the calculation of adjusted test 

statistics were set to zero. 
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Table 7.17: Type I error rates of model-based test statistics: based on 1000 simulations of trials with n clusters of size µ per 

group, intracluster correlation ρ, and fixed cluster size λ = 0.8. (overly liberal or conservative type I error rates are in bold 

font) 

Parameters Model-based test statistics1 

µ  n  ρ  
MW  RW  1BCW  2BCW  3BCW  4BCW  5BCW  

1dfW  2dfW  
3dfW  4dfW  5dfW   

RS  BCS  
2

CSχ  LinearT  

50 

10 

0 0.048 0.077 0.052 0.061 0.056 0.052 0.055 0.054 0.056 0.057 0.057 0.047  0.053 0.055 0.031 0.039 

0.005 0.072 0.064 0.047 0.054 0.050 0.047 0.052 0.050 0.050 0.050 0.050 0.037  0.048 0.051 0.039 0.050 

0.01 0.105 0.084 0.057 0.067 0.063 0.057 0.063 0.061 0.063 0.063 0.063 0.052  0.057 0.063 0.054 0.059 

20 

0 0.045 0.057 0.048 0.053 0.053 0.048 0.052 0.051 0.053 0.052 0.052 0.046  0.049 0.052 0.035 0.034 

0.005 0.082 0.070 0.059 0.059 0.059 0.059 0.058 0.059 0.059 0.059 0.059 0.054  0.059 0.059 0.050 0.053 

0.01 0.111 0.072 0.055 0.062 0.062 0.055 0.068 0.061 0.062 0.062 0.062 0.051  0.056 0.060 0.060 0.067 

120 

10 

0 0.055 0.077 0.040 0.059 0.055 0.040 0.038 0.047 0.050 0.052 0.052 0.029  0.040 0.051 0.047 0.041 

0.005 0.103 0.062 0.041 0.056 0.051 0.041 0.040 0.047 0.048 0.050 0.050 0.028  0.040 0.048 0.051 0.044 

0.01 0.181 0.082 0.061 0.073 0.065 0.059 0.058 0.064 0.066 0.068 0.068 0.050  0.059 0.067 0.069 0.068 

20 

0 0.043 0.063 0.056 0.060 0.058 0.056 0.056 0.055 0.055 0.055 0.055 0.047  0.053 0.055 0.050 0.041 

0.005 0.109 0.063 0.050 0.056 0.054 0.050 0.046 0.054 0.054 0.054 0.054 0.044  0.051 0.054 0.054 0.055 

0.01 0.190 0.074 0.054 0.062 0.062 0.054 0.049 0.056 0.060 0.060 0.060 0.049  0.055 0.061 0.065 0.065 

1 
Model-based test statistics were denoted in Section 6.4.2 and Table 6.5. 
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Table 7.18: Type I error rates of model-based test statistics: based on 1000 simulations of trials with n clusters of size µ per 

group, intracluster correlation ρ, and variable cluster size λ = 0.8 (overly liberal or conservative type I error rates are in bold 

font) 

Parameters Model-based test statistics
1
 

µ  n  ρ  
MW  RW  1BCW  2BCW  3BCW  4BCW  5BCW  1dfW  2dfW  

3dfW  4dfW  5dfW   RS  BCS  
2

CSχ  LinearT  

50 

10 

0 0.052 0.084 0.049 0.061 0.056 0.049 0.052 0.056 0.058 0.016 0.016 0.045  0.043 0.050 0.030 0.038 

0.005 0.082 0.099 0.058 0.075 0.066 0.058 0.068 0.066 0.071 0.016 0.016 0.055  0.056 0.066 0.055 0.059 

0.01 0.121 0.101 0.065 0.081 0.076 0.065 0.072 0.078 0.079 0.017 0.017 0.055  0.055 0.068 0.065 0.073 

20 

0 0.059 0.079 0.058 0.068 0.064 0.058 0.068 0.065 0.067 0.038 0.038 0.054  0.056 0.059 0.044 0.050 

0.005 0.084 0.065 0.052 0.060 0.058 0.052 0.055 0.057 0.057 0.032 0.032 0.047  0.047 0.049 0.051 0.059 

0.01 0.114 0.057 0.049 0.050 0.050 0.049 0.055 0.049 0.049 0.029 0.029 0.047  0.046 0.049 0.054 0.053 

120 

10 

0 0.050 0.101 0.063 0.080 0.077 0.063 0.056 0.073 0.077 0.018 0.018 0.055  0.057 0.065 0.036 0.040 

0.005 0.139 0.093 0.058 0.080 0.074 0.058 0.059 0.072 0.073 0.016 0.016 0.053  0.054 0.062 0.052 0.057 

0.01 0.216 0.101 0.067 0.088 0.082 0.067 0.062 0.083 0.084 0.027 0.027 0.062  0.065 0.069 0077 0.081 

20 

0 0.041 0.062 0.056 0.062 0.060 0.056 0.033 0.052 0.052 0.028 0.028 0.045  0.047 0.049 0.033 0.038 

0.005 0.147 0.075 0.068 0.080 0.074 0.068 0.055 0.067 0.068 0.036 0.036 0.054  0.058 0.064 0.063 0.068 

0.01 0.231 0.062 0.051 0.057 0.055 0.051 0.051 0.047 0.050 0.029 0.029 0.046  0.045 0.046 0.054 0.060 

1
Model-based test statistics were denoted in Section 6.4.2 and Table 6.5. 
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Table 7.19: Power of model-based test statistics: based on 1000 simulations of trials with n clusters of size µ per group, 

intracluster correlation ρ, and fixed cluster size λ = 1 

Parameters Model-based test statistics
1
 

µ  n  ρ  
1BCW  2BCW  3BCW  4BCW  5BCW  

1dfW  2dfW  
3dfW  4dfW  5dfW   

RS  BCS  2

CSχ  
2

lχ  

50 

10 

0 0.304 0.347 0.337 0.303 0.263 0.324 0.333 0.332 0.332 0.267  0.305 0.331 0.254 0.277 

0.005 0.262 0.295 0.284 0.262 0.262 0.276 0.279 0.281 0.281 0.242  0.263 0.280 0.259 0.270 

0.01 0.250 0.288 0.274 0.250 0.253 0.263 0.268 0.270 0.270 0.225  0.256 0.271 0.262 0.275 

20 

0 0.579 0.598 0.591 0.579 0.571 0.590 0.593 0.593 0.593 0.570  0.580 0.591 0.550 0.554 

0.005 0.518 0.541 0.535 0.518 0.510 0.527 0.533 0.534 0.534 0.503  0.520 0.531 0.525 0.532 

0.01 0.405 0.435 0.426 0.405 0.408 0.415 0.424 0.427 0.427 0.395  0.410 0.421 0.426 0.430 

120 

10 

0 0.621 0.657 0.646 0.621 0.590 0.636 0.643 0.643 0.643 0.587  0.621 0.644 0.561 0.612 

0.005 0.447 0.484 0.472 0.447 0.439 0.461 0.567 0.467 0.467 0.400  0.446 0.466 0.455 0.483 

0.01 0.350 0.376 0.368 0.349 0.351 0.362 0.365 0.364 0.364 0.317  0.349 0.365 0.368 0.373 

20 

0 0.908 0.915 0.913 0.908 0.906 0.911 0.913 0.913 0.913 0.901  0.908 0.912 0.898 0.910 

0.005 0.736 0.748 0.747 0.735 0.736 0.744 0.747 0.746 0.746 0.718  0.736 0.745 0.753 0.752 

0.01 0.602 0.617 0.611 0.602 0.600 0.608 0.611 0.610 0.610 0.591  0.602 0.610 0.618 0.617 

1
Model-based test statistics were denoted in Section 6.4.2 and Table 6.6. 
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Table 7.20: Power of model-based test statistics: based on 1000 simulations of trials with n clusters of size µ per group, 

intracluster correlation ρ, and variable cluster size λ = 0.8 

Parameters Model-based test statistics
1
 

µ  n  ρ  
1BCW  4BCW  5BCW  5dfW   RS  BCS  

2

CSχ  
2

lχ  

50 

10 

0 0.309 0.309 0.286 0.293  0.300 0.328 0.266 0.295 

0.005 0.256 0.256 0.262 0.240  0.253 0.279 0.259 0.274 

0.01 0.230 0.230 0.242 0.222  0.227 0.250 0.241 0.250 

20 

0 0.568 0.568 0.550 0.562  0.568 0.583 0.534 0.545 

0.005 0.455 0.455 0.454 0.444  0.451 0.463 0.457 0.465 

0.01 0.397 0.397 0.401 0.389  0.396 0.407 0.406 0.417 

120 

10 

0 0.592 0.592 0.491 0.569  0.592 0.626 0.556 0.585 

0.005 0.397 0.397 0.371 0.378  0.384 0.409 0.439 0.446 

0.01 0.316 0.316 0.292 0.301  0.312 0.335 0.347 0.360 

20 

0 0.903 0.903 0.814 0.899  0.902 0.908 0.888 0.896 

0.005 .0706 .0706 0.664 0.694  0.709 0.723 0.734 0.736 

0.01 0.562 0.562 0.545 0.552  0.561 0.570 0.601 0.594 

                                                                 1
Model-based test statistics were denoted in Section 6.4.2 and Table 6.6. 
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Table 7.21: Regression Coefficient Estimates and their Standard Errors from marginal and cluster models: based on 1000 

simulations of trials with n clusters of size µ per group, intracluster correlation ρ, and fixed cluster size λ = 1 

 Parameters Regression Coefficient Estimates Standard Errors 

 µ  n  ρ  
GEEβ̂  CSβ̂  )ˆ( GEESE β  )ˆ( CSSE β  

1=θ  

50 

10 

0 0.001 0.000 0.112 0.124 

0.005 0.004 0.005 0.125 0.131 

0.01 0.003 0.002 0.136 0.141 

20 

0 -0.005 -0.005 0.082 0.087 

0.005 -0.004 -0.004 0.091 0.093 

0.01 0.002 0.002 0.100 0.101 

120 

10 

0 -0.006 0.145 0.073 0.081 

0.005 -0.002 0.085 0.092 0.094 

0.01 -0.003 0.031 0.107 0.109 

20 

0 0.000 0.134 0.053 0.058 

0.005 0.000 0.049 0.066 0.067 

0.01 -0.005 0.022 0.078 0.079 

2.1=θ  

50 

10 

0 0.182 0.182 0.112 0.124 

0.005 0.180 0.181 0.124 0.130 

0.01 0.190 0.191 0.136 0.140 

20 

0 0.185 0.185 0.082 0.087 

0.005 0.194 0.194 0.091 0.093 

0.01 0.182 0.183 0.099 0.100 

120 

10 

0 0.183 0.236 0.072 0.079 

0.005 0.182 0.212 0.092 0.093 

0.01 0.184 0.201 0.107 0.108 

20 

0 0.185 0.225 0.052 0.056 

0.005 0.180 0.193 0.066 0.066 

0.01 0.183 0.182 0.078 0.078 
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Table 7.22: Regression Coefficient Estimates and their Standard Errors from marginal and cluster models: based on 1000 

simulations of trials with n clusters of size µ per group, intracluster correlation ρ, and variable cluster size λ = 0.8 

 Parameters Regression Coefficient Estimates Standard Errors 

 µ  n  ρ  
GEEβ̂  CSβ̂  )ˆ( GEESE β  )ˆ( CSSE β  

1=θ  

50 

10 

0 -0.005 -0.005 0.111 0.126 

0.005 0.000 0.001 0.126 0.134 

0.01 0.002 0.002 0.139 0.144 

20 

0 -0.002 -0.002 0.082 0.088 

0.005 -0.002 -0.002 0.093 0.095 

0.01 -0.002 -0.003 0.104 0.105 

120 

10 

0 0.000 0.000 0.072 0.081 

0.005 0.003 0.003 0.093 0.096 

0.01 -0.008 -0.007 0.110 0.111 

20 

0 -0.001 -0.001 0.053 0.057 

0.005 -0.001 -0.001 0.069 0.069 

0.01 -0.002 -0.003 0.082 0.082 

2.1=θ  

50 

10 

0 0.182 0.182 0.111 0.126 

0.005 0.184 0.185 0.126 0.134 

0.01 0.188 0.190 0.139 0.144 

20 

0 0.183 0.183 0.080 0.087 

0.005 0.182 0.182 0.092 0.094 

0.01 0.185 0.186 0.102 0.103 

120 

10 

0 0.180 0.280 0.071 0.081 

0.005 0.182 0.183 0.093 0.096 

0.01 0.184 0.185 0.110 0.111 

20 

0 0.184 0.184 0.053 0.056 

0.005 0.183 0.193 0.068 0.068 

0.01 0.183 0.185 0.082 0.081 
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  Chapter 8

 Example: A school-based smoking prevention cluster 8
randomization trial 

8.1 Introduction 

In this chapter, we use data from a school-based smoking prevention study to illustrate 

application of methods described in previous chapters. The Television School and Family 

Smoking Prevention and Cessation Project (TVSFP) is a cluster randomization trial, 

which was designed to test the independent and combined effects of a classroom 

curriculum and television programming for social resistance skills training, smoking 

prevention, and smoking cessation (Flay, et al., 1988).  

The initial study was conducted from 1986 to 1988. It consisted of 7351 students in 

seventh grade in 340 classrooms within 47 schools from Los Angeles and San Diego. 

Students were randomized to five study conditions: 1) a social-resistance (SR) classroom 

curriculum, 2) a TV intervention, 3) a health-information-base attention-control 

curriculum, 4) a SR curriculum combined with a TV intervention (SR+TV), and 5) a no-

intervention group. Randomization for this study was at the school level while the 

intervention was delivered to students in the classroom.   

For this illustration, a subset of the TVSFP data was used. This subset included 1600 

students from 135 classrooms and 28 Los Angeles schools. A tobacco and health 

knowledge scale (THKS) score was one of the primary study outcome variables and the 

one chosen for this study. The score was defined as the number of correct answers to 

seven questions on tobacco and health knowledge. According to Hedeker and Gibbons’s 

(1994) study, three ordinal classifications were created for illustrative purposes, 

corresponding to 0-1, 2-3, and 4-7 correct answers. We further categorize the original 

study conditions into two groups: a TV intervention group (TV=yes) vs. non- TV group 

(TV=no). Moreover, our analysis will be limited to inferences about the effect of this 

school-based intervention on the ordinal THKS score. 
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The same data set was previously analyzed using a mixed effects model for ordinal 

outcomes (Hedeker and Gibbons, 1996) as well as binary outcomes (Gibbons and 

Hedeker, 1997). Also, Hedeker and Gibbons (1994) and Raman and Hedeker (2005) fit 

the data with mixed-effects ordinal probit and logistic regressions respectively. However, 

their investigations only focused on the analysis of cluster-specific models. In addition, 

their studies investigated the effects of all four conditions (SR, TV, TV+SR, and the non-

intervention group) with the outcome THKS scores classified into four ordinal categories 

corresponding to 0-1, 2, 3, and 4-7 correct answers. 

The rest of the chapter is organized as follows. Section 8.2 reviews the methods applied 

to the example data and Section 8.3 describes the results of the analysis. Conclusions and 

discussion are presented in Section 8.4. 

8.2 Methods 

Several summary statistics were calculated for the data. Table 8.1 shows descriptive 

statistics of the school size broken down by condition groups. In addition, student 

frequencies for three ordinal categories of the THKS are given in Table 8.2. The degree 

of imbalance in cluster size in each group was obtained as discussed in Chapter 6. 

Estimates of the ICC were calculated for the THKS score among students within schools. 

These estimates were obtained by adapting one-way ANOVA and kappa-type methods as 

described in Sections 2.2 and 2.3. 

Results from three adjusted Cochran-Armitage tests of the effect of TV intervention were 

compared and displayed in Table 8.4.Two types of ICC estimators were used to calculate 

the degree of variance inflation induced by clustering. In addition, results from thirteen 

model-based tests are compared and displayed in Table 8.5, including five bias-corrected 

and four degrees-of-freedom-adjusted approaches for the GEE Wald test and one 

corrected approach for the GEE score test. Comparisons between different methods of 

analysis focus on the statistical significance of associations between the TV intervention 

effect and the outcome THKS scores. 
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In addition, marginal and cluster-specific extensions of proportional odds models were 

compared in terms of strength of effect as measured by the magnitude of model 

parameter estimates and their standard errors. In particular, the marginal model was fitted 

by the GEE approach using an independent working correlation. The cluster-specific 

model was fitted by the Gauss-Quadrature approach. The SAS procedures PROC 

GENMOND and PROC NLMIXED (SAS V.9.2, SAS Institute, Inc, Cary, NC) were 

employed to fit the marginal and cluster-specific models respectively. 

8.3 Results 

8.3.1 Descriptive Analyses 

In the TVSFP study, fourteen schools were randomized to each group. The descriptive 

statistics for the cluster (school) sizes in each group are listed in Table 8.1. School sizes 

in the non-TV group are more variable than those in the TV group. 

The student frequencies for the three-category THKS scores are displayed in Table 8.2 

for each group. The estimated cumulative odds ratio of the THKS scores comparing the 

TV group with the non-TV group is 0.966, which is close to one. 

Table 8.1: Descriptive statistics of school size per intervention group in the TVSFP 

Intervention 

group 

Number of 

schools 
Mean  

Standard 

deviation 
Minimum  Maximum  Imbalance 

Non-TV group 21 57.2 38.7 23 137 0.69 

TV group 7 57.1 22.1 18 94 0.87 

 

Table 8.2: Frequencies of three-category THKS scores per intervention group (%) 

Intervention Group 
THKS score 

0-1 2-3 4-7 Total 

Non-TV group 
179 

(22.4) 

402 

(50.2) 

220 

(27.4) 

801 

(100%) 

TV group 
176 

(22.0) 

396 

(49.6) 

227 

(28.4) 

799 

(100%) 
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8.3.2 ICC Estimation 

Estimates of ICC for the THKS scores among students within schools are listed in Table 

8.3. The two ANOVA ICC estimators are smaller than the two kappa-type ICC 

estimators. In addition, ICC estimators obtained by using scores 1, 2 and 3 are larger than 

those using midranks for both ANOVA and kappa-type estimators. This is probably due, 

in part, to the large discrepancies between the scores 1, 2, or 3 with midrank scores in this 

example. In particular, the midrank scores are 1, 4 and 8 for the three ordinal categories, 

as compared to scores 1, 2, and 3.  

Table 8.3: Estimated ICCs for the THKS scores among students within schools 

 

ANOVA method 

using scores 1,2 

or 3 (
Aρ̂ ) 

ANOVA method 

using midrank 

scores ( )(
ˆ

MAρ ) 

Kappa approach 

using scores 1,2 or 

3 ( κρ̂ ) 

Kappa approach 

using midrank 

scores ( )(
ˆ

Mκρ ) 

ICC 

estimates 
0.059 0.058 0.127 0.080 

 

8.3.3 Adjusted Cochran-Armitage Tests 

Three adjusted Cochran-Armitage tests using both ANOVA and kappa-type ICC 

estimators with midrank scores were applied to examine the effect of the TV intervention 

group. The corresponding six test statistics and their p-values are listed in Table 8.4. All 

test statistics and their p-values are quite similar to each other and indicate a non-

significant TV program effect on the THKS scores. This generally agrees with the results 

reported earlier (e.g., Hedeker and Gibbons, 1994; Raman and Hedeker, 2005). 
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Table 8.4: Adjusted Cochran-Armitage test statistics for the effect of the TV 

intervention using ANOVA and kappa-type ICC estimators 

Methods Methods 
Test 

statistics 

Test statistics 

value (p-value) 

Using ANOVA ICC estimator 

with midrank scores ( )(
ˆ

MAρ ) 

Donner and Donald’s test 
2

)1(−COχ  0.026 (0.87) 

An Alternative to Donner 

and Donald’s Test 

2

)2(−COχ  0.025(0.87) 

Weighted-Least-Square 

Cochran-Armitage Test 

2

WLSCO−χ  0.030(0.86) 

Using kappa-type ICC estimator 

with midrank scores ( )(
ˆ

Mκρ ) 

Donner and Donald’s test 
2

)1(−COχ  0.020(0.88) 

An Alternative to Donner 

and Donald’s Test 

2

)2(−COχ  0.020(0.88) 

Weighted-Least-Square 

Cochran-Armitage Test 

2

WLSCO−χ  0.023(0.88) 

 

8.3.4 Adjusted Model-based Tests 

A marginal proportional odds model is now fit to the example data, where the THKS 

score is modeled in terms of a dummy-coded (no=0 and yes=1) TV effect. Thirteen 

model-based test statistics and their corresponding p-values which evaluate the TV 

invention effect are listed in Table 8.5.  

All test results show a non-significant TV effect on the outcome THKS score. This 

conclusion is in agreement with previous reports (e.g., Hedeker and Gibbons, 1994; 

Raman and Hedeker, 2005). Adjusting and modifying robust tests did not affect 

inferences concerning the effect of the TV intervention program. However, the five 

sandwich bias correction approaches enlarged the robust variance estimates as we 

illustrated in Chapter 5. Also, the four degree-of-freedom-adjusted approaches slightly 

reduced the magnitude of inflated type I errors by adjusting the approximate F-test.  

The test statistic obtained from the robust score test ( RS =0.0300 with p=0.8610) is 

smaller than that generated from the robust Wald test ( RW =0.0309 with p=8606). After 

adjusting, the modified score test has a slightly smaller p-value (p=0.8584) which is 

consistent with discussions in previous chapters. 
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Table 8.5: Test statistics for the TV intervention effect from the marginal extensions 

of cumulative logit model for the THKS scores (SAS procedure: PROC GENMOD) 

Tests 
Test 

statistic 

Test statistics value (p-

value) 

Model-based Wald test MW  0.1333 (0.7153) 

Robust Wald test RW  0.0309 (0.8606) 

Robust score test RS  0.0300 (0.8610) 

Bias-corrected Wald test: Approach 1 1BCW  0.0250 (0.8745) 

Bias-corrected Wald test: Approach 2 2BCW  0.0277 (0.8677) 

Bias-corrected Wald test: Approach 3 3BCW  0.0271 (0.8693) 

Bias-corrected Wald test: Approach 4 4BCW  0.0250 (0.8745) 

Bias-corrected Wald test: Approach 5 5BCW  0.0267 (0.8702) 

Degrees-of-freedom-adjusted Wald test: Approach 1 1dfW  0.0276  (0.8684) 

Degrees-of-freedom-adjusted Wald test: Approach 2 2dfW  0.0309  (0.8622) 

Degrees-of-freedom-adjusted Wald test: Approach 3 3dfW  0.0276  (0.8639) 

Degrees-of-freedom-adjusted Wald test: Approach 4 4dfW  0.0309  (0.8606) 

Degrees-of-freedom-adjusted Wald test: Approach 5 5dfW  0.0308  (0.8697) 

Modified robust score test BCS  0.0300  (0.8584) 

 

8.3.5 Relationship between marginal and cluster-specific models 

Marginal and cluster specific models are now fitted to the example data. The parameter 

estimates and standard errors are listed in Table 8.6. The TV effect estimate is obtained 

as 0.0344 in the marginal model, which is close to the TV effect estimate obtained as 

0.0166 in the cluster-specific model. In addition, the standard error of the TV effect 

estimate from the marginal model is 0.1958, which is smaller than the standard error 

0.2096 from the cluster-specific model. This parallels results previously reported for 

binary data. 
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Table 8.6: Parameter estimates (log odds ratios) of the TV effect from marginal and 

mixed effects logistic regression models with cumulative logit for the THKS scores 

Term 
Log odds ratio in the marginal model 

(standard error) 

Log odds ratio in the mixed  effects 

model (standard error) 

TV 

intervention 
0.0344 (0.1958) 0.0166 (0.2096) 

 

8.4 Discussion 

Although mixed effects categorical modeling methods have been previously applied to 

the same example data, there are some differences. For example, previous studies 

(e.g.,Hedeker and Gibbons, 1994) considered that the schools were randomized to four 

study conditions (i.e., SR, TV, TV+SR, and the non-intervention group), while our study 

considered only two groups, i.e., the TV and non-TV group. In addition, previous studies 

(e.g., Raman and Hedeker, 2005) divided THKS scores into four ordinal classifications 

corresponding to 0-1, 2, 3, and 4-7 correct responses, while we grouped the THKS scores 

into three ordinal classifications. Some studies also considered cluster effects at both the 

class level and school level, while we considered cluster effects at the school level only. 

These differences may lead to some discrepancy in results between our study and 

previous studies. Also, previous studies (e.g., Raman and Hedeker, 2005) evaluated the 

intervention program effects while controlling for the baseline information. However, this 

research focuses on analysis with a single cluster-level covariate only, i.e., the TV 

intervention effect. Therefore, we did not consider the baseline smoking information 

here.  

The ICC estimator within schools was 0.013 in Raman and Hedeker (2005)’s study (four 

category ordinal outcomes and three-level cluster effect at school and class level), 0.022 

in Hedeker and Gibbon (1996)’s study (continuous outcomes and two-level cluster effect 

at clsss effect), and 0.026 in Gibbons and Hedeker (1997)’s study (three levels, binary). 

They are all smaller than the calculated values of the ANOVA and kappa ICC estimators. 

The reasons may be due to the different model variables in the current study and previous 

studies.  
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As discussed in Chapter 5, the GEE score test tends to have a smaller test size than 

nominal, in contrast to the liberal behaviour of the GEE Wald test. However, the score 

test statistic ( RS =0.0300) is slightly smaller the Wald test statistic ( RW =0.0309). This 

may be explained by research showing that the conservative behavior of robust score 

tests is reduced as the number of clusters increases (i.e., n=30) (Guo et al., 2005). 

The regression coefficient estimates (log odds ratio) from both marginal and cluster-

specific models are close to zero. Combined with the small ICC, this may explain why 

the two coefficient estimates are very similar to each other. The same reason may also 

explain why the analytic relationship discussed in Chapter 5 does not hold in this 

example.  
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  Chapter 9

 Conclusions 9

The primary objective of this thesis was to develop and evaluate methods that analyze 

correlated ordinal data obtained from cluster randomization trials. Attention was 

restricted to completely randomized community intervention trials assuming a single 

binary, cluster-level covariate. The purpose of this chapter is to summarize the most 

important findings of this thesis in Section 9.1, discuss potential limitations and suggest 

areas for future research in Section 9.2. 

9.1 Summaries 

9.1.1 Main Findings 

Properties of methods compared used three approaches: algebraic computation, 

simulation and a case study. The complexity of most methods restricts algebraic 

comparisons to fairly simple situations where there are equal numbers of clusters with 

fixed cluster sizes (i.e., a balanced trial). Their properties were also compared by 

simulation and using data from a cluster randomization trial.  

A major contribution of this thesis is the derivation of the kappa-type ICC estimators and 

evaluation of their small sample properties. Similar evaluations were conducted for 

Cohen’s kappa and the ANOVA ICC estimator. Both spaced scores (i.e., 1,2,3) and 

midrank scores were considered to calculate the ANOVA and kappa-type estimators. The 

algebraic comparison was presented in Chapter 2. It was shown that the ANOVA and 

kappa-type ICC estimators were asymptotically equivalent in a balanced trial as the 

number of clusters becomes large. Simulation results showed that kappa-type estimators 

were more close to the true values than ICC estimators when cluster sizes were fixed and 

small for ρ = 0.005 or ρ = 0.01 . Conversely, ANOVA ICCs had relatively smaller bias in 

the case of variable cluster sizes. In addition, midrank scores reduced the biases of both 

kappa and ANOVA ICC estimators for ρ = 0.005 or ρ = 0.01 when cluster sizes are 

variable and small (i.e., µ = 50).  
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Another contribution of this thesis is the derivation of the adjusted Cochran-Armitage test 

statistics obtained by directly applying simple correction terms accounting for clustering. 

The algebraic comparisons in Chapter 3 show that the three adjusted statistics are 

identical in a balanced trial. Simulation results indicated that statistics using both kappa-

type and ANOVA ICC estimators generated satisfactory type I error rates at the 5% 

nominal level when cluster sizes were fixed. When cluster sizes were variable, however, 

the adjusted statistics using ANOVA ICC estimators resulted in satisfactory type I error 

rates under most parameter combinations. Among the tests which have valid type I error 

rates, the statistical power of the WLS C-A test using midrank ANOVA estimates (i.e., 

2

3Aχ ′ ) was slightly higher than that of other test statistics while the difference not more 

than 2%. One possible reason may be the WLS approach yielded the more precise 

parameter estimates than the first two adjusted statistics which used the OLS approach.  

Finally, the small-sample performance of GEE robust tests were improved by the 

adjustment approaches derived in Chapter 5. A total of sixteen model-based test statistics 

were compared in the simulation study. For fixed cluster sizes, all test statistics, except 

GEE model-based and robust Wald statistics, showed generally satisfactory type I error 

rates at the 5% nominal level. However, for variable cluster sizes, only the robust score 

test and the adjustment methods �	
� , �	
�and �
�� were shown to maintain the 

overall satisfactory type I error rates. Among the methods that resulted in valid type I 

error rates, the adjusted method �	
�yielded the highest statistical power for fixed 

cluster sizes, and �	
�yielded the highest power for variable cluster sizes.   

9.1.2 Recommendations and Discussions 

Our results indicate that adjusted Cochran-Armitage tests are reasonable choices for 

testing the intervention effect for ordinal outcome data obtained from cluster 

randomization trials when there are no complex analyses required (e.g., analysis of 

covariates). In particular, the WLS adjusted C-A test obtained using the midrank 

ANOVA ICC estimator performs best, especially for variable cluster sizes, in terms of 

type I error and power. 
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Small-sample performance of GEE robust Wald tests are seen to be improved by using 

adjustments and corrections. In particular, the adjusted test WBC1 is the most appropriate 

method in terms of type I error and power. 

In contrast to the liberal behaviour of the GEE robust Wald test, the GEE robust score 

test tends to have a smaller test size than the nominal level. However, our simulation and 

example study results are not consistent with this discussion of the conservative behavior 

of robust score test. In particular, the robust score test statistic RS  yields satisfactory type 

I error rates under all parameter combinations in our simulation study. Also, our example 

study showed the p-value generated by RS  (i.e., 0.8610) is very similar to the p-value the 

GEE robust Wald test statistic generated (i.e., 0.8606). The above discrepancy between 

the discussions in Chapter 5 and our study results may be explained by the fact that the 

total number of clusters in our study is close to 30. According to Guo et al. (2005)’s 

research, the type I error rate of robust score tests approaches 0.05 as the number of 

clusters from two groups increases to 30.  

In addition, we discussed in Chapter 4 that the regression coefficient estimate from 

marginal models is smaller than that from cluster-specific models. However, this 

relationship is seen in our simulation study to hold only for the parameter combinations 

where the log odds ratio θ is set to 1.2. One possible reason is that the regression 

coefficient estimates (log odds ratio) from both marginal and cluster-specific models are 

close to zero in both the example data and the simulation study with θ = 1. Combined 

with the small ICC, this may explain why the two coefficient estimates are very similar to 

each other.  

9.2 Limitations and Future Research 

First, a potential topic for future research is to unify different methods of analysis of 

clustered ordinal outcomes data. For instance, the model-based tests are often equivalent, 

at least in special cases, to well known non-parametric test statistics. The challenge is that 

some adjustment for these tests will be needed when applied to clustered ordinal data. 



141 

 

 

 

In particular, the Cochran-Armitage test statistic is equivalent to the score statistic 

obtained from logistic regression analyses with an ordinal covariate (Cox, 1958). The 

Wilcoxon rank sum test when applied to compare two multinomial distributions with 

ordered categories is equivalent to the score test for proportional odds models using a 

binary covariate (McCullagh, 1980). Moreover, the two approaches are equivalent when 

the scores in the Cochran-Armitage trend test are set equal to the midrank for each group, 

as defined in the Wilcoxon rank sum test (Rosner, 2000; pp401). As such the Cochran-

Armitage trend test unifies different methods that have been proposed to analyze 

independent ordinal data. 

For clustered ordinal data, Jung and Kang (2001) derived a test statistic unifying the 

Wilcoxon rank sum test and the Cochran-Armitage trend test. In addition, Natarajan et al. 

(2012) formulated an estimating equations score test from the proportional odds model as 

an extension of the Wilcoxon rank sum test. As such, Jung and Kang’s (2001) method 

could similarly unify different methods for the analysis of clustered ordinal outcome data 

as the Cochran-Armitage trend test does for the analysis of independent ordinal outcome 

data. In future research, Jung and Kang’s method could be further explored to connect 

methods for the analysis of clustered ordinal outcome data. 

Second, we have focused on methods that may be applied to the completely randomized 

design in this research. Although the extensions of these methods to stratified cluster 

randomization trials is fairly straightforward, the challenge of extending the methods to 

pair-matched designs poses problems that are an area for future research (Klar and 

Donner, 1997). One approach would be to break the matches for the design-based 

matching and apply the methods discussed above. Detailed evaluation of this approach, 

including the loss in power if the matching is effective, is needed. 

Third, the approaches presented here were developed specially for the case of one 

intervention group and one control group. However, many trials contain more than two 

intervention groups. For example, the TVFSP data in our example originally had four 

intervention groups. The methods presented here may usefully be extended to trials with 

more than two intervention groups.  
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Fourth, the simulation study has only considered data with equal numbers of clusters per 

intervention group. This design restriction was made in order to understand the 

performance of the methods in simple scenarios. However, there is often considerable 

variation in the number of clusters in practice. An equal number of clusters per 

intervention group generally leads to an increase in efficiency as compared to unequal 

allocation (Donner and Klar, 2000, p.59). Further research is required to assess our 

findings to more general settings such as studies having unbalanced cluster numbers. 

Fifth, we deliberately focused on community intervention trials, which typically enrol a 

small number of large clusters. This focus reflects the relatively greater methodological 

challenge of statistical inferences arising in these studies. For example, the validity of 

statistical inferences is often problematic when there are few large clusters. Therefore, as 

Koepsell et al. (1991, 1992) and Donner and Klar (2000, p100) suggested, particular care 

must be taken when applying methods requiring a large number of clusters (e.g., GEE 

using robust variance estimators) to community intervention trials. Conversely, the 

methods discussed in this thesis could be naturally applied to trials having a large number 

of small clusters, for example, for example, families. 

Finally, the simulation study evaluating marginal and cluster-specific extensions of 

ordinal logistic regression models is limited to models with cumulative logit links. 

Although the most popular model for ordinal responses uses logits of cumulative 

probabilities (Lui and Agresti, 2005), other types of links (e.g., adjacent-category logits 

or continuation-ratio logits) may also be of interest for ordinal data analysis. Therefore 

further study may be helpful to broaden our findings to these other ordinal response 

regression models.  
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Appendix A 

Matrix version derivation of weighted least squares Cochran-

Armitage estimation 

The linear probability model used to test the trend for clustered binary outcome data is 
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Letting ��� = 1 + (��� − 1)�, then 
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and  

�′�+ =
 !
!!
!" #+��'

�&� # ������
$%

�&�
#��+��'
�&� # ������

$%

�&� ()
))
)*. 

So the numerator of -.
	�/01 is given by 

# #������
$%

�&�
'

�&� 2#��+��'
�&� #������

$%

�&� − +3�4 #������
$%

�&� 5 

= ##������
$%

�&�
'

�&� 2#6�� − �47(+�� − +3)'
�&� #������

$%

�&� 5. 
The denominator of -.
	�/01 is given by 

## ������
$%

�&�
'

�&� 2#���
'

�&� #������
$%

�&� − �4� #������
$%

�&� 5 

= # #������
$%

�&�
'

�&� 2#(�� − �4)�'
�&� #������

$%

�&� 5. 
Thus the WLS estimator is given by 

-.
	�/01 = 2#6�� − �476+� − +37'
�&� #������

$%

�&� 5 2#(�� − �4)�'
�&� #������

$%

�&� 58 . 
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