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Abstract 

Diagnosing disorders of consciousness (DOC) is notoriously difficult, with estimates of 

misdiagnosis rates as high as 40%. Moreover, recent studies have demonstrated that patients who 

do not show signs of volitional motor responses can exhibit preserved command following 

detected by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). 

Although these patients clearly retain some cognitive abilities, lack of consistent motor responses 

makes administration of standard neuropsychological tests impossible. Consequently, the extent 

of their cognitive function is unknown. In the current study, we developed and validated 

a P300b event related potential (ERP) neuropsychological battery in healthy participants to 

assess components of executive function without requiring motor output. First, participants were 

instructed to attend to a target auditory stimulus. P300b responses to attended relative to 

unattended stimuli were used as a neural proxy for detecting command following. To assess 

working memory capacity we adapted a digit span test to use a similar P300b response 

mechanism. Finally, reasoning was assessed by adapting a verbal reasoning task in the same 

manner. At the group level, and in a large majority of participants at the single-participant level, 

accurate performance could be detected using the P300b ERP, validating the potential utility of 

the battery. Additionally, the normalized magnitude of the P300b predicted individual 

differences in performance, but only when a suitable level of variability between participants was 

present. A post hoc Monte Carlo analysis was conducted to examine the necessary time required 

to conduct the battery as well as the interaction between time and performance in determining 

statistically significant performance. At 100% accuracy, a mean time of five minutes was 

required to achieve a significant result, with time increasing as a function of decreasing 

performance. These results demonstrate that covert control of attention, as measured by 
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the P300b ERP, can be used to assess command following, working memory and reasoning 

abilities with a high degree of reliability 

Keywords: disorders of consciousness, neuropsychological assessment, executive function, 

P300, brain-computer interface, EEG 



iv 

Acknowledgements 

 

 There are a number of people without whom this thesis would not have been possible, 

and to whom I am greatly indebted. I offer my sincere gratitude to my supervisor, Dr. Adrian 

Owen, for his continued intellectual support and for providing an excellent example of scientific 

skill and thoroughness. I also offer my appreciation to Dr. Adam Hampshire for his guidance 

through all stages of this thesis and wish him all the best in his new position. My advisory 

committee, comprised of Dr. Rhodri Cusack and Dr. Paul Gribble, was instrumental in helping 

develop many of the statistical analyses used in this project. Likewise, I would like to thank Dr. 

Damian Cruse for helping me with EEG analysis and taking the time to patiently explain difficult 

methodological concepts. Lastly, I would like to thank all of the members of the Brain and Mind 

Institute for contributing to an extremely enjoyable and rewarding experience during my 

Master’s degree.  

  



v 

Table of Contents 
 

Abstract ............................................................................................................................... ii	  

Introduction ......................................................................................................................... 1	  

Disorders of Consciousness ............................................................................................ 1	  

Coma ............................................................................................................................... 2	  

Vegetative State ............................................................................................................... 4	  

Minimally Conscious State (MCS) ................................................................................. 6	  

Misdiagnosis in Disorders of Consciousness .................................................................. 8	  

Measuring Neural Activity to Aid in the Diagnosis of DOC .......................................... 9	  

Resting State Neural Activity in DOC ...................................................................... 10	  

Neural Responses to Passive External Stimulation ................................................... 12	  

Active Paradigms ....................................................................................................... 17	  

Current Study ................................................................................................................ 27	  

Methods ............................................................................................................................. 28	  

Participants .................................................................................................................... 28	  

Experimental Paradigm ................................................................................................. 29	  

Stimuli ....................................................................................................................... 29	  

Task1 ......................................................................................................................... 29	  

Task2 ......................................................................................................................... 31	  

Task3 ......................................................................................................................... 32	  

Overall Experimental Design .................................................................................... 33	  

Behavioral Analysis ...................................................................................................... 34	  

EEG Analysis ................................................................................................................ 35	  

EEG recording. .......................................................................................................... 35	  

EEG Preprocessing .................................................................................................... 35	  

Cluster Mass Permutation Test .................................................................................. 36	  

Group-Level Analysis ................................................................................................ 39	  

Single-participant level EEG analysis ....................................................................... 40	  

Prediction of individual differences from P300b responses ...................................... 41	  

Relationship between P300b Significance, Time and Performance ............................. 42	  



vi 

Results ............................................................................................................................... 44	  

Behavioral Results ......................................................................................................... 44	  

EEG Results .................................................................................................................. 46	  

Group level ................................................................................................................ 46	  

Single-participant level .............................................................................................. 47	  

Prediction of Individual Differences from P300b Components .................................... 49	  

Significance as a function of number of Targets ........................................................... 53	  

Discussion ......................................................................................................................... 55	  

General Battery Performance ........................................................................................ 55	  

Insignificant participant level results in WM and AR tasks .......................................... 56	  

CMPT analysis used in this study ................................................................................. 57	  

Assessment of Conscious Awareness in DOC .............................................................. 58	  

Ethical Considerations  .................................................................................................. 59	  

Extension and Optimization Of the Assessment Battery .............................................. 61	  

Detecting Significant Performance vs. Assessing Individual Differences .................... 62	  

Conclusions ....................................................................................................................... 64	  

Works Cited ...................................................................................................................... 66	  

 

  



vii 

Table of Figures 

Figure 1. Typical clinical pathways after disruption of consciousness. ......................................... 1	  

Figure 2. Disorders of consciousness represented as variations within the dimensions of 
wakefulness and awareness. ............................................................................................................ 3	  

Figure 3. Examination and scoring criteria for assessment using the Glasgow Coma Scale. ........ 4	  

Figure 4. Scoring protocol used during administration of the JFK Coma Recovery Scale. ........... 6	  

Figure 5. Milestones in recovery from coma to the re-emergence of awareness. .......................... 8	  

Figure 6. Patterns of neural activity elicited by stimuli with greater emotional significance. ..... 16	  

Figure 7. DOC reconsidered with the additional dimension of motor response capability. ......... 18	  

Figure 8: fMRI activation in response to imagery instructions in a behaviourally unresponsive 
VS patient and healthy controls. ................................................................................................... 19	  

Figure 9. Functional communication established through covert motor imagery in a VS patient.
 ....................................................................................................................................................... 20	  

Figure 10. Topographic maps of EEG activity during motor imagery in VS patients and a healthy 
control. .......................................................................................................................................... 22	  

Figure 11. Typical time course of P300b ERP, elicited in response to a target stimulus embedded 
within a stream of distractors. ....................................................................................................... 24	  

Figure 12. fMRI activations to trials where the correct answer to a reasoning problem was 
“house.” ......................................................................................................................................... 27	  

Figure 13: Organization of experiment and tasks. ........................................................................ 30	  

Figure 14. Sentence types used in AR task ................................................................................... 33	  

Figure 15: Counting accuracy as a function of block number and task type. ............................... 45	  

Figure 16. Working memory performance within each memory set size. .................................... 45	  

Figure 17. Performance in verbal reasoning task. ......................................................................... 46	  

Figure 18. Group average scalp maps in all three tasks at 450 ms post stimulus onset ............... 47	  

Figure 19. Mean voltage magnitude within largest CMPT cluster for each participant in AR task.
 ....................................................................................................................................................... 48	  



viii 

Figure 20. Mean voltage magnitude within largest CMPT cluster for each participant in WM 
task. ............................................................................................................................................... 48	  

Figure 21. Mean voltage magnitude within largest CMPT cluster for each participant in AR task.
 ....................................................................................................................................................... 49	  

Figure 22. Relationship between accuracy within memory set sizes and normalized ERP 
magnitude. ..................................................................................................................................... 50	  

Figure 23. Relationship between accuracy within four item memory sets and normalized ERP 
magnitude ...................................................................................................................................... 51	  

Figure 24. Relationship between accuracy within six item memory sets and normalized ERP 
magnitude.. .................................................................................................................................... 51	  

Figure 25. Relationship between accuracy within eight item memory sets and normalized ERP 
magnitude.. .................................................................................................................................... 52	  

Figure 26. Mean voltage magnitude within largest CMPT cluster for each participant in WM 
task, restricted to four and six item sets. ....................................................................................... 53	  

Figure 27. Mean CMPT p-value for all participants as a function of number of targets.. ............ 55	  

 

  



1 

1. Introduction 

Disorders of Consciousness  

Improvements in intensive care have resulted in a surge of survivors of severe brain 

injury (Owen, 2008a). Consciousness is lost following many neurological traumas, including 

stroke, drug overdose, hypoxia and traumatic brain injury (Royal College of Physicians Working 

Group, 1996; The Multi-Society Task Force on PVS, 1994). The majority of patients experience 

a significant recovery in the first few days, following a typical progression through several states 

of consciousness before recovering awareness (Figure 1).  

 

Figure 1. Typical clinical pathways after disruption of consciousness. (From Laureys, 2007) 

 

In some cases, however, recovery is incomplete, resulting in a prolonged disruption of 

consciousness. Neurological disorders that involve a persistent impairment of the patient’s 

awareness of their self and environment are collectively referred to as disorders of consciousness 

(DOC) and include coma, vegetative state (VS) and minimally conscious state (MCS) (Owen, 

2008a).  
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Clinical characterizations of consciousness typically make a distinction between 

wakefulness and awareness, and DOC can be understood as pathologies varying within these two 

dimensions (Posner, Saper, Schiff, & Plum, 2007). Wakefulness refers to the level of general 

arousal. With the exception of certain stages of sleep, sufficient wakefulness is considered a 

prerequisite for conscious awareness (Posner, Schiff, & Plum, 2007). Neurologically, 

wakefulness is a function of the reticular activating system, a collection of excitatory neuronal 

circuits from the brainstem to the cerebral cortex relying upon acetylcholine, histamine, 

serotonin and dopamine neurotransmitter systems (Young, Ropper, & Bolton, 1997).   

  Awareness, often referred to as conscious awareness or simply consciousness, refers to 

the content of conscious perception (from here on these terms will be used interchangeably). 

Although an exact definition of awareness is elusive, it is usually defined as the subjective 

experience of the internal and external environment (Metzinger, 2010). The neural correlates of 

consciousness remain to be understood, but current theories emphasize that awareness cannot be 

localized to a single area of the brain and relies instead on the dynamic interaction between 

distributed brain regions throughout the cortex and thalamus (Crick & Koch, 1990; Dehaene, 

Changeux, Naccache, Sackur, & Sergent, 2006; Seth & Baars, 2005).    

 

Coma  

Following loss of consciousness, patients typically experience a period of coma (Posner, 

Schiff, & Plum, 2007). Although involuntary reflexes are generally intact, coma patients do not 

open their eyes, do not display arousal in the presence of external stimulation, and never initiate 

voluntary movements. In contrast to VS and MCS, coma lacks sleep-wake cycles and it is 
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generally assumed that comatose patients have no awareness of themselves or their environment. 

Coma can therefore be understood as the absence of both wakefulness and awareness (Figure 2).  

 

Figure 2. Disorders of consciousness represented as variations within the dimensions of 
wakefulness and awareness. (Adapted from Laureys, Owen, & Schiff, 2004) 

 

The Glasgow Coma Scale (GCS) is the most widely used scale in coma assessment and 

attempts to provide a reliable, objective protocol for assessing the patient’s level of 

consciousness (Teasdale & Jennett, 1974). The scale is comprised of three components: eye 

opening, verbal response and motor response (Figure 3).  
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Figure 3. Examination and scoring criteria for assessment using the Glasgow Coma Scale. (From 
Teasdale & Jennett, 1974) 

 

A score is given in each subsection of the test along with a global score composed of the 

sum of all subsections. A score of less than nine is considered severe, a score between nine and 

12 is considered moderate and a score above 13 is considered minor. Any score of less than eight 

qualifies for a diagnosis of coma (Teasdale & Jennett, 1974).  

Despite the widespread use of the GCS, it has several limitations. The use of sedating and 

paralyzing drugs often renders assessment difficult and the inter-rater reliability of the scale has 

been questioned (Buechler, Blostein, Koestner, Hurt, Schaars, & McKernan, 1998) (Crossman, 

Bankes, Bhan, & Crockard, 1998). The prognostic utility of the scale has also been criticized 

(Green, 2011). Nonetheless, the GCS is currently the gold standard of coma assessment. 

Coma patients who recover typically begin to display signs of improvement within 2 to 4 

weeks. While some patients go on a near complete recovery of consciousness, others remain in a 

state of disrupted awareness and receive a diagnosis of either VS or MCS depending on their 

level of recovery. 

Vegetative State 

Patients who emerge from coma typically transition into VS, a clinical diagnosis first 

introduced in 1972 (Jennett & Plum, 1972). Though some patients pass through VS on the path 

to more substantial recovery, others suffer profound impairments of consciousness for a 

prolonged or permanent period resulting in a diagnosis of Persistent Vegetative State, commonly 

referred to simply as VS (Figure 1). The important characteristics that distinguish VS from coma 

are eye opening and the presence of circadian sleep-wake cycles. Diagnosis of VS is made after 

repeated clinical examinations that yield no evidence of sustained, reproducible, purposeful or 
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voluntary behavioral response to stimuli presented across multiple sensory modalities (Jennett & 

Plum, 1972; Royal College of Physicians Working Group, 1996). Additionally, VS patients show 

no evidence of language comprehension or communication. Given the presence of sleep-wake 

cycles and the absence of volitional behavior indicating consciousness, VS is often understood as 

wakefulness without awareness (Figure 2).  

Despite the clinical distinction made between purposeful and non-purposeful behavior, it 

can be difficult in practice to determine whether a given movement is purposeful (Andrews, 

Murphy, Munday, & Littlewood, 1996). Consequently, several objective rating scales have been 

introduced which intend to provide a standardized, reliable assessment protocol. In particular, the 

JFK Coma Recovery Scale-Revised (JFK CRS-R) is designed to assess level of function in VS 

and to distinguish VS from MCS (Kalmar & Giacino, 2006). The JFK CRS-R includes 23 

operationally defined behaviors arranged into six subscales that assess auditory, visual, motor, 

oromotor, communication and arousal functions (Figure 4). Each subscale is arranged 

hierarchically, with lower-level items assessing reflexive activity and higher-level items 

assessing purposeful, cognitive-mediated behaviors.  The JFK CRS-R has demonstrated good 

inter-rater reliability and prognostic utility and has been heralded as a promising new assessment 

tool (Schnakers, et al., 2008). However, as discussed below, recent research has shown that the 

JFK CRS-R may lack the sensitivity to detect awareness in some DOC patients, particularly 

those who suffer severe motor impairments (Owen A. M., Coleman, Boly, Davis, Laureys, & 

Pickard, 2006). 
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Figure 4. Scoring protocol used during administration of the JFK Coma Recovery Scale. (From 
Kalmar & Giacino, 2006) 
 

Minimally Conscious State (MCS) 

The minimally conscious state was recently introduced as a new diagnostic category in 

DOC (Giacino, et al., 2002). Following more substantial recovery, patients often transition from 

VS into MCS, though others remain in MCS indefinitely. In general, MCS represents a partial 

recovery of consciousness. Like VS, patients display eye opening and intact circadian rhythms 

with the addition of partial recovery of volitional behavior. In order to receive a diagnosis of 

MCS using the JFK CRS-R, at least one of the following behaviors must be present: 

• Consistent movement to command 
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• Object recognition 

• Reaching toward object 

• Visual pursuit 

• Fixation 

• Object manipulation 

• Localization to noxious stimulation 

• Intelligible verbalization 

• Non-functional, intelligible communication 

Due to the presence of occasional volitional behavior, MCS is understood as wakefulness 

with a low level of fluctuating awareness (Figure 2). Diagnosis of MCS is often not 

straightforward, however. Given that MCS patients often show inconsistent and ambiguous 

responses, the line between MCS and VS is often not clear cut in practice (Schnakers, et al., 

2009).   

Overall, prognosis for recovery is better for MCS than VS. Some patients who have 

remained in MCS for years have progressed to live meaningful lives (Bernat, 2006). As a 

milestone of recovery, demonstration of either functional object use or functional communication 

entails the emergence from MCS altogether (Figure 5).  
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Figure 5. Milestones in recovery from coma to the re-emergence of awareness. (From Laureys, 
Perrin, Schnakers, Boly, & Majerus, 2005) 
 

Misdiagnosis in Disorders of Consciousness  

Given the complexity of diagnosing disorders of consciousness and the ambiguity that 

can accompany patient responses, the accuracy of diagnosis in DOC patients has been 

questioned. An early study of 49 patients diagnosed as VS concluded that 18 (37%) were 

misdiagnosed (Childs, Mercer, & Childs, 1993), with trauma patients misdiagnosed significantly 

more often. Misdiagnosis often resulted from confusion of terminology, lack of extended 

observation of patients, and a lack of skill and training in the diagnosis of severely brain injured 

patients. 

A further study examined 40 patients referred to a rehabilitation unit with a diagnosis of 

VS (Andrews, Murphy, Munday, & Littlewood, 1996). The authors used standard command 

following protocols as well as a novel response mechanism where patients could use small 

movements to activate a buzzer. 43% of patients were considered to have been misdiagnosed as 

VS rather than MCS. Of the patients who were misdiagnosed, seven had been erroneously 

considered as VS for longer than one year and three were considered VS for between four and 

seven years. A subsequent study utilized electromyography to examine subthreshold motor 
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activity in DOC patients. Of the 10 VS patients examined, one patient reliably produced 

electromyographic activity in response to verbal command that was below the threshold required 

to elicit overt motor activity. Together, these studies suggest that a substantial proportion of 

DOC patients may be systematically misdiagnosed due to impairments in motor function 

(Bekinschtein, Coleman, Niklison III, Pickard, & Manes, 2009).  

Proper diagnosis of DOC carries both medical and legal importance. As MCS has a much 

better prognosis than VS, accurate prediction of patient outcome can be significantly impacted 

by misdiagnosis (Ashwal & Cranford, 1995; Giacino, 2004). Importantly, these data may be due, 

in part, to what has been called the fallacy of the self-fulfilling prophesy; because the prognosis 

is poorer in VS, these patients potentially receive less medical care and are denied aggressive 

life-sustaining treatments, thus affirming the trend of poorer prognosis (Becker, et al., 2001). 

There are also important legal implications for diagnoses given by clinicians, especially with 

regard to end of life decision making. Life support may be withdrawn from a patient if brain 

function is severely compromised and there is no expected value in the administration of 

continued care. Given that the value of continued care is largely determined by prognostic 

predictions, which in turn are informed by the patient’s diagnosis, proper clinical diagnosis and 

prognosis in DOC patients can mean the difference between life and death in some cases (Cribb, 

2012). 

 

Measuring Neural Activity to Aid in the Diagnosis of DOC 

Aside from behavioral deficits, clinicians and scientists have investigated the patterns of 

neural activity and cerebral metabolism that characterize DOC. These efforts can be divided into 
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three categories: resting state neural activity, neural activity in response to external stimulation, 

and active paradigms that measure neural activity in response to a volitional cognitive task. 

 

Resting State Neural Activity in DOC 

Resting state neural activity includes patterns of brain activity that occur spontaneously in 

the absence of any specific behavior or cognitive task. Studies of resting state activity can 

therefore be administered to a wide variety of patients at any level of cognitive function. In 

general, they are effective in characterizing patterns of global brain activity, though less effective 

in assessing particular cognitive or neural deficits.  

Electroencephalography (EEG) is the most prominent modality for assessing brain 

function in clinical environments (Demertzi, et al., 2009). The presence or absence of electrical 

activity in the brain, as measured by EEG, is often used to distinguish DOC from brain death 

with a sensitivity and specificity of approximately 90% (Buchner & Schuchardt, 1990). Resting 

state EEG patterns differ between VS and healthy individuals, with VS patients displaying a 

pattern predominantly characterized by low frequency theta (4-7.5hz) and delta (1-3.5hz) waves 

(Demertzi, et al., 2009). EEG has also been shown to have prognostic value in DOC patients, 

with burst-suppression patterns of EEG typically signaling a poor outcome (Posner, Saper, 

Schiff, & Plum, 2007). 

Resting state functional neuroimaging has also been used to assess brain function in DOC 

patients. Positron emission tomography (PET) studies have shown a complete reduction of 

metabolism throughout the brain in patients suffering brain death and a reduction of up to 50% in 

DOC patients (Laureys, 2005). DOC patients also display a specific impairment of activity in 

polymodal association areas including the precuneus, Broca’s area, and prefrontal, 
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parietotemporal and posterior parietal regions, areas associated with higher cognitive functions 

including attention, memory and language (Laureys, et al., 1999). 

In addition to activity in specific brain regions, functional connectivity between 

distributed areas of the brain is predictive of the level of function in DOC. In a functional 

magnetic resonance imaging (fMRI) study of 14 DOC patients, a higher degree of functional 

connectivity between areas of the Default Mode Network (DMN) was correlated with behavioral 

diagnosis of patients (Vanhaudenhuyse, et al., 2010). Another fMRI study examining coma 

patients found that functional connectivity in the DMN predicted emergence from coma, while 

absence of default network connectivity indicated a poor prognosis for recovery (Norton, 

Hutchinson, Young, Lee, Sharpe, & Mirsattari, 2013). Thalamocortical connectivity is likewise 

disrupted in DOC. VS patients show significant reductions in connectivity between thalamic 

nuclei and the prefrontal cortex relative to healthy controls, with restorations in connectivity 

occurring with the recovery of awareness (Laureys, Faymonville, Luxen, Lamy, Franck, & 

Marquet, 2000).  

Following from earlier functional connectivity research, Rosanova et al. (2012) 

developed a novel perturbation approach for examining resting state cortical connectivity using 

combined transcranial magnetic stimulation (TMS) and EEG. In a group of 12 DOC patients, 

various areas of the cortex were stimulated using TMS while neural activity was recorded using 

EEG. In VS patients, stimulation led to short term, localized neural activity. In contrast, when 

stimulation was applied to MCS patients, complex long-range activity was recorded throughout 

the cortex, demonstrating a wider network of functionally connected regions. Moreover, 

increasingly complex patterns of connectivity began to emerge as patients recovered 

consciousness and were displayed prior to the reemergence of communication and changes in 
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resting state EEG patterns. This technique also has the distinct advantage of demonstrating a 

causal relationship between activities in separate cortical areas compared to fMRI functional 

connectivity, which relies exclusively on correlation.  

 

Neural Responses to Passive External Stimulation 

In contrast to resting state studies, passive stimuli paradigms measure neural activity in 

response to sensory stimulation.  Passive stimuli paradigms have several important features.  In 

contrast to the active paradigms discussed below, they do not require active participation and are 

therefore applicable to a wider range of patients. Furthermore, by administering stimuli that 

generally evoke a response in a particular set of brain regions, they allow researchers and 

clinicians to make inferences about the integrity of specific neural systems. They therefore 

provide a more nuanced understanding of the unique neural disruptions in DOC populations as 

well as individual differences between patients.  

Passive stimuli paradigms have several shortcomings, however. In general, the fact that 

an area becomes active in response to a class of stimuli does not necessarily mean that that area 

is processing those stimuli accurately (Coleman, et al., 2007). In addition, passive stimuli 

paradigms say little about whether a patient is conscious of the stimuli being presented, as many 

studies have shown that unconsciously perceived stimuli may nonetheless increase neural 

activity in stimulus specific regions (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006). 

Despite these shortcomings, passive stimuli paradigms have provided important insights into 

DOC and can aid in patient prognosis. 

In ERP paradigms, stimuli are presented while neurophysiological activity is recorded 

using EEG. Segments of EEG activity accompanying the presentation of stimuli are known as 
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event related potentials (ERP). Typically, stimuli are varied along two or more experimental 

dimensions. A difference in the magnitude, frequency, or timing of the ERP response between 

conditions can be used to infer differential neural processing in each condition and sensitivity to 

the experimental dimension manipulated (Luck, 2005).  

One of the most widely studied ERPs in DOC is the Mismatch Negativity (MMN). In a 

typical MMN task, a standard auditory stimulus is repeated with high frequency, while a 

different stimulus, known as a deviant, occurs infrequently. Relative to standard stimuli, deviant 

stimuli elicit a negative electrical potential on the scalp with a post-stimulus latency of 150-

250ms (Näätänen, Pakarinen, Rinne, & Takegata, 2004).  The presence of an MMN thus 

confirms the integrity of neural structures involved in auditory change detection.  

In several studies, a preserved MMN response has been shown to predict successful 

recovery from coma (Kane, Curry, Butler, & Cummin, 1993; Fischer, Morlet, Bouchet, Luaute, 

Jordan, & Salord, 1999). Likewise, VS and MCS patients with an intact MMN are significantly 

more likely to show clinical improvement six months after testing (Kotchoubey, et al., 2005). In 

a longitudinal study that tested MMN responses every two weeks over a three and a half month 

period, MMN amplitude increased with the level of function in DOC patients and a sudden 

increase in MMN amplitude coincided with the return of functional communication (Winjin, van 

Voxtel, Eilander, & de Gelder, 2007).  

Aside from low-level change detection, ERPs have been used to assess a number of 

higher cognitive functions in patients. In a large-scale study, ERPs were used to assess preserved 

language function in 98 DOC patients (50 VS, 48 MCS) (Kotchoubey, et al., 2005). Three 

separate paradigms were used: a semantic oddball which included streams of categorically 

related words with unrelated words interspersed (cat, dog, horse, hat), a word-pairs task where 
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pairs of words were either semantically related or unrelated (table-chair vs. table-peach), and a 

sentences task where seven word sentences were played where the last word was either highly 

expected or highly unexpected. The presence of an appropriate ERP in each task was 

significantly related to the level of function of patients as measured by the Disability Rating 

Scale (Rappaport, Hall, Hopkins, Belleza, & Cope, 1982). Moreover, it was also noted that some 

patients who scored low on behavioral assessments still exhibited ERPs to semantic violations, 

indicating that language processing systems may be preserved in the absence of overt linguistic 

behaviour.  

In addition to EEG, PET and fMRI imaging studies have also used passive stimulation 

paradigms to assess a variety of functions in DOC patients. In a group of seven VS patients, five 

MCS patients and two patients who recently emerged from MCS, an fMRI-based hierarchical 

language task was developed to assess residual speech comprehension (Coleman, et al., 2007). 

Low-level auditory processing was measured by contrasting fMRI responses to auditory stimuli 

(consisting of both intelligible speech and unintelligible noise) and a silent baseline. Higher 

level, speech-specific processing was assessed by contrasting intelligible speech to amplitude-

modulated noise. At the highest level of the hierarchy, neural responses to sentence meaning 

were assessed by comparing responses to sentences that contained ambiguous words to matched 

sentences without ambiguity. In the low-level auditory task, three VS, two MCS and all of the 

recently emerged patients showed significant activation in the temporal lobe. These patients also 

showed significant activation in more extensive regions of the temporal lobe to higher level, 

speech specific stimuli. At the highest-level contrast, ambiguous sentences elicited significant 

activation in one VS patient, one MCS patient, and one recently emerged patient, spanning the 

temporal lobe as well as the left inferior frontal gyrus, an area previously associated with the 
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resolution of linguistic ambiguity (Rodd, Davis, & Johnsrude, 2005). These results again 

demonstrated that patients who do not respond overtly to linguistic stimuli might nonetheless 

retain speech networks that support language comprehension. However, as recognized by the 

authors, the results do not necessarily suggest successful language processing per se, as it is 

possible that these patients unsuccessfully attempted to resolve ambiguous sentences, thereby 

still engaging the relevant brain networks. Nonetheless, differential activation to ambiguous 

sentences still implies that many lower level processing functions were successful, including 

segmenting an auditory stream and activating word meaning within language networks, despite 

the lack of linguistic behaviour in these patients. 

In addition to language functions, neuroimaging paradigms have been used to examine 

whether DOC patients experience pain. Reducing pain is an important part of patient care and 

behavioural scales such as the Nociception Coma Scale have been developed to detect pain in 

DOC patients (Schnakers, et al., 2010). However, it is still unclear to what extent DOC patients 

process nociceptive stimuli beyond the pain reflexes typically exhibited. In a PET study, 15 VS 

patients received high-intensity electrical stimulation to the median nerve of the wrist. In all VS 

patients, noxious stimuli evoked activations in the midbrain, contralateral thalamus, and primary 

somatosensory cortex. Unlike healthy controls, however, secondary somatosensory, insular, 

posterior parietal and anterior cingulate cortices did not show increased activation. Moreover, in 

patients, the activated primary somatosensory cortex was functionally disconnected from 

secondary somatosensory, posterior parietal, premotor, superior temporal, and prefrontal 

cortices. Of the cortical areas involved in pain perception, only the anterior cingulate is 

consistently associated with the subjective experience of pain (Derbyshire, Jones, Clark, 

Townsend, & Firestone, 1997), which was notably absent in these patients. Likewise, it has been 
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shown in neurological patients that somatosensory stimuli below conscious threshold activate 

somatosensory areas but do not give rise to downstream activations (Libet, Alberts, Wright Jr, & 

Feinstein, 1967), and direct stimulation of somatosensory cortex does not elicit the feeling of 

pain (Penfield & Jasper, 1954). The results therefore suggest that the majority of the VS patients 

tested did not consciously experience pain, though it should be noted that these patients scored 

particularly low on behavioral assessments and the results may not extend to other DOC patients. 

Nonetheless, the study took important first steps in understanding the experience of pain in DOC 

as well as using the neural correlates of conscious experience in healthy participants to infer the 

conscious state of patients. 

Emotional processing has also been investigated in DOC patients using neuroimaging 

paradigms. In an early fMRI case study, audio clips were played to an MCS patient of his mother 

reading a story followed by the same clips read by a stranger (Bekinschtein, et al., 2004). When 

neural activity was contrasted between the two conditions, it was found that listening to clips 

read by the patient’s mother elicited greater activation in the insula as well as the amygdala, two 

regions robustly associated with emotional processing (Figure 6) (Phan, Wager, Taylor, & 

Liberzon, 2002).  

 

Figure 6. Patterns of neural activity elicited by stimuli with greater emotional significance. 
(From Bekinschtein, et al., 2004) 
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A subsequent study further examined emotional processing in DOC using visual stimuli 

and a larger sample of patients (Zhu, et al., 2009). Nine MCS patients and 10 controls were 

shown personal family photos as well as never-before-seen images that varied in emotional 

valence.  Of the nine patients, six showed cortical activation patterns to personal family portraits 

that were highly similar to controls, including occipital, parietal, orbitofrontal and prefrontal 

cortices as well as the fusiform gyrus. These patients also generally showed more activation to 

highly emotional novel images than to novel images with less emotional valence. These results 

suggest that, despite their lack of outward emotional expression, DOC patients may nonetheless 

retain aspects of emotional processing.   

 

Active Paradigms 

In contrast to the paradigms outlined above, in active imaging paradigms the patient is 

given an instruction to perform a cognitive process that requires volitional intention and control 

(Bruno, et al., 2010). An appropriate pattern of neural activity observed after the instruction 

provides evidence that the patient was carrying out that cognitive process and therefore 

exhibiting volitional behavior. Active paradigms are largely motivated by the recognition that 

some patients who retain consciousness may have nervous system damage that prevents them 

from signifying their awareness using a motor response (Figure 7). Unlike passive and resting 

state paradigms, active paradigms have the distinct property of potentially challenging a patient’s 

clinical diagnosis. Consistent, accurate performance within an active paradigm can be viewed as 

a form of command following, one of the basic criteria that denotes emergence from DOC. 

Active tasks also have the potential to be used to implement brain-computer interfaces (BCIs) in 

non-communicative patients, allowing the direct translation of systematic neural activity into the 
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control of an external communication device (Kotchoubey B. , 2007).  Active tasks therefore 

have tremendous potential for assessing high-functioning, non-communicative patients. 

 

Figure 7. DOC reconsidered with the additional dimension of motor response capability. (From 
Monti, Coleman, & Owen, 2009) 

 

In a pioneering study, the first active fMRI paradigm was implemented with a VS patient 

who had suffered traumatic brain injury (Owen, Coleman, Boly, Davis, Laureys, & Pickard, 

2006). During the fMRI scan, she was instructed to either imagine playing tennis or visiting all 

of the rooms in her house. During periods of tennis imagery, significant activation was observed 

in the supplemental motor area, an important area for motor imagery (Jeennerod, 1994). 

Conversely, during periods of spatial imagery, significant activation was found in the 

parahippocampal gyrus, posterior parietal cortex and lateral premotor cortex, areas previously 

associated with spatial imagery (Maguire, Burgess, Donnett, Frackowiak, Frith, & O'Keefe, 

1998) (Figure 8). This data provided strong evidence that the patient was able to understand 

spoken commands and volitionally modulate her brain activity, thereby challenging her clinical 

diagnosis. In a subsequent discussion of the study, commentators proposed that the last word of 
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the instructions in each condition (“tennis” or “home”) may have unconsciously triggered the 

brain activity found in the study (Nachev & Husain, 2007; Greenberg, 2007). However, as 

argued by the original authors, activity in the two conditions persisted for a full 30 seconds, 

much longer than activity found in unconscious priming experiments. Furthermore, activity 

extended well beyond the word recognition areas that typically activated to unconscious stimuli 

(Owen A. M., et al., 2007). 

 

Figure 8: fMRI activation in response to imagery instructions in a behaviourally unresponsive 
VS patient and healthy controls. (From Owen, Coleman, Boly, Davis, Laureys, & Pickard, 2006) 

 

In a follow-up large scale study, 23 VS and 31 MCS patients were assessed with a similar 

imagery paradigm (Monti, et al., 2010). Patients were again instructed to imagine playing tennis 

or navigating their house while undergoing fMRI. Among the 54 patients, 4 VS and 1 MCS 

could willfully modulate their brain activity in the imagery conditions, demonstrating that a 

significant minority of patients diagnosed as VS may retain cognitive function and awareness 

undetected during standard DOC assessment. The authors also stressed that the fMRI protocol 

likely underestimates the number of patients that retain some level of awareness, as false 

negatives may have resulted from the lack of adequate statistical power as well as deficits in 

language comprehension, working memory and other cognitive faculties that prevented some 
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patients from performing the task. Aside from replicating the initial study in a larger population, 

the authors implemented a novel communication paradigm with one of the patients who had 

demonstrated a consistent fMRI response. The patient was given six yes-or-no autobiographical 

questions (i.e., “is your father’s name Alexander?”) and instructed to respond by thinking of one 

type of imagery for an affirmative answer and the other for a negative answer. In five of the six 

questions, fMRI activation closely matched one of the imagery conditions from the previous scan 

and the corresponding yes-or-no answer was taken as the patient’s response (Figure 9). The 

response was correct for all five questions. The study provided the first demonstration that 

functional communication could be established in a non-communicative DOC patient using 

neural activity, suggesting that a similar approach could be used to address important clinical 

questions, such as asking if the patient was in pain or allowing some degree of autonomy in 

determining their clinical treatment.  

 

Figure 9. Functional communication established through covert motor imagery in a VS patient. 
(From Monti, et al., 2010) 
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Following the success of fMRI motor imagery paradigms, several studies have attempted 

to implement a similar approach using EEG. EEG has several important advantages over fMRI 

in clinical settings including lower cost, higher availability, and the possibility of testing patients 

with medical implants that may rule out fMRI scanning. In addition, EEG portability allows 

testing to be performed at the bedside, avoiding the physical stress involved in transporting 

patients and raising the possibility of BCIs for communication in the long term.  

In a cohort study of 16 VS patients, an EEG motor imagery task was developed where 

patients imagined either squeezing their right hand or wiggling their toes (Cruse, et al., 2011). 

Due to the complexity of EEG spectral changes during motor imagery, a support vector machine-

learning algorithm was used to examine whether it was possible to classify neural activity in the 

two conditions. The EEG patterns of three of the patients could be classified significantly above 

chance with classification accuracies ranging from 61-78%. The EEG spectral patterns that 

provided the highest classification accuracy were highly similar to those of healthy controls, 

providing evidence that similar neural generators were contributing to the signal in VS patients 

(Figure 10). None of the patients who showed significant changes in EEG spectral power had 

shown consistent responses to commands during standard behavioural assessments. The study 

provided the first evidence that command following could be assessed in non-communicative VS 

patients using EEG.   
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Figure 10. Topographic maps of EEG activity during motor imagery in VS patients and a healthy 
control. (From Cruse, et al., 2011) 

 

The aforementioned studies established BCIs by instructing the participant to generate an 

internal mental state while attempting to detect neural activity associated with that state. Another 

predominant approach in BCI research has been the use of volitional changes in attention 

(Wolpaw, et al., 2000). Within these approaches, several stimuli are presented, either 

concurrently or sequentially. By actively paying attention to a single stimulus or stimulus 

category, a differential brain pattern is generated in response to those stimuli, which in turn can 

be used to signal a response.   

One particular pattern of attention-related neural activity used extensively in DOC 

research is the P300b (Figure 11. Typical time course of P300b ERP, elicited in response to a 
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target stimulus embedded within a stream of distractors (From Polich, 2007).). The P300b is an 

EEG component defined as a positive change in scalp voltage occurring approximately 300ms 

after the presentation of a target stimulus in the context of several distractor stimuli (Picton, 

1992). A target stimulus must be both infrequent and actively attended in order to elicit a P300b. 

There is still widespread debate about the cognitive processes reflected by the P300b. An early 

model proposed that it reflects a context updating operation, when the brain revises an active 

hypothesis about the current context, explaining why infrequent stimuli are necessary for its 

generation. More recently, it has been proposed that the P300b reflects a template matching 

process, where an external stimulus is matched with an internal representation. Converging 

neuroscience research has localized its neural generators to temporal and parietal cortices, with 

potential contributions from the anterior cingulate, relying upon dopamine and norepinephrine 

neurotransmitter systems. Despite over four decades of human and animal research, the nature of 

the P300b is still a heavily debated area of research (Polich, 2007). 

Due to the selective, attention-dependent nature of the P300, it has been widely exploited 

in BCI research. Stimuli presented to the participant can be selected to represent various choices 

(i.e., “yes” or “no”). The participant decides which stimulus to attend to, thereby determining 

which stimulus will evoke a P300b. The EEG is then analyzed to determine the stimulus that 

evoked P300b ERPs, signaling the particular choice made by the participant and allowing the 

implementation of a BCI (Mak & Wolpaw, 2009). Likewise, the attended stimulus can be 

selected by the experimenter, allowing for the implementation of covert command following 

paradigms.  
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Figure 11. Typical time course of P300b ERP, elicited in response to a target stimulus embedded 
within a stream of distractors (From Polich, 2007).   
 

A P300b-based auditory paradigm was successfully used to detect command following in 

a locked-in patient with no behavioural signs of awareness (Schnakers, et al., 2009). Auditory 

sequences of the patient’s own name and unfamiliar names were presented in three separate 

conditions. In the passive condition, the patient was instructed to simply listen to the names. In 

the first active condition the patient was instructed to count her own name in an auditory 

sequence, while in the second she was asked to count a specified unfamiliar name. The authors 

found a significantly larger P300b response to the patient’s name relative to the other name in the 

passive condition. Moreover, there was a larger P300b in the active condition than the passive 

condition, indicating that she had willfully modulated her attention in response to task 

instructions, a form of command following. The same experiment was run at earlier times 

relative to brain injury with no significant result, while the positive result came two weeks before 

the first behavioral signs of conscious recovery.  

Lulé et al. (2012) further tested a voluntary, auditory P300b paradigm on healthy controls 

as well as locked-in, MCS and VS patients. The auditory stimuli “yes”, “no”, “pass”, and “go” 

were presented to patients who were instructed to count either “yes” or “no.” In the majority of 

healthy controls, as well as a locked-in and MCS patient, a significantly larger P300b was 
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observed to attended stimuli, demonstrating volitional behaviour in typically unresponsive 

patients.  

Aside from EEG paradigms, active approaches relying on attention-based neural 

responses have been piloted using fMRI. In one study, an fMRI-based test of executive function 

was developed that assessed the ability to maintain task relevant stimuli over time and in the face 

of distractor stimuli without requiring an overt response (Monti, Coleman, & Owen, 2009).  

Using a within-participant, block design, 20 healthy controls as well as one MCS patient 

completed alternating tasks where they either rested or counted stimuli. In the counting task, a 

new target was given at the beginning of each block and participants were instructed to 

subvocally count each time it occurred. In the passive condition, participants were instructed to 

simply listen to stimuli. FMRI activations were first contrasted between counting and passive 

conditions at the group level in healthy participants. Significantly greater activation was found in 

frontal, temporal, and parietal cortex during counting. When analyzed at the single participant 

level, the contrast was significant for all 20 healthy participants. The same contrast in the MCS 

patient likewise revealed significantly greater activation during the counting task, with a pattern 

of neural activation similar to healthy controls. These results suggested that the patient was able 

to understand and maintain task instructions and experimental stimuli for a prolonged period of 

time, demonstrating the capacity for working memory, a key component of executive function.  

In a recent study, an fMRI imagery paradigm was used to directly assess reasoning 

capacity in a VS patient, another key component of executive function (Hampshire, et al., 2013). 

The experimenters utilized a verbal reasoning test that requires participants to infer the relative 

position of two items as described by sentences that are varied in complexity (Baddeley, 1968). 

The VS patient was presented with a problem at the beginning of each trial where the correct 
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answer was either “face” or “house.” After solving the problem, the patient was instructed to 

generate a mental image of either a face or house depending on their answer. To assess whether 

the patient had correctly solved the reasoning problems, trials where the correct answer was face 

were contrasted with trials where the correct answer was house. In trials where house was the 

correct answer, there was significantly greater activation in areas specific to spatial processing, 

including parahippocampal place area, left superior occipital gyrus and left lateral premotor 

cortex, indicating that the patient had imagined a house when it corresponded to the correct 

answer and was able to solve a significant number of reasoning problems (Figure 11). There was 

also a significant main effect of level of difficulty on the amount of activation, demonstrating 

that the patient had greater difficulty with more complex sentences. The study also found 

significant activation in several areas of the frontal lobes during the period when the patient was 

actively solving problems, with the level of activation in these regions again modulated by the 

difficulty of the sentence (Duncan & Owen, 2000). This study provided the first evidence of 

successful reasoning in a patient diagnosed as VS.   
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Figure 12. fMRI activations to trials where the correct answer to a reasoning problem was 
“house.” (From Hampshire, et al., 2013) 

 

Current Study 

Recent research has shown that both neuroimaging and EEG paradigms are 

complementary to behavioral tests of DOC patients and may allow for better assessment of 

patients with deficits in motor function. Accordingly, several authors have argued that 

neuroimaging paradigms should be routinely used to aid in clinical diagnosis (Coleman, et al., 

2009), making use of hierarchically structured batteries that sequentially assess lower level 

sensory functions, language comprehension, command following, and executive control.  

In particular, assessment of executive function in DOC patients has been largely 

understudied despite carrying particular clinical and ethical importance. As BCI systems become 

more widely utilized in DOC, questions will naturally arise as to what degree of autonomy 

communicative patients should be given in determining their medical care and managing their 

lives. In general, the ethical provision of medical autonomy assumes the capacity for 

understanding complex information and appreciating foreseeable consequences to decisions, 

both of which are closely tied to executive functioning (Etchells, Sharpe, Elliot, & Singer, 1996; 

Marson & Harrell, 1999). Although important steps have been made in developing assessment 

paradigms for executive function (Hampshire, Highfield, Parkin, & Owen, 2012), further study is 

required in order to develop assessment protocols that are validated and can be administered 

easily on a wide variety of patients.  

The current study sought to develop and validate a battery of executive function tasks in 

healthy participants that can be used to assess DOC patients without requiring an overt motor 

response. Due to the motor limitations of DOC patients, the paradigm was designed to be 
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capable of assessing executive function using the P300b response validated in previous studies 

(Guger, Edlinger, Harkam, Niedermayer, & Pfurtscheller, 2003). Additionally, because DOC 

patients characteristically have difficulty maintaining eye fixation, the task was administered 

using auditory stimuli. Three tasks were chosen for the battery: a basic command following 

paradigm, a modified memory span task, and a verbal reasoning task. These tasks were chosen 

based on recent studies that highlight memory and reasoning as fundamental but dissociable 

components of executive functioning (Hampshire, Highfield, Parkin, & Owen, 2012).  

The main hypothesis of the experiment was that the battery would be able to detect 

command following in the first task as well as correct performance in the executive function 

tasks at the group and single participant level using the P300b response. It was also hypothesized 

that the battery would be capable of determining individual differences in performance using the 

P300b. Lastly, exploratory analyses were conducted examining the sensitivity of the paradigm to 

detect correct performance as a function of testing time and participant accuracy. 

 

2.  Methods 

Participants  

All experiments were approved by the Psychology Research Ethics Board at Western 

University. 16 participants (eight females, age: 21.1 ± 2.2 years) were recruited from Western 

University in London, Canada. Written, informed consent was given. All participants were right-

handed, native speakers of English with no history of neurological disorders. Participants were 

paid $15 per hour. Data from two participants was excluded from analyses due to excessive 

movement artifacts.  
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Experimental Paradigm 

Stimuli 

The word stimuli used for the P300b paradigm consisted of auditory recordings of 

“boss”, “cake”, “dot”, “fan”, “map”, “pen”, “leaf”, and “seal,” subsequently referred to as word 

stimuli. All word stimuli were monosyllabic, concrete nouns with different onset consonants, 

matched for frequency and imagability using the MRC Psycholinguistics Database (Wilson, 

1988). All auditory stimuli were recorded from the same speaker with a sampling rate of 

44100hz and normalized for peak amplitude. Word stimuli were 400ms in duration. All auditory 

stimuli were delivered through EEG compatible headphones at a clear but comfortable volume.  

 

Task1 

Task 1 attempted to implement a basic command following paradigm using the P300b 

ERP. During Task 1, subsequently referred to as auditory attention (AT), participants were given 

a target word at the beginning of each trial (Figure 13: Organization of experiment and tasks.). 

The target word was given using the auditory phrase “the word you will be counting is x, begin 

counting,” where x was replaced by the target. After a two second pause, a sequence of word 

stimuli was played (referred to subsequently as the “stream”), including the target word as well 

as all seven non-target words. The participant’s task was to internally count the number of 

occurrences of the target word while ignoring non-target words. Subjects were instructed to 

maintain fixation on a cross centred on the screen during the presentation of the stream. 

The stream consisted of an equal number of occurrences of all eight word stimuli, played 

7-10 times each, so that the total stream length was either 56, 64, 72 or 80 words. For each trial, 

the stream was generated by repeatedly appending randomized sets of all eight words. For 
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example, words 1-8 in the stream consisted of all word stimuli in random order, words 9-16 

included all word stimuli in random order, and so forth. Streams were also generated with the 

condition that no word could immediately follow itself. Word stimuli within the stream were 

presented with an interstimulus interval that randomly varied between 50 to150ms. 

 

 

Figure 13: Organization of experiment and tasks. 
 

At the end of each stream, an auditory instruction played, asking, “how many times did 

the word occur?” Four buttons appeared on the screen, with the choices 7, 8, 9, and 10. The 

participant clicked the button corresponding to their response. The purpose of the behavioral 

response was to test whether the participant was performing the counting task. A 10 second rest 

delay was given before the start of the next trial. 

Each block of the auditory attention task consisted of 12 trials. There were two blocks in 

the experiment, resulting in 24 trials total. Each word stimulus was a target three times.  
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Task2 

Task 2 used the P300b to assess working memory. During task 2, subsequently referred 

to as working memory (WM), participants were given a memory set at the beginning of each trial 

(Figure 13). The auditory phrase “remember the following words in order” was played, followed 

by a memory set of four, six or eight word stimuli. A delay period of 10 seconds followed, 

during which the participant attempted to maintain the memory set. Word stimuli were 

counterbalanced so that each word was in a memory set an equal number of times. Each word 

stimulus was a correct answer in three trials. 

Following the delay, the auditory phrase “what was the xth word” was played, where x 

could be any ordinal position from one to the length of the memory set (i.e., 1st, 2nd, 3rd, etc.). 

Within each set memory length, there was an equal probability that the word to be remembered 

would appear in any ordinal position. The participant attempted to recall the word in that position 

from the set given. Eight buttons appeared on screen, one for each of the word stimuli. 

Participants indicated their answer by clicking the appropriate button with a mouse. The purpose 

of the behavioral response was to provide a benchmark to test the validity of analyzing 

participants’ performance using the P300b ERP. 

After indicating their answer, a two second delay followed, followed by the auditory 

phrase “count that word.” A stream of word stimuli were played, arranged exactly as described 

in task 1, with 7-10 repetitions of each word stimulus. Participants counted the word stimulus 

corresponding to their answer and indicated its number of occurrences after the completion of the 

stream. 
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Each WM block contained 12 trials with two blocks in the experiment for a total of 24 

WM trials. Each memory set size was used in eight trials.  

Task3 

The purpose of task 3 was to assess reasoning ability using the P300b. During task 3, 

referred to as auditory reasoning (AR), participants were given an auditory reasoning problem at 

the beginning of each trial. The auditory phrase “in the sentence” was played, followed by a 

problem sentence (i.e., “The cake follows the pen”), followed by the phrase “which of the two 

items should be first?” (Figure 13). The task of the participant was to determine the word in 1st 

position as described by the sentence (Figure 14). This verbal reasoning task has been used in the 

past to measure general reasoning abilities, as it requires the participant to maintain the sentence 

in mind and manipulate it according to logical rules in order to arrive at a solution (Hampshire, et 

al., 2013). 24 unique sentences were generated, one for each AR trial. Sentences were 

manipulated according to the verb used (precede VS follow), negation (positive VS negative) 

and whether the sentence was active or passive (“follows” VS “is followed by”). In total, eight 

sentence types were generated and each was played three times over the course of the experiment 

(Figure 14). Word stimuli were counterbalanced so that each word formed the correct answer in 

three sentences and an incorrect answer in three sentences.   

Following the auditory phrases, eight buttons appeared on screen, one for each of the 

word stimuli. Participants indicated their answer by clicking the corresponding button using the 

computer mouse. The purpose of the behavioral response was again to provide a benchmark to 

test the validity of analyzing participants’ performance using the P300b. Participants were given 

an unlimited amount of time to solve each problem.  A two second delay followed the response, 

followed by the auditory phrase “count that word.” A stream of word stimuli was played, 
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arranged exactly as described in task 1, with 7-10 occurrences of each word stimulus. 

Participants counted the word stimulus corresponding to their answer and indicated its number of 

occurrences after the completion of the stream with the computer mouse. 

Each AR block contained 12 trials, and two blocks were run in the experiment, resulting 

in a total of 24 AR trials. 

 

Example Precede/Follow Active/Passive Negative/Positive Correct Answer 
Cake precedes dot Precede Active Positive Cake 

Cake does not precede dot Precede Active Negative Dot 
Cake is preceded by dot Precede Passive Positive Dot 

Cake it not preceded by dot Precede Passive Negative Cake 
Cake follows dot Follow Active Positive Dot 

Cake does not follow dot Follow Active Negative Cake 
Cake is followed by dot Follow Passive Positive Cake 

Cake it not followed by dot Follow Passive Negative Dot 

Figure 14. Sentence types used in AR task 
 

Overall Experimental Design 

The experiment contained six blocks total with two blocks of each task (Figure 13). Each 

block contained 12 trials, for a total of 72 trials. The arrangement of the experiment was task 1, 

task 2, task 3, task 1, task 2, task 3, for all participants. The arrangement was not 

counterbalanced across participants as it is common practice to give neuropsychological tests 

with a fixed sequence (Tombaugh & McIntyre, 1992; Fray, Robbins, & Sahakian, 1996). 

Participants were given as much time as needed to rest between blocks. The total experiment 

time was typically one hour and 15 minutes, plus the time required for setup of the EEG 

recording system.  
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Behavioral Analysis  

To test for systematic fluctuations of attention over the course of the task, the accuracy of 

counting target stimuli (as given by the experimenter in task 1, as indicated by participant in task 

2 and 3) was compared across blocks. Within each block, the number of trials where the 

participant indicated the correct number of occurrences of the target was divided by the total 

number of trials in order to calculate accuracy. A repeated measures ANOVA was conducted 

with block number as the independent variable and accuracy as the dependent variable. 

To test for systematic fluctuations of attention between tasks, the accuracy of counting 

target stimuli (as given by the experimenter in task 1, as indicated by participant in task 2 and 3) 

was compared across task type. Within both blocks of each task, the number of trials where the 

participant indicated the correct number of occurrences of the target was divided by the total 

number of trials to calculate accuracy. A repeated measures ANOVA was conducted with task 

type as the independent variable and accuracy as the dependent variable.  

To assess the effect of set size on recall accuracy in the WM task, a one-way repeated 

measures ANOVA was conducted with three levels: four item sets, six item sets and eight item 

sets.  For each participant, the number of correctly recalled sets was divided by the total number 

of questions within each set size to calculate accuracy for that set size.  

To assess the effect of sentence type on performance in the AR task, a three-way repeated 

measures ANOVA was conducted. Verb type (precedes vs. follows), negation (negative vs. 

positive sentences) and form (active vs. passive) were used as factors, each with two levels. 

Within each sentence type, the number of correctly solved problems was divided by the total 

number of problems of that type to calculate accuracy rate.  
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EEG Analysis 

EEG recording. 

EEG recording was performed using a G.Tec amplifier and G.Tec gel-based active 

electrode system (G.Tec Medical Engineering, GMBH). Electrodes were placed using the 10-10 

convention and recorded from locations FC3, C3, CP3, FCZ, CZ, CPZ, FC4, C4, CP4, T7, T8, 

PZ, POZ, OZ, P7, P8. Data was analogue filtered with a passband of 0.1-100 Hz and a notch 

filter at 60 Hz to reduce interference. Sampling was performed at 256 Hz, with impedances kept 

below 5k Ω. Scalp voltages were referenced to the right earlobe.  

 

EEG Preprocessing 

All EEG processing was performed using Matlab with EEGLAB and FieldTrip toolboxes 

(Delorme & Makeig, 2004;  Oostenveld, Fries, Maris, & Schoffelen, 2011). EEG was digitally 

filtered from 0.5-10hz using the EEGLAB finite impulse response filter, with these parameters 

selected based on previous p300 BCI research (Guo, Gao, & Hong, 2010).  Eye and muscle 

artifacts were rejected using independent component analysis (ICA), a form of blind source 

separation that decomposes neural activity recorded at EEG electrodes into independent sources 

that are mutually independent (Delorme & Makeig, 2004). Components that were likely the 

result of movement, blink and saccade artifacts were rejected using a previously validated 

method utilizing kurtosis, extreme value thresholding, data improbability and linear trending 

(Delorme, Sejnowski, & Makeig, 2010). Remaining independent components were back-

projected to electrodes. 
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ERPs were generated by dividing trials into epochs from -200ms to 1000ms relative to 

word stimuli onsets. ERPs were baseline corrected by subtracting the average pre-stimulus 

magnitude from the epoch. 

 

Cluster Mass Permutation Test  

For the following ERP analyses, a cluster mass permutation test (CMPT) was used, 

adapted from Cruse, Chennu, Fernádez-Espejo, Payne, Young, & Owen, 2012. The general 

motivation behind this procedure is the recognition that EEG recordings generate a large number 

of time samples within each ERP, with this number multiplied by the number of electrodes. It 

would require a substantial number of comparisons to compare each time-electrode sample 

between the two conditions, each increasing the probability of type 1 errors. Due to the need to 

correct for multiple comparisons, the sensitivity of the test is severely diminished. Instead, the 

cluster mass approach provides a test statistic that is based on clustering adjacent spatial-

temporal samples. This approach was first developed for fMRI (Bullmore, Suckling, Overmeyer, 

Rabe-Hesketh, Taylor, & Brammer, 1999) and has since been adapted for analysis of MEG and 

EEG data (Maris & Oostenveld, 2007). In order to generate the test statistic, the following 

procedure is used: 

1. For every time sample in a predefined window at every electrode, compare the EEG signal 

between the two conditions. 

 For each participant, there will be n trials from condition one and m trials from condition 

two. Each trial is a matrix of time x electrode EEG voltage samples. Therefore, for each 

time-electrode point, there will be n samples from condition one and m samples from 

condition two. Perform an independent samples t-test for each time-electrode point in the 
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matrix between the two conditions. A temporal analysis window of 300ms to 800ms post 

stimulus onset was used following based on previous P300b research (Guo, Gao, & Hong, 

2010). 

2. Select all time-electrode points whose p-value is lower than a predefined threshold. In this 

study, p<0.05 was used, following conventional practice (Maris & Oostenveld, 2007). 

3. Cluster significant points that are both spatially and temporally adjacent. Points must be 

temporally adjacent by immediately following one another and spatially adjacent by virtue of 

being recorded from neighboring electrodes 

4. For each cluster, sum all t-values of significant time-electrode points. 

5. Select the cluster with largest summed t-values. This sum forms the test statistic.   

From this analysis, a single value is generated, referred to subsequently as the cluster 

mass value (CMV). In order to perform statistical analyses on the differences between 

conditions, a non-parametric permutation approach is taken. For comparisons between conditions 

at the single participant level, the following procedure is used: 

1. Collect all trials of the two experimental conditions in a single set. Each trial includes the 

time-varying voltage recorded at all electrodes. 

2. Randomly draw as many trials from this combined dataset as there are trials in condition one. 

Place those trials into subset one. Place the remaining trials in subset two. This results in a 

random partition. 

3. Calculate the CMV on this random partition. 

4. Repeat steps 2 and 3 10000 times. This large number of permutations allows a more precise 

characterization of the probability distribution and dilutes the effects of statistical anomalies. 

5. Place the test statistic that was actually observed into the histogram created in step 4.  
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6. Calculate the proportion of random partitions that resulted in a larger CMV than the observed 

one to derive a p-value.  

A similar approach is used for CMPT group level analysis.  In order to generate the test 

statistic, the following procedure is used: 

1. For each participant, an average ERP for each condition is calculated. Each participant is 

given a single matrix of time x electrode values for each condition. Time windows were 

restricted to 300-800ms post stimulus onset similar to single-participant level analysis. 

2. Each condition consists of a set of time x electrode matrices, one for each participant. 

Conduct a paired-samples t-test at each time-electrode point to determine points that differ 

significantly between the two conditions.  

3. Cluster significant points (p<0.05) that are both spatially and temporally adjacent. Points 

must be temporally adjacent by preceding or following one another and spatially adjacent by 

virtue of being recorded from neighboring electrodes 

4. For each cluster, sum all t-values. 

5. Take the largest of the cluster-level statistics.  

From this analysis, a CMV is generated. In order to perform statistical analyses on the 

differences between conditions, a non-parametric permutation approach is used, albeit differing 

slightly from the previous method: 

1. Within individual participants, permute the average ERPs in each condition. For example, 

within participant one, the value of the average ERP from condition one is reassigned to 

condition two, and vice versa. The participants for which this exchange takes place are 

selected randomly 

2. Calculate the CMV on this permuted data set. 
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3. Repeat steps 1 and 2 10000 times. This number of permutations allows a more precise 

characterization of the probability distribution and dilutes the effects of statistical anomalies. 

4. Place the test statistic that was actually observed into the histogram created in step 3.  

5. Calculate the proportion of random partitions that resulted in a larger CMV than the observed 

one to derive a p-value.  

In both group level and single participant level CMPTs, a p-value less than a predefined 

alpha level (p<0.05 in the current study) resulted in a rejection of the null hypothesis. As 

mentioned above, this test is useful because a single statistical test is conducted for each 

comparison between conditions, controlling for the multiple comparisons problem. In contrast to 

parametric approaches, this approach does not make assumptions about the distribution of the 

test statistic. Importantly, CMPT allows spatiotemporal localization of significant changes in 

electrophysiological activity in a data-driven manner.  

 

Group-Level Analysis 

For analysis of the AT task, ERPs were averaged within participants, as described above, 

for all attended word stimuli and separately averaged for all unattended word stimuli, generating 

28 ERPs total including two for each participant. CMPT group level analysis was conducted in 

order to test for significant differences between conditions. 

For analysis of the WM task, ERPs were averaged, as described above, for all correct 

word stimuli and separately averaged for all incorrect word stimuli within each participant. For 

example, in a particular WM trial, if “dot” was the correct answer, the ERP responses to “dot” 

would be added to the correct condition regardless of whether it was also the stimuli that the 

participant attended to, while ERP responses to all other word stimuli were added to the incorrect 
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condition. The logic of this approach is that, should a participant solve problems significantly 

above chance, they will attend to the correct word stimulus and P300b ERPs will accumulate in 

the correct condition while non-P300b ERPs (of mean magnitude zero) will accumulate in the 

incorrect condition, leading to a significant difference between the two conditions. However, 

should a participant solve problems at chance, P300b ERPs will be assigned with equal 

probability to both correct and incorrect bins, leading to a null result.  

In the AR task, ERPs to correct word stimuli were compared to ERPs to the word stimuli 

that formed the other possible answer within the sentence. For example, if the sentence used was 

“cake precedes dot,” ERPs to the “cake” word stimuli were added to the correct stimuli condition 

while ERP responses to “dot” were added to the incorrect condition. This approach was used 

because a participant could potentially cheat and listen for both words in each trial. If all stimuli 

other than the correct word stimuli were added to the incorrect bin, even though one of the 

incorrect stimuli ERPs contained a P300b it would be diluted by the other incorrect stimuli and 

be significantly lower in magnitude, giving rise to a positive result when the participant did not 

solve the problem correctly. Adding only the ERP to the incorrect stimuli in the sentence to the 

incorrect condition avoids this issue. 

 

Single-participant level EEG analysis 

For analysis of the AT task at the single participant level, ERPs to attended word stimuli 

were compared to ERPs to the unattended word stimuli using the single participant CMPT 

outlined above. For analysis of the WM task, ERPs to correct word stimuli were compared to 

ERPs to incorrect word stimuli using single participant CMPT analysis. For analysis of the AR 
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task, ERPs to correct word stimuli were compared to ERPs to incorrect word stimuli within the 

sentences using single participant CMPT analysis. 

 

 

Prediction of individual differences from P300b responses 

The purpose of this analysis was to explore whether the magnitude of P300b responses 

predicted performance as indicated by behavioral measures. As discussed below, participants 

performed largely at a ceiling level with no significant differences between conditions in the AR 

task. Consequently, differences between participants were predicted from ERPs only in the WM 

task.  

The theory motivating this analysis is that, should a participant perform at 100%, their 

ERP magnitude to correct word stimuli would be equal to their ERP magnitude to attended 

stimuli, as all correct stimuli would also be attended stimuli. Conversely, if the participant 

performed at 50%, only half of the correct word stimuli would also be attended. Given that half 

of the ERPs in the correct condition will be P300b ERPs while half will be non-P300b ERPs of 

average magnitude zero, the correct ERP will be half as large as the attended ERP magnitude. If 

a performance coefficient is calculated between zero and one, the resulting correct ERP 

magnitude should be the attended ERP magnitude multiplied by this coefficient. For example, if 

the attended P300b magnitude is 4ɥv for a participant who performs at 75%, the correct P300b 

magnitude should be 3ɥv.  

In order to test this predictive model, ERP magnitudes were first calculated within each 

participant at each WM difficulty level (four, six, or eight item memory sets), resulting in three 

ERPs for each participant. Time x electrode values that were in the spatiotemporal regions 
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selected by the CMV were averaged to calculate a mean magnitude within each of the three 

conditions for each participant. This magnitude was then divided by the average ERP magnitude 

to attended stimuli from the AT task to calculate normalized ERP magnitude (NM). A NM was 

calculated for each condition in each participant, resulting in 42 NM total. Each NM magnitude 

had a paired performance score calculated from behavioural data.  

The unique and combined relationship between set size, NM and performance was 

analyzed using a generalized linear model with memory set size as a factor and NM as a 

covariate. The purpose of this test was to first examine whether NM could be used predict 

individual differences in performance overall. The analysis also modeled the prediction of 

performance from NM within difficulty levels (by factoring out the effects of difficulty level on 

performance). Secondly, this test was able to analyze whether interactions existed between set 

size and NM such that NM was more predictive of performance depending on the level of 

difficulty. Following this analysis, a correlation test was performed between NM and 

performance within each difficulty level to examine the nature of the linear relationship at each 

level.  

Due to the large differences in variance of participant performance in memory sets with 

eight items (discussed below), an additional single participant level analysis CMPT was 

conducted with only four and six item memory set trials included.  

 

Relationship between P300b Significance, Time and Performance 

As discussed above, the normalized magnitude of the P300b response to correct stimuli 

should vary linearly with performance. Therefore, the p-value for differences between ERP 

responses to correct vs. incorrect word stimuli should also vary with performance such that better 
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performance decreases the p-value and increases statistical confidence that the participant is able 

to perform the task. Similarly, as task time increases, the number of stimuli in each condition 

likewise increases, also decreasing the p-value and adding to statistical confidence. Furthermore, 

these two variables are related. Better performance decreases the amount of time required to 

attain a significant p-value, while worse performance increases the time required to achieve the 

same p-value. The nature of this relationship is crucial to the purposes of this paradigm, as these 

parameters determine the sensitivity of the test to detect accurate performance, or lack thereof, as 

well as the length of time required for the battery to reach a significant level of confidence.  

The relationship between task time, performance and p-value in the overall task was 

modeled using a Monte Carlo simulation. The Monte Carlo method is broadly used to simulate 

complex stochastic processes, and is useful in this case to explore hypothetical experimental 

outcomes and their effects on statistical results using the existing data. The following Monte 

Carlo procedure was used: 

1. Within each participant, ERP responses to stimuli that were actually attended were collected 

by selecting ERP responses to word stimuli that corresponded to the participants’ behavioral 

response in each trial.  

2. A random selection of n (where n increases with time on task) attended ERPs were selected 

from the attended ERP set, while 7*n ERP responses were randomly selected from the 

unattended ERP set. 

3. A single-participant level CMPT was performed between these two sets to attain a p-value.  

4. For each value of n, steps two and three were repeated 100 times to decrease the effect of 

particular selections on the resultant p-value. 

5. These 100 p-values were averaged to attain mean p-value at that n for the given participant. 
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6. The value of n was increased in multiples of 25 to simulate increasing time, with steps 2-5 

repeated at each value of n. 

The effects of performance were simulated by inserting an intervening step between steps 

2 and 3. Attended and unattended ERPs were swapped between conditions depending on 

simulated performance. For example, if the simulated performance was 0.6, 40% of the attended 

ERPs were randomly swapped for an equal number of unattended ERPs between conditions. 

Performance levels of 0.3 to 1 were used in increments of 0.1. 

3. Results 

Behavioral Results 

Overall, participants’ counting accuracy was 70% across all blocks (SD=0.03). Across all 

blocks, all participants scored above chance. A repeated measures ANOVA showed that block 

number did not have a significant effect on counting accuracy, F(5,65) = 1.985, p = .092 (Figure 

15). Repeated measures ANOVA also showed that task type did not have a significant effect on 

counting accuracy, F(2,26) = 1.985, p = 0.15. 
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Figure 15: Counting accuracy as a function of block number and task type. Chance performance 
is represented by the dotted red line. Error bars represent standard error. 
 

On the WM task, participants’ averaged 81% correct across all three set sizes (SD = .16). 

Participants averaged 97% correct (SD = 0.05) for four item sets, 80% correct (SD = .16) for 6 

item sets, and 64% correct (SD = .23) for eight item sets (Figure 16). All participants scored 

above chance at all difficulty levels.  

Repeated measures ANOVA showed a significant effect of memory set size on the 

accuracy of recall, F(2,26) =  22.701, p < 0.001 (Figure 16).  Mauchly’s test indicated that the 

assumption of sphericity had been violated. X2(2) = 7.268, p = 0.026. Data were Greenhouse-

Geisser corrected (ε = 0.68762) to account for this violation, again showing memory set size to 

have a significant effect on accuracy of recall (p < 0.001).  

Individual comparisons of accuracy between memory set sizes also revealed significant 

differences, with 4 item sets recalled significantly better than 6 items  (p < 0.001) and 8 items 

(p<0.001), and 6 items sets remembered significantly better than 8 items (p = .005). 

 

Figure 16. Working memory performance within each memory set size. Chance performance is 
represented by the dotted red line. Error bars represent standard error. 
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For the AR task, participants averaged 95% correct (SD = .03) across all sentence types. 

All participants scored above chance at all levels, other than participant 15 who answered 2/3 

active, negative sentences using “follows” incorrectly.  A 3-way, repeated measures ANOVA 

revealed no significant main effect of the verb used (precedes VS follows), F(1,13) = -.11 , p > 

0.05, negation, F(1,13) = .51, p > 0.05, or passive VS active sentences, F(1,13) = 0.21, p > 0.05. 

There were no significant 2 or 3-way interactions (Figure 17). The absence of significant 

differences in this task was likely the result of ceiling performance. 

 

Figure 17. Performance in verbal reasoning task. Sentences are coded in figure as active/passive, 
positive/negative and follows/precedes. Chance performance is represented by the dotted red 
line. Error bars represent standard error. 
 

EEG Results 

Group level 

At the group level, the CMPT revealed that ERPs were significantly larger to attended 

word stimuli than unattended word stimuli in the AT task (p < 0.001). CMPT also revealed 

significantly larger ERPs to correct word stimuli compared to incorrect word stimuli in both the 
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WM task (p = 0.002) and the AR task (p = 0.003). Group-averaged topomaps showed that for all 

tasks the P300b response was most prominent in posterior electrodes (Figure 18). 

 

Figure 18. Group average scalp maps in all three tasks at 450ms post stimulus onset. Attended 
(AT) and correct (WM and AR) topomaps on left side, unattended (AT) and incorrect (WM and 
AR) topomaps on right. ERP time courses for attended and correct (red line) vs. unattended and 
incorrect (black line) over electrode CPz. 
 

Single-participant level 

CMPT at the single participant level for the AT task revealed a significant difference 

between ERPs to attended stimuli vs. unattended word stimuli for all participants (Figure 19). 
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Figure 19. Mean voltage magnitude within largest CMPT cluster for each participant in AR task. 
*** p <0.001, **p<0.01, *p<0.05.  µ 
 

Results from CMPT at the single-participant level for the WM task revealed a significant 

difference between ERPs to correct VS incorrect word stimuli in 11/14 participants (Figure 20). 

 

Figure 20. Mean voltage magnitude within largest CMPT cluster for each participant in WM 
task. *** p <0.001, **p<0.01, *p<0.05. 
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Results from CMPT at the single-participant level for the AR task revealed a significant 

difference between ERPs to correct VS incorrect word stimuli in 13/14 participants (Figure 21). 

 

Figure 21. Mean voltage magnitude within largest CMPT cluster for each participant in AR task. 
*** p <0.001, **p<0.01, *p<0.05. 
 

Prediction of Individual Differences from P300b Components 

Results of the generalized linear model demonstrated that memory set size significantly 

predicted performance, X2(2, n = 42) = 15.123, p < 0.001, with performance decreasing as 

memory set size increased.  Importantly, normalized ERP magnitude (NM) predicted 

performance even when the general effect of set size was factored out, thus demonstrating that 

NM predicted participant differences within individual memory set sizes; X2(1,n = 42) = 6.742, p 

= 0.009 (Figure 22).  The generalized linear model also revealed a significant interaction 

between memory set size and normalized ERP magnitude, X2(2,n = 42) = 6.149, p = 0.049, 

suggesting that the predictive power of ERP magnitude was modulated according to memory set 

size. 
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Figure 22. Relationship between accuracy within memory set sizes and normalized ERP 
magnitude. Each data point represents the overall accuracy of a single participant in a single WM 
set size condition. Red dotted line represents line of best fit. 
 

In order to explain the linear relationship between NM and performance within each 

memory set size, three correlation tests were performed, one at each memory set size. NM was 

not significantly correlated with accuracy within four item sets (Figure 23), r(12) = -0.44, p>0.05 

or six item sets (Figure 24), r(12) = 0.321, p > 0.05. NM and accuracy were significantly 

correlated within the eight item set size (Figure 25), r(12) = .712, p = 0.002. 
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Figure 23. Relationship between accuracy within four item memory sets and normalized ERP 
magnitude. Each point represents data from one participant. Red line represents line of best fit.  

 

 

 

 

 

 

 

 

Figure 24. Relationship between accuracy within six item memory sets and normalized ERP 
magnitude. Each point represents data from one participant. Red line represents line of best fit.  
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Figure 25. Relationship between accuracy within eight item memory sets and normalized ERP 
magnitude. Each point represents data from one participant. Red line represents line of best fit.  
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Figure 26. Mean voltage magnitude within largest CMPT cluster for each participant in WM 
task, restricted to four and six item sets. *** p <0.001, **p<0.01, *p<0.05. 
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was 12.5%, any accuracy above this threshold should be detectible with an arbitrarily large 

number of stimuli.  However, factors such as participant fatigue and changes in electrode 

placement and impedance place an upper limit on the number of stimuli that can be delivered. 
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Figure 27. Mean CMPT p-value for all participants as a function of number of targets.  Delivery 
of 25 targets takes approximately one minute and forty seconds. Error bars represent standard 
error. Red dotted line represents p=0.05. 

 

4.  Discussion 

General Battery Performance 

Overall, the battery was largely successful and has the potential to be used for directly 
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(Dias, Kamrunnahar, Mendes, Schiff, & Correia, 2007). This approach could be used as a 
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complementary means of detecting volition in addition to motor imagery paradigms developed 

previously. In standard behavioral DOC assessment batteries, a variety of motor output channels 

are used to examine command following to rule out the possibility that damage to specific 

channels obscures the patient’s ability to follow instructions (Kalmar & Giacino, 2006). An 

analogous approach should be taken when using active paradigms that employ volitional 

modulations in neural activity. Damage to the motor system might prevent the patient from 

performing motor imagery. Likewise, damage to top down attention systems could prevent the 

patient from attending to target stimuli. By utilizing several command following paradigms to 

target a broad set of neural systems, a larger proportion of patients can be adequately assessed.  

The second hypothesis of the study was that the battery would be able to predict 

individual differences in performance using the P300b response and results here were somewhat 

mixed. In the AR task, ceiling performance precluded meaningful variation in performance to 

predict. In the WM task, there was a significant relationship between ERP magnitude and 

accuracy. This result was largely driven by the variance in the 8 item memory sets, however, and 

ceiling performance in 4 item and 6 item memory sets again reduced individual differences. 

Within the 8 item memory set, there was a reasonably high correlation, suggesting that more 

difficult tasks that increase variability should result in higher predictive accuracy, though further 

research is required in order to better confirm this hypothesis.  

 

Insignificant participant level results in WM and AR tasks 

One of the shortcomings of the battery was that, despite showing a positive result for all 

participants in the AT task, results from three participants were not significant in the WM task 

and the result from one participant was not significant in the AR task. The battery did not have 
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the sensitivity to detect covert cognition across all participants in all tasks, and may be somewhat 

prone to false negatives, given that all participants can be assumed to have been performing the 

tasks as requested. This result is unsurprising however, as other BCI EEG paradigms have also 

failed to be effective for all participants studied, even among healthy individuals (Cruse, et al., 

2012; Guger, Edlinger, Harkam, Niedermayer, & Pfurtscheller, 2003). Even taking these false 

negatives into account, this battery had an excellent rate of detection relative to similar 

paradigms, and when 8 item working memory sets were removed from analysis, the sensitivity 

was near perfect. Furthermore, the potential for type 2 errors is common to all active paradigms 

that attempt to use neural responses to signal cognitive abilities in patients. A null result does not 

definitively demonstrate a deficit in the faculty tested but could instead be due to lack of 

statistical power, lack of participant cooperation, fatigue, or deficits in other faculties such as 

language comprehension or sustained attention. Rather than being able to decisively show that 

patients lack specific abilities, the power of these approaches is that they can demonstrate 

cognitive faculties in patients who are assumed to lack higher levels of cognition altogether. In 

the vast majority of cases, the approach developed here successfully detected cognitive function 

in healthy participants.   

 

CMPT analysis used in this study 

One methodological departure from past research was the use of the cluster mass 

permutation test (CMPT) to examine statistical differences in neural activity between conditions. 

The virtue of this approach is that it makes fewer assumptions about the spatial and temporal 

nature of ERP responses. DOC patients often have significantly altered brain morphology that 

changes the spatial pattern of neural activity. Focusing analysis on a single electrode or set of 
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electrodes may result in insensitivity to atypical yet significant changes in electrophysiology. 

Likewise, examining activity at all electrodes has concomitant drawbacks. If statistics are not 

corrected for multiple comparisons, the likelihood of a false positive increases. Correcting for 

multiple comparisons, on the other hand, severely diminishes the sensitivity of the test. The 

CMPT test allows for differences in spatial patterns of activity by selecting the region of analysis 

in a data-driven manner without compromising statistic rigor. In addition, temporal patterns of 

EEG activity may be altered in patients. In many ERP studies, time windows are predetermined 

based on previous research. If this approach is taken with patients, systematic differences in ERP 

latencies may lead to type 2 errors. One approach that attempts to account for these differences 

uses ERP grand averages across experimental conditions to find a local maximum and centre the 

analysis window (Perrin, et al., 2006). Given that the grand averaged ERP magnitude is 

orthogonal to the magnitude of individual conditions, this approach allows the localization of the 

temporal window without increasing type 1 errors. However, because it relies on a single 

temporal sample, spurious increases in magnitude can lead to inappropriate analysis windows. 

The CMPT approach allows a suitable temporal window to be found using clusters of activity 

rather than single data points, incorporating the advantages of the grand average approach while 

avoiding its drawbacks. 

 

Assessment of Conscious Awareness in DOC 

An important question in DOC research and cognitive science revolves around the 

particular cognitive abilities that are sufficient to demonstrate consciousness. A wide variety of 

cognitive processes can potentially occur unconsciously. Demonstration of these processes in 

patients therefore does not confirm that conscious awareness remains. On the other hand, if a 
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cognitive process requires conscious awareness to occur, demonstration of this process in a 

patient is sufficient to establish awareness. In a review of a wide range of studies in cognitive 

psychology, two types of cognitive operations were identified that appear to robustly require 

conscious processing (Dehaene & Naccache, 2001). The first was durable information 

maintenance. In contrast to unconscious priming effects, which tend to decay exponentially and 

lose a majority of their influence within 100 milliseconds, information that is consciously 

attended can be held online for much longer periods (Greenwald, Drain, & Abram, 1996). 

Secondly, combining several cognitive operations to perform a novel or atypical task also 

appears to require conscious control. 

The tasks used in the current study require both of these process types for successful 

completion. The WM task directly requires the maintenance of multiple items over a 10 second 

period and likely cannot be performed using unconscious priming mechanisms. In both tasks, 

using the solution to a problem to determine the locus of selective attention is a highly novel task 

that requires the combination of several cognitive processes. Due to the complexity of the tasks 

and their satisfaction of established criteria for conscious processing, demonstrating successful 

completion of the battery would provide a powerful argument for conscious awareness in DOC 

patients. 

 

Ethical Considerations  

 The development of the current battery as well as others like it raises important ethical 

and legal considerations. As shown in several studies, a subset of patients are able to command 

follow by modulating neural activity, and efforts are underway to develop long term BCI 

systems for communication with these patients (Cruse, et al., 2012; Owen A. M., Coleman, Boly, 
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Davis, Laureys, & Pickard, 2006). In tandem with these advances, questions will naturally arise 

as to the degree of autonomy that should be granted to communicative patients in determining 

their medical care and managing their lives. The scope of these decisions is wide, ranging from 

details of routine medical care to estate planning and even the potential for ceasing life-

sustaining medical interventions. Autonomy is not a binary phenomenon, but is granted to 

patients in proportion to their level of function, as assessed through a combination of expert 

opinion and standardized testing procedures (Etchells, Sharpe, Elliot, & Singer, 1996).  Given 

the limited bandwidth of BCI systems and absence of many of the behavioral cues used in 

capacity assessments, standardized testing procedures carry increased importance for assessing 

DOC patients. Moreover, executive function has long been a crucial construct used in 

determining capacity, as complex ideas must be comprehended and integrated with information 

presented at multiple time points for decisions to be made competently (Etchells, Sharpe, Elliot, 

& Singer, 1996; Marson & Harrell, 1999).  By directly assessing reasoning and working 

memory, the battery developed here represents a first attempt and proof of principle that these 

higher cognitive functions can potentially be detected in DOC patients using widely available 

EEG systems. Due to the limited sample size and homogeneity of participants tested, further 

work is required before this approach can be applied confidently. In addition, although 

necessary, executive function in itself is not sufficient for demonstrating capacity, but must exist 

in parallel with proper orientation in space and time and the ability to appreciate the 

consequences of decisions. Nonetheless, as part of a broader set of tests targeting a range of 

faculties, the battery developed here has the potential to provide a reliable tool for capacity 

assessment in behaviorally unresponsive patients, grounding ethical decision making in sound 

science. 
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Extension and Optimization Of the Assessment Battery 

Although the main purpose of the battery was to examine executive function, the logic of 

this paradigm could be extended to many other neuropsychological tasks. The link between the 

task that generates the stimuli to be attended and the P300b counting task is arbitrary.  In 

principle, any neuropsychological task where the answer is one of several options could be 

linked to a similar P300b counting task, allowing the assessment of the cognitive faculties 

necessary for its performance. Based on this method, a battery consisting of a wide variety of 

neuropsychological tasks could be developed, allowing the fine-tuned examination of cognitive 

deficits in DOC patients. Moreover, there is no reason that this approach should be limited to 

DOC. There is currently widespread debate about the extent of cognitive disruption in 

neurological disorders that primarily affect the motor system, in particular Amyotrophic Lateral 

Sclerosis (ALS) (Neary, Snowden, & Mann, 2000). It is in the final stages of ALS that cognition 

is most likely to be affected, when motor function is most severely compromised. Extending the 

battery developed here to other patient groups could allow fruitful insights into the nature and 

prevalence of cognitive dysfunction in ALS and other neurological conditions.  

Another important avenue for further research involves optimizing experimental factors 

to maximize the information that can be gained from the battery in the shortest period of time. 

Many of these parameters were chosen from the outset based on past research (i.e., Guo, Gao, & 

Hong, 2010), such as interstimulus intervals and the particular word stimuli included. However, 

research directly manipulating and testing these parameters has the potential to significantly 

reduce the time required to deliver the battery. One parameter of particular importance is the 

number of word stimuli to use, each representing a potential multiple-choice answer. In general, 

as the number of choices increases, the statistical confidence that a participant is solving 
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problems skillfully rather than by chance increases. For example, if a participant solves a 

multiple-choice problem with two options, there is a 50% probability they arrived at the answer 

by chance. On the other hand, if there are eight potential options, there is only a 12.5% 

probability they solved the problem by chance. At the same time, if posing two options takes a 

quarter of the time of eight options, four questions could potentially be posed in the same amount 

of time, putting chance probability at 1/24 = 6.25%, assuming they were correct each time. 

However, in the context of P300b responses, research has shown that the amplitude of the ERP 

decreases as the number of non-target options decreases, complicating this relationship (Polich, 

Frequency, intensity, and duration as determinants of P300 from auditory stimuli, 1989). As with 

most parameters, it is difficult to determine the optimal specification a priori, and further 

research should be conducted in this direction to assist in reducing patient fatigue and 

maximizing the likelihood of detecting accurate performance.  

 

Detecting Significant Performance vs. Assessing Individual Differences 

In the current study, two related but distinct hypotheses were tested. The first was 

whether executive function could be detected using the P300b as a response mechanism. The 

presence of a significant difference between correct and incorrect ERPs confirms this hypothesis. 

In terms of accuracy in the task, near ceiling performance is ideal for attaining this result in a 

timely and robust manner, as demonstrated by the Monte Carlo simulation. In the AR task as 

well as the smaller WM set sizes, this difference was significant for almost all participants. 

The second hypothesis was that individual differences in performance could be predicted 

from normalized ERP magnitude. In theory, the magnitude of the normalized ERP should vary 

linearly with performance, however, due to significant noise present in the ERP signal this 



63 

relationship is far from perfect. Consequently, unlike detection of above-chance performance, 

significant divergence in participant performance is necessary to assess individual differences.  

In general, the ability to detect basic executive functions is much more important than 

characterizing normative performance in patients, at least at the outset. As DOC patients are 

presumed to have at most minimal levels of consciousness, demonstration of higher cognitive 

functions would profoundly challenge a patient’s diagnosis. However, once the presence of these 

functions is established, providing a more fine-grained analysis of the patient’s particular 

capacities is instrumental in determining the suitable amount and complexity of information to 

present, allowing an appropriate level of patient autonomy, and facilitating comparisons across 

patients.  

Unfortunately, the particular conditions that maximize the likelihood of optimal detection 

vs. assessment are in tension in the current paradigm. Ceiling performance is required for 

detection, while variability in performance across conditions is necessary for assessment. In 

order to accommodate both of these motivations, a modified paradigm is recommended for 

future exploration. Rather than using a randomly presented, predefined number of trials at each 

difficulty level, working memory or reasoning problems should be presented in order of 

difficulty. Furthermore, the presentation of problems should be controlled dynamically in concert 

with real-time statistical analysis of ERPs. At the beginning of the neuropsychological battery, 

problems at the lowest level of difficulty should be presented first while ERPs to correct vs. 

incorrect word stimuli are compared online as data is collected. Once the statistical difference 

between conditions reaches a predefined threshold, the patient can proceed to a higher level of 

difficulty, with more challenging problems presented. Likewise, the statistical power for 

determining a lack of difference can be calculated in real-time and given a similar threshold for 
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determining that the patient cannot perform at that level. Similar to other dynamic 

neuropsychological tests, the last difficulty level at which a patient can perform satisfactorily can 

be taken as their capacity.  

This approach has several advantages. Normalizing ERPs is not required for estimating 

performance, eliminating the need to establish baseline ERP responses during each testing 

session. Likewise, because difficulty is increased as soon as significance is reached, extraneous 

time need not be spent establishing performance at lower levels. Lastly, this procedure would 

better accommodate individual differences in ERP discernibility. As shown in Figure 27, 

participants varied significantly in the number of trials required for a significant result. Using a 

set number of trials therefore expends unnecessary time with some participants, while failing to 

detect a valid difference in others. Likewise, as demonstrated in the Monte Carlo simulation, a 

patient performing at 70-90%, though still acceptable, may require addition trials to reach 

significance. Given the variability in EEG activity and patient characteristics, a testing paradigm 

that adapts to the patient should be adopted, both in the present battery as well as other active 

neuroimaging assessment paradigms. 

 

4.  Conclusions 

This study developed and evaluated a battery of neuropsychological tests that can be 

administered to behaviorally unresponsive patients using the P300b ERP component. In the 

majority of participants, the ability to perform tasks requiring executive function was detected 

without the need to rely on motor output. The magnitude of the P300b component was related to 

individual differences in performance, but only with sufficient variability between participants. 

Using Monte Carlo simulations, it was demonstrated that the battery could detect significant 
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performance with a mean time of five minutes, with the potential to be shortened with better 

optimization. As communication with DOC patients using BCIs becomes widespread, it will 

become increasingly necessary to assess residual cognitive function for both ethical and 

scientific purposes. As part of a larger battery of neuropsychological tests, the approach 

developed here has the potential to provide a DOC standardized assessment tool for clinicians 

and scientists.  
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