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Abstract 

The fracture toughness resistance curve such as the J-integral resistance curve (J-R curve) is 

widely used in the integrity assessment and strain-based design of energy pipelines with 

respect to planar defects (i.e. cracks).  Two studies about the development of the J-R curve 

are carried out and reported in this thesis.  In the first study, the plastic geometry factor, i.e. 

the ηpl factor, used to evaluate J in a J-R curve test based on the single-edge bend (SE(B)) 

specimen is developed based on the three-dimensional (3D) finite element analysis (FEA).  

The main finding of this study is that besides the crack length, both the thickness and side 

grooves of the specimens have observable impacts on the ηpl factor.  The ηpl factors obtained 

from 3D FEA are different from those obtained from two-dimensional (2D) FEA.  The 

results of this study can improve the accuracy of the experimentally determined J-R curve 

and facilitate the use of non-standard (e.g. shallow-cracked) SE(B) specimens for the J-R 

curves testing.  In the second study, 3D FEA is carried out on SE(B) specimens for which the 

J-R curves have been experimentally determined to develop the constraint-corrected J-R 

curves for X80 grade pipe steels.  The constraint parameters considered in this study include 

Q, A2, h and Tz.  Several different forms of the Q parameter that account for the correction for 

the load and/or bending stresses are considered.  It is observed that three constraint 

parameters, namely QBM1, Tz and A2, lead to reasonably accurate constraint-corrected J-R 

curve for a wide range of crack extension compared with the J-R curves experimentally 

determined from two shallow cracked SE(B) specimens.  On the other hand, the constraint-

corrected J-R curve based on constraint parameters QHRR, QBM2 and Qm lead to a relatively 

large error of prediction.  The approach for constructing the constrain-corrected J-R curve 

can be used to develop the structure-specific J-R curve based on those obtained from small-

scale test specimens to improve the accuracy of the structural integrity assessment. 

Keywords 

Fracture toughness; J-R curve; Three-dimensional (3D); Finite element analysis (FEA); 

Single-edge notched bend (SE(B)); ηpl factor; Constraint  
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Chapter 1   Introduction 

1.1 Background 

Pipelines are effective and safe means to transport large quantity of hydrocarbons over a 

long distance (PHMSA 2012).  Recent years have witnessed the rapid developments of 

the pipeline industry.  According to the Canadian Energy Pipeline Association, there are 

over 100,000 km of oil and gas transmission pipelines in Canada.  It is reported that about 

$85.5 billion worth of hydrocarbons were shipped through the 71,000 km long pipelines 

regulated by the National Energy Board (NEB) of Canada in 2010 (NEB 2010).  

Energy pipelines may contain planar defects, i.e. cracks, in the pipe base metal and 

weldments due to various causes such as stress corrosion cracking, fatigue and the 

welding process.  The fracture toughness of the pipe steel and weldments is a key input to 

the structural integrity assessment of pipelines with respect to planar defects.  The 

fracture toughness also governs the tensile strain capacity of the pipeline, which is a 

critical component of the strain-based design methodology that is being increasingly used 

to design pipelines subjected to large plastic deformations resulting from, for example, 

frost heave, thaw settlement and earthquake-induced ground movements. 

For ductile materials such as the modern pipe steels, the fracture process is often 

accompanied by relatively large plastic deformation at the crack tip and considerable 

crack extension.  In this case, the fracture toughness is typically characterized by the so-

called fracture toughness resistance curve that is generally represented by either the J-

integral resistance curve (J-R curve) or the crack tip opening displacement (CTOD) 

resistance curve (CTOD-R curve) (Anderson, 2005). 

The fracture toughness resistance curve is typically determined from small-scale test 

specimens such as the single-edge notched bend (SE(B)) and compact tension (C(T)) 

specimens, which have been standardized in standards such as ASTM E1820-11E2 

(ASTM, 2013) and BS748 (BSI, 1997).  It is well recognized that the fracture resistance 

curve depends on the crack tip constraint, defined as a structural obstacle against plastic 

deformation and dependent on the loading and geometry conditions of the specimens 
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(Yuan and Brocks, 1998).  A high level of constraint results in a low toughness resistance 

curve, and a low level of constraint results in a high toughness resistance curve (Yuan 

and Brocks, 1998).  Standard SE(B) and C(T) specimens are deeply cracked to ensure 

high constraint levels at the crack tip such that the corresponding fracture resistance 

curves represent the lower bound values.  On the other hand, the crack tip constraint level 

for real cracks in pipelines is typically low because real cracks are generally shallow 

cracks.  The application of the fracture resistance curve obtained from high-constraint 

specimens to low-constraint real structures may lead to overly conservative design and 

assessment.  This is known as the fracture toughness transferability issue. 

Over the last decade, non-standard test specimens such as single-edge notched tensile 

(SE(T)) and shallow-cracked SE(B) specimens have been investigated to address the 

fracture toughness transferability (e.g. Dodds et al., 1997).  Research (Zhu and Jang, 

2001) has also been carried out to develop the so-called constrain-corrected J-R curves, 

i.e. the J-R curve parameterized by commonly used constraint parameters Q or A2 

(O’Dowd and Shih, 1991; Yang et al., 1993a and 1993b). 

 

1.2 Fundamentals of Fracture Mechanics 

1.2.1 Linear Elastic Fracture Mechanics 

Fracture mechanics can be separated into two main domains: the linear elastic fracture 

mechanics (LEFM) and the elastic plastic fracture mechanics (EPFM) (Anderson, 2005). 

LEFM attempts to describe the fracture behavior of a material when the plastic 

deformation is confined to a small region surrounding the crack tip, known as the small 

scale yielding (SSY) condition.  On the other hand, EPFM applies to the large scale 

yielding (LSY) where significant plasticity in the vicinity of the crack tip is considered. 

There are three typical loading modes in fracture mechanics (see Fig. 1.1), namely the 

opening mode (mode I), the in-plane shearing mode (mode II), and the out-of-plane 

shearing mode (mode III) (Anderson, 2005).  This thesis is focused on the Mode I 
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loading because it is the most critical fracture mode for ductile metals.  All the 

discussions thereafter are with respected to the Mode I loading. 

Consider an isotropic linear elastic body containing a crack as illustrated in Fig. 1.2. 

Define a polar coordinate system with the origin located at the crack tip.  The stress field 

at the crack tip can be written as (Irwin, 1957; Williams, 1957): 

 
0

lim
2

ij ij
r

K
f

r
 



   
 

  (1.1)

where σij
1  is the stress tensor; r and θ are coordinates defined in Fig. 1.2; fij is a 

dimensionless function of θ, and K is the so-called stress intensity factor in the unit of 

force/area×(length)0.5.  Equation (1.1) describes a stress singularity at the crack tip, 

because σij approaches infinity as r→0.  The stress intensity factor completely defines the 

amplitude of the stress singularity; that is, the stresses, strains and displacements near the 

crack tip can be completely determined given K (Anderson, 2005). 

This single-parameter characterization by K relies on satisfaction of the SSY condition, 

which requires the zone of plastic deformation to be contained well within the singularity 

fields (Hutchinson, 1983).  The size of the plastic zone ahead of the crack tip, rp, can be 

approximately calculated using the following equation (Hutchinson, 1983): 

2

2

1
plane strain

3

1
plane stress

  
       

 
       

y

p

y

K

r
K

 

 

 (1.2)

                                                 
1
 In this thesis, only i, j = 1, 2, or 3 are the subscripts of tensors.  All symbols with other subscripts denote 

scalars. 
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where σy is the yield strength.  The ASTM standard for experimentally determining the 

linear elastic plane strain fracture toughness of metallic materials, ASTM E399 (ASTM, 

2013), requires the crack length and uncracked ligament of the test specimen to be not 

less than 25rp at the point of fracture to satisfy SSY. Generally speaking, SSY is 

considered reasonable if the applied load is less than half the limit load at which plastic 

yielding extends throughout the uncracked ligament (Hutchinson, 1983).  In SSY, the 

energy release rate G, defined as the rate of decrease in the potential energy with a unit 

increase in the crack area (Irwin, 1956), can be related to the stress intensity factor K as 

follows: 

2
2

2

(1 )
plane strain

1
plane stress

 
   
  


K
EG

K
E



 (1.3)

where ν is Poisson’s ratio and E denotes the elastic modulus. 

For a given material at a given temperature, there exists a critical stress intensity factor, 

Kc , associated with the onset of crack growth under the monotonic loading (Hutchinson, 

1983).  In particular, the critical stress intensity factor in mode I, plane-strain condition is 

called the fracture toughness of the material at the given temperature and denoted by KIc. 

KIc is expected to be a material property (Broek, 1986).  To ensure the plane-strain 

condition in the fracture toughness test, ASTM E399 (ASTM, 2013) also requires the 

thickness of the test specimen to be at least 25rp.  

For highly brittle materials, cracks will run dynamically once K reaches KIc, and KIc 

remains constant during the crack growth.  For more ductile materials, however, more 

energy is required to extend the crack after the onset of crack growth, due to the energy 

dissipation in the plastic zone at the crack tip (Anderson, 2005); that is, the fracture 

toughness increases as the crack grows.  The relationship between the fracture toughness 

and crack extension Δa under stable quasi-static growth conditions is defined as the 

fracture toughness resistance curve (Hutchinson, 1983; Anderson, 2005).  
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1.2.2 Elastic Plastic Fracture Mechanics 

Linear elastic fracture mechanics (LEFM) is invalid when the fracture processes are 

accompanied by significant plastic deformation at the crack tip (Anderson, 2005).  As a 

rough approximation, the application of LEFM becomes questionable if the applied load 

is greater than one half of the load at which full plastic yielding occurs (Hutchison, 1983).  

To characterize the fracture behavior of ductile materials with medium-to-high toughness, 

the elastic plastic fracture mechanics is required. 

Before further discussions of the elastic plastic fracture mechanics, it is necessary to 

introduce some fundamentals of the theory of plasticity.  There are two main theories of 

plasticity based on two different constitutive relations. The incremental (or flow) theory 

of plasticity employs the formulations relating increments of stress and strain, whereas 

the deformation theory of plasticity employs the formulations relating the total stress and 

strain.  The incremental theory of plasticity is loading-path-dependent, whereas the 

deformation theory of plasticity is loading-path-independent.  Under the monotonic and 

proportional loading condition, the deformation theory of plasticity is equivalent to the 

incremental theory of plasticity.  

The J-integral proposed by Rice (1968) is perhaps the most important concept in EPFM 

(Anderson, 2005).  Consider a two-dimensional cracked body (see Fig. 1.3) characterized 

by the deformation theory of plasticity (i.e. small strain kinematics and nonlinear elastic 

constitutive model) with an arbitrary counterclockwise path (Γ) around the crack tip. The 

J-integral or J is defined as 

i
i

u
J wdy T ds

x

        (1.4)

where ui and Ti are components of the displacement and traction vectors, respectively (i = 

1, 2 or 3); w is the strain energy density, and ds is the length increment along the contour 

Γ.  Note that the unit of J is energy/area or equivalently force/length.  The strain energy 

density w and traction Ti are given by (Anderson, 2005): 
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   
0

,
ij

ij ij ijw w x y w d


        (1.5)

i ij jT n   (1.6)

where εij (i, j = 1, 2, or 3) is the strain tensor, and nj is the component of the unit normal 

vector to Γ.  Rice (1968) showed that the value of J is independent of the integration path, 

i.e. Γ, around the crack tip. Therefore, J is a path-independent integral.  It can be further 

shown (Rice, 1968; Anderson, 2005) that J is also equal to the energy release rate for the 

nonlinear elastic cracked body, and reduces to G for a linear elastic cracked body.  

Similar to K, J is also an intensity parameter characterizing the stress state near the crack 

tip (Anderson, 2005).  Consider a two-dimensional (i.e. plane-strain or plane-stress) 

cracked body characterized by the deformation plasticity and a Ramberg-Osgood stress-

strain relationship as follows: 

0 0 0

 
   

 

n
  
  

  (1.7)

where σ0 is the reference stress and typically set equal to the yield strength; ε0 = σ0/E, and 

α and n are parameters of the Ramberg-Osgood relationship with n commonly known as 

the strain hardening exponent.  Hutchinson (1968) as well as Rice and Rosengren (1968) 

independently showed that at distances close to the crack tip, where the elastic strain is 

negligible compared with the plastic strain, the stresses and strains are related to J 

through the following equations: 

 
1

1

0
0 0

,
n

ij ij
n

J
n

I r
   

 

 
  

 
   (1.8)
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1

0

0 0

,

n

n

ij ij
n

J
n

E I r

  
 

 
  

 
   (1.9)

where In is an integration constant that depends on n, and	ߪ෤௜௝	and ߝ௜̃௝ are dimensionless 

functions of n, θ, and stress state (plane strain or plane stress).  Equations (1.8) and (1.9) 

are known as the HRR solutions (singularity) (Anderson, 2005).  Therefore, J provides a 

single-parameter characterization of the crack-tip fields in EPFM, just as K provides a 

single-parameter characterization of the crack-tip fields in LEFM. 

Several important points about J and HRR solutions are worth emphasizing.  First, the J-

integral as originally proposed by Rice (1968) is applicable to two-dimensional (2D) 

configurations.  Further research has extended the J concept to three-dimensional (3D) 

configurations (Anderson, 2005; Shih et al. 1986), where J is considered as a local value 

that varies along the crack front.  However, J in a 3D configuration has no direct 

relationship with the near-tip stress and strain fields, but is simply a characterizing 

parameter that quantifies the severity of the crack-tip fields (Nikishkov and Atluri, 1987).  

Second, J is path-independent only for materials characterized by the deformation 

plasticity (i.e. nonlinear elastic).  J is path-dependent for materials characterized by the 

incremental plasticity.  However, as long as the loading is proportional everywhere in the 

cracked body (Anderson, 2005), the deformation plasticity is equivalent to the 

incremental plasticity.  Finally, the HRR solutions are only applicable at locations near 

the crack tip, where the elastic strains are negligible and the singularity terms in Eqs. (1.8) 

and (1.9) dominate.  At location immediately ahead of the crack tip, however, the HRR 

solutions are invalid because they do not account for the finite geometry change (i.e. 

large strain) at the crack tip (Anderson, 2005). 

Because J is considered a characterizing parameter for the crack-tip fields, it is natural to 

experimentally determine the fracture toughness of the material as the critical value of J 

at the onset of crack growth, which is known as JIc.  In addition, J can also be considered 

as an intensity measure even with a small amount of crack growth, as long as the 

conditions for the so-called J-controlled crack growth are satisfied (Hutchinson, 1983).  
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These conditions essentially limit the amount of crack growth such that the elastic 

unloading and nonproportional loading near the crack tip associated with the crack 

growth are well contained within the region where the deformation plasticity on which 

the J-integral is based is still applicable.  Based on this argument, tests can be carried out 

to develop J versus (small amounts of) crack extension Δa for ductile material, known as 

the J-Resistance curve or J-R curve (Hutchinson, 1983; Anderson, 2005).  The J-R curve 

is a generalization of the K-based resistance curve, as the latter is only applicable under 

the small scale yielding condition.  For ductile materials, J always increases with small 

amounts of crack advance; therefore, the J-R curve has significant practical implications 

for structures that are made of ductile materials and can tolerate certain amount of crack 

growth, because significant additional load carrying capacity can be achieved with the 

application of the J-R curve.  The J-R curve evaluation and the plastic geometry factor, 

which is key to the experimental evaluation of the J-integral, are investigated in the study 

reported in this thesis. 

 

1.3 Objective and Research Significance 

1.3.1 Investigation of Plastic Geometry Factors  

The objective of the first study reported in this thesis was to carry out a systematic 

investigation of the plastic η factor for SE(B) specimens using three-dimensional (3D) 

finite element analyses (FEA).  Both plane-sided and side-grooved SE(B) specimens with 

a wide range of the crack depth-over-specimen width ratios (a/W) and specimen 

thickness-over-width ratios (B/W) were analyzed.  The load line displacement (LLD)- and 

crack mouth opening displacement (CMOD)-based ηpl corresponding to the average J 

value over the crack front as well as the local J at the mid-plane were evaluated.  The 

impact of a/W, B/W and the strain hardening characteristics on the η factor were also 

investigated.  The research outcome will improve the accuracy of the J-R curve obtained 

from the experiment and facilitate the evaluation of J-R curves using non-standard (e.g. 

shallow-cracked) SE(B) specimens. 
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1.3.2 Investigation of Constraint-corrected J-R Curve  

The objective of the second study reported in this thesis was to develop constraint-

corrected J-R curves for high-strength pipe steel (X80) based on experimentally 

determined J-R curves from SE(B) specimens and the corresponding constraint 

parameters determined from 3D FEA.  Given the constraint-corrected J-R curve and level 

of the crack tip constraint for the real crack in pipelines, the fracture toughness resistance 

curves corresponding to the real structure can be developed.  This will lead to more 

accurate, economic design and assessment of high-strength energy pipelines. 

 

1.4 Thesis Outline 

The thesis is presented as an integrated-article format and consists of four chapters. 

Chapter 1 is the introduction of the entire thesis where a review of fundamentals of 

LEFM and EPFM is presented, including the concepts of energy release rate, stress 

intensity factor, J-integral, and resistance curve.  The main body of the thesis contains 

two chapters, Chapters 2 and 3.  Each of these chapters is presented as a stand-alone 

manuscript without any abstract, but with its own references.  In Chapter 2, a study of the 

plastic geometry factor based on 3D FEA is presented.  Chapter 3 describes the 

development of constraint-corrected J-R curves. Finally, a summary of the study, main 

conclusions of the thesis and recommendations for future study are included in Chapter 4. 
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Figure 1.1: Three typical loading modes in fracture mechanics 

 

 
 
 
 
 
 

 
 

Figure 1.2: Stress field near the crack tip 
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Figure 1.3: Schematic of J-integral 
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Chapter 2   Evaluation of Plastic η Factors for SE(B) 
Specimens Based on Three-dimensional Finite Element 

Analysis 

2.1 Background and Objective 

2.1.1 J-R Curve on Small-scale Specimens 

The fracture toughness resistance curve, i.e. J-R or CTOD-R curve, is widely used in the 

integrity assessment and strain-based design of energy pipelines with respect to planar 

defects (i.e. cracks), where J and CTOD denote the J-integral and crack-tip opening 

displacement, respectively.  There are two main components of a J-R curve, namely the 

crack growth, Δa, and the J value corresponding to this particular crack growth.  

Evaluation of the J value in the J-R curve based on plastic geometry factors is detailed in 

Section 2.1.2.  The elastic unloading compliance method (Clarke et al., 1976) that is 

commonly used in the experimental evaluation of Δa in the J-R curve test is detailed in 

Appendix B.  This section briefly describes the standardized specimens for the J-R curve 

test. 

The J-R curve tests are commonly conducted on small-scale specimens such as the 

single-edge bend (SE(B)) and compact tension (C(T)) specimens, which are specified in 

standards such as ASTM E1820-11E2 (ASTM, 2013) and BS7448-97 (BSI, 1997).  The 

evaluation of the load versus load line displacement (P-LLD) curve or load versus crack 

mouth opening displacement (P-CMOD) curve is key to the experimental evaluation of 

the J-R curve based on these specimens.  Figure 2.1 shows a schematic of the plane-sided 

and side-grooved SE(B) and C(T) specimens as well as the corresponding LLD and 

CMOD, where dimensions B, BN, S, W and a denote the specimen thickness, net thickness, 

specimen span, width and crack length, respectively.  Note that the side-grooved 

specimen is often used in the J-R curve test to promote a straight crack front during the 

crack growth process (Anderson, 2005).  The use of side-grooved SE(B) and C(T) 

specimens has been standardized; for example, ASTM E1820-11E2 specifies the side 

groove depth to be 10%B on each side of the SE(B) specimen and the angle between the 
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face of the side groove and the plane perpendicular to the side surface of the specimen to 

be less than 45 degrees.  

 

2.1.2 Estimation of J Using Plastic Geometry Factors 

Begley and Landes (1972) were among the first to evaluate J experimentally based on its 

interpretation as the energy release rate: 

dU
J

Bda
   (2.1)

where U denotes the strain energy.  This method requires testing multiple specimens with 

different crack lengths, which can be costly and time consuming.  Subsequent work by 

Rice et al. (1973) introduced a more convenient way to evaluate J from a single test 

specimen.  J can be evaluated in either the load controlled (Eq. 2.2) or displacement 

controlled (Eq. 2.3) condition as follows (see Figure 2.2): 

0

1 P
J dP

B a




  (2.2)

or 

0

1 P
J d

B a

 
  

  (2.3)

where P denotes the applied load; Δ is the load-line displacement (LLD), and U is defined 

as the area under the load-displacement curve in Fig. 2.2.  Based on the limit load 

analysis, Sumpter and Turner (1976) proposed an alternative form of Eq. (2.3): 

0

LLD LLD LLDA
J Pd

bB bB

 
    (2.4)
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where b is the length of the uncracked ligament, i.e. b = W - a; ηLLD is a dimensionless 

geometry factor relates J and the strain energy, and ALLD represents the area under the 

load versus LLD curve.  Figure 2.3 shows a typical load vs. displacement curve in the 

fracture toughness test.  The total area under the loading path, A, is defined as the work 

done by external force during the test.  As indicated in Fig. 2.3, A can be separated by an 

elastic unloading path into an elastic component, Ael, and a plastic component, Apl, i.e. A 

= Ael + Apl.  Similarly, this unloading path separates Δ into an elastic component, Δel, and 

a plastic component, Δpl, i.e. Δ = Δel + Δpl, and Eq. (2.3) can be accordingly rewritten as  

0 0

1 1el pl

el pl el pl

P P
J d d J J

B a B a

  
      

   (2.5)

where Jel and Jpl are the elastic and plastic components of J, respectively. Jel can be 

determined from the stress intensity factor K (Anderson, 2005):   

2 2(1 )
el

K
J

E


  (2.6)

where E and v are Young’s modulus and Poisson’s ratio respectively.  Sumpter and 

Turner (1976) proposed the following equation to compute Jpl: 

0

LLD LLD
pl

LLD
pl pl pl

pl pl

A
J Pd

bB bB

 
    (2.7)

where ߟ௣௟
௅௅஽ and ܣ௣௟

௅௅஽ denote the plastic geometry factor and plastic area under the load 

versus load line displacement respectively.  Alternatively, J can be evaluated from the 

crack mouth opening displacement (CMOD or V) as opposed to LLD (Kirk and Dodds, 

1993); therefore,  

0
 

CMOD CMOD
pl

CMOD
Vpl pl pl

pl pl

A
J PdV

bB bB

 
 (2.8)
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where ܣ௣௟
஼ெை஽ represents the plastic area under the load versus CMOD curve, and ߟ௣௟

஼ெை஽ 

denotes the CMOD-based plastic geometry factor.  

Equations (2.1) through (2.8) are limited to stationary cracks.  The crack growth 

correction should be considered in the evaluation of J for growing cracks.  Based on the 

deformation theory of plasticity, J is independent of the load path leading to the current 

LLD (or CMOD) and crack length a, given that the J-controlled crack growth conditions 

are satisfied (Sumpter and Turner, 1976).  Accordingly, J is a function of two 

independent variables, a and Δ.  Ernst et al. (1981) developed an incremental method to 

estimate J for growing cracks by deriving the total differential of Jpl as 

  pl
pl pl pl

P
dJ d J da

bB b

 
 (2.9)

with 

1
1

( / )

 
     

pl
pl

pl

b

W a W


 

  
(2.10)

Integrating both sides of Eq. (2.9) yields 

00


   

pl apl
pl pl pla

P
J d J da

bB b

 
 (2.11)

where a0 is the initial crack length.  Equation (2.11) can be applied to any loading path 

leading to the current values of Δpl and a.  Figure 2.4 shows a schematic of the estimation 

of Jpl for growing cracks.  The figure includes a typical P-Δpl curve for a growing crack, 

and three deformation paths for the initial crack length, a0, and two arbitrary crack 

lengths ai and ai+1 respectively.  The actual loading path AC in the figure can be replaced 

by the fictitious loading paths AB and BC.  Integrating both sides of Eq. (2.9) along the 

loading path AB results in 
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, 1 
i
plB i i i

pl pl pl
i

J J A
b B


 (2.12)

where ܬ௣௟
௜  is the value of Jpl at A or step i; ܬ௣௟

஻ is the value of Jpl at B or the intermediate 

value of Jpl between step i and step i+1; bi = W - ai, and ܣ௣௟
௜,௜ାଵ  equals the area of 

ABΔ௣௟
௜ Δ௣௟

௜ାଵ but can be adequately approximated by the area under the actual loading path 

between Δ௣௟
௜  and Δ௣௟

௜ାଵ (i.e. the shaded area in Fig. 2.4), if ∆௣௟
௜ାଵ െ ∆௣௟

௜  is sufficiently small; 

௣௟ܣ
௜,௜ାଵ can be evaluated using the trapezoidal rule as ܣ௣௟

௜,௜ାଵ ≅ 	 ଵ
ଶ
ሺܲ௜ ൅ ܲ௜ାଵሻሺ∆௣௟

௜ାଵ െ ∆௣௟
௜ ሻ.  

Integrating both sides of Eq. (2.9) again along the loading path BC results in 

 1
11


 
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 
i B i
pl pl i i

i

J J a a
b


 

(2.13)

where ܬ௣௟
௜ାଵ is the value of Jpl at C or step i+1.  Combining Eqs. (2.12) and (2.13) leads to 

the following general incremental expression for calculating Jpl: 

 1 , 1
11 


   
      

  

i
pli i i i i

pl pl pl i i
i i

J J A a a
b B b

 
 

(2.14)

Equation (2.14) is adopted by ASTM E1820-11E2 (ASTM, 2013) as the main procedure 

to experimentally evaluate the J-R curve.  The crack length corresponding to each loading 

step can be determined using the unloading compliance method, which is described in 

Appendix B.  Parameters ηpl and γ are called plastic geometry factors serving as key 

parameters to the experimental evaluation of the J-integral.  The evaluation of the ηpl 

factors for the SE(B) specimens is the focus of the study reported in this chapter. 
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2.1.3 Literature Review of Studies on the Plastic Geometry Factors 

Early studies (Begley and Landes, 1972; Rice et al., 1973) showed that the J-integral, 

interpreted as a nonlinear energy release rate, is related to the area under the P-LLD curve. 

The total J-integral can be separated into the elastic component Jel and the plastic 

component Jpl.  It is straightforward to evaluate Jel based on the linear elastic stress 

intensity factor, the solution of which is well documented (e.g. Tada et al., 2000).  

Sumpter and Turner (1976) proposed the dimensionless plastic η factor (ηpl) to evaluate 

Jpl by relating Jpl to the plastic work that can be computed from the P-LLD or P-CMOD 

curve.  At the limit load, the η factor is only a function of the configuration of the cracked 

body and independent of the loading (Kanninen and Popelar, 1985). 

Due to its simplicity, the ηpl–based evaluation of J-integral is widely used and adopted in 

standards such as ASTM E1820-11E2 and BS7448-97.  It follows that accurate ηpl factors 

are needed to ensure the accuracy of the experimentally-evaluated J.  Wu et al. (1990) 

applied the slip line field solution to derive the analytic solution of ηpl factors.  

Sharobeam and Landes (1991) adopted the load separation analysis proposed by Paris et 

al. (1980) to develop an experimental procedure to determine ηpl factors.  Based on the 

two-dimensional (2D) plane-strain finite element analysis (FEA), both LLD- and CMOD-

based ηpl have been developed for the standard deeply-cracked (i.e. the relative crack 

length a/W greater than or equal to 0.45) SE(B) and C(T) specimen.  For example,  Kirk 

and Dodds (1993) and Donato and Ruggieri (2006) carried out 2D plane-strain FEA on 

SE(B) specimens to evaluate both LLD- and CMOD-based ηpl whereas the estimation of 

LLD- and CMOD-based ηpl for C(T) specimens was included in the study by Kim and 

Schwalbe (2001).  The LLD-based ηpl is reported (Wu et al., 1990; Kim and Schwalbe, 

2001) to be independent of a/W for deeply-cracked SE(B) and C(T), and the CMOD-

based ηpl is found to be less dependent on the strain hardening exponent n than LLD-

based ηpl for shallow-cracked SE(B) (Kirk and Dodds, 1993; Kim and Schwalbe, 2001; 

Donato and Ruggieri, 2006).  Note that using the P-CMOD curve to evaluate J is more 

advantageous than using the P-LLD curve because CMOD can be more accurately and 

easily measured than LLD (Zhu et al., 2008).   
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It is well known that the J-R curve is dependent on the crack tip constraint (Yuan and 

Brocks, 1998).  Recent studies on ηpl (e.g. Shen and Tyson, 2009; Petti et al., 2009) have 

focused on non-standard specimens with low levels of constraint including the single-

edge tension (SE(T)) and shallow-cracked SE(B) specimens.  Both LLD- and CMOD-

based ηpl are observed to be a function of a/W for shallow-cracked SE(B) and SE(T) 

specimens (Kirk and Dodds, 1993; Link and Joyce, 1995; Cravero and Ruggieri, 2007).  

With the rapid advancement of modern computers, three-dimensional (3D) FEA are 

being increasingly used to evaluate ηpl.  Nevalainen and Dodds (1995) obtained values of 

ηpl for the SE(B) and C(T) specimens based on 3D FEA.  Kim et al. (2004) evaluated ηpl 

for plane-sided SE(B), SE(T) and C(T) specimen using 3D FEA.  In these studies, ηpl 

corresponding to both the average and maximum J values over the crack front, i.e. ηave 

and ηmax, were evaluated.  In the study by Nikishkov et al. (1999), 3D SE(B) and C(T) 

specimens with curved crack fronts were analyzed to evaluate ηpl corresponding to the 

local J value at the mid-thickness of the crack front, ηmid.  Work done by Kulka and 

Sherry (2012) was focused on the LLD-based ηave for C(T) specimens with various a/W 

ratios and thickness-to-width (B/W) ratios.  In the study by Ruggieri (2012), 3D FEA was 

carried out to evaluate ηplfor plane-sided SE(T) specimens with a wide range of a/W 

ratios (0.3 to 0.7) and two different specimens thicknesses.  The η factors for side-

grooved SE(B) and C(T) models with specific a/W ratios and B/W ratios have also been 

reported in the literature (Nikishkov et al., 1999; Nevalainen and Dodds, 1995). 

 

2.1.4 Objective and Approach 

Several observations of the previous studies on ηpl are in order.  First, ηpl determined from 

2D FEA may not be adequate given that the real specimens and cracks are three-

dimensional.  Second, although ηpl determined from 3D FEA has been reported in the 

literature, there is a lack of systematic investigations of ηpl that take into account the 

impact of a/W, B/W, side-grooves and strain hardening characteristics on ηpl.  Finally, all 

of the 3D FEA reported in the literature are based on the small-strain formulation.  The 

use of the small-strain analysis neglects the effect of crack-tip blunting along the crack 
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front (Dodds et al., 1990).  For shallow-cracked specimens where the crack tip is near the 

crack month at which CMOD is measured, it is expected that using the large-strain 

analysis may lead to more accurate simulation and values of ηpl.  To the best knowledge 

of the author of this thesis, the use of the large-strain 3D FEA to evaluate ηpl has not been 

explored in the literature. 

Motivated by these observations, a systematic investigation of ηpl for SE(B) specimens 

using the large-displacement large-strain 3D FEA was carried out in this study.  Both 

plane-sided and side-grooved SE(B) specimens with a wide range of a/W and B/W ratios 

were analyzed.  The LLD- and CMOD-based ηpl corresponding to the average J value 

over the crack front as well as the local J at the mid-plane were evaluated.  The impact of 

a/W, B/W and the strain hardening characteristics on the η factor was also investigated. 

The research outcome will improve the accuracy of the J-R curve obtained from the 

experiment and facilitate the evaluation of J-R curves using non-standard (e.g. shallow-

cracked) SE(B) specimens. 

The organization of this chapter is as follows.  Section 2.2 describes the finite element 

analysis involved in the present study.  The evaluation procedure of plastic η factor is 

presented in Section 2.3, accompanied by the analysis results and comparison with those 

reported in the literature.  The conclusions of this chapter are summarized in Section 2.4. 

 

2.2 Finite Element Analysis 

2.2.1 Material Model 

Evaluation of ηpl requires computation of J and the load-displacement response involving 

the plastic work effect.  In the FEA carried out in this study, an elastic-plastic constitutive 

model based on the incremental theory of plasticity and large-displacement large-strain 

formulation (Anderson, 2005) was adopted.  The commercial software ADINA 8.7.4 

(ADINA, 2012) was used to carry out the FEA.  The large-strain analysis employs the 

finite strain tensor, whereas the small-strain analysis employs the infinitesimal strain 

tensor and neglects the second and higher order terms of the displacement gradients 
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(Mase, 1970). The use of the small-displacement formulation basically ignores the 

difference between the spatial and material coordinate systems, whereas the large-

displacement formulation takes this difference into account and the Lagrangian 

coordinate system was selected in this study (ADINA, 2012).  In ADINA, the large-

displacement large-strain formulation requires input of the Cauchy (true) stress-

logarithmic (true) strain and outputs the Cauchy stress and deformation gradient.  The 

von Mises yield criterion and isotropic hardening rule were adopted in the analysis.  The 

von Mises yield criterion states that yielding starts once the second invariant of the 

deviatoric stress tensor, J2, reaches a critical value (i.e. σy
2/3).  The incremental theory of 

plasticity combined with the associate flow rule and von Mises yield criterion can be 

characterized by the following constitutive equation:    

pl
ij ijd d s    (2.15)

where ߝ௜௝
௣௟ and sij are the plastic strain tensor and the deviatoric stress tensor, respectively, 

and dλ is a scalar factor of proportionality. 

The Ramberg-Osgood stress-strain relationship as given by Eq. (1.7) was employed.  In 

this study, materials with σ0 = 550 MPa, E = 200 GPa, ν = 0.3 and  = 1 were selected to 

simulate the X80 (API, 2012) grade pipeline steel.  Three values of the strain hardening 

exponent, namely n = 5, 10 and 15, were considered to investigate the effect of n on ηpl.  

Note that the cases with n = 10 were considered as the baseline cases, as n = 10 is 

representative of the strain hardening characteristics of the X80 pipeline steels. 

 

2.2.2 Finite Element Model 

The geometric configuration of a typical SE(B) specimen in the FEA is shown in Fig. 2.5 

together with the fixation and loading conditions.  All the specimens included in this 

study have a width (W) of 20 mm and a span (S) of 4W.  For the baseline cases (i.e. n = 

10) and the sensitivity cases with n = 5, three specimen thicknesses (B) (i.e. B/W = 0.5, 1 

and 2), and six crack lengths (a/W) (i.e. a/W = 0.3 to 0.7 with an increment of 0.1) were 
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considered.  Both plane-sided (PS) and side-grooved (SG) specimens were modeled.  For 

the latter, the side groove was modeled as a sharp V-notch of 45 degrees with a depth of 

10%B on each side of the specimen, which is consistent with the recommendations in 

ASTM E1820-11E2 (ASTM, 2013).  A side-grooved model with a/W = 0.5 and B/W = 

0.5 is schematically shown in Fig. 2.6.  For the sensitivity cases with n = 15, only plane-

sided specimens with three crack lengths (i.e. a/W = 0.3, 0.5 and 0.7) and B/W = 0.5 were 

investigated.  Due to symmetry, only a quarter of a given specimen was modeled in the 

FEA.  The 8-node 3D brick elements with 2×2×2 integration were used; the accuracy of 

using such element to calculate J for SE(B) specimens has been shown to be adequate 

(Kulka and Sherry, 2012). 

A blunt crack tip with a radius rw = 0.003 mm (see Fig. 2.5) was modeled to facilitate the 

large-deformation calculation (Graba, 2007).  Note that for the side-grooved specimens, 

the blunt crack tip is also prepared through the thickness of the side grooves as shown in 

Fig. 2.6 to mitigate the impact of the singularity caused by the sharp V-notch under 

tension on the finite strain analysis.  A spider-web mesh around the crack tip was 

established with 40 concentric semicircles (i.e. rings) surrounding the crack tip.  The in-

plane size of the elements closest to the crack tip is around 0.003 mm, and about 1/100 of 

the in-plane size of the elements in the outermost ring.  The aspect ratio of these elements 

is set to be less than 10.  The model was divided into 8 and 15 layers along the thickness 

direction for PS and SG specimens, respectively.  The mesh density increases from the 

mid plane to the free surface to capture the high stress gradients near the free surface.  A 

sensitivity study of the meshing was carried out, and the results indicated that further 

increasing the number of layers along the thickness has little impact on the calculation of 

both the local J value at the midpoint of the crack front, Jmid, and the average J value over 

the entire crack front, Jave.  The total number of elements is approximately 15,000 in a 

typical plane-sided specimen, and 21,000 in a typical side-grooved specimen.  Two 

contact rollers were defined to simulate the rollers supporting and loading the specimen.  

The elastic modulus of the contact element was set as ten times that of the specimen.  

Rigid links were created to connect the loading point and the roller surface.  Using 

contact rollers in the FEA can reflect the real test condition such as the sliding occurred 

between the specimen and the rollers as well as large deformation in the contact surface. 
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2.2.3 Computational Procedure 

Displacement-controlled loading was applied in all the models.  For models with a/W ≥ 

0.4, the displacement was increased from 0 to 1.5 mm through 5000 steps, whereas it was 

increased from 0 to 2 ~ 2.5 mm through 15,000 steps for models with a/W = 0.3.  The 

sparse matrix solver was selected for its high efficiency in numerical analysis (ADINA, 

2012).  The full Newton-Raphson iteration method was adopted to find the solution of 

nonlinear equations with the maximum number of iterations for each step being 50.  The 

displacement convergence criterion was selected, in which the displacement tolerance 

equaled 0.0001 corresponding to a reference displacement of 1 mm (ADINA, 2012).  

Figure 2.7 shows the distribution of the effective stress in a typical specimen (i.e. a/W = 

0.5 and B/W = 1) corresponding to the applied displacement of 1.5mm.  The shaded area 

denotes the extent of the plastic zone where the effective stress is greater than or equal to 

the yield strength (i.e. 550 MPa).  The magnitude of the total strain in the element around 

the crack tip is about 1 - 10%.  The J-integral was computed by using the virtual crack 

extension method implemented in ADINA (Anderson, 2005; ADINA, 2012).  A brief 

description of this method is included in Appendix A.  To ensure the path-independence 

of the calculated J values, the two outermost semicircular rings surrounding the crack tip 

were used to define the virtual shifts.  Both Jmid and Jave were calculated and used to 

evaluate the corresponding ηpl factors.  By subtracting the elastic component of J from 

the total J as described in Eqs. (2.5) and (2.6), the plastic component of J, Jpl, can be 

computed.  The P-LLD and P-CMOD curves were also output from the FEA so that the 

corresponding plastic work Apl can be determined. 
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2.3 Determination of Plastic Geometry Factors for SE(B) 
Specimens 

2.3.1 Evaluation Procedure of Plastic Geometry Factors 

The ηpl factors can be computed at a given loading level (i.e. J value) using the following 

expression (Ruggieri, 2012): 

0
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where BN denotes the net thickness of the specimen, i.e. BN = B for the plane-sided 

specimen and BN = 0.8B for the side-grooved specimen with the side-groove depth equal 

to 0.1B at each side, and ܬ௣̅௟  and ̅ܣ௣௟  are non-dimensionalized J and plastic area, 

respectively.  Depending on the load-displacement curve (i.e. the P-LLD or P-CMOD 

curve) and Jpl value (i.e. Jpl evaluated from Jmid or Jave) used in Eq. (2.16), four different 

ηpl factors can be evaluated, namely ߟ௠௜ௗ
௅௅஽ ௠௜ௗߟ , ௔௩௘௅௅஽ߟ		,

஼ெை஽ and ߟ௔௩௘஼ெை஽, where the subscript 

“pl” is omitted to reduce clutter.  Figure 2.8 shows the variation of ηpl with ܬ௣̅௟  for a 

representative specimen (plane-sided, a/W = 0.7, B/W = 1 and n = 10).  The figure 

suggests that ηpl is load-dependent for P ≤ 1.7Pl, where Pl is the reference load and 

defined as BNb2σ0/S (Nevalainen and Dodds, 1995), and becomes approximately 

independent of the load for P > 1.7Pl.  Figures 2.9(a) and 2.9(b) depict the relationships 

between ܬ௣̅௟  and CMOD-based ̅ܣ௣௟  as well as between ܬ௣̅௟  and LLD-based ̅ܣ௣௟  for four 

specimens (two plane-sided and two side-grooved) with a/W = 0.3 and 0.7 and n = 10.  

The ηpl factor can be evaluated as the slope of the linear fit of ܬ௣̅௟ vs. ̅ܣ௣௟.  Note that in a 

number of previous studies, ηpl for SE(B) specimens was evaluated by fitting the ܬ௣̅௟ vs. 

 ௣௟ data corresponding to high levels of applied load.  For example, Kirk and Doddsܣ̅

(1993) calculated the slope of ܬ௣̅௟ vs. ̅ܣ௣௟ by fitting data from the final three load steps in 

which the last load step corresponds to CTOD reaching 5% of the crack length; Donato 

and Ruggieri (2006) evaluated ηpl based on data within the range of Apl ≥ 0.1(Apl + Ael) and 
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 ௣̅௟ ≤ 0.25 (approximately equivalent to 1.1Pl ≤ P ≤ 2.5Pl);  Petti et al. (2009) evaluatedܬ

ηpl by fitting data starting from bσ0/Jave = 50 (approximately equivalent to P ≥ 1.6Pl).  As 

such, evaluating ηpl at high loading levels minimizes the load-dependency of ηpl as 

indicated in Fig. 2.8.  

In the present study, it is found that the range of the data used in the fitting has a non-

negligible impact on the value of ηpl.  For instance, ηpl determined based on data within 

the range of 1.0Pl ≤ P ≤ 1.7Pl is approximately 10% larger then that based on data within 

the range of 1.0Pl ≤ P ≤ 2.0Pl for deeply cracked (e.g. a/W = 0.7) specimens with n = 5.  

The J-R curve tests involving SE(B) specimens carried out in a previous study (Wang et 

al., 2012) indicate that the maximum loading level is typically less than 2.2Pl for 

materials with n = 10.  On the other hand, because of the use of the large-strain 

formulation, the J value for shallow cracked specimens calculated in the present study 

was observed to be path-dependent once the loading level exceeds 1.7Pl. 

Based on these considerations, in this study, the ηpl factors for specimens with a/W ≥ 0.4 

were evaluated by linearly fitting the ܬ௣̅௟ vs. ̅ܣ௣௟ data corresponding to 1.0Pl  ≤ P ≤ 2.0Pl. 

The ηpl factors for specimens with a/W = 0.3 were evaluated based on data within the 

range of 1.0Pl  ≤ P ≤ 1.7Pl. 

 

2.3.2 Results and Discussions 

Both CMOD- and LLD-based ηpl values corresponding to n = 10 are calculated and listed 

in Table 2.1.  Figure 2.10 shows the calculated CMOD- and LLD-based ηpl values plotted 

against a/W for both PS and SG specimens with n = 10 and different B/W ratios.  Figures. 

2.10a and 2.10b indicate that the LLD-based ηpl generally increases with the a/W ratio, 

whereas Figs. 2.10c and 2.10d indicate that the CMOD-based ηpl generally decreases as 

a/W increases. From Figs. 2.10a and 2.10c, it can be seen that the B/W ratio has a 

significant impact on ߟ௠௜ௗ
௅௅஽  and ߟ௠௜ௗ

஼ெை஽, which decrease as B/W increases.  On the other 

hand, the B/W ratio has a relatively small impact on ߟ௔௩௘௅௅஽ and ߟ௔௩௘஼ெை஽
 as shown in Figs. 

2.10b and 2.10d: the largest difference between ߟ௔௩௘௅௅஽	ሺߟ௔௩௘஼ெை஽) corresponding to different 
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B/W ratios is approximately 9.5%.  The values of 	ߟ௠௜ௗ
௅௅஽  and ߟ௠௜ௗ

஼ெை஽	 for the SG models are 

generally 2-25% lower than those for the PS models with the same a/W, B/W and n 

values, whereas ߟ௔௩௘௅௅஽ and ߟ௔௩௘஼ெை஽ for the SG models are 1-6% higher than those for the 

corresponding PS models. 

The ηpl values obtained in this study are compared with those reported by Nevalainen and 

Dodds (1995) (N&D, 1995) and Kim et al. (2004) in Fig. 2.10, which are obtained from 

3D FEA using the small-strain formulation.  Both studies are focused on the PS models; 

therefore, only the ηpl values corresponding to their PS models are shown for comparison.  

The ηpl values obtained in this study are generally lower than those reported by Kim et al. 

and Nevalainen and Dodds with the relative difference ranging from 4% to 11%.  These 

differences may be due to the fact that the ηpl values obtained in this study are based on 

the large strain formulation adopted in the FEA. 

Zhu et al. (2008) proposed the following expressions of LLD- and CMOD-based ηpl for 

SE(B) specimens by fitting the results from both 2D plane strain (PE) and 3D FEA with 

the small-strain formulation reported in the literature:  

   2
1.620 0.850 / 0.651 / , 0.25 / 0.7LLD

pl a W a W a W       (2.17)

   2
3.667 2.199 / 0.437 / , 0.05 / 0.7     CMOD

pl a W a W a W  (2.18)

It is worth pointing out that Eq. (2.18) has been adopted by ASTM E1820-11E2 (ASTM, 

2013) for CMOD-based evaluation of J in the J-R curve test.  As for LLD-based 

evaluation of J, ASTM E1820-11E2 suggests ߟ௣௟
௅௅஽	= 1.9 for deeply cracked (i.e. 0.45 ≤ 

a/W ≤ 0.7) specimens.  The 	ߟ௠௜ௗ
஼ெை஽ values obtained in this study corresponding to the PS 

specimens with a/W ≥ 0.4 and B/W = 2 agree very well with Eq. (2.18).  The ߟ௔௩௘௅௅஽ values 

obtained in this study are generally lower than those evaluated from Eq. (2.17) as well as 

1.9 as suggested in ASTM E1820-11E2, except for deeply cracked (a/W = 0.6 and 0.7) 

SG specimens; the ߟ௔௩௘஼ெை஽	values obtained in this study corresponding to the PS and SG 

specimens with a/W ≥ 0.4 are generally lower and higher than those evaluated from Eq. 
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(2.18), respectively, and for both the PS and SG specimens with a/W = 0.3, the 

 .values obtained in this study are somewhat higher than those from Eq. (2.18)	௔௩௘஼ெை஽ߟ

Both CMOD- and LLD-based ηpl values corresponding to n = 5 are calculated and listed 

in Table 2.2.  Figure 2.11 shows the calculated CMOD- and LLD-based ηpl values plotted 

against the relative crack length a/W for both PS and SG specimens with n = 5 and 

different B/W ratios.  The key observations of the ηpl vs. a/W relationship for n = 5 are 

similar to those for n = 10.  The 	ߟ௠௜ௗ
௅௅஽  and 	ߟ௔௩௘௅௅஽ values obtained in this study agree well 

with those from Kim et al. and N&D with the relative difference ranging from 2% to 5%.  

The ߟ௠௜ௗ
஼ெை஽ and  ߟ௔௩௘஼ெை஽, values reported by Kim et al and N&D are generally 0.3% to 9% 

lower than those obtained in this study. 

The impact of the strain hardening exponent on ηpl was investigated based on the values 

of ηpl for the PS specimens with a/W = 0.3, 0.5 and 0.7 and B/W = 0.5.  The ηpl values 

corresponding to the three values of n, namely 5, 10 and 15, for the considered specimens 

are compared in Table 2.3.  The results in Table 2.3 suggest that both LLD- and CMOD-

based ηpl for specimens with B/W = 0.5 are insensitive to n for n = 10 and 15, and a/W = 

0.5 and 0.7 as indicated in the last column of Table 2.3.  On the other hand, for a/W = 0.3, 

the difference between the ηpl values corresponding to n = 10 and n = 15 is relatively 

large. For example, the values of ߟ௠௜ௗ
஼ெை஽corresponding to n = 10 and n = 15 differ by 6.3% 

for a/W = 0.3, and the values of ߟ௔௩௘௅௅஽ corresponding to n = 10 and n = 15 differ by 5.1% 

for a/W = 0.3.  The results in Table 2.3 also indicate that values of ηpl are sensitive to n 

for n ≤ 10 and a/W = 0.5 and 0.7.  For example, the values of ߟ௠௜ௗ
஼ெை஽corresponding to n = 

5 and n = 10 differ by as much as 7.8% for a/W = 0.7. 

 

2.4 Conclusions 

A systematic investigation of the plastic η factor (ηpl) for both plane-sided and side-

grooved SE(B) specimens based on the incremental-plasticity large-displacement/large-

strain 3D FEA has been performed and is reported in this chapter.  The LLD- and 

CMOD-based ηpl factors corresponding to the average J value over the crack front as well 
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as the local J value at the mid-plane were evaluated and tabulated.  The impact of a/W, 

B/W, side-grooves and strain hardening characteristics on ηpl was investigated.  

Three values of the strain hardening exponent, namely n = 5, 10 and 15, were considered 

to investigate the effect of n on ηpl.  The cases with n = 10 were considered as the 

baseline cases.  For cases with n = 5 and 10, both plane-sided and side-grooved 

specimens were studied considering three specimen thicknesses (B) (i.e. B/W = 0.5, 1 and 

2), and six crack lengths (a/W) (i.e. a/W = 0.3 to 0.7 with an increment of 0.1).  For cases 

with n = 15 materials, only B×2B plane-sided specimens with three crack lengths (i.e. 

a/W = 0.3, 0.5, and 0.7) were investigated.  The 8-node 3D brick elements with 2×2×2 

integration were used.  The displacement-controlled loading was applied in the FEA.  A 

blunt crack tip with a radius rw = 0.003 mm was modeled to facilitate the large-

deformation calculation.  Two contact rollers were defined to simulate the rollers 

supporting and loading the specimen.  For materials with n = 5 and 10, the ηpl factors for 

specimens with a/W ≥ 0.4 were evaluated by linearly fitting the ܬ௣̅௟  vs. ̅ܣ௣௟  data 

corresponding to 1.0Pl  ≤ P ≤ 2.0Pl.  The ηpl factors for specimens with a/W = 0.3 were 

evaluated based on data within the range of 1.0Pl  ≤ P ≤ 1.7Pl.  For n =15 materials, ηpl 

was evaluated based on data within the range of 1.0Pl  ≤ P ≤ 1.7Pl for specimens with 

a/W ≥ 0.4, and 1.0Pl  ≤ P ≤ 1.5Pl for specimens with a/W = 0.3. 

For n = 10, it is observed that the B/W ratio and side-grooves have a greater impact on 

ηmid than on ηave.  Values of ηmid generally decrease with the increase of the B/W ratio.  

Except for the SG specimens with a/W = 0.6 and 0.7, the ߟ௔௩௘௅௅஽ values obtained in this 

study are generally lower than 1.9 that is suggested in ASTM E1820-11E2 for SE(B) 

specimens with 0.45 ≤ a/W ≤ 0.7; the ߟ௔௩௘஼ெை஽	values obtained in this study corresponding 

to the PS and SG specimens with a/W ≥ 0.4 are generally lower and higher than those 

evaluated from the equation suggested in ASTM E1820-11E2, respectively, and for both 

the PS and SG specimens with a/W = 0.3, the ߟ௔௩௘஼ெை஽	values obtained in this study are 

somewhat higher than those evaluated from the ASTM E1820-11E2 equation.  Both 

LLD- and CMOD-based ηpl for specimens with B/W = 0.5are found to be insensitive to 

the strain hardening exponent n in the range of n = 10 to 15 and a/W = 0.5 and 0.7, 
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whereas the ηpl for the same specimens with B/W = 0.5 are found to be sensitive to n in 

the range n = 5 to 10. 

The evaluation of the ηpl factor based on 3D FEA is a more realistic approach compared 

with the use of conventional 2D plane strain FEA, because the real specimens and cracks 

are three-dimensional.  The results of the present study can potentially improve the 

accuracy of the J-R curve obtained from the experiment and facilitate the evaluation of J-

R curves using non-standard (e.g. shallow-cracked) SE(B) specimens. 

 

References 

ADINA. Theory and Modeling Guide, ADINA R. & D. Inc., Watertown, USA; 2012. 

Anderson TL. Fracture Mechanics—Fundamentals and Applications, Third edition. CRC 

Press, Boca Raton; 2005. 

API. API Specification 5L: Specification for Line Pipe, Ed. 45, American Petroleum 

Institute, Washington, D.C.; 2012. 

ASTM. ASTM E1820-11E2: Standard Test Method for Measurement of Fracture 

Toughness, ASTM, West Conshohocken, PA; 2013. 

Begley JA, Landes JD. The J-integral as a Fracture Criterion. Fracture Mechanics, ASTM 

STP 514, ASTM International, West Conshohocken, PA; 1972;515:1-23. 

BSI. BS 7448: Fracture Mechanics Toughness Tests, British Standard Institution, London; 

1997.  

Clarke GA, Andrews WR, Paris PC, Schmidt DW. Single Specimen Tests for JIc 

Determination. Mechanics of Crack Growth, ASTM STP 590, American Society for 

Testing and Materials, Philadelphia; 1976;27-42. 



31 

 

 

Cravero S, Ruggieri C. Estimation Procedure of J-Resistance Curves for SE(T) Fracture 

Specimens Using Unloading Compliance. Engineering Fracture Mechanics; 

2007;74:2735-57. 

Dodds RH, Read DT. Experimental and Numerical Studies of the J-integral for a Surface 

Flaw. International Journal of Fracture; 1990;43:47-67. 

Donato GHB, Ruggieri C. Estimation Procedures for J and CTOD Fracture Parameters 

Using Three-Point Bend Specimens. 2006 International Pipeline Conference (IPC2006) 

September 25–29th, 2006, Calgary, Alberta, Canada; 2006. p. IPC2006-10165. 

Ernst HA, Paris PC, Landes JD. Estimations on J-integral and Tearing Modulus T from a 

Single Specimen Test Record, Fracture Mechanics: Thirteenth Conference, ASTM STP 

743, American Society for Testing and Materials, 1981;476-502. 

Graba M, Gałkiewicz J. Influence of the Crack Tip Model on Results of the Finite 

Elements Method. Journal of Theoretical and Applied Mechanics; 2007;45(2):225-37. 

Huang Y, Zhou W, Wang E, Shen G. Evaluation of Plastic η Factors for SE(B) Specimens 

Based on Three-dimensional Finite Element Analysis. Proc 23rd Int Offshore and Polar 

Eng Conf, June 30 - July 5, Anchorage, ISOPE; 2013;591-7. 

Kanninen MF, Popelar CH. Advanced Fracture Mechanics, Oxford University Press, New 

York; 1985. 

Kim YJ, Kim JS, Cho SM, Kim YJ. 3-D Constraint Effects on J Testing and Crack Tip 

Constraint in M(T), SE(B), SE(T) and C(T) Specimens: Numerical Study. Engineering 

Fracture Mechanics; 2004;71:1203-18. 

Kim YJ, Schwalbe KH. On the Sensitivity of J Estimation to Materials’ Stress-strain 

Curves in Fracture Toughness Testing Using the Finite Element Method. Journal of 

Testing and Evaluation; 2001;29(1):18-30. 

Kirk MT, Dodds RH. J and CTOD Estimation Equations for Shallow Cracks in Single 

Edge Notch Bend Specimens. Journal of Testing and Evaluation; 1993;21(4):228-38. 



32 

 

 

Kulka RS, Sherry AH. Fracture Toughness Evaluation in C(T) Specimens with Reduced 

Out-of-plane Constraint. ASME 2012 Pressure Vessels & Piping Conference (PVP-2012). 

July 15–19th, 2012, Toronto, Canada; 2012. p. PVP2012-78751. 

Link RE, Joyce JA. Experimental Investigation of Fracture Toughness Scaling Models. 

Constraint Effects in Fracture Theory and Applications, ASTM STP 1244, ASTM, West 

Conshohocken, PA; 1995;2:286-315. 

Mase GE. Schaum's Outline of Continuum Mechanics. McGraw-Hill; 1970. 

Nevalainen M, Dodds RH. Numerical Investigation of 3-D Constraint Effects in Brittle 

Fracture in SE(B) and C(T) Specimens. International Journal of Fracture; 1995;74:131-

61. 

Nikishkov GP, Heerens J, Hellmann D. Effect of Crack Front Curvature and Side Grooving 

on CTOD δ5 and J-integral in CT and 3PB Specimens. Journal of Testing and Evaluation; 

1999;27(5):312-9. 

Paris PC, Ernst H, Turner CE. A J-integral Approach to Development η-Factors. Fracture 

Mechanics: twelfth conference, ASTM STP 700, ASTM; 1980:338-51. 

Petti JP, Dodds RH, Link RE. Crack Mouth Opening Displacement-based η Factors for 

SE(B) Specimens. Journal of Testing and Evaluation; 2009;37(4):383-6. 

Rice JR, Paris PC, Merkle JG. Some Further Results of J-integral Analysis and Estimates. 

Progress in flaws growth and fracture toughness testing, ASTM STP 536. ASTM; 

1973:231-45.  

Ruggieri C. Further Results in J and CTOD Estimation Procedures for SE(T) Fracture 

Specimens – Part I: Homogeneous Materials. Engineering Fracture Mechanics; 

2012;79:245-65. 

Sharobeam M, Landes JD. The Load Separation Criterion and Methodology in Ductile 

Fracture Mechanics. International Journal of Fracture; 1991;41:81-104. 



33 

 

 

Shen G, Tyson WR. Crack Size Evaluation Using Unloading Compliance in Single-

specimen Single-edge-notched Tension Fracture Toughness Testing. Journal of Testing 

and Evaluation; 2009;37(4):347-57.  

Sumpter JDG, Turner CE. Method for Laboratory Determination of Jc (Contour Integral for 

Fracture Analysis). Cracks and Fracture, ASTM STP 601, ASTM, West Conshohocken, 

PA; 1976:3-18. 

Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks Handbook, Third edition. 

ASME Press, New York; 2000. 

Wang E, Zhou W, Shen G, Duan D. An Experimental Study on J(CTOD)-R Curves of 

Single Edge Tension Specimens for X80 Steel. Proceedings of the 2012 9th International 

Pipeline Conference, September 24-28, Calgary, Canada; 2012. p. IPC2012-90323. 

Wu SX, Mai YW, Cotterell B. Plastic η-factor of Fracture Specimens with Deep and 

Shallow Cracks. International Journal of Fracture; 1990;45:1-18. 

Yuan H, Brocks W. Quantification of Constraint Effects in Elastic-plastic Crack Front 

Fields. Journal of the Mechanics and Physics of Solids; 1998;46(2):219-41. 

Zhu XK, Leis BN, Joyce JA. Experimental Estimation of J-R Curves From Load-CMOD 

Record for SE(B) Specimens. Journal of ASTM International; 2008;5:231-45. 

 



 

 

34 

 

Table 2.1a: The LLD-based ηpl obtained from varieties of 3D FE models for n = 10 materials 

a/W 

Plane-sided Side-grooved 
B/W B/W 

0.5 1 2 0.5 1 2 
ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave 

0.3 2.25  1.77 2.02 1.68 1.67 1.65 1.69  1.63 1.52 1.65 1.45 1.68 
0.4 2.18  1.70 2.05 1.73 1.76 1.74 1.88  1.72 1.69 1.76  1.65 1.82 
0.5 2.28  1.77 2.06 1.80 1.86 1.82 1.91  1.80 1.79 1.89 1.79 1.92 
0.6 2.30  1.82 2.03 1.86 1.87 1.85 1.96  1.91 1.88 1.99 1.91 2.01 
0.7 2.27  1.88 2.04 1.94 1.96 1.94 2.07  2.09 2.00 2.10 2.00 2.07 

 

Table 2.2b: The CMOD-based ηpl obtained from varieties of 3D FE models for n = 10 materials 

a/W 

Plane-sided Side-grooved 
B/W B/W 

0.5 1 2 0.5 1 2 
ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave 

0.3 3.98  3.12 3.89 3.25 3.36 3.31 3.45  3.31 3.31 3.58 2.86 3.31 
0.4 3.31  2.58 3.29 2.79 2.88 2.85 3.08  2.82 2.89 3.02 2.64 2.90 
0.5 3.17  2.46 2.96 2.59 2.69 2.63 2.75  2.58 2.61 2.75 2.61 2.80 
0.6 2.93  2.32 2.61 2.39 2.43 2.39 2.53  2.46 2.43 2.57 2.46 2.59 
0.7 2.67  2.21 2.40 2.28 2.34 2.31 2.35  2.38 2.18 2.29 2.35 2.43 
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Table 2.3a: The LLD-based ηpl obtained from varieties of 3D FE models for n = 5 materials 

a/W 

Plane-sided Side-grooved 
B/W B/W 

0.5 1 2 0.5 1 2 
ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave 

0.3 2.18  1.73 1.98 1.67 1.65 1.62 1.76  1.71 1.61 1.73 1.54 1.77 
0.4 2.34  1.83 2.14 1.81 1.87 1.81 1.87  1.74 1.84 1.88 1.64 1.80 
0.5 2.35  1.84 2.13 1.84 1.91 1.85 1.87  1.76 1.90 1.97 1.77 1.90 
0.6 2.36  1.87 2.12 1.89 1.91 1.85 1.98  1.89 1.92 2.03 1.88 1.98 
0.7 2.37  1.96 2.13 1.97 1.95 1.89 1.95  1.94 1.97 2.08 1.94 2.01 

 

Table 2.4b: The CMOD-based ηpl obtained from varieties of 3D FE models for n = 5 materials 

a/W 

Plane-sided Side-grooved 
B/W B/W 

0.5 1 2 0.5 1 2 
ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave ηmid ηave 

0.3 4.15  3.30 3.97 3.35 3.44 3.38 3.45  3.37 3.30 3.54 3.14 3.61 
0.4 3.78  2.96 3.53 2.98 3.15 3.05 2.91  2.71 2.92 2.98 2.78 3.06 
0.5 3.44  2.69 3.11 2.69 2.81 2.72 2.68  2.51 2.71 2.81 2.59 2.78 
0.6 3.11  2.47 2.76 2.46 2.50 2.42 2.54  2.43 2.48 2.62 2.39 2.52 
0.7 2.90  2.40 2.53 2.33 2.32 2.24 2.24  2.23 2.31 2.43 2.25 2.33 
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Table 2.5: Variation of ηpl with strain hardening exponent for plane-sided model with B/W = 0.5 
 

 
n = 5 

(I) 
n = 10 

(II) 
n = 152 

(III) 
|II – I|/II 

(%) 
|II – III|/II

(%) 

a/W = 0.3 

LLD-
based 

ηmid 2.18 2.25 2.21 3.1 1.8 

ηave 1.73 1.77 1.68 2.3 5.1 

CMOD- 
based 

ηmid 4.15 3.98 4.23 4.3 6.3 

ηave 3.30 3.12 3.21 5.8 2.9 

a/W = 0.5 

LLD-
based 

ηmid 2.35 2.35 2.33 0 0.9 

ηave 1.84 1.80 1.77 2.2 1.7 

CMOD- 
based 

ηmid 3.44 3.34 3.34 3.0 0 

ηave 2.69 2.55 2.53 5.5 0.8 

a/W = 0.7 

LLD-
based 

ηmid 2.37 2.27 2.28 4.4 0.4 

ηave 1.96 1.88 1.90 4.3 1.1 

CMOD- 
based 

ηmid 2.90 2.69 2.70 7.8 0.4 

ηave 2.40 2.23 2.25 7.6 0.9 

 

                                                 
2
 For n =15 materials, ηpl was evaluated based on data within the range of: (a) 1.0Pl  ≤ P ≤ 1.7Pl for specimens with a/W ≥ 0.4; (b) 1.0Pl  ≤ P ≤ 1.5Pl for specimens 

with a/W = 0.3. 
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(d) Definition of crack length and CMOD in SE(B) specimens 

 

(e) Definition of crack length and CMOD in C(T) specimens 

 

Figure 2.1: Schematic of the plane-sided (PS) and side-grooved (SG) specimens 
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(a) load-control condition (b) displacement-control condition 

Figure 2.2: Determination of the potential energy 

 
 
 
 

 
 

Figure 2.3: Plastic area under the load-displacement curve 
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Figure 2.4: Schematic of the estimation of Jpl for growing cracks  
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Figuree 2.5: Conffiguration oof the finite element mmodel 
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Figure 2.6: Schematics of side-grooved finite element model with a/W = 0.5 and B/W = 0.5 
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Figure 2.7: Distribution of the effective stress at mid plane in a typical FE model 
(a/W = 0.5 and B/W = 1) corresponding to the applied displacement of 1.5mm 
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(a) Plane-sided model with B/W = 0.5, n = 10, and Jmid 

 

(b) Side-grooved model with B/W = 2, n = 10, and Jave 

 

Figure 2.9: Variation of the normalized plastic J with normalized plastic area
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(a) LLD-based ηmid vs. a/W 
 

 

(b) LLD-based ηave vs. a/W 
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(c) CMOD-based ηmid vs. a/W 
 

 

(d) CMOD-based ηave vs. a/W 

 

Figure 2.10: Variation of ηpl with a/W for n = 10 
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(a) LLD-based ηmid vs. a/W. 
 

 

(b) LLD-based ηave vs. a/W. 
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(c) CMOD-based ηmid vs. a/W. 
 

 

(d) CMOD-based ηave vs. a/W. 

 

Figure 2.11: Variation of ηpl with a/W for n = 5 
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Chapter 3   Constraint-corrected J-R Curves for Pipeline 
Steels 

3.1 Background and Objective 

3.1.1 Constraint Effect 

It has been observed that testing specimens made of the same material but with different 

geometric configurations and/or subjected to different types of loading (e.g. bending and 

tension) will lead to different J-R curves (Brocks and Schmitt, 1995).  This phenomenon 

is attributed to the so-called constraint effect, which is defined as a structural obstacle 

against plastic deformation and is dependent on the loading and geometry conditions of 

the specimens (Brocks and Schmitt, 1995).  Basically, a high level of constraint leads to a 

low J-R curve because a high level of constraint restricts the plastic deformation and 

associated energy dissipation in the vicinity of the crack tip and therefore lowers the 

resistance to fracture.  A high level of constraint is equivalent to a high degree of stress 

triaxiality, which can drive the crack growth more easily (Brocks and Schmitt, 1995; Kim 

et al., 2004).  Figure 3.1 schematically shows five typical J-R curves obtained from 

fracture toughness tests on different types of specimens including the pipe segment under 

tension, single-edge tension (SE(T)), deeply- (i.e. a/W ≥ 0.45) and shallow-cracked (i.e. 

a/W ≤ 0.45) single-edge bend (SE(B)), and deeply-cracked compact tension (C(T)) 

specimens.  It can be seen that the pipe segment under tension leads to the highest J-R 

curves, followed by the SE(T) specimen.  The shallow-cracked SE(B) specimen results in 

a higher J-R curve than that from the deeply-cracked SE(B) specimen.  The lowest J-R 

curve results from the deeply-cracked C(T) specimen, which has the highest constraint 

level among all the specimens shown in the figure.  Brocks and Schmitt (1995) pointed 

out that the use of bend type specimens and deeply-cracked geometry guarantees a high 

level of the in-plane constraint.  The figure indicates that using the small-scale specimens 

generally leads to conservative J-R curves.  The non-standard specimens such as the 

SE(T) and shallow-cracked SE(B) specimens result in less conservative J-R curves than 

those obtained from the deeply cracked SE(B) and C(T) specimens as specified in ASTM 

E1820-11E2 (ASTM, 2013). 
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There are two types of constraint effects, namely the in-plane and out-of-plane constraints 

(Brocks and Schmitt, 1995).  The in-plane constraint depends on the loading 

configuration (i.e. bending or tension) as well as the in-plane dimensions (e.g. width and 

span of the specimen, and crack length).  The out-of-plane constraint depends on the out-

of-plane dimension (i.e. thickness) of the specimen (Guo, 1993a, 1993b, 1995).  Two 

parameters, namely Q and A2, are commonly used in the literature to quantify the in-plane 

constraint effects (e.g. O’Dowd and Shih, 1991; Chao et al., 1994).  Two other 

parameters, namely h and Tz (Brocks and Schmitt, 1995; Guo, 1993a, 1993b, 1995) have 

been used to quantify the degree of stress triaxiality at the crack tip, which is directly 

related to the constraint level. These four parameters are described in the following. 

O’Dowd and Shih (1991, 1992, 1994) proposed the Q parameter to describe the 

difference between the actual stress field and the reference stress field ahead of the crack 

tip: 

0( ) ij ij ref ijQ     for 
2


  and 01 5 

r

J


 (3.1)

where δij is the Kronecker delta; θ and r are defined in Fig. 1.2; σ0 is the reference stress 

and typically set equal to the yield strength, and rσ0/J is the (dimensionless) normalized 

crack tip distance. The reference stress state (σij)ref can be chosen as either the HRR 

(plane-strain) solution (σij)HRR (O’Dowd and Shih, 1991, 1992), or the stress field 

corresponding to the small-scale yielding solution (σij)SSY (O’Dowd and Shih, 1994), 

which is typically obtained from a modified boundary layer (MBL) analysis (Anderson, 

2005).  Note that (σij)SSY is the more appropriate choice for (σij)ref if the material cannot be 

characterized by a Ramberg-Osgood stress-strain relationship on which (σij)HRR is based.  

In the literature, the Q parameter is commonly evaluated from the opening stress in the 

crack plane at rσ0/J = 2 (e.g. O’Dowd and Shih, 1991, 1992; Brocks and Schmitt, 1995), 

that is, Q is calculated from  

22 22

0

( )
 HRR

HRRQ
 


 for 0  and 0 2

r

J


 (3.2)
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22 22

0

( )
 SSY

SSYQ
 


 for 0  and 0 1

r

J


 (3.3)

where QHRR or QSSY characterizes the level of stress triaxiality, i.e. the degree of constraint, 

near the crack tip; σ22 is the opening stress, i.e. the component of the stress tensor acting 

in the direction that opens up the crack face, and the actual stress field σij can be obtained 

from the finite element analysis.  Values of QHRR typically range from -2.0 to 0.2 in 

general two-dimensional plane strain analysis (O’Dowd and Shih, 1991), with the low 

values representing low levels of constraint. 

Zhu and Jang (2001) pointed out that the Q parameters evaluated from Eqs. (3.2) and (3.3) 

are dependent on load; therefore, the value of Q varies along the J-R curve.  To make Q 

independent of the load, Zhu and Jang (2001) proposed the following modified Q 

parameter, Qm: 

1

1

0 0


 

  
 

n

m HRR
n

J
Q Q

I L   
  (3.4)

where ε0 = σ0/E; α and n are parameters of the Ramberg-Osgood relationship with n 

commonly known as the strain hardening exponent; In is an integration constant that 

depends on n, and L is a characteristic length that can be simply set equal to 1 mm.  Zhu 

and Jang (2001) indicated that Qm as defined in Eq. (3.4) is load-independent for tensile 

specimens under large loading and for bending specimens under moderate loading based 

on theoretic and numerical analyses. 

Zhu and Leis (2006b) stated that the modified Qm parameter in Eq. (3.4) may be distance-

dependent and may fail to describe the stress field at the crack-tip correctly for bending 

specimens under large loading.  Considering the influence of the global bending stress on 

the crack-tip stress field in SE(B) specimens and following the bending modification of 

J-A2 theory proposed by Chao et al. (2004), Zhu and Leis (2006b) proposed the similar 

bending modified J-Q solution as 
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where C is a linearization factor; M is the moment per unit thickness acting at the center 

of the span and equals PS/4B (P is the applied load, and S and B are respectively the span 

and thickness of the specimen as illustrated in Fig. 2.1) for the SE(B) specimen.  ߪଶଶ
ிா஺ 

and ߪଶଶ
ுோோ are the opening stress ahead of the crack tip obtained from the finite element 

analysis (FEA) (i.e. the actual opening stress) and HRR solution respectively.  

By assuming a plastic hinge located at the neutral axis in the mid-span of a bending beam 

and the linear distribution of the elastic stress along the uncracked ligament, Chao et al. 

(2004) showed that the factor C in Eq. (3.5) for the SE(B) specimen approximately equals 

six.  Alternatively, the so-called two-point matching method (Chao et al., 2004; Zhu and 

Leis, 2006b) can be used to determine C.  Let ߪଶଶ
ிா஺(r1,0) and ߪଶଶ

ிா஺	(r2,0) denote two 

opening stresses directly ahead of crack tip (i.e. r = r1 and r = r2, θ = 0) within the region 

of interest such as 1 ≤ r/(J/σ0) ≤ 5 obtained from FEA.  The constant C in Eq. (3.5) can be 

determined by using Eq. (3.6) based on the assumptions that QBM are distance-

independent within the region of interest: 
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(3.6)

where r1 and r2 are typically selected as r1/(J/σ0) = 1 and r2/(J/σ0) = 5 (Chao et al., 2004).  

Once C is determined from Eq. (3.6), QBM can be determined from Eq. (3.5) at a specific 

location ahead of the crack, e.g. r/(J/0) = 2 and θ = 0. 
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Based on the rigorous asymptotic analysis of a plane-strain crack in a power-law 

hardening material, Chao and his coworkers (Chao et al., 1994; Yang et al., 1993a and 

1993b) proposed the J-A2 three-term solution for the crack-tip stress field:  
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where A1 and s1 are given by the HRR fields: 
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the angular functions  k
ij (k = 1, 2 and 3), the stress power exponents (s1, s2 and s3) and 

the dimensionless integration constant In are functions of the hardening exponent n only 

and tabulated by Chao and Zhang (1997).  The first term of the right hand side of Eq. (3.7) 

is the HRR solution, as the equation simplifies to the following for A2 = 0: 
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(3.9)

The second and third terms in Eq. (3.7) represent the difference between the full-field 

solution and HRR solution, and include an undetermined scaling factor A2.  The value of 

A2 can be determined by setting σij in Eq. (3.7) to σ22 at a given point (e.g. rσ0/J = 2 and θ 

= 0) obtained from FEA and solving the equation for A2.  Note that Eq. (3.7) is essentially 

a quadratic equation of A2 that includes two roots of A2.  Both roots are acceptable, but 

typically the negative root is used in the literature (Chao et al., 2004; Zhu and Leis, 

2006a).  A higher value of A2 represents a higher level of the constraint. 
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It is well known that the stress triaxiality at the crack tip directly affects the main 

micromechanisms of fracture (Shen et al., 2004).  The stress triaxiality, h, can be defined 

as (Brocks and Schmitt, 1995): 
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where the hydrostatic stress, σh, equals (σ11+σ22+σ33)/3, i.e. the first invariant of the stress 

tensor, and does not cause any plastic deformation;  
3

2
e ij ijs s is the von Mises 

effective stress, and sij is the deviatoric stress tensor (sij = σij - σh), which is responsible 

for the plastic flow (Brocks and Schmitt, 1995). 

Another commonly used parameter to describe the state of triaxiality as well as the so 

called out-of-plane constraint is Tz, suggested by Guo (1993a, 1993b, 1995): 
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where σ11 is the stress acting in the direction of the crack propagation, and σ33 is the stress 

parallel to the crack front. 

The advantage of using h and Tz is that they do not require a reference stress state such as 

the HRR solution and can be easily calculated from the actual stress state obtained from 

FEA. 

 

3.1.2 Constraint-corrected J-R Curve 

As described in Section 3.1.1, the application of J-R curves determined from small-scale 

specimens in real flawed structures generally leads to conservative, sometimes excessive, 

design and assessment of the structure.  This is known as the fracture toughness 
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transferability issue (Zhu, 2006a).  Extensive research has been carried out to deal with 

the transferability issue (e.g. Minami et al., 1997; Ruggieri et al., 2000; Laukkanen et al., 

2003; Scibetta et al., 2009).  One of the approaches adopted in such research is to develop 

constraint-corrected J-R curves (Zhu and Jang, 2001) based on the J-Q and J-A2 theories. 

The idea of constraint-corrected J-R curves is described as follows.  As specified in 

ASTM E1820-11E2 (ASTM, 2013), a given J-R curve can be approximated by a power-

law relationship between J and the crack extension, Δa: 
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where k = 1 mm, and C1 and C2 are the power-law coefficients.  The basic premise of 

constraint-corrected J-R curves is that a given J-R curve is associated with a given value 

of the constraint parameter, denoted by Y.  Therefore, a suite of J-R curves, each 

associated with a different value of the constraint parameter, can be expressed in the 

following general form: 
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where C1(Y) and C2(Y) are the power-law coefficients that are functions of Y.  Given the 

value of the constraint parameter Y, the corresponding J-R curve can then be determined. 

Zhu and Leis (2005, 2006a) developed a general approach to determine C1(Y) and C2(Y), 

as schematically illustrated in Figure 3.2.  For a given J-R curve, the J values 

corresponding to two crack extensions, Δa1 and Δa2, are denoted by 
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Based on at least three experimentally-determined J-R curves and their corresponding 

values of the constraint parameter Y, one can develop ܬ୼௔భ  and ܬ୼௔మ  as functions of Y 

from curve fitting as illustrated in Figs. 3.2(a) and 3.2 (b).  Zhu and Leis (2005, 2006a) 



57 

 

suggested choosing Δa1 = 0.2 mm, which is generally considered to correspond to the 

initiation of crack growth (Δa ≤ 0.2 mm is typically attributed to the crack tip blunting as 

opposed to growth (Zhu and Joyce, 2012)), and Δa2 = 1.0 mm.  Given J0.2(Y) and J1.0(Y), 

the power-law coefficients, C1(Y) and C2(Y), can be determined as follows: 

   1 1.0C Y J Y (3.15a)
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The constraint parameters indicated in Eqs (3.13)-(3.15) can be either Q or A2 evaluated 

from FEA at J = J0.2, assuming a stationary crack (i.e. no crack growth) in the analysis 

given that Δa ≤ 0.2 mm is due to the crack blunting.  Chao and Zhu (2000) as well as Zhu 

and Jang (2001) developed the constraint-corrected J-R curve associated with 

experimentally-determined J-R curves from a set of SE(B), C(T) and SE(T) specimens 

tested by Joyce and Link (1995, 1997), whereas Zhu and Leis (2005, 2006a) developed 

the constraint-corrected J-R curve based on six SE(B) specimens with different crack 

lengths (i.e. a/W = 0.24, 0.25, 0.42, 0.43, 0.63 and 0.64) and the same thickness (i.e. B/W 

= 0.5) (Shen et al., 2004).  In terms of the constraint parameter Q, Zhu and Jang (2001) 

and Zhu and Leis (2006a) determined the constraint-corrected J-R curves for different 

ductile metals, whereas Chao and Zhu (2000), Lam et al. (2003), Zhu and Leis (2005) 

and Wang et al. (2009) constructed the constraint-corrected J-R curves in reference to the 

constraint parameter A2. 

It is noted that the aforementioned studies to develop constraint-corrected J-R curves are 

all based on the two-dimensional (2D) small-strain FEA.  That is, the constraint 

parameter Y (i.e. Q or A2) associated with a given J-R curve is evaluated from 2D small-

strain FEA.  In reality, the test specimen (e.g. SE(B) and C(T)) from which the J-R curve 

is experimentally obtained are three-dimensional (3D).  The use of 2D FEA to simulate 

3D specimens may not be adequate, for example, if the specimens are side-grooved.  

Furthermore, the large displacement/large strain-based analysis is more representative of 

the actual kinematics of the specimens during the J-R curve test than the small strain-
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based analysis.  Finally, all of the previous studies employ either Q or A2 as the constraint 

parameter.  The use of other constraint parameters, such as h and Tz, to develop 

constraint-corrected J-R curves has not been reported in the literature. 

 

3.1.3 Objective and Approach 

The main objective of the work reported in this chapter was to develop the constraint- 

corrected J-R curve based on 3D FEA.  The constraint parameters for a set of SE(B) 

specimens reported in the literature were evaluated using 3D large displacement/large 

strain FEA.  The constraint parameters were then combined with the experimentally 

determined J-R curves corresponding to medium- and deeply cracked SE(B) specimens 

to develop a constraint corrected J-R curve.  The constraint parameters considered in this 

study include Q, A2, h and Tz.  The developed constraint-corrected J-R curve was 

validated using the J-R curve obtained from shallow-cracked SE(B) specimens.   

Based on the approach proposed by Zhu and Leis (2005, 2006a), the experimentally 

determined J-R curve corresponding to a given SE(B) specimen was fitted by a power-

law relationship between J and Δa.  The constraint parameter Y associated with the J-R 

curve was set to be either Q, A2, h or Tz evaluated from 3D FEA at the mid-plane of the 

specimen corresponding to J0.2.  All the specimens in FEA have stationary cracks with 

the crack length equal to the corresponding initial crack length.  The power law 

coefficients, C1(Y) and C2(Y), were then expressed as functions of the constraint 

parameter Y based on Eqs. (3.15a) and (3.15b).  The adequacy of different constraint 

parameters (i.e. Q, A2, h and Tz) in terms of characterizing the constraint-corrected J-R 

curve was investigated. 

This chapter is organized as follows.  Section 3.2 presents the experimentally-determined 

J-R curves that were employed in this study.  The finite element analysis and 

determination of the constraint parameters are described in Section 3.3.  The construction 

and validation of the constraint-corrected J-R curve based on the experimentally-
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determined J-R curves and constraint parameters are presented in Section 3.4.  The 

conclusions of the study are presented in Section 3.5. 

 

3.2 Experimentally-determined J-R curves 

The J-R curves used in this study are from six SE(B) specimens tested and reported by 

Shen et al. (2004). All the specimens were fabricated from the based metal of a pipe 

segment that has an outside diameter of 1219 mm (48 in.) and a wall thickness of 12.7 

mm (0.5 in.), and is made of the API X80 (API, 2012) steel with a minimum specified 

yield strength (SMYS) of 550 MPa (80 ksi).  The mechanical properties of the steel were 

measured by Shen et al. (2004) using flattened coupons extracted along the longitudinal 

direction of the pipe segment (see Fig. 3.3).  The average values of Young’s modulus E, 

yield strength σy, and ultimate tensile stress σUTS were reported to be 207 GPa, 568 MPa, 

and 675 MPa, respectively.  The Cauchy (true) stress-logarithmic (true) strain 

relationship of the steel was found to be well represented by the following Ramberg-

Osgood equation: 
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 

n
  
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  (3.16)

where α = 1.07, n = 13.3, σ0 = σy = 568MPa, and ε0 = σ0/E. 

The crack planes in the SE(B) specimens are orientated in the L-C direction; that is, the 

specimen is in the pipe longitudinal direction, and the crack propagates in the 

circumferential direction (see Fig. 3.3), following the specifications in ASTM E399-12E1 

(ASTM, 2013). 

All six specimens have the same width (W = 23 mm), thickness (B/W = 0.5) and span 

length (S/W = 4).  All specimens are side-grooved with the depth of the side groove equal 

to 10%B on each side (see Fig. 2.6 for a schematic side-grooved specimen) as 

recommended by ASTM E1820-11E2 (2013).  The initial crack lengths (a/W) in the six 
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specimens are 0.24, 0.25, 0.42, 0.43, 0.63 and 0.64 respectively.  Therefore, two 

specimens are shallow-cracked; two are medium-cracked; and two are deeply-cracked.  

The six specimens are designated as SEB24, SEB25, SEB42, SEB43, SEB63 and SEB64, 

respectively, based on their corresponding initial crack lengths. 

All the tests on SE(B) specimens were conducted at room temperature (about 20℃) using 

a servo-hydraulic test system.  The unloading compliance method was used to evaluate 

the J-R curves corresponding to these specimens based on the compliance equations 

given in Appendix B.  Figure 3.4 depicts the J-R curves experimentally determined from 

the six SE(B) specimens.  It can be seen that some data points corresponding to Δa ≤ 0.2 

mm show a trend of reverse crack growth, which is due to the inadequate accuracy of the 

unloading compliance method in the range of small crack growths. The figure shows that 

as a/W decreases (i.e. the constraint level decreases), the J-R curve becomes higher.  This 

is consistent with other J-R test results reported in the literature.  The test data associated 

with each of the specimens were then used to fit a power-law relationship between J and 

Δa, as given by Eq. (3.12), using the least squares method.  The values of C1, C2, J0.2 and 

J1.0 associated with the six J-R curves are listed in Table 3.1. 

 

3.3 Finite Element Analysis 

3.3.1 Finite Element Model 

The commercial software ADINA 8.7.4 (ADINA, 2012) was used to carry out the finite 

element analysis of the six SE(B) specimens described in Section 3.2 to evaluate J and 

the constraint parameters.  An elastic-plastic constitutive model employing the 

incremental plasticity and large displacement/large strain formulation was adopted.  The 

von Mises yield criterion and isotropic hardening elements was selected in the analysis.  

The geometric configuration of a typical SE(B) specimen in the FEA is shown in Fig. 3.5 

together with the fixation and loading conditions.  The 8-node 3D brick isoparametric 

elements with 2×2×2 integration were used; the accuracy of using such elements to 

calculate J for SE(B) specimens has been shown to be adequate (Kulka and Sherry, 2012).  
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The analysis was carried out for a stationary crack, with the crack length in a given 

specimen equal to its initial crack length.  Due to symmetry, only a quarter of a given 

specimen was modeled in the FEA.  A blunt crack tip with a radius rw = 0.003 mm (see 

Fig. 2.5) was modeled to facilitate the large-deformation calculation (Graba, 2011).  A 

sharp V-notch (i.e. the radius of the notch was not considered) with a total thickness 

reduction of 20%B (10%B on each side) was used to simulate the side-grooves in the 

specimens.  Note that the blunt crack tip is also prepared through the thickness of the side 

grooves as shown in Fig. 2.6 to mitigate the impact of the singularity caused by the sharp 

V-notch under tension on the large-strain analysis. 

A spider-web mesh around the crack tip was established with 45 concentric semicircles 

(i.e. rings) surrounding the crack tip.  The in-plane size of the elements closest to the 

crack tip is around 0.003 mm, and about 1/100 of the in-plane size of the elements in the 

outermost ring.  The model was divided into 25 layers along the thickness direction (17 

layers between the symmetric plane and the root of the side groove, and 8 layers between 

the root of the side groove and free surface).  The mesh density increases from the mid 

plane to the free surface to capture the high stress gradients near the free surface.  The 

total number of elements is approximately 22,900 in a typical specimen.  Two contact 

rollers were defined to simulate the rollers supporting and loading the specimen.  The 

elastic modulus of the contact element was set as ten times that of the specimen.  Rigid 

links were created to connect the loading point and the roller surface.  Using contact 

rollers in the FEA can reflect the real test condition such as the sliding occurring between 

the specimen and the rollers as well as the large deformation in the contact surface.   

The J-integral was computed using the virtual crack extension method implemented in 

ADINA (Anderson, 2005; ADINA, 2012, see Appendix A).  To ensure the path-

independence of the calculated J values, the two outmost semicircular rings surrounding 

the crack tip were used to define the virtual shifts.  Displacement-controlled loading was 

applied in all the models. For models with a/W ≥ 0.4, the displacement was increased 

from 0 to 4.5 mm through 15,000 steps, whereas it was increased from 0 to 2 ~ 2.5 mm 

through 20,000 steps for models with a/W < 0.4. 
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3.3.2 Analysis Results 

The local J value at each layer, Jloc, and the average J value over the entire crack front, 

Jave, were output from the FEA.  The Jloc at the mid-plane (i.e. z = 0) of the crack front is 

denoted as Jmid.  Figure 3.6 shows the distributions of Jloc along the crack front at 

different loading levels (characterized by the non-dimensional quantity Jave/b0) for the 

SE(B) specimens with a/W = 0.24, 0.42 and 0.64.  This figure indicates that the 

distribution of Jloc along the crack front depends on a/W and the loading level.  For 

similar loading levels the distribution of Jloc along the crack front tends to be more 

uniform as a/W increases.  For a given a/W ratio, the distribution of Jloc becomes less 

uniform as the loading level increases. 

Figure 3.7 shows the distribution of 22 obtained at the mid-plane of the crack front at 

different loading levels (characterized by Jmid/b0) as a function of the normalized 

distance from the crack tip, r/(Jmid/0), for SEB24, SEB42 and SEB64 respectively.  Also 

shown in the figure is the 22 obtained from the HRR solution.  This figure shows that the 

distribution of 22 at the mid-plane ahead of the crack tip is largely influenced by a/W.  

For the deeply-cracked specimen (i.e. SEB64), the distribution of 22 is approximately 

linear for r/(Jmid/0) > 1 and Jmid/b0 ≥ 0.014, implying a strong impingement of the 

bending stress on the crack-tip stress field.  As a/W decreases from 0.64 to 0.42 and then 

to 0.24, the impact of the bending stress on 22 becomes less and less pronounced.  

Furthermore, at r/(Jmid/0) = 2 and similar loading levels (e.g. Jmid/b0 ≈ 0.025), the 

difference between the 22 values corresponding to the HRR solution and FEA results 

increases as a/W decreases, which reflects a decrease in the constraint level as a/W 

decreases. 
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3.3.3 Determination of Constraint Parameters 

The constraint parameters Q, A2, h and Tz at the mid-plane were evaluated at Jave = J0.2 for 

the six SE(B) specimens in this study.  Four different Q parameters, namely QHRR, Qm, 

QBM1 and QBM2, were evaluated.  Equations (3.2) and (3.4) were used to evaluate QHRR 

and Qm, respectively.  QBM1 and QBM2 were both evaluated from Eq. (3.5) at r/(Jmid/0) = 

2 and θ = 0.  For QBM1, C is calculated from Eq. (3.6) with r1/(Jmid/0) = 1 and r2/(Jmid/0) 

= 5, whereas C = 6 in Eq. (3.5) for QBM2.  The parameter A2 was computed from Eq. (3.7) 

with r/(Jmid/0) = 2.  The stress triaxiality parameter h was computed using Eq. (3.10) 

based on the output hydrostatic stress σh and von Mises effective stress σe from FEA.  

Finally, the constraint parameter Tz was evaluated using Eq. (3.11) based on the three 

normal stresses, σ11, σ22 and σ33, obtained from FEA.  Values of these constraint 

parameters are tabulated in Table 3.2. 

 

3.4 Construction and Validation of Constraint-corrected J-R 
Curve 

In this study, the J-R curves of the four medium- and deeply-cracked specimens (i.e. 

SEB42, SEB43, SEB63 and SEB64) were used to develop the constraint-corrected J-R 

curves, whereas the J-R curve of the two shallow-cracked specimens (i.e. SEB24 and 

SEB25) were used to validate the developed constraint-corrected J-R curve. 

Figures (3.8) through (3.14) depict the relationship between J0.2 and J1.0 as obtained from 

the experimentally-determined J-R curves associated with the six specimens and the 

corresponding values of the constraint parameters, QHRR, Qm, QBM1, QBM2, A2, h and Tz.  

These figures indicate that the value of a given constraint parameter in general decreases 

as J0.2 (J1.0) increases, which is consistent with the impact of the constraint effect on the 

J-R curve as reported in the literature.  Based on the approach suggested by Zhu and Leis 

(2005, 2006a), and the consideration that a limit number (i.e. four) of experimentally-

determined J-R curves are available, the following linear regression equations between 

J0.2 (J1.0) and the constraint parameter Y were developed based on their values associated 
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with SEB64, SEB63, SEB43 and SEB42.  These regression equations are also shown in 

Fig. (3.8) through (3.14). 

0.2 1 2 J q Y q  (3.17a)

1.0 3 4 J q Y q  (3.17b)

Substituting Eqs. (3.17a) and (3.17b) into (3.15a) and (3.15b) then leads to the following 

equations for C1 and C2 as functions of Y: 

1 3 4( )  C Y q Y q  (3.18a)

   1 2 3 4
2
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q Y q q Y q
C Y  (3.18b)

Figure 3.15 depicts C2 obtained from Eq. (3.18b) as a function of Y.  It can be seen that 

C2 is approximately a linear function of Y.  For simplicity, another linear regression 

equation was developed for C2(Y) obtained from Eq. (3.18b), leading to the following 

approximate expression of C2(Y): 

2 5 6( )  C Y q Y q  (3.18c)

where the fitting coefficients qi (i = 1, 2, …6) corresponding to different constraint 

parameters are tabulated in Table 3.3. 

Figures (3.16) through (3.22) depict the constraint-corrected J-R curves and the 

experimentally determined J-R curves.  For deeply- and medium-cracked specimens, the 

constraint-corrected J-R curves agree well with those obtained from the experiments, as 

expected.  To validate the constraint-corrected J-R curves, the J-R curves for the two 

shallow-cracked specimens (SEB25 and SEB24) were predicted from Eq. (3.13) with 

C1(Y) and C2(Y) given by Eqs. (3.18a) and (3.18c) respectively, where the value of the 

constraint parameter Y was obtained from the 3D FEA.  The predicted J-R curves were 

compared with the corresponding experimentally determined J-R curves in Figs. (3.16b) 

through (3.22b).  Tables 3.4 and 3.5 show the errors of the J values in the predicted J-R 
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curves at different crack extensions for SEB25 and SEB24 specimens, respectively.  The 

error, e, was calculated using the following equation: 

100% 




 p a a

a

J J
e

J  
(3.19)

where JΔa and JpΔa denote the J values in the experimentally-determined and the predicted 

J-R curves at a given crack extension Δa.  A positive value of e means overestimation of 

J, whereas a negative value of e means underestimation of J.  Tables 3.4 and 3.5 indicate 

that the predicted J-R curves for SEB25 and SEB24 underestimate the corresponding 

actual J values at Δa = 0.2 mm, regardless of the constraint parameter used.  For 0.2 mm 

< Δa ≤ 0.7 mm, the errors in the predicted J based on all the considered constraint 

parameters except QHRR and Qm are less than or around 10%, whereas the errors in the 

predicted J at Δa = 0.7 mm are about 14% for the QHRR- and Qm-based constraint-

corrected J-R curves.  For 0.7 mm < Δa ≤ 1.5 mm, the QBM1-based constraint-corrected J-

R curve results in the most accurate prediction of J, with the maximum error of about 3%; 

the Tz- and A2-based constraint-corrected J-R curves lead to maximum errors of 

predictions of J about 14 and 16%, respectively.  On the other than hand, the QHRR-, 

QBM2- and Qm-based constraint-corrected J-R curves lead to relatively poorly predicted J 

values for 0.7 mm < Δa ≤ 1.5 mm, with the maximum errors about 25%.  The above 

results suggest that three constraint parameters, namely QBM1, Tz and A2, are adequate for 

developing the constraint-corrected J-R curve based on SE(B) specimens, whereas QHRR, 

QBM2 and Qm are inadequate for such development.  However, this observation is based 

on a limited number (i.e. six) of specimens, and needs to be further confirmed with more 

investigations in the future. 

To apply the developed constraint-corrected J-R curve to actual pipelines containing 

cracks, 3D FEA of the pipelines under the applicable loading conditions needs to be 

carried out to determine the value of the constraint parameter (e.g. QBM1, h and Tz) at the 

mid-plane along the crack front.  The value of the constraint parameter can then be 

substituted into the constraint-corrected J-R curve to develop the J-R curve that is 
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specific for the particular pipeline.  This J-R curve can then be used to accurately 

evaluate the structural integrity of the pipeline. 

 

3.5 Conclusions 

The constraint- corrected J-R curves for X80 grade pipeline steel were developed based 

on 3D FEA.  The constraint parameters for a set of SE(B) specimens reported in the 

literature were evaluated using 3D large displacement/large strain FEA.  The constraint 

parameters were combined with the experimentally determined J-R curves corresponding 

to medium- and deeply-cracked SE(B) specimens to develop constraint corrected J-R 

curve.  Compared with the previous 2D FEA-based studies on constraint-corrected J-R 

curves, the present study can better simulate the actual 3D specimen configuration (such 

as the presence of side grooves) and test condition (such as the kinematics of the 

specimen during test).  The constraint parameters considered in this study include Q, A2, 

h and Tz.  The Q parameters investigated in this study include QHRR, the load-

independence corrected Q, Qm, and bending-corrected Q, QBM1 and QBM2. 

Six side-grooved SE(B) specimens with different crack lengths (a/W) (i.e. a/W = 0.24, 

0.25, 0.42, 0.43, 0.63 and 0.64) were modeled in the FEA.  The 8-node 3D brick elements 

with 2×2×2 integration were used.  The displacement-controlled loading was applied in 

the FEA.  A blunt crack tip with a radius rw = 0.003 mm was modeled to facilitate the 

large-deformation calculation.  Two contact rollers were defined to simulate the rollers 

supporting and loading the specimen.   

The average J value over the entire crack front and the local J value at each layer along 

the crack front were output together with the state of stress ahead of the crack tip at the 

mid-thickness of the crack front.  The distribution of the local J along the crack front was 

observed to depend on a/W and the loading level.  For similar loading levels the 

distribution of the local J along the crack front tends to be more uniform as a/W increases.  

For a given a/W ratio, the distribution of local J becomes less uniform as the loading 

level increases.  The distribution of the opening stress at the mid-plane ahead of the crack 
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tip is largely influenced by a/W.  At r/(Jmid/0) = 2 and similar loading levels (e.g. 

Jmid/b0 ≈ 0.025), the difference between the opening stress values corresponding to the 

HRR solution and FEA results increases as a/W decreases, which reflects a decrease in 

the constraint level as a/W decreases. 

The developed constraint-corrected J-R curve was validated using the J-R curve obtained 

from shallow-cracked SE(B) specimens.  Among all the constraint parameters 

investigated in this study, it is observed that the constraint-corrected J-R curves 

developed based on QBM1, Tz and A2 lead to reasonably accurate predictions of J for a 

wide range of crack extensions (0.2 mm < Δa ≤ 1.5 mm), whereas the parameters QHRR, 

QBM2 and Qm are considered inadequate for developing the constraint-corrected J-R 

curves because the corresponding constraint-corrected J-R curves lead to relatively poor 

predictions of the J values for 0.7 mm < Δa ≤ 1.5 mm.  Further investigations on more 

SE(B) specimens are needed to confirm this observation. 

The approach for constructing the constrain-corrected J-R curve presented in this study 

can be used to develop the structure-specific J-R curve based on J-R curves obtained 

from small-scale test specimens.  The use of the structure-specific J-R curve will improve 

the accuracy of the integrity assessment of structures such as energy pipelines containing 

planar defects. 
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Table 3.1: Parameters of the experimental J-R curve for SE(B) specimens  

Specimen 
ID 

a/W 
C1 

(N/mm) 
C2 

J0.2 

(N/mm) 
J1.0 

(N/mm) 

SEB24 0.240 1200 0.666 416 1200 

SEB25 0.250 1190 0.654 414 1190 

SEB42 0.420 1000 0.761 294 1000 

SEB43 0.430 1110 0.688 368 1110 

SEB63 0.630 678 0.621 250 678 

SEB64 0.640 758 0.583 297 757 

 
 
 

Table 3.2: Constraint parameters for SE(B) specimens  

Specimen 
ID 

SEB64 SEB63 SEB43 SEB42 SEB25 SEB24 

J0.2 

(N/mm) 297 250 368 294 414 416 

J1.0 

(N/mm) 
757 678 1110 1000 1190 1200 

QHRR -0.303 -0.192 -0.507 -0.379 -0.703 -0.718 

Qm -0.233 -0.149 -0.382 -0.290 -0.525 -0.536 

QBM1 0.954 0.675 0.218 0.264 -0.020 -0.037 

QBM2 0.731 0.524 0.164 0.202 -0.015 -0.028 

A2 -0.156 -0.122 -0.200 -0.176 -0.236 -0.238 

h 2.22 2.37 1.89 2.00 1.66 1.65 

TZ 0.359 0.372 0.303 0.323 0.277 0.276 

 



73 

 

Table 3.3: Coefficients qi for the constraint-corrected J-R curve  

 
q1 

(N/mm) 

q2 

(N/mm) 

q3 

(N/mm) 
q4 

(N/mm) 
q5 q6 

QHRR -353 180 -1480 378 -0.317 0.554 

Qm -477 177 -2000 361 -0.436 0.549 

QBM1 -101 343 -657 1150 -0.267 0.770 

QBM2 -323 287 -1670 812 -0.516 0.638 

A2 -1380 77.0 -5890 76.0 -1.40 0.433 

h -219 763 -1050 3090 -0.290 1.27 

TZ -1340 757 -6390 3050 -1.75 1.25 

 
 
 

Table 3.4: Error of the predicted J-R curve for SEB25 

 
Δa (mm) 

0.2 0.5 0.7 1.0 1.2 1.5 

Error, 
e 

(%) 

QHRR -2.2 9.5 14 19 22 25 

Qm -2.6 9.1 14 19 22 25 

QBM1 -19 -9.8 -6.1 -1.9 0.23 3.0 

QBM2 -9.7 5.2 11 18 22 26 

A2 -7.4 2.5 6.4 11 13 16 

h -8.7 3.4 8.2 14 16 20 

TZ -10 -0.11 3.9 8.3 11 14 
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Table 3.5: Error of the predicted J-R curve for SEB24 

 
Δa (mm) 

0.2 0.5 0.7 1.0 1.2 1.5 

Error, 
e 

(%) 

QHRR -1.7 9.8 14 19 22 25 

Qm -2.2 9.3 14 19 22 25 

QBM1 -19 -10 -6.7 -2.7 -0.65 2.0 

QBM2 -9.5 5.3 11 18 22 26 

A2 -7.2 2.4 6.2 10 13 15 

h -8.5 3.3 7.9 13 16 19 

TZ -10 -0.58 3.2 7.4 9.7 12 
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Figure 3.1: Typical J-R curves from different types of specimens 

 

 

 

 

Figure 3.2: Analysis procedures for constructing the constraint-corrected J-R curves
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Figure 3.3: Orientations and Locations of SE(B) specimens and tensile sample 



Figure 3.4: Experimentally determined JJ-R curves for SE(B) specimeens (Shen et al.,, 2004) 
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Figure 3.5: FEA model for SE(B) specimen with a/W= 0.42 
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(a) a/W= 0.64 

 

 

 

(b) a/W= 0.42 
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(c) a/W= 0.24 

Figure 3.6: Distributions of the local J along the crack front for SE(B) specimens 
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(b) a/W= 0.42 

 
 

 

(c) a/W= 0.24 

Figure 3.7: Distributions of the crack opening stress as a function of distance from 

the crack tip for SE(B) specimens 

  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 2.0 4.0 6.0 8.0 10.0

σ 2
2/
σ 0

r/(Jmid/σ0)

     0.004      0.013
     0.025      0.046
HRR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 2.0 4.0 6.0 8.0 10.0

σ 2
2/
σ 0

r/(Jmid/σ0)

     0.004      0.014
     0.025      0.046
HRR

Jmid/b0 

Jmid/b0 



82 

 

 

Figure 3.8: Variation of J0.2 and J1.0 with QHRR  

 

 

Figure 3.9: Variation of J0.2 and J1.0 with Qm 
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Figure 3.10: Variation of J0.2 and J1.0 with QBM1 

 

 

Figure 3.11: Variation of J0.2 and J1.0 with QBM2 
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Figure 3.12: Variation of J0.2 and J1.0 with A2 

 

 

Figure 3.13: Variation of J0.2 and J1.0 with h 

y = -1376.1x + 76.97

y = -5888.8x - 75.999

0

200

400

600

800

1000

1200

1400

-0.25 -0.20 -0.15 -0.10 -0.05

J
(N

/m
m

)

A2

y = -219.21x + 762.88

y = -1047.6x + 3089.5

0

200

400

600

800

1000

1200

1400

1.6 1.8 2.0 2.2 2.4 2.6

J
(N

/m
m

)

h

J0.2 

J1.0 

SEB24 

SEB25 

SEB42

SEB43

SEB63

SEB64

J0.2 

J1.0 

SEB24

SEB25

SEB42

SEB43

SEB63

SEB64



85 

 

 

Figure 3.14: Variation of J0.2 and J1.0 with Tz 

 
 
 
 

 
 

(a) C2 vs. QHRR 
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(b) C2 vs. Qm 

 
 

 

(c) C2 vs. QBM1 

 
 

 

(d) C2 vs. QBM2  
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(e) C2 vs. A2 

 

 

(f) C2 vs. h 

 

 

(g) C2 vs. TZ 

Figure 3.15: C2 obtained in Eq. (3.18b) as a function of constraint parameter
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.16: Constraint-corrected J-R curves for SE(B) specimens based on QHRR  
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.17: Constraint-corrected J-R curves for SE(B) specimens based on Qm 
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.18: Constraint-corrected J-R curves for SE(B) specimens based on QBM1 
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.19: Constraint-corrected J-R curves for SE(B) specimens based on QBM2 
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.20: Constraint-corrected J-R curves for SE(B) specimens based on A2 
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.21: Constraint-corrected J-R curves for SE(B) specimens based on h 
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(a) Deeply- and medium-cracked specimens 

 

(b) Shallow-cracked specimens 

Figure 3.22: Constraint-corrected J-R curves for SE(B) specimens based on Tz 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0 0.5 1.0 1.5 2.0

J 
(N

/m
m

)

Δa (mm)

a/W = 0.42
a/W = 0.43
a/W = 0.63
a/W = 0.64
Predicted  a/W = 0.42
Predicted  a/W = 0.43
Predicted  a/W = 0.63
Predicted  a/W = 0.64

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0 0.5 1.0 1.5 2.0

J 
(N

/m
m

)

Δa (mm)

a/W = 0.24

a/W = 0.25

Predicted  a/W = 0.24

Predicted  a/W = 0.25



95 

 

Chapter 4   Summary and Conclusions 

4.1 General 

The fracture toughness of the pipe steel and weldments is a key input to the structural 

integrity assessment and strain-based design of energy pipelines with respect to planar 

defects.  For ductile materials such as the modern pipe steels, the fracture process is often 

accompanied by relatively large plastic deformation at the crack tip and considerable 

crack extension.  In this case, the fracture toughness is typically characterized by the so-

called fracture toughness resistance curve (e.g. J-R curve). 

The fracture toughness resistance curve is typically determined from small-scale test 

specimens such as the single-edge notched bend (SE(B)) and compact tension (C(T)) 

specimens, which have been standardized in standards such as ASTM E1820-11E2 

(ASTM, 2013) and BS748 (BSI, 1997).  There are two main components of a J-R curve, 

namely the crack growth, Δa, and the J value corresponding to this particular crack 

growth.  The plastic geometry factor, i.e. the ηpl factor, used to estimate J in the J-R curve 

test based on the SE(B) specimen specified in the present standards are primarily 

obtained from the two-dimensional (2D) small-strain finite element analysis (FEA), 

whereas the real specimens and cracks are three-dimensional (3D).  It is therefore 

expected that the 3D FEA will lead to more accurate evaluations of the ηpl factor than the 

2D FEA. 

It is well recognized that the fracture toughness resistance curve depends on the crack tip 

constraint.  A high level of constraint results in a low toughness resistance curve, and a 

low level of constraint results in a high toughness resistance curve (Yuan and Brocks, 

1998).  Standard SE(B) and C(T) specimens are deeply cracked to ensure a high 

constraint level at the crack tip such that the corresponding toughness resistance curves 

represent the lower bound values.  On the other hand, the crack tip constraint level for 

real cracks in pipelines is typically low because these cracks are generally shallow and 

under the tension-dominated remote stress field.  The application of the fracture 

resistance curve obtained from high-constraint specimens to low-constraint real structures 

may lead to overly conservative design and assessment.  One of the approaches to reduce 
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the conservatism is to develop constraint-corrected J-R curves (Chao and Zhu, 2000; Zhu 

and Jang, 2001; Zhu and Leis, 2005 and 2006).  The constraint-corrected J-R curves 

reported in the literature are all developed based on the 2D small-strain FEA, which may 

not adequately simulate actual specimens that are 3D.  Furthermore, the constraint 

parameter Q and A2 are employed to develop the constraint-corrected J-R curves in the 

literature, whereas the use of other constraint parameters such as h and Tz has not been 

explored.  

Given the aforementioned issues related to the J-R curve, two studies were carried out 

and are reported in this thesis.  In the first study the ηpl factor, used to evaluate J in a J-R 

curve test based on the SE(B) specimen was developed based on the 3D FEA.  In the 

second study, the constraint-corrected J-R curves for high-strength pipe steels were 

developed based on 3D FEA as well as the J-R curves experimentally determined using 

SE(B) specimens.  The summaries and conclusions corresponding to these two studies 

are presented in Sections 4.2 and 4.3, respectively, followed by recommendations for 

future work in Section 4.3. 

 

4.2 Evaluation of Plastic Geometry Factors for SE(B) 
Specimens Based on Three-dimensional Finite Element 
Analysis 

Three-dimensional FEA was carried out to perform a systematic investigation of the 

plastic η factor (ηpl) for SE(B) specimens.  The incremental-plasticity together with the 

large-displacement/large-strain formulation was used in the analysis.  The von Mises 

yield criterion with isotropic hardening was adopted.  The load-line displacement (LLD)- 

and crack mouth opening displacement (CMOD)-based ηpl factors corresponding to the 

average J value over the crack front as well as the local J value at the mid-plane were 

evaluated and tabulated.  The impact of a/W, B/W, side-grooves and strain hardening 

characteristics on ηpl was investigated. 

Three values of the strain hardening exponent, namely n = 5, 10 and 15, were considered 

to investigate the influence of n on ηpl.  The baseline cases were chosen as those cases 
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with n = 10.  For cases with n = 5 and 10, both plane-sided (PS) and side-grooved (SG) 

specimens were studied with three specimen thicknesses (B) (i.e. B/W = 0.5, 1 and 2), and 

six crack lengths (a/W) (i.e. a/W = 0.3 to 0.7 with an increment of 0.1).  For cases with n 

= 15 materials, only plane-sided specimens with B/W = 0.5 and three crack lengths (i.e. 

a/W = 0.3, 0.5, and 0.7) were investigated.  The 8-node 3D brick elements with 2×2×2 

integration were used.  The displacement-controlled loading was applied in the FEA.  To 

facilitate the large-deformation calculation, a blunt crack tip with a radius rw = 0.003 mm 

was modeled as well as the definition of two contact rollers which can simulate the 

rollers supporting and loading the specimen.   

It is observed that ηpl is load-dependent for P ≤ 1.7Pl, where Pl is the reference load, and 

becomes approximately independent of the load for P > 1.7Pl.  Based on a previous 

experimental study (Wang et al., 2012) and consideration of the path-independence of J, 

the ηpl factors investigated in this study was evaluated based on a certain range of ܬ௣̅௟ vs. 

 ௣௟ are non-dimensionalized J and plastic area, respectively.  Forܣ̅ ௣̅௟ andܬ ௣௟ data, whereܣ̅

materials with n = 5 and 10, the ηpl factors for specimens with a/W ≥ 0.4 were evaluated 

by linearly fitting the ܬ௣̅௟ vs. ̅ܣ௣௟ data corresponding to 1.0Pl  ≤ P ≤ 2.0Pl.  The ηpl factors 

for specimens with a/W = 0.3 were evaluated based on data within the range of 1.0Pl  ≤ P 

≤ 1.7Pl.  For n =15 materials, ηpl was evaluated based on data within the range of 1.0Pl  ≤ 

P ≤ 1.7Pl for specimens with a/W ≥ 0.4, and 1.0Pl  ≤ P ≤ 1.5Pl for specimens with a/W = 

0.3. 

For the baseline case, i.e. n = 10, it is observed that the B/W ratio and side-grooves have 

an observable impact on ηpl, and ηmid tends to be more impacted by B/W and side-grooves 

than ηave.  The value of ηmid generally decreases as the B/W ratio increases.  Except for the 

side-grooved specimens with a/W = 0.6 and 0.7, the ߟ௔௩௘௅௅஽ values obtained in this study 

are generally lower than 1.9 that is suggested in ASTM E1820-11E2 for deeply-cracked 

(i.e. 0.45 ≤ a/W ≤ 0.7) SE(B) specimens; the ߟ௔௩௘஼ெை஽	values obtained in this study 

corresponding to the plane-sided and side-grooved specimens with a/W ≥ 0.4 are 

generally lower and higher than those evaluated from the equation suggested in ASTM 

E1820-11E2, respectively, and for both the plane-sided and side-grooved specimens with 

a/W = 0.3, the ߟ௔௩௘஼ெை஽	values obtained in this study are somewhat higher than those 
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evaluated from the ASTM E1820-11E2 equation.  Both LLD- and CMOD-based ηpl for 

specimens with B/W = 0.5 and a/W = 0.5 and 0.7are found to be insensitive to the strain 

hardening exponent n in the range of n = 10 to 15, whereas ηpl for the same specimens are 

found to be sensitive to n in the range n = 5 to 10. 

The results of the present study can improve the accuracy of the J-R curve experimentally 

determined from the SE(B) specimens given that the 3D FEA employed in the study can 

more realistically simulate the real specimens than the conventional 2D FEA.  The 

research outcome also facilitates the evaluation of J-R curves using non-standard (e.g. 

shallow-cracked) SE(B) specimens. 

 

4.3 Constraint- corrected J-R Curves for Pipeline Steels 

The constraint- corrected J-R curves for X80 grade pipeline steel were developed based 

on 3D FEA.  The constraint parameters for a set of SE(B) specimens reported in the 

literature were evaluated using 3D large displacement/large strain FEA.  The constraint 

parameters were combined with the experimentally determined J-R curves corresponding 

to medium- and deeply cracked SE(B) specimens to develop constraint corrected J-R 

curve. 

Six side-grooved SE(B) specimens with different crack lengths (a/W) (i.e. a/W = 0.24, 

0.25, 0.42, 0.43, 0.63 and 0.64) and same thickness (B/W) (i.e. B/W = 0.5) were 

investigated in the FEA.  The 8-node 3D isoparametric brick elements with 2×2×2 

integration were used with the displacement-controlled loading applied in the FEA.  A 

blunt crack tip with a radius rw = 0.003 mm was modeled to facilitate the large-

deformation calculation.  Two contact rollers were defined to simulate the rollers 

supporting and loading the specimen. 

Four constraint parameters Q, A2, h and Tz were considered in this study where the Q 

parameters investigated in this study include QHRR, the load-independence corrected Q, 

Qm, and bending-corrected Q, QBM1 and QBM2.  The J-R curves of the four medium- and 

deeply-cracked specimens (i.e. a/W = 0.64, 0.63, 0.43 and 0.42) were used to develop the 
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constraint-corrected J-R curves, whereas the J-R curve of the two shallow-cracked 

specimens (i.e. a/W = 0.24 and 0.25) were used to validate the developed constraint-

corrected J-R curve.  The errors of the J values corresponding to crack extensions of 0.2, 

0.5, 0.7, 1.0, 1.2 and 1.5 mm in the predicted J-R curves were evaluated to examine the 

accuracy of the developed constraint-corrected J-R curve based on different constraint 

parameters.  Three constraint parameters, namely QBM1, Tz and A2, are considered 

adequate for developing the constraint-corrected J-R curve based on SE(B) specimens, 

with the maximum error of prediction being less than 16% for a wide range of crack 

extensions (0.2 mm < Δa ≤ 1.5 mm).  On the other hand, QHRR, QBM2 and Qm are 

considered inadequate for characterizing the constraint-corrected J-R curve because the 

errors in the predicted J values are relatively large (maximum error of around 25%) for 

0.7 mm < Δa ≤ 1.5 mm.  Further investigations on more SE(B) specimens are needed to 

support this conclusion.  

The developed constraint-corrected J-R curve can be applied to actual pipelines 

containing cracks with the assistance of FEA.  Three-dimensional FEA of the pipelines 

under the applicable loading conditions needs to be carried out to determine the value of 

the constraint parameter (e.g. QBM1, h and Tz) at the mid-plane along the crack front.  The 

value of the constraint parameter can then be substituted into the constraint-corrected J-R 

curve to develop the J-R curve that is specific for the particular pipeline.  This J-R curve 

can then be used to accurately evaluate the structural integrity of the pipeline.   

 

4.4 Recommendations for Future Work 

Recommendations for future work are as follows: 

1) Further studies can be carried out to develop empirical equations for LLD-based and 

CMOD-based ηpl as a function of a/W, B/W and n for the SE(B) specimens based on 

the results reported in Chapter 2, which will facilitate the J-R curve testing for a wide 

range of geometric configurations and crack lengths of SE(B) specimens. 
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2)  Systematic 3D FEA-based investigations of the ηpl factor for C(T) and SE(T) 

specimens, similar to that carried out in Chapter 2 for the SE(B) specimen, can be 

performed.  

3) The ηpl factor for specimens containing weldment should be evaluated and compared 

with those for specimens made of the base metal only.  

4) To develop more generally applicable constraint-corrected J-R curves, 

experimentally-determined J-R curves and constraint parameters for different types 

of specimens such as C(T) and SE(T) should be involved in the study. 
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Appendix A  Computation of J-integral using Virtual Crack 

Extension Method 

Parks (1974) and Hellen (1975) first developed the virtual crack extension approach 

based on the finite element method to calculate the energy release rate in elastic bodies 

(Anderson, 2005).  deLorenzi (1982, 1985) improved the virtual crack extension method, 

which is used in the FEA reported in this thesis and is briefly described here. 

Figure A.1 schematically shows the virtual crack extension method in two-dimensional 

analysis.  The crack front is surrounded by three zones of material divided by two 

contours.  During the crack advance, material points in zone I are rigidly translated in the 

x1 direction by an amount Δx1, while points in zone III remain fixed, causing a distortion 

in the material in zone II.  Since zone I contains the crack front, the crack length is 

increased by an amount Δa.  This virtual translation of the material points is defined as 

the “virtual shift” in ADINA (ADINA, 2012).  For a material that obeys the deformation 

plasticity theory, deLorenzi (1982, 1985) showed that the energy release rate in a two-

dimensional body can be expressed as: 

1
1

1

1   
     


C

j
ij i CA

i

u x
J w dA

a x x
    (A.1)

where ui is components of the displacement (i = 1 or 2); w is the strain energy density; AC 

is area of the cracked body, and δij is the Kronecker delta. 

In the virtual crack extension method adopted in ADINA (ADINA, 2012), a more general 

form of Eq. (A.1) is used to calculate J considering 3D cracked body (deLorenzi, 1982 

and 1985): 

1   
     


C

i k
ij ik CV

C k j

u x
J w dV

A x x
    (A.2)

where VC is volume of the cracked body; Δxk is components of the virtual crack extension 

vector (k = 1, 2 or 3), and ΔAC is the increase in crack area corresponding to Δxk. 
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The calculation of ΔAC is discussed here.  For a 2D cracked body, ∆ܣ஼ ൌ ܾඥ∆ݔଵ
ଶ ൅ ଶݔ∆

ଶ 

where b is the thickness at the crack tip.  Figure A.2 schematically shows the virtual shift 

in 3D analysis. For a 3D cracked body, ∆ܣ஼ ൌ ௜ݔ∆ඥ׬
ᇱ∆ݔ௜

ᇱ ݏ݀  where ∆ݔ௜
ᇱ ൌ ௜ݔ∆ െ

ሺ∑ ௝ݔ∆௝ݐ
ଷ
௝ୀଵ ሻݐ௜, ti (i = 1, 2 or 3) is the component or directional cosine of the unit tangent 

vector along the crack front and ds is the differential length along the crack front (see Fig. 

A.2).  The definition of ∆ݔ௜
ᇱ ensures that it is perpendicular to ti.  In a 3D problem, J 

typically varies along the crack front.  Defining ΔAC in the above way would result in a 

local measure of J (Anderson, 2005). 

The virtual crack extension formulation of J requires an area integration and a volume 

integration for 2D and 3D analysis, respectively.  Such an approach is easier to 

implement numerically and is more accurate than contour and surface integrations for 2D 

and 3D problems, respectively (Anderson, 2005).  Note that Eq. (A.2) is the basic 

expression of J and does not consider the impacts of hoop stress and pressure, thermal 

effect, and dynamic effect (ADINA, 2012).  Additional information about the virtual 

crack extension approach can be found in the relevant literature (e.g. ADINA, 2012; 

Anderson, 2005; deLorenzi, 1982 and 1985; Hellen, 1975). 
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I: zone rigidly shifted by virtual shift 

II: zone distorted by virtual shift 

III: zone unchanged by virtual shift 

 

 

(a) Before the virtual shift (b) After the virtual shift 

Figure A.1: The virtual crack extension method in two-dimensional analysis  
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(a) Before virtual shift (b) After virtual shift 

 

 

(c) Calculation of virtual crack area increase 

 

Figure A.2: The virtual shift in three-dimensional analysis 
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Appendix B  Unloading Compliance Method for Evaluating 

the Crack Length 

The elastic unloading compliance method (Clarke et al., 1976) is used to evaluate the 

immediate crack length and plastic work done in the specimen.  Figure B.1 schematically 

shows the elastic unloading compliance method.  A number of loading-unloading-

reloading sequences were conducted to each specimen during the test.  At loading step i 

during the test, the slope of the corresponding unloading line was evaluated by the least 

square fit to obtain the instant compliance Ci (i.e. the inverse of the stiffness), which is a 

function of the instant crack length, ai (see Fig. B.1).  The extended unloading line (see 

Fig. B.1) can separate the total area under the load-displacement curve into an elastic 

component and a plastic component in order to determine the instant ηpl factor as 

described in Section 2.1.2 (see Fig. 2.3).  The relationship between the compliance and 

the crack length can be written in the following general expression (Tada et al., 2000): 

' i
i

a
E BC f

W
   
 

 (B.1)

where E’ is the effective modulus of elasticity (E’= E for the plane stress condition, and 

E’= E/(1-ν2) for the plane strain condition); B is the thickness of the specimen, and f is a 

function that depends on the specimen type and loading configuration.  In order to predict 

the instantaneous crack length from the compliance, Eq. (B.1) can be recast as 

 'i
i

a
g E BC

W
  (B.2)

where the compliance Ci can be determined based on either LLD or CMOD.  Note that 

CMOD is usually preferred over LLD for predicting a/W because the former can be more 

easily and accurately measured than the latter (Zhu et al., 2008).  The function g in Eq. 

(B.2) has been investigated extensively in the literature for different fracture toughness 

specimens corresponding to CMOD-based compliances, ܥ௜
஼ெை஽ (e.g. Wu, 1984; Joyce, 

1992; Saxena and Hudak, 1978; Shen and Tyson, 2009). 
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Wu (1984) proposed the following equation for deeply-cracked (0.45 ≤ a/W ≤ 0.7) SE(B) 

specimens, which has been adopted in ASTM E1820-11E2: 
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(B.3)

where Be = B – (B – BN)2/B (ASTM, 2011) is the effective specimen thickness.  For 

shallow-cracked (0.05 ≤ a/W ≤ 0.45) SE(B) specimen, it is recommended in ASTM 

E1820-11E2 that ai/W be calculated as follows (Joyce, 1992): 
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(B.4)

For C(T) specimens, Saxena and Hudak (1978) developed the following equation to 

estimate the crack length, which has been adopted in ASTM E1820-11E2: 
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4 5

( )

1.000196 4.06319 11.242 106.043

464.335 650.677
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Shen and Tyson (2009) developed the following expression of a/W for the clamped SE(T) 

specimens with a daylight over width ratio of 10 (i.e. H/W = 10), which has not been 

standardized: 

2 3 4

5 6 7 8

( )

2.072 16.411 79.600 211.670 236.857

27.371 179.740 86.280 171.764
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(B.6)

The parameter ܥ௖ሺ௜ሻ
஼ெை஽  in Eq. (B.5) and (B.6) is the rotation corrected compliance.  

Detailed procedures to account for the rotation correction for the C(T) and SE(T) 

specimens are not discussed in this thesis and can be found in the relevant literature (e.g. 

Gray et al., 1979; Joyce and Link, 1995; Cravero and Ruggieri, 2007; Shen and Tyson, 

2009). 

 

References 

ASTM. ASTM E1820-11E2: Standard Test Method for Measurement of Fracture 

Toughness, ASTM, West Conshohocken, PA; 2013. 

Clarke GA, Andrews WR, Paris PC, Schmidt DW. Single Specimen Tests for JIc 

Determination. Mechanics of Crack Growth, ASTM STP 590, American Society for 

Testing and Materials, Philadelphia; 1976;27-42. 

Cravero S, Ruggieri C. Estimation Procedure of J-Resistance Curves for SE(T) Fracture 

Specimens Using Unloading Compliance. Engineering Fracture Mechanics; 

2007;74:2735–57. 

Gray RA, Loss FJ, Menke BH. Development of J-R Curve Procedures. NRL-EPRI 

Research Program (RP 886.2), Evaluation and Prediction of Neutron Embrittlement in 



110 

 

Reactor for CY 1978, NRL Report 8327, Naval Research Laboratory, Washington, D.C.; 

1979. 

Joyce JA. J Resistance Curve Testing of Short Crack Bend Specimens Using Unloading 

Compliance. Fracture Mechanics, Twenty-Second Symposium, ASTM STP 1131, 

American Society for Testing and Materials, West Conshohocken, PA; 1992;1:904-26. 

Joyce JA, Link RE. Effect of Constraint on Upper Shelf Fracture Toughness. Fracture 

Mechanics, ASTM STP 1256, ASTM International, West Conshohocken, PA; 

1995;26:142–77. 

Saxena A, Hudak SJ. Review and Extension of Compliance Information for Common 

Crack Growth Specimens. International Journal of Fracture; 1978;14(5):453-68. 

Shen G, Tyson WR. Crack Size Evaluation Using Unloading Compliance in Single-

specimen Single-edge-notched Tension Fracture Toughness Testing. Journal of Testing 

and Evaluation; 2009;37(4):347–57.  

Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks Handbook, Third edition. 

ASME Press, New York; 2000. 

Wu S. Crack Length Calculation Formula for Three Point Bend Specimens. International 

Journal of Fracture; 1984;24(1):33-8. 

Zhu XK, Leis BN, Joyce JA. Experimental Estimation of J-R Curves From Load-CMOD 

Record for SE(B) Specimens. Journal of ASTM International; 2008;5:231–45. 

 

  



111 

 

 

 

 

 

 

 

Figure B.1: Schematic of the elastic unloading compliance method  
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