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Abstract 

There is currently an unmet need for treatments to enhance healing of human chronic skin 

wounds. Previously, therapy development has focused on growth factors and physical 

matrices, often resulting in disappointing clinical outcomes. In this thesis, we approached 

chronic skin wound treatment with a focus on fibrosis and matricellular proteins.  

Fibrosis is a pathological condition where tissue repair continues, unchecked, resulting in 

excess contraction, matrix accumulation and fibrogenic growth factor activity; features 

critically reduced in chronic skin wounds. Identifying factors that promote fibrosis may 

offer new therapeutic targets for use in chronic skin wounds. Two such factors are the 

matricellular proteins periostin and CCN2. As a group, matricellular proteins have 

established roles in acute wound healing; facilitating growth factor signaling, matrix 

production and contraction. However, as of yet, matricellular proteins represent an 

uninvestigated resource for modulating chronic skin wound healing. The objective of this 

thesis was to determine the potential of periostin and CCN2 as therapeutics for 

accelerating skin wound healing. Periostin is up-regulated during skin healing but its 

function was unknown. Using periostin knockout mice, we observed a delay in full-

thickness excisional wound closure in the absence of periostin. This delay was attributed 

to a lack of myofibroblast differentiation, central to wound contraction, both in vivo and 

in vitro. Next we examined the expression patterns of periostin and CCN2 in tissue 

samples from human chronic skin wounds. Within these wounds CCN2 was not induced 

and periostin was decreased. These expression patterns were likely due to the 

environment of the wounds since fibroblasts cultured from wound tissue expressed 

periostin and CCN2, responded to TGFβ, proliferated and contracted collagen gels; 

consistent with a fibrotic phenotype. Using a mouse model of impaired diabetic skin 

healing, we found that delivery of recombinant periostin or CCN2 accelerated wound 

healing. The mechanisms through which periostin and CCN2 delivery influenced wound 

healing were distinct, and combination of the two treatments produced synergistic 

outcomes. These findings represent the first report of using matricellular proteins to 

enhance healing of diabetic skin wounds in an animal model, with an aim to improve 

healing of human chronic skin wounds. 
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Chapter 1  

1 General Introduction 

1.1 Skin healing, chronic skin wounds and fibrosis 

Development of non-healing skin lesions, which for simplicity will be referred to as 

chronic skin wounds, represent an increasing burden on today’s health care systems. The 

burden of chronic skin wounds is further exacerbated by the increasing worldwide 

prevalence of diabetes. The need for novel and alternate therapeutics for the healing of 

chronic skin wounds is essential in order to reduce patient suffering and the significant 

costs associated with treatment. Chronic skin wounds result from a failure of the natural 

healing process to occur. In contrast, fibrosis results when the healing process continues, 

unchecked, to the point of scarring and impaired tissue function. As research in the fields 

of chronic skin wounds and fibrosis move forward, important parallels can be drawn 

between the cellular dysfunctions in fibrotic diseases and the apparent needs of chronic 

skin wounds, including increased proliferation, increased matrix synthesis and increased 

matrix contraction. Curiously, inflammation is a major contributing factor in both 

pathologies, but at this point they diverge. However, recent advances in our 

understanding of the processes underlying fibrosis may be applicable for the treatment of 

chronic skin wounds. Recently identified molecules in fibrosis, such as periostin or 

CCN2, could represent potential therapeutics for chronic skin wound healing. The theme 

of this introduction is to highlight the role of these molecules in the development of 

fibrosis and whether such cues could kick-start chronic skin wound healing. To identify 

the current limitations and potential for new therapeutics in the area of skin wound 

healing, it is first necessary to understand molecules that are essential for normal wound 

healing. 

1.1.1 Acute wound healing 

The process of cutaneous wound healing is very complex and dynamic, involving the co-

ordination of multiple cell types and a plethora of growth factors, cytokines and their 

interactions. The aim of this introduction is not to review the intricate details of acute 
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wound healing. For such information, the reader is directed to comprehensive reviews on 

the subject (Clark, 1996; Singer and Clark, 1999; Diegelmann and Evans, 2004; 

Barrientos et al., 2008; Schultz and Wysocki, 2009). 

Briefly, acute (normal) wound healing consists of three overlapping phases: 

inflammation, proliferation and tissue remodeling (Figure 1.1). Upon tissue injury, 

damage to blood vessels results in the aggregation of platelets and the formation of a 

fibrin clot. The clot is essential for restoring hemostasis but also acts as a provisional 

matrix for infiltrating cells (Clark, 1996). Platelets secrete several soluble factors 

including platelet-derived growth factor (PDGF), which initiates chemotaxis of 

neutrophils, macrophages and fibroblasts (Clark, 1996; Diegelmann and Evans, 2004). 

Neutrophils and macrophages debride the wound. Secretion of transforming growth 

factor (TGF) β by platelets and macrophages facilitates migration and activation of 

fibroblasts. Fibroblast infiltration of the granulation tissue is essential for transition from 

the inflammatory stage to the proliferation/tissue-building phase (Roberts and Sporn, 

1993). Concurrently, keratinocytes proliferate and migrate from the wound edge, 

isolating the wound from the external environment (re-epithelialization). 

The proliferation phase involves the formation of granulation tissue by simultaneous 

perfusion of the wound site with new vasculature and matrix turnover by fibroblasts 

(Singer and Clark, 1999). Fibroblast proliferation, migration and matrix synthesis is 

stimulated by PDGF and TGFβ (Clark, 1996). The fibrin clot is replaced by cellular 

fibronectin, collagen type-III and progressively more collagen type-1 (Midwood et al., 

2004). Differentiation of fibroblasts into the α-smooth muscle actin (α-SMA)-positive 

contractile, myofibroblast phenotype allows the contraction and compaction of the 

granulation tissue into a matrix dense scar (Tomasek et al., 2002). 

The transition from granulation tissue to scar formation marks the beginning of the 

remodeling phase. During this phase collagen is degraded, synthesized and rearranged at 

a slower rate. Increasingly, collagen is organized into large bundles and cross-linked. The 

resulting scar tissue is relatively acellular and achieves only about 80% of the breaking 

strength of normal skin (Levenson et al., 1965). Therefore, acute healing does not 
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Figure 1.1: Acute wound healing consists of three overlapping phases: 

inflammation, proliferation and remodeling. The inflammation phase is dominated by 

neutrophils and macrophages, which serve to remove foreign debris, bacteria and 

damaged tissue. The proliferative phase includes the formation of granulation tissue and 

reduced inflammatory signals. The dominant cell types are fibroblasts and 

myofibroblasts. Matrix turnover and contraction are key features of this phase. The 

remodeling phase serves to rearrange and strengthen the newly formed tissue, producing 

a matrix-dense, relatively acellular, scar. Development of chronic skin wounds and 

fibrotic lesions are both driven by increased inflammation. (A) However, in chronic skin 

wounds sustained inflammation and failed progression to proliferative and remodeling 

phases result. (B) Fibrosis results from failure of the remodeling process to terminate at 

an appropriate point. Instead, continued matrix secretion and contraction by 

myofibroblasts results in excessive scarring. 
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Figure 1.1: Acute wound healing consists of three overlapping phases: 

inflammation, proliferation and remodeling  
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perfectly regenerate the affected tissue, but instead strikes a favorable balance between a 

“good enough” repair and rapid wound closure. However, the inability of patients with 

existing medical conditions such as diabetes to heal skin wounds rapidly, or at all, is 

becoming more and more of a burden on healthcare systems.  

1.1.2 The burden of chronic skin wounds 

Chronic skin wounds are a diverse set of pathologies that are fundamentally defined by a 

severely compromised ability to heal. The majority of chronic skin wounds can be 

classified as either diabetic ulcers, venous ulcers or pressure sores (Mustoe et al., 2006), 

with arterial wounds being less prevalent. The underlying pathophysiologies of these 

wound types are quite distinct (extensively reviewed by Bryant and Nix, 2012). Yet they 

are all complicated by a combination of patient age, repeated ischemia-reperfusion injury, 

bacterial colonization and hypoxia (Mustoe, 2004; Schreml et al., 2010). Diabetic ulcers 

develop as a result of the neuropathy and compromised immune system present in people 

with diabetes. Neuropathy inhibits the perception of pain following minor injury or the 

discomfort following prolonged pressure. As a result there is repeated aggravation to the 

site, which, combined with reduced ability to fight infection, overwhelms the bodies 

ability to repair the tissue. Venous ulcers are the consequence of inadequate venous 

return due to faulty valves within the veins, leading to excess fluid build up and venous 

hypertension. In addition to impeding the flow of fresh blood, venous hypertension 

promotes leaking of blood proteins into the extravascular space. These proteins prevent 

oxygen and nutrients from reaching the tissue in addition to initiating a sustained immune 

response. Pressure sores, similarly to diabetic ulcers, result when tissue is starved of 

oxygen and nutrient rich blood as a result of prolonged pressure. Often referred to as 

bedsores, these wound are common in bed-ridded or paralyzed people. Arterial wounds 

are a result of impeded blood flow due to arterial dysfunctions. Blood vessel hardening 

and blockage leads to ischemia and tissue necrosis. The differences in the underlying 

causes for these wounds requires specialized and distinct corrective interventions (off-

loading for diabetic and pressure, reperfusion for arterial, compression for venous ulcers) 

before wound healing can be expected to occur. Those wounds that persist even after 
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corrective interventions have been attempted become the focus of adjunct therapies, such 

as those described below. 

In general, chronic skin wounds in healthy individuals are rare (Sen et al., 2009). 

However, in medically compromised patients, such as those suffering from diabetes, the 

risk of developing chronic skin wounds is greatly increased. The lifetime incidence of 

foot ulcers in diabetic patients has been estimated to be 15-25% (Reiber, 1996; Singh et 

al., 2005). The overall prevalence of pressure ulcers within Canadian healthcare 

institutions was estimated at 26% (Woodbury and Houghton, 2004). The estimated 

prevalence of chronic skin wounds encompassing all etiologies within the healthcare 

system is closer to 35.5% (Woodbury and Houghton, 2005). Unfortunately, failure of 

current treatment strategies to heal chronic skin wounds commonly leads to amputation 

of the effected limb (Cavanagh et al., 2005; Wu et al., 2007). In 1993, Siitonen and 

colleagues reported the occurrence of lower extremity amputation (LEA) to be 10 times 

higher in diabetic persons than in non-diabetics (Siitonen et al., 1993). Sixteen years later 

this trend had shown no signs of leveling off. In fact, LEA occurs 19 times as often in 

diabetic Canadians than in the general population (Canada Diabetes Report, 2009). Sixty 

percent of non-traumatic amputations in the US occurred in diabetic patients (CDC 

Diabetes Fact Sheet 2007), with 80% of amputations in diabetic patients being preceded 

by a chronic skin wound (Driver et al., 2010). The risks associated with LEA are of great 

clinical concern. Perioperative mortality rates following above knee LEA were reported 

to be as high as 18.6% in 2003 (Moxey et al., 2010) and 18% in 2005 (Ploeg et al., 2005). 

Recently, Aragón-Sánchez and colleagues reported 14.7% post-operative mortality 

following above knee amputations (Aragon-Sanchez et al., 2010). In England, a 

significant decrease occurred in mortality rates, from 18.6% in 2003 to 15.2% in 2007, 

supporting a promising trend (Moxey et al., 2010). Long term mortality following LEA, 

however, remains unacceptably high. Several recent reports place five-year survival rates 

following any LEA at approximately 50% (Hambleton et al., 2009; Papazafiropoulou et 

al., 2009). When major amputations (above knee) are considered alone, five-year survival 

rates are as low as 11% (Morbach et al., 2009). 
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An estimated 2.4 million Canadians were living with diabetes in 2009 (Public Health 

Agency of Canada, 2011). The prevalence of diabetes in Canada has increased steadily 

from 4.9 to 6.2% from 2002-03 to 2006-07, representing over 2 million Canadians 

(Canada Diabetes Report, 2009). Current estimates suggest that 347 million people 

worldwide have diabetes, surpassing previous projections of 336 million people living 

with diabetes by the year 2030 (Wild et al., 2004; Danaei et al., 2011). There is no 

indication that the burden of chronic skin wounds is shrinking. With the growing 

prevalence of diabetes, obesity and an aging population, the impact of chronic skin 

wounds is deserving of greater attention in healthcare research (Armstrong et al., 2007; 

Harding and Queen, 2010). Selection of target molecules for treatment of chronic skin 

wounds based on studies of acute wound healing can be difficult and time consuming due 

to the complexity of acute wound healing. To expedite the search for target molecules we 

can take advantage of the accumulating knowledge of fibrotic skin lesions, such as keloid 

scars, hypertrophic scars and scleroderma. Careful dissection of these conditions may 

offer hints towards treating chronic skin wounds. 

1.1.3 Chronic skin wounds vs. fibrosis 

Fibrosis is a general term describing pathological conditions in which the healing process 

has continued, unchecked, to the point where normal tissue is replaced by scar tissue, 

resulting in impaired or lost function. The central features of fibrotic diseases include 

increased growth factor activity, decreased protease activity and decreased fibroblast 

senescence (Figure 1.1) (Wynn, 2007). The culmination of these features is excess matrix 

deposition and scar formation. Although the etiology of chronic skin wounds is not fully 

understood, three major differences have been described between chronic and acute skin 

wounds; 1) reduced growth factor activity, 2) increased protease activity and 3) increased 

fibroblast senescence (Schultz and Mast, 1998; Harding et al., 2002). Interestingly, 

excessive inflammation is common to both chronic skin wounds (Cochrane, 1977; 

Trengove et al., 2000) and fibrosis (Abraham and Varga, 2005). The key difference is 

that chronic skin wounds become stalled in an inflammatory state, but fibrotic diseases 

progress beyond the initial inflammation and enter an aggressive fibrotic state (Abraham 

and Varga, 2005). In bleomycin-induced fibrosis, the initial stage of excessive 
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inflammation is characterized by increased numbers of macrophages (Kraling et al., 

1995). Being a major source of the pro-fibrotic growth factors PDGF and TGFβ, 

increased macrophage numbers promote an elevated fibrotic response (Yamamoto and 

Nishioka, 2005). The elevated fibrotic response results in the increased and sustained 

activity of myofibroblasts, which are responsible for elevated collagen production, matrix 

contraction and continued secretion of TGFβ (Tomasek et al., 2002; Yamamoto and 

Nishioka, 2005). In contrast, chronic skin wounds suffer from reduced expression of key 

growth factors, such as PDGF and TGFβ, which impedes fibroblast activation and 

construction of the granulation tissue (Robson, 1997; Galkowska et al., 2006). Increased 

protease activity, originating from excessive neutrophil infiltration (Cochrane, 1977) and 

compounded by reduced protease inhibitor levels, serves to degrade important matrix 

components such as collagens (Wysocki et al., 1993; Vaalamo et al., 1999; Liu et al., 

2009; Yang et al., 2009) and growth factors (Chen et al., 1997). These deficiencies are 

further exacerbated by the senescent state of fibroblasts within the wound, which impairs 

the response to the already scarce growth factors (Hasan et al., 1997; Stanley et al., 1997; 

Hehenberger et al., 1998; Mendez et al., 1998; Loot et al., 2002; Yang et al., 2009). A 

question of critical importance is why, or how, do fibrotic skin lesions progress beyond 

the initial excessive inflammation, whereas chronic skin wounds become stalled (Figure 

1.1)? 

1.2 Current targets for treatment of chronic skin 
wounds 

1.2.1 Platelet-derived growth factor-BB 

Does increased recruitment of macrophages in bleomycin-induced fibrosis provide the 

answer to progressing chronic skin wounds beyond inflammation? Fibrosis results from 

excessive extracellular matrix (ECM) production, primarily by a specialized type of 

activated fibroblasts, termed myofibroblasts, so-called as they highly express the protein 

α-SMA (Trojanowska, 2008). Macrophages release the pro-fibrotic growth factor PDGF 

(Yamamoto and Nishioka, 2005), which plays a key role in the expansion and persistence 

of myofibroblast populations (Bostrom et al., 1996; Heldin and Westermark, 1999; 

Trojanowska, 2008) by modulating fibroblast migration, proliferation and activation 



 

 

9 

(Barrientos et al., 2008). Elevated PDGF also contributes to TGFβ expression and thus 

represents a crucial initiator of granulation tissue formation (Heldin and Westermark, 

1999). 

PDGF includes a family of homo and heterodimeric proteins (PDGF-AA, PDGF-AB, 

PDGF-BB, PDGF-CC and PDGF-DD), which bind to transmembrane tyrosine kinase 

receptors (Bennett et al., 2003; Barrientos et al., 2008). In the fibrotic disorder systemic 

sclerosis (SSc), expression of PDGF-BB receptors is increased within and around dermal 

vasculature (Klareskog et al., 1990). Bronchoalveolar lavage fluid from SSc patients 

contains significantly elevated levels of PDGF-AA and -BB (Ludwicka et al., 1995). 

Fibroblasts isolated from SSc skin biopsies express elevated PDGF-B and PDGF 

receptor, compared to normal patients (Zheng et al., 1998). The c-Abl inhibitors imatinib 

(Distler et al., 2007), dasatinib and nilotinib (Akhmetshina et al., 2008), act downstream 

on non-receptor tyrosine kinases of both TGFβ and PDGF to block the production of 

ECM proteins (Daniels et al., 2004). Bleomycin-induced dermal thickening and 

myofibroblast accumulation is prevented by oral administration of these inhibitors in a 

mouse model (Distler et al., 2007; Akhmetshina et al., 2008), suggesting that PDGF may 

be an excellent target for the treatment of fibrosis (Beyer et al., 2010; Leask, 2010), but 

also highlighting PDGF as an obvious therapeutic agent for treating chronic skin wounds. 

As a chemoattractant for fibroblasts (Seppa et al., 1982), PDGF is important for the 

progression of wound healing beyond inflammation and into the proliferation phase (Gao 

et al., 2005). In animal models, delivery of PDGF to skin wounds increases fibroblast 

infiltration, TGFβ expression, collagen deposition and granulation tissue formation 

(Pierce et al., 1988; Pierce et al., 1989; Mustoe et al., 1990); resulting in accelerated 

wound healing. Moreover, these benefits are also achieved in models of chronic skin 

wounds (Mustoe et al., 1989; Mustoe et al., 1991). It has since been shown that PDGF-

BB is absent in chronic skin wounds, but present in actively healing pressure ulcers 

(Pierce et al., 1995). 

PDGF is currently the only growth factor approved for use by the FDA in the treatment 

of diabetic foot ulcers and is marketed under the name Regranex®. Application of 

rhPDGF-BB is preceded by debridement, or wound bed preparation, which is the attempt 
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to remove the infected and necrotic components of an ulcer and establish a pseudo-acute 

wound environment (Kirshen et al., 2006). Delivery of rhPDGF-BB to debrided wounds 

improved closure of non-diabetic chronic pressure ulcers (Robson et al., 1992) and deep 

pressure ulcers (Mustoe et al., 1994). In neurotrophic diabetic ulcers, treatment resulted 

in 48% of wounds closing compared to 25% of wounds closed in the placebo group 

(Steed, 1995) (Table 1.1). In a multi-center study, administration of 100 µg/g 

becaplermin (rhPDGF-BB) to diabetic ulcers resulted in closure of 50% vs. 35% 

(treatment vs. placebo) of wounds (Wieman et al., 1998). The smaller effect size reported 

by Wieman in comparison with Steed possibly reflects inherent variability in the larger, 

multi-center study, thus more closely representing a realistic effect size with wide spread 

use. The addition of rhPDGF-BB to diabetic wounds has therefore produced statistically 

significant, although modest, increases in wound healing over placebo. At best, 50% of 

wounds treated with rhPDGF-BB closed, the majority of which can be attributed to 

standard wound care (placebo) alone. Perhaps a limitation of PDGF based treatments is 

that the presence of PDGF results in recruitment of inflammatory cells such as 

macrophages and neutrophils (Deuel et al., 1982). Whereas macrophages are one of the 

major sources of TGFβ (Roberts and Sporn, 1993) and are required for wound healing 

(Leibovich and Ross, 1975), neutrophils are not required for wound healing in the 

absence of non-specific infection (Simpson and Ross, 1972). Neutrophils are a source of 

inflammatory cytokines (IL-1, -6 and TNFα) (Barrientos et al., 2008), reactive oxygen 

species and damaging proteolytic enzymes (Diegelmann and Evans, 2004). Without 

additional signals, which are absent in chronic skin wounds, it is possible that the pro-

inflammatory role of PDGF may prevail. Thus complex interaction of the multitude of 

growth factors and matrix elements present in acute wounding may not be suitably 

recapitulated with rhPDGF-BB alone. 

1.2.2 Platelet releasate 

Platelet rich blood plasma contains multiple growth factors (Schultz and Grant, 1991) and 

the components of a fibrin matrix (Mosesson, 2005). Administration of autologous 

plasma to chronic skin wounds more closely mimics the complexity of the initial stages 

of natural wound healing, including structural matrix components. Platelet rich plasma 
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Table 1.1: Summary of reviewed therapeutic targets for chronic skin wounds 
Factor Role in acute skin wounds Fibrosis Chronic 

skin 
wounds 

Treatment options and 
outcomes (treatment vs. 
control)* 

PDGF-BB Migration and activation of 
macrophages 
Migration, proliferation and 
activation of fibroblasts 
Granulation tissue formation 

Increased Decreased Becaplermin: 
Steed et al 1995: 48% vs. 25% 
incidence of closure 
Wieman et al 1998: 50% vs. 
35% incidence of closure 
 

Platelet 
Releasate 

Numerous due to inclusion of 
various growth factors and 
components of the fibrin 
matrix 

N/A N/A Autologel™: 
Driver et al 2006: 81% vs. 42% 
incidence of closure (in a subset 
of patients) 
Margolis et al 2001: 50% vs. 
41% incidence of closure 
 

TGFβ Decreases protease activity 
Migration, proliferation and 
activation of fibroblasts 
Granulation tissue formation 

Increased Decreased Bovine TGFβ2: 
Robson et al 1995: open-label 
study increased closure rate, 
closed-label study no efficacy 
 

CCN2 Not clear, may contribute to 
angiogenesis, cell recruitment 
and matrix accumulation 
 

Increased Unknown No treatments currently target 
CCN2 

Periostin Unknown, but contributes to 
collagen fibrillogenesis, matrix 
accumulation, cell migration, 
proliferation 
 

Increased Unknown No treatments currently target 
periostin 

*Outcomes are listed as percent incidence of closure in the treatment group vs. percent incidence of closure 
in the control group.	  
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(PRP) has been used for the treatment of chronic skin wounds for over 20 years. 

Autologel™, a PRP product, is prepared from a small sample of the patient’s blood 

plasma mixed with a gel base, which is immediately applied to the wound. Despite its 

long history of use, very few randomized controlled clinic studies on the efficacy of PRP 

have been documented. Driver and colleagues carried out the first FDA approved 

prospective, randomized, blinded, placebo-controlled clinical trial of PRP (Autologel™) 

for diabetic foot ulcers (Driver et al., 2006). Although this study showed significance 

(81% vs. 42% of wounds closed, treatment vs. placebo) (Table 1.1), many of its 

participants were excluded from analysis for a variety of reasons. As the vast majority of 

persons with chronic skin wounds are likely to fall outside of the numerous exclusion 

criteria employed in this study, the applicability of this data would appear to be very 

limited. Margolis et al, in a retrospective, randomized, controlled study of nearly 27,000 

patients (of which 21% were treated with platelet releasate), reported the overall 

proportion of chronic skin wounds healed at 50% vs. 41% (Margolis et al., 2001). This is 

likely a much more realistic outcome since it reflects the effectiveness of the treatment 

across a very large patient demographic, not the efficacy within a very idealized 

treatment group. 

Use of platelet releasate for the treatment of chronic skin wounds offers benefits over 

placebo, however, similar to rhPDGF-BB, the increased incidence of wound healing is 

modest. The limited success of platelet releasate may be due to pro-inflammatory 

influences, which may undermine the pro-fibrotic effects of growth factors contained 

within. PDGF is a chemoattractant for fibroblasts (Seppa et al., 1982; Lin et al., 2006), 

however, it does not significantly increase expression of collagen type-1, a key 

component of granulation tissue and scars (Tan et al., 1995; Jinnin et al., 2005). Instead, 

PDGF increases expression of matrix metalloproteinase (MMP)-1, which contributes to 

collagen degradation (Tan et al., 1995). Interestingly, whereas the presence of PDGF-BB 

results in increased MMP-1 expression in human dermal fibroblasts, TGFβ1 in the matrix 

results in decreased MMP-1 expression and significantly increased collagen synthesis, 

contributing to matrix accumulation (Ignotz and Massague, 1986; Edwards et al., 1987; 
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Tan et al., 1995). Thus TGFβ is a logical alternative to PDGF as a pro-fibrotic therapeutic 

agent. 

1.2.3 Transforming growth factor β 

Transforming Growth Factor β expression during acute wound healing contributes to 

progression of granulation tissue formation and matrix deposition. Its presence in the 

matrix results in increased collagen production and elevated levels of TGFβ are 

associated with fibrosis (Barrientos et al., 2008). Platelets and macrophages are the major 

sources of TGFβ during the inflammatory phase (Clark, 1996). Fibroblasts are the key 

TGFβ target cells during the proliferation phase of wound healing. Cellular binding of 

PDGF and TGFβ promotes myofibroblast differentiation, however, PDGF binding does 

not stimulate α-SMA expression (Tomasek et al., 2002). Cellular binding to TGFβ 

significantly increases α-SMA expression and is required for differentiation of fibroblasts 

into myofibroblasts, the major cell type that produces collagen and remodels the matrix 

(Desmouliere et al., 1993; Tomasek et al., 2002; Desmouliere et al., 2005). Increased 

signaling in response to TGFβ results in decreased expression of proteases such as 

MMPs, and increased expression of tissue inhibitors of MMPs (TIMPs) in fibroblasts 

(Edwards et al., 1987), thereby further contributing to matrix accumulation. TGFβ 

signaling has been extensively reviewed elsewhere (Leask and Abraham, 2004; Varga 

and Abraham, 2007). Briefly, there are three isoforms of TGFβ: TGFβ1, TGFβ2 and 

TGFβ3. The actions of these isoforms are largely overlapping with the possible exception 

of TGFβ3, which has been shown to have anti-fibrotic influences (Shah et al., 1995). 

Activated TGFβ binds to heteromers of the TGFβ type-I and type-II receptors. Type-I 

receptors (ALK5) phosphorylate Smad2 and Smad3 which go on to bind Smad4 and 

translocate to the nucleus. Once in the nucleus, the Smad complex binds to Smad binding 

elements in target genes (Figure 1.2) (Massague and Wotton, 2000). TGFβ has also been 

known to signal through focal adhesion kinase (FAK), extracellular signal-regulated 

kinases (ERK), c-Jun N terminal kinases (JNK) and p38 (Leask, 2008). Target genes of 

TGFβ signaling include α-SMA, MMPs, TIMPs, periostin, connective tissue growth



 

 

14 

 

 

 

 

 

Figure 1.2: Canonical pro-fibrotic TGFβ  signaling is initiated by the binding of active 

TGFβ to TGFβ receptors. Type-I receptors phosphorylate receptor-Smads 2 and 3, which 

associate with Smad4 and translocate to the nucleus. In the nucleus the Smad complex 

interacts with Smad binding elements, promoting gene expression. Among the many 

genes influenced by TGFβ signaling are collagens I and III, α-SMA, fibronectin, TIMPs 

and periostin. Additionally, increased Smad7 expression creates a negative feedback 

loop, limiting pathway activation. The pro-fibrotic roles of periostin are summarized 

here. Via interactions with the ECM and BMP-1, periostin facilitates collagen 

crosslinking through activation of lysyl oxidase. Periostin’s influences on cell behaviours 

include altered proliferation, migration and adhesion. Recent evidence suggests that 

periostin plays a role in liberation of TGFβ from the latency-associated proteins (LAP) in 

an MMP-2/9 dependent manner. 
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Figure 1.2: Canonical pro-fibrotic TGFβ  signaling  
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factor (CCN2) and collagen type-I (Kocher and Madri, 1989; Igarashi et al., 1993; 

Takeshita et al., 1993; Holmes et al., 2001; Verrecchia et al., 2001). 

TGFβ secretion and activation is central to development of fibrosis, where its cellular 

binding results in excessive collagen production and prolonged myofibroblast 

differentiation (Wei et al., 2010), leading to matrix accumulation and contraction. The 

involvement of TGFβ in fibrosis has received a lot of attention and is the topic of several 

reviews (Leask and Abraham, 2004; Pannu and Trojanowska, 2004; Varga and Pasche, 

2009). Accumulating evidence implicates inappropriately elevated TGFβ signaling in the 

progression of SSc. Examples include: increased TGFβ receptor expression (Kawakami 

et al., 1998; Kubo et al., 2002; Pannu et al., 2004), increased Smad3 mRNA, protein 

levels and phosphorylation levels (Mori et al., 2003). Additionally, Smad3/4 nuclear 

localization is increased in SSc fibroblasts, both in the absence of TGFβ stimulation and 

in the presence of TGFβ blocking antibodies (Mori et al., 2003). The targeting of TGFβ 

directly in fibrosis has been successful in animal models. Injection of TGFβ neutralizing 

antibodies to the edges of dermal wounds in rats, results in reduced scar formation, where 

as addition of TGFβ increases scarring (Shah et al., 1992). Topical application of the 

P144 peptide, which interferes with TGFβ/receptor association, reduces bleomycin 

induced dermal thickening, Smad2/3 phosphorylation and α-SMA positive myofibroblast 

numbers (Santiago et al., 2005). Clinical strategies that target TGFβ in fibrosis are 

numerous (Varga and Pasche, 2009), but have so far had limited success (Denton et al., 

2007). 

TGFβ’s pro-fibrotic role in acute skin wounds and in fibrosis makes it a realistic target 

for enhancing chronic skin wound healing. Indeed, TGFβ1 expression is reduced in 

diabetic and venous foot ulcers, compared to uninjured skin (Jude et al., 2002). In a rabbit 

ischemic ulcer model, topical application of rhTGFβ1 increased wound healing 

significantly (Beck et al., 1990; Zhao et al., 1994). These studies used young ischemic 

rabbits for their experiments. The combined effect of age and ischemia was addressed by 
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Wu et al. They found that 60-month-old ischemic rabbits did not response to application 

of rhTGFβ (Wu et al., 1999). From this observation they concluded that TGFβ signaling 

must be defective in the aged ischemic model and topical application of TGFβ may not 

benefit healing of human chronic skin wounds. However, due to the cartilage within the 

rabbit ear, the model chosen in this series of experiments does not allow for a significant 

contribution of contraction in healing (Mustoe et al., 1991). Perhaps this feature of the 

model masks the effects of TGFβ with respect to myofibroblast differentiation and 

activity. Nevertheless, the limited benefit of TGFβ treatments in animal models has been 

mirrored by the studies of Robson and colleagues, who investigated the application of 

TGFβ2 on human chronic venous ulcer healing. The study incorporated an open-label 

trial in which patients received either 0.5 µg/cm2 bovine TGFβ2 (bTGFβ2) in a 

lyophilized collagen matrix or placebo (matrix only). Bovine TGFβ2 treatment resulted 

in a significant increase in wound healing after a 6-week regime (Robson et al., 1995). In 

the parallel closed-label trial, however, 2.5 µg/cm2 bTGFβ2 treatment offered no benefit 

over the placebo (Table 1.1). The authors suggest that increased variation in the control 

groups undermined the effect of treatment in the closed-label study (Robson et al., 1995). 

With a small number of patients (n = 12/group) it is possible that sampling error played a 

significant role. We must be cautious, however, of how we interpret open-label trial data 

since the placebo effect has been shown in earlier examples to dominate the effectiveness 

of treatments. At a minimum, this study stresses the requirement for large-scale 

randomized, blinded, multi-center, placebo-controlled clinical trials.  

Recent evidence suggests that the very limited efficacy of TGFβ in chronic skin wound 

treatment may be due to dysregulation of the TGFβ signaling cascades within the wounds 

and in wound fibroblasts (Hasan et al., 1997; Cowin et al., 2001; Jude et al., 2002; Pastar 

et al., 2010). Together these studies establish a trend towards reduced TGFβ receptor 

expression, although the data is somewhat conflicting when looking at the expression of 

specific receptors. Convincingly, TGFβ responsive genes are significantly reduced in 

venous ulcers (Pastar et al., 2010). A growing body of evidence now clearly identifies 

additional, or accessory, signaling pathways activated by TGFβ and necessary for 

appropriate context-specific TGFβ signaling. As will be discussed in the coming sections, 
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these non-canonical TGFβ signaling pathways are of particular importance to wound 

healing and fibrosis. Moreover, context-specific modulation of these pathways is 

increasingly becoming a role of matricellular proteins.  

1.3 Old players, but new rules in chronic skin wound 
healing 

1.3.1 Non-canonical TGFβ signaling 

In addition to Smad signaling, TGFβ is known to influence cellular functions through 

Smad independent, non-canonical pathways, which have been implicated in 

myofibroblast differentiation, matrix contraction and fibrosis. Serini and colleagues 

showed that adhesion to the ED-A splice variant of fibronectin (ED-A FN) is required for 

myofibroblast differentiation of human subcutaneous fibroblasts (Serini et al., 1998). 

Although binding to ED-A FN is not sufficient to cause differentiation, blocking specific 

ED-A FN binding disrupts TGFβ-induced α-SMA expression (Serini et al., 1998); 

demonstrating a role for adhesive signaling in the cell’s response to TGFβ. Stimulation of 

adherent human lung fibroblasts with TGFβ results in increased FAK phosphorylation 

and α-SMA expression (Thannickal et al., 2003). TGFβ-induced α-SMA and collagen 

type-1 expression has been shown to require FAK and JNK activation in mouse 

embryonic fibroblasts (Liu et al., 2007b). When human fibroblasts are maintained in 

suspension or treated with the FAK/Src inhibitor, PP2, FAK phosphorylation is lost and 

TGFβ-induced α-SMA expression is abolished (Thannickal et al., 2003). Interestingly, 

phosphorylation of Smad2 following treatment with TGFβ is maintained, even when cells 

are maintained in suspension (Thannickal et al., 2003); suggesting non-canonical 

signaling critically regulates myofibroblast differentiation: one of the core features of 

fibrosis. Fibroblasts isolated from fibrotic lesions in patients with SSc show an increased 

ability to contract a collagen matrix. This increased contractility can be reduced by 

treatment with inhibitors of TGFβ type-1 receptor activation, ERK activation and 

proteoglycan synthesis (Chen et al., 2005). Furthermore, genetic deletion of the heparin 

sulphate proteoglycan, syndecan 4, results in loss of TGFβ-induced ERK 
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phosphorylation, α-SMA incorporation into stress fibers, and contractility (Chen et al., 

2005). 

Non-canonical TGFβ signaling has been suggested to modulate, or fine tune, the response 

to TGFβ in a gene and context specific manner (Leask and Abraham, 2004). As a result, 

these accessory pathways have gained the interest of fibrosis researchers since they offer 

potential targets for the treatment of fibrosis without disrupting the pleiotropic 

TGFβ/Smad pathway, which may be problematic for basal tissue functioning (Leask, 

2008). Modulation of TGFβ’s impact on healing via non-canonical signaling is a function 

that is becoming more and more prominent based on the identification of a group of 

proteins known as matricellular proteins. Moreover, the combination of TGFβ and 

matricellular proteins may represent a promising direction for development of new 

therapeutics for chronic skin wounds.  

1.3.2 Matricellular proteins in fibrosis and acute wound healing 

Matricellular proteins are non-structural ECM components which bind cell surface 

receptors to mediate interactions between the cell and the ECM, modulating essential 

events such as migration, proliferation and adhesion during wound healing (Bornstein, 

1995; Midwood et al., 2004; Hamilton, 2008). Although genetic deletion of matricellular 

proteins typically results in very mild phenotypes (Hamilton, 2008), wound healing can 

be severely compromised (Midwood et al., 2004; Hamilton, 2008). Matricellular proteins 

have diverse roles that span all phases of wound healing. For example, efficient re-

epithelialization is facilitated by tenascin-C, where keratinocyte migration is decreased in 

tenascin-C knockout mice (Matsuda et al., 1999). Thrombospondin-1 has been shown to 

activate latent TGFβ (Schultz-Cherry and Murphy-Ullrich, 1993). Macrophage 

infiltration is increased in the presence of the matricellular protein osteopontin (Denhardt 

et al., 2001). 

The role of matricellular proteins in myofibroblast behaviour has received considerable 

attention. Osteopontin serves as a ligand for αvβ3 integrins where binding leads to 

activation of FAK and numerous downstream pathways (Sodek et al., 2000). 

Furthermore, osteopontin has been postulated to be required for TGFβ-induced 
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myofibroblast differentiation, where deletion of osteopontin attenuates TGFβ-dependent 

increases in α-SMA and ED-A FN expression (Lenga et al., 2008). CCN2 (further 

discussed below) promotes myofibroblast differentiation in the presence of TGFβ (Leask, 

2008). Although CCN2 is considered to be a cofactor in fibrosis and not a fibrotic agent 

itself (Leask, 2010), it serves as a marker for severity of fibrosis in SSc (Takehara, 2003). 

CCN2 is required for maximal induction of α-SMA and collagen type-1 by TGFβ, where 

TGFβ-induced FAK and Akt activation is reduced in CCN2 null fibroblasts (Shi-wen et 

al., 2006). Furthermore, cellular binding to CCN2 results in activation of ERK through a 

syndecan-4-dependent mechanism (Kennedy et al., 2007). Syndecan-4, which was 

previously discussed as being required for many facets of TGFβ-induced myofibroblast 

behaviour, is considered by some to be a matricellular protein (Woods, 2001). In 

addition, human dermal fibroblasts are unable to contract a collagen matrix in the 

presence of neutralizing antibodies against the matricellular protein vitronectin (Sethi et 

al., 2002). Vitronectin incorporation into the ECM is inhibited by exogenous galectin-1, 

yet another matricellular protein (Moiseeva et al., 2003). Finally, CCN1 (CYR61) can 

bind integrins, leading to activation of ERK and p38 to cause myofibroblast senescence, 

thus serving as a natural brake on fibrotic tissue remodeling (Jun and Lau, 2010). 

Matricellular proteins can therefore both facilitate and inhibit critical events of acute and 

fibrotic healing. Despite mounting evidence for the importance of matricellular proteins 

in wound contraction and re-epithelialization, no clinical trials are currently employing 

these proteins for the treatment of chronic skin wounds. The various influences of 

matricellular proteins provide several potential targets for fibrosis and treatment of 

chronic skin wounds. 

1.3.3 CCN2/Connective tissue growth factor 

Connective tissue growth factor, otherwise known as CCN2, modulates TGFβ signaling, 

myofibroblast differentiation and collagen induction. Perhaps best known for its 

pervasive emergence in a multitude of fibrotic tissues and diseases, CCN2 represents a 

potential target for treatment of fibrosis (ClinicalTrial.gov #NCT01262001). Based on 

CCN2’s role in fibrosis and evidence from several models of tissue repair, there is 

considerable support for CCN2 as a therapeutic for resolution of chronic skin wounds. 
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CCN2 was originally identified as a 38-kDa cysteine-rich mitogen and chemoattractant 

secreted from endothelial cells (Bradham et al., 1991). Structurally, CCN2 consists of a 

typical signal sequence and four conserved domains with sequence homology to 1) 

insulin-like growth factor-binding proteins, 2) the von Willebrand factor C domain, 3) 

thrombospondin type-1 repeat, and 4) a carboxy-terminal cysteine-knot (Figure 1.3) 

(Bork, 1993). The four domains each participate in complex interactions with other 

matrix elements and with cell surface molecules. These interactions, summarized in 

numerous review articles (Chen and Lau, 2009; Oliver et al., 2010; Arnott et al., 2011; 

Jun and Lau, 2011; Tran et al., 2013), are the basis of the influence CCN2 has on cellular 

functions such as adhesion, migration, proliferation, survival, apoptosis and angiogenesis. 

Of particular importance is CCN2’s role in fibrosis. 

CCN2 has been implicated in several fibrotic conditions affecting tissues including skin, 

lungs, kidneys, heart, liver and retina (Table 1.2). CCN2 has emerged as a reliable 

clinical marker for the degree of fibrosis (Dendooven et al., 2011). CCN2 is significantly 

induced by the presence of TGFβ and the presence of CCN2 seems to be required for the 

fibrotic effects of TGFβ. In rat kidney fibroblasts, CCN2 is required for TGFβ-induced 

collagen expression (Duncan et al., 1999). TGFβ-induced anchorage-independent growth 

is attenuated in the presence of an anti-CCN2 antibody or following expression of an 

antisense CCN2 gene, whereas CCN2 alone cannot induce anchorage-independent 

growth (Kothapalli et al., 1997). Similarly, CCN2 is required for TGFβ-induced 

myofibroblast differentiation and subsequent gel contraction (Garrett et al., 2004). Yet 

CCN2 alone is not sufficient to induce myofibroblast differentiation and gel contraction. 

CCN2 has thus been described as a cofactor in fibrosis, in that it is indispensible for 

fibrotic responses yet it alone cannot induce fibrosis. Additional support for the cofactor 

account of CCN2 comes from mouse models where injection of TGFβ into the 

subcutaneous tissue produced only transient skin fibrosis, whereas injections of TGFβ 

and CCN2 resulted in sustained skin fibrosis (Mori et al., 1999). Podocyte (Yokoi et al., 

2008) and hepatocyte (Tong et al., 2009) specific over-expression of CCN2 in mice failed 

to induce spontaneous fibrosis and only after further insult do these mice exhibit 

enhanced fibrosis. There is, however, a growing body of evidence challenging the 
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Figure 1.3: Domain structures of human periostin and CCN2. (A) Human full length 

periostin (isoform 1) consists of a typical signal peptide (SP) sequence, an EMI domain 

responsible for binding to fibronectin, four tandem fasciclin-like domains that are 

responsible for integrin binding and a C-terminal region (CTR) where multiple splice 

variants originate. Tryptophan 65 within the EMI domain is required for fibronectin 

binding. The CTR has been shown to inhibit binding of periostin to several binding 

partners. (B) Human CCN2, shown on same scale as periostin first and then expanded for 

detail below, consists of a signal peptide (SP) sequence followed by four conserved 

domains with sequence homology to 1) insulin-like growth factor-binding proteins 

(IGFBP), 2) the von Willebrand factor C domain (VWC), 3) thrombospondin type-1 

repeat (TSP_1) and 4) a carboxy-terminal cysteine-knot. Each domain comes with a 

compliment of binding sites for both cell surface receptors and matrix components. The 

diversity of these interactions may explain CCN2’s diverse influences. The hinge region 

is vulnerable to proteolytic cleavage. Numbers represent amino acid residues flanking 

each domain. 
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Table 1.2: Fibrotic conditions associated with periostin and CCN2 

Periostin CCN2, Connective Tissue Growth Factor 

Condition References Condition References 

Keloid scar (Supp et al., 2012) Keloid scar (Smith et al., 2008) 

 (Zhou et al., 2010)  (Khoo et al., 2006) 

 (Wang et al., 2007)  (Igarashi et al., 1996) 

 (Naitoh et al., 2005) Hypertrophic scar (Colwell et al., 2005) 

Hypertrophic scar (Zhou et al., 2010) Systemic sclerosis (Dziadzio et al., 2005) 

 (Wang et al., 2007)  (Sato et al., 2000) 

 (Naitoh et al., 2005)  (Shi-wen et al., 2000) 

Systemic sclerosis (Yamaguchi et al., 2013)  (Igarashi et al., 1996) 

 (Yang et al., 2012)  (Igarashi et al., 1995) 

Dupuytren’s disease (Shih et al., 2009) Dupuytren’s disease (Igarashi et al., 1996) 

 (Vi et al., 2009) Pulmonary fibrosis (Pan et al., 2001) 

Pulmonary fibrosis (Naik et al., 2012)  (Sato et al., 2000) 

 (Uchida et al., 2012) Kidney fibrosis (Ito et al., 2010) 

Sub-epithelial fibrosis (Takayama et al., 2006)  (Tam et al., 2009) 

Kidney fibrosis (Guerrot et al., 2012)  (Cheng et al., 2006) 

 (Sen et al., 2011)  (Nguyen et al., 2006) 

Bone marrow fibrosis (Oku et al., 2008)  (Andersen et al., 2005) 

Fibrous dysplasia (Kashima et al., 2009)  (Roestenberg et al., 2004) 

Peritoneal fibrosis (Braun et al., 2013)  (Gilbert et al., 2003) 

Muscular dystrophy (Lorts et al., 2012) Cardiac fibrosis (Koitabashi et al., 2008) 

Cardiac fibrosis (Stansfield et al., 2009) Retinopathy (Kuiper et al., 2008) 

 (Litvin et al., 2006)  (Hinton et al., 2002) 

Retinopathy (Yoshida et al., 2011) Liver fibrosis (Morikawa et al., 2007) 

 (Takada et al., 2010)  (Gressner et al., 2006) 

   (Tamatani et al., 1998) 

  Pancreatic fibrosis (di Mola et al., 1999) 
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cofactor explanation of CCN2’s influence. Fibroblast-specific over-expression of CCN2 

leads to kidney fibrosis (basement membrane thickening and excess matrix accumulation 

around blood vessels), lung fibrosis and skin fibrosis, including an increased population 

of myofibroblasts in the dermis (Sonnylal et al., 2010). Fibroblast and smooth muscle-

specific deletion of CCN2 protected mice from bleomycin induced skin fibrosis, 

including a reduction in the number of myofibroblasts present in the skin (Liu et al., 

2011). However, fibroblasts isolated from these mice responded appropriately to TGFβ in 

terms of collagen and α-SMA expression. The conclusion was that CCN2 is required for 

bleomycin induced skin fibrosis but was not required for TGFβ response. Instead, the 

authors proposed that CCN2 was responsible for myofibroblast recruitment. Therefore, it 

is more accurate to say that CCN2 influences cellular activities in TGFβ-dependent and 

TGFβ-independent ways to promote fibrosis. 

The role of CCN2 in acute wound healing has been difficult to assess since the Ccn2-/- 

genotype is lethal in mice. In 1993, Igarashi and colleagues demonstrated that CCN2 is 

up-regulated six and nine days following dermal wounding (Igarashi et al., 1993) and 

CCN2 up-regulation has since been confirmed in human skin wounds (Rittie et al., 2011). 

However, antisense inhibition of CCN2 mRNA in rabbit ear wounds had no detrimental 

effect on closure rate but did reduce hypertrophic scarring, suggesting CCN2 does not 

play a critical role in skin healing (Sisco et al., 2008). Despite this, there is mounting 

evidence that CCN2 is an important mediator of vascularization during tissue remodeling. 

Antibody blockade of CCN2 resulted in reduced granulation tissue formation and 

vascularity in mesenchymal stem cell-loaded sponges placed in excisional mouse wounds 

(Alfaro et al., 2013). Growth plates of Ccn2-/- mice exhibit defective vascularization, 

linked to reduced Vegfa expression in hypertrophic zones (Ivkovic et al., 2003). The 

presence of CCN2 has since been shown to up-regulate Vegfa at the transcriptional level 

by increasing HIF-1α activity in a chondrocytic cell line (Nishida et al., 2009). Hall-

Glenn and colleagues have shown that CCN2 is required for stable association and 

retention of perivascular cells (pericytes) by endothelial cells (Hall-Glenn et al., 2012). 

By inducing PDGF-B expression in endothelial cells, CCN2 indirectly promotes pericyte 

recruitment and basement membrane formation during angiogenesis. Although the role of 
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CCN2 in skin healing is not clear, its influence on angiogenesis and matrix accumulation 

make it an interesting candidate for use in the treatment of chronic skin wounds. 

To date, several groups have studied CCN2 as a therapeutic for aiding in tissue repair. 

Administration of rhCCN2 to a non-human primate burn wound model resulted in an 

increased wound closure rate, increased fibroblast and collagen content within the wound 

area and accelerated re-epithelialization (Liu et al., 2007a). CCN2 loaded fibrin glue has 

been shown to enhance meniscal repair by increasing Col1a1, Col2a1 and Vegfa mRNA 

in the avascular zone of rabbit menisci following tearing defects (He et al., 2011). 

Furthermore, it was reported that 10 weeks after treatment, the density of capillaries was 

significantly higher in the defects of the CCN2 group. A patent has been filed on a 

polypeptide referred to as CTGF-2 (US Patent #20060052328 A1), which shares 49% 

identity and 67% similarity to mouse CCN2 (Pradhan et al., 2007), based on the 

observations of increased endothelial cell migration and pro-angiogenic outcomes in 

rabbit hind limb ischemia experiments. The authors of the patent suggest potential for 

CTGF-2 in enhancing wound healing. Therefore, there is clear evidence that CCN2 could 

be useful in the treatment of chronic skin wounds. In fact, recent evidence from a non-

human primate model of diabetic wound healing showed that CCN2 is reduced in 

diabetic healing compared to that in control animals, concomitantly with delayed wound 

closure and reduced granulation tissue formation (Thomson et al., 2010). It is unknown, 

however, if the same is true for human chronic skin wounds. It is also unknown whether 

the reparative effects of recombinant CCN2 can be applied to human chronic skin 

wounds.  

1.3.4 Periostin 

The matricellular protein periostin is a molecule that has not yet been investigated for the 

treatment of fibrosis and chronic skin wounds. The presence of periostin can modulate 

many key aspects of acute healing and fibrosis. Collagen synthesis, fibril assembly and 

myofibroblast behaviour have all been increasingly linked to periostin. Furthermore, the 

expression pattern of periostin following tissue injury in various systems, including heart, 

bone and vasculature, suggests that it may play a common role in various models of acute 

wound healing (Hamilton, 2008). 
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Periostin is a secreted 90-kDa disulfide-linked, TGFβ-inducible protein, originally 

designated osteoblast specific factor 2 (Takeshita et al., 1993; Horiuchi et al., 1999). 

Structurally, periostin consists of a typical signal sequence, an EMI domain responsible 

for binding to fibronectin, four tandem fasciclin-like domains that are responsible for 

integrin binding (Kim et al., 2002) and a C-terminal region where multiple splice variants 

originate (Litvin et al., 2004) (Figure 1.3). Additionally, periostin has been shown to bind 

collagen, tenascin-C, BMP-1 and itself (Kii et al., 2006; Takayama et al., 2006; Norris et 

al., 2007; Kii et al., 2009; Maruhashi et al., 2010). The ability of periostin to interact with 

various integrin pairs (Gillan et al., 2002; Bao et al., 2004; Shao et al., 2004; Baril et al., 

2007; Butcher et al., 2007) allows it to influence such biological effects as cell 

proliferation, cell migration, cell adhesion and epithelial to mesenchymal transformation 

(Horiuchi et al., 1999; Katsuragi et al., 2004; Lindner et al., 2005; Yan and Shao, 2006; 

Vi et al., 2009; Li et al., 2010). 

Nakazawa and colleagues showed an increase in periostin mRNA following induced 

tibial fractures in mice. Periostin expression was significantly increased by day 3 and 

peaked at day 7 in preosteoblasts of the periosteum and undifferentiated mesenchymal 

cells within the soft callus (Nakazawa et al., 2004). Periostin expression was significantly 

increased following eight days of balloon injury to rat carotid arteries, eventually 

decreasing by 4 weeks post injury (Lindner et al., 2005). Li and colleagues confirmed 

that periostin peaks at 7 days post injury in this model (Li et al., 2006). To determine if 

periostin induction is a feature common in other connective tissue injuries, Lindner and 

colleagues created full-thickness incisional wounds in the skin of rats. Indeed, periostin 

expression was detected in the fibroblasts, but not keratinocytes, of the wound site 

(Lindner et al., 2005). The expression pattern of periostin during dermal wounding has 

since been further defined (Jackson-Boeters et al., 2009; Zhou et al., 2010). After 

incisional wounding, periostin is expressed in the dermis and basement membrane within 

the dermal-epidermal junction (DEJ) (Zhou et al., 2010). In full-thickness excisional 

wounds, in which the dermis and epidermis are completely removed, periostin expression 

is found throughout the newly formed granulation tissue (Jackson-Boeters et al., 2009). 

With expression beginning at day 3, peaking by day 7 and eventually returning to basal 

levels by 4 weeks (Jackson-Boeters et al., 2009), the temporal expression pattern of 
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periostin in skin mimics that seen in vascular balloon injury and bone fracture. These 

observations suggest that a common role for periostin may exist in all connective tissue 

repairs. Interestingly, periostin expression in skin healing coincides with the expression 

of α-SMA expression in the granulation tissue (Jackson-Boeters et al., 2009). 

The functional role(s) of periostin are not fully understood. Several studies have 

highlighted a role in collagen deposition and myofibroblast differentiation. In murine 

models of myocardial infarction and ventricular hypertrophy (thickening of the 

myocardium), increased periostin expression results in increased collagen deposition 

(Katsuragi et al., 2004; Oka et al., 2007; Shimazaki et al., 2008; Stansfield et al., 2009). 

Genetic ablation of periostin results in increased incidence of ventricular rupture 

following myocardial infarction, which correlates with fewer α-SMA positive cells and 

decreased collagen fibril formation (Shimazaki et al., 2008). Addition of recombinant 

periostin to pancreatic stellate cells results in increased expression of key fibrotic proteins 

such as α-SMA, collagen type-1, fibronectin, TGFβ1 and periostin itself (Erkan et al., 

2007). Collagen fibrils from the skin of periostin knockout mice are reduced in diameter 

and display decreased crosslinking (Norris et al., 2007). As a result, periostin knockout 

skin has a reduced tensile strength and an alteration of the visco-elastic properties (Norris 

et al., 2007). Recent insights into the functional role of periostin in collagen crosslinking 

implicate periostin as a scaffold protein, aiding in the incorporation of BMP-1 into the 

ECM where it can activate lysyl oxidase (an enzyme involved in collagen fibril 

crosslinking) (Maruhashi et al., 2010). 

With respect to fibrosis, periostin has been strongly correlated with several conditions 

(Table 1.2). Periostin is the single most up-regulated gene in keloid scars, assessed using 

cDNA microarray analysis (Naitoh et al., 2005). Wang and colleagues reported increased 

periostin expression in keloid and hypertrophic scars, relative to normal human skin, 

where periostin expression was positively correlated with TGFβ1 expression (Wang et 

al., 2007). Periostin is highly expressed in tissues affected by Dupuytren's disease, a 

progressive disease that results in a scar-like, collagen-rich cord within the palmar fascia 

and permanent contracture of the hand (Vi et al., 2009). Fibroblasts isolated from 

diseased tissue have an increased ability to contract a collagen matrix, which is further 
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enhanced by addition of recombinant periostin (Vi et al., 2009). Periostin-induced 

contractility is accompanied by an increase in α-SMA protein. In addition to skin 

fibrosis, periostin has been associated with bone marrow fibrosis, where it correlates with 

the severity of fibrosis (Oku et al., 2008). Periostin has also been implicated with sub-

epithelial fibrosis of bronchial asthma (Takayama et al., 2006), where recently it has been 

shown to facilitate TGFβ signaling (Sidhu et al., 2010). Over-expression of periostin in 

human bronchial epithelial cells results in increased periostin secretion, collagen 

synthesis and TGFβ expression/protein/activity (Sidhu et al., 2010). Addition of 

recombinant periostin to primary human bronchial epithelial cells increased collagen 

expression in a TGFβ-dependent manner.  Finally, in several models of fibrosis, disease 

progression is attenuated in Postn-/- mice, compared to wild-type littermates (Naik et al., 

2012; Uchida et al., 2012; Yang et al., 2012). 

The role of periostin in acute wound healing and in fibrotic diseases has received a lot of 

attention in the past ten years (Table 1.2). However, research into its role in chronic skin 

wounds is lacking and very few studies have looked at periostin expression in this 

context. Of particular importance, expression of periostin following injury coincides with 

fibrotic, not inflammatory, stages of healing (Jackson-Boeters et al., 2009). In fact, 

chronically inflamed skin contains very little periostin, below that of normal skin (Zhou 

et al., 2010). 

Future work must make use of the influences of matricellular proteins, like periostin and 

CCN2, on acute wound healing and apply them to the treatment of chronic skin wounds. 

Matricellular proteins are expressed during development, but are typically absent in the 

adult, except during tissue remodeling or repair (Bornstein, 1995). Their tight regulation 

during wound healing and absence in adult tissues makes matricellular proteins an ideal 

localized target for therapies (Midwood et al., 2004). 

1.4 Future therapeutic design 

Creating a favorable wound environment, via debridement, will certainly form the 

foundation of any future treatment strategies. To date, healing of chronic skin wounds via 

administration of growth factors has produced limited benefits. Future treatment 
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strategies must integrate the wealth of knowledge available from studies of acute and 

fibrotic healing, particularly the importance of cross talk between cells, structural matrix 

components, growth factors and matricellular proteins. The importance of the matrix on 

cell behaviour should not be underestimated in choosing alternative target molecules. 

Historically, the introduction of physical matrices to chronic skin wounds has primarily 

focused on maintaining a moist environment to encourage healing (Queen et al., 2004). 

Examples of these modern dressings include hydrocolloid dressings, alginates and foam 

dressings (Qin and Gilding, 1996; Chaby et al., 2007). Despite weak evidence of clinical 

efficacy, these products have obtained widespread use (Chaby et al., 2007). One 

limitation of these dressings is their lack of biological activity, although hybrids 

containing biologically active components are now available (Donaghue et al., 1998; 

Murakami et al., 2010). Introduction of exogenous ECM components, such as collagens, 

fibronectin and fibrin, provide a scaffold on which cells can migrate into the wound area 

(Greiling and Clark, 1997), while also greatly influencing the behaviour of cells through 

binding of surface receptors and activation of signaling pathways (Schultz and Wysocki, 

2009). One currently available ECM based product is de-cellularized porcine small 

intestine submucosa (SIS), which is marketed under the name OASIS® Wound Matrix 

(Mostow et al., 2005). In a randomized clinical trial, OASIS® Wound Matrix was shown 

to be at least as effective as Regranex® (rhPDGF-BB) in healing diabetic foot ulcers 

(Niezgoda et al., 2005). Interestingly, growth factors embedded within SIS can influence 

cell behaviours such as proliferation and cell morphology (Voytik-Harbin et al., 1997). It 

is proposed here that an ECM based bioactive scaffold can also provide a vehicle for 

delivery of matricellular proteins, where the choice of matricellular proteins can be 

tailored to the etiology of the target wound. Realization of such a treatment, however, 

depends on a greater understanding of the role of matricellular proteins in the 

pathogenesis of chronic skin wounds. 
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1.5 Rationale, Hypothesis and Objectives 

Development of effective treatments to close chronic skin wounds has been hampered by 

a lack of thorough understanding of the dysfunctions present in these wounds. 

Matricellular proteins have received little attention despite their ability to modulate all 

aspects of wound healing. The overall hypothesis of this thesis is that the matricellular 

proteins periostin and CCN2, two matricellular proteins associated with fibrotic healing, 

can enhance the healing of chronic skin wounds. 

The functional role of periostin is not fully understood, however, several lines of 

evidence have established a positive correlation between periostin expression and the 

extent of tissue repair. On the side of fibrosis, periostin has been implicated in bone 

marrow fibrosis (Oku et al., 2008), sub-epithelial fibrosis of bronchial asthma (Takayama 

et al., 2006), idiopathic pulmonary fibrosis (Naik et al., 2012; Uchida et al., 2012), 

systemic sclerosis (Yang et al., 2012; Yamaguchi et al., 2013), renal fibrosis (Sen et al., 

2011) and fibrous dysplasia (Kashima et al., 2009). Moreover, POSTN is the single most 

up-regulated gene in keloid scars (Naitoh et al., 2005). In the context of acute healing, 

genetic ablation of periostin results in increased incidence of ventricular rupture 

following myocardial infarction due to reduced α-SMA positive cells and impaired 

collagen fibril formation (Shimazaki et al., 2008). Interestingly, periostin expression in 

dermal healing coincides with the expression of α-SMA expression within the 

granulation tissue (Jackson-Boeters et al., 2009). The causal relationship between 

periostin expression and a myofibroblast phenotype in skin healing remains to be 

established. 

Therefore it is hypothesized that periostin is essential for normal dermal wound healing, 

contributing to myofibroblast differentiation, matrix production and matrix compaction. 

Furthermore, based on periostin’s theorized role in wound healing, we hypothesize that 

delivery of rhPN to a model of impaired diabetic wound healing will enhance closure. 

CCN2 represents an interesting adjunct or alternative to periostin in treating chronic skin 

wounds.  CCN2 has been demonstrated to positively influence matrix production, 
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myofibroblast differentiation and angiogenesis, positioning it as an excellent candidate 

for enhancing wound healing. At least one model of diabetic wound healing has shown 

that CCN2 is inappropriately reduced in this pathological state, and previous attempts to 

deliver recombinant CCN2 to a variety of wound models have produced favorable 

results. It is therefore hypothesized that delivery of rhCCN2 to a model of impaired 

diabetic wound healing will enhance healing of said wounds. 

The specific objectives of this project were: 

1. To determine how genetic deletion of periostin alters dermal wound healing 

kinetics and the underlying changes in regulation of dermal and epithelial 

behaviours. 

2. To determine mRNA and protein expression patterns of periostin and CCN2 in 

human chronic skin wound tissue. 

3. To quantify the phenotypic response of human chronic skin wound fibroblasts by 

exogenous TGFβ and TNFα. 

4. To assess the efficacy of local delivery of periostin and CCN2 containing 

electrospun scaffolds as a therapeutic for enhancing wound healing, using a 

diabetic murine model. 

 

 

 

 

 

 

 

A version of this chapter has been published (Appendix A): 

Elliott, C.G. and Hamilton, D.W. (2011) Deconstructing Fibrosis Research: Do Pro-

fibrotic Signals Point the Way for Chronic Dermal Wound Regeneration? J. Cell 

Commun Signal. 5(4): 301-15 
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Chapter 2  

2 Periostin modulates myofibroblast differentiation during 
full-thickness cutaneous wound healing 

 

Abstract 

The matricellular protein periostin is expressed in the skin. Although periostin has been 

hypothesized to contribute to dermal homeostasis and healing, this hypothesis has not 

been directly tested. To assess the contribution of periostin to dermal healing, 6 mm full-

thickness excisional wounds were created in the skin of periostin knockout and wild-

type/sex-matched control mice. In wild-type mice, periostin was potently induced 5-7 

days post-wounding. In the absence of periostin, day 7 wounds showed a significant 

reduction in myofibroblasts, as visualized by α-smooth muscle actin (α-SMA) expression 

within the granulation tissue. Delivery of recombinant human periostin via electrospun 

collagen scaffolds restored α-SMA expression. Isolated wild-type and knockout dermal 

fibroblasts did not differ in in vitro assays of adhesion or migration; however, in 3D 

culture, periostin knockout fibroblasts showed significantly reduced ability to contract a 

collagen matrix, and adopted a dendritic phenotype. Recombinant periostin, in a fashion 

which was sensitive to a neutralizing anti-β1-integrin and to the FAK/Src inhibitor PP2, 

restored the defects in cell morphology and matrix contraction displayed by periostin-

deficient fibroblasts. We propose that periostin promotes wound contraction by 

facilitating myofibroblast differentiation and contraction. 

 

 

 

A version of this chapter has been published (Appendix B): 

Elliott, C.G., Wang, J., Guo, X., Shi-wen, X., Eastwood, M., Guan, J., Leask, A., 

Conway, S.J., and Hamilton, D.W. (2012) Periostin modulates myofibroblast 

differentiation during full-thickness cutaneous wound repair. J. Cell Sci. 125: 121-32 
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2.1 Introduction 

Periostin is a secreted 90 kDa, disulfide-linked protein, which has structural similarity 

with the insect adhesion protein, fasciclin-1 (Takeshita et al., 1993). During development, 

periostin is expressed by cardiac fibroblasts in the embryonic heart (Kruzynska-Frejtag et 

al., 2001), where it facilitates organization of the extracellular matrix (ECM) (Snider et 

al., 2009) and differentiation of mesenchymal cushion progenitor cells into contractile 

myofibroblasts (Conway and Molkentin, 2008). Recent research has now associated 

increases in periostin expression with various disease states, including myocardial 

infarction (Iekushi et al., 2007; Oka et al., 2007; Shimazaki et al., 2008), and cancer 

(Gillan et al., 2002; Baril et al., 2007; Erkan et al., 2007). In particular, periostin is 

heavily implicated in fibrosis including in bone marrow (Oku et al., 2008), sub-epithelial 

fibrosis of bronchial asthma (Takayama et al., 2006), fibrous dysplasia (Kashima et al., 

2009), and keloid and hypertrophic scarring of the skin (Naitoh et al., 2005; Wang et al., 

2007a). Additionally, induction of periostin expression has been described following 

acute injury to numerous tissues (Goetsch et al., 2003; Nakazawa et al., 2004; Lindner et 

al., 2005; Li et al., 2006), including skin (Lindner 2005, Jackson-Boeters 2009, Zhou 

2010), where expression peaks at 7-8 days and returns to basal levels by 4 weeks. Our 

previous reports on skin healing show that periostin expression is absent during 

inflammation, but instead corresponds with the proliferative and remodeling phases of 

healing (Jackson-Boeters et al., 2009; Zhou et al., 2010), suggesting a role for periostin 

during these later phases. 

Fibroblasts are central to the proliferative and remodeling phases of skin (Ross, 1968). 

Dysregulation of fibroblast function in skin can result in inadequate healing (Shimazaki 

et al., 2008; Blumbach et al., 2010) or excessive matrix production (fibrosis) (Babu et al., 

1992; Leask, 2010). Activated fibroblasts, or myofibroblasts, are fibroblasts which have 

differentiated into a contractile phenotype, characterized by the expression of α-SMA 

(Gabbiani et al., 1972). During wound healing they serve to expedite wound closure by 

drawing the edges of the wound together through generation of contractile forces 

(Gabbiani et al., 1971; Majno et al., 1971; Gabbiani et al., 1972), which are transmitted to 

the ECM through integrin-containing adhesion complexes known as focal adhesions 
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(Burridge and Chrzanowska-Wodnicka, 1996). Numerous studies have implicated 

periostin with α-SMA expression (Shimazaki et al., 2008; Jackson-Boeters et al., 2009; 

Vi et al., 2009), including in skin healing.  

Induction of the myofibroblast phenotype depends on a combination of three major 

factors (Tomasek et al., 2002): engagement of integrin cell surface receptors with the ED-

A splice variant of fibronectin (Serini et al., 1998), stimulation with transforming growth 

factor β (TGFβ) (Desmouliere et al., 1993) and mechanical tension (Hinz et al., 2001; 

Cevallos et al., 2006). However, recent work suggests that fine-tuning of myofibroblast 

differentiation involves a complex interaction of many other factors (Shi-wen et al., 2004; 

Blumbach et al., 2010; Liu et al., 2010), including matricellular proteins such as 

connective tissue growth factor (Liu et al., 2011), osteopontin (Lenga et al., 2008) and 

tenascin-C (Tamaoki et al., 2005). Matricellular proteins are a functionally related group 

of secreted proteins that have important roles in all phases of skin healing (Bornstein, 

1995; Midwood et al., 2004). Often these proteins influence cell behaviour through 

adhesive signaling, typically through integrin binding and focal adhesion kinase (FAK) 

activation (Sodek et al., 2000; Shi-wen et al., 2006; Jun and Lau, 2010). Periostin is a 

matricellular protein which is known to modulate adhesive signaling through various 

integrins and FAK (Gillan et al., 2002; Bao et al., 2004; Shao et al., 2004; Baril et al., 

2007; Butcher et al., 2007). Furthermore, periostin has been correlated with α-SMA 

expression in skin healing (Jackson-Boeters et al., 2009). However, the use of genetic 

deletion to determine the specific role of periostin in skin healing has not previously been 

attempted. 

We therefore hypothesized that periostin facilitates myofibroblast differentiation during 

dermal wound healing and that the loss of periostin wound impede wound resolution. By 

use of a periostin knockout (Postn-/-) mouse (Rios et al., 2005), we show that the loss of 

periostin results in altered wound closure kinetics, corresponding to the time of peak 

periostin expression. Histological analysis of wound tissue reveals that the granulation 

tissue of Postn-/- wounds is deficient in α-SMA. Furthermore, dermal fibroblasts isolated 

from Postn-/- mice are unable to contract a collagen matrix. This deficiency is corrected 
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by addition of exogenous periostin, via a β1-integrin and Src/FAK dependent 

mechanism. 

2.2 Results 

2.2.1 Loss of periostin results in altered wound closure kinetics 

Periostin is up-regulated following acute injury to skin in wild-type mice (Lindner et al., 

2005; Jackson-Boeters et al., 2009; Zhou et al., 2010). To investigate the contribution of 

periostin to the dermal wound healing process, full-thickness excisional wounds were 

created in Postn-/- mice and their sex- and age-matched Postn+/+ littermates. At 5 and 7 

days post wounding, Postn+/+ wound size had reduced to 30% and 17%, respectively, of 

their initial wound area (Figure 2.1). In Postn-/- mice, however, wounds were 

significantly larger than those in Postn+/+ mice (64% at day 5 and 41% at day 7, p < 

0.001) (Figure 2.1). Histological analysis of sections from the centre of day 7 wounds 

confirmed that Postn-/- wounds were significant larger than those of Postn+/+ littermates 

(p < 0.05) (Table 2.1). Epithelial migration distance was not significantly different in day 

7 wounds (p = 0.25) (Table 2.1). Wounds in both wild-type and knockout animals had 

closed by day 11. 

We have previously reported that periostin protein is evident in granulation tissue of 

excisional wounds by day 3, peaking at day 7 (Jackson-Boeters et al., 2009), which we 

have confirmed in this study in Postn+/+ mice (Figure 2.2A,B). Analysis of in vivo Postn 

gene expression by in situ hybridization and real-time quantitative polymerase chain 

reaction (RT-qPCR) confirmed that Postn mRNA is significantly and selectively 

increased during cutaneous wound healing at day 7 (p < 0.01) (Figure 2.2A,C). 

Inflammatory cell infiltration was similar between day 5 Postn+/+ and Postn-/- wounds 

(Figure 2.3), suggesting that the influence of periostin is not here. 
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Figure 2.1: Loss of periostin results in altered wound closure kinetics. Full-thickness 

excisional punch wounds were created in the skin of Postn+/+ and Postn-/- mice using a 6 

mm biopsy tool. (A) Wounds were photographed at 0, 3, 5, 7 and 11 days post-wounding. 

Four pairs of mice (four wounds per mouse) were followed for the 11-day time course. 

(B) Quantification of wound area was from photographs. Postn-/- wounds are delayed in 

closure at days 5 and 7 (p < 0.01). Data is expressed as a fraction of the initial wound 

area; error bars represent s.d. (* = p < 0.01; two-way ANOVA). 
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Figure 2.1: Loss of periostin results in altered wound closure kinetics 
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Table 2.1: Re-epithelialization of day 7 wounds in Postn+/+ and Postn-/- mice 

Genotype Measure 

Postn+/+ Postn-/- 

p value 

Wound size (mm) 2.036 ± 0.306 2.579 ± 0.319 0.041 

Epithelial migration distance (mm) 0.723 ± 0.148 0.806 ± 0.134 0.254 

Percent epithelialized (%) 82.2 ± 18.9 66.8 ± 12.6 0.358 
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Figure 2.2: α-SMA expression is reduced in the granulation tissue of Postn-/- mice. 

(A) Postn message detection in day 7 Postn+/+ wounds via in situ hybridization showing 

periostin expression selectively in the wound. Arrowheads indicate the wound borders. 

(B) Histological analysis of day 7 wounds from Postn+/+ and Postn-/- animals. Sections 

were incubated with antibodies for periostin or α-SMA. Detection was with peroxidase 

conjugated 2° antibodies and DAB. Day 7 Postn-/- wounds have reduced α-SMA staining 

(n = 5). (C) Healthy skin or wound tissue biopsies were analyzed for Postn and (D) Acta2 

mRNA via RT-qPCR. Target gene expression was normalized to 18S using the ΔΔCt 

method. Postn expression is significantly increased at day 7 (p < 0.001, n = 5). Postn 

mRNA was not detected in Postn-/- specimens. Increased Acta2 expression was observed 

at day 7 in Postn+/+ wounds, but not in Postn-/- wounds (p < 0.001, n = 5). Data is 

expressed relative to day 0 Postn+/+ expression; error bars represent s.e.m. (* = p < 0.001; 

two-way ANOVA). 
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Figure 2.2: α-SMA expression is reduced in the granulation tissue of Postn-/- mice 

 



 

 

63 

 

 

 

 

 

 

 

 

Figure 2.3: Inflammatory cell infiltration is not altered in Postn-/- wounds. 

Histological analysis of day 5 wounds from Postn+/+ and Postn-/- animals. Sections were 

incubated with antibodies for CD68 (macrophage marker) or neutrophil elastase 

(neutrophil marker). Detection was with peroxidase conjugated 2° antibodies and DAB. 

Day 5 Postn+/+ and Postn-/- wounds do not differ with respect to inflammatory cell 

infiltration (n = 5). 
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Figure 2.3: Inflammatory cell infiltration is not altered in Postn-/- wounds 
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2.2.2 α-Smooth muscle actin expression is reduced in the 
granulation tissue of Postn-/- mice 

Our previous work has shown that increased levels of periostin protein in the granulation 

tissue of excisional punch wounds is paralleled by an increase in α-SMA protein 

(Jackson-Boeters et al., 2009). It is not clear, however, whether periostin is required for 

α-SMA expression. Therefore, we assessed the level of α-SMA in Postn+/+ and Postn-/- 

wounds via immunohistochemistry (IHC).  Immunoreactivity for α-SMA was evident at 

the wound edge and within the granulation tissue of Postn+/+ wounds at day 5 (Figure 

2.4). At day 7, increased levels of α-SMA were detected at the wound border, throughout 

the granulation tissue and in blood vessel walls (Figure 2.2B). In day 7 Postn-/- wounds, 

α-SMA immunoreactivity was significantly reduced when compared to sex-matched 

littermate controls (Figure 2.2B). Reduced α-SMA (Acta2) expression in Postn-/- wounds 

was confirmed by RT-qPCR, where excised day 7 Postn-/- wound tissue contained 

significantly less Acta2 mRNA than day 7 Postn+/+ wounds (Figure 2.2D) (p < 0.01). 

This deficit in α-SMA immunoreactivity was specific to the granulation tissue of Postn-/- 

wounds (Figure 2.5A), with wound borders and vasculature positive for α-SMA in both 

Postn+/+ and Postn-/- wounds. To determine if the reduction in α-SMA immunoreactivity 

was due to impaired fibroblast recruitment into the granulation tissue, sections were 

labeled for fibroblast-specific protein-1 (Figure 2.5B). Indeed, fibroblasts dominated the 

granulation tissue of both Postn+/+ and Postn-/- day 7 wounds (Figure 2.5B). Additionally, 

tissue sections were stained for nuclei with 4',6-diamidino-2-phenylindole (DAPI) 

(Figure 2.5C). No significant differences in cell number were found between Postn+/+ 

and Postn-/- wounds at the wound borders or within the granulation tissue (Figure 2.5C) 

(p = 0.28). To further rule out a defect in fibroblast recruitment we assessed fibroblast 

migration in vitro using a scratch wound assay. Scratch wounds in monolayers of 

Postn+/+ and Postn-/- were resolved by 20 hours. No difference in migratory ability was 

observed between cell types (Figure 2.6) (p = 0.34). 
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Figure 2.4: Postn-/- wounds contain reduced α-SMA protein. Histological analysis of 

wounds from Postn+/+ and Postn-/- animals. Sections were incubated with a primary 

antibody α-SMA. Detection was with peroxidase conjugated 2° antibodies and DAB. 

Postn-/- wounds display reduced α-SMA immunoreactivity at all time-points, relative to 

Postn+/+ littermates (n = 4). 
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Figure 2.4: Postn-/- wounds contain reduced α-SMA protein 
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Figure 2.5: Decreased α-SMA expression is restricted to the granulation tissue of 

Postn-/- mice. (A) Histological analysis of day 7 wounds from Postn+/+ and Postn-/- 

animals. Sections were incubated with an antibody for α-SMA (B) or fibroblast-specific 

protein-1. Detection was with peroxidase conjugated 2° antibodies and DAB. α-SMA is 

absent in the granulation tissue of Postn-/- wounds, but is present at the wound border (n = 

4). Granulation tissue is dominated by fibroblasts in both Postn+/+ and Postn-/- day 7 

wounds. (C) Quantification of cell number at the wound border and within the 

granulation tissue from high power fields of view. Cell number was not different between 

Postn+/+ and Postn-/- wounds at either location (p = 0.28). Data is expressed as mean 

number of cells per field of view; error bars represent s.d. (two-way ANOVA). 
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Figure 2.5: Decreased α-SMA expression is restricted to the granulation tissue of 

Postn-/- mice
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Figure 2.6: Migration is not altered in Postn-/- fibroblasts. Dermal fibroblasts were 

isolated from Postn+/+ and Postn-/- healthy skin biopsies. (A) Migration was assessed 

using the scratch wound method (n = 4). Scratch wounds were made in a confluent 

monolayer of Postn+/+ or Postn-/- fibroblasts on glass bottom culture dishes. Migration 

was documented via time-lapse video microscopy. Images were generated from frames at 

0, 8 and 16 hours. Yellow lines indicate the cell front. (B) Quantification of scratch area 

measured from images at four-hour intervals. No difference in fibroblast migration was 

detected (p = 0.34; two-way ANOVA). Data is expressed as a fraction of the initial 

scratch area; error bars represent s.d. 
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Figure 2.6: Migration is not altered in Postn-/- fibroblasts 
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2.2.3 Canonical TGFβ signaling is not altered in Postn-/- fibroblasts 

TGFβ is known to cause an increase in α-SMA expression, via Smad3 phosphorylation 

(Gu et al., 2007), and plays a major role in myofibroblast differentiation (Desmouliere et 

al., 1993). Therefore, to determine if the reduction in α-SMA expression and 

immunoreactivity in Postn-/- granulation tissue was due to defective TGFβ/Smad3 

signaling, we assessed the number of nuclei positive for phosphorylated Smad 2/3 (p-

Smad2/3) within the granulation tissue. The number of p-Smad2/3 positive nuclei was 

similar in both Postn+/+ and Postn-/- wounds (Figure 2.7A,B) (p = 0.25), suggesting 

canonical TGFβ signaling is active in Postn-/- wounds. This assay was limited in that it 

could not discriminate between subtle quantitative differences in p-Smad2/3 levels. 

However, collagen production in the granulation tissue of both Postn+/+ and Postn-/- 

wounds, as evidenced by hydroxyproline content, was not significantly different (Figure 

2.7C,D) (p = 0.69), a process for which TGFβ signaling is of great importance (Ignotz 

and Massague, 1986; Roberts et al., 1986; Wang et al., 2007b). These observations, 

combined with fibroblast-specific protein-1 staining and in vitro migration data, strongly 

refute a migratory explanation for the absence of α-SMA staining in day 7 Postn-/- 

granulation tissue. 

2.2.4 Exogenous periostin is sufficient to induce a contractile 
phenotype 

The reduced α-SMA expression observed in vivo indicated that a defect might exist in 

differentiation of fibroblasts to myofibroblasts and induction of contraction in Postn-/- 

wounds. Postn+/+ and Postn-/- primary dermal fibroblasts were isolated and assayed for 

their ability to contract a floating collagen gel, as well as exert contractile forces across a 

collagen gel matrix (Figure 2.8A). Postn+/+ cells were able to generate contractile forces 

across the collagen gel lattice, but Postn-/- fibroblasts showed a significant reduction in 

ability to contract the lattice. The anchored matrix gel contraction assay was then used, as 

it more closely resembles the mechanical environment of granulation tissue (Grinnell, 

1994). Quantification of contraction through measurement of gel weight confirmed that 

Postn+/+ fibroblasts were able to significantly contract the collagen matrix (Figure 2.8B, 
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Figure 2.7: Canonical TGFβ  signaling is not altered in Postn-/- fibroblasts. (A) 

Histological analysis of day 7 wounds from Postn+/+ and Postn-/- animals. Sections were 

incubated with an antibody for p-Smad2/3. Detection was with peroxidase conjugated 2° 

antibodies and DAB (n = 3) (B) Number of positively stained nuclei per high power field 

of view were not significantly different between Postn+/+ and Postn-/- wounds (p = 0.37; 

Student’s t-test). (C) Masson’s trichrome staining of day 7 wound sections. (D) 

Hydroxyproline content (g/100 g dry tissue) of excised day 7 wounds was not different 

between Postn+/+ and Postn-/- animals (p = 0.60; Student’s t-test). Data is expressed as 

means; error bars represent s.d. 
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Figure 2.7: Canonical TGFβ  signaling is not altered in Postn-/- fibroblasts 
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Figure 2.8: Exogenous periostin is sufficient to induce a contractile phenotype. (A) 

The effect of periostin deletion on the ability of dermal fibroblasts to exert contractile 

force in a fixed, tethered floating collagen gel lattice was investigated using a Culture 

Force Monitor. Forces generated by fibroblasts were measured over 24 hours; a 

representative trace is shown (n = 3). Units are dynes (10-5 N) (B) Cells contracted 

collagen gels over an additional 24 hours at 37°C, 5% CO2.  (C) Gel contraction was 

quantified by loss of gel weight, compared to gels lacking cells. Postn-/- fibroblasts were 

unable to significantly contract collagen gels. Note that Postn+/+ fibroblasts were able to 

contract collagen gels. Addition of 5 µg/mL rhPN to the collagen gels rescued the 

contractile ability of Postn-/- fibroblasts (n = 3). Data is expressed as a fraction of the 

initial gel weight; error bars represent s.d. (* = p < 0.05; two-way ANOVA). (D) Gels 

were treated with 10 µM PP2 (or DMSO vehicle) or 10 µg/mL β1-integrin blocking 

antibody (mouse IgG for controls). Data is expressed as a fraction of the initial gel 

weight; error bars represent s.d. (* = p < 0.05; one-way ANOVA, n = 3). A Dunnett’s 

multiple comparison test was employed where KO + PN + DMSO was used as the 

reference group. Extracellular periostin influences contractility through a β1-

integrin/FAK dependent mechanism in vitro. (E) Fluorescent labeling of fibroblast 

populated collagen gels for α-SMA (green) and nuclei (blue). α-SMA positive cells were 

counted from high power fields of view. Percentage of α-SMA positive cells was 

significantly reduced in Postn-/- fibroblast populated gels (p < 0.01, n = 3). Addition of 5 

µg/mL rhPN to the collagen gels restored the percentage of α-SMA positive cells. Data is 

expressed as mean; error bars represent s.d. (# = p < 0.01; one-way ANOVA). 
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Figure 2.8: Exogenous periostin is sufficient to induce a contractile phenotype 
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C), in comparison with Postn-/- fibroblasts (Figure 2.8B), indicating that periostin is 

required for contraction of a collagen matrix by dermal fibroblasts (p < 0.01). To further 

investigate this finding, recombinant human periostin (rhPN) was added to the collagen 

matrix and was sufficient to induce contraction of the gels by Postn-/- dermal fibroblasts.  

Addition of 5 µg/mL rhPN fully recovered the contractile ability of Postn-/- cells (Figure 

2.8C), supporting the notion that periostin facilitates wound healing by promoting wound 

contraction. 

In order to understand the mechanism by which periostin induces contraction we 

attempted to reverse the effect of rhPN on Postn-/- fibroblast contraction with various 

inhibitors of signal transduction. As in Figure 2.8C, Postn-/- fibroblasts were unable to 

contract the collagen matrix. With the addition of rhPN, however, these cells contracted 

gels to the same extent as Postn+/+ fibroblasts (Figure 2.8D). Blockade of β1-integrin 

ligation by incorporation of a β1-integrin neutralizing antibody (10 µg/mL) completely 

reversed the rhPN-induced gel contraction (Figure 2.8D) (p < 0.01). As a negative 

control, non-specific mouse IgG was instead incorporated into gels at the same 

concentration. Gels containing IgG contracted to the same degree as Postn-/- fibroblast 

populated gels with rhPN. Additionally, inhibition of Src/FAK phosphorylation with PP2 

completely reversed the influence of rhPN on contraction of Postn-/- fibroblast populated 

collagen gels (p < 0.01). 

To assess whether the differences in collagen matrix contraction were the result of 

differences in α-SMA levels, fibroblast-populated collagen gels were immunolabeled for 

α-SMA (Figure 2.8E). Postn+/+ fibroblasts were generally more spread and displayed 

strong α-SMA labeling. In comparison, the number of Postn-/- fibroblasts positive for α-

SMA was significantly reduced (89% positive in Postn+/+, 40% in Postn-/-, p < 0.01) 

(Figure 2.8E). In line with gel contraction data, addition of 5 µg/mL rhPN to the collagen 

matrix resulted in an increase in the number of α-SMA positive Postn-/- cells (93%, p < 

0.01) (Figure 2.8E). 
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Periostin is known to influence cell adhesion (Takeshita et al., 1993). Therefore, it was 

conceivable that the lack of matrix contraction by Postn-/- fibroblasts was simply due to a 

defect in adhesion. To determine the influence of periostin on dermal fibroblast adhesion, 

we conducted adhesion assays with fibronectin, collagen type-1 and periostin coated 

tissue culture plates. Postn+/+ and Postn-/- cells adhered to all matrix molecules tested 

equally, following two hours of incubation (Figure 2.9). Adhesion was higher on 

fibronectin than on collagen type-1, as anticipated (p < 0.01). Adhesion on periostin was 

significantly lower than on either fibronectin or collagen type-1 (p < 0.01). Coating wells 

with a combination of rhPN and fibronectin had no effect on dermal fibroblast adhesion 

compared to fibronectin alone. Coating with rhPN/collagen type-1, however, greatly 

reduced adhesion of dermal fibroblasts (Figure 2.9) (p < 0.001). This effect was 

consistent between Postn+/+ and Postn-/- cells. Therefore, it is unlikely that periostin’s 

influence on contractility is simply due to cell adhesion. 

2.2.5 Periostin influences fibroblast morphology in 3D, but not 2D, 
culture 

The presence of α-SMA immunoreactivity in the borders of day 7 Postn-/- wounds (but 

not within the granulation tissue) implies that alternative signals for myofibroblast 

differentiation are at work in these regions. Differentiation of fibroblasts into 

myofibroblasts requires TGFβ dependent signaling but also depends heavily on matrix 

stiffness (Tomasek et al., 2002). To explore the contribution of matrix stiffness on 

myofibroblast differentiation, dermal fibroblasts were seeded onto either collagen type-1 

coated tissue culture plates or anchored collagen gels. Fibroblasts seeded on collagen 

coated tissue culture plates adopted a planar, well-spread morphology typical of 

fibroblasts in culture (Figure 2.10A). These cells developed very distinct stress fibers, 

which often incorporated α-SMA, indicating myofibroblast differentiation. Postn-/- 

fibroblasts grown on collagen-coated tissue culture plates were indistinguishable from 

Postn+/+ fibroblasts. Moreover, α-SMA expression, as assessed by western blot, was not 

significantly different between Postn+/+ and Postn-/- cells. Addition of 5 ng/mL 

recombinant human TGFβ1 did not further increase α-SMA levels (Figure 2.10B), 

indicating that the cultures might have already become maximally differentiated. 
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Figure 2.9: Periostin is a modulator of dermal fibroblast attachment. Wells of a 96 

well tissue culture plate were precoated with 10 µg/mL of fibronectin, collagen-1 or 

rhPN. Additionally, wells were coated with combination of fibronectin + rhPN or 

collagen-1 + rhPN (all at 10 µg/mL). Prior to seeding cells, wells were washed with PBS 

and blocked with BSA. Isolated dermal fibroblasts were seeded and incubated for two 

hours before non-adhering cells were washed away. Cell number was determined by 

methylene blue staining, followed by dye extraction and measurement of absorbance at 

650 nm. Values were compared to a standard curve. Data is expressed relative to 

adhesion of Postn+/+ fibroblasts to fibronectin, with BSA adhesion subtracted; error bars 

represent s.d. Letters indicate treatment that are statistically similar (p < 0.01; two-way 

ANOVA, n = 3). 
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Figure 2.9: Periostin is a modulator of dermal fibroblast attachment 
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Figure 2.10: Periostin influences fibroblast morphology in 3D, but not 2D, culture. 

Isolated dermal fibroblasts were seeded on collagen coated tissue culture plates or onto 

precast collagen anchored gels. Cells were incubated for 48 hours before fixation or 

harvesting lysates. (A) Filamentous actin was visualized with rhodamine-conjugated 

phalloidin. Distinct stress fibers were observed in both Postn+/+ and Postn-/- fibroblasts (n 

= 3). (B) Western blot analysis of lysates was carried out to quantify the level of α-SMA. 

Equal loading was confirmed by blotting for GAPDH. No difference was detected 

between Postn+/+ and Postn-/- fibroblasts. (C) Fibroblasts seeded on 3D collagen gels 

were labeled with rhodamine-conjugated phalloidin and assessed for cell morphology (n 

= 3). Postn-/- fibroblasts were more likely to adopt a dendritic phenotype, characterized 

by a lack of stress fibers and extension of thin branching cytoplasmic extensions (p < 

0.01). Addition of 5 µg/mL rhPN to the gels restored the percentage of dendritic 

fibroblasts to Postn+/+ levels. Data is expressed as mean; error bars represent s.d. (* = p < 

0.01; one-way ANOVA). (D) 3D collagen gels were homogenized and cells were lysed 

by sonication. α-SMA levels were assessed by western blot. 
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Figure 2.10: Periostin influences fibroblast morphology in 3D, but not 2D, culture 
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Tissue culture plastic provides an exceedingly stiff environment, whereas 3D collagen 

gels provide a much more compliant matrix, reminiscent of granulation tissue (Grinnell, 

1994). The surface of the anchored collagen gels used in this study provides a 

mechanically intermediate environment (Arora et al., 1999), which produced mainly 

planar cells (Figure 2.10C). Twenty-one percent of Postn+/+ cells, however, adopted a 

dendritic phenotype, characterized by poor spreading, lack of stress fibers and extension 

of numerous thin branching processes (Grinnell, 2003) (Figure 2.10C). Interestingly, the 

proportion of Postn-/- cells adopting the dendritic phenotype was significantly higher at 

39% (p < 0.01). Furthermore, addition of 5 µg/mL rhPN to the collagen gels decreased 

the proportion of dendritic cells to the level of Postn+/+ cultures. α-SMA protein was 

reduced in Postn-/- fibroblasts cultured on compliant collagen gels, but increased with the 

addition of rhPN to the gel (Figure 2.10D). 

2.2.6 Periostin facilitates α-SMA expression on compliant 
substrates, but is not required with increasing substrate 
stiffness 

Since Postn-/- fibroblasts showed altered spreading and a deficit in α-SMA protein when 

cultured on compliant collagen gels but not on collagen coated plastic, we sought to 

further assess periostin-induced myofibroblast differentiation in the context of matrix 

stiffness. Postn+/+ and Postn-/- fibroblasts were seeded on collagen-coated flexible 

polyacrylamide gels of varying stiffness. On soft substrates (Young’s modulus of 4800 

Pa), 64% of Postn+/+ fibroblasts were positive for α-SMA (Figure 2.11B). The proportion 

of α-SMA positive Postn+/+ fibroblasts peaked on 19,200 Pa substrates at 90%, with no 

additional increase on the stiff 50,000 Pa substrates. The percentage of α-SMA positive 

Postn-/- fibroblasts increased with an increase in substrate stiffness (p < 0.01). Compared 

with Postn+/+ fibroblasts, however, the proportion of α-SMA positive Postn-/- fibroblasts 

was significantly lower on 4,800 Pa and 19,200 Pa substrates, 29% and 57% respectively 

(p < 0.05) (Figure 2.11B). On 50,000 Pa substrates, the proportion of α-SMA positive 

Postn-/- fibroblasts was equivalent to that of Postn+/+ fibroblasts (Postn+/+ 87%, Postn-/- 

84%). To further investigate the mechanism by which periostin facilitates α-SMA 

expression, we focused on the soft, 4,800 Pa substrates.  Postn-/- fibroblasts showed an 
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Figure 2.11: Periostin facilitates α-SMA expression on a soft substrate, but is 

compensated for by increased substrate stiffness. Isolated dermal fibroblasts were 

seeded on collagen-coated flexible polyacrylamide substrates with Young’s moduli of 

4,800, 19,200 or 50,000 Pa. Cells were incubated for 48 hours before fixation. (A) 

Fibroblasts were fluorescently labeled for α-SMA (green), filamentous actin (red) and 

nuclei (blue). α-SMA positive cells were counted from high power fields of view. (B) 

Percentage of α-SMA positive cells was significantly reduced in Postn-/- fibroblasts 

grown on the soft 4,800 and 19,200 Pa substrates (p < 0.05, n = 3). On the stiff 50,000 Pa 

substrates, however, the proportion of α-SMA positive Postn-/- fibroblasts was equivalent 

to that of Postn+/+ fibroblasts. Data is expressed as mean; error bars represent s.d. (* = p 

< 0.05; two-way ANOVA). (C) Western blot analysis of lysates from Postn-/- fibroblasts 

grown on 4,800 Pa substrates was carried out to quantify the level of pFAKY397 and α-

SMA. Loading was corrected by blotting for total FAK and GAPDH. pFAKY397/FAK and 

α-SMA/GAPDH indicate results of densitometry, relative to control. Incorporation of 

rhPN on 4,800 Pa substrates resulted in an increase in pFAKY397 and α-SMA protein. 

Increased α-SMA was attenuated by 10 µM PP2. 
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Figure 2.11: Periostin facilitates α-SMA expression on a soft substrate, but is 

compensated for by increased substrate stiffness 
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increase in α-SMA protein and phosphorylated FAKY397 when polyacrylamide gels were 

coated with 100 µg/mL collagen + 5 µg/mL rhPN, compared to gels coated with 100 

µg/mL collagen alone (Figure 2.11C). This increase was attenuated by 10µM PP2.  

2.2.7 Delivery of recombinant periostin via electrospun collagen 
scaffolds stimulates α-SMA expression 

Since rhPN was sufficient to restore α-SMA expression and contractility in Postn-/- 

fibroblasts in vitro, we attempted to reintroduce periostin into Postn-/- wounds in vivo. We 

incorporated rhPN into electrospun collagen scaffolds (Figure 2.12A,B) and these 

scaffolds (or control scaffolds lacking periostin) were laid into Postn-/- wounds 

immediately following wounding. Immunohistochemical analysis of day 7 wounds 

revealed a marked increase in α-SMA immunoreactivity within the wounds that received 

collagen/periostin scaffolds, compared to collagen-only controls (Figure 2.12C). 

Moreover, α-SMA immunoreactivity was detected throughout the granulation tissue of 

collagen/periostin treated wounds, mimicking the wild-type expression pattern. 

2.3 Discussion 

In this report we show that the loss of periostin, by use of the periostin knockout mouse 

(Rios et al., 2005), results in altered dermal wound closure kinetics, specifically during 

the pro-fibrotic phase of wound healing. The alteration in wound closure corresponds 

with the onset and peak of periostin expression in Postn+/+ animals. 

Immunohistochemistry and RT-qPCR reveal that α-SMA is strikingly reduced in the 

granulation tissue of day 7 Postn-/- wounds. Altered wound closure kinetics in Postn-/- 

mice may therefore be due to a reduction in α-SMA positive myofibroblasts within the 

granulation tissue, and thus a reduction in wound contraction. Other phases of wounds 

healing appeared to be unaffected by the loss of periostin. Infiltration of inflammatory 

cells (macrophages and neutrophils) was similar between Postn+/+ and Postn-/- wounds. 

The eventual closure of both Postn+/+ and Postn-/- wounds by day 11 indicates that Postn-

/- animals are able to close dermal wounds by a method other than contraction, possibly 

re-epithelialization. Recently, Nishiyama and colleagues reported reduced re-
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Figure 2.12: Delivery of recombinant periostin via electrospun collagen scaffolds 

recovers α-SMA expression in PN KO mice. (A) Collagen type-1 electrospun 

scaffolds, with and without rhPN, were cut into 6 mm disks to match the size of punch 

wounds. (B) Periostin (green) protein was detected throughout the collagen + periostin 

scaffolds, but not the control collagen scaffolds. (C) Punch wounds were created in 

Postn-/- animals and scaffolds were immediately laid into the wounds. Half of the wounds 

received two control (collagen only) scaffolds and the other half of the wounds received 

two collagen + periostin scaffolds. Wounds were harvested for IHC at day 7. Addition of 

periostin to Postn-/- wounds via electrospun collagen scaffolds resulted in a marked 

increase in α-SMA immunoreactivity throughout the granulation tissue, when compared 

to wounds receiving control collagen scaffolds (n = 3). 
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Figure 2.12: Delivery of recombinant periostin via electrospun collagen scaffolds 

recovers α-SMA expression in PN KO mice 
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epithelialization following dermal wounding in an independently derived Postn-/- mouse 

(Nishiyama et al., 2011). We observed no significant difference in re-epithelialization of 

Postn-/- wounds, when compared to Postn+/+ controls. As would be expected, wound size 

(measured from histological sections) was greater in Postn-/- animals. Due to this 

difference in wound size, the calculated percentage of epithelialization appeared to be 

lower in Postn-/- wounds (not significant), yet the epithelial migration distance was 

actually higher.  Therefore we feel that percent epithelialization is an inappropriate 

measurement for wounds of different sizes (Gorin et al., 1996) and epithelial migration 

distance is the more reliable method. Using this more reliable method we did not detect a 

difference in re-epithelialization. 

Reduced α-SMA specifically within the granulation tissue of Postn-/- wounds, with 

wound borders and vasculature positive for α-SMA, raised the question of whether 

fibroblast recruitment was deficient in Postn-/- wounds. In fact, fibroblasts were observed, 

via immunohistochemical detection of fibroblast-specific protein-1, to dominate the 

newly formed granulation tissue of both Postn+/+ and Postn-/- wounds. Cell number was 

also similar for Postn+/+ and Postn-/- wounds in the granulation tissue and at wound 

borders. Moreover, fibroblast migration, as assessed by scratch wound assays in vitro, 

revealed no difference in migration between Postn+/+ and Postn-/- fibroblasts. Together 

these results suggest fibroblast recruitment is not the underlying cause for the pattern of 

α-SMA expression in Postn-/- wounds. Collagen content from day 7 wounds, as assessed 

by hydroxyproline content, was not significantly different between Postn+/+ and Postn-/- 

wounds. Therefore, we suggest that the granulation tissue of Postn-/- wounds harbors a 

synthetic fibroblast population, which is deficient, however, in contractile machinery. 

As fibroblast recruitment did not appear to be altered in Postn-/- wounds, we sought to 

determine if reduced α-SMA within Postn-/- granulation tissue was the result of a defect 

in differentiation of fibroblasts into myofibroblasts. Supporting this hypothesis, isolated 

dermal fibroblasts from Postn-/- animals were unable to significantly contract anchored 

collagen gels, which assess contractility rather than tractional forces of migration 

(Grinnell, 1994). However, addition of exogenous rhPN fully rescued the phenotype of 
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the Postn-/- fibroblasts. Immunocytochemistry revealed that the degree of gel contraction 

corresponded to the number of α-SMA positive cells within the gel. Therefore, we 

conclude that periostin is required for gel contraction and its presence in the extracellular 

matrix is sufficient to induce a contractile myofibroblast phenotype. Previous reports 

support a role for periostin in gel contraction. Incorporation of purified periostin 

increased the ability of atrioventricular cushion mesenchymal cells to contract a collagen 

gel (Butcher et al., 2007). Similarly, addition of rhPN to collagen gels increased the 

contractility of fibroblasts isolated from patients suffering from Dupuytren's disease, a 

disease of connective tissue contracture (Vi et al., 2009). In both of these studies, 

increased contraction was associated with increased α-SMA protein. 

Culturing isolated dermal fibroblasts on collagen type-1 coated tissue culture plates 

resulted in abundant α-SMA production, irrespective of periostin expression, showing 

that Postn-/- fibroblasts are capable of α-SMA expression. The pattern of α-SMA 

expression within day 7 Postn-/- wounds must, therefore, be due to the environment 

provided by the granulation tissue itself. Mechanical tension (Hinz et al., 2001; Cevallos 

et al., 2006) and TGFβ (Desmouliere et al., 1993) induce α-SMA expression and promote 

myofibroblasts differentiation (Tomasek et al., 2002). Induction of α-SMA by TGFβ is 

primarily through activation of canonical TGFβ signaling, specifically Smad3 (Gu et al., 

2007). Interestingly, within the granulation tissue of Postn+/+ and Postn-/- wounds, 

nuclear p-Smad2/3 was detected at equal levels. Although we cannot rule out Smad-

independent TGFβ pathways (Derynck and Zhang, 2003), nor can we rule out subtle 

quantitative differences in p-Smad2/3 levels between Postn+/+ and Postn-/- wounds, TGFβ 

signaling appears to be active within the granulation tissue of Postn-/- wounds. Therefore, 

we suspected that the mechanical environment might be the determining factor for 

periostin-induced myofibroblast differentiation. 

Mathematical models of fibroblast-driven dermal wound healing predict that the wound 

border is a region of peak matrix stiffness (Murray, 2003). Of particular importance, the 

tangential stiffness modulus of this region is greatly elevated over that of the central 

granulation tissue (Murray, 2003). The potential correlation between predicted tissue 

stiffness and α-SMA immunoreactivity in Postn-/- wounds prompted us to test if periostin 
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influences fibroblast behaviour in a mechanically dependent manner. On collagen coated 

tissue culture plates, no difference in cell morphology or α-SMA expression was 

apparent.  In contrast to 2D culture, when isolated dermal fibroblasts were cultured on the 

more compliant collagen gels, a greater percentage of Postn-/- cells adopted a dendritic 

phenotype and α-SMA protein was reduced. Incorporating rhPN into the collagen gels 

reversed both of these effects. Tissue culture plates provide an enormously stiff 

environment for cell growth, with a reported elastic modulus of 2.78 GPa (Callister and 

Rethwisch, 2000), whereas 2 mg/mL collagen gels have an elastic modulus of 

approximately 300-400 Pa (Paszek et al., 2005; Marenzana et al., 2006). The elastic 

modulus of anchored collagen gels has not been reported. However, they are believed to 

more closely represent the mechanical environment of the granulation tissue (Grinnell, 

1994), which has been reported as having an elastic modulus of 18.5 kPa in day 7 rat 

wounds (Goffin et al., 2006).  

We propose that periostin facilitates myofibroblast differentiation and matrix contraction 

in a compliant 3D environment, such as in the granulation tissue. However, in a rigid 

environment such as in 2D culture or at the wound border, the effects of periostin are 

overshadowed by the influence of mechanical tension. Multiple studies looking at the 

effect of matrix stiffness on fibroblasts morphology agree that above 3-6 kPa fibroblasts 

assemble stress fibers and that above 15 kPa α-SMA incorporation occurs (Wells, 2005; 

Yeung et al., 2005; Solon et al., 2007). To refine our assessment of myofibroblast 

differentiation in the context of matrix stiffness, we adopted the widely used matrix-

coated flexible polyacrylamide substrate (Aplin and Hughes, 1981; Pelham and Wang, 

1997). While the stiffness of collagen gels can be modulated by increasing or decreasing 

the collagen concentration, this method introduces ligand density as a confounding 

variable (Paszek et al., 2005). In this study, all substrates were coated with the same 

concentration of collagen, thereby ensuring that differences in cell differentiation were 

due to substrate stiffness and not ligand density. Using collagen-coated polyacrylamide 

gels of varying stiffness, we observed a significant reduction in the proportion of Postn-/- 

fibroblasts positive for α-SMA compared to wild-type controls. This reduction was 

present on the more compliant 4,800 Pa and 19,200 Pa substrates but not on the stiff 
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50,000 Pa substrates, thus clearly showing that the lack of periostin can be compensated 

for by matrix stiffness. Furthermore, this supports the hypothesis that increased matrix 

stiffness is responsible for α-SMA expression at the borders of day 7 Postn-/- wounds. 

Interestingly, Sidhu and colleagues recently reported that incorporation of periostin, in 

the absence of any cell type, was sufficient to increase the elastic modulus of collagen 

type-1 gels (Sidhu et al., 2010). Based on this evidence it is possible that periostin itself 

may contribute to the stiffness of the granulation tissue via collagen cross-linking, 

thereby indirectly promoting myofibroblast differentiation. Such an effect would surely 

be a confounding variable in the collagen gel contraction assays employed here, although 

the concentrations of periostin used by Sidhu and colleagues were substantially higher 

(20 and 200 µg/mL) than the concentration used in our assays (5 µg/mL) (Sidhu et al., 

2010). If the mechanism by which periostin facilitates myofibroblast differentiation is 

simply by increasing matrix stiffness, we would expect that Postn+/+ and Postn-/- 

fibroblasts would behave similarly on 2D matrix-coated polyacrylamide substrates, where 

stiffness is controlled independent of collagen cross-linking. Our results however do not 

support such a mechanism, as Postn-/- fibroblast differentiation was significantly lower on 

soft substrates. Our results instead favour a mechanism where periostin facilitates 

myofibroblast differentiation in compliant substrates and its influence is overshadowed 

by increased matrix stiffness. 

Although we had established a “niche” in which periostin promotes myofibroblast 

differentiation in compliant matrices, the mechanism for periostin’s influence remained 

unclear. In gel contraction assays, we found that inhibition of β1-integrin ligation and 

inhibition of Src/FAK signaling reversed the periostin-induced increase in gel 

contraction. Moreover, coating polyacrylamide substrates with a combination of collagen 

and rhPN increased the level of α-SMA protein and phosphorylation of FAKY397. The 

rhPN-induced increase in α-SMA protein was attenuated by PP2. In addition to providing 

attachment to the ECM, integrin ligation is known to activate numerous signaling 

pathways (Giancotti and Ruoslahti, 1999). We cannot rule out the possibility that β1-

integrin functioning is required for gel contraction and myofibroblast differentiation 

through a mechanism parallel to, but independent of, periostin. However, periostin has 
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been shown to bind β1-integrins, an event that is required for cushion mesenchyme cell 

invasion into collagen type-1 gels (Butcher et al., 2007). 

Periostin was initially classified as an adhesion molecule (Takeshita et al., 1993; Horiuchi 

et al., 1999). However, more recent work (Katsuragi et al., 2004), as well as adhesion 

data presented in this report do not support the notion that periostin is an adhesion 

molecule per se. We suggest instead that the binding of periostin to surface receptors in 

vivo serves to modulate intracellular signaling, and that periostin’s role is not strictly to 

increase attachment. Ligation of most integrin pairs results in activation of FAK 

(Giancotti and Ruoslahti, 1999). Indeed, periostin has been shown to influence 

intracellular FAK activation in an integrin dependant manner (Shimazaki et al., 2008; Li 

et al., 2010). Our data favours a mechanism by which periostin influences intracellular 

signaling of myofibroblast differentiation in a β1-intergrin/FAK dependent manner. 

Myofibroblasts are at the core of many fibrotic diseases including systemic sclerosis 

(Leask, 2010b), hypertrophic scars (Baur et al., 1975) and sub-epithelial fibrosis in 

bronchial asthma (Brewster et al., 1990). To date, periostin has been implicated in sub-

epithelial fibrosis (Takayama et al., 2006) and hypertrophic scars (Wang et al., 2007a; 

Zhou et al., 2010). The role of periostin in these diseases is not fully understood, 

however, our data supports the hypothesis that periostin facilitates myofibroblast 

differentiation, thereby contributing to disease progression. The ability of periostin-

containing electrospun collagen scaffolds to increase α-SMA immunoreactivity in Postn-

/- wounds may have important implications for treatment of non-healing skin lesions, or 

chronic skin wounds. By definition, chronic skin wounds are unable to close and, 

therefore, represent a massive burden on today’s healthcare systems (Elliott and 

Hamilton, 2011). There is therefore an immediate need for therapeutics capable of 

expediting wound closure. Using recombinant material and collagen scaffolds, we have 

demonstrated the feasibility of using periostin to influence wound healing. Future work 

will focus on the employment of periostin-containing electrospun collagen scaffolds to 

determine if the increased α-SMA immunoreactivity translates into increases in wound 

closure rates. 
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2.4 Materials and Methods 

2.4.1 Animals 

All animal procedures were in accordance with protocols approved by the University 

Council on Animal Care at The University of Western Ontario. Periostin knockout mice 

(Postn-/-) were generated and described previously (Rios et al., 2005). Heterozygous mice 

were crossed with C57BL/6J (JAX® Mice and Services, Bar Harbor, Maine) for a 

minimum of six generations to ensure an incipient congenic strain. Backcrossed 

heterozygous mice were used for breeding and offspring were genotyped as described 

previously (Rios et al., 2005).  Postn-/- mice and sex-matched littermate Postn+/+ control 

mice were weaned at 3 weeks and provided with powdered food to reduce the effects of 

tooth defects on growth rate (Rios et al., 2005). All animals were subjected to 12 h 

light/dark cycle and temperature in accordance with the guidelines of the Canadian 

Council on Animal Care. 

2.4.2 Punch Wounds 

For experiments, Postn-/- and sex-matched littermate Postn+/+ mice (12 weeks of age 

weighing approximately 25 g) were anesthetized with an intraperitoneal injection of 

buprenorphine (50 µg/kg), followed by an injection of ketamine (100 mg/kg) and 

xylazine (5 mg/kg). Backs were shaved, depilated and sterilized with iodine. Two full-

thickness excisional wounds were made on each side of the dorsal midline with a 6 mm 

punch biopsy. Removed tissue was considered day 0 and was retained for further 

analysis. Wounds were photographed immediately after wounding and again at 3, 5, 7, 9 

and 11 days post wounding. Wound area was assessed from photographs using Northern 

Eclipse v7.0 software (Empix Imaging Inc., Mississauga, Ontario) and expressed as a 

fraction of initial area. Mice were caged individually following wounding and were 

sacrificed at day 11 for histology and gene expression assays. 

2.4.3 Tissue Preparation and Immunohistochemistry 

Additional animals were wounded as described above and sacrificed at days 5 and 7. At 

various time-points wounds were excised and either snap frozen in liquid nitrogen, or 
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fixed in 10% neutral buffered formalin (Sigma Aldrich, St. Louis, Missouri). Tissues 

were stained as previously described (Jackson-Boeters et al., 2009). Sections were 

blocked with 10% horse serum and incubated with goat anti-periostin (sc49480, Santa 

Cruz Biotechnology, Santa Cruz, California) primary antibody overnight at 4°C. For 

negative controls, periostin primary antibody was pre-absorbed for 1 hour with the 

immunizing peptide. Detection was by ImmPRESS Ig peroxidase kits (Vector 

Laboratories, Burlingame, California) and visualized with 3,3-diaminobenzidine (Vector 

Laboratories). Sections were counterstained with haematoxylin. Staining of α-SMA was 

with the rabbit anti-α-SMA primary antibody (ab5694, Abcam, Cambridge, United 

Kingdom), fibroblast-specific protein-1 was with anti-FSP1/S100A4 (Millipore, Billerica, 

Massachusetts), CD68 was with MCA1957 (AbD Serotec, Oxford, United Kingdom), 

neutrophil elastase was with ab68672 (Abcam). Negative controls excluded the primary 

antibody. For immunofluorescence, nuclei were labeled with DAPI (Vector 

Laboratories). Detection of p-Smad2/3 (sc11769-R, Santa Cruz Biotechnology) positive 

nuclei on paraffin sections was carried out as above excluding haematoxylin 

counterstaining. Trichrome staining was carried out as previously described (Liu et al., 

2008). For assessment of re-epithelialization, sections from the centre of the wounds were 

stained with haematoxylin and photographed. Wound size and epithelial migration 

distance were measured using Northern Eclipse v7.0 software. Epithelial migration 

distance was defined as the unilateral distance between the wound border and the 

migrating front of keratinocytes. Percent epithelialization was determined from bilateral 

epithelial migration distance, normalized to wound size. 

2.4.4 In Situ Hybridization 

In situ hybridization for periostin message was performed on 10 µm paraffin serial skin 

sections using [35S]-labeled riboprobe transcribed from a 574 bp fragment of mouse 

periostin cDNA (Kruzynska-Frejtag et al., 2001). Hybridization with sense probe was 

performed in parallel as negative control. 
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2.4.5 RT-qPCR 

Snap frozen tissue samples were homogenized in 1 mL of TRIzol® reagent (Invitrogen, 

Carlsbad, California). Total RNA was extracted as per the manufacturer’s 

recommendations. Real-time quantitative PCR was carried out on 50 ng of total RNA 

using TaqMan® One-Step RT-PCR Master Mix and gene-specific TaqMan® probes 

(Applied Biosystems, Carlsbad, California). Postn and Acta2 gene expression was 

normalized to the endogenous control gene 18S. PCR efficiency was verified to fall 

between 90 and 110%, via dilution series, and relative expression was calculated using 

the ΔΔCT method (Livak and Schmittgen, 2001). 

2.4.6 Hydroxyproline 

Hydroxyproline content of excised dermal wounds was determined as an indicator of 

collagen content essentially as previously described (Samuel, 2008). Hydroxyproline 

content was determined using a standard curve and normalized to tissue dry weight. 

Values were expressed as grams of hydroxyproline per 100 g of tissue. 

2.4.7 Isolation of Primary Dermal Fibroblasts 

Excised tissue from punch wounds were immediately transferred to Dulbecco’s Modified 

Eagle Medium (High Glucose) supplemented with 10% fetal bovine serum and 2% AA 

(200 units penicillin/200 µg streptomycin/0.5 µg/mL amphotericin B) (Gibco, Carlsbad, 

California). Skin was washed with five changes of media then incubated at 37°C, 5% 

CO2 to allow fibroblasts to migrate onto the culture surface. For use, skin was removed 

and cells were cultured for two to three passages. 

2.4.8 Gel Contraction 

Gel contraction assays were conducted essentially as previously described (Shi-wen et 

al., 2004). Collagen was prepared as follows: 10% 0.2 M HEPES (pH 8), 40% bovine 

collagen type-1 (Advanced BioMatrix Inc., San Diego, California) and 50% 2X 

Dulbecco’s Modified Eagle Medium (High Glucose). Dermal fibroblasts were suspended 

in 0.5% FBS DMEM and mixed 1:1 with the collagen preparation to a final density of 

100,000 cells/mL. Either 5 µg/mL rhPN (R&D Systems Inc., Minneapolis, Minnesota) or 
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an equivalent volume of PBS was incorporated into the collagen/cell mix. 24 well tissue 

culture plates were pre-coated with BSA overnight then washed with PBS.  Collagen/cell 

mix (0.5 mL) was added to each well and allowed to set at 37°C. Following 

polymerization, wells were flooded with 1 mL 0.5% FBS DMEM. After 24 hours, gels 

were separated from the surface of the plate and incubated for an additional 24 hours. To 

ensure that contraction of gels horizontally and vertically was accounted for, 

quantification of gel contraction was assessed by loss of gel weight, whereby contraction 

of the collagen matrix excluded growth media, thus reducing the weight of the gel 

(Tingstrom et al., 1992). 

The Src/FAK inhibitor, PP2 (Calbiochem, Darmstadt, Germany), was added at 10 µM to 

the collagen/cell mix during preparation and to the media following polymerization. An 

equal volume of dimethyl sulfoxide (DMSO) (Sigma Aldrich) was added to untreated 

control gels. Additionally, integrin β1 signaling was inhibited by addition of 10 µg/mL 

blocking antibody (MA2253, Millipore) or mouse IgG (PP100, Millipore) to the 

collagen/cell mix.. 

2.4.9 Fibroblast Populated Collagen Lattice (FPCL) Contraction 
Assay 

Experiments were performed essentially as previously described (Shi-wen et al., 2004). 

Briefly, cells (1×106 cells/ml) were seeded into a collagen gel (First Link Ltd., 

Birmingham, United Kingdom) floated in DMEM, 0.5% FBS. Gels were anchored at one 

end and attached to a force transducer at the other end. Forces generated across the 

collagen lattice were measured over a 24 hour period. Graphical readings are produced 

every 15 seconds providing continuous measurements of generated forces (Dynes: 1×10−5 

N) which are logged into a personal computer. 

2.4.10 Adhesion 

Tissue culture treated 96 well plates were coated overnight at 4°C with 10 µg/mL human 

fibronectin (Sigma Aldrich), 10 µg/mL bovine collagen type-1 (Advanced BioMatrix), 10 

µg/mL rhPN (R&D Systems) or a combination of periostin and collagen or fibronectin. 

Plates were subsequently blocked with 3% BSA at 37°C for 2 hours. Dermal fibroblasts 
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were suspended in serum free media, seeded and allowed to attach for 2 hours. Adherent 

cells were fixed with 10% neutral buffered formalin (Sigma Aldrich) and stained with 

methylene blue. Adhesion was quantified by dye extraction and measurement of 

absorbance at 650 nm (Oliver et al., 1989). Cell number was determined from a standard 

curve. 

2.4.11 Migration 

Migration was assessed by scratch wound assays essentially as previously described 

(Liang et al., 2007). Dermal fibroblasts were seeded on glass bottom culture dishes and 

allowed to reach confluence. Scratches were created with a P200 tip and disrupted cells 

were washed away with PBS. Growth media was replaced with 0.5% FBS DMEM to 

reduce proliferation. Closure of scratches was documented by time-lapse video 

microscopy using a Zeiss Axio Observer Z.1 inverted microscope equipped with a 

temperature and CO2 controlled incubation chamber (Carl Zeiss, Oberkochen, Germany). 

2.4.12 Immunocytochemistry 

Dermal fibroblasts were suspended in 0.5% FBS DMEM and seeded at 30,000 cells/well 

on pre-coated collagen type-1 6-well plates (BD Biosciences, Franklin Lakes, New 

Jersey). Cells were left to attach overnight before treatment with 5 ng/mL recombinant 

human TGFβ1 (R&D Systems) for 24 hours. Alternatively, cells were seeded on top of 

polymerized collagen gels (prepared as described above) in 24-well plates and incubated 

for 48 hours. Cells were fixed with 4% paraformaldehyde, permeablized with 0.1% 

Triton X-100 and blocked with 3% BSA. Filamentous actin was visualized using 

rhodamine-conjugated phalloidin (Molecular Probes, Carlsbad, California). α-SMA was 

labeled with a mouse monoclonal primary antibody (A5228, Sigma Aldrich) and detected 

with a goat anti-mouse IgG conjugated to Alexa Fluor 488 secondary antibody 

(Molecular Probes). Fibroblast morphology was assessed as dendritic or planar by a 

blinded observer from random fields of view. Fibroblasts were considered as displaying 

the dendritic morphology based on the lack of stress fibers and extension of thin 

branching cytoplasmic extensions. Cells displaying planar morphology were well-spread 

and showed prominent stress fibers. 
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2.4.13 Western Blotting 

Cell lysates were harvested at 48 hours with RIPA buffer (Sigma Aldrich) containing 

protease and phosphatase inhibitor cocktails (Sigma Aldrich). Protein concentration was 

determined by BCA assay (Pierce, Waltham, Massachusetts). For 3D collagen gels, gels 

were homogenized and cells were lysed by sonication. Proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

nitrocellulose membranes. Membranes were washed with tris-buffered saline containing 

0.05% tween-20 (TBST). Membranes were blocked with 5% milk TBST. Primary 

antibodies were anti-α-SMA (ab5694, Abcam), anti-FAKY397 (BD611722, BD 

Biosciences), anti-FAK (sc-558, Santa Cruz Biotechnology) and anti-GAPDH (MAB374, 

Millipore). Detection was with appropriate peroxidase-conjugated secondary antibodies 

(Jackson ImmunoReaserch, West Grove, Philadelphia) and enhanced chemiluminescence 

(Pierce). Bands were quantified using Image J software, using GAPDH to correct for 

loading. 

2.4.14 Polyacrylamide Substrates 

Matrix-coated flexible polyacrylamide substrates were created on glass cover slips using 

methods described previously (Pelham and Wang, 1997; Bhana et al., 2010; Tilghman et 

al., 2010). Polyacrylamide gels of varying stiffness were prepared with 7% (4,800 and 

19,200 Pa) or 15% (50,000 Pa) acrylamide (Sigma Aldrich) and 0.05% (4,800 Pa), 0.24% 

(19,200 Pa) or 0.3% (50,000 Pa) N,N’-methylenebis(acrylamide) (Sigma Aldrich) (Bhana 

et al., 2010; Tilghman et al., 2010). Gels were coated with either 100 µg/mL collagen 

type-1 (Advanced BioMatrix Inc) or 100 µg/mL collagen type-1 and 5 µg/mL rhPN 

(R&D Systems) using the heterobifunctional crosslinker Sulfo-SANPAH (Pierce). Gels 

were washed with PBS and equilibrated with growth media before seeding cells. 

2.4.15 Scaffolds 

Collagen type-1 (Sigma-Aldrich) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol to 

make a 15% (w/v) solution. Periostin (R&D Systems) was dissolved in PBS to make a 1 

mg/ml solution. 20 µl of the periostin (concentration of 100 µg/ml) was mixed with 3 ml 

of collagen solution, and the mixture injected at a speed of 1 ml/h by a syringe pump into 



 

 

100 

a capillary charged with a voltage of +15 kV. The generated nanofibers were collected on 

a negatively charged (-10 kV) rotation mandrel. Control scaffolds contained 20 µl of 

PBS. To crosslink the scaffolds, they were immersed in 5% glutaraldehyde/ethanol 

solution for 30 min. Scaffolds were spun onto aluminum foil, and a 6 mm biopsy punch is 

used to cut the scaffolds to ensure they were the same size as the wound. Each scaffold 

was sterilized in 100% ethanol and rinsed 3 times with PBS. Two 6 mm diameter 

scaffolds were inserted into each wound immediately following wounding. 

2.4.16 Statistical Methods 

Statistical analysis was by one-way or two-way ANOVA, as appropriate, followed by a 

Bonferroni correction, using Graphpad Software v4 (Graphpad Software, La Jolla, 

California) (p ≤ 0.05 was considered significant). Student’s t-tests were used for p-

Smad2/3 and hydroxyproline data. A Dunnett’s multiple comparison test was used for gel 

contraction assays including inhibitors to compare all treatments to the reference group, 

KO + PN + DMSO. In total, 16 Postn-/- and 16 Postn+/+ wounds were tracked for wound 

area over the 11-day time course. Data is expressed as a fraction of the original wound 

area (mean ± s.d.).  In vivo gene expression data represents the mean ± s.e.m. of at least 5 

Postn-/- and 5 Postn+/+ wounds for each time point.  In vitro data is expressed as the mean 

± s.d. of three individual experiments with three independent sex-matched littermate 

primary cultures. Individual experiments included at least three replicates. 
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Chapter 3  

3 Evaluation of periostin and CCN2 as potential 
therapeutics for the treatment of human chronic skin 
wounds 

 

Abstract 

Development of effective treatments to close non-healing skin lesions, or chronic skin 

wounds, has been hampered by a lack of thorough understanding of the dysfunctions 

present in these wounds. Matricellular proteins have received little attention despite their 

known role in modulating many important aspects of normal wound healing. The 

matricellular proteins periostin and CCN2 promote fibrotic aspects of wound healing but 

their state in chronic skin wounds is unknown. The objective of this study was to 

determine the expression patterns of periostin and CCN2 in human chronic skin wounds. 

Periostin and CCN2 were reduced within the wound bed of human chronic skin wounds. 

This might be due to the inflammatory microenvironment since wound edge fibroblasts 

showed no deficits in inducible fibrotic phenotype in vitro. Administration of rhPN or 

rhCCN2, electrospun with collagen, accelerated wound closure in a model of impaired 

diabetic healing. We propose that matricellular proteins, particularly periostin and CCN2, 

are promising therapeutic options for the treatment of human chronic skin wounds. 

 

 

A version of this chapter is in preparation for submission to Nature Biotechnology: 

Elliott, C.G., Li, X., Guan, J., Dunmore-Buyze, J., Drangova, M., Forbes, T., Leask, A., 

and Hamilton, D.W. (In preparation) Evaluation of periostin and CCN2 as potential 

therapeutics for the treatment of human chronic skin wounds. 
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3.1 Introduction 

The skin’s ability to heal is fundamentally important to maintaining proper barrier 

function and ultimately our survival. However, certain human populations including the 

elderly and those with systemic conditions such as diabetes often demonstrate an 

impaired ability to heal skin wounds. Failed wound healing results in what is broadly 

termed a chronic skin wound. As of 2009/10, 2.4 million Canadians (Public Health 

Agency of Canada, 2011) and 25.8 million Americans were living with diabetes (Centers 

for Disease Control and Prevention, 2011). It is estimated that 25% of people with 

diabetes will develop a chronic skin wound in their lifetime (Singh et al., 2005). The 

consequences of developing a chronic skin wound are severe, with complications 

including increased risk of infection, sepsis, osteomyelitis, amputation, and even death 

(Sen et al., 2009). The financial costs of chronic skin wounds are estimated to be as high 

as $25 billion annually in the United States alone (Brem et al., 2007). With the incidence 

of diabetes and its associated clinical complications projected to rise significantly, it is 

imperative that new treatment modalities are developed. However, developing effective 

treatments has been hindered by our limited knowledge of the dysfunctions present in 

chronic skin wounds. 

Chronic skin wounds, regardless of etiology, are classified based on an absence of 

healing after 4 weeks (Sheehan et al., 2003). They are complicated by a combination of 

patient age, repeated ischemia-reperfusion injury, bacterial colonization and hypoxia 

(Mustoe, 2004; Schreml et al., 2010). Common features of chronic skin wounds include 

reduced growth factor activity, decreased matrix accumulation, increased fibroblast 

senescence and a general failure to progress beyond the inflammatory phase of healing 

(Elliott and Hamilton, 2011). Many different treatment strategies have been investigated 

for the treatment of chronic skin wounds; including protease inhibitors, numerous growth 

factors, decellularized matrices, skin grafts, negative pressure, hyperbaric-oxygen, stem 

cell delivery and even ultrasound (Game et al., 2012). Of these, very few are supported 

by strong evidence of efficacy (Hinchliffe et al., 2008; Game et al., 2012). One of the 

most promising treatments evaluated in clinical trials, rhPDGF-BB (marketed under the 

name Regranex®) has received criticism due to the limited applicability and moderate 
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effectiveness compared to placebo (Hinchliffe et al., 2008; Elliott and Hamilton, 2011). 

Trials of the profibrotic growth factor TGFβ showed no efficacy in closed label trials 

(Robson et al., 1995), despite promising results in animals (Beck et al., 1990; Zhao et al., 

1994). Perhaps the somewhat disappointing results from growth factor based therapies 

may be explained, in part, by another group of proteins; the matricellular proteins. 

Matricellular proteins are secreted non-structural matrix components which have been 

shown to influence all aspects of wound healing (Midwood et al., 2004; Hamilton, 2008; 

Elliott and Hamilton, 2011). They modulate the interactions between the cell and its 

extracellular environment, further regulating cellular behaviour including growth factor 

response. The matricellular proteins periostin and CCN2 have been heavily implicated in 

the fibrotic and proliferative stages of tissue repair; including collagen production, matrix 

contraction and fibroblast differentiation (Elliott and Hamilton, 2011). Moreover, it has 

been shown that extracellular periostin (Sidhu et al., 2010; Lorts et al., 2012) and CCN2 

(Kothapalli et al., 1997; Duncan et al., 1999; Shi-wen et al., 2006) are required for proper 

TGFβ signaling in a context-dependant manner. We have shown that a loss of periostin 

results in a delay in wound closure attributed to attenuation of wound contraction (Elliott 

et al., 2012). Additionally, periostin may have a positive influence on re-epithelialization 

and fibroblast proliferation (Nishiyama et al., 2011; Ontsuka et al., 2012). CCN2 is 

required for appropriate myofibroblast recruitment in skin (Sonnylal et al., 2010; Liu et 

al., 2011) and positively influences angiogenesis in a variety of tissues (Hall-Glenn et al., 

2012; Alfaro et al., 2013). 

Local delivery of both of these proteins as therapeutics for the treatment of chronic skin 

wounds shows potential. Delivery of periostin into full-thickness excisional wounds of 

periostin knockout mice increases both closure rate (Ontsuka et al., 2012) and 

myofibroblast differentiation (Elliott et al., 2012). Administration of recombinant CCN2 

in a burn model of wound healing results in increased closure rate and fibroblast 

recruitment (Liu et al., 2007). However, the relative expression levels of periostin and 

CCN2 in human chronic skin wound tissue have never been investigated. We hypothesize 

that these profibrotic matricellular proteins are significantly reduced in human chronic 

skin wounds. In the current study we show that in human chronic skin wound tissue 
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periostin expression is significantly reduced and CCN2 expression is not induced. 

Additionally, we demonstrate that fibroblasts from the edge of chronic skin wounds can 

be induced to express the profibrotic phenotype required for wound healing in vitro. 

Finally, in a model of impaired diabetic healing, we show that recombinant human 

periostin (rhPN) and CCN2 (rhCCN2) electrospun with collagen can rescue wound 

closure rates in diabetic db/db mice. 

3.2 Results 

3.2.1 Periostin and CCN2 are not induced in human chronic skin 
wounds 

Immunohistochemical detection of periostin in human tissue samples (Table 3.1) showed 

strong reactivity within the dermis of the skin proximal to the wound edge (within 2 cm), 

as well as skin from a non-involved region of the limb (Figure 3.1a). At the wound edge, 

a sharp drop in periostin immunoreactivity occurred, which was also evident in the 

wound bed. CCN2 immunoreactivity was noted in the vasculature and epidermis of non-

involved and proximal skin. CCN2 was present in the dermis/granulation tissue at the 

wound edge but was diminished within the wound bed. α-SMA immunoreactivity was 

restricted to blood vessels and exocrine glands in the non-involved and proximal tissue. 

At the wound edge, immunoreactivity was present in the blood vessels and dermis. 

Within the wound bed, both vasculature and stromal immunoreactivity of α-SMA was 

absent, indicating a lack of myofibroblast populations that would be expected within a 

remodeling wound. Furthermore, the density of blood vessels (visualized by α-SMA) was 

increased in proximal and wound edge tissue compared to non-involved skin. Masson’s 

trichrome staining demonstrated a lack of collagen accumulation within the wound. A 

semi-quantitative comparison of periostin and CCN2 staining on the proximal and distal 

sides of the leading epithelial front (Figure 3.1b) confirmed that CCN2 was not increased 

beyond the epithelial front (n = 14, p = 0.50, two-tailed paired t-test). The percentage of 

area positively stained for periostin was significantly decreased distal to the leading 

epithelial front, compared to the intact skin on the proximal side of the epithelial front (n 

= 15, p = 0.0004, two-tailed paired t-test). 
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Table 3.1: Patient samples and demographics 

 Sex Age Diabetic Diagnosis Location (amputation, wound location, cells obtained) 

01 Male 74 No PVD Above knee, heel, wound cells 

02 Female 79 No PVD Above knee, site of previous amp, wound cells 

03 Male 34 Type One Infection Below knee, back of heel 

04 Female 46 Type Two PVD Below knee, side of foot 

05 Male 55 Type Two PVD Above knee, site of previous amp, wound cells 

06 Male 70 Type Two PVD Below knee, side of foot, wound edge cells  

07 Female 83 Type Two PVD Below knee, side of foot, wound edge cell 

08 Male 65 Type Two PVD Above knee, side of calf 

09 Male 78 Type Two PVD Foot amputated, sole of foot 

10 Male 66 Type Two PVD Below knee, anterior ankle/foot 

11 Male 56 Type Two PVD Below knee, previous toe amp 

12 Male 86 Type Two PVD Below knee, base of big toe 

13 Male 58 Type Two PVD Below knee, side of heel 

14 Male 47 Type Two PVD Below knee, site of previous amp mid foot 

15 Male 73 Type Two PVD Below knee, side of foot 

16 Male 79 Type Two PVD Below knee, side of foot 

17 Male 88 Type Two PVD Above knee, heel of foot, wound edge cells 

18 Female 87 Type Two PVD Below knee, between toes, wound edge cells 

PVD: Peripheral vascular disease 
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Figure 3.1: Periostin and CCN2 are not induced in human chronic skin wounds. 

Human chronic skin wound tissues were examined with (a) Masson’s trichrome for 

collagen, IHC for periostin, α-SMA and CCN2 on sections from regions varying in 

distance from the wound edge (top). The Proximal region is approximately 2 cm from the 

wound edge. Scale bar = 200 µm. (b) To quantify periostin and CCN2 staining, images 

were masked for background or empty space (yellow) and positive DAB staining (red). 

Periodontal ligament (top), stained for periostin, is shown for illustration of the masking 

technique. The area of each mask was recorded separately for the wound bed and the 

intact tissue, demarcated by a vertical line at the leading edge of the epidermis (red 

arrowheads). Percent tissue area positively stained was calculated as per Methods (n = 

15, * = p < 0.001, red arrows indicate the median, paired t-test). (c) RNA was extracted 

from human tissues and analysis of gene expression via RT-qPCR was carried out with 

probes specific for POSTN, COL1A2, ACTA2 and CCN2, normalized to the endogenous 

control gene, 18S. POSTN expression was significantly lower in wound edge tissue 

compared to non-involved tissue (n = 10, p = 0.046, Friedman test). COL1A2, ACTA2 

and CCN2 expression were not increased at the wound edge.  
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Figure 3.1: Periostin and CCN2 are not induced in human chronic skin wounds 
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To confirm our histological findings, we performed RT-qPCR on frozen human tissue 

samples (Figure 3.1c). ACTA2 (n = 9, p = 0.28, Freidman test), COL1A2 (n = 10, p = 

0.37, Freidman test) and CCN2 (n = 10, p = 0.32, Freidman test) transcripts showed a 

downward trend with proximity to the wound, although not significantly decreased. 

POSTN was significantly decreased at the wound edge, compared to non-involved tissue 

(n = 10, p = 0.046, Friedman test). 

3.2.2 Human Chronic skin wounds are stalled in an inflammatory 
stage of wound healing 

Previous studies with mouse models have shown that both periostin and CCN2 should be 

significantly induced during skin healing (Igarashi et al., 1993; Elliott et al., 2012), 

however, this was not evident in the human chronic skin wound tissue used in this study 

(Figure 3.1). To understand why, we next investigated cellular components and 

inflammatory mediators in the tissue samples. Immunoreactivity for TNFα, CD68 

(macrophages) and neutrophil elastase all increased progressively with proximity to the 

wound bed (Figure 3.2). The profibrotic cytokine, TGFβ (using a pan-specific antibody), 

was detected at increasingly higher levels towards the wound bed. In non-involved skin 

immunoreactivity for TGFβ, neutrophil elastase and CD68 was largely absent. In 

addition, TNFα immunoreactivity remained present, albeit at much lower levels than in 

the wound bed tissue. Vimentin, a marker for mesenchymal cells such as fibroblasts and 

smooth muscle, was sparsely distributed throughout the dermis of non-involved and 

proximal regions, with increased density near the dermal-epidermal junction and the 

wound edge. Beyond the leading epithelial front there was a sharp decline in vimentin-

positive cells, indicating a deficit in fibroblast infiltration into the wound bed. Periostin 

was strongly associated with mesenchymal cells at the dermal-epidermal junction up until 

the wound edge where periostin immunoreactivity abruptly declined (Figure 3.2). Small 

populations of mesenchymal cells were found beyond the wound edge, however they 

were not associated with periostin immunoreactivity. 
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Figure 3.2: Human chronic skin wounds are stalled in an inflammatory stage of 

wound healing. Human chronic skin wound tissues were examined with IHC for TNFα, 

CD68 (macrophage marker, ED-1), neutrophils elastase, TGFβ1 and vimentin on sections 

from regions varying in distance from the wound edge (top). The chronically inflamed 

granulation tissue showed markers for macrophages and neutrophils. TGFβ1 was present 

within the wound yet various fibrotic TGFβ1 target genes were not induced. Scale bar = 

200 µm. Immunofluorescence for periostin and vimentin (bottom) was used to determine 

the extent of mesenchymal cell infiltration beyond the wound edge. A population of 

mesenchymal cells persisted beyond the wound edge but did not associate with periostin. 

Relative spatial relationship of these images is indicated diagrammatically (top). 
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Figure 3.2: Human chronic skin wounds are stalled in an inflammatory stage of 

wound healing 
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3.2.3 Fibroblasts isolated from human chronic skin wound tissue 
can be induced to adopt a pro-fibrogenic phenotype 

To determine if fibroblasts from human chronic skin wound tissue were inherently 

dysfunctional we cultured fibroblasts from non-involved and wound tissue explants. 

Initially, cells were grown from the wound tissue samples that spanned the proximal 

region (Figure 3.3a). These cells responded to stimulation with TGFβ1 similarly to non-

involved fibroblasts (Figure 3.3a). Based on histological observations indicating that the 

proximal tissue was very similar to non-involved skin (Figure 3.1a,b and 3.2) we chose to 

focus our attention on fibroblasts cultured exclusively from the wound edge (Figure 

3.3a). 

Wound edge fibroblasts were more responsive to TGFβ1 with respect to POSTN (n = 4, 

cell source p = 0.023, treatment p = 0.012, interaction p = 0.071, two-way ANOVA) and 

ACTA2 (n = 4, cell source p = 0.047, treatment p = 0.0033, interaction p = 0.049, two-

way ANOVA) induction, compared to non-involved fibroblasts (Figure 3.3b). TNFα 

treatment depressed POSTN and ACTA2 expression in both non-involved and wound 

edge fibroblasts. COL1A2 (n = 4, treatment p = 0.011, interaction p = 0.4734, two-way 

ANOVA) and CCN2 (n = 4, cell source p = 0.71, treatment p = 0.0004, interaction p = 

0.73, two-way ANOVA) gene expression was similarly affected by TGFβ1 and TNFα 

stimulation between non-involved and wound edge fibroblasts. However, COL1A2 

expression was reduced in wound edge, compared to non-involved fibroblasts (n = 4, cell 

source p = 0.0001, two-way ANOVA). TNFα treatment attenuated the response to 

TGFβ1. 

We next compared wound edge fibroblasts to healthy adult human fibroblasts (HDFa) 

(Figure 3.3c). POSTN, COL1A2 and CCN2 expression patterns in HDFa cells treated 

with TGFβ1, TNFα, or both were similar to those of the wound edge cells. TGFβ1 

increased expression of these genes and TNFα attenuated its effects (n = 3, p < 0.01, one-

way ANOVA). ACTA2 expression was not increased in HDFa cells following TGFβ1 

treatment, but instead was decreased (n = 3, p = 0.0001, one-way ANOVA). To confirm 

that this decrease was not simply due to initial high basal expression levels, we 
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performed the same experiments and measured α-SMA protein levels (Figure 3.3d). 

Western blots confirmed the lack of α-SMA induction in HDFa cells and clearly 

demonstrated that this was not a consequence of high basal expression (n = 4, cell source 

p = 0.0004, two-way ANOVA). 

Next, we conducted proliferation assays (Fig. 6c) comparing isolated fibroblasts to 

HDFa.  After 10 days in culture, HDFa cultures underwent 3.55 population doublings (n 

= 3). Non-involved and wound fibroblasts (n = 4) underwent 4.09 and 4.11 population 

doublings, respectively (cell source p = 0.0017, time p = 0.0001, interaction p = 0.91, 

two-way ANOVA). 

Finally, we sought to determine if isolated wound fibroblasts were capable of contracting 

a collagen matrix. Non-involved and wound fibroblasts were similarly capable of 

contracting a fixed matrix collagen gel. Treatment with TGFβ1 provided no additional 

increase in gel contraction but treatment with TNFα was found to inhibit gel contraction 

(Figure 3.3f). A combination of TGFβ1 and TNFα resulted in an intermediate level of 

contraction (n = 4, cell source p = 0.76, treatment p = 0.0001, interaction p = 0.83, two-

way repeated measure ANOVA). To determine if the degree of contraction was 

comparable to healthy adult fibroblasts, we conducted similar assays with HDFa cells 

(Figure 3.3g). HDFa (n = 3) cells contracted collagen gels to 65% of their original mass 

(measured from gels lacking cells), whereas wound cells (n = 5) contracted gels to 39% 

of their original mass. This difference was found to be significant (p = 0.034, two-tailed 

t-test). From this series of experiments we concluded that wound fibroblasts were not 

inherently dysfunctional. 

3.2.4 Excisional wound healing in the genetically diabetic db/db 
mouse closely mimics human chronic skin wounds 

Based on defined role of periostin and CCN2 in the proliferative phase of wound healing 

and their inappropriate expression patterns in human chronic skin wound tissue (Figure 

3.1), we hypothesized that addition of rhPN and rhCCN2 could be used to push chronic 

skin wounds into the proliferative phase (Figure 3.4a). To test the effectiveness of adding 

rhPN and rhCCN2 to chronic skin wounds, we adopted the widely documented db/db 
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Figure 3.3: Fibroblasts isolated from human chronic skin wound tissue can be 

induced to adopt  a pro-fibrogenic phenotype. (a) Human dermal fibroblasts were 

cultured in vitro from skin samples near the site of amputation (non-involved) and an area 

extending 2 cm from the wound boarder (wound). Alternatively, the source of cells was 

restricted to the tissue directly at the wound edge (n = 4, * = p < 0.05 compared to non-

involved, two-way ANOVA). Cells wound tissue responded similarly to cells from non-

involved tissue, prompting a focus on wound edge cells. (b) Cells (P1) were treated with 

5 ng/mL TGFβ1, 1 ng/mL TNFα or both for 24 hours.  Quantitative RT-qPCR was 

carried out with probes specific for POSTN, COL1A2, ACTA2 and CCN2.  Data was 

normalized to the endogenous control gene, 18S. COL1A2 expression at baseline was 

reduced in cells cultured from the wound edge compared to cells cultured from non-

involved skin (# = p < 0.05, two-way ANOVA). For POSTN and ACTA2, cells harvested 

from the wound edge were found to be more robust in response to TGFβ1 (* = p < 0.05). 

Treatment with 1 ng/mL TNFα decreased POSTN expression and attenuated the response 

to TGFβ1 for POSTN, COL1A2, ACTA2 and CCN2. (c) Adult healthy human dermal 

fibroblasts were treated and assessed as above. Letters indicate statistically similar 

treatments (n = 3, p < 0.05, one-way ANOVA). (d) Response of α-SMA to TGFβ1 was 

confirmed at the protein level by western blot (n = 4). (e) Wound, non-involved and 

healthy human dermal fibroblasts were assessed for proliferation. Wound edge and non-

involved fibroblasts were significantly more proliferative than healthy adult human 

dermal fibroblasts (n = 4, p = 0.0017 for cell source, two-way ANOVA). (f) Cells (P1) 

were assessed for their ability to contract a fixed matrix collagen gel. (g) Wound cells 

contracted collagen gels to a further extent than healthy human dermal fibroblasts (n = 4, 

p < 0.05, t-test).  
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Figure 3.3: Fibroblasts isolated from human chronic skin wound tissue can be 

induced to adopt a pro-fibrogenic phenotype 
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Figure 3.4: Excisional wound healing in the genetically diabetic db/db mouse closely 

mimics human chronic skin wounds. (a) Proposed treatment approach for human 

chronic skin wounds using (b) electrospun collagen scaffolds containing rhPN or 

rhCCN2. Scaffolds were cut to size and inserted into excisional wounds on the backs of 

db/db mice and visualized via sulpho-rhodamine conjugation at day 1 post wounding. 

Scale bar = 200 µm. (c) Mice homozygous for the Leprdb allele (db/db), on a C57BL/6 

background were obese and hyperglycemic at 12 weeks of age (n = 10, * = p < 0.0001, t-

test). (d) Adult wild-type (C57BL/6J) and db/db (B6.BKS(D)Leprdb/J) mice were 

subjected to excisional cutaneous wounding and compared at day 7 to human chronic 

skin wound samples. The expression pattern of periostin, α-SMA, collagen and TNFα in 

db/db wounds closely mimicked that of human chronic skin wounds. Scale bar = 200 µm. 

(e) Total RNA was extracted from wild-type and db/db full-thickness excisional punch 

wounds at 7 and 11 days post wounding. Excised tissue was used for day 0 samples. 

Quantitative RT-qPCR was carried out with probes specific for Postn, Col1a2, Acta2, 

Ccn2 and Fn1. Data was normalized to the endogenous control gene, 18s. Compared to 

wild-type mice, db/db mice show a failure to appropriately induce fibrotic genes during 

wound healing (n = 5, # = p < 0.05 compared to day 0, * = p < 0.05 compared to wild-

type, two-way ANOVA). 
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Figure 3.4: Excisional wound healing in the genetically diabetic db/db mouse closely 

mimics human chronic skin wounds 
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mouse model of type-two diabetes and employed our previously described electrospun 

collagen scaffold delivery mechanism (Figure 3.4b) (Elliott et al., 2012). Compared to 

C57BL/6J control mice (wild-type), db/db mice quickly became obese (wild-type 25.0 g, 

db/db 46.1 g at 12 weeks, n = 10, p = 0.0001, two-tailed t-test) and displayed an elevated 

fasting blood glucose level (wild-type 8.59 mM, db/db 18.78 mM, n = 10, p = 0.0001, 

two-tailed t-test) (Figure 3.4c). Day 7 wounds in db/db mice displayed lower periostin, α-

SMA and collagen, but increased TNFα, compared to wild-type wounds. Day 7 db/db 

wounds closely resembled the histology of human chronic skin wounds with respect to 

these proteins (Figure 3.4d). RT-qPCR analysis of day 7 db/db wounds revealed a failed 

progression of the profibrotic phase of healing (Figure 3.4e). 

3.2.5 Addition of recombinant human periostin or CCN2 increases 
the closure rate of excisional skin wounds in db/db mice 

Healing of full-thickness excisional punch wounds (Figure 3.5a) was substantially 

delayed in db/db mice, compared to wild-type mice (Figure 3.5b). Addition of collagen 

scaffolds to either wild-type or db/db wounds did not significantly change the closure 

kinetics compared to untreated control wounds. Addition of scaffolds containing rhPN or 

rhCCN2 resulted in a significant reduction in wound area size by day 5 post wounding, 

and through to day 11 (time p = 0.0001, treatment p = 0.0001, interaction p = 0.0001, 

two-way ANOVA) (Figure 3.5b). An analysis of day 7 wound area measurements shows 

that collagen scaffolds alone did not affect closure rates in wild-type (n = 5) or in db/db 

mice (n = 11) (Figure 3.5c). Treatment with PN-containing or CCN2-containing scaffolds 

resulted in increased closure, similar to that in wild-type animals (n = 8, p = 0.0001, one-

way ANOVA). Addition of one PN-containing scaffold and one CCN2-containing 

scaffold to the same wound (PN+CCN2) resulted in increased closure over controls, but 

not over PN or CCN2 alone (n = 6) (Figure 3.5c). At day 11, wound size was found to be 

significantly smaller in PN- (p < 0.01), CCN2- (p < 0.05) and PN+CCN2-treated wounds 

(p < 0.01) compared to control db/db wounds, as measured on tissue sections from the 

centers of the wounds (n = 5, one-way ANOVA) (Figure 3.5d). Granulation tissue
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Figure 3.5: Addition of recombinant human periostin or CCN2 increases the closure 

rate of excisional skin wounds in db/db mice. Fully thickness excisional punch wounds 

were created in the skin of wild-type and db/db mice using a 6 mm biopsy tool. Wounds 

received either no treatment (control), electrospun collagen scaffolds (Collagen, Col), 

scaffolds containing rhPN (PN), scaffolds containing rhCCN2 (CCN2) or one scaffold of 

each (PN+CCN2). A total of two scaffolds were added per wound. (a) Wound area was 

assessed from photographs and expressed as a fraction of initial area. Scale bar = 10 mm. 

(b) Quantification of wound area from photographs showed a recovery of wound closure 

rates in the db/db wounds treated with PN, CCN2 or PN+CCN2. (c) At day 7, collagen 

alone is not sufficient to increase closure rate. PN, CCN2 and PN + CCN2 treated 

wounds exhibited accelerated healing. (d) At day 11, wound size measured from sections 

of the centre of the wound was significantly reduced in PN, CCN2 and PN+CCN2 treated 

wounds compared to db/db control wounds. Granulation tissue thickness was 

significantly increased in day 11 PN+CCN2 treated wounds compared to db/db control 

wounds. (e) Total RNA from the Collagen, PN, CCN2 and PN+CCN2 treated wounds of 

3 db/db mice were used to generate cDNA, which was analyzed with Mouse Gene 2.0 ST 

arrays. Gene Ontology (GO), KEGG Pathway and SwissProt and Protein Information 

Resource (SP PIR) keyword enrichments were generated using DAVID Bioinformatics 

Resources 6.7, NIAID/NIH. Enrichments were filtered by a p-value and the Benjamini-

Hochberg method was used to control for false discovery rate (FDR). (f) Differentially 

expressed genes were filtered based on an ANOVA p-value of less than 0.05 and 1.5 fold 

increase or decrease from db/db Collagen samples. (g) Genes that were differentially 

expressed and occurred in highly enriched terms were used to verify gene array data via 

RT-qPCR (n = 5).  
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Figure 3.5: Addition of recombinant human periostin or CCN2 increases the closure 

rate of excisional skin wounds in db/db mice 
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thickness was significantly increased in PN+CCN2-treated wounds compared to db/db 

control wounds, but not in either PN or CCN2 treatments (n = 5, p = 0.0087, one-way 

ANOVA) (Figure 3.5d). 

To investigate the mechanisms through which these scaffolds were influencing wound 

healing, we isolated total RNA from wounds treated with collagen-only scaffolds, as well 

as PN-treated, CCN2-treated and PN+CCN2-treated wounds. Total RNA from day 7 

wounds was subjected to whole genome transcriptional analysis. Genes for which 

expression levels changed by 1.5 fold (up or down, with a p-value ≤ 0.05) relative to 

db/db collagen wounds were filtered and analyzed for enriched Gene Ontology, KEGG 

Pathway and SwissProt and Protein Information Resource keywords (Figure 3.5e, 

Appendices C and D). The number of differentially expressed genes in the PN-treated 

wounds was 112 compared to the CCN2-treated wounds, where 535 genes changed 

(Figure 3.5f). In the PN+CCN2-treated wounds, a large number of differentially regulated 

genes were identified that were not identified in either PN- or CCN2-treated wounds 

alone (375) (Figure 3.5f), suggesting some interaction or synergistic effect of the 

combined treatment. Gene annotation analysis confirmed an enrichment of up-regulated 

genes associated with contractile machinery in all treatments (Figure 3.5e), with further 

enrichment still in PN+CCN2-treated wounds. Down-regulated gene lists were enriched 

for protease inhibitor terms, with higher enrichments for PN-treated wounds (Figure 

3.5e). A large number of genes that were differentially regulated in the PN or CCN2 

treatments were lost from the PN+CCN2 list (Figure 3.5f), indicating a loss of some of 

the effects of the singular treatments. Two such enrichments are the SP PIR Keyword 

acute phase, up-regulated in the PN treatment, and down-regulation of the PPARγ KEGG 

pathway with CCN2 treatment (Figure 3.5e). Genes that were differentially expressed 

and occurred in highly enriched terms were selected to verify microarray data via RT-

qPCR (Figure. 3.5g). Actc1, Myh3, Fasl, Csf1 and Pparg were chosen based on their 

relevance to tissue repair processes and were present in the most highly enriched terms 

from various treatments.  
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3.3 Discussion 

The burden of chronic skin wounds is a large and growing concern for healthcare systems 

around the world. However, development and implementation of new and effective 

treatment options has not kept up. Most growth factor treatments have had limited 

efficacy when tested in clinical trials and those that do have effects provide only a 

moderate benefit (Hinchliffe et al., 2008; Game et al., 2012). Physical matrices, skin 

substitutes and cell-based treatments (including stem cell therapies) can be extremely 

costly but have thus far shown no competitive advantage for treatment of these skin 

wounds. It is becoming widely recognized that combination approaches will become the 

successes of the future and that single factor approaches simply do not address the 

complexities of these chronic skin wounds. However, in designing these treatments, 

matricellular proteins have not yet been included in the discussion. Matricellular proteins 

are critically important in facilitating the profibrotic behaviours of cells and their 

response to growth factors (Brekken and Sage, 2000; Garrett et al., 2004; Shi-wen et al., 

2006; Lorts et al., 2012). Inclusion of matricellular proteins in therapeutic design may 

provide the missing links to facilitate growth factor signaling, cell differentiation and 

other important steps in wound healing. Unfortunately, very little is known about the 

expression and function of matricellular proteins in chronic skin wounds. 

We demonstrate here that the matricellular proteins periostin and CCN2 are 

inappropriately expressed in human chronic skin wounds. Studies in mice indicate that 

both of these proteins should be induced by day 3 following wounding (Igarashi et al., 

1993; Elliott et al., 2012). Although CCN2 was not reduced at the wound edge compared 

to non-involved tissue, it did not significantly increase either, as would be expected. 

Interestingly, previous research has shown that CCN2 is reduced in venous ulcers of 

greater than 6 month duration, compared to acute wounds of less than 6 weeks duration in 

otherwise healthy adults (Minhas et al., 2011). Therefore, depending on the etiology of 

the wounds, CCN2 may show different expression patterns but overall it is not up-

regulated as in acute mouse wounds. We observed an abrupt decrease in periostin 

immunoreactivity at the wound edge, confirmed by RT-qPCR. Interestingly, periostin 

transcript has been shown to be dramatically up-regulated in laser-captured blood vessels 
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from the edge of chronic skin wounds, compared to blood vessels from intact human skin 

(Roy et al., 2007). However, it is unclear from that study from exactly where, with 

respect to the wound edge, the samples were obtained and how that compares to the 

regions we describe surrounding the wound edge. 

The underlying cause(s) for reduced expression levels of periostin and CCN2 in chronic 

skin wounds are not currently known. We hypothesize that their expression pattern is a 

consequence of the inflammatory state of these wounds. We detected increased markers 

of inflammation beyond the wound edge, including neutrophil elastase, CD68 and TNFα. 

This is in agreement with previous reports showing increased neutrophil elastase in 

chronic compared with acute wound fluid (Trengove et al., 1999). Several groups have 

documented elevated TNFα levels in chronic skin wound fluid (Wallace and Stacey, 

1998; Trengove et al., 2000; Cowin et al., 2006). Furthermore, systemic anti-TNFα or 

anti-macrophage treatments have been shown to rescue delayed wound closure in the 

leptin deficient ob/ob mouse model of type-2 diabetes (Goren et al., 2007). The anti-

fibrotic influence of TNFα is well documented, including a recent study demonstrating 

its ability to inhibit periostin expression both in periodontal ligament and gingival 

fibroblasts (Arancibia et al., 2013; Padial-Molina et al., 2013). We show that TNFα 

suppresses periostin gene expression and attenuates TGFβ1 induction of periostin and 

CCN2 in dermal fibroblasts, in vitro. These results may explain the pattern of periostin 

and CCN2 expression found in human chronic skin wound edge and wound bed tissue. 

However, based on its role in the normal immune response, inhibition of TNFα for the 

treatment of chronic skin wounds is not an option (Wolbing et al., 2009).  

An alternative explanation for the expression pattern of periostin and CCN2 (as well as 

other fibrotic genes) is that the fibroblasts surrounding the chronic skin wound are 

senescent and therefore inherently dysfunctional. There is considerable conflicting 

evidence in the literature concerning the physiology of these wound edge fibroblasts. 

Cultured chronic skin wound fibroblasts have been shown to produce less collagen, have 

lower growth rates, reduced responses to PDGF-BB and TGFβ, reduced ability to 

contract collagen gels and exhibit higher levels of the senescence marker SA-beta-Gal 

(Telgenhoff and Shroot, 2005). Yet these indicators of senescence are highly dependent 
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on where the fibroblasts were harvested from around the wound. Brem and colleagues 

cultured fibroblasts from the edge of venous ulcers and compared those to fibroblasts 

from adjacent skin (closer to the wound edge than our proximal region). They found that 

wound edge cells migrated significantly slower and assumed a flattened polygonal 

morphology typically associated with senescence (Brem et al., 2007). In a subsequent 

study, they subdivided the wound edge into tissue removed during debridement and 

tissue that remained after debridement. Fibroblasts were isolated from these tissues and 

again assessed for morphology and migration (Brem et al., 2008). They found that wound 

edge fibroblasts from the tissue remaining after debridement migrated faster in response 

to GM-CSF and adopted a spindle shape. We have found that wound edge fibroblasts are 

responsive to TGFβ1 and TNFα (significantly increased compared to non-involved 

fibroblasts with respect to POSTN and ACTA2), and that they proliferate and contract 

collagen gels significantly more than HDFa. From our data, and the work of others, we 

hypothesize that fibroblasts from the open wound likely are few and exhibit senescent 

qualities. The wound edge however seems to contain a population of fibroblasts that are 

highly capable of up-regulating profibrotic genes and assuming a myofibroblastic 

phenotype. The samples we collected likely spanned both wound edge regions described 

by Brem and colleagues, and it is possible that that our populations represent an 

enrichment of those fibroblasts that were able to migrate and proliferate quickly. 

Nevertheless, those fibroblasts are a resource that should be harnessed in future treatment 

designs.  

Previous reports have documented dysregulation of other matricellular proteins in chronic 

skin wounds, including thrombospondin 1, tenascin-X (Shih et al., 2012) and galectin-3 

(Pepe et al., in press). However, to our knowledge the use of matricellular proteins as a 

therapeutic for chronic skin wounds has never been previously investigated. We have 

shown here that local delivery of rhPN and rhCCN2 electrospun with collagen are 

potential therapeutics for the treatment of chronic skin wounds. Both periostin and CCN2 

significantly increased would closure rates, an effect that could not be attributed to the 

electrospun collagen scaffold vehicle alone. Although we only employed one dose of PN 

and CCN2, these doses were carefully chosen to represent physiologically relevant 

concentrations. Our scaffolds, cut to 8 mm disks, contained approximately 50 ng rhPN or 
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25 ng rhCCN2 per disk. With two scaffolds per wound, treatments consisted of 100 ng 

rhPN or 50 ng rhCCN2. Serum concentrations of periostin in patients with skin sclerosis 

ranged from 95.6 to 146.8 ng/mL depending on the severity of the disease (Yamaguchi et 

al., 2013). Using the same PN scaffolds, we have previously demonstrated a rescue of α-

SMA immunoreactivity in Postn-/- mouse wounds (Elliott et al., 2012). Others have used 

a higher concentration of periostin (2 µg) to demonstrate therapeutic effects in Postn-/- 

mice (Ontsuka et al., 2012), however such a high dose is not only expensive, it is on par 

with that found in fibrotic pathologies such as Dupuytren’s contracture (Vi et al., 2009), 

raising questions of safety. Serum concentrations of CCN2 in systemic sclerosis vary 

considerably but their central tendency ranges from 42 to 83 ng/mL depending on 

severity (Dziadzio et al., 2005). At 100 ng/cm2 CCN2 produced favourable outcomes in a 

model of burn wound healing (Liu et al., 2007). Our 8 mm disks have a surface area of 

0.503 cm2, representing a 100 ng/cm2 dose with 2 disks. For the combination treatment, 

one scaffold of each was added to the wounds, thereby halving the dose of both PN and 

CCN2. 

At the doses of PN and CCN2 used in this study, we observed significant changes in gene 

expression patterns, including robust enrichments of contractile gene sets. CCN2 

produced a larger and very distinct list of differentially regulated genes compared to PN, 

indicating that they function through different mechanisms despite their similar effects on 

wound closure rate. PN had a strong influence on genes associated with early 

inflammation, the defense response, and surprisingly, down-regulation of several genes 

associated with protease inhibitors. It is not completely unexpected that periostin can 

influence inflammatory processes. In models of allergic airway inflammation periostin is 

up-regulated by IL-13 and periostin-deficiency leads to reduced eosinophil infiltration 

and a bias towards type-1 helper T cell (Th1) cytokine profiles, including stimulation of 

IFNγ (Blanchard et al., 2008; Sehra et al., 2011). Th1-type inflammation is associated 

with cell death and tissue damage, whereas Th2-type inflammation is associated with 

wound healing and fibrosis (Wynn, 2004). The balance between these profiles may be of 

critical importance in understanding how increased inflammation can lead to the 

divergent pathologies of both chronic skin wounds and fibrosis. In a model of allergy-
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induced atopic dermatitis fibroblast-derived periostin is not just induced by IL-13, a key 

Th2 cytokine, it goes on to shift the cytokine profile towards a Th2 balance. Periostin does 

this by stimulating keratinocytes to produce various Th2 cytokines but not the potent Th1 

cytokine, IFNγ (Masuoka et al., 2012). In our microarray data we saw a modest but 

statistically significant increase in IL-13 (1.2 fold) in all treatments. In the PN treatment 

we saw reduced expression of the key inflammatory mediators FasL and Csf1. FasL is a 

well-known inducer of apoptosis and is elevated in Th1 cells (Suda et al., 1995). Csf1 (M-

CSF) is an important modulator and chemoattractant for monocytes and macrophages. It 

is curious that PN treatment did not induce α-SMA expression, as was the case in Postn-/- 

mice (Elliott et al., 2012). It is possible that this is a consequence of the complex 

inflammatory state of db/db wounds compared to Postn-/- wounds. Certainly elevated 

TNFα could be the involved in this observation (Goldberg et al., 2007). Further research 

is needed to sort through the specific interactions of periostin and the inflammatory cells, 

but there is considerable evidence to suggest that periostin can be utilized as a modifier of 

early inflammation in skin healing. 

Addition of CCN2-containing scaffolds caused a down-regulation of a number of genes 

associated with fatty acid synthesis, obesity and PPARγ signaling. PPARγ expression is 

dramatically reduced in systemic sclerosis and its signaling directly apposes the 

profibrotic actions of TGFβ. In dermal fibroblasts, TGFβ has been shown to reduce 

PPARγ expression and block the PPARγ-dependent adipogenic differentiation of 

mesenchymal cells (Wei et al., 2010). We did not see an up-regulation of TGFβ in our 

microarray data despite the fact that CCN2 is an important downstream mediator of 

TGFβ. It is possible that exogenously added CCN2 might act as a surrogate for TGFβ 

with respect to PPARγ regulation. When CCN2- and PN-containing scaffolds were 

combined in the same wound, a pattern of differential gene expression was observed 

which included a large number of genes that were not changed in either of the individual 

treatments, indicating a synergistic effect of PN and CCN2 delivery. Granulation tissue 

thickness also increased significantly more with the combined treatment than with either 

individual treatment. Conversely, a large number of genes that were differentially 

expressed in the individual treatments were lost in the presence of the combination 
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scaffold. The likely explanation for this is that halving the dose of both PN and CCN2 

meant their individual effects were diminished. Future work should include higher doses 

of PN and CCN2 in the combined treatments to determine if all of these effects can be 

preserved. Still, many of the gene clusters enriched in the individual treatments were 

further enriched in the combination treatment, including those associated with contractile 

machinery. 

With the diversity of roles matricellular proteins play in a multitude of tissues, 

developing them into effective treatment options for chronic skin wounds will require 

additional research. Unraveling the context-dependent nature of their functions is a 

challenge in itself. In this report we have shown that periostin and CCN2, two 

matricellular proteins intimately tied to fibrosis, are reduced in human chronic skin 

wounds that are stalled in an inflammatory state. We attribute this to the environment of 

the chronic skin wound, as fibroblasts removed from that environment express both 

periostin and CCN2, and exhibit a myofibroblast phenotype in response to TGFβ1. 

Addition of periostin or CCN2 to a model of impaired diabetic healing via a biologically 

compatible collagen scaffold resulted in recovery of wound closure. The mechanisms 

employed by PN and CCN2 were largely distinct but by combining both treatments in the 

same wound we saw a synergistic effect. We believe this to be the first account of 

matricellular proteins being used to aid in the closure of chronic skin wounds. Based on 

their apparent biological functions, it will be of great interest to further explore 

combination treatments of various matricellular proteins with other established 

therapeutics, such as growth factors. The outcome of TGFβ signaling has been shown to 

depend on both periostin and CCN2, where deletion of these proteins attenuates or 

redirects TGFβ-induced cell behaviours (Garrett et al., 2004; Shi-wen et al., 2006; Lorts 

et al., 2012). Reduced matricellular protein expression might be why clinical trials of 

TGFβ treatment did not work. More work is needed to confirm this. 
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3.4 Materials and Methods 

3.4.1 Human Skin Sample Collection 

Procedures involving human tissue were approved by the University of Western Ontario 

Review Board for Health Sciences Research Involving Human Subjects and are in 

accordance with the 1964 Declaration of Helsinki. Skin samples were obtained with 

informed consent from patients exhibiting non-healing skin wounds and undergoing 

elective lower extremity amputation for the affected limb (Table 3.1). Eighteen patients 

were enrolled with a median age of 71.5 years (ranging from 34 to 88). Of these, four 

were female. The majority of patients were type-two diabetic (n = 15) and one was type-

one diabetic. Diagnosis of the patients’ condition was almost exclusively peripheral 

vascular disease, making it likely that the samples collected were representative of 

arterial wounds. Sets of skin samples were collected from the wound site as well as from 

a non-involved region of the limb (Figure 3.1). At each site, samples were collected for 

histology, RNA isolation and cell culture, which were immersed in 10% neutral buffered 

formalin (Sigma Aldrich, St. Louis, Missouri), RNAlater® (Ambion, Carlsbad, 

California) or growth media, respectively, until they could be further processed. For 

RNA, tissues were snap frozen in liquid nitrogen and stored at -86°C. To culture human 

dermal fibroblasts, tissue samples were washed extensively in Dulbecco’s Modified 

Eagle Medium (High Glucose) supplemented with 10% fetal bovine serum and 2% AA 

(200 units penicillin/200 µg streptomycin/0.5 µg/mL amphotericin B) (Gibco, Carlsbad, 

California). Skin was then incubated at 37°C, 5% CO2 to allow fibroblasts to migrate 

onto the culture surface. For use, skin was removed and cells were cultured for two to 

three passages. Healthy adult human fibroblasts (HDFa) were from a commercial source 

(C-013-5C, Invitrogen, Carlsbad, California). 

3.4.2 Tissue Preparation and Immunohistochemistry 

Tissues were processed to paraffin and sectioned at 5 µm. Tissue sections were stained as 

previously described (Jackson-Boeters et al., 2009). Sections were blocked with 10% 

horse serum followed by primary antibody overnight at 4°C (Table 3.2). Detection was 

by ImmPRESS Ig peroxidase kits (Vector Laboratories, Burlingame, California) and 
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visualized with 3,3-diaminobenzidine (Vector Laboratories). Sections were 

counterstained with haematoxylin. Trichrome staining was carried out as previously 

described (Liu et al., 2008). To quantify periostin and CCN2 staining, slides were stained 

in one batch and photographed at low magnification with identical exposure settings. 

Images were masked for background/empty space (yellow) and positive DAB staining 

(red) in Image Pro Plus v7.0 (Media Cybernetics Inc., Rockville, Maryland). The same 

masking parameters were then applied to all images. The area occupied by these masks 
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Table 3.2: Antibodies and dilutions used in this study 

Target Product # Dilution Antigen 
Retrieval 

Supplier 

Periostin sc49480 1/200 No Santa Cruz Biotechnology, Santa 

Cruz, CA  

α-Smooth Muscle Actin (IHC-P) ab5694 1/100 No Abcam plc, Cambridge, UK  

α-Smooth Muscle Actin (WB, IF) A5228 1/500 No Sigma Aldrich, St. Louis, MO  

CCN2 ab6992 1/100 No Abcam plc, Cambridge, UK  

TNF-α ab6671 1/200 Heat Mediated Abcam plc, Cambridge, UK  

CD68 MCA1957  1/200 Heat Mediated AbD Serotec, Oxford, UK 

Neutrophil Elastase ab68672  1/2000 Heat Mediated Abcam plc, Cambridge, UK  

TGF-β ab66043 1/100 Heat Mediated Abcam plc, Cambridge, UK  

Vimentin ab92547 1/400 No Abcam plc, Cambridge, UK  

GAPDH MAB374 1/1000 No Millipore, Billerica, MA 
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was recorded separately for the wound bed and the intact tissue, demarcated by a 

verticalline at the leading edge of the epidermis. Percent positively stained tissue area 

was calculated as: 

% = [Area of red mask/(area selected – area of yellow mask)] x 100 

Immunofluorescent labeling of human tissue was carried out as above except detection 

was with appropriate fluorescently labeled secondary antibodies (Jackson 

ImmunoReaserch, West Grove, Philadelphia). Granulation tissue thickness and wound 

size were measured from images of sections from the centre of the wounds using Image 

Pro Plus v7.0. 

3.4.3 RT-qPCR 

Pieces of snap frozen tissue samples were homogenized in 1 mL of TRIzol® reagent 

(Invitrogen).  Total RNA was extracted as per the manufacture’s recommendations. Real-

time quantitative PCR was carried out on 50 ng of total RNA using TaqMan® One-Step 

RT-PCR Master Mix and gene-specific TaqMan® probes (Applied Biosystems, Carlsbad, 

California). Gene expression was normalized to the endogenous control gene, 18S. PCR 

efficiency was verified to fall between 90 and 110%, via dilution series, and relative 

expression was calculated using the ΔΔCT method (Livak and Schmittgen, 2001). 

3.4.4 In Vitro Gene Expression and Western Blotting 

Primary human dermal fibroblasts (P2-3) were seeded at 30,000 cells/well in 6 well plates. 

24 hours prior to treatment, cells were starved in serum free media. Treatment was with 5 

ng/mL TGFβ1 (R&D Systems Inc., Minneapolis, Minnesota), 1 ng/mL TNFα (R&D 

Systems) or both for 24 hours in serum free media. RNA was harvested with 1 mL of 

TRIzol® reagent (Invitrogen). Protein was with RIPA buffer containing protease and 

phosphatase inhibitor cocktails (Sigma Aldrich), and concentration was determined by 

BCA assay (Pierce, Waltham, Massachusetts). Proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

nitrocellulose membranes.  Membranes were washed with tris-buffered saline containing 
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0.05% tween-20 (TBST). Membranes were blocked with 5% milk TBST. Unequal 

loading was controlled for with GAPDH (Millipore, Billerica, Massachusetts). Detection 

was with appropriate peroxidase-conjugated secondary antibodies (Jackson 

ImmunoResearch) and enhanced chemiluminescence (Pierce). Bands were quantified 

using Image J software. 

3.4.5 Proliferation 

Primary human dermal fibroblasts were seeded at 2,000 cells/well in 24 well plates in 

10% FBS supplemented media. Media was changed every 48 hours throughout the course 

of the experiments. At the desired time-points, media was completely aspirated and the 

plate was frozen at -86°C. Once all time-points were captured, the CyQUANT cell 

proliferation assay kit (Invitrogen) was used to determine cell number as per the 

manufacturer’s protocol. A standard curve was used to obtain cell number. Cell number 

was transformed to a Log2 scale to calculate population doublings.  

3.4.6 Gel Contraction 

Gel contraction assays were conducted essentially as previously described (Shi-wen et 

al., 2004; Elliott et al., 2012). Collagen was prepared as follows: 10% 0.2 M HEPES (pH 

8), 40% bovine collagen type-1 (Advanced BioMatrix Inc., San Diego, California) and 

50% 2X Dulbecco’s Modified Eagle Medium (High Glucose). Dermal fibroblasts were 

suspended in 0.5% FBS DMEM and mixed 1:1 with the collagen preparation to a final 

density of 100,000 cells/mL. 24 well tissue culture plates were pre-coated with BSA 

overnight then washed with PBS. Collagen/cell mix (0.5 mL) was added to each well and 

allowed to set at 37°C. Following polymerization, wells were flooded with 1 mL 0.5% 

FBS DMEM. After 24 hours, gels were separated from the surface of the plate and 

incubated for an additional 24 hours. To ensure that contraction of gels horizontally and 

vertically was accounted for, quantification of gel contraction was assessed by loss of gel 

weight, whereby contraction of the collagen matrix excluded growth media, thus 

reducing the weight of the gel (Tingstrom et al., 1992). 
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3.4.7 Scaffolds 

Collagen type-1 (Sigma-Aldrich) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol to 

make a 15% (w/v) solution. Recombinant hPN (R&D Systems) was dissolved in PBS to 

make a 1 mg/mL solution. Twenty µL of the periostin solution was mixed with 20 µL 

BSA solution (100 mg/mL in PBS) and 3 mL of collagen solution. The mixture was 

injected at a speed of 1 mL/h by a syringe pump into a capillary charged with a voltage of 

+15 kV. The generated nanofibers were collected on a negatively charged (-10 kV) 

rotation mandrel. Control scaffolds contained 20 µL of PBS. To crosslink the scaffolds, 

they were immersed in 5% glutaraldehyde/ethanol solution for 30 min. Scaffolds were 

spun onto aluminum foil, and an 8 mm biopsy punch was used to cut the scaffolds. Each 

scaffold was sterilized in 100% ethanol and rinsed 3 times with PBS. The fabrication 

conditions for CCN2 scaffolds were the same except that the rhCCN2 (R&D Systems) 

solution was 0.5 mg/mL. 

3.4.8 Electron Microscopy 

Collagen scaffolds were mounted on 15 mm SEM stubs with adhesive disks and were 

then sputter coated with palladium-gold for 5 minutes at 8 mV using a Hummer VI 

sputter coater (Anantech Ltd., Battle Creek, Michigan). Images were obtained with a 

3400-N Variable Pressure Scanning Electron Microscope (Hitachi Ltd., Tokyo, Japan) 

using an accelerating voltage of 10 kV. 

3.4.9 Animals 

All animal procedures were in accordance with protocols approved by the University 

Council on Animal Care at The University of Western Ontario. Wild-type C57BL/6J 

(000664, JAX® Mice and Services, Bar Harbor, Maine) and genetically diabetic db/db 

(B6.BKS(D)Leprdb/J, 000697, JAX®) mice were housed in conventional caging and 

provided water and food ad libitum. All animals were subjected to 12 h light/dark cycle 

and temperature in accordance with the guidelines of the Canadian Council on Animal 

Care. For experiments, wild-type and db/db sex-matched adult mice (12 weeks of age) 

were anesthetized with an intraperitoneal injection of buprenorphine (50 µg/kg), followed 

by an injection of ketamine (100 mg/kg) and xylazine (5 mg/kg). Backs were shaved, 
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depilated and sterilized with iodine. Full-thickness excisional wounds were made on each 

side of the dorsal midline with a 6 mm punch biopsy. Removed tissue was considered day 

0 and was retained for RNA analysis. Some wounds were left untreated as controls while 

others received: 2 x collagen, 2 x rhPN-containing (PN), 2 x rhCCN2-containing (CCN2) 

or 1 x rhPN- and 1 x rhCCN2-containing (PN+CCN2) scaffolds. Eight mm diameter 

scaffolds were inserted into each wound immediately following wounding. The larger 8 

mm scaffolds aided in retention of the scaffolds within the wound by partially slipping 

under the surrounding skin. Wounds were photographed immediately after wounding and 

again at 3, 5, 7, 9 and 11 days post wounding. Wound area was assessed from 

photographs using Northern Eclipse v7.0 software (Empix Imaging Inc., Mississauga, 

Ontario) and expressed as a fraction of initial area. Mice were caged individually 

following wounding. 

3.4.10 Blood Glucose 

Animals were euthanized following 4 hours of fasting. Blood was collected via cardiac 

puncture and glucose was measured using a OneTouch® Ultra®2 blood glucose 

monitoring system (LifeScan, Inc., Milpitas, California).  

3.4.11 Microarray 

Total RNA from the Collagen-, PN-, CCN2- and PN+CCN2-treated wounds of 3 db/db 

mice and Collagen-treated wounds were used to generate cDNA. All sample labeling and 

GeneChip processing was performed at the London Regional Genomics Centre (Robarts 

Research Institute, London, Ontario, Canada; http://www.lrgc.ca). RNA quality was 

assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Palo Alto, 

California) and the RNA 6000 Nano kit (Caliper Life Sciences, Mountain View, 

California). Single stranded complimentary DNA (sscDNA) was prepared from 200 ng of 

total RNA as per the Ambion WT Expression Kit for Affymetrix GeneChip Whole 

Transcript WT Expression Arrays (Applied Biosystems) and the Affymetrix GeneChip 

WT Terminal Labeling kit and Hybridization (Affymetrix, Santa Clara, California).  

Total RNA was first converted to cDNA, followed by in vitro transcription to make 

cRNA.  Single stranded cDNA (5.5 µg) was synthesized, end labeled and hybridized for 
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16 hours at 45°C to Mouse Gene 2.0 ST arrays. A GeneChip Fluidics Station 450 

performed all liquid handling steps and GeneChips were scanned with the GeneChip 

Scanner 3000 7G (Affymetrix) using Command Console v3.2.4. Probe level (.CEL file). 

Data were summarized to gene level data in Partek Genomics Suite v6.6 (Partek, St. 

Louis, MO) using the RMA algorithm (Irizarry et al., 2003). Partek was used to 

determine gene level ANOVA p-values and fold changes. Gene Ontology (GO), KEGG 

Pathway and SwissProt and Protein Information Resource (SP PIR) keyword enrichments 

were generated using DAVID Bioinformatics Resources 6.7, NIAID/NIH (Huang da et 

al., 2009b; Huang da et al., 2009a). Enrichments were filtered by p-value and the 

Benjamini-Hochberg method was used to control for false discovery rate (FDR). 

Differentially expressed genes were selected based on an ANOVA p-value of less than 

0.05 and 1.5 fold increase or decrease from db/db Collagen samples. 

3.4.12 Statistical Methods 

Statistical analysis was by Graphpad Software v4 (Graphpad Software, La Jolla, 

California) (p ≤ 0.05 was considered significant). Normality was assessed with the 

Kolmogorov–Smirnov test where sufficient replicates allowed. Unless stated otherwise 

data was found to be normally distributed. Two-tailed t-tests were used for periostin and 

CCN2 tissue staining quantification (paired) and for blood glucose measurements 

(unpaired). In vivo human tissue gene expression data was not normally distributed so the 

non-parametric paired Friedman test with a Dunn’s multiple comparisons test was 

applied. A one-way ANOVA followed by a Bonferroni correction was used to analyze 

HDFa in vitro gene expression data. Comparative gene expression, protein expression 

and proliferation analysis of isolated non-involved and wound fibroblasts (and HDFa), as 

well as in vitro mouse wound gene expression were assessed with a two-way ANOVA 

followed by a Bonferroni correction. Gel contraction data was analyzed with a repeated 

measure two-way ANOVA for comparison of non-involved vs. wound cells (followed by 

Bonferroni correction), a two-tailed t-test was used to compare wound cells to HDFa. 

Wound closure kinetics in mouse punch wounds were analyzed with a two-way ANOVA 

(with Bonferroni correction). Wound size and granulation tissue thickness were analyzed 

with a one-way ANOVA (with Bonferroni correction). 
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Chapter 4  

4 Discussion 

The overall research focus of this thesis was to investigate the specific roles of two 

matricellular proteins in skin pathology and the wound healing process, and to determine 

if local delivery of these proteins could be used as novel therapeutics for enhancing 

wound healing. Specifically, the focus was on periostin and CCN2, matricellular proteins 

that are associated with many types of tissue fibrosis, including hypertrophic and keloid 

scarring of the skin. In fibrotic conditions, periostin and CCN2 have been shown to 

regulate cellular processes associated with matrix accumulation, increased 

myofibroblastic phenotype and increased profibrotic growth factor signaling; all of which 

are reduced in chronic skin wounds. The role of CCN2 in skin healing had been 

previously documented, but it was necessary to identify the specific molecular roles of 

periostin in skin healing.  

The specific objectives of this project were: 

1. To determine how genetic deletion of periostin alters dermal wound healing 

kinetics and the underlying changes in regulation of dermal and epithelial 

behaviours. 

2. To determine mRNA and protein expression patterns of periostin and CCN2 in 

human chronic skin wound tissue. 

3. To quantify the phenotypic response of human chronic skin wound fibroblasts by 

exogenous TGFβ and TNFα. 

4. To assess the efficacy of local delivery of periostin and CCN2 containing 

electrospun scaffolds as a therapeutic for enhancing wound healing using a 

diabetic murine model. 

The results from objective one are documented in Chapter 2. In summary, deletion of 

periostin resulted in a delay in wound closure rate, which coincided with peak periostin 
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expression in wild-type animals. Delayed closure was attributed to a defect in 

myofibroblast differentiation based on failed α-SMA induction in vivo and a 

compromised myofibroblast phenotype in vitro. Addition of rhPN to Postn-/- wounds 

recovered α-SMA immunoreactivity, demonstrating potential for the delivery of 

extracellular periostin to dermal wounds to modulate fibroblast function. 

Objectives two, three and four are presented in Chapter 3. In human chronic skin wound 

tissue, CCN2 was not increased compared to non-involved skin and periostin was 

significantly reduced within the wound. Inappropriate expression of these matricellular 

proteins may be a result of the inflammatory environment of the wounds, since 

fibroblasts isolated from wound tissue, and therefore removed from that environment, 

were able to respond to TGFβ, proliferate and contract collagen gels. Furthermore, the 

proinflammatory cytokine TNFα, which was abundant in the wound tissue, suppressed 

induction of periostin and CCN2 in human dermal chronic skin wound fibroblasts, 

supporting the contention that the wound environment was responsible for reduced 

periostin and CCN2. 

The expression patterns of periostin and CCN2 in human chronic skin wounds, combined 

with the fibrotic potential of wound edge fibroblasts, indicated that delivering these 

proteins as therapeutics designed to recruit fibroblasts and induce their differentiation 

might be beneficial for would healing. Delivery of rhPN and rhCCN2 electrospun with 

collagen to dermal wounds in a mouse model of impaired diabetic skin healing resulted in 

rescue of wound closure to rates similar to wild-type mice. Whole genome transcriptional 

analysis indicated that the two proteins functioned through distinct mechanisms. A 

combination of the rhPN- and rhCCN2-containing scaffolds added to a single wound 

showed synergistic effects in gene expression changes, and also showed up-regulation of 

additional genes neither protein did on their own. This work represents the first 

matricellular protein-based biomaterial therapeutic designed with an aim to enhance 

chronic skin wound healing. 
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4.1  Periostin and wound healing in skin: a multi-
faceted player? 

This section contains excerpts modified from our published work (Appendix E): 

Elliott. C.G., Kim, S.S., and Hamilton, D.W. (2012) Functional Significance of Periostin 

in Excisional Wound Healing: Is the Devil in the Detail? Cell Adh Migr. 6(4): 319-26 

Although originally implicated in skin healing in 2005 (Lindner et al., 2005), the first 

report describing the impact of periostin deletion on healing was not described until 2011. 

Within one year, three independent papers were published describing potential roles for 

periostin in dermal wound healing from experiments performed using different 

derivations of periostin knockout mice (Postn-/-). Beginning with Nishiyama and 

colleagues (Nishiyama et al., 2011), followed by our report (Elliott et al., 2012b) and 

finally Ontsuka et al (Ontsuka et al., 2012), all three independent studies confirm that 

periostin is significantly up-regulated following dermal wounding in mice, peaking at day 

7. In normal skin periostin is localized at the dermal-epidermal junction (DEJ) and in hair 

follicles. Following excisional wounding in Postn+/+ mice, periostin is predominantly 

expressed in the granulation tissue and in neighboring hair follicles. The absence of 

periostin results in delayed wound healing, which is most pronounced between days 3 

and 7. The similarities in the studies begin to diverge, however, when we begin to look at 

the underlying mechanisms proposed by each of these reports (Table 4.1). The three 

studies proposed three very different mechanisms to explain the delay in Postn-/- wound 

healing, each supported by in vitro evidence. 

It is surprising that three independent groups could come up with three divergent 

accounts of how the deletion of periostin resulted in delayed wound healing. The 

relevance of each proposed mechanism (contraction, keratinocyte proliferation and 

fibroblast migration/proliferation) to the in vivo wound healing phenotype is debatable. 

But the in vitro results are not and there is certainly support in the literature for each 

proposed cellular mechanism individually (Table 4.2). The differences were likely a 

consequence of the experimental variables between each study (discussed below). The 

diversity of cellular behaviours affected by the presence of periostin can serve as a lesson 

for the importance of the context dependent nature of matricellular protein influence in
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Table 4.1: Major findings from three reports on skin healing in Postn-/- mice 

 Elliott et al 2012 Nishiyama et al 2011 Ontsuka et al 2012 

Wound Model 6 mm punch biopsy 3 mm punch biopsy 8 mm or 10 mm punch biopsy 

Main Effect KO delay at D5 and D7 KO delay at D3, D5 and D7 KO delay at D3, D5, D7 and 
D11 

Proposed In 
vivo Cause 

Myofibroblast differentiation 
 

Re-epithelialization via 
keratinocyte proliferation 

Fibroblast proliferation and 
migration 

In vivo 
Evidence 

Reduced α-smooth muscle actin 
gene expression and 
immunoreactivity in KO 

Measurements from H&E 
stained sections 
Reduced Ki-67 
immunoreactivity around KO 
hair follicles 

No data 

In vitro 
Support 

Adult KO fibroblasts showed 
reduced: 
Force generation, 
Collagen gel contraction, 
α-smooth muscle actin 
immunofluorescence, 
α-smooth muscle actin protein 

No data Newborn KO fibroblasts show 
reduced proliferation 
KO MEFs show reduced 
migration 

Rescue Tool(s) 
(in vitro) 

Recombinant full-length human 
periostin (R&D systems) 
produced in a mouse myeloma 
cell line (NS0) 

Expression vector for mouse 
periostin 

Recombinant full-length 
mouse periostin (R&D 
systems) produced in an insect 
ovarian cell line (Sf21) 
Expression vector for full-
length mouse periostin 

Rescue? 
(in vitro) 

Adult KO fibroblasts showed 
restored: 
Collagen gel contraction, 
α-smooth muscle actin staining,  
α-smooth muscle actin protein. 
(Force generation not tested for 
rescue) 

Conflicting results: 
Over-expression of Ms Postn 
in human keratinocyte cell line 
(HaCaT) resulted in no 
difference in cell number 
when cultured for 96 hours. 
However, the same cells 
cultured for one week beyond 
confluence showed an increase 
in BrdU labelling. 

Proliferation of newborn 
mouse fibroblasts (vector and 
recombinant) 
Proliferation of normal human 
dermal fibroblasts 
(recombinant) 

Rescue Tool 
(in vivo) 

Recombinant full-length human 
periostin (R&D systems) 
incorporated into an electrospun 
collagen scaffold 

No in vivo rescue Recombinant full-length 
mouse periostin (R&D 
systems) added directly onto 
wounds 

Rescue? 
(in vivo) 

Increased α-smooth muscle 
actin immunoreactivity at D7 
No wound closure kinetics 

No in vivo rescue Restored wound closure 
kinetics 
No evidence for mechanism 

Additional 
Findings 

No difference in fibroblast 
migration 
No difference in re-
epithelialization 

Similar Ki-67 numbers in 
granulation tissue and 
migrating keratinocytes 
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Table 4.2: Evidence from the literature supports all three mechanisms 

Myofibroblast Proliferation Migration 

Shimazaki 2008:  Postn-/- mice  had an 
increased incidence of ventricular 
rupture following myocardial infarction 
due to reduced α-SMA positive cells 
and impaired collagen formation 
(Shimazaki et al., 2008). 

Ben 2011:  Transfection of pancreatic 
cancer cell lines (BxPC-3 and Panc-
1) with a periostin expression vector 
(Ad5-PN) promoted anchorage-
independent growth (Ben et al., 
2011). 

Shimazaki 2008:  Recombinant 
periostin (ΔbΔe splice variant) 
enhanced chemotaxis of cardiac 
fibroblasts from Postn-/- mice.  This 
increase was attenuated by an anti-
periostin antibody (Shimazaki et 
al., 2008). 

Erkan 2007:  Addition of rhPN to 
pancreatic stellate cells resulted in 
increased expression of α-SMA, 
collagen 1, fibronectin, TGFβ1 and 
periostin.  Silencing periostin decreased 
α-SMA expression (Erkan et al., 2007). 

Erkan 2007:  Under serum 
deprivation, rhPN stimulated growth 
of Panc1, SU86.86, and T3M3 
(pancreatic cancer cell lines) (Erkan 
et al., 2007). 

Ben 2011:  Cells (BxPC-3 or Panc-
1) infected with Ad5-PN migrated 
and invaded faster than controls in 
transwell assays (Ben et al., 2011). 

Vi 2009:  Fibroblasts isolated from 
Dupuytren’s disease (DD) over-
expressed periostin and had an 
increased ability to contract a collagen 
matrix, which was further enhanced by 
addition of rhPN. DD cells in 3D 
culture induced α-SMA in response to 
rhPN (Vi et al., 2009). 

Vi 2009:  Growth on rhPN coated 
plates resulted in an increase in 
proliferation of palmar fascia 
fibroblasts (Vi et al., 2009). 

 

Sidhu 2010:  Transfection of bronchial 
epithelial cells (BEAS2B) with a rhPN 
expression vector resulted in increased 
α-SMA protein and mRNA (Sidhu et 
al., 2010). 

Liu 2011:  Periostin-silenced gastric 
cancer cells exhibited reduced cell 
proliferation (Liu and Liu, 2011). 

Liu 2011:  Periostin-silenced 
gastric cancer cells exhibited 
reduced invasion using a Boyden 
chamber invasion assay (Liu and 
Liu, 2011). 

Bozyk 2012:  Hyperoxia exposure 
increased α-SMA positive 
myofibroblasts in the lungs of Postn+/+, 
but not Postn-/-, mice (Bozyk et al., 
2012). 
Bozyk 2012:  Periostin treatment 
increased α-SMA expression in 
neonatal lung mesenchymal stromal 
cells (Bozyk et al., 2012). 

Bozyk 2012:  Periostin induced 
human mesenchymal stromal cell 
DNA synthesis in the presence of 
TGFβ1 (Bozyk et al., 2012). 

 

Hakuno 2010:  High fat diet-induced α-
SMA in cardiac valve complexes is 
attenuated in Postn-/- mice (Hakuno et 
al., 2010). 

Kuhn 2007:  rhPN induced 
proliferation of neonatal 
cardiomyocytes in a PI3K/Akt 
dependent manner.  Injecting rhPN 
into the myocardium induced DNA 
synthesis and division of nearby 
differentiated cardiomyocytes (Kuhn 
et al., 2007). 

Hakuno 2010:  Conditioned media 
from periostin transfected cells 
increased migration of human 
coronary artery endothelial cells 
(Hakuno et al., 2010). 

Yoshida 2011:  Silencing of periostin 
splice variant III attenuated TGFβ2 
induced α-SMA production in primary 
human retinal pigment epithelial cells 
(Yoshida et al., 2011). 

Zhu 2011:  Neutralizing monoclonal 
antibody to periostin inhibited 
anchorage-independent growth of the 
periostin-expressing ovarian cancer 
cell line A2780 (Zhu et al., 2011). 

Zhu 2011:  Neutralizing 
monoclonal antibody to periostin 
inhibited periostin-induced cancer 
cell migration and invasion (Zhu et 
al., 2011). 
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Table 4.2: Evidence from the literature supports all three mechanisms, continued 

Myofibroblast Proliferation Migration 

Jackson-Boeters 2009:  Periostin 
expression coincides with α-SMA 
expression within the granulation tissue 
of excisional wounds of mice (Jackson-
Boeters et al., 2009). 

Liu 2010:  Inhibition of periostin 
expression via RNA interference 
suppressed proliferation of a human 
osteosarcoma cell line (U2OS) (Liu 
et al., 2010). 

Liu 2010:  Inhibition of periostin 
gene expression via RNA 
interference suppressed migration 
and invasion of U2OS cells in 
transwell assays (Liu et al., 2010). 

Lindner 2005:  Acquisition of a smooth 
muscle cell phenotype (α-SMA 
expression) correlated with acquisition 
of periostin expression both in vitro and 
in vivo (Lindner et al., 2005). 

Yan 2006:  Mice that received 
periostin-producing 293T cells at the 
mammalian fat pad tissue had 
significantly larger local tumours 
than did mice receiving control cells 
(Yan and Shao, 2006). 

Lindner 2005:  Periostin over-
expressing C3H10T1/2 cells had 
greater migratory response to 
serum, which was attenuated by a 
periostin-blocking antibody 
(Lindner et al., 2005). 

Hong 2010:  Periostin over-expressing 
A549 cells expressed higher levels of 
vimentin mRNA (Hong et al., 2010). 

Hong 2010:  Periostin over-
expressing A549 cells  displayed 
increased proliferation (Hong et al., 
2010). 
 

Hong 2010:  Periostin over-
expressing A549 cells migrated 
and closed scratch wounds at an 
increased rate (Hong et al., 2010). 

Kikuchi 2008:  Close approximation of 
periostin immunoreactivity to α-SMA 
positive cells (periocryptal fibroblast) in 
normal colonic mucosa. Decreased 
periostin immunoreactivity preceded a 
decrease of α-SMA positive cells 
(Kikuchi et al., 2008). 

Kikuchi 2008:  Ki-67–positive 
epithelial cells were significantly 
decreased in the colonic crypts of 
Postn-/- mice (Kikuchi et al., 2008). 

Yan 2006:  Using transwell assays, 
significantly more periostin-
expressing 293T cells migrated 
into the membrane relative to 
control cells (Yan and Shao, 2006). 
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general. For example, we did not detect a difference in migration (Figure 2.6) or 

proliferation (Elliott et al., 2012a) between Postn+/+ and Postn-/- adult dermal fibroblasts. 

Ontsuka reported significantly reduced proliferation in newborn Postn-/- fibroblasts and 

significantly reduced migration in Postn-/- mouse embryonic fibroblasts (MEF), 

compared to their respective Postn+/+ controls. We attributed these discrepancies to the 

use of adult vs. embryonic or newborn cells (Table 4.1). 

We have previously reported that periostin expression/localization is very different in 

developing and newborn mouse skin when compared to that of skin in the adult animal 

(Zhou et al., 2010). From embryonic day 13.5 forward, periostin is expressed in the 

developing skin. At 2 and 9 days old, periostin is heavily expressed at the dermal 

epidermal junction (DEJ) and in the dermis of the newborn skin. This pattern changes 

dramatically by day 19 where periostin expression in the dermis is largely absent. By day 

60, periostin is restricted to hair follicles and the DEJ, although at a reduced level. 

Perhaps the role of periostin in development, and thus newborn fibroblasts or MEFs, is 

vastly different from its role in adult skin and the residing dermal fibroblast. If this is true 

then we must be careful when choosing our in vitro tools to confirm in vivo findings. To 

emphasize this, we have shown that in 2D culture Postn-/- fibroblasts do differentiate into 

myofibroblasts and it is only when the substrate rigidity is reduced (Figure 2.11) or 3D 

culture employed (Figure 2.8 and 2.10), that the periostin deficiency and loss of the 

myofibroblast phenotype manifests in knockout cells. 

Deletion of periostin consistently resulted in delayed wound healing across the three 

studies. But in vitro explanations for this are difficult to interpret due to the use of 

different tools and differing experimental designs. Understanding how the presence of 

periostin effects wound healing may be facilitated through in vivo rescue experiments. 

We have shown that the addition of rhPN to Postn-/- wounds results in increased α-SMA 

protein at day 7, demonstrating that rhPN can modulate fibroblast to myofibroblast 

transition during wound healing. Whether this increase in α-SMA translates into 

accelerated wound closure kinetics was reserved for future publication, but is now 

available (Figure 3.5) and will be commented on below. Ontsuka also recognized the 
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importance of in vivo rescue experiments using recombinant periostin. In their 

experiments, they documented the closure kinetics of Postn+/+ and Postn-/- wounds, with 

and without addition of recombinant periostin. Their findings were very encouraging; 

showing a complete restoration of normal closure kinetics in Postn-/- wounds and 

accelerated closure in Postn+/+ wounds. Together these two outcomes paint a very 

promising picture for periostin as a therapeutic. Interestingly, in both rescue attempts 

periostin was added to the wounds earlier than the endogenous peak (day 0 in our report, 

day 1 and every second day to day 9 for Ontsuka). The wound closure kinetics provided 

by Ontsuka show an immediate response to exogenous periostin, statistically significant 

at day 3. We now know that addition of rhPN to the wounds of db/db mice results in a 

similar increase in wound closure rate (Figure 3.5), including an early departure from the 

control kinetics. We observed an increase in closure rate as early as day 3, although not 

statistically significant until day 5. 

We show that in Postn-/- wounds exogenous periostin increases α-SMA by day 7 (Figure 

2.12), but can myofibroblast differentiation be a major contributor to wound closure at 

day 3? At such an early time point fibroblast migration into the wound is a key event. 

There is support for the hypothesis that tractional forces of fibroblast migration alone, as 

opposed to myofibroblast based contraction, can generate sufficient force to initiate 

wound contraction (Ehrlich et al., 1999; Au and Ehrlich, 2010). As resistance in the 

newly formed matrix increases, fibroblasts differentiate into myofibroblasts to complete 

closure. It is possible that the presence of exogenous periostin influences fibroblast 

migration at earlier time points. However, there is no in vivo evidence to support this and 

our data argues against a migratory role for periostin in vivo. 

The day 3 wound is largely a pool of inflammatory cells and relatively few fibroblasts. 

Periostin has been shown to regulate chemokine release in lung fibroblasts, thereby 

modulating neutrophil and macrophage recruitment (Uchida et al., 2012). Additionally, as 

discussed in Chapter 3, periostin has been linked to the balance of T-helper cell type 

cytokine profiles, where its presence shifts the cytokine profile towards a Th2, profibrotic 

bias (Masuoka et al., 2012). In our microarray data we saw statistically significant 

reductions in the expression of the key inflammatory mediators FasL and Csf1 in the PN-
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treated wounds (Figure 3.5). Therefore, several lines of evidence demonstrate that 

periostin can modulate the inflammatory response. The observation that PN-containing 

treatment did not induce α-SMA expression, as was the case in Postn-/- mice (Elliott et 

al., 2012b), may be a consequence of the complex inflammatory state of db/db wounds 

compared to Postn-/- wounds. One hypothesis is that TNFα inhibits myofibroblast 

differentiation in the db/db wounds (Figure 3.3) (Goldberg et al., 2007). More work is 

needed to sort through the specific interactions of periostin and the immune response. 

Whether these inflammatory effects or another discrete pathway are involved in 

periostin-dependant α-SMA expression has yet to be determined. 

4.2 Are matricellular protein expression patterns and 
the models we used relevant to human healing? 

Our understanding of human skin healing is largely based on what we have learned from 

mouse models of wound healing. However, there are known differences between murine 

skin and human skin that raise questions about the accuracy of mouse models. For 

example, murine skin is thin compared to human skin and contains an additional muscle 

layer known as the panniculosus carnosus (Wong et al., 2011). Human skin is relatively 

rigid, tight and is firmly anchored to the underlying tissue. Murine skin, on the other 

hand, is loose, compliant and freely moves independently of the underlying tissue (Wong 

et al., 2011). The consequences of these differences for wound healing is that murine 

wounds are free to close primarily by contraction, whereas human wound healing is 

largely accomplished through re-epithelialization and granulation tissue deposition 

(Wong et al., 2011). These differences contribute to difficulty in translating therapeutic 

developments validated in mice into effective treatments for use in the clinic. On a larger 

scale, these differences call into question how closely the expression pattern and function 

of factors such as matricellular proteins in mice mimic their homologues in humans. To 

attempt to address this, we can draw on examples from other tissues where matricellular 

proteins have been studied in both human pathology and the corresponding murine 

models. 
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Periostin is heavily expressed in the periodontal ligament (PDL) of mice (Horiuchi et al., 

1999). In mice, periostin is essential for PDL integrity, where deletion of periostin results 

in degradation of the PDL (Hamilton, 2008; Rios et al., 2008). Removal of occlusal 

loading, however, is protective of the PDL in Postn-/- mice, suggesting periostin’s role in 

PDL is associated with adapting to mechanical stress. Periostin is also heavily expressed 

in human PDL (Wen et al., 2010). Moreover, in human PDL from teeth where occlusal 

loading has been removed, periostin expression is reduced (Wen et al., 2010). Therefore, 

periostin expression in the PDL of both humans and mice seems to be mechanically 

regulated in a similar manner. 

Five days after induced myocardial infarction, periostin expression is up-regulated in the 

murine ventricular wall (Shimazaki et al., 2008). Deletion of Postn-/- results in reduced 

fibrosis of the infarct area; characterized by reduced collagen fibril formation and 

myofibroblast differentiation. In infarct tissue from human hearts, periostin is increased 

compared with healthy tissue surrounding the infarct. Furthermore, elevated periostin 

expression in human infarct tissue is associated with fibrosis, suggesting, again that 

periostin expression is regulated similarly in mouse and human tissues (Shimazaki et al., 

2008).  

Confirming that periostin has a parallel role in murine and human skin healing would be 

difficult due to ethical concerns. However, periostin has been studied in human fibrotic 

skin conditions where its expression is congruent with murine models of skin fibrosis. In 

mice, periostin is significantly up-regulated in bleomycin-induced skin fibrosis, and 

deletion of periostin is protective against skin fibrosis (Yang et al., 2012). In human skin, 

elevated periostin expression is associated with keloid and hypertrophic scars (Naitoh et 

al., 2005; Zhou et al., 2010). In SSc, periostin expression correlates with the degree of 

skin fibrosis (Yamaguchi et al., 2013). The same is true for CCN2 in skin. CCN2 is 

required for bleomycin-induced skin fibrosis in mice (Liu et al., 2011), and the level of 

CCN2 correlates with the severity of SSc in human skin (Takehara, 2003). The roles of 

periostin and CCN2 in human skin healing are unknown, and ethical concerns prohibit 

determining their expression patterns following wounding. However, the similarities 

between their expression patterns in human pathologies and corresponding murine 
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models strongly suggests that the roles of periostin and CCN2 in murine models of skin 

healing are relevant to human healing. 

Of particular importance for our study was selecting a model that was relevant to human 

chronic skin wounds. The majority of human samples obtained for this study were from 

patients with type-2 diabetes. A suitable model for studying our PN- and CCN2-

containing treatments should therefore model the impaired skin healing associated with 

diabetes. For this, we chose the db/db model of type-2 diabetes. The db/db mouse was 

first described in 1966 (Hummel et al., 1966) and has since become the most widely 

studied mouse model of diabetes (Michaels et al., 2007). The db/db mouse carries a point 

mutation in the leptin receptor (Lepr) gene, termed db, which results in defective leptin 

signaling. Shortly after birth, homozygous Leprdb (db/db) mice become obese and exhibit 

hyperglycemia by four to eight weeks (Hummel et al., 1966). These mice are polyphagic, 

polydipsic, and polyuric. They are insulin resistant, hypertriglyceridemic, and have 

impaired glucose tolerance. Most importantly, they exhibit severely impaired skin wound 

healing. We have shown that the histology of day 7 skin wounds in db/db mice is similar 

with respect to periostin, α-SMA, collagen and TNFα (Figure 3.4d) to the human chronic 

skin wound tissues we examined (Figure 3.2). Additionally, Ccn2 expression is not 

induced in day 7 db/db wounds (Figure 3.4e). Therefore, the db/db mouse represents an 

excellent model for the study of PN- and CCN2-containing scaffolds with an aim towards 

treating human chronic skin wounds. 

There are, however, criticisms of the db/db mouse model. One such criticism is that the 

monogenetic etiology (defective leptin signaling) does not match the complexity of 

human diabetes (Fang et al., 2010). In humans the influence of leptin on obesity and 

metabolic disorders is far subtler than in mice. Therefore, the model is centered on the 

role of leptin more than on diabetes as a whole. Furthermore, leptin has been shown to 

influence skin healing independent of metabolic disorders. Topical application of leptin 

to wild-type and leptin-deficient ob/ob mice, but not db/db mice, accelerated wound 

healing (Frank et al., 2000; Ring et al., 2000; Stallmeyer et al., 2001). Leptin receptors 

have been detected on keratinocytes at the wound margins in mice and leptin can increase 

keratinocyte proliferation in vitro, far removed from the metabolic disorders present in 
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the animal (Frank et al., 2000). The direct effects of leptin on skin healing suggest that 

the impaired healing in db/db mice is independent of a diabetic state. However, topical 

administration of leptin to wounds in ob/ob mice did not completely correct impaired 

healing. Deficits in angiogenesis persist even though blood vessels in the granulation 

tissue of ob/ob mice present the leptin receptor (Ring et al., 2000; Stallmeyer et al., 

2001), suggesting there is more to this model than leptin dependant effects. 

The two most commonly used alternatives to the db/db model of diabetes are the 

streptozotocin-induced and Akita models (Michaels et al., 2007). These mice model type-

1 diabetes and therefore were not an appropriate comparison for our human tissue 

samples. Moreover, the existence of wound healing impairments in these models is 

questionable and, when present, not as severe as in the db/db mice (Keswani et al., 2004; 

Michaels et al., 2007). For example, in a study comparing these models Akita mice did 

not show a closure defect following incisional wounding (Fang et al., 2010). Streptozocin 

mice showed an incisional defect (Fang et al., 2010) but in another study they did not 

show an excisional defect (Michaels et al., 2007). An alternative to murine models is the 

ischemic rabbit ear model of impaired healing (Sisco and Mustoe, 2003). However, this is 

not a diabetic model and the surgical procedures involved are complex and technically 

difficult. Additionally, rabbits are far more costly to maintain than rodents. 

Alternatives to the standard excisional punch biopsy wound model used in this study are 

available. Examples include the ischemia/re-profusion injury model (Reid et al., 2004), 

which requires additional technical expertise and equipment, and the ischemic skin flap 

model (Wong et al., 2011), which produces difficult to control ischemic gradients. These 

more specialized models have the advantage of mimicking the ischemic environment that 

is important in human chronic skin wound pathogenesis. However, these wound models 

are technically demanding and do not lend well to comparison of multiple topically 

applied treatments. Furthermore, significantly increased tissue ischemia is one of the 

many defects that is well documented in db/db excisional wound healing (Ring et al., 

2000; Stallmeyer et al., 2001; Botusan et al., 2008). Therefore, although there are 

criticisms of the db/db model of impaired diabetic healing, it remains an appropriate and 

cost effective choice. Our histological comparison of day 7 db/db wounds with human 
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chronic skin wounds, with respect to periostin and CCN2, underscore the relevance of the 

db/db model. 

4.3 Matricellular proteins as therapeutics  

The idea of targeting matricellular proteins in conditions of pathological remodeling was 

first suggested by Midwood and colleagues in 2004 following review of the many ways 

matricellular proteins influence wound healing (Midwood et al., 2004). Surprisingly, in 

the intervening years since that publication, no studies have actually investigated the 

efficacy of these proteins in skin healing. 

Matricellular proteins are typically not expressed in the adult except during wound 

healing or tissue remodeling (Bornstein and Sage, 2002; Hamilton, 2008). Targeted 

deletion of matricellular proteins produces animals that are grossly normal or display a 

very subtle phenotype (Bornstein and Sage, 2002; Hamilton, 2008). As a result, 

matricellular proteins represent a highly localized, highly selective target for 

manipulating wound healing. Unlike the potentially life-threatening effects of systemic 

blockade of pleiotropic molecules like TNFα (Wolbing et al., 2009), systemic targeting 

of matricellular proteins produces few side effects. Intravenous delivery of an anti-CCN2 

monoclonal antibody to patients with microalbuminuric diabetic kidney disease was well 

tolerated in Phase I clinical trials (Adler et al., 2010), as was subcutaneous administration 

of the anti-angiogenic thrombospondin-1 mimetic, ABT-510, to patients with advanced 

solid tumors (Gietema et al., 2006). Recently, thrombospondin-1 was identified as being 

consistently elevated in biopsies taken of venous ulcers, as well as biopsies of the same 

locations 7 and 14 days later. This was compared to acute wounds created in the same 

patient where the acute wounds were re-sampled at days 7 and 14 (Shih et al., 2012). 

Interruption of thrombospondin-1 signaling with an antibody against its receptor, CD47, 

was shown to be protective against ischemia-reperfusion injury in mice (Maxhimer et al., 

2009). Perhaps it is time to test anti-thrombospondin-1 treatments on human chronic skin 

wounds. 

Inhibiting or targeting the downstream effects of over-expressed matricellular proteins, 

which by their over-expression are imposing deleterious effects on wound healing (i.e. 
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thrombospondin-1), might enhance healing of chronic skin wounds. However, given that 

the skin is readily accessible, local delivery of matricellular proteins that promote wound 

healing can be easily achieved. This is the approach we have chosen to pursue. We 

selected periostin and CCN2 because they are functionally associated with the profibrotic 

aspects of wound healing, including matrix accumulation, myofibroblast differentiation 

and profibrotic growth factor signaling. There are, however, other potential choices that 

may be useful in targeting different aspects of wound healing. Deletion of angiopoietin-

like 4 (ANGPTL4), a recent addition to the matricellular protein family, results in 

delayed re-epithelialization of wounds in mice (Goh et al., 2010b), suggesting ANGPTL4 

has a role in positively effecting re-epithelialization. Furthermore, topical application of 

an anti-ANGPTL4 antibody significantly delayed re-epithelialization in wild-type mice, 

showing that its effects are initiated from outside the cell. Of particular interest, delivery 

of recombinant ANGPTL4 fully recovered delayed re-epithelialization in Angptl4-/- mice 

(Goh et al., 2010a). Future work should determine if addition of ANGPTL4 to human 

wounds could enhance re-epithelialization. The galectins are a large group of 

matricellular proteins with diverse roles, including modulating inflammation. Galectin-1 

can induce Th2 polarization by selectively killing Th1 cells. Additionally, galectin-1 

promotes IL-10 production and attenuates IFNγ (Liu et al., 2012), furthering a Th2 bias. 

Galectin-3 also exerts its influence on the Th1/Th2 balance, favouring a Th2 profile (Liu et 

al., 2012). The interplay of the galectins and inflammation is complex and their role(s) in 

chronic skin wounds is unclear. Recently, however, we have shown that galectin-3 is 

absent in the epidermis surrounding human chronic skin wounds but is abundant in the 

epidermis of non-involved skin (Pepe et al., in press). The implications of this are 

currently unknown. 

The importance of modulating the inflammatory phase of wound healing was not a focus 

in our study. Clinically, debridement of a wound removes the bacterial load and necrotic 

tissue responsible for perpetuating the inflammatory response and aims to “reset” the 

chronic skin wound to an acute wound. We hypothesized that after debridement, addition 

of periostin and CCN2 to a chronic skin wound could immediately initiate fibrotic wound 

healing, by-passing the stalled inflammatory phase associated with chronic skin wounds. 

However, with systemic disorders like diabetes still present, it is possible that following 
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debridement the wound might revert to a state of excessive inflammation. It may 

therefore be necessary to include another matricellular protein (i.e. galectin-1 or -3) to 

modulate inflammation. Based on the matricellular proteins discussed here, a 

hypothetical therapeutic device may incorporate galectins to shift inflammation to a Th2 

profile, periostin and CCN2 to produce dermal fibrotic healing and ANGPTL4 to 

accelerate re-epithelialization. 

4.4 Different types of chronic skin wounds 

The majority of chronic skin wounds can be classified as either diabetic ulcers, venous 

ulcers or pressure sores (Mustoe et al., 2006), with arterial wounds being less prevalent. 

Understanding the differences between these wounds is essential in prevention and 

avoiding recurrence. Control of diabetic ulcers requires tight regulation of diet and blood 

glucose as well as disciplined use of offloading devices. Venous ulcer occurrence is best 

controlled with compression bandages. Pressure sores, like diabetic ulcers, require 

offloading but also close monitoring and frequent proactive repositioning. Surgical 

reperfusion and anti-platelet medications are the standard of care for arterial wound 

treatment, however compression is contraindicated. These treatments are very deliberate, 

specific and effective in controlling the different etiologies of chronic skin wounds. 

There is evidence that once wounds have formed the different etiologies present differing 

molecular profiles. For example, myofibroblasts (α-SMA positive stromal cells) were 

detected at higher levels in venous ulcers greater than 3 months in duration compared to 

acute 7 day-old wounds (Trostrup et al., 2011). In the wounds we observed, however, α-

SMA positive cells were restricted to the vasculature. The patients enrolled in our study 

were almost exclusively diagnosed with peripheral vascular disease (PVD) (Table 3.1), 

suggesting that the wounds we examined were primarily arterial in nature. The distinction 

between wound etiologies is not rigid, however, and there is considerable overlap 

between various chronic skin wounds (i.e. an arterial wound caused by large vessel 

atherosclerosis but complicated by diabetes and pressure). Moreover, the diagnosis of a 

patient’s limb does not always match the complexity of the specific wound. For example, 

we have collected tissue from a wound on the heel of a diabetic patient’s foot, for which 
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the diagnosis was PVD. Yet it is reasonable to expect that this wound may have been 

complicated by pressure and diabetic neuropathy. Thus, the importance of molecular 

differences between wound etiologies, once they have developed, may not be as 

important as the similarities. 

Regardless of the etiology of the chronic skin wound, there are common overarching 

determinants of pathogenesis. They are: advanced patient age, repeated ischemia-

reperfusion injury, bacterial colonization and hypoxia (Mustoe et al., 2006). The complex 

interaction of these factors results in an out-of-control, self-sustaining inflammatory 

response (Menke et al., 2007). We suggest that future treatments may not need to be 

tailored to the specific molecular profile of each chronic skin wound etiology. Successful 

widely applicable treatments may be those that address the common dysfunctions of all 

chronic skin wounds. With this in mind we did not employ exclusion criteria (i.e. 

etiology, smoking, medications, infection) in our study. We hypothesize that any factors 

consistently found to be inappropriately expressed in chronic skin wounds from a wide 

range of patients would offer greater therapeutic applicability then those restricted to a 

subset (i.e. venous ulcers in non-smoking patients). The wounds we examined were 

mostly from patients with type-2 diabetes and PVD. To determine if the expression 

patterns of periostin and CCN2 are consistent across a wider range of etiologies, we will 

need to examine chronic skin wounds specifically classified as venous ulcers, diabetic 

ulcers and pressure sores. It is possible that venous ulcers like those shown to contain 

high numbers of α-SMA positive myofibroblasts (Trostrup et al., 2011) may also contain 

high levels of periostin. 

4.5 Future directions and implications 

For the rhPN- and rhCCN2-containing scaffolds used in Chapter 3, the next step in 

developing these into a treatment for chronic skin wounds is to test their efficacy in larger 

animals, such as the pig. Mouse models of wound healing in skin are always difficult to 

translate to human use due to the loose skin of mice (Ansell et al., 2012). Pigs, like 

humans, have tight skin that heals primarily by re-epithelialization (Sullivan et al., 2001) 

rather than from contraction, as in mice (Galiano et al., 2004). Mechanical tension in 
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wound healing promotes scar formation, which creates cosmetic concerns but can also 

compromise skin function (Gurtner et al., 2011). It will be interesting to see if mechanical 

tension will work synergistically with rhPN or rhCCN2 to promote fibrosis. The presence 

of a scar may be an acceptable outcome for patients suffering from chronic skin wounds 

when the alternative is amputation. There are apparati (stents) available to mimic tight 

skin in mice, however, porcine skin is still the superior choice for its ability to 

accommodate wounds of a size comparable to human chronic skin wounds. 

An important finding from our experiments with wound edge fibroblasts was that they 

did not display a senescent phenotype. There is debate in the literature about the state of 

chronic skin wound edge cells and their utility in wound healing. For years the evidence 

supported the theory that chronic skin wound fibroblasts are senescent and are not 

salvageable for wound healing. Brem and colleagues’ attempt to map out differences in 

fibroblast senescence based on proximity to the wound bed challenged that theory (Brem 

et al., 2007; Brem et al., 2008). Their work defined two subpopulations of cells defined 

by the location they were harvested from. Those from the non-healing edge displayed 

migration deficits and a polygonal morphology consistent with senescent cells. Those 

from the healing edge (a few millimetres away from the wound bed) migrated faster and 

displayed a spindle shape. Our results confirm that wound edge cells, even if only a 

subpopulation, are capable of adopting an activated phenotype (Figure 3.3). The 

implication that Brem and colleagues realized was that debridement of the wound edge 

should be with care since there are valuable cell populations that could be lost. We agree, 

but more work is needed to make the non-healing wound edge identifiable and 

distinguishable from the healing wound edge in a surgical setting. Periostin may be a 

potential marker for the region containing usable fibroblasts but periostin is not readily 

detectable in a surgical setting. Our data shows that the localization of periostin coincides 

with an area of hyper-vascularization around the wound edge. Non-invasive imaging 

techniques, such as diffuse optical imaging, are available for detecting blood oxygen. 

Such modalities might be used to detect the hyper-vascularization as a surrogate for 

periostin, and therefore direction as to where debridement should occur. 



 

 

166 

In addition to guiding debridement, we propose that the wound edge is a valuable 

resource for use in cell-based therapies. Steinberg and colleagues recently compared the 

therapeutic efficacy of adipose derived stem cells (ADSC) and dermal fibroblasts in an 

ischemic rabbit model of wound healing (Steinberg et al., 2012). Both cell types 

significantly increased wound healing rates. Surprisingly, they found no statistical 

difference between the abilities of ADSC and fibroblasts to accelerate wound healing. In 

light of our results with wound edge fibroblasts, and knowing that repeated debridement 

is the standard of care for difficult-to-heal wounds, we propose that debrided wound edge 

skin is a minimally invasive source of dermal fibroblasts to be used in cell-based 

therapies. 

The complexity of chronic skin wounds likely cannot be resolved by a single factor (i.e. 

PDGF-BB, periostin or CCN2). Previously, we discussed how various matricellular 

proteins could be combined in a treatment to influence many aspects of wound healing. 

Future work should go beyond this and combine matricellular proteins with other 

therapies like growth factor-based treatments. CCN2 is required for maximal induction of 

α-SMA and collagen type-1 by TGFβ (Shi-wen et al., 2006). Similarly, CCN2 is required 

for TGFβ induced myofibroblast differentiation and subsequent gel contraction (Garrett 

et al., 2004). Deletion of periostin redirects the influence of TGFβ from fibrosis to 

regeneration in a model of muscular dystrophy (Lorts et al., 2012). Perhaps the 

disappointing clinical outcomes of TGFβ application to venous ulcers (Robson et al., 

1995) would have turned out differently if TGFβ was combined with rhCCN2 or rhPN. 

SPARC has been shown to bind to and inhibit the function of both PDGF and VEGF 

(Brekken and Sage, 2000). PDGF-BB combined with an anti-SPARC agent may increase 

efficacy over PDGF-BB alone. By optimizing currently available agent-based therapies 

through combinations with matricellular proteins, we may be able to produce a 

therapeutic that is effective and widely applicable. The advantages that an agent-based 

therapeutic has over negative pressure or cell-based therapies are a longer shelf life, ease 

of use, ease of storage and no requirement for additional equipment. With the high cost of 

chronic skin wounds around the world, these benefits should not be discounted. 
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4.6 Summary 

The overall hypothesis of this thesis was that the matricellular proteins periostin and 

CCN2, two matricellular proteins associated with fibrotic healing, could enhance the 

healing of chronic skin wounds. We have demonstrated that in a murine model of 

impaired healing these proteins can enhance skin healing. Therefore, the potential exists 

for these proteins to be used as therapeutics for healing of human chronic skin wounds. 
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Appendix C: Enrichment analysis of up-regulated genes from microarray
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Appendix D: Enrichment analysis of down-regulated genes from microarray 
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