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Abstract 

The effect of trophic level on the isotopic compositions of nitrogen (δ15N), carbon (δ13C) 

and oxygen (δ18O) is well documented, but the effect that trophic level has on the stable 

hydrogen isotopic composition of bat fur (δ2Hfur) is not known. This can have 

implications when assigning the locations of origin of bats in migration studies that use 

δ2Hfur. I hypothesized that if there is an effect of trophic level on δ2Hfur, then δ2Hfur would 

correlate positively with trophic level. I tested this possibility by correlating δ2Hfur with 

δ15Nfur and δ13Cfur, which both positively correlate with trophic level, and with δ18Ofur, 

which does not correlate with trophic level. My results show that δ2Hfur increases by 15 to 

40 ‰ per trophic level, which supports my hypothesis. Understanding the effect that 

trophic level has on δ2Hfur can help researchers assign more accurate locations of origin 

for bats. Together, δ15Nfur, δ13Cfur and δ2Hfur can help determine what bats are eating at 

the individual or population level. 

Keywords: Artibeus jamaicensis, Bat, Carollia perspicillata, Carbon, Desmodus 

rotundus, Eptesicus fuscus, Fur, Glossophaga soricina, Hydrogen, Isotope, Nitrogen, 

Oxygen, Size, Stable isotopic composition, Trophic level 
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Chapter 1: Introduction 

Several species of North American bats undertake short- or long-distance migrations to 

survive the winter. However, the timing, distance and routes of these migration events are 

not well understood. Traditional methods for studying migration are difficult to apply to 

many species of bats because of their nocturnal nature and small body size (Cryan et al., 

2004). Tracking devices small enough for bats either have a short battery life or do not 

transmit over long enough distances. Mark-recapture methods are often not viable 

because many bats are solitary, making them difficult to capture in large numbers, and 

recapturing a marked bat is highly unlikely (Cryan et al., 2004; but see Dubois and 

Monson 2007). Measuring the stable isotopic composition of hydrogen in bat fur 

provides an alternative approach for studying bat migration events. The stable isotopic 

composition of bat tissue acts as an intrinsic marker of individual animal ecology, and 

requires capturing each bat only once (Britzke et al., 2009; Fraser et al., 2012; Popa-

Lisseanu et al., 2012). Stable hydrogen isotope ratios of bat fur (δ2Hfur), in particular, can 

be useful for studying bat ecology, but little is known about the effect of trophic level on 

these compositions. Understanding the effect that trophic level has on δ2Hfur can help 

researchers assign more accurate locations of origin for bats. It is becoming increasingly 

important to understand bat migration behaviours as bat populations face pressure from 

threats such as wind turbines (Arnett et al., 2008; Cryan and Barclay, 2009) and white 

nose syndrome (Frick et al., 2010). 

1.1 Stable isotopes 

The isotopic composition of an individual’s tissues is determined by what that individual 

eats and drinks, as well as by metabolic processes. Changes in tissue isotopic 

composition occur when the amount of the heavier isotope changes relative to the amount 

of the lighter isotope. This process is known as fractionation. Fractionation is caused by 

the mass difference between the heavy and the light isotope of an element (Sulzman, 

2007). Evaporation of water is an example of a process contributing to fractionation. 

Hydrogen atoms containing no neutrons (1H) have a lower mass (i.e., are lighter) than 

those with one neutron (2H). Consequently, on average, molecules containing 1H enter 
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the vapour phase preferentially to molecules containing 2H. The result of this 

fractionation is depletion of 2H in the water vapour, and enrichment of 2H in the 

remaining water. A similar fractionation process applies to oxygen isotopes in this 

example. Some examples of metabolic processes that can cause fractionation are 

nitrogenous excretion (Birchall et al., 2005) and respiration (DeNiro and Epstein, 1981a). 

Bat δ2Hfur values can indicate the occurrence and extent of migration of bats in North 

America. This is possible because of a latitudinal gradient in the δ2H values of 

precipitation (δ2Hprecip) across the continent. The δ2Hprecip values start near 0 per mil (‰) 

at equatorial latitudes and become increasingly negative towards higher latitudes, 

reaching as low as approximately −230 ‰ (Figure 1; Bowen, 2013; Bowen and 

Revenaugh, 2003).  

Bats typically molt once per year during summer prior to migration (Constantine, 1957; 

Constantine, 1958; Cryan et al., 2004; Fraser et al., 2012). Local δ2Hprecip values are 

incorporated into their fur during this time. Once fur is grown, its isotopic composition is 

fixed. When a bat is captured after beginning migration, its δ2Hfur value will be different 

than the δ2Hprecip value of the area where it is captured if the bat has moved far enough 

along the δ2Hprecip gradient. The size of this difference provides an estimate of the 

potential distance of migration, as each value of δ2Hfur can typically be associated with a 

geographic range of origin (Britzke et al., 2009; Fraser, 2011). A limitation of this 

method is the potential for variation in the δ2Hfur values of resident bats (Britzke et al., 

2009; Fraser, 2011). Such variation can cause uncertainty when assigning a location of 

origin of a migrant bat. For example, a difference of 20 ‰ in δ2Hfur values can cause the 

assigned location of origin to be off by hundreds of kilometres. Knowing the factors that 

contribute to variation can reduce uncertainty about the range of origin. Potential sources 

of variation include trophic level (Birchall et al., 2005; Reynard and Hedges, 2008) and 

body size (Betini et al., 2009; Whitledge et al., 2006).  

1.2 Trophic level and stable isotopic composition 

Trophic level refers to the position an organism occupies in a food web. For the purpose 

of this study, I consider plants to be at the first trophic level. Bats that eat mainly plant  
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Figure 1: Gradient of δ2Hprecip (‰, VSMOW) values across North America (Bowen, 

2013; Bowen and Revenaugh, 2003). 

matter (e.g., fruit, nectar) represent the second trophic level. Bats that eat insects or blood 

represent the third trophic level when the insects or hosts are, in turn, only eating plants 

(Krebs, 2001).  

The stable isotopic compositions of some elements can provide an indication of trophic 

level. Nitrogen isotopic composition (δ15N) is a very reliable indicator of trophic level, 

generally increasing by approximately 3 ‰ per trophic level (but this value can vary from 
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approximately 3 to 5 ‰; Blüthgen et al., 2003; DeNiro and Epstein, 1981a). This 

relationship is confounded in systems that have sources in both aquatic and terrestrial 

environments, because values of δ15N are generally higher in aquatic than in terrestrial 

environments (DeNiro and Epstein, 1981a). It is also confounded in areas that have 

undergone organic nitrogen fertilization, as these fertilizers can cause enrichment in 15N 

(Birchall et al., 2005; Szpak et al., 2012). For my study, I will use δ15N values as a 

measure of trophic level. 

Stable carbon isotopic composition (δ13C) can also positively correspond with trophic 

level, increasing by about 1 ‰ per trophic level (DeNiro and Epstein, 1978). That said, 

δ13C values are not as strongly correlated with trophic level as δ15N values (DeNiro and 

Epstein, 1978; Reynard and Hedges, 2008), and are more commonly used as indicators of 

the dietary source(s) of the organism whose tissues are being analysed (Fleming et al., 

1993; Siemers et al., 2011). For example, food webs based on plants that use the C3 

photosynthetic pathway will have lower δ13C values than food webs based on C4 plants. 

Both photosynthetic pathways discriminate against 13C during photosynthesis, but the 

discrimination is larger in C3 plants. As a result, C3 plants typically have δ13C values that 

range from −35 to −20 ‰, and C4 plants typically have δ13C values that range from −15 

to −7 ‰ (Kennedy and Krouse, 1990). For my study, I will use δ13C values as a 

secondary measure of trophic level. 

Both δ15N and δ13C are positively correlated with trophic level because they are derived 

from what an organism eats. Values of δ15N increase because of the metabolic process of 

nitrogenous excretion, which preferentially incorporates 14N over 15N (McCutchan Jr. et 

al., 2003). This leaves the remaining nitrogen enriched in 15N. Values of δ13C increase 

because of the process of respiration. The 12C is preferentially incorporated in the 

formation of CO2, leaving the remaining carbon slightly enriched in 13C (DeNiro and 

Epstein, 1978). Unlike δ15N and δ13C, the oxygen isotopic composition (δ18O) is derived 

from water. Therefore, δ18O remains constant with increasing trophic level (Koch, 2007; 

Schimmelmann and DeNiro, 1986; van Hardenbroek et al., 2012).  



5 
 

The effects of trophic level on δ15N (DeNiro and Epstein, 1981a), δ13C (DeNiro and 

Epstein, 1978) and δ18O (Schimmelmann and DeNiro, 1986) are quite well established. 

Less well-known is the effect of trophic level on δ2H values. Migration studies that use 

δ2Hfur values typically assume that trophic level has no effect (Britzke et al., 2009; Fraser, 

2011; Popa-Lisseanu et al., 2012), but this assumption may not be correct. Several studies 

have reported an increase in δ2H with trophic level. This increase has been reported for 

the bone collagen of terrestrial herbivores, omnivores and carnivores (Birchall et al., 

2005; Reynard and Hedges, 2008) as well as in aquatic systems in the tissues 

phytoplankton, zooplankton (Stiller and Nissenbaum, 1980) and arthropods 

(Schimmelmann and DeNiro, 1986). The reported increase in δ2H is usually between 20 

and 50 ‰ (Birchall et al., 2005; Reynard and Hedges, 2008; Stiller and Nissenbaum, 

1980). None of these studies accounted for physiological or behavioural differences 

among study species. Therefore, it remains unclear if the increase in δ2H is caused by 

trophic level.  

There are three potential sources of the H that is incorporated into an individual’s tissues. 

The first is drinking water (DeNiro and Epstein, 1981b; Estep and Dabrowski, 1980). 

Migration studies generally assume that drinking water is the sole source of H for tissues 

(e.g., Britzke et al., 2013; Fraser et al., 2012). A second source of H is the water in food, 

also known as diet water (Birchall et al., 2005; Solomon et al., 2009). This source may be 

of particular importance in bats that eat foods with a high water content, such as fruit, 

nectar or blood (Carpenter, 1969; McFarland and Wimsatt, 1969; Studier et al., 1983). A 

third source of H is the amino acids in food tissue (Birchall et al., 2005; DeNiro and 

Epstein, 1981b; Estep and Dabrowski, 1980). Food has been considered to influence 

δ2Hfur values by other researchers (Birchall et al., 2005; Stiller and Nissenbaum, 1980). 

Reynard and Hedges (2008) suggested that up to 60% of δ2H in bone collagen can be 

derived from diet. Furthermore, food can contribute 29% of hydrogen in the body water 

of small mammals (Podlesak et al., 2008). For my study, I will refer to the H sources as 

“drinking water,” “diet water,” and “diet tissue,” respectively.  

Three mechanisms could cause an increase in δ2H values with increasing trophic level. 

The first mechanism, proposed by Solomon et al. (2009), is illustrated with an example of 
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an organism whose tissues contain 20% exchangeable H, and whose prey’s tissues also 

contain 20% exchangeable H. In such a case, the organism will contain both the 20% of 

H it derived from diet water and the 20% the organism’s prey derived from diet water. 

This is called the compounding effect of diet water contributions, and could cause the 

apparent trophic level increase in δ2H values.  

Birchall et al. (2005) suggested a second possible mechanism that could cause an increase 

in δ2H values with increasing trophic level. Amino acid synthesis may incorporate body 

water, which is derived from both diet and drinking water. Processes such as respiration 

and transcutaneous evaporation leave the remaining body water enriched in 2H (Schoeller 

et al., 1986). If this body water was subsequently used in fur formation, that would 

increase δ2Hfur values. For both of the first and second mechanisms, the processes that 

cause 2H enrichment should affect oxygen in the same way, causing a corresponding 

enrichment in 18O in the remaining body water.  

A third mechanism that could cause δ2H values to increase with trophic level is the 

preferential catabolism of isotopically lighter amino acids from diet tissue (Birchall et al., 

2005). This mechanism would cause enrichment in 2H without a corresponding 

enrichment in 18O. Values of δ2H and δ18O are usually highly correlated in drinking and 

diet water (Gat et al., 2001). Therefore, a measured increase in δ2H values without a 

corresponding increase in δ18O values supports the idea of a trophic effect on δ2H values 

following the third mechanism. For my study, I will use δ18O values in conjunction with 

δ15N and δ13C values to determine if changes in δ2H values are caused by trophic level. A 

change in δ2H values without a corresponding change in δ18O values would support an 

effect of trophic level. 

It is important to determine the role that trophic level plays in determining bat δ2Hfur 

values so we can correct for the difference in δ2Hfur values trophic level causes prior to 

using those δ2Hfur values to track migration. A one trophic level increase in δ2Hfur values 

of 20 ‰ could correspond to a geographic error of hundreds of kilometers if no 

correction was made (Bowen, 2013; Bowen and Revenaugh, 2003). Evaluating such 

effects is especially important for insectivorous bats. Insectivorous bats are more likely to 
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occupy a “trophic range,” as the insects they feed on may be herbivorous, insectivorous 

or sanguinivorous. If their trophic range influences their δ2Hfur values, their location of 

origin will appear to span more kilometres than is actually the case.  

1.3 Study species 

In order to ascertain the effect of trophic level on δ2H values, I sampled bats from two 

distinct trophic levels. These bats occupy the second and third trophic levels (as the first 

trophic level consists of plant matter). Representing the second trophic level, my species 

of study are Artibeus jamaicensis, Carollia perspicillata and Glossophaga soricina. 

Representing the third trophic level, my species of study are Desmodus rotundus and 

Eptesicus fuscus. For all five species I sampled captive bats, and for Desmodus rotundus 

and Eptesicus fuscus I also sampled wild bats. As the main difference between captive 

and wild bats is their diet, this allows me to compare the influence of diet on the N, C, H 

and O isotopic compositions.  

Larger body sizes can be associated with higher δ2H values among individuals (Betini et 

al., 2009; Soto et al., 2011), but this effect is usually only noticeable when the differences 

in body size are large (Soto et al., 2011; Whitledge et al., 2006). To minimize the 

potential influence of size variations (as measured by bat forearm length) on δ2H values, I 

sampled similarly sized bats for both of the trophic levels in my study (Table 1). 

Table 1: Average forearm length (mm) and diets of species in my study. There are 

similar-sized species on each trophic level. 

Species Average forearm length 
(mm) 

Diet in captivity Trophic level 

Artibeus 
jamaicensis 

60 
(Ortega and Castro-

Arellano, 2001) 

Fig, banana, sweet potato, 
mango, cantaloupe, Gala apple, 

marmoset mix, pear 
Second 

Carollia 
perspicillata 

42 
(Cloutier and Thomas, 

1992) 

Fig, banana, sweet potato, 
mango, cantaloupe, Gala apple, 

marmoset mix, pear 
Second 

Glossophaga 
soricina 

36 
(Alvarez et al., 1991) 

Nectar, fig, banana, sweet 
potato, mango, cantaloupe, Gala 

apple, marmoset mix, pear 
Second 
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Desmodus 
rotundus 

58 
(Greenhall et al., 1983) Cow blood Third 

Eptesicus 
fuscus 

47 
(Kurta and Baker, 1990) Mealworms Third 

1.4 Statement of Purpose  

My objective was to ascertain the role that trophic level plays in determining the δ2H 

values of bat fur. I hypothesized that if there is a trophic effect on δ2H values of bat fur, 

then δ2Hfur values should be positively correlated with trophic level. Knowing that δ15N 

and δ13C correlate positively with trophic level, I used them as primary and secondary 

measures of trophic level, respectively. I then tested for a correlation between values of 

δ2H and δ15N, and between values of δ2H and δ13C to determine if δ2H values increase 

with trophic level. However, δ15N and δ13C on their own do not definitively indicate if 

trophic level is the cause of the change in δ2H values. Values of δ2H and δ18O are highly 

correlated in water. Knowing that δ18O values do not correlate with trophic level, I also 

tested for a correlation between values of δ2H and δ18O. A change in δ2H without a 

corresponding change in δ18O would support an effect of trophic level. If my hypothesis 

was supported, I made the following three predictions: 

1) δ2Hfur and δ15Nfur values will be positively correlated 

2) δ2Hfur and δ13Cfur values will be positively correlated, but not as strongly as 

δ2H and δ15N 

3) δ2Hfur and δ18Ofur values will not be correlated 

I also investigated whether there is a correlation between δ2Hfur values and size, as 

measured by bat forearm length. If there is no size effect on δ2H values of bat fur, then 

δ2Hfur values would not be positively correlated with forearm length. As the size variance 

within each species is small (a few millimetres), I predicted there would be no 

intraspecific correlation of size with δ2Hfur values. I had species of similar sizes on each 

trophic level, so I also predicted that inter-species variations in size would have no 

correlation with overall δ2Hfur values.  
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If there is an effect of trophic level or size on δ2Hfur values, these will be factors to 

account for in future migration studies when assigning the geographic location of origin 

of bats. If there is a trophic effect, values of δ2Hfur could be used to provide information 

about trophic level when δ15N values are ambiguous, such as areas that have undergone 

nitrogen fertilization. Knowing both the effects of trophic level and size on δ2Hfur values 

can also help to make equations to relate δ2Hfur values to δ2Hprecip values in migration 

studies applicable to multiple species. This would make stable hydrogen isotopic analysis 

a more useful tool for studying migration. 
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Chapter 2: Materials and Methods 

2.1 Collection 

I collected fur samples from captive populations of five species at three different 

locations. For two of the species, I also collected fur samples from wild populations at 

two locations (Table 2). I collected all fur samples from the bats’ lower dorsum (see 

Appendix A for Animal Use Protocol). I collected fur samples from A. jamaicensis 

(n=13), C. perspicillata (n=43), G. soricina (n=20), captive E. fuscus (n=38), wild E. 

fuscus (n=38), captive D. rotundus (n=25) and wild D. rotundus (n=8). For the captive 

species I also collected samples of their diet and drinking water, with the exception of A. 

jamaicensis at the Havelock, ON location. For all bats except those from Belize, I 

recorded age (adult versus juvenile), sex and forearm length. I could not determine the 

exact age of the adults, but once the bats are fully developed I did not expect the stable 

isotopic compositions to be affected by differences in age (Hobson and Clark, 1992; 

Schimmelmann and DeNiro, 1986). Isotopic data for fur, diet and water are presented in 

Appendices B, C and D, respectively. 

The diets of the captive A. jamaicensis, C. perspicillata and G. soricina consisted of Gala 

apple, cantaloupe, fig, pear, marmoset mix, sweet potato, papaya and banana imported 

from various locations throughout the year. The mealworms eaten by Eptesicus fuscus 

were fed a diet of bran and came from a supplier that collects them from a network of 

local growers. The cow blood eaten by captive Desmodus rotundus came from local cows 

slaughtered at a local butcher shop. The cows ate mainly a mixture of corn, oats, and 

grass. I collected samples of each of these diet items except for the corn, oats and grass 

on the same sampling trips as the fur. I placed each diet sample in a glass vial with a 

rubber stopper lid, then placed Parafilm® over the lid. This handling was necessary to 

prevent the loss of water from the partial drying of the sample, as drying would cause 

fractionation of the remaining water in the sample. This handling also ensured that there 

was no isotopic exchange between the diet sample and ambient water vapour outside the 

vial once the sample was removed from the collection site, as any water vapour inside the 

vial would be from the collection site. Only one diet type was placed in each vial.  
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Table 2: Sampling locations and dates for both captive and wild populations of the five 

study species. 

Species Captive or wild Sampling location(s) and date(s) 

Artibeus jamaicensis Captive 
Montreal, QC (15 May and 24 October, 2012) 

Havelock, ON (30 January, 2013) 

Carollia perspicillata Captive Montreal, QC (15 May and 24 October, 2012) 

Glossophaga soricina Captive Montreal, QC (15 May and 24 October, 2012) 

Desmodus rotundus Captive Havelock, ON (30 January, 2013) 

Desmodus rotundus Wild Lamanai, Belize (May 2012) 

Eptesicus fuscus Captive Hamilton, ON (14 August and 1 November, 2012) 

Eptesicus fuscus* Wild 
Windsor, ON (2 August, 2012) 

Hamilton, ON (1 November, 2012) 

*At the time of the first sampling, the wild population of Eptesicus fuscus bats in 

Windsor, ON was taken into captivity by Paul Faure and placed in his colony in 

Hamilton, ON. The second time I sampled this wild population was while they were in 

captivity.  

I stored all fur samples at room temperature and water samples at 4⁰C until analysis. I 

stored diet samples in the freezer until I extracted their water using vacuum distillation. 

Vacuum distillation was used to prevent isotopic exchange between the water in the 

sample and the ambient water vapour, and to avoid contamination of the sample water 

from atmospheric water vapour. It was also used to avoid fractionation as a result of 

evaporation of the water in the sample, as evaporation would cause the remaining water 

to be enriched in 2H and 18O. Lastly, it prevented loss of water from the extracted water 

sample. After distilling the diet samples, I freeze-dried them and then ground them into a 

powder-like consistency with a mortar and pestle. I then stored the powdered diet 

samples at room temperature until analysis. 
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2.2 Stable isotope analyses 

All stable isotope analyses were completed in the Laboratory for Stable Isotope Science 

at the University of Western Ontario. Stable isotope compositions are presented in delta 

(δ) notation with units of per mil (‰). Isotopic ratios are standardized to air (AIR) and 

Vienna Pee Dee Belemnite (VPDB) for nitrogen and carbon, respectively, and to the 

Vienna Standard Mean Ocean Water (VSMOW) – Standard Light Antarctic Precipitation 

(SLAP) scale for both hydrogen and oxygen (Coplen, 1996; Coplen and Qi, 2012). All 

stable isotope results are calculated using the standard equation  

Equation 1: 

δ = ��
Rsample

Rstandard
� − 1� 

where R is the ratio of the heavy: light isotopes for any given element (e.g. 2H/1H, 
15N/14N, 13C/12C, 18O/16O). 

2.3 Fur analyses 

For fur preparation I followed a procedure similar to that described by Fraser (2011). To 

clean the fur, I soaked the samples overnight in a 2:1 solution of chloroform: methanol. I 

then rinsed them in the same solution and left them in the fume hood for more than 48 

hours to dry. My procedure differed slightly from Fraser (2011), in that I used scissors to 

chop my samples into a powder-like consistency after they were dry. I did this to mirror 

the procedure used for the standard preparation, following the Principle of Identical 

Treatment (Wassenaar and Hobson, 2003). The Principle of Identical Treatment insures 

that any procedure that may influence the isotopic composition of the samples will 

similarly influence the standards, thus preventing error that would have been introduced 

had the samples and standards been treated differently. 

For stable carbon and nitrogen isotopic analyses, I weighed 0.395 ± 0.010 mg of fur into 

3.5 x 5 mm tin capsules. I then loaded the samples into a Costech Elemental Analyser 

(EA; Costech Analytical Technologies Inc., Bremen, Germany) in continuous flow mode 



13 
 

where they were combusted. The CO2 and N2 gases produced by the combustion were 

measured using a Thermo Finnigan Deltaplus XL Isotope Ratio Mass Spectrometer 

(IRMS; Thermo Fisher Scientific Inc., Bremen, Germany), which was coupled to the EA. 

In order to determine the analytical precision of the IRMS, I used a 10% duplication rate 

for my samples. Isotopic data for all duplicates are presented in Appendix E. I calibrated 

the δ13C values to VPDB using USGS-40 (−26.39 ‰) and USGS-41 (+37.63 ‰; the 

results in parentheses are internationally accepted values). I used IAEA-CH-6 (−10.45 

‰) as an unknown to check the accuracy of the calibration curve, and I also placed a 

keratin internal standard (−24.04 ‰ for δ13C) approximately every 9-10 samples to check 

for analytical drift. For δ13C, I obtained an average value of −10.49 ± 0.13 ‰, n=12 for 

IAEA-CH-6, and an average value of −24.07 ± 0.05 ‰, n=31 for keratin. The average 

difference between duplicates of the same sample (± standard deviation) was 0.08 ± 0.06 

‰, n=14. I calibrated the δ15N values to AIR using USGS-40 (−4.52 ‰) and USGS-41 

(+47.57 ‰), and used IAEA-N2 (+20.30 ‰) as an unknown to check the accuracy of the 

calibration curve. I also placed a keratin internal standard (+6.36 ‰ for δ15N) 

approximately every 9-10 samples to check for analytical drift. For δ15N I obtained an 

average value of +20.36 ± 0.19 ‰, n=14 for IAEA-N2, and an average value of +6.38 ± 

0.17 ‰, n=36 for keratin. The average difference between duplicates of the same sample 

was 0.03 ± 0.02 ‰, n=14. 

For oxygen isotopic composition analyses, I weighed 0.180 ± 0.010 mg of fur into 4 x 3.2 

mm silver capsules. Samples were combusted in a ThermoFinnigan High Temperature 

Conversion Elemental Analyser (TC/EA; Thermo Fisher Scientific Inc., Bremen, 

Germany). The CO gas was then sent via continuous flow to a ThermoFinnigan Deltaplus 

XL mass spectrometer that was coupled to the TC/EA. In order to determine the 

analytical precision of the IRMS, I used a 16% duplication rate for my samples. I 

calibrated the oxygen isotopic results to VSMOW- SLAP using IAEA-CH-6 (+36.4 ‰) 

and USGS-LOW (−3.15 ‰), with the exception of the first analytical session, which was 

calibrated using IAEA-CH-6 and Ennadai (+22.2 ‰). All analytical sessions after the 

first one used Ennadai to verify the calibration curve. In each analytical session I also 

analyzed a Lasiurus borealis fur sample taken from the same bat approximately every 5 

samples to check for analytical drift. I also included a Benzoic Acid internal standard in 
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each analysis to test the comparability of each analytical session to one another. For δ18O 

I obtained an average value of +20.4 ± 0.6 ‰, n=13 for Ennadai and +10.9 ± 1.3 ‰, 

n=41 for L. borealis. The average difference between duplicates of the same sample was 

0.3 ± 0.3 ‰, n=29. The average value of Benzoic Acid across all δ18O analyses was 

+26.4 ± 0.5 ‰, n=8, which is slightly lower than its previously reported range of +27.1 to 

+27.8 ‰.  

For stable hydrogen isotopic composition analyses, I weighed 0.165 ± 0.010 mg of fur 

into 4 x 3.2 mm silver capsules. Samples were combusted in the TC/EA and the resulting 

H2 gas was sent via continuous flow to the IRMS. In order to determine the analytical 

precision of the IRMS, I used approximately a 16% duplication rate for my samples. 

Using the comparative equilibration technique (Wassenaar and Hobson, 2003), I 

calibrated them with a five-point curve using fur standards with known non-exchangeable 

δ2H values (Lemming: −155 ‰, Wolf: −118 ‰, Dog: −88 ‰, Jackrabbit: −59 ‰ and 

Skunk: −34 ‰). I also analyzed a Lasiurus borealis fur standard about every fifth 

analysis as a check for analytical drift. For δ2H, I obtained an average value of −45 ± 4 

‰, n=39 for L. borealis, and the average difference between duplicates of the same 

sample was 2 ± 2 ‰, n=30. To ensure consistency between analyses I included the NBS-

22 standard in each analytical session. Its average value from all analyses was −134 ± 6 

‰, n=9. The accepted value obtained for NBS-22, when calibrated using standards 

corrected for exchangeable hydrogen, is −136 ‰ (this is the corrected value taken from 

Fraser (2011)). The apparent value reported here for NBS-22 differs from its accepted 

value of −120 ‰. This is because NBS-22 does not contain any exchangeable hydrogen, 

so when it is calibrated using standards that contain exchangeable hydrogen its apparent 

accepted value differs compared to when it is calibrated using standards that do not 

contain exchangeable hydrogen. The variability of the NBS-22 value among analytical 

sessions was likely due to absorption of atmospheric water. 

2.4 Diet analyses 

For stable carbon isotopic analyses, I weighed 0.400 ± 0.010 mg of each diet sample into 

3.5 x 5mm tin capsules. I then placed them into the EA in continuous flow mode where 
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they were combusted. The CO2 gas produced by the combustion was then measured using 

the IRMS. I used a 10% duplication rate and calibrated my samples to VPDB using 

USGS-40 (−26.39 ‰) and USGS-41 (+37.63 ‰). I used IAEA-CH-6 (−10.45 ‰) as an 

unknown to check the accuracy of the calibration curve, and placed a keratin internal 

standard (−24.04 ‰ for δ13C) approximately every 9-10 samples to check for analytical 

drift. I obtained an average δ13C value of −10.57 ± 0.23 ‰, n=3 for IAEA-CH-6 and an 

average δ13C value of −24.08 ± 0.06 ‰, n=9 for keratin. The average difference between 

duplicates of the same sample (± standard deviation) was 0.36 ± 0.29 ‰, n=2. 

Due to the low nitrogen content of many of the diet samples, δ15N could not be measured 

simultaneously with δ13C for all samples. During the initial analysis, I determined the 

percentage of nitrogen contained in each sample and subsequently weighed an 

appropriately larger sample into 3.5 x 5mm tin capsules for δ15N analysis. The weights I 

used varied according to the nitrogen content of the sample (Table 3). The amount of N2 

gas produced by combustion was then sufficient for measurement using the IRMS. In 

order to determine the analytical precision of the IRMS, I used a 10% duplication rate for 

my samples. The δ15N values were calibrated using USGS-40 (−4.52 ‰) and USGS-41 

(+47.57 ‰). I used IAEA-N2 (+20.30 ‰) as an unknown to check the accuracy of the 

calibration curve, and placed a keratin internal standard (+6.36 ‰ for δ15N) 

approximately every 9-10 samples to check for analytical drift. I obtained an average 

δ15N value of +20.31 ± 0.27 ‰, n=5 for IAEA-N2 and an average δ15N value of +6.42 ± 

0.12 ‰, n=14 for keratin. The average difference between duplicates of the same sample 

(± standard deviation) was 0.29 ± 0.25 ‰, n=2 for δ15N. 

2.5 Water analyses 

To obtain δ2H and δ18O values for my diet samples, I analysed the distilled water drawn 

from the samples via vacuum distillation. These compositions represent the free water in 

the diet samples, but not the δ2H and δ18O values of the tissue portions of the food, which 

were not obtained.  
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Table 3: Weights used for δ15N analysis of diet items with low nitrogen contents. 

Diet type Weight (mg) 

Banana 5.00 

Bran 1.58 

Cantaloupe 2.27 

Fig 5.46 

Gala Apple 13.56 

Marmoset Mix 1.16 

Nectar 12.94 

Papaya 6.42 

Pear 7.73 

Sweet Potato 2.41 
 

Drinking water and distilled diet water samples were analyzed using Cavity Ring-Down 

Spectroscopy (CRDS) using an L1102-i Water Vapour Analyzer developed by Picarro, 

Inc. (Sunnyvale, CA, USA; hereafter referred to as the Picarro). We measured all samples 

using the high precision mode. The sample size for each water sample was 2µL, and we 

analysed both δ2H and δ18O simultaneously for each sample. We analysed twenty-three 

in-house standards alongside the samples in order to calculate accuracy and precision, 

and to calibrate samples to the VSMOW – SLAP scale. The Picarro cleaned the auto-

sampler needle between each sample using either a N-methyl-2-pyrrolidinone rinse (all 

samples analysed prior to 24 January, 2013) or a Distilled Water rinse (all samples 

analysed after 24 January, 2013), followed by a rinse using water from the next sample, 

which was then sent to a waste tube. Each water sample was injected into the cavity six 

times, and the results from the last three injections were averaged to produce the δ2H and 

δ18O values. I calibrated the hydrogen and oxygen isotopic results to VSMOW – SLAP 

using Heaven (+88.7 ‰/−0.27 ‰ for δ2H and δ18O, respectively) and LSD (−161.8 

‰/−22.57 ‰ for δ2H and δ18O, respectively). I used MID (−108.1 ‰/−13.08 ‰ for δ2H 

and δ18O, respectively) as an unknown to check the accuracy of the calibration curve and 

placed an internal water sample, EDT (−56 ‰/−7.27 ‰ for δ2H and δ18O, respectively) 
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approximately every 9-10 samples to check for analytical drift. I obtained an average δ2H 

value of −108.2 ± 0.8 ‰, n=14 and an average δ18O value of -13.12 ± 0.09 ‰, n=14 for 

MID. For EDT, I obtained an average δ2H value of −55.2 ± 0.8 ‰, n=46 and an average 

δ18O value of −7.39 ± 0.13 ‰, n=46. In order to determine the analytical precision of the 

Picarro, I had an 18% duplication rate for both δ2H and δ18O for all water samples. For 

the drinking water samples, the average difference between duplicates of the same 

sample (± standard deviation) was 0.2 ± 0.1 ‰ for δ2H and 0.05 ± 0.03 ‰ for δ18O. For 

distilled diet water samples, the average difference between duplicates of the same 

sample (± standard deviation) was 2.7 ± 0.4 for δ2H and 0.44 ± 0.14 ‰ for δ18O.  

2.6 Statistical analyses 

I used R version 2.15.2 for all statistical analyses. I used Q-Q plots in conjunction with 

Shapiro-Wilk tests to determine if my data followed a normal distribution. I used 

parametric statistics when my data were close to a normal distribution. When my data 

could not be assumed to follow a normal distribution, I used non-parametric statistics for 

my analyses. To compare the average isotopic ratios among species or sampling trips I 

used either a Student’s t-test (for data considered normal) or the Mann-Whitney U test 

(for all other data). I used a Levene’s test to compare the variances in isotopic 

compositions among species or sampling trips. For correlations I used either a Pearson 

product-moment correlation (for data considered normal) or a Spearman’s rank 

correlation (for all other data). When testing correlations involving δ13C values, captive 

D. rotundus values were excluded as they were influenced by the presence of C4 plants in 

the bats’ diet. For species that I sampled over multiple trips (A. jamaicensis, G. soricina, 

C. perspicillata, E. fuscus) or over multiple locations (A. jamaicensis), I compared the 

results from each trip or location to one another. I pooled them when there were no 

significant differences in both the mean isotopic composition and the variance and then 

compared the fur δ15N, δ13C, δ2H and δ18O values using species averages (for overall 

correlations) or individual data (for intra-trophic correlations). I also compared the 

average fur values of δ15N, δ13C, δ2H and δ18O for each species between trophic levels 

using one-tailed t-tests. 
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To ensure that differences in the fur hydrogen isotopic compositions are not just a 

reflection of variation in the drinking water, I calculated the difference between the δ2H 

values of the fur and the δ2H value of the drinking water (δ2Hfur − δ2Hwater= Δ2H). As 

many of the bats that I sampled had completed their molt prior to my sampling period, 

and as not all bat species molt at the same time (Constantine, 1957; Constantine, 1958; 

Cryan et al., 2004; Fraser et al., 2012), the drinking water δ2H value at the time of fur 

growth would not be the same for all species. In order to make the comparison consistent 

between species I needed to use δ2Hwater values that would reflect the δ2Hwater values at 

the time of fur growth. For the captive locations (Montreal, Hamilton, Havelock) I 

calculated the δ2Hwater value by taking the average δ2H value of the water samples I 

collected at each site. The sources of drinking water for Montreal, Hamilton and 

Havelock are the St.Lawrence River, Lake Ontario, and groundwater wells, respectively. 

The δ2Hwater values of these sources remain relatively constant throughout the year 

(Huddart et al., 1999; Yang et al., 1996), so the δ2Hwater values I used should be 

representative of the actual values at the time of fur growth. I used the same procedure to 

calculate the difference between δ18Ofur and δ18Owater (Δ18O). 

The source of drinking water for the wild populations of E. fuscus and D. rotundus is 

likely precipitation. To obtain values of δ18Owater for the wild populations of E. fuscus and 

D. rotundus, I calculated the average Δ18O values for the captive E. fuscus and D. 

rotundus. As δ18O values are derived almost entirely from drinking water and are not 

influenced by trophic level (Schimmelmann and DeNiro, 1986; van Hardenbroek et al., 

2012) or physiology (Bowen et al., 2009), the difference between δ18Ofur and δ18Owater 

(δ18Ofur − δ18Owater: Δ18O) should be approximately equal for the captive and wild 

populations of the same species. I therefore set the average Δ18O value for each wild 

population to be equal to that of the corresponding captive population (e.g., the average 

Δ18O value for wild E. fuscus is equal to the average Δ18O value of captive E. fuscus). 

Values of δ2Hprecipitation are highly correlated with δ18Oprecipitation values, following the 

general expression: 

Equation 2: 
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δ2H = 8.0 ∗ δ18O +  10 

This is called the Global Meteoric Water Line (Craig, 1961; Gat et al., 2001). However, 

this relationship can vary in slope and intercept by region depending on parameters such 

as latitude, altitude, humidity, temperature, evaporation, transpiration and vapour 

recycling (Gat et al., 2001). Using the Online Isotopes in Precipitation Calculator (OIPC) 

version 2.2 (http://www.waterisotopes.org; Bowen, 2013; Bowen et al., 2005) I 

calculated the Local Meteoric Water Line (LMWL) for each wild sampling location 

(Appendix F). The OIPC allows a user to input geographic coordinates and obtain the 

monthly δ18O and δ2H precipitation values for those coordinates. The locations of the 

wild populations included Windsor, Ontario and Lamanai, Belize. 

Using Δ18O and the calculated average δ18Ofur value, I was able to calculate the 

corresponding δ18Owater value for each of the wild populations. The calculated δ18Owater 

value is a reflection of the δ18Owater value at the time of fur growth. Having a δ18Owater 

value allowed me to calculate the corresponding δ2Hwater values using the LMWL for 

each sampling location, which in turn allowed me to calculate Δ2H for each individual 

(see Appendix F for sample calculations; see Appendix G for δ2Hwater and δ18Owater values 

for each sampling of the wild populations).  

To compare the average value of forearm length among species I used a Mann-Whitney 

U test. I tested for correlations between forearm length and Δ2H values for all samples as 

well as within each species using a Spearman’s rank correlation. To determine the 

significance of statistical tests I used α=0.05. 
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Chapter 3: Results 

3.1 Isotopic compositions of fur, diet and drinking water 

Values of δ15Nfur increased from the second to the third trophic level. On the second 

trophic level, values of δ15N ranged from +5.80 to +7.65 ‰ with a standard deviation of 

0.43 ‰. On the third trophic level, values ranged from +6.27 to +13.9 ‰, with a standard 

deviation of 1.01 ‰ (Figure 2).  

Values of δ13Cfur were not as distinctly different with trophic level as δ15Nfur, but still 

increased from the second trophic level to the third level (Figure 2). On the second 

trophic level, values ranged from −23.04 to −21.04 ‰, with a standard deviation of 0.44 

‰. On the third trophic level, values ranged from −24.27 to −14.68 ‰, with a standard 

deviation of 2.15 ‰. If captive D. rotundus values are excluded, values ranged from 

−24.27 to −15.27 ‰, with a standard deviation of 1.45 ‰. 

Values of Δ2H also increased from the second trophic level to the third level (Figures 3 

and 4). On the second trophic level, values ranged from −40 to +11 ‰, with a standard 

deviation of 11 ‰. On the third trophic level, values ranged from +4 to +61 ‰, with a 

standard deviation of 10 ‰.  

Values of Δ18O showed no relationship with trophic level (Figure 4). On the second 

trophic level, values ranged from +14.6 to +23.9 ‰ with a standard deviation 2.1 ‰. On 

the third trophic level, values ranged from +16.8 to +22.1 ‰ with a standard deviation of 

1.1 ‰.  

The equation of the line for the values of δ18O and δ2H in the diet water was  

δ2H = 5.8 * δ18O – 12.8 (Figure 5). 

This is similar to the equation for the values of δ18O and δ2H given by the drinking water 

samples, which was  

δ2H = 5.1 * δ18O – 14.2 (Figure 6). 
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Both of these equations differed from the Local Meteoric Water Lines of any of the 

sampling locations (Appendix F). 

The presence of C4 plants was noticeable in the significantly higher δ13C value of blood 

compared to the δ13C values of the other diet samples (Mann-Whitney U test, W = 1.5, Z 

= −2.128, p-value = 0.020; Figure 7). The fruit and bran samples generally had lower 

δ15N values than the samples of blood and mealworms, but the difference was not 

significant (Mann-Whitney U test, W = 20.5, Z = −1.511, p-value = 0.138; Figure 7).  

3.2 Correlations 

In a comparison of all species’ means, there was a trend of δ13C values increasing with 

δ15N values. There was also a trend of δ15N and δ13C values increasing with Δ2H values. 

There was no trend between values of Δ2H and Δ18O. This lack of a trend was also 

present between the values of δ2H and δ18O that were not corrected for drinking water. 

Values of δ18O also did not show a trend of increasing with values of δ15N. However, 

these were not significant correlations due to the small sample size (Table 4). 

The correlations within individual trophic levels differed from the overall correlations. 

On the second trophic level, there were no significant correlations between values of δ13C 

and δ15N, δ15N and Δ2H or δ13C and Δ2H. However, there were significant positive 

correlations between values of Δ2H and Δ18O as well as δ2H and δ18O. There was also a 

very weak significant correlation between δ18O and δ15N (Table 5). On the third trophic 

level, values of δ13C and δ15N were significantly positively correlated, but less strongly 

than in the overall values. There was no significant correlation between values of δ15N 

and Δ2H. Values of δ13C and Δ2H showed a significant very weak negative correlation. 

Values of Δ2H and Δ18O as well as δ2H and δ18O showed a significant positive 

correlation, but unlike the second trophic level and the overall values, the correlation was 

much stronger between δ2H and δ18O than between Δ2H and Δ18O. Values of Δ18O and 

δ15N showed a significant medium positive correlation, which was also different from 

both the second trophic level and the overall values (Table 6). 
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Figure 2: Values of δ15N and δ13C for all fur samples. Captive D. rotundus samples had 

higher δ13C values because their diet is based on both C3 and C4 plants, whereas the diets 

of all other populations are based solely on C3 plants. Species from the second trophic 

level (A. jamaicensis, C. perspicillata, G. soricina) had lower δ15N values than species on 

the third trophic level (D. rotundus, E. fuscus). The Spearman’s rank correlation 

coefficient for species’ mean values of δ15N and δ13C is R=0.800 (Table 4). 
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Figure 3: Values of δ15N and Δ2H for all fur samples. Species from the second trophic 

level (A. jamaicensis, C. perspicillata, G. soricina) had lower Δ2H values than species on 

the third trophic level (D. rotundus, E. fuscus). The Spearman’s rank correlation 

coefficient for species’ mean values of δ15N and Δ2H is R=0.800 (Table 4). 
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Figure 4: Values of Δ2H and Δ18O for all fur samples. Values of Δ18O did not differ 

between the second and third trophic level. The Spearman’s rank correlation coefficient 

for species’ mean values of Δ2H and Δ18O is R=0.300 (Table 4). 
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Figure 5: Values of δ2H and δ18O for all water extracted from diet samples (called “diet 

water” in the text). The equation of this line was 

δ2H = 5.8 * δ18O – 12.8 

This differed from the Local Meteoric Water Lines of any of the sampling locations 

(Appendix F) but was similar to the equation given by the drinking water samples (Figure 

6). 
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Figure 6: Values of δ2H and δ18O for all drinking water samples. The equation of this 

line was  

δ2H = 5.1 * δ18O – 14.2 

This equation had a shallower slope than the Local Meteoric Water Line for any of the 

three captive population sampling locations (Appendix F), but was very similar to the 

equation of the line given by the diet water samples (Figure 5).  
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Figure 7: Values of δ15N and δ13C for all diet tissue samples. The sample with the very 

high δ13C value is cow blood. It was enriched in carbon-13 because corn, which is a C4 

plant, comprises the main part of the cows’ diet. 
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Unlike the overall fur samples, diet samples showed no significant correlation between 

values of δ13C and δ15N or values of δ13C and δ2H. However, there was a significant 

medium positive correlation between values of δ15N and δ2H and values of δ18O and 

δ15N. There was a significant very strong positive correlation between values of δ2H and 

δ18O (Table 7). This significant very strong positive correlation between values of δ2H 

and δ18O was also present in the drinking water (Table 8). 

Table 4: Spearman’s rank correlation statistics for pairwise comparisons of each species’ 

mean stable isotope compositions. Captive D. rotundus mean δ13C values were not 

included in these correlations as their diet contained C4 plants while all other diets were 

based solely on C3 plants.  

Comparison n R p-value 

δ13C - δ15N 4 0.800 0.133 

δ15N - Δ2H 5 0.800 0.133 

δ13C - Δ2H 4 0.700 0.233 

δ2H - δ18O 5 -0.300 0.683 

Δ2H - Δ18O 5 0.300 0.683 

δ18O - δ15N 5 −0.300 0.683 
 

Table 5: Spearman’s rank correlation statistics for pairwise comparisons of stable isotope 

compositions of fur samples from the second trophic level (A. jamaicensis, C. 

perspicillata, and G. soricina). 

Comparison n R p-value 

δ13C - δ15N 76 0.129 0.265 

δ15N - Δ2H 76 0.014 0.906 

δ13C - Δ2H 76 −0.119 0.306 

δ2H - δ18O 71 0.595 <0.001 

Δ2H - Δ18O 71 0.607 <0.001 

δ18O - δ15N 71 0.236 0.047 
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Table 6: Spearman’s rank correlation statistics for pairwise comparisons of stable isotope 

compositions of fur samples from the third trophic level (D. rotundus and E. fuscus). 

Captive D. rotundus δ13C values were not included in these correlations as their diet 

contained C4 plants while all other diets were based solely on C3 plants.  

Comparison n R p-value 

δ13C - δ15N 84 0.519 <0.001 

δ15N - Δ2H 108 −0.028 0.775 

δ13C - Δ2H 83 −0.240 0.029 

δ2H - δ18O 106 0.731 <0.001 

Δ2H - Δ18O 106 0.243 0.012 

δ18O - δ15N 106 0.366 <0.001 
 

Table 7: Pearson product-moment correlation statistics for pairwise comparisons of 

stable isotope compositions of all diet samples. The δ2H and δ18O values are from the 

water extracted from the diet samples, and the δ15N and δ13C values are from the tissues 

of the diet samples.  

Comparison n R t df p-value 

δ13C - δ15N 21 0.213 0.950 19 0.354 

δ15N - δ2H 20 0.510 2.517 18 0.022 

δ13C - δ2H 20 0.187 0.808 18 0.430 

δ18O - δ2H 20 0.926 10.407 18 <0.001 

δ18O - δ15N 20 0.478 2.306 18 0.033 
 

Table 8: Pearson product-moment correlation statistics for pairwise comparison of stable 

oxygen and hydrogen isotope compositions of all drinking water samples (does not 

include any diet water samples). 

Comparison n R t df p-value 
δ18O - δ2H 7 0.992 17.716 5 <0.001 
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3.3 Interspecific variation 

Values of δ15Nfur showed a significant increase of 2.71 ‰ from the second to the third 

trophic level (One-tailed t-test, t = −11.216, df = 3, p-value = <0.001; Figure 8). This was 

similar to the expected increase of 3 ‰ from the second to the third trophic level. The 

δ13C values varied significantly among species in the same trophic group as well as 

between trophic groups. Values of δ13Cfur showed a significant increase of 2.29 ‰ from 

the second trophic level to the third level (One-tailed t-test, t = −2.512, df = 3, p-value = 

0.043), which was slightly higher than the 1 ‰ increase I expected. However, the 

presence of C4 plants in the diet of captive D. rotundus raised their δ13Cfur values relative 

to the rest of the bats (Figure 9). If captive D. rotundus are excluded, there was an 

increase of 1.40 ‰ from the second to the third trophic level (One-tailed t-test, t = 

−2.936, df = 2, p-value = 0.050), which was closer to the 1 ‰ increase I expected.  

The Δ2H values varied significantly between species in the same trophic group, but also 

showed a significant increase from the second to the third trophic level. Values of Δ2H 

showed a significant increase of 23 ‰ from the second trophic level to the third level 

(One-tailed t-test, t = −3.869, df = 3, p-value = 0.015; Figure 10). This was within the 20 

to 25 ‰ increase I expected from the second trophic level to the third level. As expected, 

values of Δ18O showed no increase from the second trophic level to the third trophic level 

(One-tailed t-test, t = −0.483, df = 3, p-value = 0.331; Figure 11). Results of all pairwise 

Mann-Whitney U tests comparing species for Figures 8-11 are presented in Appendix H. 

3.4 Sampling date variation 

A power analysis indicated that the sample sizes for A. jamaicensis were too small for a 

comparison of the means and variances across sampling trips and locations (h = 0.5, n1 = 

5, n2 = 5, significance level = 0.05, power = 0.12; h = 0.5, n1 = 3, n2 = 5, significance 

level = 0.05, power = 0.11), so I pooled A. jamaicensis samples for all analyses. The
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Figure 8: Box-and-whisker plot representing the δ15Nfur values for A. jamaicensis (n=13), 

C. perspicillata (n=43), G. soricina (n=20), captive D. rotundus (n=25), captive E. fuscus 

(n=37) and wild E. fuscus (n=38). The band inside the box represents the median. The top 

and bottom lines of the box represent the first and third quartiles of the data, respectively. 

The whiskers extending from the top and bottom of the box represent the maximum and 

minimum of all data, respectively, that are not outliers. Circles represent outliers. Outliers 

are defined as any data point that falls further than 1.5 times the interquartile range. 

Species at the third trophic level (D. rotundus and E. fuscus) had significantly higher 

δ15N values than those on the second trophic level (A. jamaicensis, C. perspicillata and 

G. soricina).  
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Figure 9: Box-and-whisker plot representing δ13Cfur values for A. jamaicensis (n=13), C. 

perspicillata (n=43), G. soricina (n=20), captive D. rotundus (n=25), captive E. fuscus 

(n=37) and wild E. fuscus (n=39). Values of δ13Cfur were significantly different among 

species. Overall, species at the third trophic level (D. rotundus and E. fuscus) had higher 

δ13Cfur values than species on the second trophic level (A. jamaicensis, C. perspicillata 

and G. soricina). Desmodus rotundus δ13Cfur values were much higher because of the 

presence of C4 plants in the source of their diet (Kennedy and Krouse, 1990; Siemers et 

al., 2011).  
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Figure 10: Box-and-whisker plot representing Δ2H values for A. jamaicensis (n=13), C. 

perspicillata 1 (n=43), male G. soricina (n=7), female G. soricina (n=13), captive D. 

rotundus (n=25), captive E. fuscus (n=37) and wild E. fuscus (n=38). As the median Δ2H 

values differed significantly for male and female G. soricina, they are shown separately. 

Species at the third trophic level (D. rotundus and E. fuscus) had significantly higher Δ2H 

values than species on the second trophic level (A. jamaicensis, C. perspicillata and G. 

soricina). The smallest difference in Δ2H values between trophic levels was 

approximately 15 ‰ (between C. perspicillata and E. fuscus).Within the third trophic 

level, Δ2H values did not significantly differ from each other. Within the second trophic 

level, the Δ2H value of C. perspicillata was significantly higher than the other three 

groups. Values of Δ2H for A. jamaicensis were not significantly different from male or 

female G.soricina. 
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Figure 11: Box-and-whisker plot representing Δ18O values for A. jamaicensis (n=13), C. 

perspicillata from the first sampling trip (n=15), C. perspicillata from the second 

sampling trip (n=25), male G. soricina (n=7), female G. soricina (n=13), captive D. 

rotundus (n=25), captive E. fuscus from the first sampling trip (n=22) and captive E. 

fuscus from the second sampling trip (n=13). Values of Δ18O showed no pattern with 

trophic level. 
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means and variances of δ15N, δ13C and Δ2H did not differ between sampling trips for C. 

perspicillata, captive E. fuscus or wild E. fuscus (Tables 9 and 10). The mean Δ2H value 

for G. soricina was significantly lower on the second sampling trip than the first trip 

(Table 9). The variance of Δ18O was significantly lower for C. perspicillata and captive 

E. fuscus on the second sampling trip compared to the first, but was significantly higher 

on the second sampling trip compared to the first for G. soricina (Table 10). The 

comparison of means and variances indicated that I could pool δ15N, δ13C and Δ2H values 

for all species sampled over two trips except for G. soricina, where I could not combine 

Δ2H values across sampling trips. These analyses also indicated that I could not pool 

values of Δ18O for C. perspicillata, G. soricina or captive E. fuscus across sampling trips. 

3.5 Captive versus wild 

I found no significant differences between the median δ15N, δ13C and Δ2H values of 

captive and wild populations of E. fuscus (Appendix H). I found significant differences 

between the variance of δ15N, δ13C and Δ18O values, but no significant difference in the 

variance of Δ2H values (Table 11). 

3.6 Size differences 

I attempted to minimize the chances that size would influence the δ2Hfur values by having 

species of approximately the same size on each trophic level (Table 12). For species on 

the second trophic level, I found a weak positive correlation between forearm length and 

Δ2H values, but for species on the third trophic level I found no correlation between 

forearm length and Δ2H values (Table 13). Within each species, I found no correlation 

between forearm length and Δ2H values for any species (Table 14). 
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Table 9: Comparison of the mean/median δ15N, δ13C, Δ2H and Δ18O values between 

sampling trips. Comparisons were conducted using either a Mann-Whitney U test 

(comparing medians) or a Student’s t-test (comparing means). W, Z and p-values are 

presented for Mann-Whitney U tests, and t, df and p-values are presented for Student’s t-

tests. Values of δ15N and δ13C are not significantly different between sampling trips for 

any species. The Δ2H values were significantly different between sampling trips for G. 

soricina. The Δ18O values differed significantly between sampling trips for each species.  

Comparison W or t Z or df p-value 
Carollia perspicillata    
Trip 1 - Trip 2    

δ15N −0.531 43 0.598 
δ13C 0.3123 43 0.756 
Δ2H 0.126 43 0.901 
Δ18O 319 3.681 <0.001 

Glossophaga soricina    
Trip 1 - Trip 2    

δ15N −0.069 20 0.946 
δ13C 66 0.683 0.514 
Δ2H 2.864 20 0.010 
Δ18O 65 3.265 <0.001 

Captive Eptesicus fuscus    
Trip 1 - Trip 2    

δ15N 0.410 37 0.684 
δ13C 143.5 −0.922 0.365 
Δ2H 0.847 37 0.403 
Δ18O 262.5 4.086 <0.001 

Wild Eptesicus fuscus    
Trip 1 - Trip 2    

δ15N 190.5 0.041 0.973 
δ13C 147.5 −1.141 0.260 
Δ2H −0.508 38 0.615 
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Table 10: Comparison of the variance of δ15N, δ13C, Δ2H and Δ18O values between 

sampling trips. Comparisons were conducted using a Levene’s test. Variance of δ15N, 

δ13C and Δ2H values was not significantly different between sampling trips for any 

species. Variance of Δ18O values differed significantly between sampling trips for captive 

E. fuscus. 

Comparison F-value df p-value 
Carollia perspicillata    
Trip 1 - Trip 2    

δ15N 0.368 41 0.547 
δ13C 0.0001 41 0.991 
Δ2H 0.414 41 0.523 
Δ18O 3.756 38 0.060 

Glossophaga soricina    
Trip 1 - Trip 2    

δ15N 1.151 18 0.298 
δ13C 0.134 18 0.719 
Δ2H 1.807 18 0.196 
Δ18O 1.733 16 0.207 

Captive Eptesicus fuscus    
Trip 1 - Trip 2    

δ15N 0.625 35 0.435 
δ13C 1.027 35 0.318 
Δ2H 1.268 35 0.268 
Δ18O 6.36 33 0.017 

Wild Eptesicus fuscus    
Trip 1 - Trip 2    

δ15N 0.241 37 0.627 
δ13C 0.320 37 0.258 
Δ2H 0.890 36 0.352 
Δ18O 2.346 37 0.134 
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Table 11: Comparison of the variances of δ15N, δ13C, Δ2H and Δ18O between captive and 

wild populations. Comparisons were conducted using a Levene’s test. The variances of 

both δ15N and δ13C values were higher in the wild population than the captive one. The 

variance of Δ18O values was lower in the wild population than the first sampling of the 

captive one.  

Comparison F-value df p-value 
δ15N 10.543 74 0.002 
δ13C 8.655 74 0.004 
Δ2H 2.696 73 0.105 

Δ18O Wild – Captive 1 11.522 59 0.001 
Δ18O Wild – Captive 2 0.012 50 0.912 

 

Table 12: Average forearm length ± 1 SD (mm) of each of the five species included in 

my study. The average forearm length differed significantly between each species with 

the exception of A. jamaicensis and D. rotundus. 

Species Forearm length ± SD (mm) 

Artibeus jamaicensis 61 ± 2 

Carollia perspicillata 45 ± 2 

Glossophaga soricina 38 ± 1 

Desmodus rotundus 63 ± 3 

Eptesicus fuscus 47 ± 2 
 

Table 13: Spearman’s rank correlation statistics for correlation of forearm length with 

Δ2H values within the second and third trophic levels. 

Trophic level n R p-value 

Second 76 0.292 0.011 

Third 98 −0.083 0.416 
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Table 14: Spearman’s rank correlation statistics for correlation of forearm length with 

Δ2H values within each species.  

Species n R p-value 

Artibeus jamaicensis 13 0.235 0.440 

Carollia perspicillata 43 −0.029 0.855 

Male Glossophaga 

 

7 −0.179 0.701 

Female G. soricina 13 0.297 0.324 

Desmodus rotundus 25 −0.372 0.067 

Desmodus rotundus* 22 −0.072 0.750 

Eptesicus fuscus 73 −0.095 0.424 
*In this correlation, only adult Desmodus rotundus were included. Two juveniles and one 

sub-adult were excluded. 
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Chapter 4: Discussion 

I hypothesized that if there is a trophic effect on δ2Hfur values, then δ2Hfur values would 

positively correlate with trophic level. I used δ15Nfur as a measure of trophic level and 

δ13Cfur as a secondary measure of trophic level. Due to the low statistical power, the 

overall correlations were not statistically significant. My results suggested a trend of 

δ2Hfur values and δ15Nfur values increasing together. They also suggested that δ2Hfur and 

δ13Cfur values increased together. Because δ15Nfur and δ13Cfur on their own do not 

definitively indicate if trophic level is the cause of the change in δ2Hfur values, I 

compared δ2Hfur to another parameter related to δ2Hfur but unaffected by trophic level. 

The δ18Ofur value was used as this parameter because δ2H and δ18O are highly positively 

correlated in water. Therefore, a change in δ2Hfur without a corresponding change in 

δ18Ofur supports an effect of trophic level. There was no trend of δ2Hfur and δ18Ofur values 

increasing together. While these trends suggest a possible trophic level increase in δ2Hfur 

values, it is not possible to draw conclusions without a larger sample size. I did find that 

values of δ2Hfur, δ15Nfur, and δ13Cfur increased significantly from the second trophic level 

to the third trophic level, while δ18Ofur values did not increase. These results support the 

idea of a trophic level effect on δ2Hfur values. 

My results are consistent with those of other researchers who found a 3 ‰ difference in 

δ15N values between trophic levels (DeNiro and Epstein, 1981a; Peters et al., 2012). The 

δ13C values clearly distinguish between the presence of C4 plants in the captive D. 

rotundus diet and the presence of only C3 plants in the diets of the other species 

(Kennedy and Krouse, 1990; Siemers et al., 2011). The differences between the δ13Cfur 

values of A. jamaicensis, C. perspicillata and G. soricina likely indicate dietary 

preferences between species, as I also found variation in the δ13C values of the different 

fruits and vegetables they had available to eat. Otherwise, my results are consistent with 

the results of other researchers who have found an increase of 0.5 to 3 ‰ in δ13C values 

with trophic level (DeNiro and Epstein, 1978; Reynard and Hedges, 2008). Knowing 

δ15Nfur and δ13Cfur consistently demonstrate a distinction between trophic levels, I can use 

an approach similar to that used by Reynard and Hedges (2008) and Birchall et al. 
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(2005). This approach involves using δ13Cfur and δ15Nfur as trophic indicators and 

comparing them with Δ2H, which will determine if Δ2H also increases with trophic level. 

It is possible that some bats meet most of their metabolic needs for water with water from 

food. This is especially true in the case of bats eating nectar, fruit and blood (Carpenter, 

1969; McFarland and Wimsatt, 1969; Studier et al., 1983). Therefore, the contribution of 

diet water versus drinking water may be very different among my study species. Even if 

this is the case, there should still be a high correlation between δ18O and δ2H in the fur, as 

it would reflect the strong positive correlation of δ18O and δ2H in both the drinking water 

and diet water.  

Within each trophic level the correlations were very different compared to the overall 

trends. The trends indicated by the comparison of species’ means were not significant due 

to the low sample size, but they suggest that δ2Hfur values are as strongly influenced by 

trophic level as δ13Cfur values. The lack of correlations of δ15Nfur and δ13Cfur with Δ2H in 

the absence of a trophic difference further support the idea that trophic level is the cause 

of the increase in Δ2H values from the second trophic level to the third one. The moderate 

to strong relationship between δ18Ofur and δ2Hfur within each trophic level could explain 

why several bat migration studies (Cryan et al., 2004; Fraser et al., 2012; Popa-Lisseanu 

et al., 2012) found a high correlation between δ2Hfur and δ2Hprecip values. If δ18Ofur and 

δ2Hfur values are largely determined by drinking water, but trophic level is fractionating 

δ2Hfur values and not δ18Ofur values, then comparing across trophic levels would cause the 

correlation to become weak or non-existent. However, within one trophic level the 

positive correlation between δ18Ofur and δ2Hfur values should still be present. This is 

supported by my results. The intra-trophic correlations also suggest that the δ2Hfur values 

are not sensitive to small changes in trophic level. This may be why Birchall et al. (2005) 

were not able to distinguish between herbivores and omnivores using δ2H. Overall, my 

results are similar to those of other researchers (Birchall et al., 2005; Reynard and 

Hedges, 2008) who found a positive correlation between δ2H and δ15N and δ2H and δ13C. 

Although these correlations were not statistically significant in my study, they suggest 

that a larger sample size would support the idea that 2H experiences trophic enrichment. 
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My results support the idea that diet tissue plays a role in determining δ2Hfur values 

(Birchall et al., 2005; Podlesak et al., 2008; Solomon et al., 2009). The δ2Hfur values must 

be influenced by diet for a trophic effect to occur. Otherwise, changes that occur on one 

trophic level would not be passed on to the next trophic level. If both δ2Hfur and δ18Ofur 

values increase together, then their increase can be attributed to the influence of either 

drinking or diet water, or a combination of both (Birchall et al., 2005; Solomon et al., 

2009). If values of δ2Hfur increase without a corresponding increase in δ18Ofur values, the 

increase can be attributed to the influence of diet tissues (Birchall et al., 2005). 

Evidence of the influence of diet tissue on δ2Hfur values can be seen in the comparison of 

A. jamaicensis to C. perspicillata. Artibeus jamaicensis and C. perspicillata are kept in 

the same enclosure and are fed the same diet. Both species experience the same 

temperature and humidity conditions. To account for the lower Δ2H values of A. 

jamaicensis, the δ2Hfur values of A. jamaicensis must have been influenced independently 

of their δ18Ofur values. As δ18Ofur values are influenced mainly by water, they should 

remain unchanged by any differences in the diet tissues (Bowen et al., 2009; 

Schimmelmann and DeNiro, 1986; van Hardenbroek et al., 2012). If δ2Hfur values are 

influenced by each of diet tissue, diet water and drinking water, then it is possible that 

δ2H values in the diet tissue changed the δ2Hfur values without influencing δ18Ofur values. 

In this case, the diet tissue appears to have lowered the δ2Hfur values. Fig and pear both 

have particularly low δ2H diet water values compared with the other diet items. Since the 

δ2H of diet water is often related to the δ2H of diet tissue (Estep and Hoering, 1980; 

Leaney et al., 1985), this could indicate that the δ2H tissue values are also lower in these 

fruits compared to the other diet items. It is possible that A. jamaicensis bats may be 

eating a larger proportion of fig and pear than C. perspicillata. This would cause A. 

jamaicensis Δ2H values to be lower relative to C. perspicillata. Wild A. jamaicensis bats 

have a noticeable preference for eating figs (Ortega and Castro-Arellano, 2001; Studier et 

al., 1983) so it is likely that they would show a preference for this food in captivity. To 

add further support, the δ13C values of fig and pear are lower than those of the other diet 

items. Therefore, preferential consumption of fig and pear is compatible with both the 

lower Δ2H values and the lower δ13Cfur values of A. jamaicensis compared to C. 

perspicillata. This explanation is also compatible with the mechanism of trophic 
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enrichment proposed by Birchall et al. (2005), which suggests that the H in diet tissues 

influences the H in consumer tissues. This differs from the results of Solomon et al., 

(2009) that suggested the mechanism of trophic enrichment is the compounding effect of 

diet water contributions.  

The comparison of captive and wild E. fuscus supports the idea that δ2Hfur values are not 

sensitive to small changes in trophic level. The main difference between the captive and 

wild E. fuscus is in their diet. Captive E. fuscus only have access to herbivorous 

mealworms. Moosman et al. (2012) and Cryan et al. (2012) found that beetles and moths 

make up the majority of the diet of wild E. fuscus, but in general wild E. fuscus are 

opportunistic feeders (Cryan et al., 2012). Wild E. fuscus have access to a variety of prey 

insects that may be herbivorous, carnivorous, insectivorous or sanguinivorous (Cryan et 

al., 2012). Therefore, wild E. fuscus are more likely to occupy a “trophic range.” The 

higher δ15Nfur value of the wild E. fuscus compared to the captive E. fuscus provides 

evidence that some of the insects eaten by the wild bats are not herbivorous. That said, 

the increase in δ15Nfur values is small, suggesting that the diet of the wild E. fuscus is 

mainly derived from herbivorous insects with only a small addition of insects from a 

higher trophic level. The small increase in δ15Nfur values is not reflected in the Δ2H 

values. This could explain why no trophic effect was found in Fraser (2011), because 

there were no distinct trophic levels in that study. 

 Evidence of the larger variety of prey available to the wild bats is also found in the 

greater variance of δ15Nfur and δ13Cfur values in the wild E. fuscus compared to the captive 

E. fuscus. I am unsure why the variance of Δ18O values is greater in the first sampling of 

captive E. fuscus. If they are incorporating a wider range of δ18Owater values from their 

food or drinking water, this would create a larger range of both δ2Hwater and δ18Owater 

values to be incorporated into their fur, as δ2H and δ18O values of diet water are highly 

correlated. I would expect to see a corresponding increase in the variation in Δ2H values 

if this was the case, but it is possible that the naturally higher variance of δ2H values 

made the increase difficult to detect. The greater variance of Δ18O values in the first 

sampling of captive E. fuscus could be due to the effects of evaporation on their drinking 

water. Their drinking water is provided in a shallow dish, and evaporation over the course 
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of a day would cause the δ18Owater values to increase. It is possible that more evaporation 

was occurring in August than in October, causing a wider range of δ18Owater values to be 

incorporated into the bats’ fur. 

Given that diet water may be a significant influence on δ2Hfur values of bats, and many 

migration studies focus on insectivorous bats (Cryan et al., 2004; Fraser, 2011; Popa-

Lisseanu et al., 2012), there is the potential for insect δ2H values to significantly 

influence the δ2Hfur values of migrant bats. Bortolotti et al. (2013) determined that 

variation of insect δ2H values may increase variation in δ2H feather values of tree 

swallows, but the variation was not enough to alter the predicted range of origin of the 

tree swallows. Van Hardenbroek et al. (2012) found that δ2H values in beetle chitin 

reflected the δ2H precipitation values of their collection site, but that δ2H values were 33 

‰ higher in Hydroporus beetles than Helophorus beetles, indicating trophic level 

enrichment. Having a better understanding of bats’ insect prey items and knowing the 

variation present in the δ2H values of those prey items could help us understand the 

sources of variation in δ2Hfur values of resident bats. That knowledge would then allow 

researchers to make better estimates of the location of origin of migrant bats. 

The 15 to 40 ‰ trophic effect I found is consistent with the results of other researchers 

who also found a trophic effect on δ2H values. Birchall et al. (2005) found a 46 ‰ 

difference between the bone collagen of carnivores and the combined herbivore/omnivore 

group. A 40-50 ‰ difference between bone collagen of herbivores and humans was 

found by Reynard and Hedges (2008), although they noted that the water difference was 

25 ‰, so the true difference between trophic levels was 15-25 ‰. Peters et al. (2012) 

found that tissues of caterpillars and moths were enriched in 2H by approximately 45 and 

23 ‰ compared to their diet, respectively. As these studies included a variety of 

carnivores, herbivores and omnivores, it is possible that organism size had an influence 

on the tissue δ2H values (Betini et al., 2009; Soto et al., 2011). These size differences 

could have contributed to the wide range of values given for the trophic effect in the 

literature. 
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If size is positively correlated with δ2Hfur values, it is possible that a size difference 

between the two trophic levels could confound the correlation between trophic level and 

δ2Hfur values. Betini et al., (2009) found an increase in δ2H values of songbird nestling 

feathers with an increase in the size of the nestling. However, they noted that larger 

nestlings often had higher quality nests made with more feathers. These nests would have 

higher temperatures, increasing the amount of evaporative water loss experienced by the 

nestlings. This would result in higher δ2H values in their feathers. Soto et al. (2011) 

found a positive correlation between δ2H and size in fish, but noted the correlation only 

existed when the size difference was large. Whitledge et al. (2006) found no correlation 

between size and δ2H values in fish.  

I reject that the correlation I found for bats between trophic level and Δ2H values was 

confounded by size. Both trophic levels contained species that were very similar in size. 

The suggestion that size and δ2H values are positively correlated (Betini et al., 2009; Soto 

et al., 2011) was not supported by my results. However, the size differences among 

species may not have been large enough to cause a noticeable difference in δ2H values 

(Soto et al., 2011; Whitledge et al., 2006). 

If δ2Hfur values continue to be used to study migration in bats, knowing the influence of 

trophic level on δ2Hfur values will be essential for interpreting stable isotope results to 

estimate the location of origin of migrant bats. My results indicate that an increase in 

trophic level causes a significant increase in δ2Hfur values. Since most migratory bats are 

insectivorous (Cryan et al., 2004; Fraser et al., 2012; Popa-Lisseanu et al., 2012), this 

trophic effect plays a significant role in studies using δ2Hfur values to determine the 

occurrence and extent of migration of bats in North America (e.g., Cryan et al., 2004; 

Fraser et al., 2012). It is known that the equations used in migration studies to calculate 

δ2Hprecip values from δ2Hfur values cannot be applied to multiple species (Britzke et al., 

2009; Fraser, 2011; but see Popa-Lisseanu et al., 2012). Understanding the influence of 

trophic level can help researchers refine those equations and make stable hydrogen 

isotopic analysis a more useful tool for studying bat migration. Presently, if an equation 

for one species was applied to another species on a higher trophic level, researchers 
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would obtain origin ranges that are potentially offset by hundreds of kilometres from the 

actual range of origin (Bowen, 2013; Bowen and Revenaugh, 2003).  

Based on the knowledge gained from this study, I make four recommendations for future 

studies: 

1) Studies using δ2H values to determine the occurrence and extent of migration should 

use caution when relating tissue δ2H values to δ2Hprecip values. It may be more useful 

to use δ18O, even if the scale is not as refined as the δ2H scale, as it reduces the 

possibility of error caused by a trophic effect. At the very least, δ2H and δ18O values 

should be compared to help determine if there are additional factors skewing the δ2H 

values. 

2) Migration studies using δ2H should consider making a trophic level correction to their 

δ2H values. This could be done by measuring the δ15N values and using those to 

determine which trophic level the study organism occupies. Based on my results, the 

correction value would be difficult to determine without knowledge of the diet of the 

organism under study. I would suggest using a minimum correction of +15 ‰ per 

trophic level. 

3) The δ2H values could be used in conjunction with δ15N and δ13C values to learn more 

about the diet of a population or an individual.  

4) Measurement of δ2H and, if possible, δ18O values of diet tissue could be used to 

determine how closely they are related to the δ2H and δ18O values of diet water. 

Measurement of δ2H of diet tissue could also help determine if the diet tissue is the 

source of trophic enrichment for 2H.  
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Conclusions 

1) Values of δ2Hfur are positively correlated with trophic level 

2) Values of δ2Hfur and δ18Ofur are not correlated across trophic levels 

3) Values of δ2Hfur and δ18Ofur maintain their positive correlation within a trophic level 

4) Values of δ2Hfur are influenced by δ2H values of diet tissues 

5) Values of δ2Hfur increase by 15 to 40 ‰ per trophic level 

6) Values of δ2H can be used in conjunction with δ15N and δ13C values to provide 

information about the diet of an individual or a population 
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Appendix B: Stable Isotopic Data for Fur 

ID Date Age Sex Species δ13C δ15N δ2H δ18O Δ2Ha Δ18Ob 
Montreal         ‰ ‰ ‰ ‰ ‰ ‰ 
MB-1 15-May-12 A M Glossophaga soricina −21.6 +6.9 −60 

 
−8 

 MB-2 15-May-12 A M Glossophaga soricina −21.9 +7.1 −62 +10.6 −10 +17.9 
MB-3 15-May-12 A M Glossophaga soricina −21.8 +7.2 −63 +10.6 −11 +17.9 
MB-4 15-May-12 A M Glossophaga soricina −21.2 +6.9 −67 +12.8 −15 +20.1 
MB-5 15-May-12 A M Glossophaga soricina −21.7 +7.3 −53 +12.7 −1 +20.0 
MB-6 15-May-12 A M Glossophaga soricina −21.2 +6.6 −64 +10.5 −12 +17.8 
MB-7 15-May-12 A M Glossophaga soricina −21.0 +7.1 −61 

 
−9 

 MB-12 15-May-12 A M Carollia perspicillata −22.4 +6.2 −48 +12.3 +4 +19.6 
MB-9 15-May-12 A M Carollia perspicillata −22.1 +6.4 −45 +13.4 +7 +20.7 
MB-8 15-May-12 A M Artibeus jamaicensis −22.4 +6.7 −68 +11.6 −16 +18.9 
MB-10 15-May-12 A M Artibeus jamaicensis −22.5 +7.1 −60 +14.2 −8 +21.5 
MB-11 15-May-12 A M Carollia perspicillata −22.1 +6.6 −54 +12.8 −2 +20.1 
MB-14 15-May-12 A M Carollia perspicillata −22.6 +7.3 −52 +14.5 +0 +21.8 
MB-15 15-May-12 A M Carollia perspicillata −22.2 +7.0 −46 +15.1 +6 +22.4 
MB-13 15-May-12 A M Carollia perspicillata −22.3 +6.6 −50 +12.6 +2 +19.9 
MB-25 15-May-12 A M Carollia perspicillata −22.1 +6.9 −54 +14.3 −2 +21.6 
MB-24 15-May-12 A M Carollia perspicillata −22.3 +7.2 −53 +14.8 −1 +22.1 
MB-16 15-May-12 A M Carollia perspicillata −22.5 +6.9 −57 +14.7 −5 +22.0 
MB-21 15-May-12 A M Carollia perspicillata −22.3 +7.2 −50 +13.3 +2 +20.6 
MB-20 15-May-12 A M Carollia perspicillata −22.3 +7.3 −53 +14.8 −1 +22.1 
MB-23 15-May-12 A M Carollia perspicillata −22.0 +6.9 −44 

 
+8 

 MB-27 15-May-12 A M Carollia perspicillata −22.2 +6.7 −54 +12.5 −2 +19.8 
MB-30 15-May-12 A M Carollia perspicillata −22.3 +6.4 −48 +14.8 +4 +22.1 
MB-17 15-May-12 A M Artibeus jamaicensis −22.7 +7.3 −70 +14.2 −18 +21.5 
MB-29 15-May-12 A M Carollia perspicillata −22.0 +7.4 −58 +12.1 −6 +19.4 
MB-28 15-May-12 A M Carollia perspicillata −22.3 +7.2 −53 +12.4 −1 +19.7 
MB-22 15-May-12 A M Carollia perspicillata −22.2 +6.3 −48 

 
+4 

 Windsor                 
 

  
WI-2 2-Aug-12 A F Eptesicus fuscus −18.3 +10.3 −26 +12.0 +30 +20.5 
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WI-3 2-Aug-12 A F Eptesicus fuscus −20.4 +10.0 −37 +9.9 +19 +18.4 
WI-4 2-Aug-12 A F Eptesicus fuscus −19.0 +11.5 −46 +9.6 +10 +18.1 
WI-5 2-Aug-12 A F Eptesicus fuscus −21.3 +9.2 −38 +11.3 +18 +19.8 
WI-9 2-Aug-12 A F Eptesicus fuscus −21.7 +9.4 −37 +10.1 +19 +18.6 
WI-11 2-Aug-12 A F Eptesicus fuscus −19.7 9.5 −40 +11.2 +16 +19.7 
WI-12 2-Aug-12 A F Eptesicus fuscus −20.8 +10.6 −41 +10.4 +15 +18.9 
WI-14 2-Aug-12 A F Eptesicus fuscus −21.7 +9.8 −44 +10.8 +12 +19.3 
WI-15 2-Aug-12 A F Eptesicus fuscus −19.9 +9.7 −47 +10.4 +9 +18.9 
WI-16 2-Aug-12 A F Eptesicus fuscus −21.9 +9.7 −44 +10.7 +12 +19.2 
WI-17 2-Aug-12 A F Eptesicus fuscus −21.6 +10.7 −42 +10.8 +14 +19.3 
WI-18 2-Aug-12 A F Eptesicus fuscus −22.7 +9.0 −33 +10.2 +23 +18.7 
WI-20 2-Aug-12 A F Eptesicus fuscus −19.6 +9.1 −43 +9.9 +13 +18.4 
WI-25 2-Aug-12 A F Eptesicus fuscus −18.4 +9.9 −52 +9.0 +4 +19.1 
WI-26 2-Aug-12 A F Eptesicus fuscus −21.9 +9.3 −43 +10.3 +13 +17.5 
WI-27 2-Aug-12 A F Eptesicus fuscus −19.5 +11.0 −34 +10.1 +22 +18.8 
WI-29 2-Aug-12 A F Eptesicus fuscus −21.5 +9.5 −44 +10.5 +12 +18.6 
WI-30 2-Aug-12 A F Eptesicus fuscus −20.0 +10.7 −40 +10.4 +16 +19.0 
WI-32 2-Aug-12 A F Eptesicus fuscus −18.3 +12.2 −31 +10.2 +25 +18.9 
WI-33 2-Aug-12 A F Eptesicus fuscus −21.7 +9.6 −45 +11.0 +11 +18.7 
WI-34 2-Aug-12 A F Eptesicus fuscus −19.0 +9.4 −46 +9.8 +10 +19.5 
WI-35 2-Aug-12 A F Eptesicus fuscus −15.3 +13.9 −41 +9.9 +15 +18.3 
WI-36 2-Aug-12 A F Eptesicus fuscus −21.5 +10.0 −46 +9.7 +10 +18.4 
WI-37 2-Aug-12 A F Eptesicus fuscus −21.6 +9.7 −46 +13.6 +10 +18.2 
WI-38 2-Aug-12 A F Eptesicus fuscus −21.5 +10.5 −42 +10.6 +14 +22.1 
Hamilton                    
B46 14-Aug-12 A F Eptesicus fuscus −21.7 +9.3 −27 +11.4 +22 +18.4 
YEL028 14-Aug-12 A F Eptesicus fuscus −20.0 +9.9 −34 +12.4 +15 +19.4 
B48 14-Aug-12 A F Eptesicus fuscus −19.9 +10.0 −34 +14.4 +15 +21.4 
RED004 14-Aug-12 A M Eptesicus fuscus −21.9 +9.0 −22 +11.4 +27 +18.4 
YEL027 14-Aug-12 A F Eptesicus fuscus −20.2 +9.6 −43 +13.7 +6 +20.7 
B42 14-Aug-12 A F Eptesicus fuscus −21.7 +9.5 −30 

 
+19 

 RED005 14-Aug-12 A F Eptesicus fuscus −20.5 +9.2 −21 +10.8 +28 +17.8 
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B43 14-Aug-12 A F Eptesicus fuscus −20.7 +9.5 −33 +12.2 +16 +19.2 
S50 14-Aug-12 A F Eptesicus fuscus −19.9 +9.8 −39 +11.2 +10 +18.2 
YEL045 14-Aug-12 A F Eptesicus fuscus −21.3 +9.5 −33 +12.4 +16 +19.4 
Y44 14-Aug-12 A F Eptesicus fuscus −19.8 +9.9 −24 +11.0 +25 +18.0 
Y40 14-Aug-12 A F Eptesicus fuscus −21.9 +9.5 −27 +14.3 +22 +21.3 
Y43 14-Aug-12 A F Eptesicus fuscus −22.0 +9.0 −18 +14.0 +31 +21.0 
YEL037 14-Aug-12 A F Eptesicus fuscus −22.2 +9.1 −21 

 
+28 

 B49 14-Aug-12 A F Eptesicus fuscus −19.7 +9.9 −30 +14.1 +19 +21.1 
S46 14-Aug-12 A F Eptesicus fuscus −20.0 +10.1 −20 +14.2 +29 +21.2 
YEL006 14-Aug-12 A M Eptesicus fuscus −20.5 +9.8 −30 +13.9 +19 +20.9 
YEL029 14-Aug-12 A F Eptesicus fuscus −20.6 +9.5 −30 +12.4 +19 +19.4 
YEL011 14-Aug-12 A M Eptesicus fuscus −21.3 +9.2 −31 +12.8 +18 +19.8 
B47 14-Aug-12 A F Eptesicus fuscus −21.1 +9.8 −15 +14.1 +34 +21.1 
YEL040 14-Aug-12 A F Eptesicus fuscus −21.2 +9.3 −31 +11.9 +18 +18.9 
YEL010 14-Aug-12 A F Eptesicus fuscus −19.8 +10.0 −36 +12.4 +13 +19.4 
YEL038 14-Aug-12 A F Eptesicus fuscus −21.1 +10.3 −45 +11.3 +4 +18.3 
B45 14-Aug-12 A F Eptesicus fuscus −20.4 +9.6 −38 +13.2 +11 +20.2 
Montreal 

  
                   

MO-1 24-Oct-12 A M Carollia perspicillata −22.7 +6.4 −52 +12.5 +0 +19.8 
MO-2 24-Oct-12 A M Carollia perspicillata −22.5 +6.3 −54 +12.0 −2 +19.3 
MO-3 24-Oct-12 A M Carollia perspicillata −22.4 +6.3 −52 

 
+0 

 MO-4 24-Oct-12 A M Carollia perspicillata −22.4 +6.4 −51 +11.9 +1 +19.2 
MO-5 24-Oct-12 A M Artibeus jamaicensis −22.4 +7.2 −65 +9.9 −13 +17.2 
MO-6 24-Oct-12 A M Carollia perspicillata −22.3 +7.2 −55 +12.2 −3 +19.5 
MO-7 24-Oct-12 A M Carollia perspicillata −22.3 +6.7 −48 +12.2 +4 +19.5 
MO-8 24-Oct-12 A M Artibeus jamaicensis −22.6 +6.2 −64 +11.3 −12 +18.6 
MO-9 24-Oct-12 A M Carollia perspicillata −22.2 +7.0 −45 +12.7 +7 +20.0 
MO-10 24-Oct-12 A M Carollia perspicillata −22.1 +7.4 −48 +12.4 +4 +19.7 
MO-11 24-Oct-12 A M Carollia perspicillata −22.4 +6.7 −51 +11.7 +1 +19.0 
MO-12 24-Oct-12 A M Carollia perspicillata −22.2 +7.6 −48 +12.6 +4 +19.9 
MO-13 24-Oct-12 A M Carollia perspicillata −22.1 +7.2 −52 +16.6 +0 +23.9 
MO-14 24-Oct-12 A M Carollia perspicillata −22.6 +7.6 −52 +12.3 +0 +19.6 
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MO-15 24-Oct-12 A M Carollia perspicillata −22.4 +6.5 −56 +11.9 −4 +19.2 
MO-16 24-Oct-12 A M Carollia perspicillata −22.0 +7.1 −49 +12.4 +3 +19.7 
MO-17 24-Oct-12 A M Carollia perspicillata −22.2 +6.8 −41 +13.1 +11 +20.4 
MO-18 24-Oct-12 A M Carollia perspicillata −22.3 +7.0 −50 +12.3 +2 +19.6 
MO-19 24-Oct-12 A M Carollia perspicillata −22.3 +6.8 −48 +12.2 +4 +19.5 
MO-20 24-Oct-12 A M Carollia perspicillata −22.2 +7.4 −51 +12.6 +1 +19.9 
MO-21 24-Oct-12 A M Carollia perspicillata −22.2 +7.1 −52 +11.9 +0 +19.2 
MO-22 24-Oct-12 A M Carollia perspicillata −22.2 +7.1 −48 +11.7 +4 +19.0 
MO-23 24-Oct-12 A M Artibeus jamaicensis −23.0 +6.5 −86 +10.4 −34 +17.7 
MO-24 24-Oct-12 A M Carollia perspicillata −22.1 +7.4 −56 +11.5 −4 +18.8 
MO-25 24-Oct-12 A M Carollia perspicillata −22.1 +6.3 −54 +11.6 −2 +18.9 
MO-26 24-Oct-12 A M Carollia perspicillata −22.3 +6.7 −51 +10.8 +1 +18.1 
MO-27 24-Oct-12 A M Carollia perspicillata −22.2 +7.3 −50 +12.3 +2 +19.6 
MO-28 24-Oct-12 A M Carollia perspicillata −22.5 +6.7 −56 +11.9 −4 +19.2 
MO-29 24-Oct-12 A M Artibeus jamaicensis −22.9 +7.4 −66 +10.8 −14 +18.1 
MO-30 24-Oct-12 A M Artibeus jamaicensis −22.8 +7.5 −87 +11.9 −35 +19.2 
MO-31 24-Oct-12 A M Carollia perspicillata −22.2 +7.6 −60 +12.7 −8 +20.0 
MO-32 24-Oct-12 A F Glossophaga soricina −21.5 +6.9 −71 +9.2 −19 +16.5 
MO-33 24-Oct-12 A F Glossophaga soricina −21.1 +7.0 −61 +8.7 −9 +16.0 
MO-34 24-Oct-12 A F Glossophaga soricina −21.4 +7.3 −64 +9.1 −12 +16.4 
MO-35 24-Oct-12 A F Glossophaga soricina −21.5 +7.1 −68 +9.7 −16 +17.0 
MO-36 24-Oct-12 A F Glossophaga soricina −22.5 +6.9 −75 +9.1 −23 +16.4 
MO-37 24-Oct-12 A F Glossophaga soricina −21.7 +6.5 −92 +8.6 −40 +15.9 
MO-38 24-Oct-12 A F Glossophaga soricina −23.0 +6.9 −75 +10.0 −23 +17.3 
MO-39 24-Oct-12 A F Glossophaga soricina −21.6 +6.2 −74 +9.1 −22 +16.4 
MO-40 24-Oct-12 A F Glossophaga soricina −21.2 +7.0 −60 +9.6 −8 +16.9 
MO-41 24-Oct-12 A F Glossophaga soricina −21.5 +6.6 −74 +9.1 −22 +16.4 
MO-42 24-Oct-12 A F Glossophaga soricina −22.1 +6.2 −79 +9.1 −27 +16.4 
MO-43 24-Oct-12 A F Glossophaga soricina −21.8 +6.6 −73 +9.1 −21 +16.4 
MO-44 24-Oct-12 A F Glossophaga soricina −21.6 +6.2 −82 +7.3 −30 +14.6 
Hamilton 

  
                   

HM-1 1-Nov-12 A F Eptesicus fuscus −20.1 +9.7 −37 +11.1 +12 +18.1 
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HM-2 1-Nov-12 A F Eptesicus fuscus −21.6 +9.4 −37 +11.2 +12 +18.2 
HM-3 1-Nov-12 A F Eptesicus fuscus −20.3 +9.9 −34 +10.1 +15 +17.1 
HM-4 1-Nov-12 A F Eptesicus fuscus −20.1 +10.2 −18 +10.7 +31 +17.7 
HM-5 1-Nov-12 A F Eptesicus fuscus −20.0 +10.0 −33 +10.9 +16 +17.9 
HM-6 1-Nov-12 A F Eptesicus fuscus −22.0 +9.2 −26 +13.0 +23 +20.0 
HM-7 1-Nov-12 A F Eptesicus fuscus −19.9 +9.7 −30 +10.9 +19 +17.9 
HM-8 1-Nov-12 A F Eptesicus fuscus −20.8 +9.5 −26 +10.8 +23 +17.8 
HM-9 1-Nov-12 A F Eptesicus fuscus −19.9 +9.6 −34 +11.2 +15 +18.2 
HM-10 1-Nov-12 A F Eptesicus fuscus −21.5 +9.3 −32 +9.8 +17 +16.8 
HM-11 1-Nov-12 A F Eptesicus fuscus −20.5 +9.3 −35 +10.6 +14 +17.6 
HM-12 1-Nov-12 A F Eptesicus fuscus −19.8 +9.4 −38 +10.9 +11 +17.9 
HM-13 1-Nov-12 A M Eptesicus fuscus −20.2 +9.6 −29 +10.4 +20 +17.4 
HM-14 1-Nov-12 A F Eptesicus fuscus −20.9 +9.8 −37 +10.1 +23 +19.1 
HM-15 1-Nov-12 A F Eptesicus fuscus −19.0 +11.0 −45 +10.2 +15 +19.2 
HM-16 1-Nov-12 A F Eptesicus fuscus −20.1 +10.6 −43 +9.9 +17 +18.9 
HM-17 1-Nov-12 A F Eptesicus fuscus −18.8 +11.5 −42 +9.5 +18 +18.5 
HM-18 1-Nov-12 A F Eptesicus fuscus −18.1 +9.3 −49 +9.5 +11 +18.5 
HM-19 1-Nov-12 A F Eptesicus fuscus −21.1 +10.6 −41 +10.4 +19 +19.4 
HM-20 1-Nov-12 A F Eptesicus fuscus −19.3 +9.0 −46 +10.0 +14 +19.0 
HM-21 1-Nov-12 A F Eptesicus fuscus −20.7 +10.6 −41 +9.9 +19 +18.9 
HM-22 1-Nov-12 A F Eptesicus fuscus −20.8 +9.6 −49 +10.1 +11 +19.1 
HM-23 1-Nov-12 A F Eptesicus fuscus −22.1 +9.9 −48 +10.5 +12 +19.5 
HM-24 1-Nov-12 A F Eptesicus fuscus −20.2 +10.0 −40 +9.9 +20 +18.9 
HM-25 1-Nov-12 A F Eptesicus fuscus −20.8 +9.7 −45 +10.4 +15 +19.4 
HM-26 1-Nov-12 A F Eptesicus fuscus −19.2 +9.2 −40 +9.4 +20 +18.4 
Havelock                    
A1 30-Jan-13 A M Artibeus jamaicensis −22.7 +6.1 −86 +11.6 −6 +22.5 
A2 30-Jan-13 A M Artibeus jamaicensis −22.6 +6.3 −88 +12.4 −8 +23.3 
A3 30-Jan-13 A M Artibeus jamaicensis −22.5 +6.5 −72 +12.0 +8 +22.9 
A4 30-Jan-13 A M Artibeus jamaicensis −22.7 +5.8 −73 +12.8 +7 +23.7 
A5 30-Jan-13 A M Artibeus jamaicensis −22.7 +6.0 −70 +12.3 −3 +23.2 
V1 30-Jan-13 A F Desmodus rotundus −15.5 +9.3 −43 +9.7 +24 +20.6 
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V2 30-Jan-13 A F Desmodus rotundus −17.2 +9.1 −57 +8.6 +10 +19.5 
V3 30-Jan-13 A F Desmodus rotundus −16.8 +9.3 −56 +9.0 +12 +19.9 
V4 30-Jan-13 A F Desmodus rotundus −16.0 +8.9 −61 +8.1 +6 +19.0 
V5 30-Jan-13 A F Desmodus rotundus −16.5 +8.8 −56 +8.0 +12 +18.9 
V6 30-Jan-13 SA M Desmodus rotundus −14.7 +10.7 −26 +10.1 +41 +21.0 
V7 30-Jan-13 A F Desmodus rotundus −17.0 +9.0 −53 +9.0 +14 +19.9 
V8 30-Jan-13 A F Desmodus rotundus −16.5 +9.1 −52 +8.5 +16 +19.4 
V9 30-Jan-13 J M Desmodus rotundus −17.7 +11.2 −20 +10.3 +49 +21.2 
V10 30-Jan-13 A F Desmodus rotundus −16.6 +9.3 −51 +8.2 +16 +19.1 
V11 30-Jan-13 A M Desmodus rotundus −15.7 +9.5 −48 +8.5 +18 +19.4 
V12 30-Jan-13 A F Desmodus rotundus −16.2 +9.5 −53 +9.6 +15 +20.5 
V13 30-Jan-13 J M Desmodus rotundus −17.3 +10.3 −33 +11.0 +34 +21.9 
V14 30-Jan-13 A F Desmodus rotundus −16.2 +9.2 −56 +8.4 +12 +19.3 
V15 30-Jan-13 A F Desmodus rotundus −17.2 +9.1 −51 +9.0 +18 +19.9 
V16 30-Jan-13 A F Desmodus rotundus −17.7 +8.7 −57 +9.2 +10 +20.1 
V17 30-Jan-13 A F Desmodus rotundus −21.9 +7.3 −47 +10.4 +20 +21.3 
V18 30-Jan-13 A F Desmodus rotundus −17.4 +9.0 −51 +8.8 +16 +19.7 
V19 30-Jan-13 A F Desmodus rotundus −16.8 +9.1 −53 +8.7 +13 +19.6 
V20 30-Jan-13 A F Desmodus rotundus −17.2 +9.4 −49 +8.2 +19 +19.1 
V21 30-Jan-13 A F Desmodus rotundus −17.4 +9.2 −65 +9.2 +15 +20.1 
V22 30-Jan-13 A F Desmodus rotundus −16.9 +8.9 −66 +9.2 +14 +20.1 
V23 30-Jan-13 A F Desmodus rotundus −17.0 +9.1 −64 +8.4 +16 +19.3 
V24 30-Jan-13 A F Desmodus rotundus −16.3 +9.3 −60 +7.6 +20 +18.5 
V25 30-Jan-13 A F Desmodus rotundus −17.0 +9.3 −52 +8.6 +17 +19.5 
Belize                    
BZ-1 Apr-12 

 
M Desmodus rotundus −23.7 +7.3 −59 +9.3 +24 +20.2 

BZ-2 Apr-12 
 

F Desmodus rotundus −24.3 6.9 −56 +9.1 +25 +20.0 
BZ-3 Apr-12 

 
M Desmodus rotundus −21.8 +6.6 −20 +9.2 +61 +20.1 

BZ-4 Apr-12 
 

M Desmodus rotundus −23.7 +7.0 −77 +9.1 +17 +20.0 
BZ-5 Apr-12 

 
M Desmodus rotundus −22.7 +7.5 −42 +10.5 +52 +21.4 

BZ-6 Apr-12 
 

M Desmodus rotundus −23.8 +8.6 −80 +6.6 +14 +17.5 
BZ-7 Apr-12 

 
M Desmodus rotundus −23.5 +9.6 −35 +10.5 +59 +21.4 
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BZ-8 Apr-12 
 

M Desmodus rotundus −23.6 +6.3 −72 +9.4 +22 +20.3 

        aδ2Hfur-δ2Hwater 

        bδ18Ofur-δ18Owater 
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Appendix C: Stable Isotopic Data for Diet 

Sample ID Location Date 
δ2Hdietwater* 

‰ 
δ13C 

‰ 
δ15N 

‰ 
δ18Odietwater* 

‰ 
Banana Montreal, QC 15-May-12 −8 −24.4 4.9 −1.6 
Figs Montreal, QC 15-May-12 −87 −27.0 3.0 −16.3 
Gala Apple Montreal, QC 15-May-12 −102 −25.5 −0.4 −10.5 
Marm Mix Montreal, QC 15-May-12 −54 −25.2 2.0 −7.5 
Melon Montreal, QC 15-May-12 −7 −26.4 3.6 0.8 
Papaya Montreal, QC 15-May-12 2 −25.4 4.3 1.8 
Pear Montreal, QC 15-May-12 −66 −27.5 2.8 −7.5 
Sweet Potato Montreal, QC 15-May-12 −53 −26.7 4.5 −7.5 
Nectar Montreal, QC Apr-13 

  
2.2 

 Banana Montreal, QC 24-Oct-12 −28 −26.3 3.5 −3.1 
Canteloupe Montreal, QC 24-Oct-12 −44 −23.8 9.7 −3.8 
Fig Montreal, QC 24-Oct-12 −100 −25.9 1.7 −15.4 
Gala Apple Montreal, QC 24-Oct-12 −34 −24.2 3.0 −3.6 
Marm Mix Montreal, QC 24-Oct-12 −41 −25.4 2.1 −4.1 
Papaya Montreal, QC 24-Oct-12 −28 −27.0 1.0 −4.7 
Pear Montreal, QC 24-Oct-12 −79 −26.8 1.8 −8.0 
Sweet Potato Montreal, QC 24-Oct-12 −38 −26.5 3.1 −5.9 
Bran Hamilton, ON 14-Aug-12 −70 −26.0 3.5 −11.6 
Mealworms Hamilton, ON 14-Aug-12 −15 −25.5 7.1 −2.0 
Bran Hamilton, ON 1-Nov-12 −63 −24.9 2.8 −6.9 
Mealworms Hamilton, ON 1-Nov-12 −16 −26.8 7.8 0.3 
Blood Havelock, ON 30-Jan-12 

 
−11.3 5.0 

          *water extracted from the diet sample 
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Appendix D: Stable Isotopic Data for Drinking Water 

Sample ID Location 
Collection 

Date δ2H ‰ δ18O ‰ 
Hamilton 1 Hamilton, ON 14-Aug-12 −51 −7.2 
Hamilton 2 Hamilton, ON 1-Nov-12 −50 −7.1 
Hamilton 3 Hamilton, ON 25-Apr-13 −48 −6.8 
Montreal 1 Montreal, QC 15-May-12 −54 −7.5 
Montreal 2 Montreal, QC 24-Oct-12 −49 −7.0 
Montreal 3 Montreal, QC 30-Mar-13 −53 −7.5 
Havelock Havelock, ON 30-Jan-13 −69 −10.9 
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Appendix E: Results for Duplicate Isotopic Analyses 

ID Species δ13Cfur ‰ 
Absolute difference 

‰ 
B48 Eptesicus fuscus −19.8   
B48dup Eptesicus fuscus −20.0 0.20 
HM-15 Eptesicus fuscus −19.1 

 HM-15dup Eptesicus fuscus −19.0 0.06 
HM-2 Eptesicus fuscus −21.6 

 HM-2dup Eptesicus fuscus −21.7 0.12 
MB-22 Carollia perspicillata −22.1 

 MB-22dup Carollia perspicillata −22.3 0.13 
MB-27 Carollia perspicillata −22.1 

 MB-27dup Carollia perspicillata −22.2 0.05 
MO-1 Carollia perspicillata −22.6 

 MO-1dup Carollia perspicillata −22.7 0.05 
MO-12 Carollia perspicillata −22.2 

 MO-12dup Carollia perspicillata −22.2 0.05 
MO-17 Carollia perspicillata −22.3 

 MO-17dup Carollia perspicillata −22.1 0.16 
MO-26 Carollia perspicillata −22.2 

 MO-26dup Carollia perspicillata −22.3 0.05 
MO-35 Glossophaga soricina −21.5 

 MO-35dup Glossophaga soricina −21.5 0.02 
WI-20 Eptesicus fuscus −19.6 

 WI-20dup Eptesicus fuscus −19.5 0.13 
WI-27 Eptesicus fuscus −19.5 

 WI-27dup Eptesicus fuscus −19.5 0.01 
WI-37 Eptesicus fuscus −21.6 

 WI-37dup Eptesicus fuscus −21.6 0.05 
WI-9 Eptesicus fuscus −21.7 
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WI-9dup Eptesicus fuscus −21.7 0.00 

  
Average 0.08 

  
Standard Deviation 0.06 

    
    
ID Species δ15Nfur ‰ 

Absolute 
Difference ‰ 

B48 Eptesicus fuscus +10.03   
B48dup Eptesicus fuscus +9.99 0.04 
HM-15 Eptesicus fuscus +11.05 

 HM-15dup Eptesicus fuscus +10.99 0.06 
HM-2 Eptesicus fuscus +9.41 

 HM-2dup Eptesicus fuscus +9.41 0.00 
MB-22 Carollia perspicillata +6.28 

 MB-22dup Carollia perspicillata +6.30 0.03 
MB-27 Carollia perspicillata +6.75 

 MB-27dup Carollia perspicillata +6.72 0.04 
MO-1 Carollia perspicillata +6.41 

 MO-1dup Carollia perspicillata +6.40 0.02 
MO-12 Carollia perspicillata +7.54 

 MO-12dup Carollia perspicillata +7.60 0.06 
MO-17 Carollia perspicillata +6.85 

 MO-17dup Carollia perspicillata +6.84 0.01 
MO-26 Carollia perspicillata +6.65 

 MO-26dup Carollia perspicillata +6.67 0.02 
MO-35 Glossophaga soricina +7.05 

 MO-35dup Glossophaga soricina +7.06 0.01 
WI-20 Eptesicus fuscus +9.10 

 WI-20dup Eptesicus fuscus +9.12 0.02 
WI-27 Eptesicus fuscus +10.92 

 WI-27dup Eptesicus fuscus +11.00 0.07 
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WI-37 Eptesicus fuscus +9.68 
 WI-37dup Eptesicus fuscus +9.70 0.01 

WI-9 Eptesicus fuscus +9.45 
 WI-9dup Eptesicus fuscus +9.44 0.02 

  
Average 0.03 

  
Standard Deviation 0.02 

    
    
ID Species δ2Hfur ‰ 

Absolute 
Difference ‰ 

MB-8 Artibeus jamaicensis −66   
MB-8 dup Artibeus jamaicensis −70 3 
A2 Artibeus jamaicensis −75 

 A2 dup Artibeus jamaicensis −78 3 
MB-20 Carollia perspicillata −52 

 MB-20 dup Carollia perspicillata −54 2 
MB-28 Carollia perspicillata −55 

 MB-28 dup Carollia perspicillata −51 4 
MB-22 Carollia perspicillata −46 

 MB-22 dup Carollia perspicillata −50 3 
MB-21 Carollia perspicillata −50 

 MB-21 dup Carollia perspicillata −52 1 
MO-10 Carollia perspicillata −51 

 MO-10 dup Carollia perspicillata −46 4 
MO-28 Carollia perspicillata −53 

 MO-28 dup Carollia perspicillata −58 5 
MO-31 Carollia perspicillata −61 

 MO-31 dup Carollia perspicillata −58 3 
MO-18 Carollia perspicillata −49 

 MO-18 dup Carollia perspicillata −50 0 
MO-26 Carollia perspicillata −50 
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MO-26 dup Carollia perspicillata −51 1 
BZ-4 Desmodus rotundus −67 

 BZ-4 dup Desmodus rotundus −66 1 
BZ-1 Desmodus rotundus −59 

 BZ-1 dup Desmodus rotundus −59 0 
V17 Desmodus rotundus −49 

 V17 dup Desmodus rotundus −49 0 
V16 Desmodus rotundus −56 

 V16 dup Desmodus rotundus −63 7 
V13 Desmodus rotundus −34 

 V13 dup Desmodus rotundus −37 3 
B48 Eptesicus fuscus −34 

 B48 dup Eptesicus fuscus −34 0 
WI-29 Eptesicus fuscus −45 

 WI-29 dup Eptesicus fuscus −43 2 
WI-17 Eptesicus fuscus −43 

 WI-17 dup Eptesicus fuscus −42 1 
WI-26 Eptesicus fuscus −43 

 WI-26 dup Eptesicus fuscus −43 0 
YEL028 Eptesicus fuscus −33 

 YEL028 dup Eptesicus fuscus −35 2 
HM-4 Eptesicus fuscus −18 

 HM-4 dup Eptesicus fuscus −19 0 
HM-10 Eptesicus fuscus −32 

 HM-10 dup Eptesicus fuscus −31 1 
HM-8 Eptesicus fuscus −25 

 HM-8 dup Eptesicus fuscus −27 2 
HM-17 Eptesicus fuscus −42 

 HM-17 dup Eptesicus fuscus −42 0 
HM-19 Eptesicus fuscus −42 

 HM-19 dup Eptesicus fuscus −40 2 
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WI-27 Eptesicus fuscus −34 
 WI-27 dup Eptesicus fuscus −34 0 

WI-32 Eptesicus fuscus −29 
 WI-32 dup Eptesicus fuscus −33 4 

MO-44 Glossophaga soricina −82 
 MO-44 dup Glossophaga soricina −83 1 

MO-41 Glossophaga soricina −74 
 MO-41 dup Glossophaga soricina −74 1 

  
Average 2 

  
Standard Deviation 2 

    
    
ID Species δ18Ofur ‰ 

Absolute 
Difference ‰ 

A1 Artibeus jamaicensis +11.8   
A1 dup Artibeus jamaicensis +11.5 0.2 
A5 Artibeus jamaicensis +12.3 

 A5 dup Artibeus jamaicensis +12.3 0.0 
MO-23 Artibeus jamaicensis +10.5 

 MO-23 dup Artibeus jamaicensis +10.3 0.2 
MO-5 Artibeus jamaicensis +9.8 

 MO-5 dup Artibeus jamaicensis +9.9 0.1 
MB-20 Carollia perspicillata +14.7 

 MB-20 dup Carollia perspicillata +14.9 0.2 
MB-21 Carollia perspicillata +13.2 

 MB-21 dup Carollia perspicillata +13.3 0.0 
MB-30 Carollia perspicillata +15.2 

 MB-30 dup Carollia perspicillata +14.4 0.8 
MO-19 Carollia perspicillata +12.4 

 MO-19 dup Carollia perspicillata +12.0 0.4 
MO-2 Carollia perspicillata +12.2 
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MO-2 dup Carollia perspicillata +11.7 0.5 
MO-20 Carollia perspicillata +13.0 

 MO-20 dup Carollia perspicillata +12.1 0.9 
MO-24 Carollia perspicillata +12.2 

 MO-24 dup Carollia perspicillata +10.7 1.5 
MO-25 Carollia perspicillata +11.4 

 MO-25 dup Carollia perspicillata +11.7 0.3 
MO-4 Carollia perspicillata +11.7 

 MO-4 dup Carollia perspicillata +12.0 0.2 
BZ-1 Desmodus rotundus +9.2 

 BZ-1 dup Desmodus rotundus +9.3 0.1 
BZ-2 Desmodus rotundus +9.1 

 BZ-2 dup Desmodus rotundus +9.0 0.1 
BZ-8 Desmodus rotundus +9.2 

 BZ-8 dup Desmodus rotundus +9.6 0.4 
V6 Desmodus rotundus +10.1 

 V6 dup Desmodus rotundus +10.2 0.1 
B45 Eptesicus fuscus +14.6 

 B45 dup Eptesicus fuscus +14.4 0.2 
B49 Eptesicus fuscus +14.0 

 B49 dup Eptesicus fuscus +14.1 0.0 
HM-14 Eptesicus fuscus +9.9 

 HM-14 dup Eptesicus fuscus +10.2 0.3 
HM-21 Eptesicus fuscus +9.8 

 HM-21 dup Eptesicus fuscus +9.8 0.0 
HM-23 Eptesicus fuscus +10.7 

 HM-23 dup Eptesicus fuscus +10.3 0.4 
HM-3 Eptesicus fuscus +10.1 

 HM-3 dup Eptesicus fuscus +10.1 0.0 
WI-26 Eptesicus fuscus +10.3 

 WI-26 dup Eptesicus fuscus +10.4 0.0 
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WI-3 Eptesicus fuscus +10.0 
 WI-3 dup Eptesicus fuscus +9.9 0.1 

WI-32 Eptesicus fuscus +10.3 
 WI-32 dup Eptesicus fuscus +10.0 0.3 

WI-9 Eptesicus fuscus +10.1 
 WI-9 dup Eptesicus fuscus +10.1 0.0 

YEL006 Eptesicus fuscus +13.9 
 YEL006 dup Eptesicus fuscus +13.9 0.0 

YEL029 Eptesicus fuscus +12.2 
 YEL029 dup Eptesicus fuscus +12.5 0.4 

  
Average 0.3 

  
Standard Deviation 0.3 

    
    
Diet Type 

Location and 
Sampling δ2Hdietwater* ‰ 

Absolute 
Difference ‰ 

Gala Apple Montreal, QC Trip 1 −102 0 
Gala Apple dup Montreal, QC Trip 1 −102 

 Canteloupe Montreal, QC Trip 2 −44 0 
Canteloupe 
dup Montreal, QC Trip 2 −44 

 Gala Apple Montreal, QC Trip 2 −34 1 
Gala Apple dup Montreal, QC Trip 2 −35   

  
Average 1 

  
Standard Deviation 1 

*δ2H value of water extracted from the diet sample 
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Diet Type Location and Sampling δ13C ‰ 
Absolute 

Difference ‰ 
Melon Montreal, QC Trip 1 −26.3 0.2 
Melon DUP Montreal, QC Trip 1 −26.5 

 Bran Hamilton, ON Trip 1 −26.3 0.6 
Bran dup Hamilton, ON Trip 1 −25.8   

  
Average 0.4 

  
Standard Deviation 0.3 

    
    
Diet Type Location and Sampling δ15N ‰ 

Absolute 
Difference ‰ 

Canteloupe Montreal, QC Trip 2 +9.7 0.1 
Canteloupe dup Montreal, QC Trip 2 +9.6 

 Bran Hamilton, ON Trip 2 +2.3 0.5 
Bran dup Hamilton, ON Trip 2 +2.8   

  
Average 0.3 

  
Standard Deviation 0.3 

    
    
Diet Type Location and Sampling δ18Odietwater* ‰ 

Absolute 
Difference ‰ 

Gala Apple Montreal, QC Trip 1 −10.5 0.06 
Gala Apple dup Montreal, QC Trip 1 −10.5 

 Canteloupe Montreal, QC Trip 2 −3.9 0.06 
Canteloupe dup Montreal, QC Trip 2 −3.8 

 Gala Apple Montreal, QC Trip 2 −3.6 0.09 
Gala Apple dup Montreal, QC Trip 2 −3.6   

  
Average 0.07 
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Standard Deviation 0.02 

*δ18O value of water extracted from the diet sample 
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Sample ID 

δ2H drinking water 
‰ 

Absolute 
Difference ‰ 

Hamilton 1 −51 0.1 
Hamilton 1 dup −51 

 Montreal 1 −54 0.2 
Montreal 1 dup −54 

 Montreal 1a −54 0.2 
Montreal 1a 
dup −54 

 Montreal 3 −53 0.3 
Montreal 3 dup −53   

 
Average 0.2 

 
Standard Deviation 0.1 

   
   
Sample ID 

δ18O drinking water 
‰ 

Absolute 
Difference ‰ 

Hamilton 1 −7.1 0.08 
Hamilton 1 dup −7.2 

 Montreal 1 −7.4 0.03 
Montreal 1 dup −7.5 

 Montreal 1a −7.5 0.02 
Montreal 1a 
dup −7.6 

 Montreal 3 −7.5 0.06 
Montreal 3 dup −7.5   

 
Average 0.05 

 
Standard Deviation 0.03 
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Appendix F: Local Meteoric Water Lines and Sample Calculations 

Hamilton, ON:  δ2H = 7.1 ∗ δ18O + 3.8 

Montreal, QC:  δ2H = 7.4 ∗ δ18O + 7.3 

Havelock, ON:  δ2H = 7.3 ∗ δ18O + 5.7 

Windsor, ON:  δ2H = 7.2 ∗ δ18O + 4.8 

Lamanai, Belize:  δ2H = 8.8 ∗ δ18O + 11.3 

Sample calculation of the Hamilton LMWL: 

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
δ18O −15.1 −14.7 −10.5 −7.6 −6.3 −5.8 −5.4 −5.7 −7.4 −9.4 −10.2 −13.3 
δ2H −108 −99 −67 −52 −43 −38 −35 −36 −49 −62 −66 −91 
(www.waterisotopes.org; Bowen, 2013; Bowen et al., 2005) 

Equation of the line:  

δ2H = 7.1 ∗ δ18O + 3.8 

 

Average Δ18O value for captive E. fuscus: +19.0 ‰ 

Average value of δ18Ofur for the first sampling of wild E. fuscus: +10.5 ‰ 

δ18Owater = δ18Ofur – Δ18O = +10.5 – (+19.0) = –8.5 ‰  
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The value of –8.5 ‰ is the δ18Owater value that was used for the first sampling of wild E. fuscus. 

Sample calculation of δ2Hwater for the first sampling of wild E. fuscus: 

The LMWL for Windsor, ON is 

δ2H = 7.2 * δ18O + 4.8 

Substituting the value of −8.5 for δ18O gives: 

δ2H = 7.2 * (−9.0) + 4.8 = −56 ‰; this is the δ2Hwater value. 

The Δ2H value for any bat fur sample from the first sampling of wild E. fuscus can now be obtained using the equation: 

Δ2H = δ2Hfur – δ2Hwater 

For example, sample WI-11 has a δ2Hfur of −40 ‰: 

Δ2H = (−40) – (−56) = +24 ‰; this is the Δ2H value for sample WI-11. 
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Appendix G: Calculated Water Isotopic Compositions for Wild Populations 

 

Date Species Location 
Water δ2H 

‰ 
Water δ18O 

‰ 
02-Aug-12  Eptesicus fuscus Windsor, ON −60 −9.0 
01-Nov-12 Eptesicus fuscus Windsor, ON −64 −9.5 

Apr-12 Desmodus rotundus Lamanai, Belize −79 −10.3 
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Appendix H: P-values for Pairwise Mann-Whitney U Tests for Figures 8-11 

 
P-values of pairwise Mann-Whitney U test for δ15N (Figure 8). 

      
 

Artibeus jamaicensis Carollia perspicillata Desmodus rotundus Eptesicus fuscus Wild Eptesicus fuscus 
Artibeus jamaicensis NA NA NA NA NA 
Carollia perspicillata 1.000 NA NA NA NA 
Desmodus rotundus <0.001 <0.001 NA NA NA 
Eptesicus fuscus <0.001 <0.001 0.005 NA NA 
Wild Eptesicus fuscus <0.001 <0.001 <0.001 0.200 NA 
Glossophaga soricina 1.000 1.000 <0.001 <0.001 <0.001 

 
P-values of pairwise Mann-Whitney U test for δ13C (Figure 9). 
 

 

Artibeus 
jamaicensis 

Carollia 
perspicillata 

Desmodus 
rotundus 

Eptesicus 
fuscus 

Wild Eptesicus 
fuscus 

Artibeus 
jamaicensis NA NA NA NA NA 
Carollia 
perspicillata <0.001 NA NA NA NA 
Desmodus rotundus <0.001 <0.001 NA NA NA 
Eptesicus fuscus <0.001 <0.001 <0.001 NA NA 
Wild Eptesicus 
fuscus <0.001 <0.001 <0.001 1.000 NA 
Glossophaga 
soricina <0.001 <0.001 <0.001 0.004 0.010 
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P-values of pairwise Mann-Whitney U test for Δ2H (Figure 10). 
 

 

Artibeus 
jamaicensis 

Carollia 
perspicillata  

Desmodus 
rotundus 

Eptesicus 
fuscus 

Female Glossophaga 
soricina 

Male Glossophaga 
soricina 

Carollia perspicillata <0.001 NA NA NA NA NA 
Desmodus rotundus <0.001 <0.001 NA NA NA NA 
Eptesicus fuscus  <0.001 <0.001 1.000 NA NA NA 
Female Glossophaga 
soricina 1.000 <0.001 <0.001 <0.001 NA NA 
Male Glossophaga soricina 0.671 0.003 0.001 <0.001 0.164 NA 
Wild Eptesicus fuscus <0.001 <0.001 1.000 0.577 <0.001 <0.001 

 

P-values of pairwise Mann-Whitney U test for Δ18O (Figure 11). 

 Artibeus 
jamaicensis 

Carollia 
perspicillata 1 

Carollia 
perspicillata 2 

Desmodus 
rotundus 

Eptesicus 
fuscus 1 

Eptesicus 
fuscus 2 

Female 
Glossophaga 
soricina 

C. perspicillata 1 1.000 NA NA NA NA NA NA 
C. perspicillata 2 1.000 0.007 NA NA NA NA NA 
D. rotundus 1.000 0.106 1.000 NA NA NA NA 
E. fuscus 1 1.000 0.155 1.000 1.000 NA NA NA 
E. fuscus 2 0.081 <0.001 <0.001 <0.001 0.001 NA NA 
Female G. 
soricina 

<0.001 <0.001 <0.001 <0.001 <0.001 0.001 NA 

Male G. soricina 1.000 0.572 1.000 1.000 1.000 1.000 0.037 
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