
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-12-2013 12:00 AM

Stochastic simulation and spatial statistics of large datasets Stochastic simulation and spatial statistics of large datasets

using parallel computing using parallel computing

Jonathan SW Lee
The University of Western Ontario

Supervisor

Dr. Reg Kulperger

The University of Western Ontario Joint Supervisor

Dr. Hao Yu

The University of Western Ontario

Graduate Program in Statistics and Actuarial Sciences

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Jonathan SW Lee 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Applied Statistics Commons, and the Other Statistics and Probability Commons

Recommended Citation Recommended Citation
Lee, Jonathan SW, "Stochastic simulation and spatial statistics of large datasets using parallel
computing" (2013). Electronic Thesis and Dissertation Repository. 1652.
https://ir.lib.uwo.ca/etd/1652

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=ir.lib.uwo.ca%2Fetd%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=ir.lib.uwo.ca%2Fetd%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1652?utm_source=ir.lib.uwo.ca%2Fetd%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

STOCHASTIC SIMULATION AND SPATIAL STATISTICS OF
LARGE DATASETS USING PARALLEL COMPUTING

(Thesis format: Monograph)

by

Jonathan Lee

Graduate Program in Statistical and Actuarial Sciences

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Jonathan S. W. Lee 2013

Abstract

Lattice models are a way of representing spatial locations in a grid where each cell

is in a certain state and evolves according to transition rules and rates dependent on

a surrounding neighbourhood. These models are capable of describing many phenom-

ena such as the simulation and growth of a forest fire front. These spatial simulation

models as well as spatial descriptive statistics such as Ripley’s K-function have wide

applicability in spatial statistics but in general do not scale well for large datasets.

Parallel computing (high performance computing) is one solution that can provide

limited scalability to these applications. This is done using the message passing in-

terface (MPI) framework implemented in R through the Rmpi package. Other useful

techniques in spatial statistics such as point pattern reconstruction and Markov Chain

Monte Carlo (MCMC) methods are discussed from a parallel computing perspective

as well. In particular, an improved point pattern reconstruction is given and imple-

mented in parallel. Single chain MCMC methods are also examined and improved

upon to give faster convergence using parallel computing. Optimizations, and compli-

cations that arise from parallelizing existing spatial statistics algorithms are discussed

and methods are implemented in an accompanying R package, parspatstat.

Keywords: spatial statistics, lattice models, point processes, parallel computing,

high performance computing, Markov Chain Monte Carlo

ii

Acknowledgments

I would like to thank the faculty and staff in the Department of Statistical and Actu-

arial Sciences at the University of Western Ontario for making my years of graduate

school feel warm and welcoming. In particular I would like to thank the following

people:

My Ph.D. supervisors Dr. Hao Yu and Dr. Reg Kulperger for their guidance

and inspiration. My M.Sc. supervisors Dr. John Braun and Dr. Douglas Woolford

for encouragement and opportunities. The department administrative staff, Jennifer

Dungavell, Jane Bai, and Lisa Hines for putting up with my incessant questions and

special requests. Dr. Bethany White and the staff at the Teaching Support Centre

for their mentorship in teaching and training.

The writing of this thesis was made more enjoyable by the friends I am lucky

enough to have in my life, both in London and Toronto.

But most important of all, I would like to thank my family for their continued

support and inspiration through many years of schooling. I couldn’t have done this

without you.

Thank you all.

iii

Contents

Abstract ii

Acknowlegements iii

List of Figures vii

1 Introduction 1
1.1 Spatial point processes . 1

1.1.1 Homogenous Poisson process 4
1.1.2 Inhomogenous Poisson process 5
1.1.3 Stationarity and isotropy . 6
1.1.4 Summary statistics and summary functions 7
1.1.5 Point process model fitting and assessment 19

1.2 Stochastic lattice models . 20
1.2.1 Markov random fields . 21

1.3 Parallel computing . 22
1.3.1 Hardware specifications . 25
1.3.2 Parallel programming in R . 26
1.3.3 Embarrassingly Parallel and Non-embarrassingly Parallel Prob-

lems . 27
1.4 Motivation for parallel computing in spatial statistics 30

1.4.1 Use of spatial statistics in different disciplines 30
1.4.2 Parallel computation in spatial statistics 31

1.5 Outline of Thesis . 33

2 Issues in parallel computing 34
2.1 Issues with Parallelizing Single Simulations 34

2.1.1 Message Passing Interface . 35
2.1.2 Random number generation 35

iv

2.1.3 Workload distribution . 38
2.1.4 Example: Two-dimensional Heat Diffusion System 39

2.2 Issues in Parallel Computing of Spatial Statistics 41
2.2.1 Memory limitations . 41
2.2.2 A virtual topography division 43
2.2.3 Complex spatial windows . 45

2.3 Other issues in parallel computing . 49
2.3.1 Multiple layers of workers . 49
2.3.2 Optimal number of processors 50
2.3.3 Load balancing . 51

2.4 A simulation model of optimal parallel computing structure 54
2.4.1 A simple model . 54
2.4.2 A simple model with concurrent job distribution and load bal-

ancing . 56

3 Parallel computing for spatial point processes 59
3.1 Edge correction methods . 59

3.1.1 Comparison of edge correction methods 69
3.2 Parallel computation of point process summary functions 70
3.3 Performance benchmarks . 75
3.4 Point process model fitting and evaluation 77

3.4.1 Simulation envelopes . 79
3.5 Point process reconstruction . 80

3.5.1 The general reconstruction algorithm 81
3.5.2 An improved reconstruction algorithm 87
3.5.3 Parallelizing reconstruction 89

3.6 The parspatstat package . 94
3.6.1 Function usage . 95
3.6.2 Datasets that do not fit in memory 97

3.7 Example: Ontario lightning data . 98

4 Parallel computing for lattice models 109
4.1 Motivating example: Lattice Fire Spread Model 109
4.2 Benchmarking and scaling issues . 110
4.3 Optimizations . 114

4.3.1 Time barrier . 114
4.3.2 Irregular division of lattice . 116

v

4.3.3 Example: Interacting Particle System 116
4.3.4 Boundary buffer zones . 117

4.4 Parallel computing for Markov Chain Monte Carlo 118
4.4.1 Multiple chain MCMC . 121
4.4.2 Single chain MCMC . 124
4.4.3 Continuous pre-fetching . 129
4.4.4 Comparison with other parallelization techniques 131

5 Conclusion 132
5.1 Further Work . 133

Bibliography 135

Curriculum Vitae 140

vi

List of Figures

1.1 Summary functions plotted for a realization of a homogenous Poisson
process with intensity λ = 100 in a unit window. The top-left graphic
is a plot of the realized poisson pattern. 14

1.2 When looking at a search radius that lies outside the boundary of
the spatial window, no points exist in this censored region (solid red),
leading to a biased estimate of summary functions. 17

1.3 A manager-worker model for parallel computing where a single proces-
sor (the manager) is dedicated to distributing work to and consolidat-
ing results from s processors (the workers). Communication can occur
between manager and workers but also between workers themselves in
some circumstances. 24

1.4 Parallelizing multiple simulations by distributing independent simula-
tions to multiple CPUs. 29

1.5 Parallelizing a single simulation by distributing smaller dependent parts
to multiple CPUs. 29

2.1 Division of lattice from 1 to 9 processors, maintaining uniform sub-
lattices. 46

2.2 Division of lattice from 1 to 9 processors, minimizing sub-lattice bound-
aries. 47

2.3 Benchmark of the number of jobs vs computation time on two different
point patterns. 53

2.4 Benchmark of the number of jobs (in excess of the number of work-
ers) vs time with load balancing (red line) and without load balancing
(black line) for varying data sizes. 58

3.1 Toroidal edge correction on a point pattern (solid points) by replicating
the point pattern 8 times (hollow points) but only treating the original
points as centers. 61

vii

3.2 Border method edge correction on a point pattern by discarding points
within some maximum search radius from an edge (hollow points).
Only interior points (solid points) are used as centers. In this example,
it resulted in 74% of points being discarded using a maximum search
radius of 1/4 of the square window dimensions. 64

3.3 The border method may not work well for even a simple window shape
if it needs to be reduced by the some maximum search radius (left). It
may result in disjoint interior windows if the maximum search radius
is too large (right). 65

3.4 The plot of cells data (left) and its corresponding Fry plot (right). . . 67

3.5 Smoothed estimates of the reduced second moment measure, from
which an estimate of the K function can be obtained at varying radius
distances from the origin. 67

3.6 Estimated variances from simulation of binomial processes with varying
n under border, isotropic, and translation correction methods. 71

3.7 A simple example of dividing a point pattern (above) into two sub-
windows (below). Although the spatial window is divided by half,
points that are within the area covered by the maximum search radius
(area enclosed by dotted red line) still need to be stored. 73

3.8 When applying edge correction in parallel computation of spatial statis-
tics, each processor is aware of only the extent of its own sub-window,
yet needs to be aware of whether a boundary is a global boundary
(black) and requires edge correction, or an interior boundary (red)
that requires no edge correction. 74

3.9 Benchmark of the number of CPU vs time for uniform point process
patterns of varying size. 76

3.10 Speed up of parallel K-estimate for point patterns of varying sizes. . 77

3.11 The observed point pattern and a reconstructed point pattern (top).
Energy function of the reconstructed point pattern over 1,500 iterations
(bottom). 85

3.12 The observed point pattern (left) and a balanced reconstructed point
pattern (right). 89

3.13 Comparison of simulation envelopes of K-function for the observed
point pattern, reconstructed point pattern, and a balanced reconstructed
point pattern. Bottom graph shows the effect of a balanced algorithm
in better matching at small values of r. The top and bottom lines of
each colour indicate the upper and lower bounds of each envelope. . . 90

viii

3.14 Energy function decrease for the reconstruction algorithm parallelized
on various number of processors. 93

3.15 Chunking in a dataset and distribution to workers. 99

3.16 Map of all lightning strike data and the extent of the extracted spatial
window. The extracted spatial window is plotted with points intead of
a + symbol and thus appears lighter. 100

3.17 Summary of Ontario lightning strike data from 1992 to 2010 by year
(top) and by month (bottom). 101

3.18 Plot of lightning strikes in a region of northern Ontario between 47◦

and 51◦ latitude and −84◦ and −80◦ longitude in 2003 (left) and 2008
(right). 103

3.19 Plot of K-estimates of lightning strikes in a square region of Ontario in
2003 (top) and 2008 (bottom) using various border correction methods
along with the theoretical line. 104

3.20 The original and reconstructed point patterns (top) and the corre-
sponding K-functions (bottom). 107

3.21 The original (left) and reconstruct point patterns (right) conditioning
on the points in red. 108

4.1 Simulation of a simple fire spread model with uniform wind on a
120x120 lattice. Red dotted lines represent division of sub-lattices to
4 CPUs. 111

4.2 Computation time of 48 fires distributed amongst 2 to 24 CPUs on a
1,200 by 1,200 pixel lattice. 113

4.3 Computation time of 48 fires distributed amongst 2 to 24 CPUs on a
240 by 240 pixel lattice. 113

4.4 Illustration of 3 CPUs working in parallel with communication only
when all three CPUs have hit a time barrier or requires swapping. . . 115

4.5 Illustration of 3 CPUs working in parallel with communication at every
time step to synchronize. 115

4.6 Buffer zone to alleviate communication due to boundary crossing, but
covers less total area. 119

4.7 Movement of a point (striped) from one processor to another location
(solid). The second processor (blue) does not actually receive the point
until it passes the buffer zone. 120

ix

4.8 Metropolis trees with steps computed serially. At each time step, a
single level is completed, representing one draw in the chain. Four
draws are computed in four time steps. 123

4.9 Metropolis trees with prefetching two steps at a time using 3 processors.
At each time step, two levels are completed, representing two draws in
the chain. Four draws are completed in two time steps. 125

4.10 Metropolis trees with dynamic prefetching where the most likely paths
are evaluated in parallel using 3 processors. At each time step, up
to 3 levels are completed. In this particular example, five draws are
completed in two time steps. 127

4.11 Comparison of speed-up versus serial MCMC from using up to 100
processors using simple pre-fetching and dynamic pre-fetching and two
different targeted acceptance rates. 128

4.12 Metropolis trees with continuous prefetching where processors can be
assigned to higher levels paths to more quickly determine which path
is correct and then processors can be reassigned down further down
the most probable paths. Asterisks indicate cells that are being com-
puted in parallel and purple cells indicate cells that are already under
evaluation. 130

5.1 Splitting a three dimensional lattice into smaller sub-lattices. 134

x

Chapter 1

Introduction

1.1 Spatial point processes

Spatial point processes form a large component of the field of spatial statistics. A

spatial point process, N , is a model that aims to describe an observed point pattern.

A realization or sample from N is a point pattern consisting of n points, each of which

has a spatial location in d dimensions attached to it.

x1, . . . , xn ∈ Rd

1

Chapter 1. Introduction 2

In the remainder of this thesis, Cartesian coordinates in d = 2 dimensions (the planar

case) are primarily used as the location measure, though other measures may be used

(e.g. polar coordinates). In practice, d is rarely greater than 3 since point processes

are usually used to describe a physical problem in up to three spatial dimensions.

A point pattern is observed within a spatial window, denoted E, which is a sub-

set of the space on which the process is defined, Rd. Often, the spatial window is

rectangular or circular in shape for the sake of simplicity but can technically be any

polygon. Complex polygon spatial windows arise in practice both naturally (geo-

graphic boundaries such as tree lines) and artificially (man made boundaries such as

roads or political divisions). There are situations where a spatial window can exhibit

an interior ‘hole’ or even an island within a hole. The number of points that exist in

an arbitrary window, W , is denoted by the function N(W) while the volume (area) of

the same window is denoted by the function A(W). Thus, we have N(E) = n though

in practice, the number of points in a window is usually not fixed beforehand.

In addition to a location, each point in a spatial point pattern can also have one or

more measures attached, known as marks. These measures, the location themselves,

and correlation structure between points serve to characterize a point pattern through

summary statistics and functions, described in more detail in section 1.1.4.

When modelling point processes, we will make several assumptions. The first is

Chapter 1. Introduction 3

that it is assumed that points exist in continuous space, though depending on the

sampling strategy of the data, these points may be discretized to a lattice structure.

Lattice structures need to be handled differently and will be discussed in more detail

in section 1.2. However, it should be noted that discretized data can be reduced to

a marked point process using smoothing techniques, as has been done in image pixel

analysis.

The second assumption is that we are only dealing with infinite point processes.

That is, it is assumed that the underlying model generating the point pattern extends

infinitely but we are only observing the points within a chosen spatial window, the

choice of which is made such that the point pattern is homogeneous within the window

or additional covariates are included to explain any heterogeneity that may exist.

A finite point process on the other hand, exists only within the spatial window

with the distribution of points within the window perhaps dependent on proximity

to the edge of the window. This is not to be confused with edge effects and edge

correction methods that are discussed in section 3.1 on infinite point processes where

points exist but are not observed outside the window.

Chapter 1. Introduction 4

1.1.1 Homogenous Poisson process

Before discussing the homogenous Poisson process, we will discuss the finite binomial

process. The finite binomial process is the simplest point process where n points are

distributed completely randomly in a given spatial window, E. The probability of a

point x appearing in any interior window W is uniformly distributed with probability

equal to the proportion of the area of W to the area of E:

P (x ∈ W) =
A(W)

A(E)
where W ⊂ E.

When generalized to n points x1, . . . , xn, these points are independent and uniformly

distributed in E when for all interior windows W1, . . . ,Wn,

P (x1 ∈ W1, . . . , xn ∈ Wn) = P (x1 ∈ W1) . . . P (xn ∈ Wn) =
A(W1) . . . A(Wn)

A(E)n
.

To further generalize the binomial point process, we do not have to fix the number

of points in the point process, n. This leads to the homogeneous Poisson process if

the number of points is Poisson distributed with some intensity parameter λ per unit

area. Such a process is known as a completely spatially random (CSR) process where

there is no clustering (points with a tendency to appear near each other) or regularity

Chapter 1. Introduction 5

(points appearing far from each other, also known as inhibition). The homogenous

Poisson process is often the “benchmark” that various simulation and assessment

methods use as a baseline comparison.

It should also be noted that the combination of many point patterns converges

in behaviour to a Poisson process by the Poisson convergence theorem [21]. Also, a

linear transformation of a Poisson process is still a Poisson process. In particular, if

N is a homogenous Poisson process with intensity λ and B is a linear mapping, then

BN = {Bx : x ∈ N} is a homogenous Poisson process with intensity λ×det(B−1) [20].

1.1.2 Inhomogenous Poisson process

A homogenous Poisson process can be generalized to an inhomogenous Poisson process

where the constant intensity λ is replaced by the intensity function λ(x). The number

of points in a window B is Poisson distributed with mean
∫
B
λ(x)dx and the number

of points in disjoint windows are independent. The second property is known as

independent scattering. From a given point pattern, one can estimate the intensity

function using parametric methods such as maximum likelihood estimation.

To generate from an inhomogenous Poisson process with intensity function λ(x),

one can first generate from a homogenous Poisson process with intensity equal to the

maximum intensity of the desired intensity function. Then a rejection method can be

Chapter 1. Introduction 6

used to determine which points should be deleted (thinned) until the desired inho-

mogenous intensity surface is met. This is done by rejecting a point with probability

equal to the proportion of its intensity to the overall maximum density.

The finite Cox process is a generalization of inhomogenous Poisson process where

the intensity surface λ(x) is random. It is a two stage process where a random inten-

sity surface is generated, and then an inhomogenous Poisson process is constructed

conditional on the generated intensity surface. This is also known as a doubly stochas-

tic Poisson process.

To determine if the intensity surface should be a random variable (that is, to

justify the use of a Cox process), multiple samples in the same window are necessary.

The intensity function can be estimated for each sample and compared.

1.1.3 Stationarity and isotropy

The concepts of stationarity and isotropy are important when dealing with point

processes since they are often assumed to be true when using the methods described

in this thesis.

A stationary point process, also known as an homogenous process, is a point

process, N , where the distribution of the number of points in a given window is the

Chapter 1. Introduction 7

same regardless of how that window is translated. That is,

N + α
d
=N for all α ∈ Rd. (1.1)

where if N = {x1, x2, . . .} then N + α = {x1 + α, x2 + α, . . .}.

A related concept to stationarity is isotropy. A point process is isotropic if it the

distribution of the number of points in a given window is the same regardless of how

that window is rotated. That is,

N
d
=RβN for all β where Rβ is a rotation of angle β.

The aforementioned homogenous Poisson process is both stationary and isotropic. In

other words, one would expect all sub-windows W ⊂ E that are the same shape to

exhibit the same spatial characteristics regardless of orientation and position in E

whereas an inhomogenous Poisson process would by definition be non-stationary.

1.1.4 Summary statistics and summary functions

Superficial characteristics of a point pattern such as clustering or regularity can often

be observed from visual inspection. These characteristics, as well as other less obvious

Chapter 1. Introduction 8

characteristics, can be measured through summary statistics and summary functions.

The most basic summary statistic is point intensity, defined as the expected num-

ber of points in a unit area of the point pattern. This is denoted as λ with corre-

sponding estimator λ̂, satisfying the following definition for the expected number of

points in an arbitrary spatial window W :

E(N(W)) = λA(W)

This intensity is often not known and the standard estimator is simply the number

of points in the observation window per unit area,

λ̂ =
N(E)

A(E)
.

If counting the number of points in E is not possible since it may be too time consum-

ing, other estimators of λ̂ exist such as the distance method [11] and the point-quarter

method [20]. Such methods also lend themselves to reconstruction applications, dis-

cussed in section 3.5. In the non-stationary case, the intensity is instead replaced by

an intensity surface, λ(x) with estimation often done using maximum likelihood and

verified with bootstrap methods [20].

Chapter 1. Introduction 9

Going beyond single numeric summary statistics are summary functions (often

functions of a search radius, r). Those summary functions that are all based on a

count of the number of points around a “typical point” can be referred to as Palm

characteristics. We use the notation

nx(r) = N(b(x, r)\{x}) (1.2)

to denote the number of points in the point process N that is within a circle (we are

concerned with d = 2 dimensions) of radius r centered at point x excluding point

x itself. Assuming stationarity, by equation 1.1, we can translate all points to the

origin, o, and study the characteristics of just no(r) in the resulting point pattern to

obtain measures for the original point pattern. Further examination of this is given

in section 3.1 where edge correction methods are discussed.

In a spatial point pattern, several descriptive statistics of this nature can be used

to describe the point process characteristics. These include first-order statistics such

as the empty space function F (r), the nearest-neighbor distance distribution function,

G(r), and second-order statistics such as Ripley’s K-function [2] K(r), and the pair

correlation function, g(r). These, in addition to the combination of the F - and G-

function into what is called the J-function [2] J(r) are described below.

Chapter 1. Introduction 10

For a given point pattern, these functions can be compared to the corresponding

theoretical function for the homogeneous Poisson process as an indicator of inhibition,

clustering, or lack thereof (complete spatial randomness). Their theoretical values for

the homogeneous Poisson process are also given.

First-order summary functions

The F -function, known as the empty space function, denotes the probability that an

area of radius r around a typical point contains at least one point, defined as

F (r) = 1− P (no(r) = 0) for r ≥ 0.

The G-function, known as the nearest neighbour distance distribution function is the

distribution of distances of a typical point to its nearest neighbour, not including the

point itself, defined as

G(r) = P (no(r) > 0) for r ≥ 0.

Again, the origin is used assuming stationarity is satisfied. For the homogenous

Poisson process, one would expect F (r) = G(r). If the probability of having a point

around an arbitrary point is smaller than the typical distance of a nearest neighbour,

that is, F (r) ≤ G(r), then this would be indicative of regularity (inhibition). Likewise,

Chapter 1. Introduction 11

F (r) ≥ G(r) would be indicative of clustering. Lieshout and Baddeley defines a

measure, J , based on these two functions [47], defined as

J(r) =
1−G(r)

1− F (r)
for r ≥ 0 and F (r) ≤ 1.

For this function, one would expect J(r) = 1 for a homogenous Poisson process,

J(r) ≥ 1 to be indicative of regularity, and J(r) ≤ 1 to be indicative of clustering.

It is important to note that a non-Poisson process can also result in J(r) = 1, that

is, J(r) = 1 is a necessary but not sufficient condition for showing a process is a

homogenous Poisson process [4].

Second-order summary functions

The first-order summary functions described above do not look beyond the nearest

neighbour, potentially ignoring a lot of information. Second-order statistics are based

on pairwise interpoint distances. Ripley’s K-function [32] is a second-order descriptive

statistic that is commonly used to measure homogeneity of spatial point patterns.

That is, to determine if a point pattern with n points that lies within a spatial

window E ⊂ R2 follows a spatially random process or if it is the result of a clustering

or regular process. Tests of homogeneity are further discussed in section 1.1.5. Under

Chapter 1. Introduction 12

the assumptions of stationarity and isotropy, the function, λK(r), is the expected

number of points within a distance r of a typical point.

λK(r) = E(no(r)) for r ≥ 0.

and by dividing both sides by the intensity λ, we obtain a definition of the K-function

K(r) =
E(no(r))

λ
for r ≥ 0.

In a homogenous Poisson process, this is simply the area of the search circle, K(r) =

πr2. More points than expected, K(r) ≥ πr2, is indicative of clustering and less

points than expected, K(r) ≤ πr2, is indicative of regularity.

Related to the K-function is the L-function introduced by Besag [6] which is a

variance stabilized version of the K-function, defined as

L(r) =

(
K(r)

π

)1/2

for r ≥ 0.

which has an added benefit of being easier to interpret because K(r) = πr2 is the area

of the search circle with radius r so the L-function for a completely spatially random

process is simply, L(r) = r. Hence, L̂(r)− r is often plotted against L(r)− r = 0 to

Chapter 1. Introduction 13

visually examine the nature of the point process. Deviations from a horizontal line

are easier to spot than deviations from a diagonal [20].

Figure 1.1 shows the aforementioned summary functions plotted for a realization of

a homogenous Poisson process with intensity λ = 100 in a unit window compared with

the corresponding theoretical summary functions for a homogenous Poisson process.

The pair correlation function, g(r), is another second-order summary function

that contains the same information as the K- and L- functions but has advantages

for graphical interpretation. It is defined as

g(r) =
k(r)

2πr
for r ≥ 0

where k(r) is the derivative of K(r). That is, it satisfies

K(x) =

∫ x

−∞
k(t)dt.

The pair correlation function is the correction factor of a point x in b(x) (with prob-

ability λdx) and a point y in b(y) (with probability λdy) where x, y are distance r

apart and b(x) is the infinitesimally small sphere (or disc) around a point x. The

Chapter 1. Introduction 14

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

F(r)

r

F(
r)

F̂raw(r)
Fpois(r)

0.00 0.05 0.10 0.15

0.
0

0.
4

0.
8

G(r)

r

Ĝraw(r)
Gpois(r)

0.00 0.02 0.04 0.06 0.08

1.
0

1.
2

1.
4

J(r)

r

J(
r)

Ĵun(r)
Jpois(r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

K(r)

K̂un(r)
Kpois(r)

0.00 0.05 0.10 0.15 0.20 0.25

−0
.0
2

0.
00

0.
02

L(r)−r

L(
r)
−r

L̂un(r) − r
Lpois(r) − r

Figure 1.1: Summary functions plotted for a realization of a homogenous Poisson
process with intensity λ = 100 in a unit window. The top-left graphic is a plot of the
realized poisson pattern.

Chapter 1. Introduction 15

probability of both x in b(x) and y in b(y) is thus,

p2(r) = g(r) · λdx · λdy

so for large radius r, points are expected to be independent so g(r) approaches 1. In

a cluster process, g(r) ≥ 1 since points x, y are correlated.

Higher order summary statistics have been developed as well, for example Schla-

ditz and Baddeley’s T function that looks at the number of r-close triples of points

per unit area [36]. There are also topological summary characteristics that make use

of methods from other areas such as graph theory. The connectivity function for

example, c(r), measures the number of disjoint components when circles of a selected

radius R are grown around each point and the union of all circles are taken as compo-

nents. The actual measure itself is taken as the probability of a point distance r from

a typical point to be in the same component. Near r = 0, the number of components

will be close to the number of points and this function approaches 0 monotonically

for increasing r.

Other examples include detecting outliers in point patterns by statistically ana-

lyzing marks assigned to each point through point-based indices. Gaps in the data

can be detected using network graphs created by joining k nearest neighbours and

Chapter 1. Introduction 16

then analyzing the areas of the resulting cells created by the graph edges. In this the-

sis, we will primarily focus on first- and second-order summary characteristics with

a particular emphasis on Ripley’s K-function as these are the ones that are most

commonly used in practice.

Edge correction methods

When computing the summary functions defined above, they all involve looking at

a circle of some radius r around a given point, namely no(r). A complication arises

when a point is within r distance from the boundary of the spatial window E so that

part of the search circle lies outside of E where no points are observed (Figure 1.2).

We will illustrate this point further in section 3.1 by examining the K-function where

this censored data creates a biased estimate for which we need to use edge correction

methods. In fact, the K-function is independent of the shape of the study area when

edge effects are corrected for properly [10].

The uncorrected K-function estimate is known as the naive estimator where we

have

K̂(r) =
1

λn

n∑
i=1

ni(r) for r ≥ 0.

If we include a ‘buffer’ area around our window of interest for which data is collected

as well, this can describe the spatial pattern most accurately, but may not warrant

Chapter 1. Introduction 17

the additional labor involved [17]. Various edge correction methods are described and

compared in section 3.1. Also of interest is the J-function, for which it was shown by

Baddeley that estimates of the J-function even without applying edge correction are

unbiased [2].

Figure 1.2: When looking at a search radius that lies outside the boundary of the
spatial window, no points exist in this censored region (solid red), leading to a biased
estimate of summary functions.

Chapter 1. Introduction 18

Other summary characteristics

In addition to the described nearest neighbour and intensity statistic, researchers have

also defined indices that can be used as summary characteristics.

The index of dispersion is a location-based index that measures the ratio of the

variance of the number of points to the mean number of points in enclosed spatial

windows of a certain size and shape. Pielou’s index of randomness is also based on

location of points and is a function of the random distance from a test point to its

nearest neighbour. These location-based indices extend well to marked point patterns

because they can be computed independent of the mark.

Point related indices are those that assign a mark to each point based on some

characteristic of the point in relation to the pattern as a whole. An example is

the aggregation index which marks each point with its nearest neighbour distance

and aggregates these marks over the entire set to get a measure of average nearest

neighbour distance. Related to the aggregation index is the degree of colocalisation

which is a function of some search radius r and gives the proportion of points that

have an aggregation index mark smaller than r. The mean direction index marks

each point by the sum of the unit vectors from the point to its k nearest neighbours.

This gives the general direction that a point’s nearest neighbours are in. If a point

has nearest neighbours with opposing vectors, then this gives a direction index of 0.

Chapter 1. Introduction 19

1.1.5 Point process model fitting and assessment

Given a point pattern, a common question of interest is whether or not the pattern

exhibits one or more characteristics of clustering, regularity, and randomness. Note

that it is possible for a point pattern to have short range clustering yet long ranger

regularity. To test this, we compute summary statistics of the point pattern and

compare that with the same summary statistic computed either on realizations of a

homogeneous Poisson process model or analytically on the theoretical homogenous

Poisson process model. If the results are statistically different in a two-sided test,

then it is evidence against complete spatial randomness. A one-sided test would

indicate either clustering or regularity. This result is necessary, but not sufficient proof

of complete spatial randomness and multiple tests are recommended. In practice,

functional summaries like theK-function or its variance stabilized version, L-function,

are used with the maximum point-wise difference with the same function computed

on a realization of the point process as an approximation to the theoretical value.

The advantage of comparing with realizations from a point process model is that

it can easily be extended to more complicated point process models as well since

theoretical values of many summary functions can only be analytically determined

for simple point processes. Beyond comparing observed point pattern characteristics

to a completely spatially random process, one can compare with other fitted point

Chapter 1. Introduction 20

process models, which will not be discussed in detail here.

The choice of maximum search radius distance is important as well since variance

at larger radius will be high, thus weakening the power of the test. In order to account

for this, Ho and Chiu [19] proposes a modified L-test with a weight function for higher

search radii r. A comparison of the variance as a function of the choice of radius on

different edge correction methods is given in section 3.1.1 to demonstrate the larger

variance problem at larger radiuses.

A resampling method can be used as a means to assess the fit of a model as well.

Simulated realizations from a proposed model are generated and summary functions

are computed for each realization. Point-wise or global quantiles for these can be

used to construct an envelope to observe if the summary function for the observed

point pattern fits within this envelope. Further details for such methods are given in

section 3.4.

1.2 Stochastic lattice models

Stochastic lattice models are a way to represent spatial locations in a grid structure

where each cell (pixel) is in a state and evolves according to stochastic transition

rules. These models can be used to describe many phenomena such as the growth

Chapter 1. Introduction 21

of a forest fire front [7]. They are also used in statistical physics for modelling ferro-

magnetism, in biology for predator-prey models, and in epidemiology for modelling

disease transmission. The grid structure of the lattice model lends itself to take ad-

vantage of parallel computing. This parallelization allows us to decrease computation

time which can allow us to increase resolution of the lattice, work with a larger lattice,

decrease time step size in simulation, or work with a more complicated model.

Lattice models also have a direct translation to point processes models, notably,

a reason for studying lattice-based processes is their relatively tractability by com-

parison with inhibition processes [11]. Assuming each lattice cell represents a point,

then depending on how the position of a point is interpolated within a cell, this can

naturally produce inhibition between points. For example, if we take the centre of

each cell as the location of a point, then a hardcore inhibition distance equal to the

cell dimensions will exist.

1.2.1 Markov random fields

Markov random field models were first introduced in 1974 by Besag [5] and were

intended as a stochastic model to describe spatial processes of points represented

in a lattice. A set of random variables are organized in a lattice structure so that

any cell j of the lattice that is a neighbour of a cell i has the Markovian property

Chapter 1. Introduction 22

that the functional form of P (xi|x1, . . . , xi−1, xi+1, . . . , xn) is dependent upon xj. In a

square lattice structure, this creates a possible first-order neighbour structure of cells

consisting of cells immediately to the top, left, right, and bottom of an existing cell.

The value for a cell is dependent only on its neighbour cells. Higher order neighbour

structures can be defined to extend beyond immediate neighbours as well but we will

mainly look at the first-order neighbour structure as it is the most common.

Techniques discussed in Chapter 4 can be directly applied to a Markov random

field existing on such a lattice structure if we wanted to simulate a stochastic realiza-

tion. If we wish to analyze a Markov random field, doing so by direct calculation is

very difficult. Even for an unrealistically small 40 x 40 pixel image where the pixels

take on binary values, there are 21600 = 4.4 × 10481 terms in the summation [15].

Using a Bayesian approach, one can employ Markov Chain Monte Carlo (MCMC)

techniques such as those described by Givens and Hoeting [15] to do so. A description

of MCMC and techniques for parallelizing MCMC are given in section 4.4.

1.3 Parallel computing

For the past several years, computing power has plateaued due to physical constraints

on the design of microchips which limits frequency scaling as a means of increasing

Chapter 1. Introduction 23

computing power. Instead, parallel computing, which uses multiple processors to work

concurrently to speed computation, has been the focus of research and development in

recent years. From a statistical computing perspective, high-performance computing

(HPC) that makes use of computer clusters consisting of thousands of cores is one of

the primary tools to compute intensive simulations and calculations.

Two architectures of parallel computing are multithreading and multiple process-

ing. The main difference between multithreading and multiple processing is the mem-

ory architecture. Multithreading involves dividing a single process into the work of

multiple computing threads. Each of these threads share the same memory architec-

ture and usually exist on a single computer system. Multiple processing on the other

hand divides a problem into smaller problems that are then worked on independently

by separate processors. Each processor sees only its own memory structure and if

required, can exchange information with other processors. Multithreading provides a

simpler method of parallelizing problems due to all threads working on the same data

(equal access to shared memory) but is limited in the amount of speed-up possible

for memory intensive computations. Multiple processing can scale linearly (ignoring

communication overhead) with the number of processors used but is more complicated

to implement. Although communication overhead will always exist, it can be con-

sidered negligible relative to the intensive computation at hand. For the purposes of

Chapter 1. Introduction 24

this paper, multiple processing is the primary focus though there is room to use mul-

tithreading within the computation of individual processors such as parallel matrix

computations implemented by libraries that can take advantage of multithreading.

In this thesis, we will be using a manager-worker model for parallel computing

where a single manager processor is dedicated to distributing work to and synchro-

nizing any number of worker processors (Figure 1.3). Although workers mostly com-

municate with the manager, it is possible for workers to directly communicate with

one another to avoid having a communication bottleneck at the manager level. Most

problems will have one layer of workers although technically each worker can in turn

be a manager with its own set of workers. For example, we may wish to accommodate

large datasets at each division of workers. Such a multi-layer division is described in

section 2.3.1.

Manager	

Worker	 1	 Worker	 2	 Worker	 3	 …	 Worker	 s	

Figure 1.3: A manager-worker model for parallel computing where a single processor
(the manager) is dedicated to distributing work to and consolidating results from s
processors (the workers). Communication can occur between manager and workers
but also between workers themselves in some circumstances.

Chapter 1. Introduction 25

1.3.1 Hardware specifications

In this thesis, simulations were carried out on the mako cluster on the shared hierar-

chical academic research computing network (SHARCNET). This particular cluster

contains only 244 cores and is rarely used relative to larger clusters with thousands

of cores. It is meant for development and testing purposes so each job has a one-hour

limit on run time. Such an environment is not ideal for running actual analyses that

may require longer run time but is suitable for performing benchmarking tests on a

varying number of processors. However for this same reason, the “wall clock” time

of jobs was kept to under an hour when run on a single processor so that the exact

same computations can be run on multiple processors and their results can be fairly

compared. In this thesis, the terms cores, processors, and CPUs are used interchange-

ably to denote the number of individual central processor units utilized in a parallel

system.

The cluster runs on CentOS 5.2 and consists of four types of nodes: 1 adminis-

trative node, 1 login node, 14 Xeon computation nodes and 16 Nehalem computation

nodes. Care was taken to carry out all benchmarks on only one type of node (Xeon

nodes, in this case) to ensure uniformity between hardware. Nodes are interconnected

through gigabit ethernet and jobs were kept to as few nodes as possible to minimize

internode communication times. Each Xeon node consists of four Intel Xeon cores

Chapter 1. Introduction 26

operating at 3.0 GHz with 8GB of memory per node.

1.3.2 Parallel programming in R

R is an open source implementation of S, a programming language for statistical

computing and graphics [31]. It is widely used both in practice and research in

many fields across industry and academia. The core R software is supported by an

active development team while external libraries that extend the functionality of R

are developed and maintained by the community. As of writing, there are currently

over 4,2800 of these external libraries, known as packages, on the Comprehensive R

Archive Network (CRAN).

Support for parallel computing has been available in R for some time, Schmid-

berger et al. provides an excellent state of the art review [37]. Of note are two packages

on which many of the existing parallel computing packages are built: multicore [44]

and Rmpi [50]. To summarize, the multicore package allows for single computers to

make use of all available cores on the machine, commonly two to eight cores, while

Rmpi is designed to work on computing clusters with many cores spread out across

many machines (nodes), though it is also capable of being run on a single computer

with multiple cores. The widely used snow package [45] can extend the Rmpi package

to ease in the setup and execution of parallel code.

Chapter 1. Introduction 27

Versions after R 2.14.0 include the parallel package [30] as one of the base pack-

ages in R. This package is a derivative of multicore and snow to further simply the

end user’s process of adapting their code to take advantage of parallel programming.

A more recent package, pbdMPI [26], focuses on “pretty big data” using the MPI

framework. The idea here is to have each worker process perform computations on its

own portion of a data set without the necessity of a managing computer controlling

their behaviour. The advantage of this is allowing enormous data sets to be used since

the data set does not need to be transferred to each worker individually. Individual

results from workers can then be aggregated together to get the desired final result.

However, this package assumes the problem is embarrassingly parallel, as described

below.

1.3.3 Embarrassingly Parallel and Non-embarrassingly Par-

allel Problems

When applying parallel computing to statistics, problems can be divided into two

groups: embarrassingly parallel problems and non-embarrassingly parallel problems.

Embarrassingly parallel problems consist of running multiple independent sim-

ulations or calculations that can be more-or-less blindly distributed amongst many

Chapter 1. Introduction 28

processes and then results are combined at the end (Figure 1.4). They are known as

embarrassingly parallel problems due to how simple it is to conceptualize and in many

cases, implement. In fact, all of the aforementioned parallel packages were developed

for the embarrassingly parallel problems and are relatively straightforward to use.

In fields like spatial statistics, a problem may arise where computation on one

location of our spatial dataset may be dependent on the concurrent computation of

another location in our spatial dataset. This dependency requires workers to commu-

nicate with one another in an efficient way without creating long stalls in computation.

These are referred to as non-embarrassingly parallel problems. An example of this

is when we wish to apply parallel computing to a single large simulation of a lattice

model. We can divide the lattice into smaller sub-lattices and then have each proces-

sor perform computations on a single sub-lattice (Figure 1.5) but we need to maintain

communication between processes that are responsible for adjacent sub-lattices.

Specific issues that arise when parallelizing computation in spatial statistics are

discussed in chapter 2.

Chapter 1. Introduction 29

CPU

Sim Sim

Sim Sim

Sim Sim

Sim

CPU

CPU

CPU

Sim
Sim

Sim
Sim

Sim
Sim

Sim

Figure 1.4: Parallelizing multiple simulations by distributing independent simulations
to multiple CPUs.

CPU

Sim

Sim

Sim

Sim

CPU

CPU

CPU

Sim Sim

Sim Sim

Sim

Figure 1.5: Parallelizing a single simulation by distributing smaller dependent parts
to multiple CPUs.

Chapter 1. Introduction 30

1.4 Motivation for parallel computing in spatial

statistics

This section serves to give an overview some of what has been done in parallel com-

puting applied to various areas of spatial statistics as well as examples of applied

statistical work that could potentially take advantage of the methods introduced in

this thesis.

1.4.1 Use of spatial statistics in different disciplines

In ecology, Hasse [17] gives an overview of how to use the K-function in an ecological

setting along with descriptions of edge correction methods. The methods were applied

to both a real scrubland dataset and a computer generated dataset. Notably, he finds

that the most effective edge correction methods are also the ones that have the highest

computational requirement and points out shortcomings of the border method and

toroidal correction. He also notes the non-standardized implementation of statistical

analysis methods by other researchers that are not easily reproducible as many of the

computer programs are either developed by the researchers themselves or modified

programs from colleagues. One goal of this thesis is to provide an open-source library

of some commonly used statistics implemented for parallel systems that can be easily

Chapter 1. Introduction 31

used and even built upon by anyone.

In forestry, Szwagrzyk et al. [43] examined the spatial distribution of trees in East-

Central European forests using the K-function with edge correction done using the

border method in a circular spatial window. This was compared with the theoretical

homogenous poisson model to determine if clustering or regularity exists. In their

analysis and other analyses of a similar nature with which they compared results, all

were done on a small spatial scale which give a very manageable number of points

to work with. The resulting methods from this thesis aims to alleviate compromises

that need to be made with regards to size of datasets. Stoyan and Penttinen [41]

gives an excellent summary of how spatial point process methods have been used in

various aspects of forestry, including the calculation of summary characteristics, the

reconstruction of point patterns, and stochastic models for marked point patterns.

1.4.2 Parallel computation in spatial statistics

A lot of the research that has been published on the use of parallel computing in

spatial statistics has been from a geography standpoint. This is unsurprising as

geography is a large area where spatial statistics has been used for many years. In

1990, Griffith [16] discussed limitations to spatial statistics at the time, which were

mainly a lack of computer software to support statistical analysis and the growth of

Chapter 1. Introduction 32

geographic data sets outpacing the numerical computation capabilities at the time.

He notes the importance of developing statistical algorithms with parallel computing

in mind to take advantage of scalable computational resources.

In 1995, Armstrong and Marciano [1] looked at the parallel computation of a

measure of spatial association introduced by Getis and Ord in 1992 [14]. Here, they

examined the algorithm used for computing the measure to identify bottlenecks that

are computed serially. They implemented portions of the algorithm in parallel and

noted that the performance gain with parallel processing increase with the size of the

data. Likewise, computation time increases at a slower rate in a parallel implemen-

tation compared to a serial implementation across datasets of equal size. This agrees

with conclusions drawn throughout this thesis.

For lattice models, Cannataro et al. [9] developed a software environment for the

parallel modelling of cellular automata models where cells (pixels) evolve according to

transition rules that are dependent on its immediate neighbours. They examine the

hardware required to run such a model in parallel, separating the system design into

graphical and computational components. Load balancing from distributing work

evenly across processes was also considered but this only applies when the model is

dependent on first order neighbours. There are other strategies for optimizing parallel

computation of such cellular (lattice) models that are discussed further in 4.3.

Chapter 1. Introduction 33

1.5 Outline of Thesis

The rest of this thesis is divided into a further four chapters. Chapter 2 will give an

overview of both general issues and issues specific to parallelizing spatial statistics

that will be encountered. Chapters 3 and 4 give methods and examples of applying

parallel computing to spatial point processes and stochastic lattice models respec-

tively. These chapters also look at performance benchmarks and introduce novel

methods for further optimization. The package that accompanies the methods de-

scribed is also introduced here along with examples on real data. Finally, Chapter 5

is the concluding chapter with discussion of further work and natural extensions to

these methods.

Chapter 2

Issues in parallel computing

2.1 Issues with Parallelizing Single Simulations

As mentioned in section 1.3.3 regarding non-embarrassingly parallel problems, there

are computational issues that arise when dealing with sub-problems that are depen-

dent on results or information from adjacent sub-problems. These issues include the

actual programming implementation as well as computational bottlenecks that need

to be considered.

34

Chapter 2. Issues in parallel computing 35

2.1.1 Message Passing Interface

Communication between processors (CPUs) in parallel programming is accomplished

by message passing. Message passing is a programming paradigm used widely on

parallel computers, especially Scalable Parallel Computers with distributed memory

and on Networks of Workstations [39]. Message Passing Interface (MPI) has been

the standard specification for message passing libraries across many computing plat-

forms. It specifies a framework of functions that can be used for communication

between processors regardless of hardware implementation. The Rmpi package is the

R interface for the MPI framework [50], which serves as a wrapper for the underlying

MPI implementation such as MPICH2, LAM/MPI, and OpenMPI. The Rmpi pack-

age is commonly required by various packages that wish to take advantage of parallel

computing in R. In this thesis, this package is built upon and widely utilize on top of

OpenMPI, though it will work with other MPI implementations as well.

2.1.2 Random number generation

In stochastic models, properly generated pseudorandom numbers are a necessity. Se-

quences of pseudorandom numbers are generated based on a seed that is often a

function of the system time. These pseudorandom number streams are a function of

Chapter 2. Issues in parallel computing 36

a deterministic algorithm and consists of a finite sequence of numbers that appear

to be random, hence they are called pseudorandom. One can imagine that all CPUs

running on the same system would read the same system time and hence generate

the exact same sequence of random numbers. This would of course not be ideal if we

wish to simulate a stochastic system where it is assumed that random number inputs

are independent. In fact, in order for each worker to have an independent stream of

random numbers, the period of a random number generator should be much larger

than the total number of random numbers required by all workers so there is no over-

lap in the random number streams. Random number generation is taken care of by

the rlecuyer R package to ensure that each CPU has a proper stream for a given

seed. As of R 2.14.0, the parallel package in R incorporates the L’Ecuyer-CMRG

random number generator so explicit use of the rlecuyer package is not necessary.

For the purposes of this thesis, it is assumed that non-indendence of pseudorandom

number streams is properly dealt with.

A further issue arises when we wish for our results to be reproducible. Tradi-

tionally, setting the initial seed will result in the same sequence of pseudorandom

numbers and hence the same results from running a simulation. However, in a paral-

lel computing context, multiple processors will be working on the same job and even

with the same initial seeds and pseudorandom number sequence, due to differences

Chapter 2. Issues in parallel computing 37

in hardware and other external factors, different processors may work at different

speeds. For example, consider a large simulation that is divided into smaller pieces

and multiple processors compute these pieces one at a time on a first come first serve

basis. Processors may take these pieces in a different order each time depending

on the order that computation finishes. On a different system even with the same

number of processors, this order that processors compute pieces in may not be the

same if group of processors are faster or if the network communication is different.

Hence the original results may not be reproduced. In order to account for this, one

can keep track of the order in which the processors compute pieces and enforce this

in subsequent simulations if one wishes to reproduce simulation results. However,

if a job that was originally completed quickly by a fast processor is assigned to a

slow processor in a new system, the entire job queue will be held up while this job

completes. Another solution is to force synchronization so processors cannot move

onto the next piece until all processors have completed, at which point chunks can be

distributed in some predetermined order. This also has the issue of faster processors

sitting idle waiting for all other processors to complete their computations. Neither

solution will give optimal speed-up and thus reproducibility is enforced only when it

desired.

Chapter 2. Issues in parallel computing 38

2.1.3 Workload distribution

Depending on how the processors are allocated and the complexity of the problem in

each sub-problem, there could be an uneven (suboptimal) distribution of workload.

Some processors may be idle while other processors may be doing all of the work.

Some load balancing can be done but we will introduce several ideas to minimize in-

efficiencies in the workload distribution. The goal is to have all processors finish their

computation at roughly the same time whilst minimizing the amount of interproces-

sor communication required. One complicating factor in workload distribution is the

uniqueness of different hardware systems since the optimal distribution of workload

depends heavily on the architecture of the system that it is running on. For example,

specially designed computing clusters may have extremely low interprocessor com-

munication that is minimized through the use of specialized hardware switches while

distributed clusters may have a high number of processors but intercommunication

may be several orders of magnitude higher. As such, the trade off between the size of

each problem and the amount of communication required between processors needs

to be considered.

Chapter 2. Issues in parallel computing 39

2.1.4 Example: Two-dimensional Heat Diffusion System

To motivate the idea of parallel programming on a lattice and to demonstrate some of

the issues described above, we can consider a two-dimensional heat diffusion problem.

At a given time t, the change in heat ut is defined as a function of neighbouring values

ut = a(uxx + uyy)

with ut representing the partial derivative and uxx and uyy representing the second

partial derivatives of the temperature function u(x, y, t). At time t = 0, the initial

value at a specific coordinate (x, y) is determined by some predefined function φ.

u(x, y, 0) = φ(x, y)

Using a finite difference method we can implicitly solve for the value of each lattice

point vi,j as only a function of the value of neighbouring lattice points at the previous

time step:

vn+1
i,j − vni,j

∆t
= a

[
vni+1,j − 2vni,j + vni−1,j

∆x2
+
vni,j+1 − 2vni,j + vni,j−1

∆y2

]

Chapter 2. Issues in parallel computing 40

vn+1
i,j = vni,j + a∆t

[
vni+1,j − 2vni,j + vni−1,j

∆x2
+
vni,j+1 − 2vni,j + vni,j−1

∆y2

]

In order to parallelize this example, we can divide the lattice into a number of sub-

lattices equal to the number of processors we wish to use and distributed as such.

Since initial values are not dependent on neighbours, each processor can determine

the initial value of each coordinate in its sub-lattice. To compute the next time step,

all the points in the lattice are traversed. If the point is an interior point, that is,

all of its neighbours are fully contained within the sub-lattice, then computation can

be done independently. If the point is an exterior point whose neighbour exists in

another sub-lattice (not an overall boundary point), then communication is required

with the adjoining processor. In fact, information needs to be swapped in both direc-

tions at once in this example as the adjoining processor will have points that require

mirroring information. As one obvious optimization, the information swapping be-

tween processors can take place all at once with the entire boundary swapping in one

communication step as opposed to swapping information on demand. However, since

every point needs to be computes at every time step, communication must occur at

every time step. An example where communication need not occur at every time

step is given in chapter 4. Other discretization methods such as a hexagonal lattice

can be used with potentially more accuracy but this example is just to illustrate the

Chapter 2. Issues in parallel computing 41

communication necessary between processors in order to do the computation. In a

hexagonal lattice, such communication requirements will only be exacerbated with

cells having more neighbours.

2.2 Issues in Parallel Computing of Spatial Statis-

tics

When dealing with spatial statistics and point patterns in particular, there are unique

issues that arise when attempting to parallelize existing algorithms both in terms of

hardware constraints, as well as mathematical considerations.

2.2.1 Memory limitations

In spatial statistics, point patterns can be represented in at least two ways: as a list

of coordinates or as a rasterized grid. Depending on the sparsity of the pattern, one

method may be more manageable than the other in terms of memory required to

store the point pattern. Section 3.6.2 deals with large data sets that do not fit in

memory.

A larger memory issue arises when computing summary statistics such as Ripley’s

K-function. In practice, Ripley’s K-function is computed for discrete values of r

Chapter 2. Issues in parallel computing 42

from 0 to the maximum search radius R. R can be arbitrary chosen, but is usually

a function of the size of the observation window E. In order to account for edge

corrections when applicable, it is far more efficient to store a matrix of distances

(often Euclidean distance) from each point to all other points within R units as

opposed to performing pairwise distance measures every time it is required. However,

this computation requires allocating a matrix of size n× n where n is the number of

points in the point pattern. As one can imagine, this does not scale well for large

point patterns, although if R is relatively small, then the pairwise distance matrix

can be quite sparse.

There are several ways to bypass this problem. One way to bypass the memory

limitation is to randomly sub-sample from the entire point pattern to reduce the

number of points we need to deal with. This will require some information to be

thrown out in a trade off for a more manageable computation. In fact, multiple

samples may have to be taken to ensure consistency in the measurements.

Another method to bypass the memory limitation is to use an approximate algo-

rithm. One such algorithm utilizes a fast Fourier transform to approximate the second

order K-statistic estimate done with a guard-area (border) edge correction method.

This too requires throwing out information near the border of spatial windows in-

stead of correcting for them using an unbiased correction scheme such as isotropic or

Chapter 2. Issues in parallel computing 43

translation correction. These edge correction methods are discussed in more detail in

section 3.1. A way to bypass the memory limitation without having to discard infor-

mation or resort to approximations is to take advantage of parallel programming and

simply scale the algorithm to work on computing clusters than can scale the memory

limit linearly while decreasing computing time sub-linearly.

First-order statistics like the G, F , and J-functions are not computed based on

pairwise distance measures between all points and thus do not have this memory

limitation issue but improvements can still be made to take advantage of parallel

computing if the data set is too large for a single computer to handle.

2.2.2 A virtual topography division

When using parallel computing, one would wish to divide a given spatial window into

smaller spatial windows so that each processor only needs to deal with a manageable

number of points. In single pixel algorithms where each pixel is not dependent on

any other pixel, this division is trivial as there would be no communication required.

However, more commonly, applications may require a processor to gather informa-

tion from neighbouring windows so a virtual topography must be maintained by all

processors to ensure proper communication.

The division of such spatial windows is also a matter of interest. In many cases,

Chapter 2. Issues in parallel computing 44

the simplest division is to divide a spatial window into strips in one direction so that

each processor will only need to deal with two adjacent neighbours (one for edge

cases). However, in applications where communication between processors may act

as a bottleneck, long narrow strips may increase the number of times we need to

“cross boundaries” and perhaps even communicate with processors more than one

step away if the neighbourhood radius is large. Assuming communication does not

favour one direction, a better division may be one that more closely divides the

spatial window into square sub-windows with points centred near the middle of these

virtual divisions. That way, it may minimize the probability of a processor requiring

information swapping with a neighbour.

Mineter [18] describes two methods for partitioning a lattice for extent-based

algorithms, that is, algorithms that require pixels to know the state of other pixels

either in a limited local neighbourhood or even globally. The first is a partitioning

scheme that balances sub-window shape and number of messages. The number of

messages passed is kept low by ensuring corners are shared by either 2 or 4 sub-

windows and shapes are kept uniform across all processors (Figure 2.1). As a result,

each sub-window will have a maximum of 4 neighbours. The second method known

as heuristic partitioning is to minimize the border lengths of each sub-window which

has more ‘square’ sub-window shape but leads to ‘T’ corners that are shared by 3

Chapter 2. Issues in parallel computing 45

sub-windows, non-uniform sub-window shapes, and sub-windows with more than 4

neighbours (Figure 2.2). As can be seen, notable differences arise specifically on

a prime number of processors where the topography cannot be divided into n ×

m grids where at least one of n,m > 1. For our purposes, we will maintain sub-

lattice uniformity to ease coordination of communication between processors. This

is generally not a big issue as one can choose a number of workers to use to create

a lattice division with minimum boundary lengths (i.e., n2 processors where n is a

positive integer).

Once we get into more complex gridded topographies (more than nine processors),

each processor will have up to eight adjacent neighbours – four that share an edge,

and four that share a corner – all of which may be required to communicate with

each other depending on how the neighbourhood structure is defined.

2.2.3 Complex spatial windows

In some applications, we may have spatial window boundaries that are complex to

represent. For example, coastlines and natural or political boundaries on maps may

not always consist of straight line edges. These complex spatial windows may be

more easily represented as a binary mask on a lattice. In a binary mask, lattice

pixels that have a majority cover in our region of interest is indicated by a 1, and

Chapter 2. Issues in parallel computing 46

Figure 2.1: Division of lattice from 1 to 9 processors, maintaining uniform sub-lattices.

Chapter 2. Issues in parallel computing 47

Figure 2.2: Division of lattice from 1 to 9 processors, minimizing sub-lattice bound-
aries.

Chapter 2. Issues in parallel computing 48

pixels with a majority of cover outside the region is indicated by a 0. Points are

also discretized in the same way depending on which pixel they fall into. Points that

are close together may end up in the same pixel and are either lost or counted as a

mark on the particular pixel. An obvious limitation of a discretized point pattern

is the loss of information, which can be mitigated to a certain extent depending on

the resolution of the lattice that is chosen. However, one should keep in mind that

a larger resolution (finer detail) will result in many of the same issues that were

discussed previously. A less obvious complication that may arise is when thin areas

may be discretized into disjoint islands if sufficient detail is lost. Entirely enclosed

islands (either natural or created through discretization) that are disjoint from the

rest of the spatial window also adds another layer of complexity when parallelizing.

Even assuming uniform behaviour between islands and the rest of the spatial window,

special care needs to be taken to ensure that spatial window divisions account for the

disjoint areas properly.

Chapter 2. Issues in parallel computing 49

2.3 Other issues in parallel computing

2.3.1 Multiple layers of workers

Often times, we may wish to repeat a simulation multiple times to ensure consistency

or for estimation purposes. An excellent example of this is estimating envelopes

by simulating a random dataset many times and looking at certain quantiles (as

described in section 3.4). This type of problem is embarrassingly parallel since the

simulations are independent. However, if each individual simulation requires parallel

processing (due to memory limitations for example), then we require parallelization

at two levels. Care needs to be taken to set up the workers in such a way that each

worker is aware of which manager processor it needs to communicate with. This is

done using individually assigned communicators.

A map-reduce scheme is used to compile results from workers to a intermediary

node. A map-reduce scheme is where a problem is ‘mapped’ to multiple processors for

computation and then each will send results back to be reduced into a single solution.

These intermediary nodes then compile their results in another map-reduce scheme

to the manager processor (or depending on the complexity of the problem, another

set of intermediary nodes). This type of design can scale indefinitely but the number

of distinct processors required will also increase quite quickly.

Chapter 2. Issues in parallel computing 50

2.3.2 Optimal number of processors

Communication overhead between processors adds to the overall computational time

but the hope is that the amount of time saved by parallelizing far exceeds the time

lost in communication and synchronization. As such, as we increase the number of

processors, we get diminishing returns in computation time. For a given algorithm

and hardware configuration, there is an optimal number of processors to use and even

if this cannot be known exactly, knowing an approximation to this optimal number

will help substantially. This optimal number is a direct function of the computation

time of individual pieces. That is to say, a computationally intensive problem will

scale up to a larger number of processors before the trade-off between computation

time and communication is no longer worth it. Whereas a quickly computable prob-

lem (barring memory constraints) is usually better off being run on a single processor

as the communication between even two processors may take longer than the com-

putation itself. A simulation model to assess the computation time of a particular

hardware set up is described later in section 2.4.

Chapter 2. Issues in parallel computing 51

2.3.3 Load balancing

Related to the optimal number of processors, is the number of jobs to split the

problem into. If we simply divide a problem into p subproblems where p is the

number of processors we have access to, then uneven hardware and computational

complexity will mean that each processor may spend different amounts of time to

finish a computation. The final result will be limited by the processor that takes the

longest to complete its job, meanwhile, the other processors that finished early would

be sitting idle wasting computing cycles.

This is where load balancing comes into play. By splitting the problem into greater

than p subproblems, then the first processor that finishes its computation can retrieve

another job from the queue. With a fine enough job division, all workers will finish

their computation at roughly the same time. However, the process of retrieving jobs

from the manager and the overhead involved in setting up an individual computation

may increase the overall computation time. A balance needs to be found between

the number of jobs and the number of workers. A rule of thumb for the number of

jobs is between 2 to 8 times the number of workers. A short simulation study can be

performed to give an optimal number as a function of the expected job complexity,

communication latency (hardware dependent), number of available processors, and

speed of each processor.

Chapter 2. Issues in parallel computing 52

If we have some estimate of how long a particular subproblem may take to calculate

(for example, computation time may be directly proportional to the number of points

involved in a computation of a summary statistic on a point pattern), then we can

further optimize the load balancing by arranging jobs in order of most complex to

least complex based on the point count. The idea is that the smaller jobs are able to

“fill in” the leftover processing power more optimally to ensure all processors finish

their computations at roughly the same time.

An inhomogenous point pattern can also have an effect on how jobs are divided.

Figure 2.3 shows two point patterns, one homogenous and one inhomogenous with a

higher intensity of points on the left. When the point pattern is divided into vertical

slices (jobs), one expects the slices on the left to contain more points, and thus take

longer to compute. In the benchmark, one can see that there is actually an increase

in computation time in the inhomogenous case when the pattern is divided into too

many jobs. This is because load balancing was not used and past a certain point,

there is a highly irregular distribution of points amongst the jobs that cannot be

reconciled without load balancing.

Chapter 2. Issues in parallel computing 53

X

40
50

60
70

80

20000 points

Number of parts

T
im

e
(s

)
8 16 24 32 40

Y

20
30

40
50

23622 points

Number of parts

T
im

e
(s

)

8 16 24 32 40

Figure 2.3: Benchmark of the number of jobs vs computation time on two different
point patterns.

Chapter 2. Issues in parallel computing 54

2.4 A simulation model of optimal parallel com-

puting structure

All of the aforementioned issues can be incorporated into a single statistical simula-

tion model with processing and communication times represented by various distri-

butions. For different hardware configurations and different problems, we may have

a good estimate of the parameters for these distributions to an order of magnitude.

In a distributed computing model over a slow network connection (e.g. the Internet),

the communication time may be on the order of seconds. Whereas on a high perfor-

mance computing cluster, communication time may only be on the order of several

milliseconds.

2.4.1 A simple model

We can first define some variables,

• S = the maximum number of workers available

• J = the number of jobs our problem is divided into

• d = the size of the data

• si = the status of the worker i indicating the time until completion of its job

Chapter 2. Issues in parallel computing 55

• tc = constant overhead of transmission (unavoidable communication time)

• cc = constant overhead of computation (problem set up independent of data)

For each job i = 1, ..., J , both the communication overhead, ti, and the computational

time, ci, can be assumed to increase linearly with the size of the dataset, d. They can

be represented as:

ti ∼ N(tc + f(
d

J
), σt)

ci ∼ N(cc + f(
d

J
), σc)

where σt and σc are the standard deviations in communication and computation time,

which can be approximated through small experimental trial runs of a particular

problem (these are not dependent on the number of workers used, S, or the size of

the data, d). f(x) is a function that determines the time to perform the necessary

computations on data of size x and can be estimated or measured empirically on a

given hardware setup as it will be highly dependent on processor speed.

The following algorithm can then compute the overall time to complete the entire

job using S number of workers.

Step 1. Set all workers statuses s1, . . . , sS to 0; j = 1

Step 2. For job j, find smin = min(s1, ..., sS)

Chapter 2. Issues in parallel computing 56

Step 3. Set time = time+ tj

Step 4. If time < smin then smin = tj + cj; otherwise, smin = time+ cj

Step 5. j = j + 1 and go to Step 2; stop when i = J

Note that it is assumed that the final transmission time to gather all the results

in the manager is negligible as it will simply be a summary statistic or function that

is relatively constant in size regardless of the size of the original data.

2.4.2 A simple model with concurrent job distribution and

load balancing

The model above can be improved by allowing for jobs to be distributed concurrently

(especially important during the initial distribution of jobs where all workers are

waiting to begin) and also by incorporating a simple form of load balancing based on

job complexity (represented by computation time c1...j).

The algorithm is then modified to the following:

Step 1. Order t1...J and c1...J in decreasing order of c1...J

Step 2. Set all workers statuses s1, . . . , sS to 0

Step 3. Set si = ti + ci for i = 1, ..., S; time = max(s1, ..., sS); j = S + 1

Chapter 2. Issues in parallel computing 57

Step 4. For job j, find smin = min(s1, ..., sS)

Step 5. Set time = time+ tj

Step 6. If time < smin then smin = tj + cj; otherwise, smin = time+ cj

Step 7. j = j + 1 and go to Step 4; stop when i = J

Using such a model, optimal values for the parameters S and J can be found under

given constraints of hardware implementation in order to minimize overall computa-

tion time. In practice, J should be at least twice as large as S.

In order to assess the effect of load balancing with varying number of jobs, a

simulation was carried out assuming a single node with 8 processors. This was done

to ensure negligible communication time between processors since they are all on the

same node. This simulation was repeated for an increasing number of jobs and with

and without load balancing. Results of the simulation can be seen in Figure 2.4. It

can be seen that use of load balancing (red line) has an improvement over the same

calculation done without load balancing (black line). This effect is more evident when

the number of jobs is large but as can be seen in the third graph, its performance

improvement is limited when the computation is expensive enough that computational

time of jobs are more or less the same. Past a certain point, increasing the number

of jobs does not increase the speed gain.

Chapter 2. Issues in parallel computing 58

0 5 10 15 20 25 30

0
10

20
30

40
50

60
70

Load balancing on 8 workers (small job)

Jobs

Ti
m

e

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Load balancing on 8 workers (medium job)

Jobs
Ti

m
e

0 5 10 15 20 25 30

0
10

0
20

0
30

0
40

0

Load balancing on 8 workers (big job)

Jobs

Ti
m

e

Figure 2.4: Benchmark of the number of jobs (in excess of the number of workers)
vs time with load balancing (red line) and without load balancing (black line) for
varying data sizes.

Chapter 3

Parallel computing for spatial

point processes

3.1 Edge correction methods

Before discussing parallel computation of spatial summary statistics, we will first

discuss edge correction methods as it is these methods that create difficulty in par-

allelizing computations. Edge correction methods to create an unbiased estimator

can be divided into two types, one that excludes points for which we do not have

full information, and ones that apply a weight to pairwise distances of points to

account for points outside of the spatial window. Several such correction methods

59

Chapter 3. Parallel computing for spatial point processes 60

of each type are described below. If we are only interested in computing a naive

estimator of a summary function or only interested in a simple correction method

that excludes points, then the computation can be embarrassingly parallelized as it

does not matter where a point is located in a spatial window since edge effects are

essentially ignored. For summary characteristics that depend on the actual location

of each point, the following explanations of edge correction shown on the K estimate

are applied similarly.

Toroidal correction

For simple spatial windows like a rectangle, toroidal (periodic) edge correction can be

applied where the edge on one side can be thought as wrapping around to the opposite

edge. Unless one expects the behaviour of points on one side of the window to be

the same as the other side (i.e., a two dimensional representation of a curved toroidal

surface), the K estimate may not be physically valid or sensible. The implementation

involves replicating the point patterns in the spatial window eight times, surrounding

the original window and calculating the K estimate only treating the original points

as centers upon which to count surrounding points (Figure 3.1). Each point in the

spatial window is replicated 9 times (including the original point pattern) and the

interpoint distance from a point i to some other point j is the shortest of all distances

Chapter 3. Parallel computing for spatial point processes 61

from point i to the 9 replicates of j.

Figure 3.1: Toroidal edge correction on a point pattern (solid points) by replicating
the point pattern 8 times (hollow points) but only treating the original points as
centers.

Related to this correction is reflection correction where instead of replicating the

same point pattern around the original spatial window, the surrounding spatial win-

dows are reflected along the edge or corner of intersection instead. This reflection

correction will amplify behaviour of points at edges as edges with many points will

Chapter 3. Parallel computing for spatial point processes 62

be reflected to have more close neighbours while an edge without a lot of points will

not have many. As one can expect, assuming the toroidal or reflection assumption is

valid, these method work best for rectangular spatial windows where the geometry

lends itself to this replication scheme. For more complex spatial window shapes, we

can resort to other edge correction methods.

Border method

Perhaps the most straightforward edge correction method for an arbitrary window is

when one actually has the neighbouring point information for points that are within

some maximum search radius R from the border. This is known as plus sampling

but it is rarely the case that we are able to get this information. Instead, we can

redefine our existing point pattern by reducing the effective spatial window so that

only points more distant thanR from the perimeter of E are considered in the analysis.

The other points outside the reduced spatial window can then be considered the

neighbouring point information. These ignored points are still included in the count

for interior points beyond r from the edge, but are not considered centre points

themselves (Figure 3.2). This method is known as the border method, the guard area

method, buffer zones, or minus sampling. It can theoretically work for windows of

any shape given a reasonably small search radius R but too large a search radius

Chapter 3. Parallel computing for spatial point processes 63

may result in disjoint interior windows (Figure 3.3). By ignoring all points within R

distance of all edges for the purposes of computing the K estimate, we can guarantee

that edge effects will not be introduced. However, depending on the density of points

near the perimeter of the window, this may result in much of the dataset being

removed, more so for large values of r. Sterner et al. [40] found that by creating a

buffer zone at the largest radius that they wanted to analyze, they essentially required

up to four times the size of the original data to have been recorded to keep the desired

spatial window the same.

The formalization of the border method (for the K-function) is given as,

K̂border(r) =
E(no(r))

λ
=

1

λm

m∑
i=1

ni(r) for r ≥ 0.

where m is the number of points of N in E 	 b(o, r), the reduced spatial window

formed by Minkowski subtraction of b(o, r) from the full spatial window E.

The border method is traditionally the only edge correction that is computation-

ally efficient enough to be used on large datasets since it is essentially computing a

naive estimate on a subset of the point pattern without having to do any actual edge

correction calculations. In order to speed up this calculation further, the spatstat

package [3] recommends that a fast Fourier transform (FFT) method be used as an

Chapter 3. Parallel computing for spatial point processes 64

Figure 3.2: Border method edge correction on a point pattern by discarding points
within some maximum search radius from an edge (hollow points). Only interior
points (solid points) are used as centers. In this example, it resulted in 74% of
points being discarded using a maximum search radius of 1/4 of the square window
dimensions.

Chapter 3. Parallel computing for spatial point processes 65

Figure 3.3: The border method may not work well for even a simple window shape
if it needs to be reduced by the some maximum search radius (left). It may result in
disjoint interior windows if the maximum search radius is too large (right).

approximation to the K-function with the border method. This approximation is

done by first creating what is known as a Fry plot by translating each point along

with the relative location of all other points to the origin. The result is a plot that

gives the total number of points within a certain distance d of all points by simply

looking at a circle of radius d centred around the origin. An example using the cells

dataset from the spatstat package in R and the corresponding Fry plot is given in

Figure 3.4. This dataset contains the locations of 42 cells observed under a micro-

scope with each point representing the centre of each cell. The shape and size of the

cell naturally produces an inhibition pattern. The fast Fourier transform is utilized

Chapter 3. Parallel computing for spatial point processes 66

to smooth this Fry plot in order to quickly get smoothed estimates of the reduced

second moment function, which can then be used to get an estimate of the K function

(Figure 3.5).

Although the border method can be computed quickly for large datasets using the

aforementioned approximation, it would be interesting to examine how good these

approximations are compared to the exact K estimate. The parspatstat package

described in this paper will allow us to compute the exactK estimate for large datasets

quickly. More interesting however, are the isotropic and translation edge correction

methods that use all the points available. It is not computationally feasible (without

taking advantage of parallel computing) to compute the K estimate exactly for large

datasets using these two edge correction methods and the above approximate method

cannot be applied here. There are other edge correction methods as well that are not

described here but are supported by spatstat and hence parspatstat.

Isotropic correction

Ripley’s original proposed edge correction, known as isotropic correction or simply

Ripley’s correction, adjusts the naive K estimate by scaling (weighing) it by the

ratio of the circumference of the search circle that lies inside the window to the

circumference of the entire search circle. Explicit formulas can be given for simple

Chapter 3. Parallel computing for spatial point processes 67

Plot of cells data Fry plot of cells data

Figure 3.4: The plot of cells data (left) and its corresponding Fry plot (right).

Smoothed estimates of reduced second moment measure

0
2

4
6

8

Figure 3.5: Smoothed estimates of the reduced second moment measure, from which
an estimate of the K function can be obtained at varying radius distances from the
origin.

Chapter 3. Parallel computing for spatial point processes 68

rectangular or circular windows [13] but can be difficult to compute for non-standard

window shapes. Also, this correction assumes isotropy of points (our search area is a

circle as opposed to an ellipse), hence the name isotropic correction. If the degree of

anisotropy is known, one could first perform an appropriate projection of the points

and use the same method.

The weight assigned to pairs of points can be written as

w(x1, x2) =
|δb(x1, ||x1 − x2||)|
|δb(x1, ||x1 − x2||) ∩ E|

where |δz| is a measure of the perimeter of window z so |δb(x1, ||x1− x2||)∩E| is the

circumference of the search window that lies inside the spatial window E.

Translation correction

Another common edge correction method is translation correction [25]. Similar to the

isotropic correction, the naive K estimate is adjusted by a scaling factor (weight).

The scaling factor in translation correction is the area of intersection between the

original E and translated window Ex2−x1 that is created by translating the window

in the direction and distance of a point x2 to another point x1. One advantage of

the translation correction method is that it can be applied to windows of any shape,

Chapter 3. Parallel computing for spatial point processes 69

though it can be more computationally intensive for windows of non-standard shape.

Here, the weights assigned to pairs of points can be written as

w(x1, x2) = A(Ex1 ∩ Ex2) = A(E ∩ Ex1−x2)

where Ex = {z + x : z ∈ E} is the spatial window E entirely translated by x so

A(Ex1 ∩ Ex2) is the area of overlap between the two translated windows.

3.1.1 Comparison of edge correction methods

Haase [17] summarizes and carries out a comparison of the different methods of edge

correction applied to Ripley’s K-function in which he uses an experimental data set

and a real data set. In the real data set, the use of the border method edge correction

could not be performed because of insufficient field data with the author noting that

an area up to four times the analyzed plot is potentially left out of the analysis as

considered points.

Yamada and Rogerson in 2010 conducted an empirical comparison of the different

edge correction methods for the K-function and found that isotropic correction and

toroidal correction was more powerful than the border method or not using any

correction at all [49]. To further extend these findings, an empirical comparison of

Chapter 3. Parallel computing for spatial point processes 70

the edge correction methods with relation to their variance was done.

Although the border method is computationally efficient, the exclusion of poten-

tially important points near the boundaries causes it to not be as useful as isotropic

or translation correction. Also, although the three aforementioned edge correction

methods (we are not considering toroidal correction) are all unbiased estimators, the

variance of the border method estimate is higher than that of isotropic and transla-

tion correction. This is demonstrated by a repeated simulation of a constant intensity

Poisson process with λ = {100, 500, 1000, 3000} in a disc with constant parameters

and having each edge correction method applied to the K estimate on each point

pattern. The results are shown in Figure 3.6 and confirm what is shown by Ripley in

[34].

3.2 Parallel computation of point process summary

functions

A general idea in spatial statistics is that points that are close together may be

related and this relationship diminishes as points are farther apart. Spatial summary

statistics therefore, are often local computations in that they are only concerned with

points that are close to one another. This is obvious with nearest neighbour statistics

Chapter 3. Parallel computing for spatial point processes 71

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0
0.

00
2

0.
00

4

N=100 points

t

Va
ria

nc
e

of
 K

(t)

border
translation
isotropic

0.0 0.1 0.2 0.3 0.4 0.5

0e
+0

0
4e
−0
4

8e
−0
4

N=500 points

t
Va

ria
nc

e
of

 K
(t)

border
translation
isotropic

0.0 0.1 0.2 0.3 0.4 0.5

0e
+0

0
2e
−0
4

4e
−0
4

N=1000 points

t

Va
ria

nc
e

of
 K

(t)

border
translation
isotropic

0.0 0.1 0.2 0.3 0.4 0.50.
00

00
0

0.
00

01
0

N=3000 points

t

Va
ria

nc
e

of
 K

(t)

border
translation
isotropic

Figure 3.6: Estimated variances from simulation of binomial processes with varying
n under border, isotropic, and translation correction methods.

Chapter 3. Parallel computing for spatial point processes 72

such as the empty space function. In spatial summary functions like the K or pair

correlation function, pairwise points are only considered up to some maximum radius

that is a fraction of the spatial extent of a point pattern. Although summary functions

can be considered with a global extent, there is little information gained as compared

to a more reasonable local extent.

We can take advantage of this local calculation to incorporate parallel computing.

The basic idea is that since the calculation of a statistic on an arbitrary point only

involves a small fraction of other points near it, workers do not need to know the

entirety of the point pattern. This reduces memory requirements while speeding up

computation. The speed up in computation is possible when individual computation

on a fraction of the points can be combined with other similar computation to get

the exact answer as what one would expect from a calculation on the whole pattern.

We can illustrate this through a parallel estimation of the naive K-function (without

edge correction).

Given a point pattern on a square spatial window, we can divide the spatial win-

dow into two sub-windows (Figure 3.7). Although each processor is only responsible

for a single sub-window, it requires knowledge of points that are outside of the sub-

window but are within the maximum search radius of a boundary.

A similar argument can be made with an unbiased edge corrected K-estimates.

Chapter 3. Parallel computing for spatial point processes 73

Figure 3.7: A simple example of dividing a point pattern (above) into two sub-
windows (below). Although the spatial window is divided by half, points that are
within the area covered by the maximum search radius (area enclosed by dotted red
line) still need to be stored.

Chapter 3. Parallel computing for spatial point processes 74

The difference is that each sub-window needs to be aware of where it lies in the entire

spatial extent. In other words, each sub-window needs to be aware of which edge is

a true edge and which is simply adjacent to another sub-window in the larger spatial

window. Edge correction should only apply to those edges that are true edges. For

example, in a division of a square lattice into three sub-problems (Figure 3.8), the

middle slice has two interior boundaries for which edge correction should not be used,

while the outer pieces only have one such interior boundary.

Figure 3.8: When applying edge correction in parallel computation of spatial statis-
tics, each processor is aware of only the extent of its own sub-window, yet needs
to be aware of whether a boundary is a global boundary (black) and requires edge
correction, or an interior boundary (red) that requires no edge correction.

Chapter 3. Parallel computing for spatial point processes 75

3.3 Performance benchmarks

Actual benchmarks were computed to assess the speed-up of computing a summary

statistic (the K-function) in parallel as a function of the number of processors used on

point patterns of various sizes. A homogenous Poisson pattern was created with n =

{5000, 10000, 25000, 50000} points and the parKest function from the accompanying

parspatstat package was used to compute the K-estimate using varying numbers

of processors. The results are displayed in Figure 3.9 and it can be seen that there

is a sharp decrease for using several processors in parallel but there are diminishing

returns as communication overhead begins to overtake any gains in computational

speed. Computational speed-up is measured as the fraction of the time it takes to

perform the computation on just a single processor to the time it takes to do the same

computation on multiple processors. The speed-up for various point pattern sizes is

shown in Figure 3.10 which more clearly shows the diminishing returns as well as

the actual speed decrease from using too many processors in parallel and introducing

communication overhead.

Chapter 3. Parallel computing for spatial point processes 76

0 20 40 60 80

4
6

8
10

5000 points

Number of workers

T
im

e
(s

)

0 20 40 60 80
5

10
15

20

10000 points

Number of workers

T
im

e
(s

)

0 20 40 60 80

10
30

50
70

25000 points

Number of workers

T
im

e
(s

)

0 20 40 60 80

50
10

0
20

0

50000 points

Number of workers

T
im

e
(s

)

Figure 3.9: Benchmark of the number of CPU vs time for uniform point process
patterns of varying size.

Chapter 3. Parallel computing for spatial point processes 77

0 20 40 60 80

0
5

10
15

Speed up vs one CPU

Number of CPUs

S
pe

ed
 u

p

1000 points
5000 points
10000 points
25000 points
50000 points

Figure 3.10: Speed up of parallel K-estimate for point patterns of varying sizes.

3.4 Point process model fitting and evaluation

Estimating error using bootstrap resampling has been examined thoroughly by Efron

and Tibshirani [12]. The idea is to resample a new sample of the same size from our

original data with replacement.

As pointed out by Martinez and Saar [24], this type of bootstrap error estimate

is not valid when dealing with point process statistics for several reasons. First, all

samples of the same size as the original point pattern when sampled with replacement

will always contain at least one duplicate point, unless the sample is equivalent to

the original point pattern. On average, about one third of the sample will be dupli-

Chapter 3. Parallel computing for spatial point processes 78

cated [24]. This introduces a new feature (duplicate points) that did not exist in our

original point pattern, and any statistics calculated from a sample would be invalid.

For example, nearest neighbour statistics will include points whose nearest neighbour

is in the same location as itself. Discarding these points will result in a sample that

has a much lower point density (intensity) than the original sample, again invalidating

any statistics calculated from it.

The resulting bootstrap variance from the procedure as described above has in

fact been derived analytically [38] and is not the variance of the point process that we

are interested in. In order to estimate the bootstrap variance of a point process, the

bootstrap samples should be new whole samples obtained from carrying out the survey

again [22]. A parametric bootstrap may be more suitable where estimated parameters

are used to generate realizations from a model and new parameter estimates are made

based on these new realizations. The resulting parameter estimates can then be used

as an analogue to the variance of the original parameter estimator. A similar approach

can be used to assess the fit of a point process model by repeated sampling from the

model itself using simulation envelopes.

Chapter 3. Parallel computing for spatial point processes 79

3.4.1 Simulation envelopes

Simulation envelopes can be used to assess the fit of a point process model or to test

a point pattern to see if it differs from a complete spatially random process or some

other point process model. An envelope is created by simulating a point pattern

following a specified point process model N times, each with the same parameters,

such as intensity, as the original point pattern and with the same spatial window

extent. K-estimates (or some other summary statistic on which to compare) are

computed for each of the N realizations and an envelope is created by taking upper

and lower quantiles (i.e. the maximum and minimum). The envelope is usually

computed point-wise (taking upper and lower quantiles at each value r) but can also

be computed globally where entire curves are considered for quantile instead. The

envelope can also be created by assuming a normally distributed summary statistic

or be computed as a certain number of sample standard deviations from the sample

mean. If the observed point pattern falls within the simulated envelope, then there is

no evidence that the point process model generating the envelope fails to be a good

description of the point pattern, though this should not be interpreted as a confidence

interval [33].

Subsequent realizations of the simulation envelope will differ, with the variance

of the quantiles dependent on the number of simulations run to generate the enve-

Chapter 3. Parallel computing for spatial point processes 80

lope. More simulations should be run to reduce this envelope variance. This is an

embarrassingly parallel problem as each simulation is independent of others and thus

can be combined. A parallelized version of the envelope function from spatstat is

available in parspatstat in the parenvelope function.

3.5 Point process reconstruction

The idea of reconstructing a point process based on one or more of its summary

statistics and summary functions was proposed by Tscheschel and Stoyan in 2006 [46].

The basic idea is to simulate a new point pattern that is similar to an existing point

pattern in one or more predefined characteristics.

There are several situations where one might be interested in reconstructing a

point process pattern based on its summary characteristics (summary statistics and

summary functions). For example, in forestry, it is often expensive or impractical to

identify the location of every tree in a forest. Instead, a common technique used is

to pick trees in a small plot and measure nearest neighbour summary statistics [28].

From these statistics, one can use a reconstruction algorithm to reproduce a point

pattern in a larger area with matching characteristics. Such a pattern is not expected

to reflect the true position of trees, but for example, may serve as a proxy for a point

Chapter 3. Parallel computing for spatial point processes 81

pattern if a large area of trees is required.

Another example is when a point pattern was sampled entirely in a spatial window,

but one would like to examine the behaviour of the point pattern with different

window shapes and sizes. The point pattern can be reconstructed within a larger

enclosing spatial window conditional on the points within the original window staying

the same.

Finally, reconstructed point patterns can provide input to simulation models or

even to evaluate the summary characteristics as was done by Pommerening [27] with

the aim of finding out which characteristics describe the distribution of trees in forests

particularly well [20].

3.5.1 The general reconstruction algorithm

The general idea is to start with a random point pattern and perturb points one

at a time, keeping new point patterns that are closer in summary characteristics to

the desired point pattern. We will use the same notation as described in the original

paper by Tscheschel and Stoyan [46]. The observed point pattern is denoted ϕ and the

observed spatial window is denoted Wobs. A reconstructed point pattern is denoted

ψ and the simulation spatial window is denoted W .

As a minimum constraint, we will hold the intensity λ constant, that is to say,

Chapter 3. Parallel computing for spatial point processes 82

the number of reconstructed points n in W is known exactly and in the case where

W = Wobs, n is the number of points in the observed point pattern.

Let

ni for i = 1, . . . , I

fj(r) for j = 1, . . . , J

be predetermined summary characteristics on which we wish the reconstructed point

pattern to match the observed point pattern. ñi(ϕ) and f̃j(r;ϕ) are the estimates

of ni and fj(r) on the observed point pattern ϕ. The target is to construct a point

pattern with n points and estimated summary characteristics n̂i(ψ) and f̂j(r;ψ) close

to ñi(ϕ) and f̃j(r;ϕ). That is,

n̂i(ψ) ≈ ñi(ϕ) for i = 1, . . . , I.

f̂j(r;ψ) ≈ f̃j(r;ϕ) for r ∈ [0, Rj] and j = 1, . . . , J.

where Rj is the maximum search radius for the j summary functions.

In order to achieve this, we need a way to measure how close two summary char-

acteristics are. This is defined by an ‘energy’ function, E(ψ), which measures the

deviation of a summary characteristic on the simulated point pattern to the observed

Chapter 3. Parallel computing for spatial point processes 83

pattern.

For a summary statistic, Eni
(ψ) is defined as

Eni
(ψ) = [ñi(ϕ)− n̂i(ψ)]2 for i = 1, . . . , I.

and for a summary function, Efj(ψ) is defined as

Efj(ψ) =

∫ Rj

0

[f̃j(r;ϕ)− f̂j(r;ψ)]2dr for j = 1, . . . , J.

These energies for different summary characteristics can then be combined into a

single value E(ψ) where

E(ψ) =
I∑
i=1

Eni
(ψ) +

J∑
j=1

Efj(ψ).

General reconstruction algorithm

Given: An observed point pattern ϕ in Wobs, summary characteristics ñi(ϕ) and

f̃j(r;ϕ), energy change threshold ε > 0, maximum total iterations S, and a maximum

number of iterations without significant change, m.

Step 1. Generate a random point pattern ψ1 from a binomial process with n points

where n = bλ ∗ A(W) + 0.5c.

Chapter 3. Parallel computing for spatial point processes 84

Step 2. Set s = 1

Step 3. do while E(ψs−m)− E(ψs) < ε and s < S

(a) Create ψ′s by perturbing a random point in ψs to a random location in W .

(b) Update ψs+1

ψs+1 =

ψ′s if E(ψ′s) ≤ E(ψs),

ψs otherwise.

(c) Set s = s+ 1.

Step 4. ψs is a reconstruction of ϕ.

Figure 3.11 shows an observed cluster pattern and the reconstructed pattern

matching on the K-function with 1,500 iterations and the corresponding decrease

of the energy function.

It should be reiterated that summary characteristics do not uniquely identify a

point process pattern or even a point process model. For example, it was shown

by Baddeley et al. that an artificial random cluster process can produce the same

second-order characteristics as a Poisson process [4]. However, if a point pattern is

reconstructed by matching summary characteristics that are of importance to the

application, then this provides an adequate reconstruction within the scope of the

Chapter 3. Parallel computing for spatial point processes 85

Observed cluster pattern Reconstructed pattern

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

Energy function

Iterations

E
ne

rg
y

Figure 3.11: The observed point pattern and a reconstructed point pattern (top).
Energy function of the reconstructed point pattern over 1,500 iterations (bottom).

Chapter 3. Parallel computing for spatial point processes 86

specific problem.

When selecting the characteristics to use, it is often wise to select characteristics

that measure different things. An example of poor characteristic selection would

be to select the K- and L-function, as they contain equivalent information. Also,

characteristics cannot be contradictory, for example, a targeted K-function indicating

clustering and a targeted L-function indicating inhibition. This generally won’t be an

issue if the target summary characteristics are taken from an actual observed point

pattern as they will automatically be internally consistent but if summary functions

are proposed arbitrarily, there may not exist a point process that satisfies the proposed

summary characteristics.

Tscheschel and Stoyan [46] also noted a variation of the algorithm using ideas from

simulated annealing by Kirkpatrick et al. [23] to attempt to find a global minima for

E(ψ) as the basic algorithm may get stuck in a local minima. The idea with simulated

annealing is to give a probability for updating ψs+1 = ψ′s with some probability even

when E(ψ′s) > E(ψs). This probability decreases as s increases to mimic the physical

metallurgy process of annealing where large changes are made when the temperature

is hot and the magnitude of these changes decreases as a function of the decreasing

temperature over time. Pommerening and Stoyan [28] also introduce a hardcore

distance constraint on points by only accepting a new point if it is not within a

Chapter 3. Parallel computing for spatial point processes 87

certain distance of another point. Even with these adjustments, this reconstruction

algorithm has some limitations.

3.5.2 An improved reconstruction algorithm

The reconstruction algorithm as described, when using summary functions, is biased

towards adjusting long distance characteristics over short distance local character-

istics. Furthermore, this basic algorithm does not account for preference of certain

summary characteristics over another, nor can it incorporate non-parametric con-

straints beyond hardcore inhibition.

If the purpose of an analysis was only to reconstruct a point pattern by only

matching short-range local summary characteristics, one can simply define the sum-

mary functions fj(r) over a smaller range r ∈ [0, R′j] where R′j < Rj represents the

maximum radius. However, doing so would completely ignore long-range character-

istic. Instead, we propose a new energy function for summary functions:

Efj(ψ) =

∫ Rj

0

[f̃j(r;ϕ)− f̂j(r;ψ)]2

σ2(fj, r)
dr for j = 1, . . . , J

where σ2(fj; r) is the variance of the summary function fj(r) on a homogenous Poisson

process. This weight serves to balance the distance between the two curves across the

Chapter 3. Parallel computing for spatial point processes 88

entire range [0, Rj] as lower values of r naturally have smaller squared distances.

In the case of the K-statistic, this variance has been approximated analytically

by Ripley [34] in the planar case as:

σ2(Kj, r) =
2

λ2

(
πr2

A(W)
+ 0.96

U(W)

A(W)2
+ 0.13λ

U(W)

A(W)2
r5
)

where U(W) is the perimeter of the spatial window W .

Doing so produces reconstructed point patterns that look very similar to the

previous algorithm (Figure 3.12) but local characteristics match closer as can be seen

by comparing simulation envelopes of the balanced and non-balanced reconstruction

algorithm in Figure 3.13 for small values of r. Here, simulations were run for an

equal number of iterations to demonstrate that the balanced algorithm does not

favour improvements at higher search radii.

Furthermore, to allow for preference of matching one characteristic (either sum-

mary statistic or summary function) over another, we propose a new total energy

function:

E(ψ) =

(
I∑
i=1

αiEni
(ψ) +

J∑
j=1

βjEfj(ψ)

)
.

where αi and βj are pre-defined weights for summary characteristics ni and fj(r)

respectively. Non-parametric constraints can also be added as an indicator function

Chapter 3. Parallel computing for spatial point processes 89

Observed cluster pattern
Reconstructed pattern

(balanced)

Figure 3.12: The observed point pattern (left) and a balanced reconstructed point
pattern (right).

to the equation.

3.5.3 Parallelizing reconstruction

There are several obvious ways that such an algorithm can be parallelized. The

first is to parallelize the main loop and selecting the reconstruction with minimum

energy. Such an algorithm will result in throwing away p − 1 proposed moves. A

Chapter 3. Parallel computing for spatial point processes 90

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

95% Envelopes

r

K
(r

)

Observed
Non−balanced
Balanced

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.
00

0.
02

0.
04

95% Envelopes

r

K
(r

)

Observed
Non−balanced
Balanced

Figure 3.13: Comparison of simulation envelopes of K-function for the observed point
pattern, reconstructed point pattern, and a balanced reconstructed point pattern.
Bottom graph shows the effect of a balanced algorithm in better matching at small
values of r. The top and bottom lines of each colour indicate the upper and lower
bounds of each envelope.

Chapter 3. Parallel computing for spatial point processes 91

simple improvement would be to ensure no two processors will attempt to move

the same point to fully explore all moves as quickly as possible. A more complicated

improvement involves combining all moves that resulted in a reduced energy, however,

this may not be optimal if two proposed moves have a negative interaction.

An algorithm for reconstruction using c + 1 processors, p0, . . . , pc, working in

parallel where p0 is the manager and p1, . . . , pc are the workers.

Parallel reconstruction algorithm

Given: An observed point pattern ϕ in Wobs, summary characteristics ñi(ϕ) and

f̃j(r;ϕ), energy change threshold ε > 0, maximum total iterations S, a maximum of

iterations without significant change m, .

Step 1. Generate a random point pattern ψ1 on p0 from a binomial process with n points

where n = bλ ∗ A(W) + 0.5c.

Step 2. Set s = 1

Step 3. do while E(ψs−m)− E(ψs) < ε and s < S

(a) Scatter ψs to p1, . . . , pc

(b) On each worker pi in p1, . . . , pc:

i. Create ψ′s,i by perturbing a random point in ψs.

Chapter 3. Parallel computing for spatial point processes 92

ii. Send E(ψ′s,i) to manager p0.

(c) Update ψs+1

ψs+1 = ψ′s,i where i = arg min
i

E(ψ′s,i)

(d) Set s = s+ 1.

Step 4. ψs is a reconstruction of ϕ.

A simulation was carried out in which a Matern cluster process with C ∼ Poisson(12)

homogeneous cluster centres, cluster radius 0.04, and µ = 7 mean points per cluster

was generated in a unit spatial window. Using this pattern as a target for reconstruc-

tion with the K-function as the target function, the parallel reconstruction algorithm

was run with P = {1, 2, 4, 8, 32} processors to observe the decrease in energy function

for varying number of processors. The results of the simulation are seen in Figure 3.14.

It can be seen that using more processors in parallel to discover better moves allows

the energy function to decrease more quickly. However there are obvious diminishing

returns as using 32 processors does not offer substantial improvements over using just

8 processors.

Chapter 3. Parallel computing for spatial point processes 93

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Energy function in parallel

Iteration

E
ne

rg
y

1 CPU
2 CPU
4 CPU
8 CPU
32 CPU

Figure 3.14: Energy function decrease for the reconstruction algorithm parallelized
on various number of processors.

Chapter 3. Parallel computing for spatial point processes 94

3.6 The parspatstat package

A package for the R statistical computing language [31] called parspatstat, has been

implemented to extend some of the functions in spatstat [3] in a parallel setting

by dividing the estimation into smaller portions while still maintaining proper edge

correction where appropriate. It is built on top of Rmpi [50], the R implementation of

the message passing interface (MPI) framework. In addition to computing traditional

statistical summary functions in parallel, it can also speed up simulation of envelopes

for model checking and comparison. There is also support for the reading of large

datasets in parallel to divide up a spatial point pattern into smaller patterns that

each worker can locally store and work on.

The Rmpi and spatstat packages are required to be set up and installed on

all computers that are to be included in the parallel environment (see respective

documentation for instructions). First, one must either spawn the desired number

of workers (slaves) or launch through a batch job scheduler with the desired number

of workers before invoking any of the parallel functions in parspatstat. Any data

passed into the parallel functions of parspatstat are automatically propagated to all

workers but any other packages or dependencies that the workers require will need to

be loaded explicitly.

Chapter 3. Parallel computing for spatial point processes 95

library(Rmpi)

mpi.spawn.Rslaves(nslaves=8) #spawn 8 workers

mpi.bcast.cmd(require(spatstat)) #have workers load spatstat library

3.6.1 Function usage

Names for parallel functions in parspatstat are the same as functions in spatstat

but with a par preceding it. For example, the K and L functions, Kest and Lest, are

parKest and parLest. For all functions, arguments are defined in the same order

and passed directly to their spatstat counterparts. A few additional parameters

specific to parallelization are required as well:

job.num=2*(mpi.comm.size(comm)-1)

Functions in parspatstat attempt to make use of all available workers on a specified

communicator. Load balancing is implemented by specifying the number of jobs to

split the work into through the job.num argument. If this value is larger than the

number of available workers, then excess jobs are sent to workers as they become

available. The default job number is twice the number of available workers and

works fairly well if each job is of a comparable complexity. If the complexity varies

quite a bit, one may wish to split the work into more jobs since the package can

assign jobs to the workers in decreasing order of complexity to balance the overall

Chapter 3. Parallel computing for spatial point processes 96

load across all workers. However, the more jobs there are, the more overhead that is

required for communication. In the case of the summary statistics like the K-function,

the parKest function estimates complexity of a job by the number of points in a

particular sub-window.

comm=1

The communicator on which the workers have been spawned – all available workers

from the communicator will be used. If one wishes to use only a subset of the workers,

workers may be attached to a separate communicator and that number should be set

as the argument instead.

verbose=FALSE

This controls if output of each step should be printed. It can be very useful in

debugging if the function appears to have stopped as communication between workers

is implemented as blocking calls and send/receives need to be matched up exactly.

load.sort=TRUE

Whether or not to sort jobs by estimated difficulty. This will give an improvement

when load balancing is used, that is, when the number of jobs is greater than the

number of workers.

Chapter 3. Parallel computing for spatial point processes 97

3.6.2 Datasets that do not fit in memory

Occasionally we may encounter a dataset that is too large to fit into memory itself

and hence needs to be read in sequentially in chunks. As an illustrating example,

the lightning data set described in section 3.7 is over 400 megabytes and if we were

working on a system with less than 400MB of RAM allocated to the R process, we

can get workers to maintain portions of the dataset in chunks by passing a parppp

object created using parread.ppp to parKest as an argument. For example, if the

400MB lightning datafile was called lightning.csv with a header indicating the x

and y coordinates as the 5th and 6th column, the following would compute the K

function estimate of the entire dataset across all years without ever having the entire

dataset exist on a single machine.

ltg <- parread.ppp(file="lightning.csv", xy=c(5,6), chunksize=1000,

header=TRUE, localname="ltgppp")

K.all <- parKest(X=ltg)

The manager will read in a chuck of data of size chunksize, and send the appro-

priate rows of the data to each worker. The entire spatial window (user supplied or

taken as the smallest bounding box of the data) is divided into strips either horizon-

tally or vertically with the number of strips being equal to the number of workers.

Chapter 3. Parallel computing for spatial point processes 98

Each strip is also extended by the maximum search radius r to ensure that each

worker has all the necessary data points to compute the K-estimate without having

to communicate with neighbouring workers.

When chunking in data, load balancing is no longer supported since all workers will

be required to have the entire dataset in its entirety between them. As such, chunking

is beneficial when the original data cannot fit in memory of a single processor, whether

it be a manager or a worker. Chunking also reduces the communication bandwidth

required, but not necessarily the communication overhead.

3.7 Example: Ontario lightning data

A dataset of lightning strikes in the province of Ontario, Canada was obtained from

the Ontario Ministry of Natural Resources. This data consists of 15.4 million lightning

strikes from 1992-2010. In this example, an entirely enclosed square region (between

−84◦ and −80◦ longitude and between 47◦ and 51◦ latitude) is taken for the purposes

of the analysis to not only give an easier to manage spatial window but also to allow us

to use minus-sampling edge correction to check the various edge correction methods

for accuracy. Figure 3.16 shows original plotted data as well as the section from which

our data is extracted.

Chapter 3. Parallel computing for spatial point processes 99

yx z

Manager

...
Worker 1

x y z

Worker 3

x y z

Worker 2

x y z

Worker n

...

x y z

...

Full spatial
point pattern

First chunk

Figure 3.15: Chunking in a dataset and distribution to workers.

Chapter 3. Parallel computing for spatial point processes 100

Figure 3.16: Map of all lightning strike data and the extent of the extracted spatial
window. The extracted spatial window is plotted with points intead of a + symbol
and thus appears lighter.

Looking at the distribution of lightning strikes for each year (Figure 3.17), a

question we may be interested in is whether or not there is a difference in point

pattern behaviour between years with few strikes and years with many strikes. We

will look at only two years from our data, 2003 and 2008, to represent a year with fewer

number of strikes (295,533 strikes) and a year with many more strikes (1,216,055),

respectively. It can be seen that there is a monthly trend as well when plotting the

number of lightning observations by month, but we will ignore this and only look at

the yearly aggregated data.

The code below loads the required packages, reads in the lightning data, extracts

a sub window and creates a point process pattern (ppp) object. The two resulting

Chapter 3. Parallel computing for spatial point processes 101

0
50

00
00

10
00

00
0

15
00

00
0 Number of lightning observations by year (1992−2010)

Year

C
ou

nt
s

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0e
+

00
2e

+
06

4e
+

06

Number of lightning observations by month (1992−2010)

Month

C
ou

nt
s

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.17: Summary of Ontario lightning strike data from 1992 to 2010 by year
(top) and by month (bottom).

Chapter 3. Parallel computing for spatial point processes 102

point patterns are then plotted side by side in Figure 3.18.

Load the required library

library(spatstat)

Read in the data

data.2003 <- read.csv("lightning/data/ltg2003.csv",header=TRUE)

data.2008 <- read.csv("lightning/data/ltg2008.csv",header=TRUE)

Define the extent we are interested in

xrange <- c(-84,-80)

yrange <- c(47,51)

Extract only the rows within our extent

data.2003.sub <- data.2003[ppp.extract(data.2003,owin(xrange,yrange)]

data.2003.sub <- data.2003[which(data.2003$V6 > xrange[1] &

data.2003$V6 < xrange[2] & data.2003$V5 > yrange[1] &

data.2003$V5 < yrange[2]),]

data.2008.sub <- data.2008[which(data.2008$V6 > xrange[1] &

data.2008$V6 < xrange[2] & data.2008$V5 > yrange[1] &

data.2008$V5 < yrange[2]),]

Create the spatial observation window

win <- owin(xrange=xrange, yrange=yrange)

Create ppp objects of the lightning data

ppp.2003 <- ppp(x=data.2003.sub$V6, y=data.2003.sub$V5,window=win)

ppp.2008 <- ppp(x=data.2008.sub$V6, y=data.2008.sub$V5,window=win)

Plot the patterns of the two years

par(mfrow=c(1,2),mar=rep(0,4))

plot(ppp.2003,pch=".",main="2003")

plot(ppp.2008,pch=".",main="2008")

In each of these years, the number of data points in the defined region is too

Chapter 3. Parallel computing for spatial point processes 103

2003 2008

Figure 3.18: Plot of lightning strikes in a region of northern Ontario between 47◦ and
51◦ latitude and −84◦ and −80◦ longitude in 2003 (left) and 2008 (right).

large (over 60,000 points) for the Kest function to compute efficiently if we wish to

find edge corrected estimates. The following code snippet loads the required pack-

ages, spawns 32 workers, computes the edge-corrected estimates in parallel using the

parKest function, and plots the resulting K-estimates (shown in Figure 3.19).

Load the parallel library

library(parspatstat)

Spawn the workers and initialize them

mpi.spawn.Rslaves(nslaves=32)

Chapter 3. Parallel computing for spatial point processes 104

mpi.bcast.cmd(require(parspatstat))

Compute the K-estimate using all corrections in parallel

K.2003 <- parKest(X=ppp.2003, job.num=32*2)

K.2008 <- parKest(X=ppp.2008, job.num=32*2)

Plot the resulting edge corrected K-estimates

par(mfrow=c(1,2),mar=c(4,4,4,2))

plotK(K.2003,main="2003 K-estimate")

plotK(K.2008,main="2008 K-estimate")

0.00 0.10 0.20 0.30

0.
00

0.
10

0.
20

0.
30

2003 K−estimate

r

K
(r

)

theo
border
iso
trans

0.00 0.10 0.20

0.
00

0.
10

0.
20

2008 K−estimate

r

K
(r

)
theo
border
iso
trans

Figure 3.19: Plot of K-estimates of lightning strikes in a square region of Ontario in
2003 (top) and 2008 (bottom) using various border correction methods along with
the theoretical line.

If we wish to reconstruct a point pattern that matches a the 2003 lightning data

on the K-estimate produced above in a different spatial window, we can do so by

specifying a spatial extent and using the reconstruct function in parspatstat. The

Chapter 3. Parallel computing for spatial point processes 105

function on which we are matching can be specified to the parKest function so it can

be computed in parallel. Alternatively, if we were interested in reconstructing only

a smaller region that does not require the use of the parKest function (but rather

can simply use the Kest), we can opt to parallelize the reconstruction steps using

the parreconstruct function. The results of the reconstruction and resulting plots

of the K-function are shown in figure 3.20 with resulting energy function less than

0.00001.

Define the spatial extent we are interested in reconstructing

xrange <- c(-81,-80)

yrange <- c(50,51)

read in data

data.2003 <- read.csv("lightning/data/ltg2003.csv",header=TRUE)

data.2003.full <- data.2003[which(data.2003$V6 > xrange[1] &

data.2003$V6 < xrange[2] &

data.2003$V5 > yrange[1] &

data.2003$V5 < yrange[2]),]

convert data to ppp

win.full <- owin(xrange=xrange, yrange=yrange)

X.full <- ppp(x=data.2003.full$V6, y=data.2003.full$V5,window=win.full)

reconstruct a point pattern matching the K estimate

win.small <- owin(xrange=xrange2, yrange=yrange2)

X.small <- X.full[win.small]

Y <- reconstruct(X.small,fun="Kest",eps=0.00001,m=500,maxiter=10000)

plot the original and reconstructed patterns

par(mfrow=c(1,2))

plot(X.full,pch=".")

plot(Z$ppp,pch=".")

Chapter 3. Parallel computing for spatial point processes 106

compute and plot the resulting K functions

K.full <- parKest(X.full,nlarge=Inf)

K.Y <- Kest(Y$ppp,nlarge=Inf)

par(mfrow=c(1,1))

plot(y=K.full$iso,x=K.small$r,type="l",col=2)

lines(y=K.full$theo,x=K.small$r,col=1)

lines(y=K.Y$iso,x=K.small$r,col=5)

Likewise, if we wish to reconstruct a point pattern extended to a larger spatial ex-

tent than the original whilst still matching on one or more summary statistics, one can

do so with the reconstruct or parreconstruct method passing in the larger win-

dow as an argument and specifying the conditional reconstruction parameter to true.

Figure 3.21 shows a reconstructed pattern with the conditional points highlighted.

take a smaller piece of that as our conditional data

xrange2 <- c(-80.5,-80.1)

yrange2 <- c(50.3,50.6)

win.small <- owin(xrange=xrange2, yrange=yrange2)

X.small <- X.full[win.small]

reconstruct a point pattern in a larger spatial window

Z <- reconstruct(X.small,n=X.full$n,fun="Kest",win=win.full,eps=0.00001,

m=500,maxiter=10000,conditional=TRUE)

plot the original and reconstructed patterns

par(mfrow=c(1,2))

plot(X.full,pch=20,main="Original Point Pattern")

plot(X.small,pch=20,add=T,cols=2,main="") #highlight conditional piece

plot(Z$ppp,pch=20,main="Reconstructed Point Pattern")

plot(X.small,pch=20,add=T,cols=2,main="") #highlight conditional piece

Chapter 3. Parallel computing for spatial point processes 107

Original Point Pattern Reconstructed Point Pattern

0.00 0.02 0.04 0.06

0.
00

0.
10

0.
20

Comparison of K−function

r

K
(r

)

Theoretical
Observed
Reconstructed

Figure 3.20: The original and reconstructed point patterns (top) and the correspond-
ing K-functions (bottom).

Chapter 3. Parallel computing for spatial point processes 108

Original Point Pattern Reconstructed Point Pattern

Figure 3.21: The original (left) and reconstruct point patterns (right) conditioning
on the points in red.

Chapter 4

Parallel computing for lattice

models

4.1 Motivating example: Lattice Fire Spread Model

A stochastic lattice model can be used to simulate fire spread. One such model was

described by Boychuk et al. [7] where each pixel of the model can be in one of three

states: combustible/unburned fuel, burning fuel, or burnt out/non-fuel. One state

can transition only to the next with burnt out/non-fuel acting as an absorbing state.

Each pixel may also contain external covariate information such as fuel type, fuel

moisture, wind speed, wind direction, and topographic characteristics. Transition

from one state to the next is independent and exponentially distributed, making it

essentially a continuous-time Markov chain where transition rates and probabilities

from one state to another is dependent on the state of a pixel’s immediate neighbours

109

Chapter 4. Parallel computing for lattice models 110

and its external covariate information. A simplified version of this model will be used

here instead. The set of neighbours of a point (i, j) are the four surrounding pixels,

N(i, j) = {(i, j), (i, j + 1), (i, j − 1), (i+ 1, j)(i− 1, j)}

The set of states in the neighbourhood of (i,j) at time t is given by,

XN(i,j)(t) = {x(i,j)(t) : (i, j) ∈ N(i, j)}

Figure 4.1 gives a simulated run of a simple fire spread model with uniform wind on

a lattice divided on 4 processors.

4.2 Benchmarking and scaling issues

Using an implementation of the above fire growth model, a simulation study was

run to create a benchmark of run times of a single problem given varying number of

processors. This simulation study was done on a local Beowulf cluster, karl, which

consists of 56 cores though a maximum of only 24 can be allocated at a time. A square

lattice is divided into a number of sub-lattices and two ignition points were randomly

distributed in each sub-lattice. Fires are grown from each ignition point following

the transition rules described above with a uniform wind field that is directed exactly

north east for a fixed number of time steps.

The implementation of this model is very memory intensive as it keeps track of

all historic lattices as well. It was seen that memory limitations scaled linearly with

Chapter 4. Parallel computing for lattice models 111

!

0 20 40 60 80 100 120

12
0

10
0

80
60

40
20

0

x

y

Figure 4.1: Simulation of a simple fire spread model with uniform wind on a 120x120
lattice. Red dotted lines represent division of sub-lattices to 4 CPUs.

the number of processors. That is, the same problem was able to complete twice

as many time steps on four CPUs as it could on a two CPUs before running out of

memory. This is dependent on the hardware setup as multiple cores on the same node

may share the same physical memory. This demonstrates the usefulness of parallel

computing (over traditional computing or even multithreading).

In terms of computation time, it can be seen from the run on a 1200x1200 lattice

Chapter 4. Parallel computing for lattice models 112

(Figure 4.2) that the speed up is not linear. Doubling the number of CPUs from two to

four results in a bit more than half the computation time on average. The extra time

can be partially attributed to randomness but is mostly due to the communication

overhead. This overhead goes up with more processors as communication becomes

more numerous and occurs more frequently. Eventually, with too many CPUs the

communication overhead will overshadow any gained benefits from parallelizing. An

extreme case would be to imagine every pixel managed by a different processor. One

can imagine the amount of communication required between many pairs of processors

in order to compute the value for one pixel.

On a smaller 240x240 lattice (Figure 4.3), communication overhead overshadows

gained benefits much sooner. A drop in computation time is also witnessed between

8 and 12 CPUs. This can be attributed to the change in topographic structure as 10

CPU is divided into 5x2 sub-lattices while 12 CPUs is divided into a more geomet-

rically optimal 4x3 structure as described in section 2.2.2. Had a 6x2 division of 12

CPUs been used, this decrease in computation time would not be expected, demon-

strating the importance of using an appropriate lattice division scheme. However for

computationally intensive enough programs, the communication time becomes neg-

ligible compared to the computation time. Hence, fast models do not gain much

benefit, and in fact could be slower due to the communication between CPUs acting

as a bottleneck.

Chapter 4. Parallel computing for lattice models 113

2 4 6 8 12 16 24

10
15

20
25

No. of CPUs

Ti
m

e
(s

)

Figure 4.2: Computation time of 48 fires distributed amongst 2 to 24 CPUs on a
1,200 by 1,200 pixel lattice.

2 3 4 6 8 12 24

6
8

10
12

14

No. of CPUs

Ti
m

e
(s

)

Figure 4.3: Computation time of 48 fires distributed amongst 2 to 24 CPUs on a 240
by 240 pixel lattice.

Chapter 4. Parallel computing for lattice models 114

4.3 Optimizations

4.3.1 Time barrier

Individual processors will finish at different times due to factors such as CPU speed

and the complexity of a problem assigned to a particular processor. For locally

dependent problems, often processors do not require communication at every time

step and in fact may create a large overhead. Instead, we allow each processor to

run independently until it hits a time barrier (the length of which is application

dependent). Once all processors have hit a barrier or have reached a boundary, we

then see if synchronization is required and if so then rollback all processors to the

earliest time step in which a barrier or boundary was hit.

An illustrating example is given of three processors going through the exact same

steps, with a goal of having each processor reach the 10th time step. Processor 3 is

faster than processor 2 which is faster than processor 1. The only difference between

the two illustrations is that the second example (Figure 4.4) employs a time barrier of

4, resulting in 6 fewer communication steps while the first example does not employ

a time barrier (Figure 4.5).

The idea of a time barrier is most effective when the problem is largely locally

dependent and we do not expect crossing the boundary often. In growth models,

the time barrier can be useful in the beginning while points are not numerous but

as time goes on and activity crosses boundary frequently, any time barrier greater

than one would be redundant. Having a time barrier of 1 is essentially the same as

communicating at every single time step. For examples such as the heat diffusion

Chapter 4. Parallel computing for lattice models 115

0 5 10 15 20

0
2

4
6

8
10

No. of Steps

Ti
m

e
st

ep
CPU 1
CPU 2
CPU 3
Time barrier
Barrier hit
Communication

Figure 4.4: Illustration of 3 CPUs working in parallel with communication only when
all three CPUs have hit a time barrier or requires swapping.

0 5 10 15 20

0
2

4
6

8
10

No. of Steps

Ti
m

e
st

ep

CPU 1
CPU 2
CPU 3
Communication

Figure 4.5: Illustration of 3 CPUs working in parallel with communication at every
time step to synchronize.

Chapter 4. Parallel computing for lattice models 116

system (Section 2.1.4), there is no benefit to using a time barrier as communication

is required at every time step.

4.3.2 Irregular division of lattice

In the forest fire front growth model, a large factor that drives the growth of fire in a

particular direction is the wind, both in its speed and direction. If simulating a large

landscape with several fires and a prevailing east-west wind, it may be wise to divide

the lattice in such a way to minimize the chances of boundary crossings. One possible

division would be to divide the lattice into horizontal strips such that ignition points

are vertically centered in the division. This division may not be geometrically optimal

but will maximize the time to boundary, thereby increasing any benefits offered by

using a time barrier and also prolonging its use in the simulation until boundary

interaction occurs frequently enough to outweigh gained efficiencies.

Also, on non-homogenous computing systems, one can assign larger or more com-

plex sub-lattices to faster processors in order to more evenly balance the computation

time. In the forest fire growth model, a simple measure of complexity can be the num-

ber of burning points in a given sub-lattice.

4.3.3 Example: Interacting Particle System

A motivating example of a lattice model used in the next section is an interacting

particle system where particles can exist and travel on a lattice according to transition

rules. The transition rules of a particular particle are determined by the individual

Chapter 4. Parallel computing for lattice models 117

particle characteristics as well as the characteristics of neighbouring particles. For

example, certain particles may repel neighbouring particles whilst others may attract

them. Such an example requires a very large lattice in order to accurate represent

the amount of detailed required.

4.3.4 Boundary buffer zones

In a stochastic particle interaction system, when particles reach a boundary, there is a

higher probability that the particle will cross the boundary again due to its proximity.

To reduce the constant communication that may arise in this scenario, a buffer zone

is introduced.

Two neighbouring sub-lattices can have an overlapping buffer zone so both sub-

lattices will keep track of any activity within the area (Figure 4.6). Upon entering

the buffer zone, a particle continues to be simulated by the current processor until it

crosses out of the buffer zone and into an area exclusively monitored by the neigh-

bouring processor. Information swapping then occurs at this point and simulation

is taken over by the neighbouring processor (Figure 4.7). The advantage of this is

that the particle is now within the interior of the neighbouring sub-lattice and hence

reduces the probability of it immediately crossing the boundary again.

Sub-lattices can only have horizontal or vertical buffer zones at a given time in

order to prevent corner buffer zones that are monitored by more than 2 processors.

When creating these buffer zones, the size of the buffer zone will need to be deter-

mined as well. Too large of a zone will waste computation resources as that area is

Chapter 4. Parallel computing for lattice models 118

redundantly monitored by two different CPUs while too small of a buffer zone will

reduce the benefit gained and may require regular information swapping between pro-

cessors. This parameter can be determined by such factors as the average distance

and direction travelled of particles.

Additionally, interactions within the buffer zone from particles that exist in dif-

ferent processors will need to be kept track of as well. As the simulation becomes

more complex and this interaction becomes more probable, one can forgo buffer zones

altogether as their cost may begin to outweigh any benefit. In the heat diffusion ex-

ample (Section 2.1.4), there is no benefit gained from having a buffer zone as every

point needs to be computed at every time step. Hence, the use and benefit gained

from boundary buffer zones is application dependent.

4.4 Parallel computing for Markov Chain Monte

Carlo

In situations where we wish to sample from an intractable distribution, one can use

Markov Chain Monte Carlo (MCMC) methods as a common way to do so. For

example, in Bayesian inference, we can use MCMC methods to sample from a complex

posterior distribution. The Metropolis-Hastings algorithm is a simple way to sample

such a chain that generates a candidate for the next sample from a proposal density

and accepts or rejects it according to an acceptance ratio. A Metropolis-Hastings

algorithm can also be use

Chapter 4. Parallel computing for lattice models 119

Figure 4.6: Buffer zone to alleviate communication due to boundary crossing, but
covers less total area.

Chapter 4. Parallel computing for lattice models 120

Figure 4.7: Movement of a point (striped) from one processor to another location
(solid). The second processor (blue) does not actually receive the point until it passes
the buffer zone.

Chapter 4. Parallel computing for lattice models 121

Given some starting value, the chain will converge to realizations of the proper

posterior distribution. In practice, one guesses at the amount of time it takes for a

chain to reach this equilibrium distribution. This is known as the burn-in time. All

samples up until the burn-in time are discarded and the remainder of the chain is

taken as draws from the equilibrium distribution. Thinning is also sometimes done,

that is, to only keep samples at certain intervals to reduce autocorrelation of draws.

The combination of burning and thinning may lead to a lot of computation to be

wasted.

With processing power readily available in Beowulf clusters of networked machines

working in parallel, there are several ways to use make use of parallel computing

in the context of MCMC techniques. In all cases, parallel processors will need to

communicate with one another to exchange information (parameter updates) or to

simply consolidate results. As before, this is done using a message passing interface

(MPI) framework. We assume that each processor runs uniformly at the same speed

but Rosenthal [35] provides a treatment for when this is not true. We will make the

simplifying assumption that our processors are of uniform speed, which is often the

case on Beowulf clusters.

4.4.1 Multiple chain MCMC

Taking advantage of parallel computing in MCMC is not a new concept and is already

commonly used in practice. The most direct approach is to generate many Markov

chains in parallel, often with a range of starting values. This offers an advantage of

Chapter 4. Parallel computing for lattice models 122

allowing one to see when multiple chains converge which can give an indication of

burn-in time. All subsequent draws after this burn-in time from all processors are

considered draws from the limiting distribution, assuming that the underlying random

number generator is designed to work in parallel so that no processor will not have

the same random string as another. One drawback to note about this multiple chain

parallelization method is that each individual chain would need to burn-in. A way to

mitigate this requirement for burning in is to use a perfect simulation method such

as coupling from the past [29] to generate appropriate starting values. Unfortunately

it is difficult to implement exact (perfect) sampling for many complex models [48].

In spatial point processes, exact sampling can only be implemented for very simple

models.

With a large number of parameters, a Metropolis-Hastings algorithm although

easy to implement, may experience poor mixing and long burn-in times. In such a

case, the cost of running multiple chains may offset any speed gain. Instead, focus

can be placed on parallelizing a single chain.

A Metropolis-Hastings algorithm can be visualized by a Metropolis tree (Fig-

ure 4.8) where at each step, a proposal is either rejected (left branch) or accepted

(right branch) with some acceptance probability. Each level of the tree represents a

single draw from the chain. In the Metropolis tree representations, green cells rep-

resent current evaluations and red cells represent realized draws from the chain so

far.

Chapter 4. Parallel computing for lattice models 123

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

Figure 4.8: Metropolis trees with steps computed serially. At each time step, a single
level is completed, representing one draw in the chain. Four draws are computed in
four time steps.

Chapter 4. Parallel computing for lattice models 124

4.4.2 Single chain MCMC

One method for parallelizing a single chain involves having each processor start a

chain from a predetermined value and generate the chain until that value appears

again (regeneration). Individual chains can then be joined together to form a single

Markov chain. This method works in discrete state space where the probability of

regeneration is non-zero.

A block method of parallelizing Markov chains has also been proposed by Wilkin-

son [48] for cases where the dependency structure of the underlying model is known

and can be divided into blocks. Each of these blocks are conditionally independent

given every other block and hence parallel computing can be used to update each

block concurrently. This method is limited in the number of processors that can be

used, which is the number of blocks the parameters can be divided into, or in the

completely independent case, the number of parameters.

Simple pre-fetching

Brockwell [8] introduces an idea of pre-fetching where parallel computing is used to

compute all posteriors concurrently at future time-steps. With these posteriors all

computed, one can simply jump directly to the appropriate result once acceptance

probabilities are calculated. Doing so h steps at a time requires 2h − 1 processors

(2h if one includes a manager processor) so this method does not scale well and

only offers log2(n) performance increase where n is the number of processors utilized.

An illustration of this pre-fetching method is given in Figure 4.9 where 3 processors

Chapter 4. Parallel computing for lattice models 125

evaluate three nodes in parallel so that two draws can be computed in a single time

step. Note that there will be processor evaluations that are thrown out, especially

when taking higher numbers of steps ahead.

If the number of processors used does not entirely fill a level, they are allocated

left to right from the farthest left branch. Such an allocation scheme is not optimal

but typically, one can use exactly 2h processors.

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

Figure 4.9: Metropolis trees with prefetching two steps at a time using 3 processors.
At each time step, two levels are completed, representing two draws in the chain.
Four draws are completed in two time steps.

Chapter 4. Parallel computing for lattice models 126

Dynamic pre-fetching

Strid [42] examines several ways to improve on the pre-fetching algorithm by esti-

mating probabilities of acceptance so that only the most likely paths are pre-fetched.

Instead of assigning processors to simply evaluate all possibilities in the hth step, some

can be assigned further down a path if the probability of taking that path is higher

than another outcome on a shallower path. This leads to an improvement over the

normal pre-fetching algorithm since more iterations are done on average. Occasion-

ally, the most probable path may not be the actual path and we may end up going

fewer steps than the simple prefetching but we expect an greater average number

of steps using the same number of processors as simple prefetching. However, this

method is still limited in its improvement as ultimately, computation on all but one

of the processors will have gone to waste. An example is illustrated in Figure 4.10

where in the first step, the most probable path was in fact wrong at the second draw,

but in the second step, the most probable path was correct down three steps.

Through simulation comparing these three methods (Figure 4.11), we can see

that the speed up is greatest when using dynamic pre-fetching though in all cases,

the amount of speed-up diminishes quickly with the number of processors used. Of

interest to note is that there are jumps in improvement when entire levels are filled

since it increase the average number of draws per time step, hence the jumps near

2h − 1 number of workers.

Chapter 4. Parallel computing for lattice models 127

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

Figure 4.10: Metropolis trees with dynamic prefetching where the most likely paths
are evaluated in parallel using 3 processors. At each time step, up to 3 levels are
completed. In this particular example, five draws are completed in two time steps.

Chapter 4. Parallel computing for lattice models 128

0 20 40 60 80 100

1
2

3
4

5
6

7
30% acceptance rate

No. of Workers

S
pe

ed
 u

p

Serial
Pre−fetch
Dynamic

0 20 40 60 80 100

2
4

6
8

10% acceptance rate

No. of Workers

S
pe

ed
 u

p

Serial
Pre−fetch
Dynamic

Figure 4.11: Comparison of speed-up versus serial MCMC from using up to 100 pro-
cessors using simple pre-fetching and dynamic pre-fetching and two different targeted
acceptance rates.

Chapter 4. Parallel computing for lattice models 129

4.4.3 Continuous pre-fetching

Each of the previously explored methods for parallelizing a single chain are limited

in how many processors they can use before experiencing highly diminishing returns.

The idea behind the proposed method is to combine the aforementioned methods

to optimally allocate processors in a multi-level parallelization structure. That is,

given access to p processors that are assumed to be uniform in performance, what is

the optimal distribution of processors as a function of the number of conditionally

independent blocks and the approximated acceptance rate at each step?

To illustrate this method, one can imagine a problem where block Metropolis-

Hastings can be used to assign two processors to compute the posterior at any given

time step. Given only three processors working in parallel, if we are fairly certain of a

right branch, then we may be better served using two processors to compute the first

node quicker. Figure 4.12 gives an example where there are 7 processors working in

parallel. The asterisk represents a node that is computed in parallel in half the time

it would take to compute one time step, the first node has already been determined

and processors can be allocated further down the line immediately.

Several simplifying assumptions are made. First, it is assumed that evaluating the

posterior is significantly more time consuming than the other steps of the algorithm,

in fact, the other steps are assumed to be completed in negligible time. Second, we

also assume that communication time between processors is also negligible, which

is not an unreasonable assumption given specialized hardware and especially when

compared with the posterior evaluation time. Finally, we also assume that evaluating

Chapter 4. Parallel computing for lattice models 130

1*	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6*	

12	

24	 25	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

1	

2	

4	

8	

16	 17	

9	

18	 19	

5	

10	

20	 21	

11	

22	 23	

3	

6	

12	

24*	 25*	

13	

26	 27	

7	

14	

28	 29	

15	

30	 31	

Figure 4.12: Metropolis trees with continuous prefetching where processors can be
assigned to higher levels paths to more quickly determine which path is correct and
then processors can be reassigned down further down the most probable paths. As-
terisks indicate cells that are being computed in parallel and purple cells indicate cells
that are already under evaluation.

Chapter 4. Parallel computing for lattice models 131

the posterior is of constant time on each parallel processor, and thus when done

sequentially, the time required scales linearly with the number of evaluations.

4.4.4 Comparison with other parallelization techniques

It is recommended in literature that the greatest efficiency gain will come from first

using a more efficient algorithm than Metropolis-Hastings but in cases where this

is difficult, Metropolis-Hastings serves as a simple and easy-to-implement solution.

Next, running chains in parallel will offer near linear scalability, but only if the burn-

in time is small compared to the amount of time each processor will spend generating

proper samples. It is in the case where the mixing is poor, often in high dimension

space, and there is no alternative to a simple Metropolis-Hastings algorithm that

parallelization of a single chain MCMC may prove useful.

Chapter 5

Conclusion

In this thesis, several areas of spatial statistics were looked at from a parallel comput-

ing perspective to determine methods that can take advantage of parallel computing

in a non-trivial way beyond the embarrassingly parallel cases.

Issues that arise when incorporating any sort of parallel programming to spatial

data was addressed and an R package was developed that implements many of the

functions and methods described.

In spatial point processes, many summary functions can be computed in parallel

while still maintaining proper edge correction themes. It was shown that the most

useful edge correction methods are also those which require parallelization to handle

large datasets. Model evaluation by means of simulation was also parallelized as well

on two levels.

An improved point process reconstruction algorithm was proposed and demon-

strably performs better than the existing reconstruction algorithm is matching short

132

Chapter 5. Conclusion 133

range behaviour. A parallel version of the algorithm was also examined with very

clear performance benefits. It also adds support for conditional reconstruction of a

point pattern to a larger spatial window.

In stochastic lattice models, a framework was created to support simulation of

models in parallel while maintaining proper communication between adjacent lattices.

Additional ideas for improvement were discussed, though performance improvements

are only under specific circumstances.

In Markov Chain Monte Carlo methods, single chain parallelization was examined

with different methods to best make use of parallel computing resources. A new

multilayered parallelization technique was proposed based on pre-fetching to better

utilize parallel computing resources that are available.

5.1 Further Work

The point process methods described work in any number of dimensions though the

software implementation only supports two dimensions. Support for three dimen-

sional point patterns can be added in the future to aid in applications such as climate

modelling. However, the division of a spatial window in three dimensions is quite a

bit more complicated beyond trivial lattice division methods. For example, depend-

ing on how a neighbourhood structure is defined, a single voxel may have up to 26

first degree neighbours (if we include ones that touch on a corner) as opposed to a

maximum of 8 in two dimensions (Figure 5.1).

The proposed parallel reconstruction algorithm does not make use of all current

Chapter 5. Conclusion 134

Sim Sim

Sim Sim

Sim

Figure 5.1: Splitting a three dimensional lattice into smaller sub-lattices.

and past information to determine the best move but rather takes the single move

that minimizes the energy function at the current step. For example, perhaps some

combination of the top three moves computed in parallel can produce a move better

than just the top move itself. Other optimization techniques such as a scheme sim-

ulated simulated annealing to prevent getting stuck in local minima can be further

examined.

The implementation of stochastic lattice models requires the model to be written

in a specific way that can fully take advantage of the parallelization. A more general

implementation can be examined to allow parallelization of a lattice model that is

defined in some structured way so users can easily extend the lattice optimization

methods to other applications beyond the simple fire spread model.

Parallelization of single chain MCMC can take advantage of existing MCMC tech-

niques that allow parallel computing at a lower level such as parallel matrix compu-

tations to further utilize available resources.

Bibliography

[1] M. P. Armstrong and R. Marciano. Massively parallel processing of spatial statis-

tics. International journal of geographical information systems, 9:169–189, 1995.

[2] A. Baddeley, M. Kerscher, K. Schladitz, and B. T. Scott. Estimating the J

function without edge correction. ArXiv Mathematics e-prints, 1999.

[3] A. Baddeley and R. Turner. Spatstat: an R package for analyzing spatial point

patterns. Journal of Statistical Software, 12:1–42, 2005.

[4] A. J. Baddeley and B. W. Silverman. A cautionary example on the use of second-

order methods for analyzing point patterns. Biometrics, 40:1089–1093, 1984.

[5] J. E. Besag. Spatial interaction and the statistical analysis of lattice systems.

Journal of the Royal Statistical Society Series B, 36:192–236, 1974.

[6] J. E. Besag. Contribution to the discussion of Dr. Ripley’s paper. Journal of the

Royal Statistical Society Series A, 39:193–195, 1977.

135

BIBLIOGRAPHY 136

[7] D. Boychuk, W. J. Braun, R. J. Kulperger, Z. L. Krougly, and D. A. Stanford.

A stochastic forest fire growth model. Environmental and Ecological Statistics,

16:133–141, 2009.

[8] A. Brockwell. Parallel markov chain monte carlo simulation by pre-fetching.

Journal of Computational and Graphical Statistics, 15:246–261, 2006.

[9] M. Cannataro, S. D. Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia.

A parallel cellular automata environment on multicomputers for computational

science. Parallel computing, 21:803–823, 1995.

[10] N. Cressie. Statistics for spatial data. Wiley series in probability and mathemat-

ical statistics: Applied probability and statistics. J. Wiley, 1993.

[11] P. J. Diggle. Statistical analysis of spatial point patterns. Hodder Education

Publishers, 2003.

[12] B. Efron and R J. Tibshirani. An introduction to the bootstrap. Chapman &

Hall, 1993.

[13] G. François and P. Raphaël. On explicit formulas of edge effect correction for

Ripley’s K-function. Journal of Vegetation Science, 10:433–438, 1999.

[14] A. Getis and J. K. Ord. The analysis of spatial association by use of distance

statistics. Geographical Analysis, 24:189–206, 1992.

[15] G. H. Givens and J. A. Hoeting. Computational statistics. John Wiley and Sons,

2005.

BIBLIOGRAPHY 137

[16] D. A. Griffith. Supercomputing and spatial statistics: a reconnaissance. Profes-

sional geographer, 42:481–492, 1990.

[17] P. Haase. Spatial pattern analysis in ecology based on ripley’s K-function: Intro-

duction and methods of edge correction. Journal of Vegetation Science, 6:575–

582, 1995.

[18] R. Healey, S. Dowers, B. Gittings, and M. Mineter. Parallel processing algorithms

for GIS. Taylor & Francis, 1998.

[19] L. P. Ho and S. N. Chiu. Using weight functions in spatial point pattern analysis

with application to plant ecology data. Communications in statistics - Simulation

and computation, 38:269–287, 2009.

[20] J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Spatial analysis and modelling

of spatial point patterns. Wiley and Sons, 2008.

[21] O. Kallenberg. Foundations of modern probability. Springer-Verlag, 2002.

[22] M. Kerscher, I. Szapudi, and A. S. Szalay. A comparison of estimators for the

two-point correlation function. Astrophysics Journal Letters, 535:L13–L16, 2000.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[24] V. J. Martinez and E. Saar. Statistics of the galaxy distribution. Chapman &

Hall, 2002.

BIBLIOGRAPHY 138

[25] J. Osher and D. Stoyan. On the second-order and orientation analysis of pla-

nar stationary point processes. Biometrical Journal, 23:523–533, 1987. doi:

10.1002/bimj.4710230602.

[26] G. Ostrouchov, W. C. Chen, D. Schmidt, and P. Patel. Programming with Big

Data in R, 2012.

[27] A. Pommerening and D. Stoyan. Edge-correction needs in estimating indices of

spatial forest structure. Canadian Journal of Forestry Research, 36:1723–1739,

2006. doi: 10.1139/X06-060.

[28] A. Pommerening and D. Stoyan. Reconstructing spatial tree point patterns from

nearest neighbour summary statistics measured in small subwindows. Canadian

Journal of Forestry Research, 38:1110–1122, 2008. doi: 10.1139/X07-222.

[29] J. G. Propp and D. B. Wilson. Exact sampling with coupled markov chains and

applications to statistical mechanics. Random Structures & Algorithms, 9:223–

252, 1996.

[30] R Development Core Team. Package ‘parallel’, 2012.

[31] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.

ISBN 3-900051-07-0.

[32] B. D. Ripley. The second-order analysis of stationary point processes. Journal

of Applied Probability, 13:255–266, 1976.

BIBLIOGRAPHY 139

[33] B. D. Ripley. Spatial Statistics. Wiley series in probability and mathematical

statistics: Applied probability and statistics. J. Wiley, 1981.

[34] B. D. Ripley. Statistical inference for spatial point processes. Cambridge Univer-

sity Press, 1988.

[35] J. S. Rosenthal. Parallel computing and monte carlo algorithms. Journal of

Theoretical Statistics, 4:207–236, 2000.

[36] K. Schladitz and A. J. Baddeley. A third order point process characteristic.

Scandinavian journal of statistics, 27:657–671, 2000.

[37] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, and U. Mans-

mann. State of the art in parallel computing with R. Journal of Statistical

Software, 31:1–27, 2009.

[38] M. Snethlage. Is bootstrap really helpful in point process statistics? Metrika,

49:245–255, 1999.

[39] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The

Complete Reference Volume 1, The MPI Core. The MIT Press, 2001.

[40] R. W. Sterner, C. A. Ribic, and G. E. Schatz. Testing for life historical changes

in spatial patterns of four tropical tree species. Journal of Ecology, 74:621–633,

1986.

[41] D. Stoyan and A. Penttinen. Recent applications of point process models in

forestry statistics. Statistical science, 15:61–78, 2000.

BIBLIOGRAPHY 140

[42] I. Strid. Efficient parallelization of metropolis-hastings algorithms using a

prefetching algorithm. Computation Statistics & Data Analysis, 54:2814–2835,

2010.

[43] J. Szwagrzyk and M. Czerwczak. Spatial patterns of trees in natural forests of

east-central europe. Journal of Vegetation Science, 4:469–476, 1993.

[44] L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova. multicore: parallel processing

of R code on machines with multiple cores or CPUs, 2003.

[45] L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova. Simple network of workstations

for R, 2003.

[46] A. Tscheschel and D. Stoyan. Statistical reconstruction of random point patterns.

Computational statistics & data analysis, 51:859–871, 2006.

[47] M. N. M. van Lieshout and A. J. Baddeley. A nonparametric measure of spatial

interaction in point patterns. Statistica Neerlandica, 50:344–361, 1996.

[48] D. Wilkinson. Parallel bayesian computation. Chapman and Hall, 2006.

[49] I. Yamada and P. A. Rogerson. An empirical comparison of edge effect correction

methods applied to K-function analysis. Geographical Analysis, 35:97–109, 2010.

[50] H. Yu. Rmpi: parallel statistical computing in R. R News, 2:10–14, 2002.

141

BIBLIOGRAPHY 142

Curriculum Vitae

Name: Jonathan Lee

Post-Secondary University of Waterloo
Education and Waterloo, ON
Degrees: 2003 - 2008 B.Math

Queen’s University
Kingston, ON
2006 - 2008 B.Ed.

The University of Western Ontario
London, ON
2008 - 2009 M.Sc.

The University of Western Ontario
London, ON
2009 - 2013 Ph.D.

Honours and OGS
Awards: 2010-2013

Related Work Teaching Assistant
Experience: University of Waterloo

2004 - 2008

Teaching Assistant
The University of Western Ontario
2008 - 2013

Sessional Lecturer
The University of Western Ontario
2011

	Stochastic simulation and spatial statistics of large datasets using parallel computing
	Recommended Citation

	Abstract
	Acknowlegements
	List of Figures
	Introduction
	Spatial point processes
	Homogenous Poisson process
	Inhomogenous Poisson process
	Stationarity and isotropy
	Summary statistics and summary functions
	Point process model fitting and assessment

	Stochastic lattice models
	Markov random fields

	Parallel computing
	Hardware specifications
	Parallel programming in R
	Embarrassingly Parallel and Non-embarrassingly Parallel Problems

	Motivation for parallel computing in spatial statistics
	Use of spatial statistics in different disciplines
	Parallel computation in spatial statistics

	Outline of Thesis

	Issues in parallel computing
	Issues with Parallelizing Single Simulations
	Message Passing Interface
	Random number generation
	Workload distribution
	Example: Two-dimensional Heat Diffusion System

	Issues in Parallel Computing of Spatial Statistics
	Memory limitations
	A virtual topography division
	Complex spatial windows

	Other issues in parallel computing
	Multiple layers of workers
	Optimal number of processors
	Load balancing

	A simulation model of optimal parallel computing structure
	A simple model
	A simple model with concurrent job distribution and load balancing

	Parallel computing for spatial point processes
	Edge correction methods
	Comparison of edge correction methods

	Parallel computation of point process summary functions
	Performance benchmarks
	Point process model fitting and evaluation
	Simulation envelopes

	Point process reconstruction
	The general reconstruction algorithm
	An improved reconstruction algorithm
	Parallelizing reconstruction

	The parspatstat package
	Function usage
	Datasets that do not fit in memory

	Example: Ontario lightning data

	Parallel computing for lattice models
	Motivating example: Lattice Fire Spread Model
	Benchmarking and scaling issues
	Optimizations
	Time barrier
	Irregular division of lattice
	Example: Interacting Particle System
	Boundary buffer zones

	Parallel computing for Markov Chain Monte Carlo
	Multiple chain MCMC
	Single chain MCMC
	Continuous pre-fetching
	Comparison with other parallelization techniques

	Conclusion
	Further Work

	Bibliography
	Curriculum Vitae

