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ABSTRACT 

This study evaluated the inelastic torsional response due to instantaneous load 

eccentricities.  The load eccentricities, which caused by the motion of the center of mass are 

time-dependent, even exist for two-way symmetric structures under seismic excitations.  The 

eccentricities and bi-directional horizontal excitations can lead to the torsional motion.  The 

study of the impacts of such a second-order effect (called A-∆ effect) on structural systems 

and, this effect in combination with the P-∆ effect on structural systems has not been 

reported in the literature.   

This study is focused on the investigation of the structural responses under the A-∆ and/or 

P-∆ effects.  For the assessment of inelastic seismic displacement demand and inelastic 

torsional response of buildings, the structure is represented using idealized one-story model 

and each lateral load resisting element is modeled using the Bouc-Wen hysteretic model.  

The governing equations of motion were developed by considering these effects and the 

structures that are subjected to biaxial excitations.  The numerical analyses were carried out 

by implementing the governing equations in MATLAB


.  Since the ground motion is 

uncertain and varies from record-to-record, 123 ground motion records from 11 California 

seismic events were considered to take into account this record-to-record variability. 

The results indicate that a slight underestimation of seismic displacement demand is 

observed, if the instantaneous load eccentricities are ignored, especially for two-way 

symmetrical systems.  On the other hand, when considering both the instantaneous load 

eccentricities and P-∆ effect, the instantaneous load eccentricities can introduce significant 

changes on both lateral and torsional displacements, if the stability factor θ is large. 
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

A significant torsional response under seismic load, which lead to the structural 

collapse, has been observed in major earthquakes (Esteva 1987).  Seismic induced 

torsional responses often result in the non-uniform ductility demand on the structural 

frames.  To this end, the study of torsional behavior is critical to evaluating the seismic 

risk. 

The estimation of torsional responses was reviewed by Rutenberg (2002) and De 

Stefano and Pintucchi (2008).  It is seen that great efforts have been made on 

investigating the torsional response, and there are still pronounced attentions have been 

drawn in developing general and consistent conclusions.  That is because a large number 

of parameters are needed to characterize accurately to the linear elastic and nonlinear 

inelastic torsional responses.  Perus and Fajfar (2005) and De Stefano and Pintucchi 

(2010) evaluated the general trend in the seismic responses of plan-asymmetric 

structures. 

It is well-known that the torsional response for the linear elastic system depends on 

the distance between the center of mass/stiffness (CM/CS) and ratio between the 

uncoupled lateral and torsional vibration periods.  In addition to these three factors, the 

inelastic torsional response is also affected by the degree of the torsional restraint, which 

is defined using the ratio of torsional stiffness contributed by the lateral load resisting 

elements parallel to one of the axes to the overall torsional stiffness due to all elements 

(Paulay 1997), and center of strength (or plastic center (CP)).  To reduce the torsional 
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response under seismic excitations, design codes consider an accidental design load 

eccentricity that is mainly attributed to two factors: the first one considers that the 

symmetric-plan structure is usually not perfectly symmetric because of the uncertainty in 

the physical property (e.g. modulus of elasticity) of the structure and/or the inaccuracy in 

the geometry of the structural member as compared to the design dimension; the second 

one is due to the ground rotational motion about the vertical axis (Chopra 2001).  The 

adequacy of the torsional provisions in design codes were examined and reported by 

Chopra and Goel (1991), Tso and Smith (1999), Chopra (2001), Humar et al. (2003), and 

Escobar (2004).   

Recently, it was indicated (Hong 2013) that when a structure responds to seismic 

ground motions, the CM moves with respect to its original position or supports or CS 

during the ground motion.  This results in the instantaneous load eccentricities under 

seismic horizontal excitations, which is defined by the time-varying relative position of 

the instantaneous CM (Hong 2013).  This second order effect on the torsional response 

was termed as the A-∆ effect.  It is, so far, not clear whether this second order effect will 

affect the nonlinear inelastic responses of structures under bi-directional ground motions. 

Moreover, there is a well-known second-order effect, known as P-∆ effect.  This 

second order effect could affect significantly the structural responses and has significant 

implication in structural design.  The P-∆ effect is caused by vertical loads contributed to 

structural lateral deformations, and can decrease the capacity of buildings to resist the 

seismic loading.  The P-∆ effect has been widely investigated by means of simple one- 

and multi-story models using single- and/or multi-degree-of-freedom (SDOF and/or 



3 

 

MDOF) systems.  The P-∆ effect of inelastic systems subjected to severe earthquakes 

were studied by Bernal (1987), MacRae (1994), Tremblay et al. (1999), Gupta and 

Krawinkler (2000), Vian and Bruneau (2003).  It is also noticed that there is no 

commonly accepted method to estimate P-∆ effect for inelastic responses for structures 

under seismic excitations.  The major details of these studies will be reviewed in Chapter 

3.  Furthermore, the P-∆  effect in combination with the A-∆ effect, which may present 

significant uncertainties in studying the inelastic response of buildings subjected to 

earthquakes, has not been investigated. 

1.2 Objectives and thesis organization 

The main objectives of this study are to investigate the effect of instantaneous load 

eccentricities on nonlinear inelastic responses under bi-directional seismic excitations, 

and to evaluate the torsional responses under combined A-∆ and the P-∆ effects.  For the 

assessment of inelastic seismic displacement demand and inelastic torsional response of 

buildings, the structural is represented using idealized one-story model and each lateral 

load resisting element is modeled using the Bouc-Wen hysteretic model.  The governing 

equations of motion were developed by considering these effects and the structures that 

are subjected to biaxial excitations.  The numerical analyses were carried out by 

implementing the governing equations in MATLAB


.  Since the ground motion is 

uncertain and varies from record-to-record, 123 ground motion records from 11 

California seismic events were considered to take into account this record-to-record 

variability. 
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The structure of this thesis is as follows. Chapter 2 investigates the A-∆ effect on the 

inelastic torsional behavior due to biaxial (or bi-directional) excitations considering the 

record-to-record variability.  Parametric studies are carried out for the idealized one-story 

model with each lateral load resisting element modeled by the Bouc-Wen model. 

Chapter 3 studies the statistical characterizations of the nonlinear inelastic responses 

under bidirectional seismic excitations by considering the A-∆ and P-∆ effects.  The 

influences of the lateral uncoupled frequency ratio, stability factor, load eccentricities and 

record-to-record variability on the inelastic torsional responses for symmetric, one-way 

and two-way asymmetric systems are investigated and discussed.  

Finally, the conclusion remarks are summarized, and the future research are 

recommended in Chapter 4. 

1.3 Format of the thesis 

This thesis is prepared in a manuscript format as specified by the School of Graduate 

and Postdoctoral Studies at the University of Western Ontario.  Chapter 2 and Chapter 4 

are prepared in a manuscript format with its own list of notations and references. 
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CHAPTER 2.  EFFECT OF INSTANTANEOUS LOAD 

ECCENTRICITIES ON THE INELASTIC TORSIONAL 

RESPONSE UNDER BI-DIRECTIONAL HORIZONTAL 

SEISMIC EXCITATIONS 

2.1 Introduction 

Torsional response under seismic load is of importance because they could result in 

structural collapse during earthquake (Esteva 1987).  The assessment of seismic torsional 

responses can be important for seismic reliability and risk evaluation due to the non-

uniform ductility demand on the structural frames induced by torsional effects.  The 

estimation of torsional responses was reviewed by Rutenberg (2002) and by De Stefano 

and Pintucchi (2008), showing that although extensive research has been reported on 

torsional response, general and consistent conclusions are still of interest because a large 

number of parameters are needed to accurately characterize inelastic torsional responses.  

Attempts to explore the general trends in the seismic response of plan-asymmetric 

structures were presented by Perus and Fajfar (2005) and De Stefano and Pintucchi 

(2010).  Furthermore, since the time-frequency energy distribution for different ground 

motion records could differ significantly, the observations from a few records could not 

be generalized; the use of a large number of records for the parametric investigation of 

the inelastic torsional responses and ductility demand characteristics under bidirectional 

excitations is desirable. 

The torsional responses for linear elastic systems depend on the distance between the 

center of mass (CM) and the center of stiffness (CS) and the ratio between the uncoupled 
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lateral and torsional vibration periods.  Furthermore, when a three dimensional structure 

is simplified as two dimensional model, it was indicated that during ground motion 

excitations, the CM moves with respect to its original position or to the supports or to the 

CS (Hong 2013).  This resulted in the instantaneous load eccentricities under seismic 

horizontal excitations, defined by the time-varying relative position of the instantaneous 

CM.  This second order effect on the torsional response was termed A-∆ effect.  The 

analysis results indicate that A-∆ effect is not significant for linear elastic systems under 

biaxial ground motions.  However, whether it influences the nonlinear inelastic responses 

is unknown. 

The inelastic torsional response is controlled by the degree of torsional restraint, 

defined using the ratio of torsional stiffness contributed by the lateral load resisting 

elements parallel to one of the axes to the overall torsional stiffness due to all elements 

(Paulay 1997).  It is also influenced by center of strength (or plastic center) (CP) needs to 

be considered.  Discussion of torsional provisions in design codes can be found in 

(Chopra 2001, Chopra and Goel 1991, Tso and Smith 1999, Humar et al. 2003, and 

Escobar 2004). 

The objective of this chapter is to investigate the A-∆ effect on nonlinear inelastic 

responses due to bi-directional horizontal excitations.  For the analysis, idealized one-

story model is considered, and each lateral load resisting element is modeled using the 

Bouc-Wen hysteretic model.  The equation of motion under biaxial excitations with the 

A-∆ effect is presented in the following section.  Numerical analysis is carried out by 

considering more than 100 ground motion records. 
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2.2 Equation of motion considering the instantaneous load 

eccentricities 

The idealized one-story model adopted in this study is shown in Figure 2.1. The 

system has a rigid deck with uniformly distributed mass. The positions of the four frames 

with respect to the center of mass (CM) are shown in the figure. Two elements along the 

direction of earthquake excitation are sufficient because the system responses are not 

sensitive to the number of elements (Goel and Chopra 1990). Each lateral load resisting 

elements is modeled using Bouc-Wen hysteretic model (Wen 1976; Foliente 1995; Ma, 

Zhang et al. 2004; Lee and Hong 2010). The center of the stiffness (CS) defines the point 

where applied lateral forces will result only in translation of the deck is located at (ex, ey); 

while the plastic center (or center of strength) (CP) is defined as the location of the 

resultant of yield forces of the load resisting elements (Goel and Chopra 1990) located at 

(epx, epy). For the current study, the CP coincides with the center of stiffness (CS); the 

results of investigation of CP do not coincide with the CS is listed in appendix A.  For 

this single-story structure (i.e. Figure 2.1), although it is idealized in form, it incorporates 

the important properties and dynamic characteristics of actual buildings, and as such it 

can provides valuable information on torsional effects of buildings to withstand severe 

earthquakes. 

Let ux, uy and θ denote the displacement along the X-axis, displacement along the Y-

axis and rotation of the rigid slab with respect to the CM.  The equation of motion of this 

system can be written as (Chopra 2001), 

gxxixxx umfucum &&&&& −=++ ∑  (2.1a) 
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gyyiyyy umfucum &&&&& −=++ ∑  (2.1b) 

0)(
2 =+−+θ+θ ∑θ iyiixi xfyfcmr &&&  (2.1c) 

where m is the mass; r is the radius of gyration of the slab about the CM; c denotes the 

damping coefficient; gu&&  is the ground acceleration; f denotes the resisting force of the 

element, an overdot on a variable denotes its temporal derivative, and the summation Σ is 

over applicable lateral load resisting elements. Symbols c and gu&&  with an additional 

subscript x, y and θ are used to denote the quantities associated with the X-axis, Y-axis 

and rotation, respectively. f with subscript xi and yi denotes the resisting force along the 

X-axis and Y-axis for the i-th lateral loading resisting element, respectively.  

The displacement of the i-th element placed parallel to X-axis, uxi, and the 

displacement of the i-th element placed parallel to Y-axis, uyi, are given by  

)()()( tytutu ixxi θ−=  (2.2a) 

and 

)()()( txtutu iyyi θ+=  (2.2b) 

where xi and yi denote the distances from the CM to the elements as shown in Figure 2.1.  

The notation uxi(t), ux(t), uyi(t), uy(t) and θ(t) is used to emphasize that uxi, ux, uyi, uy and θ 

are time dependent. 

If each lateral load resisting element is modeled as linear elastic system, the stiffness 

matrix K of the system is given by 
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where KXX, KYY, Kθθ, KθX and KθY denote the elements of the stiffness matrix K.  The 

stiffness can be used to define the dynamic characteristic of the system.  For example, 

mK XXx /=ω , represents the natural vibration frequency along the X-axis, 

mKYYy /=ω  represents the natural vibration frequency along the Y-axis, and 

2/ mrKθθθ =ω  represents the rotational natural vibration frequency. 

By incorporating the mass and stiffness proportional damping (i.e., Rayleigh 

damping), for linear systems, Eqs. (2.1) and (2.2) leads to (Chopra 2001), 
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The equations of motion for nonlinear systems can be written as, 
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where uθ = rθ, 
xωω=Ω θθ / ; xyy ωω=Ω / ; XX xii

K k= ∑ ; YY yii
K k= ∑ ; 

/ /x Y YY yi i yii
e K K k x kθ= = ∑ ∑ and / /y X XX xi i xii

e K K k y kθ= = ∑ ∑ are known as 

eccentricities along the X-axis and Y-axis, respectively; ( )2 2 ;
xi i yi i

K k y k xθ = +∑

/
xi xi XX

k Kκ = , /
yi yi YY

k Kκ = ; ( )
yxyxa ω+ωωζω= /20 ; ( )

yxa ω+ωζ= /21 and zxi and zyi are 

the hysteretic displacements which will be discussed in detail in the subsequent sections.  

The damping ratio ζ  is considered to be equal to 5% throughout this study.  The 

expressions for a0 and a1 are obtained by assuming that the damping ratios for the two 

translational modes are identical and equal to ζ. 

The components of a selected ground motion record (COALINGA 05/02/83, 

PARKFIELD - GOLD HILL), which are scaled by the same factor such that the PSA at 

Tx = 1.0 (s) (for the first record component) equals 0.25 (g) is illustrated in Figure 2.2.  

For this record, the time history responses of ux and uy for a defined two-way symmetric 

system (i.e., for the analysis the uncoupled lateral frequencies ωx and ωy are assumed to 

be the same and equal to 2π; the normalized yield strengths φx and φy are both considered 
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equal to 0.5; and the value of θΩ  that equals 1.0.), are calculated and are also shown in 

the same figure.  The figure shows that at t equal to 9.02 s, 0.474
gx

u =&&  m/s
2
 and 

0.384
gy

u =&& m/s
2
, and the position of CM is located at ux = 0.062 m and uy = -0.0124 m.  

This indicates that the instantaneous CM does not coincide with the position of CS, and a 

torsion moment about the CS will be induced due to ground motions.  Since the CM 

moves with respect to its original position or to the supports or to the CS when a structure 

responds to seismic ground motions (see Figure 2.3), this resulted in the instantaneous 

load eccentricities under seismic horizontal excitations that are functions of the time-

varying relative position of the instantaneous CM (Hong 2013).  By taking into account 

this second order effect on the torsional response, which was termed A-∆ effect, Eq. 

(2.1c) becomes, 

( ) ( )( )2 0xi i y yi i xmr c f y u f x uθθ θ+ + − − + − =∑&& &  (2.5) 

and Eq. (2.2) becomes 

( )( ) ( ) ( ) ( )xi x i yu t u t y u t tθ= − −  (2.6a) 

and 

( )( ) ( ) ( ) ( )yi y i xu t u t x u t tθ= + −  (2.6b) 

This resulting (time-dependent) in the stiffness matrix K  becomes (Hong 2013), 



14 

 

2 2

0

0

2 2

XX X XX y

YY Y YY x

X XX y Y YY x X y Y x XX y YY x

K K K u

K K K u

K K u K K u K K u K u K u K u

θ

θ

θ θ θθ θ θ

 +
 

= − 
 + − + − + + 

K  (2.7) 

where K  is time-dependent as the instantaneous load eccentricities vary in time.  In 

other words, the A-∆ effect affects the stiffness that couples the translational and 

rotational displacements.  Note that the (new) Kθθ in Eq. (2.7) differs from that shown in 

Hong (2013) as the latter contains an approximation in calculating the force (or the level 

arm) used to estimate the torsional moment.  Based on this stiffness matrix, the governing 

equation shown in Eq. (2.4) becomes, 
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 (2.8) 

To more realistically represent the response of the designed structures under strong 

earthquake excitations, the nonlinear inelastic structural behavior needs to be considered.  

For this, consider that each lateral load resisting element can be modeled using Bouc-

Wen hysteretic model (Wen 1976; Foliente 1995; Ma, Zhang et al. 2004; Lee and Hong 

2010).  The Bouc-Wen hysteretic model has 12 parameters, consisting of shape 

parameters {α, β, γ, n}, degradation parameters {δη, δν} and pinching parameters {ζs, p, 

q, ψ, δψ, λ} (Goda et al., 2009).   
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As the force-displacement relation for each load effect resisting element is modeled 

using the Bouc-Wen hysteretic model, fxi for the i-th lateral load resisting element (frame 

or wall) can be expressed as, 

xixixixixixixi zkukf )1( α−+α=  (2.9) 

where kxi is the elastic lateral stiffness.  zxi, is governed by (Wen 1976; Foliente 1995; Ma 

et al. 2004), 

[ ]{ })sgn(
1 1
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xi zuzuzuz
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−

 (2.10a) 

where nxixixi Eηδ+=η 1 ; the parameter δηxi controls the stiffness degradation; 

nxixixi Eνδ+=ν 1 ; the parameter δνxi controls the strength degradation; and the normalized 

dissipated hysteretic energy, Exi, is defined by, 

dt
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in which ( ) xin

xixixi

/1−γ+β=∆  denotes initial yield displacement and xixixi kQ ∆=  is the 

initial yield force.  Similarly, fyi is defined by replace the subscript x with y in Eq. (2.9).  

Note that if αxi and αyi are considered to be equal to one, the material nonlinearity is 

neglected in the considered system and xixixi ukf =  and yiyiyi ukf = . 

To illustrate the influences of Bouc-Wen model parameters on nonlinear hysteresis 

loops, an inelastic SDOF system subjected to four cycles of harmonic force excitations 

with increasing amplitude were considered.  Among these parameters, α is the ratio of 

post-yield stiffness to initial yield stiffness.  This parameter is commonly considered to 
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range from 0 to 1.  If α equals to zero, the relationship between restoring force and 

displacement is ideal elastoplastic model; while if α equals to one, the relationship 

between restoring force and displacement is linear elastic model.  Figure 2.3a indicates 

that shape parameter α  controls the post-yield tangent stiffness of hysteresis loop.  The 

shape parameters {β, γ, n} define the yield displacement ∆x = (β +γ )-1/n
.  Basically, β is 

within 0.5 to 1.5, γ ranges from -0.3 to 0.50 and n is suggested ranges from 0 to 3.  

Figure 2.3b shows that shape parameters β  and  γ control the loading and unloading path, 

while Figure 2.3c indicates that the shape parameter n changes smoothness of transition 

between pre-yielding and post-yielding state.  Degradation parameters (i.e.δη and δν) are 

functions of dissipated energy: δη controls the stiffness degradation and often takes a 

value within 0 to 0.3, while δν with a value within 0 to 0.05 affects the strength 

degradation.  Figure 2.3d reveals that the tangent stiffness of hysteresis loop decreases in 

each loading cycle.  Moreover, figure 2.3e shows that the yield strength decreases with 

increase of loading and unloading cycles when δν = 0.03.  The range of pinching 

parameters ζs  is within 0.7 to 1, and other pinching parameters (i.e. {p, q, ψ, δψ, λ}) 

considered in figure 2.3f  equals to {2.5, 0.15, 0.1, 0.005, 0.5}. The figure 2.3f shows the 

smooth degrading hysteretic models with pinching behavior when ζs = 0.85 has an 

obvious pinching effect. 

Based on the considerations above, the displacements under bidirectional seismic 

excitations are governed by  



17 

 

( ) ( )
( )

( )
( )

12 2 2 2

0 1 1 1 1 1

22 2

2 2 2

1

1

yy

x x x x x x x x x x

y

x x x x x x gx

y ue
u a a u a u u u Z

r r

y u
u u Z u

r

θ θ

θ

ω ω α ω α ω

α ω α ω

 −
+ + − + − + − + 

  

 −
− + − = − 

  

&& & &

&&

 (2.11a) 

( ) ( ) ( )

( ) ( )

12 2 2 2

0 1 1 1 1 1

22 2

2 2 2

1

1

xx
y y y y y y y y y y

x

y y y y y y gy

x ue
u a a u a u u u Z

r r

x u
u u Z u

r

θ θ

θ

ω ω α ω α ω

α ω α ω

− 
+ + + + + + − + 

 

− 
+ + − = − 

 

&& & &

&&

 (2.11b) 

( ) ( ) ( )

( )

( ) ( )
( )

( ) ( ) ( )

12

112 2 2

0 1 1 1

2

1 1

2 22 2

2 2 2

1 12 2

1 1 1

1

1

1

y

x x xyy x

x x y y

x x x

y y

x x x x x x

x x

y y y y y y

y u
u uy ue e

ru a a u a u a u
r r r

Z

y u y u
u u Z

r r

x u x u
u u Z

r r

θ

θ

θ

θ θ θ

α ω
ω ω ω

α ω

α ω α ω

α ω α ω

  −
  − − −−

 + + − + + +   
−  

  − −
  − − − − +

    

 − − 
+ + −  

   

&& & & &

( ) ( ) ( )2 22 2

2 2 21 0
x x

y y y y y y

x u x u
u u Z

r r θ
α ω α ω

+

 − − 
+ + − =  

   

(2.11c) 

where zxi and zyi are governed by Eq. (2.10).  Eq. (2.10), Eq. (2.11) and the corresponding 

equation for zyi needs to be solved simultaneously. 

To simplify the parametric study of inelastic system, rather than estimating the 

displacement responses, the normalized displacements given below are considered, 
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where the normalized displacements µx and µy ( /y y x y
µ µ= ∆% and / /

x y x y
∆ = ∆ ∆ ) represent 

the “global” ductility demands along the X- and Y-axis, respectively, while µxi (or µyi) 

represents the ductility demand for the i-th lateral load resisting element. 

To facilitate parametric studies of the responses of the system described above, the 

normalized yield strength φx and φy are introduced, which are defined by, 

0
/

x x x
dφ = ∆  and 0/

y y y
dφ = ∆  (2.13) 

where d0x and d0y are the peak linear elastic displacement responses along the X-axis and 

Y-axis. d0x = Sx/(ωx)
2
, d0y = Sy/(ωy)

2
, where Sx and Sy are the pseudo-spectral acceleration 

(PSA) for the ground motion component along X-axis and Y-axis, respectively. 
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By using the normalized variables defined above, Eq (2.10) and Eq (2.11) can be 

expressed as, 
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and 
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where 2 1x x x
δ = ∆ ∆  and 2 1y y y

δ = ∆ ∆  represent the ratios between yield displacements 

of different load resisting elements along X- and Y-axis. 
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Eq. (2.15) and (2.16) can be solved for { }1 2 1 2                           
x x y y zx zx zy zyθ θµ µ µ µ µ µ µ µ µ µ&& % % &  

using Gear’s method (Shampine and Reichelt, 1997). 

2.3 Statistical assessment of the normalized responses 

2.3.1 Ground motion records 

For the analysis, the same set of records used in Hong (2013), which is extracted from 

Next Generation Attenuation database (PEER 2006) is considered. This set of records 

consists of 123 records from 11 California earthquakes listed in Table 2.1. The record 

selection is based on the following criteria: 

1) The low-cut filter corner frequency in processing raw data equals 0.2 Hz or less; 

2) The moment magnitude of the event is greater than 6; 

3) The distance D (i.e., closest horizontal distance to projected faults on the earth or the 

epicentral distance if the former is not available) is greater than 15 km; 

4) The shear wave velocity Vs30 in the uppermost 30m is greater than 360 (m/s), 

representing NEHRP’s site class A, B and C (i.e., Hard rock, Rock and very dense soil 

and soft rock) (BSSC 2001). 

2.3.2 Numerical results 

The statistics of the response of inelastic systems subjected to bidirectional ground 

motion are evaluated.  For the analysis, it is assumed that the orientation of the first 

record component parallels the X-axis, and second component parallels the Y-axis.  
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In this study, the dynamic characteristics of the structure are completely defined by ωx, 

Ωy, xi/r, yi/r, ex/r and ey/r. For a given system subjected to a given ground motion record, 

{ }1 2 1 2, , , , , ,
x y zx zx zy zyθµ µ µ µ µ µ µ%  are solved using the following analysis steps:  

1) For a given record, compute the peak linear elastic responses d0x and d0y for the 

corresponding linear elastic SDOF systems; 

2) The record components are scaled with the same factor such that its first record 

component (X-direction) leads to the PSA at Tx =1.0 (s) equal to 0.25 (g) or 0.5(g) 

3) Compute the yield displacement 0x x x
dφ∆ =  and 0y y y

dφ∆ = ; 

4) Radius of gyration r for the considered geometry is given by ( )2 2 12r L W= + . 

The aspect ratio (L/W) was assumed equal to be equal to 2. By the considering that 

the structure has the height over width ratio equal to 1 (i.e., n
h W =1), and that the 

height of structure can be assigned based the following approximate relation 

( )3 4
0.075

n n
T h= , where Tn = Tx = Ty, it is concluded that r = 10 m.  This value can 

be used to calculate the ratio of /
x

r∆ ; 

5) For given values of φx and φy, solve Eq. (2.16) for µx, µy and µθ , then calculate x
u , 

y
u  and uθ ; 

6) The normalized displacement of the resisting elements  µxi and µyi. can be solved 

using ( ) i x
xi x x y x

y
u t

r r
θµ µ µ

∆ = ∆ − − ∆ 
 

%  and ( ) i x
yi y x x x

x
u t

r r
θµ µ µ

∆ = ∆ + − ∆ 
 

% .  The 

estimated xi
u , 

yi
u , x

u , 
y

u , and uθ  are then used to assess the torsional effects; 



22 

 

7) Repeat Steps 1) through 6) for each of the 123 records and estimate the statistics of 

torsional effects. 

To investigate the influence of the A-∆ effect on the seismic induced inelastic peak 

responses, symmetric, one-way asymmetric and two-way asymmetric systems are 

considered in the following.  To simplify the parametric investigation, we do not consider 

the effects of degradation and pinching in the Bouc-Wen hysteretic model, therefore, the 

stiffness and strength degradation parameters{δη, δν} and pinching parameters {ζs, p, q, 

ψ, δψ, λ} equal to zero; the shape parameters selected in this project are {α, β, γ, n} = 

{0.05, 0.5, 0.5, 2}.  The remaining parameters for the Bouc-Wen model [α, βµxi, βµyi, γµxi, 

γµyi, nxi, nyi] = [0, 0.5, 0.5, 0.5, 0.5, 2, 2] are considered for each lateral load resisting 

element.  The case defined by the above parameters is referred to as the reference case.  

For the numerical analysis, the aspect ratio L/W=2 is adopted. The vibration period Tx (

2 /
x

π ω ) is assumed to be 1 s and 2 s; Ty is assumed to be equal to Tx (i.e., Ωy = 1) for all 

the numerical evaluation. The uncoupled torsional-to-lateral frequency ratio θΩ varies 

from 0.8 to 2.0 (Goel and Chopra 1991). A large θΩ value represents torsionally stiff 

system with resisting elements near the perimeter of the building plan, and a small θΩ  

value indicates a torsionally flexible system with a stiff central core (De la Llera and 

Chopra 1995a,b). 

To reduce the number of the parameters that need to be considered for the parametric 

investigation, it is assumed that the distances from the CM to each lateral load resisting 

element along each direction are equal (i.e. 
1 2x x=  and 

1 2y y= ), and the ratio i
x L  
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equals i
y W , which is denoted using the symbol χ.  Based on these assumptions, and 

the relation /
x

Ω =θ θω ω  it can be shown that ( ) ( )2 2

YY XX
W r K K L rθχ = Ω + .  In 

other words, under these assumptions, the value of the ratio can be calculated based on 

other structural characteristics.  The calculated value of χ can readily be used to define 

the locations of the lateral load resisting elements: two lateral load resisting elements that 

parallel the X-axis are placed at y equal to Wχ  and Wχ−  while the two elements that 

parallel the Y-axis are placed at x equal to Lχ  and Lχ− .  For the structure systems to be 

analysis, the eccentricity ratios defined as ex/r and ey/r are considered to be equal to 0 and 

0.25 /
i

y r  for one-way asymmetric system, and 0.25 /
i

x r  and 0.25 /
i

y r  for two-way 

asymmetric systems.  

2.3.2.1 Two-way symmetric system 

To illustrate that the responses by considering A-∆ effect are not proportional to the 

intensity of the excitation, the record components are scaled with the same factor such 

that its first record component leads to a PSA at TX =1.0s equal to 0.25g and 0.5g, and the 

obtained results for the same record shown and the structural system considered in Figure 

2.3 are shown in Figure 2.5 (which is Case 2 with 1θΩ =  shown in Table 2.2). 

To analyze the response affected by A-∆ effect, several ratios are defined, calculated 

and used.  These are: the ratio of max( ( ) ) max( ( ) )xT xu t u t  denoted by X
R , the ratio 

max( ( ) ) max( ( ) )
yT y

u t u t  denoted by Y
R ; and the ratios of the maximum displacements 

of the lateral load resisting elements RX, 
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1 2 1 2max( ( ) , ( ) ) max ( ( ) , ( ) )XT x T x T x xR u t u t u t u t= and RY,  

1 2 1 2max( ( ) , ( ) ) max ( ( ) , ( ) )
YT y T y T y y

R u t u t u t u t= ,where the symbols ( ), ( ),
xT yT

u t u t

( ), ( ),
xiT yiT

u t u t and ( )
T

tθ  with an additional subscript T denote are used to denote the 

calculated displacements that include the A-∆ effect. 

The obtained samples of   ,  ,
X Y

R R  ,  
XT YT

R R and max(rθT) versus M and D for the 

selected records listed in Table 2.2 are presented in Figure 2.6 for the system where 

1θΩ =  which is defined in Table 2.2.  For the calculation, each record is scaled such that 

its PSA at TX is equal to a target value specified in Table 2.2 for the considered system.  

The results shown in Figure 2.6 indicate that the correlation coefficients calculated from 

the samples are small; therefore RX, RY, RXT, RYT, and max(rθT) are not sensitive to 

magnitude or distance.  Therefore, it is reasonable to assume that RX, RY, RXT, RYT, and 

max(rθT) are independent of M and D.  

Statistics summarized in Table 2.2 indicate that the means of RX, RY, RXT and RYT are 

near unity and the coefficient of variation (COV) values of RX and RY are small.  This 

suggests that the influence of A-∆ effect on the displacements of the CM is negligible.  

However, due to the A-∆ effect, the displacements on the lateral load-resisting elements 

are affected to a larger degree; the COV values of RXT and RYT are relatively significant 

compared to those without considering A-∆ effect. For example, considering the first and 

last case listed in Table 2.2, the maximum values of RXT and RYT are 1.004 and 1.010 for 

the second case, 1.014 and 1.017 for the last case, respectively.  For the corresponding 

cases without A-∆ effect, the maximum values of RX and RY are 1.0001 and 0.9999 for the 



25 

 

first case, 1.0014 and 1.0013 for the last case, respectively.  By considering the results for 

eight systems shown in Table 2.2, the torsional displacement considering A-∆ effect are 

0.0004 and 0.0059 for second case and last case respectively; the results indicate that, 

there is an underestimation in seismic torsional displacement if the A-∆ effect is ignored, 

and the responses affecting by the A-∆ effect are sensitive to the natural vibration periods. 

Another key parameter that influences the response is θΩ , the uncoupled torsional-to-

lateral frequency ratio.  The computed statistics of the inelastic responses shown in Table 

2.2 for several structural systems indicate that, as θΩ  decreases the system becomes 

increasingly flexible in torsion and the torsional deformation tends to increase as the 

structural vibration periods increase. 

2.3.2.2 One-way asymmetric system 

The considered one-way asymmetric system is listed in Table 2.3.  For these systems, 

the obtained statistics of the samples of   ,  ,
X Y

R R max(rθ),  ,  
XT YT

R R and max(rθT) for each 

considered system are summarized in the same table.  An illustration of the time histories 

of the responses of an one-way asymmetric system ( 0
x

e r = , 0.25y ie r y r= ) 

subjecting to the ground motion shown in Figure 2.3 is shown Figures 2.7a and 2.7b by 

ignoring and considering the A-∆ effect, respectively.  The samples of RXT, RYT and 

max(rθT) versus M and D for the case with 1θΩ =  shown in Table 2.3 are depicted in 

Figure 2.8. 

For one-way asymmetric system considering A-∆ effect, the influence of this second 

order effect on the displacements of the CM is again negligible since the means of RX, RY, 
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RXT, RYT are near unity.  Comparison of results shown Table 2.2 for symmetric system 

and Table 2.3 for one-way asymmetric system with 0
x

e r =  and 0.25y ie r y r= , 

indicates that the stiffness eccentricity affects the torsional displacement to a large 

degree. Since the torsional responses are already present for unsymmetrical system, the 

addition of the instantaneous load eccentricities does not affect significantly the total 

responses (as compared to the cases for the symmetrical systems). The results presented 

in Figure 2.8 show that the correlation coefficients between both calculated ratios or 

torsional displacement and D or M are small, which indicates that   ,  ,
X Y

R R max(rθ),

 ,  
XT YT

R R and max(rθT) could be assumed to be independent to magnitude or distance. 

Note that with the increase of the natural vibration period, the means of torsional 

displacements with and without A-∆ effect increases slightly.  For example, for the last 

case shown in the table, the displacements for the cases with and without A-∆ effect are 

0.0719 and 0.0707, an increase of about 1.8 percent.  This shows that the responses 

affected by the A-∆ effect are somewhat sensitive to the natural vibration periods. 

2.3.2.3 Two-way asymmetric system 

For the two-way asymmetric system, a similar analysis that was carried out in the 

previous section is carried out.  The cases for this analysis are presented in Table 2.4.  

The time histories of the displacements for the second case listed in the table are 

illustrated in Figures 2.8a and 2.8b by ignoring and considering the A-∆ effect.  

Variations of  ,  
XT YT

R R and max(rθT) versus M and D for this case is presented in Figure 

2.10.  The figure shows the calculated correlation coefficients not significant, and there 
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are no pronounced trends.  This is similar as two-way symmetric system and one-way 

asymmetric system.  The statistics of the ratios of the responses are also presented in 

Table 2.4, and the conclusions that can be drawn from the Table are similar to those 

observed from Tables 2.2 and 2.3. 

2.4 Discussion and Conclusions 

In this study, the concept of the instantaneous load eccentricities under seismic 

horizontal excitations, defined by the time-varying relative position of the instantaneous 

CM, which causes a second order effect that is termed as the A-∆ effect, is considered.  A 

statistical characterization of inelastic torsional response with A-∆ effect under a set of 

123 California seismic records is carried out by modeling the lateral load resisting 

elements using the Bouc-Wen hysteretic model.  The analysis is focused on the torsional 

response ratio for an idealized single-storey structure, which is defined as the response of 

lateral load resisting elements by considering the torsional effect and A-∆ effect to that by 

neglecting the A-∆ effect.  The main conclusions that can be drawn from the numerical 

results are: 

(1) On average, a slight underestimation of seismic displacement demand occurs if the A-

∆ effect is ignored, especially for two-way symmetrical systems. 

(2) The responses affecting by the A-∆ effect are sensitive to the natural vibration 

periods. 

(3) Since the torsional responses are already present for unsymmetrical system, the 

addition of the instantaneous load eccentricities does not affect significantly the total 

responses. 
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The observations indicate that the consideration of the A-∆ effect is not necessary 

since in most considered cases, on average, the A-∆ effect does not affect the inelastic 

responses to a large degree 

For the presented analysis results, it is considered that the CP coincides with the CS.  

For completeness, results for the CP that differs from the CS are also evaluated (see 

Appendix A).  The conclusions that can be drawn from the results shown in the Appendix 

A are similar to those shown in this chapter. 

The influence of the A-∆ effect on single story considering rotational components of 

ground motion (coupled tilt and Translational Ground Motion Response Spectra), that is 

not investigated in this study, deserves further consideration. 
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Table 2.1 Selected records from the NGA database (PEER, 2006) 

Event 

ID 

Earthquake 

name 

Number 

of 

records 

Record ID 

25 Parkfield 2 28, 33 

30 San Fernando 6 58, 59, 64, 81, 89, 94 

50 
Imperial Valley-

06 
2 164, 190 

76 Coalinga-01 23 323, 327, 330, 335, 336, 

   
339, 342, 344, 345, 346, 

   
347, 350, 351, 352, 353, 

   
354, 355, 356, 357, 358, 

   
364, 366, 369 

90 Morgan Hill 2 450,470 

101 N. Palm Springs 1 531 

118 Loma Prieta 29 731, 734, 735, 736, 739, 

   
745, 747, 749, 750, 751, 

   
762, 769, 771, 773, 776, 

   
781, 782, 787, 788, 789, 

   
791, 794, 795, 796, 797, 

   
804, 807, 812, 813 

123 Cape Mendocino 1 827 

125 Landers 4 838, 887, 891, 897 

127 Northridge-01 42 942, 945, 946, 957, 963, 

   
965, 974, 980, 990, 991, 

   
993, 994, 1005, 1007, 1008, 

   
1011, 1015, 1017, 1019, 1020, 

   
1021, 1022, 1023, 1026, 1027, 

   
1028, 1029, 1030, 1031, 1033, 

   
1038, 1039, 1041, 1046, 1047, 

   
1053, 1057, 1065, 1070, 1074, 

   
1079, 1091 

158 Hector Mine 11 1763, 1767, 1768, 1786, 1794, 

   

1795, 1812, 1824, 1831, 1832, 

1836 
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Table 2.2 Statistics of RX, RY, RXT , RYT , and max(rθθθθT) for two-way symmetric 

systems considering A-∆∆∆∆ effect. 

System and loading 

condition 
Variable 

Tx, Ty, Ω, 

 PSA (g) 
Statistics RX RY RXT RYT max(rθT) 

Case 1 Mean 1.0000  1.0000  1.0008  1.0016  0.0004  

 
COV 0.0000  0.0000  0.0009  0.0018  1.1912  

1.0, 1.0, 0.8, ρM 0.1233  0.1307  0.0708  -0.2013  0.1642  

0.25 ρD 0.0089  0.0696  0.0595  -0.1250  0.1363  

 
Maximum 1.0001  1.0001  1.0043  1.0080  0.0030  

 
Minimum 0.9999  0.9999  1.0000  1.0000  0.0000  

Case 2 Mean 1.0000  1.0000  1.0008  1.0016  0.0004  

 
COV 0.0000  0.0000  0.0009  0.0019  1.1096  

1.0, 1.0, 1.0,  ρM 0.0272  0.2414  0.0429  -0.2280  0.1560  

0.25 ρD 0.0426  0.1782  0.0091  -0.1196  0.1332  

 
Maximum 1.0001  1.0001  1.0041  1.0099  0.0025  

 
Minimum 0.9999  0.9999  1.0000  1.0000  0.0000  

Case 3 Mean 1.0000  1.0000  1.0008  1.0017  0.0003  

 
COV 0.0000  0.0000  0.0008  0.0017  1.0275  

1.0, 1.0, 1.25,  ρM 0.0770  0.2696  0.0521  -0.2171  0.1557  

0.25 ρD -0.0090  0.1205  0.0277  -0.1814  0.1278  

 
Maximum 1.0001  1.0001  1.0037  1.0097  0.0017  

 
Minimum 0.9999  1.0000  1.0000  1.0000  0.0000  

Case 4 Mean 1.0000  1.0000  1.0008  1.0016  0.0002  

 
COV 0.0000  0.0000  0.0008  0.0017  1.0069  

1.0, 1.0, 1.6,   ρM 0.1764  0.1530  0.0982  -0.1451  0.1848  

0.25 ρD 0.0219  0.1406  0.0929  -0.1603  0.1307  

 
Maximum 1.0001  1.0001  1.0048  1.0095  0.0009  

 
Minimum 0.9999  0.9999  1.0000  1.0000  0.0000  

Case 5 Mean 1.0000  1.0000  1.0007  1.0015  0.0001  

 
COV 0.0000  0.0000  0.0008  0.0016  1.0352  

1.0, 1.0, 2.0,  ρM 0.0633  0.2574  0.1034  -0.0805  0.2024  

0.25 ρD -0.1376  0.1759  0.1015  -0.1275  0.1454  

 
Maximum 1.0001  1.0001  1.0039  1.0085  0.0007  

 
Minimum 0.9999  0.9999  1.0000  1.0000  0.0000  

Case 6 Mean 1.0000  1.0000  1.0014  1.0031  0.0014  
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COV 0.0001  0.0001  0.0014  0.0034  1.0229  

1.0, 1.0, 1.0, ρM 0.1037  0.0151  -0.0781  -0.2666  0.1994  

0.5 ρD 0.0006  -0.0171  -0.0153  -0.1865  0.1422  

 
Maximum 1.0004  1.0005  1.0083  1.0200  0.0085  

 
Minimum 0.9997  0.9997  1.0000  1.0000  0.0002  

Case 7 Mean 1.0000  1.0000  1.0012  1.0021  0.0021  

 
COV 0.0001  0.0001  0.0016  0.0021  1.1487  

2.0, 2.0, 1.0, ρM 0.1471  0.0535  0.3067  0.1077  0.4782  

0.25 ρD 0.0481  -0.0208  -0.0649  -0.0686  0.1707  

 
Maximum 1.0012  1.0006  1.0105  1.0157  0.0151  

 
Minimum 0.9998  0.9998  1.0000  1.0000  0.0001  

Case 8 Mean 1.0000  1.0000  1.0018  1.0034  0.0059  

 
COV 0.0002  0.0002  0.0023  0.0033  1.1451  

2.0, 2.0, 1.0, ρM 0.2230  0.0651  0.2660  0.0691  0.5315  

0.5 ρD 0.0834  -0.0541  -0.0327  -0.1391  0.1402  

 
Maximum 1.0014  1.0013  1.0135  1.0174  0.0482  

 Minimum 0.9997  0.9995  1.0000  0.9998  0.0003  
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Table 2.3 Statistics of RX, RY, max(rθθθθ), RXT , RYT, and max(rθθθθT) for one-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ effect. 

System and loading 

condition 
Variable 

TX, TY, Ω, 

 ex, ey,  

PSA (g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

Case 1 Mean 1.0000  0.9999  0.0099  0.9999  0.9999  0.0100  

 
COV 0.0007  0.0007  0.6867  0.0013  0.0024  0.6812  

1.0, 1.0, 0.8, ρM -0.0700  0.0343  0.2562  -0.0860  0.0672  0.2545  

0, 0.25y1, ρD -0.0261  -0.0752  0.0770  0.0029  0.0298  0.0789  

0.25 Maximum 1.0020  1.0029  0.0627  1.0038  1.0086  0.0614  

 
Minimum 0.9968  0.9959  0.0015  0.9955  0.9914  0.0015  

Case 2 Mean 1.0001  1.0000  0.0127  1.0000  1.0000  0.0127  

 
COV 0.0008  0.0010  0.5976  0.0014  0.0024  0.5940  

1.0, 1.0, 1.0, ρM -0.0068  -0.1229  0.2521  0.0314  -0.0551  0.2526  

 0, 0.25y1, ρD 0.0148  -0.1460  0.0009  -0.0245  0.0126  0.0011  

0.25 Maximum 1.0028  1.0036  0.0672  1.0032  1.0104  0.0663  

 
Minimum 0.9959  0.9925  0.0019  0.9948  0.9920  0.0020  

Case 3 Mean 1.0001  1.0000  0.0125  1.0000  1.0001  0.0126  

 
COV 0.0008  0.0010  0.5264  0.0012  0.0023  0.5256  

1.0, 1.0, 1.25, ρM 0.0133  -0.1637  0.2421  0.1437  -0.0787  0.2434  

 0, 0.25y1 ρD 0.0283  -0.1387  0.0637  0.0899  -0.0435  0.0658  

0.25 Maximum 1.0027  1.0042  0.0539  1.0039  1.0073  0.0534  

 
Minimum 0.9966  0.9932  0.0024  0.9957  0.9918  0.0024  

Case 4 Mean 1.0001  0.9999  0.0105  1.0000  1.0002  0.0105  

 
COV 0.0007  0.0008  0.4956  0.0011  0.0021  0.4969  

1.0, 1.0, 1.6,  ρM 0.0517  -0.1200  0.2303  0.0758  -0.0637  0.2326  

 0, 0.25y1 ρD 0.0416  -0.0427  0.0988  0.0796  -0.0024  0.1031  

0.25 Maximum 1.0030  1.0019  0.0376  1.0045  1.0083  0.0378  

 
Minimum 0.9965  0.9953  0.0028  0.9963  0.9922  0.0029  

Case 5 Mean 1.0001  0.9999  0.0089  1.0001  1.0000  0.0089  

 
COV 0.0006  0.0007  0.5111  0.0012  0.0020  0.5140  

1.0, 1.0, 2.0, ρM 0.0704  -0.2466  0.3122  0.0251  -0.0146  0.3148  

 0, 0.25y1 ρD 0.0490  -0.0565  0.2589  0.0975  0.1261  0.2634  

0.25 Maximum 1.0027  1.0016  0.0299  1.0075  1.0069  0.0300  

 
Minimum 0.9973  0.9964  0.0038  0.9962  0.9925  0.0037  

Case 6 Mean 1.0000  0.9998  0.0229  0.9998  1.0002  0.0229  

 
COV 0.0010  0.0023  0.9146  0.0023  0.0042  0.9133  
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1.0, 1.0, 1.0, ρM 0.0343  -0.0663  0.3199  -0.0023  -0.0435  0.3226  

 0, 0.25y1 ρD 0.0616  -0.1262  0.1884  0.0145  -0.0778  0.1888  

0.5 Maximum 1.0043  1.0054  0.1552  1.0052  1.0158  0.1528  

 
Minimum 0.9950  0.9779  0.0042  0.9915  0.9866  0.0042  

Case 7 Mean 1.0000  1.0000  0.0361  1.0001  1.0002  0.0363  

 
COV 0.0007  0.0011  1.1454  0.0019  0.0028  1.1324  

2.0, 2.0, 1.0, ρM 0.0733  -0.1434  0.4893  0.1176  0.1004  0.4948  

 0, 0.25y1 ρD 0.0062  -0.1348  0.3032  0.0691  0.0859  0.3034  

0.25 Maximum 1.0022  1.0046  0.2998  1.0065  1.0082  0.2884  

 
Minimum 0.9967  0.9912  0.0032  0.9949  0.9922  0.0031  

Case 8 Mean 1.0000  0.9999  0.0707  1.0001  1.0005  0.0719  

 
COV 0.0009  0.0019  1.4284  0.0030  0.0050  1.3910  

2.0, 2.0, 1.0, ρM -0.0245  -0.1155  0.4864  0.0559  -0.0023  0.4959  

 0, 0.25y1 ρD -0.1000  -0.0680  0.3298  0.2195  0.1323  0.3245  

0.5 Maximum 1.0035  1.0072  0.6835  1.0084  1.0177  0.6464  

 Minimum 0.9972  0.9824  0.0054  0.9896  0.9826  0.0058  
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Table 2.4 Statistics of RX, RY, max(rθθθθ), RXT, RYT, and max(rθθθθT) for two-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ effect. 

System and loading 

condition 
Variable 

Tx, Ty, Ω, 

 ex, ey, 
 PSA(g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

Case 1 Mean 1.0001  1.0000  0.0203  1.0000  1.0003  0.0203  

1.0, 1.0, 0.8, COV 0.0012  0.0014  0.8857  0.0015  0.0024  0.8825  

0.25x1, ρM -0.0947  -0.0617  0.2693  -0.1226  0.0310  0.2690  

0.25y1, ρD -0.1330  -0.1157  0.1668  -0.0020  0.0093  0.1671  

0.25 Maximum 1.0040  1.0031  0.1249  1.0057  1.0078  0.1232  

 
Minimum 0.9927  0.9891  0.0036  0.9955  0.9912  0.0036  

Case 2 Mean 1.0003  1.0000  0.0250  0.9998  1.0002  0.0250  

1.0, 1.0, 1.0,  COV 0.0015  0.0017  0.7881  0.0018  0.0024  0.7869  

0.25x1, ρM -0.0436  -0.1113  0.2658  -0.1199  0.0622  0.2657  

0.25y1, ρD -0.0075  -0.1620  0.1451  0.0208  0.0164  0.1459  

0.25 Maximum 1.0086  1.0037  0.1270  1.0065  1.0075  0.1269  

 
Minimum 0.9963  0.9854  0.0048  0.9888  0.9918  0.0048  

Case 3 Mean 1.0001  1.0000  0.0248  0.9999  1.0001  0.0248  

1.0,1.0, 1.25, COV 0.0017  0.0015  0.7169  0.0017  0.0024  0.7157  

0.25x1, ρM 0.0630  -0.0975  0.2777  -0.0574  -0.0397  0.2772  

0.25y1, ρD 0.1146  -0.1047  0.1685  0.0174  0.0299  0.1684  

0.25 Maximum 1.0072  1.0030  0.1167  1.0066  1.0086  0.1159  

 
Minimum 0.9893  0.9887  0.0055  0.9927  0.9904  0.0055  

Case 4 Mean 0.9997  1.0000  0.0223  1.0000  1.0000  0.0223  

1.0, 1.0, 1.6,  COV 0.0019  0.0013  0.6696  0.0016  0.0020  0.6701  

0.25x1, ρM -0.0470  -0.0437  0.2815  -0.0403  0.1784  0.2810  

0.25y1, ρD 0.0227  -0.0442  0.2380  -0.0534  0.1495  0.2388  

0.25 Maximum 1.0045  1.0042  0.0975  1.0079  1.0071  0.0972  

 
Minimum 0.9874  0.9914  0.0053  0.9937  0.9947  0.0053  

Case 5 Mean 0.9999  0.9999  0.0196  1.0000  1.0000  0.0196  

1.0, 1.0, 2.0, COV 0.0013  0.0010  0.6779  0.0017  0.0019  0.6792  

0.25x1, ρM -0.0916  -0.0631  0.2280  0.0057  0.1272  0.2285  

0.25y1, ρD 0.0191  -0.1715  0.1856  0.0915  0.1600  0.1862  

0.25 Maximum 1.0036  1.0026  0.0777  1.0077  1.0055  0.0778  

 
Minimum 0.9947  0.9936  0.0031  0.9951  0.9951  0.0031  

Case 6 Mean 1.0003  0.9997  0.0459  1.0002  1.0006  0.0460  

1.0, 1.0, 1.0, COV 0.0020  0.0041  1.0658  0.0028  0.0048  1.0639  
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0.25x1, ρM 0.1331  -0.0667  0.3531  -0.0816  -0.0359  0.3500  

0.25y1, ρD 0.1204  -0.1237  0.2300  0.0091  -0.0220  0.2280  

0.5 Maximum 1.0127  1.0165  0.3036  1.0093  1.0170  0.2985  

 
Minimum 0.9922  0.9636  0.0095  0.9882  0.9847  0.0096  

Case 7 Mean 0.9998  0.9998  0.0701  0.9997  1.0002  0.0707  

2.0, 2.0, 1.0, COV 0.0023  0.0017  1.3495  0.0028  0.0040  1.3555  

0.25x1, ρM -0.0574  -0.1591  0.4091  0.0182  0.1643  0.4111  

0.25y1, ρD 0.0823  -0.1616  0.3200  0.0286  0.2066  0.3201  

0.25 Maximum 1.0196  1.0048  0.7576  1.0145  1.0250  0.7676  

 
Minimum 0.9923  0.9905  0.0094  0.9863  0.9914  0.0095  

Case 8 Mean 1.0001  1.0001  0.1380  1.0001  1.0014  0.1393  

2.0, 2.0, 1.0, COV 0.0020  0.0020  1.6755  0.0048  0.0074  1.6621  

0.25x1, ρM 0.0317  0.0403  0.4112  -0.0311  0.1686  0.4141  

0.25y1, ρD 0.0189  -0.1342  0.3608  -0.0592  0.2178  0.3596  

0.5 Maximum 1.0127  1.0088  1.6875  1.0257  1.0494  1.6921  

 Minimum 0.9921  0.9938  0.0113  0.9709  0.9832  0.0114  
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Figure 2.1 Schematic plan view of the idealized one-story building. 
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Figure 2.2 Components of an arbitrarily selected record (COALINGA 05/02/83, PARKFIELD - GOLD HILL) scaled by the 

same factor such that the PSA at Tx = 1.0 (s) -(for the first record component) equals 0.25 (g), and linear elastic responses of 

two-way symmetric system 
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(a)  Three-dimensional structure under seismic excitations 

 

 

(b)  Plan view 

 

Figure 2.3  Illustration of the lateral load resisting elements by assuming all the 

elements are located at the edges of the slab. 
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(a)                                                      (b) 

 
(c)                                                      (d) 

 
(e)                                                      (f) 

Figure 2.4  Effect of Bouc-Wen model parameters on hysteresis loop of inelastic 

SDOF system 
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a)                                                                                             b) 

 
 

 

Figure 2.5 Responses of two-way symmetric system considering the A-∆∆∆∆ effect: a) Responses for the record components that 

are scaled by the same factor such that the PSA at Tx = 1.0 (s) equal to 0.25 (g), b) Responses for the record components that 

are scaled by the same factor such that the PSA at Tx = 1.0 (s) equal to 0.5 (g). 
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Figure 2.6 Samples of ratios and rotational response versus magnitude and site-to-source distance for the second two-way 

symmetric system shown in Table 2.2 
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a)                                                                                       b) 

 

Figure 2.7 Responses by ignoring and considering the A-∆∆∆∆ effect for the second one-way asymmetric system listed in Table 2.3 

and the scaled record shown in Figure 2.2: a) Responses without considering the A-∆∆∆∆ effect, b) Responses considering the A-∆∆∆∆ 

effect. 
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Figure 2.8 Samples of ratios and rotational response versus magnitude and site-to-source  distance for the second one-way 

symmetric system shown in Table 2.3 
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a)                                                                                      b) 

 

Figure 2.9 Responses by ignoring and considering the A-∆∆∆∆ effect for the second two-way asymmetric system listed in Table 2.4 

and the scaled record shown in Figure 2.3: a) Responses without considering the A-∆∆∆∆ effect, b) Responses considering the A-∆∆∆∆ 

effect. 
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Figure 2.10 Samples of ratios and rotational response versus magnitude and site-to-source distance for the second asymmetric 

system shown in Table 2.4. 

 

6 6.5 7 7.5
0.98

0.99

1

1.01

R
X

T

6 6.5 7 7.5
0.98

0.99

1

1.01

R
Y

T

6 6.5 7 7.5
0

0.02

0.04

0.06

Moment Magnitude, M

m
a

x
(|

r θ
T
|)

10 20 30 40 50 60 70 80 90 100
0.98

0.99

1

1.01

R
X

T

10 20 30 40 50 60 70 80 90 100
0.98

0.99

1

1.01

R
Y

T

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

Distance, D (km)

m
a

x
(|

r θ
T
|)



49 

 

CHAPTER 3.  INEALSTIC TORSIONAL RESPONSE 

WITH P-∆∆∆∆ AND INSTANTANOUS LOAD 

ECCENTRICITIES EFFECT 

3.1 Introduction 

Field observations of earthquake damage have shown that many building failures 

during earthquakes are associated with torsional load effects (Esteva 1987).  

However, because the linear and nonlinear torsional responses are controlled by many 

parameters, literature reviews indicate (Rutenberg 2002; De Stefano and Pintucchi 

2008) that conclusions from various research and investigations are not consistent. 

The torsional responses can be induced when the center of stiffness (CS) and 

center of strength (CP) does not coincide with the center of mass (CM).  Even for 

two-way symmetric structures, torsion could occur because the so called accidental 

load eccentricity and accidental torsional motion.  The accidental torsional motion is 

mainly attributed to two factors: the first one is symmetric-plan structure is usually 

not perfectly symmetric due to uncertainty in the physical property (e.g. modulus of 

elasticity) of the structure and/or the inaccuracy in the geometry of the structural 

member as compared to the design dimension; the other factor is ground rotational 

motion about the vertical axis (Chopra 2001).  Furthermore, torsional responses could 

also occur because the instantaneous load eccentricity discussed in Hong (2013).  

This instantaneous load eccentricity is due to that the CM moves with respect to its 

original position or to the supports or the CS when a structure responds to seismic 

ground motions.  This motion results in the instantaneous load eccentricities under 
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seismic horizontal excitations, thereby cause additional torsional load effect.  This is a 

second-order effect was termed A-∆ effect (Hong 2013).  

Another second-order effect, which has significant implication in structural design, 

is known as P-∆ effect.  This P-∆ effect basically described the increased overturning 

moment caused by the action of vertical loads acting through structural lateral 

deformations.  The P-∆ effect decreases the capacity of buildings to resist the seismic 

loading and could cause structural instability.  For parametric investigation, simple 

one-story and multi-story models represented by simplified single- and/or multi-

degree-of-freedom (SDOF and/or MDOF) systems have been widely used to evaluate 

the P-∆ effect by several studies, including those given by Bernal (1987), MacRae 

(1994), Tremblay et al. (1999), Gupta and Krawinkler (2000), Vian and Bruneau 

(2003).  Bernal (1987) suggested that amplification factors could be used to take into 

account the P-∆ effect in elastic and inelastic systems.  MacRae (1994) used the 

concept “hysteresis center curve” (HCC) (MacRea and Kawashima 1993) in dealing 

with P-∆ effect for assessing the structural instability, and concluded that the P-∆ 

effect decreases both elastic and inelastic stiffness of structures.  Tremblay et al. 

(1999) investigated the use of three different amplification factors accounting for P-∆ 

effect for multistory structures under earthquake excitations, typical of eastern and 

western Canada.  By analyzing a 20-storey steel moment resisting frame (MRF), they 

concluded that the increased strength could result in the ductility demand within the 

level computed without P-∆ effect, but the lateral displacements in the structure using 

the approximate methods were generally larger than those obtained by neglecting the 

action of gravity loads.  In Gupta and Krawinkler (2000), various structural models 

including 3-, 9- and 20-story frame structures located in Seattle and Los Angles were 
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investigated by considering P-∆ effects. They concluded that when accounting for 

large P-∆ effects, the seismic responses become sensitive to modeling assumptions 

and ground motion characteristics; furthermore, they indicated that the elastic analysis 

cannot be used to replicate P-∆ effects on the inelastic system response.  Vian and 

Bruneau (2003) examined the P-∆ effect using shaking table test results, confirming 

that the stability factor is the most important factor for the structural stability and 

collapse.  Furthermore, analysis results presented by Tremblay et al. (1999), Gupta 

and Krawinkler (2000), and Humar et al. (2006) indicate that an increase in strength 

or stiffness, according to some of the suggested methods to compensate the P-∆ 

effect, does not ensure the structural stability.  The conclusions from these studies 

indicate that there is no commonly accepted simple approximate method to estimate 

P-∆ effect considering seismic excitations and nonlinear inelastic responses. 

As the consideration of the A-∆  effect for seismic responses is a relatively new 

adventure, its effect together with the P-∆ effect in bui1dings subjected to 

earthquakes are unknown and should be investigated.  The assessment of the 

statistical characterizations of the inelastic torsional behavior under bidirectional 

seismic excitations by considering the A-∆ and/or P-∆ effects forms the main 

objective of this Chapter.  For the assessment, two-way symmetric, one-way and two-

way asymmetric single-story systems with different lateral uncoupled frequency ratio, 

stability factor, and load eccentricities are considered.  Since the ground motions are 

stochastic, the uncertainty due to record-to-record variability on the inelastic torsional 

responses is investigated by using a set of 123 California records from 11 seismic 

events selected from the Next Generation Attenuation Database (PEER Center, 2006). 
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3.2 Single-story model and solution procedure 

Consider the idealized one-story building shown in Figure 3.1.  The system has a 

rigid horizontal slab with uniformly distributed mass.  The lateral load resisting 

elements (frames or walls) are denoted as A, B, C and D.  The elements B and C are 

oriented and only resist force in the x-direction, while the elements A and D are 

oriented and only resist force in the y-direction.  The distances from the CM to the 

elements (A, D and B, C) denoted by xi and yi, and the center of the stiffness (CS) 

located at (ex, ey) are also shown in the figure. 

By using ux, uy and θ denoting the displacement along X-axis, displacement along 

Y-axis and rotation of the rigid slab with respect to the CM, the equations of motion 

(see Appendix A) of the considered system with P-∆ effect, can be rewritten as: 

x x x xi gx gv x xmu c u f mu mu u h mg u h+ + = − − +∑&& & && &&  (3.1a) 

y y y yi gy gv y ymu c u f mu mu u h mg u h+ + = − − +∑&& & && &&  (3.1b) 

0)(2 =+−+θ+θ ∑θ iyiixi xfyfcmr &&&  (3.1c) 

where m is the mass; r is the radius of gyration of the slab about the CM; c denotes 

the damping coefficient; f denotes the resisting force of the elements, an overdot on a 

variable denotes its temporal derivative, the summation Σ is over applicable lateral 

load resisting elements; h is the height of the structure.  Symbols c and gu&&  with an 

additional subscript x and y are used to denote the quantities associated with the X-

axis and Y-axis, respectively; while 
gv

u&&  represents the vertical ground accelerations. 
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x
mg u h  and 

y
mg u h  stand for the P-∆ effect induced by the gravity load, while 

gv x
mu u h&&  and 

gv y
mu u h&&  represent that induced by vertical seismic excitation. 

By incorporating the Rayleigh damping and considering that the damping ratio, ζ, 

for the two translational modes is the same (and assumed to be equal to 5% 

throughout the study.), the equation of motion with P-∆ effect can be expressed as: 
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 (3.2c) 

where 2 2

1 2x x xω ω ω= + , 
2 2

1 2y y y
ω ω ω= +  and ( ) ( )2 22 2

xi i yi i
y r x rθω ω ω= +∑ ∑

represent the vibration frequency along the X-axis, Y-axis, and the rotational vibration 

frequency, respectively， in which xi
ω  and 

yi
ω  are the vibration frequencies of i-th 

resisting element oriented along the X- and Y-direction; uθ = rθ; αx and αy are the 

ratio of the post-yield to initial stiffness along the X- and Y-axis; 
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( )
yxyxa ω+ωωζω= /20 ; ( )

yxa ω+ωζ= /21 ; zxi and zyi are the hysteretic displacement 

for each element governed by the Bouc-Wen hysteretic model (see Appendix B). 

Since the CM moves with respect to its original position or to the supports or the 

CS when a structure responds to seismic ground motions (see Figure 3.2), this 

resulted in the instantaneous load eccentricities under seismic horizontal excitations 

that are functions of the time-varying relative position of the instantaneous CM (Hong 

2013).  By taking into account this second order effect, which was termed A-∆ effect, 

Eq. (3.1c) becomes, 

( ) ( )( )2 0
xi i y yi i x

mr c f y u f x uθθ θ+ + − − + − =∑&& &  (3.3) 

and the displacement of the i-th element placed parallel X- and Y-axis (uxi and uyi) 

becomes 

( )( ) ( ) ( ) ( )
xiT xT i yT T

u t u t y u t tθ= − −  (3.4a) 

and 

( )( ) ( ) ( ) ( )yiT yT i xT Tu t u t x u t tθ= + −  (3.4b) 

where the symbols ( ), ( ), ( ), ( ),x y xi yiu t u t u t u t and ( )tθ  with an additional subscript T 

(i.e., ( ), ( ), ( ), ( ),xT yT xiT yiTu t u t u t u t  and ( )
T

tθ ) are used to emphasize that these 

quantities referred to those when both the A-∆ and P-∆ effects are considered.  This 

resulted in the (time-dependent) stiffness matrix K  (by considering A-∆ effect) 

becomes (Hong 2013), 



55 

 

2 2

0

0

2 2

XX X XX yT

YY Y YY xT

X XX yT Y YY xT X yT Y xT XX yT YY xT

K K K u

K K K u

K K u K K u K K u K u K u K u

θ

θ

θ θ θθ θ θ

 +
 

= − 
 + − + − + + 

K (3.5) 

where KXX, KYY, Kθθ, KθX and KθY denote the elements of the stiffness matrix K; and 

K  is time-dependent since uxT and uyT vary in time.  In other words, the A-∆ effect 

affects the stiffness that couples the translational and rotational displacements.  Based 

on these considerations, the displacements under bidirectional seismic excitations 

accounting for A-∆ and P-∆ effects are governed by 
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To simplify the parametric study of inelastic system, rather than estimating the 

displacement responses, the normalized displacements defined by, 

xT
x

x

u
µ =

∆
, 

yT

y

x

u
µ =

∆
% , T

x

uθ
θµ =

∆
, xi

zxi

xi

z
µ =

∆
, 

yi

zyi

yi

z
µ =

∆
 (3.7) 

are used, where ∆xi and ∆yi are the yield displacements of the i-th element parallel to 

the X- and Y-axis, respectively; ∆x = min(∆xi) denotes the initial yield displacement 

(capacity) of the structure along X-axis; the normalized displacements µx and  µy (

/y y x y
u µ= ∆% and /

/
x y x y

∆ = ∆ ∆ ) represent the ductility demands of CM along the X- 

and Y-axis, while µxi (or µyi) represents the ductility demand for the i-th lateral load 

resisting element. 

The formulation above shows that the responses of the system are characterized by 

ωx, ωy, Ωθ, the eccentricity ratios ex/r and ey/r.  The normalized responses (see 

Eq.(3.7)) are expressed as fractions of ∆xi, ∆yi, ∆x and ∆y, and /x r∆ value defined 

according to the physical property of the structure.  To facilitate parametric studies of 

the responses of the system described above, the normalized yield strength φx and φy 

are introduced, which are defined by (Chopra 2001), 

0/x x xdφ = ∆  and 0
/

y y y
dφ = ∆  (3.8) 

where d0x and d0y are the peak linear elastic displacement responses along the X-axis 

and Y-axis. d0x equals Sx/(ωx)
2
, where Sx is the pseudo-spectral acceleration (PSA) for 

the first record component, while dy equals Sy/(ωy)
2
, where Sy is the PSA for the 

second record component. By using and defining the above normalized variables, Eq 

(3.6) can be expressed as, 
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where 2 1x x x
δ = ∆ ∆  and 

2 1y y yδ = ∆ ∆  represent the ratios between yield 

displacements of different load resisting elements along X- and Y-axis; 
i i img K hθ =  

is the stability factor of the structure (MacRae 1994), where Kii representing KXX or 

KYY is the initial linear elastic stiffness.   

By introducing the following vector, 

{ } { }1 2 3 4 5 6 7 8 9 10 1 2 1 2                                    
x x y y zx zx zy zy

M M M M M M M M M M θ θµ µ µ µ µ µ µ µ µ µ= && % % &

Eq. (3.9) can be expressed as a series of first-order differential equations, and solved 

by Gear’s method (Shampine and Reichelt, 1997),  

1 2M M=&  (3.10a) 
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3 4M M=&  (3.10c) 
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For a given structural system with an assumed stability factor, the solution of Eq. 

(3.10) is obtained as below: 

1) For a given record, determine the peak linear elastic responses d0x and d0y for the 

corresponding linear elastic SDOF systems; 
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2) The record components are scaled with the same factor such that its first record 

component (X-direction) leads to the PSA at Tx =1.0 (s) equal to 0.25 (g) or 0.5(g); 

3) Compute the yield displacement 
0x x xdφ∆ =  and 0y y y

dφ∆ = ; 

4) Solve Eq. (3.2) to find 
xu , y

u , uθ , 
xiu , yi

u ; 

5) Radius of gyration r for the considered geometry is given by ( )2 2 12r L W= + . 

Throughout this study the aspect ratio (L/W) was considered to be equal to be 

equal to 2. By considering that the structure has the height over width ratio equal 

to 1 (i.e., n
h W  = 1), and that the height of structure can be assigned based the 

following approximate relation ( )3 4
0.075

n n
T h= , where Tn = Tx = Ty, it is 

concluded that r = 10 m.  This value can be used to calculate the ratio of /
x

r∆ ; 

6) For given values φx and φy, solve Eq. (3.10) to find µx, µy, µθ; 

7) The displacements of the lateral load resisting elements µxi and µyi. can be solved 

using ( ) i x

xiT x x y x

y
u t

r r
θµ µ µ

∆ = ∆ − − ∆ 
 

% and ( ) i x

yiT y x x x

x
u t

r r
θµ µ µ

∆ = ∆ + − ∆ 
 

% ; 

8) Compare 
xu , y

u , uθ , 
xiu , yi

u (considering only P-∆ effect) and 
xTu , 

yT
u , 

Tuθ , 

xiTu , 
yiT

u  (considering both A-∆ and P-∆ effects) to determine the potential 

differences between the obtained torsional effects; 

9) Repeat Steps 1) through 7) for each of the 123 records and estimate the statistics 

of torsional effects; 

10) Repeat step 3) through 8) with varying stability factors to investigate the impact 

of the stability factors on inelastic torsional response. 
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3.3 Statistical assessment of the normalized responses 

3.3.1 Ground motion records 

Nonlinear inelastic responses of a structure can be sensitive to both the structural 

dynamic properties (e.g., the natural vibration period and damping ratio) and the 

characteristics of the individual ground motion used as seismic input (e.g., intensity, 

duration and frequency) (Williamson 2003; Kalkan and Graizer 2007).  Because of 

the uncertainty in ground motions, the responses should be quantified using statistics 

and, the selection of real earthquake records should consider the severity, intensity, 

and magnitude of earthquake, and the site condition.  To evaluate the inelastic 

response of structures considering A-∆ and P-∆ effects, a set of 123 California records 

assembled from 11 seismic events are selected in this study.  These records are a 

subset of 592 records that are extracted from the Next Generation Attenuation (NGA) 

database (PEER, 2006) with selection criteria detailed in Hong and Goda (2007).  

Since nonlinear inelastic responses are of concern, the following more stringent 

criteria are used to select the 123 records: 

(1) The low-cut filter corner frequency in processing raw data equals 0.2 Hz or less; 

(2) The moment magnitude of the event is greater than 6;  

(3) The distance D (i.e., closest horizontal distance to the projected faults on the 

earth or the epicentral distance if the former is not available) is greater than 15 

km; 

(4) The shear wave velocity Vs30 in the uppermost 30 m is greater than 360 (m/s), 

representing NEHRP’s site class A, B and C (i.e, Hard rock, Rock and very dense 

soil and soft rock) (BSSC 2001). 
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The 123 records, each with three components, employed in this study are those 

satisfied the criteria. In Table 3.1, the records are identified by the event ID, 

earthquake name and record ID.  For the analysis, it is assumed that the orientation of 

the first record component parallels the X-axis, second component parallels the Y-

axis, and the third vertical record component parallels the Z-axis. 

3.3.2 Numerical results 

3.3.2.1 General consideration 

There are many parameters that could affect the torsional responses, including ωx, 

Ωy, Ωθ, load eccentricities, normalized yield strength and nonlinear hysteretic model 

(De Stefano and Pintucchi 2008).  In this study, symmetric, one-way asymmetric and 

two-way asymmetric systems are considered to evaluate the responses and to 

investigate the influence of the A-∆ and P-∆ effect on the seismic responses.  For the 

numerical analysis, in the subsequent sections (i.e. section 3.3.2.2 and 3.3.2.3), the 

uncoupled lateral frequencies along X-axis and Y-axis are assumed to be the same (ωx 

= ωy = 2π or 4π); the normalized yield strengths φx and φy are considered to be the 

same and equal to 0.5; and the stability factor θx = θy = 0.045.  The uncoupled 

torsional-to-lateral frequency ratio θΩ  is considered to vary from 0.8 to 2.0 (Goel and 

Chopra 1991). A large θΩ  value represents torsionally stiff system with resisting 

elements near the perimeter of the building plan, and a small θΩ  value indicates a 

torsionally flexible system with a stiff central core (De la Llera and Chopra 1995). 

The Bouc-Wen hysteretic model (see Appendix B) has 12 parameters: four shape 

parameters {α, β, γ, n}, two degradation parameters {δη, δν} and six pinching 
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parameters {ζs, p, q, ψ, δψ, λ} (Foliente, 1995; Ma et al., 2004).  The shape parameter 

α controls the post-yield tangent stiffness of hysteresis loop; shape parameters β  and 

 γ control the loading and unloading path, and n controls smoothness of hysteretic 

model that changing smoothness of transition between pre-yielding and post-yielding 

state.  For the numerical analysis to be carried out, the strength and stiffness 

degradations are neglected by considering δη = 0 and  δν=0.  The shape parameters 

selected for the numerical analysis to be carried out are {α, β, γ, n} = 

{0.05, 0.5, 0.5, 2}.  The remaining parameters for the Bouc-Wen model [α, βµxi, βµyi, 

γµxi, γµyi, nxi, nyi] = [0, 0.5, 0.5, 0.5, 0.5, 2, 2] are considered for each lateral load 

resisting element. 

To reduce the number of the parameters that need to be considered for the 

parametric investigation, it is assumed that the distances from the CM to each lateral 

load resisting element along each direction are equal (i.e. 
1 2x x=  and 

1 2y y= ), 

and the ratio i
x L  equals i

y W , which is denoted using the symbol χ.  Based on 

these assumptions, and the relation /
x

Ω =θ θω ω  it can be shown that 

( ) ( )2 2

YY XX
W r K K L rθχ = Ω + .  In other words, under these assumptions, the 

value of the ratio can be calculated based on other structural characteristics.  The 

calculated value of χ can readily be used to define the locations of the lateral load 

resisting elements: two lateral load resisting elements that parallel the X-axis are 

placed at y equal to Wχ  and Wχ−  while the two elements that parallel the Y-axis are 

placed at x equal to Lχ  and Lχ− .  For the structure systems to be analysis, the 

eccentricity ratios defined as ex/r and ex/r are considered to be equal to 0 and 
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0.25 /
i

y r  for one-way asymmetric system, and 0.25 /
i

x r  and 0.25 /
i

y r  for two-

way asymmetric systems. 

3.3.2.2 Two-way symmetric system 

Consider an arbitrary earthquake record selected from Table 3.1 for a symmetric 

system.  To illustrate that the responses of A-∆ and P-∆ effects are not linear 

proportional to the intensity of the excitation, consider a structure with TX = 1 and TY 

= 1.  The record components of a selected record are scaled with the same factor such 

that its first record component leads to a PSA at TX =1.0s equal to 0.25g and 0.5g.  

For example, the record of the Coalinga earthquake (Moment Magnitude M = 6.36) 

recorded at the Parkfield - Gold Hill 2 West (Record ID: 350, epicentral distance D = 

47.41 km and the shear wave velocity in the uppermost 30m, Vs30 = 376.1 m/s) is 

depicted in the Figure 3.3.  Nonlinear inelastic seismic responses for Case 6 defined 

in Table 3.2, including A-∆ and P-∆ effects, are calculated by solving Eq. (3.10); the 

obtained time histories of the responses are shown in Figure 3.4.  The figure shows a 

visible rotational response rθT(t) that is caused by A-∆ and P-∆ effect for symmetric 

system.  To analyze the response affected by A-∆ and P-∆ effect, the ratios defined as 

RX = max( ( ) ) max( ( ) )xT xu t u t , and RY = max( ( ) ) max( ( ) )
yT y

u t u t  are calculated.  

Furthermore, the maximum of the ratios for the displacements of the lateral load 

resisting elements defined as 
1 2 1 2max( ( ) , ( ) ) max ( ( ) , ( ) )XT x T x T x xR u t u t u t u t= and

1 2 1 2max( ( ) , ( ) ) max ( ( ) , ( ) )YT y T y T y yR u t u t u t u t=   are also calculated.  

By repeating the above analysis for all the considered records, samples of   ,  ,X YR R

 ,  XT YTR R and max(rθT) for each of the cases listed in Table 3.2 are obtained.  To 
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illustrate the variability of the ratios versus M and D, samples for Case 2 defined in 

Table 3.2 are illustrated in Figure 3.5.  The results shown in Figure 3.5 indicate that 

the correlation coefficients calculated from the samples are small, suggesting that that 

  ,  ,
X Y

R R  ,  
XT YT

R R and max(rθT) could be reasonably assumed to be independent of M 

and D.  Since plots for other cases are similar to those shown in Figure 3.5, they are 

not included. 

By adopting this assumption, statistics of the ratios are calculated and included in 

Table 3.2 for the considered structural systems shown in the same table.  The results 

indicate that the means of RX, RY, RXT and RYT are near unity and the coefficient of 

variation (COV) values of RX and RY are small, implying that the influence of 

combining A-∆ and P-∆ on the nonlinear response of the CM is negligible.  

Comparison of the statistics of the ratios RX, RY, RXT and RYT shown in Table 3.2 

indicates that there are differences among these ratios, suggesting that the 

displacements on the lateral load-resisting elements are affected by considering and 

ignoring the A-∆ effect.  Statistics of max(rθT) shown in Table 3.2 also indicate that 

the additional torsional responses are considerably large in two-way symmetric 

system (e.g. the Case 8 listed in Table 3.2, the mean value of torsional displacement, 

rθT, equals to 0.052m) and sensitive to the natural vibration periods. 

Since torsional flexibility is controlled by the uncoupled torsional-to-lateral 

frequency ratio θΩ  which ranges from 0.8 to 2.0 for the systems shown in Table 3.2.  

The results shown in table 3.2 indicates that the increase in θΩ  leads to a decreased 

rotational response.  The COV of torsional response ranges from 0.8 to 1.1 for all 
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systems, which indicates that there is a large uncertainty in torsional response for two-

way symmetric system by considering the A-∆ and P-∆  effects.  

3.3.2.3 One-way asymmetric system and Two-way asymmetric system 

For one-way asymmetric system and two-way asymmetric system, the analysis 

similar to that presented in the previous section was carried out.  The results obtained 

for a few systems defined in Tables 3.3 and 3.4 are also presented in these tables.  For 

illustration purpose, the time histories of the displacements for Case 6 ( 1θΩ = , PSA 

= 0.5g) shown in Table 3.3 and for Case 6 shown in Table 3.4 are depicted in Figures 

3.6 and 3.7 by ignoring and considering the A-∆ effect.  Moreover, samples of 

 ,  
XT YT

R R  and max(rθT) versus M and D are shown in Figures 3.8 for Case 2 defined in 

Table 3.3 and in Figure 3.9 for Case 2 defined in Table 3.4.  The figures shows that 

the calculated correlation coefficients are small, indicating that these ratios and 

responses may be considering to be independent of M or D.  Similar plots for other 

cases defined in Tables 3.3 and 3.4 are not presented because they exhibit similar 

trends. 

By considering the ratios are independent of M and D, the calculated statistics of 

  ,  ,
X Y

R R max(rθ),  ,  
XT YT

R R and max(rθT) for each considered structural model of one-

way symmetric or two-way asymmetric systems are presented in Tables 3.3 and 3.4.  

For asymmetric systems, since the means   ,
X Y

R R and  ,  
XT YT

R R are near unity, the 

influence of the A-∆ effect on the displacements of the CM is again negligible.  In 

other words, the addition of the instantaneous load eccentricities does not affect 

significantly the inelastic responses as compared to the symmetrical systems.  This 
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may be explained by noting that that the torsional responses are already present for 

unsymmetrical system even without A-∆ effect. 

3.3.2.4 Influence of stability factor 

The P-∆ effect is considering in Eq. (3.1) through the stability factor θ.  To 

investigate the impact of θ on the estimated seismic ductility demand and torsional 

behavior by considering A-∆ and P-∆ effects, the analysis is carried out for θ from 

0.03 to 0.09 for two-way symmetric and one-way asymmetric system but considering 

Case 2 shown in Table 3.2 and Case 2 shown in Table 3.3 only. 

Statistics of RX, RY, max(ux), max(uy), RXT , RYT, max(uxT), max(uyT) and max(rθT) 

for two-way symmetric and one-way asymmetric systems considering A-∆ and P-

∆ effects are listed in Table 3.5 and Table 3.6.  The results show that by varying θ, the 

mean values of RX, RY, max(ux), max(uy), RXT , RYT, max(uxT), max(uyT) and max(rθT) 

are almost the same by including or excluding the A-∆  effect for θ ranging from 0.03 

to 0.07.  However, significant differences on the maximum lateral displacements 

along X-axis and Y-axis are indicated in the table when θ equals 0.09. For example, 

the mean values of max(ux) and max(uy) are 4.9349 (m) and 0.0321(m) if only P-∆ 

effect is considered; while the mean values of max(uxT) and max(uyT) are 5.2700(m) 

and 0.0394(m) if both A-∆ and P-∆ effects are considered.  On average, the increase is 

about 7% and 22% of the lateral displacements along X-axis and Y-axis.  Similar 

trends are also observed for one-way asymmetric system.  However, the obtained 

samples of max(rθ) and max(rθT) in Table 3.6 indicate that with increasing θ,  A-

∆ effect tends to reduce the torsional displacements.  For example, for θ = 0.09 Table 
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3.6 shows that the mean value of max(rθ) is 0.0396 while that of max(rθT) is 0.0130, 

resulting in a reduction of 60%.  It shows that with varying stability factor θ, A-

∆ effect can introduce significant changes on the lateral and torsional displacements, 

especially when θ is large. 

It must be emphasized that the definition of the stability coefficient θ  ( 

i img K hθ = ) is different from that defined in code.  In Appendix J in the NBCC 

2005 User's Guide, stability factor θNBCC is determined by the following equation: 

n

i

i x mx
NBCC n

s
o i

i x

W

h
R F

=

=

∆
=

∑

∑
θ  (3.11) 

where, 
n

i

i x

F
=
∑  is the seismic design shear force at the level under consideration, which 

is equal to the sum of the design lateral forces acting at and above the story; 
n

i

i x

W
=
∑ is 

that portion of the factored dead plus live load above the story; mx
∆ is the maximum 

inelastic interstory deflection; s
h is the interstory height; o

R is the overstrength-related 

force modification factor; 
n

o i

i x

R F
=
∑ is a measure of the capacity at the level under 

consideration. 

For a single-story building, Eq. (11) can be expressed, 

0

m m
NBCC

o s s o y y s o o s

W W W W

R V h h R V h R V d R Kh

φ
θ µ µ

φ
∆ ∆

= = = =
∆ ∆

 (3.12a) 
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where µ is the ductility displacement demand 
m y

µ = ∆ ∆ .  This equation re-written 

as, 

1
NBCC

o
R

θ θ=  (3.12b) 

showing the relation between θNBCC and θ defined in this study. 

3.4 Discussion and Conclusions 

In this chapter, investigation of the inelastic seismic responses under bi-

directional excitations and considering the A-∆ and P-∆ effects are carried out.  The 

analysis considered a set of 123 California seismic records; the two-way symmetric, 

one-way asymmetric and two-way asymmetric systems are considered.  The nonlinear 

behaviour of lateral load resisting element is modeled using the Bouc-Wen model.  

The statistics of the responses or response ratios are summarized. The main 

conclusions that can be drawn from the numerical results are: 

(1) The responses affected by the A-∆ and P-∆ effects are sensitive to the natural 

vibration periods and the stability factor. 

(2) The A-∆ effect can introduce significant changes on the lateral and torsional 

displacements, if θ is large. 

(3) Significant changes on the maximum lateral displacements along X-axis and Y-

axis and torsional displacement are observed by including and excluding A-∆ if 

θ  is large and the P-∆ effect is considered.  The consideration of the A-∆ effect 

does not always increase the seismic demand. 
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It must be emphasized that the number of cases considered is very limited, and the 

CP is considered to coincide with the CS.  In reality this may not be the case.  

Furthermore, only single-story building model is considered although in reality the 

buildings are much more complex; the rotational components of ground motion 

(coupled tilt and Translational Ground Motion Response Spectra) which may affect 

the maximum seismic demand was not included.  All these deserve further 

investigation and are beyond the scope of chapter. 

References 

Bernal D. (1987). Amplification factors for inelastic dynamic P-∆ effects in 

earthquake analysis. Earthquake Engineering and Structural Dynamics; 15:635–

651. 

Building Seismic Safety Council (BSSC) (1995). NEHRP Recommended Provisions 

for Seismic Regulations for New Buildings, FEMA 222A/223A, Vol. 1 

(Provisions) and Vol. 2 (Commentary), developed for the Federal Emergency 

Management Agency, Washington, D.C. 

Chopra, A.K. (2001) Dynamics of structures: theory and applications to earthquake 

engineering (2nd ed.). Prentice Hall, N.J. 

De La Llera J.C. and Chopra, A. K. (1995a). Understanding the inelastic seismic 

behaviour of asymmetric-plan buildings. Earthquake Engineering and Structural 

Dynamics; 24(4):549 – 572. 

De la Llera, J. C. and Chopra, A. K. (1995b). Estimation of accidental torsion effects 

for seismic design of buildings. Journal of Structural Engineering, ASCE; 

121(1):102–114. 



72 

 

De Stefano, M. and Pintucchi, B. (2008). A review of research on seismic behaviour 

of irregular building structures since 2002. Bull. Earthquake Eng.; 6:285–308 

De-La-Colina, J. (1999). Effects of torsion factors on simple non-linear systems using 

fully-bidirectional analyses. Earthquake Engineering and Structural Dynamics 

1999; 28(7):691–706. 

Foliente, G.C. (1995). Hysteresis modeling of wood joints and structural systems. 

Journal of Structural Engineering; 121(6):1013–1022. 

Goel, R. K. and Chopra, A. K. (1991). Inelastic seismic response of one-storey, 

asymmetric-plan systems: Effects of system parameters and yielding. Earthquake 

Engineering & Structural Dynamics; 20(3): 201-222. 

Goda, K., Hong, H.P. and Lee, C.S. (2009). Probabilistic characteristics of seismic 

ductility demand of SDOF systems with Bouc-Wen hysteretic behavior. Journal 

of Earthquake Engineering; 13:600–622. 

Gupta, A., and Krawinkler, H. (2000). Dynamic P−∆ effects for flexible inelastic 

steel structures. ASCE Journal of Structural Engineering; 126: 145–154. 

Hong, H. P., and Goda, K. (2007). Orientation-dependent ground motion measure for 

seismic hazard assessment. Bulletin of the Seismological Society of America; 

97(5):1525-1538. 

Hong, H. P., Goda, K. and Davenport, A. G. (2006). eismic hazard analysis: a 

comparative study. Canadian J. Civil Eng; 33(9): 1156–1171. 

Hong, H. P. and Hong, P. (2007). Assessment of ductility demand and reliability of 

bilinear single-degree-of-freedom systems under earthquake loading. Canadian J. 

Civil Eng; 34(12): 1606–1615 



73 

 

Humar, J. L. and Kumar, P. (1998). Torsional motion of buildings during earthquakes 

II Inelastic response. Canadian Journal of Civil Engineering; 25(5):917–934. 

Lee, C.S. (2011). Inelastic seismic displacement demand of simplified equivalent 

nonlinear structural systems. Ph.D. diss., The University of Western 

Ontario(Canada). 

Lee, C.S., and Hong, H.P. (2010). Inelastic Responses of Hysteretic Systems under 

Biaxial Seismic Excitations, Engineering Structures;  

Lucchini, A. Monti, G. and Kunnath, S. (2009). Seismic behavior of single-story 

asymmetric-plan buildings under uniaxial excitation. Earthquake Engineering and 

Structural Dynamics; 38:1053–1070 

Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004). Parameter 

analysis of the differential model of hysteresis. Transactions of the ASME; 71(3): 

342–349. 

MacRae GA. (1994). P-∆ effects on single-degree-of-freedom structures in 

earthquakes. Earthquake Spectra; 10:539–568. 

Pacific Earthquake Engineering Research (PEER) Center Next Generation 

Attenuation database. http://peer.berkeley.edu/nga/index.html. 

Paulay, T. (1997). Are existing seismic torsion provisions achieving the design aims? 

Earthquake spectra; 13(2):259–279. 

Peruš I., Fajfar P. (2005). On the inelastic torsional response of single-storey 

structures under bi-axial excitation. Earthquake Engineering and Structural 

Dynamics; 34(8):931–941. 



74 

 

Rutenberg A. (1998). AEE Task Group (TG) 8: behaviour and irregular and complex 

structures–progress since 1998. Proceedings of the 12th European conference on 

earthquake engineering, CD ROM. London; 2002. 

Ryan, K.L. and Chopra, A.K. (2004). Estimation of seismic demands on isolators in 

asymmetric buildings using non-linear analysis. Earthquake Engineering and 

Structural Dynamics; 33(3):395–418. 

Tremblay, R., Cote, B. and Leger, P. (1999). An Evaluation of P-∆ Amplification 

Factors in Multistorey Steel Moment Resisting Frames. Canadian Journal of Civil 

Engineering; 26: 535-548. 

Tso, W.K. and Wong, C. M. (1995). Seismic displacements of torsionally unbalanced 

buildings. Earthquake Engineering and Structural Dynamics; 24:1371–1387. 

Tso, W.K. and Myslimaj, B. (2002). Effect of strength distribution on the inelastic 

torsional response of asymmetric structural systems. Proceedings of the 12th 

European Conference on Earthquake Engineering, Paper No. 081, London, U.K. 

Vian D, Bruneau M. (2003). Tests to structural collapse of single degree of freedom 

frames subjected to earthquake excitation. Journal of Structural Engineering; 

129:1676 1685. 

Wen Y.K. (1976). Method for random vibration of hysteretic systems. Journal of 

Engineering Mechanics; 102(2):249–263. 

  



75 

 

Table 3.1 Selected records from the NGA database (PEER, 2006) 

Event 

ID 

Earthquake 

name 

Number 

of 

records 

Record ID 

25 Parkfield 2 28, 33 

30 San Fernando 6 58, 59, 64, 81, 89, 94 

50 
Imperial Valley-

06 
2 164, 190 

76 CoalingA-01 23 323, 327, 330, 335, 336, 

   
339, 342, 344, 345, 346, 

   
347, 350, 351, 352, 353, 

   
354, 355, 356, 357, 358, 

   
364, 366, 369 

90 Morgan Hill 2 450,470 

101 N. Palm Springs 1 531 

118 Loma Prieta 29 731, 734, 735, 736, 739, 

   
745, 747, 749, 750, 751, 

   
762, 769, 771, 773, 776, 

   
781, 782, 787, 788, 789, 

   
791, 794, 795, 796, 797, 

   
804, 807, 812, 813 

123 Cape Mendocino 1 827 

125 Landers 4 838, 887, 891, 897 

127 Northridge-01 42 942, 945, 946, 957, 963, 

   
965, 974, 980, 990, 991, 

   
993, 994, 1005, 1007, 1008, 

   
1011, 1015, 1017, 1019, 1020, 

   
1021, 1022, 1023, 1026, 1027, 

   
1028, 1029, 1030, 1031, 1033, 

   
1038, 1039, 1041, 1046, 1047, 

   
1053, 1057, 1065, 1070, 1074, 

   
1079, 1091 

158 Hector Mine 11 1763, 1767, 1768, 1786, 1794, 

   

1795, 1812, 1824, 1831, 1832, 

1836 
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Table 3.2 Statistics of RX, RY, RXT, RYT, and max(rθθθθT) for two-way symmetric 

systems considering A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects. 

System and loading 

condition 
Variable 

Tx, Ty, Ω, 

 PSA (g) 
Statistics RX RY RXT RYT max(rθT) 

Case 1 Mean 1.0000  1.0000  1.0007  1.0012  0.0005  

 
COV 0.0001  0.0001  0.0008  0.0012  1.0381  

1.0, 1.0, 0.8, ρM 0.0888  0.1338  0.0139  -0.0494  0.1533  

0.25 ρD 0.0759  0.2134  0.0271  -0.0296  0.0878  

 
Maximum 1.0004  1.0004  1.0036  1.0063  0.0029  

 
Minimum 0.9993  0.9998  0.9998  1.0000  0.0000  

Case 2 Mean 1.0000  1.0000  1.0008  1.0015  0.0004  

 
COV 0.0001  0.0001  0.0008  0.0013  0.9611  

1.0, 1.0, 1.0,  ρM 0.0773  0.1810  0.0533  -0.1019  0.1374  

0.25 ρD 0.0871  0.1824  0.0389  -0.0685  0.0886  

 
Maximum 1.0003  1.0004  1.0033  1.0060  0.0020  

 
Minimum 0.9992  0.9997  0.9999  1.0001  0.0000  

Case 3 Mean 1.0000  1.0000  1.0009  1.0016  0.0003  

 
COV 0.0001  0.0001  0.0010  0.0015  0.9958  

1.0, 0.5, 1.25,  ρM 0.0313  0.2457  0.1208  -0.1291  0.1493  

0.25 ρD 0.1149  0.0834  0.0882  -0.1789  0.0736  

 
Maximum 1.0002  1.0003  1.0063  1.0074  0.0019  

 
Minimum 0.9996  0.9997  1.0000  1.0000  0.0000  

Case 4 Mean 1.0000  1.0000  1.0008  1.0015  0.0002  

 
COV 0.0000  0.0001  0.0009  0.0016  0.9882  

1.0, 1.0, 1.6,   ρM -0.0425  0.1588  0.1880  -0.0697  0.1530  

0.25 ρD 0.0148  0.0040  0.1158  -0.2581  0.0590  

 
Maximum 1.0002  1.0004  1.0046  1.0080  0.0012  

 
Minimum 0.9997  0.9997  1.0000  1.0000  0.0000  

Case 5 Mean 1.0000  1.0000  1.0007  1.0013  0.0002  

 
COV 0.0000  0.0000  0.0008  0.0015  1.0532  

1.0, 1.0, 2.0,  ρM -0.0742  0.0616  0.1774  -0.0083  0.1531  

0.25 ρD 0.0415  0.0243  0.1784  -0.2039  0.0894  

 
Maximum 1.0001  1.0003  1.0046  1.0081  0.0011  

 
Minimum 0.9998  0.9999  1.0000  1.0000  0.0000  

Case 6 Mean 1.0000  1.0000  1.0015  1.0027  0.0015  

 
COV 0.0002  0.0001  0.0017  0.0026  0.8045  

1.0, 1.0, 1.0, ρM 0.1120  0.1046  -0.0300  -0.0930  0.2014  

0.5 ρD -0.0179  0.1169  -0.1535  -0.2363  0.0605  
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Maximum 1.0008  1.0009  1.0119  1.0129  0.0053  

 
Minimum 0.9988  0.9994  0.9992  0.9999  0.0002  

Case 7 Mean 1.0000  1.0000  1.0010  1.0018  0.0021  

 
COV 0.0001  0.0001  0.0011  0.0020  1.0193  

2.0, 2.0, 1.0, ρM -0.1271  0.0782  0.1383  0.1520  0.4511  

0.25 ρD 0.1478  0.0658  -0.1193  0.0059  0.0970  

 
Maximum 1.0002  1.0003  1.0067  1.0142  0.0156  

  Minimum 0.9991  0.9994  1.0000  0.9999  0.0001  

Case 8 Mean 1.0000  1.0000  1.0012  1.0030  0.0052  

 
COV 0.0001  0.0003  0.0014  0.0031  1.1660  

2.0, 2.0, 1.0, ρM 0.1871  0.0027  0.0806  0.1143  0.4533  

0.5 ρD 0.0560  0.0329  -0.0284  -0.0926  0.0677  

 
Maximum 1.0003  1.0012  1.0071  1.0160  0.0544  

 Minimum 0.9995  0.9985  0.9996  1.0000  0.0003  
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Table 3.3 Statistics of RX, RY, max(rθθθθ), RXT, RYT , and max(rθθθθT) for one-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects. 

System and loading 

condition 
Variable 

TX, TY, Ω, 

 ex, ey,  

PSA (g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

Case 1 Mean 1.0001  0.9998  0.0113  1.0001  0.9998  0.0113  

 
COV 0.0019  0.0031  0.8337  0.0019  0.0025  0.8394  

1.0, 1.0, 0.8, ρM 0.1210  -0.0286  0.2740  0.0014  0.1119  0.2698  

0, 0.25y1, ρD 0.1173  -0.0379  0.1769  0.0592  0.0023  0.1765  

0.25 Maximum 1.0106  1.0178  0.0908  1.0099  1.0129  0.0917  

 
Minimum 0.9960  0.9739  0.0025  0.9953  0.9879  0.0025  

Case 2 Mean 1.0002  0.9999  0.0136  1.0001  0.9999  0.0136  

 
COV 0.0022  0.0032  0.7101  0.0020  0.0025  0.7123  

1.0, 1.0, 1.0, ρM 0.1044  -0.0375  0.2865  0.0459  0.0369  0.2830  

 0, 0.25y1, ρD 0.0741  -0.0388  0.1368  0.0205  0.0403  0.1383  

0.25 Maximum 1.0143  1.0170  0.0893  1.0132  1.0118  0.0904  

 
Minimum 0.9954  0.9731  0.0027  0.9956  0.9886  0.0027  

Case 3 Mean 1.0000  0.9998  0.0130  1.0000  0.9999  0.0130  

 
COV 0.0019  0.0029  0.6180  0.0017  0.0025  0.6191  

1.0, 1.0, 1.25, ρM 0.0484  -0.0432  0.3051  -0.0171  0.1041  0.3056  

 0, 0.25y1, ρD 0.0863  -0.0369  0.1758  0.0554  0.0820  0.1832  

0.25 Maximum 1.0094  1.0136  0.0682  1.0092  1.0088  0.0690  

 
Minimum 0.9929  0.9765  0.0030  0.9955  0.9900  0.0030  

Case 4 Mean 1.0000  0.9999  0.0107  1.0001  0.9999  0.0107  

 
COV 0.0015  0.0020  0.5772  0.0015  0.0023  0.5752  

1.0, 1.0, 1.6,  ρM 0.0069  -0.0567  0.3258  -0.0820  0.0306  0.3253  

 0, 0.25y1, ρD 0.0917  -0.0375  0.2416  0.0528  0.1334  0.2434  

0.25 Maximum 1.0070  1.0064  0.0508  1.0066  1.0062  0.0506  

 
Minimum 0.9915  0.9843  0.0030  0.9968  0.9908  0.0030  

Case 5 Mean 1.0000  0.9999  0.0089  1.0000  0.9998  0.0089  

 
COV 0.0014  0.0018  0.5502  0.0017  0.0022  0.5497  

1.0, 1.0, 2.0, ρM 0.0638  -0.2633  0.3338  0.0023  -0.0472  0.3351  

 0, 0.25y1, ρD 0.1148  -0.1838  0.3176  0.0902  0.0689  0.3176  

0.25 Maximum 1.0058  1.0070  0.0403  1.0101  1.0057  0.0401  

 
Minimum 0.9904  0.9878  0.0028  0.9906  0.9905  0.0027  

Case 6 Mean 1.0004  0.9993  0.0245  1.0000  0.9996  0.0244  

 
COV 0.0049  0.0077  1.0654  0.0041  0.0056  1.0567  

1.0, 1.0, 1.0, ρM 0.3686  -0.0898  0.3070  0.2510  0.0044  0.3099  

 0, 0.25y1, ρD 0.2753  -0.1057  0.2349  0.2357  -0.0363  0.2352  
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0.5 Maximum 1.0293  1.0238  0.2299  1.0169  1.0259  0.2288  

 
Minimum 0.9859  0.9220  0.0044  0.9835  0.9623  0.0044  

Case 7 Mean 1.0001  1.0004  0.0363  1.0002  1.0007  0.0365  

 
COV 0.0015  0.0031  0.8894  0.0022  0.0033  0.8961  

2.0, 2.0, 1.0, ρM 0.1136  0.0981  0.4764  0.1687  0.0943  0.4764  

 0, 0.25y1, ρD 0.0213  -0.0300  0.2273  0.1225  0.0157  0.2300  

0.25 Maximum 1.0062  1.0173  0.2731  1.0071  1.0175  0.2792  

 
Minimum 0.9923  0.9874  0.0038  0.9923  0.9878  0.0038  

Case 8 Mean 1.0002  1.0004  0.0651  1.0005  1.0006  0.0664  

 
COV 0.0015  0.0081  1.1535  0.0025  0.0066  1.1551  

2.0, 2.0, 1.0, ρM 0.2731  0.0598  0.4826  0.2363  -0.0348  0.4881  

 0, 0.25y1, ρD 0.0491  -0.0060  0.2835  0.1376  -0.0637  0.2812  

0.5 Maximum 1.0054  1.0683  0.5943  1.0107  1.0464  0.6049  

 
Minimum 0.9969  0.9616  0.0050  0.9956  0.9746  0.0049  
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Table 3.4 Statistics of RX, RY, max(rθθθθ), RXT, RYT , and max(rθθθθT) for two-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects. 

System and loading 

condition 
Variable 

Tx, Ty, Ω, 

 ex, ey, 

 PSA(g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

Case 1 Mean 1.0007  0.9993  0.0241  1.0006  0.9998  0.0241  

1.0, 1.0, 0.8, COV 0.0051  0.0054  1.0109  0.0045  0.0037  1.0089  

0.25x1,  ρM -0.0291  -0.1296  0.2648  0.0406  -0.0806  0.2650  

0.25y1, ρD 0.1005  -0.1845  0.2370  0.1992  -0.2081  0.2357  

0.25 Maximum 1.0377  1.0080  0.1865  1.0249  1.0086  0.1846  

 
Minimum 0.9790  0.9447  0.0074  0.9846  0.9739  0.0074  

Case 2 Mean 1.0007  0.9996  0.0273  1.0005  1.0000  0.0273  

1.0, 1.0, 1.0,  COV 0.0061  0.0058  0.8851  0.0044  0.0034  0.8821  

0.25x1,  ρM 0.0172  -0.1409  0.2606  0.0605  -0.0979  0.2611  

0.25y1, ρD 0.1209  -0.2007  0.2184  0.1983  -0.1881  0.2176  

0.25 Maximum 1.0380  1.0092  0.1853  1.0258  1.0094  0.1835  

 
Minimum 0.9695  0.9413  0.0080  0.9879  0.9773  0.0080  

Case 3 Mean 1.0003  0.9996  0.0259  1.0003  1.0000  0.0259  

1.0,1.0, 1.25, COV 0.0051  0.0059  0.8201  0.0033  0.0035  0.8196  

0.25x1,  ρM 0.0309  -0.0961  0.2710  0.0406  -0.0588  0.2699  

0.25y1, ρD 0.1857  -0.1525  0.2333  0.2442  -0.1904  0.2320  

0.25 Maximum 1.0240  1.0076  0.1573  1.0151  1.0097  0.1571  

 
Minimum 0.9686  0.9390  0.0068  0.9890  0.9747  0.0067  

Case 4 Mean 1.0001  0.9997  0.0228  0.9999  0.9999  0.0228  

1.0, 1.0, 1.6,  COV 0.0036  0.0049  0.7467  0.0025  0.0030  0.7463  

0.25x1,  ρM 0.1025  -0.0754  0.2775  -0.0968  -0.1388  0.2766  

0.25y1, ρD 0.2228  -0.1001  0.2753  0.1174  -0.0914  0.2749  

0.25 Maximum 1.0189  1.0065  0.1148  1.0084  1.0064  0.1144  

 
Minimum 0.9900  0.9500  0.0056  0.9879  0.9758  0.0056  

Case 5 Mean 0.9999  1.0000  0.0196  0.9999  1.0000  0.0196  

1.0, 1.0, 2.0, COV 0.0026  0.0033  0.7025  0.0023  0.0023  0.7027  

0.25x1,  ρM 0.0691  -0.1179  0.2361  -0.0260  -0.1235  0.2351  

0.25y1, ρD 0.1571  -0.1815  0.2283  0.0552  -0.0958  0.2273  

0.25 Maximum 1.0104  1.0058  0.0911  1.0089  1.0057  0.0906  

 
Minimum 0.9913  0.9699  0.0034  0.9923  0.9860  0.0034  

Case 6 Mean 1.0002  0.9991  0.0525  0.9999  0.9996  0.0524  

1.0, 1.0, 1.0, COV 0.0144  0.0111  1.1310  0.0127  0.0093  1.1228  

0.25x1,  ρM 0.1012  -0.0726  0.3241  0.0744  -0.1471  0.3254  

0.25y1, ρD 0.2777  -0.1210  0.2630  0.2679  -0.1848  0.2626  
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0.5 Maximum 1.0694  1.0232  0.4513  1.0593  1.0199  0.4359  

 
Minimum 0.9306  0.8901  0.0112  0.9274  0.9101  0.0111  

Case 7 Mean 0.9996  0.9997  0.0741  0.9997  1.0000  0.0742  

2.0, 2.0, 1.0, COV 0.0026  0.0046  0.9187  0.0033  0.0041  0.9114  

0.25x1,  ρM 0.0350  0.0487  0.4209  0.0932  0.0673  0.4212  

0.25y1, ρD 0.0030  -0.1001  0.3170  0.1766  -0.0710  0.3219  

0.25 Maximum 1.0118  1.0090  0.5921  1.0114  1.0128  0.5806  

 
Minimum 0.9927  0.9689  0.0078  0.9861  0.9867  0.0076  

Case 8 Mean 0.9997  1.0013  0.1335  1.0004  1.0005  0.1329  

2.0, 2.0, 1.0, COV 0.0043  0.0061  1.1518  0.0071  0.0070  1.1140  

0.25x1,  ρM -0.0308  0.2184  0.4123  0.1035  0.0054  0.4161  

0.25y1, ρD -0.0480  0.0007  0.3330  0.1536  -0.0706  0.3350  

0.5 Maximum 1.0128  1.0291  1.2698  1.0488  1.0252  1.2015  

 Minimum 0.9827  0.9826  0.0144  0.9798  0.9753  0.0146  
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Table 3.5 Statistics of RX, RY, max(ux), max(uy), max(rθθθθ), RXT, RYT, max(uxT), max(uyT) and max(rθθθθT) for Case 2 shown in Table 

3.2 (two-way symmetric system considering A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects). 

stability factor Variable 

θ Statistics RX RY max(ux) max(uy) RXT RYT max(uxT) max(uyT) max(rθT) 

0.03 Mean 1.0000  1.0000  0.0281  0.0273  1.0003  1.0006  0.0281  0.0273  0.0001  

 
COV 0.0000  0.0000  0.8426  0.9081  0.0005  0.0010  0.8426  0.9081  1.8432  

 
ρM -0.0687  -0.0660  -0.0263  -0.0300  -0.0904  -0.1839  -0.0263  -0.0300  -0.0354  

 
ρD -0.0211  0.0861  -0.3453  -0.2929  -0.1687  -0.3036  -0.3453  -0.2929  -0.2882  

 
Maximum 1.0001  1.0001  0.1743  0.2101  1.0030  1.0067  0.1743  0.2101  0.0015  

 
Minimum 1.0000  0.9996  0.0014  0.0011  1.0000  1.0000  0.0014  0.0011  0.0000  

0.05 Mean 1.0000  1.0000  0.0287  0.0280  1.0003  1.0007  0.0287  0.0280  0.0001  

 
COV 0.0000  0.0000  0.8390  0.9023  0.0005  0.0010  0.8390  0.9023  1.7640  

 
ρM -0.0405  -0.0545  -0.0314  -0.0394  -0.0844  -0.2273  -0.0314  -0.0394  -0.0530  

 
ρD 0.0376  0.0806  -0.3480  -0.2949  -0.1249  -0.3327  -0.3480  -0.2949  -0.2988  

 
Maximum 1.0001  1.0001  0.1746  0.2128  1.0030  1.0061  0.1746  0.2128  0.0015  

 
Minimum 0.9999  0.9995  0.0014  0.0011  1.0000  1.0000  0.0014  0.0011  0.0000  

0.07 Mean 1.0000  1.0000  0.0299  0.0291  1.0004  1.0008  0.0299  0.0291  0.0001  

 
COV 0.0000  0.0000  0.8417  0.8854  0.0005  0.0015  0.8417  0.8854  1.6511  

 
ρM 0.0399  -0.0760  -0.0500  -0.0604  -0.0495  -0.1629  -0.0500  -0.0604  -0.0760  

 
ρD 0.1134  0.1135  -0.3674  -0.2958  -0.1287  -0.2418  -0.3674  -0.2958  -0.3234  

 
Maximum 1.0001  1.0001  0.1750  0.2155  1.0040  1.0146  0.1750  0.2155  0.0016  

 
Minimum 0.9996  0.9996  0.0015  0.0011  1.0000  1.0000  0.0015  0.0011  0.0000  

0.09 Mean 1.0005  1.0853  4.9349  0.0321  1.0010  1.0204  5.2700  0.0394  0.0003  

 
COV 0.0062  0.8716  11.0191  0.8732  0.0062  0.2110  11.0237  2.2730  4.6376  
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ρM -0.0607  -0.0623  -0.0623  -0.1243  -0.0673  -0.0631  -0.0623  -0.0949  -0.0826  

 
ρD -0.1269  -0.1276  -0.1278  -0.2976  -0.1443  -0.1296  -0.1278  -0.2078  -0.1897  

 
Maximum 1.0683  11.4914  603.1171  0.2184  1.0684  3.3894  644.3358  0.9758  0.0154  

 
Minimum 0.9993  0.9993  0.0015  0.0011  1.0000  1.0000  0.0015  0.0011  0.0000  
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Table 3.6 Statistics of RX, RY, max(ux), max(uy), max(rθθθθ), RXT , RYT, max(uxT), max(uyT) and max(rθθθθT) for Case 2 shown in Table 

3.3. (for one-way asymmetric systems considering A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects). 

stability factor Variable 

θ Statistics RX RY max(ux) max(uy) max(rθ) RXT RYT max(uxT) max(uyT) max(rθT) 

0.03 Mean 1.0000  1.0000  0.0275  0.0267  0.0081  1.0000  1.0000  0.0275  0.0267  0.0081  

 
COV 0.0006  0.0007  0.8502  0.9206  0.8341  0.0008  0.0009  0.8502  0.9205  0.8310  

 
ρM 0.1230  0.0570  -0.0237  -0.0311  -0.0135  0.0541  -0.0640  -0.0235  -0.0311  -0.0157  

 
ρD 0.1195  0.0733  -0.3441  -0.2911  -0.3346  -0.0419  -0.0515  -0.3440  -0.2911  -0.3377  

 
Maximum 1.0024  1.0025  0.1706  0.2093  0.0495  1.0039  1.0022  0.1706  0.2093  0.0487  

 
Minimum 0.9976  0.9972  0.0014  0.0011  0.0004  0.9976  0.9971  0.0014  0.0011  0.0004  

0.05 Mean 1.0000  1.0000  0.0280  0.0273  0.0082  1.0000  1.0000  0.0280  0.0273  0.0082  

 
COV 0.0008  0.0009  0.8485  0.9150  0.8299  0.0008  0.0011  0.8485  0.9149  0.8267  

 
ρM 0.0964  0.0333  -0.0284  -0.0413  -0.0138  0.0624  -0.0508  -0.0282  -0.0414  -0.0165  

 
ρD 0.0572  0.0645  -0.3474  -0.2923  -0.3347  -0.0170  -0.0232  -0.3473  -0.2923  -0.3380  

 
Maximum 1.0031  1.0030  0.1708  0.2120  0.0504  1.0033  1.0036  0.1709  0.2120  0.0496  

  Minimum 0.9969  0.9966  0.0015  0.0011  0.0004  0.9971  0.9956  0.0015  0.0011  0.0004  

0.07 Mean 1.0000  1.0000  0.0290  0.0285  0.0084  1.0000  1.0000  0.0290  0.0285  0.0084  

 
COV 0.0012  0.0011  0.8546  0.8969  0.8247  0.0013  0.0013  0.8549  0.8968  0.8216  

 
ρM 0.0689  -0.0371  -0.0439  -0.0652  -0.0178  -0.0057  -0.0856  -0.0437  -0.0654  -0.0214  

 
ρD -0.0003  0.0148  -0.3629  -0.2941  -0.3422  -0.0871  -0.0010  -0.3629  -0.2941  -0.3457  

 
Maximum 1.0089  1.0052  0.1712  0.2147  0.0511  1.0107  1.0049  0.1713  0.2147  0.0503  

  Minimum 0.9959  0.9954  0.0015  0.0011  0.0004  0.9973  0.9951  0.0015  0.0011  0.0004  

0.09 Mean 1.0046  1.2873  2.2726  0.0396  0.1650  1.0042  1.0077  3.5359  0.3380  0.0130  

 
COV 0.0506  2.4742  10.9419  2.3965  10.5044  0.0464  0.0844  10.9950  10.0580  3.6934  

 
ρM -0.0592  -0.0623  -0.0624  -0.0962  -0.0625  -0.0610  -0.0639  -0.0624  -0.0633  -0.0683  
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ρD -0.1272  -0.1276  -0.1280  -0.2042  -0.1291  -0.1283  -0.1276  -0.1279  -0.1299  -0.1789  

 
Maximum 1.5633  36.3235  275.8194  1.0387  19.2255  1.5169  1.9432  431.2006  37.7291  0.5354  

  Minimum 0.9945  0.9950  0.0015  0.0012  0.0004  0.9943  0.9820  0.0015  0.0012  0.0004  
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Figure 3.1 Schematic plan view of the idealized one-story building. 
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Figure 3.2 Illustration of the lateral load resisting elements by assuming all the elements are located at the edges of the slab. 
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Figure 3.3 Components of an arbitrarily selected record (COALINGA 05/02/83, PARKFIELD - GOLD HILL) scaled by the 

same factor such that the PSA at Tx = 1.0 (s) (for the first record component) equals 0.5 (g) 

  

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

A
cc

el
er

at
io

n
 (

m
/s

2
)

 

 

First record component,a
x

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

2
)

 

 

Second record component,a
y



89 

 

 

                  a)                                                                                                b) 

 
 

 

 

 

Figure 3.4 Responses of two-way symmetric system considering the A-∆ ∆ ∆ ∆ and P-∆ ∆ ∆ ∆ effects: a) Responses for the record 

components that are scaled by the same factor such that the PSA at Tx = 1.0 (s) equal to 0.25 (g), b) Responses for the record 

components that are scaled by the same factor such that the PSA at Tx = 1.0 (s) equal to 0.5 (g). 
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Figure 3.5 Samples of ratios and rotational response versus magnitude and distance for the Case 2 of two-way symmetric 

system shown in Table 3.2 
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                       a)                                                                                          b) 

 

Figure 3.6 Responses by ignoring and considering the A-∆∆∆∆ effect for Case 6 of one-way asymmetric system listed in Table 3.3 

and the scaled record shown in Figure 3.3: a) Responses considering the P-∆∆∆∆ effect, but without the A-∆∆∆∆ effect, b) Responses 

considering both A-∆∆∆∆ and P-∆ ∆ ∆ ∆ effect. 
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Figure 3.7 Responses by ignoring and considering the A-∆∆∆∆ effect for Case 6 two-way asymmetric system listed in Table 3.4 and 

the scaled record shown in Figure 3: a) Responses considering the P-∆∆∆∆ effect, but without the A-∆∆∆∆ effect, b) Responses 

considering both A-∆∆∆∆ and P-∆ ∆ ∆ ∆ effect. 
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Figure 3.8 Samples of ratios and rotational response versus magnitude and distance for Case 2 of the one-way symmetric 

system shown in Table 3.3 
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Figure 3.9 Samples of ratios and rotational response versus magnitude and distance for Case 2 of the asymmetric system 

shown in Table 3.4.
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CHAPTER 4.  CONCLUSIONS AND FUTURE WORK 

4.1 Summary and conclusions 

This study is focused on the evaluation of the torsional responses considering the 

instantabeous load eccentricity.  For the assessment of inelastic seismic displacement 

demand and inelastic torsional response of buildings, the structural is represented using 

idealized one-story model and each lateral load resisting element is modeled using the 

Bouc-Wen hysteretic model.  The governing equations of motion were developed by 

considering these effects and the structures that are subjected to biaxial excitations.  The 

numerical analyses were carried out by implementing the governing equations in 

MATLAB


.  Since the ground motion is uncertain and varies from record-to-record, 123 

ground motion records from 11 California seismic events were considered to take into 

account this record-to-record variability. 

Chapter 2 investigates the impact of instantaneous load eccentricities on torsional 

responses by ignoring and considering A-∆ effect.  It is concluded that the responses 

affecting by the A-∆ effect are sensitive to the natural vibration periods; On average, a 

slight underestimation of seismic displacement demand occurs if the A-∆ effect is ignored, 

especially for two-way symmetrical systems; however, the observations also indicate that 

the consideration of the A-∆ effect is not necessary since in most considered cases, on 

average, the A-∆ effect does not affect the inelastic responses to a large degree. 

In Chapter 3, the assessment of the statistical characterizations of the inelastic 

torsional behavior under bidirectional seismic excitations by considering the A-∆ and/or 
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P-∆ effects was carried out. The analyses show that the responses affected by the A-∆ and 

P-∆ effects are sensitive to the natural vibration periods and the stability factor; 

significant changes on the maximum lateral displacements along X-axis and Y-axis and 

torsional displacement are observed by including and excluding A-∆ if θ  is large and the 

P-∆ effect is considered; and the consideration of the A-∆ effect do not always increase 

the seismic demand. 

4.2 Future Work 

The investigation of inelastic seismic response of structures is a specialized and 

complex task as many uncertainties involved. The evaluations and conclusions of the 

inelastic analyses carried out in this thesis showed that many factors related to structural 

modeling and loading condition would have a significant impact on inelastic responses. 

The current study focused only on a small part of those factors.  The recommendations 

for further research are listed below: 

(1) Only single-story building model is considered in this study, although buildings are 

much more complex.  The evaluation of the impact of the A-∆ effect on multi-story 

buildings could be valuable for practical applications and seismic risk assessment; 

(2) The rotational components of ground motion (coupled tilt and Translational Ground 

Motion Response Spectra) which may affect the maximum seismic demand was not 

included; 

(3) The investigation of inelastic seismic dynamic responses (i.e translational and 

torsional response) with pinching effect, strength degradation and stiffness 

deterioration and A-∆ effect deserves further consideration.  
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APPENDIX A: RESULTS FOR CASES WITH THE 

CENTER OF STRENGTH DIFFERING FROM THE 

CENTER OF STIFFNESS 

In the main text, the analysis results are presented for the cases where the CP coincides 

with the CS.  For completeness, the analysis for the cases with the location of the CP 

differs from the location of the CS are presented.  For the evaluation, let ∆x= 

min(∆xi)= ∆x1 denote the initial yield displacement (capacity) of the structure along X-axis, 

and ∆y= min(∆yi)= ∆y1 denote the initial yield displacement (capacity) of the structure 

along Y-axis. The ratios of ∆x2/∆x1 and ∆y2/∆y1 are assumed equal (∆x2/∆x1=∆y2/∆y1=1.1). 

Results show that by considering the differences in the locations of the centers, 

torsional responses caused with and without by A-∆ effect are increased.  Detail of the 

cases and results are presented in Tables A1 to A3 for selected two-way symmetric 

systems, one-way asymmetric systems, and two-way asymmetric systems.  

Since the conclusions that can be drawn from the results are similar to those that can be 

drawn from the results discussed in the main text (Chapter 2), no further explanation and 

discussion are given. 

  



98 

98 

 

Table A.1. Statistics of RX, RY, max(rθθθθ), RXT , RYT , and max(rθθθθT) for two-way 

symmetric systems considering A-∆ ∆ ∆ ∆ effect. 

System and loading 

condition 
Variable 

 

Tx, Ty, Ω, 

PSA(g) 
Statistics RX RY max(rθ) RXT RYT max(rθT) 

1.0, 1.0, 0.8,  Mean 1.0000  1.0000  0.0025  1.0001  1.0004  0.0026  

0.25 COV 0.0002  0.0002  0.7758  0.0011  0.0020  0.8136  

 
ρM -0.0021  0.0544  0.2430  -0.0078  -0.1262  0.2585  

 
ρD 0.0328  0.2204  0.3780  0.1210  -0.0369  0.3974  

 
Maximum 1.0007  1.0008  0.0147  1.0042  1.0076  0.0175  

 
Minimum 0.9992  0.9995  0.0003  0.9959  0.9951  0.0003  

1.0, 1.0, 1.0,  Mean 1.0000  1.0000  0.0028  1.0002  1.0002  0.0028  

0.25 COV 0.0002  0.0002  0.8023  0.0011  0.0020  0.7684  

 
ρM 0.0183  0.0903  0.2361  0.0539  -0.0296  0.2426  

 
ρD 0.0977  0.1963  0.3718  0.1386  -0.0951  0.3650  

 
Maximum 1.0011  1.0009  0.0177  1.0034  1.0088  0.0169  

 
Minimum 0.9992  0.9994  0.0004  0.9959  0.9946  0.0004  

1.0,1.0,1.25,  Mean 1.0000  1.0000  0.0032  1.0002  1.0004  0.0032  

0.25 COV 0.0003  0.0002  0.7318  0.0012  0.0022  0.7135  

 
ρM 0.0380  0.0219  0.1906  0.1011  -0.0909  0.1926  

 
ρD 0.0913  0.1244  0.3000  0.1780  -0.1584  0.2956  

 
Maximum 1.0014  1.0010  0.0165  1.0038  1.0094  0.0159  

 
Minimum 0.9990  0.9993  0.0003  0.9960  0.9948  0.0003  

1.0, 1.0, 1.6,  Mean 1.0000  1.0000  0.0034  1.0000  1.0004  0.0034  

0.25 COV 0.0004  0.0003  0.7045  0.0011  0.0022  0.7035  

 
ρM 0.0158  -0.0716  0.1717  0.1467  -0.0313  0.1779  

 
ρD 0.0818  -0.0039  0.2717  0.1760  -0.0207  0.2827  

 
Maximum 1.0018  1.0012  0.0137  1.0030  1.0094  0.0138  

 
Minimum 0.9987  0.9991  0.0001  0.9963  0.9934  0.0001  

1.0, 1.0, 2.0,  Mean 1.0000  1.0000  0.0032  1.0000  1.0003  0.0032  

0.25 COV 0.0003  0.0002  0.6951  0.0009  0.0024  0.6972  

 
ρM 0.0090  -0.1149  0.1534  0.0568  0.0861  0.1592  

 
ρD 0.0404  -0.1053  0.2972  0.1240  0.0881  0.3036  

 
Maximum 1.0015  1.0010  0.0116  1.0025  1.0108  0.0116  

 
Minimum 0.9983  0.9994  0.0001  0.9968  0.9921  0.0001  

1.0, 1.0, 1.0,  Mean 1.0000  1.0000  0.0050  1.0000  1.0002  0.0052  

0.5 COV 0.0003  0.0005  0.5954  0.0020  0.0039  0.5930  

 
ρM 0.0808  0.0590  0.2564  0.0720  0.1776  0.2551  
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ρD -0.0028  0.0972  0.2715  0.1228  0.0471  0.2341  

 
Maximum 1.0007  1.0014  0.0210  1.0082  1.0203  0.0186  

 
Minimum 0.9981  0.9975  0.0009  0.9919  0.9882  0.0010  

2.0, 2.0, 1.0,  Mean 1.0000  1.0000  0.0089  1.0002  1.0003  0.0093  

0.25 COV 0.0003  0.0002  0.8786  0.0019  0.0024  0.9043  

 
ρM 0.1261  -0.0157  0.4477  -0.0662  -0.0345  0.4623  

 
ρD 0.1749  -0.0663  0.4333  0.0102  0.0038  0.4446  

 
Maximum 1.0030  1.0014  0.0505  1.0073  1.0075  0.0563  

 
Minimum 0.9996  0.9987  0.0010  0.9910  0.9943  0.0011  

2.0, 2.0, 1.0,  Mean 1.0000  1.0000  0.0123  1.0003  1.0007  0.0139  

0.5 COV 0.0003  0.0003  0.8544  0.0025  0.0040  0.8658  
 ρM 0.1253  -0.0581  0.4669  0.0852  0.0951  0.5237  

 
ρD 0.1852  0.0067  0.3943  0.0249  -0.0125  0.4451  

 
Maximum 1.0020  1.0007  0.0615  1.0107  1.0123  0.0697  

 Minimum 0.9987  0.9984  0.0011  0.9909  0.9902  0.0013  
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Table A.2. Statistics of RX, RY , max(rθθθθ), RXT , RYT , and max(rθθθθT) for one-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ effect. 

System and loading 

condition 
Variable 

 

Tx, Ty, Ω, 

 ex, ey, 
 PSA(g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

1.0, 1.0, 0.8, Mean 1.0000  1.0000  0.0098  1.0000  0.9999  0.0098  

0, 0.25y1, COV 0.0007  0.0006  0.7234  0.0012  0.0023  0.7071  

0.25 ρM -0.0644  -0.0427  0.2679  -0.0437  0.0380  0.2685  

 
ρD -0.0296  -0.0722  0.1798  0.0294  0.0720  0.1709  

 
Maximum 1.0021  1.0024  0.0656  1.0041  1.0066  0.0641  

 
Minimum 0.9959  0.9976  0.0016  0.9957  0.9902  0.0016  

1.0, 1.0, 1.0, Mean 1.0000  1.0000  0.0124  1.0001  1.0001  0.0125  

0, 0.25y1, COV 0.0008  0.0008  0.6538  0.0012  0.0024  0.6542  

0.25 ρM -0.0278  -0.0678  0.2755  -0.0030  -0.0136  0.2755  

 ρD -0.0194  -0.0642  0.0868  0.0046  0.0672  0.0888  

 
Maximum 1.0028  1.0036  0.0732  1.0041  1.0093  0.0730  

 
Minimum 0.9956  0.9974  0.0017  0.9952  0.9920  0.0017  

1.0, 0.5, 1.25, Mean 1.0001  1.0000  0.0124  1.0000  1.0001  0.0124  

0, 0.25y1, COV 0.0009  0.0008  0.6118  0.0012  0.0021  0.6128  

0.25 ρM -0.0190  0.0059  0.2858  -0.0113  -0.0457  0.2846  

 ρD -0.0613  -0.0021  0.1542  -0.0133  -0.0102  0.1574  

 
Maximum 1.0032  1.0030  0.0641  1.0039  1.0061  0.0643  

 
Minimum 0.9960  0.9971  0.0016  0.9951  0.9917  0.0016  

1.0, 1.0, 1.6, Mean 1.0001  0.9999  0.0105  1.0000  1.0001  0.0105  

0, 0.25y1, COV 0.0008  0.0007  0.5825  0.0011  0.0019  0.5839  

0.25 ρM 0.0089  -0.0029  0.3141  0.0516  -0.1543  0.3122  

 
ρD -0.0497  0.0574  0.2240  -0.0164  -0.1442  0.2231  

 
Maximum 1.0034  1.0018  0.0456  1.0042  1.0053  0.0457  

 
Minimum 0.9957  0.9975  0.0016  0.9958  0.9923  0.0016  

1.0, 1.0, 2.0, Mean 1.0001  1.0000  0.0087  1.0001  1.0000  0.0087  

0, 0.25y1, COV 0.0008  0.0006  0.5843  0.0012  0.0022  0.5847  

0.25 ρM 0.0794  -0.1687  0.3344  0.0747  -0.1993  0.3338  

 
ρD -0.0035  -0.0598  0.2675  0.0141  -0.2085  0.2683  
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Maximum 1.0037  1.0019  0.0317  1.0066  1.0066  0.0315  

 
Minimum 0.9973  0.9973  0.0020  0.9963  0.9891  0.0020  

1.0, 1.0, 1.0, Mean 0.9999  0.9998  0.0219  0.9998  1.0001  0.0220  

0, 0.25y1, COV 0.0011  0.0014  1.0277  0.0024  0.0042  1.0369  

0.5 ρM -0.0251  0.0166  0.2756  0.0367  -0.0124  0.2794  

 
ρD -0.0475  -0.0834  0.2827  -0.0665  -0.0072  0.2874  

 
Maximum 1.0054  1.0045  0.1766  1.0066  1.0166  0.1746  

 
Minimum 0.9949  0.9900  0.0036  0.9915  0.9869  0.0036  

2.0, 2.0, 1.0, Mean 1.0000  1.0001  0.0333  1.0000  1.0005  0.0334  

0, 0.25y1, COV 0.0008  0.0007  1.4175  0.0020  0.0045  1.3954  

0.25 ρM 0.0251  -0.0001  0.3227  -0.0363  0.0751  0.3258  

 
ρD -0.1645  0.1225  0.3163  0.0026  0.0422  0.3172  

 
Maximum 1.0034  1.0044  0.4344  1.0069  1.0424  0.4283  

 
Minimum 0.9951  0.9986  0.0025  0.9929  0.9918  0.0027  

2.0, 2.0, 1.0, Mean 1.0000  1.0001  0.0675  1.0000  1.0008  0.0685  

0, 0.25y1, COV 0.0009  0.0011  1.6707  0.0031  0.0077  1.6187  

0.5 ρM -0.0007  0.0356  0.3683  0.0290  0.0632  0.3774  

 
ρD -0.2197  0.0650  0.4551  0.0341  0.1313  0.4609  

 
Maximum 1.0038  1.0081  0.9135  1.0138  1.0701  0.8835  

 Minimum 0.9954  0.9969  0.0052  0.9900  0.9888  0.0056  
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Table A. 3. Statistics of RX, RY, max(rθθθθ), RXT , RYT, and max(rθθθθT) for two-way 

asymmetric systems considering A-∆ ∆ ∆ ∆ effect. 

System and loading 

condition 
Variable 

 

Tx, Ty, Ω, 

 ex, ey, 
 PSA(g) 

Statistics RX RY max(rθ) RXT RYT max(rθT) 

1.0, 1.0, 0.8, Mean 1.0000  1.0000  0.0197  0.9999  1.0002  0.0197  

0.25x1, COV 0.0012  0.0010  0.9158  0.0015  0.0024  0.9223  

0.25y1 ρM -0.0899  -0.0773  0.2685  -0.1318  0.0372  0.2669  

0.25 ρD -0.0963  -0.1327  0.3089  -0.0734  0.0463  0.3105  

 Maximum 1.0039  1.0028  0.1353  1.0054  1.0067  0.1374  

 
Minimum 0.9932  0.9958  0.0030  0.9955  0.9912  0.0030  

1.0, 1.0, 1.0,  Mean 1.0003  1.0000  0.0244  0.9997  1.0001  0.0245  

0.25x1, COV 0.0012  0.0012  0.8833  0.0017  0.0027  0.8896  

0.25y1 ρM -0.0888  -0.0588  0.2628  -0.1797  0.0415  0.2618  

0.25 ρD -0.0746  -0.0236  0.2952  -0.1253  0.0633  0.2981  

 Maximum 1.0043  1.0043  0.1642  1.0060  1.0075  0.1672  

 Minimum 0.9965  0.9948  0.0039  0.9897  0.9900  0.0039  

1.0,1.0, 1.25, Mean 1.0000  1.0001  0.0246  0.9998  1.0000  0.0246  

0.25x1, COV 0.0014  0.0010  0.9279  0.0018  0.0022  0.9280  

0.25y1 ρM -0.0008  -0.0106  0.2744  -0.1352  0.0545  0.2745  

0.25 ρD 0.0329  0.0625  0.3486  -0.1588  0.1219  0.3498  

 Maximum 1.0049  1.0031  0.1873  1.0060  1.0074  0.1872  

 
Minimum 0.9921  0.9964  0.0045  0.9926  0.9925  0.0045  

1.0, 1.0, 1.6,  Mean 0.9998  1.0001  0.0220  1.0000  1.0000  0.0220  

0.25x1, COV 0.0017  0.0010  0.8441  0.0015  0.0019  0.8427  

0.25y1 ρM -0.0351  0.1178  0.2802  -0.0819  0.0812  0.2805  

0.25 ρD 0.1228  0.1515  0.3760  -0.0418  0.0676  0.3771  

 Maximum 1.0043  1.0036  0.1474  1.0075  1.0060  0.1464  

 
Minimum 0.9881  0.9961  0.0048  0.9945  0.9950  0.0048  

1.0, 1.0, 2.0, Mean 0.9999  1.0000  0.0190  1.0001  0.9999  0.0190  

0.25x1, COV 0.0012  0.0009  0.7502  0.0015  0.0019  0.7492  

0.25y1 ρM -0.0119  0.1012  0.2418  0.0881  0.1202  0.2423  

0.25 ρD 0.0830  0.0342  0.3151  0.0488  0.1092  0.3147  

 Maximum 1.0035  1.0026  0.0941  1.0077  1.0052  0.0930  

 
Minimum 0.9949  0.9953  0.0030  0.9951  0.9948  0.0030  

1.0, 1.0, 1.0, Mean 1.0002  0.9998  0.0447  0.9999  1.0006  0.0447  

0.25x1, COV 0.0021  0.0026  1.2760  0.0037  0.0043  1.2658  

0.25y1 ρM 0.0572  -0.0397  0.3106  -0.2107  -0.0623  0.3097  
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0.5 ρD -0.0244  -0.0509  0.3965  -0.3648  -0.0405  0.3948  

 Maximum 1.0149  1.0151  0.4559  1.0103  1.0159  0.4479  

 
Minimum 0.9918  0.9869  0.0088  0.9772  0.9841  0.0090  

2.0, 2.0, 1.0, Mean 1.0000  0.9997  0.0723  0.9996  1.0002  0.0726  

0.25x1, COV 0.0030  0.0017  1.3869  0.0046  0.0037  1.3902  

0.25y1 ρM 0.0346  -0.0598  0.4021  -0.0370  0.1717  0.4031  

0.25 ρD 0.1788  -0.0259  0.5677  0.0870  0.3147  0.5666  

 Maximum 1.0214  1.0027  0.8212  1.0320  1.0247  0.8284  

 
Minimum 0.9912  0.9881  0.0091  0.9721  0.9920  0.0092  

2.0, 2.0, 1.0, Mean 1.0003  1.0002  0.1465  0.9999  1.0016  0.1474  

0.25x1, COV 0.0023  0.0019  1.6283  0.0074  0.0072  1.6146  

0.25y1 ρM 0.1179  0.0863  0.4212  -0.0800  0.1975  0.4235  

0.5 ρD 0.1173  0.1486  0.6283  -0.0337  0.3355  0.6281  
 Maximum 1.0138  1.0103  1.8316  1.0551  1.0548  1.8240  
 Minimum 0.9922  0.9939  0.0108  0.9608  0.9889  0.0108  
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APPENDIX B: EQUATION OF MOTION 

CONSIDERING BOUC-WEN HYSTERETIC MODEL 

For single-story model, the equation of motion without considering P-∆ effect can be 

written as (Chopra 2001), 

gxxixxx umfucum &&&&& −=++ ∑  (B.1a) 

gyyiyyy umfucum &&&&& −=++ ∑  (B.1b) 

0)(2 =+−+θ+θ ∑θ iyiixi xfyfcmr &&&  (B.1c) 

where m is the mass; r is the radius of gyration of the slab about the CM; c denotes the 

damping coefficient, gu&&  is the ground acceleration, f denote the resisting force of the 

element, an overdot on a variable denotes its temporal derivative, and the summation Σ is 

over applicable lateral load resisting elements.  Symbols c and gu&&  with an additional 

subscript x, y and θ are used to denote the quantities associated with the X-axis, Y-axis 

and rotation, respectively. f with subscript xi and yi denotes the resisting force along the 

X-axis and Y-axis, respectively, for the i-th lateral loading resisting element. Similarly, f 

with subscript yi denotes the resisting force along the Y-axis for the i-th lateral load 

resisting element.  The displacement of the i-th element placed parallel X-axis, uxi, and 

the displacement of the i-th element placed parallel Y-axis, uyi ,are respectively given by  

)()()( tytutu ixxi θ−=  (B.2a) 

and 
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)()()( txtutu iyyi θ+=  (B.2b) 

where xi and yi denote the distances from the CM to the elements. The notation uxi(t), ux(t) 

and q(t) is used to emphasize that uxi, ux and θ are time dependent. 

If each lateral load resisting element is modeled as linear elastic system, the stiffness 

matrix K of the system is given by 
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where KXX, KYY, Kθθ, KθX and KθY denote the elements of the stiffness matrix K.  The n 

stiffness can be used to defined the dynamic characteristic of the system. 

By incorporating the mass and stiffness proportional damping (i.e., Rayleigh 

damping), for linear systems, Eqs. (1) and (2) leads to (Chopra 2001), 
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The equations of motion for nonlinear systems can be written as, 
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where uθ = rθ, 
xωω=Ω θθ / ; xyy ωω=Ω / ; 

YYYx KKe /θ=  is known as eccentricity alone 

the X-axis; XXXy KKe /θ=  is known as eccentricity alone the Y-axis; 
xxixi Kk /=κ , 

yyiyi Kk /=κ ; ( )
yxyxa ω+ωωζω= /20 , and ( )

yxa ω+ωζ= /21 . The damping ratio ζ  is 

considered to be equal to 5% throughout this study. The expressions for a0 and a1 are 

obtained by assuming that the damping ratios for the two translational modes are 

identical and equal to ζ. 

To be more realistically represent the structural behavior under strong earthquake 

excitations, consider that each lateral load resisting element can be modeled using Bouc-

Wen hysteretic model (Wen 1976; Foliente 1995; Ma, Zhang et al. 2004; Lee and Hong 

2010).  Therefore, fxi for the i-th lateral load resisting element (frame or wall) can be 

expressed as, 

xixixixixixixi zkukf )1( α−+α=  (B.6) 

where kxi is the elastic lateral stiffness; αxi is the ratio of the post-yield to initial stiffness 

and zxi is the hysteretic displacement.  zxi, is governed by (Wen 1976; Foliente 1995; Ma 

et al. 2004), 
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where βxi, γxi, and nxi are the shape parameters; nxixixi Eηδ+=η 1 ; the parameter δηxi 

controls the stiffness degradation; 
nxixixi Eνδ+=ν 1 ; the parameter δνxi controls the 

strength degradation; and the normalized dissipated hysteretic energy, Exi, is defined by, 
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in which ( ) xin

xixixi

/1−γ+β=∆ denotes initial yield displacement and 
xixixi kQ ∆=  is the 

initial yield force. Similarly, fyi is defined by replace the subscript x with y in Eq. (B.6).  

Note that if αxi and αyi are considered to be equal to one, the material nonlinearity is 

neglected in the considered system and 
xixixi ukf = and yiyiyi ukf = . 
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