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Abstract 

Alzheimer’s disease (AD) is characterized by deposition of the amyloid beta (A) peptide in 

the brain, an event which frequently but not universally correlates with nerve cell death.  

Although most nerve cells die in response to A small populations of cells are able to 

survive by becoming resistant to A toxicity. Understanding the mechanisms by which cells 

become resistant to A may reveal novel treatments for AD.  Interestingly, nerve cell lines 

selected for resistance against A exhibit increased glucose uptake and glycolytic flux.  Here 

I show that these metabolic changes are mediated through an upregulation of pyruvate 

dehydrogenase kinase 1 (PDK1) and increased lactate dehydrogenase A (LDHA) activity.  

These metabolic alterations in A resistant nerve cells are reminiscent of the Warburg effect, 

also known as aerobic glycolysis, a common anti-apoptotic mechanism elicited by cancer 

cells.  Similar to cancer cells, A-resistant nerve cells exhibit reduced mitochondrial reactive 

oxygen species (ROS) production.  Inhibiting PDK1 or LDHA expression or activity re-

sensitized resistant cells to A toxicity.  In contrast, overexpression of either PDK1 or LDHA 

in sensitive cells conferred resistance to A and other neurotoxins. Importantly, cells 

overexpressing either PDK1 or LDHA displayed repressed mitochondrial oxygen 

consumption with a concomitant decrease in mitochondrial ROS levels.  Furthermore, these 

cells maintained cellular adenosine triphosphate (ATP) pools when exposed to A, whereas 

sensitive cells became depleted of ATP.  Immunoblot analysis revealed a decrease in PDK1 

and LDHA levels in mouse primary cortical neurons treated with Aβ and in cortical tissue 

extracts from 12-month-old AD transgenic (APPswe/PS1dE9) mice. A similar decrease in 

PDK1 expression was observed in post-mortem brain extracts from AD patients.   Treatment 

of cultured nerve cell lines and primary cortical neurons with CNB-001 and J147, novel 

neurotrophic drugs that prevent cognitive decline in AD mice, restored PDK1 and LDHA 

expression following Atreatment. Moreover, PDK1 expression was maintained in AD mice 

fed CNB-001.  Collectively, these findings suggest that the Warburg effect plays a central 

role in mediating neuronal resistance to Αβ by decreasing mitochondrial activity and 

subsequent ROS production. Loss of this protective effect may render elderly individuals 

susceptible to AD.   
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Chapter 1 

1 Introduction and Literature Review  

1.1 Alzheimer’s disease 

1.1.1 Alzheimer’s disease overview 

Alzheimer disease (AD) is one of the most common neurodegenerative disorders in the 

elderly and is characterized by behavioral, cognitive and memory impairment.  AD is the 

most common form of dementia accounting for 60-80% of reported cases in the United 

States, where one in eight individuals over the age of 65 are suffering from some form of 

dementia (Corrada et al., 2008; Plassman et al., 2007).  In 2009 an estimated 34.4 million 

individuals were affected with dementia, and an estimated $279 billion was spent worldwide 

for direct costs to care for patients suffering from AD and related dementias (Wimo et al., 

2010).  Currently, approximately 5.4 million Americans are living with AD, a number which 

is expected to double or triple by 2050 (Thies and Bleiler, 2011). Moreover, AD is the fifth 

leading cause of death in the United States (Thies and Bleiler, 2011). Clearly AD represents a 

critical public health issue for societies worldwide.  Efforts focused on further understanding 

the pathology of the disease could aid in the development of effective preventions, treatments 

or cures which could significantly reduce the physical, emotional and financial burden of 

AD.  Pathologically, AD is characterized by widespread nerve cell death and the 

accumulation of extracellular plaques and intracellular neurofibrillary tangles (NFTs) within 

the brain (Masters et al., 1985a,b).  The frequency of plaques and tangles are often 

concentrated in the cortex and hippocampus, areas of the brain associated with higher 

cognitive functions and memory and severely affected in AD (Mann et al., 1985; Sabuncu et 

al., 2011).  These plaques are primarily composed of amyloid-β-peptide (Aβ), a 40-42 amino 

acid peptide derived from the proteolytic cleavage of the amyloid precursor protein (APP) by 

secretase complexes, including-secretase, Presenilin 1 (PS1), Presenilin 2 (PS2) and γ-

secretase (Hardy, 1997; Masters et al., 1985b; Selkoe, 1998).  The intraneuronal NFTs are 

composed of the microtubule (MT) associated phosphoprotein tau (Koster et al., 1989; 

Mandelkow and Mandelkow, 1998).  In AD, tau becomes hyperphosphorylated which leads 
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to its aggregation resulting in destabilization of MTs and the disruption of axonal transport 

(Delacourte and Buee, 1997; Mandelkow et al., 1995; Trojanowski and Lee, 1995).   

1.1.2 Causes of AD 

The majority of AD cases are sporadic and occur at a late age (greater than 65 years), with 

only a small percentage of cases associated with autosomal dominant mutations.   The cause 

or causes of AD are poorly understood, with the greatest risk factor being age.  In the rare 

familial forms of the disease, mutations in three major genes have been identified that result 

in early onset AD (Levy-Lahad et al., 1995; Piaceri et al., 2013; Williamson et al., 2009).  

These genes encode APP, PS1 and PS2 (Levy-Lahad et al., 1995; Piaceri et al., 2013; 

Williamson et al., 2009).  All mutations associated with AD alter the processing of APP to 

favor the production and accumulation of A(Hardy, 1997; Williamson et al., 2009).  

Additionally an apolipoprotein E (APOE) allelic variant, APOE-E4, has been identified as a 

risk factor for the development of late-onset AD (Farrer et al., 1997; Tang et al., 1998).  The 

APOE-E4 polymorphism is associated with increased Adeposition and fibril formation, and 

decreased A clearance (Ma et al., 1994; Schmechel et al., 1993). Thus, taken together, A 

has garnered a great deal of attention due to its likely role in the pathogenesis of AD. More 

recently using genome-wide association studies researchers have identified a number of 

allelic variants of genes associated with an increased risk for the development of late-onset 

AD, including CLU, PICALM, TREM, SORL1 and CR1 (Alexopoulos et al. 2011; Cruchaga 

et al. 2013; Guo et al. 2012; Harold et al. 2009; Jin et al. 2012; Zhang et al 2010).  Further 

investigation into the effects of these genes is required to advance the understanding of the 

causes of late-onset AD.   Though not associated with familial forms of the disease the 

accumulation of intracellular NFTs composed of tau protein has also been proposed to play a 

primary role in the pathogenesis of AD.   

1.1.3 Tau   

Tau proteins belong to the family of microtubule-associated proteins (MAPs), and are found 

almost exclusively in nerve cells (Schoenfeld and Obar, 1994; Tucker, 1990).  Located on 

chromosome 17 the tau gene, also known as microtubule-associated protein tau (MAPT), 

expresses a primary transcript containing 16 exons which can be differentially spliced into 

six tau isoforms (Andreadis et al., 1992; Goedert et al., 1989; Neve et al., 1986).  The six 
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isoforms range in molecular weight from 45-65 kDa and are differentially expressed during 

development suggesting unique physiological roles for each isoform (Buee et al., 2000; 

Kosik et al., 1989).  Importantly all six isoforms are expressed in the adult brain (Goedert 

and Jakes, 1990; Kosik et al., 1989).  The mature tau proteins promote the assembly of 

tubulin and function to stabilize MTs through their association with this cytoskeletal 

component (Alonso et al., 2001; Drubin and Kirschner, 1986; Weingarten et al., 1975).  The 

stabilization of axonal MTs plays a critical role in the transport of important proteins along 

axons to synapses.   Tau proteins are normally regulated by their degree of phosphorylation 

(Lindwall and Cole, 1984).  In patients with AD, tau is abnormally hyperphosphorylated 

affecting its ability to associate with and stabilize MTs thereby disrupting their assembly and 

ultimately disrupting axonal transport (Iqbal et al., 1986; Kopke et al., 1993).  The 

hyperphosphorylation of tau promotes the aggregation of the protein into paired helical 

filaments (PHF) which are the major constituent of intracellular tangles found in the AD 

brain (Grundke-Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b).  As a result of its 

dysregulation and formation of tangles in AD, hyperphosphoryated tau has been proposed to 

play an important role in the pathogenesis of AD (Noble et al., 2011).   

1.1.4 APP and A

The APP gene is located on chromosome 21 and encodes a receptor like integral membrane 

protein which is ubiquitiously expressed in cells throughout the body (De Strooper and 

Annaert, 2000; Kang et al., 1987).  Though APP may have a role in synapse formation and 

transmission (Priller et al., 2006), neural plasticity (Turner et al., 2003) and iron export (Duce 

et al., 2010), a primary role of APP has not yet been clearly defined.  APP has a short half 

life and is constitutively cleaved into various fragments by different secretases; namely -

secretase, -secretase and-secretase.  Proteolytic cleavage by-secretase or-secretase 

releases the soluble 100-120 kDa ectodomain of APP, leaving the 10-12 kDa transmembrane 

C-terminal domain (De Strooper and Annaert, 2000; Shoji et al., 1992).  Subsequent cleavage 

by -secretase of the APP C-terminal fragment produced by -secretase produces a non-

toxic, non-aggregating P3 fragment (De Strooper and Annaert, 2000; Shoji et al., 1992).  

However, cleavage of the APP C-terminal fragment produced by -secretase results in the 

secretion of a 4 kDa 40-42 amino acid long Apeptide which can be toxic to nerve cells 
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(Figure 1.1) (De Strooper and Annaert, 2000; Shoji et al., 1992).  A1-40 is the most 

commonly produced peptide and is less likely to have a pathogenic effect, whereas A1-42 

peptide is more fibrillogenic due to the two additional hydrophobic amino acids: isoleucine 

and alanine (Jarrett et al., 1993).  The P3 fragment and Aare constitutively released by 

normal cells and can be detected in the cerebral spinal fluid from normal individuals and 

those with AD, however in the case of AD, A is primarily produced and is virtually the 

exclusive constituent of the plaques that form in the brain (Haass et al., 1992; Seubert et al., 

1992; Shoji et al., 1992).  In normal individuals Ais actively metabolized, however 

individuals with AD have increased production of Aand perturbed clearance which leads to 

an imbalance between the production and removal of this toxic species (Hardy and Selkoe, 

2002; Mawuenyega et al., 2010).  Though not well understood, clinically relevant levels of 

A deposition occurs only in the brain (Selkoe, 1998).  Once released the Aprotein 

undergoes conformational switching between an -helix conformation to a -sheet structure 

(Lansbury, 1999; Serpell, 2000). The -sheet structure is tightly linked to fibril formation in 

which the peptide strands are aligned orthogonally to the direction of fibril growth, also 

known as the “cross-” motif, which is the main constituent of neuritic plaques (Lansbury, 

1999; Serpell, 2000). Small oligomeric intermediates and short protofibres consisting of 5-6 

-sheets are also present in AD and both are believed to be precursors to full length fibres 

(Harper et al., 1997; Stine et al., 1996; Walsh et al., 1999).  An overall increase in A 

production, as observed in AD, results in increases in Aoligomers, fibrils and plaques in the 

central nervous system (CNS).  Though it is often debated whether A fibrils or A 

oligomers play a more important role in the pathogenesis of AD, both are neurotoxic and 

appear to be important players.   
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Figure 1.1 Schematic of amyloid precursor protein (APP) processing. The APP protein is 

a transmembrane protein that is cleaved by two distinct pathways: non-amyloidogenic (left) 

or amyloidgenic (right). Cleavage of APP by -secretase followed by -secretase results in 

the production of a non-pathogenic P3 fragment.  In contrast, cleavage by-secretase 

followed by -secretase results in the generation of a pathogenic A peptide which can 

subsequently form oligomers, protofobrils and fibrils which are neurotoxic to nerve cells.   
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1.2 The Amyloid hypothesis 

1.2.1 The Amyloid hypothesis overview 

The amyloid hypothesis, first proposed over 20 years ago, suggests that Aβ deposition in the 

brain is the primary causative agent of AD (Hardy and Higgins, 1992; Selkoe, 1991).  A few 

major observations formed the basis of this hypothesis.  Importantly, the first genetic 

mutations associated with familial AD (FAD) were in the APP gene and were associated with 

the overproduction of A (Goate et al., 1991; Hardy, 1992; Hendriks et al., 1992; Mullan et 

al., 1992).  The other identified inherited mutations are in PS1 and PS2, which also increase 

the processing of APP to favor the production of A (Scheuner et al., 1996).  PS1 and PS2 

form a complex with -secretase and play a direct role in the processing of APP (Sisodia and 

St George-Hyslop, 2002). Thus all identified genetic mutations causing AD are associated 

with the increased production of AMoreover, individuals with Down’s syndrome (DS) 

display similar neuropathological features of AD, mainly plaques, tangles and 

neurodegeneration, with most individuals developing dementia early in life (Head et al., 

2002; Mann and Esiri, 1989; Wisniewski et al., 1985).  DS is caused by an extra copy of 

chromosome 21, the location of the APP gene, therefore APP is overexpressed in people with 

this disorder. Though the cause of late-onset AD remains elusive, the only identified risk 

factor is inheritance of the APOE-E4 allele, a genetic variant of the APOE gene (Corder et 

al., 1993).  Interestingly mice lacking APOE crossed with transgenic mice overexpressing 

mutant human APP, exhibited reduced A deposition compared to APP transgenic mice, 

suggesting that APOE affects A deposition in vivo (Bales et al., 1997; Holtzman et al., 

2000).  These observations coupled with studies showing A readily kills cultured nerve 

cells, led to the theory that Ais the primary factor driving AD pathogenesis (Behl et al., 

1992; Mattson et al., 1992; Yankner et al., 1990).   

Although hyperphosphoryated tau has also been implicated as a pathogenic protein in AD, 

mutations in MAPT have not been detected in FAD.  However, mutations in MAPT have 

been associated with an autosomal dominantly inherited dementia named frontotemporal 

dementia and Parkinsonism linked to chromosome 17 (FTDP-17, Pick’s disease), which is 

characterized by severe neurodegeneration in the frontotemporal lobe and the presence of 

NFTs in both nerve and glial cells (Hutton et al., 1998; Poorkaj et al., 1998; Spillantini and 
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Goedert, 1998). Notably, there is no Adeposition associated with FTDP-17 (Hutton et al., 

1998; Poorkaj et al., 1998; Spillantini and Goedert, 1998).    Thus alterations in tau that lead 

to neurodegeneration and NFT deposition are not sufficient to promote A deposition as 

observed in AD (Hardy and Selkoe, 2002). Therefore it has been proposed that NFTs 

composed of wild type (WT) tau as seen in AD, likely arise secondarily to A deposition 

(Hardy et al., 1998).  Transgenic mice expressing a human tau containing the most common 

FTDP-17 mutation (P301L) exhibited NFT formation in the midbrain and spinal cord, but 

had no NFTs in the cortex and hippocampus,  areas known to be affected in AD (Lewis et al., 

2000).  However, crossing these transgenic mice with AD transgenic mice expressing mutant 

APP resulted in A deposits and NFTs throughout the cortex, suggesting that Ainfluences 

the formation of NFTs in areas affected in AD (Lewis et al., 2001).   Taken together the 

excess of A deposition in the brains of patients with AD appears to play a principle role in 

the pathogenesis of AD. The proposed mechanisms by which Aelicits nerve cell toxicity 

and contributes to the pathogenic events leading to AD will be discussed in detail below.  In 

summary, A production and accumulation, as a result of genetic mutations or in most cases 

unknown causes, results in the hyperphosphorylation of tau, increased production of reactive 

oxygen species (ROS), mitochondrial dysfunction and activation of inflammatory processes.  

The resulting increase in oxidative stress promotes neurodegeneration leading to synaptic 

loss and nerve cell death which clinically manifests as cognitive deficits and memory loss 

which are classical symptoms of AD (Figure 1.2).     
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Figure 1.2 The amyloid cascade hypothesis. The amyloid cascade hypothesis contends that 

Adeposition is the primary influence driving Alzheimer’s disease (AD) brain pathology.  

The accumulation of A as a result of rare familial mutations in the amyloid precursor 

protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) or in most cases due to unknown 

causes results in altered tau regulation leading to its hyperphosphorylation and aggregation 

into tangles within nerve cells.   Moreover, Adirectly and indirectly induces mitochondrial 

dysfunction and increases reactive oxygen species (ROS) levels resulting in increased 

oxidative stress.  A induced oxidative stress activates an inflammatory response which 

further potentiates the production of A.  These Ainduced cellular changes lead to synaptic 

loss and widespread nerve cell loss in the brain, which is clinically manifested as cognitive 

deficits and memory loss typical of AD. 
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1.2.2 Oxidative stress and AD  

The AD brain exhibits extensive free radical damage, due to the accumulation of ROS 

(Butterfield, 1997; Markesbery, 1997; Smith et al., 2000).   ROS are highly reactive 

molecules which contain an unpaired electron on the outermost shell of oxygen.  Due to their 

reactivity, ROS are capable of modifying macromolecules by oxidizing lipids, proteins and 

nucleic acids often altering their biological functions.  The redox state in a cell is defined by 

the balance between pro-oxidant and anti-oxidant processes.  Pro-oxidant processes result in 

the production of ROS, whereas anti-oxidant processes detoxify ROS and/or prevent their 

formation.  ROS are formed by several different mechanisms but most notably are formed as 

a natural byproduct of the mitochondrial electron transport chain (ETC) due to the early 

offloading of electrons at Complex I or III of the ETC onto molecular oxygen during normal 

metabolism.  In an adult, approximately 2% of molecular oxygen consumed by the 

respiratory chain gives rise to ROS, a number which is known to rise with age (Balaban et 

al., 2005).  The production of ROS is balanced by the antioxidant defense system, which 

consists of enzymatic and non-enzymatic antioxidants.  Enzymatic antioxidants include 

superoxide dismutase (SOD), catalase, the glutathione (GSH) system (GSH peroxidases and 

reductases), peroxiredoxins (Prxs) and thioredoxins.  For example the superoxide (O2
-
) anion 

produced as a result of the partial reduction of oxygen in the mitochondria is quickly reduced 

to hydrogen peroxide (H2O2) by SOD which can be further degraded into water and oxygen 

by catalase. However, in the presence of transition metals (Fe, Cu, Cr and Co), H2O2 can be 

converted to highly reactive hydroxyl radicals (OH
-
), a species for which there is no known 

detoxifying system (Gutteridge, 1994).   These reactive hydroxyl radicals can damage almost 

any macromolecule, wreaking havoc on a cell when produced. 

At normal physiological levels ROS function as important signal transducers which play an 

important role in regulating cellular function (Covarrubias et al., 2008; Marchi et al., 2012; 

Ufer et al., 2010).  However an imbalance in the production and/or detoxification of ROS can 

result in oxidative stress and subsequent oxidative damage which can ultimately lead to cell 

death (Pratico, 2008).  The brain is especially susceptible to oxidative damage due to its high 

rate of oxidative metabolism (it consumes 20% of oxygen while only representing 2% of 

body mass), low levels of antioxidants (compared to other organs), high concentrations of 

polyunsaturated fats and high content of transition metals (Behl, 1997; Halliwell, 1989, 1992; 
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Halliwell et al., 1992; Pratico, 2008). Polyunsaturated fats are particularly susceptible to 

oxidation by ROS resulting in lipid peroxidation or oxidative degradation of lipids in 

membranes which cause significant damage to the cell (Butterfield and Lauderback, 2002).  

Moreover, transition metals themselves are capable of catalyzing ROS formation, further 

contributing to oxidative stress in a cell.  In AD there is an imbalance between pro- and anti-

oxidant processes which results in oxidative damage (Behl, 1997; Markesbery, 1997). As a 

result, markers of oxidative stress have been well described in the AD brain including 

protein, DNA and RNA oxidation and lipid peroxidation (Butterfield, 1997; Markesbery, 

1997; Smith et al., 2000).  These observations have led to the oxidative stress hypothesis 

which posits that elevated oxidative stress results in cumulative damage over time that 

promotes AD pathogenesis (Markesbery, 1997; Pratico, 2008). The increase in ROS in the 

AD brain is believed to arise, in part, by A deposition and mitochondrial dysfunction (Behl, 

1997; Casley et al., 2002; Caspersen et al., 2005; Pratico, 2008).  A-induced ROS 

production and mitochondrial dysfunction will be discussed below.   

1.2.3 A accumulation is associated with oxidative stress  

Evidence suggests that A deposition both directly and indirectly induces oxidative stress in 

the AD brain which is likely to contribute to the peptides neurotoxicity (Behl, 1997). The 

overexpression of APP in M17 cells results in increased levels of cellular ROS (Wang et al., 

2008). Similarly, exogenous A has been shown to produce a dose dependent increase in 

free-radical generation (H2O2) and neurotoxicity in vitro (Behl et al., 1992; Behl et al., 

1994b; Harris et al., 1995). Increased levels of H2O2 were also observed in the brains of AD 

transgenic mice, which were directly related to the level of soluble A (Manczak et al., 

2006).  The increase in ROS elicited by A exposure ultimately results in lipid peroxidation, 

which is prominent in the AD brain (Arlt et al., 2002; Behl et al., 1992; Subbarao et al., 

1990). Importantly, exogenously applied antioxidants protect against A toxicity in vitro 

(Behl et al., 1992; Behl et al., 1994b).  Taken together ROS, more specifically H2O2, appear 

to be closely associated with A induced neurotoxicity.   

Elevated levels of H2O2 as observed in AD, can also activate the transcription factor nuclear 

factor-kappa B (NF-B) (Schreck et al., 1991).  The activation of NF-B results in the 

transcription of genes involved in the inflammatory response which when activated further 
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potentiates the production of ROS (Schreck et al., 1991). A has also been shown to induce 

the activity of NF-B (Behl et al., 1994b; Kaltschmidt et al., 1997; Valerio et al., 2006). 

Moreover, NF-B inhibitors prevented intraneuronal accumulation and secretion of A 

suggesting a possible positive feedback loop of Aproduction (Valerio et al., 2006).  Further 

contributing to the accumulation of A, H2O2 and 4-Hydroxynonenal (HNE), a product of 

lipid peroxidation, have been shown  to increase the activity of -secretase or -site APP 

cleaving enzyme (BACE1) in vitro (Bourne et al., 2007; Tamagno et al., 2005).  

Additionally, NF-κB binding elements have been identified in the human BACE1 promoter 

region and the overexpression of NF-κB subunit p65 up-regulates BACE1 cleavage and 

Aproduction (Chen et al., 2011). Thus, initial activation of NF-κB as a result of A 

deposition and increased H2O2 levels is likely to induce expression of BACE1, leading to the 

increased production of Aand potentiating toxicity in a positive feedback loop (Chen et al., 

2011). Both BACE1 and NF-κB subunit p65 levels are significantly increased in the brains of 

AD patients (Chen et al., 2011; Terai et al., 1996). Taken together it appears that ROS is an 

important mediator of Ainduced neurotoxicity. 

1.3 Ainduced mitochondrial dysfunction  

1.3.1 Mitochondria play a central role in A toxicity  

Mitochondria are specialized organelles that function as key regulators of cell survival and 

cell death.  Most notably, mitochondria are the site of cellular respiration and are responsible 

for the production of the majority of cellular adenosine triphosphate (ATP).  The impairment 

of mitochondrial metabolism in AD has been well documented (Casley et al., 2002; 

Caspersen et al., 2005; Gibson et al., 1998). Moreover, mitochondrial abnormalities are 

believed to be the primary source of oxidative damage in the AD brain (Beal, 2005; Hirai et 

al., 2001).  Importantly, mitochondrial dysfunction is a common feature of different FAD 

mouse models (PS1, APP, APP/PS1) which occurs prior to plaque deposition and cognitive 

defects (Trushina et al., 2012).  Moreover, functional mitochondria appear to actually be 

required for A to elicit cellular toxicity (Cardoso et al., 2001).   Treatment of NT2 cells, a 

human tetracarcinoma cell line capable of differentiating into neurons, with A results in a 

dose dependent reduction in cell viability (Cardoso et al., 2001).  However, NT2 cells 

depleted of their mitochondrial DNA (thus incapable of oxidative phosphorylation 
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(OXOPHOS) were unaffected by exposure to A(Cardoso et al., 2001).  Though often a 

topic of debate, several mechanisms by which A induces mitochondrial dysfunction have 

been proposed.    

1.3.2 Aaccumulates within mitochondria and interacts with 
mitochondrial proteins 

It is not entirely clear how A perturbs mitochondrial function; however, A has been shown 

to accumulate within mitochondria of CNS neurons in AD patients and AD transgenic mice 

(Hernandez-Zimbron et al., 2012; Lustbader et al., 2004; Manczak et al., 2006; Yao et al., 

2011).  Interestingly, A is present in the mitochondria of AD transgenic mice as early as 4 

months of age, prior to plaque deposition and cognitive deficits suggesting mitochondrial 

accumulation of Ais an early event in the pathogenesis of AD (Caspersen et al., 2005). The 

early accumulation of A appears to preferentially occur in synaptic mitochondria which 

results in decreased respiration and increased oxidative stress (Du et al., 2010). Primary 

neurons from AD transgenic mice were also shown to accumulate oligomeric A within their 

mitochondria which was accompanied by increased death in culture (Calkins et al., 2011).   

The mitochondrial translocase of the outer membrane (TOM) machinery is believed to 

mediate Aaccumulation within the mitochondria, as A has been shown to be transported 

into mitochondria isolated from rat liver in a TOM dependent manner (Hansson Petersen et 

al., 2008).  Moreover, immunoelectron microscopy after import revealed A was localized to 

mitochondrial cristae, which has also been observed in human cortical brain biopsies 

(Hansson Petersen et al., 2008).  Once transported into the mitochondria, A can directly 

interact with and inhibit the enzymatic activity of alcohol dehydrogenase (ABAD), a 

multifunctional enzyme that catalyzes the oxidation of alcohols in mitochondria (Yao et al., 

2011). Disrupting the interaction between A and ABAD reduces mitochondrial derived 

ROS and increases oxygen consumption and mitochondrial activity (Hong et al., 2007). A 

has also been shown to bind directly to cytochrome oxidase (COX) subunit 1, a member of 

complex IV of the ETC, which likely accounts for the decreased activity of this enzyme in 

AD (Gibson et al., 1998).   In addition to interacting with mitochondrial proteins involved in 

metabolism, A was shown to interact with dynamin-related protein 1 (Drp1), a protein 

which plays an important role in mitochondrial fragmentation, both in the AD brain and in 
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primary hippocampal cells from transgenic mice carrying the FAD linked APP Swedish 

mutation  (APPswe) (Manczak et al., 2011).  Transmission electron microscopy revealed 

mitochondria from APPswe primary nerve cells are more fragmented and structurally 

damaged than WT neurons, which may be a result of the interaction between Drp1 and A 

(Calkins et al., 2011).  Therefore the transport, accumulation and interaction of A with 

specific mitochondrial proteins leads to structural abnormalities and the disruption of 

mitochondrial function.  

1.3.3 Aperturbs mitochondrial respiration and increases ROS 
production  

Mitochondrial respiration is central to maintaining ATP levels in nerve cells.  Many lines of 

evidence suggest that A induces mitochondrial dysfunction by disrupting OXOPHOS 

leading to oxidative stress.  Aberrations in energy metabolism including decreased 

mitochondrial membrane potential, ATP production and Complex IV activity have been 

reported as early as 3 months in AD transgenic mouse models prior to plaque formation 

(Hauptmann et al., 2009). The progressive accumulation of A within the mitochondria of 

AD mice results in decreased activity of Complex III and IV of the ETC and decreased 

overall oxygen consumption (Caspersen et al., 2005).  Similarly, isolated mitochondria from 

rat brain exposed to A show a significant reduction in state 3 and 4 respiration (Casley et 

al., 2002).  Additionally, the activities of key enzymes involved in respiration: COX , -

ketoglutarate dehydrogenase complex (-KGDHC) and pyruvate dehydrogenase (PDH), 

were inhibited by exposure to A (Casley et al., 2002). Moreover, reduced activity and 

expression of enzymes participating in the tricarboxylic acid cycle (TCA) cycle and ETC 

have been well documented in the brains of AD patients (Brooks et al., 2007; Liang et al., 

2008).  Treatment of SK-N-SH cells,  a human neuroblastoma cell line, with A results in a 

dose dependent decrease in mRNA levels of mitochondrial COX subunits (Liang et al., 

2008).  RNA levels of human mitochondrial transcription factor-1 (Transcription factor A, 

mitochondrial (TFAM)), a key regulator of transcription of mitochondrial genes, are also 

decreased following A-treatment (Liang et al., 2008).  These changes in mitochondrial 

metabolism are believed to result in increased generation of ROS which further potentiates 

Aaccumulation and toxicity (Leuner et al., 2012).  Mice deficient in Complex I or AD mice 
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treated with a complex I inhibitor (rotenone), exhibited increased levels of Aβ (Leuner et al., 

2012).  Thus mitochondrial ROS produced at Complex I as a result of mitochondrial 

dysfunction is sufficient to potentiate Aproduction (Leuner et al., 2012). Similar results 

were obtained when AD mice were exposed to the pesticide paraquat which resulted in 

oxidative damage primarily in the mitochondria, elevated A levels and induced cognitive 

impairment, which was rescued by the overexpression of the mitochondrial antioxidant Prx3 

(Chen et al., 2012).   Thus mitochondrial derived ROS, as a result of dysfunctional 

OXOPHOS, appears to underlie cognitive impairment and elevated amyloidogenesis 

associated with AD.   

1.4 Glucose metabolism and Aresistant cells  

1.4.1 Glucose metabolism in nerve cells 

The human brain consumes approximately 20% of the body’s total energy yet only represents 

2% of the total body mass, far outweighing the demand of other organs in the body.  While 

other tissues in the body rely on a variety of energy sources, the brain is believed to primarily 

depend upon the oxidation of glucose to meet its energy demands.  The majority of the 

energy produced by the oxidation of glucose is used for the maintenance and restoration of 

ion gradients associated with synaptic transmission, as well as uptake and recycling of 

neurotransmitters (Attwell and Laughlin, 2001).  As an essential organ, the brain requires 

adequate glucose and oxygen delivery from the vasculature system, a process controlled by 

the precise regulation of energy supply and demand.  Consequently, changes in brain activity 

are accompanied by changes in cerebral blood flow, a phenomenon which forms the basis of 

functional brain imaging technologies.  Glucose is taken into nerve cells by glucose 

transporters (GLUTs), transmembrane proteins that facilitate the transport of glucose into the 

cell (Dwyer et al., 2002).  Of the 12 known glucose transporters, seven have been identified 

in the brain: GLUT1-6 and GLUT 8 (Dwyer et al., 2002).  However, GLUT 1 and 3 are the 

predominant glucose transporters in the brain (Dwyer et al., 2002). GLUT1 is ubiquitously 

expressed in the brain, with cells of the blood brain barrier (BBB), astrocytes and endothelial 

cells, representing major sites of expression (Boado and Pardridge, 1990; Dick et al., 1984; 

Gerhart et al., 1989).  GLUT 3 is the predominant neuronal glucose transporter (Leino et al., 

1997; Maher et al., 1992; Nagamatsu et al., 1993).  Once transported into nerve cells, glucose 
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is converted to pyruvate by glycolysis within the cell cytosol producing a net of 2 ATP.  In 

the presence of oxygen, pyruvate is taken into mitochondria where it is converted into acetyl 

coenzyme A (acetyl CoA) by the mitochondrial enzyme pyruvate dehydrogenase (PDH).  

Subsequently acetyl CoA can enter and drive the TCA cycle, producing the electron donors 

NADH and FADH2, which donate their electrons to the ETC ultimately producing ATP by 

OXOPHOS.  

Eighteen times more energy is produced from mitochondrial respiration than from glycolysis 

(36 ATP versus 2 respectively per glucose molecule).  Therefore, neurometabolism has 

traditionally been perceived as a process with a strict reliance on the oxidation of pyruvate in 

the mitochondria in order to meet the high energy needs of neurons.  However, when oxygen 

becomes limited, cells become more dependent on glycolysis and lactate production to fuel 

their energy needs.  In hypoxic environments, low oxygen conditions, pyruvate is reduced to 

lactate by lactate dehydrogenase A (LDHA) in the cell cytosol regenerating NAD
+
, an 

important co-factor required to sustain high levels of glycolysis.  The shift in metabolism 

from OXOPHOS to lactate production is driven by the transcription factor hypoxia inducible 

factor 1 (HIF-1) (Semenza, 1999). HIF-1 is a heterodimeric transcription factor made up of a 

HIF-1subunit and the constitutively expressed HIF-1subunit (Semenza, 2002).  Under 

normoxic conditions HIF-1 is constitutively synthesized and degraded by the proteosome 

(Semenza, 2002).  However in hypoxic microenvironments, HIF-1 is stabilized allowing for 

the activation of the HIF-1 transcription complex (Semenza, 2002).   Importantly, HIF-1 

regulates the expression of genes involved in glucose transport (GLUT 1 and GLUT 3), 

glycolysis and lactate production (Heilig et al., 2003; Semenza, 1999; Semenza et al., 1996; 

Zhang et al., 1999).   Additionally, HIF-1 upregulates the expression of pyruvate 

dehydrogenase kinase 1 (PDK1), an enzyme that phosphorylates and inhibits PDH, thereby 

reducing the rate of respiration (Figure 1.3) (Kim et al., 2006; Papandreou et al., 2006).  

Furthermore, the switch to lactate production associated with HIF-1 activation attenuates 

mitochondrial ROS production. 
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Figure 1.3 Hypoxia inducible factor 1 (HIF-1) alterations in glucose metabolism in 

response to hypoxia. In hypoxic microenviroments the stabilization HIF-1 and subsequent 

increased activity of HIF-1 stimulates increased expression of glucose transporters (Glut1/3), 

and glycolytic enzymes increasing the conversion of glucose to pyruvate.  Additionally, HIF-

1 promotes the reduction of pyruvate to lactate through the upregulation of lactate 

dehydrogenase A (LDHA).  HIF-1 also actively suppresses the production of acetyl CoA 

through the mitochondria via increased expression of pyruvate dehydrogenase kinase 1 

(PDK1), which phosphorylates and inhibits pyruvate dehydrogenase (PDH) resulting in 

decreased flux through the tricarboxcylic acid (TCA) cycle and repressed oxidative 

phosphorylation (OXPHOS).  The decrease in electron transport activity decreases the 

generation of reactive oxygen species (ROS) and allows for cell survival in absence of 

oxygen.   
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1.4.2 Glucose metabolism and AD 

The progressive decline in cerebral glucose utilization is known to occur with age and in 

AD, possibly contributing to both nerve cell loss and memory decline (Heiss et al., 1991; 

Mielke et al., 1998).  Reductions in cerebral glucose metabolism, as measured by fluoro-2-

deoxy-D-glucose positron emission tomography (FDG-PET), are a common diagnostic 

feature of AD (Herholz et al., 2007; Mosconi, 2005).  Alterations in the expression and 

activity of enzymes involved in the TCA and ETC have been proposed to play a role in the 

observed reduction of glucose metabolism. Significant reductions, up to 70% in some areas, 

in the expression of genes encoding subunits of the ETC and key enzymes in the TCA cycle 

were observed in the cortex and hippocampus of post-mortem tissue from AD patients 

(Brooks et al., 2007; Liang et al., 2008).  Moreover the activities of metabolic enzymes 

including PDH, COX and -KGDHC, were reduced in the cerebral cortex of AD patients 

(Gibson et al., 1998; Kish, 1997).  Reduced COX activity was also observed in the cortex of 

AD transgenic mice prior to the appearance of A plaques (Manczak et al., 2006).  In 

contrast, increased activity of the glycolytic enzymes pyruvate kinase (PK) and LDHA in the 

frontal and temporal cortex of patients with AD have been observed (Bigl et al., 1999; 

Soucek et al., 2003).  Interestingly, young (3 month old) AD transgenic mice (APP/PS1) 

exhibit decreased [
18

F]-FDG uptake when compared to their aged-matched controls (Poisnel 

et al., 2011).  However plaque accumulation in APP/PS1 mice is associated with an age 

dependent increase in [
18

F]-FDG uptake in the hippocampus and cortex, compared to control 

mice (Poisnel et al., 2011).  Moreover, glucose uptake is significantly increased in regions 

associated with A plaque accumulation in 12 month old AD mice when compared with the 

same brain regions of control mice (Poisnel et al., 2011).  Collectively, studies over the last 

few decades have revealed a complex, and at times conflicting picture of glucose 

metabolism in AD. 

1.4.3 A resistance 

As discussed above, the amyloid hypothesis posits that AD is caused primarily by 

Adeposition within the brain, which leads to mitochondrial dysfunction, increased ROS 

production, oxidative damage, and cell death (Hardy, 1992; Hardy and Selkoe, 2002; Selkoe, 

1991).  However, numerous immunohistochemical studies of brain tissue from individuals 
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that died without any history of dementia showed that up to 40% of the autopsied samples 

had significant plaque accumulation but little or no nerve cell loss (Bouras et al., 1994; Price 

and Morris, 1999).  It has been argued that asymptomatic individuals with high plaque 

accumulation likely had undiagnosed mild cognitive impairment and would have eventually 

developed AD if they lived long enough.  However, an alternative hypothesis is that these 

individuals may have acquired or exhibit an innate resistance mechanism to the toxic effects 

of A.  While difficult to study in patients, models of A-resistance have been generated in 

cell culture following the continual exposure of nerve cell lines to concentrations of A that 

would otherwise be toxic and the eventual emergence of surviving clonal nerve cell 

populations (Behl et al., 1994b; Sagara et al., 1996).  Interestingly, these A resistant nerve 

cells exhibit cross-resistance to a number of neurotoxins or toxic conditions including 

glutamate, H2O2, rotenone, cystine depletion and nitric oxide (Behl et al., 1994b; Dargusch 

and Schubert, 2002; Sagara et al., 1996).  An observed cross resistance to a variety of toxins 

suggests a possible common resistance mechanism has been acquired by these cells to 

survive exposure to a variety of environmental stressors including A.  Analysis of these A-

resistant nerve cells revealed an upregulation of both anti-oxidant and glycolytic enzymes 

compared to the sensitive parental cells (Sagara et al., 1996; Soucek et al., 2003).  

Furthermore, A-resistant cells exhibited increased glucose uptake and flux through the 

glycolytic pathway and heightened sensitivity to glucose deprivation suggesting that the 

altered glycolytic metabolism in these cells may mediate Aresistance (Soucek et al., 2003).  

Interestingly, the A-induced changes in glucose metabolism are believed to arise due to the 

activation of HIF-1 (Soucek et al., 2003). Moreover, inducing HIF-1 activity in A-sensitive 

cells by treatment with a metal chelator (mimosine) or by the expression of a non-degradable 

HIF-1was sufficient to protect against A toxicity (Soucek et al., 2003).  Importantly the 

induced activity of HIF-1 was associated with increased glycolysis, and enhanced sensitivity 

to glucose deprivation suggesting a reliance on a high glycolytic flux is associated with 

resistance (Soucek et al., 2003).  Taken together alterations in glucose metabolism may 

contribute to protection against neurotoxins including A.     
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1.5 The Warburg effect      

1.5.1 The Warburg effect (aerobic glycolysis) overview  

In the early 1920’s Otto Warburg made the observation that even in the presence of oxygen 

cancer cells predominantly produce ATP via high rates of glycolysis and lactate production.   

This metabolic phenotype is now referred to as a Warburg effect or aerobic glycolysis 

(Warburg, 1956b).   Importantly, the Warburg effect appears to be a common metabolic 

hallmark of cancer cells and has been exploited as a clinical diagnostic tool for the detection 

of tumors via PET imaging following the administration of [
18

F]-FDG (Gatenby and Gillies, 

2004; Hsu and Sabatini, 2008).  Due to the increased reliance on glycolysis, cancer cells must 

sustain high levels of glucose uptake in order to support their demanding energy needs. The 

increased glycolytic flux in cancer cells also renders them more sensitive to glucose 

deprivation (Aft et al., 2002).  Initially Warburg proposed this switch in metabolism was a 

result of mitochondrial impairment in cancer cells however little evidence was found that 

indicated mitochondria in cancer cells are actually damaged (Koppenol et al., 2011; 

Warburg, 1956a).   Furthermore, mitochondrial function is not impaired in most cancer cells 

(Fantin et al., 2006; Moreno-Sanchez et al., 2007; Weinhouse, 1976).  A more popular 

hypothesis to explain aerobic glycolysis in cancer cells is that this metabolic phenotype 

confers a unique advantage for survival and proliferation in the tumor microenvironment 

(Bonnet et al., 2007; Gatenby and Gillies, 2004; Hsu and Sabatini, 2008; Koppenol et al., 

2011).  The initial switch from mitochondrial respiration to lactate production is believed to 

be triggered by a hypoxic microenvironment of a growing tumor, leading to the activation of 

HIF-1 (Hsu and Sabatini, 2008; Semenza, 2003, 2007, 2010).  However, HIF-1expression 

has been observed in a number of non-hypoxic cancer cell lines, indicating that other 

mechanisms of normoxic activation of HIF-1 are likely to also play an important role in 

inducing the Warburg effect (Akakura et al., 2001).  The activation of HIF-1 shifts 

metabolism away from the mitochondria towards lactate production by increasing expression 

of enzymes such as PDK1 and LDHA (Kim et al., 2006; Papandreou et al., 2006).  However, 

once the tumor becomes vascularized, and despite the increased availability of oxygen, 

cancer cells maintain high rates of lactate production and sustain HIF-1 transcriptional 

activity. 
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In non cancerous cells under normoxic conditions HIF-1 is hydroxylated at specific proline 

residues (Pro
402 

and Pro
564

) by prolyl hydroxylase, which targets HIF-1 for destruction by 

the E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL) 

(Ivan et al., 2001).  Importantly, normoxic stabilization of HIF-1 in cancer cells is associated 

with increased growth and survival of tumors, increased angiogenesis and tumor 

development and a poor clinical prognosis (Akakura et al., 2001; Birner et al., 2000; Kung et 

al., 2000; Zhong et al., 1999).  Elevated HIF-1has been detected in primary tumors of 

brain, breast, colon, lung, ovary and their metastases (Zhong et al., 1999).  Thus it has been 

proposed that the activation of HIF-1 and subsequent upregulation of LDHA and PDK1 in 

cancer cells are key events that facilitate the Warburg effect (Semenza, 2003, 2007, 2010).  

The role of LDHA and PDK1 will be discussed in the following section.   

Aerobic glycolysis is much less efficient than OXOPHOS in terms of ATP yield per glucose 

molecule, so the big question with respect to the Warburg effect in cancer cells is why highly 

proliferative cells which have high metabolic requirements chose a much less efficient means 

of producing energy?  The answer appears to lie in the inhibition of apoptosis or programmed 

cell death.  There are two well defined pathways that lead to cellular apoptosis; the ‘extrinsic’ 

and the ‘intrinsic’ pathway.  Mitochondria are known to play a role in both pathways, but are 

direct regulators of the intrinsic pathway to cell death (Galluzzi et al., 2012).  The intrinsic 

pathway involves the permeablization of the outer mitochondrial membrane (OMM) which 

results in the release of proapoptotic mediator cytochrome c (cyt c) into the cytoplasm which 

subsequently binds to Apaf-1 thereby promoting the formation of a multi complex called the 

apoptosome which, in turn, initiates the caspase cascade through activation of pro-caspase 9 

(Galluzzi et al., 2012; Gogvadze et al., 2008).  The intrinsic pathway can be initiated by a 

number of factors including loss of mitochondrial membrane potential, oxidative stress and 

changes in metabolism (Galluzzi et al., 2012; Kroemer et al., 2007; Plas and Thompson, 

2002).  Reduced mitochondrial metabolism in cancer cells results in the decreased production 

of ROS, agents which can trigger apoptosis if left unchecked (Bonnet et al., 2007; Kim et al., 

2006).  This has led some researchers to hypothesize that a decrease in mitochondrial 

respiration and the resultant decrease in mitochondrial ROS production renders cancer cells 

more resistant to apoptotic stimuli (Bonnet et al., 2007; Koppenol et al., 2011).   Importantly, 

decreased ROS production is a common feature of cancer cells (Bonnet et al., 2007). The 
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inhibition of LDHA or PDK1, key enzymes regulating aerobic glycolysis in cancer cells, 

results in increased mitochondrial ROS production, arrested tumorigenesis and elevated 

sensitivity to chemotherapeutic agents (Bonnet et al., 2007; Michelakis et al., 2010; 

Michelakis et al., 2008; Zhou et al., 2010). Moreover, the proapoptotic activity of cyt c is 

dependent on its oxidation, and in cancer cells cyt c is maintained in a reduced state as a 

result of increased glycolysis and pentose phosphate shunt (PPS) activity (Vaughn and 

Deshmukh, 2008).  Increases in ROS associated with increased ETC activity in cancer cells 

can result in the oxidation and activation of cyt c thereby initiating apoptosis in these cells 

(Vaughn and Deshmukh, 2008).  Interestingly pyruvate, a major glycolytic product, 

scavenges H2O2, thus increased production of pyruvate as observed in cancer cells helps to 

further reduce intracellular ROS that can trigger apoptosis (Nath et al., 1995).  Moreover, 

glycolytic enzymes including hexokinase (HK) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) have been shown to play an active role inhibiting apoptosis (Kim 

and Dang, 2005). For example HK can bind to the voltage dependent anion channels 

(VDAC), preventing the release of cyt c from the mitochondria thereby acting as a direct 

inhibitor of apoptosis (Gottlob et al., 2001).  Taken together aerobic glycolysis tightly 

regulates the redox status of a cell, which is closely linked to resistance against apoptotic 

stimuli.   

1.5.2 LDHA  

The interconversion between lactate and pyruvate is catalyzed by the enzyme LDH.  There 

are five known LDH isoenzymes, each composed of tetramers containing different ratios of 

the LDHA or LDHB subunits.  LDH isoenzymes made up of mostly or all LDHA subunits 

preferentially catalyze the reduction of pyruvate to lactate whereas those rich in LDHB 

subunits favor the oxidation of lactate to pyruvate.  Increased LDHA expression has been 

well documented in a number of human breast cancer lines and contributes to a Warburg 

effect in these cells (Balinsky et al., 1983; Hilf et al., 1976; Koukourakis et al., 2003).  The 

upregulation of LDHA in cancer cells occurs, in part, by the increased activity of HIF-1 

which recognizes hypoxia response elements in the promoter region of LDHA (Semenza et 

al., 1996).  Inhibition of LDHA activity in human lymphoma cells results in increased 

mitochondrial metabolism, elevated ROS levels and cell death; events which are partially 

counteracted with treatment of an antioxidant N-acetylcysteine (Le et al., 2010).  Similarly 
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knockdown of LDHA expression in a variety of mammary gland tumor cell lines stimulates 

mitochondrial metabolism and reduces the tumorgenicity of cancer cells, which was rescued 

when LDHA was overexpressed in these cells (Fantin et al., 2006). Finally, LDHA inhibition 

reduces tumor initiation and inhibits tumor progression in vivo (Fantin et al., 2006; Le et al., 

2010).    These results suggest that LDHA is an important mediator of aerobic glycolysis and 

plays a key role in tumor maintenance and progression.  

1.5.3 PDK1  

PDH is a protein complex located in the mitochondrial matrix that controls the entry of 

pyruvate into the TCA cycle and is found at the interface between glycolysis and aerobic 

respiration. PDH is composed of three enzymes that contribute to pyruvate decarboxylation, 

the conversion of pyruvate to acetyl CoA. Phosphorylation of the PDH subunit by PDK 

inhibits PDH activity (Roche et al., 2001). In humans there are four PDK isoforms (1-4), 

which are expressed in a tissue specific manner (Bowker-Kinley et al., 1998).  In examining 

the tissue distribution of the four isozymes, PDK1, 2 and 4 were found in all regions of the 

brain in young and aged rats (Nakai et al., 2000).  More specifically, the levels of PDK1 were 

higher in the cerebral cortex when compared with the other isoforms (Nakai et al., 2000).  

Enhanced PDK1 expression is regulated directly by HIF-1 (Kim et al., 2006; Papandreou et 

al., 2006). In cancer cells the inhibition of PDH through enhanced PDK1 expression 

contributes to the Warburg effect in a variety of different cancers, making it an important 

mediator of aerobic glycolysis in these cells (Bonnet et al., 2007; Fujiwara et al., 2013; 

Hitosugi et al., 2011; Hur et al., 2013; McFate et al., 2008).  Interestingly, the inhibition of 

PDH is associated with normoxic stabilization of HIF-1 as knockdown of PDK1 expression 

eliminated the normoxic accumulation of HIF-1(McFate et al., 2008).  Similarly, treatment 

with dichloroacetate (DCA), a chemical inhibitor of PDK, reduced HIF-1 stabilization in 

vitro and in vivo (Michelakis et al., 2010). Thus PDK1 inhibition of PDH appears to play a 

critical role in the normoxic stabilization of HIF-1observed in a variety of cancer cells. The 

overexpression of PDK1 in HIF-1 null cells attenuates mitochondrial respiration, decreases 

toxic ROS production and increases lactate production suggesting that PDK1 expression acts 

as metabolic switch that favors aerobic glycolysis (Kim et al., 2006).  Knock down of PDK1 

expression in cancer cells shifts metabolism towards mitochondrial respiration which 
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dramatically decreases the production of lactate, and attenuates tumor growth (McFate et al., 

2008). Similarly, treatment of a variety of cancers in vitro and in vivo with DCA results in 

depolarized mitochondrial membrane potential, increased ROS and induced apoptosis 

(Bonnet et al., 2007; Michelakis et al., 2010).  Taken together, PDK1 appears to play an 

important role in the survival of cancer cells by mediating a Warburg effect in these cells.   

1.5.4 Aerobic glycolysis and the AD brain 

Over the last few decades, key information about brain metabolism has been gathered using 

PET imaging.  PET allows for the in vivo determination of the cerebral rate of glucose 

consumption, rate of oxygen consumption and blood flow.  Traditionally, (FDG)-PET signals 

were believed to primarily measure glucose utilization by neurons due to the high energy 

demand of this cell type during activation (Sokoloff et al., 1977). However, in the mid to late 

1980s, an important series of PET studies challenged this assumption by showing that 

cerebral glucose consumption exceeds oxygen utilization in certain regions of the human 

brain (Fox and Raichle, 1986; Fox et al., 1988). These early observations suggested that the 

metabolic needs of active neural tissue are met in a partially non-oxidative manner (Fox and 

Raichle, 1986; Fox et al., 1988).  More recently, Marcus Raichle and colleagues, using a 

more refined PET analysis of 33 healthy adults, identified high rates of aerobic glycolysis in 

the medial and lateral parietal and prefrontal cortices; regions known to participate in 

cognitive control networks (Vaishnavi et al., 2010).  These observations brought support to 

the notion that the metabolic needs of active brain tissue are met, at least partially, by aerobic 

glycolysis.  Further support was provided by various in vivo 
1
H-magnetic resonance 

spectroscopy (MRS) studies in healthy adults which showed activity-dependent increases in 

lactate levels in brain areas similar to those found in the PET studies (Lin et al., 2010; 

Maddock et al., 2006; Urrila et al., 2003).  The question then arises as to whether the changes 

in glucose metabolism (oxidative versus aerobic glycolysis) are taking place in different 

cellular compartments of the brain and/or are dependent on the specific needs of these areas.  

Although a reduction in cerebral glucose metabolism is a common diagnostic feature of AD, 

recent evidence suggests that glucose utilization is more complex in the AD brain (Mosconi, 

2005; Vlassenko et al., 2010).  Studies using PET imaging, which measured both glucose 

consumption and oxygen utilization, revealed a strong correlation between the spatial 

distribution of elevated aerobic glycolysis and A plaques in brain tissue from patients with 
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both AD, as well as normal individuals with high levels of A-deposition but without clinical 

manifestation of the disease (Vlassenko et al., 2010).  Moreover, PET studies of cognitively 

normal individuals have shown an age-associated decrease in FDG uptake in regions of the 

brain frequently affected in AD, although these studies did not determine what proportion of 

glucose was processed by aerobic glycolysis versus oxidative phosphorylation (Cunnane et 

al., 2011).  Thus it appears that aerobic glycolysis plays an important role in brain 

metabolism and possibly AD.  Understanding why cells exhibit a Warburg effect in the 

brains of individuals with A accumulation could offer insight into why some individuals 

develop AD while others appear resistant to the disease.    

1.6 Alzheimer’s disease cell lines and mouse models  

There are a number of immortalized cell culture lines that have been used to study AD.  

Additionally, primary nerve cells derived from various areas of the rodent brain are also 

widely used in the field of Alzheimer’s research.  In examining A toxicity, these models 

rely on the use of exogenous synthetic A.  A peptides containing  the highly hydrophobic 

29-35 amino acid residues form stable fibrils and aggregate within 24 hr following 

solubilization in sterilized deionized water (Pike et al., 1993).  A peptide mediated toxicity 

has been associated with its aggregation state (Pike et al., 1993). The 10 amino acid A25-35 

peptide, henceforth referred to as A, was used throughout this study unless otherwise stated.  

Though A1-42 is more toxic to cells, A25-35 readily kills cells in culture and has been widely 

used in both in vitro and in vivo models of AD (Pike et al., 1993; Yanker, 1996).  Moreover 

A25-35 exhibits the same early neurotropic and late neurotoxic activities as Aβ1-42 (Iversen et 

al., 1995).  There are also a number of mouse models of AD.  Below is a description of the 

cell lines and mouse model used in this study.     

1.6.1 PC12 cells  

PC12 cells are one of the most intensively studied cell lines in neurobiology.  They were 

originally derived from a rat adrenal pheochromocytoma (Greene and Tischler, 1976).  These 

cells differentiate into sympathetic-like neurons when treated with nerve growth factor 

(NGF) and can also synthesize and store catecholamine neurotransmitters, dopamine and 

norepinephrine (Greene and Tischler, 1976).  Additionally, these cells are able to make 
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acetylcholine and form cholinergic synapses with immortalized skeletal muscle cells 

(Schubert et al., 1977). Importantly, PC12 cells are sensitive to A or Atoxicity in 

culture (Behl et al., 1992; Behl et al., 1994a). Aresistant PC12 cells were derived by 

growing cells in the presence of A25-35 for 4 months (Behl et al., 1994b; Sagara et al., 1996).  

Subclones were then isolated and maintained in the presence of A25-35 and tested for their 

resistance against A1-42 (Behl et al., 1994b; Sagara et al., 1996).  The study presented here 

made use of the resistant subclones one and seven (R1 and R7).    

1.6.2 B12 cells  

B12 cells are a central nervous system line, derived from nitrosoethylurea induced brain 

tumors in rats (Schubert et al., 1974).  Similar to PC12 cells, B12 cells are sensitive to 

exogenously applied A (25-35 and 1-42)(Behl et al., 1994a).  Resistant clones were derived 

for the B12 cell line as described above (Behl et al., 1994b; Sagara et al., 1996). In this study, 

the resistant subclones two and four (R2 and R4) were examined.  

1.6.3 HT22 cells  

HT22 cells are an immortalized mouse hippocampal nerve cell line derived from the HT4 

cell line (Morimoto and Koshland, 1990).  These cells are sensitive to glutamate toxicity, but 

do not contain active ionotropic glutamate receptors and thus are not subject to excitotoxicity 

(Davis and Maher, 1994).  Treatment of HT22 cells with glutamate results in a programmed 

cell death called oxytosis which is related to cystine depletion (Tan et al., 2001).  

Additionally, these cells possess functional cholinergic properties which has made them a 

useful in vitro model for elucidating mechanisms involved in cognitive defects in AD (Liu et 

al., 2009).  

1.6.4 Primary nerve cells  

Primary nerve cell cultures are isolated from different areas of the fetal brain of mice and rats 

and cultured in special media (Silva et al., 2006). Primary cultures have been used to 

investigate cell survival and cell death, neurotransmission and neuroinflammation (Silva et 

al., 2006).  Primary cultures isolated from the cortex and hippocampus are of particular 

interest, as these areas of the brain are associated with extensive nerve cell death in the AD 

brain.  Primary nerve cell cultures are a valuable model for studying neurotoxicity as a result 
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of their enhanced sensitivity to toxins in comparison to immortalized cell lines (Aschner and 

Syversen, 2004; Silva et al., 2006).  Moreover, because these cells are not immortalized they 

more closely mimic nerve cells in vivo.  Importantly, primary nerve cells are sensitive to A 

toxicity in culture (Koh et al., 1990; Mattson et al., 1992; Yankner et al., 1990).  Primary 

nerve cells taken from the cortex of fetal mice, embryonic day 14-17, were used for this 

study.   

1.6.5 APP/PS1 

Many mice models of AD are in existence and are currently used in AD research.  

Transgenic models of AD have become a popular choice, as these models tend to be a better 

representation of the human disease (Kobayashi and Chen, 2005).  The amyloid hypothesis 

has led to the development of a variety of mouse models that are focused on amyloid 

accumulation (Kobayashi and Chen, 2005). A popular AD mouse model used in this study is 

a double transgenic model that expresses a chimeric mouse/human APP containing the 

Swedish mutation (Mo/HuAPP695swe) and mutant human presenilin 1 (PS1-dE9) both 

directed to CNS neurons.  Both mutations are associated with early-onset FAD and 

transgenic mice carrying these mutations develop A deposits throughout the cortex and 

hippocampus by six to seven months of age (Borchelt et al., 1997; Borchelt et al., 1996; De 

Strooper et al., 1995; Thinakaran et al., 1996).  A plaque accumulation in various brain 

regions of these mice  is strongly associated with oxidative damage and altered mitochondrial 

function  (Aso et al., 2012).  Additionally, these mice show defects in memory and learning 

as early as nine months of age (Aso et al., 2012).   

1.7 Research Questions  

1.7.1 Summary  

The Warburg effect is the phenomenon in which cells rely on aerobic glycolysis, and is a 

common feature of cancer cells (Warburg, 1956b).    Given the inefficiency of aerobic 

glycolysis and lack of evidence suggesting that the mitochondria of cancer cells are damaged 

or dysfunctional, it has been hypothesized that this metabolic phenotype offers a special 

survival advantage to rapidly proliferating cancer cells.  This shift in metabolism away from 

mitochondrial respiration and towards lactate production is mediated by HIF-1 (Semenza, 
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2010).  Interestingly, HIF-1 has been shown to be stabilized in clonal nerve cell lines and 

primary cortical neurons that are resistant to A toxicity (Soucek et al., 2003).  Moreover, 

these cells exhibit increased flux through the glycolytic pathway and increased reliance on 

glucose uptake, which is believed to be a result of HIF-1 activation (Soucek et al., 2003).  

Cells selected for resistance against Atoxicity are also more resistant to a variety of 

neurotoxins, suggesting these cells exhibit a common mechanism that confers resistance to 

diverse environmental stressors (Behl et al., 1994b; Sagara et al., 1996).  One compelling 

idea is A resistant cells exhibit a Warburg effect, similar to cancer cells, which contributes 

to their resistance against Atoxicity and other toxins.  Importantly, there exists a population 

of people who, despite the accumulation of plaques, fail to develop AD.  Similarly, in areas 

of the brains of AD patients with high Aβ deposition and exhibiting significant nerve cell 

death, pockets of surviving neurons exist.  These observations suggest that A resistant cells 

also exist in vivo.  Understanding the mechanisms acquired by nerve cells to evade the toxic 

effects of A is essential to further our understanding of A toxicity and resistance.  

Furthermore, exposing mechanisms of resistance to Amay uncover possible therapeutic 

targets for the prevention and/or treatment of AD.   

1.7.2 Hypothesis and Objectives   

In this study I hypothesized that A-resistant cells will exhibit the Warburg effect and 

that this metabolic reprogramming contributes to their resistance against A toxicity 

and other neurotoxins. Moreover, I hypothesized that the expression of key enzymes 

responsible for driving the Warburg effect will be down regulated in nerve cells that are 

sensitive to A toxicity and in the brains of AD transgenic mice and individuals with AD.  

Compounds that activate aerobic glycolysis are hypothesized to protect nerve cells against 

neurotoxins including A.  To address my central hypothesis, the following objectives were 

explored: 

(1) Determine if aerobic glycolysis occurs in Aresistant cells.  

(2) Determine if mitochondrial activity is repressed in A resistant cells. 
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(3) Determine if chemical or genetic modulation of LDHA and/or PDK1 activity in A 

sensitive /resistant cells can alter sensitivity/resistance to A and other neurotoxins. 

(4) Determine if the expression pattern of LDHA and PDK1 in primary cortical neurons is 

altered following exposure to A 

(5) Determine if key Warburg effect enzymes (LDHA and PDK1) are altered in the brains of 

AD mice and post-mortem AD human tissue relative to control mice and unaffected 

individuals respectively.  

(6) Examine the ability of neuroprotective compounds to regulate Warburg effect enzymes in 

nerve cells in the presence or absence of Aβ 
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Chapter 2 

2 Amyloid beta resistance in nerve cell lines is mediated by 
the Warburg effect  

2.1 Introduction  

2.1.1 Alzheimer’s disease and amyloid resistance  

Alzheimer’s disease (AD) is a complex neurodegenerative condition, and is the most 

common form of dementia among the elderly. Currently, there is no cure for the disease and 

treatment options remain limited.  AD is characterized at the histopathological level by 

widespread nerve cell death, synaptic loss and the accumulation of intracellular 

neurofibrillary tangles (NFT) and extracellular plaques within the brain (Selkoe, 2004). 

These plaques are primarily composed of amyloid -peptide (A), a 40-42 amino acid 

peptide derived from the proteolytic cleavage of the amyloid precursor protein (APP) (Hardy, 

1997; Masters et al., 1985; Selkoe, 1998).  A prevalent theory in the field is that AD is 

caused primarily by A deposition within the brain, which leads to an increased production 

of reactive oxygen species (ROS), oxidative damage, mitochondrial dysfunction and cell 

death (Behl, 1997; Behl et al., 1992; Behl et al., 1994; Butterfield et al., 2007; Markesbery, 

1997).  Interestingly, some populations of cells within the brain survive by becoming 

resistant to A toxicity.  Immunohistochemical analysis of brain tissue from individuals that 

died without any history of dementia has revealed that up to 40% of the autopsied samples 

had significant plaque accumulation (Bouras et al., 1994; Price and Morris, 1999).  While 

difficult to study in vivo, it is possible to examine amyloid resistance in cultured nerve cells.  

Clonal nerve cell lines selected for resistance to A toxicity exhibit increased resistance to a 

wide array of neurotoxins suggesting that these cells have acquired a common resistance 

mechanism to survive exposure to environmental stresses (Behl et al., 1994; Dargusch and 

Schubert, 2002; Sagara et al., 1996).   Initial studies revealed that A-resistant cells 

upregulate several antioxidant and glycolytic enzymes (Cumming et al., 2007; Sagara et al., 

1996; Soucek et al., 2003).  However, further investigation into these survival mechanisms is 

necessary for a greater understanding of A-sensitivity and resistance.  
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2.1.2 Aerobic glycolysis (the Warburg effect) in cancer  

In normal nerve cells glucose is converted to pyruvate through a number of steps within the 

cytosol.  In the presence of oxygen, pyruvate is converted into acetyl-Coenzyme A (acetyl-

CoA), by pyruvate dehydrogenase (PDH) within the mitochondria.  Acetyl-CoA is 

subsequently fed into the tricarboxcylic acid cycle (TCA cycle), ultimately producing ATP 

via oxidative phosphorylation (OXOPHOS).  In an environment lacking oxygen cells must 

depend on glycolysis whereby pyruvate is converted into lactate by lactate dehydrogenase 

subunit A (LDHA).  Hypoxia inducible factor 1 (HIF-1), a transcription factor induced in 

hypoxic microenvironments, mediates the critical cellular metabolic adaptation to hypoxia 

through activation of several glycolytic genes including LDHA (Semenza, 1999; Semenza et 

al., 1996).   In addition to mediating the increased conversion of pyruvate to lactate, HIF-1 

has recently been shown to suppress mitochondrial respiration by directly upregulating the 

expression of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1) (Kim et al., 2006; 

Papandreou et al., 2006).  PDK1 phosphorylates and inhibits PDH, thereby acting as a 

molecular switch between glycolysis and aerobic respiration to meet cellular ATP needs. 

Initially HIF-1 was believed to be a transcription factor involved in mediating the cellular 

metabolic adaptation to hypoxia, however it has more recently been shown to be active in 

normoxic conditions, such as vascularised cancer tissues, suggesting an addition role for the 

transcription factor (Semenza, 2007, 2010).    

Enhanced glycolysis and increased lactate production is a common property of invasive 

cancers and its upregulation in cancer may result in the suppression of apoptosis (Bonnet et 

al., 2007; Michelakis et al., 2008).  The initial upregulation of glycolysis in tumors is 

believed to be triggered by a hypoxic microenvironment and HIF-1 activity.  However, 

despite increasing oxygen availability the glycolytic phenotype persists (Gatenby and Gillies, 

2004; Semenza, 2010).  This phenomenon has been termed the Warburg effect or aerobic 

glycolysis (Bonnet et al., 2007; Warburg, 1956). In addition to upregulation of glycolysis, 

cancer cells decrease the flux of pyruvate through the mitochondria via upregulation of 

PDK1, and the inhibition of PDH (Bonnet et al., 2007; Koukourakis et al., 2005; Michelakis 

et al., 2010).  This shift in metabolism causes a drop in both mitochondrial oxygen 

consumption and associated ROS production (Bonnet et al., 2007).  Therefore, lower levels 

of mitochondrial activity lead to a decrease in both ROS production and the propensity of 
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mitochondria to depolarize; two events that trigger apoptosis.  The Warburg effect is believed 

to provide a selective advantage for the survival and proliferation of tumorigenic cells 

however it has rarely been examined in other cellular contexts (Bonnet et al., 2007; 

Michelakis et al., 2008).   

2.1.3 Aerobic glycolysis in AD 

Recent studies using PET imaging revealed a strong spatial correlation between aerobic 

glycolysis and Adeposition in the brains of AD patients (Vlassenko et al., 2010).  

Additionally, activities of the glycolytic enzymes pyruvate kinase (PK), and lactate LDHA, 

are elevated in the frontal and temporal cortex of patients with AD (Bigl et al., 1999).  In 

contrast, the reductions of various mitochondrial enzymes involved in cellular respiration 

have been reported in the AD brain (Brooks et al., 2007; Gibson et al., 1998; Liang et al., 

2008).   Interestingly, A-resistant nerve cells in vitro exhibit increased glucose uptake and 

flux through the glycolytic pathway (Soucek et al., 2003). A-resistant cells are also highly 

sensitive to glucose deprivation suggesting that the altered glycolytic metabolism in these 

cells may mediate Aresistance.  However, it is unknown if A resistant cells repress 

mitochondrial respiration and rely primarily on glycolysis for their energy needs. 

Evidence to suggest a Warburg effect may exist in AD is supported by the observation that 

elevated levels of HIF-1α are detected in cultured A resistant cells and in the brains of AD 

transgenic mice compared to controls (Soucek et al., 2003).  Additionally, stabilization of 

HIF-1α and an increase in HIF-1 activity protect cortical neurons from A toxicity (Soucek 

et al., 2003).  Potentially, HIF-1 may act in a manner similar to cancer cells by upregulating 

LDHA and PDK1 in A resistant cells and surviving neurons of the AD brain.  Elevated 

mitochondrial-derived ROS is strongly linked to A induced death (Behl et al., 1992; Behl et 

al., 1994; Sagara et al., 1996).  The impairment of mitochondrial metabolism in AD has been 

well documented and it is possible that a decrease in the flux of pyruvate through the 

mitochondria in Aresistant cells results in decreased mitochondrial respiration and ROS 

production similar to cancer cells (Bonnet et al., 2007; Casley et al., 2002; Caspersen et al., 

2005).  An increased reliance on glycolysis for production of ATP may give surviving cells 

an advantage in the hostile environment of the AD brain.  Additionally, decreased 

mitochondrial activity may attenuate the release of apoptogenic factors (Bonnet et al., 2007; 
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Zamzami and Kroemer, 2001).   Taken together, the increase in glycolysis and lactate 

production and/or repression of mitochondrial activity may play a role in the protection of 

neurons against A toxicity in AD, although this hypothesis has never formally been 

examined. 

To investigate if a Warburg effect exists in A resistant cells, and if this contributes to their 

resistance against A toxicity, two nerve like cell lines, PC12 and B12, and their Aresistant 

derivatives were selected and characterized.   Here we show that nerve cell lines which are 

resistant to A break down glucose in a manner reminiscent of cancer cells.  Western blot 

analysis revealed increased levels of PDK1 in A resistant cells exposed to Acompared to 

parental sensitive cells.  A resistant cells showed higher levels of LDHA activity and also 

generated higher levels of lactic acid compared to sensitive cells.  Chemical and genetic 

inactivation of either LDHA or PDK1 promoted increased cell death in A-resistant cells 

following A exposure.  These findings indicate that a shift in metabolism to rely heavily on 

glycolysis for energy needs may provide nerve cells with a mechanism to survive A 

accumulation within the AD brain.  

2.2 Methods  

2.2.1 Materials  

Cell culture reagents including Dulbecco’s modified Eagles medium (DMEM), 

penicillin/streptomycin (P/S), DMEM without phenol red and Dulbecco’s phosphate buffered 

saline (DPBS, 1X) were purchased from Biowhittaker (Walkersville, MD, USA). Dialyzed 

fetal bovine serum (FBS) and horse serum (HS) were obtained from PAA Laboratories Inc. 

(Etobicoke, ON, Canada).  OPTIMEM I (1X) and TrypLE Express (1X) were obtained from 

Invitrogen (Carlsbad, CA, USA).  Amyloid beta (A) peptide (25-35) was purchased from 

California peptide research (San Francisco, CA, USA).  Poly-D-lysine, L-Lactic 

dehydrogenase solution Type II, L(+)-lactic acid~98%, -Nicotinamide adenine dinucleotide 

(NAD
+
), -Nicotinamide adenine dinucleotide reduced disodium salt (NADH), sodium 

pyruvate, potassium hydroxide, perchloric acid, sodium oxamate, dichloroacetic acid (DCA) 

≥99%, Bisbenzimide (Hoechst), Poly-D-lysine, puromycin, dimethyl formamide, 3-(4,5-

dimethlythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were all purchased from 
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Sigma (St. Louis, MO, USA).   G418 sulfate was purchased from Calbiochem (EMD 

Chemicals Inc., Darmstadt, Germany).  Mitotracker Red CM-H2XRos (Molecular Probes) 

was purchased from Invitrogen (Carlsbad, CA, USA). 

2.2.2 Cell culture  

The PC12 and B12 immortalized nerve cell lines and their A resistant derivatives were 

obtained from Dr. David Schubert (The Salk Institute, La Jolla, CA)
 
and cultured as 

previously described (Behl et al., 1994; Sagara et al., 1996).  The PC12 cell lines used in this 

study are a subclone of a cell line originally derived from a rat pheochromocytoma (Greene 

and Tischler, 1976) and were grown in DMEM supplemented with 10% FBS, 5%  HS and 

1% P/S.  The B12 central nervous system cells are an immortalized clonal cell line derived 

from a nitrosoethylurea induced brain tumor in rats (Schubert et al., 1974) and were grown in 

DMEM supplemented with 10% FBS, and 1% P/S.  The PC12 and B12 Aresistant cell 

lines were isolated following 4 months growth in the presence of A and subsequent cloning 

(Behl et al., 1994; Sagara et al., 1996).  All cells were grown in a humidified incubator at 

37
o
C and 5% CO2.  For hypoxic treatment cells were grown for 24 hr in a humidified 

incubator at 37
o
C, 5% CO2 and 1% O2.  Prior to experimentation the A resistant clones were 

re-selected in 20 μM A for two weeks. The Apeptide 25-35) was dissolved in 

sterilized deionized water at 1 mg/ml, left overnight at room temperature to promote fibril 

formation and subsequently stored at -20
o
C.  

2.2.3 LDHA assay 

The activity of LDHA was determined spectrophotometrically. PC12 and B12 cells were 

plated at an appropriate density to achieve 70-80% confluency before exposure to A (20 

μM). PC12 and B12 parental samples exposed to hypoxic conditions (1% O2) for 24 hrs were 

used as positive controls. Atreated and untreated PC12 and B12 cells were washed twice 

in DPBS and harvested in lysis buffer (50 mM Tris pH 7.5, 2% SDS and 1 mM PMSF) at 24 

hr and 48 hr.  Following a freeze/thaw cycle, protein extracts were quantified by a Lowry 

Assay (Bio-Rad, Richmond, CA, USA).  LDHA catalyzes the reversible reduction of 

pyruvate to lactate, using NADH as a co-substrate.   The activity of LDHA in each sample 

was determined by measuring the change in absorbance as a result of the oxidation of NADH 
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at a wavelength of 340 nm (37
o
C) (Shimadzu-UV 160 Spectrophotometer, Shimadzu, Kyoto, 

Japan) as previously described (Lamster et al., 1985). Cell lysates were added to equilibrated 

cuvettes containing: 460 L dionized (DI) H2O, 430 L MOPS buffer (50 mM pH 7.0), 30 

L NADH (6.4 mM), 30 L sodium pyruvate (1 M). The NADH and sodium pyruvate were 

dissolved in potassium phosphate buffer (50 mM pH 7.4). The reference cuvette contained an 

additional 30 L of DI water and lacked pyruvate. Contents were mixed and the change in 

absorbance was recorded over 120 seconds.  The maximum reaction rate (Vmax) was taken 

between 30-90 seconds for each sample.  LDHA activities were calculated from the changes 

in absorbance and the specific absorbance of NADH at 340 nm (6.22L/mmol for a path 

length of 1.0 cm) and standardized to protein concentrations.   

2.2.4 Lactate assay 

Lactate levels in the extracellular fluid of A treated and untreated PC12 and B12 parental 

and resistant lines were measured enzymatically (Itoh et al., 2003).  PC12 and B12 cells were 

plated on 35 mm dishes at an appropriate density to achieve 70-80% confluency following an 

overnight incubation.  One day after seeding the media was aspirated, the cells were washed 

with DPBS and the media was replaced with OPTIMEM I media.  Aμwas also 

added to the test dishes immediately after changing the media to OPTIMEM I.  Following 24 

hr and 48 hr incubation lactate released into the medium was measured.  One tenth volume of 

70% perchloric acid (PCA) was added to the harvested media, and samples were put on ice 

for 10 minutes.  Precipitated proteins were removed by centrifugation, and the acidified 

supernatant was neutralized by adding the appropriate amount of 10 M KOH to achieve pH 

7.5.   Lactate levels were measured by following the change in absorbance as a result of the 

reduction NAD
+
, which is coupled to the oxidation of lactate, at a wavelength of 340 nm 

(37
o
C) (Shimadzu-UV 160 Spectrophotometer, Shimadzu, Kyoto, Japan) as described 

previously (Itoh et al., 2003).  Twenty five microliters of the sample were added to both the 

reference and test cuvettes containing 500 l DI H2O, 400 l glycine buffer (1 M pH 9.5), 50 

l hydrazine sulfate (0.56 M pH 8.6), and 20 l NAD
+
 (1.0 M pH 6.75).  Following a 5 min 

equilibration period at 37
o
C, 2 l (~2.7 units) of LDH was added to the test cuvette.  The rate 

of the reduction of NAD
+
 to NADH was recorded until completion of the reaction.  Lactate 

concentrations were determined by comparison to a lactate standard curve.  
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2.2.5 Immunoblot Analysis 

To assess the levels of LDHA and PDK1, treated (20 M A) and untreated PC12 and 

B12 cells from subconfluent cultures were washed twice in cold DPBS and harvested in a 

Tris extraction buffer (50 mM Tris pH 7.5, 2% SDS and 1 mM PMSF) at 24 hr and 48 hr. 

Protein extracts were quantified by a Lowry assay, resolved by 12% SDS PAGE and 

electroblotted onto PVDF membrane (Bio-Rad Richmond, CA, USA) (Cumming et al., 

2007).   Membranes were probed with the following antibodies: polyclonal anti-LDHA 

(1:1000; Cell Signaling, Danvers, MA, USA), polyclonal anti-PDK1 (1:1000; Stressgen, San 

Diego, CA, USA) and a monoclonal anti-actin (1:2000; Cell Signaling, Danvers, MA, 

USA) followed by incubation with an appropriate horseradish peroxidase (HRP) -conjugated 

secondary antibody (Bio-Rad, Richmond, CA, USA).  The blots were developed using Pierce 

ECL western blotting substrate (Thermo Scientific, Rockford, IL, USA) and visualized with 

a Bio-Rad Molecular Imager (ChemiDoc XRS, Bio-Rad, Richmond, CA, USA). 

Densitometric analysis was performed using Image J software.  Band densities were 

standardized against -actin, and the ratio of LDHA/PDK1-specific bands relative to the -

actin band was determined.  Relative intensity was calculated by comparing the LDHA/ or 

PDK1/-actin ratio of the resistant lines to the same ratio in the parental cell line. 

2.2.6 Cytotoxicity assay  

A induced cell cytotoxicity (cell viability) was assessed by a modified MTT assay (Behl et 

al., 1994; Hansen et al., 1989; Sagara et al., 1996).  The MTT assay measures the reduction 

of the tetrazolium salt MTT to a colored formazan in living cells (Behl et al., 1994; Sagara et 

al., 1996).  Cells were seeded (3x10
3 

cells/well) in a 96 well microtiter plate and, following 

overnight incubation, A25-35 was added to the test wells at a concentration of 20 μM.  

Neutralized DCA (2.5 mM), an inhibitor of PDK1, or oxamate (20 mM), an inhibitor of 

LDHA, were also added to the appropriate test wells.  Following 48 hr incubation 10 μl of 

MTT stock (2.5 mg/ml dissolved in DPBS) was added to each well, and plates were 

incubated again, for 4 hours, then 100 μl of solubilization solution (20% SDS in 50% 

dimethyl formamide pH 4.8) was added to each well and plates were rocked at room 

temperature overnight. The following day plates were read on a microplate reader (BioRad 

Model 3550) using 595 nm as the test wavelength (absorbance of formazan product in 
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solution) and 655 nm as the reference wavelength.   The percent viability was calculated 

from the mean absorbance of the treated cells divided by the mean absorbance of the control 

cells and multiplied by 100%.  A induced cytotoxicity was also assessed by a trypan blue 

exclusion assay.  Cells were seeded in 12-well dishes and following overnight incubation 

A25-35 was added to the test wells at a concentration of 20 μM.  Neutralized DCA (2.5 mM) 

or oxamate (20 mM) were also added to the appropriate test wells.  Following a 48 hr 

incubation cells were trypsinized, pelleted and resuspended in 200 l of culture media to 

which an equal volume of trypan blue was added.  Cells excluding typan blue were scored in 

triplicate using a hemocytometer and a light microscope.  Prior to experimentation oxamate 

and DCA were both tested for toxicity at a range of treatment concentrations.  For each 

inhibitor, a treatment concentration was selected that conferred little to no toxicity in cells 

(20 mM oxamate, 2.5 mM DCA). 

2.2.7 Fluorescence microscopy 

Mitochondrial ROS was visualized by the fluorescent dye Mitotracker Red CM-H2XRos 

(MTR).  Stock MTR was dissolved in dimethylsulfoxide (DMSO) at a concentration of 1 

mM and stored at -20
o
C.  PC12 and B12 cells were plated (8x10

4
) in 6 well glass bottom 

tissue culture dishes pretreated with polylysine (50 μg/ml for 3 hr) and incubated overnight.  

PC12 parental cells were plated at a higher density of 3x10
5 

cells/well.  The following day 

cells were treated with 20 μM A25-35 for 48 hr.  Following treatment with A, the media was 

aspirated and new media was added containing MTR at a concentration of 100 nM.  Plates 

were then incubated at 37
o
C for 20 min, washed in DPBS containing Hoecsht stain (10 

μg/ml), followed by an additional wash in DPBS and then placed in phenol red free DMEM.  

Cells were visualized by fluorescence microscopy (Zeiss-AxioObserver, 40X objective) and 

pictures were taken using a Q Imaging (Retiga 1300 monochrome 10-bit) camera and Q 

Capture software.  Pictures were taken of three random fields of view for each experiment.  

MTR fluorescence was quantified with ImageJ software.  

2.2.8 Derivation of PDK1 and LDHA knockdown cell lines 

One resistant clone from each cell line, R7 (PC12) and R2 (B12) were selected to make 

stable knock down lines. All cells were transfected with lipofectamine (Invitrogen, Carlsbad, 

CA, USA) according to the manufacturer’s directions.  Cells were plated at a density to 
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achieve 70-80% confluency.  Cells were transfected with HuSH 29mer shRNA (Origene, 

Rockville, MD, USA) constructs directed at rat Ldha or rat Pdk1.  The shRNA vector is 

cloned in the pRS plasmid under the control of the U6 promoter for mammalian cell 

expression.  For each specific mRNA, 2 shRNA’s containing expression cassettes, targeted at 

different parts of the mRNA were selected. The selected shRNA constructs directed against 

Ldha were: 71-TGGAATCTCAGATGTTGTGAAGGTGACAC and 72–

CTTGTGCCATCAGTATCT-TAATGAAGGAC); the shRNA constructs directed against 

Pdk1 were: 29-AATCACCAGGACAGCCAATACAAGTGGTT and 30-

TCGGTTCTACATGAGTCGCATC-TCAATTA).  A non effective shRNA construct 

(scrambled) in pRS plasmid was selected as a negative control.  Each shRNA construct for 

both Ldha and Pdk1 in addition to the scrambled construct (5 total) were separately 

transfected and selected for their resistance to 1 μg/ml puromycin.  Approximately 10-12 

clones were picked, expanded and screened by western blot analysis for successful 

knockdown.  

2.2.9 Statistical Analysis 

Data are presented as means ± SD resulting from a least three independent experiments.  

Data were analyzed statistically using either a two-way ANOVA followed by a Tukey test or 

a one-way ANOVA followed by a Dunnett test (VassarStats).  Results were considered 

statistically significant at P<0.05.  

2.3 Results  

2.3.1 Increased LDHA activity and lactate production in A-resistant 
cells 

LDHA catalyzes the conversion of pyruvate to lactate and the increased activity of this 

enzyme in cancer cells is strongly associated with the Warburg effect (Fantin et al., 2006; 

Goldman et al., 1964; Le et al., 2010).  To determine if a similar effect is observed in A-

resistant cells, we measured LDHA activity and secreted lactate levels in both A-sensitive 

PC12 and B12 parental cells and clonal lines selected for resistance to A.  Interestingly, all 

the resistant lines displayed significantly higher levels of LDHA activity as compared to their 

parental counterparts, with or without exposure to A (Figure 2.1 A, B, P<0.001).  
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Additionally, the activity of LDHA in both parental lines significantly decreased with 

increased exposure to A (P<0.001) However, the activity of LDHA in the PC12 resistant 

lines, R1 and R7, appeared to decrease only slightly with exposure to A, but remained 

significantly greater than the parental line for all treatments (P<0.001).  Similarly, the activity 

of LDHA in the B12 resistant lines, R2 and R4, remained significantly greater than the 

parental line with or without exposure to A (P<0.001).  As a control, PC12 and B12 

parental cells were exposed to hypoxic conditions (1% O2) for 24 hr, as hypoxia is a known 

activator of LDHA (Semenza et al., 1996).  Parental cells exposed to hypoxia exhibited 

increased LDHA activity when compared to cells cultured in control conditions (P<0.001).  

We also examined LDHA protein levels by western blot analysis using an LDHA-specific 

antibody.  However, there was no clear trend in LDHA expression between both PC12 and 

B12 parental and resistant lines (data not shown). LDHA activity has been shown to be 

regulated by both allosteric effects and post translational modifications (Cooper et al., 1984; 

Cumming et al., 2004; Fritz, 1965; Yasykova et al., 2000) therefore the increased activity we 

observed in A resistant cells may be attributed to these modifications.   

LDHA catalyzes the conversion of pyruvate to lactate which is then released to the 

extracellular space by the monocarboxylate transporters (MCT).  To determine if the elevated 

LDHA in A resistant cells was associated with increased lactate production, the 

concentration of lactate in the extracellular media of cultured B12 and PC12 cells was 

examined.  A significant increase in the concentration of lactate was detected in the 

extracellular media of all PC12 and B12 resistant lines when compared to their respective 

parental lines at 24 hr and 48 hr, with or without exposure to Aμ (Fig. 2.1 C, D, 

P<0.001).  These findings indicated that increased LDHA activity and associated lactate 

production is strongly associated with A-resistance.   

2.3.2 PDK1 levels are elevated in A-resistant cells 

Elevated PDK1 expression in cancer cells results in reduced mitochondrial respiration and 

resistance to apoptosis (Bonnet et al., 2007).  To determine if elevated PDK1 expression 

contributes to resistance to A toxicity, cell extracts from sensitive and resistant cells were 

analyzed by Western blot analysis.  Highly elevated PDK1 levels were detected in all A-

resistant lines relative to parental cell lines in either the presence of absence of AFigure  
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2.2 A and B). Interestingly, an additional band around 30 kDa was detected that was more 

prominent than full length PDK1 (~48 kDa) in B12 cells.  This lower molecular weight band 

also showed the same elevated trend as full length PDK1 in the R2 and R4 lines (Figure 2.2 

B).  The lower molecular weight PDK1 band may represent some form of cleavage 

product/posttranslational modification of PDK1.  In contrast, the PC12 and B12 parental cell 

lines exhibited a 14% and 15.6% reduction in PDK1 levels respectively following 48 hr 

exposure to A.  Thus, increased PDK1 expression strongly correlates with A resistance. 

2.3.3 Mitochondrial ROS production is decreased in A-resistant cells 

A decrease in mitochondrial-derived ROS is a key feature of the Warburg effect and plays a 

prominent role in resistance to apoptosis (Bonnet et al., 2007).  We therefore examined 

mitochondrial ROS in A sensitive and resistant cells using Mitotracker ROS Red (MTR); a 

dye that specifically incorporates in mitochondria and only fluoresces in the presence of ROS 

(Bonnet et al., 2007).  A significant decrease in mitochondrial ROS, as measured by mean 

MTR fluorescence, was observed in PC12 and B12 resistant cells compared to their parental 

counterparts with or without exposure to A(20 μM) (Figure 2.3 A, B, P<0.001). In contrast, 

there was a pronounced increase in mitochondrial ROS in both PC12 and B12 parental lines 

following 48 hr exposure to A (P<0.01).  Thus A-resistant cells appear to have an altered 

metabolism resulting in significantly less mitochondrial-derived ROS under both basal and 

stressed conditions. 
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Figure 2.1 LDHA activity and lactate levels are elevated in A-resistant cells. A) LDHA 

activity was significantly greater in PC12 A resistant cells lines, R1 and R7, as compared to 

the parental line (PC12 P) under similar conditions both in the absence (0) and presence (24 

hr, 48 hr) of A (20 M; *P<0.001). LDHA activity significantly decreased in PC12 P cells 

exposed to A(*P<0.001).  PC12 P cells exposed to 24 hr hypoxia (1% O2) exhibited 

significantly greater LDHA activity when compared to untreated parental cells (*P<0.001). 

B) LDHA activity was also significantly greater in B12 A resistant cells lines, R2 and R4, 

as compared to the parental line (B12 P) cultured in the same conditions (*P<0.001).  LDHA 

activity significantly decreased in B12 P cells treated with A (*P<0.001).  B12 P cells 

exposed to 24 hr hypoxia (1% O2) also exhibited greater LDHA activity when compared to 

untreated parental cells (*P<0.001). (C) Extracellular lactate was significantly elevated in 

PC12 A-resistant lines, R1 and R7 and (D) B12 Aresistant lines, R2 and R4, when 

compared to their respective parental cells cultured under similar conditions (*P<0.001). 

Data represent the mean ± SD of three independent experiments. Parental cells exposed to 

hypoxia were compared to parental cells cultured under control conditions by a one tailed T-

test.  All other data were analyzed by a two-way ANOVA followed by a Tukey test. 
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Figure 2.2 PDK1 is upregulated in A resistant cells. A) Immunoblot analysis revealed 

PDK1 levels were significantly elevated in both PC12 resistant lines, R1 and R7, when 

compared to the parental cell line (P) (*P<0.001).  These elevated levels were maintained 

following 24 and 48 hr A treatment (*20 M). B) PDK1 levels were also significantly 

greater in both B12 resistant lines, R2 and R4, when compared to the parental line (** 

P<0.01).  These increased levels were also maintained with A treatment.  In the B12 cell 

lines an additional band of approximately 30 kDa was observed that was more prominent 

than full length PDK1 (~48 kDa).  This additional band also showed the same elevated trend 

as full length PDK1 in the R2 and R4 lines when compared to the parental under similar 

conditions.  The smaller band may represent a cleavage product of PDK1. Densitometric 

analysis of full length PDK1 band densities relative to actin are found in the lower panel.  

Relative intensity was calculated by comparing the PDK1/actin ratio of the resistant lines to 

the same ratio in the parental cell line. Data represent the mean ± SD of three independent 

experiments.  Data were analyzed by a two-way ANOVA followed by a Tukey test. 
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Figure 2.3 Decreased mitochondrial reactive oxygen species in A resistant cells. A) 

PC12 Aresistant lines R1 and R7 exhibited a significant reduction in mitochondrial reactive 

oxygen species (ROS) compared to the parental cell line (PC12 P) under normal culture 

conditions (*P<0.001).  This decrease in ROS was maintained with 48 hr A (20 μM) 

exposure.  Conversely, mitochondrial ROS significantly increased in the parental line when 

exposed to A (**P<0.01).  B) The B12 resistant lines, R2 and R4 also exhibited decreased 

mitochondrial ROS when compared to parental cells under similar conditions (*P<0.001). A 

similar increase in mitochondrial ROS in B12 parental cells (B12 P) was also observed 

following treatment with A for 48 hr (**P<0.01). Cells were stained with MitoTracker Red 

(100 nM) and nuclei were stained with Hoescht (10 μg/ml) and visualized by fluorescence 

microscopy at 400X magnification and quantified with ImageJ software.  Pictures were taken 

from 3 random fields of view for each treatment.  Data represent the mean ± SD of three 

independent experiments. Data were analyzed by a two-way ANOVA followed by a Tukey 

test. 
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2.3.4 Chemical inhibition of LDHA or PDK1 restores sensitivity to A 
in resistant cells 

 Inhibition of LDHA or PDK1 using the chemical inhibitors oxamate and dichloroacetate 

(DCA) respectively, has been shown to counter the Warburg effect and apoptosis resistance 

in cancer cells (Bonnet et al., 2007; Michelakis et al., 2010; Zhou et al., 2010).  When the 

PC12 and B12 resistant cell lines were treated with either chemical inhibitor, oxamate (20 

mM) or DCA (2.5 mM), and A(20 μM) there was a significant decrease in cell viability 

when compared to A treatment alone (Figure 2.4 A-D, P<0.01).  Interestingly, exposure of 

the PC12 and B12 parental lines to either oxamate or DCA did not appear to potentiate A 

toxicity.   To ensure that oxamate and DCA did not interfere with the reduction of MTT and 

subsequent formazan formation, these experiments were repeated using a trypan-blue 

exclusion viability assay and similar results were observed (data not shown). These findings 

indicate that chemical inhibition of either LDHA or PDK1 can resensitize A-resistant cells 

to A
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Figure 2.4 Chemically inhibiting LDHA or PDK1 decreases cell viability in A resistant 

cells. A significant decrease in cell viability in both PC12 (A) and B12 (B) resistant lines was 

observed after 48 hr concomitant exposure to A (20 μM) and 20 mM oxamate (ox), a 

chemical inhibitor of LDHA (*P<0.01). Similarly, 48 hr A exposure significantly decreased 

cell viability in both PC12 (C) and B12 (D) resistant lines when cells were co-treated with 

2.5 mM dichloroacetate (DCA), a chemical inhibitor of PDK1 (*P<0.01). Interestingly, the 

cell viability of the parental lines does not appear to decrease with treatment of either 

inhibitor and A. Cell viability was determined by the reduction of the tetrazolium salt MTT. 

Data represent the mean ± SD of three independent experiments. Data were analyzed by a 

two-way ANOVA followed by a Tukey test. 
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2.3.5 Attenuated LDHA and PDK1 expression reverses A resistance 

Because chemical inhibitors such as oxamate and DCA could potentially have off-target 

effects, we sought to determine if specific inhibition of LDHA and PDK1 expression by 

shRNA–mediated knockdown could also render resistant cells sensitive to A.  Immunoblot 

analysis confirmed that PC12 R7 and B12 R2 cell lines stably transfected with shRNA 

vectors containing sequences directed at rat Ldha or Pdk1 transcripts exhibited decreased 

expression of the targeted mRNAs compared to cells transfected with a control shRNA 

containing a non-specific/scrambled (scram) sequence (Figure 2.5).  Densitometric analysis 

revealed a 52% and 62% reduction in LDHA levels in the R7 knockdown lines 71-7 and 72-

11 respectively, and a 65% and 72% reduction in PDK1 levels in the R7 knockdown lines 

29-11 and 30-10 respectively when compared to the R7 control line scram-10 (Figure 2.5 A, 

B).  By knocking down either LDHA or PDK1 expression in the R7 A resistant cell line, we 

observed a significant decrease in cell viability, following exposure to 48 hr 

Aμwhen compared to the control(Figure 2.5 C, P<0.01).  Reduction of LDHA or 

PDK1 expression in R7 cells resulted in a 40 to 50% reduction in viability compared to the 

control cell lines (Figure 2.5 C).  

Western blot analysis revealed there was a 50% and 62% reduction in LDHA levels in the R2 

knockdown lines 71-23 and 72-5 respectively, and a 48% and 49% reduction in PDK1 levels 

in the R2 knockdown lines 29-12 and 30-4 respectively, when compared to R2 line scram 5 

(Figure 2.5 D, E ).  Exposure of the R2 LDHA or PDK1 knockdown clones to 48 hr 

Aμ resulted in a significant reduction in cell viability (between 43 to 52%)  when 

compared to the control (Figure 2.5 F, P<0.01).  Thus, specifically targeting either LDHA or 

PDK1 expression in Aresistant cells results in re-sensitization to Aandincreased death. 
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Figure 2.5 Attenuated LDHA or PDK1 expression increases sensitivity of resistant cell 

lines to A. A) Immunoblot analysis of PC12 R7 resistant cells stably transfected with 

LDHA-specific shRNA vectors revealed two clonal cell lines (clones 71-7 and 72-11) 

exhibited a significant decrease in LDHA protein levels when compared to an R7 cell line 

transfected with a non-specific shRNA (SCR) (*P<0.01).  B) Immunoblot analysis also 

confirmed a significant decrease in PDK1 protein in two PDK-1 shRNA stably transfected 

R7 cell lines, (clones 29-1 and 30-10) when compared to the control cell line (*P<0.01). C) 

A significant decrease in the cell viability of the R7 clones with attenuated expression of 

either LDHA or PDK1 was observed when cells were exposed to A (20 μM) for 48 hr when 

compared to the control (*P<0.01). D) Immunoblots of R2 cell lines (clones 71-23 and 72-5) 

confirming significantly decreased LDHA expression when compared to a control cell line 

(SCR) (*P<0.01).  E) R2 clonal cell lines, (clones 29-12 and 30-4) stably expressing PDK-1 

shRNA showed a significant decrease in the PDK1 full length protein (~48 kDa) as well as a 

decrease in the proposed PDK1 cleavage product (~30 kDa) when compared to the control 

(*P<0.01).  F) Both R2 LDHA and PDK1 knockdown cell lines exposed to 48 hr A (20 

μM) treatment showed a significant decrease in cell viability when compared to R2 control (* 

P<0.01). Densitometric analysis of LDHA and PDK1 band densities relative to actin are 

found below the corresponding blot.  Relative intensity was calculated by comparing the 

LDHA/actin or PDK1/actin ratio of the resistant lines to the same ratio in the scrambled 

shRNA cell line. Data represent the average ± SD of three independent experiments. Data 

were analyzed by a one-way ANOVA followed by a Dunnett test. 
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2.4 Discussion 

Understanding how nerve cells become resistant to A toxicity is central to understanding 

how some nerve cells within the AD brain are able to survive while large numbers of cells 

die. It had been previously shown that A resistant cells, through increased HIF-1 activity, 

modulate their cell metabolism to increase glucose uptake and glycolysis in the presence of 

A (Soucek et al., 2003). Additionally, HIF-1 activation in A sensitive cells is sufficient for 

neuroprotection against A(Soucek et al.,  However, this earlier study did not 

precisely define how HIF-1 functions to protect cells from A toxicity.  One compelling idea 

is that HIF-1 driven alteration in metabolism in A resistant cells confers a selective 

advantage for survival in the hostile environment of the AD brain (Schubert, 2005; Soucek et 

al., 2003).  Increased HIF-1 activity has been shown to enhance transcription of both LDHA 

and PDK1 (Kim et al., 2006; Semenza et al., 1996).  In this study we observed that 

Aresistant cells have increased LDHA activity and PDK1 expression, both in the absence 

or presence of Aand these events correlate with decreased mitochondrial derived ROS.   

The question arises as to why decreased mitochondrial respiration in A resistant cells would 

be advantageous?  A previous study showed that cells depleted of mitochondrial DNA, 

lacking critical catalytic subunits of the respiratory chain and incapable of mitochondrial 

respiration, were unaffected by Aexposure (Cardoso et al., 2001).  Mitochondria are the 

major site of ROS production, which is believed to be a major factor leading to A induced 

death (Behl et al., 1994).  This is supported by the observation that exogenously applied 

antioxidants protect primary CNS cultures and clonal lines from A toxicity (Behl et al., 

1994).  In addition, overexpression of the mitochondrial antioxidant enzyme manganese 

superoxide dismutase (MnSOD) in AD transgenic mice increases resistance to A and 

attenuates the AD phenotype (Dumont et al., 2009).  These studies suggest that functional 

mitochondria are required for A to elicit a toxic effect.  

In support of these findings, the data in this study reveal that A resistant nerve cell lines 

exhibit metabolic reprogramming and decreased mitochondrial ROS which contribute to their 

resistance against Atoxicity.  Interestingly, these low levels of ROS were maintained even 

after exposure to A.  In contrast, the parental sensitive lines showed elevated mitochondrial 
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ROS with exposure to A.  The increase in LDHA activity, lactate production and PDK1 

levels, and decrease in mitochondrial ROS strongly indicate that a Warburg effect exists in 

Aresistant cells.  Interestingly chemical or genetic manipulation of either LDHA or PDK1 

resulted in increased sensitivity to A in all resistant cell lines.  These observations indicate 

that both enzymes, LDHA and PDK1, contribute to resistance to A.  However, inhibiting or 

knocking down either enzyme resulted in similar levels of sensitivity to A suggesting that 

both enzymes appear to play an equal and possibly redundant role in the resistance pathway.  

Knocking down or chemically inhibiting LDHA or PDK in various cancers shifts metabolism 

from glycolysis and lactate production to mitochondrial respiration, with an associated 

increase in mitochondrial ROS production and induction of apoptosis (Bonnet et al., 2007; 

Fantin et al., 2006; Le et al., 2010; Michelakis et al., 2010). Furthermore, inhibition of PDK1 

in cancer cells in vitro and in vivo results in a reduction of phosphorylated PDH and HIF-1α 

levels (McFate et al., 2008).  Moreover, inhibition of PDK1 expression has been shown to 

decrease lactate levels and HIF-1αexpression and reduce the malignant phenotype of cancer 

cells (McFate et al., 2008). Therefore an increase in PDK1 and lactate production may aid in 

sustaining the Warburg effect through a positive feedback mechanism. We propose that HIF-

1 activation of the glycolytic genes, LDHA and PDK1 functions to suppress apoptosis in A 

resistant cells by decreasing mitochondrial respiration and ROS production.  

In the past, aerobic glycolysis within the brain has been given little attention, despite early 

observations suggesting that a basal level of aerobic glycolysis occurs in specific areas of the 

brain (Boyle et al., 1994; Raichle et al., 1970).  In a healthy adult, levels of aerobic glycolysis 

can range from ~10-15% of the glucose utilized by the human brain (Boyle et al., 1994; 

Powers et al., 2007; Raichle et al., 1970).  More recently, PET imaging revealed a significant 

increase in aerobic glycolysis in specific areas of the brain (Vaishnavi et al., 2010).  

Specifically, the levels of aerobic glycolysis are elevated in the medial and lateral parietal 

and prefrontal cortices (Vaishnavi et al., 2010).  Interestingly, PET imaging studies using a 

radiotracer with a high affinity to A plaques, revealed a strong correlation between the 

spatial distribution of aerobic glycolysis and A plaques in both patients with AD, as well as 

cognitively normal patients with high levels of A deposition but without clinical 

manifestation of the disease (Vlassenko et al., 2010).  Additionally, the spatial distribution of 

A deposition and increased aerobic glycolysis closely mirrors the distribution of aerobic 
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glycolysis in the normal healthy brain (Vaishnavi et al., 2010; Vlassenko et al., 2010).  Thus 

one could conclude that areas of increased aerobic glycolysis within the brain are more 

susceptible to Aaccumulation.  However, the opposing viewpoint is that an increase in 

aerobic glycolysis is an innate protective response that limits the toxicity of A.  Areas 

within the normal brain that show increased aerobic glycolysis highly overlap with the 

‘default mode network’- brain regions that are most active when an individual is awake but 

not engaged in a specific task (Vaishnavi et al., 2010; Vlassenko et al., 2010).  We propose 

that these areas of the brain are the most susceptible to insult in AD and thus exhibit a 

Warburg effect as a protective mechanism or a built in resistance mechanism that can be 

further activated in the presence of high levels of A 

Although a Warburg effect aids in the survival against A toxicity, it may have a few 

detrimental effects.  First, a reliance on glycolysis, an inefficient means of producing ATP, 

increases the demand for glucose in these cells.  Thus a small decrease in glucose availability 

may render these cells incapable of producing sufficient energy to sustain their function and 

lead to cell death.    Secondly, an increase in lactate production may result in decreased 

glutathione levels, the major antioxidant in the brain responsible for detoxifying ROS 

(Lewerenz et al., 2010). Lactate inhibits the enzymatic steps of glutathione synthesis, thus an 

increase in lactate would likely result in a decrease in glutathione synthesis and levels, which 

could result in a decreased tolerance to ROS (Lewerenz et al., 2010).  However, intracellular 

lactate levels were not significantly different between cells suggesting that lactate is 

efficiently exported from the cell (data not shown).  Lastly, HIF-1 mediated increase in 

glycolysis may result in an increase in Aproduction and deposition within the brain.  HIF-1 

has been shown to transcriptionally regulate both the -site APP cleaving enzyme (-

secretase/BACE1) and an essential enzyme involved in the presenilin/γ-secretase complex 

anterior pharynx-defective 1A (APH-1A)(Wang et al., 2006; Zhang et al., 2007).  Hypoxia or 

overexpression of HIF-1α increases the BACE1 mRNA and protein levels in mouse 

neuroblastoma N2a cells (Zhang et al., 2007).  Similarly, treatment of HeLa cells stably 

expressing the human APP Swedish mutation with NiCl2 (a chemical mimic of hypoxia) 

results in an increase in APH-1A mRNA and protein expression accompanied by an 

increased secretion of A(Wang et al., 2006).  These findings have quelled enthusiasm for 

the treatment of AD using metal chelators to enhance HIF1α activity.  However, our findings 
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suggest that enhancement of PDK1 activity alone may offer a better neuroprotective strategy 

as it is unlikely to affect APP processing.  Further studies will need to be conducted to 

examine this hypothesis. 

2.5 Conclusion 

We have shown for the first time a Warburg effect exists in Aresistant nerve cell lines, and 

contributes to resistance against Atoxicity. These findings suggest that the Warburg effect 

may act as a common resistance mechanism in a variety of cell types in response to diverse 

environmental stresses.  However the physiological relevance of these findings in an in vivo 

AD model remains unknown.  This shift in cell metabolism to rely heavily on glycolysis and 

lactate production for energy needs may provide nerve cells with a mechanism to overcome 

the pro-oxidant conditions elicited by A exposure.  Chemical means of modulating this 

pathway may be of therapeutic interest in the treatment of AD.  Moreover, characterization of 

the mechanisms by which glycolysis is upregulated in A resistant cells could reveal possible 

targets for drug therapy in the treatment of AD. 
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Chapter 3 

3 Overexpression of pyruvate dehydrogenase kinase 1 and 
lactate dehydrogenase A in nerve cells confers resistance 
to amyloid beta and other toxins by decreasing 
mitochondrial respiration and ROS production 

3.1 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is the most 

common form of age-related dementia.  AD is characterized by widespread nerve cell death 

and the accumulation of extracellular plaques and intracellular neurofibrillary tangles within 

the brain (Selkoe, 2004).  These plaques are primarily composed of amyloid--peptide (A), 

a 39-42 amino acid peptide derived from the proteolytic cleavage of the amyloid precursor 

protein (APP).  The A peptide, particularly the 42 amino acid long variant (A42), is highly 

prone to undergo oligomerization and fibrillogenesis; events strongly associated with the 

disease state (Selkoe, 1998). The amyloid cascade hypothesis, first proposed over 20 years 

ago, suggests that A deposition in the brain is the causative agent of AD (Hardy and 

Higgins, 1992; Selkoe, 1991).  Although multiple clinical trials have tested agents that either 

prevent the cleavage of APP or promote increased clearance of A, to date none of these 

trials have been successful in halting disease progression prompting the hunt for alternative 

therapies to combat AD (Ballard et al., 2011). 

A-deposition promotes mitochondrial dysfunction and an increase in reactive oxygen 

species (ROS) production resulting in oxidative damage, synaptic loss and ultimately nerve 

cell death (Behl et al., 1994; Butterfield et al., 2007; Markesbery, 1997; Tillement et al., 

2011).  However, numerous immuno-histochemical studies of brain tissue from individuals 

without any history of dementia showed that up to 40% of the autopsied samples had 

significant plaque accumulation but little or no nerve cell loss (Bouras et al., 1994; Price and 

Morris, 1999).  It has been argued that asymptomatic individuals with high plaque 

accumulation likely had undiagnosed mild cognitive impairment and would have eventually 

developed AD had they lived long enough or had a high cognitive reserve.  However, an 

alternative hypothesis is that these individuals may have acquired or exhibit an innate 
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resistance mechanism to the toxic effects of A.  While difficult to study in patients, models 

of A-resistance have been generated in vitro following the continual exposure of cultured 

nerve cells to concentrations of A that would otherwise be toxic and the eventual emergence 

of surviving clonal nerve cell populations.  Analysis of these A-resistant nerve cells 

revealed upregulation of anti-oxidant enzymes compared with the sensitive parental cells 

(Cumming et al., 2007; Sagara et al., 1996).  Additionally these cells displayed an increased 

resistance to a wide array of neurotoxins, suggesting that acquisition of A resistance also 

confers resistance to a variety of environmental stresses (Dargusch and Schubert, 2002).  

Intriguingly, A-resistant cells also exhibit increased glucose uptake and flux through the 

glycolytic pathway and heightened sensitivity to glucose deprivation (Soucek et al., 2003).  

These cells also appear to break down glucose in a unique manner, reminiscent of cancer 

cells.  Cancer cells have been shown to shift metabolism from mitochondrial respiration to 

glycolysis and lactate production for their energy needs despite the presence of oxygen 

(Bonnet et al., 2007; Warburg, 1956). This phenomenon is termed the Warburg effect, or 

aerobic glycolysis, and is driven by hypoxia inducible factor 1 α subunit (HIF-1α) (Kim et 

al., 2006; Le et al., 2010; Papandreou et al., 2006; Zhou et al., 2010).  HIF-1α is a 

heterodimeric transcription factor that regulates cellular adaptation to hypoxia and induces 

the transcription of pyruvate dehydrogenase kinase 1 (PDK1) (Kim et al., 2006; Papandreou 

et al., 2006).  PDK1 phosphorylates and inhibits pyruvate dehydrogenase (PDH), an enzyme 

responsible for the conversion of pyruvate to acetyl-CoA (Papandreou et al., 2006).   When 

PDH is inhibited, pyruvate is no longer an available substrate to fuel the TCA cycle and 

mitochondrial oxygen consumption is decreased (Papandreou et al., 2006). Additionally, 

HIF-1α upregulates the expression of LDHA, an enzyme responsible for the conversion of 

pyruvate to lactate, with the concomitant regeneration of nicotinamide adenine dinucleotide 

(NAD
+
) (Semenza et al., 1996).   

 Though HIF-1α was initially believed to be only active in low oxygen environments, recent 

findings have suggested that HIF-1α can be upregulated under normoxic conditions in both 

normal and cancer cells (Lu et al., 2005; Lu et al., 2002; McFate et al., 2008; Semenza, 

2010).  HIF-1α regulated changes in metabolism not only allow for maintenance of energy 

homeostasis in prolonged low oxygen conditions but also attenuate generation of harmful 
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ROS at higher oxygen levels (Kim et al., 2006).  By repressing mitochondrial respiration, 

cancer cells are less likely to produce ROS and are more resistant to mitochondrial 

depolarization; two events tightly linked to induction of apoptosis (Koppenol et al., 2011). 

Similar to cancer cells, the observed metabolic changes in A resistant cells arise through 

stabilization of HIF-1α (Soucek et al., 2003). In addition, A-resistant nerve cells have 

elevated PDK1 expression as well as an increase in LDHA activity and lactate production 

when compared with control cells (Chapter 2, Newington et al., 2011).  Moreover, 

mitochondrial derived ROS, which are closely associated with A toxicity, are markedly 

diminished in resistant relative to sensitive cells (Newington et al., 2011).  Chemically or 

genetically inhibiting LDHA or PDK1 re-sensitizes resistant cells to A toxicity, suggesting 

that the altered glycolytic metabolism in these cells may mediate A-resistance (Newington 

et al., 2011).  Although a reduction in cerebral glucose metabolism, as measured by fluoro-2-

deoxy-D-glucose (FDG) positron emission tomography (PET), is one of the most common 

diagnostic features of AD recent evidence suggest that glucose utilization is more complex in 

the AD brain (Mosconi, 2005; Vlassenko et al., 2010).  Studies using modified PET imaging, 

which measured both glucose consumption and oxygen utilization, revealed a strong 

correlation between the spatial distribution of elevated aerobic glycolysis and A plaques in 

brain tissue from patients with both AD, as well as normal individuals with high levels of 

A-deposition but without clinical manifestation of the disease (Vlassenko et al., 2010).  

Additionally, the spatial distribution of A deposition and increased aerobic glycolysis 

closely mirrors areas of high aerobic glycolysis in the normal healthy brain (Vaishnavi et al., 

2010).  These findings suggest that areas of the brain most susceptible to insult in AD may 

exhibit a Warburg effect as a protective mechanism that can be further activated in the 

presence of high levels of A.  However, this hypothesis has never formally been evaluated.  

Here we show that overexpresssion of LDHA or PDK1 in the B12 central nervous system 

cell line confers resistance to A and other neurotoxins such as H2O2 and staurosporine.  

Increased survival in cells overexpressing LDHA or PDK1 is associated with decreased 

mitochondrial membrane potential, oxygen consumption and ROS production, yet these cells 

maintain the ability to produce sufficient ATP.  Expression of PDK1 and LDHA is decreased 

in wildtype mouse primary cortical neurons exposed to Aβ and in cortical extracts from 12 
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month old of AD transgenic (APP/PS1) mice.  Similarly, post-mortem cortical tissue from 

AD patients also revealed a decrease in PDK1 expression relative to control patient brain 

samples. These findings suggest that loss of the adaptive advantage afforded by aerobic 

glycolysis may exacerbate the pathophysiological processes associated with AD.   

3.2 Methods 

3.2.1 Materials  

Cell culture reagents including: Dulbecco’s modified Eagles medium (DMEM), 

penicillin/streptomycin, DMEM without phenol red and Dulbecco’s phosphate buffered 

saline (DPBS) were purchased from Biowhittaker (Walkersville, MD, USA) (Carlsbad, CA, 

USA). Dialyzed fetal bovine serum (FBS) and horse serum (HS) were obtained from PAA 

Laboratories Inc. (Etobicoke, ON, Canada).  OPTIMEM I, TrypLE Express, Neurobasal 

Medium, N2 Supplement, B27 Supplement.Glutamax-1 (100x) and Hanks Balanced Salts 

Solution were obtained from Invitrogen (Carlsbad, CA, USA).  Amyloid beta (A) peptide 

(25-35) was purchased from California peptide research (San Francisco, CA, USA).  Poly-D-

lysine, Poly-L-Ornithine, puromycin, dihydrochloride, dimethyl formamide, 3-(4,5-

dimethlythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were all purchased from 

Sigma (St. Louis, MO, USA).  DNase 1 and Trypsin Inhibitor were purchased from Roche 

(Laval, Quebec, Canada). G418 sulfate was purchased from Calbiochem (EMD Chemicals 

Inc., Darmstadt, Germany).  Mitotracker Red CM-H2XRos, Tetramethyl Rhodamine Methyl 

Ester (TMRM), MitoSOX Red, 2',7'-dichlorodihydrofluorescein diacetate  (H2DCFDA) and 

the ATP determination kit were purchased from Invitrogen (Carlsbad, CA, USA). 

MitoXpress-Xtra-HS was purchased from Luxcel Biosciences Ltd (Cork, Ireland). 

3.2.2 Cell culture  

The B12, rat central nervous system cell line was obtained from Dr. David Schubert (The 

Salk Institute, La Jolla, CA)
 
and cultured as previously described (Behl et al., 1994; Sagara et 

al., 1996).  The B12 central nervous system cells are an immortalized clonal cell line derived 

from a nitrosoethylurea induced brain tumor in rats (Schubert et al., 1974) and have been 

shown to be sensitive to A toxicity.  These cells were grown in DMEM supplemented with 

10% FBS, and 1% P/S in a humidified incubator at 37
o
C and 5% CO2.  For toxicity studies, 



88 

 

the A peptide (25-35) was dissolved in deionized water at 1 mg/ml, left overnight at room 

temperature to promote fibril formation and subsequently stored at -20
o
C.  

3.2.3 Derivation of PDK1 and LDHA overexpressing cell lines 

For stable expression of PDK1 and LDHA, B12 cells were transfected with lipofectamine 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s directions.  Cells were 

plated at a density to achieve 70-80% confluency and transfected with vectors containing 

human PDK1 (pCMV6-AC) or LDHA (pCMV6-XL4) cDNA (Origene, Rockville, MD, 

USA).  Additionally cells were transfected with an empty vector (pcDNA) as a negative 

control. Following selection in G418 (1 mg/ml) for two weeks approximately 10-12 clones 

were picked, expanded and screened by immunoblot analysis for high level expression of 

either PDK1 or LDHA.   

3.2.4 Derivation of PDK1 and LDHA knockdown cell lines 

For stable knockdown of PDK1 and LDHA, B12 cells were transfected with HuSH 29mer 

shRNA (Origene, Rockville, MD, USA) constructs directed at rat Ldha or Pdk1 transcripts 

followed by selection with puromycin as previously described (Newington et al., 2011).  The 

shRNA construct directed against Ldha was: 69-GCCGAGAGCATA-

ATGAAGAACCTTAGGCG and the shRNA construct directed against Pdk1 was: 29-

AATCACCAGGACAGCCAATACAAGTGGTT.  A non targeting shRNA construct 

(scrambled) in pRS plasmid was used as a negative control. 

3.2.5 Immunoblot Analysis 

B12 cells from subconfluent cultures were washed twice in cold DPBS and harvested in a 

Tris extraction buffer (50 mM Tris pH 7.5, 2% SDS and 1 mM PMSF). Protein extracts were 

quantified by a Lowry assay, resolved by 12% SDS PAGE and electroblotted onto PVDF 

membrane (Bio-Rad Richmond, CA, USA) (Cumming et al., 2007).   Membranes were 

probed with the following antibodies: polyclonal anti-LDHA (1:1000; Cell Signaling, 

Danvers, MA, USA), polyclonal anti-PDK1 (1:1000; Stressgen, San Diego, CA, USA) and a 

monoclonal anti- actin (1:2000; Cell Signaling, Danvers, MA, USA) followed by incubation 

with an appropriate horseradish peroxidase-conjugated secondary antibody (Bio-Rad, 

Richmond, CA, USA).  The blots were developed using Pierce ECL western blotting 
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substrate (Thermo Scientific, Rockford, IL, USA) and visualized with a Bio-Rad Molecular 

Imager (ChemiDoc XRS, Bio-Rad, Richmond, CA, USA).  Densitometric analysis was 

performed using Image J software.  Band densities were standardized against -actin, and the 

ratio of LDHA or PDK1-specific bands relative to the -actin band was determined.  Relative 

intensity was calculated by comparing the LDHA/-actin or PDK1/-actin ratios of the 

transfected lines to the same ratio in the control cell line.  

3.2.6 Cytotoxicity assay  

A, hydrogen peroxide and staurosporine induced cytotoxicity was assessed by a modified 

MTT assay (Behl et al., 1994; Hansen et al., 1989; Sagara et al., 1996).  Cells were seeded 

(3x10
3 

cells/well) in a 96 well microtiter plate and A25-35 was added to the test wells at a 

concentration of 20 μM and incubated for 48 hours.  To each well 10 µl of MTT (2.5 mg/ml 

dissolved in DPBS) was added and, following a 4 hour incubation, 100 µl of solubilisation 

solution (20% SDS in 50% dimethyl formamide pH 4.8) was added to each well.  The plates 

were rocked at room temperature overnight then read on a microplate reader (BioRad Model 

3550) using 595 nm as the test wavelength and 655 nm as the reference wavelength. The 

percent viability was calculated from the mean absorbance of the treated cells divided by the 

mean absorbance of the control cells and multiplied by 100%.  

3.2.7 Oxygen Consumption 

Oxygen consumption was monitored using the fluorescent oxygen probe MitoXpress-Xtra-

HS.  B12 cells (1.25x10
5
) were seeded on 60 mm dishes.  The following day A25-35 (20 M) 

was added to the treatment dishes and cells were incubated for 48 hr.  Cells were trypsinized, 

centrifuged, and resuspended at an appropriate density prior to the assay.  Cells (2x10
5
) were 

transferred to a 96 well plate and incubated with the MitoXpress oxygen probe according to 

the manufacturer’s instructions (Luxcel Biosciences Ltd.).  Oxygen consumption was 

monitored as a function of fluorescence (ex/em 380/650 nm) every 2 min over a 6 hr period 

on a time-resolved fluorescence microplate reader (Tecan, Infinite M1000).  Data were 

analyzed using the program Mathematica as previously described (Hynes et al., 2012). 

Oxygen concentration in μM was calculated by the following formula, where X is the 

normalized fold change in fluorescence over the initial reading, t is time, S is the maximum 
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fluorescence in media containing no oxygen and 235 μM is the concentration of oxygen gas 

in fully saturated water at 30 C: 

        
        

      
 

Linear regression over a span of 100 minutes was performed to determine the rate of oxygen 

consumption for each clone. Oxygen consumption rates were later standardized to cell 

number. 

3.2.8 ATP levels 

Cellular ATP was measured in B12 cells using a bioluminescence ATP determination kit.  

Approximately 7.5x10
4 

cells were plated in 35 mm dishes and the following day were treated 

with A25-35 (20 M) for a further 48 hrs.  Cells were harvested in a Tris extraction buffer (20 

mM Tris pH 7.8, 2 mM EDTA, 0.5% NP40 and 25 mM NaCl).  One microgram of protein 

sample was loaded in each well of a 96 well plate.  The luciferin and luciferase buffer were 

prepared according to the manufacturer’s instructions (Molecular Probes) and 100 l was 

injected into each well.  Luminescence was integrated over 10 sec using a TECAN Infinite 

M1000 microplate reader.  ATP contents were calculated by comparing the luminescence, 

using an ATP standard curve. 

3.2.9 Fluorescence microscopy 

Mitochondrial membrane potential (∆ψm) was visualized by the fluorescent dye tetramethyl-

rhodamine methyl-ester (TMRM) (Bonnet et al., 2007).  B12 cells were seeded between 

1x10
5
 and 2x10

5 
cells on 30 mm plastic tissue culture dishes pretreated with polylysine and 

incubated overnight.  The following day, cells were treated with 20 µM A25-35 for 48 hr. 

Following treatment with A, the media was aspirated and new media was added containing 

TMRM at a concentration of 200 nM.  Plates were then incubated at 37
o
C for 20 min, 

washed in DPBS containing Hoechst stain (10 µg/ml), followed by an additional wash in 

DPBS and then placed in phenol red free DMEM.  For treatment with H2O2 or staurosporine, 

cells were first stained using the above protocol.  Following staining cells were treated with 

either H2O2 (200 µM) or staurosporine (200 ng/ml) for 15 min before visualization.  Cells 

were visualized by fluorescence microscopy (Zeiss-AxioObserver, 40X objective) and 
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pictures were taken using a Q Imaging (Retiga 1300 monochrome 10-bit) camera with Q 

Capture software.  Pictures were taken of three random fields of view for each experiment.  

TMRM fluorescence was quantified with ImageJ software. 

Mitochondrial ROS was visualized by the fluorescent dye Mitotracker Red CM-H2XRos 

(MTR).  B12 cells were plated seeded between 1 and 2x10
5
 cells on 30 mm plastic tissue 

culture dishes pretreated with polylysine and incubated overnight.  The following day cells 

were treated with 20 μM A25-35 for 48 hr.  Following treatment with A, the media was 

aspirated and new media was added containing MTR at a concentration of 100 nM.  Plates 

were then incubated at 37
o
C for 20 min, washed in DPBS containing Hoechst stain, followed 

by an additional wash in DPBS and then placed in phenol red free DMEM.  For treatment 

with H2O2 or staurosporine cells were first treated with either H2O2 (200 µM) or 

staurosporine (200 ng/ml) for 30 min before visualization and then stained and visualized as 

described above.  MTR fluorescence was quantified with ImageJ software.  Mitochondrial 

derived superoxide was also visualized using the fluorescent dye MitoSOX Red 

mitochondrial superoxide indicator.  Glass bottom dishes were pretreated with polylysine and 

cells were plated and treated as described above.  Cells were stained with MitoSOX at 5 M  

and incubated at 37
o
C for 30 min. Plates were then washed in DPBS containing Hoechst stain 

(10 g/ml) and then placed in phenol red free DMEM. Cells were visualized by fluorescence 

microscopy (Zeiss-AxioObserver, 100X objective) and fluorescence was quantified as 

described above.    

Overall cellular ROS was visualized by the fluorescent dye 5-(and-6)-chloromethyl-2',7'-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA).  Cells were plated and treated as 

described above. Cells were stained with CM-H2DCFDA at 2.5 M and incubated at 37
o
C 

for 15 min. Plates were then washed once in DPBS then visualized as described above.  

H2DCFDA fluorescence was quantified with ImageJ software.   

For time lapse microscopy B12 cells were seeded at 2x10
5 

cells in a 6 well Chamlide TC 

stage chamber (Live Cell Instruments, Nowan-gu, Seoul, Korea) pretreated with polylysine 

(50 µg/ml) and incubated overnight at 37
o
C in a tissue culture incubator.  The following day 

cells were stained with TMRM as described above.  Following staining the stage chamber 

was assembled onto the automated stage of a DMI6000 B inverted microscope (Leica 
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Microsystems, Wetzlar, Germany) heated to 37
o
C and perfused with  5% CO2 using  an FC-5 

CO2/Air gas mixer (Live Cell Instrument, Nowan-gu, Seoul, Korea). Cells were treated with 

H2O2 (200 µM) and time lapse DIC and fluorescent images of cells were automatically 

captured from three independent fields of each well every 10 minutes over 4 hrs using a 

C10600 Hamamatsu Digital Camera (Meyer Instruments, Houston, TX, USA) equipped with 

Metamorph Software.  The DIC and fluorescent images were overlaid and a time lapse video 

was generated using Image J software.   

3.2.10 Primary nerve cell cultures 

Primary cortical neurons were prepared from mouse embryonic day 14-17 as previously 

described (Ribeiro et al., 2005).  Cells were seeded at a density of  1.6x10
6 

cells per dish and 

cultured in Neurobasal Media containing 2 mM glutamine, 50 units/mL P/S and N2/B27 

supplements and incubated for 48 hr (Ribeiro et al., 2005). The media was changed 48 hr 

post plating.  At this time cells were treated with 10 M A25-35.  Cells were harvested in 2% 

SDS buffer as described above, at 4, 8, 12, 16, 24, 36 and 48 hr post A treatment.   PDK1 

and LDHA were visualized by Western blot analysis as described above and protein 

quantification was performed using Image J software.    

3.2.11 Mouse and Human Tissue 

APP/PS1 (APPswe,PSEN1dE9) double transgenic mice cortical brain tissues were 

generously provided by Dr. David Schubert (The Salk Institute, La Jolla, CA). Twelve month 

old tg-AD mice and age matched controls were perfused with saline and protease inhibitor 

cocktail, and brain regions were snap frozen and stored at -80
o
C.  Frozen tissue samples were 

partially thawed and ~100 mg pieces were removed and minced in a 5X weight/volume 

extraction buffer containing 50 mM Tris pH 7.5, 2% SDS and protease inhibitor cocktail 

(Cumming et al., 2007; Soucek et al., 2003).  Following sonication and centrifugation 

supernatants were collected and protein extracts were quantified using the Lowry assay.  

Protein extracts (15 µg) from the frontal cortex were analyzed by immunoblot analysis as 

described above. 

Autopsied brain samples were obtained from Drs. Carol Miller and Jenny Tang at the 

Alzheimer’s disease Research Center (University of Southern California School of Medicine, 
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Los Angeles, CA).  All tissue samples were extracted from the same area of the mid-frontal 

cortex and immediately quick frozen after removal.  All AD and control cases were matched 

pairwise for age, sex and in most cases post-mortem interval (PMI). All AD patients had a 

clinical history of dementia and a plaque density (plaques per field, PPF) in the low to 

moderate range according to The Consortium to Establish a Registry for Alzheimer’s Disease 

criterion (1=sparse,1-5 PPF; 3=moderate, 6-20 PPF; 5=frequent, 21-30 PPF or above).  

Patient details are summarized in Table 1. Frozen tissue samples were partially thawed and 

~100 mg pieces were removed and minced in a 5X weight/volume extraction buffer 

containing 50 mM Tris pH 7.5, 2% SDS and protease inhibitor cocktail (Cumming et al., 

2007; Soucek et al., 2003).  Following sonication and centrifugation supernatants were 

collected and protein extracts were quantified using the Lowry assay.  Protein extracts (15 

µg) were analyzed by immunoblot analysis as described above.  

3.2.12 Statistical Analysis 

Data are presented as means ± SD resulting from a least three independent experiments.  

Data were analyzed statistically using either a two-way ANOVA followed by a Tukey test, a 

one-way ANOVA followed by a Dunnett test or a T-test (VassarStats). Results were 

considered statistically significant at P<0.05. 

 

 

 

 

 

 

 

 



94 

 

Table 1. Control and AD patient details 

Patient Diagnosis  Age  Sex PMI
a
 PPF 

C1 Normal  94 Female 4.5 0 

A1 AD 95 Female 4.5 3 

C2 Normal 87 Female 6 0 

A2 AD 86 Female 6 1 

C3 Normal 88 Male  2 0 

A3 AD 85 Male 4.5 1 

C4 Normal 69 Male 8 0 

A4 AD 75 Male 2 5 

C5 Normal 91 Female NA
b
 0 

A5 AD 90 Female 4.5 5 

C6 Normal 92 Female 7 0 

A6 AD 90 Female 7.5 3 

C7 Normal 80 Male 12 0 

A7 AD 77 Male 3 5 

a
PMI, Post mortem interval                                                                                                    

b
NA, Not available                                                   

PPF, plaques per field   
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3.3 Results 

3.3.1 Overexpression of LDHA or PDK1 confers resistance to A, 
H2O2 and staurosporine toxicity 

LDHA and PDK1 are key enzymes that mediate the Warburg effect in cancer cells (Bonnet et 

al., 2007; Fantin et al., 2006; Le et al., 2010; Zhou et al., 2010).  Previous studies have shown 

that increased PDK1 expression, LDHA activity and lactate production are common features 

of A-resistant cells (Newington et al., 2011).  Therefore we sought to determine if 

overexpression of either LDHA or PDK1 in B12 A-sensitive cells could confer resistance to 

A toxicity.  Western blot analysis of B12 cells transfected with vectors containing human 

LDHA or PDK1 cDNAs revealed elevated constitutive expression of LDHA or PDK1 

compared to cells transfected with the control plasmid (pcDNA) (Figure 3.1 A and B).  B12 

cells overexpressing LDHA or PDK1 exhibited a significant increase in cell viability 

following 48 hr exposure to A (20 µM) when compared to control cells (P<0.01, Figure 

3.1C).   

Clonal nerve cell lines selected for resistance to A toxicity have been shown to exhibit 

increased resistance to a wide array of neurotoxins (Dargusch and Schubert, 2002; Sagara et 

al., 1996).  We were therefore interested to see if overexpression of either LDHA or PDK1 

conferred resistance to other stressors. The sensitivity of LDHA and PDK1 overexpressing 

cells to H2O2, staurosporine and a variety of mitochondrial inhibitors (rotenone, antimycin 

and oligomycin) were examined.  Interestingly, none of the overexpressing lines were more 

resistant to any of the mitochondrial inhibitors (data not shown).  However, all LDHA and 

PDK1 overexpressing cell lines showed an increased resistance to H2O2 (200 µM) and 

staurosporine (200 ng/ml) (P<0.01, Figure 3.1 D and E).  Therefore, the overexpression of 

either LDHA or PDK1 confers resistance to H2O2 and staurosporine but not to neurotoxins 

that specifically disrupt the mitochondrial electron transport chain (ETC).   
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Figure 3.1 Overexpression of LDHA or PDK1 increases resistance to A and other 

toxins in B12 sensitive cells. (A) Immunoblot analysis of B12 A-sensitive cells stably 

transfected with either pcDNA (empty vector) or a vector containing human LDHA cDNA 

revealed two clonal cell lines (clones 3 and 7) with markedly increased LDHA protein levels 

(*P<0.01).  (B) Immunoblot analysis of extracts from two clonal cell lines (clones 6 and 7) 

stably transfected with a PDK1 expression vector confirmed a significant increase in PDK1 

protein expression compared to the control cell line (**P<0.05).  An additional 30 kDa PDK1 

band was also elevated in PDK1 transfected cells and likely represents a cleavage product.  

Densitometric analyses of LDHA and PDK1 band intensities relative to actin are indicated 

below each blot. Relative intensity was calculated by comparing the LDHA/actin or 

PDK1/actin ratio of the overexpressing lines to the same ratio in the control (pcNDA) cell 

line. Cell viability of clonal lines overexpressing either LDHA or PDK1 were significantly 

increased following exposure to either A (20 µM) for 48 hrs (C), H2O2 (200 µM) for 24 hrs 

(D), or staurosporine (200 ng/ml) for 24 hrs (E) compared with the control cell line (* 

P<0.01). Data are presented as means ± SD resulting from 3 independent experiments.  Data   

were analyzed a one-way ANOVA followed by a Dunnett’s test. 
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3.3.2 Attenuated LDHA and PDK1 re-sensitizes cells to A, H2O2 and 
staurosporine toxicity 

Although we have previously shown that attenuation of LDHA and PDK1 in PC12 and B12 

reversed A toxicity in these cells, we sought to determine if specific inhibition of LDHA 

and PDK1 expression by shRNA–mediated knockdown could also render B12 parental cells 

more sensitive to A(Newington et al., 2011).  Immunoblot analysis confirmed B12 cell 

lines stably transfected with shRNA directed at rat Ldha or Pdk1 transcripts exhibited 

decreased expression of the targeted mRNAs compared to cells transfected with a control 

shRNA containing a non-specific/scrambled (SCR) sequence (Figure 3.2).  Knockdown of 

either Ldha or Pdk1 in the B12 cells resulted in a significant decrease in cell viability, 

following 48 hr exposure to Aor 24 hr exposure to H2O2 or staurosporine  when compared 

to the control (Figure 3.2 C, D and E,  P<0.01).  Thus attenuation of LDHA or PDK1 appears 

to further sensitize B12 cells to a variety of neurotoxins.       
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Figure 3.2 Attenuated LDHA and PDK1 expression increases sensitivity to A and 

other neurotoxins. (A) Western blot analysis of B12 cells stably transfected with an LDHA-

specific shRNA vector confirmed one clonal cell line (LDHA69) which exhibited a 

significant decrease in LDHA when compared to a B12 cell line transfected with a non-

specific shRNA (SCR) (*P<0.01). (B) Immunoblot analysis also confirmed significantly 

decreased PDK1 expression in one clonal cell line stably expressing an shRNA vector 

directed at PDK1 (PDK29) when compared to control (SCR) (*P<0.01). (C) B12 cell lines 

with attenuated expression of either LDHA or PDK1 displayed a significant decrease in cell 

viability when treated with A(20 M) for 48 hr (*P<0.01) (D) Similarly cells with 

decreased LDHA or PDK1 had significantly decreased cell viability following 24 hr 

treatment with H2O2 or (E) staurosporine (200 ng/ml) (*P<0.01). Densitometric analysis of 

LDHA and PDK1 band densities relative to actin are found below the corresponding blot.  

Relative intensity was calculated by comparing the LDHA/actin or PDK1/actin ratio of the 

knockdown lines to the same ratio in the scrambled shRNA cell line. Data represent the mean 

± SD of three independent experiments. Data were analyzed by a one-tailed T test (A and B) 

or by a one-way ANOVA followed by a Dunnett test (C-E). 
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3.3.3 Decreased mitochondrial membrane potential in LDHA and 
PDK1 overexpressing cells  

The transfer of electrons through the ETC in the inner mitochondrial membrane provides the 

energy to drive H
+
 against their concentration gradient into the intermembrane space.  The 

resulting increase in H
+
 outside the membrane creates a negative mitochondrial membrane 

potential (∆ψm).  The stored energy of the ∆ψm and the flow of H
+
 back into the mitochondria 

are used to synthesize ATP through the F1/F0 ATP-synthase, thus a decrease in mitochondrial 

membrane potential is indicative of decreased electron transport and OXOPHOS activity 

(Bonnet et al., 2007).  Both elevated PDK1 and LDHA expression have been tied to reduced 

mitochondrial OXOPHOS activity, therefore we sought to determine if overexpression of 

LDHA or PDK1 could result in decreased ∆ψm following treatment with A, H2O2, and 

staurosporine.  Indeed, all overexpressing cell lines had significantly lower ∆ψm as measured 

by reduced TMRM fluorescence, compared to control cells expressing plasmid alone (Figure 

3.3).  When control cells were treated for 48 hr with A (20 µM) there was a significant 

increase in ∆ψm (P<0.001) whereas ∆ψm remained unaltered in both LDHA and PDK1 

overexpressing cell lines compared to untreated cells.  Similar results were obtained when 

cells were treated with either H2O2 (200 µM) or staurosporine (200 ng/ml) for 30 min; 

namely the control cells showed a significant increase in membrane potential (P<0.001) 

whereas all the LDHA and PDK1 overexpressing cell lines maintained significantly ∆ψm.  

Timelapse microscopy revealed that control cells displayed increased  ∆ψm or hyper-

polarization, followed by rapid depolarization and cell death when exposed to H2O2 (200 

µM) (data not shown).  In contrast, LDHA and PDK1 overexpressing cells showed decreased 

∆ψm under control conditions which was maintained when cells were exposed to H2O2 (200 

µM).  Furthermore, the majority of cells overexpressing either LDHA or PDK1 did not 

undergo mitochondrial membrane depolarization and subsequent cell death following 

treatment with H2O2.  Taken together, overexpression of either LDHA or PDK1 results in 

decreased ∆ψm which is maintained following exposure to a variety of stressors.  
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Figure 3.3 Decreased mitochondrial membrane potential in LDHA and PDK1 

overexpressing cells. (A) Mitochondrial membrane potential (∆ψm) was measured in B12 

cells following staining with the red fluorescing dye Tetramethyl Rhodamine Methyl Ester 

(TMRM). Both PDK1 and LDHA overexpressing B12 cell lines exhibited a significant 

reduction in ∆ψm under normal culture conditions or following exposure to A (20 µM), 

H2O2 (200 µM) or staurosporine (200 ng/ml)  when compared to the control cell line 

expressing the empty vector (pcDNA) under similar culture conditions (*P<0.001).  Cells 

expressing the empty vector (pcDNA) showed a significant increase in ∆ψm following 

exposure to A, H2O2 or staurosporine (*P<0.001). As a counterstain, nuclei were stained 

with Hoescht (Blue) and visualized by fluorescence microscopy at 400X magnification. (B) 

Quantification of TMRM fluorescence intensity revealed that ∆ψm was consistently lower in 

PDK1 and LDHA overexpressing cells in the absence (-) or presence (+) of the indicated 

stressor when compared to the pcDNA control cell line.  Pictures were taken from 3 random 

fields of view for each treatment.  Data are presented as means ± SD resulting from a least 

three independent experiments.  Data were analyzed by a two-way ANOVA followed by a 

Tukey test. 
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3.3.4 Overexpression of LDHA or PDK1 decreases oxygen 

consumption but maintains ATP levels in the presence of A 

The overexpression PDK1 or LDHA is believed to be sufficient to shift metabolism away 

from mitochondrial respiration towards increased lactate production (Bonnet et al., 2007; 

Fantin et al., 2006).  Thus we sought to determine whether the overexpression of these 

enzymes in B12 cells would result in a reduction in oxygen (O2) consumption, a measure of 

mitochondrial respiration.  O2 consumption was monitored in B12 cells stably overexpressing 

LDHA or PDK1 using MitoXpress-Xtra-HS, a fluorescent oxygen probe.  Under control 

conditions all PDK1 and LDHA expressing clonal lines exhibited significantly decreased O2 

consumption compared to the pcDNA control (Figure 3.4 A, P<0.05).  Interestingly, 48 hr 

A treatment resulted in decreased O2 consumption in the pcDNA control line 

but had little effect on the overexpressing clones (P<0.01).  

Considering that mitochondrial respiration is a far more efficient way of producing energy 

compared to lactate production, we sought to determine if the observed decreased O2 

consumption affected the levels ATP in cells overexpressing LDHA or PDK1.  Intracellular 

ATP levels were measured in the B12 overexpressing cell lines cultured in the absence or 

presence of 20 M A after 48 hours.  Under control conditions all B12 cell lines had similar 

levels of ATP (Figure 3.4 D).  However, A treatment resulted in a 50% reduction in ATP 

levels in B12 control cells (pcDNA) (P<0.01).  Interestingly all PDK1 and LDHA 

overexpressing clones maintained significantly higher levels of ATP production in the 

presence of Acompared to control cells under the same conditions(P<0.05). These results 

suggest that cells which are less dependent on mitochondrial respiration are also less 

sensitive to A-induced alterations in glucose metabolism and are able to maintain ATP 

levels in the presence of A.  
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Figure 3.4 Respiration is decreased but ATP levels are maintained in cells 

overexpressing LDHA and PDK1. (A) Oxygen consumption was monitored in B12 cell 

lines using the MitoXpress-Xtra HS fluorescent probe.  All clonal cell lines overexpressing 

LDHA and PDK1 displayed significantly lower levels of oxygen consumption under control 

conditions compared with cells expressing an empty vector (pcDNA)  (*P<0.01,**P<0.05).  

Oxygen consumption significantly decreased in pcDNA control cells following 48 hr 

treatment with A compared to untreated conditions (*P<0.01).  In contrast, 

cells overexpressing LDHA or PDK1 maintain or increase their oxygen consumption 

following 48 hr Aexposure. (B) A representative example of oxygen consumption over 

time for the indicated B12 cell lines.  (C) A representative example of oxygen consumption 

over time following 48 hr A(20 M) treatment.  (D)  Cells overexpressing LDHA or 

PDK1 had similar levels of ATP when compared to control cells under normal culture 

conditions.  Cells expressing empty vector had significantly lower levels of ATP following 

exposure to A(*P<0.05) whereas LDHA and PDK1 overexpressing cells maintained 

significantly higher ATP levels than the control following treatment with A (*P<0.01).   

Data represent the mean ± SD of three independent experiments. Data were analyzed by a 

two-way ANOVA followed by a Tukey test. 
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3.3.5 Attenuated mitochondrial and cellular ROS in LDHA and PDK1 
overexpressing B12 cells  

 Reduced mitochondrial ROS is associated with the Warburg effect and was previously 

observed in A resistant cells with innately high PDK1 and LDHA activity (Bonnet et al., 

2007; Michelakis et al., 2010; Newington et al., 2011).  Therefore, we sought to determine if 

overexpression of either PDK1 or LDHA in A-sensitive cells could reduce mitochondrial 

ROS when exposed to A or other stressors.  We examined mitochondrial ROS in control 

and LDHA or PDK1 overexpressing cells using Mitotracker Red CM-H2XRos (MTR); a 

mitochondrial specific dye that fluoresces when oxidized by ROS (Bonnet et al., 2007).  

Under control conditions, all LDHA and PDK1 overexpressing cells showed significantly 

less mitochondrial ROS, as measured by mean MTR fluorescence, when compared to the 

control cells expressing an empty vector (Figure 3.5 A and B, P<0.001).  Moreover, LDHA 

and PDK1 overexpressing cell lines exhibited significantly lower levels of mitochondrial 

ROS when treated with A (20 µM) for 48 hours compared to the vector control cells 

(P<0.001).  In contrast, the parental cells expressing vector alone showed a significant 

increase in mitochondrial ROS following exposure to A (P<0.001).  Similarly, LDHA and 

PDK1 overexpressing cells generated significantly less mitochondrial ROS when exposed to 

either H2O2 or staurosporine for 30 minutes compared to vector control cells treated in the 

same manner (P<0.001).  Similar results were obtained using MitoSOX; a mitochondrial 

specific superoxide indicator (Figure 3.5 C and D).  Thus overexpression of either LDHA or 

PDK1 results in a significant reduction in mitochondrial ROS which is maintained following 

toxin exposure. 

Intracellular ROS levels have been previously shown to increase when cells are treated with 

stressors such as A(Behl et al., 1994; Butterfield et al., 2007).  We therefore sought to 

examine if the cellular levels of ROS were altered in B12 cells overexpressing LDHA or 

PDK1.  We used the live cell fluorescent ROS indicator CM-H2DCFDA to determine the 

overall levels of ROS.  Under control conditions cells overexpressing either LDHA or PDK1 

showed significantly decreased basal levels of ROS when compared to the parental cell 

expressing the empty vector (Figure 3.6 P<0.001).  Interestingly, significantly lower levels of 

ROS were maintained in these cells when exposed to A, H2O2 or staurosporine (Figure 3.6, 

P<0.001).  In contrast B12 cell expressing empty vector alone exhibited a significant increase 
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cellular ROS following 48 hr exposure to A (P<0.01) or when treated with either H2O2 or 

staurosporine for 24 hr (Figure 3.6, P<0.001).  Thus cells overexpressing either LDHA or 

PDK1 exhibit lower levels of both mitochondrial and cellular ROS when compared to control 

cells which likely contributes to their broad resistance to oxidant promoting neurotoxins.  

3.3.6 Decreased LDHA and PDK1 expression in primary nerve cells 

following exposure to A 

Expression of both PDK1 and LDHA in wild type mouse primary cortical nerve cell cultures 

was examined following Aβ exposure over a 48 hr period (Figure 3.7)A significant 

decrease in the expression of both these proteins was observed by 48 hrs following exposure 

to Awhen compared to untreated cells harvested at the same time points (P<0.01).  

Decreased PDK1 and LDHA expression was unlikely due to loss of cells because minimal 

cell death was observed up to 48 hrs (data not shown).  Therefore it appears A exposure 

inhibits expression of Warburg effect enzymes in primary neurons.   

3.3.7 Decreased LDHA and PDK1 expression in APP/PS1 transgenic 
mice at 12 months 

The APPswe/PS1dE9 double transgenic mouse strain (tg-AD) exhibits pronounced amyloid 

plaque accumulation and memory deficits at 12 months of age compared to age matched 

controls (Cardoso et al., 2001; Dineley et al., 2002). Based on the neuroprotective properties 

of PDK1 and LDHA in culture, we sought to determine if the levels of both enzymes were 

altered in cortical extracts from tg-AD mice relative to non-tg littermate controls.  

Immunoblot analysis (Figure 3.8) revealed a significant reduction in overall levels of LDHA 

and PDK1 in tg-AD mice compared to controls (P<0.001). 

3.3.8 Decreased PDK1 expression in human AD cortical samples 

Glycolytic activity and enzymes involved in glycolysis are upregulated in the AD brain 

(Soucek et al., 2003).  We therefore examined the levels of LDHA and PDK1 in extracts 

from post-mortem control and AD frontal cortex tissue.  We observed no significant 

difference in the overall protein levels of LDHA (data not shown).  However, a significant 

decrease in PDK1 protein expression was detected in AD brain samples when compared to 

age matched controls (Figure 3.9, P<0.01).   
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Figure 3.5 Decreased mitochondrial ROS in LDHA and PDK 1 overexpressing cells. (A) 

Mitochondrial ROS production was measured in B12 cell lines following labeling with the 

red fluorescent dye MitoTracker-ROS Red (MTR). (B) Quantification of MTR fluorescent 

images revealed that B12 clonal cell lines overexpressing PDK1 or LDHA exhibited a 

significant reduction in mitochondrial ROS (red) compared to the parental cell line 

expressing the empty vector (pcDNA) under both normal culture conditions and following 

exposure to A25-35 (20 µM), H2O2 (200 µM) or staurosporine (200 ng/ml) for the indicated 

time periods (*P<0.001).  Mitochondrial ROS significantly increased in parental cells 

expressing empty vector (pcDNA) when treated with A25-35, H2O2 or staurosporine 

(*P<0.001).  (C) Mitochondrial derived superoxide was measured by staining cells with the 

fluorescent dye MitoSOX.  All cells overexpressing LDHA or PDK1 displayed significantly 

decreased mitochondrial derived superoxide (red) when compared to the parental line 

(pcDNA) under control conditions or following  exposure to  A25-35 (20 µM), H2O2 (200 

µM) or staurosporine (200 ng/ml) for the indicated time periods (*P<0.001).  (D) 

Quantification of MitoSOX fluorescent images revealed that mitochondrial ROS levels 

significantly increased in the pcDNA control line when treated with A, H2O2 and 

staurosporine (*P<0.001).  Nuclei were stained with Hoescht (Blue) and cells were visualized 

by fluorescence microscopy at 400X magnification for MTR and at 1000X for MitoSOX. 

MTR and MitoSOX fluorescence were quantified with ImageJ software. Pictures were taken 

from 3 random fields of view for each treatment.  Data represent the mean ± SD of three 

independent experiments. Data were analyzed by a two-way ANOVA followed by a Tukey 

test. 
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Figure 3.6 Decreased cellular ROS in LDHA and PDK1 overexpressing cells. (A) 

Cellular ROS was measured in B12 cells by staining with the fluorescent dye 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA). (B) Quantification of H2DCFDA 

fluorescence revealed B12 clonal cell lines overexpressing PDK1 or LDHA exhibited a 

significant reduction in cellular ROS (green) compared to the parental cell line expressing the 

empty vector (pcDNA) under both normal culture conditions and following exposure to A25-

35 (20 µM), H202 (200 µM) or staurosporine (200 ng/ml) for the indicated time periods 

(*P<0.001).  B12 parental cells (pcDNA) exhibited a significant increase in H2DCFDA 

fluorescence when treated with A (P<0.01), H202 or staurosporine (*P<0.001).  Cells were 

stained with H2DCFDA (2.5 µM) and fluorescent images were taken at 400X magnification 

and quantified with ImageJ software. Pictures were taken from 3 random fields of view for 

each treatment.  Data represent the mean ± SD of three independent experiments. Data were 

analyzed by a two-way ANOVA followed by a Tukey test. 
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Figure 3.7 Aexposure inhibits expression of Warburg effect enzymes in mouse 

primary cortical neurons. (A) Primary cortical nerve cell cultures were exposed to 

A(10 M) and harvested at the indicated time points over a 48 hour period.  Western 

blot analysis revealed that both PDK1 and LDHA expression decreased in cortical neurons 

exposed to A compared to untreated cells. Densitometric analyses of PDK1 (B) and LDHA 

(C) band intensities relative to actin are indicated.  A significant decrease in both PDK1 and 

LDHA expression in Aβ treated cells, relative to untreated cells,  was observed at a number 

of time points (*P<0.01, **P<0.05, #P<0.001).  Data represent the mean ± SD of three 

independent experiments.  Data were analyzed by a two-way ANOVA followed by a Tukey 

test. 



115 

 

 

 

 



116 

 

Figure 3.8 PDK1 and LDHA protein levels are decreased in APP/PS1 transgenic mice. 

(A) Immunoblot analysis of cortical extracts from 12 month-old mice revealed that PDK1 

and LDHA protein levels were markedly decreased in APP/PS1 transgenic mice (tg-AD) 

mice when compared to non-transgenic littermate controls.  (B) Densitometric analysis 

revealed significantly decreased PDK1 and LDHA expression in APP/PS1 transgenic mice 

compared to littermate controls (*P<0.001).  Data were analyzed by a one-tailed T-Test.        
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Figure 3.9 PDK1 is decreased in cortical extracts from AD patients.  (A) Immunoblot 

analysis of post-mortem human cortical extracts revealed decreased PDK1 levels in human 

AD brain samples (A1-A7) when compared to the age and sex matched controls (C1-C7),  

individual densitometric values are shown below.  (B) Average densitometric values of the 

above blot revealed a significant decrease in PDK1 expression in AD patients compared to 

controls (*P<0.01).  (C) Densitometric analysis revealed there was a significant difference in 

PDK1 expression in female AD patients and male AD patients when compared to controls 

(*P<0.01; **P<0.05).   Data were analyzed by a one-tailed T-Test or a one-way ANOVA 

followed by a Tukey test.        
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3.4 Discussion 

3.4.1 Mitochondrial membrane potential, ROS production and A  
sensitivity 

Mitochondrial dysfunction is a hallmark of AD, and is thought to be central to A toxicity.  

ROS can be produced by the leakage of electrons from the mitochondrial ETC which results 

in the partial reduction of molecular oxygen and the subsequent generation of superoxide 

radicals (O2
.
).  Chronic increases in ROS production, as seen in AD, can lead to the oxidation 

and damage of macromolecules such as proteins, lipids and nucleic acids and is strongly 

associated with the induction of apoptosis.  Interestingly, cells depleted of mitochondrial 

DNA lacking critical subunits of the respiratory chain are not sensitive to the toxic effects of 

A suggesting that A relies on a functional mitochondrial respiratory chain in order to elicit 

toxicity (Cardoso et al., 2001).  A has been shown to accumulate within the mitochondria of 

AD patients and transgenic mice (Caspersen et al., 2005; Fernandez-Vizarra et al., 2004; 

Lustbader et al., 2004; Manczak et al., 2006).   The direct binding A to the mitochondrial 

protein alcohol dehydrogenase (ABAD) promotes leakage of electrons, mitochondrial 

dysfunction, increased ROS production and ultimately cell death (Lustbader et al., 2004). 

However, overexpression of the mitochondrial antioxidant enzyme manganese superoxide 

dismutase (MnSOD) in tg-AD mice improved resistance to A and attenuated the AD 

phenotype, suggesting that mitochondrial toxicity is central to A induced cell death 

(Dumont et al., 2009). Here we show that overexpression of LDHA or PDK1 in nerve cells 

results in both decreased ∆ψm and O2 consumption which is associated with reduced 

mitochondrial ROS production and attenuated cell death following exposure to various toxins 

including A.  Interestingly, the reduction in mitochondrial respiration does not appear to 

negatively affect ATP levels in cells overexpressing LDHA or PDK1.  These cells are likely 

able to maintain high levels of cellular ATP through increased flux through the glycolytic 

pathway, similar to A resistant cells (Soucek et al., 2003).  We propose that decreased ETC 

activity and ROS production associated with LDHA and PDK1 expression is central to 

conferring protection against A and other toxins.  This is further supported by the 

observation that knockdown of either LDHA or PDK1 in B12 cells further potentiated 

sensitivity to A and other neurotoxins.  Moreover, genetic silencing of either LDHA or 
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PDK1 in Aβ-resistant cells  resulted in re-sensitization to Atoxicity, suggesting that these 

enzymes play an important role in protecting cells against A toxicity (Newington et al., 

2011).    

3.4.2 Protective role of LDHA and PDK1 

Elevated LDHA and PDK1 expression may confer resistance to A, H2O2 and staurosporine 

by a variety of mechanisms.  Although A is known to trigger an increase in H2O2  

production resulting in free radical damage and cell death, H2O2 accumulation is not 

observed in A resistant cells (Sagara et al., 1996). Moreover, cells selected for resistance 

against A toxicity are also resistant to exogenously applied H2O2 and neurotoxins known to 

induce oxidative stress, suggesting that A and H2O2 promote cell death by a similar 

mechanism (Dargusch and Schubert, 2002; Sagara et al., 1996).  Additionally, the 

observation that pre-treatment of CNS primary cultures or PC12 and B12 cells with catalase, 

an antioxidant that detoxifies H2O2, results in protection against A-induced cell death 

further suggests that H2O2 mediates A toxicity (Behl et al., 1994).  H2O2 treatment has been 

shown to induce transient ∆ψm hyperpolarization and a subsequent delayed burst of 

endogenous ROS in mouse primary neurons and human neuroblastoma cells.  Furthermore, 

chemical inhibition of mitochondrial hyperpolarization was shown to protect neuronal cells 

from oxidative stress-induced cell death (Qin et al., 2011).  In this study, PDK1 or LDHA 

overexpression also prevented the transient increase in ∆ψm following H2O2 exposure. 

Interestingly, overexpression of LDHA or PDK1 also resulted in increased resistance to 

staurosporine, an apoptosis inducing agent that was initially believed to promote toxicity in a 

ROS-independent manner (Ruegg and Burgess, 1989).  Staurosporine has been well 

characterized as a potent inducer of apoptosis through inhibition of protein kinases (Herbert 

et al., 1990; Ruegg and Burgess, 1989).   However, several studies have shown that 

staurosporine-induced apoptosis in neurons is partly dependent on mitochondrial derived 

ROS (Kruman et al., 1998; Morais Cardoso et al., 2002; Pong et al., 2001).  Given that 

oxidative stress is tightly associated with A and H2O2 induced cell death, overexpression of 

LDHA or PDK1 is likely to protect cells by reducing mitochondrial ETC activity and 

associated ROS production. 
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In this study we observed decreased ∆ψm and O2 consumption in cells overexpressing LDHA 

or PDK1 compared to control cells which was maintained following toxin exposure.  In 

contrast, control cells underwent a sharp increase in ∆ψm followed by rapid depolarization 

and cell death in the presence of all toxins.  A positive ∆ψm is created by the ETC which 

transfers protons (H
+
) into the intermembrane space.  The resulting electrochemical gradient 

is subsequently used to synthesize ATP.  Thus if ETC activity is low, in the case of reduced 

mitochondrial respiration, then ∆ψm would also be low.  Loss of ∆ψm altogether mediates the 

release of proapoptotic factors through the mitochondrial transition pore.  In cells 

overexpressing PDK1, the observed decrease in ∆ψm and O2 consumption is likely reflective 

of a decrease in ETC activity as a result of PDH inhibition (McFate et al., 2008).  PDK1-

mediated inhibition of PDH results in decreased entry of pyruvate into the TCA cycle and a 

subsequent decrease in the production of the electron donors NADH and FADH2 necessary 

for ETC activity.  In LDHA overexpressing cells, LDHA competes with the mitochondrial 

NADH/NAD
+ 

shuttle systems to regenerate NAD
+
 (Golshani-Hebroni and Bessman, 1997).  

Therefore, the overexpression of LDHA or PDK1 likely limits the availability of both 

pyruvate and NADH in the mitochondria thereby decreasing respiration and ∆ψm (Fantin et 

al., 2006). 

Previous studies revealed that more ROS is generated at higher mitochondrial membrane 

potentials, with dramatic increases in ROS being produced when mitochondrial membranes 

reach potentials of 140 mV or more (Korshunov et al., 1997).  Conversely a small decrease 

(10mV) in ∆ψm significantly attenuates ROS production (up to 70%) via complex I of the 

ETC, suggesting that moderate attenuation of membrane potential can result in significant 

changes in the oxidative potential of the cell (Miwa and Brand, 2003).  Interestingly we 

observed that cells overexpressing LDHA or PDK1 exhibited decreased mitochondrial 

membrane potentials with or without exposure to toxins, which likely contributed to their 

resistance through the associated decrease in mitochondrial ROS.  Moreover, the observed 

hyperpolarization prior to depolarization and cell death in H2O2 exposed control cells was 

likely associated with a burst in ROS production.  Collectively, our findings suggest that cells 

exhibiting a lower ∆ψm and decreased mitochondrial ROS production under basal conditions 

may have a unique advantage over cells exhibiting higher ∆ψm when faced with a toxic 

stressor such as A.   
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3.4.3 Glucose metabolism in the AD brain 

Recent [
18

F]-FDG PET imaging studies in tg-AD (APPSweLon/PS1M146L) mice revealed a 

dynamic picture of glucose utilization within the brain (Poisnel et al., 2011). In 3, 6 and 12 

month old tg-AD mice, it was found that there was an age-dependent increase in glucose 

uptake in the cortex, hippocampus and striatum; areas associated with high plaque 

accumulation (Poisnel et al., 2011). However, this study did not discern what proportion of 

glucose was processed by aerobic glycolysis versus mitochondrial respiration.  Here we 

looked at 12 month old APP/PS1 mice and observed a decrease in both LDHA and PDK1 

expression in the frontal cortex when compared to age matched controls.  Thus, it is possible 

that at early stages of pathogenesis in tg-AD mice, nerve cells exploit the Warburg effect and 

increase glucose uptake to protect against A toxicity.  However, if LDHA and PDK1 

expression decreases in older mice then more glycoltyic flux would be processed through the 

mitochondria leading to increased ROS production, elevated apoptosis and ultimately 

cognitive impairment.  A more intensive longitudinal study of the Warburg effect in AD 

mice is necessary to offer more insight into the metabolic state of affected neurons.  

Interestingly, a study measuring the regional distribution of aerobic glycolysis in the human 

brain revealed that areas most susceptible to amyloid toxicity exhibit high aerobic glycolysis 

(Vlassenko et al., 2010).  In the developing nervous system, aerobic glycolysis is believed to 

account for 90% of glucose consumed (Powers et al., 1998).  During childhood this fraction 

accounts for 35% of glucose utilization and finally drops to 10-12% in the adult brain 

(Vaishnavi et al., 2010).  PET studies of cognitively normal individuals have shown an age-

associated decrease in FDG uptake in regions of the brain frequently affected in AD, 

although these studies did not determine what proportion of glucose was processed by 

aerobic glycolysis versus oxidative phosphorylation (Cunnane et al., 2011).  However, a 

recent neuroimaging study revealed a strong correlation between the spatial distribution of 

A deposition and aerobic glycolysis in both cognitively normal individuals and AD patients 

(Vlassenko et al., 2010).  Thus, aerobic glycolysis may be elevated in areas of the brain most 

susceptible to insult as a pre-emptive protective mechanism or in response to A 

accumulation during aging (Figure 3.10).  Loss of this protective mechanism may render 

certain areas of the brain susceptible to A-induced neurotoxicity. 
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Figure 3.10 Proposed model describing the relationship between aerobic glycolysis and 

AD. In the normal young adult brain aerobic glycolysis (the Warburg effect) is elevated in 

regions known to be susceptible to A deposition.  Aerobic glycolysis is maintained, in part, 

by increased lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase kinase 1 (PDK1) 

expression.  LDHA converts pyruvate to lactate with the concomitant regeneration of 

nicotinamide adenine dinucleotide (NAD
+
) which is necessary to sustain glycolysis.  PDK1 

phosphorylates and inhibits pyruvate dehydrogenase resulting in decreased oxidative 

phosphorylation (OXOPHOS), mitochondrial membrane potential (∆ψm) and reactive oxygen 

species (ROS) production.  The age-associated increase in A deposition and concomitant 

decrease in aerobic glycolysis may render certain populations of neurons vulnerable to A 

toxicity in the elderly.  In cognitively normal individuals, gradual A deposition triggers 

increased expression of LDHA and PDK1 resulting in elevated aerobic glycolysis, lowered 

∆ψm and diminished ROS.  As a result of increased aerobic glycolysis nerve cells become 

resistant to A toxicity.   In individuals who develop Alzheimer’s disease the inability to 

either activate or maintain aerobic glycolysis renders nerve cells more susceptible to A-

mediated mitochondrial dysfunction and increased ROS production leading to synaptic loss 

and ultimately widespread nerve cell death. 
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This study examined AD post mortem tissue and observed a decrease in PDK1 expression in 

the frontal cortex.  Decreased PDK1 expression, may contribute to loss of aerobic glycolysis 

in brain areas with A deposition which, in turn, may trigger an increase in mitochondrial 

respiration, ROS production and nerve cell death.  A recent study showed that inhibition of 

respiratory complexes in a cell culture model leads to an increase in both ROS and A 

production, further potentiating toxicity (Leuner et al., 2012).  Similarly,  AD mice treated 

with a complex I  inhibitor also exhibit an increase in A levels (Leuner et al., 2012).  In both 

models, ROS-dependent accumulation of A was reduced by treatment with antioxidants.  

Therefore mitochondrial ROS production appears to be tightly associated with A production 

in vitro and in vivo (Leuner et al., 2012). The decreased ROS production afforded by the 

Warburg effect may not only be intrinsically neuroprotective but may actually attenuate A 

production in AD. In future studies it will be important to perform immunohistochemical 

analysis on brain tissues to determine the spatial relationship between PDK1 expression and 

A deposition. 

Although we propose that glucose is the main fuel source for A-resistant neurons, 

alternative substrates, such as lactate, may be also used to meet the energy demands of brain 

cells.  The astrocyte-neuron lactate shuttle theory postulates that glucose is predominately 

taken up by glia and metabolized glycolytically to lactate which is subsequently secreted and 

taken up by neurons (Aubert et al., 2005).  In neurons, lactate is converted to pyruvate which 

enters the TCA cycle and drives oxidative phosphorylation.  Preliminary studies have shown 

that addition of lactate to the culture media of either PC12 or B12 cells failed to alleviate A 

sensitivity (unpublished observations).  Furthermore, exogenous lactate failed to rescue the 

elevated sensitivity of A-resistant PC12 and B12 clonal nerve cell lines to glucose 

deprivation (unpublished data).  These findings suggest that exogenous lactate itself is 

unlikely to fuel the neuroprotective response associated with aerobic glycolysis. 

3.5 Conclusions 

PDK1 and LDHA appear to be central mediators of A-resistance by altering mitochondrial 

activity which results in a decrease in both ∆ψm and mitochondrial ROS production.  In 

addition, overexpression of either of these enzymes confers resistance to other stressors 
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including H2O2 and staurosporine.  Overexpression of these key Warburg effect enzymes 

decreases mitochondrial respiration while maintaining ATP production which appears to 

contribute to the protective role of these proteins.  Decreased expression of LDHA and PDK1 

in mouse primary cortical neurons may also contribute to their sensitivity to Aβ.  Likewise, 

decreased expression of both LDHA and PDK1 in 12 month old tg-AD (APP/PS1) mice 

suggests that loss of this neuroprotective mechanism may potentiate cognitive impairment.  

Loss of PDK1-mediated aerobic glycolysis in AD patients may hasten both memory loss and 

nerve cell death and could be used as a biomarker of disease progression.  Moreover, 

identification of compounds that mimic or augment PDK1 activity may have clinical 

relevance for the treatment of AD.  
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Chapter 4 

4 Novel drugs protect against A and glutamate toxicity in 
nerve cells and sustain the expression of Warburg effect 
enzymes 

4.1  Introduction 

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that results in 

progressive cognitive decline.  AD is the most common form of dementia, with an estimated 

500,000 Canadians currently suffering from the disease or related dementias (Honjo et al., 

2012).  With our aging population, the number of people living with AD is expected to more 

than double over the next 25 years making the treatment of AD a concern of global 

proportions (Honjo et al., 2012).  At the cellular level AD is characterized by the 

accumulation of extracellular deposits of amyloid beta (A) peptide, intracellular tangles 

composed of hyperphosphorylated tau protein and wide spread nerve cell loss (Selkoe, 2004). 

Despite over a century of research there is still no cure for the disease and treatment 

strategies remain limited.  Moreover, except in rare familial cases of AD, the exact cause of 

sporadic forms of the disease remains unknown posing additional difficulty when searching 

for viable treatment options.  To date, most drug development strategies in AD research have 

been based on a pathology-centered approach which focuses on the identification of a 

molecular target related to disease pathology and the development of a novel drug targeted at 

a single candidate molecule (Pangalos et al., 2007).  However, AD is not likely to be caused 

by a single molecular target and drug development strategies that focus on multiple targets in 

a favored pathway or single targets in multiple pathways are likely to show more efficacy 

(Pangalos et al., 2007).  Unfortunately, this drug development strategy has, to date, yielded 

few novel drugs for the treatment of AD (Pangalos et al., 2007).  Recently, a research group 

at the Salk Institute in California took an innovative approach to drug discovery which led to 

the development of new neurotrophic drugs that hold promise for the treatment of AD (Chen 

et al., 2011; Liu et al., 2008).      

Curcumin is a curcuminoid; a polyphenolic compound found in the ancient curry spice 

turmeric and has long been used in Indian traditional medicine to treat various ailments 
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(Chainani-Wu, 2003; Grynkiewicz and Slifirski, 2012). Interestingly, curcumin can protect 

PC12 cells, a rat pheochromocytoma derived cell line, against Ainduced toxicity and 

reduce oxidative stress and damage in these cells (Kim et al., 2001).  Curcumin has also been 

shown to inhibit Aaggregation into fibrils and destabilize existing fibrils in vitro,  likely 

contributing to its protective effects (Jiang et al., 2012). Additionally, curcumin inhibits key 

players involved in the activation of inflammation which is known to play a role in the 

pathogenesis of AD (Ammon et al., 1993; Pan et al., 2000; Xu et al., 1997).  Collectively, in 

vitro evidence suggests that curcumin may act as a neuroprotective compound as a result of 

its anti-oxidant, anti-inflammatory and anti-aggregate activity (Cole et al., 2007; Ringman et 

al., 2005).  More recent animal studies indicate that curcumin may have therapeutic potential 

for treating diverse neurodegenerative diseases including AD (Cole et al., 2007).  More 

specifically, curcumin has been shown to reduce oxidative damage, inflammation and plaque 

burden by up to 50% in an AD transgenic mouse model carrying the familial linked APP 

Swedish mutation (APPswe) (Lim et al., 2001; Yang et al., 2005).  Similar results were 

obtained when 22 month old Sprague-Dawley rats were fed curcumin while receiving central 

nervous system (CNS) infusions of A (Frautschy et al., 2001).  Moreover, dietary curcumin 

prevented Ainduced memory deficits in the same rodent model (Frautschy et al., 2001).  

Although curcumin has good therapeutic potential due to its safety, extensive history of use 

and inexpensive cost, it failed to protect nerve cells against neurotrophic factor withdraw 

which is closely associated with AD pathology (Elliott and Ginzburg, 2006; Liu et al., 2008; 

Wainer, 1989).  Additionally, the EC50, half maximal effective concentration,  at which 

curcumin is effective in cell culture assays is high (10-100 M) (Liu et al., 2008).  These 

shortcomings of curcumin prompted researchers to synthesize a hybrid molecule of 

curcumin, CNB-001, in an attempt to improve its effectiveness as a neuroprotective 

compound. CNB-001 was selected from a variety of curcumin derivatives for its ability to 

protect against loss of neurotrophic factor support, oxidative stress, glucose starvation and 

A toxicity (Liu et al., 2008). Moreover, CNB-001 enhanced long term potentiation and 

memory in rats (Maher et al., 2010).  However, the researchers sought to further improve the 

potency and stability of CNB-001 by developing a derivative called J147 (Chen et al., 2011).  

J147 is a potent (EC50 almost 100X lower than CNB-001), orally active compound that not 

only to prevented memory loss in AD transgenic mice, but also enhanced memory in 
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cognitively normal mice (Chen et al., 2011).  Furthermore, J147 was shown to reduce soluble 

A levels in the hippocampus (Chen et al., 2011).  At the cellular level, J147 appears to 

reduce the levels of pro-oxidant enzymes and heat shock proteins associated with stress and 

increase the expression of proteins involved in synaptic function (Chen et al, 2011).  

However, the exact molecular mechanisms by which J147 elicits neuroprotection is poorly 

defined (Chen et al., 2011).  Interestingly, mice fed J147 showed increased expression of 

brain derived neurotrophic factor (BDNF)(Chen et al., 2011), a member of the nerve growth 

factor family which plays a central role in the support and survival of neurons and 

maintenance of synaptic plasticity in the CNS, particularly in affected brain regions in AD 

patients (Huang and Reichardt, 2001).  BDNF plays an essential role in long term 

potentiation and memory (Bekinschtein et al., 2008; Figurov et al., 1996) and the progression 

of AD is associated with the progressive loss in BDNF (Laske et al., 2006).  Therefore, the 

ability of J147 to enhance memory in normal mice and prevent memory loss in AD mice 

may, in part, be due to the increased expression of BDNF and the subsequent activation of 

downstream signalling pathways (Chen et al., 2011).  In light of the fact that CNB-001 and 

J147 are derivatives of curcumin, they are likely to have pleiotrophic effects by binding to 

various molecular targets. Further investigation into these molecular targets is essential for 

understanding the mechanisms by which both CNB-001 and J147 are neuroprotective.   

Interestingly, we have recently shown that activation of aerobic glycolysis or the Warburg 

effect in nerve cells facilitates resistance to A toxicity (Newington et al., 2011).  Aerobic 

glycolysis results in increased lactate production in the presence of oxygen and is a common 

feature of cancer cells (Bonnet et al., 2007; Warburg, 1956).  Though aerobic glycolysis is a 

much less efficient means of producing ATP, it appears to offer a survival advantage for 

cancer cells, in addition to nerve cells exposed to a variety of neurotoxins including A 

(Fantin et al., 2006; McFate et al., 2008; Michelakis et al., 2010; Michelakis et al., 2008; 

Newington et al., 2011; Newington et al., 2012).  Aerobic glycolysis in Aresistant nerve 

cells is mediated by lactate dehydrogenase A (LDHA), the enzyme responsible for the 

conversion of pyruvate to lactate, and pyruvate dehydrogenase kinase 1 (PDK1), an enzyme 

which phosphorylates and inhibits pyruvate dehydrogenase (PDH) thereby actively 

repressing mitochondrial metabolism (Newington et al., 2011).  PDH converts pyruvate to 

acetyl-CoA, a metabolite which drives the citric acid cycle thereby increasing the production 
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of the electron donors NADH and FADH2.   NADH and FADH2 subsequently donate their 

electrons to the electron transport chain (ETC).  Thus inhibiting the production of acetyl CoA 

at the level of PDH reduces the overall rate of respiration and production of reactive oxygen 

species (ROS), a toxic species which is closely associated with A induced cell death.  

Interestingly, the overexpression of either LDHA or PDK1 in sensitive cells confers 

resistance to A and other neurotoxins and is accompanied by decreased mitochondrial ROS 

(Newington et al., 2012).  Moreover loss of PDK1 is observed in the brains of AD transgenic 

(APPswe/PS1dE9) mice and post mortem brain tissue from human patients with AD 

(Newington et al., 2012).  Drugs which augment aerobic glycolysis through upregulation of 

PDK1 and LDHA may protect against nerve cell loss and associated cognitive decline in 

patients with AD.  However, there currently are no known drugs which effectively regulate 

the expression of these enzymes.  Thus we sought to investigate whether CNB-001 or J147 

could increase the expression of these enzymes which could contribute to their 

neuroprotective effects.  In this study we show that CNB-001 or J147 protect HT22 cells and 

primary nerve cells against glutamate toxicity and A induced cell death respectively.   

Treatment with either of these drugs was associated with maintenance of LDHA and PDK1 

expression following exposure to neurotoxins.  Moreover, PDK1 expression, which 

decreases in 12 month old AD transgenic mice, is rescued when mice were fed CNB-001.  

These results indicate a possible role for LDHA and PDK1 in the protective effects elicited 

by CNB-001 and J147.   

4.2 Methods 

4.2.1 Materials  

Cell culture reagents including: Dulbecco’s modified Eagles medium (DMEM), 

penicillin/streptomycin (P/S), DMEM without phenol red and Dulbecco’s phosphate buffered 

saline (DPBS) were purchased from Biowhittaker (Walkersville, MD, USA) (Carlsbad, CA, 

USA). Dialyzed fetal bovine serum (FBS) was obtained from PAA Laboratories Inc. 

(Etobicoke, ON, Canada). TrypLE Express, Neurobasal Medium, N2 Supplement, B27 

Supplement, Glutamax-1 (100X) and Hanks Balanced Salts Solution were obtained from 

Invitrogen (Carlsbad, CA, USA).  Protease inhibitor cocktail (100X) was purchased from 

Cell Signaling (Danvers, MA, USA). Amyloid beta (A) peptide (25-35) was purchased 
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from California peptide research (San Francisco, CA, USA).  Poly-L-Ornithine, L-glutamic 

acid, Propidium Iodide (PI), dihydrochloride, dimethyl formamide, dimethyl sulfoxide 

(DMSO), 3-(4,5-dimethlythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were all 

purchased from Sigma (St. Louis, MO, USA).  DNase 1 and Trypsin Inhibitor were 

purchased from Roche (Laval, Quebec, Canada). Cell Trace
TM

 Calcein Green, AM 

(Molecular probes) was purchased from Invitrogen (Carlsbad, CA, USA). 

4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-

phenol) (CNB-001) and 1-(2,4-dimethylphenyl)-2-(3-methoxybenzylidene) hydrazine 

chloride (J147) were provided by Dr. David Schubert (The Salk Institute, La Jolla, CA) and 

synthesized as described (Chen et al., 2011).  For cell culture experiments CNB-001 and 

J147 were dissolved in DMSO at appropriate stock concentrations and stored at -80
o
C. Stock 

solutions were diluted with water to reach working concentrations.  A was prepared at a 

concentration of 1 mM in sterile deionized water and left to rock overnight at room 

temperature to promote fibril formation.  The following day, A was aliquoted and stored at -

20
o
C.   

4.2.2 Cell Culture 

HT22 cells are an immortalized mouse hippocampal cholinergic line subcloned from the HT4 

line which has been selected for its sensitivity to glutamate toxicity (Morimoto and 

Koshland, 1990).  HT22 cells were obtained from Dr. David Schubert (The Salk Institute, La 

Jolla, CA)
 
and cultured in DMEM supplemented with 10% FBS and 1% P/S as previously 

described (Chen et al., 2011; Dargusch and Schubert, 2002).  Primary cortical neurons were 

prepared from day 17 mouse embryos as previously described (Ribeiro et al., 2005).  Primary 

cultures were maintained in Neurobasal Media supplemented with 2 mM glutamine, 50 

units/mL P/S and N2/B27 supplements and incubated for 48 hr (Newington et al., 2012; 

Ribeiro et al., 2005).  All cells were grown in a humidified incubator at 37
o
C and 5% CO2.   

For cell viability experiments HT22 cells were seeded at 2x10
3
 cells per well in 96 well 

dishes and incubated for 24 hr.  The following day CNB-001 was added at a final 

concentration of 0.5 M or 1 M to the appropriate test wells and cells were incubated at 

37
o
C.  J147 was added a concentration of 50 nM or 100 nM to the appropriate test wells and 

cells were incubated at 37
o
C.  Two hours following the administration of either drug, 2 mM 
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glutamate was added to the appropriate test wells and cells were incubated overnight.  The 

following day, a MTT assay was performed as previously described (Newington et al., 2012).    

The absorption values at 595 nm were measured on a microplate reader (BioRad Model 

3550).  The results are presented as the percentage of the control untreated cells.   

4.2.3 Immunoblot analysis  

HT22 and mouse primary cortical cells from treated and untreated subconfluent cultures were 

washed twice in cold DPBS and harvested in an SDS extraction buffer (50 mM Tris pH 7.5, 

2% SDS, 1 mM PMSF and 1X protease inhibitor cocktail). Protein extracts were quantified 

by a Lowry assay and equal [protein] were loaded and resolved by 12% SDS PAGE and 

electroblotted onto PVDF membrane (Bio-Rad Richmond, CA, USA).  Membranes were 

probed with the following antibodies: polyclonal anti-LDHA (1:1000; Cell Signaling, 

Danvers, MA, USA), polyclonal anti-PDK1 (1:1000; Stressgen, San Diego, CA, USA) and a 

monoclonal anti- actin (1:2000; Cell Signaling, Danvers, MA, USA) followed by incubation 

with an appropriate horseradish peroxidase (HRP) -conjugated secondary antibody (Bio-Rad, 

Richmond, CA, USA).  The blots were developed using Pierce ECL western blotting 

substrate (Thermo Scientific, Rockford, IL, USA) and visualized with a Bio-Rad Molecular 

Imager (ChemiDoc XRS, Bio-Rad, Richmond, CA, USA). Densitometric analysis was 

performed using Image J software.  Band densities were standardized against -actin, and the 

ratio of LDHA or PDK1-specific bands relative to the -actin band was determined.   

4.2.4 Fluorescence Microscopy 

Cell viability in primary nerve cell cultures was determined by staining with propidium 

iodide (PI) and calcein green.  Primary cells were seeded at 1.6x10
6 

cells per 35 mm dish and 

incubated for 48 hr at 37
o
C.  Following an initial incubation period the media was changed 

and either CNB-001 (0.5 M or 1 M) or J147 (10 nM, 50 nM or 100 nM) was added to the 

appropriate test dishes.  Following a 2 hr incubation cells were treated with A (10 M) 

and were put back in the incubator for 48 hr.  At this time the media was aspirated and 

replaced with DPBS containing PI (0.1 g/ml) and calcein green (1 M) and incubated for 30 

min at 37
o
C.  Following incubation, cells were washed with 1X DPBS and placed back in 

fresh DPBS.  Cells were visualized by fluorescence microscopy (Zeiss-AxioObserver, 40X 
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objective) and pictures were taken using a Q Imaging (Retiga 1300 monochrome 10-bit) 

camera and Q Capture software.  Pictures were taken of three random fields of view.   

4.2.5 AD mouse tissue 

The APP/PS1 transgenic mouse line both expresses chimeric mouse/human APP 

(Mo/HuAPP695swe) and mutant human presenilin 1 (PS1-dE9) in the CNS.  Both or these 

mutations are associated with the familial forms of the disease.  At three months of age male 

transgenic mice and their non-transgenic littermates were fed a high fat diet with or without 

CNB-001 (500 ppm). Food consumption and body weights were monitored weekly, to ensure 

there were no differences between groups.  The mice were sacrificed at 12 months of age.  

Cortical tissue from these mice fed CNB-001 was generously provided by Dr. David 

Schubert (The Salk Institute, La Jolla, CA).  Brain tissue was extracted and frozen as 

previously described (Cumming et al., 2007; Soucek et al., 2003).  Cortical tissue was 

processed for western blot analysis as previously described (Newington et al., 2012).  Protein 

extracts were analyzed by immunoblot analysis as described above.   

4.2.6 Statistical Analysis 

Data are presented as means ± SD resulting from a least three independent experiments.  

Data were analyzed statistically using a one-way ANOVA followed by a Tukey test or by a 

T-test (VassarStats). Results were considered statistically significant at P<0.05.  

4.3 Results  

4.3.1 CNB-001 and J147 protect cells exposed to glutamate and 
preserves PDK1 and LDHA expression  

CNB-001 protects against glutamate induced excitotoxicity in mouse primary cortical 

neurons (Liu et al., 2008).  Similarly, J147 protects rat cortical neurons (E18 cells) from 

glutamate toxicity (Chen et al., 2011).  We sought to determine if CNB-001 or J147 could 

also protect a hippocampal nerve cell line, HT22, from glutamate induced toxicity.  

Treatment of HT22 cells with glutamate (2 mM) for 24 hr resulted in a 55% reduction in cell 

viability (Figure 4.1, P<0.01).  Interestingly, incubation of HT22 cells with J147 or CNB-001 

prior to glutamate exposure resulted in a significant increase in cell viability (Figure 4.1, 

P<0.01).  Immunoblot analysis of HT22 cells treated with 2 mM glutamate for 24 hr revealed 



140 

 

a significant loss of both PDK1 and LDHA expression (Figure 4.2, P<0.01).  Densitometric 

analysis revealed a 36% reduction in PDK1 expression and a 58% reduction in LDHA 

expression.  Expression of these enzymes was maintained by pre-treatment with either J147 

or CNB-001 at varying concentrations.  More specifically, treatment of HT22 cells with 100 

nM J147 or 1 M CNB-001 prior to glutamate exposure significantly increased the 

expression of both PDK1 and LDHA to levels similar or higher than the control (P<0.01). 

Therefore J147 and CNB-001 appear to be protective against glutamate toxicity in HT22 

cells.  Moreover, treatment with either of these drugs preserves PDK1 and LDHA expression 

following glutamate exposure, which may contribute, in part, to their protective effects. 
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Figure 4.1 CNB-001 and J147 protect HT22 cells from glutamate toxicity. Cell viability 

of HT22 cells was significantly decreased following 24 hr exposure to 2 mM glutamate 

(*P<0.01). Cell viability significantly increased compared to glutamate treatment alone when 

cells were pretreated for 2 hr with CNB-001 (001) at 0.5 M or 1 M prior to glutamate 

treatment (*P<0.01).  Similarly pre-treatment with J147 (50 nM or 100 nM) prior to 

glutamate exposure significantly increased cell viability when compared to glutamate 

treatment alone (*P<0.01).  There was a significant increase in cell viability with increased 

concentrations of CNB-001 or J147 (*P<0.01).  Cell viability was measured by MTT assay. 

Data represent the mean ± SD of three independent experiments. Data were analyzed by a 

one-way ANOVA followed by a Tukey test. 
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Figure 4.2 CNB-001 and J147 maintain PDK1 and LDHA expression in HT22 cells 

exposed to glutamate.  (A) Western blot analysis of HT22 cells treated with glutamate (2 

mM) for 24 hr revealed a significant decrease in the expression of both PDK1 and LDHA 

(*P<0.01). In contrast, pre-treatment for 2 hr with J147 (50 nM or 100 nM) prior to 

glutamate exposure (2 mM) significantly increased the expression of PDK1 (**P<0.05) and 

LDHA (50 nM, **P<0.05; 100 nM, *P<0.01) when compared to cells treated with glutamate 

alone.  Similarly, cells exposed to CNB-001 (001; 0.5 M or 1 M) prior to treatment with 

glutamate exhibited significantly higher levels of PDK1 and LDHA (*P<0.01) compared to 

glutamate treatment alone. Densitometric analysis of PDK1 and LDHA band intensities 

relative to actin are found below (B and C respectively). Relative intensity was calculated by 

comparing the LDHA/actin or PDK1/actin ratio of the treated cells to the same ratio of the 

control cell line (24 hr). Data represent the mean ± SD of three independent experiments. 

Data were analyzed by a one-way ANOVA followed by a Tukey test. 
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4.3.2 CNB-001 or J147 protects against A toxicity and maintains 
PDK1 and LDHA expression in primary nerve cells 

Treatment of primary rat hippocampal neurons with either CNB-001 or J147 prevents A 

toxicity (Chen et al., 2011; Liu et al., 2008).  We examined whether CNB-001 or J147 could 

elicit similar protective effects in mouse primary cortical neurons.  Cell viability was 

examined using the fluorescent dyes Calcein Green and PI, and visualized by fluorescent 

microscopy.  Cells treated with A25-35 (10 M) for 48 hr showed a significant increase in PI 

positive cells, indicative of non viable or dead cells (Figure 4.3 A and B, P<0.01).  When 

cells were incubated with either CNB-001 (1 M) or J147 (50 nM) prior to treatment with 

A, there were significantly less dead cells (PI positive cells) and more live cells (Calcein 

Green, positive) suggesting that both compounds are protective in mouse primary cortical 

nerve cells (Figure 4.4 A and B, P<0.01).  Immunoblot analysis of primary cortical neurons 

treated with A25-35 (10 M) for 48 hr revealed a significant decrease in PDK1 and LDHA 

when compared to untreated cells (Figure 4.4, P<0.05). Interestingly, exposure to CNB-001 

prior to treatment with A prevented decreases in PDK1 and LDHA expression.  Treatment 

with J147 prior to exposure to A also maintained expression of PDK1 and LDHA at levels 

similar to control cells (Figure 4.5).  Densitometric analysis revealed that PDK1 expression 

was maintained at a significantly higher level following pre-treatment with 100nM J147 and 

that LDHA expression  was maintained to a significantly higher degree following pre-

treatment with 50 nM J147 prior to A exposure (P<0.01 and P<0.05 respectively).  Thus, 

exposure to CNB-001 or J147 maintains expression of PDK1 and LDHA following treatment 

with A; events which may contribute to the neuroprotective properties of these drugs.    
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Figure 4.3 CNB-001 and J147 protect primary cortical neurons from A toxicity. (A) 

Cell viability was measured in mouse primary cortical neurons by staining cells with Calcein 

green which labels viable cells and propidium iodide (PI) which labels dead cells.   Cell 

viability was reduced when cells are incubated with A25-35 (10 M) for 48 hr.  An increase 

in cell survival was observed when cells were treated with CNB-001 (001; 1M) or J147 (50 

nM) for 2 hr prior to treatment with A. (B) There was a significant increase in PI positive 

cells treated with A25-35 (10 M) for 48 hr when compared to control cells (*P<0.01).  In 

contrast there was a significant decrease in PI positive cells when cells were pre-treated with 

001 or J147 prior to exposure to A, when compared to cells treated with 

AaloneP<0.01).  Pictures were taken from 3 random fields of view for each treatment.  

Data represent the mean ± SD of three independent experiments. Data were analyzed by a 

one-way ANOVA followed by a Tukey test. 
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Figure 4.4 CNB-001 increases PDK1 and LDHA in primary cortical neurons treated 

with A (A) Immunoblot analysis of primary cortical neurons revealed a significant 

decrease in both PDK1 and LDHA when cells were treated with A25-35 (10 M) for 48 hr 

when compared to control cells (*P<0.01).  (B) Densitometric analysis revealed incubating 

cells with CNB-001 (001; 0.5 M or 1 M) for 2 hr prior to treatment with A significantly 

increased the expression of PDK1 at 48 hr compared to cells treated with A alone 

(*P<0.01).  (C) A significant increase in the expression of LDHA is also observed when cells 

are pre-treated with 001 compared to cells treated only with A (**P<0.05). Relative 

intensity was calculated by comparing the LDHA/actin or PDK1/actin ratio of treated cells to 

the same ratio of the control cell line (48 hr).  Data represent the mean ± SD of three 

independent experiments. Data were analyzed by a one-way ANOVA followed by a Tukey 

test. 
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Figure 4.5 J147 maintains the expression of PDK1 and LDHA in primary cortical 

neurons exposed to AWestern blot analysis of primary cortical neurons treated with 

A for 48 hrs exhibited a significant decrease in the expression of PDK1 and 

LDHA compared to untreated cells (*P<0.01).  PDK1 and LDHA expression increased when 

cells were treated with different concentrations of J147 for 2 hr prior to exposure to A.  (B) 

Densitometric analysis revealed a significant increase in PDK1 was observed when cells 

were pre-treated with 100 nM J147 prior to exposure to Awhen compared to cells treated 

with A (**P<0.05).  (C)  A significant increase in LDHA was observed when cells were 

treated with 50 nM J147 prior to A treatment compared to cells treated with A alone 

(**P<0.05). Relative intensity was calculated by comparing the LDHA/actin or PDK1/actin 

ratio of the treated cells to the same ratio of the control cell line (48 hr). Data represent the 

mean ± SD of three independent experiments.  Data were analyzed by a one-way ANOVA 

followed by a Tukey test. 
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4.3.3 CNB-001 maintains PDK1 expression in APP/PS1 transgenic 
mice  

CNB-001 enhances both long term potentiation and memory in rats (Maher et al., 2010). In 

addition, this compound protects against A toxicity in primary hippocampal nerve cells (Liu 

et al., 2008).  Interestingly we have previously shown that 12 month old AD transgenic 

(APPswe/PS1dE9) mice exhibit a loss of PDK1 and LDHA expression when compared to 

control mice (Newington et al., 2012).  Therefore, we wondered whether AD transgenic mice 

fed CNB-001 would show altered expression of PDK1 or LDHA.  Interestingly, 12 month 

old mice fed CNB-001, starting at 3 months of age, displayed a significant increase in PDK1 

when compared to AD untreated mice  (Figure 4.6, P<0.001).  More specifically we observed 

a 1.7 fold increase in PDK1 expression.  We did not however observe any significant change 

in LDHA expression when mice were fed CNB-001 (data not shown).  These results suggest 

that the ability of CNB-001 to sustain PDK1 expression in AD transgenic mice may play a 

role in the memory enhancing properties of this compound.  
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Figure 4.6 CNB-001 preserves PDK1 expression in APP/PS1 transgenic mice. 

Immunoblot analysis of cortical tissue from 12 month old AD transgenic (APP/PS1) mice fed 

a high fat diet with or without CNB-001 (001; 500 ppm) revealed a significant increase in 

PDK1 expression in mice fed 001 compared to control mice (*P<0.001). Relative intensity 

was calculated by comparing the PDK1/actin ratio of the AD mice fed CNB-001 to the same 

ratio of the control (APP/PS1).  Data were analyzed by a one-tailed T-Test.   
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4.4 Discussion 

 Uncovering new drugs for the effective treatment or prevention of AD is crucial to reducing 

the financial, physical and emotional burden of this devastating disease.  In previous studies 

it was shown that curcumin elicited neuroprotective effects and showed therapeutic potential 

for the treatment of AD in transgenic mice models of the disease (Lim et al., 2001; Yang et 

al., 2005).  The engineered curcumin derivatives CNB-001 and J147 displayed enhanced 

neuroprotective properties against common stressors associated with AD and promoted 

improved memory in wild type mice (Chen et al., 2011; Liu et al., 2008; Maher et al., 2010).  

Moreover, J147 prevented synaptic loss and cognitive decline in AD transgenic mice (Chen 

et al., 2011).  Despite evidence indicating reductions in pro-oxidant enzymes and a reduction 

in soluble A the mechanism by which CNB-001 or J147 protects nerve cells against AD 

pathology including A toxicity remains unclear (Chen et al., 2011).  Importantly, these 

compounds, similar to curcumin, exhibit a range of biological activities suggesting that they 

have affinity for multiple molecular targets (Chen et al., 2011; Liu et al., 2008).  

Interestingly, the data presented here suggests that PDK1 and possibly LDHA could 

potentially be targets, either direct or indirect, for these drugs.  The maintained expression or 

activity of these proteins when faced with stressors associated with AD may contribute to the 

protective effects afforded by these compounds.    

4.4.1 Glutamate toxicity and aerobic glycolysis 

Glutamate is the principle excitatory neurotransmitter in the CNS and plays an important role 

in learning and memory (Collingridge and Lester, 1989).  Overstimulation of glutamate 

receptors or exicitoxicity as a result of excessive glutamate release can cause nerve cell death 

and plays an important role in neurodegeneration and AD (Hynd et al., 2004; Sattler and 

Tymianski, 2001).  Additionally, extracellular glutamate can induce a unique oxidative 

stress-induced programmed cell death termed oxytosis (Tan et al., 2001). Excess glutamate 

can affect the oxidative potential of the cell through a cystine/glutamate antiporter system 

(Bannai and Kitamura, 1980; Murphy et al., 1989; Sato et al., 1999).  Cystine uptake, which 

plays an essential role in the production of the antioxidant glutathione (GSH), is inhibited by 

excess extracellular glutamate resulting in GSH depletion, oxidative stress and cell death 

(Murphy et al., 1989).   Oxidative glutamate toxicity or oxytosis appears to also play an 
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important role in nerve cell death and neurodegenerative disorders including AD (Tan et al., 

2001). Oxytosis has been modeled and studied in hippocampal HT22 nerve cells which lack 

glutamate receptors but die within 48 hours following exposure to glutamate (Dargusch and 

Schubert, 2002; Tan et al., 2001).  Similar to HT22 cells, many neurons in the brain lack 

glutamate receptors and are susceptible to oxytosis induced by excess glutamate associated 

with ischemia, trauma and neurodegeneration (Maher, 2006).  Thus glutamate toxicity in 

HT22 cells is a valuable model for testing protective molecules for the treatment of AD.  

Here it is shown that glutamate exposure results in decreased levels of the Warburg effect 

enzymes PDK1 and LDHA in HT22 cells.  

Both PDK1 and LDHA expression have shown to be protective against a variety of 

neurotoxins that induce oxidative stress and cell death (Newington et al., 2012).  Moreover, 

overexpression of either PDK1 or LDHA reduces mitochondrial ROS production, thus loss 

of these proteins in HT22 cells following glutamate exposure could further exacerbate 

oxidative stress induced by this molecule (Newington et al., 2012). Interestingly, both CNB-

001 and J147 protect against glutamate toxicity which is associated with maintenance of 

PDK1 and LDHA levels.  Although it could be argued that CNB-001 and J147 mediated 

effects on PDK1 and LDHA expression in glutamate treated cells are merely a reflection of 

increased survival, this is unlikely because even cells treated with glutamate alone were 

harvested under conditions in which at least 90% of the remaining adherent cells, following 

washes, were alive (data not shown).  Both PDK1 and LDHA have been previously shown to 

play an important role in protection against A toxicity (Newington et al., 2011).  Moreover, 

A resistant cells and glutamate resistant HT22 cells display similar cross resistance to a 

variety of other neurotoxins suggesting similar resistance mechanisms are elicited by these 

cells (Dargusch and Schubert, 2002).  Therefore it is plausible that, similar to Aresistant 

nerve cells, PDK1 and LDHA may contribute to protection against glutamate toxicity in 

HT22 cells. Furthermore, maintenance of these proteins through treatment with CNB-001 or 

J147 could potentially contribute to the survivability of nerve cells lacking ionotropic 

glutamate receptors in the AD brain.   
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4.4.2 Protective role for maintenance of a Warburg effect in nerve 

cells exposed to A

We have previously shown a time dependent loss of both PDK1 and LDHA expression when 

primary cortical neurons are exposed to A (Newington et al., 2012).  Furthermore, 

expression of these enzymes is decreased in the cortex of 12 month old AD transgenic 

(APPswe/PS1dE9) mice a time at which cognitive impairments are present (Newington et al., 

2012).  Moreover, there is a significant decrease in the levels of PDK1 in post mortem tissue 

taken from the frontal cortex of individuals diagnosed with AD (Newington et al., 2012).  

Both PDK1 and LDHA expression divert energy metabolism away from mitochondria which 

are known to be dysfunctional in AD (Lezi and Swerdlow, 2012).  Importantly, cells which 

have been depleted of endogenous mtDNA, and which lack ETC activity, are insensitive to 

the toxic effects of A stressing the importance of functional mitochondria in A induced 

cell death (Cardoso et al., 2001).  A has been shown to physically associate with 

mitochondria in AD transgenic mice, suggesting that the peptide causes impaired 

mitochondrial metabolism by promoting the increased offloading of electrons from the ETC 

thereby increasing H2O2 levels in the cell (Manczak et al., 2006).  Blocking the ability of 

Ato associate with mitochondria inhibits A-induced nerve cell death and associated ROS 

production (Lustbader et al., 2004).   Interesting, preliminary studies in our lab have found 

that A-resistant PC12 cells exhibit dramatically decreased intracellular accumulation of A 

(T. Rappon, personal communication).  The role of elevated Warburg effect enzymes in 

promoting increased clearance of intracellular A, including mitochondrial localized A, 

awaits further investigation. 

Deficiencies in essential enzymes involved in mitochondrial respiration have been reported 

in the brains of patients with AD (Brooks et al., 2007; Gibson et al., 1998; Kish, 1997; Liang 

et al., 2008).   Thus redirecting energy metabolism away from the mitochondria through 

increased PDK1 and/or LDHA activity not only reduces toxic ROS production but would 

allow for adenosine triphosphate (ATP) production in cells with dysfunctional mitochondria.  

The expression of these enzymes when cells are exposed to A would likely direct the 

conversion of pyruvate to lactate and reduce metabolic flux in the mitochondria.  A 

subsequent reduction in mitochondrial ETC activity would reduce the production of 

superoxide, a natural byproduct of ETC activity due to the early offloading of electrons onto 
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molecular oxygen.   Moreover, when mitochondria become dysfunctional they cannot 

produce enough ATP required by a cell for survival, thus diverting energy production to 

aerobic glycolysis through the activities of PDK1 and LDHA would allow for maintenance 

of energy supply despite the loss of mitochondrial metabolism.  Decreased levels of PDK1 

are observed in 12 month old AD transgenic mice.  Interestingly, PDK1 expression is 

preserved in the cortex of AD transgenic mice fed CNB-001.  Unfortunately, we did not have 

control mice (non transgenic) or control mice fed 001 to make a full analysis of the effects of 

CNB-001 on PDK1 expression.   There was no observable difference in LDHA expression, 

however LDHA expression is often not reflective of LDHA activity thus future studies may 

look to examine LDHA activity in these brain samples (Newington et al., 2012).  However, 

loss of PDK1 and not LDHA expression is observed in the human AD post-mortem brain 

thus preservation of PDK1 may be more important to confer protection against nerve cell 

death associated with AD.             

4.4.3 Activation of PDK1 or LDHA by CNB-001 and J147 

Though it appears that both CNB-001 and J147 have the ability to sustain the expression of 

the protective enzymes LDHA and PDK1, it remains unclear whether these drugs actually 

play a direct role in maintaining their expression.  Given that both CNB-001 and J147 are 

derivatives of curcumin, we hypothesize that these compounds are likely to act in a similar 

manner and share common molecular targets.  Curcumin has been shown to modulate a 

number of molecular targets including growth factors and their receptors, transcription 

factors, cytokines, enzymes and genes (Pari et al., 2008).  In examining the current identified 

targets of curcumin there does not appear to be a clear link to transcriptional or post 

transcriptional regulation of these enzymes.  In fact curcumin appears to negatively regulate 

transcription factors known to play a role in the transcription of these enzymes (Pari et al., 

2008).  For example hypoxia inducible factor 1 (HIF-1) is a well known transcriptional 

regulator of both PDK1 and LDHA that is activated in low oxygen conditions to mediate the 

switch from oxidative metabolism to lactate production (Kim et al., 2006; Semenza et al., 

1996). Treatment of breast cancer cells with curcumin inhibited HIF-1 gene expression 

resulting in decreased HIF-1 activity (Bae et al., 2006; Choi et al., 2006; Thomas et al., 

2008).  Moreover, treatment of HT22 cells with CNB-001 or J147 failed to induce the 

expression of transfected luciferase reporter driven by the HIF-1 promoter with or without 
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glutamate treatment (data not shown).  In addition to regulating enzymes involved in glucose 

metabolism, HIF-1 activates enzymes that play a critical role in cancer biology including 

enzymes involved in invasion, cell survival, angiogenesis and drug resistance (Semenza, 

2003).   Thus with more than 60 identified transcriptional targets of HIF-1, it does not appear 

to be an appealing candidate to target increased expression of PDK1 and LDHA for the 

treatment of AD (Semenza, 2003).  Moreover, HIF-1 has been shown to activate enzymes 

responsible for increased production of A(Wang et al., 2006; Zhang et al., 2007).  

Therefore, a mechanism in which PDK1 and LDHA are activated independent of HIF-1 

could offer significant therapeutic potential. 

 Importantly, these results suggest that maintenance of PDK1 and LDHA expression in HT22 

cells and primary cortical neurons treated with CNB-001 and J147 likely occurs independent 

of HIF-1.  This however this does not exclude the possibility that these drugs could play a 

role in their transcriptional regulation. Interestingly, some preliminary evidence in our lab 

suggests that CNB-001 and J147 promote increased transcription of PDK1 (R. Harris, 

personal communication) but further investigation is necessary to confirm these findings.  

Alternatively, it is possible that CNB-001 and J147 maintain LDHA and PDK1 levels 

through post translational mechanisms which may be important to examine in future studies.  

Though we could not find a clear mechanism for maintenance of these proteins by examining 

the known molecular targets of curcumin it is important to note that these newly derived 

drugs are derivatives of curcumin which may possess novel molecular targets that have not 

yet been identified such as LDHA and PDK1.  Determining the molecular targets of both 

CNB-001 and J147 could offer further insight into how these drugs sustain PDK1 and LDHA 

expression when cells are exposed to stressors associated with AD.  Moreover testing these 

drugs in cells with decreased PDK1 and LDHA expression could help in determining if these 

proteins are necessary for the protection afforded by these compounds.   Unfortunately, 

attempts to use shRNA mediated knockdown of either LDHA or PDK1 transcripts in primary 

neurons where not successful due to the limited transfection/nucleofection properties of this 

cell type.  Future experiments using adenoviral or lentiviral technologies to silence LDHA or 

PDK1 expression will help resolve the importance of these enzymes in mediating CNB-001 

and J147 neuroprotective effects. 
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4.5 Conclusions 

We are in need of developing new compounds for the treatment of AD, which effectively 

reduce nerve cell loss and cognitive decline associated with the disease.  CNB-001 and J147 

are promising candidates with the potential of slowing disease progression and providing 

immediate cognitive benefits to patients (Chen et al., 2011).  Their ability to maintain the 

expression of the protective enzymes PDK1 and LDHA in both HT22 cells and primary 

cortical neurons suggests that these compounds might promote increased neuron survival in 

vivo when exposed to diverse neurotoxins associated with AD.  Moreover, maintenance of 

PDK1 in AD transgenic mice fed CNB-001 may contribute to decreases in the production 

ROS, memory deficits and eventual nerve cell death.  It remains unclear how these protective 

compounds sustain the expression of these enzymes, but it likely occurs independent of HIF-

1.  Activation of these enzymes independent of HIF-1 may have clinical relevance in the 

treatment of AD.  Future research into determining the molecular targets of these drugs may 

reveal novel candidates for the treatment of AD and lead to a further understanding of how 

they elicit their protective effects.  Moreover, further investigation of compounds, in addition 

to CNB-001 and J147, which activate PDK1 and LDHA expression may offer a 

neuroprotective strategy for the treatment of AD and other neurodegenerative disorders. 
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Chapter 5 

5  General Discussion and Conclusions  

5.1 Summary 

5.1.1 Summary of Findings 

Understanding the mechanisms by which nerve cells become resistant to the toxic effects of 

A could reveal novel targets for the treatment and/or prevention of AD.  By examining 

nerve cells selected for resistance against A toxicity I have shown that these cells exhibit a 

shift in metabolism to favor increased lactate production reminiscent of the Warburg effect in 

cancer cells.  Interestingly, A-resistant nerve cells express increased levels of PDK1 

accompanied by increased LDHA activity and lactate production when compared to control 

cells. As a result of these metabolic changes, the production of mitochondrial derived ROS, 

which is closely associated with A toxicity, is markedly diminished in resistant relative to 

sensitive cells.  Inhibiting LDHA or PDK1 expression or activity re-sensitizes resistant cells 

to A induced cell death, suggesting that these enzymes play a central role in conferring 

resistance to A.  Importantly, PDK1 and LDHA overexpressing cells exhibit decreased ROS 

production and oxygen consumption but maintain ATP pools under both normal culture 

conditions and following Aβ treatment.  These findings indicate that activation of aerobic 

glycolysis in nerve cells confers resistance to Aβ, while maintaining sufficient energy 

reserves for cell survival.  Similar to cancer cells, the stabilization of HIF-1α likely accounts 

for the observed metabolic changes in A resistant cells (Soucek et al., 2003).  Intriguingly, 

decreased expression of both LDHA and PDK1 was observed in cortical extracts of 12 month 

old AD transgenic (APPswe/PSEN1dE9) mice.  A loss of PDK1 expression was also 

observed in post-mortem cortical tissue from AD patients. Collectively, these findings 

indicate that PDK1- or LDHA-mediated aerobic glycolysis protects against A-toxicity while 

maintaining cellular ATP levels (Figure 5.1).  Loss of these proteins may contribute to the 

cognitive decline and nerve cell death observed in AD.  Moreover, overexpression of either 

PDK1 or LDHA in a rat CNS cell line confers resistance to not only Aβ but a variety of other 

neurotoxins.  These findings suggest that expression of these enzymes may be linked to a 



167 

 

broad acting neurotoxin resistance mechanism and may have relevance to other 

neurodegenerative diseases. 

Currently there is no cure for AD and treatment remains limited to reducing the symptoms 

associated with the disease, rather than slowing disease progression.  Here I have identified a 

novel resistance mechanism in nerve cells which confers resistance to A toxicity in vitro.  

Identifying molecules or drugs that activate this pathway in nerve cells may have important 

therapeutic potential.  I tested the effects of two newly derived neurotrophic drugs (CNB-001 

and J147) on expression levels of rate limiting Warburg effect enzymes in nerve cells 

exposed to glutamate and A; two stressors closely associated with AD.  Interestingly, 

treatment with either CNB-001 or J147 maintained the expression of the protective enzymes 

LDHA and PDK1 when nerve cells were exposed to either glutamate or A.  Moreover, 

transgenic AD mice fed CNB-001 from 3 to 12 months of age exhibited increased PDK1 

expression when compared to control fed mice.  These results suggest that one mechanism by 

which these drugs exhibit a neuroprotective effect may occur via the upregulation or 

maintenance of Warburg effect enzymes. Activation of aerobic glycolysis in mice fed J147 

may not only elicit neuroprotective effects, but may also contribute to the immediate 

cognitive benefits including improvements in learning and memory (Chen et al., 2011).       
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Figure 5.1 Aerobic glycolysis in Aβ resistant cells.  The stabilization of hypoxia inducible 

factor 1 α (HIF1α) in amyloid beta (Aβ) resistant cells stimulates increased expression of 

glucose transporters and glycolytic enzymes thereby increasing the conversion of glucose to 

pyruvate.  Additionally, HIF-1 induces the transcription of lactate dehydrogenase A (LDHA), 

resulting in an increase in the conversion of pyruvate to lactate.  Futhermore HIF-1 

suppresses mitochondrial respiration by upregulating pyruvate dehydrogenase kinase 1 

(PDK1).  PDK1 phosphorylates and inhibits pyruvate dehydrogenase (PDH) resulting in 

decreased flux through the tricarboxcylic acid (TCA) cycle and repressed oxidative 

phosphorylation (OXOHOS).  Decreased OXOPHOS attenuates mitochondrial ROS 

production rendering cells more resistant to apoptosis in the presence of Aβ.  In cells failing 

to undergo aerobic glycolysis, increased mitochondrial respiration potentiates Aβ mediated 

ROS production to toxic levels resulting in cell death.   
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5.1.2 Limitations of study 

A major limitation to this study was the heavy reliance on modeling in immortalized cell 

lines.  Though these cell lines behave similar to nerve cells, they have undergone 

transformation which allows them to proliferate indefinitely through the acquisition of 

spontaneous or induced mutations which can drastically alter the biology of the cell.  

Importantly, mature adult nerve cells in vivo do not proliferate following differentiation.  

Future studies should focus on recapitulating the findings presented here in primary nerve 

cell cultures as this cell type represents a better, more physiologically relevant in vitro model. 

Though I made attempts to both over express and knockdown the expression of PDK1 and 

LDHA in primary nerve cells I was unable to achieve successful results with the plasmids 

and transfection technologies that I had available.  Future studies which make use of 

adenoviral vectors to overexpress or knockdown LDHA or PDK1 and test for A sensitivity 

and resistance would lend further support to aerobic glycolysis as a protective mechanism 

elicited by nerve cells against A toxicity.    

The use of A25-35 instead of A1-42 was another major limitation to this study.  Though A25-

35 does elicit toxicity and exhibits similar properties of the full length peptide, it is not present 

in the brains AD patients.  Thus the use of A1-42 would offer more physiological relevance 

to the findings presented here.  It is important to note that A1-42 was used to verify the 

effects elicited by A25-35 exposure, but not in replicates of 3.  In addition, this study did not 

examine the effects of a scrambled peptide (non-functional Apeptide) on toxicity as a 

negative control.  The use of this peptide would lend support to the specific toxicity of A25-

35.  However, previous studies examining Atoxicity in PC12 cells, showed the use of a 

A25-35 scrambled peptide sequence had no effect on cell viability (Behl et al. 1994).  

Additionally in the present study cell viability assays were carried out with MTT.  MTT is a 

tetrazole that is reduced to a purple formazan by mitochondrial reductase in viable cells.  

Given that this study examines mitochondrial function and mitochondrial reductase enzymes 

are found in the electron transport chain it is possible that a reduction in the amount of 

formazan (purple) formed could be a result of reduced mitochondrial activity independent of 

viability.  The consistent use of trypan blue or propidium iodide/calcein green live dead 

assays throughout this study may have provided a more reliable indicator of cell viability or 
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death.  Importantly, cells were examined by light microscopy prior to adding MTT to dishes 

to visually confirm decreased cell numbers relative to untreated cells.  Moreover, when 

trypan blue exclusion analysis was performed, the results were in concordance with the MTT 

assay, suggesting that the use of MTT as a measure of cell viability was not a significant 

issue.    

Another major limitation to this study was the lack of in vivo evidence supporting a role for 

the Warburg effect in neuronal resistance to A.  Moreover, I examined whole tissue extracts 

from cortical brain regions taken from transgenic AD mice and AD patients, which did not 

allow the ability to distinguish between glial cells and nerve cells.  In light of the fact that 

some areas of the brain contain glial cells in excess of nerve cells by a 10 to 1 ratio, it would 

be valuable to examine the longitudinal expression patterns of PDK1 and LDHA in surviving 

neurons and astrocytes in AD brain to determine if a cell type specific expression pattern 

correlates with A sensitivity.  Furthermore, it would also be of interest to examine astrocytic 

resistance to A in vitro to determine if these cells exploit a similar resistance mechanism.  

To determine if aerobic glycolysis contributes to resistance in vivo it would be useful to 

monitor the effects of attenuated LDHA and/or PDK1 levels on memory and 

neurodegeneration in AD mice.  By crossing Cre/lox mediated conditional knockout models, 

in which LDHA or PDK1 genes are deleted in neuronal or glial cell compartments, to AD 

transgenic mice this could be achieved.  One could then examine the effect of attenuated 

neural or glial expression of Warburg effect enzymes on susceptibility to A toxicity.  

Though aerobic glycolysis appears to contribute to resistance against A in vitro, it is 

imperative to demonstrate a similar effect in vivo.  

Though preliminary studies with CNB-001 and J147, suggest that these compounds may 

activate and/or sustain a Warburg effect in nerve cells, these studies failed to determine if the 

neuroprotective effects elicited by these drugs rely on LDHA and/or PDK1.  Thus in the 

future it would be important to determine if the neuroprotective effects of CNB-001 and J147 

still exist in either nerve cell lines or primary nerve cultures in which LDHA and PDK1 is 

knocked down using siRNAs specific to each transcript.  In addition, examining the 

longitudinal expression of these enzymes in mice fed either drug would be valuable in 

determining their role with respect to neuroprotection.  Given that there does not appear to be 
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a direct link between CNB-001 or J147 and LDHA or PDK1 expression, further investigation 

in the mechanisms by which these drugs activate and/or maintain the expression of these 

enzymes is crucial to fully understanding their neuroprotective properties.   

5.2 Global perspective of findings 

5.2.1 Aerobic glycolysis and the AD brain  

Aging and AD are associated with a decreased rate of cerebral glucose consumption, possibly 

contributing to both nerve cell loss and memory decline (Heiss et al., 1991; Mielke et al., 1998).  

Although a reduction in cerebral glucose metabolism, as measured by FDG-PET, is commonly 

used in the diagnosis of AD, recent evidence suggest that glucose utilization is more complex in 

the AD brain (Mosconi, 2005; Vlassenko et al., 2010).  A recent PET imaging study which 

measured both glucose consumption and oxygen utilization, revealed a strong correlation 

between the spatial distribution of elevated aerobic glycolysis and A plaques in brain tissue 

from patients with AD, as well as normal individuals with high levels of A-deposition but 

without clinical manifestation of the disease (Vlassenko et al., 2010).  In the developing nervous 

system, aerobic glycolysis is believed to account for 90% of glucose consumed (Powers et al., 

1998).  During childhood this fraction accounts for 35% of glucose utilization and finally drops 

to 10-12% in the adult brain (Vaishnavi et al., 2010).  PET studies of cognitively normal 

individuals have shown an age-associated decrease in FDG uptake in regions of the brain 

frequently affected in AD, although these studies did not determine what proportion of glucose 

was processed by aerobic glycolysis versus oxidative phosphorylation (Cunnane et al., 2011). 

Moreover, recent imaging analysis of patients with AD revealed regional variations in atrophy, 

hypometabolism and Adeposition (La Joie et al., 2012). These observed variations are likely 

reflective of region specific pathological or compensatory mechanisms (La Joie et al., 2012). 

Interestingly, a recent neuroimaging study that attempted to correlate multimodal neuronal 

parameters (cortical thickness, glucose metabolism and hippocampal volume) with A 

deposition (PIB-PET) in cognitively normal older individuals, found no association between 

PIB uptake and the multimodal neurodegenerative biomarkers (Wirth et al., 2013).  

Surprisingly, improved neuronal integrity and cognitive function correlated with the presence of 

high A burden in brain regions that are most affected in AD (Wirth et al., 2013). In another 

recent study of cognitively normal elderly subjects, using both PIB-PET and FDG-PET, it was 
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revealed that increased glucose uptake was associated with better verbal episodic memory in 

individuals with elevated amyloid levels (Ossenkoppele et al., 2013).  These observations 

prompted to authors to speculate that A can trigger a neural compensation mechanism that 

enables elderly, presumably on the path to AD, to at least temporarily suppress the neurotoxic 

effects of A and preserve cognitive function by increasing brain activity (Ossenkoppele et al., 

2013).  These findings lend support to our own observations and suggest that aerobic glycolysis 

may be elevated in areas of the brain most susceptible to insult as a pre-emptive protective 

mechanism or in response to A accumulation during aging.  Loss of this protective mechanism 

may render certain areas of the brain susceptible to A-induced neurotoxicity. 

5.2.2 AD and cancer  

Interestingly, cancer survivors have a lower risk of developing AD than those without cancer 

(Driver et al., 2012).  In contrast, patients who suffered from AD had a lower incident of cancer 

(Driver et al., 2012).  It is possible that individuals with cancer also have a higher propensity to 

activate aerobic glycolysis, as this form of metabolism confers a growth and survival advantage 

(i.e. anti-apoptotic function) to cancer cells (Koppenol et al., 2011).  However, individuals who 

survive cancer may still have higher innate levels of aerobic glycolysis, presumably in areas of 

the brain, which may protect against the development of AD.  In contrast, patients with AD may 

have lower levels of aerobic glycolysis, which not only renders them susceptible to the toxic 

effects of A but also leads to decreased susceptibility to developing cancer.  A similar trend 

has been observed in Parkinson’s disease (Bajaj et al., 2010; Driver et al., 2007a; Driver et al., 

2007b).  Thus it may be valuable in the future to examine aerobic glycolysis in a Parkinson’s 

disease context. Taken together these data suggest an inverse association between cancer and 

the development of neurodegenerative diseases.  Future studies that examine the direct 

relationship between aerobic glycolysis, AD and cancer may provide more insight into this 

fascinating inverse relationship.  

5.2.3 Lactate is a neuroprotective metabolite 

 Although aerobic glycolysis and associated lactate production has been shown to enhance 

memory, the effect of this metabolism on age-dependent or AD-related memory decline and 

neuronal loss has never formally been examined.  Interestingly, L-lactate treatment following an 

ischemic insult is neuroprotective and attenuates neurological deficits in mice (Berthet et al., 
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2012; Berthet et al., 2009).  Intracerebroventricular or intravenous injection of lactate has also 

been shown to exert a neuroprotective effect during experimentally induced hypoglycemia or 

cerebral ischemia (Berthet et al., 2012; Berthet et al., 2009; Wyss et al., 2011).  Lactate also 

exerts neuroprotective effects via transcriptional activation of brain-derived neurotrophic factor 

(BDNF) expression in human astrocytes and the SH-SY5Y cell line (Coco et al., 2012).  BDNF 

is a necessary factor for the survival of nerve cells within the CNS, and is also essential for long 

term memory storage (Bekinschtein et al., 2008).  In addition, under normoxic conditions lactate 

can promote HIF-1 stabilization by inhibiting prolylhydroxylase 2 activity, the enzyme 

responsible for HIF-1 degradation (De Saedeleer et al., 2012).  Stabilization of HIF-1 

increases glycolysis and lactate production; events associated with resistance to Atoxicity.  

Moreover, exogenous lactate has been shown to increase both MCT1 and COX mRNA and 

protein expression in L6 cells (Hashimoto et al., 2007).  Thus lactate can elicit a number of 

events leading to activation of transcription factors known to elicit protective effects.  

Furthermore, several studies have reported that lactate increases vasodilation (Gordon et al., 

2008; Yamanishi et al., 2006); and continuous lactate production in the activated brain may 

serve as a signaling mechanism to increase blood flow and fuel delivery to the brain.  Therefore 

lactate may function as a versatile signaling molecule by both activating neuroprotective 

metabolism and promoting increased blood flow to certain regions of the brain.  These changes 

mediated by increased lactate production may contribute to resistance against the toxic effects 

of A in AD brain.   

5.2.4 Astrocytic lactate production and memory 

Lactate has long been considered a metabolic dead end; a harmful metabolite for the CNS (Chih 

et al., 2001; Chih and Roberts Jr, 2003).  However, this viewpoint has changed in light of 

growing evidence indicating that lactate transport from astrocytes to neurons is essential for 

long term memory (Alberini, 2009; Newman et al., 2011).   Memory is a process in which 

information is encoded, stored and retrieved. Short term memories involve the retention of 

information for a brief period of time and are dependent on post translational modifications of 

proteins (Silva et al., 1998; Yin and Tully, 1996).   Long term memories are formed after 

learning, retention, and consolidation which require the activation of signalling cascades that 

lead to gene activation, protein synthesis and the growth of new synaptic connections (Silva et 

al., 1998; Yin and Tully, 1996).  The cAMP response element binding protein (CREB) is a 
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nuclear protein that modulates transcription and plays a central role in long term memory 

following phosphorylation dependent activation (Gibbs et al., 2006; Silva et al., 1998; Yin and 

Tully, 1996). Not surprisingly, memory and learning are metabolically demanding processes, 

which appear in part to be dependent on glycogen metabolism (Belanger et al., 2011; Newman 

et al., 2011; Rafiki et al., 2003).  Glycogen represents the major energy reserve in the brain and 

is stored exclusively in astrocytes, not neurons (Brown et al., 2004; Newman et al., 2011; 

Vilchez et al., 2007).  During periods of low glucose or increased activity glycogen is broken 

down to lactate to fuel neuronal metabolism (Brown et al., 2004).  A role for glycogenolysis in 

long term memory formation was first observed by Gibbs and colleagues who found that 

intracerebral injection of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) (a glycogen phosphorylase 

inhibitor), in day-old chickens resulted in a dose-dependent inhibition of long term memory 

(Rafiki et al., 2003). More recently a more intensive study investigating the importance of 

astrocytic glycogenolysis and long term memory was performed by Suzuki et al. who examined 

learning and memory in rats using an inhibitory avoidance (IA) test.  To test for the importance 

of glycogenolysis in hippocampal astrocytes rats were injected with DAB either 15 min before 

or immediately after IA training (Belanger et al., 2011). Training led to a significant increase in 

extracellular lactate in the hippocampus which was abolished by DAB administration (Belanger 

et al., 2011; Newman et al., 2011).  DAB had no effect on short term memory (tested an hour 

after) but significantly blocked long term memory (tested at 24hr)(Belanger et al., 2011).  

Importantly, L-lactate co-administered with DAB significantly rescues memory loss (Belanger 

et al., 2011).   Similar results were obtained testing spatial working memory in rats using 

spontaneous alteration tasks (Newman et al., 2011).  Furthermore, astrocytic glycogenolysis 

also appears to be required for phosphorylation of CREB (pCREB) a key molecular event 

linked to memory formation (Belanger et al., 2011). DAB-induced reduction of pCREB 

activation was also rescued by exogenous L-lactate suggesting a possible signalling role for 

lactate (Belanger et al., 2011; Belanger and Magistretti, 2009).    

The ability to shuttle (uptake and release) lactate to various regions of the brain is dependent on 

MCT activity.   Examination of both MCT mRNA and protein levels in mouse cortical tissues, 

revealed that MCT1 and MCT4 were expressed almost exclusively in astrocytes, whereas 

MCT2 was strongly expressed in neurons (Debernardi et al., 2003; Pellerin et al., 2005).  Based 

on these finding Suzuki and colleagues demonstrated the importance of  CNS lactate transport 
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on memory by using intrahippocampal injections of antisense oligodeoxynucleotides to 

individually decrease expression of MCT1, MCT2 and MCT4 (Belanger et al., 2011).  

Decreased expression of MCT1 or MCT4 in astrocytes resulted in disrupted long-term memory 

formation that was rescued by exogenous administration of lactate but not glucose (Belanger et 

al., 2011).  Disrupting the expression of neuronal MCT2 also resulted in loss of long-term 

memory which was not rescued by exogenous lactate or glucose, indicating that transport of 

lactate into neurons is required for long-term memory formation (Belanger et al., 2011).  Taken 

together these results suggest that the astrocytic lactate export by MCT-1 and/or MCT-4, and 

subsequent import into neurons through MCT2, is essential for long term memory (Belanger et 

al., 2011).  However, the role of lactate transport in memory loss associated with 

neurodegenerative diseases has remained largely unexplored.  In examining cortical tissue from 

the AD transgenic mice or AD postmortem tissue, we did not distinguish between nerve and 

glial cell when examining the expression of the Warburg effect enzymes.  Loss of LDHA and/or 

PDK1 in astrocytes may contribute to memory loss associated with AD.   

5.2.5 Exercise induced lactate production enhances memory 

During periods of physical exertion such as exercise, systemic lactate levels increase.  Under 

resting conditions the brain releases small amounts of lactate which increases during exercise or 

hypoxia (Overgaard et al., 2012).  During exercise the cerebral uptake of lactate also increases.   

As such, the brain plays an active role in the clearance of excessive lactate during exercise (Ide 

et al., 2000; Overgaard et al., 2012; Quistorff et al., 2008; Rasmussen et al., 2011; van Hall et 

al., 2009).  The oxidation of lactate in the brain may account for as much as 33% the total 

energy substrate used by the brain (Overgaard et al., 2012).   In contrast, cerebral glucose 

uptake is reduced by ~25% when cerebral lactate uptake is increased, suggesting that the brain 

preferentially consumes lactate during exercise (Rasmussen et al., 2011).   Therefore, it appears 

that lactate is an important fuel source for brain metabolism both under normal conditions and 

during exercise.  Given the importance of glycogen derived lactate for long term memory, it is 

feasible that exercise may benefit memory and cognitive function.  Indeed, a study that 

examined the effects of a single bout of exercise on motor memory found that subjects that 

exercised before or after practice of a motor skill displayed significantly better retention of that 

skill 24 hrs and 7 days after practicing compared to subjects that did not exercise (Roig et al., 

2012).  These findings suggest a single bout of exercise before or after learning a motor skill 
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can improve long-term retention of that skill.  Moreover, regular exercise has not only been 

shown to have a positive effect on memory retention but also appears to reduce the risk of 

developing neurodegenerative diseases including AD.  Notably, exercise ameliorated memory 

deficits and Aβ deposition in APP transgenic mice (Maesako et al., 2012).  In addition, a 

longitudinal study that followed 716 older individuals without dementia over 4 years assessed 

the link between exercise and AD (Buchman et al., 2012).  The outcome of the study revealed 

that a higher level of total daily physical activity was associated with a reduced risk of AD 

(Buchman et al., 2012).  Similar results were obtained when individuals were followed over a 

14 year period (Scarmeas et al., 2009).  

Interestingly BDNF is significantly elevated in response to exercise, possibly through increased 

lactate production, which may also account for some of the neuroprotective effects of exercise 

(Ferris et al., 2007). It should be noted that intravenous sodium-lactate administration in AD 

patients failed to improve cognitive functioning, although it did slightly improve semantic 

memory (Kalman et al., 2005). However, this study only examined the effects of a single 20 

min intravenous administration of sodium-lactate on cognitive function.  Because lactate was 

only administered for a short period it is unknown if longer periods or multiple administrations 

would improve cognitive function in AD patients.  The systematic administration of glucose to 

AD patients does however improve memory (Manning et al., 1993).  In contrast, insulin 

deficiency in AD transgenic mice exacerbates the AD phenotype (Wang et al., 2010). Notably, 

AD patients are at an increased risk for Type II diabetes, indicating an important association 

between glucose uptake and disease progression (Janson et al., 2004).  Furthermore, patients 

with Type II diabetes are at increased risk for developing cognitive defects, AD or related 

dementias (Biessels and Kappelle, 2005; Whitmer, 2007).  Collectively, these observations 

suggest that glucose uptake, aerobic glycolysis and associated lactate production may play a key 

role in promoting neuronal survival and preventing memory loss during aging and in AD.  

However, the role of aerobic glycolysis in maintaining CNS neuronal function during aging and 

preventing AD progression has never experimentally been examined.  Clearly alterations in 

brain metabolism are tightly linked to AD and future research should focus on mechanisms that 

either enhance glucose uptake, aerobic glycolysis or lactate production. 
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5.3 Conclusions and Future Studies 

5.3.1 Conclusions and suggestions for future research 

In light of recent research, lactate has emerged as an important metabolite in the brain.  These 

new findings accompanied by the findings presented here have altered the context in which we 

should look at the brain and its functioning.  Importantly, given that metabolic dysfunction is 

tightly linked to neurodegenerative diseases, including AD, further studies measuring aerobic 

glycolysis and lactate production in vitro and in vivo are warranted.  Examining the effects of 

exogenous lactate on A sensitivity in primary nerve cells may lend support that this metabolite 

plays an important role in neuroprotection.  Moreover, determining the effects of knocking 

down the expression of cellular lactate transporters (MCT’s) in both A resistant cells and 

primary nerve cells (MCT’s) may also reveal the importance of this metabolite to modulating 

A sensitivity.  Considering the relationship between aerobic glycolysis in the AD brain, as well 

as the observed protective effect of aerobic glycolysis against A in vitro, it would be valuable 

to perform a longitudinal study of aerobic glycolysis in normal and AD patients using FDG-

PET to determine if elevated or sustained aerobic glycolysis correlates with better clinical 

outcome.  Recent results from the dominantly inherited Alzheimer’s network (DIAN) study 

showed that A accumulation preceded detectable atrophy and hypometabolism by decades 

(Bateman et al., 2012).  Interestingly, the caudate nucleus had very high levels of Adeposition 

but did not exhibit hypometabolism or neuronal loss throughout the course of disease 

progression (Bateman et al., 2012).  Assuming that the caudate nucleus is resistant to the toxic 

effects of AD it would be valuable to determine if aerobic glycolysis is also elevated in this 

brain region.   

A significant proportion of elderly individual’s exhibit sufficient plaque accumulation 

warranting a neuropathology-based classification as probable AD, yet are normal by cognitive 

assessments (Bouras et al., 1994; Price and Morris, 1999).  Assuming Aβ accumulation 

produces neurotoxicity and dementia, then increased CNS aerobic glycolysis may arise as a 

protective mechanism to enable these individuals to evade cognitive decline.  Examining the 

brains of non-demented individuals with AD neuropathology (NDAN), may shed light on these 

neuroprotective mechanisms.  Given the protective nature of LDHA and PDK1 in vitro, it 

would be of interest to examine the expression patterns of these enzymes in NDAN individuals.   
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Moreover, AD transgenic mice also may provide an interesting model for uncovering 

neuroprotective mechanisms that arise from the constitutive and progressive production of Aβ 

in the CNS.  Although AD transgenic mice have high plaque loads by 6 months of age, most fail 

to exhibit nerve cell loss and cognitive defects until 12 months, a timepoint in which we see a 

decline in PDK1 expression (Savonenko et al., 2005).  Thus young AD mice may offer a model 

of A-resistance.  Moreover, the creation of transgenic mice expressing enzymes that regulate 

aerobic glycolysis in the CNS, crossed to AD-transgenic mice, may help further define the role 

of this metabolism in preventing cognitive decline in older transgenic mice.  These studies 

would provide a strong rationale for identifying compounds which activate aerobic glycolysis 

and enhance CNS function.  The wealth of new research demonstrating the importance of 

aerobic glycolysis in the brain holds promise that activation of this form of metabolism may 

offer a new therapeutic strategy for the treatment of AD and other neurodegenerative diseases. 
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