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Abstract 

This dissertation presents the analysis of effects of two-dimensional grooves on flow 

responses in laminar channel flows. Straight grooves have been considered which may 

have an arbitrary cross-section and an arbitrary orientation with respect to the flow 

direction. It has been shown that the grooves effects can be split into two parts; one due 

to the change in the mean positions of the walls and the other due to the flow modulations 

created by the groove geometry. The former effect can be determined analytically, while 

the latter effect requires numerical modelling.  Projection of groove shape onto a Fourier 

space creates a basis for a reduced-order geometry model which has been used to capture 

the modulation effects. A spectral algorithm based on Fourier and Chebyshev expansions 

has been developed for numerical simulation which provides solutions with high levels of 

accuracy. The difficulties associated with the enforcement of the boundary conditions on 

the irregular geometries have been overcome either by using the immersed boundary 

conditions (IBC) or the domain transformation (DT) methods. Three types of flow have 

been considered; (i) pressure-driven flow, (ii) kinematically-driven flow, and (iii) flow 

driven by a combination of these two driving mechanisms. The effect of grooves on flow 

losses have been assessed based on either the additional pressure gradient required to 

maintain the same mass flow rate as in the case of reference smooth channel or the 

change in the mass flow rate induced by the grooves for flows driven with the same 

pressure gradient as in the case of reference flow. Detailed analyses of the extreme cases, 

i.e. grooves that are orthogonal to the flow direction (transverse grooves) and those that 

are parallel to the flow direction (longitudinal grooves or riblets) have been carried out. 

Mechanisms of drag generation for each case have been identified. Analytical solutions 

have been determined in the limit of long wavelength grooves in order to simplify 

identification of these mechanisms. It has been shown that longitudinal grooves with 

wavelengths larger than a critical value are able to reduce drag to values lower than the 

smooth channel value despite increase of the wetted surface area. For sufficiently short 

wavelength grooves, shear is eliminated over a majority of the wetted area but there is a 

rapid rise of local shear and pressure forces around the tips of grooves which counteracts 
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the elimination of shear and results in an overall increase of drag. Potential for drag-

reducing surfaces for this case exists if a method for reduction of undesired pressure and 

shear forces around groove tips can be found through proper shaping of the wall. 

Optimization method has been used in order to find forms of longitudinal grooves which 

minimize the flow losses in grooved channel and optimal shapes for different flow 

conditions have been identified. 
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Chapter 1  

 

1 Introduction 

 

1.1 Objectives 

The main objective of this dissertation is to analyze flow responses and to determine the 

physical mechanisms associated with a special class of surface roughness which is 

commonly referred to as grooves. These special surface patterns represent a subset of the 

general problem of interaction of surface topography with the flow dynamics. Various 

features of grooves such as shape, size, spacing, orientation, etc. as well as flow 

conditions are considered. Through systematic analyses, effects of each of these 

parameters on the flow resistance in laminar channel flows have been determined and 

mechanisms involved in drag generation have been identified. Gaining a proper 

understanding of these effects provides a starting point for the development of drag-

reducing flow control strategies or for general enhancement of flow system performance. 

 

1.2  Motivations 

Many biological systems contain surfaces exhibiting properties of interest in practical 

applications. Identification of special features of these surfaces are the goals of 

biomimetics (Bhushan 2009; Jung & Bhushan 2010; Bixler & Bhushan 2012) and 

understanding how these features are generated provides information base necessary for 

their mimicking in the engineering devices. Shark skin provides a good example of a low 

drag surface (see Figure  1.1). The skin is covered with very small tooth-like scales ribbed 

with longitudinal grooves which reduce formation of vortices present on a smooth 

surface. Leaves of the lotus plant provide an example of superhydrophobic, self-cleaning 

and low drag surface. The special properties of this surface are associated with wax 
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tubules that create certain surface topography. Butterfly wing demonstrates combination 

of effects from shark skin and lotus leaves (Bixler & Bhushan 2012). Use of surface 

corrugations/roughness is widespread and does not always have origin in biological 

systems. It is known that surface roughness affects the form of turbulence (Jiménez 

2004), it plays a large role in the laminar–turbulent transition (Floryan 2007) and it is 

used as a mixing augmentation technique in heat transfer. The above examples illustrate 

potential gains associated with the use of properly selected surface structures, assuming 

that one can achieve complete understanding of how these structures affect the flow.  

 

 

Figure  1.1: Tooth-like scale structure on a Galapagos shark (Bhushan 2009). 
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Figure  1.2: (A) Scanning electron microscope (SEM) micrographs (shown at three 

magnifications) of lotus leaf surface, which consists of microstructure formed by papillose 

epidermal cells covered with epicuticular wax tubules on the surface, which create nanostructure 

and (B) image of water droplet sitting on the lotus leaf (Bhushan 2009). 

 

The lack of a complete understanding of the effects associated with surface topographies 

is the main motivation for the work described in this dissertation and the aim is to 

advance the current knowledge of effects induced by a special class of surface structures 

which have the form of grooves with an arbitrary shape and an arbitrary orientation with 

respect to the stream direction in laminar channel flows. The ultimate goal is the search 

for surface topographies that may lead to a lowering of the drag. 

 

1.3 Related literature survey 

The existing literature is vast and thus the following discussion is limited to a provision 

of a few examples of many application areas with focus on the fluid dynamic problems. 
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1.3.1 Early work 

The effects of surface roughness represent one of the classical but still not well 

understood topics in fluid dynamics in spite of a multitude of efforts devoted to their 

analysis. The lack of closure probably originates from the large variety of possible 

responses, which depend on the details of roughness topography as well as the flow 

conditions. The majority of investigations have been carried out in the context of 

quantification of effects of surface roughness. The direct response can be measured in 

terms of changes of resistance experienced by a flow. It has long been believed, since the 

pioneering experiments of Hagen (1854) and Darcy (1857), that roughness always 

increases this resistance. Nikuradse (1933) and Moody (1944) have experimentally 

determined correlations between the roughness properties and the pressure drop for flows 

in circular conduits and expressed these correlations in terms of the friction factor. The 

concept of the equivalent roughness has been used by them to account for the roughness 

properties. The measurements of the overall drag quantified in terms of friction factor by 

Nikuradse (1933) and Moody (1944) also demonstrated that roughness does not affect the 

laminar drag or, at least, the effect is too small to be measured using the techniques 

available at that time.  However, these correlations suggest that the surface roughness has 

significant effect on the turbulent flow and always increases turbulent drag. 

 

1.3.2 Effects of roughness on drag 

The quest for finding an appropriate method for reduction of viscous drag in wall-

bounded flows has been of continuous interest in many areas such as transportations, 

piping and petroleum industries, medical instruments, microfluidics and nanofluidics 

devices, just to name a few. Viscous drag is responsible for about 100% of total drag in 

pipe flows, 90% in underwater vehicles and 50% in commercial aircrafts (Lee et al. 

2001). The existing methods can be categorized into three groups: (i) deferring separation 

of the boundary layers by means of either suction or injection of fluid or by promoting 

the laminar–turbulent transition, (ii) changing the fluid viscosity by either modifying its 

temperature at the wall or by injection of another fluid with a different viscosity, and (iii) 
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by appropriate design of the wall geometry (Luchini et al. 1991). The first two groups 

have well understood fundamentals and have been extensively used in a wide range of 

applications. Use of the third group is limited due to the lack of understanding of a 

relation between the surface topography and the resulting drag. Information about the 

types of drag and their dependence on the roughness shape offers potential for 

identification of surface topographies that may result in a lower drag. 

The traditional belief that surface roughness always increases flow resistances has been 

contradicted in turbulent flow regimes first by Walsh (1980;1983). It has been shown that 

there exists a certain class of surface topography which is capable of reducing drag to 

below what is found for a smooth wall. These special surface shapes commonly referred 

to as riblets are ribbed (grooved) surfaces aligned in the direction of the main flow and 

commonly called streamwise grooves. The maximum drag reduction for riblets in 

turbulent flow regimes has been shown both experimentally (Walsh & Lindemann 1984; 

Walsh 1990; Bruse et al. 1993; Bechert et al. 1997; Frohnapfel et al. 2007) and 

numerically (Chu et al. 1992; Chu & Karniadakis 1993; Choi et al. 1993; Goldstein et al. 

1995; Goldstein & Tuan 1998) to be of order of 10%. 

The effectiveness of riblets as a drag reducing tool is a function of their geometry. 

Bechert et al. (1997) conducted detailed experimental measurements of grooves with 

adjustable geometry and performed a parametric optimization in order to identify the 

maximum possible drag reduction. Frohnapfel et al. (2007) provided detailed 

measurements of drag reduction associated with rectangular grooves. Goldstein and Tuan 

(1998) using numerical simulations found that riblets with heights approximately less 

than 10 wall units and with riblet spacing of less than 30 wall units have drag reducing 

potential while riblets with higher heights and wider spacing in most cases increase the 

drag (Goldstein & Tuan 1998). Bechert & Bartenwerfer (1989) analyzed lift-up effect 

induced by the grooves, established the virtual origin of the velocity profile and provided 

a possible connection between the protrusion height and the drag reduction. 

Pressure gradient also plays an important role in the drag reduction induced by riblets. 

The effect of adverse pressure gradient was reviewed and examined by Walsh (1990) 
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who found riblets to be more effective under such conditions. Nieuwstadt et al. (1993) 

conducted experiments to investigate the reduction of the skin friction by riblets under 

adverse pressure gradients in a turbulent boundary layer. They found that the drag 

reduction persists for all pressure gradients and is slightly higher for higher pressure 

gradients. Debisschop & Nieuwstadt (1996) examined longitudinal grooves (riblets) in a 

wind tunnel with adverse pressure gradients and concluded that the drag reduction of 

triangular grooves can be improved from 7% to 13%. 

A conclusive explanation of why riblets with small spacing can reduce drag was not 

available until recently. A plausible explanation, which is suggested both by the 

experimental (Bechert et al. 1997) as well as the numerical (Goldstein et al. 1995) 

studies, is that drag reduction is associated with damping of the cross-flow velocity 

fluctuations which results in reduction of turbulent momentum transfer near the wall and 

lowering of the shear stress. Choi et al. (1993) conducted direct numerical simulation 

(DNS) of turbulent flow in grooved channel and demonstrated that drag reduction of 

small spacing riblet is due to the restriction of the location of streamwise vortices above 

the wetted surface area which reduces the surface area exposed to the high-speed fluid 

flow. The mechanism of drag reduction in the limit of very small riblet height (viscous 

regime) is well understood (Bechert & Bartenwerfer 1989; Luchini et al. 1991) and 

confirmed by experiments (Walsh & Lindemann 1984; Walsh 1990; Bruse et al. 1993; 

Bechert et al. 1997; Frohnapfel et al. 2007). For riblets with larger size, the minimum 

drag is related to the breakdown of the viscous regime and the relevance of this process 

has been recognized only recently (García-Mayoral & Jiménez 2011A; García-Mayoral 

& Jiménez 2011B) in spite of a number of studies devoted to this issue (Choi et al. 1993; 

Goldstein & Tuan 1998). 

Grooves that are perpendicular to the flow direction, i.e. transverse grooves, also have 

been centre of many investigations. Billy et al. (2006) analyzed flows in transverse 

rectangular grooves in the turbulent flow regime using two-dimensional Navier-Stokes 

equations. They considered three flow driving mechanisms, (i) kinematically-driven 

flows (Couette), (ii) pressure-driven flows (Poiseuille), and (iii) combined Couette-

Poiseuille flows and found that the average effects for Couette-Poiseuille flows can be 
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determined as a superposition of results of the corresponding pure Couette and pure 

Poiseuille flows. Yang (2000) considered the same geometry but used large eddy 

simulation (LES) and performed a parametric study on depth and length of grooves to 

explore their effects on the flow structures. Ikeda & Durbin (2007) described in details 

flow structure appearing between transverse grooves with large spacing.  

 

1.3.3 Effects of roughness on heat transfer 

Grooves not only change the flow patterns, but also significantly influence the heat 

transfer rate. Lee et al. (2003) measured effects of transverse grooves on the heat transfer 

in a channel. Rosaguti et al. (2007) considered a similar problem using numerical 

simulations. Jayanti & Hewitt (1997) focused their attention on the effects of grooves on 

the heat transfer in a forced annular flow. Dalal & Das (2006) considered natural 

convection in a cavity with grooved walls. Many studies have been conducted aimed at 

optimization of surface geometries in order to enhance the heat transfer and, at the same 

time, to decrease the pressure losses (Kim & Kim 2002; Fabbri 1997; Fabbri 1998A; 

Fabbri 1998B; Fabbri 1998C; Nobile et al. 2006; Moradi & Floryan 2013B). 

 

1.3.4 Effects of roughness on non-Newtonian fluids flows 

Some researchers tried to analyze the effects of grooves on motions of non-Newtonian 

fluids. Haosheng et al. (2006) studied effects of various surface topologies on drag 

reduction. They conducted experiments on the effects of transverse, longitudinal and 

isotropic grooves on polyoxyethylene water solution and found that only longitudinal 

grooves can reduce drag in such flows. Chen et al. (2007) chose the same shear-thinning 

fluid and studied the effects of transverse and longitudinal grooves on the drag reduction 

by performing experiment on a pin-disc lubrication system and concluded that the shear-

thinning viscosity decreases the drag reduction associated with the grooves. Ueno et al. 

(2003) investigated the effect of surface grooves on the extraction efficiency of various 



8 

 

polymers and showed that the pattern and geometry of the channel walls are important 

factors in the extraction efficiency. 

 

1.3.5 Hydrophobic surfaces 

Hydrophobic surfaces (see Figures 1.2 and 1.3) represent a fairly new area where surface 

roughness plays an important role. Drag reduction can result from the use of surfaces 

with micro-features where trapped gas bubbles reduce shear stress over part of the 

surface exposed to a moving liquid (Lauga & Stone 2003); see Rothstein (2010) for a 

recent review. The best surface topography for such an effect has yet to be determined 

and is the subject of active research (e.g. Ming et al. 2011). Maynes et al. (2007) studied 

laminar flow with micro-ribs oriented in the flow direction. Cheng et al. (2009) carried 

out detailed studies of slip performances and correlated them with groove patterns. Davis 

& Lauga (2009) studied friction associated with mesh-like surfaces. Ng & Wang (2009) 

focused their attention on Stokes flow over gratings. 

 

 

Figure  1.3: Hairs on the leaves of the water fern genus Salvinia are multicellular surface 

structures. In (A) a water droplet on the upper leaf side of Salvinia biloba is shown. (B,C) The 

crown-like morphology of the hairs of S. biloba (Bhushan 2009). 
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1.3.6 Effects of roughness on laminar flow 

The need for the re-examination of the role of surface roughness on laminar flow is 

driven by micro-fluidics applications, where micro- and nano-conduits are expected to 

have significant surface corrugations (surface roughness) due to the limitations of 

manufacturing technologies. Recent reviews of fluid flows and heat transfer in micro-

conduits can be found in (Papautsky et al. 1999; Sobhan & Garimella 2001; Morini 2004; 

Sharp & Adrian 2004; Gamrat et al. 2008) which suggest that the long believed 

conclusion that roughness has no effects on the laminar drag needs to be re-visited. 

Kleinstreuer & Koo (2004) studied the effect of grooves on pressure losses in laminar 

flow by modelling grooves as layers of porous material. Large pressure loss in micro-

fluidic devices is one of the main challenges which motivates search for methods to 

properly design surface topographies that can lead to a reduction of flow resistances. A 

number of authors attempted to provide quantitative predictions of pressure losses. 

Kandlikar et al. (2005) introduced a set of roughness parameters for groove modelling. 

Wibel & Ehrhard (2006) provided careful measurements of pressure losses in 

grooved/ribbed channels with grooves/ribs produced by a milling process. Wang (2003) 

considered rectangular grooves parallel and transverse to the flow and analyzed flow in 

the limit of zero Reynolds number. Thomas et al. (2001) determined numerically flow 

patterns associated with sinusoidal grooves. Valdés et al. (2007) used systematic 

numerical simulations to provide quantitative correlation for certain class of roughness 

shapes. These investigations provide phenomenological information about certain classes 

of roughness forms but do not provide information about the mechanisms of drag 

generation. 

There are not as many numerical studies focused on the effect of riblets in laminar flows 

as compared to turbulent flows. Choi et al. (1991) analyzed changes of viscous drag 

associated with the presence of longitudinal grooves with triangular geometries in a fully 

developed laminar channel flow using the finite-difference method. Chu & Kardianakis 

(1993) used a direct numerical simulation (DNS) based on the spectral element-Fourier 

method to investigate the effect of riblet-mounted surface in laminar and turbulent flows. 

Both of these studies were unable to find any riblet shape which would lead to a laminar 
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drag reduction. This should not be surprising as no systematic study of the effects of 

different riblet shapes has been carried out. This, nevertheless, has led to a belief that 

riblets have no drag reducing capabilities in laminar flows. 

The actual size of conduit plays an important role in choosing a proper model for 

numerical simulations of flows in micro- and nano-conduits. Continuum theory provides 

accurate predictions for problems with length scales that are much greater than the 

average distance between molecules (Mase & Mase 2010). The limit for the size of 

conduit where the continuum theory is valid has been estimated by a number of authors, 

e.g. Sobhan & Garimella (2001) report that the continuum theory yields accurate results 

for micro-conduits with hydraulic diameters of 50 micrometers or greater. For problems 

with smaller length scales, where the actual atomic structures of the matter cannot be 

neglected, statistical mechanics has to be used instead, e.g. non-equilibrium molecular 

dynamics has been used by Yang (2006) and Sofos et al. (2012) to study the effects of 

surface roughness and interface wettability in nano-channels.  

 

1.3.7 Effects of roughness on the laminar–turbulent transition 

The indirect effect of the corrugations on the drag formation is related to their ability to 

either promote or delay the transition from the laminar to the turbulent state. The 

common view that can be traced back to the Reynolds experiments (Reynolds 1883) is 

that a hydraulically rough wall always promotes transition. A hydraulically smooth wall 

has no effect on the transition. Recent evidence (Saric et al. 1998) demonstrates that 

roughness can also play a stabilizing role and thus can delay the onset of transition. A 

formal criterion for hydraulic smoothness has been proposed only recently and it states 

that the roughness is hydraulically active only when it is able to induce flow bifurcation 

(Floryan 2007); the relevant critical conditions can be identified using linear stability 

theory. It has been found that two-dimensional distributed roughness destabilizes 

travelling wave disturbances and the two-dimensional waves remain critical (Floryan 

2005; Asai & Floryan 2006). The same roughness can amplify disturbances in the form 

of streamwise vortices (Floryan 2007). Depending on the roughness amplitude and 
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wavenumber, and the flow Reynolds number, the first bifurcation can lead either to the 

onset of travelling waves or streamwise vortices. Qualitatively similar flow responses 

have been found in the case of Couette flow (Floryan 2002) and flow in a diverging-

converging channel (Floryan 2003; Floryan & Floryan 2010). The same roughness has 

been found to increase transient growth with the optimal disturbances having the form of 

streamwise vortices (Szumbarski & Floryan 2006). Change in the form of roughness 

patterns and transition from a single isolated roughness to an interacting system of 

roughness elements that behave as a distributed roughness system produce a wide range 

of stability responses (Floryan & Asai 2011). Experimental studies have been conducted 

to verify theoretical predictions of the effects of sinusoidal surface corrugation on the 

critical Reynolds number (Asai & Floryan 2006). Wibel & Ehrhard (2007) studied the 

effects of grooves on the laminar–turbulent transition in rectangular micro-channels using 

micro-particle image velocimetry (µPIV) technique. In spite of the availability of new 

concepts, most of the roughness-sensitive designs still rely either on experimental data 

(Schlichting 1979) or on simplified criteria, e.g. the roughness plays no role (Morkovin 

1990) as long as the roughness Reynolds number satisfies Rek = Ukk/ν <25, where Uk is 

the undisturbed velocity at height k (the top of the roughness). It goes without saying that 

such criteria cannot account for the wide variety of roughness forms and patterns that can 

be found in nature but, nevertheless, are still widely used. 

 

1.3.8 Roughness modelling 

The above brief discussion shows that applications of structured surfaces are very wide. 

These surfaces have complex geometries and their modelling represents one of the main 

challenges in the flow analysis. Since surface shape can potentially induce a number of 

instabilities, the geometry has to be modelled with high accuracy and also flow equations 

need to be solved with high accuracy in order to be able to capture bifurcations points in 

a reliable manner.  

The classical approach in determination of the flow fields in domains bounded by 

irregular rough boundaries involves significant manual labour, as each geometry needs to 
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be modelled using a numerically generated grid (Gamrat et al. 2008; Herwig et al. 2008). 

These methods suffer from low-order spatial accuracy associated with their discretization 

schemes and are usually based on finite-difference, finite-element or finite-volume 

methods.  Using finer grids can marginally improves their accuracy but with a substantial 

increase in the computational costs. In addition, use of these methods is impractical for 

systematic investigation of different features of the roughness geometry. 

Another approach for treatment of boundary irregularities relies on domain perturbation 

method. In this method, the edges of physical and computational domains do not overlap 

and the boundary conditions are transferred to a certain average location of the boundary 

(Cabal et al. 2001) leading to a regular computational domain. The accuracy of this 

method strongly depends on the amplitude of roughness and the type of boundary transfer 

process. This method is only suitable for problems with roughness of very small size and 

to situations where the flow response induced by roughness can be approximated by a 

linear theory (Floryan & Dallmann 1990). Based on these limitations, methods based on 

domain perturbation is inappropriate for the class of problems considered in this 

dissertation. Methods based on the effective slip boundary condition and surface mobility 

tensor (Bazant & Vinogradova 2008; Kamrin et al. 2010) provide qualitative information 

as discussed above. 

The immersed or fictitious boundaries concept offers an effective alternative. The basic 

idea involves the use of a regular computational domain for discretization of the field 

equations while the irregular flow domain is submerged inside the computational domain. 

No boundary conditions are imposed at the edges of the computational domain but 

additional relations are added in order to satisfy flow conditions at the edges of the flow 

domain.  The field equations are solved simultaneously inside and outside of the flow 

domain and the physical meaning is associated only with the part of the solution which 

overlaps with the flow domain. This concept was first proposed by Peskin (1981) in the 

context of cardiac dynamics and its various variants have been reviewed in Mittal & 

Iaccarino (2005) and Peskin (2002). The common limitation is the spatial accuracy, as 

most of these methods are based on the low-order finite-difference, finite-volume or 

finite-element techniques (Peskin 1981; Girault et al. 2000; Peskin 2002; Mittal & 
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Iaccarino 2005; Parussini 2008). The second, less known limitation is associated with the 

use of the local fictitious forces required to enforce the no-slip and no-penetration 

conditions. These forces locally affect the flow physics and this may lead to the incorrect 

estimates of derivatives of flow quantities, i.e. misrepresentation of the local wall shear. 

This problem is likely to be more pronounced in the case of methods with higher spatial 

accuracy.  

Spectral methods provide the lowest error for spatial discretization of the field equations 

but are generally limited to solution domains with regular geometries. The first spectrally 

accurate implementation of the immersed boundary concept was developed by 

Szumbarski & Floryan (1999) and is referred to as the immersed boundary conditions 

(IBC) method in the rest of this dissertation. This method does not use any fictitious 

boundaries or fictitious forces but relies on a purely formal construction of boundary 

constraints in order to generate the required closing relations. The construction of 

boundary constraints relies on the representation of the physical boundaries in the 

spectral space and nullifying the relevant Fourier modes. Such implementation is limited 

to geometries that can be represented by Fourier expansions but results in a gridless 

algorithm as all possible variations of boundary geometries are described in terms of the 

Fourier coefficients only. The programming effort associated with modelling the changes 

of geometry is minimal as the only information required for specification of geometry is 

limited to a set of Fourier coefficients. The additional attractiveness of this concept is 

associated with the precise mathematical formalism and high accuracy. The method has 

been implemented to study problems involving hydrodynamic instabilities induced by 

surface roughness (Floryan 2002; Floryan 2003; Szumbarski & Floryan 2006; Floryan 

2007; Floryan & Floryan 2010) and has been successfully extended to unsteady problems 

(Husain & Floryan 2007) as well as moving boundary problems involving Laplace, 

biharmonic and Navier-Stokes operators (Husain & Floryan 2008A; Husain & Floryan 

2008B; Husain & Floryan 2010; Del Rey Fernandez et al. 2011) and also non-Newtonian 

fluid problems (Mohammadi et al. 2011; Fazel Bakhsheshi et al. 2011). More recently, 

the IBC method has been developed for the analyses of steady flows in annuli bounded 

with walls covered with different forms of ribs (Moradi & Floryan 2012, Moradi & 

Floryan 2013A). 
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IBC method has some limitations as it cannot be applied for roughness shapes with high 

level of irregularities, i.e. grooves with high amplitudes or high wavenumbers. For these 

cases the inherent error associated with the enforcement of the boundary conditions is 

inadvertently too high and can contaminate the physical results (Husain & Floryan 2007). 

Domain transformation (DT) method is recommended for these cases as an alternative to 

IBC method (Husain & Floryan 2010). The irregularity of the physical domain is 

removed in the DT method by use of an analytical mapping which maps the irregular 

physical domain onto a regular computational domain. The boundary conditions then are 

enforced in a classical manner as the edges of both computational and physical domains 

coincide. Spectral implementations of the DT method provide high spatial accuracy and 

are successfully developed for different problems (Cabal et al. 2001; Husain & Floryan 

2010). Use of DT method is only recommended for problems involving high degree of 

boundary irregularities as the computations are significantly more expensive due to high 

level of complexity associated with the field equations in the transformed coordinate 

system and the resultant full structure of the coefficient matrix. 

The other main challenge in modelling of roughness geometries is due to the potentially 

uncountable number of geometric shapes and thus development of a methodology for 

extracting the hydraulically relevant geometric features is of great interest. The term 

"roughness" is not well defined and only means that the surface in question is not smooth. 

Typical experimental investigations use artificially created roughness forms, e.g. sets of 

cones, spheres, prisms, parallelepipeds, etc., with different spatial distributions 

(Schlichting 1979). Sandpaper with various grain sizes is an especially popular roughness 

representation due to the belief that it accounts for the "uncountability"/randomness of 

roughness forms. The most common measure of roughness properties is the equivalent 

sand roughness (Moody 1944). See Herwig et al. (2008) for a discussion of recent 

extensions of this concept. The finite number of configurations that can be studied leads 

to an uncertainty regarding the generality of the conclusions. 

Theoretical analysis requires solution of the field equations, which is a daunting task in 

view of the complexity of roughness shapes and can be, in general, accomplished only 

numerically. Two distinct directions have been followed. When the scale of interest is 
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large compared with the scale of surface features, it may be possible to account for the 

latter by means of an effective boundary condition imposed on a smooth surface 

approximating the actual one (the equivalent surface concept). One has to be able to 

determine the actual flow over a rough wall in order to assess the accuracy of this 

procedure. This concept has a long history with implementation details varying widely 

(Nye 1969; Richardson 1973; Miksis & Davis 1994; Tuck & Kouzoubov 1995; Sarkar & 

Prosperetti 1996; Ponomarev & Meyerovich 2003; Bazant & Vinogradova 2008; Kamrin, 

Bazant & Stone 2010). Roughness has small amplitude and thus one can use the 

boundary conditions transfer procedure (domain perturbation), which leads to 

linearization about the reference flow. A separate step involves invoking the Stokes 

approximation on the basis of small roughness size, which provides another source of 

linearization. Once the problem is linear, one can use superposition to account for (or 

average over) various seemingly complicated roughness shapes. 

The qualitative properties of the problem can be explicitly identified by considering the 

above two steps separately. In the first step, domain perturbation leads to an Orr-

Sommerfeld-like (OS) problem that determines the distribution of flow modification for 

each Fourier mode into which the roughness shape can be decomposed. The OS problem 

can be solved numerically (Lekoudis & Saric 1976; Floryan and Dallmann 1990). In the 

second step, one considers the Stokes limit of the reduced problem and carries out an 

asymptotic analysis of the OS equation using matched asymptotic expansions, where the 

region next to the wall is viewed as the inner limit; see Miksis & Davis (1994) and Tuck 

& Kozoubov (1995) for details of such a process. The analysis is continued out to ε2 

(where ε is the corrugation amplitude) using single-mode interaction to obtain the 

interaction between the geometry and the flow, which is required in order to produce 

changes in the aperiodic part of the pressure. The explicit relation between the global 

flow constraint (flow rate constraint, pressure gradient constraint) and ε2 effects is not 

built in to the analysis and thus cannot be enforced (the effective relation can be deduced 

a posteriori). The crucial element in the above process is the use of the domain 

perturbation to determine the actual flow and, perhaps less importantly, the lack of a 

global constraint. Uncertainty associated with the domain perturbation has been 
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recognized and has been tackled recently by including two terms from the domain 

perturbation (Kamrin et al. 2010). Inclusion of the second term only marginally increases 

accuracy; it certainly does not provide an order-of-magnitude improvement (Cabal et al. 

2001). If the reliability of the effective boundary condition is uncertain, the only 

alternative is provided by a numerical solution. It has been argued that this is the correct 

approach as "the wall is where it is and it is a rough wall" (Herwig et al. 2008).  

In simulations, roughness is represented as a corrugation with a well-defined shape, 

which is modelled using numerically generated grids (Gamrat et al. 2008; Herwig et al. 

2008). The finite number of configurations that can be studied leads to uncertainty 

regarding the generality of the conclusions and provides limited tools for identification of 

geometric features that dominate the flow response. A recently proposed alternative relies 

on taking advantage of the reduced-order method for geometry representation, which 

leads to spectral models of roughness geometry (Floryan 1997). This concept permits 

identification of the features of the geometry that have a decisive influence on the system 

response, with irrelevant details of roughness shape removed from consideration so they 

do not mask the essential mechanisms. The global properties can be extracted using 

projection of the surface geometry onto a convenient functional space, e.g. Fourier space, 

with the expectation that only a few leading Fourier modes from the Fourier expansion 

describing the roughness shape matter. Indeed, it has been demonstrated that, in many 

instances, it is sufficient to use only the leading Fourier mode to capture the main 

physical processes with accuracy sufficient for most applications (Floryan 2007). 

 

1.4 Overview of the present work 

The effects of grooves on flow responses in laminar channel flows have been analyzed 

and are presented in this dissertation. Grooves with an arbitrary shape and an arbitrary 

orientation with respect to the flow direction have been considered. The groove geometry 

has been modelled using spectral techniques and therefore the analysis has been limited 

to the shapes that can be expressed by Fourier expansions. Discretization has been 

performed using Fourier expansions in the periodic directions and Chebyshev expansions 
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in direction across the channel. The difficulty associated with the enforcement of the 

boundary conditions on irregular surfaces has been dealt with by implementing either the 

immersed boundary conditions (IBC) concepts or the domain transformation (DT) 

method. The former method relies on employment of a fixed computational domain 

extending in the direction across the channel far enough that it completely encloses the 

grooved channel.  The boundary conditions form internal constraints that provide closing 

conditions for the field equations. In the latter method the physical irregular domain is 

analytically mapped onto a regular computational domain which enables classical 

enforcement of the boundary conditions. Various tests have been conducted to show the 

performance of these algorithms and to prove that they provide spectral accuracy. 

Analysis of drag generation in conduits with transverse corrugated walls has been carried 

out analytically using long wavelength approximation. Three mechanisms for generation 

of additional pressure losses have been identified, i.e. the additional shear drag due an 

increase of the wetted area and the re-arrangement of the shear stress distribution, the 

pressure form drag associated with the mean pressure gradient, and the pressure 

interaction drag associated with the phase difference between the surface geometry and 

the periodic part of the pressure field. 

Detailed analyses of the effects of small-amplitude grooves on pressure losses have been 

performed for pressure-driven flows. It has been shown that losses can be expressed as a 

superposition of two parts, one associated with change in the mean positions of the walls 

and one induced by flow modulations associated with the geometry of the grooves. While 

the former effect can be determined analytically, the latter effect has to be determined 

numerically. Reduced-order geometry model generated by projection of the wall shape 

onto a Fourier space has been used to capture the modulation effects. The results 

demonstrate a strong dependence of the pressure losses on the groove orientation. 

Comprehensive examinations of the extreme cases, i.e. transverse and longitudinal 

grooves, have been carried out. The effects of each of contributing factors on drag 

formation have been studied. Drag-reducing laminar grooves have been identified in the 

case of long wavelength longitudinal grooves. For sufficiently short wavelength grooves, 

it has been shown that the wall shear can be eliminated from the majority of the wetted 
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surface area regardless of the groove orientation, thus exhibiting the potential for the 

creation of drag reducing surfaces. Such surfaces can become practicable if a method for 

elimination of the undesired pressure and shear peaks through proper groove shaping can 

be found. 

Optimal shapes of laminar, drag-reducing longitudinal grooves in a pressure driven flow 

have been determined. It has been demonstrated that the optimal shapes can be 

characterized using reduced-order geometry models involving just a few Fourier modes. 

Two classes of grooves have been considered, i.e. equal-depth grooves, which have the 

same height and depth, and unequal-depth grooves. It has been shown that the optimal 

grooves in the former cases are characterized by a certain universal trapezoid. There 

exists an optimum depth in the latter case and this depth, combined with the 

corresponding groove shape, defines the optimal geometry; this shape is well-

approximated by a Gaussian function. The maximum possible drag reduction has been 

determined for the optimal shapes. The analysis has been extended to kinematically-

driven flows. It has been shown that in this case the longitudinal grooves always increase 

flow resistance regardless of their shape. 

Effects of longitudinal grooves on the flow resistance in a channel flow driven by a 

combination of the pressure gradient and the movement by one of the walls have been 

studied. Three distinct zones leading to an increased flow rate have been identified 

depending on the pressure gradient and the groove wavenumber. Two of these zones 

correspond to grooves with long wavelengths and one to grooves with short wavelengths. 

Optimization has been used to determine shapes that provide the largest increase of the 

flow rate. It has been shown that no optimal shape exists in the latter case if the groove 

amplitude is less than a certain well defined limit as the shortest admissible wavelength 

dominates the system performance. There exists the most effective wavenumber for the 

taller grooves but the optimal shapes could not be determined due to numerical 

limitations. Conclusions regarding the optimal shapes for long wavelength grooves are 

similar to those of pressure-driven flows discussed above. Two distinct zones emerged 

when the reduction of the force acting on the upper wall was used as the performance 

criterion. The best performance for both of these cases was associated to the short 
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wavelength grooves and the system response was qualitatively similar to that found in the 

case of the flow rate increase. 

 

1.5 Outline of the dissertation 

This dissertation is organized as follows.  Chapter 1 describes the main objectives and 

motivations of the present work and provides a literature review on the related subjects. 

 Chapter 2 presents a spectrally-accurate algorithm that is specifically developed for the 

analysis of flows in channels bounded with irregular boundaries in the form of walls with 

grooves of arbitrary shapes and arbitrary orientations. Mechanism of drag formation by 

transverse grooves in the limit of long wavelength grooves is discussed in  Chapter 3. 

 Chapter 4 is devoted to identification and parametrization of features of groove geometry 

that are relevant to pressure losses. Detailed analyses of transverse, longitudinal and 

oblique grooves are given in this chapter together with the discussion of mechanisms 

contributing to the formation of drag.  Chapter 5 is focused on determining optimal shapes 

of laminar, drag-reducing longitudinal grooves in pressure-driven flows. Analysis of 

effects of longitudinal grooves on flow resistance in channel flow driven by a 

combination of pressure gradient and movement by one of the walls is discussed in 

 Chapter 6.  Chapter 7 summarizes the main conclusions and provides suggestions for 

future work. 
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Chapter 2  

2 Spectral Algorithm for the Analysis of Flows in 

Grooved Channels1 

 

2.1 Introduction 

This chapter is focused on the development of the immersed boundary conditions (IBC) 

algorithm suitable for efficient and accurate analysis of flows over straight grooves with 

arbitrary cross-sections. These grooves can have an arbitrary orientation, i.e. they can be 

orthogonal to the flow forming transverse ribs, they can be parallel to the flow forming 

riblets and they can have any orientation in-between forming oblique grooves. Section 

 2.2 provides problem formulation that explores solution efficiencies offered by the 

straight grooves. Section  2.3 discusses discretization procedure and method used for 

imposition of the flow boundary conditions and the required flow constraints within the 

IBC concept. Solution strategy, including description of efficient linear solver, is 

described in Section  2.4. Results of numerical tests that demonstrate spectral accuracy of 

the algorithm are discussed in Section  2.5. Section  2.6 provides a short summary of the 

main conclusions. 

 

2.2 Formulation of the problem 

2.2.1 Geometry of the flow domain 

Consider flow in a channel bounded by two grooved walls extending to ∞±  in the x̂ - 

                                                 

1
 A version of this chapter has been published as − 

Mohammadi, A. & Floryan, J. M. 2012 Spectral algorithm for the analysis of flows in grooved channels. 
Int. J. Numer. Meth. Fluids, 69, 606–638. 
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and ẑ -directions, where the x̂ -axis overlaps with the direction of the flow (Figure  2.1). 

The grooves are periodic with wavelengths αλ ˆ/π2ˆ =x  and βλ ˆ/π2ˆ =z , where α̂  and β̂  

stand for the wavenumbers in the x̂ - and ẑ -directions, respectively. Shapes of the 

grooves are specified as )ˆ,ˆ(ˆ zxyU  and )ˆ,ˆ(ˆ zxyL , where the subscripts U and L refer to the 

upper and lower walls, respectively. The grooves are inclined with respect to the flow 

direction with an angle π/2−φ, i.e. the ridges form angle φ with the ẑ -axis (see Figure 

 2.1). We shall refer to grooves corresponding to φ=0° as the transverse grooves, φ=90° as 

the longitudinal grooves, and φ between 0° and 90° as the oblique grooves. 

 

 

Figure  2.1: Channel with the grooved walls. The )ˆ,ˆ,ˆ( zyx  coordinate system is flow-oriented and 

the ),ˆ,( zyx  system is groove-oriented. The angle φ shows the relative orientation of both 

systems. 

 

The shapes of the grooves can be expressed in terms of Fourier expansions in the form 
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where *),(),( ˆˆ mn
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L HH −−= , stars denote complex conjugates, and NA is 

the number of Fourier modes needed to describe groove geometry. It is convenient to 

introduce a different reference system ),ˆ,( zyx  where the x-axis is perpendicular and the 

z-axis is parallel to the grooves’ ridges (see Figure  2.1). The new system permits 

description of geometry of the grooves in terms of single Fourier expansions, i.e.  
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Transformation between the )ˆ,ˆ,ˆ( zyx  and ),ˆ,( zyx  systems has the form 
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where 















 −

=

)cos(0)sin(

010
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φφ

I  is the transformation matrix and 






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)cos(0)sin(
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Relations between coefficients of expansions ( 2.1)–( 2.2) and ( 2.3)–( 2.4) have the form 

)(),(ˆ n

U

mn

U HH = ,            )(),(ˆ n

L

mn

L HH = ,                                            for    mn −= , ( 2.6) 

0ˆ ),( =mn

UH ,                 0ˆ ),( =mn

LH ,                                                 for    mn −≠ , ( 2.7) 

and relations between the wavenumbers take the form 
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)cos(ˆ φαα = ,             )sin(ˆ φαβ = . ( 2.8) 

 

2.2.2 Governing equations 

The dimensionless continuity and Navier-Stokes equations for incompressible laminar 

flows in the )ˆ,ˆ,ˆ( zyx  coordinates have the form 

0ˆˆ =⋅∇ V , ( 2.9) 

VVV ˆˆˆˆˆ)ˆˆ( 21∇+∇−=∇⋅ −Rep , ( 2.10) 

where ),,(ˆ
ˆˆˆ zyx ∂∂∂=∇ , )ˆ,ˆ,ˆ(ˆ wvu=V  is the velocity vector and p̂  stands for the pressure. 

The above equations are scaled using the half of the average channel height K as the 

length scale, Umax as the velocity scale and ρUmax
2 as the pressure scale where ρ denotes 

the density. The Reynolds number is defined as KUmax/ν  where ν stands for the 

kinematic viscosity. Selection of the convenient velocity scale Umax will be discussed 

later. The no-slip and no-penetration boundary conditions are imposed on the walls, i.e. 

0ˆ =V        at     )ˆ,ˆ(ˆˆ zxyy U=   and  )ˆ,ˆ(ˆˆ zxyy L= . ( 2.11) 

The problem formulation is closed by imposing either the fix volume flow rate or the 

fixed pressure gradient constraints in the x̂ - and ẑ -directions. Detailed specifications of 

these constraints will be presented later in the text. 

 

2.2.3 Reference flow 

Flow between smooth walls is taken as the reference flow and the direction of this flow 

defines the reference flow direction. This flow is driven by a constant pressure gradient 

directed in the negative x̂ -direction resulting in the velocity and pressure fields in the 

form 
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]0,0,ˆ1[]ˆ,ˆ,ˆ[)ˆ(ˆ 2
0000 ywvuy −==V , ( 2.12) 

cxRexp +−= − ˆ2)ˆ(ˆ 1
0 , ( 2.13) 

3

4
ˆdˆd)ˆ(ˆ

1 ˆˆ

0ˆ

1ˆ

1ˆ

0
ˆ

ˆ0 =











= ∫ ∫

=

=

=

−=

zyyuQ
zz

z

y

yz

x

λ

λ
, ( 2.14) 

where 0̂V  is the reference velocity vector, 0p̂  is the reference pressure, c denotes an 

arbitrary constant and xQ ˆ0  is the volume flow rate of the reference flow per unit width of 

the channel. Maximum of the streamwise velocity component of the reference flow is 

selected as the velocity scale Umax. 

 

2.2.4 Flow between grooved walls 

The total velocity and pressure fields are expressed as 

,)]ˆ,ˆ,ˆ(ˆ),ˆ,ˆ,ˆ(ˆ),ˆ,ˆ,ˆ(ˆ)ˆ(ˆ[)ˆ,ˆ,ˆ(ˆ)ˆ(ˆ

)]ˆ,ˆ,ˆ(ˆ),ˆ,ˆ,ˆ(ˆ),ˆ,ˆ,ˆ(ˆ[)ˆ(ˆ

111010 zyxwzyxvzyxuyuzyxy

zyxwzyxvzyxu

+=+=

=

VV

xV
 ( 2.15) 

czyxqzhxhxRezyxpxpp zx ++++−=+= − )ˆ,ˆ,ˆ(ˆˆˆˆ2)ˆ,ˆ,ˆ(ˆ)ˆ(ˆ)ˆ(ˆ ˆˆ
1

10x , ( 2.16) 

where subscripts 0 and 1 refer to the reference flow and flow modifications due to the 

presence of the grooves, respectively, xhˆ  and zhˆ  denote modifications of the mean 

pressure gradient in the x̂ - and ẑ -directions, respectively, and )ˆ,ˆ,ˆ(ˆ zyxq  describes the 

)ˆ,ˆ( zx -periodic part of the pressure modification. 

 The field equations have the form  

0ˆˆˆ 1ˆ1ˆ1ˆ =∂+∂+∂ wvu zyx , ( 2.17) 

1
21

ˆˆ1ˆ11ˆ11ˆ10ˆ11ˆ0 ˆˆˆ)ˆˆˆˆˆˆ(ˆˆˆˆ uReqhuwuvuuuvuu xxzyxyx ∇+∂−−=∂+∂+∂+∂+∂ − , ( 2.18) 
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1
21

ˆ1ˆ11ˆ11ˆ11ˆ0 ˆˆˆ)ˆˆˆˆˆˆ(ˆˆ vReqvwvvvuvu yzyxx ∇+−∂=∂+∂+∂+∂ − , ( 2.19) 

1
21

ˆˆ1ˆ11ˆ11ˆ11ˆ0 ˆˆˆ)ˆˆˆˆˆˆ(ˆˆ wReqhwwwvwuwu zzzyxx ∇+∂−−=∂+∂+∂+∂ − . ( 2.20) 

The no-slip and no-penetration conditions at the walls can be written as 

))ˆ,ˆ(ˆ(ˆ))ˆ,ˆ(ˆ(ˆ 01 zxyuzxyu UU −= , ( 2.21a) 

0))ˆ,ˆ(ˆ(1̂ =zxyv U , ( 2.21b) 

0))ˆ,ˆ(ˆ(ˆ1 =zxyw U , ( 2.21c) 

 

))ˆ,ˆ(ˆ(ˆ))ˆ,ˆ(ˆ(ˆ 01 zxyuzxyu LL −= , ( 2.22a) 

0))ˆ,ˆ(ˆ(1̂ =zxyv L , ( 2.22b) 

0))ˆ,ˆ(ˆ(ˆ1 =zxyw L . ( 2.22c) 

One needs to specify two arbitrary closing conditions. Four types of 

conditions/constraints are of interest: 

1) Fixed volume flow rate per unit width in the x̂ -direction, i.e. 
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−

λλ

λλ , ( 2.23) 

where xQ ˆ1  represents the change in the volume flow rate per unit width in the x̂ -direction 

resulting from the presence of the grooves. 

2) Fixed volume flow rate per unit width in the ẑ -direction, i.e. 
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where zQ ˆ1  is the volume flow rate per unit width in the ẑ -direction resulting from the 

presence of the grooves. 

3) Fixed mean pressure gradient in the x̂ -direction, i.e. 

xxxx hRezyxpxpzyxp ˆ
1

1ˆ0ˆˆ 2)ˆ,ˆ,ˆ(ˆ)ˆ(ˆd)ˆ,ˆ,ˆ(ˆ +−=∂+=∂ − , ( 2.25) 

where overbar denotes the mean value, xx
ˆd/dd ˆ =  and xh ˆ  represents the pressure 

gradient change in the x̂ -direction resulting from the presence of the grooves. 

4) Fixed mean pressure gradient in the ẑ -direction, i.e. 

zzz hzyxpzyxp ˆ1ˆˆ )ˆ,ˆ,ˆ(ˆ)ˆ,ˆ,ˆ(ˆ =∂=∂ , ( 2.26) 

where zhˆ  represents the pressure gradient in the ẑ -direction resulting from the presence 

of the grooves. 

 

2.2.5 Auxiliary reference system 

It is advantageous to carry out numerical solution using the ),ˆ,( zyx -system defined by 

Eq. ( 2.5). The velocity and pressure fields can be expressed in this system as 

,)]ˆ,()ˆ(),ˆ,(),ˆ,()ˆ([)ˆ,()ˆ(

)]ˆ,(),ˆ,(),ˆ,([)(

1011010 yxwywyxvyxuyuyxy

yxwyxvyxu

++=+=

=

VV

xV
 ( 2.27) 

)ˆ,(),(),ˆ,(),()( 010 yxqzhxhzxpzyxpzxpp zx +++=+=x , ( 2.28) 
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where hx and hz denote modifications of the mean pressure gradient in the x- and z-

directions, respectively, )ˆ,( yxq  describes the x-periodic part of the pressure 

modification, and the reference velocity and pressure fields take the form 

→





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yyw
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  ( 2.29a–c) 

{ } [ ] czxRec

z

y

x

Rezxp ++−=+
















−= −−− )sin()cos(2ˆ0,0,2),( 111
0 φφI  .  ( 2.30) 

The flow is a function of only two coordinates, i.e. )ˆ,( yx , which reduces the field 

equations to the following form  

01ˆ1 =∂+∂ vu yx ,  ( 2.31) 

1
21

10011ˆ111 D̂ uReqhuuuvuvuu xxxyx ∇+∂−−=∂++∂+∂ − ,  ( 2.32) 

1
21

ˆ101ˆ111 vReqvuvvvu yxyx ∇+−∂=∂+∂+∂ − ,  ( 2.33) 

1
21

10011ˆ111 D̂ wRehwuwvwvwu zxyx ∇+−=∂++∂+∂ − ,  ( 2.34) 

where 22222 ˆ// yx ∂∂+∂∂=∇  and ŷd/dD̂ = . The reader may note that ( 2.31), ( 2.32) and 

( 2.33) do not contain w1 and thus they form an independent system that can be solved 

separately from ( 2.34). It will be shown later that such separation may be carried out only 

for certain types of flow constraints. 

The boundary conditions take the form 

))(ˆ())(ˆ( 01 xyuxyu UU −= ,         ( 2.35a) 

0))(ˆ(1 =xyv U ,        ( 2.35b) 
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))(ˆ())(ˆ( 01 xywxyw UU −= ,  ( 2.35c) 

 

))(ˆ())(ˆ( 01 xyuxyu LL −= ,         ( 2.36a) 

0))(ˆ(1 =xyv L ,         ( 2.36b) 

))(ˆ())(ˆ( 01 xywxyw LL −= .  ( 2.36c) 

The volume flow rate constraints ( 2.23) and ( 2.24) expressed in the ),ˆ,( zyx  take the 

form 
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 ( 2.37a,b) 

where Qx and Qz are the volume flow rates per unit width in the x- and z-directions, 

respectively. The pressure gradient constraints ( 2.25) and ( 2.26) expressed in the ),ˆ,( zyx  

take the form 
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 ( 2.38a,b) 

If the volume flow rate constraints are chosen, Eqs ( 2.31)–( 2.33) with boundary 

conditions ( 2.35a,b) and ( 2.36a,b) and constraint ( 2.37a) become independent of w1 and 

can be solved separately. Their solution describes a two-dimensional motion in the )ˆ,( yx  

plane. The flow in the z-direction can be determined in the second step of the solution 

process by solving Eq. ( 2.34) with the boundary conditions ( 2.35c) and ( 2.36c) and 

constraint ( 2.37b). 
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If the pressure gradient constraints are chosen, Eqs ( 2.31)–( 2.33) with boundary 

conditions ( 2.35a,b) and ( 2.36a,b) and constraint ( 2.38a) also become independent of w1 

and can be solved separately. The flow in the z-direction can be determined by solving 

Eq. ( 2.34) with the boundary conditions ( 2.35c) and ( 2.36c) and constraint ( 2.38b) in the 

second step of the solution process. 

If the flow rate and pressure gradient constraints are mixed, e.g. either ( 2.37a) and 

( 2.38b) or ( 2.37b) and ( 2.38a) are selected, the decoupling does not occur and one needs 

to solve Eqs ( 2.31)–( 2.34) as a single system.  

We shall focus in this work either on the fixed flow rate constraints or on the fixed 

pressure gradient constraints in both directions and thus will be able to take advantage of 

the system separation. 

It is convenient to formulate problem ( 2.31)–( 2.33) in terms of stream function defined as  

10 Ψ+Ψ=Ψ , ( 2.39a) 

)cos()3/2ˆ3/ˆ( 3
0 φ++−=Ψ yy , ( 2.39b) 

1ˆ1 Ψ∂= yu , ( 2.39c) 

11 Ψ−∂= xv , ( 2.39d) 

where Ψ0, Ψ1 and Ψ are the stream functions of the reference flow, the flow 

modifications and the total flow in the x-direction, respectively. Substitution of Ψ1 into 

( 2.32)–( 2.33) and elimination of pressure results in  

[ ] [ ],}{}{}{}{D̂ 11ˆ1111ˆ11ˆ1
41

10
2

1
2

0 vvvuvuuuReuu yxxyxyxx ∂+∂∂+∂+∂−∂=Ψ∇−Ψ∂−Ψ∇∂ −  ( 2.40) 

where curly brackets denote the velocity products.  

The stream function normalization condition has been set by assuming that the total 

stream function takes zero value at the lower wall, i.e. 
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0))(ˆ())(ˆ())(ˆ( 10 =Ψ+Ψ=Ψ xyxyxy LLL .  ( 2.41) 

The problem formulation for the flow in the )ˆ,( yx  plane is closed either by selecting the 

fixed volume flow rate constraint ( 2.37a) or the fixed pressure gradient constraint ( 2.38a). 

The flow in the z-direction is described by Eq. ( 2.34), which is written as 

zxxyxxy hwwRewuww −Ψ∂=∇−∂+∂Ψ∂−∂Ψ∂ −
011

21
101ˆ111ˆ D̂   ( 2.42) 

to underscore its linearity in w1 , and is subjected to the boundary conditions ( 2.35c) and 

( 2.36c). The closing condition needs to follow the type of constraint selected for the flow 

in the )ˆ,( yx  plane and can be expressed either in terms of the fixed volume flow rate 

( 2.37b) (if ( 2.37a) was used) or the fixed pressure gradient ( 2.38b) (if ( 2.38a) was used). 

 

2.3 Numerical discretization 

The main difficulty associated with the implementation of the spectral discretization in 

the problem formulated above arises due to the irregularity of the flow domain. This 

difficulty is overcome by implementing the IBC concept which relies on the use of a 

fixed computational domain extending in the ŷ -direction far enough so that it completely 

encloses the grooved channel (see Figure  2.2). 

Standard definition of the Chebyshev polynomials is to be used for discretization in the 

transverse direction which necessitates mapping of the ŷ -coordinate onto the standard 

domain [−1,1]. The mapping has the form 

[ ] 1)1(ˆ ++−Γ= tYyy ,   ( 2.43) 

where Γ=2/(2+Yt+Yb), Yt and Yb denote the upper and lower extremities of the flow 

domain ( 1))(ˆmax( −= xyY Ut , ))(ˆmin(1 xyY Lb −−=  ) and  y extends from −1 to 1.  
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Figure  2.2: Cross-section through the computational domain at z=const. It can be seen that 

computational domain encloses the flow domain, where Yt and Yb denote the upper and lower 

extremities of the flow domain. 

 

The wall geometries in the new coordinate system can be expressed as 

∑
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UU eAxy
α)()( , ( 2.44a) 

∑
=
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=
A

A

Nn
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xinn

LL eAxy
α)()( , ( 2.44b) 

where )(n

UA  and )(n

LA  are defined as 

][1 )0()0(
UtU HYA +−Γ+= ,                           )()( n

U

n

U HA Γ=   for   n≠0 ,                          ( 2.45) 

]2[1 )0()0(
LtL HYA +−−Γ+= ,                      )()( n

L

n

L HA Γ=   for   n≠0 .                  ( 2.46) 

 

2.3.1 Discretization of the field equation 

2.3.1.1 Discretization in the periodic direction 

The solution is assumed to be periodic in the x-direction and thus all unknowns can be 
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expressed using Fourier series. The Fourier expansions of the modification stream 

function Ψ1, z-velocity component w1 and velocity products on the right-hand side of 

Eq.( 2.40) take the form 

∑
=

−=

Φ≈Ψ
M

M
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eyyx

α)(),( )(
1 ,              ( 2.47a) 
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1 , ( 2.47b) 

 

∑
=

−=

≈
M

M

Nn

Nn

xinn
eyuuyxuu

α)(}{),}({ )(
1111 , ( 2.48a) 

∑
=

−=

≈
M

M

Nn

Nn

xinn
eyvuyxvu

α)(}{),}({ )(
1111 , ( 2.48b) 
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1111 , ( 2.48c) 

where *)()( nn −Φ=Φ , *)()( n

w

n

w ff
−= , *)(

11
)(

11 }{}{ nn uuuu −= , *)(
11

)(
11 }{}{ nn vuvu −= , 

*)(
11

)(
11 }{}{ nn vvvv −=  and the Fourier expansions is truncated at NM which is greater than 

NA. Substitution of ( 2.47a) and ( 2.48a–c) into ( 2.40) and separation of Fourier modes 

result in a nonlinear system of ordinary differential equations for the modal functions 

)(nΦ  in the form 
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                                                                                                 for MM NnN ≤≤− , 

( 2.49) 
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where qqq yd/dD =  and q=1,2,3,4. Substitution of ( 2.47a,b) into ( 2.42) and separation of 

Fourier modes results in the following system of linear differential equations for the 

modal functions )(n

wf  

[ ]
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 for MNn ≤≤ ||1 , ( 2.50a) 
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−− )()()()0(22 DDD α ,                   for 0n = . ( 2.50b) 

The suitable form of boundary conditions for the modal functions will be discussed in 

Section  2.3.2. 

 

2.3.1.2 Discretization in the transverse direction 

Chebyshev polynomials are used for discretization in the y-direction, i.e. 
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11 )()(}{ , ( 2.52c) 

where Tk denotes the kth Chebyshev polynomial of the first kind and the expansions are 

truncated after NT+1 terms. Substituting the above expansions into ( 2.49) and applying 

the Galerkin projection method lead to NT+1 linear algebraic equations for each Fourier 

mode. The projection equations corresponding to Eq. ( 2.49) are constructed by taking the 

inner product of both sides of this equation with )( yT j , i.e. 
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where the inner product is defined as  

∫
−

=
1

1

d)()()()(),( yyygyfygyf ω
ω

, ( 2.54) 

21/1)( yy −=ω  is the weight function, and f and g denote arbitrary functions. 

Appendix A provides description for evaluation of different inner products. Only the first 

NT−3 equations of type ( 2.53) are retained creating space for imposition of the boundary 

conditions ( 2.35a,b) and ( 2.36a,b), normalization condition ( 2.41) and one of the suitable 

constraints using the tau-like procedure.  

Projection equations corresponding to ( 2.50) have the form  
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                                                                                                                  for  n=0, 

( 2.55b) 

where 20 −≤≤ TNj  and the last two equations have been discarded to make space for 

the imposition of the boundary conditions ( 2.35c)–( 2.36c) and a suitable constraint. 

 

2.3.2 Numerical treatment of boundary conditions and constraints 

2.3.2.1 Boundary conditions 

The boundary conditions are to be enforced on the surface of the grooves using the IBC 

concept. We shall focus our attention on the upper wall as implementation of boundary 

conditions at the lower wall is identical. Boundary conditions ( 2.35a–c) involve 

evaluation of the unknowns ))(,()( 1,1 xyxuxu UU = , ))(,()( 1,1 xyxvxv UU =  and 

))(,()( 1,1 xyxwxw UU =  as well as the reference velocity components 

))(,()( 0,0 xyxuxu UU =  and ))(,()( 0,0 xyxwxw UU =  along the upper wall defined by 

Eq.( 2.44a). The unknowns u1,U, v1,U and w1,U are periodic in x and can be expressed in 

terms of Fourier series as 

∑
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f

f

Nn
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xinn

UU exu α)(
,1 )( ,            ( 2.56a) 
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where the value of Nf will be determined later in the discussion. Relations for evaluation 

of the expansion coefficients )(n

UΩ , )(n

UΛ  and )(n

UΞ  can be obtained by expressing u1,U, v1,U  

and w1,U  using Eqs ( 2.39c,d), ( 2.47a,b) and ( 2.51a,b) in the form 
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Values of Chebyshev polynomials and their derivatives evaluated along the wall 

represent periodic functions of x and thus can be expressed using Fourier expansions in 

the form 

∑
=

−=

=
S

S
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ximm

UkUk eBxyT
α)(

,))(( ,                      ( 2.58a) 
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,))((D , ( 2.58b) 

where max(NS)=NT*NA. It is simpler for the following presentation to consider 

NS=NT*NA with the additional terms taking zero values in a natural way. Methodology 

for evaluation of coefficients )(
,
m

UkB  in ( 2.58a) is based on the well-known recurrence 

relation )()(2)( 11 yTyyTyT kkk −+ −=  (with 1)(0 =yT  and yyT =)(1 ), which leads to 
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Similarly, the expansion coefficients )(
,
m

UkC  in ( 2.58b) can be evaluated by taking 

advantage of the recurrence relation )(2)(D)(D2)(D 11 yTyTyTyyT kkkk +−= −+  (with 

0)(D 0 =yT  and 1)(D 1 =yT ) which leads to 
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Substitution of ( 2.58a,b) into ( 2.57a–c) results in  
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where mnh += , and )(
,

nh

UkB
−  and )(

,
nh

UkC
−  take their corresponding values from Eqs ( 2.59)–

( 2.60) for SNnh ≤−  and are zero for SNnh >− . Re-arrangement of indices mn →  

and nh →  in ( 2.61a–c) and comparison of these relations with ( 2.56a–c) lead to 

MATf NNNN +∗=  and expressions for )(n

UΩ , )(n

UΛ  and )(n

UΞ  in the form 
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where )(
,

mn

UkB
−  and )(

,
mn

UkC
−  take their corresponding values from Eqs ( 2.59)–( 2.60) for 

SNmn ≤−  and are zero for SNmn >− . 

Boundary conditions ( 2.35a–c) require evaluation of the reference velocity components 

u0,U and w0,U along the wall. Their values represent known periodic functions of x and 

thus can be expressed as Fourier expansions in the form 

∑
∗=

∗−=

=
A

A

Nn

Nn

xinn

UU euxu
2

2

)(
,0,0 )( α , ( 2.63a) 

∑
∗=

∗−=

=
A

A

Nn

Nn

xinn

UU ewxw
2

2

)(
,0,0 )( α . ( 2.63b) 

Details of the methodology used for the evaluation of Fourier coefficients )(
,0
n

Uu  and )(
,0
n

Uw  

are given in Appendix B. Substitution of ( 2.62a–c) and ( 2.63a,b) into ( 2.35a–c) provides 

boundary relations required in order to enforce the boundary conditions at the upper wall 
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Similar process applied at the lower wall leads to the following relations 
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One may note that the non-zero values of )(
,

mn

UkB
− , )(

,
mn

UkC
− , )(

,
mn

LkB
−  and )(

,
mn

LkC
−  occur only 

for SNmn ≤−  based on recurrence relations ( 2.59)-( 2.60). 

Since discretization of the field variables is limited to NM modes, where NM < Nf , only NM 

of the above relations can be enforced directly with the remaining ones providing a 

measure of error in the enforcement of boundary conditions and a test for consistency of 

the method. Enforcement of a larger number of boundary relations leads to an over-

determined formulation of the IBC method which is advantageous in the case of more 

extreme geometries (Husain et al. 2009). Over-determined formulation is not used in the 

present work. 

 

2.3.2.2 Stream function normalization condition 

The arbitrary constant in the definition of the stream function has been selected in the 

present analysis by setting the total stream function to be zero at the lower wall. Values 

of the reference flow stream function evaluated along this wall represent a known 

periodic function which can be expressed using Fourier expansion (for details see 

Appendix B) in the form 

∑
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The flow modification stream function Ψ1 can be expressed at the lower wall using Eqs 

( 2.47a), ( 2.51a) and a relation similar to ( 2.58a) in the form 
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where the non-zero values of )(
,

mn

LkB
−   occur only for SNmn ≤− . Substitution of ( 2.66) 

and ( 2.67) into ( 2.41) and extraction of mode zero provide the discretized form of the 

normalization condition, i.e. 
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where the nonzero values of )*(
,
m

LkB  occur only for SNm ≤ . 

 

2.3.2.3 Fixed pressure gradient constraints 

One can specify an arbitrary constraint to close the problem formulation. In this analysis, 

either the fixed pressure gradient or the fixed flow rate conditions in both the x̂ - and ẑ -

directions are used. In this section we shall describe implementation of the fixed pressure 

gradient constraints while description of the fixed flow rate constraints is given in 

Appendix C.  

Consider situation when the pressure gradients along the x̂ - and ẑ -directions are known. 

These pressure gradients may be expressed as a sum of the reference flow pressure 

gradients and gradient modifications xhˆ  and zhˆ . When these modifications are taken as 

zero, the pressure gradients in the smooth and grooved channels remain the same. One 

can solve such problem and determine how mass flow rate is changed due to addition of 

the grooves.  

Pressure gradient modifications expressed in the auxiliary reference system take the form 
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)sin()cos( ˆˆ φφ zxx hhh −= , ( 2.69a) 

)cos()sin( ˆˆ φφ zxz hhh += . ( 2.69b) 

Equation ( 2.32) written for mode zero using ( 2.39), ( 2.47a), ( 2.48b) and ( 2.69a) takes the 

form  

[ ] )(}{D)sin()cos()(D )0(
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yvuRehhRey zx Γ+−=ΦΓ φφ ; ( 2.70) 

its integration between the walls leads to 
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Re-arrangement of the above equation gives the final form of the relation used to enforce 

the fixed pressure gradient constraint in the x-direction, i.e.  
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The above relation can be imposed at any x-location. 

The pressure gradient constraint for the z-direction is obtained by inserting ( 2.69b) into 

( 2.55b), i.e. 
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2.4 Solution strategy 

The solution process consists of two steps, i.e. solution of the nonlinear problem ( 2.53) to 

determine flow in the (x,y) plane and the follow up solution of the linear problem ( 2.55) 

to determine flow in the z-direction. We shall begin discussion with the first step. 

2.4.1 Determination of flow in the (x,y) plane 

Governing equation ( 2.53) with the boundary conditions ( 2.64a,b)–( 2.65a,b), the stream 

function normalizing condition ( 2.68) and the fixed pressure gradient constraint ( 2.72) 

can be expressed in matrix notation in the form 

)(xRLx =  ( 2.74) 

where L denotes the coefficient matrix of size p×p with p=(2NM+1)×(NT+1), x is a p-

dimensional vector of the unknown Chebyshev coefficients )(n

kG  and R stands for the p-

dimensional right-hand side vector which contains nonlinearities. This system is solved 

iteratively where the right-hand side is considered to be known. The iteration process is 

explained in Section  2.4.1.1 and the method for updating the nonlinear terms is described 

in Section  2.4.1.2. Since system ( 2.74) has to be solved repeatedly, the overall cost of the 

computations depends on the availability of an efficient solver. This issue is discussed in 

Section  2.4.1.3. 

 

2.4.1.1 Iteration process 

The solution process relies on iterations where the unknown xj is corrected in a sequence 

of steps until a convergence criterion is satisfied. The iteration process consists of the 

following steps (subscript j denotes iteration number): 

(i) Solve Eq. ( 2.74) neglecting the nonlinear terms. This solution provides the first 

approximation x0 of the unknowns. 

(ii) Compute the first approximation R0 of the right-hand side vector using x0. 
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(iii) Solve Eq. ( 2.74) with the new right side, i.e. 

j

1

1j RLx −
+ = . ( 2.75) 

(iv) Check the convergence criterion. If the criterion is not satisfied, go to step  (ii) 

using the current iterate xj rather than x0. Calculations are complete if the 

convergence criterion is satisfied. The convergence criterion used in this work has 

the form 

( ) 1410/ −
++ <− 1jj1j xxx . ( 2.76) 

In the above, |xj+1| is the L2-norm of the current vector of Chebyshev coefficients 

and |xj+1−xj| is the L
2-norm of the difference between the coefficients’ vectors 

computed at two consecutive iterations. The rate of convergence of the iterative 

process can be controlled using the under/over-relaxation. The relaxation process 

has been implemented using the following formula 

][ jcompj1j xxxx −+=+ RF , ( 2.77) 

where xcomp denotes the current solution, xj+1 stands for the accepted value of the 

next iterate and RF denotes the relaxation factor. 

 

2.4.1.2 Method for updating the nonlinear terms 

The nonlinear terms are updated based on the information available from the previous 

iteration. The velocity components u1 and v1 are computed by transferring data into the 

physical space using the known modal functions )()( ynΦ , i.e.  
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Φ−=
M
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Nn
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xinn
eyniyxv

αα )(),( )(
1 . ( 2.78b) 

The multiplications are carried out in the physical space and the Fourier expansions 

expressing velocity products are evaluated using fast Fourier transform (FFT) procedure. 

At each y-location, the u1 and v1 are evaluated at equidistant points along the x-axis and 

the last point is discarded due to periodicity. 2MM+2 locations (where MM=3/2×NM) are 

used, i.e. advantage is taken of the 3/2 rule to control the aliasing error.  The velocity 

products {u1u1}, {u1v1} and {v1v1} are evaluated at this location and values of the modal 

functions of their Fourier expansions, i.e. {u1u1}
(m), {u1v1}

(m) and {v1v1}
(m), for this y-

location are computed using FFT, where m varies from −MM to MM. Only modes from 

−NM to NM are retained. The final step consists of determination of Chebyshev expansions 

of the modal functions, i.e. evaluation of coefficients )(n

kK , )(n

kM  and )(n

kR  in Eq. ( 2.52). 

 

2.4.1.3 Efficient linear solver 

Storage requirements can be reduced and solution efficiency can be improved by taking 

advantage of the special structure of matrix L. The structure of L for NM =5 and NT =30 is 

shown in Figure  2.3A where all non-zero components have been marked in black and the 

unknowns have been organized according to the mode number −NM,…,0,…,NM. The 

upper triangular blocks correspond to the modal equations and are uncoupled. The only 

coupling between blocks is provided through the boundary relations which are marked as 

black horizontal lines (four lines per block, see Figure  2.3A). 

In the first step L is re-organized following concepts described in Husain & Floryan 

(2013). The entries corresponding to the boundary relations are moved to the bottom of L 

forming a block diagonal matrix L1 of size q×p, where q=(2NM+1)×(NT−3), and a full 

matrix L2 of size r×p, where r=4×(2NM+1). In order to extract the largest possible square 

matrix A (of size q×q) from L1, the unknown Chebyshev coefficients corresponding to 

the four lowest polynomials are placed at the end of the vector of unknowns resulting in 

the structure illustrated in Figure  2.3B. The resultant square matrix A of size q×q has a 



45 

 

block diagonal structure with each block of size (NT−3)×(NT−3). The rectangular matrix 

B of size q×r also has a block diagonal form with blocks of size (NT−3)×4 whereas the 

full rectangular matrix C has size r×q and the full square matrix D has size r×r. Matrices 

B and D contain coefficients corresponding to )(
0

n
G , )(

1
nG , )(

2
nG  and )(

3
n

G , while 

information associated with the remaining coefficients is stored in matrices A and C 

(Figure  2.3B). 

 

               

 (A)                                                                          (B) 

Figure  2.3: Structure of the coefficient matrix L for NM=5 and NT=30. The nonzero elements are 

marked in black. The sparsity of L is 0.89. Figure  2.3A - the structure of the coefficient matrix 

before the re-arrangement (see Eq. ( 2.74)), Figure  2.3B - the structure of the coefficient matrix 

after the re-arrangement (see Eq. ( 2.79a,b) and Section  2.4.1.3). 

 

Equation ( 2.74) can now be re-written in the from 

121 RBxAx =+ ,                                                                ( 2.79a) 

221 RDxCx =+ , ( 2.79b) 
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where vector x1 contains unknowns )(n

kG  for >−∈< MM NNn , , >∈< TNk ,4 , and vector 

x2 contains unknowns )(n

kG  for >−∈< MM NNn , , >∈< 3,0k . Solution of ( 2.79a,b) can 

be written as 

[ ] ( )1

1

2

11

2 RCARBCADx −−− −−= ,                            [ ]21

1

1 BxRAx −= − .            ( 2.80) 

The above procedure results in substantial reduction in the memory usage as one needs to 

store only the diagonal blocks of matrices A and B. The efficiency gains result from 

construction of A−1, CA
−1, CA

−1
B, A−1

R1 and A−1
B block by block rather than working 

with complete matrices. Use of complex conjugate properties of the modal functions 

provides further efficiencies. 

 

2.4.2 Determination of flow in the z-direction 

2.4.2.1 Direct method 

Equation ( 2.55) with fixed pressure gradient constraint ( 2.73) and the boundary 

conditions ( 2.64c)–( 2.65c) form a linear system of algebraic equations in the form  

1ww1w RxL = ,  ( 2.81) 

where L1w is the coefficient matrix of size p×p, xw denotes a p-dimensional vector of the 

unknown Chebyshev coefficients )(n

kE  and R1w stands for the p-dimensional right-hand 

side vector containing information about the flow in the (x,y) plane. The structure of this 

matrix for NM =5 and NT =30 is shown in Figure  2.4A. Matrix L1w has banded structure, 

but the width of the band is so large that the matrix has to be treated as a full matrix. 

 

Equation ( 2.81) is linear and its solution can be easily computed in the form 

1w

1

1ww RLx
−= . ( 2.82) 
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Because of the size of the matrix, this method (regardless how the inverse or its 

equivalent is computed) as well as the associated memory requirements are excessive, 

which leads to a search for a more efficient procedure. 

 

                

(A)                                                                             (B) 

Figure  2.4: Structure of the coefficient matrices L1w (Figure  2.4A; see Eq. ( 2.81)) and L2w 

(Figure  2.4B; see Eq. ( 2.86)) for NM=5 and NT=30. The nonzero elements are marked in black. 

L1w and L2w have sparcities 0.27 and 0.94, respectively. 

 

2.4.2.2 Iterative method 

We start by re-writing the z-momentum equation ( 2.34) in terms of velocity products and 

implement transformation ( 2.43) which result in 

( ) ( )011111101
22

1
2 D}{}{ wvwvwuhRewReuww yxzxyx Γ+∂Γ+∂+=∂−∂Γ+∂ . ( 2.83) 

Equation ( 2.83) is discretized using Fourier expansion in the x-direction and Chebyshev 

expansion in the y-direction resulting in  
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[ ] ,,)cos()sin(D,D, 0ˆˆ
0

)0(

0

)0(22
TThhReJTTReETT jzx

Nk

k

kkj

Nk

k

kkj

TT

φφ ++Γ=Γ ∑∑
=

=

=

=

 for n=0, ( 2.84b) 

where 

∑ ∑
=
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=

=

≈
M

M

TNn

Nn

Nk

k
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n

k eyTPyxwu
0
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k eyTJyxwv
0

)(
11 )(),}({ α . ( 2.85b) 

The fixed pressure gradient constraint is accommodated in Eq. ( 2.84b). Equation ( 2.84) 

with boundary conditions ( 2.64c)–( 2.65c) can be written using matrix notation as 

)( w2ww2w xRxL = , ( 2.86) 

where L2w is the coefficient matrix of size p×p with structure similar to that shown in 

Figure  2.3A, xw denotes a p-dimensional vector of the unknown Chebyshev coefficients 

)(n

kE  and R2w stands for the p-dimensional right-hand side vector containing velocity 

products, i.e. the final information about the flow in the (x,y)-plane and the current (i.e. 

from the most recent iteration) information about the flow in the (y,z) plane. L2w is re-

organized in the same way as L resulting in the matrix structure illustrated in Figure 

 2.4B. The iteration process is similar to that discussed in Section  2.4.1.1. The relevant 

linear system is solved at each iteration using methodology described in Section  2.4.1.3 

with the velocity products updated using methodology described in Section  2.4.1.2. 
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2.4.2.3 Comparison of the methods 

The direct method always provides solution, however the computational cost and the 

memory requirements could be very large due to the size and the structure of the matrix. 

The iterative method requires significantly less memory and the computational cost per 

iteration is very small as the algorithm takes advantage of the special structure of the re-

arranged matrix. The iterative method may however either diverge or require a large 

number of iterations. In all tests carried out as a part of this work the iterative method 

always converged and it was by about 40 times faster than the direct method. 

 

2.4.3 Post-processing 

In the post-processing step one can compute the flow rates in the x- and z-directions. The 

flow rate in the x-direction per unit width Qx is computed as the difference between 

values of the stream function at the upper and lower walls. The flow rate in the z-

direction per unit width Qz can be computed by integrating w. The flow rates in the 

reference direction ( x̂ -direction) and in the spanwise direction ( ẑ -direction) can be 

computed subsequently from the following relations 

)sin()cos(ˆ φφ zxx QQQ += ,                             ( 2.87a) 

)cos()sin(ˆ φφ zxz QQQ +−= . ( 2.87b) 

All results reported in this work have been obtained with the fixed pressure gradient 

constraints, i.e. 0ˆˆ == zx hh .  

The pressure field can also be computed in the post-processing step. Appendix D 

describes the details of the evaluation of the pressure field. 
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2.5 Numerical verification 

2.5.1 Algorithm testing 

This section discusses results of various tests carried out in order to demonstrate the 

spectral accuracy of the algorithm and to characterize the effects of various numerical 

and physical parameters on the accuracy of the solution.  

In order to simplify discussion, a simple geometry consisting of a smooth upper wall and 

sinusoidal grooves placed at the lower wall inclined with angle π/2−φ with respect to the 

flow direction (see Figure  2.1) has been selected for testing purposes. The flow direction 

is defined in this discussion as the direction of the reference flow, i.e. flow without 

grooves. The geometry of the channel in the physical )ˆ,ˆ,ˆ( zyx  reference system is given 

as 

1ˆ =Uy , ( 2.88a) 

( )[ ]zxSzxyL
ˆ)sin(ˆ)cos(cos1)ˆ,ˆ(ˆ φφα −⋅+−= , ( 2.88b) 

where S and α are the amplitude and the wavenumber of the grooved wall, and in the 

auxiliary system ),ˆ,( zyx  as 

1ˆ =Uy , ( 2.89a) 

)cos(1)(ˆ xSxyL α⋅+−= . ( 2.89b) 

Two measures of error have been used in the discussion, i.e. 

( ) 2/1222

11
π20

max
)],(),([)],(),([)],(),([sup yxwyxwyxvyxvyxuyxu refrefref

y
x

−+−+−=

≤≤−
≤≤ α

V , 
( 2.90) 

( ) 2/1222

π20

)()()(sup xwxvxu LLL
x

L ++=
≤≤

∞
α

V , ( 2.91) 

where u, v and w are the computed total velocity components, uref, vref and wref  are the 

reference values of the same quantities computed with a very high accuracy, i.e. using 
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NT=70 Chebyshev polynomials and NM=20 Fourier modes, and uL(x)=u(x,yL(x)), 

vL(x)=v(x,yL(x)), wL(x)=w(x,yL(x)) denote velocity components evaluated along the lower, 

grooved wall. Equation ( 2.90) measures the maximum error in whole computational 

domain while Eq. ( 2.91) measures the maximum error at the irregular boundary (grooved 

wall). 
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   (A)         (B) 

Figure  2.5: Variations of the maximum error over the whole flow domain 
max

V  (see Eq. ( 2.90)) 

as a function of the number of Chebyshev polynomials NT used in the computations for the model 

problem described by Eq. ( 2.89a,b) with the groove wavenumber α=2 and the groove orientation 

angle φ=30° for selected values of the groove amplitude S with the flow Reynolds number Re=50 

(Figure  2.5A) and for selected values of the flow Reynolds number Re with the groove amplitude 

S=0.01 and 0.025 (Figure  2.5B). All tests have been carried out using NM=20 Fourier modes. 

 

Results displayed in Figures 2.5 and 2.6 demonstrate that the maximum error in the 

whole domain 
max

V  decreases exponentially as the number of Chebyshev polynomials 

NT as well as the number Fourier modes NM used in the calculation increase. The error at 

the irregular boundary 
∞LV  also decreases exponentially as the total number of Fourier 

modes NM increases (see Figure  2.6). This error is equal to the maximum error over the 



52 

 

whole domain when a high enough number of Chebyshev polynomials are used in the 

computations, i.e. in such situations the maximum error occurs at the irregular boundary. 
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(A)        (B) 

Figure  2.6: Variations of the maximum error over the whole flow domain 
max

V  and the 

maximum error at the grooved wall 
∞LV  as a function of the number of Fourier modes NM 

used in the computations for the model problem described by Eq. ( 2.89a,b) with the groove 

wavenumber α=2 and the groove orientation angle φ=30° for selected values of the groove 

amplitude S with the flow Reynolds number Re=50 (Figure  2.6A) and for selected values of the 

flow Reynolds number Re with the groove amplitude S=0.01 and 0.025 (Figure  2.6B). All tests 

have been carried out using NT=70 Chebyshev polynomials. It can be seen that 
∞

= LVV
max

. 

 

Figure  2.7 displays distributions of the absolute values of the real parts of the modal 

functions DФ(n) and fw
(n) for higher Fourier modes (n>15) in the region close to grooved 

wall. These results suggest that higher Fourier modes may play an important role in the 

solution in the case of grooves with shorter wavelengths. Since the corresponding modal 

functions have extremely thin boundary layers at the ends of the solution domain (see 

Figure  2.7), a larger number of Chebyshev polynomials may be necessary in order to 

resolve these layers and to avoid spurious oscillations outside these layers. 
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          (A)      (B) 

Figure  2.7: Distributions of the absolute value of the real part of the modal functions DФ(n) 

(Figure  2.7A) and fw
(n) (Figure  2.7B) for higher modes (n>15) in the region very close to the 

lower wall for the model geometry described by Eq. ( 2.89a,b) with the groove wavenumber α=5, 

the groove amplitude S=0.06, the flow Reynolds number Re=50 and the groove orientation angle 

φ=30°. Formation of boundary layers around the grooved wall can be observed. Computations 

have been carried out using NM=20 Fourier modes and NT=70 Chebyshev polynomials. 

 

Magnitudes of the modal functions DФ(n) and fw
(n) can be measured using Chebyshev 

norms defined as 

2/11

1
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
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, ( 2.92) 

2/11

1

*)()()( d)()()(
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yyyfyff
n

w

n

w

n

w ω
ω

, ( 2.93) 

where 21/1)( yy −=ω  and the superscript n corresponds to the mode number. Results 

displayed in Figure  2.8 demonstrate exponential decrease of the Chebyshev norms with 

the mode number n and demonstrate spectral convergence of Fourier expansions. 
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 (A)          (B) 

Figure  2.8: Variations of the Chebyshev norms of the modal functions DФ(n) (Figure  2.8A) and 

fw
(n) (Figure  2.8B) as a function of the Fourier mode number for the model geometry described by 

Eq. ( 2.89a,b) with the groove wavenumber α=1, the flow Reynolds number Re=50 and selected 

values of the groove amplitudes S. Computations have been carried out using NM=20 Fourier 

modes and NT=70 Chebyshev polynomials. 

 

 
    x 

Figure  2.9: Distributions of velocity components computed at the grooved wall uL(x), vL(x) and 

wL(x) for the model geometry described by Eq. ( 2.89a,b) with the groove wavenumber α=5, the 

groove amplitude S=0.06 and the groove orientation angle φ=30°. Computations have been 

carried out using NM=20 Fourier modes and NT=70 Chebyshev polynomials. 

 

Figure  2.9 displays distributions over a single wavelength of the computed values of the 

velocity components at the grooved wall uL(x), vL(x) and wL(x). These quantities have 
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oscillatory variations with the maxima occurring in the location corresponding to the 

widest channel opening. This fact can be explained by noting that the modal functions 

Ф
(n) and fw

(n) reach their maxima around the extremes of the solution domain. Because of 

that, contributions of higher Fourier modes are relatively more important around these 

regions and their omission results in the higher absolute error as compared to the 

boundary points located closer to the interior of the computational domain. This effect is 

more pronounced for larger values of the grooves wavenumber α as the corresponding 

boundary layers are thinner. 

 

 
    Mode number n 

Figure  2.10: Fourier spectra of velocity components computed at the grooved wall uL(x), vL(x) 

and wL(x) for the model geometry described by Eq. ( 2.89a,b) with the groove wavenumber α=5, 

the groove amplitude S=0.06 and the groove orientation angle φ=30°. Computations have been 

carried out using NM=20 Fourier modes and NT=70 Chebyshev polynomials. 

 

The Fourier spectra of velocity components evaluated along the grooved wall, i.e. 

∑
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=
n

n

xinn

L eWxw
α)()( , should not contain 

any harmonics of order lower than the number of Fourier modes used in the enforcement 

of boundary conditions ( 2.65). This property provides means for testing the consistency 

of the algorithm. Results displayed in Figure  2.10 have been obtained with NM=20 
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Fourier modes and show the absence of the first 20 Fourier modes in the spectra of 

boundary errors and thus confirm the consistency of the algorithm. 

 

      
                             Mode number n                                                      Mode number n 

    (A)         (B) 

Figure  2.11: Fourier spectra of the streamwise uL(x) (Figure  2.11A) and the spanwise wL(x) 

(Figure  2.11B) velocity components for the model geometry described by Eq. ( 2.89a,b) with the 

groove amplitude S=0.05 and the groove wavelength λx=2π/3. Solutions have been obtained in 

case A using computational box of length 2π/3 and NM=10 Fourier modes, in case B using 

computational box of length 4π/3 and NM=20 Fourier modes, and in case C using computational 

box of length 6π/3 and NM=30 Fourier modes (see text for details). The presented results are for 

the flow Reynolds number Re=50 and the groove orientation angle φ=30°. Computations have 

been carried out using NT=70 Chebyshev polynomials. 

 

Results displayed in Figure  2.11 demonstrate that the algorithm does not generate 

spurious subharmonics. The same geometric configuration with the groove’s amplitude 

S=0.05 and the groove’s wavelength λx=2π/3 has been analyzed using three different 

numerical set ups. In case A the shape of the grooves was represented by the principal 

Fourier mode with the wavenumber α=3 and the solution was obtained using NM=10 

Fourier modes. In case B the same shape was represented by the second Fourier mode, 

i.e. the principal mode had the wavenumber α=1.5 and the computations were carried out 

using NM=20 Fourier modes in order to have an equivalent solution, and in case C the 

same shape was represented by the third Fourier mode (the principal mode had the 
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wavenumber α=1) and the solution was obtained using NM=30 Fourier modes. Cases B 

and C admitted subharmonics of 1/2 and 1/3 types, respectively. Fourier spectra shown in 

Figure  2.11 demonstrate that no subharmonics had been produced during the solution 

process. 
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Figure  2.12: Variations of the maximum boundary error 
∞LV  as a function of the groove 

wavenumber α for selected values of the groove amplitude S (Figure  2.12A) and as a function of 

groove amplitude S for selected values of the groove wavenumber α (Figure  2.12B) for the model 

problem described by Eq. ( 2.89a,b). Dashed and solid lines correspond to results obtained with 

NM=15 and NM=20 Fourier modes, respectively. All computations have been carried out using 

NT=70 for the flow Reynolds number Re=50 and the groove orientation angle φ=30°. 

 

The overall accuracy of the IBC method depends on the accuracy of the enforcement of 

boundary conditions, which can be measured using the L∞ norm defined by Eq. ( 2.91). 

Results shown in Figure  2.12 demonstrate that the error remains at the machine level for 

values of the groove wavenumber α and the amplitude S below certain critical threshold. 

When this threshold is reached, the error begins to increase rapidly with any further 

increase of S and α. An increase in the number of Fourier modes NM and Chebyshev 

polynomials NT increases these thresholds. A fairly large increase of NT and NM may be 

required in order to shift these thresholds significantly, which places practical limits on 

the applicability of the proposed method. Figure  2.13 shows variations of the boundary 
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error for different groove orientations with respect to the flow. The error is highest for 

φ=0° (transverse grooves), it decreases as the groove rotates away from this direction and 

reaches minimum for the longitudinal groove orientation, i.e. for φ = 90°. 
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Figure  2.13: Variations of the maximum boundary error 
∞LV  as a function of the groove 

wavenumber α for selected values of the groove amplitude S (Figure  2.13A) and as a function of 

the groove amplitude S for selected values of the groove wavenumber α (Figure  2.13B) for the 

model configuration described by Eq. ( 2.89a,b). All computations have been carried out using 

NM=20 Fourier modes and NT=70 Chebyshev polynomials for the flow Reynolds number Re=50. 

 

Figure  2.14 displays variations of the boundary error (see Eq. ( 2.91)) as a function of the 

flow Reynolds number Re. It can be seen that the error does not change as long as Re 

remains small enough. Once a certain threshold is reached, the error starts to increase 

fairly rapidly with any further increase of Re. An increase in the number of Fourier 

modes NM delays this growth. The largest error over the whole range of Re considered in 

this study corresponds to the transverse orientation of the grooves; the error decreases as 

grooves rotate away from this direction and reaches minimum for the longitudinal 

position, i.e. when  φ = 90°. The reader may note that the error ceases to depend on Re for 

grooves in the longitudinal position. 
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Figure  2.14: Variations of the maximum boundary error 
∞LV  as a function of the flow 

Reynolds number Re for the model configuration described by Eq. ( 2.89a,b) with the groove 

wavenumber α=4 and the amplitude S=0.04. Computations have been carried out using the 

number of Fourier modes NM shown in figure and NT=70 Chebyshev polynomials. The error does 

not depend on Re for φ=90° (longitudinal grooves). 

 

2.5.2 Numerical Examples 

Presence of transverse grooves increases flow resistance and reduces the volume flow 

rate for a fixed pressure gradient (and equal to the reference flow pressure gradient). The 

volume flow rate changes as a function of the grooves’ orientation. As the grooves rotate 

away from the transverse position and become more aligned with the direction of the 

imposed pressure gradient ( x̂ -direction), the flow resistance decreases leading to an 

increase in the volume flow rate. Results shown in Figure  2.15 demonstrate that the 

maximum flow rate (minimum resistance) in the direction of pressure gradient ( x̂ -

direction) corresponds to the grooves assuming longitudinal orientation (φ = 90°). As the 

grooves rotate away from this position, they force a net flow in the spanwise direction 

( ẑ -direction). The maximum of this flow occurs for φ ≈42° depending on the groove 

wavenumber and amplitude, and decreases to zero as the grooves approach the transverse 

orientation (φ = 0°). Grooves with higher wavenumbers and higher amplitudes are more 

effective in creating spanwise flow. Similarly, effectiveness of these grooves increases 

with an increase of the Reynolds number Re.  It is interesting to observe that in the case 
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of longitudinal grooves ( 90φ = ° ), u0=0, v1=0, u1=0, ∇2
w1=0 and the flow modifications 

are unidirectional and independent of the Reynolds number. 
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Figure  2.15: Variations of the volume flow rate per unit width xQˆ  in the reference flow direction 

( x̂ -direction, solid lines) and of the volume flow rate zQˆ  in the orthogonal direction ( ẑ -direction, 
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dashed lines) as a function of the groove inclination angle φ. Figure  2.15A – Re=1000, S=0.03 

and typical values of the groove wavenumber α. Figure  2.15B – Re=1000, α=3 and typical values 

of the groove amplitude S. Figure  2.15C – α=3, S=0.03 and typical values of the flow Reynolds 

number Re. All computations have been carried out using NM=20 Fourier modes and NT=70 

Chebyshev polynomials. 

 

Similar calculations have been carried out for the case of fixed flow rates constraints 

(flow rate was assumed to be equal to that given by the reference flow, i.e. 0ˆ1ˆ1 == zx QQ ; 

see details in Appendix C). Variations of the additional pressure gradients required to 

maintain such flow rates are plotted in Figure  2.16 as a function of the grooves’ 

orientation angle φ. Presence of the transverse grooves (φ=0°) results in an increase of 

the flow resistance and therefore an additional pressure gradient needs to be added to 

maintain the same flow rate. As the grooves rotate away from the transverse position and 

become more aligned with the direction of the reference flow ( x̂ -direction), the flow 

resistance decreases. The minimum resistance and thus the minimum additional pressure 

gradient corresponds to the grooves assuming longitudinal orientation (φ=90°). Presence 

of oblique grooves creates tendency for the flow to follow direction of the grooves. 

Spanwise pressure gradient must be added in order to prevent net flow in the spanwise 

direction. This situation would occur in a channel with a finite spanwise width as the side 

walls would prevent any net flow in the spanwise direction. The side walls would be 

exposed to pressure forces associated with the spanwise pressure gradient required to 

eliminate the spanwise flow. The maximum spanwise pressure gradient occurs for φ ≈42° 

depending on the groove wavenumber and amplitude, and decreases to zero as the 

grooves approach either the transverse or the longitudinal orientations. Grooves with 

higher wavenumbers α and higher amplitudes S require higher additional pressure 

gradients in order to maintain the same flow rates. Increase of the flow Reynolds number 

Re increases the pressure correction factors xhRe ˆ∗  and zhRe ˆ∗ . In the case of 

longitudinal grooves (φ=90°), xhRe ˆ∗  becomes independent of the flow Reynolds 

number Re. 
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Figure  2.16: Variations of the pressure correction factors xhRe ˆ∗  (solid lines) and zhRe ˆ∗  

(dashed lines) as functions of the groove inclination angle φ. Figure  2.16A – Re=1000, S=0.03 

and typical values of the groove wavenumber α. Figure  2.16B – Re=1000, α=3 and typical values 

of the groove amplitude S. Figure  2.16C – α=3, S=0.03 and typical values of the flow Reynolds 

number Re. All computations have been carried out using NM=20 Fourier modes and NT=70 

Chebyshev polynomials. 
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2.6 Summary 

A grid-less, spectrally accurate algorithm for the analysis of flows in grooved channels is 

presented. The algorithm is based on the immersed boundary conditions (IBC) concept, 

where the boundary conditions are submerged inside the computational domain and are 

treated as internal constraints. When grooves’ ridges are orthogonal to the flow direction 

(transverse grooves) the flow remains two-dimensional. As the grooves rotate away from 

this direction, the flow becomes three-dimensional. An auxiliary coordinate system is 

defined in such a way that one of its axes is aligned with the grooves. It is shown that the 

governing equations expressed in this system decouple into a two-dimensional flow 

across the grooves and a flow in the direction along to the grooves resulting in improved 

solution efficiencies. Fourier series are used for discretization in the direction transverse 

to the grooves and Chebyshev expansions for the direction across the channel. Special 

solvers that take advantage of the matrix structure have been implemented providing a 

significant acceleration of computation and reduction of memory requirements. Various 

tests have been conducted in order to illustrate the performance of the algorithm, to show 

its spectral accuracy and to characterize the effects of various numerical and physical 

parameters. 
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Chapter 3  

3 Mechanism of Drag Generation by Surface 

Corrugation2 

 

3.1 Introduction 

As the first step of analyzing groove’s effects, it is essential to identify physical 

mechanisms contributing to the formation of the drag. For this purpose, an analytical 

solution to the problem of flow through a channel with transverse grooves in the form of 

a single Fourier mode in the limit of long wavelength of the corrugation has been 

determined and presented in this chapter. The analysis permits explicit identification of 

the above mechanisms and provides a basic parametrization of the roles played by these 

mechanisms. The solution can serve as a test for various numerical methods used in 

modelling of roughness effects and provides a convenient reference case for refinement 

of roughness modelling concepts based on the boundary slip. Section  3.2 provides 

problem formulation for a channel with corrugation on one wall. Section  3.3 discusses 

solution method. Section  3.4 provides discussion of flow properties in such a channel. 

Section  3.5 presents solution for channel with corrugations on both walls. Section  3.6 

summarizes main findings.  

 

3.2 Problem Formulation 

Consider pressure-driven flow in a channel bounded by a periodically corrugated lower 

wall and a smooth upper wall shown in Figure  3.1. Flow is described by the continuity 

                                                 

2
 A version of this chapter has been published as − 

Mohammadi, A. & Floryan, J. M. 2012 Mechanism of drag generation by surface corrugation. Phys. 

Fluids, 24, 013602. 
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and Navier-Stokes equations, 

0=⋅∇ V ,    ( 3.1) 

VVV 21)( ∇+−∇=∇⋅ −Rep , ( 3.2) 

where ),( vu=V  is the velocity vector and p stands for the pressure. The problem has 

been scaled with the maximum of the streamwise velocity in a channel without 

corrugation Umax as the velocity scale, half of the average channel height K as the length 

scale and ρUmax
2 as the pressure scale where ρ denotes the density. The Reynolds number 

is defined as KUmax/ν where ν stands for the kinematic viscosity. The boundary 

conditions at the walls have the form 

0=V      at      1== Uyy   and  )cos(1 xAyy L α+−== , ( 3.3) 

where A and α denote the corrugation amplitude and the wavenumber, respectively. 

Formulation is closed by imposing either the fixed flow rate constraint ( 3.4) or the fixed 

mean pressure gradient constraint ( 3.5) where either Q1 or h1 are prescribed, i.e. 

1
3

4
d),( QyyxuQ

U

L

y

y

+== ∫ ,  ( 3.4) 

1

2
h

Rex

p

mean

+−=
∂

∂
. ( 3.5) 

 

 

Figure  3.1: Sketch of the flow system. 
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3.3 Solution method 

In order to solve problem ( 3.1)-( 3.5), introduce transformation in the form 

xαξ = , ( 3.6a) 

1
2)cos(1

1
+

−

−
=

/xA

y

α
η , ( 3.6b) 

where ( 3.6a) defines a slow scale and ( 3.6b) regularizes the solution domain. The field 

equations take the form  
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01211 =
∂
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+

∂

∂
+

∂

∂

ηηξ
α

v
F

u
F

u
, ( 3.7c) 

where 7
2

91081 )1)(2( /FηFFFF −+−= α , )2(42 α/FReF = , 783 2 /FFReF = , 

7894 )1(2 /FFFF −−= ηα , 7
2

8
2

5 /FFF α= , α/FReF 56 = , 22
97 )1(4 −+= ηFF , 

)cos(28 ξAF −= , )sin(9 ξαAF = , )cos(10 ξαAF = , 8911 )1( /FFF −−= η , 812 2/FF = . The 

boundary conditions and the constraints can be expressed as 

0=V   at  η = ±1,    ( 3.8a) 

1

1

1
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Assume solution in the form of expansions 

)( 2
10 αα Ouuu ++= ,  ( 3.9a) 

)( 2
10 αα Ovvv ++= , ( 3.9b) 

)(01
1 αα Oppp ++= −

− , ( 3.9c) 

substitute into the governing equations, take the limit α→0 and retain the two leading-

order terms to get: 

O(α0): 

0
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− −
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pFReu
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Solution of the above system has the form 
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[ ] )1(2)cos(1 21

0 ηξ −−=
−

/AMu , ( 3.12a) 

[ ] )
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30

1
(2)cos(1)sin(50 24612
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− ηηηξξ /AAMRe.u , ( 3.12b) 

00 =v , ( 3.13a) 

[ ] )1(2)cos(1)sin(50 231
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− ηηηξξ /AAM.v , ( 3.13b) 
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, ( 3.14a) 
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, ( 3.14b) 
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 ( 3.15a) 

[ ]{ }222
0 )21(2)cos(1

35

12 −−
−+−−= A//AMp ξ , ( 3.15b) 

where pressure has been normalized to have p=0 at ξ=0 and   is the floor function 

which is added to remove spurious discontinuities associated with the inverse tangent 

function (Jeffrey & Rich 1994). In the above, M=1+3Q1/4 and 

12252
1 )81()41()21( −+−−= /A/A/hReM /  for the fixed flow rate and the fixed mean 

pressure gradient constraints, respectively, and M/ReH 2= . 

 

3.4 Validity of solution and flow properties 

In order to assess the validity of the above solution, system ( 3.7)–( 3.8) has been solved 

numerically using spectral discretization based on the Fourier expansions in the ξ-
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direction and the Chebyshev expansions in the η-direction (Husain & Floryan 2010; 

Mohammadi & Floryan 2012A; also  Chapter 2). Computations have been carried out 

with a near machine accuracy. The error has been defined as a norm in the form 

),(),(sup
11,ππ

max
ηξηξ ca

ηξ

qqq −=
≤≤−≤≤−

, ( 3.16) 

where q stands for any flow quantity, and subscripts "a" and "c" correspond to values 

determined using the asymptotic solution and computed on the basis of the complete 

solution, respectively. Results displayed in Figure  3.2 for the y-velocity component, 

which exhibits the largest error, demonstrate that the range of validity of Eqs ( 3.12)–

( 3.15) extends up to α=O(1) if Re is small (Re=0.1); at Re=1000 this range decreases to 

α=O(10−1). For α small enough the error decreases proportionally to α2. Distributions of 

u and v illustrated in Figure  3.3 provide additional information about the magnitude of 

the error. 
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Figure  3.2: Variations of the norm 
max

v (see Eq. ( 3.16)) as a function of the corrugation 

wavenumber α expressed in for the flow Reynolds numbers Re=1000 (solid lines) and Re=0.1 

(dashed-dotted lines) for the fixed mass flow rate constraint (Q1=0). 

 



70 

 

0 0.4 0.8 1.2
-1

-0.5

0

0.5

1

u/c

η

-0.12 -0.08 -0.04 0

 

 

 

 

 

v/(α * c)

α→0

α→0

α=0.5,
Re=0.1

α=0.2,
Re=1000

α=0.2,
Re=1000

α=1.5,
Re=0.1

 

Figure  3.3: Distributions of the x- and y-velocity components, i.e, u/c and v/(α*c), as a function 

of η at ξ = π/2 for the corrugation amplitude A = 0.2 for the flow Reynolds numbers Re = 0.1 and 

Re = 1000 for the fixed flow rate constraint (Q1=0). In the above 1]2)cos(1[ −−= /ξAMc . Solid 

and dashed lines identify numerical and asymptotic solutions, respectively. 

 

Explicit evaluation of the mean pressure gradient in the case of the fixed flow rate 

constraint (Q1=0) is of interest, i.e.  

2542
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11 )41()81(
2

d
d

d

π2

1

d

d /

mean

/A/A
Re

pp −

−

−− −+−== ∫ ξ
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d

d 0 =
mean

p

ξ
. ( 3.17b) 

Similarly, evaluation of the flow rate in the case of the fixed pressure gradient constraint 

(h1=0) leads to  

Q = 4/3 M.  ( 3.18) 

The drag is generated solely by viscous shear in the case of smooth walls. The situation is 

different in the case of corrugated walls as pressure begins to play a role and generates 

pressure drag. Corrugation also alters distribution of shear stress and increases the wetted 
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surface area, and this leads to changes in the shear drag. We shall now evaluate all 

components of the drag. 

Distribution of the x-component of shear acting on the fluid at the lower wall has the 

form  

[ ] [ ] )(2)cos(1)sin(
105

8
2)cos(12 22221 αξξαξ O/AAM/AMRedFx,visc +−+−−=

−−− , ( 3.19) 

its distribution is illustrated in Figure  3.4 and its integration over one corrugation period 

gives the total viscous force 

)()41(π4 23211 αα O/AMReF
/

x,visc +−−= −−− . ( 3.20) 

The second term in Eq. ( 3.19) does not contribute to the total force. Distribution of the x-

component of the pressure force acting on the fluid at the lower wall has the form 

)sin()]([ 2
01 ξαα OppAdFx, pres ++= −  ( 3.21) 

and its distribution is illustrated in Figure  3.4. The total pressure force can be evaluated 

through numerical integration of Eq. ( 3.21). It is instructive, however, to replace dp−1/dξ 

in Eq. ( 3.14a) with its Fourier expansion and integrate this expansion with respect to ξ to 

arrive at a more convenient analytical expression for the pressure, i.e. 

�+−−−+−= −−
− )sin()41(

2

3
)41()81( 2522522

1 ξξ //
/AHA/A/AHp .  ( 3.22) 

Integration of Eq. ( 3.21) over one corrugation period, say from γ to π2+γ , with p−1 

expressed by Eq. ( 3.22) shows that terms omitted in Eq. ( 3.22) as well as p0 do not 

contribute to the total force. The total force has the form 

{ }
,)()41(π51

)cos()41()81(π2
25221
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−−

  ( 3.23) 
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where the first term is associated with the mean pressure gradient acting on the obstacle 

(corrugation) and thus we shall refer to it as the "form drag". The form drag is a periodic 

function of γ with the amplitude defined by the curly bracket. A corrugation segment 

having appearance of a single "hill" within one wavelength (γ = −π) gives the net force in 

the negative x-direction, a segment that has the form of a single "valley" (γ = 0) gives the 

net force in the positive x-direction, while a segment involving a combination of a "hill" 

and a "valley" within one wavelength (γ = ±π/2) produces zero form drag. These 

variations of the form drag need to be accounted for in interpretation of any experimental 

measurements as the form drag will likely reduce the total drag in the case of a 

corrugation in the form of a depression while it will increase the total drag in the case of a 

corrugation in the form of a bump. 
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Figure  3.4: Distributions of the x-component of surface stresses at the lower wall for the 

corrugation amplitude  A = 0.2 for the flow Reynolds numbers Re = 0.1 and Re = 1000 for the 

fixed flow rate constraint (Q1=0). Solid and dashed lines identify numerical and asymptotic 

solutions, respectively. 

 

The second term in ( 3.23) arises out of an interaction of the periodic part of p−1 with the 

wall geometry and thus we shall refer to it as the "interaction drag". The part of the 

pressure field that gives rise to the "interaction drag" is proportional to sin(ξ) (see 
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Eq.( 3.22)) while the corrugation shape is described by cos(ξ); π/2 shift between both 

distributions results in the interaction drag. The interaction drag does not depend on the 

location of the test segment of the corrugation (it does not depend on γ). 

Distribution of the y-component of viscous forces acting on the fluid at the lower wall has 

the form 

[ ] )(2)cos(1)sin(2 221 αξξα O/AMARedFy,visc +−=
−−  ( 3.24) 

and its integration over one period results in )(αOFy,visc =  and demonstrates that viscous 

forces do not contribute to the total y-force at the this level of approximation.  
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Figure  3.5: Distributions of the y-component of pressure (α * Re)*dFy,pres at the lower wall for 

corrugations with the amplitude A = 0.2 for the flow Reynolds numbers Re = 0.1 and  1000 for 

the fixed flow rate constraint (Q1 = 0). Solid and dashed lines identify numerical and asymptotic 

solutions, respectively. 

 

Distributions of the y-component of the pressure force is given as  

)(01
1 αα OppdFy, pres ++= −

−  ( 3.25) 
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and its distribution is illustrated in Figure  3.5. Equations ( 3.15) and ( 3.22) show that only 

the linear term from p−1 as well as p0 bring nonzero contributions to the total y-force, i.e.  

[ ]  .OA//AM
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y,pres

)()21()41(π
35

24

)41()81)(π(π2

0223221

25222
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−++−=

−−−

−−

 ( 3.26) 

The reader may note the linear dependence of Fy,pres on γ. 

We shall now consider forces acting at the upper wall. Distributions of the x-component 

of the local viscous forces dGx,visc as well as the total viscous force Gx,visc are same as at 

the lower wall, i.e. dGx,visc=dFx,visc , Gx,visc=Fx,visc. Pressure does not generate any forces 

in the x-direction and generates force in the y-direction that is equal and opposite to the 

pressure force at the lower wall, i.e. Gx,pres = 0, Gy,pres = −Fy,pres. 

It is instructive to discuss in details the case when the flow rate is fixed at Q=4/3 (Q1=0). 

The mean pressure gradient computed from Eq. ( 3.17) has the form 

{ } )()41()81(1
22

d

d 22522 αO/A/A
ReRex

p /

mean

+−+−+−= − , ( 3.27) 

where the curly bracket accounts for the increase of losses due to the presence of the 

corrugation. Balance of forces acting on a control volume extending over one wavelength 

and corresponding to γ=−π gives the total pressure force Ftotal acting between the left and 

right control surface as  







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−+−++= −−−−

Re
A/A/A

ReRe
F

/

total

π8
)2()41()81(

π4π8 1252211 ααα .  ( 3.28) 

This force is opposed by the shear force Fs acting at the upper and lower walls 

{ }1)41(
π8π8 23211 −−+= −−− /

s /A
ReRe

F αα , ( 3.29) 

by the force Fform due to the form drag 
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25221 )41()81(
π4 /

form /A/A
Re

A
F

−− −+= α  ( 3.30) 

and by the force Finter due to the interaction drag 

252
2

1 )41(
π3 /

inter /A
Re

A
F

−− −= α . ( 3.31) 

Curly brackets in ( 3.27)–( 3.29) account for the corrugation effects. Results displayed in 

Figure  3.6 demonstrate that the total drag increases rapidly with an increase of the 

corrugation amplitude (curve 1). The largest part of this increase comes from the form 

drag (curve 3), followed by the interaction drag (curve 4), and the smallest comes from 

the re-arrangement of the viscous drag (curve 2). Linearization in terms of the 

corrugation amplitude eliminates interaction drag and changes in the shear drag (see Eqs 

( 3.29) and ( 3.31)); the range of applicability of such linearization can be judged from data 

displayed in Figure  3.6. The same figure also displays variations of the difference 

between the total drag force in the corrugated and smooth channels Ftotal,1 (curve 5) and 

variations of the difference between the total shear force in the corrugated and smooth 

channels Fs,1 (curve 6). It is clear that majority of the new drag is associated with the 

pressure effects. A more explicit presentation involves use of fractions of the total drag 

generated by the form, interaction and viscous drag defined as  

100)( */FFf totalformform = , ( 3.32a) 

100)( */FFf totalinterinter = , ( 3.32b) 

100)( */FFf totalss =  ( 3.32c) 

and displayed in Figure  3.7. Contributions of the pressure form and interaction drags 

increase to the level of 35% and 23% of the total force, respectively, when the 

corrugation amplitude reaches value A=1. The form drag, the interaction drag and the 

additional viscous drag are responsible for 45%, 30% and 25% of this increase. The 

rapidity of drag increase with the corrugation amplitude places limits on the use of 
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linearization procedures based on the magnitude of the corrugation. 
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Figure  3.6: Variations of the total force per unit channel length (Re/λ)*Ftotal and its various 

components (see Eqs ( 3.28)–( 3.31)) as a function of the corrugation amplitude A. Curves 1, 2, 3, 

4, 5 and 6 correspond to (Re/λ)*Ftotal, (Re/λ)*Fs, (Re/λ)*Fform, (Re/λ)*Finter, (Re/λ)*Ftotal,1 and 

(Re/λ)*Fs,1. Dashed lines illustrate results of small-A linearization of the total and form drags. 

Solid lines correspond to corrugation placed on one wall only. Dashed-dotted lines illustrate 

situation with corrugations placed on both walls (see Section  3.5). 
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Figure  3.7: Variations of fractions of contributions of the form, interaction and friction drags (see 

Eq. ( 3.32)) to the total drag as functions of the corrugation amplitude A. Solid and dashed-dotted 

lines correspond to the corrugation placed on one wall only and placed on both walls, 

respectively. 
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3.5 Corrugations at both walls 

The analysis is generalized by adding corrugation to the upper wall. Boundary conditions 

( 3.3) change to 

0=V      at      )cos(1 φα ++== xByy U   and  )cos(1 xAyy L α+−== , ( 3.33) 

where B and φ stand for the amplitude and phase shift of the upper corrugation, 

respectively. Transformation ( 3.6) changes form to  

xαξ = , ( 3.34a) 

1
2)cos(2)cos(1

)cos(1
+

−++

+−−
=

/xA/xB

xBy

αφα

φα
η , ( 3.34b) 

which leads to coefficients in Eqs ( 3.7a)–( 3.7c) in the form 7108139
2

1 /)2( FFFFFF −−= α , 

)2/(42 αReFF = , 783 /2 FReFF = , 789
2

4 /2 FFFF α= , 7
2

8
2

5 / FFF α= , α/56 ReFF = , 

2
9

2
7 4 FF α+= , )cos()cos(28 ξφξ ABF −++= , )1)(sin()1)(sin(9 −−++= ηξηφξ ABF , 

)1)(cos()1)(cos(10 −−++= ηξηφξ ABF , 8911 / FFF α= , 812 /2 FF =  and 

)sin()sin(13 ξφξ ABF ++−= . The boundary conditions and the constraints in the (ξ,η)-

system are given by Eqs ( 3.8a)–( 3.8c). Use of asymptotic expansion ( 3.9) leads to 

equations in the form 

O(α0):    0
4

1
2

8
2
0

2

=
∂

∂
+

∂

∂
− −

ξη

pFReu
, ( 3.35a) 

                  01 =
∂

∂ −

η

p
, ( 3.35b) 

                  00 =
∂

∂

η

v
, ( 3.35c) 
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O(α1):    0
4424
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                  00 =
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, ( 3.36b) 
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Solution of the above system has the form 

)1()2( 21
80 η−= −

/FMu , ( 3.37a) 

)
210

5

70

11

6

1

30

1
()2(50 2461

813
2

1 +−+−= − ηηη/FFMRe.u , ( 3.37b) 

00 =v , ( 3.38a) 

)]1)(sin()1)(sin([)2(50 23231
81 −++−+−−++= − ηηηξηηηφξ AB/FM.v , ( 3.38b) 

3
8

1 )2(
d

d −− −= /FH
p

ξ
, ( 3.39a) 

3
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20 )2(
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12
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, ( 3.39b) 
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where 2/2/)cos(
~

ABA −= φ , 2/)sin(
~

φBB −= , )0(35/)
~

1(12 1
122

0 −
−− −+= pAMc α  

corresponds to pressure normalization p=0 at ξ=0,   is the floor function which is added 

to remove spurious discontinuities associated with the inverse tangent function (Jeffrey & 

Rich 1994), M=1+3Q1/4 and ( ) 1225/222
1 )2/

~
2/

~
1()

~~
1(/21 −++−−−= BABAhReM  for the 

fixed flow rate and the fixed mean pressure gradient constraints, respectively, and 

M/ReH 2= . 

Distributions of the x-components of shear acting on the fluid at the lower (dFx,visc) and 

the upper (dGx,visc) walls have identical forms, i.e. 

)()2(
105

8
)2(2 22

813
22

8
1 αα O/FFM/FMRedGdF x,viscx,visc ++−== −−−  ( 3.41) 

and their integration over one corrugation period gives the total viscous forces in the form 

)()
~~

1(π4 2/32211
,, αα OBAMReGF viscxviscx +−−−== −−− . ( 3.42) 

Distributions of the x-components of the pressure force acting on the fluid at the lower 

(dFx,pres) and the upper (dGx,pres) walls have the form  

)]()[sin( 2
01 ααξ OppAdFx,pres ++= − , ( 3.43a) 

])()[sin( 2
01 ααφξ OppBdGx,pres +++−= − . ( 3.43b) 

Determination of the total pressure force starts with replacement of dp−1/dξ in ( 3.39a) by 

its Fourier expansion followed by integration with respect to ξ resulting in 

,)cos()
~~

1(
~

3

)sin()
~~

1(
~

3)
~~

1()2
~

2
~

1(

1
2522

2522252222
1

−
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−−
−

++−−−

−−+−−++−=

cBABH

BAAHBA/B/AHp

/

//

�ξ

ξξ
 ( 3.44) 

where c−1 is the integration constant. Similarly, p0 in Eq. ( 3.40b) is replaced by its Fourier 

expansion 
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�ξξ  . ( 3.45) 

Integration of Eq. ( 3.43) from γ to π2+γ  with p−1 and p0 expressed by Eqs ( 3.44) and 

( 3.45) gives the total pressure forces in the x-direction, i.e. 
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 ( 3.46b) 

The first terms in both Eqs ( 3.46a) and ( 3.46b) are associated with the mean pressure 

gradient acting on the corrugations (form drag), whereas the second and third terms arise 

out of interactions of the periodic parts of p−1 and p0 with the wall geometries (interaction 

drag), respectively. 

Distributions of the y-component of viscous forces acting on the fluid at the lower 

(dFy,visc) and the upper (dGy,visc) walls have the form  

)()2)(sin(2 22
8

1 αξα O/FMARedFy,visc += −− , ( 3.47a) 

)()2)(sin(2 22
8

1 αφξα O/FMBRedGy,visc ++= −−  ( 3.47b) 

and their integration over one period results in 

)(
~

)
~~

1(π4 23221 αOBBAMAReF
/

y,visc +−−−= −− , ( 3.48a) 

)()]sin(
~

)cos(
~

[)
~~

1(π4 2/3221
, αφφ OABBAMBReG viscy ++−−−= −− . ( 3.48b) 
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The reader may note that Fy,visc is O(1) for two corrugations but O(α) for a single 

corrugation (see Eq. ( 3.24)). Transition between both cases can be followed by taking 

B=O(α). Distributions of the y-component of pressure force acting on the fluid at the 

lower (dFy,pres) and the upper (dGy,pres) walls have the form  

)(01
1 αα OppdGdF y,presy, pres ++=−= −

− , ( 3.49) 

and numerical integration is required in order to determine the total force as the 

normalization constant c−1 in Eq. ( 3.44) cannot be evaluated explicitly. 

The mean pressure gradient for the fixed flow rate constraint (Q1=0) is given explicitly as 

{ } )()
~~

1)(2/
~

2/
~

1(1
22

d

d 22/52222 αOBABA
ReRex

p

mean

+−−++−+−= − . ( 3.50) 

Balance of forces acting on a control volume extending over one wavelength and 

corresponding to γ=−π gives the total pressure force Ftotal acting between the left and 

right control surface as 

[ ] .
π8

)cos(2)
~~

1()2
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2
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1(
π4π8 125222211









−+−−−+++= −−−−

Re
ABBA/B/A

ReRe
F /

total αφαα  ( 3.51) 

This force is opposed by the shear forces Fs acting at the upper and lower walls 

{ }1)
~~

1(
π8π8 232211 −−−+= −−− /

s BA
ReRe

F αα  , ( 3.52) 

by the force Fform due to the form drag 

[ ]ABBA/B/A
Re

F
/

form +−−−++= −− )cos()
~~

1()2
~

2
~

1(
π4 2522221 φα  ( 3.53) 

and by the force Finter due to the interaction drag 
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Curly brackets in Eqs ( 3.50)–( 3.52) account for the corrugation effects. 

Results displayed in Figure  3.8 demonstrate that the total drag can change by a factor of 

~3.5 due to change in the phase difference between the upper and lower corrugations. 

The largest drag is generated by corrugations being out of phase (φ=π). Increase of 

corrugations' amplitudes results in a much more rapid drag increase when compared with 

a single corrugation. This process is illustrated in Figure  3.6 for A=B and φ=π. The reader 

may note that forces in a channel with one corrugation with amplitude A are identical to 

forces in a channel with two corrugations with amplitudes A/2 each and phase shift φ=π. 

Variations of fractions of the total drag illustrated in Figure  3.7 follow the same 

functional relations for single and double corrugations, with a much more rapid increase 

of drag for the double corrugation. 
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Figure  3.8: Variations of the total force per unit channel length (Re/λ)*Ftotal and its various 

components (see Eqs ( 3.51)–( 3.54)) as a function of the phase difference φ for the corrugation 

amplitudes A=B=0.5. Curves 1, 2, 3, 4, 5 and 6 correspond to (Re/λ)*Ftotal, (Re/λ)*Fs, 

(Re/λ)*Fform, (Re/λ)*Finter, (Re/λ)*Ftotal,1 and (Re/λ)*Fs,1, respectively.  
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3.6 Summary 

Drag generated by periodic corrugation has been determined analytically in the limit of 

long corrugation wavelength. Three physical mechanisms have been identified, i.e. the 

additional shear drag due an increase of the wetted surface area and the re-arrangement of 

the shear stress distribution, the pressure form drag associated with the mean pressure 

gradient, and the pressure interaction drag associated with the phase difference between 

the surface geometry and the periodic part of the pressure field. The total drag increases 

rapidly with increase of the corrugation amplitude, with the form and interaction drags 

contributing up to 45% and 30% of this increase, respectively. 
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Chapter 4  

4 Pressure Losses in Grooved Channels3 

  

4.1 Introduction 

Identification of mechanisms of drag generation by long wavelength grooves presented in 

the previous chapter simplifies identification of similar mechanisms contributing in the 

formation of drag by arbitrary grooves which is the focus of this chapter. A systematic 

analysis of one class of surface corrugations, i.e. two-dimensional grooves of arbitrary 

shape with an arbitrary orientation with respect to the reference flow is presented in this 

chapter. These grooves are placed in a channel where a laminar flow is driven by a 

constant pressure gradient. Their effect is assessed by determining the additional pressure 

gradient required to maintain the same mass flow rate as in the smooth channel. The 

Reynolds number is kept sufficiently small in order to assure stability of such flow and 

thus remove the issue of the laminar–turbulent transition. The problem formulation is 

presented in Section  4.2. The method of solution is discussed in Section  4.3. It is 

demonstrated in Section  4.4.1 that there is a superposition of effects associated with the 

presence of the grooves: that due to a change of the mean position of the wall, and that 

due to the flow modulations associated with the shape of the grooves. The former effect 

can be determined analytically while the latter requires numerical modelling. Section 

 4.4.2 demonstrates that the reduced-order representation of the geometry provides an 

efficient method for extraction of geometry features that have a dominant effect on the 

drag associated with flow modulations. Section  4.4.3 describes a general parametrization 

of the modulation problem and concludes that grooves placed transversely to the flow 

produce the highest drag while the same grooves placed longitudinally produce the 

                                                 

3
 A version of this chapter has been published as − 

Mohammadi, A. & Floryan, J. M. 2013 Pressure losses in grooved channels. J. Fluid Mech. 725, 23–54. 
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lowest drag. Section  4.4.4 is focused on the analysis of transverse grooves and explores 

the small- and large-wavenumber limits of the grooves. The potential for creation of a 

low-drag surface through trapping of separation bubbles in the grooves is discussed. 

Section  4.4.5 discusses longitudinal grooves and demonstrates the potential for drag 

reduction in the small-wavenumber limit in spite of an increase of the wetted surface 

area. The same section discusses the flow behavior in the large-wavenumber limit and 

demonstrates the potential for creation of a low-drag surface through elimination of fluid 

movement through the troughs. Section  4.5 provides a short summary of the main 

conclusions. 

 

4.2 Problem formulation 

Consider flow in a straight channel bounded by smooth walls and driven by a pressure 

gradient along the x-axis (see Figure  4.1). Replace the smooth walls with grooved walls, 

with the grooves being two-dimensional with an orientation defined in terms of the 

inclination angle φ formed by the groove ridges and the z-axis. We shall refer to grooves 

corresponding to φ=0° as transverse grooves, φ=90° as longitudinal grooves, and  

°<<° 900 φ  as oblique grooves. The arbitrary groove geometry can be expressed in a 

groove-oriented reference system )~,,~( zyx  (see Figure  4.1) in terms of Fourier 

expansions in the form 

∑
=

−=

+=
A

A

Nn

Nn

xinn

UU eHxy
~~)(~

1)~( α , ( 4.1a) 

∑
=

−=

+−=
A

A

Nn

Nn

xinn

LL eHxy
~~)(~

1)~( α , ( 4.1b) 

where the subscripts U and L refer to the upper and lower walls, respectively, the x~ -axis 

is perpendicular to the groove ridges, *)()( ~~ n

U

n

U HH
−= , *)()( ~~ n

L

n

L HH −= , stars denote the 

complex conjugates, NA is the number of Fourier modes needed to describe the groove 

geometry, α~  stands for the wavenumber in the x~ -direction and all quantities have been 
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scaled with half of the average channel height K as the length scale. The quantities with 

an over-tilde refer to the groove-oriented reference system. The transformation between 

the flow-oriented and the groove-oriented systems has the form )sin()cos(~ φφ zxx −= , 

)cos()sin(~ φφ zxz += , )cos(~ φαα =  and )sin(~ φαβ = , where α and β indicate the 

groove wavenumbers in the x- and z- directions, respectively. 

 

 

Figure  4.1: A channel with grooved walls. Here ),,( zyx  and )~,,~( zyx  are the flow-oriented and 

the groove-oriented systems. The inclination angle φ shows the relative orientation of the two 

systems. 

 

The flow between smooth walls is taken as the reference flow; it has the form 

]0,0,1[],,[)( 2
0000 ywvuy −==V , ( 4.2) 
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0 2)( , ( 4.3) 
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where 0V  is the reference velocity vector, 0p  is the reference pressure, c denotes an 

arbitrary constant, xQ0  is the flow rate per unit spanwise width, the maximum of the 

dimensional streamwise reference velocity is used as the velocity scale Umax , ρUmax
2 is 

the pressure scale where ρ denotes the density, and the Reynolds number is defined as 

KUmax/ν  where ν  stands for the kinematic viscosity. 

The presence of grooves results in a three-dimensionalization of the original two-

dimensional flow. The velocity and pressure fields can be expressed in the )~,,~( zyx  

system as 

,)],~(~)(~),,~(~),,~(~)(~[

),~(
~

)(
~

)],~(~),,~(~),,~(~[)~(
~

10110

10

yxwywyxvyxuyu

yxyyxwyxvyxu

++=

+== VVxV
 ( 4.5) 

),~(~~~)~,~(~)~,,~(~)~,~(~)~(~
~~010 yxqzhxhzxpzyxpzxpp zx +++=+=x , ( 4.6) 

where xh~  and zh~  denote modifications of the mean pressure gradient in the x~ - and z~ -

directions, respectively, ),~(~ yxq  describes the x~ -periodic part of the pressure 

modifications, and the reference velocity and pressure fields take the form 

)cos()1()(~ 2
0 φyyu −= , )sin()1()(~ 2

0 φyyw −=  and 

[ ] czxRezxp ++−= − )sin(~)cos(~2)~,~(~ 1
0 φφ . The field equations have the form 

0~~
11~ =∂+∂ vu yx , ( 4.7) 

1
21

~~1~001111~1
~~~~~~D~~~~~ uReqhuuuvuvuu xxxyx ∇+∂−−=∂++∂+∂ − , ( 4.8) 

1
21

101111 vReqvuvvvu yxyx
~~~~~~~~~

~~ ∇+−∂=∂+∂+∂ − , ( 4.9) 

1
21

~1~0011~11~1
~~~~~D~~~~~ wRehwuwvwvwu zxyx ∇+−=∂++∂+∂ − , ( 4.10) 
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where yyxx ∂+∂=∇ ~~
~ 2  and d/dyD = . Equations ( 4.7), ( 4.8), and ( 4.9) can be solved 

separately from ( 4.10) in the case of fixed flow rate constraints considered in the present 

work (for details see  Chapter 2). The boundary conditions take the form 

))~((~))~((~
01 xyuxyu UU −= , ( 4.11a) 

0))~((~
1 =xyv U , ( 4.11b) 

))~((~))~((~
01 xywxyw UU −= , ( 4.11c) 

))~((~))~((~
01 xyuxyu LL −= , ( 4.12a) 

0))~((~
1 =xyv L , ( 4.12b) 

))~((~))~((~
01 xywxyw LL −= . ( 4.12c) 

The volume flow rate constraints can be expressed in the )~,,~( zyx  system in the form 

)sin()cos()3/4( 11~ φφ zxx QQQ −+= , ( 4.13a) 

)cos()sin()3/4( 11~ φφ zxz QQQ ++= , ( 4.13b) 

where 
x~

Q  and 
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Q are the flow rates per unit width in the x~ - and z~ -directions, 

respectively, and Qx and Qz are flow rates in the x- and z-directions defined as 
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The modification flow rate xQ1  could be used as a measure of the ability of the grooves to 

increase or decrease flow resistance and zQ1  could be used to measure the ability of the 
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grooves to turn the flow in the grooves' direction. In the current work, both xQ1  and 

zQ1 are set to zero and the pressure gradient modifications hx and hz required to maintain 

the same flow rates in both directions with and without grooves are used to assess the 

effectiveness of the grooves. The pressure gradient corrections in the )~,,~( zyx  system are 

related to the pressure gradient corrections in the (x,y,z) system as 

)sin()cos( ~~ φφ zxx hhh +=  and )cos()sin( ~~ φφ zxz hhh +−= . 

Equations ( 4.7)–( 4.9) with boundary conditions ( 4.11a,b) and ( 4.12a,b) and with 

constraint ( 4.13a) form a complete system and its solution describes a two-dimensional 

motion in the ),~( yx  plane. The flow in the z~ -direction is described by the solution of 

( 4.10) with the boundary conditions ( 4.11c) and ( 4.12c) and the constraint ( 4.13b). 

 

4.3 Method of solution 

It is convenient to introduce the stream function defined as 

10 Ψ+Ψ=Ψ , ( 4.16a) 

)cos()3/23/( 3
0 φ++−=Ψ yy , ( 4.16b) 

11
~ Ψ∂= yu , ( 4.16c) 

1~1
~ Ψ−∂= xv , ( 4.16d) 

where Ψ0, Ψ1 and Ψ are the stream functions of the reference flow, the flow 

modifications and the total flow in the x~ -direction, respectively. Substitution of Ψ1 into 

( 4.8)–( 4.9) and elimination of the pressure results in  
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∂+∂∂+∂+∂−∂=

Ψ∇−Ψ∂−Ψ∇∂ −

 ( 4.17) 
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where the curly brackets denote the velocity products. The boundary conditions are 

specified by ( 4.11a,b) and ( 4.12a,b), the total stream function is set to zero at the lower 

wall as a normalization condition, i.e. 

0))~(())~(())~(( 10 =Ψ+Ψ=Ψ xyxyxy LLL , ( 4.18) 

and the problem formulation for the flow in the ),~( yx  plane is closed by imposing the 

flow rate constraint ( 4.13a) in the form 

∫ ∫
=

=

=

=

− Ψ+Ψ=+=
z U

L

z

z

xyy

xyy

UUzx xyxyzdydyxuyuQ

~~

0~

)~(

)~(

1010
1

~~ ))~(())~((~)],~(~)(~[
λ

λ , ( 4.19) 

where advantage was taken of the normalization condition ( 4.18). Insertion of ( 4.13a) 

leads to the specification of Ψ1 at the upper wall, i.e. 

)sin()cos()3/4())~(())~(( 1101 φφ zxUU QQxyxy −++Ψ−=Ψ . ( 4.20) 

The flow in the z~ -direction is described by ( 4.10), which is written as 

01~~1
21

1~011~1~1
~D~~~~~ whwRewuww xzxyxxy Ψ∂=+∇−∂+∂Ψ∂−∂Ψ∂ −  ( 4.21) 

to underscore its linearity in 
1

w~ , and is subjected to boundary conditions ( 4.11c) and 

( 4.12c), and the flow rate constraint ( 4.13b). 

The above problems were solved using a spectral discretization method based on the 

Fourier expansions in the x~ -direction and the Chebyshev expansions in the y-direction. 

The problem of irregularity of the solution domain in the y-direction has been overcome 

by the use of the immersed boundary conditions (IBC) method (explained in  Chapter 2). 

This method relies on the use of a fixed computational domain extending in the y-

direction far enough so that it completely encloses the grooved channel (see Figure  4.1) 

and imposition of flow boundary conditions is carried out through specially constructed 

boundary relations.  
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The solution process consists of two steps, i.e. solution of the nonlinear problem ( 4.17) 

subject to conditions ( 4.11a,b), ( 4.12a,b) and ( 4.20) to determine flow in the ),~( yx  plane, 

and the follow up solution of the linear problem ( 4.21) subject to conditions ( 4.11c), 

( 4.12c) and ( 4.13b) to determine flow in the )~,( zy  plane. The former problem is solved 

using an iterative technique; efficient solution methods for the latter problem are 

discussed in  Chapter 2. 

In order to verify the numerical results, we solve the same problem using the domain 

transformation (DT) method (see Appendix E). Here, the flow domain is analytically 

mapped onto a regular computational domain, the field equations are discretized using 

the same spectral method as described above, and the boundary conditions are imposed in 

the classical way as the computational and flow domains overlap. The IBC method is 

computationally significantly faster but the DT method is more convenient for 

explorations of various limits of interest in the interpretation of results. 

 

4.4 Discussion of results 

A pressure gradient needs to be applied along the channel in order to produce a desired 

flow rate. We shall refer to this pressure gradient as a pressure loss. The introduction of 

grooves may increase or decrease this pressure loss depending on the groove geometry, 

amplitude, orientation and flow conditions. A spanwise pressure gradient may have to be 

introduced in order to counteract the flow turning tendency associated with orientation of 

the grooves. The main objectives of this analysis are (i) to determine the role played by 

all these factors in affecting the pressure loss and (ii) to determine the flow turning ability 

of the grooves. Both effects can be measured in terms of the additional pressure gradients 

required in order to maintain the same flow rate in the x-direction and in order to prevent 

any flow rate in the z-direction, i.e. hx and hz. A negative value of hx signals an increase 

of the pressure gradient due to the presence of the grooves (increase of losses) as 

compared with the smooth channel, while a positive value signals the opposite trend. A 

positive value of hz signals a turning effect directed in the positive z-direction. This effect 
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will have to be counterbalanced by the side walls and thus these walls will be exposed to 

additional pressure forces. 

Pressure gradients hx, hz are expressed for convenience in terms of friction factors defined 

as 

xxxx ffh
x

p

x

p
f 10

0 222 +=−
∂

∂
−=

∂

∂
−= , ( 4.22a) 

zzz fh
z

p
f 122 =−=

∂

∂
−= , ( 4.22b) 

where fx denotes the total friction factor in the x-direction, f0x = 4/Re denotes the reference 

friction factor for the smooth channel, and f1x and f1z refer to the modifications of the 

friction factors in the x- and z-directions, respectively. Positive f1x corresponds to an 

increase of pressure loss in the x-direction, and negative f1z signals a turning effect 

directed in the positive z-direction. 

Grooves may produce changes in the flow through two separate mechanisms: (i) a change 

in the average channel opening; and (ii) spatial flow modulations induced by the groove 

shape. We shall start the discussion with the former effect. 

 

4.4.1 Effect of the average position of the grooves 

Consider a channel with two flat walls located at 1=Uy  and aveL Sy +−= 1 . Provision of 

the same flow rate as in the reference channel (Q = 4/3) requires imposition of a pressure 

gradient of magnitude 

31 )2/1(2 −− −−=
∂

∂
aveSRe

x

p
. ( 4.23) 

The reader may note that the pressure and the lengths are scaled with ρUmax
2 and K, 

respectively, where Umax and K are the maximum velocity and half of the channel height 

of the original smooth reference channel. This scaling makes the dimensionless pressure 
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gradients for various channel heights directly comparable and fixes the Reynolds number. 

The change of the pressure gradient generated by the change in the channel opening can 

be easily evaluated as 

[ ]3101 )2/1(12 −− −−=
∂

∂
−

∂

∂
=

∂

∂
= avex SRe

x

p

x

p

x

p
h , ( 4.24) 

and expressed in terms of the friction factor as 

])2/1(1[42 3
1

−−−−=∗∗−= avexx SReh*Ref . ( 4.25) 

We shall now add sinusoidal transverse grooves (inclination angle  φ = 0°) to the lower 

wall. The new geometry is described as  

1=Uy , ( 4.26a) 

)cos()2/(1)( xSSxy aveL α⋅++−= , ( 4.26b) 

where S, Save and α define the height, the average position and the wavenumber of the 

grooves (see Figure  4.2).  

 

 

Figure  4.2: Sketch of the test configuration. The lower wall is fitted with sinusoidal transverse 

grooves (φ = 0°; see Eq. ( 4.26)) kept at the average positions Save = 0.03, 0, −0.03 in cases A, B 

and C, respectively. 
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Variations of the total pressure loss as a function of S for Save = 0.03, 0 and −0.03 (cases 

A, B and C, respectively) are illustrated in Figure  4.3. Equation ( 4.25) yields the part of 

the loss caused by the change of the mean channel opening as 

Case A:  0.1855*1 =Ref x , 

Case B:  0*1 =Ref x , 

Case C:  1747.0*1 −=Ref x . 

( 4.27) 

The curves describing the total pressure loss are shifted by the amounts given by 

Eq.( 4.27) in the whole range of S considered, and this demonstrates that the effect of the 

average position of the wall can be separated from the effect of the groove shape. The 

total pressure loss therefore consists of the superposition of loss due to change in the 

average wall position, which is determined analytically, and loss associated with groove 

shape, which requires further analysis. The latter effect, which we shall refer to as the 

flow modulation effect, is discussed in the next section. 
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                                        (A)         (B) 

Figure  4.3: Variations of f1x*Re as a function of S for α = 0.1, 1, 5 for Re=0.01 (Figure  4.3A) and 

Re=1000 (Figure  4.3B). Other conditions are as in Figure  4.2. 

 



95 

 

4.4.2 Shape representation 

We wish to provide a general assessment of the flow modulation effects regardless of the 

shape of the grooves. Since there is an uncountable number of possible shapes, the 

problem has features of a contradiction, i.e. general conclusions may not exist as it is not 

possible to check all possible shapes. We shall demonstrate that this contradiction can be 

resolved using a "spectral" rather than a "primitive" representation of the grooves. The 

term "primitive" refers to a shape specification in terms of a function of position, i.e. the 

left-hand side of Eq. ( 4.1). The term "spectral" refers to projection of the function of 

position onto the Fourier space, i.e. the right-hand side of Eq. ( 4.1). We shall demonstrate 

that the Fourier series are rapidly converging and, in most cases, use of the leading 

Fourier mode is sufficient to describe modulation effects with accuracy acceptable for 

practical applications. 

 

               

                                 (A)                               (B) 

 

                         (C) 

Figure  4.4: Sketch of the grooves used in the analysis. Triangular/trapezoidal, rectangular and 

rectified (described by |)~~sin(| xα ) shapes are shown in Figure  4.4A, Figure  4.4B and Figure  4.4C, 

respectively. 
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The validity of the above principle is illustrated through several examples. Figure  4.4 

illustrates four shapes selected for testing, e.g. triangular, trapezoidal, rectangular and 

rectified. All grooves were given the same amplitude S, the same wavenumber α~  and the 

same inclination angle φ = 45°. Figure  4.5 displays variations of the friction factors in the 

x- and z-directions, respectively, as a function of the number of Fourier modes NA 

retained in the Fourier expansions representing these shapes. It can be seen that the 

computed values of the friction factors converge very rapidly to the actual values, the 

convergence rates are approximately the same for the x- and z-friction factors and do not 

depend on Re in the range of Re considered in this analysis. The convergence is 

noticeably slower in the case of rectangular grooves but this should not be surprising as 

the relevant Fourier representation suffers from the Gibbs phenomenon; nevertheless, the 

computed friction factor for NA = 1 is still within 50% of the actual value. 
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                                  (A)               (B) 

Figure  4.5: Variations of f1x*Re (solid lines) and f1z*Re (dashed lines) as functions of the number 

of Fourier modes NA used to describe the groove geometry for Re=0.01 (Figure  4.5A) and 

Re=1000 (Figure  4.5B) for grooves with S = 0.02, 1~ =α , φ = 45° and shapes shown in Figure 

 4.4. Groove A: triangular shape (Figure  4.4A with a=b=π, c=0). Groove B: trapezoidal shape 

(Figure  4.4A with a=b=c=2π/3). Groove C: rectangular shape (Figure  4.4B with a=b=π). Groove 

D: rectified shape (Figure  4.4C).  
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The results presented in Figure  4.5 demonstrate that retention of only the leading Fourier 

mode in the shape representation results in an error that is in most cases smaller than 

10%. This observation forms the basis of the reduced-order geometry model where the 

actual groove shape is replaced by its leading Fourier mode. The number of relevant 

geometric factors is reduced to just three, i.e. the wavenumber α~ , the amplitude S and 

the orientation angle φ, and their role in drag generation needs to be determined. The 

evaluation of the friction factors for any geometry is reduced to the determination of the 

dominant Fourier mode in its Fourier representation and the use of the pre-computed 

tables/diagrams. The rest of this analysis is focused on providing data for construction of 

such tables/diagrams, i.e. it is focused on sinusoidal grooves. The reader may note that 

such data approximates the performance of arbitrary grooves but is exact for sinusoidal 

grooves.  

One needs to be cautious when dealing with geometries that can be potentially subject to 

Gibbs phenomenon, but even in such cases the above procedure provides an order-of-

magnitude estimate of the losses which might be sufficient in many applications. If a 

10% error bound is not acceptable, one needs to carry out detailed calculation on a case-

by-case basis. Detailed analysis may also be required when assessing qualitative 

properties of various shapes, e.g. symmetries. We shall come back to this question later in 

the text. 

 

4.4.3 Effect of the dominant geometric parameters 

We shall now focus our attention on the roles played by the dominant geometric 

parameters, i.e. α~ , S and φ, and begin the discussion with a description of the overall 

parametrization of the problem. We shall explore limiting cases in Sections  4.4.4 and 

 4.4.5. 
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We take advantage of the reduced-order geometry model introduced in the previous 

section and consider a channel with the lower wall fitted with sinusoidal grooves, with 

the overall channel geometry described as 

1=Uy , ( 4.28a) 

)~~cos()2/(1)~( xSxyL α⋅+−= . ( 4.28b) 

The mean channel opening is not affected by the grooves and thus all pressure losses 

occur solely due to the flow modulations. 

Figure  4.6 illustrates the variations of the pressure loss as a function of the orientation 

angle φ. The presence of the transverse grooves (φ = 0°) results in an increase of the flow 

resistance and, therefore an additional pressure gradient needs to be added to maintain the 

same flow rate. As the grooves rotate away from this position and become more aligned 

with the direction of the reference flow (x-direction), the flow resistance decreases. The 

minimum resistance corresponds to longitudinal grooves (φ = 90°). 

The presence of oblique grooves creates a tendency for the flow to follow the direction of 

the grooves. A spanwise pressure gradient (in the z-direction) must be added in order to 

prevent net flow in that direction. This situation would occur in a channel with a finite 

spanwise width as the side walls would prevent any net flow in that direction. The 

maximum spanwise pressure gradient occurs for φ ≈ 42° regardless of the groove 

wavenumber and amplitude, and decreases to zero as the grooves approach either the 

transverse or the longitudinal positions (see Figure  4.6). 

In general, grooves with bigger α~  and larger S require higher additional pressure 

gradients in order to maintain the same flow rates. This fact is well documented in Figure 

 4.7A displaying variations of the friction factors as functions of α~  and φ  for fixed S, and 

in Figure  4.7B displaying variations of the friction factors as functions of S and φ  for 

fixed α~ . The reader may note that the most rapid increase of f1x*Re with an increase of S 

and α~  occurs in the case of the transverse grooves (φ = 0°) and the fastest increase of 

f1z*Re occurs for oblique grooves inclined with angle φ ≈ 42° (see Figures 4.7A and 
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4.7B). An increase of Re also increases the friction factors, with the most rapid increase 

of f1x*Re for the transverse grooves (φ ≈ 0°) and the fastest increase of  f1z*Re for the 

oblique grooves with φ ≈ 42° (see Figure  4.7C). The reader may note the special 

properties of the longitudinal grooves, where f1x*Re is independent of Re and f1z*Re=0. 

 

0   30   60   90
0

 

 

3

 

 

6

φ

f 1x
*R

e

           

-16

 

-8

 

0

f 1z
*R

e

×10-3×10-2

α = 1~

3

1

3

6

6

0   30   60   90
0

 

4

 

8

φ
f 1x

*R
e

           

-20

 

-10

 

0

f 1z
*R

e

×10-3×10-2

S = 0.04

0.06 0.08

0.06

0.04

0.08

 

                     (A)                                (B) 

0   30   60   90
0

 

 

3

 

 

6

φ

f 1x
*R

e

          

-16

 

-8

 

0

f 1z
*R

e

Re = 100

1000
1000

3000

3000

×10-2 ×10-3

100

 

              (C) 

Figure  4.6: Variations of f1x*Re (solid lines) and f1z*Re (dashed lines) as functions of φ for a 

channel with the grooves defined by Eq. ( 4.28). Figure  4.6A– Re = 1000, S = 0.06; Figure  4.6B – 

Re = 1000, 3~ =α ; Figure  4.6C – 3~ =α , S = 0.06. 
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Figure  4.7: Variations of f1x*Re (solid lines) and f1z*Re (dotted lines) as functions of φ and α~  

(Figure  4.7A) for the groove geometry defined by Eq. ( 4.28) with S=0.05 and Re=500, as 

functions of φ and S for 3~ =α  and Re=500 (Figure  4.7B), and as functions of φ and Re for 3~ =α  

and S = 0.05 (Figure  4.7C).  

 

There is a noticeable "symmetry" in the effects of the inclination angle φ on the z-friction 

factor, as grooves with the same inclination away from both the longitudinal and the 

transverse positions produce nearly identical spanwise pressure gradients (see Figure 

 4.7). On the contrary, the x-friction factor always decreases monotonically with an 
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increase of the inclination angle (see Figure  4.7). This friction factor changes sign for 

grooves with a small enough wavenumber α~  and an inclination angle close enough to 

90° (see right lower corner of Figure  4.7A), demonstrating their drag-reducing 

capabilities. 

Figure  4.8 illustrates the variations of the additional friction factors as functions of α~  and 

S for selected groove inclination angles φ  and thus permits a more direct assessment of 

the effectiveness of different groove geometries. This figure demonstrates explicitly that 

the magnitudes of the friction factors generally increase with the increase of both α~ and 

S. 
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Figure  4.8: Variations of f1x*Re (Figure  4.8A) and f1z*Re (Figure  4.8B) as functions of α~  and S 

for a channel with shape defined by Eq. ( 4.28) for Re = 500. Solid, dashed and dashed-dotted 

lines correspond to grooves with φ = 30°, 45°, 60°, respectively. 

 

The results displayed in Figures 4.6 and 4.7 demonstrate that the extreme changes of the 

streamwise pressure gradient induced by the grooves occur either for the transverse 

grooves (φ = 0°; maximum) or for the longitudinal grooves (φ = 90°; minimum). We shall 

focus further discussion on these two special cases. 
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4.4.4 Transverse grooves 

The first special case involves transverse grooves, i.e.  

1=Uy , ( 4.29a) 

)cos()2/(1)( xSxyL α⋅+−= . ( 4.29b) 

The drag is generated only by viscous shear in the case of smooth walls. Addition of 

grooves results in a change in the shear distribution and in the size of the wetted surface 

area, and its interaction with the pressure field may lead to the formation of pressure 

forces. We shall discuss the mechanics of drag formation in the next section.  

 

4.4.4.1 Mechanics of drag formation 

The x-component of the local surface force tx,tot acting on the fluid at the lower wall has 

the form 

,
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( 4.30) 

where tx,pres, tx,nv and tx,sv denote the pressure forces, the viscous normal forces and the 

viscous shear forces, respectively, and [ ]22/)sin(1 xSN αα+= . The local force gx,tot 

acting on the upper wall has the form 

y

u
Reg totx

∂

∂
= −1

,  ( 4.31) 

and is generated by viscous shear only. In the next section, we focus on the drag 

formation by long-wavelength grooves.  
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4.4.4.1.1 Long wavelength grooves 

Various elements of the drag force can be evaluated directly using the method explained 

in Section  4.4.4.1. It is instructive, however, to begin presentation with the analytical 

solution available in the limit of α→0 (see  Chapter 3 for details). The velocity and 

pressure fields have the form 

)( 2
10 αα Ouuu ++= , ( 4.32a) 

)( 2
10 αα Ovvv ++= , ( 4.32b) 

)(01
1 αα Oppp ++= −

− , ( 4.32c) 

where 
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1)1( +−= yHη , ( 4.36a) 
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[ ] 14)cos(1 −
−= /xSH α . ( 4.36b) 

The mean pressure gradient, which provides a measure of the total drag force, can be 

determined explicitly as 

( )( )[ ] )(16/132/1122
d

d 22/52211 αOSSReRe
x

p

mean

+−+−+−=
−−− , ( 4.37) 

where the square bracket describes the effects generated by the grooves. The x-

component of the local pressure force acting on the fluid at the lower wall has the form 

)sin()]([5.0 2
01 xOppStx, pres ααα ++= − , ( 4.38) 

and the total pressure force per one period can be expressed as 
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 ( 4.39) 

where the period is measured from αx = γ. The pressure form drag Fx,form is associated 

with the mean pressure gradient, and the pressure interaction drag Fx,inter is generated by 

interaction of the geometry and the periodic part of the pressure field. 

The local shear forces acting on the fluid at the lower (tx,visc) and upper (gx,visc)  walls are 

identical, have the form 

)()(
105

4
2 2221

, ααα OxsinHSHRegt viscxx,visc ++−== −  ( 4.40) 

and produce the total shear force per one period expressed as 

( ) )(1614
23211

, αα O/SReπGF
/

viscxx,visc +−−==
−−− . ( 4.41) 

The normal viscous stresses do not generate forces at this level of approximation. 
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Figure  4.9: Distributions of the local shear force Re*tx,visc (Figure  4.9A) and the local pressure 

force Re*tx,pres (Figure  4.9B) acting at the lower wall and the local shear force Re*gx,visc acting at 

the upper wall (Figure  4.9C) for transverse grooves with the shape defined by Eq. ( 4.29) with 

S=0.05. Solid and dashed-dotted lines correspond to Re=0.01 and Re=1000, respectively. Dashed 

and dotted lines identify asymptotic (α→0) and smooth wall values, respectively. 

 

Figure  4.9 displays the distributions of  tx,pres , tx,visc  and  gx,visc for grooves with the 

wavenumbers up to α=5. The shear forces have sinusoidal distributions for α→0, with 

maxima and minima overlapping with the tips and the troughs of the grooves (Figure 

 4.9A), respectively. The distributions are symmetric with respect to the tips but the 

asymmetry increases with an increase of α and Re, with the maxima shifting to the 

upstream side of the grooves. The difference between the tip and trough values increases 
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with both α and Re. The evolution of the pressure forces follows the same pattern (Figure 

 4.9B), although the variations are overshadowed by the presence of the linear pressure 

component. At low Re the asymmetry is fairly small and decreases with α. At high Re 

this asymmetry is very pronounced and increases with α. 

The shear forces at the upper wall (Figure  4.9C) retain an almost sinusoidal distribution 

for all values of Re and α, with the amplitudes being larger for larger Re. These 

amplitudes decrease with α and the distributions become essentially independent of x for 

α > 5. 

It is convenient for discussion purposes to consider the forces acting on the fluid 

contained in the channel section starting at αx =γ = −π and extending over one period. In 

the limit of α→0, the total drag force Ftotal has the form 
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( 4.42) 

where Fs, Fform and Finter represent the shear drag, the pressure form drag and the pressure 

interaction drag, respectively. Initially, Fs and Finter increase proportionally to S2, while 

Fform increases proportionally to S; these variations becomes complex for higher values of 

S. Figure  4.10A demonstrates that Ftotal increases with α  (line 1), Fs decreases with α  

(line 2), Fform remains essentially unchanged (line 3) and Finter increases with α  (line 4). 

The interaction drag increases faster than the reduction of the shear drag, resulting in the 

increase of the total drag. The variations of the difference between the total drag in 

smooth and corrugated channels Ftotal,1 (line 5), as well as the difference between the 

shear drag in smooth and corrugated channels Fs,1 (line 6), underline the decrease in the 

role played by the shear. This process is well illustrated in Figure  4.11, which displays 

the fractions of the total drag generated by the form, interaction and shear effects defined 

as  
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100*)/( totalformform FFf = , ( 4.43a) 

100*)/( totalinterinter FFf = , ( 4.43b) 

100*)/( totalss FFf = . ( 4.43c) 

The fraction of total drag associated with the pressure form drag remains constant, the 

contributions of the shear drag decrease rapidly, while the contributions of the pressure 

interaction drag increase as α increases. In the next section, we shall describe drag 

formation caused by grooves with very short wavelengths. 
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Figure  4.10: Variations of the drag force per unit channel length (Re/λ)*Ftotal and its various 

components as a function of α  for transverse grooves with S=0.05 (Figure  4.10A – small α, 

Figure  4.10B – large α). Curves 1, 2, 3, 4, 5 and 6 correspond to (Re/λ)*Ftotal, (Re/λ)*Fs, 

(Re/λ)*Fform, (Re/λ)*Finter, (Re/λ)*Ftotal,1 and (Re/λ)*Fs,1, respectively (see text for explanations). 

Solid and dashed lines correspond to Re=0.01 and Re=1000, respectively. 
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Figure  4.11: Variations of fractions of the total drag created by different physical mechanisms 

(see Eq. ( 4.43)) as a function of α (Figure  4.11A - small α, Figure  4.11B - large α). Other 

conditions are as in Figure  4.10. 

 

4.4.4.1.2 Short wavelength grooves 

As α  increases the groove tips come closer together, the flow separates in the troughs, 

the main stream lifts above the grooves and the characteristics of the wall approach those 

of a smooth wall moved into the flow by a distance approximately equal to the groove 

amplitude S/2. This process can be followed in Figure  4.12 which displays the 

distributions of the x-components of local surface forces contributing to the drag. The 

shear force at the lower wall becomes negligible over a segment of the wall 

corresponding to the troughs but its magnitude increases substantially around the groove 

tips. Its distributions become symmetric with respect to the groove tips for large enough 

α regardless of Re (Figure  4.12A). The shear force at the upper wall loses its dependence 

on x and its magnitude increases marginally with α  (Figure  4.12C). The pressure force at 

the lower wall exhibits large local peaks on the upstream and downstream sides of the 
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tips, with magnitudes increasing marginally with α (Figure  4.12B); this force remains 

nearly constant in the zone above the troughs.  
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Figure  4.12: Distributions of the shear force Re*tx,visc (Figure  4.12A) and the pressure force 

Re*tx,pres (Figure  4.12B) acting at the lower wall for transverse grooves with large α. Circles 

identify flow separation and re-attachment points. Other conditions are as in Figure  4.9. Figure 

 4.12C displays variations of the shear force acting at the upper wall at two locations, i.e. above 

the trough and above the tip of the groove, as a function of α. 

 

The flow patterns and the pressure fields for large α are illustrated in Figure  4.13. It can 

be seen that a separation bubble fills in a larger and larger part of the trough and the flow 
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lifts up above the groove as α increases. Local pressure peaks form around the tips of the 

grooves, with the local pressure maxima increasing marginally with α. Such a pressure 

distribution is required in order to force the fluid to lift up above the groove tip on the 

upstream side as well as to draw the fluid from the interior of the trough on the 

downstream side. The pressure is nearly constant sufficiently deep in the trough.  
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Figure  4.13: Streamlines (solid lines) and lines of constant pressure Re*p (dashed lines) in the 

area adjacent to the lower wall for the transverse grooves with the shape defined by Eq. ( 4.29) 

with S=0.05 and for Re=0.01 (black lines) and Re=1000 (grey lines) for grooves with α=50 

(Figure  4.13A) and α=100 (Figure  4.13B). Circles identify flow separation and re-attachment 

points. 

 

Figure  4.10B provides an illustration of how the total drag force, as well as the 

contributions of its components, change as a function of α in the large-α limit. The shear 

component of the drag force Fs rapidly decreases with α due to reduction of the shear in 

the troughs in spite of a large increase in the wetted surface area. The shear peaks found 

around the tips of the grooves are unable to counterbalance the rapid decrease of shear 

elsewhere along the wall. The pressure interaction drag Finter rapidly increases with α due 
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to the formation of pressure peaks on the downstream and upstream sides of the tips. The 

pressure form drag does not change as a function of α due to a very short groove 

wavelength. The total drag Ftotal increases marginally with α as a decrease of the shear 

drag is balanced by an increase of the pressure drag. This process is well illustrated in 

Figure  4.11B, which displays variations of various fractions of the total drag force as a 

function of α. 

Analysis of the data displayed in Figures 4.11 and 4.12 shows that there is a change in the 

mechanics of drag formation between the small- and large-α limits. In the former case, 

the drag is dominated by shear, which is responsible for up to ~95% of the total drag. In 

the latter case, the shear is responsible for around 65% of the total drag and the rest 

comes from the interaction between the groove geometry and the pressure field. A further 

increase of α is likely to increase the fraction of the total drag generated by pressure. The 

pressure form drag (and thus the pressure gradient driving the flow) plays a minor role 

and does not vary as a function of α  for the small groove amplitudes of interest in this 

study. The role of the pressure form drag changes drastically with an increase of the 

groove amplitude (see  Chapter 3). 

 

4.4.4.2 Stream lift-up and the equivalent channel height 

Variations of the friction factor as a function of the groove wavenumber α  are illustrated 

in Figure  4.14. The process of stream lift-up can be measured quantitatively by 

determining the opening of a smooth channel that has the same friction factor as the 

grooved channel, thus determining a reduction in the effective flow area. We shall refer 

to this quantity as the "hydraulically equivalent channel opening" (as opposed to the 

"average geometric channel opening") and use the symbol ECh. The results shown in 

Figure  4.15 demonstrate the reduction of the hydraulically equivalent channel opening as 

α increases (while the average geometric opening remains the same). It appears that ECh 

approaches 2−S/2 as α→∞. However, we were unable to carry out computations for 

sufficiently high α to confirm if this is the actual limit. The complex flow patterns 
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discussed in the previous section suggest that this limit will be different from 2−S/2; 

however, the results displayed in Figure  4.14 show that the potential difference is 

unlikely to be large.  
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Figure  4.14: Variations of f1x*Re as a function of α for transverse grooves with the shape defined 

by Eq. ( 4.29). The limit points for α→0 are 7.5×10−5, 3×10−4 and 1.876×10−3 for S = 0.01, 0.02 

and 0.05, respectively. The limit points represented by a channel with the lower wall shifted 

upwards by S/2 are 3.015×10−2, 6.061×10−2 and 1.538×10−1 for S = 0.01, 0.02 and 0.05, 

respectively. Solid and dashed lines correspond to Re=0.01 and Re=1000. 
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Figure  4.15: Variation of the equivalent channel opening ECh (see text for definition) as a 

function of α. Other conditions are as in Figure  4.14. Limit points are represented by ECh = 2 − 

S/2. 
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4.4.4.3 Potential for a drag-reducing surface 

The super-hydrophobic effect involves the capture of gas bubbles in the pores of a solid 

wall, which separate the liquid from the solid resulting in the reduction of shear drag. A 

somewhat similar effect might be produced by creating separation bubbles made of the 

same fluid through proper shaping of the surface, as these bubbles would insulate the 

main stream from the direct contact with the bounding walls. Grooves with a sufficiently 

short wavelength trap separation bubbles, as documented in Section  4.4.4.1.2, leading to 

the elimination of shear from the majority of the wetted area, as documented in Figure 

 4.12A. On the negative side, grooves create pressure interaction drag and reduce the 

effective channel opening. The latter one must be compensated for in order to get the 

overall reduction of shear, and the former one has to be minimized in order not to 

overcome the net shear reduction. The results presented in Figure  4.16A represent the 

base configuration with the corrugation placed in such a way that the mean geometric 

channel opening is constant. As S increases, the pressure interaction drag increases 

proportionally to S2, the shear drag decreases at a similar rate and they nearly cancel each 

other. However, since the interaction drag has a slightly higher magnitude, the total drag 

increases proportionally to S2. The pressure form drag also increases but it is so small that 

it does not contribute in a meaningful manner to the overall drag. Figure  4.16B illustrates 

drag changes when the decrease of the effective channel opening is compensated for. In 

this particular case the tips of the grooves always remain at y=−1 and thus the average 

geometric channel opening increases with S. A system like this corresponds to an 

intentional cutting of grooves into the channel wall. The pressure interaction drag 

increases proportionally to S
2 but the viscous drag decreases at a slightly higher rate, 

resulting in the decrease of the total drag. This process begins to saturate at S ≈ 0.04–

0.05, which limits the potential drag reduction. The pressure form drag decreases with S, 

but is so small that it does not play a role until the saturation process starts at higher S. 

The same figure shows a drag decrease resulting from the increase of the width of the 

smooth channel by S/2. For small S the groove-induced drag decrease is approximately 

the same as the drag decrease due to enlargement of the smooth channel. For S high 
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enough to initiate saturation, a simple channel enlargement is more effective than the use 

of the grooves. The drag reduction potential does exist but magnitudes of practical 

interest can be attained only if a method for compensation for the pressure interaction 

drag through proper groove shaping can be found. 
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Figure  4.16: Variations of f1x*Re as a function of S for transverse grooves with α = 100 (solid 

lines) and α = 50 (dashed lines). Results for Re = 0.01, 1000 are displayed but they overlap 

within the resolution of the figure. Contributions of different drag formation mechanisms are 

shown only for α = 100. Dashed lines represent reference curves proportional to S and S2. Figure 

 4.16A – the average position of the grooves is at y = −1. Contributions of the shear drag and the 

pressure form drag are negative and are multiplied by −1 for convenience of the presentation. 

Figure  4.16B – tips of the grooves are located at y = −1. Contribution of the pressure interaction 

drag is positive and is multiplied by −1 for presentation purposes. The dashed-dotted line 

identifies the friction factor corresponding to a smooth channel with the lower wall located at 

yL=−1−S/2. 

 

4.4.4.4 Effects of grooves' symmetry 

It is of interest to determine if either the upstream or the downstream tilting of the 

grooves may result in the reduction of pressure loss. This question has been investigated 
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using triangular grooves displayed in Figure  4.4A. Eleven configurations sketched in 

Figure  4.17 cover the whole range of grooves' tilting of practical interest and in each case 

the grooves had been placed in such a way that the average channel opening remained 

unchanged (and equal to 2).  

 

 

Figure  4.17: Shapes used in the analysis of the effects of tilting of the transverse grooves. 

Configurations 1, ..., 11 correspond to b/λ = 0, 1/8, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 7/8, 1, 

respectively. Distribution of these grooves is illustrated in Figure  4.4A with c=0. 

 

Results displayed in Figure  4.18 show that both types of tilting, i.e., upstream and 

downstream tilting, result in a nearly identical increase of pressure loss. This increase is 

of the order of ~100% for small values of Re and decreases to ~20% for Re=500. Results 

displayed in Figure  4.19 show that the upstream/downstream "symmetry" of tilting 

occurs in the whole range of parameters of interest and that the effect of tilting increases 

with an increase of α, S and Re, with symmetric grooves producing the lowest drag. 
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Figure  4.18: Variation of the modification friction factor f1x*Re as a function of tilting of 

transverse triangular grooves as measured by b/λ (see Figure  4.17) for grooves placed at the 

lower wall with α=3 and S=0.05. The average position of the lower wall is kept the same and 

equal to y=−1 in all cases. 
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Figure  4.19: Variations of the friction factor f1x*Re in a channel with transverse triangular 

grooves with various tilting (see Figure  4.4A, c=0, and Figure  4.18) placed at the lower wall as a 

function of the grooves' wavenumber α and grooves' amplitude S for the flow Reynolds number 

Re=500 (Figure  4.19A) and as a function of the flow Reynolds number Re and the amplitude S 

(Figure  4.19B) for the grooves' wavenumber α=3. Data corresponding to configurations 1, 6 and 

11 from Figure  4.17 is marked using dashed, solid and dashed-dotted lines, respectively. The 

average position of the lower wall is kept the same and equal to y = −1 in all cases.  
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4.4.4.5 Effects of distance between grooves 

Effectiveness of grooves may depend on the distance between them. This effect is 

assessed by considering grooves with triangular cross-section displayed in Figure  4.4A 

placed at the lower wall and changing distance between them as measured by parameter 

nc = c/(a+b) (see Figure  4.4A for explanation of symbols). In the limit of nc→0 the 

grooves touch each other forming an interacting system, and in the limit nc→∞ the 

grooves become isolated and each of them acts as a single groove. Two forms of grooves 

are considered, i.e., grooves that are "glued" onto the surface and grooves that are "cut" 

into the surface. Grooves' shape in the former case is displayed in Figure  4.4A and their 

mirror image with respect to the wall position describes shape in the latter case. Limit 

nc→0 represents the starting point with shapes of the wall in the case of "glued" and "cut" 

grooves being identical while the mean positions of the wall (and thus channel opening) 

being different in each case. 

This study is analogous to an experiment where either various surface roughness 

elements (spheres, prisms, parallelepipeds, etc.) are glued to the surface or various 

grooves are cut into the surface forming a variety of patterns, and pressure loss 

measurements are carried out in order to assess the effects of such roughness forms. 

Figure  4.20A illustrates variations of the friction factor as a function of nc. Fairly large 

difference of values generated by the "glued" and "cut out" grooves is observed in the 

limit nc→0. This difference starts decreasing for nc > 0.1 and effectively disappears for nc 

> 30. Changes of distance between grooves affect the mean channel opening. Results 

shown in Figure  4.20B demonstrate that majority of drag variations is caused by changes 

of the mean channel opening rather than due to the shape of the grooves. This 

underscores the need for precise interpretation of experimental results and determination 

if the observed changes of pressure loss are due to the shape of the grooves or just due to 

an additional blockage/opening of flow passages associated with presence of the grooves.  
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Figure  4.20: Variations of the modification friction factor f1x*Re as a function of the distance nc 

between individual grooves. Channel has flat upper wall and transverse triangular grooves with 

shape shown in Figure  4.4A with S = 0.05, a = b = π/3, nc = c/(a+b) either "glued" to the lower 

wall (solid lines) or "cut into" this wall (dashed-dotted lines). Figure  4.20A - bases of the grooves 

are always kept at y = −1. Figure  4.20B - the average channel opening is kept constant and equal 

to 2. Dotted lines in Figure  4.20A denote the effect of change in the average channel opening on 

f1x*Re. 

 

4.4.5 Longitudinal grooves 

We shall now turn our attention to the second special case, i.e. longitudinal grooves. We 

shall use the same grooves as in Section  4.4.4 but will rotate them by 90°, resulting in the 

channel geometry described as 

1=Uy , ( 4.44a) 

)cos()2/(1)( zSzyL β⋅+−= . ( 4.44b) 

The drag in such channels is generated only by viscous shear. The problem 

parametrization is simplified, as the effects of the Reynolds number scale out (see 

Appendix E.2). Longitudinal grooves with a triangular shape and a fixed ridge angle have 

been studied by Choi et al. (1991), who concluded that grooves in laminar flows always 

lead to drag increase. Their results were reproduced in the present study as a check on the 
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accuracy of the numerical procedure and extended to parameter ranges not included in 

the original study. 

 

4.4.5.1 Mechanics of drag generation 

The x-components of the local shear force acting on the fluid at the lower (tx,tot) and at the 

upper (gx,tot) walls have the form 
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, ,  ( 4.46) 

where [ ]22/)sin(1 zSN ββ+= . The process of drag formation changes significantly with 

β. We shall begin discussion by focusing on the long wavelength grooves.  

 

4.4.5.1.1 Long wavelength grooves 

Consider the limit β→0. The velocity field can be determined analytically as  

[ ] ( ) )(14)cos(1 222 βOη/zSWu +−−−= β , ( 4.47) 

where 

( )[ ] 14/)cos(11 1
+−−=

−
zSyη β , ( 4.48a) 

( ) 122 33231
−

++−= SSW . ( 4.48b) 

The shear forces acting on the fluid at the lower and upper walls have the form 

[ ] )(4/)cos(12 21
,, ββ OzSWRegt totxtotx +−== −  ( 4.49) 



120 

 

and their distributions are illustrated in Figure  4.21. In the limit of β→0 the shear 

distribution at the lower wall is sinusoidal (see ( 4.49)), with the maximum occurring at 

the trough. This distribution remains nearly sinusoidal as β increases, while, at the same 

time, its amplitude decreases, with the distribution becoming nearly flat when β 

approaches the limiting value of β ≈ 0.96. A further increase of β changes the qualitative 

character of the stress distribution, which becomes, again, nearly sinusoidal, but with the 

maximum occurring at the tip of the groove and its amplitude increasing monotonically. 

The stress distribution at the upper (flat) wall remains sinusoidal as β increases, with the 

maximum always occurring above the trough and the amplitude decreasing 

monotonically. 
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Figure  4.21: Distribution of the local shear force Re*tx,tot acting at the lower (Figure  4.21A) and 

upper (Figure  4.21B) walls for longitudinal grooves with geometry defined by Eq. ( 4.44) with 

S=0.05 (solid lines). Dashed and dotted lines identify asymptotic (β→0) and smooth wall (S=0) 

values, respectively. 

 

Figure  4.22 illustrates the character of the velocity field. For small enough β, the bulk 

flow concentrates in the area of the widest channel opening, forming a "flow tube" where 

u > 1.  This "flow tube" is stretched in the z-direction with an increase of β and is 

replaced by a continuous strip for β > 5, with the width of this strip increasing with β. 
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The qualitative change in the distribution of shear at the lower wall correlates with the 

stretching of the "flow tube" and underlines the fact that the drag reduction reported in 

Section  4.4.3 occurs due to realignment of the bulk of the flow. 
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               (A)                 (B) 

Figure  4.22: Distribution of the u-velocity in a channel with longitudinal grooves defined by 

Eq.( 4.44) with S=0.05. Dotted, dashed-dotted and solid lines correspond to grooves with β → 0, 

0.96, 5, respectively. Figure  4.22B provides enlargement of the middle section of Figure  4.22A.  

 

The pressure gradient in the limit β→0 takes the form 

( ) )(33262
d

d 212211 βOSSReRe
x

p
+++−=

−−− , ( 4.50) 

where the second term on the right-hand side accounts for the presence of the grooves 

and demonstrates that the reduction of the pressure loss is proportional to S2. An increase 

of β leads to a decrease of the magnitude of drag reduction, as illustrated in Figure  4.23A. 

The drag starts to increase above the level found in the smooth channel when β > ~0.96. 

The change from drag decrease to drag increase is nearly independent of the groove 

amplitude and correlates with the dissolution of the distinct, well-developed "flow tubes" 



122 

 

discussed above. Figure  4.23B illustrates variations of the friction factor for β = 0.1 and β 

= 3. A quadratic reduction of drag as a function of S occurs in the former case, while a 

quadratic increase is found in the latter case. The same figure displays the variation of the 

friction factor as a function of β for a fixed value of S = 0.05. The change from drag 

reduction to drag increase taking place at β  ≈ 0.96 is clearly visible. 
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Figure  4.23: Variations of f1x*Re induced by the longitudinal grooves with the shape defined by 

Eq.( 4.44) as a function of β and S. Figure  4.23A – contour plot of f1x*Re. Figure  4.23B– solid 

line: f1x*Re as a function of β for S=0.05, dashed lines: f1x*Re as a function of S for β = 0.1, 3. 

The asymptote for β→0 is f1x*Re=−9.3728×10−4. 

 

The drag reducing capabilities of the longitudinal, long-wavelength grooves extend to 

oblique grooves, as illustrated in Figure  4.24. As the grooves are rotated away from the 

longitudinal position (φ = 90°), the drag reducing abilities decrease rapidly, however, 

they persist even down φ = 55° for extremely small grooves' wavenumbers. A few 

degrees misalignment in the positioning of the grooves with respect to the flow direction 

is acceptable but a larger misalignment will in general produce drag increase.  
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Figure  4.24: Variations of the modification friction factor f1x*Re as a function of the inclination 

angle φ for grooves with the shape defined by Eq. ( 4.28) with S=0.05 and the small wavenumbers 

α~ . 

 

Figure  4.25 illustrates drag reducing abilities of grooves with shapes other than 

sinusoidal. Grooves of triangular cross-sections illustrated in Figures 4.4A and 4.17 are 

used to demonstrate this effect. The value of β that separates drag reducing from drag 

increasing abilities does depend on the groove shape but always remains numerically 

small. Other shapes that were tested (not shown) show the same characteristics and lead 

to the conclusion that only the long wavelength grooves are able to lower drag below the 

level found in smooth channels with the same cross-sectional area. This drag reduction 

occurs in spite of increase of the wetted area. 
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Figure  4.25: Variations of the modification friction factor f1x*Re as a function of the grooves' 

amplitude S and wavenumber β for a channel with longitudinal grooves of triangular form placed 

at the lower wall. Shape of the grooves is given in Figure  4.4B with c = 0 and the average 

position of the lower wall is kept at y=−1. Figures 4.25A, 4.25B, 4.25C and 4.25D give results 

for configurations 6, 9, 10 and 11 from Figure  4.17, respectively. Drag reduction occurs for β <~ 

0.92, 0.82, 0.67, 0.47 in each of these cases, respectively, regardless of the amplitude of the 

grooves. 

 

4.4.5.1.2 Short wavelength grooves 

An increase of β leads to a flow lift-up but with mechanics different from the case of 

transverse grooves. The groove side walls come close together, increasing viscous 

friction in the trough and thus preventing fluid movement in this area. As a result, the 

stream is forced to flow above the trough. 
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Figure  4.26: Distribution of the local shear force Re*tx,tot acting at the lower wall for longitudinal 

grooves with medium β (Figure  4.26A) and large β (Figure  4.26B). Other conditions are as in 

Figure  4.21. Figure  4.26C displays variations of the local shear force Re*gx,tot acting at the upper 

wall at two locations, i.e. above the trough and above the tip of the groove, as a function of β. 

 

The distribution of shear at the lower wall remains approximately sinusoidal as the 

wavenumber increases up to β ≈ 20 (Figure  4.26A), then it flattens out in the area 

corresponding to the trough, with its magnitude decreasing to zero and with sharp peaks 

forming around the tips of the groove (Figure  4.26B). The fraction of the groove exposed 

to negligible shear increases continuously and reaches ~ 90% for β =1000. The variations 

of shear along the upper wall become negligible as β increases; its magnitude approaches 

the shear found in a smooth channel with the opening reduced by S/2 (Figure  4.26C). 
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                                       (A)                       (B) 

Figure  4.27: Distribution of the u-velocity in a channel with longitudinal grooves. Dotted, 

dashed-dotted and solid lines correspond to grooves with β = 10, 100, 200, respectively. Other 

conditions are as in Figure  4.22. Figure  4.27B provides enlargement of the bottom section of 

Figure  4.27A. 

 

The stream lift-up is illustrated in Figure  4.27, displaying constant velocity lines. The 

flow above the grooves is one-dimensional, with the groove-induced modifications 

limited to a narrow strip around the corrugated wall. The velocity in the troughs is 

reduced to a level that makes the mass flow through the troughs marginal. The flow 

above the trough accelerates in order to maintain the specified mass flow through a 

reduced flow area, resulting in the formation of a narrow strip around the channel axis 

where the velocity increases above 1. 
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Figure  4.28: Channel with longitudinal grooves with shape defined by Eq. ( 4.44). Left axis: 

variations of f1x*Re as a function of β. The limit points for β→0 are −3.75×10−5, −1.5×10−4 and 

−9.373×10−4 for S = 0.01, 0.02 and 0.05, respectively. The limits for β→∞ are represented by 

smooth channel with the lower wall shifted upwards by S/2; they are 3.015×10−2, 6.061×10−2 and 

1.538×10−1 for S = 0.01, 0.02 and 0.05, respectively. Right axis: variations of the equivalent 

channel opening ECh (see text for definition) as a function of β. Limit points for β→∞ are 

represented by ECh = 2 − S/2, i.e. they correspond to a smooth channel with the lower wall shifted 

upwards by distance S/2. 

 

The effects of stream lift-up are illustrated in Figure  4.28. An increase of the friction 

factor as β increases demonstrates the reduction of the effective channel opening ECh. The 

reader may note that the average geometric channel opening remains the same for all 

values of β while the hydraulically equivalent channel opening ECh (see Section  4.4.4.2) 

does not. The results demonstrate that ECh → (2 − S/2) as β→∞, i.e. the limiting point 

corresponds to the wall moved into the channel by distance S/2. 

Effective elimination of shear over the majority of the wetted surface area suggests that it 

might be possible to create a drag-reducing grooved surface, assuming that the apparent 

channel narrowing induced by the grooves can be properly compensated for. Figure  4.29 

displays variations of the friction factor as a function of the groove amplitude S for 

grooves with β=50, 100 and 1000. In Figure  4.29A the average position of the lower wall 

is kept at y = −1, resulting in the drag increasing proportionally to S
2 for β = 50 and 100. 

This increase, however, slows down to being proportional to S when β becomes too large, 
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e.g. β = 1000. The lowering of the position of the grooved wall compensates for the 

hydraulic wall thickening, resulting in a drag decrease, as illustrated in Figure  4.29B. In 

this particular case, the tips of the grooves are always kept at y = −1. If the groove 

wavenumber is too large, the drag reduction becomes marginal, e.g. β = 1000. The same 

figure shows drag reduction achieved by simply increasing the channel opening while 

keeping the wall smooth. For small S the use of either wall corrugation or a simple 

increase of channel opening produce the same result, but when S >~ 0.01 an increase of 

channel opening is more effective. The above results demonstrate that a potential for drag 

reduction does exist but additional work is required in order to find groove shapes that 

would reduce the shear peaks. 
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Figure  4.29: Variations of f1x*Re as a function of S for longitudinal grooves. Dashed lines 

provide reference curves proportional to S and S2. Figure  4.29A – the average groove location is y 

= −1. Figure  4.29B – tips of the grooves are located at y = −1. The dashed-dotted line describes 

the friction factor for a smooth channel with the lower wall located at yL=−1−S/2. 
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4.4.5.2 Effect of distance between grooves 

Flow modifications induced by the grooves depend on the distance between them. This 

effect is illustrated using grooves with the same triangular cross-section as in Section 

 4.4.4.5 but oriented along the flow direction. Figure  4.30A illustrates variations of the 

friction factor for system of grooves that are either "glued" onto the surface or "cut into" 

the surface with this surface kept at a fixed position at y=−1. The average channel 

opening changes when the distance between grooves increases. The friction factor 

correction is significant when grooves are close to each other with large differences 

between the "glued" and "cut into" grooves. The differences begin to decrease when nc 

increases above 0.1 and effectively disappear when nc>30, as in the case of transverse 

grooves. Presence of grooves can be practically ignored for nc>10 as such grooves 

provide marginal changes in the friction factor.  
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Figure  4.30: Variations of the modification friction factor f1x*Re as a function of the distance nc 

between individual grooves. Channel has flat upper wall and  longitudinal triangular grooves with 

shape shown in Figure  4.4A with S = 0.05, a = b = π/3, nc = c/(a+b) either "glued" to the lower 

wall (solid lines) or "cut into" this wall (dashed-dotted lines). Figure  4.30A - bases of the grooves 

are always kept at y = −1. Figure  4.30B - the average channel opening is kept constant and equal 

to 2. Dotted line in Figure  4.30A denotes the effect of change in the average channel opening on 

f1x*Re. 
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Results displayed in Figure  4.30B are for the same grooves but with the position of the 

lower wall adjusted so that the average channel opening remains always the same and 

equal to two. Comparison of results displayed in Figures 4.30A and 4.30B demonstrates 

that most of the observed changes of the friction factor are associated with changes of the 

average channel opening. This points out to the need of careful interpretation of the 

results of experimental pressure loss measurements in order to properly separate the 

blocking effect of the grooves from the flow modulating effect. A slightly different 

placement of the same grooves may lead to a different drag. 

 

4.5 Summary 

The effects of small-amplitude, two-dimensional grooves on pressure losses in a laminar 

channel flow have been analysed. Grooves with an arbitrary shape and an arbitrary 

orientation with respect to the flow direction have been considered. It has been 

demonstrated that losses can be expressed as a superposition of two parts, one associated 

with change in the mean positions of the walls and one induced by flow modulations 

associated with the geometry of the grooves. The former effect can be determined 

analytically, while the latter has to be determined numerically and can be captured with 

an acceptable accuracy using reduced-order geometry models. Projection of the wall 

shape onto a Fourier space has been used to generate such a model. It has been found that 

in most cases replacement of the actual wall geometry with the leading mode of the 

relevant Fourier expansion permits determination of pressure losses with an error of less 

than 10%. Detailed results are given for sinusoidal grooves for the range of parameters of 

practical interest. These results describe the performance of arbitrary grooves with the 

accuracy set by the properties of the reduced-order geometry model and are exact for 

sinusoidal grooves. Exact results for some other, more complex shapes have been also 

presented. 
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The results show a strong dependence of the pressure losses on the groove orientation. 

Longitudinal grooves produce the smallest drag, and oblique grooves with an inclination 

angle of ~42° exhibit the largest flow turning potential. Detailed analyses of the extreme 

cases, i.e. transverse and longitudinal grooves, have been carried out. For transverse 

grooves with small wavenumbers, the dominant part of the drag is produced by shear, 

while the pressure form drag and the pressure interaction drag provide minor 

contributions. For the same grooves with large wavenumbers, the stream lifts up above 

the grooves due to their blocking effect, resulting in a change in the mechanics of drag 

formation: the contributions of shear decrease while the contributions of the pressure 

interaction drag increase, leading to an overall drag increase. In the case of longitudinal 

grooves, drag is produced by shear, and its rearrangement results in a drag decrease for 

long-wavelength grooves in spite of an increase of the wetted surface area. An increase of 

the wavenumber leads to the fluid being squeezed from the troughs and the stream being 

forced to lift up above the grooves. The shear is nearly eliminated from a large fraction of 

the wall but the overall drag increases due to reduction of the effective channel opening. 

It is shown that properly structured grooves are able to eliminate wall shear from the 

majority of the wetted surface area regardless of the groove orientation, thus exhibiting 

the potential for the creation of drag reducing surfaces. Such surfaces can become 

practicable if a method for elimination of the undesired pressure and shear peaks through 

proper groove shaping can be found. 
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Chapter 5  

5 Groove Optimization for Drag Reduction4 

 

5.1 Introduction 

It has been shown that the long-wavelength longitudinal grooves are able to reduce drag 

in laminar pressure-driven flows (see  Chapter 4). This chapter is focused on the analysis 

of viscous drag generated by longitudinal grooves and on the search for forms of such 

grooves that lead to the maximum possible drag reduction, i.e. the search for the optimal 

shapes. The analysis has been carried out in the context of laminar, pressure-driven 

(Poiseuille) as well as kinematically-driven (Couette) flows in a channel. The optimality 

has been assessed by minimizing the friction factor over all possible shapes with grooves 

subject to the depth and height constraints. The problem formulation is given in Section 

 5.2. The methods used for evaluation of the cost function are discussed in Section  5.3. 

Section  5.4 discusses the optimization process. Section  5.5 describes the results related to 

pressure driven flows. In particular, Section  5.5.1 offers a discussion of the performance 

of the equal-depth grooves, and Section  5.5.2 presents results related to the unequal-depth 

grooves. Section  5.6 discusses the use of grooves in kinematically-driven flows. Section 

 5.7 summarizes the main conclusions.  

 

5.2 Problem formulation 

Consider flow in a channel bounded by grooved walls, as shown in Figure  5.1. The flow 

is driven along the grooves, i.e. in the x-direction, either by a pressure gradient or by 

                                                 

4
 A version of this chapter has been submitted for publication as − 

Mohammadi, A. & Floryan, J. M. 2013 Groove optimization for drag reduction. Phys. Fluids.  
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motion of the upper wall. The grooves have an arbitrary, z-periodic form with their 

geometry expressed in terms of Fourier expansions in the form 

∑
=

−=

+=
A

A

Nm

Nm

zimm

UU eHzy
β)(1)( , ( 5.1a) 

∑
=

−=

+−=
A

A

Nm

Nm

zimm

LL eHzy
β)(1)( , ( 5.1b) 

where λ=2π/β denotes the groove wavelength, subscripts U and L refer to the upper and 

lower walls, respectively, *)()( m

U

m

U HH
−=  and *)()( m

L

m

L HH −=  express the reality conditions, 

stars denote the complex conjugates, NA denotes the number of Fourier modes required to 

describe the geometry of a single groove, all quantities have been scaled with the half 

height K of the reference smooth channel as the length scale and (x,y,z) denote the 

longitudinal, transverse and spanwise directions, respectively. 

 

 

Figure  5.1:. Sketch of the flow configuration. 
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In the case of a pressure driven flow, a certain pressure gradient is required in order to 

move fluid at a prescribed rate through a smooth channel. The introduction of grooves 

may either increase or, possibly, decrease this pressure gradient in order to maintain the 

same flow rate. In the case of kinematically driven flows, the motion of the upper wall 

drives the fluid movement. The addition of grooves may require the introduction of either 

a positive or a negative pressure gradient in order to maintain the same flow rate. Since 

the effectiveness of the grooves is judged differently for each flow, we shall start the 

presentation with pressure driven flows. 

The main objective of this analysis is the determination of the shape of the grooves that 

produces the largest decrease of pressure gradient required to drive the flow at a 

prescribed rate. The same objective can be stated as finding a minimum of the friction 

factor f for all )(m
UH and )(m

LH subject to additional suitable constraints, i.e. minimization 

of function F 

),,,,,,( )()0()()0( AA N

LL

N

UU HHHHReFf ……= . ( 5.2) 

It has been shown (see  Chapter 4) that additional pressure losses created by the grooves 

can be represented as a superposition of losses associated with change in the mean 

position of the walls and losses associated with the flow modulations due to the shape of 

the grooves. Since the former effect can be accounted for analytically, this work is 

focused on the analysis of the effects of flow modulations. Accordingly, the flow cross-

sectional area has to be kept constant and equal to the cross-sectional area of the 

reference smooth channel during the optimization process, i.e. 0)0()0( == LU HH . The 

additional constraints involve setting up various possible limitations on the maximum 

permitted depth and height of the grooves. These constraints will be explained in detail 

later in the text. Finding the minimum represents a nonlinear constrained optimization 

problem which is solved using the ‘interior-point’ optimization algorithm (Coleman & Li 

1994; Coleman & Li 1996). Implementation of this algorithm is discussed later in this 

chapter. 
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The optimization algorithm requires evaluation of the cost function and derivatives of this 

function with respect to the problem parameters. The friction factor represents the cost 

function and two methods that have been used for its evaluation are discussed in the next 

section. The required derivatives are evaluated using the finite-difference quotients. 

 

5.3 Evaluation of the cost function 

Field equations describing the movement of fluid have to be solved in order to determine 

the friction factor. Since the flow is driven by a constant x-pressure gradient and the 

geometry does not depend on the x-coordinate the velocity field is completely described 

by the x-momentum equation in the form 

0
d

d
=−∂+∂

x

p
Reuu zzyy , ( 5.3) 

where subscripts y and z denote partial derivatives ∂/∂y and ∂/∂z, respectively, u(y,z) 

denotes the velocity component in the x-direction, p(x) stands for the pressure, the 

maximum of the dimensional reference x-velocity Umax is used as the velocity scale, 

ρUmax
2 is used as the pressure scale and the Reynolds number is defined as KUmax/ν . 

Here ρ and ν stand for the density and kinematic viscosity, respectively. The velocity 

field has to satisfy a constraint in the form 

3

4
dd),(
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− ==
λ

λ
z

z

zyy

zyy

U

L

zyzyuQ , ( 5.4) 

which states that the flow rate through the grooved channel per unit width in the spanwise 

direction is the same as the flow rate through the reference smooth channel. The 

boundary conditions are expressed as  

0=u  at )(zyy U=   and )(zyy L= .  ( 5.5) 

Flow through a smooth channel, i.e. the reference flow, has the form 
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where c denotes an arbitrary constant and Q  is the flow rate per unit width of the channel 

in the spanwise z-direction. Solution of ( 5.3)–( 5.5) results in the determination of the 

pressure gradient, which is written as  

h
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2

d
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d 0 , ( 5.9) 

where h denotes the pressure gradient modification induced by the grooves. This pressure 

gradient is expressed in terms of a friction factor 

10
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2 ffh

x

p

x

p
f +=−−=−= , ( 5.10) 

where f0 is the reference friction factor and f1 is the modification friction factor. Negative 

values of f1 identify drag reduction. The objective of the analysis is therefore 

minimization of f1 or, equivalently, minimization of f1/f0. Equation ( 5.3) shows that 

Reynolds number scales out and thus one needs to consider only the product (f Re). 

 

5.3.1 Arbitrary grooves 

Determination of the friction factor requires solution of ( 5.3)–( 5.5) which is carried out 

using spectrally-accurate discretization based on the Fourier and Chebyshev expansions. 

The boundary conditions on the irregular boundaries can be treated either using the 

immersed boundary conditions (IBC) concept (see  Chapter 2) or the domain 

transformation (DT) method (see  Appendix E). The latter is used in the present work. The 
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irregularity of the solution domain is eliminated by introducing a transformation of the 

form 

z=ξ , ( 5.11a) 

1
)()(
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2 +




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



−

−
=

zyzy

zyy

LU

Uη , ( 5.11b) 

which maps the corrugated flow domain onto a straight strip in the (ξ,η) plane. The 

governing equation ( 5.3) written in the (ξ,η) coordinates takes the form 

0
d

d
),(),(),(),( 3321 =−∂+∂+∂+∂

x

p
Refufufufu ηξηξηξηξ ξξξηηηη , ( 5.12) 

where the subscripts η and ξ denote partial derivatives ∂/∂η and ∂/∂ξ, respectively. All 

the coefficients in ( 5.12) are known and have the form 

)/(),( 22
1 yzzzf ηηηηξ += , 

( 5.13a) 

)/(2),( 22
2 yzzf ηηηηξ += , 

(5.13b) 

)/(1),( 22
3 yzf ηηηξ += , 

(5.13c) 

 

][1
ξξ ηη HGHz +−= − , ( 5.14a) 

]2[1
ξξξξξ ηηη HGHH zzz ++−= − , (5.14b) 

1−= Hyη , (5.14c) 

2/)( LU yyG += , (5.14d) 

2/)( LU yyH −= . (5.14e) 
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In the above, subscripts z, y denote partial derivatives ∂/∂z and ∂/∂y, respectively. 

Boundary conditions ( 5.5) take the form 

0)1,( =+ξu , ( 5.15a) 

0)1,( =−ξu . ( 5.15b) 

The fixed flow rate constraint in the (ξ,η) reference system becomes 
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η

η

ξηηξλ uHQ . ( 5.16) 

The discretization method relies on using the Fourier expansions in the ξ-direction and 

the Chebyshev expansions in the η-direction (see  Chapter 2). A system of algebraic 

equations is developed using mode separation and the Galerkin projection method, and 

solved using standard linear solvers. 

 

5.3.2 Long wavelength grooves 

The friction factor can be computed analytically for the long wavelength grooves. The 

availability of such solution reduces the cost of optimization as well as provides an 

accuracy test for the general solver discussed in the previous section. A transformation of 

the form 

zβχ = , ( 5.17a) 
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is introduced in order to solve problem ( 5.3)–( 5.5). The χ-coordinate plays the role of a 

slow scale in the limit of β→0. The field equation written in the (χ,η) system becomes 
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where the known coefficients have the form 
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(5.19b) 
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)2( 112
χχχχχ ηηββη HGHH zzz ++−= −− , (5.20b) 

1−= Hyη . (5.20c) 

The boundary conditions are identical to ( 5.15a,b) and the constraint takes the form 
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Assume a solution in the form of asymptotic expansions in terms of powers of β, i.e.  
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( 5.23) 
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Substitution of ( 5.22)–( 5.23) into ( 5.18) and ( 5.21) and retention of the four leading-order 

terms result in the following systems: 

O(β 0):      0
d

d 02
0 =−∂
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HReUηη , ( 5.24a) 
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                 0)1,(3 =±χU , ( 5.27b) 
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The solutions have the form 
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Details of the solution for two illustrative geometries are given in Appendix F. 
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The validity of the asymptotic solution is examined by comparing it with the complete 

solution determined using method discussed in Section  5.3.1. Two measures of error have 

been introduced, one for velocity and one for the modification friction factor, i.e. 

),(),(sup||||
11,20

max ηχηχ
ηπχ

ca uuu −=
≤≤−≤≤

, ( 5.33a) 

ca fff ,1,1err,1 −= , ( 5.33b) 

where subscripts a and c denote the asymptotic and the complete solutions, respectively. 

The results illustrated in Figure  5.2 show that these errors decrease proportionally to β 4 

for β<~ 0.2. 
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           (A)                     (B) 

Figure  5.2: Variations of the errors max|||| u  (Figure  5.2A) and err,1f  (Figure  5.2B) of the 

asymptotic solutions defined by Eq. ( 5.33a,b) for a channel with groove geometry described by 

Eq.( F.1a,b) for several values of A with B=A/2, φA=π/5, φB=π/3 as a function of the groove 

wavenumber β. 
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5.4 Optimization 

It is assumed that the wavelength of the grooves is fixed while the shape which produces 

the lowest drag is sought. It is simpler to discuss optimization by describing groove 

geometries using real variables, i.e. 

∑
=

=

++=
ANm

m

UmUmU zmAzy
1

,, )cos(1)( φβ , ( 5.34a)  

∑
=

=

++−=
ANm

m

LmLmL zmAzy
1

,, )cos(1)( φβ . ( 5.34b)  

The objective of the analysis is the identification of Am,U , φm,U , Am,L and φm,L which lead 

to the smallest modification friction factor subject to suitable constraints. It can be 

shown, on the basis of symmetry arguments as well as direct evaluations of f1, that the 

maximum drag reduction occurs for zero phase shifts, which reduces the optimization 

problem to finding the minimum of a function F defined as 

),,,,,( ,,1,,11 LNLUNU AA
AAAAFRef ……=  . ( 5.35)  

The additional constraints define the admissible height and depth of the grooves. The 

complete problem can be characterized as a nonlinear constrained optimization problem 

and is solved using the ‘interior-point’ optimization algorithm (Coleman & Li 1994; 

Coleman & Li 1996). 

The presence of the grooves may lead either to a decrease or to an increase of drag, 

depending on the groove wavenumber (see  Chapter 4). If one considers the height and the 

depth of the groove as degrees of freedom and β is in the region of drag increase, the 

optimization process removes such grooves, i.e. the optimization demonstrates that the 

smooth surface provides the lowest drag. This analysis is, therefore, focused on the range 

of β that describes the drag reducing grooves. 

The optimization process is illustrated using channel with a smooth upper wall and a 

grooved lower wall with its shape described by two Fourier modes, i.e.  
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1=Uy ,                             )3cos()cos(1)( 31 zAzAzyL ββ ++−= . ( 5.36)  

Figure  5.3 illustrates variations of the normalized modification friction factor f1/f0 

computed directly as a function of A1 and A3 for β=0.5, which corresponds to the drag 

reducing grooves. There is no restriction on the admissible values of A1 and A3 from the 

point of view of preservation of the flow cross-sectional area. There are obvious 

restrictions related to the fact that the groove cannot touch the upper wall. The results 

displayed in Figure  5.3 are limited to combinations of A1 and A3 such that max(yL(z))≤0.9, 

i.e. the interior of the outer contour in Figure  5.3. 
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Figure  5.3: Variations of the normalized modification friction factor f1/f0 induced by the grooves 

with the shape defined by Eq. ( 5.36) with the wavenumber β=0.5 as a function of the coefficients 

of the Fourier expansion describing the groove geometry. The thin contour lines are spaced 0.1 

apart. The interior of the outer contour identifies grooves with the height S ≤ 1.9. The interior of 

the inner contour corresponds to geometries described by Eq. ( 5.36) with S ≤ 1 satisfying 

constraints ( 5.37) and its edges correspond to constraints ( 5.38). The friction factor minima are 

marked using squares. Points 1 and 2, and points 3 and 4 mark starting locations for searches 

subject to constraints ( 5.37) and ( 5.38), respectively. 
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Consider now the question of finding the shape of the groove described by ( 5.36) such 

that it minimizes drag but, at the same time, its maximum depth and height are 

constrained to be smaller or equal to S, i.e. solution must satisfy the inequality constraints 

in the form 

SzyL +−≤ 1))(max( , ( 5.37a) 

SzyL −−≥ 1))(min( . ( 5.37b) 

The admissible combinations of A1 and A3 for S = 1 correspond to the interior and the 

edges of the inner contour in Figure  5.3. It can be seen that the minima correspond to f1/f0 

= −0.24, are located at the edges of the inner contour and are associated with points (A1, 

A3) = (1.15, −0.18) and (A1, A3) = (−1.15, 0.18). It is interesting to note that Eq. ( 5.36) 

also describes drag increasing grooves; in this case A1 = 0, the effective wavenumber 

becomes β = 1.5 which is in the range of drag increasing grooves. The drag minima can 

be identified directly using an optimization process. The search process requires initial 

approximations for A1 and A3 which are subsequently improved in an iterative manner. 

The efficiency of the search depends on the starting point. The search path for the starting 

point outside of the inner contour, i.e. the initial guess does not satisfy constraints ( 5.37), 

corresponds to point 1 in Figure  5.3, and the search path starting inside the inner contour 

corresponds to point 2. The process converges rapidly and it takes 10 steps in the former 

case and 13 in the latter case to satisfy the convergence criterion set at 10−4. The stricter 

criterion of 10−7 requires 14 and 23 steps, respectively. These results suggest that it is 

more efficient to use starting points that do not satisfy the constraints, although this 

conclusion cannot be generalized. 

One can replace Eq. ( 5.37) with a more restrictive equality constraint, i.e.   

SzyL +−= 1))(max( , ( 5.38a) 

SzyL −−= 1))(min( . ( 5.38b) 
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The results illustrated in Figure  5.3 demonstrate that the search process is equally 

efficient when the space of the admissible solutions is limited to the edges of the inner 

contour. The starting points used to illustrate the search process are the same (within the 

symmetries) as in the case of constraints ( 5.37); point 3 identifies starting conditions 

outside the inner contour while point 4 identifies conditions inside the inner contour. The 

starting points do not satisfy constraints ( 5.38) but this does not affect the efficiency of 

the search. It takes 10 steps in the former case and 5 in the latter case to satisfy the 

convergence criterion set at 10−4. The stricter criterion of 10−7 requires 11 and 5 steps, 

respectively. It may be concluded that the search with the equality constraints, e.g. ( 5.38), 

is significantly more efficient than the search with the inequality constraints, e.g. ( 5.37), 

with the cost of the former being less sensitive to the severity of the convergence 

criterion. In all cases considered, the extremes of the drag were located on the edges of 

the admissible zone in the parameter space defined by the constraints and this has led to 

the use of the equality rather than inequality constraints, unless explicitly noted.  

Consider now a more complicated problem where grooves are placed on both walls and 

their shape is described by Fourier expansions with an unknown number of modes NA. 

The suitable equality constraints have the form 
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The results displayed in Figure  5.4 for S = 1 and β = 0.1 demonstrate that the Fourier 

expansions are rapidly convergent. Use of just three Fourier modes allows approximation 
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of the optimal shape with less than 10% error for the actual modification friction factor. 

The error can be reduced by using additional modes (see Figure  5.4). These results, as 

well as those of many other similar tests (not reported), lead to a conclusion that the 

reduced-order geometry models based on 3-4 Fourier modes can capture the optimal 

shapes with an accuracy sufficient for most applications. 
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Figure  5.4: Variation of the normalized modification friction factor f1/f0 for equal-depth grooves 

located on the lower wall with S = 1 as a function of the number of Fourier modes NA used in the 

description of the groove geometries. 

 

The results displayed in Figure  5.4 show that the pressure loss is insensitive to the details 

of geometry described by higher Fourier modes. This conclusion should not be surprising 

as the action of viscosity tends to smooth out the fine details of geometry. The 

insensitivity creates computational problems as gradients of the cost function with respect 

to coefficients of higher Fourier modes that need to be computed by the optimizer may 

become very small. These gradients are approximated using low-order finite-difference 

quotients and this may lead to their imprecise evaluations. The use of strict convergence 

criteria is able, however, to overcome these difficulties but at a considerable 

computational cost associated with a large number of iterations. Once the convergence of 

Fourier series has been established, as illustrated in Figure  5.4, the actual computations 



148 

 

can be carried out using fewer Fourier modes and less strict convergence criteria. Most of 

the results presented in this work have been obtained with the convergence criteria set at 

10−7 and ten Fourier modes for geometry description as a precaution.   

The computational cost of the search rapidly increases with an increase in the number of 

parameters. The optimizer minimizes a scalar multivariable cost function subject to a set 

of constraints starting at a given initial guess. The search method is gradient-based and, 

therefore, requires the cost and constraint functions to be both continuous and to have 

continuous first derivatives. The ‘interior-point’ optimization algorithm tries to satisfy 

bounds in every iteration (Coleman & Li 1994; Coleman & Li 1996; Byrd et al. 1999; 

Byrd et al. 2000; Waltz et al. 2006) but it cannot guarantee identification of the global 

minimum. In order to minimize the chance of being trapped in a local minimum, one 

starts optimization with a small number of Fourier coefficients, say 3 or 4, and then every 

time the solution converges, the number of Fourier coefficients is expanded by one and 

the search is restarted using the most recent solution as the initial approximation and zero 

for the additional mode. This process is continued until a satisfactory approximation of 

the optimal shape is determined. Such a process permits determination of the optimal 

shape even when the direct optimization fails. The effectiveness of this process has been 

checked by computing the friction factor directly without the use of the optimization 

algorithm. 

 

5.5 Pressure-gradient-driven flow 

The shape of the optimal groove depends on the type of constraints used. This discussion 

is broadly divided into a description of the performance of grooves that have the same 

height and depth, i.e. the equal-depth grooves, and those that may have different height 

and depth, i.e. the unequal-depth grooves. The presentation begins with the former. 
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5.5.1 The equal-depth grooves 

We shall refer to the part of the groove that enters the wall as a "cut" characterized by a 

depth, while the part that enters the channel shall be referred to as a "protrusion" 

characterized by a height. The equal-depth grooves have the same maximum depth of the 

cut and height of the protrusion. 

The range of the drag-reducing grooves (see  Chapter 4) is limited to β ≤ ~1 and the value 

of β that corresponds to transition from drag reduction to drag increase shall be referred 

to as the critical wavenumber. The discussion begins with the grooves placed only on the 

lower wall and subject to constraints ( 5.39). The evolution of the optimal shape as a 

function of β and S is illustrated in Figure  5.5. When β is close to its critical value, this 

shape undergoes significant changes as a function of S. These changes are nearly 

negligible for β ≤ 0.1 where the optimal shape reaches a universal form. It is possible to 

approximate the optimal shape for each β  by a trapezoid whose form changes with β, i.e. 

the slopes of the side walls increase as β decreases (see Figure  5.5). These changes are 

not very large as the trapezoids are characterized by a=b=λ/4 and c=d=λ/4 for β = 0.9, 

a=b=λ/5 and c=d=1.5λ/5 for β = 0.8,  a=b=λ/6 and c=d=2λ/6 for β = 0.7, a=b=λ/7 and 

c=d=2.5λ/7 for β = 0.6,  a=b=λ/8 and c=d=3λ/8 for β = 0.5,   a=b=λ/11 and c=d=4.5λ/11 

for β = 0.1. See Figure  5.5A for definitions of symbols. The latter trapezoid provides a 

nearly perfect fit for the universal shape (β = 0.1). The zone between the critical value of 

β and β ≈ 0.1 (i.e. where the optimal groove assumes the universal shape) shall be 

referred to as the transition zone. 
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Figure  5.5: Evolution of the optimal shape of the equal-depth grooves as a function of the groove 

depth for the groove wavenumbers β close to transition between the drag reducing and drag 

increasing grooves. Results for β = 0.1, 0.5, 0.6, 0.7, 0.8, 0.9 are displayed in Figures 5.5A, 5.5B, 
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5.5C, 5.5D, 5.5E, and 5.5F, respectively. The y-coordinate is scaled using the peak-to-bottom 

distance as the length scale )2()1( S/Syy LL −+= . Thick lines illustrate the best-fitted 

trapezoids. These trapezoids are characterized by  a=b=λ/11 and c=d=4.5λ/11, a=b=λ/8 and 

c=d=3λ/8, a=b=λ/7 and c=d=2.5λ/7, a=b=λ/6 and c=d=2λ/6, a=b=λ/5 and c=d=1.5λ/5, and 

a=b=λ/4 and c=d=λ/4 for β = 0.1, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. 
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Figure  5.6: Variations of the normalized modification friction factor f1/f0 as a function of the 

groove wavenumber β and the groove depth S for a channel with the lower wall fitted with the 

equal-depth grooves approximated by a trapezoid with a = b = λ/8 and c = d = 3λ/8 (solid lines). 

Results for the simple sinusoidal grooves are illustrated using dashed lines. Dotted lines identify 

values for β → 0 for the trapezoidal grooves (see Section  5.3.2). 

 

Figure  5.6 illustrates variations of the modification friction factor for the optimal grooves 

approximated by a trapezoid taken from the middle of the transition zone, i.e. a trapezoid 

with a=b=λ/8 and c=d=3λ/8, as a function of the groove wavenumber β and the groove 

amplitude S and thus shows the maximum possible drag reduction that can be achieved 

with the equal-depth grooves placed on one wall. The error associated with replacing the 

actual optimal shape with the trapezoid is illustrated in Figure  5.7. This error is likely 

negligible for most applications and thus the results presented in Figure  5.6 are general 

and eliminate the need for groove optimization for each particular β. The error increases 

as β approaches its critical value and thus caution needs to be exercised when using data 
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from Figure  5.6 under such conditions. Figure  5.6 also displays data for the simple 

sinusoidal grooves. It can be seen that the use of the optimal groove increases the drag 

reduction by up to 50% compared to the simple sinusoidal groove, depending on the 

groove amplitude. 
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Figure  5.7: Variations of the normalized modification friction factor f1/f0 as a function of the 

groove wavenumber β for the equal-depth grooves located on the lower wall. Solid and dashed 

lines correspond to grooves with the optimal and trapezoidal shapes, respectively. 

 

The physical mechanisms responsible for the superior performance of the optimal 

grooves are explained using results displayed in Figure  5.8. Distribution of the velocity 

field shown in Figure  5.8A for β=0.5 and S=1 demonstrates a more pronounced 

formation of the stream tubes (compared with the sinusoidal groove) at the widest 

channel opening; it is known that such stream tubes are responsible for the drag reduction 

(see  Chapter 4). The resulting changes in the wall shear stress illustrated in Figure  5.8B 

demonstrate reduction of their mean value for the optimal grooves. The shear stress is a 

measure of the wall-normal velocity gradient; its distribution shows that the optimal 

shape corresponds to the reduction of such velocity gradients. The non-monotonic stress 

distribution is associated with lowering of the stress at the bottom “corner” of the optimal 
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groove (location b in Figure  5.8B) and its increase at location where the wall curvature 

changes sign (location a in Figure  5.8B). 
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Figure  5.8: Contour plots of the velocity fields (Figure  5.8A) for the equal-depth optimal grooves 

(solid lines) and for the sinusoidal grooves (dashed lines) with S = 1, β = 0.5. Figure  5.8B 

displays distributions of the shear stress as well as the mean shear stress acting on the fluid at the 

lower wall for the same grooves (solid, dashed and dotted lines correspond to the optimal groove, 

the sinusoidal groove and the reference smooth wall). Values of the corresponding total shear 

forces are (Re/λ)*Fx,L = −1.5942, −1.6632 and −2 for the optimal groove, the sinusoidal groove 

and the reference smooth wall, respectively. Lines a and b identify locations of the change in the 

wall curvature sign and the wall bottom “corner” for the optimal groove, respectively. 

 

Consider now a channel with grooves placed on both walls. The results displayed in 

Figure  5.9 demonstrate that the shapes of the optimal grooves are the same on both walls 

and nearly identical to those found in the case of grooves placed on only one wall. The 

largest drag reduction is obtained when the grooves on the upper wall are shifted with 

respect to grooves on the lower wall by half wavelength in the z-direction, as illustrated 

in Figure  5.8. The results displayed in Figure  5.10 show that the drag reduction produced 

by these grooves, with shapes approximated using the same trapezoid as in Figure  5.6, is 

approximately equal to the drag reduction produced by the grooves placed only on one 
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wall but with doubled amplitude (compare Figures 5.6 and 5.10). Figure  5.10 also 

presents results for simple sinusoidal grooves placed on both walls. It can be seen that 

such grooves produce up to 50% less drag reduction than the optimal grooves. The reader 

should recall, when reviewing these results, that predictions based on the universal 

trapezoid are not accurate when the groove wavenumber is close to its critical value.  
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Figure  5.9: Shapes of the optimal grooves for a channel with both walls fitted with the equal-

depth grooves subject to constraints ( 5.39) with S = 0.4, 0.8 for β = 0.1 (Figure  5.9A) and β = 0.5 

(Figure  5.9B). Thick lines illustrate the best-fitted trapezoid with a = b = λ/8 and c = d = 3λ/8. 

The vertical coordinates are scaled with the peak-to-bottom distances as the length scales, i.e. 

)2/()1( SSyy UU +−=  and )2/()1( SSyy LL −+= . The optimal grooves are nearly 

indistinguishable from the trapezoid. 
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Figure  5.10: Variations of the normalized modification friction factor f1/f0 as a function of the 

groove wavenumber β and the groove depth S for a channel with both walls fitted with the equal-

depth grooves approximated by the trapezoid with a = b = λ/8 and c = d = 3λ/8 (solid lines). Both 

sets of grooves have identical geometries with the upper grooves moved by λ/2 in the z-direction 

with respect to the lower grooves. The results for the simple sinusoidal grooves are illustrated 

using dashed lines. Dotted lines identify values for β → 0 for the trapezoidal grooves (see Section 

 5.3.2). 

 

5.5.2 The unequal-depth grooves 

The unequal-depth grooves are grooves with different depths and heights. We begin 

discussion by considering grooves placed only at the lower wall and fixing their height 

and depth. Constraints ( 5.39) can be re-stated as  
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where SU,max = SU,min = 0 and SL,max and SL,min are conveniently selected. The results 

displayed in Figure  5.11 illustrate variations of the modification friction factor as a 

function of the depth SL,min  for the height set at SL,max = 1 in the case of grooves placed 

only at the lower wall while the upper wall remains smooth. It can be seen that the 

modification friction factor monotonically decreases for small β; it initially decreases, 

reaches a minimum and then increases for intermediate β; and it monotonically increases 

for large β. These results suggest that there is an optimal depth of the groove Dopt that 

minimizes the drag and that this depth is a function of β.  
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Figure  5.11: Variations of the normalized modification friction factor f1/f0 for a channel with a 

smooth upper wall and the optimal grooves with height SL,max = 1 at the lower wall as a function 

of the depth of the grooves SL,min. The dashed line identifies the optimal depths. 

 

Figure  5.12 illustrates the evolution of the shape of the optimal groove as a function of its 

depth for β = 0.1, 0.5 and 1. It can be seen that for the small depth the shape looks like a 

trapezoid discussed in the previous section but, when this depth increases, the shape 

morphs into a completely different form. The same figure displays shapes corresponding 
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to the optimal depths. The optimal depth and the corresponding optimal shape shall be 

referred to in the remaining discussion as the optimal geometry. 
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       (C) 

Figure  5.12: Evolution of the shape of the optimal, unequal-depth grooves with constant height 

SL,max = 1 placed on the lower wall in a channel with a smooth upper wall as a function of the 

groove depth SL,min. Thick lines identify shapes corresponding to the optimal depths. The results 

for β = 0.1, 0.5, 1 are displayed in Figures 5.12A, 5.12B and 5.12C, respectively. Dotted lines 

identify the reference smooth wall. 

 

The evolution of shapes corresponding to the optimal depth is illustrated in Figure  5.13A. 

The same shapes rescaled using the groove width at half height Whalf nearly overlap on 
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each other and can be approximated using a Gaussian function in the form 
24 z

ey
−−= (see 

Figure  5.13B), i.e. they assume a universal form. Figure  5.13B also displays groove 

wavelength rescaled using Whalf. It can be seen that the cut occupies almost the whole 

wavelength for β  = 1 but it "shrinks" to less than 20% of the wavelength for β = 0.1. The 

optimal geometry thus evolves with decreasing β towards localized cuts of universal 

shape separated by nearly flat segments of the wall. 
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Figure  5.13: Shapes of the unequal-depth grooves corresponding to the optimal depth, i.e. the 

optimal geometry, for grooves placed at the lower wall for different groove heights SL,max. The y-

coordinate is scaled using the peak-to-bottom distance as the length scale 

)/()1( ,,, maxLminLmaxLLL SSSyy +−+= . The z-coordinate is scaled using the groove wavelength λ 

in Figure  5.13A and using the width at half height Whalf, i.e. halfWzzz /)( 0−= , in Figure  5.13B. 

Solid and dashed lines in Figure  5.13A correspond to the wavenumbers β = 0.1 and 1, 

respectively. All these lines nearly overlap in Figure  5.13B. The universal shape in the form of a 

Gaussian function
24 z

ey
−−= is illustrated in Figure  5.13B using a thick line. Double-arrows in 

Figure  5.13B illustrate groove wavelengths scaled with Whalf. 
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Figure  5.14: Contour plots of the velocity fields for the optimal unequal-depth grooves with 

SL,max = 1, β = 0.5 for SL,min = 1 (Figure  5.14A), SL,min=1.86 (Figure  5.14B; the optimal depth) and 

SL,min = 3 (Figure  5.14C). 

 

Velocity fields for grooves with SL,max=1 displayed in Figure  5.14 illustrate formation of 

the stream tube at the widest channel opening. The centre of the stream tube moves into 

the trough and its position changes with the groove depth. The optimal groove is fairly 

wide when its depth is less than the optimal depth (Figure  5.14A), it narrows down when 

the depth reaches the optimal depth (Figure  5.14B) and it narrows further more when its 

depth is larger than the optimal depth (Figure  5.14C). Groove with shape that provides 

the best match with the resulting shape of the stream tube results in the lowest drag and 
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defines the optimal geometry (see Figure  5.14B). Figure  5.15 illustrates distribution of 

the shear stress at the lower wall. Optimal geometry leads to the smoothest wall shear 

distribution and the largest wall shear reduction everywhere along the grooved wall when 

compared with the smooth channel, and results in the lowest mean shear stress. 
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Figure  5.15: Variation of the shear stress and the mean shear stress acting on the fluid at the 

lower wall for the optimal unequal-depth grooves with SL,max = 1, β = 0.5. Dashed, solid, dashed-

dotted and dotted lines correspond to grooves with SL,min = 1, SL,min=1.86 (the optimal depth), SL,min 

= 3 and the reference smooth wall, respectively. Values of the corresponding total shear forces 

are (Re/λ)*Fx,L = −1.5942, −1.5547, −1.804 and −2 for grooves with SL,min = 1, 1.86, 3 and 

reference smooth wall, respectively. 

 

The drag reduction that can be achieved using the optimal geometry is illustrated in 

Figure  5.16A. This reduction is up to 50% larger than that which can be achieved with 

the equal-depth grooves of the same height. Figure  5.16B provides information about the 

changes of the optimal depth Dopt and the width at half height Whalf as a function of β. A 

rapid evolution of all quantities in the transition zone, i.e. for 0.1<β <1, can be observed 

with asymptotic trends clearly emerging for smaller β. 
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Figure  5.16: Variations of the normalized modification friction factor f1/f0 (Figure  5.16A) and the 

depth Dopt and the width at half height Whalf of the grooves (Figure  5.16B) for the optimal 

geometry of the lower wall and a smooth upper wall. 

 

Consider now grooves placed on both walls and subject to constraints ( 5.40) with SL,max = 

SU,min conveniently selected and SL,min and SU,max determined by the optimization process. 

This leads to the determination of the optimal depths and the corresponding optimal 

shapes, i.e. the optimal geometry. The optimal depths of the upper and lower grooves are 

nearly the same and the optimal shapes are nearly identical to those found in the case of a 

single grooved wall. Grooves on the upper wall need to be moved by half wavelength in 

the z-direction with respect to those on the lower wall in order to achieve the largest drag 

reduction. The use of grooves on both walls approximately doubles the drag reduction 

when compared with grooves on a single wall (see Figure  5.17A). The optimal depth Dopt 

and the width at half height Whalf are approximately the same when either one or both 

walls are grooved (see Figure  5.17B). 
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Figure  5.17: Variations of the normalized modification friction factor f1/f0 (Figure  5.17A) and the 

optimal depth Dopt and the width at half height Whalf of the grooves (Figure  5.17B) for the optimal 

geometry of both walls. 

 

5.6 Kinematically-driven flow 

Consider channel with the upper wall moving at a constant velocity and driving the fluid 

beneath in the positive x-direction (Couette flow). We wish to examine whether the 

introduction of grooves can increase or decrease the flow resistance. The governing 

equation is the same as Eq. ( 5.3) with the velocity of the upper wall used as the velocity 

scale Umax. The flow rate constraint ( 5.4) changes to 
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The boundary conditions take the form 

1=u   at   )(zyy U= , ( 5.42a) 

0=u    at   )(zyy L= . ( 5.42b) 

The standard Couette flow in the form 
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serves as the reference flow. There is no pressure gradient in the absence of the grooves. 

A need for the introduction of a positive pressure gradient in order to maintain the same 

flow rate in the grooved channel as in the smooth channel identifies a decrease of the 

overall flow resistance. The pressure gradient can be determined from solution of ( 5.3), 

( 5.41), ( 5.42) and can be expressed in terms of a friction factor of the form 

h
x

p
ff 2

d

d
21 −=−== , ( 5.44) 

where h is the pressure gradient modification induced by the grooves. Negative values of 

f correspond to a reduction of the flow resistance. The objective of the analysis is 

therefore minimization of f1Re. 

The friction factor for an arbitrary groove geometry can be determined following 

procedure described in Section  5.3.1 with flow constraint and boundary conditions 

expressed by ( 5.41)–( 5.42). An explicit solution in the limit β → 0, which has been 

determined following procedure described in Section  5.3.2, has the form  
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where G, H and I1 are defined by Eqs ( 5.14d), ( 5.14e) and ( 5.32a), respectively, and 
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In order to quantify the effects of the grooves, consider a channel with a smooth upper 

wall and a simple sinusoidal groove at the lower wall. The geometry is described by 

1=Uy , ( 5.50a) 

)cos(1 zSyL β+−= . ( 5.50b) 

Figure  5.18 illustrates variations of the correction friction factor as a function of S and β. 

It can be seen that the grooves always increase the flow resistance. Solution for the 

pressure gradient for geometry ( 5.50) simplifies to the form 
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In can be seen that the pressure gradient is always negative, i.e. the simple sinusoidal 

grooves always increase flow resistance compared to the case of smooth walls, which is 

in agreement with the results presented in Figure  5.18. 
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Figure  5.18: Variations of the modification friction factor f1Re for the kinematically-driven flow 

induced by grooves with shape defined by Eq. ( 5.50) as a function of the groove wavenumber β 

and the groove depth S. Dotted lines identify values for β → 0 (see Eq. ( 5.51)). 

 

Lines of constant velocity and the distributions of shear stress are illustrated in Figures 

5.19A and 5.19B, respectively. The velocity contours show an approximately linear 

velocity variation in the y-direction at each z-location. The stream tubes, which appeared 

in the case of pressure-driven flow (see Figures 5.8A and 5.14) and were responsible for 

the drag reduction, are absent for the kinematically-driven flows. The distributions of 

shear stress for the long wavelength grooves (β=0.5) displayed in Figure  5.19B show an 

increase of stress in the narrowest channel opening and a decrease in the largest opening; 

the mean stress is higher than in the smooth channel and introduction of grooves 

increases flow resistance in this case. 
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Figure  5.19: Contour plots of the velocity fields (Figure  5.19A) for the channel geometry 

described by Eq. ( 5.50) with S = 1, β = 0.5. Figure  5.19B displays distributions of the shear stress 

as well as the mean shear stress acting on the fluid at the lower wall for the same geometry (solid 

and dashed lines correspond to the sinusoidal groove and the reference smooth wall). Values of 

the corresponding total shear forces are (Re/λ)*Fx,L = −0.6439 and −0.5 for the sinusoidal groove 

and the reference smooth wall, respectively. 

 

The optimization process discussed in Section  5.4 has been used in order to determine if 

other groove shapes are able to decrease flow resistance. No constraints on the groove 

height and depth have been imposed, except for the contact condition S ≤ 1.9 which 

prevents the lower groove from touching the upper wall. It has been found that the 

optimization always removes the grooves, which means that the smooth wall represents 

the configuration with the lowest flow resistance. 

 

5.7 Summary 

Optimal shapes of laminar, drag-reducing longitudinal grooves in a pressure driven flow 

have been determined. It has been shown that such shapes can be characterized using 

reduced-order geometry models involving only a few Fourier modes. Two classes of 
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grooves have been studied, i.e. the equal-depth grooves, which have the same height and 

depth, and the unequal-depth grooves. It has been shown that the optimal shape in the 

former case can be approximated by a certain universal trapezoid. There exists an 

optimum depth in the latter case and this depth, combined with the corresponding groove 

shape, defines the optimal geometry; this shape is well-approximated by a Gaussian 

function. Drag reduction due to the use of the optimal grooves has been determined.  The 

analysis has been extended to kinematically driven flows. It has been shown that in this 

case the longitudinal grooves always increase the flow resistance. 
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Chapter 6  

6 Effects of Longitudinal Grooves on Pressure-

Driven and Kinematically-Driven Flows 

 

6.1 Introduction 

In the previous chapter the effects of longitudinal grooves in purely pressure-driven flows 

as well as in purely kinematically-driven flows have been studied and the optimal shapes 

that led to reduction of the drag have been determined for difference cases. 

Understanding the effects of longitudinal grooves in flows driven by a combination of 

these two driving mechanisms is also important and can be useful for development of 

many engineering applications. This chapter is devoted to examining these effects in 

detail. The main objective is to find groove shapes and flow conditions that may lead to 

an improvement of the system effectiveness as measured either in terms of an increase in 

the flow rate in the grooved channel as compared with a smooth channel or in terms of a 

reduction of the force acting on the upper wall which is required in order to maintain its 

movement. The ultimate goal is to identify the optimal form of the grooves. The problem 

formulation is described in Section  6.2. Analytical solution in the limit of long-

wavelength grooves is explained in Section  6.3. Section  6.4 discusses the effect of 

sinusoidal grooves which represents the reference case in the reduced-order geometry 

model. Section  6.5 describes the optimization method and its implementation. In 

particular, discussions of the equal-depth and the unequal-depth grooves are presented in 

Sections  6.5.1 and  6.5.2, respectively. Summary of main conclusions is given in Section 

 6.6. 

 

6.2 Problem formulation 

Consider laminar flow through a channel bounded by walls fitted with straight grooves 

parallel to the x-direction (see Figure  6.1) and of arbitrary shape in the spanwise z-
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direction. The flow is driven by movement of the upper wall with a constant velocity Utop 

in the positive x-direction and a known pressure gradient parallel to the same direction.  

 

 

Figure  6.1: Sketch of the flow configuration. 

 

Geometry of the grooves is described using Fourier expansions of the form 
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where subscripts L and U refer to the lower and upper walls, respectively, λ=2π/β 

denotes the groove wavelength, *)()( m

L

m

L HH −=  and *)()( m

U

m

U HH
−=  express the reality 

conditions, stars indicate the complex conjugates, NA represent the number of Fourier 

modes required to describe the geometry, and all quantities have been scaled with the half 

height K of the reference smooth channel. Since our interests are in flow modulations, it 
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is assumed that mean openings of the grooved and the reference smooth channels are the 

same, i.e. 0)0()0( == UL HH . 

The driving mechanisms and the groove geometry do not depend on the x-coordinate and 

thus the fluid movement is governed by the simplified x-momentum equation and 

boundary conditions of the form 
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where u(y,z) denotes the velocity component in the x-direction, p(x) stands for the known 

pressure, Utop serves as the velocity scale, ρUtop
2  serves as the pressure scale and the 

Reynolds number is defined as KUtop/ν . The u-velocity can be separated into the Couette 

uC and Poiseuille uP components in the form 
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where uC  and uP are solutions of the following problems 
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In the following presentation, subscripts C and P will denote the Couette and Poiseuille 

components, respectively. The volume flow rate per unit width in the z-direction Q can be 

evaluated as 
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The drag is produced by shear stresses at the lower (tx,L) and upper (tx,U) walls; the latter 

one can be evaluated as 
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where 2)d/d(1 zyN U+=  and a similar expression for tx,L can be easily derived. The total 

shear force acting on the fluid at the upper wall over one wavelength in the spanwise 

direction and per unit length in the x-direction Fx,U  can be expressed as 
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and a similar expression for the lower wall can be easily determined. The velocity u0 of 

the reference flow through a smooth channel has the form 
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and the reference flow rate Q0 per unit width in the z-direction can be evaluated as 
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The reference shear stress and shear force acting at the upper wall can be expressed with 

the help of Eq. ( 6.9) as 
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Similar expressions can be easily developed for the lower wall. 

Analysis of effects of grooves is carried out with the assumption that their introduction 

does not affect the pressure gradient as well as it does not affect the movement of the 

upper wall. Since the mean channel opening does not change, the overall drag 
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experienced by the fluid must remain the same. The flow rate is, however, affected and 

its change Q1, defined as 
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is used as the first measure of the groove drag-reducing abilities. The system 

effectiveness is improved if both Q0 and Q1 have the same sign. Grooves re-arrange the 

shear stresses and change the shear forces acting on each of the walls but their sum must 

remain the same. This leads to the second criterion for evaluation of the groove 

performance, i.e. reduction of the force acting on the upper wall. The system performance 

is improved if  |Fx,U / Fx0,U| < 1. It is convenient to write an explicit expression for the 

force modification Fx1,U for later use, i.e. 
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Solution of ( 6.2)-( 6.5) has to be determined numerically due to complexities associated 

with the groove geometry. A spectral discretization method based on the Fourier and 

Chebyshev expansions is used for the field equations (see  Chapter 2). Difficulties 

associated with the irregular boundaries can be settled using either the immersed 

boundary conditions (IBC) concept (see  Chapter 2) or the domain transformation (DT) 

method (see  Appendix E). The latter method involves mapping of the physical irregular 

domain onto a regular computational domain. The DT method has been used in this 

analysis as it provides better accuracy for the short wavelength grooves and can deal with 

the large-amplitude grooves. 
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6.3 Long wavelength grooves 

An explicit solution of ( 6.4)-( 6.5) can be obtained for the long wavelength grooves 

(β→0). Transformation is introduced in the form 

zβζ = , ( 6.15a) 

1+
−

=
H

yy Uη , ( 6.15b) 

where H = (yU − yL)/2 and the ζ-coordinate plays the role of a slow scale. Problems ( 6.4)-

( 6.5) written in the (ζ,η)-system become 
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where the coefficients are known and have the form 
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( 6.18b) 
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In the above 



174 

 

)(1
ζζ ηβ

η
η HGH

z
z +−=

∂

∂
= − , ( 6.19a) 

)2( 112

2

2

ζζζζζ ηηββ
η

η HGHH
z

zzz ++−=
∂

∂
= −− , ( 6.19b) 

1−=
∂

∂
= H

y
y

η
η , ( 6.19c) 

where G = (yU + yL)/2 and subscript ζ denotes derivative with respect to ζ. Velocities uC 

and uP can be expressed as expansions in the form 
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and their substitution into ( 6.16)-( 6.17) and retention of the four leading-order terms 

result in problems described in the Appendix G. Solutions take the form 
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The modification flow rate Q1 becomes 

)()1(
3

2

d

d

3

2

d

d 4
3

2
12

2
111 βββ OII

x

p
ReIQ

x

p
ReQQ PC ++−+=+= , ( 6.26) 

where 

∫
=

=

=
π2

0

3
1 d

π2

1
ζ

ζ

ζHI , ( 6.27a) 

∫
=

=









−=

π2

0

2 d
2

1

π2

1
ζ

ζ

ζζζζ ζHGGHHI , ( 6.27b) 

∫
=

=

−−=
πζ

ζ

HHHGHI

2

0

223
3 d)(

π2

1
ζζζζζ . ( 6.27c) 

The modification of upper wall force Fx1,U  takes the form 
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The range of validity of the above solution can be determined through comparison with 

the complete numerical solution. Error of approximation is illustrated using a test case 

with sinusoidal grooves of the form 

)cos(1)( AL Ay φζζ ++−= , ( 6.29a) 

)cos(1)( BU By φζζ ++=  ( 6.29b) 

with B=A/3, φA=π/3 and φB=π/5. Two measures of error have been used, i.e. 

),(),(sup||||
11,20

max ηζηζ
ηπζ

ca uuu −=
≤≤−≤≤

, ( 6.30a) 

ca QQQ ,1,1err,1 −= . ( 6.30b) 

In the above, subscripts a and c denote the asymptotic and the complete solutions, 

respectively. The results shown in Figure  6.2 demonstrate that these errors decrease 

proportionally to β 4 for β < 0.2. 
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Figure  6.2: Variations of the errors max|||| u  (Figure  6.2A) and err,1Q  (Figure  6.2B) of the 

asymptotic solutions (see Eq. ( 6.30a,b)) as a function of β for a channel with geometry defined by 

Eq.( 6.29). 
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6.4 Groove-induced flow rate and wall force modifications 

Changes of the flow rate and of the forces acting on the walls depend on the groove 

geometry. Formulation used in the present work is able to describe arbitrary grooves but 

the analysis may require significant resources if long Fourier series are required in order 

to describe groove geometry. The reduced-order geometry model (see  Chapter 4) shows 

that the use of just the leading Fourier mode permits determination of the drag change 

with an accuracy acceptable for most of applications. Accordingly, general predictions 

can be obtained on the basis of analysis of sinusoidal grooves. The rest of this section is, 

therefore, focused on the description of performance of a conduit with a smooth upper 

wall and with sinusoidal grooves at the lower wall, i.e. the system geometry is of the 

form 

)cos(1 zSyL β+−= , ( 6.31a) 

1=Uy . ( 6.31b) 

Figures 6.3A and 6.3B illustrate variations of QC1 and QP1 as functions of β, respectively. 

Grooves always reduce QC but this reduction becomes marginal for β→0. The same 

grooves may increase/decrease QP depending on β. When β<~1, QP1 as well as QP0 have 

the same signs, which are opposite to dp/dx, and thus the total flow rate increases. Such 

grooves improve system performance when pressure gradient is present. 

Figure  6.4 illustrates variations of forces that must be applied to the upper wall in order to 

maintain its movement in the presence of grooves. The Couette component always 

increases but this increase becomes marginal for β→0 (see Figure  6.4A). The Poiseuille 

component always decreases with this decrease also becoming marginal for β→0 (see 

Figure  6.4B). 

 



178 

 

10
-1

10
0

10
1

10
2

 

 

 

 

 

 

Q
C

1

β

S = 0.1

1.8

-10-2

-100

-10-4
0.3

0.8

0.5

1.2

               10
-1

10
0

10
1

10
2

-0.8

 

-0.4

 

0

 

0.4

 
 

β

Q
P

1

S = 0.1

0.8

1.8

0.3

0.5

1.2

    

       (A)                       (B) 

Figure  6.3: Variations of the modification flow rate QC1 (Figure  6.3A) and QP1 (Figure  6.3B) as a 

function of β for a channel with geometry defined by Eq. ( 6.31). The reference flow rates are 

QC0=1 and QP0=−2/3. The asymptotes are given by QC1,β→0=−1/6S
2β2, QC1,β→∞=−0.5S, 

QP1,β→0=−0.25S
2 and QP1,β→∞=2/3[1−(1−0.5S)3]. The limit points for β→0 have been determined 

on the basis of solution described in Section  6.3 and for β→∞ are represented by a smooth 

channel with the lower wall shifted upwards by S. 

 

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

β

(R
e/

λ
)*

F
C

x 1
,U

S = 0.1

0.3

0.5

0.8

1.8

1.2

             
10

-1
10

0
10

1
10

2

-10
0

-10
-1

-10
-2

-10
-3

-10
-4

-10
-5

β

(R
e/

λ
)*

F
P

x 1
,U

0.3

0.5

S = 0.1

0.8

1.8

1.2

 

       (A)                             (B) 

Figure  6.4: Variations of the force modifications (Re/λ)*FCx1,U (Figure  6.4A) and (Re/λ)*FPx1,U 

(Figure  6.4B) acting on the fluid at the upper wall as functions of β for a channel with geometry 

defined by Eq. ( 6.31). The reference forces are (Re/λ)*FCx0,U = 0.5 and (Re/λ)*FPx0,U = 1. The 

asymptotes are given by (Re/λ)*FCx1,U,β→0=0.5[(1−0.25S
2)−1/2−1], 
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(Re/λ)*FCx1,U,β→∞=0.5[(1−0.5S)−1−1],  (Re/λ)*FPx1,U,β→0=−1/6S
2β2 and (Re/λ)*FPx1,U,β→∞= −0.5S. 

The limit points for β→0 have been determined on the basis of solution described in Section  6.3 

and for  β→∞ are represented by a smooth channel with the lower wall shifted upwards by S. 
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Figure  6.5: Variation of the shear stresses acting on the fluid at the upper and lower walls (Figure 

 6.5A) and lines of constant velocity for the Couette (Figure  6.5B) and Poiseuille (Figure  6.5C) 

flow components. The channel geometry is defined by Eq. ( 6.31) with S = 0.5 and β = 0.1. Solid, 

dashed and dotted lines in Figure  6.5A correspond to the Couette and Poiseuille components and 

to the reference values, respectively. 
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Distributions of shear stresses for the long wavelength grooves (β=0.1) displayed in 

Figure  6.5A show increase of stress for the Couette component in the narrowest channel 

opening and decrease in the largest opening; the mean stress is higher than in the smooth 

channel. The opposite situation occurs for the Poiseuille component where the smallest 

stress is found in the smallest channel opening with the mean stress decreasing below the 

reference value. Velocity contours show an approximately linear velocity variation in the 

y-direction at each z-location for the Couette component (Figure  6.5B) and formation of a 

stream tube centered at the widest channel opening for the Poiseuille component (Figure 

 6.5C). This redistribution of the mass flow rate in the latter case is responsible for an 

increase of the flow rate identified in Figure  6.3B. 

Distribution of shear stress for the short wavelength grooves (β=50) displayed in Figure 

 6.6A demonstrates elimination of shear over the majority of the wetted area along the 

grooved wall and formation of stress peaks at the tips of the grooves. Mean stress at the 

upper wall increases above the reference value for the Couette component but decreases 

for the Poiseuille component. Velocity contours displayed in Figures 6.6B and 6.6C 

demonstrate that fluid is nearly stagnant in the troughs with the Poiseuille component 

showing a deeper penetration into the interior of the trough. This leads to an effective 

(hydraulic) channel narrowing, in spite of the mean geometric channel opening being the 

same for the grooved and the smooth channels, and reduction of the flow rate 

documented in Figure  6.3. Although the shear stress has been eliminated from the 

majority of the lower surface, the localized shear peaks compensate for this reduction 

leading to the overall reduction of the flow rate. 
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Figure  6.6: The same as in Figure  6.5 but for β=50. In Figure  6.6C velocity is normalized by its 

maximum max(|uP|)=0.2905.  

 

Figure  6.7 displays the overall change in the flow rate as a function of β and Re*dp/dx 

resulting from the superposition of the Couette and Poiseuille components (see Eq. ( 6.3)). 

The reader may note that the mass flow associated with the Couette component always 

flows in the positive x-direction but direction of the Poiseuille component is opposite to 

the pressure gradient. Zones A, B and C identify conditions that lead to an increase of the 

magnitude of the flow rate. In zone A, which is limited to small β 's, the flow rate 

increase associated with the Poiseuille component overcomes the decrease associated 

with the Couette component leading to an increase of the total positive flow rate. In zone 
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B, which is limited to small β 's and Re*dp/dx>1.5, the Poiseuille component directed 

towards the negative x-axis dominates resulting in the total flow rate moving in the same 

direction. Introduction of grooves increases this component and, at the same time, 

decreases the opposing Couette component resulting in an increase of the total flow rate 

in the negative x-direction. In zone C, which corresponds to large β 's and positive 

pressure gradients with Re*dp/dx<1.5, the Couette and the opposing Poiseuille 

components are approximately in balance with the flow rate of the reference flow being 

directed in the positive x-direction. Introduction of the grooves leads to a decrease of the 

positive Couette component but a faster decrease of the opposing Poiseuille component 

leading to the overall increase of the positive flow rate. 
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Figure  6.7: Variation of the modification flow rate Q1 as a function of β and Re*dp/dx for a 

channel with geometry defined by Eq. ( 6.31) with S = 0.5. Black (grey) lines identify conditions 

leading to the increase (decrease) of Q. Dotted line identifies the reference value of Re*dp/dx=1.5 

which corresponds to Q0 = 0. Dashed line identifies conditions corresponding to zero mass flow 

rate in the grooved channel. Dashed-dotted lines identify pressure gradients selected for detailed 

discussion in the text. The asymptote Re*dp/dx=0.6486 provides lower bound for zone C for 

β→∞. 

 

Figure  6.8A illustrates typical distribution of the mass flow rate for conditions 

corresponding to zone A in Figure  6.7. Formation of a stream tube responsible for the 
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increase of the flow rate is clearly visible. A similar stream tube is formed under 

conditions corresponding to zone B, as illustrated in Figure  6.8B. In zone C (Figure  6.8C) 

the upper part of the flow field is dominated by the Couette component while the bottom 

one is dominated by the Poiseuille component with almost no stream penetration into the 

troughs. 
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Figure  6.8: Lines of constant velocity illustrating flows in zone A in Figure  6.7 (Figure  6.8A; 

Re*dp/dx = −1, β = 0.1), zone B (Figure  6.8B; Re*dp/dx = 1.6, β = 0.1) and zone C (Figure 

 6.8C; Re*dp/dx = 1.4, β =50). 
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Figure  6.9: Variations of the normalized modification flow rate Q1/Q0 for Re*dp/dx = −1 (Figure 

 6.9A), Re*dp/dx = 1.6 (Figure  6.9B) and Re*dp/dx = 1.4 (Figure  6.9C). Other conditions are as in 

Figure  6.7. Black and grey lines mark increase and reduction of the flow rate compared to the 

smooth channel, respectively. 

 

Results displayed in Figure  6.9 demonstrate that an increase of the groove amplitude 

leads to a monotonic increase of the flow rate in zones A and B, but an initial increase is 

followed by a decrease in zone C. It is shown in Figure  6.9C that in the latter case there 

exists the most effective groove amplitude Seff,Q that gives the largest flow rate. This 

amplitude can be determined analytically by noting that flow in the limit of β→∞ is very 
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similar to flow in a smooth channel with the lower wall shifted upwards by S (see 

 Chapter 4). The relevant flow rate can be evaluated as 

31
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The Poiseuille component (in the negative x-direction) decreases proportionally to S
3 

while the Couette component (in the positive x-direction) decreases proportionally to S. 

The amplitude Seff,Q that gives the highest increase of the flow rate corresponds to 

dQ/dS=0 and has the form 
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Figure  6.10: Variations of the normalized modification volume flow rate Q1/Q0 as a function of β 

for Re*dp/dx=1.4 for a channel with geometry defined by Eq. ( 6.31). The most effective groove 

amplitude for such conditions is Seff,Q=0.8048 (see Section  6.4 for details). Asterisks denote the 

local maxima which identify the most effective groove wavenumbers βeff,Q. Solid and dashed lines 

correspond to S>Seff,Q and S<Seff,Q, respectively. 
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The reader should note that increase of β for a fixed S improves the system performance, 

but only if S<Seff,Q. When S>Seff,Q the best performance is obtained for a specific 

wavenumber, which we shall refer to as the most effective wavenumber βeff,Q; an increase 

of β beyond βeff,Q decreases the system performance (see Figure  6.10). This is so because 

the groove wavelength has to be short enough to sufficiently decrease the (opposing) 

Poiseuille flow component in the troughs but the height cannot be too large as this 

increases blockage for the Couette flow component. 

The lowest pressure gradient that increases the flow rate in zone C can be determined 

from a similar analysis, i.e. one starts with the flow rate correction 
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and setting it to zero gives the limiting value in the form 




















−−

=
3

2
114

3

d

d

S

S

x

p
Re . 

( 6.35) 

Thus the range of pressure gradients that increases the flow rate in zone C is bounded by 

0.75S[1−(1−0.5S)3]−1 < Re*dp/dx< 1.5 (see Figure  6.7). 

Variations of shear force acting on the fluid at the upper wall are illustrated in Figure 

 6.11. In zone D the total force in the smooth channel is acting in the negative x-direction 

and introduction of grooves of any wavelength reduces its magnitude as long as 

Re*dp/dx<−0.5. In zone E the reference force is directed in the positive x-direction and 

its reduction can be achieved using grooves with a short enough wavelength. Flow 

conditions leading to a decrease (increase) of this force do not necessarily lead to a 

simultaneous increase (decrease) of the flow rate (compare Figures 6.7 and 6.11). 
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Figure  6.11: Variation of the modification of the force acting on the fluid at the upper wall 

(Re/λ)*Fx1,U as functions of β and Re*dp/dx for a channel with geometry defined by Eq. ( 6.31) 

with S = 0.5. Black (grey) lines identify conditions leading to a decrease (increase) of (Re/λ)*Fx,U. 

Dotted line identifies the reference value of Re*dp/dx=−0.5 which corresponds to (Re/λ)*Fx0,U=0. 

Dashed-dotted line identifies pressure gradients selected for detailed discussion in the text. The 

asymptote Re*dp/dx=2/3 provides lower bound for zone E for β→∞. 

 

Results displayed in Figure  6.12A show that in zone D the force decreases monotonically 

with an increase of S and β until it is completely eliminated for conditions corresponding 

to line Fx,U/Fx0,U=0. Further increase of either S or β reverses its direction and the force 

keeps increasing until it reaches the same magnitude as in the reference flow but directed 

in the opposite sense. These conditions are reached at the line Fx,U/Fx0,U =−1. We define 

the best system performance for this case as the one that corresponds to the complete 

elimination of Fx,U. There is a finite range of S which can produce such result (see Figure 

 6.12A). The upper bound SUB occurs at β→0 and can be determined explicitly from 

solution given in Section  6.3, i.e. 
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Setting the above to zero gives 
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The lower bound SLB occurs for β→∞ and can be determined by noting that the flow is 

very similar to the flow in a smooth channel with the lower wall shifted upwards by S 

(see  Chapter 4) giving expression for the force as 
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setting it to zero gives 

x

p
Re

SLB

d

d
2

2
−

−= . 
( 6.39) 

 

β

S

0.98

0.9
0.5

0

-1

-3

-5
-7

10
-1

10
0

10
1

10
2

0.1

0.5

1

1.5

1.9

S
UB

 = 1.732

S
LB

 = 0.586

                β

S

1.
0 0

5
1.

02
1.

05
1.

1 1.2
1.4

1.8
2.2

0.95

0.9

1

10
-1

10
0

10
1

10
2

0.1

0.5

1

1.5

1.9

S
eff,F

 = 0.8048

 

        (A)                                                  (B) 

Figure  6.12: Variations of the normalized force acting on the fluid at the upper wall Fx,U / Fx0,U 

for Re*dp/dx = −1 (Figure  6.12A; zone D in Figure  6.11) and  Re*dp/dx = 1.4 (Figure  6.12B; 

Zone E in Figure  6.11). Other conditions are as in Figure  6.11. Black and grey lines mark 

reduction and increase of the magnitude of force compared with the smooth channel, respectively. 

Note change of direction of the force in Figure  6.12A. See Section  6.4 for further explanations. 
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An increase of β for grooves with a fixed amplitude S< SLB results in a decrease of the 

magnitude of the force. If S>SLB there exist the most effective wavenumber βeff,F (see 

Figure  6.13) that eliminates the force and an increase of β beyond βeff,F decreases the 

system performance. 
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Figure  6.13: Variations of the normalized force acting on the fluid at the upper wall Fx,U / Fx0,U as 

a function of β for Re*dp/dx=−1 (zone D in Figure  6.11) for a channel with geometry defined by 

Eq.( 6.31). Asterisks identify the most effective wavenumbers βeff,F for the relevant amplitudes S. 

Thicker lines correspond to the lower (SLB) and upper (SUB) bounds for the groove amplitude able 

to eliminate force acting on the upper wall (see Figure  6.12A). 

 

In zone E an increase of S leads to a decrease of the force followed by its increase (see 

Figures 6.12B and 6.14). The best system performance corresponds to minimization of 

the force and this defines the most effective amplitude Seff,F. This amplitude can be 

determined by looking at the limit β→∞ and setting dFx,U/dS = 0 in Eq. ( 6.38) which 

leads to Seff,F=Seff,Q. The reader should note that similarly as in the case of the flow rate in 

zone C (Figure  6.7) an increase of β for a fixed S improves the system performance, but 

only if S<Seff,F. If S>Seff,F the best performance is obtained for a specific wavenumber 

which shall be referred to as the most effective wavenumber βeff,F. An increase of β 
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beyond βeff,F decreases the system performance (see Figure  6.14). The range of pressure 

gradients where the force reduction is possible is limited from below and the relevant 

bound is determined from analyzes of the force correction Fx1,U in the limit of large β. 

This force can be expressed as 
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and setting it to zero leads to condition 
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This bound is illustrated in Figure  6.11. 
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Figure  6.14: Variations of the normalized force acting on the fluid at the upper wall Fx,U / Fx0,U as 

a function of β for Re*dp/dx=1.4 (zone E in Figure  6.11) for a channel with geometry defined by 

Eq. ( 6.31). The most effective groove amplitude for such conditions is Seff,F = 0.8048 (see Section 

 6.4 for details). Asterisks denote the local minima which identify the most effective wavenumbers 

βeff,F. Solid and dashed lines correspond to S > Seff,F and S < Seff,F, respectively. 
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6.5 Groove optimization 

Results discussed in the previous section identify the performance gains provided by the 

grooves but predictions carry a certain error associated with the use of the reduced-order 

geometry model. A more precise prediction requires the use of a larger number of Fourier 

modes for geometry description. Since the number of possible geometries is uncountable, 

we shall focus our attention on the identification of geometries that produce the largest 

increases in the flow rates. Such geometries can be identified using optimization 

techniques. Since the geometry is one of the unknowns, the problem becomes nonlinear 

and the superposition principle does not apply. Accordingly, each combination of the 

Couette and Poiseuille components has to be investigated separately. 

We shall explain the optimization process by expressing groove shapes in terms of real 

variables in the form 

∑
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The normalized modification flow rate Q1/Q0 is chosen as the cost function and thus 

maximization of Q1/Q0 as a function of Am,L, φm,L, Am,U, φm,U, β and Re*dp/dx is sought. 

Experiments with direct evaluations of Q1/Q0 as well as symmetry arguments lead to the 

conclusion that the most efficient configurations correspond to shapes with zero phase 

differences and thus φm,L and φm,U do not need to be further considered. Pressure gradients 

of interest are limited to zones A, B and C from Figure  6.7, and are treated as constant 

during the optimization process. It is assumed that the wavelength of the grooves is fixed 

during optimization and thus only coefficients of Fourier expansions ( 6.42a,b) need to be 

determined. The optimization problem is posed as finding the maximum of a function F 

defined as 

),,,,,( / ,,1,,101 UNULNL AA
AAAAFQQ ……= , ( 6.43) 
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for a specified β and Re*dp/dx. Additional constraints need to be introduced in order to 

describe physical limitations that need to be imposed on the permissible height and depth 

of the grooves. These constraints take the form 

L,max

Nm

m

Lm SzmA
A

≤







∑
=

=1
, )cos(max β , ( 6.44a) 

L,min

Nm

m

Lm SzmA
A

−≥







∑
=

=1
, )cos(min β , ( 6.44b) 

U,max

Nm

m

Um SzmA
A

≤







∑
=

=1
, )cos(max β , ( 6.44c) 

U,min

Nm

m

Um SzmA
A

−≥







∑
=

=1
, )cos(min β , ( 6.44d) 

where SL.max/SL,min denote the maximum height/depth of the lower grooves and 

SU.max/SU,min stand for the maximum depth/height of the upper grooves. The complete 

problem represents a nonlinear constrained optimization problem which is solved using 

the “interior-point” algorithm (Coleman & Li 1994; Coleman & Li 1996). The algorithm 

tries to maximize a scalar multivariable objective function subject to a set of constraints 

starting with a given initial approximation while satisfying constraints at every iteration 

(Byrd et al. 1999; Byrd et al. 2000; Waltz et al. 2006). As the search method is gradient-

based, it is necessary for the cost and the constraint functions to be continuous and to 

have continuous first derivatives. The algorithm cannot guarantee identification of the 

global maximum and, in order to reduce the possibility of being trapped in a local 

maximum, one need to start the optimization process using a small number of Fourier 

coefficients, e.g. 3 or 4. When the solution converges, the number of coefficients is 

expanded by one and the search is restarted using the most recent solution as the starting 

point and zero for the additional coefficient. This process is repeated until the optimal 

shape has been determined within an acceptable accuracy. Such indirect process permits 

determination of the optimal shape even when the direct optimization with simultaneous 
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use of all admissible Fourier components fails. Identification of the global maximum has 

been confirmed by computing Q1 directly for a number of test cases without use of the 

optimization algorithm. Most of the results presented in this paper have been obtained 

with the convergence criteria set at 10−7. 

Groove shapes are sought during optimization and, as it is not known how many Fourier 

coefficients are required for their description, it is necessary to determine convergence 

properties of Fourier expansions describing the optimal shapes. Results displayed in 

Figure  6.15 demonstrate that the relevant expansions converge quite rapidly for the flow 

conditions corresponding to zone A in Figure  6.7 permitting sufficiently accurate 

description of the optimal shapes using at most five Fourier modes. Similar conclusions 

have been reached in the case of flow conditions corresponding to zone B. Thus it is 

possible to generalize the reduced-order geometry model and use it in the search for the 

optimal groove shapes for such flow conditions. 
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Figure  6.15: Variations of the normalized modification volume flow rate Q1/Q0 for the optimal 

equal-depth grooves placed at the lower wall with S = 0.5 as a function of the number of Fourier 

modes NA used in the description of the groove geometry for Re*dp/dx = −1 and β’s 

corresponding to zone A in Figure  6.7. Similar results can be produced for conditions 

corresponding to zone B. 
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Groove optimization for flow conditions corresponding to zone C in Figure  6.7 lead to a 

qualitatively different conclusion. The groove properties are dictated by the Fourier mode 

with the shortest wavelength that is admitted in the analysis if the amplitude S<Seff,Q (see 

Figure  6.10). The optimal shape does not exist but the best system performance is 

achieved using grooves with the shortest possible wavelength. When S>Seff,Q it is possible 

to find the most effective groove wavenumber and its magnitude keeps decreasing as S 

increases, as illustrated in Figure  6.10. Shape of the optimal groove for such conditions 

cannot be determined due to the slow convergence of the Fourier expansion describing 

solution. This issue is illustrated in Figure  6.16 displaying variations of the Chebyshev 

norm of a modal function as a function of the mode number. The norm is defined as 
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where 21/1)( ηηω −=  is the weight function, fu
(n) represents modal functions in the 

Fourier expansion describing u-velocity, i.e. ∑
=
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M

M

Nn

Nn

inn

u efu
βζηηζ )(),( )( , and star denotes 

the complex conjugates. The optimization procedure is able to capture the optimal shape 

if the norm of the highest mode used in the analysis is at least 1-2 orders of magnitude 

smaller than the desired optimization convergence criteria. Figure  6.16 displays results 

for the equal-depth grooves when modes 1, 3, 5, 7 and 9 participated in the optimization 

while a different numbers NM of Fourier modes were used in the solution. The reader may 

note that this constraint eliminates all even modes from description of the groove 

geometry. The norm of the highest mode remains of the order 10–6 even for the largest 

number of Fourier modes NM =110 used in the solution. Figure  6.17 illustrates the 

resulting groove shapes. It can be seen that the optimal shape can likely be approximated 

using a trapezoid but it is not possible to make a more definite statement due to an 

excessive computational effort required in order to guarantee the required accuracy. 
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Figure  6.16: Variations of the Chebyshev norm (see Eq. ( 6.45)) as a function of the Fourier mode 

number n for groove shapes obtained from the optimization process using NM Fourier modes and 

the equal-depth constraint for the flow conditions corresponding to zone C in Figure  6.7 with 

Re*dp/dx=1.4, S =1.2 and β=15. 
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Figure  6.17: Shapes of the equal-depth grooves obtained using different number of Fourier 

modes NM. Other conditions are as in Figure  6.16. 

 

Grooves can be optimized also from the point of view of minimization of the force acting 

on the upper wall. In this case, the magnitude of the force |Fx,U| becomes the cost 

function. Results displayed in Figure  6.13 demonstrate that in zone D (see Figure  6.11) 

and for S<SLB (see Eq. ( 6.39)) the best system performance is achieved using grooves 

with the shortest possible wavelength and  thus the optimal shape does not exist. When 
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S>SLB the best results are obtained using grooves with the most effective wavenumber 

βeff,F (see Figure  6.13) leading, potentially, to a complete elimination of the force. The 

optimization procedure cannot determine the corresponding optimal shapes as the 

convergence rate of the Fourier expansions becomes too small to yield a practical 

solution, similarly as in the case of the maximization of the flow rate in zone C. 

Conclusion for conditions corresponding to zone E in Figure  6.11 is similar to zone C in 

Figure  6.7. Figure  6.14 demonstrates that the best system performance is achieved for 

grooves with the shortest possible wavelength provided that the amplitude S<Seff,F and 

thus the optimal shape does not exist. When S>Seff,F it is possible to find the most 

effective groove wavenumber βeff,F and its magnitude keeps decreasing as S increases (see 

Figure  6.14). The optimization procedure cannot identify the cyorresponding optimal 

shape due to accuracy problems similar to those discussed above. 

We shall now provide detailed discussion of performance of various classes of grooves 

corresponding to zone A and B in Figure  6.7 measured in terms of their ability to 

generate additional flow rate in the direction of the reference flow. For simplicity, we 

have divided all grooves into two categories, i.e. grooves with equal height and depth 

referred to as the "equal-depth" grooves and grooves with different depth and height 

referred to as the "unequal-depth" grooves. 

 

6.5.1 The equal-depth grooves 

For the equal-depth grooves the depth of the groove is equal to its height, i.e. SL,max=SL,min 

and SU,max=SU,min in Eq. ( 6.44). Discussion focuses on optimization of grooves placed at 

the lower wall subject to constraints ( 6.44a,b) with SL,max=SL,min=S. It has been 

determined that the optimal shapes always correspond to grooves with the maximum 

permissible amplitudes and thus the inequalities in Eq. ( 6.44a,b) can be replaced with 

equalities. 

  



197 

 

0  0.5  1
 

-1

 

-0.5

 

0

 

z/λ

y
L

d/2 d/2

bca

S = 0.4, 1, 1.6

             0  0.5  1
 

-1

 

-0.5

 

0

 

z/λ

y L

S = 0.4, 1

1.6

 

         (A)             (B) 

0  0.5  1
 

-1

 

-0.5

 

0

 

z/λ

y L

S = 0.4

1
1.6

 

       (C) 

Figure  6.18: Variations of the optimal shape of the equal-depth grooves as a function of the 

groove depth S for Re*dp/dx = −1. Results for β = 0.1, 0.5, 0.7 (zone A in Figure  6.7) are 

displayed in Figures 6.18A, 6.18B and 6.18C, respectively. The y-coordinate is scaled with the 

peak-to-bottom distance )2()1( S/Syy LL −+= . Thick lines illustrate the best-fitted trapezoids 

characterized by (A) a=b=λ/11 and c=d=4.5λ/11, (B) a=b=λ/8 and c=d=3λ/8, and (C) 

a=b=c=d=λ/4. The optimal shapes for the flow conditions corresponding to zone B in Figure  6.7 

are identical. 

 

Evolution of optimal shape as a function of S for flow conditions corresponding to zone 

A in Figure  6.7 and for Re*dp/dx = −1 is illustrated in Figure  6.18. For grooves with 

β≤0.1 the optimal shape changes marginally when S increases (Figure  6.18A) resulting in 
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a universal shape in the form of a trapezoid with a=b=λ/11 and c=d=4.5λ/11 (see Figure 

 6.18A for parameter definitions). As β increases, the optimal shapes show more 

variations as a function of S (see Figure  6.18B) with the largest changes taking place 

when β approaches the limiting value for which the flow rate increase is replaced by the 

flow rate decrease (see Figure  6.18C). It is possible, nevertheless, to identify the 

universal trapezoid for each β. The differences between the flow rates achieved using the 

optimal grooves and using the universal trapezoidal grooves are negligible. The same 

conclusions apply to flow conditions corresponding to zone B. It is worth observing that 

optimization for flows with the pressure gradients corresponding to zones A and B but 

with β outside these zones results in the removal of the grooves. 
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Figure  6.19: Variations of the normalized modification flow rate Q1/Q0 as a function of β and S 

for a channel with the lower wall fitted with the equal-depth grooves approximated by a trapezoid 

with a = b = λ/8 and c = d = 3λ/8 (solid lines) for Re*dp/dx = −1 taken from zone A in Figure  6.7 

(Figure  6.19A) and for Re*dp/dx = 1.6 taken from zone B (Figure  6.19B). Results for the simple 

sinusoidal grooves are illustrated using dashed lines. 

 

Performance of the optimized grooves is illustrated in Figure  6.19 displaying variations 

of Q1/Q0 as a function of S and β for the optimal grooves approximated by the universal 
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trapezoid. Since details of the trapezoid shape change as a function of β, the mid-range 

shape with  a=b=λ/8 and c=d=3λ/8 has been used. Figure  6.19A illustrates performance 

of grooves under conditions corresponding to zone A in Figure  6.7 (Re*dp/dx=−1) and 

Figure  6.19B illustrates performance for conditions corresponding to zone B 

(Re*dp/dx=1.6). The same figure provides results for simple sinusoidal grooves and this 

permits the reader to determine performance gains resulting from the optimization. 

The placement of grooves on both walls leads to the best performance when these 

grooves are out of phase. The flow rate gains for a set of such grooves with amplitude S 

is approximately equal to the performance of grooves with amplitude 2S placed on only 

one of the walls. 

 

6.5.2 The unequal-depth grooves 

For the unequal-depth grooves the depth of the groove is different from the height. A 

simple reduced-order geometry model used in Section  6.4 is intrinsically limited to 

grooves with the same depth and height and thus cannot offer any guideline regarding 

performance of the unequal-depth grooves. 

This discussion focuses on the grooves placed only on the lower wall, i.e. SU,max = SU,min = 

0. Figure  6.20 shows variations of Q1/Q0 for a fixed groove height SL,max = 1 and for 

various depths for the flow conditions corresponding to zones A (Re*dp/dx = −1) and B 

(Re*dp/dx = 1.6) in Figure  6.7. Q1/Q0 monotonically increases for small β's for the range 

of SL,min considered. A non-monotonic growth is observed for larger β's, leading to the 

identification of the optimal depth Dopt that produces the largest Q1/Q0. The optimal depth 

decreases with increasing β. 

Evolution of the optimal shape as a function of SL,min is shown in Figure  6.21 for the flow 

conditions from zone A (Re*dp/dx = −1) in Figure  6.7. Results for zone B are very 

similar and thus are not shown. For the long wavelength grooves with β ≤ 0.1 the optimal 

shape is nearly trapezoidal for SL,min < 3 with the trapezoid narrowing and its side walls 
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becoming steeper as SL,min increases (see Figure  6.21A). Further increase of SL,min results 

in the groove morphing into a shape that is similar to a Gaussian function. The optimum 

depth and thus the best groove performance correspond to the latter shape. Increase of β 

to β=0.5 produces a similar shape evolution as a function of SL,min but the morphing into 

the Gaussian function-like shape occurs at smaller SL,min and the optimal depth is smaller 

(see Figure  6.21B). As β approaches the limiting value where the flow rate increase is 

replaced by the decrease, the phase where the shape can be approximated by a trapezoid 

is eliminated and a direct morphing into the Gaussian function-like shape is observed (see 

Figure  6.21C). 
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Figure  6.20: Variations of the normalized modification flow rate Q1/Q0 for a channel with a 

smooth upper wall and the optimal grooves with height SL,max = 1 placed at the lower wall as a 

function of the depth of the grooves SL,min for Re*dp/dx = −1 taken from zone A in Figure  6.7 

(Figure  6.20A) and Re*dp/dx = 1.6 taken from zone B (Figure  6.20B). The dashed lines identify 

the optimal depths. 
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Figure  6.21: Evolution of the optimal shape of the unequal-depth grooves as a function of the 

depth SL,min for a constant height SL,max = 1 and for Re*dp/dx = −1 which corresponds to zone A in 

Figure  6.7. Results for β = 0.1, 0.5, 0.7 are displayed in Figures 21A, 21B and 21C, respectively. 

Thick lines identify shapes corresponding to the optimal depths. Dashed lines identify positions 

of the reference smooth walls. 

 

The best groove performance occurs for the optimal depth and thus the optimal depth and 

the corresponding shape will be referred to as the optimal geometry. Variations of the 

optimal geometry as a function of the groove height SL,max are illustrated in Figure  6.22. 

The universality of the shapes is illustrated in Figure  6.22A by re-scaling the vertical 

coordinate with peak-to-bottom distance, and then in Figure  6.22B by rescaling the 
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horizontal coordinate with the groove width at half height. All shapes nearly overlap and 

can be approximated as 
25.3 z

ey
−−= .  
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Figure  6.22: Shapes of the unequal-depth grooves corresponding to the optimal depth, i.e. the 

optimal geometry, for different groove heights SL,max for Re*dp/dx = −1 which corresponds to 

zone A in Figure  6.7. The y-coordinate is scaled using the peak-to-bottom distance 

)/()1( ,,, maxLminLmaxLLL SSSyy +−+= . The z-coordinate is scaled in Figure  6.22A using the 

groove wavelength λ, and in Figure  6.22B using the groove width at half height Whalf, i.e. 

halfWzzz /)( 0−= . Solid and dashed lines correspond to β = 0.1 and 0.7, respectively; these lines 

nearly overlap in Figure  6.22B. Thick line in Figure  6.22B identifies the universal shape in the 

form 
25.3 z

ey
−−= . 

 

The gains in the flow rate are illustrated in Figure  6.23A and the scaling factors are given 

in Figures 6.23B and 6.23C. Careful analysis of this data shows that the groove cut 

occupies about 75% of the wavelength for β close to where the transition from the flow 

rate increase to the flow rate decrease occurs whereas it shrinks to approximately 25% of 

the wavelength for β = 0.1, i.e. it evolves to become a localized cut. Comparison of the 

performance of the optimal equal-depth grooves (see Figure  6.19) and the grooves 

corresponding to the optimal geometry (see Figure  6.23A) show significant advantage of 
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the latter ones. Analysis of properties and performance of the optimal geometry for flow 

conditions corresponding to zone B in Figure  6.7A (Re*dp/dx=1.6) leads to similar 

conclusions, as illustrated in Figure  6.23 using dashed lines. Placement of the optimal 

grooves on both walls results in the best performance if these grooves are out of phase 

and have the same shapes, as in the case of only one grooved wall. The performance of 

grooves placed on both walls is nearly the same as the performance of grooves placed on 

only one wall but with doubled amplitude. 
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Figure  6.23: Variations of Q1/Q0 (Figure  6.23A), and the depth Dopt (Figure  6.23B) and the width 

at half height Whalf (Figure  6.23C) of grooves forming the optimal geometry. Solid and dashed 

lines correspond to Re*dp/dx = −1 (zone A) and Re*dp/dx = 1.6 (zone B), respectively. 
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6.6 Summary 

Effects of longitudinal grooves on the flow resistance in a channel flow driven by a 

combination of the pressure gradient and the movement by one of the walls have been 

studied. The groove geometry has been expressed using Fourier expansions and the 

reduced-order geometry model has been used to extract features that are hydraulically 

relevant. Three distinct zones leading to an increased flow rate have been identified 

depending on the applied pressure gradient and the groove wavenumber. Two of these 

zones correspond to grooves with long wavelengths and one to grooves with short 

wavelengths. Optimization has been used to determine shapes that provide the largest 

increase of the flow rate. It has been shown that no optimal shape exists in the latter case 

if the groove amplitude is less than certain well defined limit as the shortest admissible 

wavelength dominates the system performance. There exists the most effective groove 

wavenumber for higher grooves but the optimal shapes cannot be determined due to 

numerical limitations. It has been shown that in the case of the long wavelength grooves 

the optimal shapes depend on the constraints. In the case of the equal-depth grooves, i.e. 

grooves that have the same height and depth, the optimal shapes are well approximated 

by a certain universal trapezoid. In the case of the unequal-depth grooves, there exists an 

optimum depth which, combined with the corresponding shape, defines the optimal 

geometry; this shape is well-approximated by a Gaussian function. Two distinct zones 

emerge when the reduction of the force acting on the upper wall is used as the 

performance criterion. The best system performance for both cases is obtained when the 

short wavelength grooves are used; the system response is qualitatively similar to that 

found in the case of the flow rate increase. 
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Chapter 7  

7 Conclusions and Recommendations 

 

7.1 Conclusions 

In this dissertation, the flow responses associated with grooves placed on either one wall 

or both walls of a straight channel have been numerically analyzed. As the first step, a 

spectral algorithm suitable for the analysis of flows in grooved channels has been 

developed. Two-dimensional grooves with arbitrary shapes and arbitrary orientations 

with respect to the reference flow direction have been considered. The reference direction 

is defined as the flow direction when grooves are absent. In the case of transverse 

grooves the flow is two-dimensional; the flow becomes three-dimensional for oblique 

grooves and remains three-dimensional when grooves assume longitudinal orientation. 

The algorithm models geometry of the grooves using Fourier expansions. Computations 

are carried out in a fixed computational domain with the grooves submerged inside this 

domain. The flow boundary conditions are enforced using the immersed boundary 

conditions (IBC) method which results in the construction of constraints that provide 

closing conditions for the field equations. The algorithm eliminates the need for costly 

coordinate generation and provides flexibility required for an efficient analysis of various 

possible grooves’ geometries.  

The computational problem is formulated using an auxiliary reference system that has 

one axis directed along the grooves’ ridges. This leads to a split of the three-dimensional 

flow problem into a sequence of two-dimensional nonlinear flow problem across the 

ridges to be followed by a two-dimensional linear flow problem along the ridges. The 

spatial discretization is based on the Fourier expansions in the direction transverse to the 

grooves, and Chebyshev expansions in the direction across the channel. An efficient 

linear solver, from the point of view of execution time as well as memory use, that takes 

advantage of the matrix structure has been used for iterative solution of the nonlinear 

two-dimensional problem. It has been shown that it is more efficient to solve the linear 
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two-dimensional problem using an iterative method as this method results in a matrix 

structure that can be solved very efficiently. Various tests confirm that the algorithm 

provides spectral accuracy. The absolute error increases with an increase of the extremity 

of the geometry, as measured by the groove’s amplitude and wavenumber, and this 

represent limitations of the IBC method. The error also increases with an increase of the 

flow Reynolds number but this effect is due to the rapid increase in the magnitude of the 

nonlinear terms. Both errors can be partially controlled through an increase in the number 

of Fourier modes used in the computations.  

In order to verify the numerical results, the same problem has been solved using the 

domain transformation (DT) method. In this method, the irregularity of the physical 

domain is removed by use of an analytical mapping which transforms the irregular flow 

domain onto a regular computational domain. This permits enforcement of the boundary 

conditions to be performed in the classical way as the edges of both computational and 

physical domains overlap. The field equations are discretized using the same spectral 

method discussed above. The IBC method is computationally significantly faster 

compared to the DT method. However, the DT method can handle geometries with high 

level of extremities.  

 

Analysis of drag generation in conduits with corrugated walls has been carried out 

analytically using long wavelength approximation. Range of validity of this 

approximation has been determined by comparing analytical results with numerical 

solution of the complete field equations. Three mechanisms for generation of additional 

pressure losses have been identified. The first mechanism is associated with the alteration 

of the shear stress distribution at the walls. The second mechanism is associated with the 

presence of an obstacle (corrugation) in a flow with a mean pressure gradient and is 

referred to as the form drag. The third mechanism is associated with the interaction of the 

periodic part of the pressure field and the surface geometry and occurs due to a phase 

shift between them. Explicit results have been presented for corrugations represented by a 

single Fourier mode. Drag increases rapidly with an increase of the corrugation amplitude 
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with pressure drags being responsible for up to 58% of the total drag in the case of single 

corrugation when its amplitude extends up to the middle of the conduit. When both walls 

are corrugated, phase difference between corrugations can change drag by a factor of up 

to ~3.5 with the largest drag being generated by the corrugations with the phase shift 

π=φ  between them. Variations of fractions of the total drag show the same functional 

relations for single and double corrugations, with a much more rapid increase of drag for 

the double corrugation. It is demonstrated that corrugations that are placed at both walls 

and are out of phase can generate the same drag as compared to corrugation with doubled 

amplitude placed only at one wall. 

 

In the next step, the effects of grooves with arbitrary orientations on the pressure losses 

have been investigated. The groove-induced pressure losses are expressed in terms of an 

additional pressure drop required in order to maintain the same flow rate in the grooved 

channel as in the reference smooth channel. It has been shown that the total effect can be 

expressed as a superposition of effects due to changes in the mean positions of the walls 

and due to flow modulations associated with the wall shape. The former effect can be 

evaluated analytically, while the latter one requires explicit computations. It has been 

demonstrated that a reduced-order geometry model is an effective tool for representation 

of the wall geometry, and this permits extraction of features of geometry that are relevant 

to the drag generation associated with flow modulations. Projection of the wall shape 

onto a Fourier space has been used to generate such a model. Explicit computations 

demonstrate that in most cases the leading Fourier mode from the Fourier expansion, 

representing the wall geometry, is sufficient to predict the pressure losses with accuracy 

sufficient for most applications. 

The modulation effect produces the largest additional pressure losses when the grooves 

are placed transversely with respect to the flow direction and the smallest losses when 

these grooves are parallel to the flow direction (longitudinal grooves). Grooves with 42° 

inclination angle with respect to the flow direction have the highest flow turning 
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potential. Detailed analysis of the extreme cases, i.e. transverse and longitudinal grooves, 

has been carried out. 

The total drag associated with flow modulations induced by the transverse grooves 

consists of a combination of shear drag, pressure form drag and pressure interaction drag. 

The contributions of the different forms of drag change as a function of the groove 

wavenumber and the groove amplitude. In the case of the small amplitudes of interest 

here, the shear drag generally dominates for long-wavelength grooves while the 

interaction pressure drag dominates in the case of short-wavelength grooves. The total 

drag increases when groove wavelength decreases. The flow lifts up for sufficiently 

short-wavelength grooves, resulting in an apparent thickening of the wall. This effect has 

been quantified by introducing the concept of a hydraulically equivalent channel opening 

defined as an opening of a smooth channel that has the same friction factor as the 

grooved channel. The presence of separation bubbles trapped in the groove trough for 

sufficiently short-wavelengths grooves provides potential for the creation of a drag-

reducing surface. The drag reduction can become practicable if a method for reduction of 

the unwanted pressure interaction drag can be found. 

Viscous shear is totally responsible for the drag generation in the case of longitudinal 

grooves. When grooves with sufficiently long wavelength (β <∼ 1) are used, the drag 

decreases in spite of the increase in the wetted surface area. The drag reduction is 

associated with the redistribution of the mass flow, with the largest flow taking place in 

the zone of the widest channel opening. A decrease of the wavelength results in an 

increase of the drag above the level found in the smooth channel. When the groove 

wavelength is sufficiently small, the flow lifts up, resulting in an apparent thickening of 

the wall. At the same time, the fluid is squeezed out from the troughs, resulting in the 

elimination of the shear over the majority of the wetted area. The potential for creation of 

a drag-reducing surface is counteracted by a significant shear increase over the groove 

tips. A proper shaping of the grooves may eliminate the formation of the shear peaks. 
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Identification of laminar drag-reducing grooves in the pressure-driven flows motivated us 

to further analyze shapes of these grooves in order to find groove geometries which 

provide the least flow resistance. The analysis was focused on the optimization of the 

groove shape from the point of view of maximization of drag reduction. The acceptable 

shapes were subject to constraints expressing the maximum acceptable height and depth.  

The geometries were represented in terms of Fourier expansions with an unknown 

number of terms and the number of terms required in order to capture the relevant details 

of geometry was one of the outcomes of the analysis. It has been found that the Fourier 

expansions were rapidly convergent and, as a result, 3-5 Fourier modes were sufficient to 

describe the optimal shapes, i.e. it is possible to construct reduced-order models for the 

optimal shapes.  

The grooves were divided into two categories for the purpose of discussion, i.e. equal-

depth grooves with the same height and depth, and unequal-depth grooves. In the former 

case, use of optimal shapes increases drag reduction by up to 50% when compared with 

the simple sinusoidal grooves. The critical groove wavenumber, which separates the drag 

decreasing from drag increasing grooves, is essentially unaltered by use of optimal 

grooves. The optimal shapes can be approximated over the whole range of drag 

decreasing wavenumbers using a universal trapezoid. The error in predicting drag 

reduction associated with the use of the universal trapezoid rather than the actual optimal 

shape is negligible for most applications. Use of grooves on both walls doubles drag 

reduction compared with grooves on one wall only. The best results are achieved when 

grooves are moved by half wavelength with respect to each other.  

Analysis of the unequal-depth grooves was focused on grooves with constant height and 

a variable depth. It has been found that there exists a depth that results in the maximum 

drag reduction. This depth and the corresponding groove shape define the optimal 

geometry. The corresponding shapes can be approximated over the whole range of the 

drag reducing wavenumbers using a universal Gaussian function.  Use of the unequal-

depth grooves increases drag reduction by up to 50% when compared with the equal-

depth grooves of a similar height. 
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The same analysis has been extended to kinematically driven flows. It has been found 

that grooves always increase flow resistance in such flows.  

 

The effects of longitudinal grooves on the flow resistance in pressure and kinematically 

driven flows have been studied. The analysis was focused on the identification of groove 

shapes which improve the system performance as measured either by an increase of the 

flow rate in the direction of the reference flow or by a reduction of the magnitude of the 

force acting at the upper wall. 

In the case of flow rate, use of the reduced-order geometry model led to the analysis of 

sinusoidal grooves characterized by the amplitude S and the wavenumber β, and resulted 

in the identification of three zones in the pressure gradient - wavenumber space leading to 

an increase of the flow rate. The long wavelength grooves increase the flow rate for 

Re*dp/dx < 0 and for Re*dp/dx > 1.5 and, in both cases, the reduction of the groove 

wavenumber improves the system performance. The short wavelength grooves increase 

the flow rate for 0.75S[1−(1−0.5S)3]−1 < Re*dp/dx < 1.5. An increase of the wavenumber 

leads to an improvement of the system performance if the groove amplitude S<Seff,Q but 

there exists the most effective wavenumber βeff,Q when S>Seff,Q. Explicit estimate for the 

most effective groove amplitude Seff,Q has been given. 

Optimization was utilized in order to find the best groove geometries. The admissible 

shapes were constrained by specifying the maximum acceptable height and depth of the 

grooves. It has been shown that the optimization process is able to accurately capture 

optimal shapes of the long wavelength grooves and the relevant reduced-order geometry 

model requires the use of only up to five Fourier modes. The optimal long wavelength 

grooves with the equal depth and height can be approximated by a certain universal 

trapezoid over the whole range of the relevant wavenumbers. These shapes show 

marginal dependence on the pressure gradient and a weak dependence on the groove 

wavenumber. The latter dependence becomes more pronounced as the groove 

wavenumber approaches the critical value which separates the flow-rate-increasing 

grooves from the flow-rate-decreasing grooves. In the case of the unequal-depth grooves, 
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the height of the grooves is fixed and the depth and the shape are determined by the 

optimization process. The resulting shapes can be approximated over the whole range of 

the relevant wavenumbers using a Gaussian function. These shapes show similar 

dependence on the pressure gradient and the wavenumber as the equal-depth grooves. 

Use of the unequal-depth grooves rather than the equal-depth grooves increases the flow 

rate by up to four times.  

It has been shown that the optimal shapes do not exist in the case of short wavelength 

grooves with S<Seff,Q where the system performance is dominated by the shortest 

admissible groove wavelength. For S>Seff,Q the best system performance is found for the 

wavenumber βeff,Q but the optimal shape cannot be identified due to limitations of the 

numerical procedure used in the analysis. 

In the case of forces acting on the upper wall, analysis of sinusoidal grooves resulted in 

the identification of two zones in the pressure gradient - wavenumber space where the 

grooves are able to reduce the magnitude of this force. The first zone corresponds to 

Re*dp/dx<−0.5 with grooves of any wavenumber being able to reduce the force. The 

second zone corresponds to Re*dp/dx>(2−S)−1 but, in this case, only the short wavelength 

grooves are able to reduce the force. No optimal shapes can be found under such 

conditions as either the system performance is dominated by the shortest admissible 

wavelength or the convergence rate of the relevant Fourier expansions is too small to 

yield a practical solution. 

 

7.2 Recommendations for future work 

Effects of grooves as a subset of the general problem of interactions of surface 

topography with the flow dynamics in laminar channel flows have been presented in this 

dissertation. In order to further advance the research in this area, the following directions 

may be considered for future work: 

i) In this dissertation, the effects of a special class of surface geometry on channel 

flows have been numerically investigated. The class of surface topography 
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considered was two-dimensional grooves of arbitrary shapes and orientations with 

respect to the reference flow direction. This analysis can be extended to consider 

arbitrary three-dimensional geometries. There should be no conceptual difficulties 

for the development of necessary tools to model such problems as the same 

methodology used here is in principal capable of handling arbitrary three-

dimensional shapes. However, efforts may be required to develop efficient solvers 

that can efficiently solve the problem with a reasonable computational cost. 

Development of such tools provides flexibility to study all possible groove shapes 

that are of practical interest in various engineering fields. 

ii) Since the surface topography changes the stability of the flow, studying the 

stability behaviour of different classes of surface grooves is of great interest and 

can be pursued for future research.  For that purpose, the linear stability equations 

should be developed in such a way that they can account for three-dimensional 

disturbances. These equations can be solved to determine the stability properties 

of different forms of grooves. 

iii) Although a vast amount of work has been devoted to studying the effects of 

surface irregularities in the fully turbulent flow regime, the conclusions regarding 

their effects are not complete and thus there still exists many opportunities for 

research to be conducted in this field. A systematic analysis of effects of different 

features of surface geometries on flow response is of special interest. 

iv)  Enhancement of heat transfer by means of surface inhomogeneities of proper 

forms represents another interesting field which is very important in many 

applications. The main challenge is to optimize the surface geometries in such a 

way that the heat transfer rate is increased and at the same time the pressure loss 

associated to fluid movement is reduced. From numerical perspective, one needs 

to develop algorithm that can solve the continuity, Navier-Stokes and energy 

equations simultaneously with high accuracy. The spectral method presented in 

this dissertation can be used to develop the required tool. 
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v) With the knowledge of the findings presented in this dissertation, new research in 

the area of the experimental fluid dynamics can be proposed. It is worthwhile to 

set up experiments to verify the current predictions and to use this knowledge for 

the development of new, energy efficient devices.  
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Appendices 

Appendix A  

 

Appendix A: Description of the methodology used in the 

evaluation of different inner products appeared in 

 Chapter 2. 

The definition of the Chebyshev polynomials of the first kind (Mason & Handscomd 

2002) is based on the following well-known recurrence relation, i.e. 

1)(0 =yT ,        yyT =)(1 ,        and        )()(2)( 11 yTyyTyT kkk −+ −=   for 2≥k . ( A.1) 

The inner product of two Chebyshev polynomials Tj and Tk (Mason & Handscomd 2002) 

is defined as 
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where ω  is the weight function and subscripts j and k denote the order of polynomial. 

Orthogonality property of the Chebyshev polynomials leads to a simple solution to the 

above integral, i.e. 
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where kj ,δ  is the Kronecker delta and Ck is defined as 
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First derivative of a Chebyshev polynomial can be expressed in terms of Chebyshev 

polynomials in the form 
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Taking inner product of ( A.5) with Chebyshev polynomial Tj gives 
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Insertion of ( A.3) into ( A.6) results in the following simple relation for the inner product 

of a Chebyshev polynomial of jth order and its first derivative of kth order, i.e. 

πD, kTT kj = ,    odd=− jk ,    1+≥ jk . ( A.7) 

Second derivative of a Chebyshev polynomial can be expressed in terms of Chebyshev 

polynomials as  
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its inner product with Chebyshev polynomial Tj results in 
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The simplified form of ( A.9) can be obtained with the help of Eq. ( A.3) which takes the 

form 
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Taking derivative of ( A.8) with respect to y leads to a relation for the third derivative of 

Chebyshev polynomial Tk in the form 
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Substitution of ( A.5) into the above equation, leads to the following relation for the third 

derivative of Chebyshev polynomial Tk 
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Taking inner product of ( A.12) with Tj and using ( A.3) result in a relation for inner 

product of a Chebyshev polynomial of jth order and its third derivative of kth order, i.e. 
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Evaluation of the forth derivative of Chebyshev polynomial Tk begins with taking the 

second derivative of ( A.8) with respect to y in the form 
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Replacing xT
2D  with its equivalent from Eq. ( A.8) gives 
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Taking the inner product of ( A.15) with Chebyshev polynomial Tj leads to 
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Evaluation of the inner product of 
j

T  and 0 ku T  begins with expressing u0 in terms of 

Chebyshev polynomials, i.e. 
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where Um’s are the coefficients of expansion and M is the highest order of Chebyshev 

polynomial in the expansion. The relation between ŷ  and y given by Eq. ( 2.43) is re-

written for convenience in the form 

bayy +=ˆ , where 1−Γ=a  and tYb ++Γ−= − 11   ( A.18) 

and its use in ( 2.29a) gives an expression for the x-component of the reference velocity u0 

written in terms of y coordinate, which takes the form 
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Expressing u0(y) in terms of the Chebyshev polynomials ( A.1) leads to the determination 

of the coefficients Um, i.e. 
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The inner product kj TuT 0, , with the help of ( A.2), ( A.17)–( A.20) takes the form 
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Implementing the following property of the Chebyshev polynomials 
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in ( A.21) gives 
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With similar procedure, one can evaluate kj TuT D, 0  and kj TuT 2
0 D,  in the form  
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Evaluation of the inner products kj TuT 0D,  and kj TwT 0D,  begins with description of 

Du0 and Dw0 in terms of Chebyshev expansions in the form 
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∑
=

=

=+−=
1

0
,0 )()sin()(2)(D

m

m

mmd yTWbayayw φ , ( A.27) 

where Ud,m and Wd,m are the coefficients of expansions and take the form 

)cos(20, φabUd −= ,         )cos(2 2
1, φaUd −= , ( A.28a,b) 

)sin(20, φabWd −= ,          )sin(2 2
1, φaWd −= . ( A.29a,b) 

Using ( A.22), ( A.26) and ( A.27), the inner products kj TuT 0D,  and kj TwT 0D,  

become 
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The definition for inner product kj TuT 0
2D,  reduces to 

kjkj TTaTuT ,)cos(2D, 2
0

2 φ−= .    ( A.32) 

Finally, the following inner products can be easily evaluated with the help of ( A.22) and 

take the form 
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Appendix B  

 

Appendix B: Description of the methodology used in the 

evaluation of Fourier coefficients of the reference 

velocity and the reference stream function at the 

grooved walls for the flow problem presented in 

 Chapter 2.  

 

Consider the reference velocity component in the x-direction evaluated along the upper 

wall. Using Eq. ( A.19) one can write 

)cos(]1)(2)([)())(( 222
,00 φbxabyxyaxuxyu UUUU −+−−== . ( B.1) 

With the help of ( 2.44a), it is easy to show 
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)()(2 )( α . ( B.2) 

The reader may note that the non-zero values of )(k

UA  only occur for ANk ≤ . 

Substitution of ( 2.44a), ( B.2) and ( B.1) into ( 2.63a) and separation of Fourier modes 

result in the determination of Fourier coefficients )(
,0
n

Uu , i.e. 
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Similarly, Fourier coefficients )(
,0
n

Uw  take the form 
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Fourier coefficients )(
,0
n

Lu  and )(
,0
n

Lw  can be evaluated using the same concept. 

The reference stream function evaluated on the upper wall ))((0 xyUΨ  represents a 

known periodic function that can be expressed in terms of Fourier expansion in the form 

∑
∗=
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Θ=Ψ
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A
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xinn

UU exy
3

3

)(
0 ))(( α .   ( B.5) 

The reference stream function along the upper wall written in (x,y) coordinate system can 

be evaluated by substitution of Eq. ( A.18) into Eq. ( 2.39b), i.e. 
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The Fourier expansion for )(3
xyU  takes the form 
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Substitution of ( 2.44a), ( B.2), ( B.7) and ( B.6) into ( B.5) and separation of Fourier modes 

provide expression for Fourier coefficients )(n

UΘ , i.e. 
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( B.8a) 



















+−+−+

−−

=Θ
∑∑ ∑
=

−=

=

−=

∗=

∗−=

−

3

2
)

3
1()1(

3
)cos(

2
)0(2

*)()(2
2

2

*)()()(
3

)0(

b
bAba

AAbaAAA
a

U

Nm

Nm

m

U

m

U

Nm

Nm

Nq

Nq

q

U

mq

U

m

U

U

A

A

A

A

A

Aφ ,       for   n = 0. ( B.8b) 

Similar expressions can be easily derived for )(n

LΘ . 
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Appendix C  

 

Appendix C: Implementation of the fixed volume flow 

rate constraints for the flow problem presented in 

 Chapter 2.  

 

C.1 Fixed volume flow rate constraints 

The constraints are expressed in terms of the flow rates in the x̂ - and ẑ -directions, i.e. 

the flow rate corrections xQ ˆ1  and zQ ˆ1  are specified. Since the solution is split into a 

sequence consisting of a nonlinear problem describing flow in the (x,y) plane to be 

followed by a linear problem describing flow in the (y,z) plane, the constraints have to be 

expressed in term of the flow rates in the x- and z-directions. It follows from Eq. ( 2.37a,b) 

that  

)sin()cos()3/4( ˆ1ˆ1 φφ zxx QQQ −+= ,         ( C.1a) 

)cos()sin()3/4( ˆ1ˆ1 φφ zxz QQQ ++= . ( C.1b) 

This Appendix describes implementation of the above constraints. 

 

C.2 Flow in the (x,y) plane 

The flow rate per unit width of the channel in the x-direction can be evaluated by 

integrating the x-velocity component across the channel, i.e.  
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Insertion of the normalization condition ( 2.41) into ( C.2) results in 

))(())(())(ˆ())(ˆ( 1010 xyxyxyxyQ UUUUx Ψ+Ψ=Ψ+Ψ=    ( C.3) 

and insertion of ( C.3) into ( C.1a) leads to 

)sin()cos()3/4())(())(( ˆ1ˆ101 φφ zxUU QQxyxy −++Ψ−=Ψ .             ( C.4) 

The flow modification stream function at the upper wall ))((1 xyUΨ can be expressed 

using Eqs ( 2.47a), ( 2.51a) and ( 2.58a) in the form 
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where the non-zero values of )(
,

mn

UkB
−  occur only for SNmn ≤− . Substitution of ( B.5) and 

( C.5) into ( C.4) and extraction of mode zero lead to the discretized form of condition 

expressing the fixed flow rate constraint in the x-direction in the form 
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where the nonzero values of )*(
,
m

UkB occur only for SNm ≤ . One needs to solve the field 

equations ( 2.53) with the boundary conditions ( 2.64a,b)–( 2.65a,b), the stream function 

normalization condition ( 2.68) and the fixed volume flow rate constraint ( C.6) replacing 

the fixed pressure gradient constraint ( 2.72) in order to determine flow in the (x,y) plane. 
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C.3 Flow in the (y,z) plane 

The fixed flow rate constraint in the z-direction can be implemented by starting with the 

y-derivative of Eq. ( 2.50b) in order to eliminate pressure gradient contributions, i.e. 

[ ]∑
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The problem now consists of the third order equation ( C.7) with two boundary conditions 

corresponding to n=0 in ( 2.64c)–( 2.65c) and requires a closing condition in order to form 

a well posed problem. The mass flow rate constraint provides the required closing 

condition. 

Substitution of ( 2.51a,b) into ( C.7) and application of the Galerkin projection method 

result in 
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Similar procedure for the iterative method (see Eq. ( 2.84b)) leads to 
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Three equations of either type ( C.8) or type ( C.9) corresponding to the highest 

polynomials are dropped to create space for imposition of the boundary conditions and 

the required constraint condition. These conditions are imposed in the tau-like manner. 

A suitable form of the volume flow rate constraint can be determined by integrating the 

w-velocity component across the channel, i.e. 
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It can be shown that the first integral reduces to the following form 
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This integral needs to be expressed in terms of the computational variable y. Use of 

Eq.( A.18) in Eq. ( C.12) results in 
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Polynomials appearing in the above relation need to be expressed in terms of Chebyshev 

polynomials, i.e. 
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and values of these polynomials evaluated along the walls can be expressed using 

Eq.( 2.58a) resulting in the following form of the integral 
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Explicit evaluation of the integral appearing in the above relation reduces Eq. ( C.15) to 

the form 
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Evaluation of the second integral in ( C.10), i.e. 
1wI , begins with the substitution of 

( 2.47b) and ( 2.51b) into ( C.11b) leading to the following relation 
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Values of Chebyshev polynomials at the upper and lower walls appearing in Eq. ( C.18) 

can be expressed with the help of Eq. ( 2.58a) resulting in 
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and max(NI)=(NT+1)*NA. It is simpler for the following presentation to consider 

NI=(NT+1)*NA with the additional terms taking zero values in a natural way. Equation 

( C.17) can be brought with the help of ( C.20) and ( C.19) to the following form 
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where MATQ NNNN +∗+= )1(  and the nonzero values of )(ˆ mn

kI
−  occur only for 

INmn ≤− . Explicit evaluation of integrals appearing in the above relation results in the 

final form of the integral 
1wI ,  i.e.  
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where the nonzero values of *)(ˆ m

kI  occur only for INm ≤ . The final form of the flow rate 

constraint in the z-direction is obtained by inserting ( C.16), ( C.22) and ( C.1b) into ( C.10), 

i.e.  
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where the nonzero values of )*(ˆ m

kI  occur only for INm ≤ . 
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Appendix D  

 

Appendix D: Evaluation of the pressure field for the 

flow problem presented in  Chapter 2. 

 

The non-dimensional governing equations describing flow in the (x,y) plane, written in 

terms of the primitive variables, take the form 

011 =∂Γ+∂ vu yx , ( D.1) 
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101111 vvReqvuvvvu yxyxyx ∂Γ+∂+∂Γ−=∂+∂Γ+∂ − . ( D.3) 

Using the continuity equation ( D.1) and the derivatives of the velocity products defined 

as 

1111 2}{ uuuu xx ∂=∂ , ( D.4a) 

111111 }{ uvvuvu xxx ∂+∂=∂ , ( D.4b) 

1111 2}{ vvvv yy ∂=∂ , ( D.4c) 

one can replace the nonlinear terms on the left-hand side of Eqs ( D.2) and ( D.3) with the 

above derivatives of the velocity products in the form 
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Re-arranging Eq. ( D.5) gives an expression for the pressure gradient change in the x-

direction, i.e. 
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The modification velocity components and the x-periodic part of the pressure 

modification can be expressed in terms of Fourier expansions with the help of Eqs 

( 2.39c,d) and ( 2.47a), i.e. 
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Substitution of Fourier expansions ( D.8a–c) and ( 2.48a,b) into Eq. ( D.7) and separation 

of Fourier modes result in 

[ ].)(D)(D)(D)(

)()(D)(}{D)(}{)(
)(33)(221)(

0

)(
0

)(
11

)(
11

)(

yynReyyuin

yyuinyvuyuuinyqinh

nnn

nnnn

x

ΦΓ+ΦΓ−+ΦΓ−

ΦΓ+Γ−−=+
− αα

ααα
 ( D.9) 

Equation ( D.9) written for mode zero provides expression for the evaluation of the 

pressure gradient change in the x-direction in the form 
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and its integration between walls results in 
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The above relation can be used at any x-location. Although the analytical values of 

))((}{ )0(
11 xyvu U  and ))((}{ )0(

11 xyvu L  are zero, one needs to retain them in the 

computations in order to obtain hx independent of x.  

An alternative way to evaluate hx relies on the insertion of the Chebyshev expansions 

( 2.51a) and ( 2.52b) into ( 2.70), and taking the inner product of the resultant equation with 

T0, i.e. 
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Comparison of values of hx computed using either ( D.11) or ( D.12) provides a useful 

consistency check for the algorithm. 

Equation ( D.9) written for n ≠ 0 gives expression for the evaluation of q(n)(y), i.e. 
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Modal functions of the pressure modification q
(n)(y) can be expressed in terms of 

Chebyshev polynomials as 
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)()( )()( . ( D.14) 

Insertion of Chebyshev polynomials ( D.14), ( 2.51a), ( 2.52a,b) into ( D.13), taking the 

inner product of both sides of this equation with )( yT j , and using the orthogonality 

properties of Chebyshev polynomials result in 
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where 




≠

=
=

01

02

j

j
C j .  

One needs to use the y-momentum equation to evaluate q
(0)(y). Substitution of Fourier 

expansions ( D.8b,c) and ( 2.48b,c) into Eq. ( D.6) and separation of Fourier modes give 
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Equation ( D.16) written for mode zero takes the form 
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)0( yvvyq Γ−=Γ , ( D.17) 

which, after integration, becomes 

1
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11
)0( )(}{)( cyvvyq +−= , ( D.18) 

where c1 is the integration constant. Substitution of the Chebyshev expansions ( D.14) and 

( 2.52c) into ( D.18), taking the inner product of the resultant relation with )( yT j  provide 

expression for evaluation of )0(
jΠ , i.e. 
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The pressure gradient change in the z-direction can be evaluated for the direct method by 

re-arranging Eq. ( 2.73), i.e. 
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and for the iterative method by re-arranging Eq. ( 2.84b) 
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Pressure gradient corrections in the x̂ - and ẑ -directions can be subsequently evaluated 

from Eq. ( 2.69). 

The total pressure field takes the form 

[ ] ceyTzhxhzxRezyxp
M

M

TNn

Nn

xin

Nk

k

k

n

kzx +Π++++−= ∑ ∑
=

−=

=

=

− αφφ
0

)(1 )()sin()cos(2),,( , ( D.22) 

where the integration constant c1 has been added to the arbitrary constant c. 
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Appendix E  

 

Appendix E: Domain transformation method for the 

flow problem presented in  Chapter 4. 

 

The irregular flow domain in the physical ),~( yx  reference system is mapped onto a 

regular computational domain (Husain et al. 2009) in the (ξ,η) reference system using a 

transformation in the form 

x~=ξ ,        
)~()~(

)~()~(2

xyxy

xyxyy

LU

LU

−

−−
=η . ( E.1) 

 

E.1 Domain transformation method for transverse grooves 

(φφφφ=0°°°°) 

Equation ( 4.17) can be expressed in the (ξ,η) system as 
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( E.2) 

where, 

{ } { } { }11111
~~~~ vvuuN −= , ( E.3a) 



242 

 

{ } { }112
~~ vuN = , ( E.3b) 
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4
~0 2),( yyxx ηηηηηB ++=ξ , ( E.4a) 
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2
~~2 η/BηηηηReuηηηηηηηB yyxxxxyxyyxxxxxxxx ξξ +−+++= , ( E.4c) 

),(/)]2~([),( 0~~~~0~~~~3 ηξηηηηξ BuReB xxxxxxxx +−= , ( E.4d) 
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~4 ηξηηηηξ BB yxx += , ( E.4e) 

),()]3(~812[),( 0
22

~0~~~~5 η/BηηReuηηηηηB yxyyxxxx ξξ +−+= , ( E.4f) 

),()~34(),( 0~~0~~~6 ηξηξ /BReηuηB xxxxx −= , ( E.4g) 

),()~36(),( 0~0~~7 η/BReηuηηB xxx ξξ −= , ( E.4h) 

),()26(),( 0
22

~8 η/BηηηB yx ξξ += , ( E.4i) 

),(4),( 0~9 η/BηηB x ξξ = , ( E.4j) 

),(2),( 010 ηRe/BηB ξξ −= , ( E.4k) 

),(/~),( 0011 ηξηξ BReuB −= , ( E.4l) 

),(/1),( 012 ηξηξ BB = , ( E.4m) 

 

),(),( 01 η/BηReηL y ξξ = , ( E.5a) 



243 

 

),(),( 0~2 η/BηReηL yx ξξ = , ( E.5b) 

),(),( 0~3 η/BηηReηL yx ξξ = , ( E.5c) 
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2
4 η/BηηReηL xy ξξ −= , ( E.5d) 
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),(2),( 0~6 η/BηReηL x ξξ −= , ( E.5f) 

),(),( 07 ηRe/BηL ξξ −= . ( E.5g) 

The coefficients arising from the transformation have the form 
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The definition of the stream function given by Eq. ( 4.16) remains unchanged and thus the 

velocity components can be expressed as 

1010 ),(~),(~),(~ Ψ∂+Ψ∂=+= ηη ηηηξηξηξ yyuuu , ( E.14a) 

1~11 ),(~),(~ Ψ∂−Ψ−∂== ηξ ηηξηξ xvv , ( E.14b) 

where subscripts 0 and 1 refer to the reference flow and flow modifications due to the 

presence of the grooves, respectively. The boundary conditions can be expressed as 

)1,(~)1,( 01 +−=+Ψ∂ ξξη η uy , ( E.15a) 

0)1,()1,( 1~1 =+Ψ∂++Ψ∂ ξηξ ηξ x , ( E.15b) 

)1,(~)1,( 01 −−=−Ψ∂ ξξη η uy , ( E.15c) 

0)1,()1,( 1~1 =−Ψ∂+−Ψ∂ ξηξ ηξ x . ( E.15d) 

The stream function normalization condition ( 4.18) written in the (ξ,η) system takes the 

form 

0)1,()1,( 10 =−Ψ+−Ψ ξξ . ( E.16) 

The flow rate constraint can be expressed as  

xQ101 3/4)1,()1,( +++Ψ−=+Ψ ξξ . ( E.17) 

The resulting system has been solved using discretization based on the Fourier 

expansions in the ξ-direction and Chebyshev expansions (Mason & Handscomd 2002) in 

the η-direction. Mode separation and the Galerkin projection method were used to 

develop algebraic equations. The linearization procedure treated all the nonlinear terms as 

known and took their values from the previous iteration. The nonlinear terms were 

updated by carrying out multiplications in the physical space and computing Fourier 

expansions of the products using Fast Fourier Transforms. The aliasing error was 
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controlled using 3/2 rule (Canuto et al. 1996). The spectral accuracy has been verified 

through numerical experiments. 

 

E.2 Domain transformation method for longitudinal grooves 

(φφφφ = 90°°°°) 

Equation ( 4.17) reduces to the form  

0~~
~11~~ =−∂+∂ zyyxx Rehww  ( E.18) 

and can be expressed in the (ξ,η) system as 
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31312111 =−∂+∂+∂+∂ zRehBwBwBwBw ηξηξηξηξ ξξξηηηη , ( E.19) 

where )/(),( 22
~~~1 yxxxB ηηηηξ += , )/(2),( 22

~~2 yxxB ηηηηξ +=  and )/(1),( 22
~3 yxB ηηηξ += . The 

boundary conditions ( 4.11c) and ( 4.12c) take the form 

)](1[)1,(~ 2
1 ξξ Uyw −−=+ ,                 )](1[)1,(~ 2

1 ξξ Lyw −−=− . ( E.20) 

Equation ( E.18) contains the unknown pressure correction, i.e. zh~ . The corresponding 

equation is constructed on the basis of the flow rate constraint, i.e. 
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η

η
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where αλλξ
~/π2~ == x . The resulting system has been discretized using the same 

methodology as described in Appendix E.1. The resulting linear system was solved using 

the LU decomposition. Various numerical experiments confirmed spectral accuracy of 

the algorithm. 
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Appendix F  

 

Appendix F: Explicit solutions for the long wavelength 

grooves presented in  Chapter 5.  

 

F.1 Grooves with shapes expressed using a single Fourier 

mode 

Consider a channel bounded by walls with grooves of the form 

)cos(1)( BU By φχχ ++= , ( F.1a) 

)cos(1)( AL Ay φχχ ++−= . ( F.1b) 

The solutions have the form given by Eqs ( 5.28)–( 5.31), where 
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For a smooth upper wall, i.e. B = 0, the above pressure gradient simplifies to 
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which indicates that for long wavelength grooves the modification pressure gradient is 

positive and thus the introduction of grooves reduces drag. 

 

F.2 Grooves with an arbitrary shape placed at the lower wall 

Consider a channel bounded by a smooth upper wall and the lower wall fitted with 

grooves of an arbitrary form. The geometry of the channel is described as 

1=Uy , ( F.4a) 
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The solution has the form 
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where 
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In the above,   is the floor function, C = −3/16  for  j < i/2, and  C = −3/32  for  j = i/2.  
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Appendix G  

 

Appendix G: Details of the system of equations solved in 

the limit of ββββ→→→→0 for the flow problem presented in 

 Chapter 6. 

 

The system of equations arising in the limit β→0 (see Section  6.3) takes the form 
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where subscript ζ denotes derivative with respect to ζ. 
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