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Abstract

This dissertation presents the analysis of effects of two-dimensional grooves on flow
responses in laminar channel flows. Straight grooves have been considered which may
have an arbitrary cross-section and an arbitrary orientation with respect to the flow
direction. It has been shown that the grooves effects can be split into two parts; one due
to the change in the mean positions of the walls and the other due to the flow modulations
created by the groove geometry. The former effect can be determined analytically, while
the latter effect requires numerical modelling. Projection of groove shape onto a Fourier
space creates a basis for a reduced-order geometry model which has been used to capture
the modulation effects. A spectral algorithm based on Fourier and Chebyshev expansions
has been developed for numerical simulation which provides solutions with high levels of
accuracy. The difficulties associated with the enforcement of the boundary conditions on
the irregular geometries have been overcome either by using the immersed boundary
conditions (IBC) or the domain transformation (DT) methods. Three types of flow have
been considered; (i) pressure-driven flow, (ii) kinematically-driven flow, and (iii) flow
driven by a combination of these two driving mechanisms. The effect of grooves on flow
losses have been assessed based on either the additional pressure gradient required to
maintain the same mass flow rate as in the case of reference smooth channel or the
change in the mass flow rate induced by the grooves for flows driven with the same
pressure gradient as in the case of reference flow. Detailed analyses of the extreme cases,
1.e. grooves that are orthogonal to the flow direction (transverse grooves) and those that
are parallel to the flow direction (longitudinal grooves or riblets) have been carried out.
Mechanisms of drag generation for each case have been identified. Analytical solutions
have been determined in the limit of long wavelength grooves in order to simplify
identification of these mechanisms. It has been shown that longitudinal grooves with
wavelengths larger than a critical value are able to reduce drag to values lower than the
smooth channel value despite increase of the wetted surface area. For sufficiently short
wavelength grooves, shear is eliminated over a majority of the wetted area but there is a

rapid rise of local shear and pressure forces around the tips of grooves which counteracts
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the elimination of shear and results in an overall increase of drag. Potential for drag-
reducing surfaces for this case exists if a method for reduction of undesired pressure and
shear forces around groove tips can be found through proper shaping of the wall.
Optimization method has been used in order to find forms of longitudinal grooves which
minimize the flow losses in grooved channel and optimal shapes for different flow

conditions have been identified.
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Figure 4.8: Variations of fi,*Re (Figure 4.8A) and f;,*Re (Figure 4.8B) as functions of
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S =0.01, 0.02 and 0.05, respectively. The limit points represented by a channel with the
lower wall shifted upwards by $/2 are 3.015x107%, 6.061x107* and 1.538x10™" for § =
0.01, 0.02 and 0.05, respectively. Solid and dashed lines correspond to Re=0.01 and
REZT000. ..ttt ettt ettt et h ettt sttt sbe et saeen 112
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Figure 4.18: Variation of the modification friction factor f;,*Re as a function of tilting of
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corresponding to configurations 1, 6 and 11 from Figure 4.17 is marked using dashed,
solid and dashed-dotted lines, respectively. The average position of the lower wall is kept

the same and equal to y = —1 1N all CASES. ..vvvverviieriieeiie e 116

Figure 4.20: Variations of the modification friction factor f;,*Re as a function of the
distance n. between individual grooves. Channel has flat upper wall and transverse
triangular grooves with shape shown in Figure 4.4A with § = 0.05, a = b = ©/3, n. =
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lines). Figure 4.20A - bases of the grooves are always kept at y = —1. Figure 4.20B - the
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Figure 4.21: Distribution of the local shear force Re*t,,, acting at the lower (Figure
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Figure 4.22: Distribution of the u-velocity in a channel with longitudinal grooves defined
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SECION Of FIGUIE 4.22 A .. .coiiiiiiieeee ettt ettt ettt sabee e 121

Figure 4.23: Variations of fi,*Re induced by the longitudinal grooves with the shape
defined by Eq.(4.44) as a function of f and S. Figure 4.23A — contour plot of fi,*Re.
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Figure 4.23B- solid line: f;,*Re as a function of £ for $=0.05, dashed lines: fi,*Re as a
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Figure 4.25: Variations of the modification friction factor f;,*Re as a function of the
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function of . Limit points for f—oo are represented by Ec, = 2 — S/2, i.e. they
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Figure 4.30: Variations of the modification friction factor f;,*Re as a function of the
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Figure 5.3: Variations of the normalized modification friction factor fi/fy induced by the
grooves with the shape defined by Eq. (5.36) with the wavenumber £=0.5 as a function of
the coefficients of the Fourier expansion describing the groove geometry. The thin
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Figure 5.4: Variation of the normalized modification friction factor fi/fy for equal-depth
grooves located on the lower wall with § = 1 as a function of the number of Fourier
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Figure 5.5: Evolution of the optimal shape of the equal-depth grooves as a function of
the groove depth for the groove wavenumbers [ close to transition between the drag
reducing and drag increasing grooves. Results for f = 0.1, 0.5, 0.6, 0.7, 0.8, 0.9 are
displayed in Figures 5.5A, 5.5B, 5.5C, 5.5D, 5.5E, and 5.5F, respectively. The y-
coordinate is scaled using the peak-to-bottom distance as the length scale
y, =(y, +1-S)/(2S) . Thick lines illustrate the best-fitted trapezoids. These trapezoids
are characterized by a=b=A/11 and c=d=4.5A/11, a=b=A/8 and c=d=3/8, a=b=A/7 and
c=d=2.5A/7, a=b=A/6 and c=d=2 /6, a=b=A/5 and c=d=1.54/5, and a=b=A/4 and c=d=A/4
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Figure 5.6: Variations of the normalized modification friction factor fi/fy as a function of
the groove wavenumber £ and the groove depth S for a channel with the lower wall fitted
with the equal-depth grooves approximated by a trapezoid witha =b = A/8 and ¢ =d =
3A4/8 (solid lines). Results for the simple sinusoidal grooves are illustrated using dashed

lines. Dotted lines identify values for f — 0 for the trapezoidal grooves (see Section

5.3 e e st 151

Figure 5.7: Variations of the normalized modification friction factor fi/fy as a function of
the groove wavenumber f for the equal-depth grooves located on the lower wall. Solid
and dashed lines correspond to grooves with the optimal and trapezoidal shapes,
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Figure 5.8: Contour plots of the velocity fields (Figure 5.8A) for the equal-depth optimal
grooves (solid lines) and for the sinusoidal grooves (dashed lines) with S = 1, = 0.5.
Figure 5.8B displays distributions of the shear stress as well as the mean shear stress
acting on the fluid at the lower wall for the same grooves (solid, dashed and dotted lines
correspond to the optimal groove, the sinusoidal groove and the reference smooth wall).

Values of the corresponding total shear forces are (Re/A)*F, = —1.5942, —1.6632 and -2
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for the optimal groove, the sinusoidal groove and the reference smooth wall, respectively.
Lines a and b identify locations of the change in the wall curvature sign and the wall

bottom ““corner” for the optimal groove, reSpectively. ........covcvieerieeiiieeniieeniieenieeee 153

Figure 5.9: Shapes of the optimal grooves for a channel with both walls fitted with the
equal-depth grooves subject to constraints (5.39) with S = 0.4, 0.8 for # = 0.1 (Figure
5.9A) and = 0.5 (Figure 5.9B). Thick lines illustrate the best-fitted trapezoid with a = b
= A/8 and ¢ = d = 34/8. The vertical coordinates are scaled with the peak-to-bottom
distances as the length scales, ie. y, =(y, —1+S5)/(25) and y, =(y, +1-5)/(2S).

The optimal grooves are nearly indistinguishable from the trapezoid............ccc.ccc..c...... 154

Figure 5.10: Variations of the normalized modification friction factor fi/fy as a function
of the groove wavenumber £ and the groove depth S for a channel with both walls fitted
with the equal-depth grooves approximated by the trapezoid witha=b = A/8 and c =d =
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moved by A/2 in the z-direction with respect to the lower grooves. The results for the
simple sinusoidal grooves are illustrated using dashed lines. Dotted lines identify values
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Figure 5.11: Variations of the normalized modification friction factor fi/fy for a channel
with a smooth upper wall and the optimal grooves with height Sy, .., = 1 at the lower wall
as a function of the depth of the grooves Sy ,.i». The dashed line identifies the optimal
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Figure 5.12: Evolution of the shape of the optimal, unequal-depth grooves with constant
height S;,mq.x = 1 placed on the lower wall in a channel with a smooth upper wall as a
function of the groove depth Sy ... Thick lines identify shapes corresponding to the
optimal depths. The results for = 0.1, 0.5, 1 are displayed in Figures 5.12A, 5.12B and

5.12C, respectively. Dotted lines identify the reference smooth wall. ........................... 157

Figure 5.13: Shapes of the unequal-depth grooves corresponding to the optimal depth,

i.e. the optimal geometry, for grooves placed at the lower wall for different groove
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heights Sy, ..x. The y-coordinate is scaled using the peak-to-bottom distance as the length

scale y, =(y, +1-=S8, ,.)/(S, in TS, a) - The z-coordinate is scaled using the groove

L,max L,min

wavelength A4 in Figure 5.13A and using the width at half height W, i.e.
Z2=(z—2,)/ W, , in Figure 5.13B. Solid and dashed lines in Figure 5.13A correspond to

the wavenumbers f = 0.1 and 1, respectively. All these lines nearly overlap in Figure

-4z

5.13B. The universal shape in the form of a Gaussian function y = —e “is illustrated in

Figure 5.13B using a thick line. Double-arrows in Figure 5.13B illustrate groove

wavelengths scaled With Wi ...ooooiiiiiiiiiiiii 158

Figure 5.14: Contour plots of the velocity fields for the optimal unequal-depth grooves
with Sp e = 1, B = 0.5 for Spmin = 1 (Figure 5.14A), Si,in=1.86 (Figure 5.14B; the
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Figure 5.15: Variation of the shear stress and the mean shear stress acting on the fluid at
the lower wall for the optimal unequal-depth grooves with Sy ,..c = 1, f = 0.5. Dashed,
solid, dashed-dotted and dotted lines correspond to grooves with Sy in = 1, Spmin=1.86
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corresponding total shear forces are (Re/A)*F,; = —1.5942, —1.5547, —1.804 and -2 for

grooves with Sy i, = 1, 1.86, 3 and reference smooth wall, respectively..........c............ 160

Figure 5.16: Variations of the normalized modification friction factor fi/fy (Figure
5.16A) and the depth D, and the width at half height W), of the grooves (Figure 5.16B)
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Figure 5.17: Variations of the normalized modification friction factor fi/fy (Figure
5.17A) and the optimal depth D,, and the width at half height W), of the grooves
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Figure 5.18: Variations of the modification friction factor fjRe for the kinematically-
driven flow induced by grooves with shape defined by Eq. (5.50) as a function of the
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Figure 5.19: Contour plots of the velocity fields (Figure 5.19A) for the channel geometry
described by Eq. (5.50) with § = 1, = 0.5. Figure 5.19B displays distributions of the
shear stress as well as the mean shear stress acting on the fluid at the lower wall for the
same geometry (solid and dashed lines correspond to the sinusoidal groove and the
reference smooth wall). Values of the corresponding total shear forces are (Re/A)*F,; =

—0.6439 and —0.5 for the sinusoidal groove and the reference smooth wall, respectively.

Figure 6.1: Sketch of the flow configuration. ............cccccoviiiiiiniiiiinicecee, 169

Figure 6.2: Variations of the errors llull , (Figure 6.2A) and Q, . (Figure 6.2B) of the
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Figure 6.3: Variations of the modification flow rate Q¢ (Figure 6.3A) and Qp; (Figure
6.3B) as a function of £ for a channel with geometry defined by Eq. (6.31). The reference
flow rates are Qco=1 and Qpp=-2/3. The asymptotes are given by chﬁ_>0=—1/652,62,
Qc1 ps0==0.5S, Op1p0=—-0.255" and Qpi ps=2/3[1-(1-0.55)’]. The limit points for
S—0 have been determined on the basis of solution described in Section 6.3 and for

[—oo are represented by a smooth channel with the lower wall shifted upwards by S.. 178

Figure 6.4: Variations of the force modifications (Re/A)*Fc,,u (Figure 6.4A) and
(Rel A)*Fpy.y (Figure 6.4B) acting on the fluid at the upper wall as functions of S for a
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Figure 6.5: Variation of the shear stresses acting on the fluid at the upper and lower

walls (Figure 6.5A) and lines of constant velocity for the Couette (Figure 6.5B) and
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Poiseuille (Figure 6.5C) flow components. The channel geometry is defined by Eq. (6.31)
with S = 0.5 and = 0.1. Solid, dashed and dotted lines in Figure 6.5A correspond to the

Couette and Poiseuille components and to the reference values, respectively. .............. 179

Figure 6.6: The same as in Figure 6.5 but for £=50. In Figure 6.6C velocity is

normalized by its maximum max(lupl)=0.2905. ......ccccoeiriiiiiiiieee 181

Figure 6.7: Variation of the modification flow rate Q; as a function of £ and Re*dp/dx
for a channel with geometry defined by Eq. (6.31) with § = 0.5. Black (grey) lines
identify conditions leading to the increase (decrease) of Q. Dotted line identifies the
reference value of Re*dp/dx=1.5 which corresponds to Qy = 0. Dashed line identifies
conditions corresponding to zero mass flow rate in the grooved channel. Dashed-dotted
lines identify pressure gradients selected for detailed discussion in the text. The

asymptote Re*dp/dx=0.6486 provides lower bound for zone C for f—oe..................... 182

Figure 6.8: Lines of constant velocity illustrating flows in zone A in Figure 6.7 (Figure
6.8A; Re*dp/dx = -1, = 0.1), zone B (Figure 6.8B; Re*dp/dx = 1.6, = 0.1) and zone
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Figure 6.9: Variations of the normalized modification flow rate Q1/Q, for Re*dp/dx = -1
(Figure 6.9A), Re*dp/dx = 1.6 (Figure 6.9B) and Re*dp/dx = 1.4 (Figure 6.9C). Other
conditions are as in Figure 6.7. Black and grey lines mark increase and reduction of the
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Figure 6.10: Variations of the normalized modification volume flow rate Q/Qp as a
function of f for Re*dp/dx=1.4 for a channel with geometry defined by Eq. (6.31). The
most effective groove amplitude for such conditions is S.40=0.8048 (see Section 6.4 for
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Figure 6.11: Variation of the modification of the force acting on the fluid at the upper

wall (Re/A)*Fy, y as functions of £ and Re*dp/dx for a channel with geometry defined by
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Chapter 1

1 Introduction

1.1 Objectives

The main objective of this dissertation is to analyze flow responses and to determine the
physical mechanisms associated with a special class of surface roughness which is
commonly referred to as grooves. These special surface patterns represent a subset of the
general problem of interaction of surface topography with the flow dynamics. Various
features of grooves such as shape, size, spacing, orientation, etc. as well as flow
conditions are considered. Through systematic analyses, effects of each of these
parameters on the flow resistance in laminar channel flows have been determined and
mechanisms involved in drag generation have been identified. Gaining a proper
understanding of these effects provides a starting point for the development of drag-

reducing flow control strategies or for general enhancement of flow system performance.

1.2 Motivations

Many biological systems contain surfaces exhibiting properties of interest in practical
applications. Identification of special features of these surfaces are the goals of
biomimetics (Bhushan 2009; Jung & Bhushan 2010; Bixler & Bhushan 2012) and
understanding how these features are generated provides information base necessary for
their mimicking in the engineering devices. Shark skin provides a good example of a low
drag surface (see Figure 1.1). The skin is covered with very small tooth-like scales ribbed
with longitudinal grooves which reduce formation of vortices present on a smooth
surface. Leaves of the lotus plant provide an example of superhydrophobic, self-cleaning

and low drag surface. The special properties of this surface are associated with wax



tubules that create certain surface topography. Butterfly wing demonstrates combination
of effects from shark skin and lotus leaves (Bixler & Bhushan 2012). Use of surface
corrugations/roughness is widespread and does not always have origin in biological
systems. It is known that surface roughness affects the form of turbulence (Jiménez
2004), it plays a large role in the laminar—turbulent transition (Floryan 2007) and it is
used as a mixing augmentation technique in heat transfer. The above examples illustrate
potential gains associated with the use of properly selected surface structures, assuming

that one can achieve complete understanding of how these structures affect the flow.

Figure 1.1: Tooth-like scale structure on a Galapagos shark (Bhushan 2009).



Figure 1.2: (A) Scanning electron microscope (SEM) micrographs (shown at three
magnifications) of lotus leaf surface, which consists of microstructure formed by papillose
epidermal cells covered with epicuticular wax tubules on the surface, which create nanostructure

and (B) image of water droplet sitting on the lotus leaf (Bhushan 2009).

The lack of a complete understanding of the effects associated with surface topographies
is the main motivation for the work described in this dissertation and the aim is to
advance the current knowledge of effects induced by a special class of surface structures
which have the form of grooves with an arbitrary shape and an arbitrary orientation with
respect to the stream direction in laminar channel flows. The ultimate goal is the search

for surface topographies that may lead to a lowering of the drag.

1.3 Related literature survey

The existing literature is vast and thus the following discussion is limited to a provision

of a few examples of many application areas with focus on the fluid dynamic problems.



1.3.1 Early work

The effects of surface roughness represent one of the classical but still not well
understood topics in fluid dynamics in spite of a multitude of efforts devoted to their
analysis. The lack of closure probably originates from the large variety of possible
responses, which depend on the details of roughness topography as well as the flow
conditions. The majority of investigations have been carried out in the context of
quantification of effects of surface roughness. The direct response can be measured in
terms of changes of resistance experienced by a flow. It has long been believed, since the
pioneering experiments of Hagen (1854) and Darcy (1857), that roughness always
increases this resistance. Nikuradse (1933) and Moody (1944) have experimentally
determined correlations between the roughness properties and the pressure drop for flows
in circular conduits and expressed these correlations in terms of the friction factor. The
concept of the equivalent roughness has been used by them to account for the roughness
properties. The measurements of the overall drag quantified in terms of friction factor by
Nikuradse (1933) and Moody (1944) also demonstrated that roughness does not affect the
laminar drag or, at least, the effect is too small to be measured using the techniques
available at that time. However, these correlations suggest that the surface roughness has

significant effect on the turbulent flow and always increases turbulent drag.

1.3.2 Effects of roughness on drag

The quest for finding an appropriate method for reduction of viscous drag in wall-
bounded flows has been of continuous interest in many areas such as transportations,
piping and petroleum industries, medical instruments, microfluidics and nanofluidics
devices, just to name a few. Viscous drag is responsible for about 100% of total drag in
pipe flows, 90% in underwater vehicles and 50% in commercial aircrafts (Lee et al.
2001). The existing methods can be categorized into three groups: (i) deferring separation
of the boundary layers by means of either suction or injection of fluid or by promoting
the laminar—turbulent transition, (ii) changing the fluid viscosity by either modifying its

temperature at the wall or by injection of another fluid with a different viscosity, and (iii)



by appropriate design of the wall geometry (Luchini et al. 1991). The first two groups
have well understood fundamentals and have been extensively used in a wide range of
applications. Use of the third group is limited due to the lack of understanding of a
relation between the surface topography and the resulting drag. Information about the
types of drag and their dependence on the roughness shape offers potential for

identification of surface topographies that may result in a lower drag.

The traditional belief that surface roughness always increases flow resistances has been
contradicted in turbulent flow regimes first by Walsh (1980;1983). It has been shown that
there exists a certain class of surface topography which is capable of reducing drag to
below what is found for a smooth wall. These special surface shapes commonly referred
to as riblets are ribbed (grooved) surfaces aligned in the direction of the main flow and
commonly called streamwise grooves. The maximum drag reduction for riblets in
turbulent flow regimes has been shown both experimentally (Walsh & Lindemann 1984;
Walsh 1990; Bruse et al. 1993; Bechert et al. 1997; Frohnapfel et al. 2007) and
numerically (Chu et al. 1992; Chu & Karniadakis 1993; Choi et al. 1993; Goldstein et al.
1995; Goldstein & Tuan 1998) to be of order of 10%.

The effectiveness of riblets as a drag reducing tool is a function of their geometry.
Bechert et al. (1997) conducted detailed experimental measurements of grooves with
adjustable geometry and performed a parametric optimization in order to identify the
maximum possible drag reduction. Frohnapfel et al. (2007) provided detailed
measurements of drag reduction associated with rectangular grooves. Goldstein and Tuan
(1998) using numerical simulations found that riblets with heights approximately less
than 10 wall units and with riblet spacing of less than 30 wall units have drag reducing
potential while riblets with higher heights and wider spacing in most cases increase the
drag (Goldstein & Tuan 1998). Bechert & Bartenwerfer (1989) analyzed lift-up effect
induced by the grooves, established the virtual origin of the velocity profile and provided

a possible connection between the protrusion height and the drag reduction.

Pressure gradient also plays an important role in the drag reduction induced by riblets.

The effect of adverse pressure gradient was reviewed and examined by Walsh (1990)



who found riblets to be more effective under such conditions. Nieuwstadt et al. (1993)
conducted experiments to investigate the reduction of the skin friction by riblets under
adverse pressure gradients in a turbulent boundary layer. They found that the drag
reduction persists for all pressure gradients and is slightly higher for higher pressure
gradients. Debisschop & Nieuwstadt (1996) examined longitudinal grooves (riblets) in a
wind tunnel with adverse pressure gradients and concluded that the drag reduction of

triangular grooves can be improved from 7% to 13%.

A conclusive explanation of why riblets with small spacing can reduce drag was not
available until recently. A plausible explanation, which is suggested both by the
experimental (Bechert et al. 1997) as well as the numerical (Goldstein et al. 1995)
studies, is that drag reduction is associated with damping of the cross-flow velocity
fluctuations which results in reduction of turbulent momentum transfer near the wall and
lowering of the shear stress. Choi ef al. (1993) conducted direct numerical simulation
(DNS) of turbulent flow in grooved channel and demonstrated that drag reduction of
small spacing riblet is due to the restriction of the location of streamwise vortices above
the wetted surface area which reduces the surface area exposed to the high-speed fluid
flow. The mechanism of drag reduction in the limit of very small riblet height (viscous
regime) is well understood (Bechert & Bartenwerfer 1989; Luchini et al. 1991) and
confirmed by experiments (Walsh & Lindemann 1984; Walsh 1990; Bruse et al. 1993;
Bechert et al. 1997; Frohnapfel er al. 2007). For riblets with larger size, the minimum
drag is related to the breakdown of the viscous regime and the relevance of this process
has been recognized only recently (Garcia-Mayoral & Jiménez 2011A; Garcia-Mayoral
& Jiménez 2011B) in spite of a number of studies devoted to this issue (Choi et al. 1993;
Goldstein & Tuan 1998).

Grooves that are perpendicular to the flow direction, i.e. transverse grooves, also have
been centre of many investigations. Billy er al. (2006) analyzed flows in transverse
rectangular grooves in the turbulent flow regime using two-dimensional Navier-Stokes
equations. They considered three flow driving mechanisms, (i) kinematically-driven
flows (Couette), (ii) pressure-driven flows (Poiseuille), and (iii) combined Couette-

Poiseuille flows and found that the average effects for Couette-Poiseuille flows can be



determined as a superposition of results of the corresponding pure Couette and pure
Poiseuille flows. Yang (2000) considered the same geometry but used large eddy
simulation (LES) and performed a parametric study on depth and length of grooves to
explore their effects on the flow structures. Ikeda & Durbin (2007) described in details

flow structure appearing between transverse grooves with large spacing.

1.3.3 Effects of roughness on heat transfer

Grooves not only change the flow patterns, but also significantly influence the heat
transfer rate. Lee et al. (2003) measured effects of transverse grooves on the heat transfer
in a channel. Rosaguti et al. (2007) considered a similar problem using numerical
simulations. Jayanti & Hewitt (1997) focused their attention on the effects of grooves on
the heat transfer in a forced annular flow. Dalal & Das (2006) considered natural
convection in a cavity with grooved walls. Many studies have been conducted aimed at
optimization of surface geometries in order to enhance the heat transfer and, at the same
time, to decrease the pressure losses (Kim & Kim 2002; Fabbri 1997; Fabbri 1998A;
Fabbri 1998B; Fabbri 1998C; Nobile et al. 2006; Moradi & Floryan 2013B).

1.34 Effects of roughness on non-Newtonian fluids flows

Some researchers tried to analyze the effects of grooves on motions of non-Newtonian
fluids. Haosheng et al. (2006) studied effects of various surface topologies on drag
reduction. They conducted experiments on the effects of transverse, longitudinal and
isotropic grooves on polyoxyethylene water solution and found that only longitudinal
grooves can reduce drag in such flows. Chen et al. (2007) chose the same shear-thinning
fluid and studied the effects of transverse and longitudinal grooves on the drag reduction
by performing experiment on a pin-disc lubrication system and concluded that the shear-
thinning viscosity decreases the drag reduction associated with the grooves. Ueno et al.

(2003) investigated the effect of surface grooves on the extraction efficiency of various



polymers and showed that the pattern and geometry of the channel walls are important

factors in the extraction efficiency.

1.3.5 Hydrophobic surfaces

Hydrophobic surfaces (see Figures 1.2 and 1.3) represent a fairly new area where surface
roughness plays an important role. Drag reduction can result from the use of surfaces
with micro-features where trapped gas bubbles reduce shear stress over part of the
surface exposed to a moving liquid (Lauga & Stone 2003); see Rothstein (2010) for a
recent review. The best surface topography for such an effect has yet to be determined
and is the subject of active research (e.g. Ming et al. 2011). Maynes et al. (2007) studied
laminar flow with micro-ribs oriented in the flow direction. Cheng et al. (2009) carried
out detailed studies of slip performances and correlated them with groove patterns. Davis
& Lauga (2009) studied friction associated with mesh-like surfaces. Ng & Wang (2009)

focused their attention on Stokes flow over gratings.

Figure 1.3: Hairs on the leaves of the water fern genus Salvinia are multicellular surface
structures. In (A) a water droplet on the upper leaf side of Salvinia biloba is shown. (B,C) The

crown-like morphology of the hairs of S. biloba (Bhushan 2009).



1.3.6 Effects of roughness on laminar flow

The need for the re-examination of the role of surface roughness on laminar flow is
driven by micro-fluidics applications, where micro- and nano-conduits are expected to
have significant surface corrugations (surface roughness) due to the limitations of
manufacturing technologies. Recent reviews of fluid flows and heat transfer in micro-
conduits can be found in (Papautsky ez al. 1999; Sobhan & Garimella 2001; Morini 2004;
Sharp & Adrian 2004; Gamrat et al. 2008) which suggest that the long believed
conclusion that roughness has no effects on the laminar drag needs to be re-visited.
Kleinstreuer & Koo (2004) studied the effect of grooves on pressure losses in laminar
flow by modelling grooves as layers of porous material. Large pressure loss in micro-
fluidic devices is one of the main challenges which motivates search for methods to
properly design surface topographies that can lead to a reduction of flow resistances. A
number of authors attempted to provide quantitative predictions of pressure losses.
Kandlikar et al. (2005) introduced a set of roughness parameters for groove modelling.
Wibel & Ehrhard (2006) provided careful measurements of pressure losses in
grooved/ribbed channels with grooves/ribs produced by a milling process. Wang (2003)
considered rectangular grooves parallel and transverse to the flow and analyzed flow in
the limit of zero Reynolds number. Thomas ef al. (2001) determined numerically flow
patterns associated with sinusoidal grooves. Valdés et al. (2007) used systematic
numerical simulations to provide quantitative correlation for certain class of roughness
shapes. These investigations provide phenomenological information about certain classes
of roughness forms but do not provide information about the mechanisms of drag

generation.

There are not as many numerical studies focused on the effect of riblets in laminar flows
as compared to turbulent flows. Choi et al. (1991) analyzed changes of viscous drag
associated with the presence of longitudinal grooves with triangular geometries in a fully
developed laminar channel flow using the finite-difference method. Chu & Kardianakis
(1993) used a direct numerical simulation (DNS) based on the spectral element-Fourier
method to investigate the effect of riblet-mounted surface in laminar and turbulent flows.

Both of these studies were unable to find any riblet shape which would lead to a laminar
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drag reduction. This should not be surprising as no systematic study of the effects of
different riblet shapes has been carried out. This, nevertheless, has led to a belief that

riblets have no drag reducing capabilities in laminar flows.

The actual size of conduit plays an important role in choosing a proper model for
numerical simulations of flows in micro- and nano-conduits. Continuum theory provides
accurate predictions for problems with length scales that are much greater than the
average distance between molecules (Mase & Mase 2010). The limit for the size of
conduit where the continuum theory is valid has been estimated by a number of authors,
e.g. Sobhan & Garimella (2001) report that the continuum theory yields accurate results
for micro-conduits with hydraulic diameters of 50 micrometers or greater. For problems
with smaller length scales, where the actual atomic structures of the matter cannot be
neglected, statistical mechanics has to be used instead, e.g. non-equilibrium molecular
dynamics has been used by Yang (2006) and Sofos et al. (2012) to study the effects of

surface roughness and interface wettability in nano-channels.

1.3.7 Effects of roughness on the laminar—turbulent transition

The indirect effect of the corrugations on the drag formation is related to their ability to
either promote or delay the transition from the laminar to the turbulent state. The
common view that can be traced back to the Reynolds experiments (Reynolds 1883) is
that a hydraulically rough wall always promotes transition. A hydraulically smooth wall
has no effect on the transition. Recent evidence (Saric et al. 1998) demonstrates that
roughness can also play a stabilizing role and thus can delay the onset of transition. A
formal criterion for hydraulic smoothness has been proposed only recently and it states
that the roughness is hydraulically active only when it is able to induce flow bifurcation
(Floryan 2007); the relevant critical conditions can be identified using linear stability
theory. It has been found that two-dimensional distributed roughness destabilizes
travelling wave disturbances and the two-dimensional waves remain critical (Floryan
2005; Asai & Floryan 2006). The same roughness can amplify disturbances in the form

of streamwise vortices (Floryan 2007). Depending on the roughness amplitude and
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wavenumber, and the flow Reynolds number, the first bifurcation can lead either to the
onset of travelling waves or streamwise vortices. Qualitatively similar flow responses
have been found in the case of Couette flow (Floryan 2002) and flow in a diverging-
converging channel (Floryan 2003; Floryan & Floryan 2010). The same roughness has
been found to increase transient growth with the optimal disturbances having the form of
streamwise vortices (Szumbarski & Floryan 2006). Change in the form of roughness
patterns and transition from a single isolated roughness to an interacting system of
roughness elements that behave as a distributed roughness system produce a wide range
of stability responses (Floryan & Asai 2011). Experimental studies have been conducted
to verify theoretical predictions of the effects of sinusoidal surface corrugation on the
critical Reynolds number (Asai & Floryan 2006). Wibel & Ehrhard (2007) studied the
effects of grooves on the laminar—turbulent transition in rectangular micro-channels using
micro-particle image velocimetry (uPIV) technique. In spite of the availability of new
concepts, most of the roughness-sensitive designs still rely either on experimental data
(Schlichting 1979) or on simplified criteria, e.g. the roughness plays no role (Morkovin
1990) as long as the roughness Reynolds number satisfies Rey = Uik/v <25, where Uy is
the undisturbed velocity at height & (the top of the roughness). It goes without saying that
such criteria cannot account for the wide variety of roughness forms and patterns that can

be found in nature but, nevertheless, are still widely used.

1.3.8 Roughness modelling

The above brief discussion shows that applications of structured surfaces are very wide.
These surfaces have complex geometries and their modelling represents one of the main
challenges in the flow analysis. Since surface shape can potentially induce a number of
instabilities, the geometry has to be modelled with high accuracy and also flow equations
need to be solved with high accuracy in order to be able to capture bifurcations points in

a reliable manner.

The classical approach in determination of the flow fields in domains bounded by

irregular rough boundaries involves significant manual labour, as each geometry needs to
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be modelled using a numerically generated grid (Gamrat et al. 2008; Herwig et al. 2008).
These methods suffer from low-order spatial accuracy associated with their discretization
schemes and are usually based on finite-difference, finite-element or finite-volume
methods. Using finer grids can marginally improves their accuracy but with a substantial
increase in the computational costs. In addition, use of these methods is impractical for

systematic investigation of different features of the roughness geometry.

Another approach for treatment of boundary irregularities relies on domain perturbation
method. In this method, the edges of physical and computational domains do not overlap
and the boundary conditions are transferred to a certain average location of the boundary
(Cabal et al. 2001) leading to a regular computational domain. The accuracy of this
method strongly depends on the amplitude of roughness and the type of boundary transfer
process. This method is only suitable for problems with roughness of very small size and
to situations where the flow response induced by roughness can be approximated by a
linear theory (Floryan & Dallmann 1990). Based on these limitations, methods based on
domain perturbation is inappropriate for the class of problems considered in this
dissertation. Methods based on the effective slip boundary condition and surface mobility
tensor (Bazant & Vinogradova 2008; Kamrin et al. 2010) provide qualitative information

as discussed above.

The immersed or fictitious boundaries concept offers an effective alternative. The basic
idea involves the use of a regular computational domain for discretization of the field
equations while the irregular flow domain is submerged inside the computational domain.
No boundary conditions are imposed at the edges of the computational domain but
additional relations are added in order to satisfy flow conditions at the edges of the flow
domain. The field equations are solved simultaneously inside and outside of the flow
domain and the physical meaning is associated only with the part of the solution which
overlaps with the flow domain. This concept was first proposed by Peskin (1981) in the
context of cardiac dynamics and its various variants have been reviewed in Mittal &
Iaccarino (2005) and Peskin (2002). The common limitation is the spatial accuracy, as
most of these methods are based on the low-order finite-difference, finite-volume or

finite-element techniques (Peskin 1981; Girault er al. 2000; Peskin 2002; Mittal &
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Taccarino 2005; Parussini 2008). The second, less known limitation is associated with the
use of the local fictitious forces required to enforce the no-slip and no-penetration
conditions. These forces locally affect the flow physics and this may lead to the incorrect
estimates of derivatives of flow quantities, i.e. misrepresentation of the local wall shear.
This problem is likely to be more pronounced in the case of methods with higher spatial

accuracy.

Spectral methods provide the lowest error for spatial discretization of the field equations
but are generally limited to solution domains with regular geometries. The first spectrally
accurate implementation of the immersed boundary concept was developed by
Szumbarski & Floryan (1999) and is referred to as the immersed boundary conditions
(IBC) method in the rest of this dissertation. This method does not use any fictitious
boundaries or fictitious forces but relies on a purely formal construction of boundary
constraints in order to generate the required closing relations. The construction of
boundary constraints relies on the representation of the physical boundaries in the
spectral space and nullifying the relevant Fourier modes. Such implementation is limited
to geometries that can be represented by Fourier expansions but results in a gridless
algorithm as all possible variations of boundary geometries are described in terms of the
Fourier coefficients only. The programming effort associated with modelling the changes
of geometry is minimal as the only information required for specification of geometry is
limited to a set of Fourier coefficients. The additional attractiveness of this concept is
associated with the precise mathematical formalism and high accuracy. The method has
been implemented to study problems involving hydrodynamic instabilities induced by
surface roughness (Floryan 2002; Floryan 2003; Szumbarski & Floryan 2006; Floryan
2007; Floryan & Floryan 2010) and has been successfully extended to unsteady problems
(Husain & Floryan 2007) as well as moving boundary problems involving Laplace,
biharmonic and Navier-Stokes operators (Husain & Floryan 2008A; Husain & Floryan
2008B; Husain & Floryan 2010; Del Rey Fernandez et al. 2011) and also non-Newtonian
fluid problems (Mohammadi et al. 2011; Fazel Bakhsheshi et al. 2011). More recently,
the IBC method has been developed for the analyses of steady flows in annuli bounded
with walls covered with different forms of ribs (Moradi & Floryan 2012, Moradi &
Floryan 2013A).
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IBC method has some limitations as it cannot be applied for roughness shapes with high
level of irregularities, i.e. grooves with high amplitudes or high wavenumbers. For these
cases the inherent error associated with the enforcement of the boundary conditions is
inadvertently too high and can contaminate the physical results (Husain & Floryan 2007).
Domain transformation (DT) method is recommended for these cases as an alternative to
IBC method (Husain & Floryan 2010). The irregularity of the physical domain is
removed in the DT method by use of an analytical mapping which maps the irregular
physical domain onto a regular computational domain. The boundary conditions then are
enforced in a classical manner as the edges of both computational and physical domains
coincide. Spectral implementations of the DT method provide high spatial accuracy and
are successfully developed for different problems (Cabal et al. 2001; Husain & Floryan
2010). Use of DT method is only recommended for problems involving high degree of
boundary irregularities as the computations are significantly more expensive due to high
level of complexity associated with the field equations in the transformed coordinate

system and the resultant full structure of the coefficient matrix.

The other main challenge in modelling of roughness geometries is due to the potentially
uncountable number of geometric shapes and thus development of a methodology for
extracting the hydraulically relevant geometric features is of great interest. The term
"roughness" is not well defined and only means that the surface in question is not smooth.
Typical experimental investigations use artificially created roughness forms, e.g. sets of
cones, spheres, prisms, parallelepipeds, etc., with different spatial distributions
(Schlichting 1979). Sandpaper with various grain sizes is an especially popular roughness
representation due to the belief that it accounts for the "uncountability"/randomness of
roughness forms. The most common measure of roughness properties is the equivalent
sand roughness (Moody 1944). See Herwig et al. (2008) for a discussion of recent
extensions of this concept. The finite number of configurations that can be studied leads

to an uncertainty regarding the generality of the conclusions.

Theoretical analysis requires solution of the field equations, which is a daunting task in
view of the complexity of roughness shapes and can be, in general, accomplished only

numerically. Two distinct directions have been followed. When the scale of interest is
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large compared with the scale of surface features, it may be possible to account for the
latter by means of an effective boundary condition imposed on a smooth surface
approximating the actual one (the equivalent surface concept). One has to be able to
determine the actual flow over a rough wall in order to assess the accuracy of this
procedure. This concept has a long history with implementation details varying widely
(Nye 1969; Richardson 1973; Miksis & Davis 1994; Tuck & Kouzoubov 1995; Sarkar &
Prosperetti 1996; Ponomarev & Meyerovich 2003; Bazant & Vinogradova 2008; Kamrin,
Bazant & Stone 2010). Roughness has small amplitude and thus one can use the
boundary conditions transfer procedure (domain perturbation), which leads to
linearization about the reference flow. A separate step involves invoking the Stokes
approximation on the basis of small roughness size, which provides another source of
linearization. Once the problem is linear, one can use superposition to account for (or

average over) various seemingly complicated roughness shapes.

The qualitative properties of the problem can be explicitly identified by considering the
above two steps separately. In the first step, domain perturbation leads to an Orr-
Sommerfeld-like (OS) problem that determines the distribution of flow modification for
each Fourier mode into which the roughness shape can be decomposed. The OS problem
can be solved numerically (Lekoudis & Saric 1976; Floryan and Dallmann 1990). In the
second step, one considers the Stokes limit of the reduced problem and carries out an
asymptotic analysis of the OS equation using matched asymptotic expansions, where the
region next to the wall is viewed as the inner limit; see Miksis & Davis (1994) and Tuck
& Kozoubov (1995) for details of such a process. The analysis is continued out to &
(where € is the corrugation amplitude) using single-mode interaction to obtain the
interaction between the geometry and the flow, which is required in order to produce
changes in the aperiodic part of the pressure. The explicit relation between the global
flow constraint (flow rate constraint, pressure gradient constraint) and & effects is not
built in to the analysis and thus cannot be enforced (the effective relation can be deduced
a posteriori). The crucial element in the above process is the use of the domain
perturbation to determine the actual flow and, perhaps less importantly, the lack of a

global constraint. Uncertainty associated with the domain perturbation has been
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recognized and has been tackled recently by including two terms from the domain
perturbation (Kamrin et al. 2010). Inclusion of the second term only marginally increases
accuracy; it certainly does not provide an order-of-magnitude improvement (Cabal et al.
2001). If the reliability of the effective boundary condition is uncertain, the only
alternative is provided by a numerical solution. It has been argued that this is the correct

approach as "the wall is where it is and it is a rough wall" (Herwig et al. 2008).

In simulations, roughness is represented as a corrugation with a well-defined shape,
which is modelled using numerically generated grids (Gamrat et al. 2008; Herwig et al.
2008). The finite number of configurations that can be studied leads to uncertainty
regarding the generality of the conclusions and provides limited tools for identification of
geometric features that dominate the flow response. A recently proposed alternative relies
on taking advantage of the reduced-order method for geometry representation, which
leads to spectral models of roughness geometry (Floryan 1997). This concept permits
identification of the features of the geometry that have a decisive influence on the system
response, with irrelevant details of roughness shape removed from consideration so they
do not mask the essential mechanisms. The global properties can be extracted using
projection of the surface geometry onto a convenient functional space, e.g. Fourier space,
with the expectation that only a few leading Fourier modes from the Fourier expansion
describing the roughness shape matter. Indeed, it has been demonstrated that, in many
instances, it is sufficient to use only the leading Fourier mode to capture the main

physical processes with accuracy sufficient for most applications (Floryan 2007).

1.4 Overview of the present work

The effects of grooves on flow responses in laminar channel flows have been analyzed
and are presented in this dissertation. Grooves with an arbitrary shape and an arbitrary
orientation with respect to the flow direction have been considered. The groove geometry
has been modelled using spectral techniques and therefore the analysis has been limited
to the shapes that can be expressed by Fourier expansions. Discretization has been

performed using Fourier expansions in the periodic directions and Chebyshev expansions
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in direction across the channel. The difficulty associated with the enforcement of the
boundary conditions on irregular surfaces has been dealt with by implementing either the
immersed boundary conditions (IBC) concepts or the domain transformation (DT)
method. The former method relies on employment of a fixed computational domain
extending in the direction across the channel far enough that it completely encloses the
grooved channel. The boundary conditions form internal constraints that provide closing
conditions for the field equations. In the latter method the physical irregular domain is
analytically mapped onto a regular computational domain which enables classical
enforcement of the boundary conditions. Various tests have been conducted to show the

performance of these algorithms and to prove that they provide spectral accuracy.

Analysis of drag generation in conduits with transverse corrugated walls has been carried
out analytically using long wavelength approximation. Three mechanisms for generation
of additional pressure losses have been identified, i.e. the additional shear drag due an
increase of the wetted area and the re-arrangement of the shear stress distribution, the
pressure form drag associated with the mean pressure gradient, and the pressure
interaction drag associated with the phase difference between the surface geometry and

the periodic part of the pressure field.

Detailed analyses of the effects of small-amplitude grooves on pressure losses have been
performed for pressure-driven flows. It has been shown that losses can be expressed as a
superposition of two parts, one associated with change in the mean positions of the walls
and one induced by flow modulations associated with the geometry of the grooves. While
the former effect can be determined analytically, the latter effect has to be determined
numerically. Reduced-order geometry model generated by projection of the wall shape
onto a Fourier space has been used to capture the modulation effects. The results
demonstrate a strong dependence of the pressure losses on the groove orientation.
Comprehensive examinations of the extreme cases, i.e. transverse and longitudinal
grooves, have been carried out. The effects of each of contributing factors on drag
formation have been studied. Drag-reducing laminar grooves have been identified in the
case of long wavelength longitudinal grooves. For sufficiently short wavelength grooves,

it has been shown that the wall shear can be eliminated from the majority of the wetted
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surface area regardless of the groove orientation, thus exhibiting the potential for the
creation of drag reducing surfaces. Such surfaces can become practicable if a method for
elimination of the undesired pressure and shear peaks through proper groove shaping can

be found.

Optimal shapes of laminar, drag-reducing longitudinal grooves in a pressure driven flow
have been determined. It has been demonstrated that the optimal shapes can be
characterized using reduced-order geometry models involving just a few Fourier modes.
Two classes of grooves have been considered, i.e. equal-depth grooves, which have the
same height and depth, and unequal-depth grooves. It has been shown that the optimal
grooves in the former cases are characterized by a certain universal trapezoid. There
exists an optimum depth in the latter case and this depth, combined with the
corresponding groove shape, defines the optimal geometry; this shape is well-
approximated by a Gaussian function. The maximum possible drag reduction has been
determined for the optimal shapes. The analysis has been extended to kinematically-
driven flows. It has been shown that in this case the longitudinal grooves always increase

flow resistance regardless of their shape.

Effects of longitudinal grooves on the flow resistance in a channel flow driven by a
combination of the pressure gradient and the movement by one of the walls have been
studied. Three distinct zones leading to an increased flow rate have been identified
depending on the pressure gradient and the groove wavenumber. Two of these zones
correspond to grooves with long wavelengths and one to grooves with short wavelengths.
Optimization has been used to determine shapes that provide the largest increase of the
flow rate. It has been shown that no optimal shape exists in the latter case if the groove
amplitude is less than a certain well defined limit as the shortest admissible wavelength
dominates the system performance. There exists the most effective wavenumber for the
taller grooves but the optimal shapes could not be determined due to numerical
limitations. Conclusions regarding the optimal shapes for long wavelength grooves are
similar to those of pressure-driven flows discussed above. Two distinct zones emerged
when the reduction of the force acting on the upper wall was used as the performance

criterion. The best performance for both of these cases was associated to the short
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wavelength grooves and the system response was qualitatively similar to that found in the

case of the flow rate increase.

1.5 Outline of the dissertation

This dissertation is organized as follows. Chapter 1 describes the main objectives and
motivations of the present work and provides a literature review on the related subjects.
Chapter 2 presents a spectrally-accurate algorithm that is specifically developed for the
analysis of flows in channels bounded with irregular boundaries in the form of walls with
grooves of arbitrary shapes and arbitrary orientations. Mechanism of drag formation by
transverse grooves in the limit of long wavelength grooves is discussed in Chapter 3.
Chapter 4 is devoted to identification and parametrization of features of groove geometry
that are relevant to pressure losses. Detailed analyses of transverse, longitudinal and
oblique grooves are given in this chapter together with the discussion of mechanisms
contributing to the formation of drag. Chapter 5 is focused on determining optimal shapes
of laminar, drag-reducing longitudinal grooves in pressure-driven flows. Analysis of
effects of longitudinal grooves on flow resistance in channel flow driven by a
combination of pressure gradient and movement by one of the walls is discussed in
Chapter 6. Chapter 7 summarizes the main conclusions and provides suggestions for

future work.
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Chapter 2

2 Spectral Algorithm for the Analysis of Flows in
Grooved Channels’

2.1 Introduction

This chapter is focused on the development of the immersed boundary conditions (IBC)
algorithm suitable for efficient and accurate analysis of flows over straight grooves with
arbitrary cross-sections. These grooves can have an arbitrary orientation, i.e. they can be
orthogonal to the flow forming transverse ribs, they can be parallel to the flow forming
riblets and they can have any orientation in-between forming oblique grooves. Section
2.2 provides problem formulation that explores solution efficiencies offered by the
straight grooves. Section 2.3 discusses discretization procedure and method used for
imposition of the flow boundary conditions and the required flow constraints within the
IBC concept. Solution strategy, including description of efficient linear solver, is
described in Section 2.4. Results of numerical tests that demonstrate spectral accuracy of
the algorithm are discussed in Section 2.5. Section 2.6 provides a short summary of the

main conclusions.

2.2 Formulation of the problem

2.2.1 Geometry of the flow domain

Consider flow in a channel bounded by two grooved walls extending to t oo in the Xx-

1
A version of this chapter has been published as —

Mohammadi, A. & Floryan, J. M. 2012 Spectral algorithm for the analysis of flows in grooved channels.
Int. J. Numer. Meth. Fluids, 69, 606—638.
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and Z -directions, where the X -axis overlaps with the direction of the flow (Figure 2.1).
The grooves are periodic with wavelengths A, =2n/& and A, =2n/ ,5’ , where @& and 3
stand for the wavenumbers in the x- and Z -directions, respectively. Shapes of the
grooves are specified as y,(X,2) and ¥, (%,Z), where the subscripts U and L refer to the
upper and lower walls, respectively. The grooves are inclined with respect to the flow
direction with an angle ©/2—-¢, i.e. the ridges form angle ¢ with the Z -axis (see Figure
2.1). We shall refer to grooves corresponding to ¢=0° as the transverse grooves, ¢&=90° as

the longitudinal grooves, and ¢ between 0° and 90° as the oblique grooves.

Figure 2.1: Channel with the grooved walls. The (X, y,Z) coordinate system is flow-oriented and
the (x,y,z) system is groove-oriented. The angle ¢ shows the relative orientation of both

systems.

The shapes of the grooves can be expressed in terms of Fourier expansions in the form

n=N, m=N,

FE D=1+ Y 3 Hm Y @.1)

n=—N, m=—N,

n=N, m=N,

PR =-1+ Y Y HmS I, (2.2)

n=—=N, m=—N,
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where ﬁ[(,"”") = PAI,(J_"’_'")*, H"™ = F ™" stars denote complex conjugates, and Ny is
the number of Fourier modes needed to describe groove geometry. It is convenient to
introduce a different reference system (x, y,z) where the x-axis is perpendicular and the

z-axis is parallel to the grooves’ ridges (see Figure 2.1). The new system permits

description of geometry of the grooves in terms of single Fourier expansions, i.e.

n=N, )
Sp(x)=1+ D H e"™ (2.3)
n=-N,
n=N, )
$,(x)=—1+ ZHE%”“’“, (2.4)
n=-N,

e e : .
where H” =H;"", H” =H! ™" and « stands for the wavenumber in the x-direction.

Transformation between the (X, y,Z) and (x, y,z) systems has the form

X x x X
yr=Kyr and {9r=T"<5¢, (2.5)
Z Z Z Z

cos(9) 0 —sin(@)

where 1= 0 1 0 is the transformation matrix and

sin(¢) 0 cos(9®)

cos(¢) O sin(@)
I'= 0 1 0

—sin(¢) 0 cos(¢)

Relations between coefficients of expansions (2.1)—(2.2) and (2.3)—(2.4) have the form

Am = g, A" =H®™, for n=-m, (2.6)
A =0, A" =0, for n#-m, (2.7)

and relations between the wavenumbers take the form
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& = acos(d), B =asin(g). (2.8)

2.2.2 Governing equations

The dimensionless continuity and Navier-Stokes equations for incompressible laminar

flows in the (%, y,Z) coordinates have the form
V.V =0, (2.9)
(V-VW =-Vp+Re VWV | (2.10)

where V = 9,0 ﬁ,,aﬁ) .V =(4,0,W) is the velocity vector and p stands for the pressure.

The above equations are scaled using the half of the average channel height K as the
length scale, U, as the velocity scale and ,oUmax2 as the pressure scale where p denotes
the density. The Reynolds number is defined as KU,,/v where v stands for the
kinematic viscosity. Selection of the convenient velocity scale U, will be discussed

later. The no-slip and no-penetration boundary conditions are imposed on the walls, i.e.
V=0 at $=3,(&2) and $=79,(%2). (2.11)

The problem formulation is closed by imposing either the fix volume flow rate or the
fixed pressure gradient constraints in the x- and Z -directions. Detailed specifications of

these constraints will be presented later in the text.

2.2.3 Reference flow

Flow between smooth walls is taken as the reference flow and the direction of this flow
defines the reference flow direction. This flow is driven by a constant pressure gradient
directed in the negative X -direction resulting in the velocity and pressure fields in the

form
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V,($) = [y, 9., 1 =[1- $2,0,01, (2.12)
Po(R)=—2Re 'R +c, (2.13)
2=2.[ 5=1
sl - B
O =7 JO L _j_blto(y)dy}dz =3 2.14)

where 170 is the reference velocity vector, p, is the reference pressure, ¢ denotes an
arbitrary constant and Q,; is the volume flow rate of the reference flow per unit width of

the channel. Maximum of the streamwise velocity component of the reference flow is

selected as the velocity scale U,q,.

224 Flow between grooved walls

The total velocity and pressure fields are expressed as

V(2)=[4(%, $,2),0(%, 5, 2), W& 3, 5)] 015
=V,($) +Vi(%,9,2) =[iy(§) + 1, (%, $,2),0,(%, 3, 2), W, (£, $, )],
15(32) = ﬁo(fc) + ﬁl(fc, v,2) = —2Re '3+ hffc + h22 + Q(fc, v,2)+c, (2.16)

where subscripts 0 and 1 refer to the reference flow and flow modifications due to the

presence of the grooves, respectively, h, and h, denote modifications of the mean
pressure gradient in the X- and Z -directions, respectively, and §(X,y,Z) describes the

(%, Z) -periodic part of the pressure modification.
The field equations have the form

0., + 9,0, +9.0, =0, (2.17)

0,0 i, + 9,08, + (4,0 0, + 9,0, +W,0.4,) =—h, — 9.4+ Re”' Vi, , (2.18)
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0,0 9, + (@,0 9, +9,0,9, + W0.9,) =0, + Re 'V, (2.19)
0,0 W, + (4,0 W, + 9,0, W, +W0.W) = —h. — 0.4+ Re”' V¥, . (2.20)

The no-slip and no-penetration conditions at the walls can be written as

i, (P, (%,2)) =1, (3, (X,2)), (2.21a)
0y (X,2)=0, (2.21b)
W (3 (£,2) =0, (2.21c)
i, (9, (%,2) =1y (9, (%,2)), (2.22a)
V(Y. (%,2)=0, (2.22b)
W(9,(%,2)=0. (2.22¢)

One needs to specify two arbitrary closing conditions. Four types of

conditions/constraints are of interest:

1) Fixed volume flow rate per unit width in the X -direction, i.e.

=2; =%y (%,2) 2=4: 9=y (%.2)
o N A A aAdga Al [ N Ay A A A aagnga 4
0. =4[ [a3.5dpdz=4" | f[uo(y)+u1(x,y,z)]dydz=§+QW (2:23)
20 5=5y (50 20 =51 (52)

where Q,; represents the change in the volume flow rate per unit width in the X -direction

resulting from the presence of the grooves.

2) Fixed volume flow rate per unit width in the Z -direction, i.e.
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k=2 9=y (8.2 k=2 9=9y (8.2

_ o~ A am A "
Q.= 4 j J‘W(x,y,z)dyd)ﬁ/1;31 j J'wl(x,y,z)dydx=§+Qlf, (2.24)
=0 5=5150) 20 §-51(52)

where Q,. is the volume flow rate per unit width in the Z -direction resulting from the

presence of the grooves.

3) Fixed mean pressure gradient in the X -direction, i.e.

0. p(%,9,2)=d, py(X) +0,p,(%,3,2) =—2Re” +h, (2.25)

where overbar denotes the mean value, d,=d/dX and h, represents the pressure

gradient change in the X -direction resulting from the presence of the grooves.

4) Fixed mean pressure gradient in the Z -direction, i.e.

azﬁ(i\:’j}’%):azﬁl(i”j}’z):hg, (226)

where h, represents the pressure gradient in the Z -direction resulting from the presence

of the grooves.

2.2.5 Auxiliary reference system

It is advantageous to carry out numerical solution using the (x,y,z)-system defined by

Eq. (2.5). The velocity and pressure fields can be expressed in this system as

V(%) =[u(x, $),v(x, 9),w(x, y)]

2.27
SV, (5) + V(x5 9) = [t (F) + 16,05, $)ov, (2 9wy (5) + w, (s D), (227)

p(x)=py(x,2)+ pi(x,9,2) = py(x,2) + hx+ h 2+ q(x, ), (2.28)
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where h, and h, denote modifications of the mean pressure gradient in the x- and z-

directions, respectively, ¢(x,y) describes the x-periodic part of the pressure

modification, and the reference velocity and pressure fields take the form

uy(9) 4,(9) 1y (9) = (1= 3*)cos(9),
vo(M) =13 0 - v, =0, (2.29a—c)
wy(9) 0 wo($) = (1= 9)sin(g),
X
po(x,2) =f-2Re™,0,0/17 5 + ¢ = —2Re ' [xcos(g) + zsin(@)]+ ¢ . (2.30)
Z

The flow is a function of only two coordinates, i.e. (x,y), which reduces the field

equations to the following form

du,+9;v, =0, (2.31)
u,0 1, +v,0;u; + vDuy +u,0 1, =—h_—9 g+ Re”'Vu, (2.32)
w0 v, +v0,v, +ud v, =—0;q + Re™'V?y,, (2.33)
u,0 W, +v,0,w, + v,Dw, +u,d w, = —h_+ Re”'Vw,, (2.34)

where V2 =92/9x> +9°/99* and D =d/dj. The reader may note that (2.31), (2.32) and

(2.33) do not contain w; and thus they form an independent system that can be solved
separately from (2.34). It will be shown later that such separation may be carried out only

for certain types of flow constraints.

The boundary conditions take the form
1, (3 (%)) = =up (3, (1)), (2.35a)

v (9, (x) =0, (2.35b)
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Wl(yu ()C)) = _Wo(j\ju (X)) s (2350)
u (9,(x)) =—uy (9, (x)), (2.36a)
v(3,.(x) =0, (2.36b)
w (3, (1) ==w,(§,(x)). (2.36¢)

The volume flow rate constraints (2.23) and (2.24) expressed in the (x,y,z) take the

form

o I e I e 0, = (4/3+0,)cos(9) ~ 0, sin(¢)

= . )COS - » S1N
0'=KKo'={ 0 - : g a ’ (2.37a,b)
0 0. 0. 0. =(4/3+0Q,;)sin(@) + O, cos(9),

where Q, and Q. are the volume flow rates per unit width in the x- and z-directions,

respectively. The pressure gradient constraints (2.25) and (2.26) expressed in the (x, y,z)

take the form

57| ] R s o
== e+ h.)cos(@)—h.sin(@),

0t=H o0 (=10 0 (-7 v Z (2.38a,)

az_p 0.p h d.p =(=2/Re+ h;)sin(@) + h. cos().

If the volume flow rate constraints are chosen, Eqs (2.31)-(2.33) with boundary
conditions (2.35a,b) and (2.36a,b) and constraint (2.37a) become independent of w; and
can be solved separately. Their solution describes a two-dimensional motion in the (x, y)
plane. The flow in the z-direction can be determined in the second step of the solution
process by solving Eq. (2.34) with the boundary conditions (2.35c) and (2.36¢) and
constraint (2.37b).
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If the pressure gradient constraints are chosen, Eqs (2.31)—(2.33) with boundary
conditions (2.35a,b) and (2.36a,b) and constraint (2.38a) also become independent of w;
and can be solved separately. The flow in the z-direction can be determined by solving
Eq. (2.34) with the boundary conditions (2.35¢) and (2.36¢) and constraint (2.38b) in the

second step of the solution process.

If the flow rate and pressure gradient constraints are mixed, e.g. either (2.37a) and
(2.38b) or (2.37b) and (2.38a) are selected, the decoupling does not occur and one needs
to solve Eqgs (2.31)—(2.34) as a single system.

We shall focus in this work either on the fixed flow rate constraints or on the fixed
pressure gradient constraints in both directions and thus will be able to take advantage of

the system separation.

It is convenient to formulate problem (2.31)—(2.33) in terms of stream function defined as

Y=Y +V¥, (2.39a)
W, =(=35"/3+3+2/3)cos(¢), (2.39b)
u, =09, (2.39¢)
v, =—0.¥, (2.39d)

where WYy, ¥; and ¥ are the stream functions of the reference flow, the flow
modifications and the total flow in the x-direction, respectively. Substitution of ¥, into

(2.32)—(2.33) and elimination of pressure results in
1,0 VW, —Du,d W, —Re 'V, =3, [0 {0} +9, (v } ]+, [0 (wv ) +9,vv}].  (2.40)
where curly brackets denote the velocity products.

The stream function normalization condition has been set by assuming that the total

stream function takes zero value at the lower wall, i.e.
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W (3, (x0) =¥ (3, (x) + ¥, (3,(x) =0. (2.41)

The problem formulation for the flow in the (x,y) plane is closed either by selecting the

fixed volume flow rate constraint (2.37a) or the fixed pressure gradient constraint (2.38a).

The flow in the z-direction is described by Eq. (2.34), which is written as
0, W0, w, —0, W,0,w, +ud w, —Re'Vw, =0 ¥,Dw, —h, (2.42)

to underscore its linearity in w; , and is subjected to the boundary conditions (2.35¢) and
(2.36¢). The closing condition needs to follow the type of constraint selected for the flow

in the (x,y) plane and can be expressed either in terms of the fixed volume flow rate

(2.37b) (if (2.37a) was used) or the fixed pressure gradient (2.38b) (if (2.38a) was used).

2.3 Numerical discretization

The main difficulty associated with the implementation of the spectral discretization in
the problem formulated above arises due to the irregularity of the flow domain. This
difficulty is overcome by implementing the IBC concept which relies on the use of a

fixed computational domain extending in the y -direction far enough so that it completely

encloses the grooved channel (see Figure 2.2).

Standard definition of the Chebyshev polynomials is to be used for discretization in the

transverse direction which necessitates mapping of the y -coordinate onto the standard

domain [-1,1]. The mapping has the form
y=Ii-a+1]+1, (2.43)

where ['=2/(2+Y+Y},), Y; and Y, denote the upper and lower extremities of the flow

domain ( ¥, = max(y,(x))—1, ¥, =—1-min(y,(x)) ) and y extends from —1 to 1.
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Figure 2.2: Cross-section through the computational domain at z=const. It can be seen that

computational domain encloses the flow domain, where Y; and Y, denote the upper and lower

extremities of the flow domain.

The wall geometries in the new coordinate system can be expressed as

n=N , )
yp()= Y A", (2.444a)

n=-=N,

n=N, )
y(x)= D A", (2.44b)

n=-N,
where A" and A" are defined as
AP =1+T[-Y, + H1, A" =TH," for n#0, (2.45)

A© =14T[-2-Y +H"], A" =TH"™ for n#0. (2.46)

2.3.1 Discretization of the field equation

2.3.1.1  Discretization in the periodic direction

The solution is assumed to be periodic in the x-direction and thus all unknowns can be
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expressed using Fourier series. The Fourier expansions of the modification stream
function ¥, z-velocity component w; and velocity products on the right-hand side of

Eq.(2.40) take the form

n=N,

Y(xy)= Y O (ye"™, (2.47a)
w(x,y) = _ZMfW‘”(y)e""“", (2.47b)
()6 ) = 3 gt} ()™ (2.482)
(b y) = > () (e | (2.48b)
Dy = > o} (e (2.48¢)

where q)(n) = q)(_n)* s fu(vn) = fuf_n)* s {Mﬂ/ll ) — {I/l1u1 }(_n)* s {M1V1 " = {ulvl }(_n)* R
v} ={v»,}™" and the Fourier expansions is truncated at Ny, which is greater than
Ny4. Substitution of (2.47a) and (2.48a—c) into (2.40) and separation of Fourier modes

result in a nonlinear system of ordinary differential equations for the modal functions

@™ in the form

[0'D* - 2I°D*n’a + n'er* — inaRelu, (T°D* — n’a’) ~°Du, o

= ReI‘D[ina'{ulu1 1 + ID{u,v, }™ ]— ina{Re[inOt{ulv1 1 + ID{v, }™ ], (2.49)

for -N,, <n<N,,
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where D? =d?/dy? and ¢=1,2,3,4. Substitution of (2.47a,b) into (2.42) and separation of
Fourier modes results in the following system of linear differential equations for the

modal functions f\"

[(lﬁzD2 —n’a’) —inaReu, bﬂf”)

m=Ny, for 1dnI<N,,, (2.50a
—iaRel’ z [mDCI)(”_'”) —(n—m)CI)(”_'”)levﬁm) = —inaRel'®"'Dw,, wo )
m=—N,,
22 £ (0) " Em L gEmm | pm _
I°D*f\” —iaRel’ Y m|D®™ +DD|f" =h_Re, for n=0. (2.50b)
m=-=N,,

The suitable form of boundary conditions for the modal functions will be discussed in

Section 2.3.2.

2.3.1.2 Discretization in the transverse direction

Chebyshev polynomials are used for discretization in the y-direction, i.e.

k=N,
P (y)= D GT(y), (2.51a)
k=0
k=N,
L= Y ENT(), (2.51b)
k=0
k=Ng
{uu )" (y) = Y KT, (y), (2.52a)
k=0
k=Np

uy )" (M= D M T (y), (2.52b)
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k=N,

P} = Y RIT(). (2.52¢)

where T denotes the kth Chebyshev polynomial of the first kind and the expansions are
truncated after N7+1 terms. Substituting the above expansions into (2.49) and applying
the Galerkin projection method lead to Nr+1 linear algebraic equations for each Fourier
mode. The projection equations corresponding to Eq. (2.49) are constructed by taking the
inner product of both sides of this equation with 7,(y), i.e.
< |CHT,. DT, ) - 20°a’T(T,, DT, )+ n*a*(T,.T,)

(n)
k

M

= —ina'Re[F2<Tj,u0 DT, ) —n’a’(T;u,T, )~ T*(T;, D’u, Tk>]

(2.53)
- Re[inarK;"><Tj,DTk>+r2M;"’<Tj,D2Tk>] 0<j<N,—4,
- |~ inarelinam " (1,.1,)+ TR"(T,,DT,)] | ~N, <n<N,.
where the inner product is defined as
1
(F.e), = [F gy dy, (2.54)
-1

@(y)=1/1-y*> is the weight function, and f and g denote arbitrary functions.

Appendix A provides description for evaluation of different inner products. Only the first
Nr—3 equations of type (2.53) are retained creating space for imposition of the boundary
conditions (2.35a,b) and (2.36a,b), normalization condition (2.41) and one of the suitable

constraints using the tau-like procedure.

Projection equations corresponding to (2.50) have the form
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o, [r2<Tj DT,)—n’a? (T, T, )~ inaRe(T,,u, T, >]Ek<"’

Z . " ) (m)
= |- zaReFm__ZNM ; G, [m(T,-,DTl T,) = (n—m)(T,.T, DTk>]Ek (2.552)
= —inaReFkiV:T G,E”)<T,.,Dw0 Tk>, for 1<[n/<N,,,
k=0
- (T,,D’T, )E”
; —iaRel miM li mG|(1,D1,1) + (17,01, ) ™ = hRAT,T) (2.55b)
m=-N,, =0

for n=0,

where 0 < j< N, -2 and the last two equations have been discarded to make space for

the imposition of the boundary conditions (2.35¢)—(2.36¢) and a suitable constraint.

2.3.2 Numerical treatment of boundary conditions and constraints

2.3.2.1 Boundary conditions

The boundary conditions are to be enforced on the surface of the grooves using the IBC
concept. We shall focus our attention on the upper wall as implementation of boundary
conditions at the lower wall is identical. Boundary conditions (2.35a—c) involve

evaluation of the unknowns u,,(x)=u(x,y,(x)), v ,(x)=v(x,y,(x) and
Wy () =w(x, y, (%)) as well as the reference velocity components
Uy, (X) =uy(x,y,(x)) and w,,(x)=wy(x,y,(x)) along the upper wall defined by
Eq.(2.44a). The unknowns u; y, v,y and w; y are periodic in x and can be expressed in

terms of Fourier series as

n=N;

Uy, (x) = ZQZ%M" , (2.56a)

n=-N,
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n=Ng

V(X)) = ZA(['})eiwx , (2.56b)
n:—Nf
n:Nf .
Wy (x) = Ee™ ™, (2.56¢)
n:—Nf

where the value of Ny will be determined later in the discussion. Relations for evaluation

= (n)

of the expansion coefficients Q" , A}’ and E|” can be obtained by expressing u; v, vi.y

and w; y using Eqgs (2.39¢,d), (2.47a,b) and (2.51a,b) in the form

n=Ny ) n=Ny k=Ny )
Uy (x)=T Y DO (y, (x)e"* =T > > G DT, (y,(x)e"™, (2.57a)
n=—Ny n=—N,, k=0
n=Ny ) n=Ny k=Ny )
vy () =—ia Y nd" (y, ()" =—iax Y > nG" T, (y, (x)e"™ (2.57b)
n=—Ny, n=—N, k=0
n=N,, ) n=N, k=N; )
wip ()= D L))" = Y D EP T (v, (x)e"™ . (2.57¢)
n=-—Ny n==N, k=0

Values of Chebyshev polynomials and their derivatives evaluated along the wall

represent periodic functions of x and thus can be expressed using Fourier expansions in

the form
m=Ng )
T.(yy (X)) = D> Blpe"™, (2.58a)
m=-=Ng
m=Ng )
DT, (y,(x))= D.C{pe™™, (2.58b)
m==Ng

where max(Ng)=Nr*N4. It is simpler for the following presentation to consider

Ns=Nr*N, with the additional terms taking zero values in a natural way. Methodology

for evaluation of coefficients B/ in (2.58a) is based on the well-known recurrence

relation 7,,,(y) =2yT,(y)—T,_,(y) (with T,(y) =1 and 7,(y) = y ), which leads to
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n=N,
BIETI),U =2 ZAL(JH)BIET’ZJ_H) _Blgr—nl),U ) for k=1,
n=—N,
(2.59)
By =1, By =0 for |m[>1, B = A" for |m20.

Similarly, the expansion coefficients C,E”Z,) in (2.58b) can be evaluated by taking
advantage of the recurrence relation DT, ,,(y)=2yDT,(y)—DT,_,(y)+2T,(y) (with

DT,(y)=0 and DT,(y)=1) which leads to

n=N ,
Cily =2 D2 ANC =Gy + 2B for k=2,
n==N,
(2.60)
Cyw' =0 for |m|20; C{) =1, C}) =0 for|m|21; CJ}) =4A)" for |m/>0.
Substitution of (2.58a,b) into (2.57a—c) results in
n=N, k=N; m=Ng h=Ng+N, n=N, k=N
— (n) ~(m) i( Jox __ (n) (~(h=n) jih
=13 Y Sarcgerner S S S Gncten . e
n=—Ny k=0 m=-Ng h=—Ng—-Ny n=—N,, k=0
n=Ny k=N; m=Ng h=Ng+N, n=N, k=Np
vy@=—ia Y Y Y nGU Bl =—i > > D nG Bl "™, (2.61b)
n=-N, k=0 m=-Ng h=—Ng—Ny n=—Ny k=0
n=N, k=N; m=Ng h=Ng+N, n=N, k=N;
— (n) p(m) ji(n+m)ox __ (n) p(h—n) ihax
Wy (X) = z z zEk B 'ye = z Z ZEk B, e, (2.61¢)
n=—N, k=0 m=—Ng h=—Ng—Ny n=—N,, k=0

where h=n+m, and B, and C;";" take their corresponding values from Eqgs (2.59)-

(2.60) for |h—n| < N, and are zero for |h—n| > N . Re-arrangement of indices n — m

and h—n in (2.6la—c) and comparison of these relations with (2.56a—c) lead to
N,=N,#N,+N, andexpressions for Q;”, Aj) and Z; in the form

m=N,, k=N

Q=T Z ZG}EWC}EZW , -N,<n<N,, (2.62a)

m==N,, k=0
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m=N, k=Np
(n) _ = (m) p(n—m)
Ay =—ia Y. D .mG"BI" ~N,<n<N,, (2.62b)
m=—Ny, k=0
m=N,, k=Np
() _ (m) p(n—m) _
= > DEM™B™, N,<n<N,, (2.62¢)
m=-—Ny, k=0

where B,ﬁ’;’”) and C,i’;’”) take their corresponding values from Eqs (2.59)-(2.60) for

|n—m|SNS and are zero for |n—m|>NS.

Boundary conditions (2.35a—c) require evaluation of the reference velocity components
upy and wo y along the wall. Their values represent known periodic functions of x and

thus can be expressed as Fourier expansions in the form

n=2%N,

oy (X)= D uge"™, (2.63a)

n=-=2%N 4

n=2%N,

Wou ()= D wie" . (2.63b)

n=-=2%N ,

Details of the methodology used for the evaluation of Fourier coefficients ug;, and w7,

are given in Appendix B. Substitution of (2.62a—c) and (2.63a,b) into (2.35a—c) provides

boundary relations required in order to enforce the boundary conditions at the upper wall

m=N, k=Np

D DGMC =T g 0<ln|<N,, (2.64a)

m==Ny, k=0

m=N, k=Np

> > mG™B" =0, 1<|n/<N,, (2.64b)

m==Ny, k=0

m=N, k=Np

Z ZE]Em)BZZm) _ _W(()tll,)/ , 0< |n| <N,. (2.64c¢)

m==Ny, k=0

Similar process applied at the lower wall leads to the following relations
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m=N, k=Np

Y DG =T, 0<lg/<N,, (2.65a)

m==Ny, k=0

m=N, k=Np

> mG"B" ™ =0, 1<|n/<N,, (2.65b)
k=0

m=—N,

m=N, k=Np

ZEIEm)Blil,lgln) _ _W(()flL) , 0< |n| <N,. (2.65¢)

m=—=Ny, k=0

One may note that the non-zero values of B, , C{';™, B, and C,",™ occur only

for |n - m| < N, based on recurrence relations (2.59)-(2.60).

Since discretization of the field variables is limited to Ny modes, where Ny < Ny, only Ny
of the above relations can be enforced directly with the remaining ones providing a
measure of error in the enforcement of boundary conditions and a test for consistency of
the method. Enforcement of a larger number of boundary relations leads to an over-
determined formulation of the IBC method which is advantageous in the case of more
extreme geometries (Husain et al. 2009). Over-determined formulation is not used in the

present work.

2.3.2.2  Stream function normalization condition

The arbitrary constant in the definition of the stream function has been selected in the
present analysis by setting the total stream function to be zero at the lower wall. Values
of the reference flow stream function evaluated along this wall represent a known

periodic function which can be expressed using Fourier expansion (for details see

Appendix B) in the form
n=3%N , )
P (v, ()= D 0", (2.66)

n==3%N,
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The flow modification stream function W¥; can be expressed at the lower wall using Eqs

(2.47a), (2.51a) and a relation similar to (2.58a) in the form

n=N; m=N, k=Nr

Yo=Y S S GmBrme, (2.67)

n==N;m==Ny k=0

where the non-zero values of B, occur only for |n - m| < N . Substitution of (2.66)

and (2.67) into (2.41) and extraction of mode zero provide the discretized form of the

normalization condition, i.e.

m=N, k=Np

> YGrBy =-ey. @68)

m==Ny, k=0

where the nonzero values of B} occur only for |m| < N§.

2.3.2.3  Fixed pressure gradient constraints

One can specify an arbitrary constraint to close the problem formulation. In this analysis,
either the fixed pressure gradient or the fixed flow rate conditions in both the x- and Z -
directions are used. In this section we shall describe implementation of the fixed pressure
gradient constraints while description of the fixed flow rate constraints is given in

Appendix C.

Consider situation when the pressure gradients along the x - and Z -directions are known.
These pressure gradients may be expressed as a sum of the reference flow pressure
gradients and gradient modifications h; and h,. When these modifications are taken as
zero, the pressure gradients in the smooth and grooved channels remain the same. One
can solve such problem and determine how mass flow rate is changed due to addition of

the grooves.

Pressure gradient modifications expressed in the auxiliary reference system take the form
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h, = h;cos(@) — h.sin(@), (2.69a)
h, = h;sin(@) + h. cos(®) . (2.69b)

Equation (2.32) written for mode zero using (2.39), (2.47a), (2.48b) and (2.69a) takes the

form
°D*®(y) = Re[h, cos(#) — h. sin(#)|+ ReT'D{u, ) (y); (2.70)
its integration between the walls leads to

T* D0 (3, (x)) = D*® (y, (x))|= Re[h; cos(@) — h. sin(d) [y, (x) - y, (x)]

2.71
+ ReT (v, 1O (v (1)) = {1, 1 (3, ()] 7D

Re-arrangement of the above equation gives the final form of the relation used to enforce

the fixed pressure gradient constraint in the x-direction, i.e.

k=N,

Y 60D, (3, () - DT, (3, ()]
k=0 o (2.72)
= Re[h; cos(p) — h. sin(®) [y, (x) = y, ()]+ Rel" >_ M O[T, (3, (x)) = T, (y, (x))].

k=0
The above relation can be imposed at any x-location.

The pressure gradient constraint for the z-direction is obtained by inserting (2.69b) into

(2.55b), 1.e.

k=Nr m=N,, [=Ngp
2 {r2<T°’D2Tk>E2°) —iaRel 3 3 mGy (T, DL T, )+ (T, T m;>]Ez'")}
k= iy 150 (2.73)

= Renlh, sin(@) + h. cos(¢)].
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2.4 Solution strategy

The solution process consists of two steps, i.e. solution of the nonlinear problem (2.53) to
determine flow in the (x,y) plane and the follow up solution of the linear problem (2.55)

to determine flow in the z-direction. We shall begin discussion with the first step.

24.1 Determination of flow in the (x,y) plane

Governing equation (2.53) with the boundary conditions (2.64a,b)—(2.65a,b), the stream
function normalizing condition (2.68) and the fixed pressure gradient constraint (2.72)

can be expressed in matrix notation in the form
Lx =R(x) (2.74)

where L denotes the coefficient matrix of size pxp with p=Q2Ny+1)x(Nr+1), X is a p-
dimensional vector of the unknown Chebyshev coefficients G\ and R stands for the p-

dimensional right-hand side vector which contains nonlinearities. This system is solved
iteratively where the right-hand side is considered to be known. The iteration process is
explained in Section 2.4.1.1 and the method for updating the nonlinear terms is described
in Section 2.4.1.2. Since system (2.74) has to be solved repeatedly, the overall cost of the
computations depends on the availability of an efficient solver. This issue is discussed in

Section 2.4.1.3.

2.4.1.1 Iteration process

The solution process relies on iterations where the unknown x; is corrected in a sequence
of steps until a convergence criterion is satisfied. The iteration process consists of the

following steps (subscript j denotes iteration number):

(i) Solve Eq. (2.74) neglecting the nonlinear terms. This solution provides the first

approximation x¢ of the unknowns.

(ii) Compute the first approximation Ry of the right-hand side vector using x.
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(iii)  Solve Eq. (2.74) with the new right side, i.e.
x;, =L'R;. 2.75)

(iv)  Check the convergence criterion. If the criterion is not satisfied, go to step (ii)
using the current iterate X; rather than x¢. Calculations are complete if the
convergence criterion is satisfied. The convergence criterion used in this work has

the form

)<107 (2.76)

(‘Xj+1 - Xj‘/‘xjﬂ

In the above, IXj.1l is the L*-norm of the current vector of Chebyshev coefficients
and Ixj,—x;jl is the L>-norm of the difference between the coefficients’ vectors
computed at two consecutive iterations. The rate of convergence of the iterative
process can be controlled using the under/over-relaxation. The relaxation process

has been implemented using the following formula
Xju = X+ RE [X g, = X1, (2.77)

where Xcomp denotes the current solution, Xj, stands for the accepted value of the

next iterate and RF denotes the relaxation factor.

2.4.1.2  Method for updating the nonlinear terms

The nonlinear terms are updated based on the information available from the previous
iteration. The velocity components #; and v; are computed by transferring data into the
physical space using the known modal functions ®"(y), i.e.

n=Ny

u,(x,y)=T Y DO (y)e"™ (2.78a)

n=-—N,
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n=Ny

v(x,y)=-ix anD(”)(y)ei”“x ) (2.78b)
=Ny
The multiplications are carried out in the physical space and the Fourier expansions
expressing velocity products are evaluated using fast Fourier transform (FFT) procedure.
At each y-location, the u; and v, are evaluated at equidistant points along the x-axis and
the last point is discarded due to periodicity. 2My+2 locations (where My,=3/2xNy) are
used, i.e. advantage is taken of the 3/2 rule to control the aliasing error. The velocity
products {uju;}, {u;v1} and {v,v;} are evaluated at this location and values of the modal
functions of their Fourier expansions, i.e. {uju;}™, {uvi}™ and {viv;}"™, for this y-
location are computed using FFT, where m varies from —M); to My, Only modes from

—Ny to Ny, are retained. The final step consists of determination of Chebyshev expansions

of the modal functions, i.e. evaluation of coefficients K\, M\ and R\ in Eq. (2.52).

2.4.1.3  Efficient linear solver

Storage requirements can be reduced and solution efficiency can be improved by taking
advantage of the special structure of matrix L. The structure of L for Ny, =5 and Ny =30 is
shown in Figure 2.3A where all non-zero components have been marked in black and the
unknowns have been organized according to the mode number —Ny,...,0,....Ny. The
upper triangular blocks correspond to the modal equations and are uncoupled. The only
coupling between blocks is provided through the boundary relations which are marked as

black horizontal lines (four lines per block, see Figure 2.3A).

In the first step L is re-organized following concepts described in Husain & Floryan
(2013). The entries corresponding to the boundary relations are moved to the bottom of LL
forming a block diagonal matrix L; of size gxp, where g=(2Ny+1)x(N7—-3), and a full
matrix L; of size rxp, where r=4x(2Ny+1). In order to extract the largest possible square
matrix A (of size gxq) from L;, the unknown Chebyshev coefficients corresponding to
the four lowest polynomials are placed at the end of the vector of unknowns resulting in

the structure illustrated in Figure 2.3B. The resultant square matrix A of size gxq has a
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block diagonal structure with each block of size (Ny—3)x(N7—3). The rectangular matrix
B of size gxr also has a block diagonal form with blocks of size (Ny—3)x4 whereas the
full rectangular matrix C has size rxq and the full square matrix D has size rxr. Matrices
B and D contain coefficients corresponding to G.”, G, G!” and G.\”, while
information associated with the remaining coefficients is stored in matrices A and C

(Figure 2.3B).

0 0

50 501
1007 100}
150+ 150}
2001 200
2501 250}
300/ 5555

(A) (B)

Figure 2.3: Structure of the coefficient matrix L for Ny=5 and Nr=30. The nonzero elements are
marked in black. The sparsity of L is 0.89. Figure 2.3A - the structure of the coefficient matrix
before the re-arrangement (see Eq. (2.74)), Figure 2.3B - the structure of the coefficient matrix

after the re-arrangement (see Eq. (2.79a,b) and Section 2.4.1.3).

Equation (2.74) can now be re-written in the from

Ax, +Bx, =R,, (2.79a)

Cx, +Dx, =R,, (2.79b)
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where vector x; contains unknowns G." for ne<-N,,,N,, >, ke<4,N, >, and vector

Xz contains unknowns G\" for ne<-N,,,N,, >, k€<0,3>. Solution of (2.79a,b) can

be written as
x,=[D-CA'B]' (R,-CA'R,), x, = A7[R, - Bx,]. (2.80)

The above procedure results in substantial reduction in the memory usage as one needs to
store only the diagonal blocks of matrices A and B. The efficiency gains result from
construction of A'l, CA'I, CA'IB, A'IRI and A™'B block by block rather than working
with complete matrices. Use of complex conjugate properties of the modal functions

provides further efficiencies.

2.4.2 Determination of flow in the z-direction

2.4.2.1 Direct method

Equation (2.55) with fixed pressure gradient constraint (2.73) and the boundary

conditions (2.64c)—(2.65¢c) form a linear system of algebraic equations in the form

L_x =R

Iww

1w> (2.81)

where Ly is the coefficient matrix of size pxp, Xy denotes a p-dimensional vector of the

unknown Chebyshev coefficients E" and Ry, stands for the p-dimensional right-hand

side vector containing information about the flow in the (x,y) plane. The structure of this
matrix for Ny =5 and N7 =30 is shown in Figure 2.4A. Matrix L;y has banded structure,

but the width of the band is so large that the matrix has to be treated as a full matrix.

Equation (2.81) is linear and its solution can be easily computed in the form

x, =L Ry,. (2.82)
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Because of the size of the matrix, this method (regardless how the inverse or its
equivalent is computed) as well as the associated memory requirements are excessive,

which leads to a search for a more efficient procedure.

50¢
100¢
150}
200
2501
300¢

(A) B)

Figure 2.4: Structure of the coefficient matrices Ly, (Figure 2.4A; see Eq. (2.81)) and L,
(Figure 2.4B; see Eq. (2.86)) for Ny=5 and N;=30. The nonzero elements are marked in black.
L, and L,,, have sparcities 0.27 and 0.94, respectively.

2.4.2.2 Iterative method

We start by re-writing the z-momentum equation (2.34) in terms of velocity products and

implement transformation (2.43) which result in
(afwl + aniwl )— Reu,0 w, = Re(hZ +0 {uyw }+10 {vyw}+ FlewO). (2.83)

Equation (2.83) is discretized using Fourier expansion in the x-direction and Chebyshev

expansion in the y-direction resulting in
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k=Ny
> (.0 -1, ) - inamel 1,
i for 1<|n|< N, ., (2.84a)

k=N,

— Re kZ; {na(T,1,)B" + (1, DT, )" ~ inat (T, Dw, T, )G},

k=N k=N

Y (1,.D°'T,)E” =Re ) I{T,.DT; )J\” + Relh, sin@) + h, cos@)|T,.T,). for n=0, (2.84b)

k=0 k=0

where
n=N, k=N; )

wwx,y)= D D P (y)e", (2.852)
n==N, k=0
n=N, k=N, )

w ey = D Y T (e (2.85b)
n=—N, k=0

The fixed pressure gradient constraint is accommodated in Eq. (2.84b). Equation (2.84)

with boundary conditions (2.64¢)—(2.65¢) can be written using matrix notation as

L, x, =R,,(x,), (2.86)

2wtw

where Ly is the coefficient matrix of size pxp with structure similar to that shown in

Figure 2.3A, xy, denotes a p-dimensional vector of the unknown Chebyshev coefficients
E" and Ry stands for the p-dimensional right-hand side vector containing velocity

products, i.e. the final information about the flow in the (x,y)-plane and the current (i.e.
from the most recent iteration) information about the flow in the (y,z) plane. Lyy is re-
organized in the same way as L resulting in the matrix structure illustrated in Figure
2.4B. The iteration process is similar to that discussed in Section 2.4.1.1. The relevant
linear system is solved at each iteration using methodology described in Section 2.4.1.3

with the velocity products updated using methodology described in Section 2.4.1.2.
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2.4.2.3  Comparison of the methods

The direct method always provides solution, however the computational cost and the
memory requirements could be very large due to the size and the structure of the matrix.
The iterative method requires significantly less memory and the computational cost per
iteration is very small as the algorithm takes advantage of the special structure of the re-
arranged matrix. The iterative method may however either diverge or require a large
number of iterations. In all tests carried out as a part of this work the iterative method

always converged and it was by about 40 times faster than the direct method.

243 Post-processing

In the post-processing step one can compute the flow rates in the x- and z-directions. The
flow rate in the x-direction per unit width Q. is computed as the difference between
values of the stream function at the upper and lower walls. The flow rate in the z-
direction per unit width Q, can be computed by integrating w. The flow rates in the
reference direction (X -direction) and in the spanwise direction (Z-direction) can be

computed subsequently from the following relations
Q; =0, cos(9) +Q,sin(9), (2.87a)
Q. =—0,sin(9) + 0 _cos(9) . (2.87b)

All results reported in this work have been obtained with the fixed pressure gradient

constraints, i.e. h, =h, =0.

The pressure field can also be computed in the post-processing step. Appendix D

describes the details of the evaluation of the pressure field.
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2.5 Numerical verification

2.5.1 Algorithm testing

This section discusses results of various tests carried out in order to demonstrate the
spectral accuracy of the algorithm and to characterize the effects of various numerical

and physical parameters on the accuracy of the solution.

In order to simplify discussion, a simple geometry consisting of a smooth upper wall and
sinusoidal grooves placed at the lower wall inclined with angle 7/2—¢ with respect to the
flow direction (see Figure 2.1) has been selected for testing purposes. The flow direction
is defined in this discussion as the direction of the reference flow, i.e. flow without

grooves. The geometry of the channel in the physical (X,9,Z) reference system is given

as
$, =1, (2.88a)
$,(%,2)=—1+S5 - cos|alcos(¢)z —sin(¢)2)], (2.88b)

where S and « are the amplitude and the wavenumber of the grooved wall, and in the

auxiliary system (x,y,z) as
Yo =1, (2.89a)
Y (x)==1+5 - cos(ax). (2.89b)

Two measures of error have been used in the discussion, i.e.

vl = up (126, y) =t (6, YIP 410, 3) =, G5, T + T8, ) =, (6 T) (2.90)
0=xL21/ ¢ N
—I<ysl

H|V|H sup uL(x) +v, (x)? +wL()c))I (2.91)

0<x<2n/a

where u, v and w are the computed total velocity components, u,.f, V.r and w,,s are the

reference values of the same quantities computed with a very high accuracy, i.e. using
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Nr=70 Chebyshev polynomials and Ny=20 Fourier modes, and u.(x)=u(x,y.(x)),
vi(x)=v(x,yL(x)), wr(x)=w(x,yr(x)) denote velocity components evaluated along the lower,
grooved wall. Equation (2.90) measures the maximum error in whole computational
domain while Eq. (2.91) measures the maximum error at the irregular boundary (grooved

wall).

(A) B)

Figure 2.5: Variations of the maximum error over the whole flow domain || V||max (see Eq. (2.90))

as a function of the number of Chebyshev polynomials N7 used in the computations for the model
problem described by Eq. (2.89a,b) with the groove wavenumber =2 and the groove orientation
angle ¢=30° for selected values of the groove amplitude S with the flow Reynolds number Re=50
(Figure 2.5A) and for selected values of the flow Reynolds number Re with the groove amplitude

$=0.01 and 0.025 (Figure 2.5B). All tests have been carried out using Ny=20 Fourier modes.

Results displayed in Figures 2.5 and 2.6 demonstrate that the maximum error in the

whole domain ||V||maX decreases exponentially as the number of Chebyshev polynomials
N7 as well as the number Fourier modes Ny, used in the calculation increase. The error at

the irregular boundary H | VL| H also decreases exponentially as the total number of Fourier

modes Ny increases (see Figure 2.6). This error is equal to the maximum error over the
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whole domain when a high enough number of Chebyshev polynomials are used in the

computations, i.e. in such situations the maximum error occurs at the irregular boundary.
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Figure 2.6: Variations of the maximum error over the whole flow domain ||V||max and the

maximum error at the grooved wall H|VL| ” as a function of the number of Fourier modes Ny,

used in the computations for the model problem described by Eq. (2.89a,b) with the groove
wavenumber o=2 and the groove orientation angle ¢=30° for selected values of the groove
amplitude S with the flow Reynolds number Re=50 (Figure 2.6A) and for selected values of the
flow Reynolds number Re with the groove amplitude $=0.01 and 0.025 (Figure 2.6B). All tests

max - || |VL| ||o<y :

have been carried out using N;=70 Chebyshev polynomials. It can be seen that || | %

Figure 2.7 displays distributions of the absolute values of the real parts of the modal
functions DO and £, for higher Fourier modes (n>15) in the region close to grooved
wall. These results suggest that higher Fourier modes may play an important role in the
solution in the case of grooves with shorter wavelengths. Since the corresponding modal
functions have extremely thin boundary layers at the ends of the solution domain (see
Figure 2.7), a larger number of Chebyshev polynomials may be necessary in order to

resolve these layers and to avoid spurious oscillations outside these layers.
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Figure 2.7: Distributions of the absolute value of the real part of the modal functions D®"
(Figure 2.7A) and fw(") (Figure 2.7B) for higher modes (n>15) in the region very close to the
lower wall for the model geometry described by Eq. (2.89a,b) with the groove wavenumber o=5,
the groove amplitude $=0.06, the flow Reynolds number Re=50 and the groove orientation angle
¢=30°. Formation of boundary layers around the grooved wall can be observed. Computations

have been carried out using Ny=20 Fourier modes and N;=70 Chebyshev polynomials.

Magnitudes of the modal functions D®™ and £, can be measured using Chebyshev

norms defined as

1 172

[pe-], ={I Dq’“”(y)-Dd><">*<y>~w<y>~dy} , (2.92)
1 1/2

7], = {jfw(’”(y) ) o) dy} : (2.93)
|

where @(y)=1/4/1-y* and the superscript n corresponds to the mode number. Results

displayed in Figure 2.8 demonstrate exponential decrease of the Chebyshev norms with

the mode number n and demonstrate spectral convergence of Fourier expansions.
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Figure 2.8: Variations of the Chebyshev norms of the modal functions D®" (Figure 2.8A) and
£, (Figure 2.8B) as a function of the Fourier mode number for the model geometry described by
Eq. (2.89a,b) with the groove wavenumber ¢=1, the flow Reynolds number Re=50 and selected
values of the groove amplitudes S. Computations have been carried out using Ny=20 Fourier

modes and N;=70 Chebyshev polynomials.

x 10

Figure 2.9: Distributions of velocity components computed at the grooved wall u;(x), v.(x) and
wy(x) for the model geometry described by Eq. (2.89a,b) with the groove wavenumber ¢=5, the
groove amplitude S=0.06 and the groove orientation angle ¢=30°. Computations have been

carried out using Ny=20 Fourier modes and N;=70 Chebyshev polynomials.

Figure 2.9 displays distributions over a single wavelength of the computed values of the

velocity components at the grooved wall u;(x), vi(x) and wi(x). These quantities have
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oscillatory variations with the maxima occurring in the location corresponding to the
widest channel opening. This fact can be explained by noting that the modal functions
@™ and f," reach their maxima around the extremes of the solution domain. Because of
that, contributions of higher Fourier modes are relatively more important around these
regions and their omission results in the higher absolute error as compared to the
boundary points located closer to the interior of the computational domain. This effect is
more pronounced for larger values of the grooves wavenumber « as the corresponding

boundary layers are thinner.
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Figure 2.10: Fourier spectra of velocity components computed at the grooved wall u;(x), v/(x)
and w;(x) for the model geometry described by Eq. (2.89a,b) with the groove wavenumber ¢=5,
the groove amplitude $=0.06 and the groove orientation angle ¢=30°. Computations have been

carried out using Ny=20 Fourier modes and N;=70 Chebyshev polynomials.

The Fourier spectra of velocity components evaluated along the grooved wall, i.e.
n=too ' n=teo : n=+eo )

u, (x)= ZU("’e’”m, v, (x) = ZV(”’e’”"“ and w, (x)= ZW("’e”"’“, should not contain

any harmonics of order lower than the number of Fourier modes used in the enforcement

of boundary conditions (2.65). This property provides means for testing the consistency

of the algorithm. Results displayed in Figure 2.10 have been obtained with Ny=20
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Fourier modes and show the absence of the first 20 Fourier modes in the spectra of

boundary errors and thus confirm the consistency of the algorithm.

55510 g l0 ‘
o o o o I:ICase Al T M N o Dcase A
3 Mlcase B Bl Case B
25 -Case C 6 -Case C
~ 2 —~ | AR | D R
= =
E 4
SER =
1
,,,,,,,,, |4 — — — — i | - — 2
05 ] 777777777 Mt == — — — — —— - B
0 j : 777777777777 77 —7 _ 77777; 77 : 7]: 177 7—77 ; 77 7: = 7—]7 0 — j|l_l:: gy ’],7.': — — — iy
0 10 20 30 40 50 0 10 20 30 40 50
Mode number n Mode number n
(A) (B)

Figure 2.11: Fourier spectra of the streamwise u;(x) (Figure 2.11A) and the spanwise w;(x)
(Figure 2.11B) velocity components for the model geometry described by Eq. (2.89a,b) with the
groove amplitude $=0.05 and the groove wavelength A,=27n/3. Solutions have been obtained in
case A using computational box of length 2n/3 and Ny,=10 Fourier modes, in case B using
computational box of length 4n/3 and N,=20 Fourier modes, and in case C using computational
box of length 61/3 and N,=30 Fourier modes (see text for details). The presented results are for
the flow Reynolds number Re=50 and the groove orientation angle ¢=30°. Computations have

been carried out using Ny=70 Chebyshev polynomials.

Results displayed in Figure 2.11 demonstrate that the algorithm does not generate
spurious subharmonics. The same geometric configuration with the groove’s amplitude
$=0.05 and the groove’s wavelength A,=2n/3 has been analyzed using three different
numerical set ups. In case A the shape of the grooves was represented by the principal
Fourier mode with the wavenumber =3 and the solution was obtained using Ny=10
Fourier modes. In case B the same shape was represented by the second Fourier mode,
i.e. the principal mode had the wavenumber a=1.5 and the computations were carried out
using Ny=20 Fourier modes in order to have an equivalent solution, and in case C the

same shape was represented by the third Fourier mode (the principal mode had the
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wavenumber a=1) and the solution was obtained using Ny=30 Fourier modes. Cases B
and C admitted subharmonics of 1/2 and 1/3 types, respectively. Fourier spectra shown in
Figure 2.11 demonstrate that no subharmonics had been produced during the solution

process.

Figure 2.12: Variations of the maximum boundary error ” |VL||| as a function of the groove

wavenumber ¢ for selected values of the groove amplitude S (Figure 2.12A) and as a function of
groove amplitude § for selected values of the groove wavenumber « (Figure 2.12B) for the model
problem described by Eq. (2.89a,b). Dashed and solid lines correspond to results obtained with
Ny=15 and Ny=20 Fourier modes, respectively. All computations have been carried out using

N;=70 for the flow Reynolds number Re=50 and the groove orientation angle ¢=30°.

The overall accuracy of the IBC method depends on the accuracy of the enforcement of
boundary conditions, which can be measured using the L., norm defined by Eq. (2.91).
Results shown in Figure 2.12 demonstrate that the error remains at the machine level for
values of the groove wavenumber « and the amplitude S below certain critical threshold.
When this threshold is reached, the error begins to increase rapidly with any further
increase of § and @. An increase in the number of Fourier modes Ny and Chebyshev
polynomials N7 increases these thresholds. A fairly large increase of Ny and Ny may be
required in order to shift these thresholds significantly, which places practical limits on

the applicability of the proposed method. Figure 2.13 shows variations of the boundary
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error for different groove orientations with respect to the flow. The error is highest for
¢=0° (transverse grooves), it decreases as the groove rotates away from this direction and

reaches minimum for the longitudinal groove orientation, i.e. for ¢=90°.

Figure 2.13: Variations of the maximum boundary error ” |VL||| as a function of the groove

wavenumber ¢ for selected values of the groove amplitude S (Figure 2.13A) and as a function of
the groove amplitude S for selected values of the groove wavenumber « (Figure 2.13B) for the
model configuration described by Eq. (2.89a,b). All computations have been carried out using

Ny=20 Fourier modes and N;=70 Chebyshev polynomials for the flow Reynolds number Re=50.

Figure 2.14 displays variations of the boundary error (see Eq. (2.91)) as a function of the
flow Reynolds number Re. It can be seen that the error does not change as long as Re
remains small enough. Once a certain threshold is reached, the error starts to increase
fairly rapidly with any further increase of Re. An increase in the number of Fourier
modes Ny, delays this growth. The largest error over the whole range of Re considered in
this study corresponds to the transverse orientation of the grooves; the error decreases as
grooves rotate away from this direction and reaches minimum for the longitudinal
position, i.e. when ¢ = 90°. The reader may note that the error ceases to depend on Re for

grooves in the longitudinal position.
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Figure 2.14: Variations of the maximum boundary error ” |VL||| as a function of the flow

Reynolds number Re for the model configuration described by Eq. (2.89a,b) with the groove
wavenumber =4 and the amplitude $=0.04. Computations have been carried out using the
number of Fourier modes Ny, shown in figure and N/=70 Chebyshev polynomials. The error does

not depend on Re for ¢=90° (longitudinal grooves).

2.5.2 Numerical Examples

Presence of transverse grooves increases flow resistance and reduces the volume flow
rate for a fixed pressure gradient (and equal to the reference flow pressure gradient). The
volume flow rate changes as a function of the grooves’ orientation. As the grooves rotate
away from the transverse position and become more aligned with the direction of the
imposed pressure gradient (X -direction), the flow resistance decreases leading to an
increase in the volume flow rate. Results shown in Figure 2.15 demonstrate that the
maximum flow rate (minimum resistance) in the direction of pressure gradient (X -
direction) corresponds to the grooves assuming longitudinal orientation (¢ = 90°). As the
grooves rotate away from this position, they force a net flow in the spanwise direction
(Z -direction). The maximum of this flow occurs for ¢ =42° depending on the groove
wavenumber and amplitude, and decreases to zero as the grooves approach the transverse
orientation (¢ = 0°). Grooves with higher wavenumbers and higher amplitudes are more
effective in creating spanwise flow. Similarly, effectiveness of these grooves increases

with an increase of the Reynolds number Re. It is interesting to observe that in the case
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dashed lines) as a function of the groove inclination angle ¢. Figure 2.15A — Re=1000, $=0.03
and typical values of the groove wavenumber ¢. Figure 2.15B — Re=1000, 0=3 and typical values
of the groove amplitude S. Figure 2.15C — =3, $=0.03 and typical values of the flow Reynolds
number Re. All computations have been carried out using Ny=20 Fourier modes and N;=70

Chebyshev polynomials.

Similar calculations have been carried out for the case of fixed flow rates constraints

(flow rate was assumed to be equal to that given by the reference flow, i.e. Q;; =Q,. =0;

see details in Appendix C). Variations of the additional pressure gradients required to
maintain such flow rates are plotted in Figure 2.16 as a function of the grooves’
orientation angle ¢@. Presence of the transverse grooves (¢=0°) results in an increase of
the flow resistance and therefore an additional pressure gradient needs to be added to
maintain the same flow rate. As the grooves rotate away from the transverse position and
become more aligned with the direction of the reference flow (X -direction), the flow
resistance decreases. The minimum resistance and thus the minimum additional pressure
gradient corresponds to the grooves assuming longitudinal orientation (¢=90°). Presence
of oblique grooves creates tendency for the flow to follow direction of the grooves.
Spanwise pressure gradient must be added in order to prevent net flow in the spanwise
direction. This situation would occur in a channel with a finite spanwise width as the side
walls would prevent any net flow in the spanwise direction. The side walls would be
exposed to pressure forces associated with the spanwise pressure gradient required to
eliminate the spanwise flow. The maximum spanwise pressure gradient occurs for ¢ =42°
depending on the groove wavenumber and amplitude, and decreases to zero as the
grooves approach either the transverse or the longitudinal orientations. Grooves with
higher wavenumbers « and higher amplitudes S require higher additional pressure
gradients in order to maintain the same flow rates. Increase of the flow Reynolds number

Re increases the pressure correction factors Re*h, and Re*h,. In the case of
longitudinal grooves (¢=90°), Re*h, becomes independent of the flow Reynolds

number Re.



Re*h& Y Re*hf
3 N >
(A) ¢
0.01 0.01
0.005 0.009
0 0.008
-0.005[-" 0.007
-0.01 0.006
-0.015F = 0.005
Rexh, -0.02 0004 Rex*h,
-0.025 0.003
-0.03 0.002
-0.035], 0.001
0090 20 30 20 50 60 70 80 o
(B) ¢
0.01
0.005
0 y %
| |’ | T [
0.005F = -4 - = Ao a i 5
Re=100 /1 w
-0.01 e e o i s
Rexh. | /v Re*h,
* 0015 = 3 “
002 —AF - - e L 2
0.025 o= - - =T 1 - - - 11
-0.03] o

62

©) ¢
Figure 2.16: Variations of the pressure correction factors Re*h, (solid lines) and Re*h,

(dashed lines) as functions of the groove inclination angle ¢. Figure 2.16A — Re=1000, $=0.03
and typical values of the groove wavenumber ¢. Figure 2.16B — Re=1000, =3 and typical values
of the groove amplitude S. Figure 2.16C — =3, S=0.03 and typical values of the flow Reynolds
number Re. All computations have been carried out using Ny,=20 Fourier modes and N;=70

Chebyshev polynomials.
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2.6 Summary

A grid-less, spectrally accurate algorithm for the analysis of flows in grooved channels is
presented. The algorithm is based on the immersed boundary conditions (IBC) concept,
where the boundary conditions are submerged inside the computational domain and are
treated as internal constraints. When grooves’ ridges are orthogonal to the flow direction
(transverse grooves) the flow remains two-dimensional. As the grooves rotate away from
this direction, the flow becomes three-dimensional. An auxiliary coordinate system is
defined in such a way that one of its axes is aligned with the grooves. It is shown that the
governing equations expressed in this system decouple into a two-dimensional flow
across the grooves and a flow in the direction along to the grooves resulting in improved
solution efficiencies. Fourier series are used for discretization in the direction transverse
to the grooves and Chebyshev expansions for the direction across the channel. Special
solvers that take advantage of the matrix structure have been implemented providing a
significant acceleration of computation and reduction of memory requirements. Various
tests have been conducted in order to illustrate the performance of the algorithm, to show
its spectral accuracy and to characterize the effects of various numerical and physical

parameters.
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Chapter 3

3 Mechanism of Drag Generation by Surface
Corrugation’

3.1 Introduction

As the first step of analyzing groove’s effects, it is essential to identify physical
mechanisms contributing to the formation of the drag. For this purpose, an analytical
solution to the problem of flow through a channel with transverse grooves in the form of
a single Fourier mode in the limit of long wavelength of the corrugation has been
determined and presented in this chapter. The analysis permits explicit identification of
the above mechanisms and provides a basic parametrization of the roles played by these
mechanisms. The solution can serve as a test for various numerical methods used in
modelling of roughness effects and provides a convenient reference case for refinement
of roughness modelling concepts based on the boundary slip. Section 3.2 provides
problem formulation for a channel with corrugation on one wall. Section 3.3 discusses
solution method. Section 3.4 provides discussion of flow properties in such a channel.
Section 3.5 presents solution for channel with corrugations on both walls. Section 3.6

summarizes main findings.

3.2 Problem Formulation

Consider pressure-driven flow in a channel bounded by a periodically corrugated lower

wall and a smooth upper wall shown in Figure 3.1. Flow is described by the continuity

2
A version of this chapter has been published as —

Mohammadi, A. & Floryan, J. M. 2012 Mechanism of drag generation by surface corrugation. Phys.
Fluids, 24, 013602.
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and Navier-Stokes equations,
V.v=0, 3.1
V-VYVV =-Vp+Re'VV, 3.2)

where V =(u,v) is the velocity vector and p stands for the pressure. The problem has
been scaled with the maximum of the streamwise velocity in a channel without
corrugation U,,, as the velocity scale, half of the average channel height K as the length
scale and ,()Umax2 as the pressure scale where p denotes the density. The Reynolds number

is defined as KU,,/v where v stands for the kinematic viscosity. The boundary

conditions at the walls have the form
V=0 at y=y,=1 and y=y, =—1+Acos(ax), (3.3)

where A and « denote the corrugation amplitude and the wavenumber, respectively.
Formulation is closed by imposing either the fixed flow rate constraint (3.4) or the fixed

mean pressure gradient constraint (3.5) where either Q; or h; are prescribed, i.e.

Yu

’ 4
0= [utx,y)dy=—-+0, (3.4)
9 2
o R 65)

—1+Acos(ax)

Figure 3.1: Sketch of the flow system.
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3.3 Solution method

In order to solve problem (3.1)-(3.5), introduce transformation in the form
S=ax, (3.62)

_ y-1
1—Acos(ax)/2

n 1, (3.6b)

where (3.6a) defines a slow scale and (3.6b) regularizes the solution domain. The field

equations take the form

2 2 2
U _p g O gy O g0 e M g P g P (37

o’ 'ony on T op ‘dfnp Ca& o9& “of oy

o%v v v v oy d%v v op
-——-F—+Fu—+Fyv——F, ——-F,—+Fu—+F,—=0, 3.7b
8772 1 877 2 uan 3v877 48@77 5 852 Gu aé 3 an ( )
ou ou v
o—+F,—+F,—=0, )
Y 1 an 12 an (3.7¢)
where F = (—aF,F,+2F})(n-1)/F,, F,=Re F,/2a), F, =2Re F,/F,,
F, =2aF,F,(n-1)/F,, F,=a’F/F,, F,=Re F,/a, F,=4+F (n-1),

F,=2—-Acos(&), F, = Aasin(), F, = Aacos(&), F, =—F,(n—1)/F,, F,=2/F,. The

boundary conditions and the constraints can be expressed as

V=0 at n=4I, (3.8)
i F; 4
0= j?fﬂu(f,n) dn=2+0,. (3.8b)
-1
) 2
é :—R—€+hl. (38C)




Assume solution in the form of expansions
u=u,+aou +0’),
v=y,+av+0(a’),
p=a'p,+p,+0(a),

substitute into the governing equations, take the limit

order terms to get:
o(d):

d’u, ReF; dp_
—~ +
on’ 4 of

=0,

dp_
it o
an

9

Iy

:0,
on

0(ad):

’u, ReAsin)(n—1)F, du, ReF, du, ReF;
- Uy—+——v,—+
on 4 on 2 a7 4

apo
o
an

b

du, Asin(§) (7 —1) du, +£%_

oG Fy an  Fydn

Solution of the above system has the form

WETTs e T
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(3.92)
(3.9b)

(3.9¢)

o—0 and retain the two leading-

(3.10a)
(3.10b)

(3.10c)

2
Mo RF o 311w

(3.11b)

(3.11¢)
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uy=M [1-Acos(&) /2] 1-n?), (3.12a)
u, =05Re M*Asin(&)[1- Acos((:)/z]‘l(—in6 + 1774 —Enz +i) (3.12b)
: 30° 67 70 210" '

v, =0, (3.13a)
v, =05M Asin(&)[1- Acos(&) 2] (-n* + >+ 1), (3.13b)
‘Lig =—H[1-Acos(&) /2], (3.14a)
dpy 120, 0ol 5

FRET M*?Asin(&)[1- Acos(E) /2], (3.14b)

p. =—HQ2+A/4) (1- A/4) > arctan|(1 + A/2)"> (1- A/2)™* tan(& /2)]
+025HAsin(&) [L5Acos(&) + A2/4— 4](1— A2/4)2[1 - Acos(£)/2] (3.152)
—H 2+ AY4)(1- A/4)™ | (£ +m)/(2m) |,

Do = % M 2{— [1- Acos(&)/2]” +(1-A/2)> } (3.15b)

where pressure has been normalized to have p=0 at £=0 and | |is the floor function
which is added to remove spurious discontinuities associated with the inverse tangent

function  (Jeffrey & Rich 1994). In the above, M=1+30;/4 and
M =(—-Reh/2)(1-A*/4)"*(1+ A?/8)"" for the fixed flow rate and the fixed mean

pressure gradient constraints, respectively, and H =2M/Re .

3.4 Validity of solution and flow properties

In order to assess the validity of the above solution, system (3.7)—(3.8) has been solved

numerically using spectral discretization based on the Fourier expansions in the ¢&-
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direction and the Chebyshev expansions in the 7-direction (Husain & Floryan 2010;
Mohammadi & Floryan 2012A; also Chapter 2). Computations have been carried out

with a near machine accuracy. The error has been defined as a norm in the form

q,(&E.m—q.(E,m)

||q = sup

—n<é<n,—1<p<1

’ (3.16)

max

"n_n

where ¢ stands for any flow quantity, and subscripts "a" and "c¢" correspond to values
determined using the asymptotic solution and computed on the basis of the complete
solution, respectively. Results displayed in Figure 3.2 for the y-velocity component,
which exhibits the largest error, demonstrate that the range of validity of Eqs (3.12)-
(3.15) extends up to a=0(1) if Re is small (Re=0.1); at Re=1000 this range decreases to
a=0(107"). For a small enough the error decreases proportionally to ¢/. Distributions of
u and v illustrated in Figure 3.3 provide additional information about the magnitude of

the error.

Wl

Figure 3.2: Variations of the norm ||v||maX (see Eq. (3.16)) as a function of the corrugation

wavenumber ¢ expressed in for the flow Reynolds numbers Re=1000 (solid lines) and Re=0.1

(dashed-dotted lines) for the fixed mass flow rate constraint (Q;=0).
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Figure 3.3: Distributions of the x- and y-velocity components, i.e, u/c and v/(c¥c), as a function
of n7at &= 1/2 for the corrugation amplitude A = 0.2 for the flow Reynolds numbers Re = 0.1 and

Re = 1000 for the fixed flow rate constraint (Q;=0). In the above ¢ = M[l—Acos(¢)/2] . Solid

and dashed lines identify numerical and asymptotic solutions, respectively.

Explicit evaluation of the mean pressure gradient in the case of the fixed flow rate

constraint (Q=0) is of interest, i.e.

dp_,

dg

1 Fdp_ 2 2 4, 4\=5/2
= [Padg == (14 AY/8) (1- A'/4), .
2njd§ §=l )( ) (3.17)

mean -7

dp,

dg (3.17b)

mean

Similarly, evaluation of the flow rate in the case of the fixed pressure gradient constraint

(h1=0) leads to
0=4/3 M. (3.18)

The drag is generated solely by viscous shear in the case of smooth walls. The situation is
different in the case of corrugated walls as pressure begins to play a role and generates

pressure drag. Corrugation also alters distribution of shear stress and increases the wetted
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surface area, and this leads to changes in the shear drag. We shall now evaluate all

components of the drag.

Distribution of the x-component of shear acting on the fluid at the lower wall has the
form

dF

X, visc

=—2Re™ M [1-Acos(&) /2] + 0{% M*Asin(E)[1- Acos(&) /2] +0(@?),  (3.19)

its distribution is illustrated in Figure 3.4 and its integration over one corrugation period

gives the total viscous force

F

X, Visc

=—4na'Re”'M (1-A*/4)7"* +O0() . (3.20)

The second term in Eq. (3.19) does not contribute to the total force. Distribution of the x-

component of the pressure force acting on the fluid at the lower wall has the form

dr. .=Alp, +op,+0(a)]sin(&) (3.21)

X, pres

and its distribution is illustrated in Figure 3.4. The total pressure force can be evaluated
through numerical integration of Eq. (3.21). It is instructive, however, to replace dp_,/d&
in Eq. (3.14a) with its Fourier expansion and integrate this expansion with respect to & to

arrive at a more convenient analytical expression for the pressure, i.e.
p=—HA+A/8)(1-A%/4)"?¢& —% HA(1— A*/4)™?sin(&E) +---. (3.22)

Integration of Eq. (3.21) over one corrugation period, say from yto y+2n, with p_;

expressed by Eq. (3.22) shows that terms omitted in Eq. (3.22) as well as py do not

contribute to the total force. The total force has the form

Fopos = Fopn + Fonr = 107 2AH (14 A%/8) (1- A2/4)> Jcos(p)

(3.23)
—a'15A’Hr(1- A*/4)7? + 0(),
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where the first term is associated with the mean pressure gradient acting on the obstacle
(corrugation) and thus we shall refer to it as the "form drag". The form drag is a periodic
function of y with the amplitude defined by the curly bracket. A corrugation segment
having appearance of a single "hill" within one wavelength (= —m) gives the net force in
the negative x-direction, a segment that has the form of a single "valley" (y= 0) gives the
net force in the positive x-direction, while a segment involving a combination of a "hill"
and a "valley" within one wavelength (¥ = *m/2) produces zero form drag. These
variations of the form drag need to be accounted for in interpretation of any experimental
measurements as the form drag will likely reduce the total drag in the case of a
corrugation in the form of a depression while it will increase the total drag in the case of a

corrugation in the form of a bump.

-1.4 T T T 0
-1.6 4-0.2
8 -1.8; N / 04 g
= a=0.01, =
Eé -2F Re=1000 J0.6 %
¥% a—0 ;Q
V V
& 20t N 0.8 %
\ a—0
241 605, =001, N\ \>-\_ /7 a=0.5, I
Re=0.1 Re=1000 Re=0.1
_2'6-11: -m/2 0 /2 w12

Figure 3.4: Distributions of the x-component of surface stresses at the lower wall for the
corrugation amplitude A = 0.2 for the flow Reynolds numbers Re = 0.1 and Re = 1000 for the
fixed flow rate constraint (Q;=0). Solid and dashed lines identify numerical and asymptotic

solutions, respectively.

The second term in (3.23) arises out of an interaction of the periodic part of p_; with the
wall geometry and thus we shall refer to it as the "interaction drag". The part of the

pressure field that gives rise to the "interaction drag" is proportional to sin(¢{) (see
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Eq.(3.22)) while the corrugation shape is described by cos(&); m/2 shift between both
distributions results in the interaction drag. The interaction drag does not depend on the

location of the test segment of the corrugation (it does not depend on ).

Distribution of the y-component of viscous forces acting on the fluid at the lower wall has

the form
— . —2
dF, .. =20Re” MAsin(&) [l - Acos(£) /2] +0(a”) (3.24)

and its integration over one period results in F

y,visc

= 0(«) and demonstrates that viscous

forces do not contribute to the total y-force at the this level of approximation.

y,pres

dF

(@*Re)*

-T -1t/2 0 /2 T

Figure 3.5: Distributions of the y-component of pressure (& * Re)*dF ., at the lower wall for
corrugations with the amplitude A = 0.2 for the flow Reynolds numbers Re = 0.1 and 1000 for

the fixed flow rate constraint (Q; = 0). Solid and dashed lines identify numerical and asymptotic

solutions, respectively.

Distributions of the y-component of the pressure force is given as

dF, =a'p_ +p,+0(Q) (3.25)

¥, pres
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and its distribution is illustrated in Figure 3.5. Equations (3.15) and (3.22) show that only

the linear term from p_; as well as py bring nonzero contributions to the total y-force, i.e.

F =20 Hrn(y+mn)(1+A*/8)(1—-A*/4)>"*

y.pres
24

(3.26)
—ga‘len[(l—AZM)‘m —(1-A/22]+ 0@ .

The reader may note the linear dependence of F ., on ¥

We shall now consider forces acting at the upper wall. Distributions of the x-component
of the local viscous forces dG; i as well as the total viscous force Gy, are same as at
the lower wall, i.e. dGyisc=dF} visc » Gxvise=Fxvisc. Pressure does not generate any forces
in the x-direction and generates force in the y-direction that is equal and opposite to the

pressure force at the lower wall, i.e. Gy pres = 0, Gy pres = —F) pres.

It is instructive to discuss in details the case when the flow rate is fixed at Q=4/3 (Q,=0).
The mean pressure gradient computed from Eq. (3.17) has the form
dp 2 2

D =i as) a-ava o), (3.27)

mean

where the curly bracket accounts for the increase of losses due to the presence of the
corrugation. Balance of forces acting on a control volume extending over one wavelength
and corresponding to y=—T gives the total pressure force F,; acting between the left and

right control surface as

F, = a‘1%+{a‘1%(1+A2/8) (1-A/4)7"2+A) -a %} (3.28)

This force is opposed by the shear force F acting at the upper and lower walls

F =a‘18—n+a‘18—n

= e {a- a4y 1}, (3.29)

by the force Fy,, due to the form drag
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F

form

=q’ % (1+A%/8)(1—-A*/4)™"? (3.30)
e

and by the force Fj,., due to the interaction drag

- 3A’m

inter

R—e(l—A2/4)‘5/2. (3.31)
Curly brackets in (3.27)—(3.29) account for the corrugation effects. Results displayed in
Figure 3.6 demonstrate that the total drag increases rapidly with an increase of the
corrugation amplitude (curve 1). The largest part of this increase comes from the form
drag (curve 3), followed by the interaction drag (curve 4), and the smallest comes from
the re-arrangement of the viscous drag (curve 2). Linearization in terms of the
corrugation amplitude eliminates interaction drag and changes in the shear drag (see Eqs
(3.29) and (3.31)); the range of applicability of such linearization can be judged from data
displayed in Figure 3.6. The same figure also displays variations of the difference
between the total drag force in the corrugated and smooth channels Fiy,;; (curve 5) and
variations of the difference between the total shear force in the corrugated and smooth
channels F; (curve 6). It is clear that majority of the new drag is associated with the
pressure effects. A more explicit presentation involves use of fractions of the total drag

generated by the form, interaction and viscous drag defined as

fform = (Fform/F;oml )*100 4 (3323.)
-f;nter = (F;‘nter/F;oml )*1 00 ’ (332b)
[ =F/F,,)*100 (3.32¢)

and displayed in Figure 3.7. Contributions of the pressure form and interaction drags
increase to the level of 35% and 23% of the total force, respectively, when the
corrugation amplitude reaches value A=1. The form drag, the interaction drag and the
additional viscous drag are responsible for 45%, 30% and 25% of this increase. The

rapidity of drag increase with the corrugation amplitude places limits on the use of
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linearization procedures based on the magnitude of the corrugation.

i curve 1

4

(RelA)*Force

Figure 3.6: Variations of the total force per unit channel length (Re/A)*F,,, and its various
components (see Egs (3.28)—(3.31)) as a function of the corrugation amplitude A. Curves 1, 2, 3,
4, 5 and 6 correspond to (Re/A)*F iy, (RelA)*Fy, (RelA)*Fom, (RelA)*Fiyer, (RelA)*F i1 and
(RelA)*F,;. Dashed lines illustrate results of small-A linearization of the total and form drags.
Solid lines correspond to corrugation placed on one wall only. Dashed-dotted lines illustrate

situation with corrugations placed on both walls (see Section 3.5).

100

190
180
170 =

160

Figure 3.7: Variations of fractions of contributions of the form, interaction and friction drags (see
Eq. (3.32)) to the total drag as functions of the corrugation amplitude A. Solid and dashed-dotted

lines correspond to the corrugation placed on one wall only and placed on both walls,

respectively.



77

3.5 Corrugations at both walls

The analysis is generalized by adding corrugation to the upper wall. Boundary conditions

(3.3) change to
V=0 a y=y,=1+Bcos(ax+¢) and y=y, =—1+Acos(ax), (3.33)

where B and ¢ stand for the amplitude and phase shift of the upper corrugation,

respectively. Transformation (3.6) changes form to
§=ar, (3.34a)

_ y—1—Bcos(ax + ¢)
4 1+ Bcos(ax+¢@)/2— Acos(ax)/2

+1, (3.34b)

which leads to coefficients in Eqs (3.7a)—(3.7c) in the form F, =-a’(2F,F,,— F,F,,)/ F,,
F,=ReF,/2a), F,=2ReF,/F,, F,=2a’F,F,/F,, F,=a’F;/F,, F,=ReF,/a,
F,=4+a’F), F,=2+Bcos(+¢)— Acos(§), F, =Bsin(E+@)(n+1)— Asin(E)(-1),
F, =Bcos(E+@)(n+1)—Acos(E)(n—1), F, =aF, /| F,, F,=2/F, and
F,, =—Bsin(¢ + @) + Asin(£) . The boundary conditions and the constraints in the (& 7)-

system are given by Eqs (3.8a)—(3.8c). Use of asymptotic expansion (3.9) leads to

equations in the form

B d’u, N ReF; dp_, _

o(d): s 920 (3.35a)
J
;’; =0, (3.35b)
ov
a—,;=0’ (3.35¢)



R N ReF,F, du, N ReF, Odu, N ReF; du, ReF; dp,

o)

Py _
on

ou, F,ou, 2 dv
0§ F on F;on

Solution of the above system has the form

u, =M (F,/2)"'(-n%),

u =05Re M 2E3(F8/2)‘1(—$f7" +%’74 _%ﬂz +

v, =0,

v =05M (Fy/2)"'[Bsin(§ + @)’ +n° —n =1+ Asin(§)(=17° +17° +17-D)],

dp_, -3
—=-H(F,/2)",
aE (Fy/2)

dp, 12, -3
0 2 MPF (F/2)7,
dé 35 n (F/2)

_HQ+A*+B%)

on’ 4 on 2 i on

:O’
x "o o

Py = —arctan[(l—\/ A2 +B))"2(1+A*+B*)™* tan(&2 —arctan(B, A)/2)

(1_22 _EZ)S/Z

_05H A% + B? sin(& —arctan(B, A))[-3V A% + B2 cos(& —arctan(B, A))+ A + B> — 4]

(1—A?=B*)*[1++A” + B? cos(& —arctan(B, A))]

_Hn(2+A’+B’)

5" L(g —arctan(B, A)+ n)/(Zn)J ,

12 )
Do =—§M2(F8/2) >+,
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(3.36a)

(3.36b)

(3.36¢)

(3.37a)

(3.37b)

(3.38a)

(3.38b)

(3.39a)

(3.39b)

(3.40a)

(3.40b)
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where A =Bcos(#)/2—A/2, B=-Bsin(@)/2, c,=12M*(1+A)>/35-a"'p_(0)

corresponds to pressure normalization p=0 at £=0, | |is the floor function which is added

to remove spurious discontinuities associated with the inverse tangent function (Jeffrey &
Rich 1994), M=1+30,/4 and M =(1-Reh/2)(1— A2—BY*(1+A*/2+B*/2)™ for the
fixed flow rate and the fixed mean pressure gradient constraints, respectively, and

H =2M/Re .

Distributions of the x-components of shear acting on the fluid at the lower (dFy.,is.) and
the upper (dG;.,isc) walls have identical forms, i.e.

8

df .. =dG, . =-2Re' M (F/2)" + aﬁM ‘FL(F/2)7 +0(a”) (3.41)

X,visc X, Visc

and their integration over one corrugation period gives the total viscous forces in the form

F =—dna'Re'M(1-A>-B>)"* +0(a). (3.42)

X,Visc

=G

X,visc

Distributions of the x-components of the pressure force acting on the fluid at the lower

(dFpres) and the upper (dGy ) walls have the form

dF pres = A Sin(f)[p—l + apo + 0(&2 )] ) (3433.)

dG, ., =—Bsin(§+@)[p_, +ap, +O0(a’)]. (3.43b)

Determination of the total pressure force starts with replacement of dp_;/d& in (3.39a) by

its Fourier expansion followed by integration with respect to &resulting in

p=—H(Q1+A%/2+B*/2)(1- A> =B*)™*E+3HA(1— A> — B*)™*sin(¢)

- e (3.44)
—3HB(1-A*-B*) ™" cos(&)++-+c, ,

where c_; is the integration constant. Similarly, po in Eq. (3.40b) is replaced by its Fourier

expansion



80

Do = —%Mz(l—ﬁz —B*)™?[1-2Acos(E) = 2B sin(E) +---]+¢, . (3.45)

Integration of Eq. (3.43) from yto y+2rn with p_; and py expressed by Eqs (3.44) and

(3.45) gives the total pressure forces in the x-direction, i.e.

F_ =na'HA(1-A>—B*) ™2+ A%+ B*)cos(y)

x,pres

1 12 p2\-5/2 % 24 2 12 p2\3/2 p (3.46&)
+3na ' HA(1- A= B?) A+§11;M A(1-A*-B)*?B+0(a),
G, =—na 'HB(1- A’ —B*)™?(2+ A* + B*)cos($+ %)
—3no ' HB(1- A* — B*)™"*[Acos(¢) — B sin(¢)] (3.46b)
24

—ganB(l — A* = B>)™?[Asin(@) + B cos(9)]+ O() .

The first terms in both Eqs (3.46a) and (3.46b) are associated with the mean pressure
gradient acting on the corrugations (form drag), whereas the second and third terms arise
out of interactions of the periodic parts of p_; and py with the wall geometries (interaction

drag), respectively.

Distributions of the y-component of viscous forces acting on the fluid at the lower

(dFy,yisc) and the upper (dG,,is.) walls have the form

dF

y,visc

=2a Re”'MAsin(E)(F/2)” +0(a?), (3.47a)

dG, .. =2aRe'MBsin(é+¢)(F/2)” +0(a’) (3.47b)

y,visc
and their integration over one period results in

F

y,visc

=—4nRe 'MA(1-A*-B)* B+ 0(a), (3.48a)

G,  =-4nRe'MB(1—A®-B*)>"*[Bcos(¢)+ Asin(@)]+ O(). (3.48b)

y,visc
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The reader may note that F) ;. is O(1) for two corrugations but O(a) for a single
corrugation (see Eq. (3.24)). Transition between both cases can be followed by taking
B=0(@). Distributions of the y-component of pressure force acting on the fluid at the

lower (dF),,.s) and the upper (dGy, ;) walls have the form

dr, ~=-dG, =a'p +p,+0@), (3.49)

Y, pres y,pres

and numerical integration is required in order to determine the total force as the

normalization constant c_; in Eq. (3.44) cannot be evaluated explicitly.
The mean pressure gradient for the fixed flow rate constraint (Q;=0) is given explicitly as

- —R1+Ri{1—(1+ 2+ B2 2)1- A - By o). (3.50)
e e

dp
dx

mean

Balance of forces acting on a control volume extending over one wavelength and
corresponding to y=-m gives the total pressure force Fj,, acting between the left and

right control surface as

=a %’Z+{a—l %(1+AZ/2+§2/2) (1-A* = B*)™*[2—Bcos@) + A]-a %’Z} (3.51)

F

total
This force is opposed by the shear forces F acting at the upper and lower walls
- A - By -1, (3.52)

by the force Fy,» due to the form drag

L4z

F -
Re

o = O (1+A%/2+B*/2)(1- A* = B*)™"*[- Bcos(p) + A] (3.53)

and by the force Fj,,, due to the interaction drag
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F.o=a 0= 32— By >*{B[A cos(@) - Bsin(@)]- AA]
Re (3.54)

+%(1_;{2 _§2)—3/2{B[A sin(¢)+§COS(¢)]—A§}-

Curly brackets in Eqgs (3.50)—(3.52) account for the corrugation effects.

Results displayed in Figure 3.8 demonstrate that the total drag can change by a factor of
~3.5 due to change in the phase difference between the upper and lower corrugations.
The largest drag is generated by corrugations being out of phase (¢=m). Increase of
corrugations' amplitudes results in a much more rapid drag increase when compared with
a single corrugation. This process is illustrated in Figure 3.6 for A=B and ¢=m. The reader
may note that forces in a channel with one corrugation with amplitude A are identical to
forces in a channel with two corrugations with amplitudes A/2 each and phase shift ¢=m.
Variations of fractions of the total drag illustrated in Figure 3.7 follow the same
functional relations for single and double corrugations, with a much more rapid increase

of drag for the double corrugation.

—_
(=)

(RelA)*Force

~

0 2 T 32 on
¢

Figure 3.8: Variations of the total force per unit channel length (Re/A)*F,,, and its various
components (see Eqgs (3.51)—(3.54)) as a function of the phase difference ¢ for the corrugation
amplitudes A=B=0.5. Curves 1, 2, 3, 4, 5 and 6 correspond to (Re/A)*F,u., (Re/Ad)*F,,
(RelA)*Formy (RelA)* Fipsery (ReIA)*Frorar1 and (Re/A)*F 1, respectively.
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3.6 Summary

Drag generated by periodic corrugation has been determined analytically in the limit of
long corrugation wavelength. Three physical mechanisms have been identified, i.e. the
additional shear drag due an increase of the wetted surface area and the re-arrangement of
the shear stress distribution, the pressure form drag associated with the mean pressure
gradient, and the pressure interaction drag associated with the phase difference between
the surface geometry and the periodic part of the pressure field. The total drag increases
rapidly with increase of the corrugation amplitude, with the form and interaction drags

contributing up to 45% and 30% of this increase, respectively.
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Chapter 4

4  Pressure Losses in Grooved Channels®

4.1 Introduction

Identification of mechanisms of drag generation by long wavelength grooves presented in
the previous chapter simplifies identification of similar mechanisms contributing in the
formation of drag by arbitrary grooves which is the focus of this chapter. A systematic
analysis of one class of surface corrugations, i.e. two-dimensional grooves of arbitrary
shape with an arbitrary orientation with respect to the reference flow is presented in this
chapter. These grooves are placed in a channel where a laminar flow is driven by a
constant pressure gradient. Their effect is assessed by determining the additional pressure
gradient required to maintain the same mass flow rate as in the smooth channel. The
Reynolds number is kept sufficiently small in order to assure stability of such flow and
thus remove the issue of the laminar—turbulent transition. The problem formulation is
presented in Section 4.2. The method of solution is discussed in Section 4.3. It is
demonstrated in Section 4.4.1 that there is a superposition of effects associated with the
presence of the grooves: that due to a change of the mean position of the wall, and that
due to the flow modulations associated with the shape of the grooves. The former effect
can be determined analytically while the latter requires numerical modelling. Section
4.4.2 demonstrates that the reduced-order representation of the geometry provides an
efficient method for extraction of geometry features that have a dominant effect on the
drag associated with flow modulations. Section 4.4.3 describes a general parametrization
of the modulation problem and concludes that grooves placed transversely to the flow

produce the highest drag while the same grooves placed longitudinally produce the

3 A version of this chapter has been published as —

Mohammadi, A. & Floryan, J. M. 2013 Pressure losses in grooved channels. J. Fluid Mech. 725, 23-54.
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lowest drag. Section 4.4.4 is focused on the analysis of transverse grooves and explores
the small- and large-wavenumber limits of the grooves. The potential for creation of a
low-drag surface through trapping of separation bubbles in the grooves is discussed.
Section 4.4.5 discusses longitudinal grooves and demonstrates the potential for drag
reduction in the small-wavenumber limit in spite of an increase of the wetted surface
area. The same section discusses the flow behavior in the large-wavenumber limit and
demonstrates the potential for creation of a low-drag surface through elimination of fluid
movement through the troughs. Section 4.5 provides a short summary of the main

conclusions.

4.2 Problem formulation

Consider flow in a straight channel bounded by smooth walls and driven by a pressure
gradient along the x-axis (see Figure 4.1). Replace the smooth walls with grooved walls,
with the grooves being two-dimensional with an orientation defined in terms of the
inclination angle ¢ formed by the groove ridges and the z-axis. We shall refer to grooves
corresponding to @¢=0° as transverse grooves, ¢=90° as longitudinal grooves, and
0°< ¢ <90° as oblique grooves. The arbitrary groove geometry can be expressed in a
groove-oriented reference system (X,y,7Z) (see Figure 4.1) in terms of Fourier

expansions in the form

n:NA ~ e
yp(E) =1+ D He"™, (4.1a)
n==N,
n=N, - o
y(B)=—1+ D H"e"™, (4.1b)
n=—N,

where the subscripts U and L refer to the upper and lower walls, respectively, the X -axis
is perpendicular to the groove ridges, H{" =H ™, H™ =H™", stars denote the

complex conjugates, N4 is the number of Fourier modes needed to describe the groove

geometry, & stands for the wavenumber in the X -direction and all quantities have been
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scaled with half of the average channel height K as the length scale. The quantities with
an over-tilde refer to the groove-oriented reference system. The transformation between
the flow-oriented and the groove-oriented systems has the form X = xcos(¢)— zsin(@),
7 = xsin(@) + zcos(@d), a=dacos(¢) and S =dasin(¢), where @ and f indicate the

groove wavenumbers in the x- and z- directions, respectively.

yy(x2)
gl - Reference flow
| direction
y=0+
y=-14 __ i
Lot "y (%:2)

e

Figure 4.1: A channel with grooved walls. Here (x,y,z) and (X,y,Z) are the flow-oriented and

the groove-oriented systems. The inclination angle ¢ shows the relative orientation of the two

systems.

The flow between smooth walls is taken as the reference flow; it has the form

Vo(y) =[uy, vy, wo1=[1-y%,0,01, (4.2)

po(x)==2Re 'x+c, (4.3)
1 =2 y=1 4

0. =7 f fuo(y)dy dz=§, (4.4)

z z=0| y=-1
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where V, is the reference velocity vector, p, is the reference pressure, ¢ denotes an
arbitrary constant, Q, is the flow rate per unit spanwise width, the maximum of the

dimensional streamwise reference velocity is used as the velocity scale U,y , ,()U,mm2 is
the pressure scale where p denotes the density, and the Reynolds number is defined as

KU,./v where v stands for the kinematic viscosity.

The presence of grooves results in a three-dimensionalization of the original two-
dimensional flow. The velocity and pressure fields can be expressed in the (X,y,7)

system as

V(%) =[#(%,y),7 (X, ), WF, 0] =V,(») +V,(F,y)

- - - - o 4.5)
=[uy(y) +uy (X, ),V (X, y), Wy (y) + Wi (X, ¥)] ,

P(X)=py(X,2)+ p,(X,y.2) = p(X, D) + e X + h:Z +4(X, y) (4.6)

where h; and h. denote modifications of the mean pressure gradient in the X - and 7 -

directions, respectively, ¢(X,y) describes the X -periodic part of the pressure

modifications, and the reference velocity and pressure fields take the form
ity (y) = (1~ y*)cos(9), Wy (y) = (1= y?)sin(g) and

Po(%,Z2)=-2Re" [% cos(#) + Z sin(#) ]+ ¢ . The field equations have the form

9l +9,7, =0, 4.7)
01,0+, + %0 i, + V,Dill, + 1,00, = —h, — 0§ + Re”'V"il,, (4.8)
{0,057, +7,0,7, +,0:¥, = -9, + Re'V’¥, (4.9)

i,0:W, + 7,051, + VDV, +ii,0: W, =—h. + Re”'V*,, (4.10)
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where V2 = dz; +0,, and D=d/dy. Equations (4.7), (4.8), and (4.9) can be solved

separately from (4.10) in the case of fixed flow rate constraints considered in the present

work (for details see Chapter 2). The boundary conditions take the form

Uy (3, (X)) = =ity (v, (X)), (4.11a)
(¥ (%) =0, (4.11b)
Wi (yy (X)) ==w, (¥, (X)), (4.11c)
Uy (y, (X)) ==ty (y, (X)), (4.12a)
Vi(y, (X)=0, (4.12b)
Wy (v, (X)) = -y (¥, (X)) (4.12¢)

The volume flow rate constraints can be expressed in the (X, y,Z) system in the form

Q; =(4/3+0,,)cos(9) -0, sin(9) , (4.13a)

Q. =(4/3+Q,,)sin(@) + Q,_cos(9), (4.13b)

where Q. and Q. are the flow rates per unit width in the X- and Z -directions,

respectively, and Q, and Q; are flow rates in the x- and z-directions defined as

=1, y=yy(x,2) =4, y=yy(x.2)

_ _ 4
Q. =4 I ju(x, v, 2)dydz = 2 j j [ty () 1, (%, y, D)ldydz ==+ Oy, (4.14)
z=0  y=y.(x,2) =0 y=y,(x,2)
x=A, y=yy (x.2) x=A, y=yy (x,2)
Q.= /'i;l J‘ jw(x, v, 2)dydx = /1;1 j jwl (x,y,2)dydx=Q,.. (4.15)
x=0  y=y;(x,2) x=0 y=y;(x,2)

The modification flow rate Q, could be used as a measure of the ability of the grooves to

increase or decrease flow resistance and Q,, could be used to measure the ability of the
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grooves to turn the flow in the grooves' direction. In the current work, both Q, and

Q,, are set to zero and the pressure gradient modifications 4, and &, required to maintain

the same flow rates in both directions with and without grooves are used to assess the

effectiveness of the grooves. The pressure gradient corrections in the (X, y,Z) system are

related to the pressure gradient corrections in the (x,y,z) system as

h, = h; cos(@) + h. sin(@) and h, = —h. sin(@) + h. cos(@) .

Equations (4.7)—(4.9) with boundary conditions (4.11a,b) and (4.12a,b) and with
constraint (4.13a) form a complete system and its solution describes a two-dimensional

motion in the (X,y) plane. The flow in the Z -direction is described by the solution of

(4.10) with the boundary conditions (4.11c) and (4.12c) and the constraint (4.13b).

4.3 Method of solution

It is convenient to introduce the stream function defined as

PO (4.16a)
W =(=y I3+ y+2/3)cos(d), (4.16b)
i,=9%, (4.16¢)
5 =-0.9,, (4.16d)

where ¥y, W1 and YW are the stream functions of the reference flow, the flow
modifications and the total flow in the X -direction, respectively. Substitution of ¥'; into

(4.8)—(4.9) and elimination of the pressure results in

ii,0.V’W, —-D*i,0. ¥, — Re"'VW,

—— —— —— —— 4.17
= 0 [0 {T,T, ) + 9 7, )1+ 35[0, (@7, ) +9 {77 }] . 17)
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where the curly brackets denote the velocity products. The boundary conditions are
specified by (4.11a,b) and (4.12a,b), the total stream function is set to zero at the lower

wall as a normalization condition, i.e.
P(y, (X)) =Y (y, (X)+¥ (v, (¥)=0, (4.18)

and the problem formulation for the flow in the (X,y) plane is closed by imposing the
flow rate constraint (4.13a) in the form
7= y=yy (%)

0. =" [ [l () +,(F, Y)dydZ =¥, (v, () + ¥, (v, (F), (4.19)

=0 y=y (X)

where advantage was taken of the normalization condition (4.18). Insertion of (4.13a)

leads to the specification of ¥, at the upper wall, i.e.
¥ (yy (X)) = =¥, (yy (X)) +(4/3+Q,, ) cos(@) — O, sin(9) . (4.20)

The flow in the 7 -direction is described by (4.10), which is written as
0, W, 0w, —0;¥, 0, W, +il,0;W, —Re”'V’W, +h. =9,¥, Dw, 4.21)

to underscore its linearity in w,, and is subjected to boundary conditions (4.11c) and

(4.12¢), and the flow rate constraint (4.13b).

The above problems were solved using a spectral discretization method based on the
Fourier expansions in the X -direction and the Chebyshev expansions in the y-direction.
The problem of irregularity of the solution domain in the y-direction has been overcome
by the use of the immersed boundary conditions (IBC) method (explained in Chapter 2).
This method relies on the use of a fixed computational domain extending in the y-
direction far enough so that it completely encloses the grooved channel (see Figure 4.1)
and imposition of flow boundary conditions is carried out through specially constructed

boundary relations.
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The solution process consists of two steps, i.e. solution of the nonlinear problem (4.17)

subject to conditions (4.11a,b), (4.12a,b) and (4.20) to determine flow in the (X, y) plane,

and the follow up solution of the linear problem (4.21) subject to conditions (4.11c),

(4.12¢) and (4.13b) to determine flow in the (y,Z) plane. The former problem is solved

using an iterative technique; efficient solution methods for the latter problem are

discussed in Chapter 2.

In order to verify the numerical results, we solve the same problem using the domain
transformation (DT) method (see Appendix E). Here, the flow domain is analytically
mapped onto a regular computational domain, the field equations are discretized using
the same spectral method as described above, and the boundary conditions are imposed in
the classical way as the computational and flow domains overlap. The IBC method is
computationally significantly faster but the DT method is more convenient for

explorations of various limits of interest in the interpretation of results.

4.4 Discussion of results

A pressure gradient needs to be applied along the channel in order to produce a desired
flow rate. We shall refer to this pressure gradient as a pressure loss. The introduction of
grooves may increase or decrease this pressure loss depending on the groove geometry,
amplitude, orientation and flow conditions. A spanwise pressure gradient may have to be
introduced in order to counteract the flow turning tendency associated with orientation of
the grooves. The main objectives of this analysis are (i) to determine the role played by
all these factors in affecting the pressure loss and (i) to determine the flow turning ability
of the grooves. Both effects can be measured in terms of the additional pressure gradients
required in order to maintain the same flow rate in the x-direction and in order to prevent
any flow rate in the z-direction, i.e. h, and h,. A negative value of A, signals an increase
of the pressure gradient due to the presence of the grooves (increase of losses) as
compared with the smooth channel, while a positive value signals the opposite trend. A

positive value of A, signals a turning effect directed in the positive z-direction. This effect
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will have to be counterbalanced by the side walls and thus these walls will be exposed to

additional pressure forces.

Pressure gradients h,, h, are expressed for convenience in terms of friction factors defined

as
d 0

fo=m220 =220 =20 = o+ fs (4.222)
op

f.== % ==2h_=f,., (4.22b)

where f, denotes the total friction factor in the x-direction, fy, = 4/Re denotes the reference
friction factor for the smooth channel, and fi, and f;, refer to the modifications of the
friction factors in the x- and z-directions, respectively. Positive fi, corresponds to an
increase of pressure loss in the x-direction, and negative fj, signals a turning effect

directed in the positive z-direction.

Grooves may produce changes in the flow through two separate mechanisms: (i) a change
in the average channel opening; and (ii) spatial flow modulations induced by the groove

shape. We shall start the discussion with the former effect.

4.4.1 Effect of the average position of the grooves

Consider a channel with two flat walls located at y, =1 and y, =-1+S,, . Provision of

the same flow rate as in the reference channel (Q = 4/3) requires imposition of a pressure

gradient of magnitude

P _ —2Re'1-5,,/2)7". (4.23)
ox

The reader may note that the pressure and the lengths are scaled with pUmax2 and K,
respectively, where U, and K are the maximum velocity and half of the channel height

of the original smooth reference channel. This scaling makes the dimensionless pressure
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gradients for various channel heights directly comparable and fixes the Reynolds number.
The change of the pressure gradient generated by the change in the channel opening can

be easily evaluated as

)

=11 = =2Re fl-(-5 1273, .
=P opefi-1-5,,. /2] 4.24)

and expressed in terms of the friction factor as
fi*Re==2%h_*Re=—4[1-(1-S, /2)"]. (4.25)

We shall now add sinusoidal transverse grooves (inclination angle ¢ = 0°) to the lower

wall. The new geometry is described as
yo =1, (4.26a)
v, (x)==1+S_,+(S/2) cos(ax), (4.26b)

where S, S, and « define the height, the average position and the wavenumber of the

grooves (see Figure 4.2).

y:-l,—]_

y
1-'=OI—>

. _ff‘&m&ﬁ% i
LA VA

’ C

Figure 4.2: Sketch of the test configuration. The lower wall is fitted with sinusoidal transverse

grooves (¢ = 0°; see Eq. (4.26)) kept at the average positions S, = 0.03, 0, —0.03 in cases A, B

and C, respectively.
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Variations of the total pressure loss as a function of S for S, = 0.03, 0 and —0.03 (cases
A, B and C, respectively) are illustrated in Figure 4.3. Equation (4.25) yields the part of

the loss caused by the change of the mean channel opening as

Case A: f, *Re=0.1855,

Case B: f,, *Re=0, (4.27)

Case C: f, *Re=-0.1747.

The curves describing the total pressure loss are shifted by the amounts given by
Eq.(4.27) in the whole range of S considered, and this demonstrates that the effect of the
average position of the wall can be separated from the effect of the groove shape. The
total pressure loss therefore consists of the superposition of loss due to change in the
average wall position, which is determined analytically, and loss associated with groove
shape, which requires further analysis. The latter effect, which we shall refer to as the

flow modulation effect, is discussed in the next section.
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Figure 4.3: Variations of f;,*Re as a function of S for &= 0.1, 1, 5 for Re=0.01 (Figure 4.3A) and
Re=1000 (Figure 4.3B). Other conditions are as in Figure 4.2.



95

4.4.2 Shape representation

We wish to provide a general assessment of the flow modulation effects regardless of the
shape of the grooves. Since there is an uncountable number of possible shapes, the
problem has features of a contradiction, i.e. general conclusions may not exist as it is not
possible to check all possible shapes. We shall demonstrate that this contradiction can be
resolved using a "spectral" rather than a "primitive" representation of the grooves. The
term "primitive" refers to a shape specification in terms of a function of position, i.e. the
left-hand side of Eq. (4.1). The term "spectral" refers to projection of the function of
position onto the Fourier space, i.e. the right-hand side of Eq. (4.1). We shall demonstrate
that the Fourier series are rapidly converging and, in most cases, use of the leading
Fourier mode is sufficient to describe modulation effects with accuracy acceptable for

practical applications.

©

Figure 4.4: Sketch of the grooves used in the analysis. Triangular/trapezoidal, rectangular and

rectified (described by |sin(&x)|) shapes are shown in Figure 4.4A, Figure 4.4B and Figure 4.4C,

respectively.
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The validity of the above principle is illustrated through several examples. Figure 4.4
illustrates four shapes selected for testing, e.g. triangular, trapezoidal, rectangular and
rectified. All grooves were given the same amplitude S, the same wavenumber & and the
same inclination angle ¢ = 45°. Figure 4.5 displays variations of the friction factors in the
x- and z-directions, respectively, as a function of the number of Fourier modes N4
retained in the Fourier expansions representing these shapes. It can be seen that the
computed values of the friction factors converge very rapidly to the actual values, the
convergence rates are approximately the same for the x- and z-friction factors and do not
depend on Re in the range of Re considered in this analysis. The convergence is
noticeably slower in the case of rectangular grooves but this should not be surprising as
the relevant Fourier representation suffers from the Gibbs phenomenon; nevertheless, the

computed friction factor for Ny = 1 is still within 50% of the actual value.

(A) B)

Figure 4.5: Variations of f,*Re (solid lines) and f;,*Re (dashed lines) as functions of the number
of Fourier modes N, used to describe the groove geometry for Re=0.01 (Figure 4.5A) and
Re=1000 (Figure 4.5B) for grooves with S = 0.02, & =1, ¢ = 45° and shapes shown in Figure
4.4. Groove A: triangular shape (Figure 4.4A with a=b=m, c=0). Groove B: trapezoidal shape
(Figure 4.4A with a=b=c=27/3). Groove C: rectangular shape (Figure 4.4B with a=b=r). Groove
D: rectified shape (Figure 4.4C).
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The results presented in Figure 4.5 demonstrate that retention of only the leading Fourier
mode in the shape representation results in an error that is in most cases smaller than
10%. This observation forms the basis of the reduced-order geometry model where the
actual groove shape is replaced by its leading Fourier mode. The number of relevant
geometric factors is reduced to just three, i.e. the wavenumber &, the amplitude S and
the orientation angle ¢, and their role in drag generation needs to be determined. The
evaluation of the friction factors for any geometry is reduced to the determination of the
dominant Fourier mode in its Fourier representation and the use of the pre-computed
tables/diagrams. The rest of this analysis is focused on providing data for construction of
such tables/diagrams, i.e. it is focused on sinusoidal grooves. The reader may note that
such data approximates the performance of arbitrary grooves but is exact for sinusoidal

grooves.

One needs to be cautious when dealing with geometries that can be potentially subject to
Gibbs phenomenon, but even in such cases the above procedure provides an order-of-
magnitude estimate of the losses which might be sufficient in many applications. If a
10% error bound is not acceptable, one needs to carry out detailed calculation on a case-
by-case basis. Detailed analysis may also be required when assessing qualitative
properties of various shapes, e.g. symmetries. We shall come back to this question later in

the text.

4.4.3 Effect of the dominant geometric parameters

We shall now focus our attention on the roles played by the dominant geometric
parameters, i.e. &, S and ¢ and begin the discussion with a description of the overall

parametrization of the problem. We shall explore limiting cases in Sections 4.4.4 and

445.
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We take advantage of the reduced-order geometry model introduced in the previous
section and consider a channel with the lower wall fitted with sinusoidal grooves, with

the overall channel geometry described as

o =1, (4.28a)

Y. (X)=—1+(S/2) cos(&x) . (4.28b)

The mean channel opening is not affected by the grooves and thus all pressure losses

occur solely due to the flow modulations.

Figure 4.6 illustrates the variations of the pressure loss as a function of the orientation
angle ¢. The presence of the transverse grooves (¢ = 0°) results in an increase of the flow
resistance and, therefore an additional pressure gradient needs to be added to maintain the
same flow rate. As the grooves rotate away from this position and become more aligned
with the direction of the reference flow (x-direction), the flow resistance decreases. The

minimum resistance corresponds to longitudinal grooves (¢ = 90°).

The presence of oblique grooves creates a tendency for the flow to follow the direction of
the grooves. A spanwise pressure gradient (in the z-direction) must be added in order to
prevent net flow in that direction. This situation would occur in a channel with a finite
spanwise width as the side walls would prevent any net flow in that direction. The
maximum spanwise pressure gradient occurs for ¢ = 42° regardless of the groove
wavenumber and amplitude, and decreases to zero as the grooves approach either the

transverse or the longitudinal positions (see Figure 4.6).

In general, grooves with bigger & and larger S require higher additional pressure
gradients in order to maintain the same flow rates. This fact is well documented in Figure
4.7A displaying variations of the friction factors as functions of & and ¢ for fixed S, and
in Figure 4.7B displaying variations of the friction factors as functions of S and ¢ for
fixed & . The reader may note that the most rapid increase of f,*Re with an increase of S
and @ occurs in the case of the transverse grooves (¢ = 0°) and the fastest increase of

fi.*Re occurs for oblique grooves inclined with angle ¢ = 42° (see Figures 4.7A and
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4.7B). An increase of Re also increases the friction factors, with the most rapid increase
of fix*Re for the transverse grooves (@ = 0°) and the fastest increase of fi,*Re for the
oblique grooves with ¢ = 42° (see Figure 4.7C). The reader may note the special

properties of the longitudinal grooves, where fi,*Re 1s independent of Re and f;,*Re=0.

Figure 4.6: Variations of fi,*Re (solid lines) and fi,*Re (dashed lines) as functions of ¢ for a
channel with the grooves defined by Eq. (4.28). Figure 4.6A— Re = 1000, S = 0.06; Figure 4.6B —
Re = 1000, & =3 ; Figure 4.6C - =3, S = 0.06.
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Figure 4.7: Variations of f,*Re (solid lines) and f,*Re (dotted lines) as functions of ¢ and &
(Figure 4.7A) for the groove geometry defined by Eq. (4.28) with $=0.05 and Re=500, as
functions of ¢ and S for & =3 and Re=500 (Figure 4.7B), and as functions of ¢ and Re for & =3
and S = 0.05 (Figure 4.7C).

There is a noticeable "symmetry" in the effects of the inclination angle ¢ on the z-friction
factor, as grooves with the same inclination away from both the longitudinal and the
transverse positions produce nearly identical spanwise pressure gradients (see Figure

4.7). On the contrary, the x-friction factor always decreases monotonically with an
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increase of the inclination angle (see Figure 4.7). This friction factor changes sign for
grooves with a small enough wavenumber & and an inclination angle close enough to
90° (see right lower corner of Figure 4.7A), demonstrating their drag-reducing

capabilities.

Figure 4.8 illustrates the variations of the additional friction factors as functions of & and
S for selected groove inclination angles ¢ and thus permits a more direct assessment of
the effectiveness of different groove geometries. This figure demonstrates explicitly that

the magnitudes of the friction factors generally increase with the increase of both & and

S.

0.04 0.04

0.02 0.02

0.081

(A) B)

Figure 4.8: Variations of fi,*Re (Figure 4.8A) and fi.*Re (Figure 4.8B) as functions of & and S
for a channel with shape defined by Eq. (4.28) for Re = 500. Solid, dashed and dashed-dotted

lines correspond to grooves with ¢ = 30°, 45°, 60°, respectively.

The results displayed in Figures 4.6 and 4.7 demonstrate that the extreme changes of the
streamwise pressure gradient induced by the grooves occur either for the transverse
grooves (¢ = 0°; maximum) or for the longitudinal grooves (¢ = 90°; minimum). We shall

focus further discussion on these two special cases.
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4.4.4 Transverse grooves

The first special case involves transverse grooves, i.e.

yo =1, (4.29a)
Y, () =—1+(8/2)-cos(ax). (4.29b)

The drag is generated only by viscous shear in the case of smooth walls. Addition of
grooves results in a change in the shear distribution and in the size of the wetted surface
area, and its interaction with the pressure field may lead to the formation of pressure

forces. We shall discuss the mechanics of drag formation in the next section.

4.44.1  Mechanics of drag formation

The x-component of the local surface force t,,, acting on the fluid at the lower wall has

the form

tx,tol

:lN—l/ZpSasin(ax)_N—l/ZRe—la_usasin(ax)_N—l/ZRe—l a_u_'_i
2 ox dy Ox

=1, pes Tl 1 (4.30)

— Yx,pres x,sv 9

where fy pres, tony and t, 5, denote the pressure forces, the viscous normal forces and the
viscous shear forces, respectively, and N :1+[Sa’sin(0£x)/ 2]2. The local force gy o

acting on the upper wall has the form
8 =Re™ — (4.31)

and is generated by viscous shear only. In the next section, we focus on the drag

formation by long-wavelength grooves.
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44.4.1.1 Long wavelength grooves

Various elements of the drag force can be evaluated directly using the method explained
in Section 4.4.4.1. It is instructive, however, to begin presentation with the analytical
solution available in the limit of &—0 (see Chapter 3 for details). The velocity and

pressure fields have the form

u=u,+au +0@), (4.32a)
v=v,+av+0(ar’), (4.32b)
p=a 'p, +p,+0(a), (4.32¢)
where

u,=H({1-7n%), (4.33a)
u,=025Re S sin(ax)H(—% n° +%114 —%172 +%), (4.33b)
v, =0, (4.34a)
v, =0.258 H sin(ax) (- + > + 5 -1), (4.34b)

. =—2Re(2+52/16) (- 52/16) " arctan|(1 + §/4)> (1 - 5/4)™ tan(co/2)|

+0.25Re™S H sin(ax) [0.75 S cos(ax) + §2/16 — 41 - 52/16) " =

—2Re (1+5%/32)(1- 52/16) " ax —1.5Re ™" S(1- $7/16) *sin(ar) +--,  (4.35a)
Po =%[—H2+(1—S/4)‘2], (4.35b)

n=H(y-1)+1, (4.36a)
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H =[1-Scos(ax)/4]". (4.36b)

The mean pressure gradient, which provides a measure of the total drag force, can be

determined explicitly as

Dl - oret vare |- (1+57132)1- 57 116) " |+ 0@ 4.37)

where the square bracket describes the effects generated by the grooves. The x-

component of the local pressure force acting on the fluid at the lower wall has the form

=0.5S[p_, +op, + O(a)]sin(xx), (4.38)

tx, pres

and the total pressure force per one period can be expressed as

F. =F, +F_ =o' 2rRe"S(1+5%/32)(1-5/16)" cos(y)

x,pres x,form x,inter

. (4.39)
—a0.75xRe”' S (1- 52/16) 7 + 0() |

where the period is measured from ax = y. The pressure form drag F, ., 1s associated
with the mean pressure gradient, and the pressure interaction drag F ., 1S generated by

interaction of the geometry and the periodic part of the pressure field.

The local shear forces acting on the fluid at the lower (¢,,ic) and upper (g.,isc) walls are

identical, have the form

tx,visc - gx,visc

=—2Re'H* + ais H*sin(ax)+0(a*) (4.40)
105

and produce the total shear force per one period expressed as

=G, . =—a4xRe” (1-57/16]" + 0. (4.41)

X, Visc X,Visc

The normal viscous stresses do not generate forces at this level of approximation.
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Figure 4.9: Distributions of the local shear force Re*t, ;. (Figure 4.9A) and the local pressure
force Re*t, ., (Figure 4.9B) acting at the lower wall and the local shear force Re*g, ;. acting at
the upper wall (Figure 4.9C) for transverse grooves with the shape defined by Eq. (4.29) with
S$=0.05. Solid and dashed-dotted lines correspond to Re=0.01 and Re=1000, respectively. Dashed

and dotted lines identify asymptotic (—0) and smooth wall values, respectively.

Figure 4.9 displays the distributions of fpres , fovise and  gvise for grooves with the
wavenumbers up to a=5. The shear forces have sinusoidal distributions for a—0, with
maxima and minima overlapping with the tips and the troughs of the grooves (Figure
4.9A), respectively. The distributions are symmetric with respect to the tips but the
asymmetry increases with an increase of & and Re, with the maxima shifting to the

upstream side of the grooves. The difference between the tip and trough values increases
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with both aand Re. The evolution of the pressure forces follows the same pattern (Figure
4.9B), although the variations are overshadowed by the presence of the linear pressure
component. At low Re the asymmetry is fairly small and decreases with . At high Re

this asymmetry is very pronounced and increases with ¢

The shear forces at the upper wall (Figure 4.9C) retain an almost sinusoidal distribution
for all values of Re and ¢, with the amplitudes being larger for larger Re. These
amplitudes decrease with & and the distributions become essentially independent of x for

a>>5.

It is convenient for discussion purposes to consider the forces acting on the fluid
contained in the channel section starting at ax =y = —7 and extending over one period. In
the limit of a—0, the total drag force F,,; has the form

F, o 'srRe (1- 52/16)]

total

—F +F, +F

form inter

4{a*zuk*sﬁ+s%8ﬂﬁ—svuﬁyﬂ
Ha0752Re 57(1- 52716}, (4.42)

where Fy, Fy,., and Fiy, represent the shear drag, the pressure form drag and the pressure
interaction drag, respectively. Initially, F; and Fj,., increase proportionally to Sz, while
Fy,m increases proportionally to S; these variations becomes complex for higher values of
S. Figure 4.10A demonstrates that F,,,; increases with & (line 1), F; decreases with &
(line 2), Fy,m remains essentially unchanged (line 3) and Fjy., increases with ¢ (line 4).
The interaction drag increases faster than the reduction of the shear drag, resulting in the
increase of the total drag. The variations of the difference between the total drag in
smooth and corrugated channels Fi,,;; (line 5), as well as the difference between the
shear drag in smooth and corrugated channels F;; (line 6), underline the decrease in the
role played by the shear. This process is well illustrated in Figure 4.11, which displays
the fractions of the total drag generated by the form, interaction and shear effects defined

as
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fform = (Fform / F;Uttll) *100 > (4433)
~fimer = (F;'mer / F;otal ) * 100 ’ (443b)
fv = (Fv / Froml) * 100 N (4430)

The fraction of total drag associated with the pressure form drag remains constant, the
contributions of the shear drag decrease rapidly, while the contributions of the pressure
interaction drag increase as ¢ increases. In the next section, we shall describe drag

formation caused by grooves with very short wavelengths.
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Figure 4.10: Variations of the drag force per unit channel length (Re/A)*F,,, and its various
components as a function of & for transverse grooves with §=0.05 (Figure 4.10A — small ¢,
Figure 4.10B — large @). Curves 1, 2, 3, 4, 5 and 6 correspond to (Re/A)*F ., (RelA)*F;,
(Rel A)*Ftopmy (RelD)*Finter, (ReIA)*Fpq1 and (Re/A)*F,, respectively (see text for explanations).
Solid and dashed lines correspond to Re=0.01 and Re=1000, respectively.
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Figure 4.11: Variations of fractions of the total drag created by different physical mechanisms
(see Eq. (4.43)) as a function of « (Figure 4.11A - small ¢, Figure 4.11B - large ). Other

conditions are as in Figure 4.10.

4.4.4.1.2 Short wavelength grooves

As « increases the groove tips come closer together, the flow separates in the troughs,
the main stream lifts above the grooves and the characteristics of the wall approach those
of a smooth wall moved into the flow by a distance approximately equal to the groove
amplitude S/2. This process can be followed in Figure 4.12 which displays the
distributions of the x-components of local surface forces contributing to the drag. The
shear force at the lower wall becomes negligible over a segment of the wall
corresponding to the troughs but its magnitude increases substantially around the groove
tips. Its distributions become symmetric with respect to the groove tips for large enough
aregardless of Re (Figure 4.12A). The shear force at the upper wall loses its dependence
on x and its magnitude increases marginally with & (Figure 4.12C). The pressure force at

the lower wall exhibits large local peaks on the upstream and downstream sides of the
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tips, with magnitudes increasing marginally with ¢ (Figure 4.12B); this force remains

nearly constant in the zone above the troughs.
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Figure 4.12: Distributions of the shear force Re*f,,; (Figure 4.12A) and the pressure force
Re*t, ., (Figure 4.12B) acting at the lower wall for transverse grooves with large a. Circles
identify flow separation and re-attachment points. Other conditions are as in Figure 4.9. Figure

4.12C displays variations of the shear force acting at the upper wall at two locations, i.e. above

the trough and above the tip of the groove, as a function of «.

The flow patterns and the pressure fields for large « are illustrated in Figure 4.13. It can

be seen that a separation bubble fills in a larger and larger part of the trough and the flow
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lifts up above the groove as & increases. Local pressure peaks form around the tips of the
grooves, with the local pressure maxima increasing marginally with &. Such a pressure
distribution is required in order to force the fluid to lift up above the groove tip on the
upstream side as well as to draw the fluid from the interior of the trough on the

downstream side. The pressure is nearly constant sufficiently deep in the trough.
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Figure 4.13: Streamlines (solid lines) and lines of constant pressure Re*p (dashed lines) in the
area adjacent to the lower wall for the transverse grooves with the shape defined by Eq. (4.29)
with §=0.05 and for Re=0.01 (black lines) and Re=1000 (grey lines) for grooves with =50
(Figure 4.13A) and o=100 (Figure 4.13B). Circles identify flow separation and re-attachment

points.

Figure 4.10B provides an illustration of how the total drag force, as well as the
contributions of its components, change as a function of ¢ in the large- & limit. The shear
component of the drag force F; rapidly decreases with & due to reduction of the shear in
the troughs in spite of a large increase in the wetted surface area. The shear peaks found
around the tips of the grooves are unable to counterbalance the rapid decrease of shear

elsewhere along the wall. The pressure interaction drag Fj,., rapidly increases with o due
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to the formation of pressure peaks on the downstream and upstream sides of the tips. The
pressure form drag does not change as a function of & due to a very short groove
wavelength. The total drag F,,, increases marginally with & as a decrease of the shear
drag is balanced by an increase of the pressure drag. This process is well illustrated in
Figure 4.11B, which displays variations of various fractions of the total drag force as a

function of a.

Analysis of the data displayed in Figures 4.11 and 4.12 shows that there is a change in the
mechanics of drag formation between the small- and large-« limits. In the former case,
the drag is dominated by shear, which is responsible for up to ~95% of the total drag. In
the latter case, the shear is responsible for around 65% of the total drag and the rest
comes from the interaction between the groove geometry and the pressure field. A further
increase of ¢ is likely to increase the fraction of the total drag generated by pressure. The
pressure form drag (and thus the pressure gradient driving the flow) plays a minor role
and does not vary as a function of & for the small groove amplitudes of interest in this
study. The role of the pressure form drag changes drastically with an increase of the

groove amplitude (see Chapter 3).

4.4.4.2  Stream lift-up and the equivalent channel height

Variations of the friction factor as a function of the groove wavenumber « are illustrated
in Figure 4.14. The process of stream lift-up can be measured quantitatively by
determining the opening of a smooth channel that has the same friction factor as the
grooved channel, thus determining a reduction in the effective flow area. We shall refer
to this quantity as the "hydraulically equivalent channel opening" (as opposed to the
"average geometric channel opening") and use the symbol E¢,. The results shown in
Figure 4.15 demonstrate the reduction of the hydraulically equivalent channel opening as
« increases (while the average geometric opening remains the same). It appears that E¢y,
approaches 2-S/2 as a—o. However, we were unable to carry out computations for

sufficiently high & to confirm if this is the actual limit. The complex flow patterns
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discussed in the previous section suggest that this limit will be different from 2-5/2;
however, the results displayed in Figure 4.14 show that the potential difference is

unlikely to be large.
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Figure 4.14: Variations of f,*Re as a function of « for transverse grooves with the shape defined
by Eq. (4.29). The limit points for a—0 are 7.5x107°, 3x10™* and 1.876x10™> for § = 0.01, 0.02
and 0.05, respectively. The limit points represented by a channel with the lower wall shifted
upwards by §/2 are 3.015x107°, 6.061x10> and 1.538x10™" for S = 0.01, 0.02 and 0.05,
respectively. Solid and dashed lines correspond to Re=0.01 and Re=1000.
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Figure 4.15: Variation of the equivalent channel opening E., (see text for definition) as a
function of «. Other conditions are as in Figure 4.14. Limit points are represented by E¢, = 2 —

S/2.



113

4.4.4.3  Potential for a drag-reducing surface

The super-hydrophobic effect involves the capture of gas bubbles in the pores of a solid
wall, which separate the liquid from the solid resulting in the reduction of shear drag. A
somewhat similar effect might be produced by creating separation bubbles made of the
same fluid through proper shaping of the surface, as these bubbles would insulate the
main stream from the direct contact with the bounding walls. Grooves with a sufficiently
short wavelength trap separation bubbles, as documented in Section 4.4.4.1.2, leading to
the elimination of shear from the majority of the wetted area, as documented in Figure
4.12A. On the negative side, grooves create pressure interaction drag and reduce the
effective channel opening. The latter one must be compensated for in order to get the
overall reduction of shear, and the former one has to be minimized in order not to
overcome the net shear reduction. The results presented in Figure 4.16A represent the
base configuration with the corrugation placed in such a way that the mean geometric
channel opening is constant. As § increases, the pressure interaction drag increases
proportionally to S°, the shear drag decreases at a similar rate and they nearly cancel each
other. However, since the interaction drag has a slightly higher magnitude, the total drag
increases proportionally to S2. The pressure form drag also increases but it is so small that
it does not contribute in a meaningful manner to the overall drag. Figure 4.16B illustrates
drag changes when the decrease of the effective channel opening is compensated for. In
this particular case the tips of the grooves always remain at y=—1 and thus the average
geometric channel opening increases with S. A system like this corresponds to an
intentional cutting of grooves into the channel wall. The pressure interaction drag
increases proportionally to S* but the viscous drag decreases at a slightly higher rate,
resulting in the decrease of the total drag. This process begins to saturate at S = 0.04—
0.05, which limits the potential drag reduction. The pressure form drag decreases with S,
but is so small that it does not play a role until the saturation process starts at higher S.
The same figure shows a drag decrease resulting from the increase of the width of the
smooth channel by S/2. For small S the groove-induced drag decrease is approximately

the same as the drag decrease due to enlargement of the smooth channel. For S high
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enough to initiate saturation, a simple channel enlargement is more effective than the use
of the grooves. The drag reduction potential does exist but magnitudes of practical
interest can be attained only if a method for compensation for the pressure interaction

drag through proper groove shaping can be found.

interaction

(A) (B)

Figure 4.16: Variations of f;,*Re as a function of S for transverse grooves with & = 100 (solid
lines) and & = 50 (dashed lines). Results for Re = 0.01, 1000 are displayed but they overlap
within the resolution of the figure. Contributions of different drag formation mechanisms are
shown only for &= 100. Dashed lines represent reference curves proportional to S and S°. Figure
4.16A — the average position of the grooves is at y = —1. Contributions of the shear drag and the
pressure form drag are negative and are multiplied by —1 for convenience of the presentation.
Figure 4.16B — tips of the grooves are located at y = —1. Contribution of the pressure interaction
drag is positive and is multiplied by —1 for presentation purposes. The dashed-dotted line
identifies the friction factor corresponding to a smooth channel with the lower wall located at

yi=—1-5/2.

4.4.4.4  Effects of grooves' symmetry

It is of interest to determine if either the upstream or the downstream tilting of the

grooves may result in the reduction of pressure loss. This question has been investigated
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using triangular grooves displayed in Figure 4.4A. Eleven configurations sketched in
Figure 4.17 cover the whole range of grooves' tilting of practical interest and in each case
the grooves had been placed in such a way that the average channel opening remained

unchanged (and equal to 2).

- | -— a

Figure 4.17: Shapes used in the analysis of the effects of tilting of the transverse grooves.
Configurations 1, ..., 11 correspond to b/A = 0, 1/8, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 7/8, 1,

respectively. Distribution of these grooves is illustrated in Figure 4.4A with ¢=0.

Results displayed in Figure 4.18 show that both types of tilting, i.e., upstream and
downstream tilting, result in a nearly identical increase of pressure loss. This increase is
of the order of ~100% for small values of Re and decreases to ~20% for Re=500. Results
displayed in Figure 4.19 show that the upstream/downstream "symmetry" of tilting
occurs in the whole range of parameters of interest and that the effect of tilting increases

with an increase of ¢, S and Re, with symmetric grooves producing the lowest drag.
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Figure 4.18: Variation of the modification friction factor fi,*Re as a function of tilting of
transverse triangular grooves as measured by b/A (see Figure 4.17) for grooves placed at the
lower wall with a=3 and $=0.05. The average position of the lower wall is kept the same and

equal to y=—1 in all cases.
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Figure 4.19: Variations of the friction factor f;,*Re in a channel with transverse triangular
grooves with various tilting (see Figure 4.4A, ¢=0, and Figure 4.18) placed at the lower wall as a
function of the grooves' wavenumber « and grooves' amplitude S for the flow Reynolds number
Re=500 (Figure 4.19A) and as a function of the flow Reynolds number Re and the amplitude S
(Figure 4.19B) for the grooves' wavenumber o=3. Data corresponding to configurations 1, 6 and
11 from Figure 4.17 is marked using dashed, solid and dashed-dotted lines, respectively. The

average position of the lower wall is kept the same and equal to y = —1 in all cases.
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4.4.4.5  Effects of distance between grooves

Effectiveness of grooves may depend on the distance between them. This effect is
assessed by considering grooves with triangular cross-section displayed in Figure 4.4A
placed at the lower wall and changing distance between them as measured by parameter
n. = c/(a+b) (see Figure 4.4A for explanation of symbols). In the limit of n.—0 the
grooves touch each other forming an interacting system, and in the limit n.—co the
grooves become isolated and each of them acts as a single groove. Two forms of grooves
are considered, i.e., grooves that are "glued" onto the surface and grooves that are "cut"
into the surface. Grooves' shape in the former case is displayed in Figure 4.4A and their
mirror image with respect to the wall position describes shape in the latter case. Limit
n.—0 represents the starting point with shapes of the wall in the case of "glued" and "cut"
grooves being identical while the mean positions of the wall (and thus channel opening)

being different in each case.

This study is analogous to an experiment where either various surface roughness
elements (spheres, prisms, parallelepipeds, etc.) are glued to the surface or various
grooves are cut into the surface forming a variety of patterns, and pressure loss

measurements are carried out in order to assess the effects of such roughness forms.

Figure 4.20A illustrates variations of the friction factor as a function of n.. Fairly large
difference of values generated by the "glued" and "cut out" grooves is observed in the
limit n.—0. This difference starts decreasing for n. > 0.1 and effectively disappears for n,
> 30. Changes of distance between grooves affect the mean channel opening. Results
shown in Figure 4.20B demonstrate that majority of drag variations is caused by changes
of the mean channel opening rather than due to the shape of the grooves. This
underscores the need for precise interpretation of experimental results and determination
if the observed changes of pressure loss are due to the shape of the grooves or just due to

an additional blockage/opening of flow passages associated with presence of the grooves.
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Figure 4.20: Variations of the modification friction factor fi,*Re as a function of the distance 7,
between individual grooves. Channel has flat upper wall and transverse triangular grooves with
shape shown in Figure 4.4A with § = 0.05, a = b = /3, n. = c/(a+b) either "glued" to the lower
wall (solid lines) or "cut into" this wall (dashed-dotted lines). Figure 4.20A - bases of the grooves
are always kept at y = —1. Figure 4.20B - the average channel opening is kept constant and equal
to 2. Dotted lines in Figure 4.20A denote the effect of change in the average channel opening on

f]x*Re.

4.4.5 Longitudinal grooves

We shall now turn our attention to the second special case, i.e. longitudinal grooves. We
shall use the same grooves as in Section 4.4.4 but will rotate them by 90°, resulting in the

channel geometry described as
Yo =1, (4.44a)
Y (2) ==1+(S8/2)-cos(fz) . (4.44b)

The drag in such channels is generated only by viscous shear. The problem
parametrization is simplified, as the effects of the Reynolds number scale out (see
Appendix E.2). Longitudinal grooves with a triangular shape and a fixed ridge angle have
been studied by Choi et al. (1991), who concluded that grooves in laminar flows always

lead to drag increase. Their results were reproduced in the present study as a check on the
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accuracy of the numerical procedure and extended to parameter ranges not included in

the original study.

4.4.5.1  Mechanics of drag generation

The x-components of the local shear force acting on the fluid at the lower (¢, ,,) and at the

upper (g...r) walls have the form

ty =—N""Re” 3—Z —%N‘l/zRe"lS ’BSin(ﬁZ)?)_Z , (4.45)
2
€. =Re a—z (4.46)

where N =1+ [S B sin( ,Bz)/Z]2 . The process of drag formation changes significantly with

B. We shall begin discussion by focusing on the long wavelength grooves.

44.5.1.1 Long wavelength grooves

Consider the limit f—0. The velocity field can be determined analytically as

u=-W[l-Scos(B)/4](1-n*)+ 08, (4.47)
where

n=(y-1)[1-Scos(B)/4]" +1, (4.48a)
W =-1+35>(32+38)", (4.48b)

The shear forces acting on the fluid at the lower and upper walls have the form

Lo = 8oi = 2ReW([1= S cos(B)/4]+0(B) (4.49)
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and their distributions are illustrated in Figure 4.21. In the limit of f—0 the shear
distribution at the lower wall is sinusoidal (see (4.49)), with the maximum occurring at
the trough. This distribution remains nearly sinusoidal as £ increases, while, at the same
time, its amplitude decreases, with the distribution becoming nearly flat when S
approaches the limiting value of = 0.96. A further increase of f changes the qualitative
character of the stress distribution, which becomes, again, nearly sinusoidal, but with the
maximum occurring at the tip of the groove and its amplitude increasing monotonically.
The stress distribution at the upper (flat) wall remains sinusoidal as fincreases, with the
maximum always occurring above the trough and the amplitude decreasing

monotonically.

-1.98

x,tot

Re*t
[\

-2.02

(A) B)

Figure 4.21: Distribution of the local shear force Re*t,,, acting at the lower (Figure 4.21A) and
upper (Figure 4.21B) walls for longitudinal grooves with geometry defined by Eq. (4.44) with
§=0.05 (solid lines). Dashed and dotted lines identify asymptotic (f—0) and smooth wall (S=0)

values, respectively.

Figure 4.22 illustrates the character of the velocity field. For small enough £, the bulk
flow concentrates in the area of the widest channel opening, forming a "flow tube" where
u > 1. This "flow tube" is stretched in the z-direction with an increase of £ and is

replaced by a continuous strip for £ > 5, with the width of this strip increasing with .
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The qualitative change in the distribution of shear at the lower wall correlates with the
stretching of the "flow tube" and underlines the fact that the drag reduction reported in

Section 4.4.3 occurs due to realignment of the bulk of the flow.

-1()H-‘¥ 1 P |

(A) (B)

Figure 4.22: Distribution of the u-velocity in a channel with longitudinal grooves defined by
Eq.(4.44) with §=0.05. Dotted, dashed-dotted and solid lines correspond to grooves with f — 0,
0.96, 5, respectively. Figure 4.22B provides enlargement of the middle section of Figure 4.22A.

The pressure gradient in the limit f—0 takes the form

% = 2Re™ +6Re™S*(32+38%) +0(B), (4.50)

where the second term on the right-hand side accounts for the presence of the grooves
and demonstrates that the reduction of the pressure loss is proportional to $?. An increase
of Bleads to a decrease of the magnitude of drag reduction, as illustrated in Figure 4.23A.
The drag starts to increase above the level found in the smooth channel when £ > ~0.96.
The change from drag decrease to drag increase is nearly independent of the groove

amplitude and correlates with the dissolution of the distinct, well-developed "flow tubes"
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discussed above. Figure 4.23B illustrates variations of the friction factor for = 0.1 and S
= 3. A quadratic reduction of drag as a function of S occurs in the former case, while a
quadratic increase is found in the latter case. The same figure displays the variation of the
friction factor as a function of £ for a fixed value of S = 0.05. The change from drag

reduction to drag increase taking place at § = 0.96 is clearly visible.
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Figure 4.23: Variations of fi,*Re induced by the longitudinal grooves with the shape defined by
Eq.(4.44) as a function of § and S. Figure 4.23A — contour plot of f;,*Re. Figure 4.23B— solid
line: fi,*Re as a function of f for $§=0.05, dashed lines: f;,*Re as a function of S for £ = 0.1, 3.
The asymptote for f—0 is f,*Re=—9.3728x10~"

The drag reducing capabilities of the longitudinal, long-wavelength grooves extend to
oblique grooves, as illustrated in Figure 4.24. As the grooves are rotated away from the
longitudinal position (¢ = 90°), the drag reducing abilities decrease rapidly, however,
they persist even down ¢ = 55° for extremely small grooves' wavenumbers. A few
degrees misalignment in the positioning of the grooves with respect to the flow direction

is acceptable but a larger misalignment will in general produce drag increase.
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Figure 4.24: Variations of the modification friction factor f;,*Re as a function of the inclination
angle ¢ for grooves with the shape defined by Eq. (4.28) with $=0.05 and the small wavenumbers

a.

Figure 4.25 illustrates drag reducing abilities of grooves with shapes other than
sinusoidal. Grooves of triangular cross-sections illustrated in Figures 4.4A and 4.17 are
used to demonstrate this effect. The value of /3 that separates drag reducing from drag
increasing abilities does depend on the groove shape but always remains numerically
small. Other shapes that were tested (not shown) show the same characteristics and lead
to the conclusion that only the long wavelength grooves are able to lower drag below the
level found in smooth channels with the same cross-sectional area. This drag reduction

occurs in spite of increase of the wetted area.
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Figure 4.25: Variations of the modification friction factor f,*Re as a function of the grooves'
amplitude S and wavenumber £ for a channel with longitudinal grooves of triangular form placed
at the lower wall. Shape of the grooves is given in Figure 4.4B with ¢ = 0 and the average
position of the lower wall is kept at y=—1. Figures 4.25A, 4.25B, 4.25C and 4.25D give results
for configurations 6, 9, 10 and 11 from Figure 4.17, respectively. Drag reduction occurs for £ <~
0.92, 0.82, 0.67, 0.47 in each of these cases, respectively, regardless of the amplitude of the

grooves.

4.4.5.1.2 Short wavelength grooves

An increase of S leads to a flow lift-up but with mechanics different from the case of
transverse grooves. The groove side walls come close together, increasing viscous
friction in the trough and thus preventing fluid movement in this area. As a result, the

stream is forced to flow above the trough.
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Figure 4.26: Distribution of the local shear force Re*t, ,,, acting at the lower wall for longitudinal
grooves with medium S (Figure 4.26A) and large £ (Figure 4.26B). Other conditions are as in
Figure 4.21. Figure 4.26C displays variations of the local shear force Re*g, ,, acting at the upper

wall at two locations, i.e. above the trough and above the tip of the groove, as a function of £.

The distribution of shear at the lower wall remains approximately sinusoidal as the
wavenumber increases up to S = 20 (Figure 4.26A), then it flattens out in the area
corresponding to the trough, with its magnitude decreasing to zero and with sharp peaks
forming around the tips of the groove (Figure 4.26B). The fraction of the groove exposed
to negligible shear increases continuously and reaches ~ 90% for £=1000. The variations
of shear along the upper wall become negligible as £ increases; its magnitude approaches

the shear found in a smooth channel with the opening reduced by S/2 (Figure 4.26C).
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Figure 4.27: Distribution of the u-velocity in a channel with longitudinal grooves. Dotted,
dashed-dotted and solid lines correspond to grooves with = 10, 100, 200, respectively. Other

conditions are as in Figure 4.22. Figure 4.27B provides enlargement of the bottom section of

Figure 4.27A.

The stream lift-up is illustrated in Figure 4.27, displaying constant velocity lines. The
flow above the grooves is one-dimensional, with the groove-induced modifications
limited to a narrow strip around the corrugated wall. The velocity in the troughs is
reduced to a level that makes the mass flow through the troughs marginal. The flow
above the trough accelerates in order to maintain the specified mass flow through a
reduced flow area, resulting in the formation of a narrow strip around the channel axis

where the velocity increases above 1.
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Figure 4.28: Channel with longitudinal grooves with shape defined by Eq. (4.44). Left axis:
variations of f;,*Re as a function of £ The limit points for f—0 are —-3.75x107°, =1.5%10™* and
-9.373x107* for § = 0.01, 0.02 and 0.05, respectively. The limits for S—oo are represented by
smooth channel with the lower wall shifted upwards by S/2; they are 3.015%1072, 6.061x107* and
1.538x107" for § = 0.01, 0.02 and 0.05, respectively. Right axis: variations of the equivalent
channel opening E¢;, (see text for definition) as a function of £. Limit points for f—eo are
represented by E¢, = 2 — S/2, i.e. they correspond to a smooth channel with the lower wall shifted

upwards by distance S/2.

The effects of stream lift-up are illustrated in Figure 4.28. An increase of the friction
factor as fincreases demonstrates the reduction of the effective channel opening E¢;,. The
reader may note that the average geometric channel opening remains the same for all
values of £ while the hydraulically equivalent channel opening E¢, (see Section 4.4.4.2)
does not. The results demonstrate that Ec;, — (2 — S/2) as —oo, i.e. the limiting point

corresponds to the wall moved into the channel by distance S/2.

Effective elimination of shear over the majority of the wetted surface area suggests that it
might be possible to create a drag-reducing grooved surface, assuming that the apparent
channel narrowing induced by the grooves can be properly compensated for. Figure 4.29
displays variations of the friction factor as a function of the groove amplitude S for
grooves with /=50, 100 and 1000. In Figure 4.29A the average position of the lower wall
is kept at y = —1, resulting in the drag increasing proportionally to S* for = 50 and 100.

This increase, however, slows down to being proportional to S when £ becomes too large,
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e.g. = 1000. The lowering of the position of the grooved wall compensates for the
hydraulic wall thickening, resulting in a drag decrease, as illustrated in Figure 4.29B. In
this particular case, the tips of the grooves are always kept at y = —1. If the groove
wavenumber is too large, the drag reduction becomes marginal, e.g. = 1000. The same
figure shows drag reduction achieved by simply increasing the channel opening while
keeping the wall smooth. For small S the use of either wall corrugation or a simple
increase of channel opening produce the same result, but when S >~ 0.01 an increase of
channel opening is more effective. The above results demonstrate that a potential for drag
reduction does exist but additional work is required in order to find groove shapes that

would reduce the shear peaks.

(A) (B)

Figure 4.29: Variations of f},*Re as a function of S for longitudinal grooves. Dashed lines
provide reference curves proportional to S and S°. Figure 4.29A — the average groove location is y
= —1. Figure 4.29B — tips of the grooves are located at y = —1. The dashed-dotted line describes

the friction factor for a smooth channel with the lower wall located at y;=—1-S/2.
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4.4.5.2  Effect of distance between grooves

Flow modifications induced by the grooves depend on the distance between them. This
effect is illustrated using grooves with the same triangular cross-section as in Section
4.4.4.5 but oriented along the flow direction. Figure 4.30A illustrates variations of the
friction factor for system of grooves that are either "glued" onto the surface or "cut into"
the surface with this surface kept at a fixed position at y=—1. The average channel
opening changes when the distance between grooves increases. The friction factor
correction is significant when grooves are close to each other with large differences
between the "glued" and "cut into" grooves. The differences begin to decrease when n,
increases above 0.1 and effectively disappear when n.>30, as in the case of transverse
grooves. Presence of grooves can be practically ignored for n.>10 as such grooves

provide marginal changes in the friction factor.
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Figure 4.30: Variations of the modification friction factor fi,*Re as a function of the distance 7,
between individual grooves. Channel has flat upper wall and longitudinal triangular grooves with
shape shown in Figure 4.4A with § = 0.05, a = b = /3, n. = c/(a+b) either "glued" to the lower
wall (solid lines) or "cut into" this wall (dashed-dotted lines). Figure 4.30A - bases of the grooves
are always kept at y = —1. Figure 4.30B - the average channel opening is kept constant and equal
to 2. Dotted line in Figure 4.30A denotes the effect of change in the average channel opening on

f]x*Re.
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Results displayed in Figure 4.30B are for the same grooves but with the position of the
lower wall adjusted so that the average channel opening remains always the same and
equal to two. Comparison of results displayed in Figures 4.30A and 4.30B demonstrates
that most of the observed changes of the friction factor are associated with changes of the
average channel opening. This points out to the need of careful interpretation of the
results of experimental pressure loss measurements in order to properly separate the
blocking effect of the grooves from the flow modulating effect. A slightly different

placement of the same grooves may lead to a different drag.

4.5 Summary

The effects of small-amplitude, two-dimensional grooves on pressure losses in a laminar
channel flow have been analysed. Grooves with an arbitrary shape and an arbitrary
orientation with respect to the flow direction have been considered. It has been
demonstrated that losses can be expressed as a superposition of two parts, one associated
with change in the mean positions of the walls and one induced by flow modulations
associated with the geometry of the grooves. The former effect can be determined
analytically, while the latter has to be determined numerically and can be captured with
an acceptable accuracy using reduced-order geometry models. Projection of the wall
shape onto a Fourier space has been used to generate such a model. It has been found that
in most cases replacement of the actual wall geometry with the leading mode of the
relevant Fourier expansion permits determination of pressure losses with an error of less
than 10%. Detailed results are given for sinusoidal grooves for the range of parameters of
practical interest. These results describe the performance of arbitrary grooves with the
accuracy set by the properties of the reduced-order geometry model and are exact for
sinusoidal grooves. Exact results for some other, more complex shapes have been also

presented.
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The results show a strong dependence of the pressure losses on the groove orientation.
Longitudinal grooves produce the smallest drag, and oblique grooves with an inclination
angle of ~42° exhibit the largest flow turning potential. Detailed analyses of the extreme
cases, i.e. transverse and longitudinal grooves, have been carried out. For transverse
grooves with small wavenumbers, the dominant part of the drag is produced by shear,
while the pressure form drag and the pressure interaction drag provide minor
contributions. For the same grooves with large wavenumbers, the stream lifts up above
the grooves due to their blocking effect, resulting in a change in the mechanics of drag
formation: the contributions of shear decrease while the contributions of the pressure
interaction drag increase, leading to an overall drag increase. In the case of longitudinal
grooves, drag is produced by shear, and its rearrangement results in a drag decrease for
long-wavelength grooves in spite of an increase of the wetted surface area. An increase of
the wavenumber leads to the fluid being squeezed from the troughs and the stream being
forced to lift up above the grooves. The shear is nearly eliminated from a large fraction of

the wall but the overall drag increases due to reduction of the effective channel opening.

It is shown that properly structured grooves are able to eliminate wall shear from the
majority of the wetted surface area regardless of the groove orientation, thus exhibiting
the potential for the creation of drag reducing surfaces. Such surfaces can become
practicable if a method for elimination of the undesired pressure and shear peaks through

proper groove shaping can be found.
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Chapter 5

5 Groove Optimization for Drag Reduction’

5.1 Introduction

It has been shown that the long-wavelength longitudinal grooves are able to reduce drag
in laminar pressure-driven flows (see Chapter 4). This chapter is focused on the analysis
of viscous drag generated by longitudinal grooves and on the search for forms of such
grooves that lead to the maximum possible drag reduction, i.e. the search for the optimal
shapes. The analysis has been carried out in the context of laminar, pressure-driven
(Poiseuille) as well as kinematically-driven (Couette) flows in a channel. The optimality
has been assessed by minimizing the friction factor over all possible shapes with grooves
subject to the depth and height constraints. The problem formulation is given in Section
5.2. The methods used for evaluation of the cost function are discussed in Section 5.3.
Section 5.4 discusses the optimization process. Section 5.5 describes the results related to
pressure driven flows. In particular, Section 5.5.1 offers a discussion of the performance
of the equal-depth grooves, and Section 5.5.2 presents results related to the unequal-depth
grooves. Section 5.6 discusses the use of grooves in kinematically-driven flows. Section

5.7 summarizes the main conclusions.

5.2 Problem formulation

Consider flow in a channel bounded by grooved walls, as shown in Figure 5.1. The flow

is driven along the grooves, i.e. in the x-direction, either by a pressure gradient or by

4 . . . .
A version of this chapter has been submitted for publication as —

Mohammadi, A. & Floryan, J. M. 2013 Groove optimization for drag reduction. Phys. Fluids.
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motion of the upper wall. The grooves have an arbitrary, z-periodic form with their

geometry expressed in terms of Fourier expansions in the form

m=N ,

yU(Z):1+ ZH((/m)eimﬂZ, (51a)

m==N ,

m=N ,

y(2)=—1+ Y H"e"*, (5.1b)
m=—N,

where A=271/f denotes the groove wavelength, subscripts U and L refer to the upper and

lower walls, respectively, H)” = H™" and H\™ = H{™™" express the reality conditions,

stars denote the complex conjugates, N4 denotes the number of Fourier modes required to

describe the geometry of a single groove, all quantities have been scaled with the half

height K of the reference smooth channel as the length scale and (x,y,z) denote the

longitudinal, transverse and spanwise directions, respectively.

Figure 5.1:. Sketch of the flow configuration.
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In the case of a pressure driven flow, a certain pressure gradient is required in order to
move fluid at a prescribed rate through a smooth channel. The introduction of grooves
may either increase or, possibly, decrease this pressure gradient in order to maintain the
same flow rate. In the case of kinematically driven flows, the motion of the upper wall
drives the fluid movement. The addition of grooves may require the introduction of either
a positive or a negative pressure gradient in order to maintain the same flow rate. Since
the effectiveness of the grooves is judged differently for each flow, we shall start the

presentation with pressure driven flows.

The main objective of this analysis is the determination of the shape of the grooves that
produces the largest decrease of pressure gradient required to drive the flow at a

prescribed rate. The same objective can be stated as finding a minimum of the friction
factor f for all H™and H ™ subject to additional suitable constraints, i.e. minimization

of function F'
f=F(Re,H"),. . . H H", . H"™). (5.2)

It has been shown (see Chapter 4) that additional pressure losses created by the grooves
can be represented as a superposition of losses associated with change in the mean
position of the walls and losses associated with the flow modulations due to the shape of
the grooves. Since the former effect can be accounted for analytically, this work is
focused on the analysis of the effects of flow modulations. Accordingly, the flow cross-

sectional area has to be kept constant and equal to the cross-sectional area of the
reference smooth channel during the optimization process, i.e. H')=H'“)=0. The

additional constraints involve setting up various possible limitations on the maximum
permitted depth and height of the grooves. These constraints will be explained in detail
later in the text. Finding the minimum represents a nonlinear constrained optimization
problem which is solved using the ‘interior-point’ optimization algorithm (Coleman & Li
1994; Coleman & Li 1996). Implementation of this algorithm is discussed later in this

chapter.
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The optimization algorithm requires evaluation of the cost function and derivatives of this
function with respect to the problem parameters. The friction factor represents the cost
function and two methods that have been used for its evaluation are discussed in the next

section. The required derivatives are evaluated using the finite-difference quotients.

5.3 Evaluation of the cost function

Field equations describing the movement of fluid have to be solved in order to determine
the friction factor. Since the flow is driven by a constant x-pressure gradient and the
geometry does not depend on the x-coordinate the velocity field is completely described
by the x-momentum equation in the form

d,u+d_u —Red—p =0,
dx

(5.3)
where subscripts y and z denote partial derivatives d/dy and 0/dz, respectively, u(y,z)
denotes the velocity component in the x-direction, p(x) stands for the pressure, the
maximum of the dimensional reference x-velocity U,,, is used as the velocity scale,
pUmax2 is used as the pressure scale and the Reynolds number is defined as KU,,,/V .
Here p and vstand for the density and kinematic viscosity, respectively. The velocity
field has to satisfy a constraint in the form
=1 y=yy(2) 4
o=1" I ju(y, Z)dydz =—, (5.4)
=0 y=y.(2) 3
which states that the flow rate through the grooved channel per unit width in the spanwise
direction is the same as the flow rate through the reference smooth channel. The

boundary conditions are expressed as
u=0at y=y,(z) and y=y,(z). (5.5)

Flow through a smooth channel, i.e. the reference flow, has the form
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uy(y)=1-y*, (5.6)

po(x)=—2Re 'x+c, (5.7)
z=4 y=1 4

Q=2"[ Juy(»dyde=—. (5.8)

z=0 y=-1

where ¢ denotes an arbitrary constant and Q is the flow rate per unit width of the channel

in the spanwise z-direction. Solution of (5.3)—(5.5) results in the determination of the

pressure gradient, which is written as
L= h=—" 4, (5.9)

where /1 denotes the pressure gradient modification induced by the grooves. This pressure

gradient is expressed in terms of a friction factor

dp dp
f=—23=—230—2h=fo+fl» (5.10)
where fj is the reference friction factor and f; is the modification friction factor. Negative
values of f; identify drag reduction. The objective of the analysis is therefore

minimization of f; or, equivalently, minimization of f/fy. Equation (5.3) shows that

Reynolds number scales out and thus one needs to consider only the product (f Re).

5.3.1 Arbitrary grooves

Determination of the friction factor requires solution of (5.3)—(5.5) which is carried out
using spectrally-accurate discretization based on the Fourier and Chebyshev expansions.
The boundary conditions on the irregular boundaries can be treated either using the
immersed boundary conditions (IBC) concept (see Chapter 2) or the domain

transformation (DT) method (see Appendix E). The latter is used in the present work. The
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irregularity of the solution domain is eliminated by introducing a transformation of the

form
T (5.11a)
Y=y, (2)
) EEARPIAS . Y |
! LU(Z)—yL(z)}r (5.11b)

which maps the corrugated flow domain onto a straight strip in the (& 77) plane. The

governing equation (5.3) written in the (&, 7) coordinates takes the form

0t + F1(&0 1+ f5(E, 10 gyu+ f5(&,77)0 et — fg(f,n)Re% =0, (5.12)

where the subscripts 77 and & denote partial derivatives 0/077 and d/d¢, respectively. All

the coefficients in (5.12) are known and have the form

LEm=n_1m +n)),

(5.13a)
L& =2n 1 +m7), (5.13b)
HEm =1 +n)), (5.13¢)
n.=-H'[G:+nH,], (5.14a)
n.=—H'[20,H;+Gy +1H], (5.14b)
n,=H", (5.14c)
G=(y, +y,)/2, (5.14d)

H=(,-y)/2. (5.14¢)
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In the above, subscripts z, y denote partial derivatives d/dz and d/dy, respectively.

Boundary conditions (5.5) take the form
u(é,+1)=0, (5.15a)
u(,—1)=0. (5.15b)

The fixed flow rate constraint in the (&, 7)) reference system becomes

2 [ HuEmagae=2
Q=1 Hu(&n)dndé=—. 5.16
JM_II u(§.mdndé=- (5.16)

The discretization method relies on using the Fourier expansions in the &-direction and
the Chebyshev expansions in the 7-direction (see Chapter 2). A system of algebraic
equations is developed using mode separation and the Galerkin projection method, and

solved using standard linear solvers.

5.3.2 Long wavelength grooves

The friction factor can be computed analytically for the long wavelength grooves. The
availability of such solution reduces the cost of optimization as well as provides an

accuracy test for the general solver discussed in the previous section. A transformation of

the form
A= (5.17a)
Y=y, (2)
| AR TA S |
! LU(Z)—yL(z)}r (5.17b)

is introduced in order to solve problem (5.3)—(5.5). The g-coordinate plays the role of a

slow scale in the limit of f—0. The field equation written in the (},7) system becomes
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d
0, + & (10,1 + g, (X, 10, u+ g5 (X, 10 ,u— g4(z,n)Re5p =0, (5.18)

where the known coefficients have the form

& (m =11 +n)), (5.192)
& =212 +17), (5.19b)
g (.m =1 +n)), (5.19¢)
g (.m =1/’ +n), (5.19d)
n.=—PH (G, +nH ), (5.20a)
n.=-P°H' QB 'mH,+G,+nH ), (5.20b)
n,=H". (5.20¢)

The boundary conditions are identical to (5.15a,b) and the constraint takes the form

x=2n n=l1

1 4
0= | [HuGrmdndy=—. (5.21)

x=0 n=-1
Assume a solution in the form of asymptotic expansions in terms of powers of £, i.e.

u=U,+pU, +B°U,+BU,+0(8"), (5.22)

P,

B, dP,
p(x)—(g"'ﬁdx"'ﬁ .

5 AP 4
Ji] ij+c+0(ﬁ ). (5.23)
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Substitution of (5.22)—(5.23) into (5.18) and (5.21) and retention of the four leading-order

terms result in the following systems:

oB%:  9,,U,—Re m28h . (5.24a)
U,(y.x1)=0, (5.24b)
1 x=2n n=1
HU,dndy=—
- x[o ﬂ_j ndy = (5.24¢)
oB":  9,,U —Re mdh g, (5.25a)
U,(z2)=0, (5.25b)
x=2n n=l1
j IHUldnd;(:O, (5.25¢)
x=0 n=-1

o(p*): anﬂUz—ReHZC;x +[2H ,G,+2nH, -H (G, +nH )] 9,U,
ar (5.26a)
—-2H (G, +nH,) d,U,+H?d U, +ReH*(G,+nH ) —2=0,
U,(x.x1)=0, (5.26b)
x=2n n=1
jHU2 dndy =0, (5.26¢)
x=0 n=-1
dP,
oB’:  9,,U,—ReH>—2=0, (5.27a)

U,(2.£1)=0, (5.27b)



x=2n n=1
[HUdndy=0.

x=0 n=-1
The solutions have the form
UO = I;l(l_nz)Hz s

I _ oRe 1,
dx

_ n _
U,=-1, ‘(1—;72)H2[G; —-H,-HH, —3 Gy -1, llzj,

4 —2Re™'I°1,,
dx

where

1 x=2n

IH3d;(,
=0

I, =
2n

x=2n

_ 1 3 2 2
L= [H*(G,-H}-HH ,)dy.
x=0

Details of the solution for two illustrative geometries are given in Appendix F.
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(5.27¢)

(5.28a)

(5.28b)

(5.29a)

(5.29b)

(5.30a)

(5.30b)

(5.31a)

(5.31b)

(5.32a)

(5.32b)
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The validity of the asymptotic solution is examined by comparing it with the complete
solution determined using method discussed in Section 5.3.1. Two measures of error have

been introduced, one for velocity and one for the modification friction factor, i.e.

Nall,=  sup |u, (. 7)—u (¥.7) (5.332)
0<y<2rz,-1<p<l
Frow == 1| (5.33b)

where subscripts a and ¢ denote the asymptotic and the complete solutions, respectively.
The results illustrated in Figure 5.2 show that these errors decrease proportionally to S 4

for f<~ 0.2.

(el
a
fl,err

(A) B)

Figure 5.2: Variations of the errors llull .

(Figure 5.2A) and fLerr (Figure 5.2B) of the
asymptotic solutions defined by Eq. (5.33a,b) for a channel with groove geometry described by
Eq.(F.1a,b) for several values of A with B=A/2, ¢,=n/5, @¢s=n/3 as a function of the groove

wavenumber /.
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5.4 Optimization

It is assumed that the wavelength of the grooves is fixed while the shape which produces
the lowest drag is sought. It is simpler to discuss optimization by describing groove

geometries using real variables, i.e.

m=N ,
Yo (D) =1+ Y A, cos(mfz+@,,) (5.34a)
m=1
m=N ,
y(@)=-1+ D A, cos(mBz+4,,). (5.34b)
m=1

The objective of the analysis is the identification of A,y , @nv , A and @, which lead
to the smallest modification friction factor subject to suitable constraints. It can be
shown, on the basis of symmetry arguments as well as direct evaluations of f;, that the
maximum drag reduction occurs for zero phase shifts, which reduces the optimization

problem to finding the minimum of a function F defined as
fiRe=F(A ... Ay v, A Ay ) - (5.35)

The additional constraints define the admissible height and depth of the grooves. The
complete problem can be characterized as a nonlinear constrained optimization problem
and is solved using the ‘interior-point’ optimization algorithm (Coleman & Li 1994;

Coleman & Li 1996).

The presence of the grooves may lead either to a decrease or to an increase of drag,
depending on the groove wavenumber (see Chapter 4). If one considers the height and the
depth of the groove as degrees of freedom and £ is in the region of drag increase, the
optimization process removes such grooves, i.e. the optimization demonstrates that the
smooth surface provides the lowest drag. This analysis is, therefore, focused on the range

of fBthat describes the drag reducing grooves.

The optimization process is illustrated using channel with a smooth upper wall and a

grooved lower wall with its shape described by two Fourier modes, i.e.
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v, =1, v, (2) ==14 A, cos(fz) + A, cos(35z) . (5.36)

Figure 5.3 illustrates variations of the normalized modification friction factor fi/fy
computed directly as a function of A; and A3 for $=0.5, which corresponds to the drag
reducing grooves. There is no restriction on the admissible values of A; and A3 from the
point of view of preservation of the flow cross-sectional area. There are obvious
restrictions related to the fact that the groove cannot touch the upper wall. The results
displayed in Figure 5.3 are limited to combinations of A; and A3 such that max(y.(z))<0.9,

i.e. the interior of the outer contour in Figure 5.3.

inner contour

Figure 5.3: Variations of the normalized modification friction factor fi/fy induced by the grooves
with the shape defined by Eq. (5.36) with the wavenumber £$=0.5 as a function of the coefficients
of the Fourier expansion describing the groove geometry. The thin contour lines are spaced 0.1
apart. The interior of the outer contour identifies grooves with the height S < 1.9. The interior of
the inner contour corresponds to geometries described by Eq. (5.36) with S < 1 satisfying
constraints (5.37) and its edges correspond to constraints (5.38). The friction factor minima are
marked using squares. Points 1 and 2, and points 3 and 4 mark starting locations for searches

subject to constraints (5.37) and (5.38), respectively.
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Consider now the question of finding the shape of the groove described by (5.36) such
that it minimizes drag but, at the same time, its maximum depth and height are

constrained to be smaller or equal to S, i.e. solution must satisfy the inequality constraints

in the form
max(y,(z)) <-1+S, (5.37a)
min(y, (z))=2-1-S. (5.37b)

The admissible combinations of A; and A3 for S = 1 correspond to the interior and the
edges of the inner contour in Figure 5.3. It can be seen that the minima correspond to fi/fy
= —0.24, are located at the edges of the inner contour and are associated with points (A,
Aj) = (1.15, —0.18) and (A;, A3) = (—1.15, 0.18). It is interesting to note that Eq. (5.36)
also describes drag increasing grooves; in this case A; = 0, the effective wavenumber
becomes £ = 1.5 which is in the range of drag increasing grooves. The drag minima can
be identified directly using an optimization process. The search process requires initial
approximations for A; and A3 which are subsequently improved in an iterative manner.
The efficiency of the search depends on the starting point. The search path for the starting
point outside of the inner contour, i.e. the initial guess does not satisfy constraints (5.37),
corresponds to point 1 in Figure 5.3, and the search path starting inside the inner contour
corresponds to point 2. The process converges rapidly and it takes 10 steps in the former
case and 13 in the latter case to satisfy the convergence criterion set at 107, The stricter
criterion of 107" requires 14 and 23 steps, respectively. These results suggest that it is
more efficient to use starting points that do not satisfy the constraints, although this

conclusion cannot be generalized.

One can replace Eq. (5.37) with a more restrictive equality constraint, i.e.
max(y, (2))=-1+S, (5.38a)

min(y, (z)) =-1-5. (5.38b)
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The results illustrated in Figure 5.3 demonstrate that the search process is equally
efficient when the space of the admissible solutions is limited to the edges of the inner
contour. The starting points used to illustrate the search process are the same (within the
symmetries) as in the case of constraints (5.37); point 3 identifies starting conditions
outside the inner contour while point 4 identifies conditions inside the inner contour. The
starting points do not satisfy constraints (5.38) but this does not affect the efficiency of
the search. It takes 10 steps in the former case and 5 in the latter case to satisfy the
convergence criterion set at 10™*. The stricter criterion of 107’ requires 11 and 5 steps,
respectively. It may be concluded that the search with the equality constraints, e.g. (5.38),
is significantly more efficient than the search with the inequality constraints, e.g. (5.37),
with the cost of the former being less sensitive to the severity of the convergence
criterion. In all cases considered, the extremes of the drag were located on the edges of
the admissible zone in the parameter space defined by the constraints and this has led to

the use of the equality rather than inequality constraints, unless explicitly noted.

Consider now a more complicated problem where grooves are placed on both walls and
their shape is described by Fourier expansions with an unknown number of modes Ng.

The suitable equality constraints have the form

max(y, (z)+1) = max(mgAm,L cos(mﬁz)] =5, (5.39)
min(y, (2)+1)= min(m;szAM Cos(mﬂz)] =-S, (5.39b)
max(y, (z)—1) = maX(m;fAm,u COS(m,BZ)J =S, (5.39%)
rrnn<yu<z>—1>=min(m;2_N:Am,u cos(mﬁz)}—s. (5.39d)

The results displayed in Figure 5.4 for S = 1 and £ = 0.1 demonstrate that the Fourier

expansions are rapidly convergent. Use of just three Fourier modes allows approximation
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of the optimal shape with less than 10% error for the actual modification friction factor.
The error can be reduced by using additional modes (see Figure 5.4). These results, as
well as those of many other similar tests (not reported), lead to a conclusion that the
reduced-order geometry models based on 3-4 Fourier modes can capture the optimal

shapes with an accuracy sufficient for most applications.

118,

Figure 5.4: Variation of the normalized modification friction factor f,/f; for equal-depth grooves
located on the lower wall with S = 1 as a function of the number of Fourier modes N, used in the

description of the groove geometries.

The results displayed in Figure 5.4 show that the pressure loss is insensitive to the details
of geometry described by higher Fourier modes. This conclusion should not be surprising
as the action of viscosity tends to smooth out the fine details of geometry. The
insensitivity creates computational problems as gradients of the cost function with respect
to coefficients of higher Fourier modes that need to be computed by the optimizer may
become very small. These gradients are approximated using low-order finite-difference
quotients and this may lead to their imprecise evaluations. The use of strict convergence
criteria is able, however, to overcome these difficulties but at a considerable
computational cost associated with a large number of iterations. Once the convergence of

Fourier series has been established, as illustrated in Figure 5.4, the actual computations
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can be carried out using fewer Fourier modes and less strict convergence criteria. Most of
the results presented in this work have been obtained with the convergence criteria set at

1077 and ten Fourier modes for geometry description as a precaution.

The computational cost of the search rapidly increases with an increase in the number of
parameters. The optimizer minimizes a scalar multivariable cost function subject to a set
of constraints starting at a given initial guess. The search method is gradient-based and,
therefore, requires the cost and constraint functions to be both continuous and to have
continuous first derivatives. The ‘interior-point’ optimization algorithm tries to satisfy
bounds in every iteration (Coleman & Li 1994; Coleman & Li 1996; Byrd et al. 1999;
Byrd et al. 2000; Waltz et al. 2006) but it cannot guarantee identification of the global
minimum. In order to minimize the chance of being trapped in a local minimum, one
starts optimization with a small number of Fourier coefficients, say 3 or 4, and then every
time the solution converges, the number of Fourier coefficients is expanded by one and
the search is restarted using the most recent solution as the initial approximation and zero
for the additional mode. This process is continued until a satisfactory approximation of
the optimal shape is determined. Such a process permits determination of the optimal
shape even when the direct optimization fails. The effectiveness of this process has been
checked by computing the friction factor directly without the use of the optimization

algorithm.

5.5 Pressure-gradient-driven flow

The shape of the optimal groove depends on the type of constraints used. This discussion
is broadly divided into a description of the performance of grooves that have the same
height and depth, i.e. the equal-depth grooves, and those that may have different height

and depth, i.e. the unequal-depth grooves. The presentation begins with the former.
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5.5.1 The equal-depth grooves

We shall refer to the part of the groove that enters the wall as a "cut" characterized by a
depth, while the part that enters the channel shall be referred to as a "protrusion"
characterized by a height. The equal-depth grooves have the same maximum depth of the

cut and height of the protrusion.

The range of the drag-reducing grooves (see Chapter 4) is limited to f < ~1 and the value
of [ that corresponds to transition from drag reduction to drag increase shall be referred
to as the critical wavenumber. The discussion begins with the grooves placed only on the
lower wall and subject to constraints (5.39). The evolution of the optimal shape as a
function of S and S is illustrated in Figure 5.5. When £ is close to its critical value, this
shape undergoes significant changes as a function of S. These changes are nearly
negligible for < 0.1 where the optimal shape reaches a universal form. It is possible to
approximate the optimal shape for each # by a trapezoid whose form changes with f, i.e.
the slopes of the side walls increase as £ decreases (see Figure 5.5). These changes are
not very large as the trapezoids are characterized by a=b=A/4 and c=d=A/4 for = 0.9,
a=b=A/5 and c=d=1.54/5 for = 0.8, a=b=A/6 and c=d=24/6 for = 0.7, a=b=A/7 and
c=d=2.5A/7 for f=0.6, a=b=A/8 and c=d=34/8 for f=0.5, a=b=A/11 and c=d=4.54/11
for = 0.1. See Figure 5.5A for definitions of symbols. The latter trapezoid provides a
nearly perfect fit for the universal shape (£ = 0.1). The zone between the critical value of
p and S = 0.1 (i.e. where the optimal groove assumes the universal shape) shall be

referred to as the transition zone.
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Figure 5.5: Evolution of the optimal shape of the equal-depth grooves as a function of the groove

depth for the groove wavenumbers £ close to transition between the drag reducing and drag

increasing grooves. Results for = 0.1, 0.5, 0.6, 0.7, 0.8, 0.9 are displayed in Figures 5.5A, 5.5B,



151

5.5C, 5.5D, 5.5E, and 5.5F, respectively. The y-coordinate is scaled using the peak-to-bottom
distance as the length scale y, =(y, +1-S5)/(2S). Thick lines illustrate the best-fitted
trapezoids. These trapezoids are characterized by a=b=A/11 and c=d=4.54/11, a=b=A/8 and
c=d=3/8, a=b=A/7 and c=d=2.5M/7, a=b=A/6 and c=d=2A/6, a=b=A/5 and c=d=1.54/5, and
a=b=A/4 and c=d=A/4 for f=0.1, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively.

Figure 5.6: Variations of the normalized modification friction factor fi/fy as a function of the
groove wavenumber £ and the groove depth S for a channel with the lower wall fitted with the
equal-depth grooves approximated by a trapezoid with a = b = A/8 and ¢ = d = 34/8 (solid lines).
Results for the simple sinusoidal grooves are illustrated using dashed lines. Dotted lines identify

values for f — 0 for the trapezoidal grooves (see Section 5.3.2).

Figure 5.6 illustrates variations of the modification friction factor for the optimal grooves
approximated by a trapezoid taken from the middle of the transition zone, i.e. a trapezoid
with a=b=A/8 and c=d=3/8, as a function of the groove wavenumber £ and the groove
amplitude S and thus shows the maximum possible drag reduction that can be achieved
with the equal-depth grooves placed on one wall. The error associated with replacing the
actual optimal shape with the trapezoid is illustrated in Figure 5.7. This error is likely
negligible for most applications and thus the results presented in Figure 5.6 are general
and eliminate the need for groove optimization for each particular B The error increases

as [ approaches its critical value and thus caution needs to be exercised when using data
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from Figure 5.6 under such conditions. Figure 5.6 also displays data for the simple
sinusoidal grooves. It can be seen that the use of the optimal groove increases the drag
reduction by up to 50% compared to the simple sinusoidal groove, depending on the

groove amplitude.

Figure 5.7: Variations of the normalized modification friction factor f/f, as a function of the
groove wavenumber £ for the equal-depth grooves located on the lower wall. Solid and dashed

lines correspond to grooves with the optimal and trapezoidal shapes, respectively.

The physical mechanisms responsible for the superior performance of the optimal
grooves are explained using results displayed in Figure 5.8. Distribution of the velocity
field shown in Figure 5.8A for f=0.5 and S=1 demonstrates a more pronounced
formation of the stream tubes (compared with the sinusoidal groove) at the widest
channel opening; it is known that such stream tubes are responsible for the drag reduction
(see Chapter 4). The resulting changes in the wall shear stress illustrated in Figure 5.8B
demonstrate reduction of their mean value for the optimal grooves. The shear stress is a
measure of the wall-normal velocity gradient; its distribution shows that the optimal
shape corresponds to the reduction of such velocity gradients. The non-monotonic stress

distribution is associated with lowering of the stress at the bottom “corner” of the optimal
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groove (location b in Figure 5.8B) and its increase at location where the wall curvature

changes sign (location a in Figure 5.8B).

(A) B)

Figure 5.8: Contour plots of the velocity fields (Figure 5.8 A) for the equal-depth optimal grooves
(solid lines) and for the sinusoidal grooves (dashed lines) with S = 1, # = 0.5. Figure 5.8B
displays distributions of the shear stress as well as the mean shear stress acting on the fluid at the
lower wall for the same grooves (solid, dashed and dotted lines correspond to the optimal groove,
the sinusoidal groove and the reference smooth wall). Values of the corresponding total shear
forces are (Re/A)*F,; = —1.5942, —1.6632 and -2 for the optimal groove, the sinusoidal groove
and the reference smooth wall, respectively. Lines a and b identify locations of the change in the

wall curvature sign and the wall bottom “corner” for the optimal groove, respectively.

Consider now a channel with grooves placed on both walls. The results displayed in
Figure 5.9 demonstrate that the shapes of the optimal grooves are the same on both walls
and nearly identical to those found in the case of grooves placed on only one wall. The
largest drag reduction is obtained when the grooves on the upper wall are shifted with
respect to grooves on the lower wall by half wavelength in the z-direction, as illustrated
in Figure 5.8. The results displayed in Figure 5.10 show that the drag reduction produced
by these grooves, with shapes approximated using the same trapezoid as in Figure 5.6, is

approximately equal to the drag reduction produced by the grooves placed only on one
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wall but with doubled amplitude (compare Figures 5.6 and 5.10). Figure 5.10 also
presents results for simple sinusoidal grooves placed on both walls. It can be seen that
such grooves produce up to 50% less drag reduction than the optimal grooves. The reader
should recall, when reviewing these results, that predictions based on the universal

trapezoid are not accurate when the groove wavenumber is close to its critical value.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A U

(A) B)

Figure 5.9: Shapes of the optimal grooves for a channel with both walls fitted with the equal-
depth grooves subject to constraints (5.39) with § = 0.4, 0.8 for f= 0.1 (Figure 5.9A) and = 0.5
(Figure 5.9B). Thick lines illustrate the best-fitted trapezoid with a = b = /8 and ¢ = d = 34/8.
The vertical coordinates are scaled with the peak-to-bottom distances as the length scales, i.e.
Yy =y, —1+8)/(25) and Yy, =(y,+1-S5)/(25). The optimal grooves are nearly

indistinguishable from the trapezoid.
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Figure 5.10: Variations of the normalized modification friction factor f/fy as a function of the
groove wavenumber £ and the groove depth S for a channel with both walls fitted with the equal-
depth grooves approximated by the trapezoid with a = b = A/8 and ¢ = d = 34/8 (solid lines). Both
sets of grooves have identical geometries with the upper grooves moved by A/2 in the z-direction
with respect to the lower grooves. The results for the simple sinusoidal grooves are illustrated

using dashed lines. Dotted lines identify values for f#— 0 for the trapezoidal grooves (see Section

5.3.2).

5.5.2 The unequal-depth grooves

The unequal-depth grooves are grooves with different depths and heights. We begin
discussion by considering grooves placed only at the lower wall and fixing their height

and depth. Constraints (5.39) can be re-stated as

m=N 4
max(y,(z)+1) = max( Z A, cos(mﬁz)] =S, ar > (5.40a)
m=1
m=N ,
min(y, (z)+1) = min( DAL cos(mﬁz)] ==S, i s (5.40b)
m=1

max(y, (2)-1) = max(m_ZAAm,U cos<mﬂz>] = Sy - (5.400)

m=1



156

min(y, (z)—1) = min (%AAM cos(mﬂz)j =Sy - (5.40d)
m=1
where Sumax = Sumin = 0 and Spuex and Sy, are conveniently selected. The results
displayed in Figure 5.11 illustrate variations of the modification friction factor as a
function of the depth Sy, for the height set at S; ,..x = 1 in the case of grooves placed
only at the lower wall while the upper wall remains smooth. It can be seen that the
modification friction factor monotonically decreases for small f£; it initially decreases,
reaches a minimum and then increases for intermediate £, and it monotonically increases
for large . These results suggest that there is an optimal depth of the groove D, that

minimizes the drag and that this depth is a function of f.

1,1f,

Figure 5.11: Variations of the normalized modification friction factor f,/f; for a channel with a
smooth upper wall and the optimal grooves with height S, .., = 1 at the lower wall as a function

of the depth of the grooves S, ... The dashed line identifies the optimal depths.

Figure 5.12 illustrates the evolution of the shape of the optimal groove as a function of its
depth for #=0.1, 0.5 and 1. It can be seen that for the small depth the shape looks like a
trapezoid discussed in the previous section but, when this depth increases, the shape

morphs into a completely different form. The same figure displays shapes corresponding
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to the optimal depths. The optimal depth and the corresponding optimal shape shall be

referred to in the remaining discussion as the optimal geometry.

(A) (B)

©

Figure 5.12: Evolution of the shape of the optimal, unequal-depth grooves with constant height
Sr.max = 1 placed on the lower wall in a channel with a smooth upper wall as a function of the
groove depth S; ;.- Thick lines identify shapes corresponding to the optimal depths. The results
for f=0.1, 0.5, 1 are displayed in Figures 5.12A, 5.12B and 5.12C, respectively. Dotted lines

identify the reference smooth wall.

The evolution of shapes corresponding to the optimal depth is illustrated in Figure 5.13A.

The same shapes rescaled using the groove width at half height W, nearly overlap on



158

each other and can be approximated using a Gaussian function in the form y = —e (see
Figure 5.13B), i.e. they assume a universal form. Figure 5.13B also displays groove
wavelength rescaled using W,y It can be seen that the cut occupies almost the whole
wavelength for # = 1 but it "shrinks" to less than 20% of the wavelength for = 0.1. The
optimal geometry thus evolves with decreasing S towards localized cuts of universal

shape separated by nearly flat segments of the wall.
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Figure 5.13: Shapes of the unequal-depth grooves corresponding to the optimal depth, i.e. the
optimal geometry, for grooves placed at the lower wall for different groove heights S; ... The y-
coordinate is scaled using the peak-to-bottom distance as the length scale

.=, +1=8,,..)/(S, in + S mae) - The z-coordinate is scaled using the groove wavelength 4
in Figure 5.13A and using the width at half height W, i.e. Z=(z—2,)/W,,, , in Figure 5.13B.

Solid and dashed lines in Figure 5.13A correspond to the wavenumbers £ = 0.1 and 1,

respectively. All these lines nearly overlap in Figure 5.13B. The universal shape in the form of a

Gaussian functioniz—e*152 is illustrated in Figure 5.13B using a thick line. Double-arrows in

Figure 5.13B illustrate groove wavelengths scaled with Wi,
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Figure 5.14: Contour plots of the velocity fields for the optimal unequal-depth grooves with
Stmax =1, f=0.5 for S; i, = 1 (Figure 5.14A), S;,,..,=1.86 (Figure 5.14B; the optimal depth) and
St.min =3 (Figure 5.14C).

Velocity fields for grooves with Sy, ,,,,=1 displayed in Figure 5.14 illustrate formation of
the stream tube at the widest channel opening. The centre of the stream tube moves into
the trough and its position changes with the groove depth. The optimal groove is fairly
wide when its depth is less than the optimal depth (Figure 5.14A), it narrows down when
the depth reaches the optimal depth (Figure 5.14B) and it narrows further more when its
depth is larger than the optimal depth (Figure 5.14C). Groove with shape that provides

the best match with the resulting shape of the stream tube results in the lowest drag and
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defines the optimal geometry (see Figure 5.14B). Figure 5.15 illustrates distribution of
the shear stress at the lower wall. Optimal geometry leads to the smoothest wall shear
distribution and the largest wall shear reduction everywhere along the grooved wall when

compared with the smooth channel, and results in the lowest mean shear stress.

x,L

Re*t

Figure 5.15: Variation of the shear stress and the mean shear stress acting on the fluid at the
lower wall for the optimal unequal-depth grooves with S; ... = 1, f=0.5. Dashed, solid, dashed-
dotted and dotted lines correspond to grooves with Sy i, = 1, Sp.i,=1.86 (the optimal depth), Sy i
= 3 and the reference smooth wall, respectively. Values of the corresponding total shear forces
are (Re/\)*F,; = —1.5942, —1.5547, —1.804 and -2 for grooves with S .., = 1, 1.86, 3 and

reference smooth wall, respectively.

The drag reduction that can be achieved using the optimal geometry is illustrated in
Figure 5.16A. This reduction is up to 50% larger than that which can be achieved with
the equal-depth grooves of the same height. Figure 5.16B provides information about the
changes of the optimal depth D,,, and the width at half height W), as a function of S. A
rapid evolution of all quantities in the transition zone, i.e. for 0.1<f <1, can be observed

with asymptotic trends clearly emerging for smaller £.
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Figure 5.16: Variations of the normalized modification friction factor fi/f; (Figure 5.16A) and the
depth D,,, and the width at half height W,,, of the grooves (Figure 5.16B) for the optimal

geometry of the lower wall and a smooth upper wall.

Consider now grooves placed on both walls and subject to constraints (5.40) with Sy, . =
Su.min conveniently selected and Sy, i, and Sy . determined by the optimization process.
This leads to the determination of the optimal depths and the corresponding optimal
shapes, i.e. the optimal geometry. The optimal depths of the upper and lower grooves are
nearly the same and the optimal shapes are nearly identical to those found in the case of a
single grooved wall. Grooves on the upper wall need to be moved by half wavelength in
the z-direction with respect to those on the lower wall in order to achieve the largest drag
reduction. The use of grooves on both walls approximately doubles the drag reduction
when compared with grooves on a single wall (see Figure 5.17A). The optimal depth D,
and the width at half height W, are approximately the same when either one or both

walls are grooved (see Figure 5.17B).
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Figure 5.17: Variations of the normalized modification friction factor f/f; (Figure 5.17A) and the
optimal depth D,,, and the width at half height W), of the grooves (Figure 5.17B) for the optimal

geometry of both walls.

5.6 Kinematically-driven flow

Consider channel with the upper wall moving at a constant velocity and driving the fluid
beneath in the positive x-direction (Couette flow). We wish to examine whether the
introduction of grooves can increase or decrease the flow resistance. The governing
equation is the same as Eq. (5.3) with the velocity of the upper wall used as the velocity

scale U, The flow rate constraint (5.4) changes to

z=A y=yy(2)
o=2"[  fu(y,2)dydz=1. (5.41)

=0 y=y,(2)

The boundary conditions take the form

u=1 at y=y,(2), (5.42a)
u=0 at y=y,(2). (5.42b)

The standard Couette flow in the form
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1

uy(y) :E(H y), (5.43a)

Py =C, (5.43b)
z=4 y=yy (2)

0=2"[  [u(y»dydz=l (5.43¢)

z=0 y=y;(2)

serves as the reference flow. There is no pressure gradient in the absence of the grooves.
A need for the introduction of a positive pressure gradient in order to maintain the same
flow rate in the grooved channel as in the smooth channel identifies a decrease of the
overall flow resistance. The pressure gradient can be determined from solution of (5.3),

(5.41), (5.42) and can be expressed in terms of a friction factor of the form

dp
f=ti==2 o= (5.44)
where £ is the pressure gradient modification induced by the grooves. Negative values of
f correspond to a reduction of the flow resistance. The objective of the analysis is

therefore minimization of fiRe.

The friction factor for an arbitrary groove geometry can be determined following
procedure described in Section 5.3.1 with flow constraint and boundary conditions
expressed by (5.41)—(5.42). An explicit solution in the limit § — 0, which has been

determined following procedure described in Section 5.3.2, has the form

U, :%(1 +1), (5.45a)

b . (5.45b)



164

U, =0, (5.46a)

dp

oo, (5.46b)

1 ) 1 N, 1 Sy g2

Uzzz(l—]’] ) HZGZ_EHGZZ+§(HZ_EHHZZ)_II LH" |, (5.47a)
P

SR, (5.47b)

U, =0, (5.48a)
P

% —0, (5.48b)

where G, H and I, are defined by Eqgs (5.14d), (5.14e) and (5.32a), respectively, and

1 %" 1
l,=— | HH,G,—-—HG,)dy. (5.49)
27.[ o XX 2 XX

In order to quantify the effects of the grooves, consider a channel with a smooth upper

wall and a simple sinusoidal groove at the lower wall. The geometry is described by
vy =1, (5.50a)
y, =—1+Scos(fz). (5.50b)

Figure 5.18 illustrates variations of the correction friction factor as a function of S and f.
It can be seen that the grooves always increase the flow resistance. Solution for the

pressure gradient for geometry (5.50) simplifies to the form
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dp DY 3 o2 4
—==f"—Re (I1+=8")" S +0 . 5.51
& B 1 ( g ) () (5.51)
In can be seen that the pressure gradient is always negative, i.e. the simple sinusoidal
grooves always increase flow resistance compared to the case of smooth walls, which is

in agreement with the results presented in Figure 5.18.

1.9
1.5k
195
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0.5k le-4
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0.1 S ——
107 10" B 10 10'

Figure 5.18: Variations of the modification friction factor fiRe for the kinematically-driven flow
induced by grooves with shape defined by Eq. (5.50) as a function of the groove wavenumber £

and the groove depth S. Dotted lines identify values for §— 0 (see Eq. (5.51)).

Lines of constant velocity and the distributions of shear stress are illustrated in Figures
5.19A and 5.19B, respectively. The velocity contours show an approximately linear
velocity variation in the y-direction at each z-location. The stream tubes, which appeared
in the case of pressure-driven flow (see Figures 5.8A and 5.14) and were responsible for
the drag reduction, are absent for the kinematically-driven flows. The distributions of
shear stress for the long wavelength grooves (£=0.5) displayed in Figure 5.19B show an
increase of stress in the narrowest channel opening and a decrease in the largest opening;
the mean stress is higher than in the smooth channel and introduction of grooves

increases flow resistance in this case.
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Figure 5.19: Contour plots of the velocity fields (Figure 5.19A) for the channel geometry
described by Eq. (5.50) with § = 1, #=0.5. Figure 5.19B displays distributions of the shear stress
as well as the mean shear stress acting on the fluid at the lower wall for the same geometry (solid
and dashed lines correspond to the sinusoidal groove and the reference smooth wall). Values of
the corresponding total shear forces are (Re/A)*F,; = —0.6439 and —0.5 for the sinusoidal groove

and the reference smooth wall, respectively.

The optimization process discussed in Section 5.4 has been used in order to determine if
other groove shapes are able to decrease flow resistance. No constraints on the groove
height and depth have been imposed, except for the contact condition § < 1.9 which
prevents the lower groove from touching the upper wall. It has been found that the
optimization always removes the grooves, which means that the smooth wall represents

the configuration with the lowest flow resistance.

5.7 Summary

Optimal shapes of laminar, drag-reducing longitudinal grooves in a pressure driven flow
have been determined. It has been shown that such shapes can be characterized using

reduced-order geometry models involving only a few Fourier modes. Two classes of
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grooves have been studied, i.e. the equal-depth grooves, which have the same height and
depth, and the unequal-depth grooves. It has been shown that the optimal shape in the
former case can be approximated by a certain universal trapezoid. There exists an
optimum depth in the latter case and this depth, combined with the corresponding groove
shape, defines the optimal geometry; this shape is well-approximated by a Gaussian
function. Drag reduction due to the use of the optimal grooves has been determined. The
analysis has been extended to kinematically driven flows. It has been shown that in this

case the longitudinal grooves always increase the flow resistance.
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Chapter 6

6 Effects of Longitudinal Grooves on Pressure-
Driven and Kinematically-Driven Flows

6.1 Introduction

In the previous chapter the effects of longitudinal grooves in purely pressure-driven flows
as well as in purely kinematically-driven flows have been studied and the optimal shapes
that led to reduction of the drag have been determined for difference cases.
Understanding the effects of longitudinal grooves in flows driven by a combination of
these two driving mechanisms is also important and can be useful for development of
many engineering applications. This chapter is devoted to examining these effects in
detail. The main objective is to find groove shapes and flow conditions that may lead to
an improvement of the system effectiveness as measured either in terms of an increase in
the flow rate in the grooved channel as compared with a smooth channel or in terms of a
reduction of the force acting on the upper wall which is required in order to maintain its
movement. The ultimate goal is to identify the optimal form of the grooves. The problem
formulation is described in Section 6.2. Analytical solution in the limit of long-
wavelength grooves is explained in Section 6.3. Section 6.4 discusses the effect of
sinusoidal grooves which represents the reference case in the reduced-order geometry
model. Section 6.5 describes the optimization method and its implementation. In
particular, discussions of the equal-depth and the unequal-depth grooves are presented in
Sections 6.5.1 and 6.5.2, respectively. Summary of main conclusions is given in Section

6.6.

6.2 Problem formulation

Consider laminar flow through a channel bounded by walls fitted with straight grooves

parallel to the x-direction (see Figure 6.1) and of arbitrary shape in the spanwise z-
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direction. The flow is driven by movement of the upper wall with a constant velocity Uy,

in the positive x-direction and a known pressure gradient parallel to the same direction.

yy(2)

Regferenc-e flow
direction

y.(2)

Figure 6.1: Sketch of the flow configuration.

Geometry of the grooves is described using Fourier expansions of the form

m=N , )
y(2)=—1+ Y H"e" (6.12)
m=—N ,
m=N , )
yp(2) =1+ D H{"e™ (6.1b)
m=—N 4

where subscripts L and U refer to the lower and upper walls, respectively, A=2m/f
denotes the groove wavelength, H{™ =H ™" and H/” =H_ ™" express the reality

conditions, stars indicate the complex conjugates, N4 represent the number of Fourier
modes required to describe the geometry, and all quantities have been scaled with the half

height K of the reference smooth channel. Since our interests are in flow modulations, it
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is assumed that mean openings of the grooved and the reference smooth channels are the

same, ie. H\” =H =0.

The driving mechanisms and the groove geometry do not depend on the x-coordinate and
thus the fluid movement is governed by the simplified x-momentum equation and
boundary conditions of the form

o’u du dp

—+—=Re—, u=0aty= z), u=1at y= 2), 6.2
o o i y=y.(2) y=yy(2) (6.2)
where u(y,z) denotes the velocity component in the x-direction, p(x) stands for the known
pressure, Uy, serves as the velocity scale, ,t)Ump2 serves as the pressure scale and the
Reynolds number is defined as KU,,,/v . The u-velocity can be separated into the Couette

uc and Poiseuille up components in the form
dp
u:uC+ReauP, (6.3)

where uc and up are solutions of the following problems

92 92
?”2%?”2%0, uc(y)=0,  uo(y,)=1, (6.4)

%up 0°up
P +?=1, up(y,)=0, up(yy)=0. (6.5)

In the following presentation, subscripts C and P will denote the Couette and Poiseuille
components, respectively. The volume flow rate per unit width in the z-direction Q can be

evaluated as

dp . =14 y=yy(2) . dp =4 y=yy(2)
Q:QC+ReaQP=/I J- J-ucdydz+/l Rea J. .[updy dz. (6.6)

=0 y=y.(2) =0 y=y.(2)

The drag is produced by shear stresses at the lower (¢, ) and upper (z, y) walls; the latter

one can be evaluated as
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txU :thU +Re— dp PxU =N l/ZR - a”c _dyU a”c +N_l/2d_p auP - dyU auP ’ (67)
: : dx dy dz oz dy dz oz

where N =1+ (dy, /dz)* and a similar expression for z,; can be easily derived. The total

shear force acting on the fluid at the upper wall over one wavelength in the spanwise

direction and per unit length in the x-direction F, ;y can be expressed as

dp x=1 z=4 p x=1 z=4
F,=F,,+Re dxFPxU—J. [N dzdx+Re—J. [tp NV dzdx (6.8)

x=0 z=0 x=0 z=0

and a similar expression for the lower wall can be easily determined. The velocity ug of

the reference flow through a smooth channel has the form
dp 1 dp 1
uo(y)zuCO+ReauP0=5(1+y)—Rea§(l—y2) (6.9)

and the reference flow rate Qy per unit width in the z-direction can be evaluated as

=4 y=l =4 y=l

dp 2
+Re =1 u.,dy dz+A"'Re—= dp U, dy dz=1-Re—=. )
0 = ey on I [ucydy I [1tp dy .3 (610

z=0 y=-1 z=0 y=—1

The reference shear stress and shear force acting at the upper wall can be expressed with

the help of Eq. (6.9) as

dp 4 dp
tou =lewoy T Re— dx Ipoou =0.5Re L A’ (6.11)
dp _ dp
Foov =Fey +Re dxFPxOU_O’Sj“Re 1+ia- (6.12)

Similar expressions can be easily developed for the lower wall.

Analysis of effects of grooves is carried out with the assumption that their introduction
does not affect the pressure gradient as well as it does not affect the movement of the

upper wall. Since the mean channel opening does not change, the overall drag
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experienced by the fluid must remain the same. The flow rate is, however, affected and

its change Q), defined as

d d
0=0-0,=0-0 + Re_p(QP —0p) =0 +Re_pQP1
0x ox
z=1 y=yy(2) d =4 y=yy(2) o) (6-13)
=/1_1J. J.ucdy dz—1+Re L /l_lj .[ude dz+—1|,
z=0 y=y, (2) ox z=0 y=y (2) 3

is used as the first measure of the groove drag-reducing abilities. The system
effectiveness is improved if both Qp and Q; have the same sign. Grooves re-arrange the
shear stresses and change the shear forces acting on each of the walls but their sum must
remain the same. This leads to the second criterion for evaluation of the groove
performance, i.e. reduction of the force acting on the upper wall. The system performance
is improved if |Fyy / Fyul < 1. It is convenient to write an explicit expression for the

force modification Fy; y for later use, i.e.

dp
Fxl,U = Fx,U - FxO,U = FCx,U - ch,u + Re_(FPx,U - FPxO,U)

ox
x=1 z=4 d x=1 z=14 d (614)
= [ [teow N"dzdx—=0.54Re™ + ReE [ [1,,, N dzdx— 2L
x=0 z=0 X x=0 z=0 dx

Solution of (6.2)-(6.5) has to be determined numerically due to complexities associated
with the groove geometry. A spectral discretization method based on the Fourier and
Chebyshev expansions is used for the field equations (see Chapter 2). Difficulties
associated with the irregular boundaries can be settled using either the immersed
boundary conditions (IBC) concept (see Chapter 2) or the domain transformation (DT)
method (see Appendix E). The latter method involves mapping of the physical irregular
domain onto a regular computational domain. The DT method has been used in this
analysis as it provides better accuracy for the short wavelength grooves and can deal with

the large-amplitude grooves.
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6.3 Long wavelength grooves

An explicit solution of (6.4)-(6.5) can be obtained for the long wavelength grooves

(—0). Transformation is introduced in the form

¢=p5, (6.152)
7= y;lyu 1, (6.15b)

where H = (yy — y.)/2 and the {-coordinate plays the role of a slow scale. Problems (6.4)-

(6.5) written in the (£, 7)-system become

az”c_l_ & )auc+ & )82”C+ & )azi:()
an2 81 1 877 8 ¥/ aéan 83 1 852 ’
(6.16)
u-({-)=0, wu.(&+H=1I.
’u, ou, ’u, d’u,
2 +g1(§’77)_+g2(§’77) +g3(§’77) 2 :g4(§’77),
on an agon a¢
(6.17)
u,({xH =0,
where the coefficients are known and have the form
g =n./In+n}), (6.182)
_ 2 2
8,(& ) =2pn_1(n +n,), (6.18b)
_ 2 2
g3(§’77)_18 /(771 +77y)’ (6.18¢)
g.({.m =1/ +17}). (6.18d)

In the above
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d _

ﬂz=a—z=—ﬁH (G, +1H,), (6.19a)
2’ 2yt m pl
d _

77y=a—;7=H Y (6.19¢)

where G = (yy + y.)/2 and subscript { denotes derivative with respect to {. Velocities uc

and up can be expressed as expansions in the form
ue=Uqo+PU + IBZUCZ + ﬁ3UC3 +0(8"), (6.20)
Up :UPO+ﬁUPl+ﬁ2UP2+ﬁ3UP3+O(ﬁ4) (6.21)

and their substitution into (6.16)-(6.17) and retention of the four leading-order terms

result in problems described in the Appendix G. Solutions take the form

1
Ue = 30 +1), (6.22a)
1
Upy === n*)H?, (6.22b)
U, =0, (6.23a)
U, =0, (6.23b)

1 1 1



I
U,, :E(l—nz)Hz(Gg —H?—HH,, —%Hcg),

The modification flow rate Q; becomes

d 2
Q1=Qc1+Re£Qm=ﬁ231 +Re a‘“ I+ 1) +0(8")
where

{=2n
J'H a¢c,
17 1
I, =— H{HgGg——HGggjdé’,
> om io 2
{=2n
2
= j H*(G}-H}-HH,)d{ .

The modification of upper wall force F,;  takes the form

dp
Foy=Feay +Rea Foyy
x=l (= 2711 1
=Re" j j *[ﬁ + ﬁ( H;+G}+— HH§§+HG§§ﬂd§'dx
o o 2 3

x=1 (=2n

—0.5ARe +dpj j [,b* +,6(2H2+2HG +HH§+;HG§§ﬂd§dx Adp+0(ﬁ)

x:OQ:O
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(6.24b)

(6.25a)

(6.25b)

(6.26)

(6.27a)

(6.27b)

(6.27¢)

(6.28)
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The range of validity of the above solution can be determined through comparison with
the complete numerical solution. Error of approximation is illustrated using a test case

with sinusoidal grooves of the form

y, (O)=—1+Acos(+9,), (6.29a)
Yy (&) =1+ Bcos({ +d,) (6.29b)

with B=A/3, ¢s=n/3 and ¢@=m/5. Two measures of error have been used, i.e.

u, (g’ 77) —U. (g’ 77)

lull = su ,
e 0£§§27r,];—)1§77§1 (6.30a)
0rer =|01, — Q.| (6.30b)

In the above, subscripts a and ¢ denote the asymptotic and the complete solutions,
respectively. The results shown in Figure 6.2 demonstrate that these errors decrease

proportionally to 5 for < 0.2.

(A) (B)

Figure 6.2: Variations of the errors Il ull (Figure 6.2A) and Q. (Figure 6.2B) of the

asymptotic solutions (see Eq. (6.30a,b)) as a function of £ for a channel with geometry defined by

Eq.(6.29).
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6.4 Groove-induced flow rate and wall force modifications

Changes of the flow rate and of the forces acting on the walls depend on the groove
geometry. Formulation used in the present work is able to describe arbitrary grooves but
the analysis may require significant resources if long Fourier series are required in order
to describe groove geometry. The reduced-order geometry model (see Chapter 4) shows
that the use of just the leading Fourier mode permits determination of the drag change
with an accuracy acceptable for most of applications. Accordingly, general predictions
can be obtained on the basis of analysis of sinusoidal grooves. The rest of this section is,
therefore, focused on the description of performance of a conduit with a smooth upper

wall and with sinusoidal grooves at the lower wall, i.e. the system geometry is of the

form
y, =—1+Scos(f), (6.31a)
v, =1. (6.31b)

Figures 6.3A and 6.3B illustrate variations of Q¢ and Qp; as functions of £, respectively.
Grooves always reduce Q¢ but this reduction becomes marginal for f—0. The same
grooves may increase/decrease Qp depending on . When f<~1, Qp; as well as Qp have
the same signs, which are opposite to dp/dx, and thus the total flow rate increases. Such

grooves improve system performance when pressure gradient is present.

Figure 6.4 illustrates variations of forces that must be applied to the upper wall in order to
maintain its movement in the presence of grooves. The Couette component always
increases but this increase becomes marginal for #—0 (see Figure 6.4A). The Poiseuille
component always decreases with this decrease also becoming marginal for f—0 (see

Figure 6.4B).



178

© Op

(A) (B)

Figure 6.3: Variations of the modification flow rate Q¢ (Figure 6.3A) and Qp; (Figure 6.3B) as a
function of S for a channel with geometry defined by Eq. (6.31). The reference flow rates are
Oco=1 and Qpy=-2/3. The asymptotes are given by Qc1,5_>0=—1/652ﬂ2, Oc1,p>0=—0.38,
Qp1,,3_>o=—0.2552 and Qp1,5_>DO=2/3[1—(1—0.SS)3]. The limit points for f—0 have been determined
on the basis of solution described in Section 6.3 and for f—oo are represented by a smooth

channel with the lower wall shifted upwards by S.
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Figure 6.4: Variations of the force modifications (Re/A)*F ¢, v (Figure 6.4A) and (Re/A)*Fp, vy
(Figure 6.4B) acting on the fluid at the upper wall as functions of £ for a channel with geometry
defined by Eq. (6.31). The reference forces are (Re/A)*Fc.,oy = 0.5 and (Re/A)*Fp,y = 1. The
asymptotes are given by (Re/ﬂ)*Fch,U,/g_)():O.S[(1—0.2552)_”2—1],
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(Rel A)*F c1,0,55-=0.5[(1-0.58) "'~ 11, (Re/)*Fpy1 1,550=—1/65"F and (Re/A)*Fp,1 v, pse= —0.5S.
The limit points for f—0 have been determined on the basis of solution described in Section 6.3

and for f—eo are represented by a smooth channel with the lower wall shifted upwards by S.
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Figure 6.5: Variation of the shear stresses acting on the fluid at the upper and lower walls (Figure
6.5A) and lines of constant velocity for the Couette (Figure 6.5B) and Poiseuille (Figure 6.5C)
flow components. The channel geometry is defined by Eq. (6.31) with S = 0.5 and = 0.1. Solid,
dashed and dotted lines in Figure 6.5A correspond to the Couette and Poiseuille components and

to the reference values, respectively.
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Distributions of shear stresses for the long wavelength grooves (f=0.1) displayed in
Figure 6.5A show increase of stress for the Couette component in the narrowest channel
opening and decrease in the largest opening; the mean stress is higher than in the smooth
channel. The opposite situation occurs for the Poiseuille component where the smallest
stress is found in the smallest channel opening with the mean stress decreasing below the
reference value. Velocity contours show an approximately linear velocity variation in the
y-direction at each z-location for the Couette component (Figure 6.5B) and formation of a
stream tube centered at the widest channel opening for the Poiseuille component (Figure
6.5C). This redistribution of the mass flow rate in the latter case is responsible for an

increase of the flow rate identified in Figure 6.3B.

Distribution of shear stress for the short wavelength grooves (£=50) displayed in Figure
6.6A demonstrates elimination of shear over the majority of the wetted area along the
grooved wall and formation of stress peaks at the tips of the grooves. Mean stress at the
upper wall increases above the reference value for the Couette component but decreases
for the Poiseuille component. Velocity contours displayed in Figures 6.6B and 6.6C
demonstrate that fluid is nearly stagnant in the troughs with the Poiseuille component
showing a deeper penetration into the interior of the trough. This leads to an effective
(hydraulic) channel narrowing, in spite of the mean geometric channel opening being the
same for the grooved and the smooth channels, and reduction of the flow rate
documented in Figure 6.3. Although the shear stress has been eliminated from the
majority of the lower surface, the localized shear peaks compensate for this reduction

leading to the overall reduction of the flow rate.
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Figure 6.6: The same as in Figure 6.5 but for #=50. In Figure 6.6C velocity is normalized by its

maximum max(lupl)=0.2905.

Figure 6.7 displays the overall change in the flow rate as a function of £ and Re*dp/dx
resulting from the superposition of the Couette and Poiseuille components (see Eq. (6.3)).
The reader may note that the mass flow associated with the Couette component always
flows in the positive x-direction but direction of the Poiseuille component is opposite to
the pressure gradient. Zones A, B and C identify conditions that lead to an increase of the
magnitude of the flow rate. In zone A, which is limited to small £ 's, the flow rate
increase associated with the Poiseuille component overcomes the decrease associated

with the Couette component leading to an increase of the total positive flow rate. In zone
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B, which is limited to small £ 's and Re*dp/dx>1.5, the Poiseuille component directed
towards the negative x-axis dominates resulting in the total flow rate moving in the same
direction. Introduction of grooves increases this component and, at the same time,
decreases the opposing Couette component resulting in an increase of the total flow rate
in the negative x-direction. In zone C, which corresponds to large £ 's and positive
pressure gradients with Re*dp/dx<1.5, the Couette and the opposing Poiseuille
components are approximately in balance with the flow rate of the reference flow being
directed in the positive x-direction. Introduction of the grooves leads to a decrease of the
positive Couette component but a faster decrease of the opposing Poiseuille component

leading to the overall increase of the positive flow rate.

0.6486

Figure 6.7: Variation of the modification flow rate Q; as a function of £ and Re*dp/dx for a
channel with geometry defined by Eq. (6.31) with § = 0.5. Black (grey) lines identify conditions
leading to the increase (decrease) of Q. Dotted line identifies the reference value of Re*dp/dx=1.5
which corresponds to Oy = 0. Dashed line identifies conditions corresponding to zero mass flow
rate in the grooved channel. Dashed-dotted lines identify pressure gradients selected for detailed
discussion in the text. The asymptote Re*dp/dx=0.6486 provides lower bound for zone C for

S—>e0.

Figure 6.8A illustrates typical distribution of the mass flow rate for conditions

corresponding to zone A in Figure 6.7. Formation of a stream tube responsible for the



183

increase of the flow rate is clearly visible. A similar stream tube is formed under
conditions corresponding to zone B, as illustrated in Figure 6.8B. In zone C (Figure 6.8C)
the upper part of the flow field is dominated by the Couette component while the bottom
one is dominated by the Poiseuille component with almost no stream penetration into the

troughs.
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Figure 6.8: Lines of constant velocity illustrating flows in zone A in Figure 6.7 (Figure 6.8A;
Re*dp/dx = -1, f = 0.1), zone B (Figure 6.8B; Re*dp/dx = 1.6, f = 0.1) and zone C (Figure
6.8C; Re*dp/dx = 1.4, B =50).
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Figure 6.9: Variations of the normalized modification flow rate Q,/Q, for Re*dp/dx = —1 (Figure
6.9A), Re*dp/dx = 1.6 (Figure 6.9B) and Re*dp/dx = 1.4 (Figure 6.9C). Other conditions are as in
Figure 6.7. Black and grey lines mark increase and reduction of the flow rate compared to the

smooth channel, respectively.

Results displayed in Figure 6.9 demonstrate that an increase of the groove amplitude
leads to a monotonic increase of the flow rate in zones A and B, but an initial increase is
followed by a decrease in zone C. It is shown in Figure 6.9C that in the latter case there
exists the most effective groove amplitude S.;o that gives the largest flow rate. This

amplitude can be determined analytically by noting that flow in the limit of f— is very
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similar to flow in a smooth channel with the lower wall shifted upwards by S (see

Chapter 4). The relevant flow rate can be evaluated as

y=l1 3
S dp2(. S
= dy=1-———Re——|1——| . 6.32
0= Judy : edx3( 2) (6.32)

y=—1+S

The Poiseuille component (in the negative x-direction) decreases proportionally to 3
while the Couette component (in the positive x-direction) decreases proportionally to S.
The amplitude S50 that gives the highest increase of the flow rate corresponds to

dQ/dS=0 and has the form

dp (6.33)

0,70,

Figure 6.10: Variations of the normalized modification volume flow rate Q,/Qy as a function of S
for Re*dp/dx=1.4 for a channel with geometry defined by Eq. (6.31). The most effective groove
amplitude for such conditions is S.;=0.8048 (see Section 6.4 for details). Asterisks denote the
local maxima which identify the most effective groove wavenumbers S,y ,. Solid and dashed lines

correspond to $>S.40 and S<S, ¢, respectively.
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The reader should note that increase of £ for a fixed S improves the system performance,
but only if S<S.z0. When $>S.40 the best performance is obtained for a specific
wavenumber, which we shall refer to as the most effective wavenumber S, 0; an increase
of Sbeyond S5 decreases the system performance (see Figure 6.10). This is so because
the groove wavelength has to be short enough to sufficiently decrease the (opposing)
Poiseuille flow component in the troughs but the height cannot be too large as this

increases blockage for the Couette flow component.

The lowest pressure gradient that increases the flow rate in zone C can be determined

from a similar analysis, i.e. one starts with the flow rate correction

3
Ql:_ﬁ_Red_PE[l_Ej +redP2 (6.34)
2 a3l 2 dx 3

and setting it to zero gives the limiting value in the form

4{1_(1_33} | (6.35)

Thus the range of pressure gradients that increases the flow rate in zone C is bounded by

0.755[1—(1—0.58)3]_1 < Re*dp/dx< 1.5 (see Figure 6.7).

Variations of shear force acting on the fluid at the upper wall are illustrated in Figure
6.11. In zone D the total force in the smooth channel is acting in the negative x-direction
and introduction of grooves of any wavelength reduces its magnitude as long as
Re*dp/dx<—0.5. In zone E the reference force is directed in the positive x-direction and
its reduction can be achieved using grooves with a short enough wavelength. Flow
conditions leading to a decrease (increase) of this force do not necessarily lead to a

simultaneous increase (decrease) of the flow rate (compare Figures 6.7 and 6.11).
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Figure 6.11: Variation of the modification of the force acting on the fluid at the upper wall
(RelA)*F,, y as functions of £ and Re*dp/dx for a channel with geometry defined by Eq. (6.31)
with § = 0.5. Black (grey) lines identify conditions leading to a decrease (increase) of (Re/A)*F, .
Dotted line identifies the reference value of Re*dp/dx=—0.5 which corresponds to (Re/A)*F,,=0.
Dashed-dotted line identifies pressure gradients selected for detailed discussion in the text. The

asymptote Re*dp/dx=2/3 provides lower bound for zone E for f—>co.

Results displayed in Figure 6.12A show that in zone D the force decreases monotonically
with an increase of S and £ until it is completely eliminated for conditions corresponding
to line F, /Fxo,u=0. Further increase of either S or S reverses its direction and the force
keeps increasing until it reaches the same magnitude as in the reference flow but directed
in the opposite sense. These conditions are reached at the line F, (/Fv =—1. We define
the best system performance for this case as the one that corresponds to the complete
elimination of F y. There is a finite range of S which can produce such result (see Figure
6.12A). The upper bound Sy occurs at f—0 and can be determined explicitly from

solution given in Section 6.3, i.e.

1

Fy (1 dp RS d_ g2, Szi dp
[ +Re—— J{ a 4) +Redx ﬂ(( i SR dx]}ow“). (6.36)

F,u 2 dx 3

XU,

Setting the above to zero gives
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dp .,
_ / _ _ 6.37
Sy =4|4—(Re—) (6.37)

The lower bound S, occurs for f—eo and can be determined by noting that the flow is
very similar to the flow in a smooth channel with the lower wall shifted upwards by §

(see Chapter 4) giving expression for the force as

x=1 z=1
a1 dp S
Fx,U = -[0 IOIX’U dzdx = ARe lm+ ﬂa(l _E) 5 (6.38)

setting it to zero gives

-2
Sy =2- /—
2 (6.39)
dx

0.5F

0.1 bl

(A) (B)

Figure 6.12: Variations of the normalized force acting on the fluid at the upper wall F, y / Fyu
for Re*dp/dx = —1 (Figure 6.12A; zone D in Figure 6.11) and Re*dp/dx = 1.4 (Figure 6.12B;
Zone E in Figure 6.11). Other conditions are as in Figure 6.11. Black and grey lines mark
reduction and increase of the magnitude of force compared with the smooth channel, respectively.

Note change of direction of the force in Figure 6.12A. See Section 6.4 for further explanations.
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An increase of £ for grooves with a fixed amplitude S< S;p results in a decrease of the
magnitude of the force. If $>S;5 there exist the most effective wavenumber f.zr (see
Figure 6.13) that eliminates the force and an increase of £ beyond f.;r decreases the

system performance.

Fx, U /FxO, U

==}

Figure 6.13: Variations of the normalized force acting on the fluid at the upper wall F, ;;/ Fyy as
a function of S for Re*dp/dx=—1 (zone D in Figure 6.11) for a channel with geometry defined by
Eq.(6.31). Asterisks identify the most effective wavenumbers S, for the relevant amplitudes S.
Thicker lines correspond to the lower (S;3) and upper (Syp) bounds for the groove amplitude able

to eliminate force acting on the upper wall (see Figure 6.12A).

In zone E an increase of S leads to a decrease of the force followed by its increase (see
Figures 6.12B and 6.14). The best system performance corresponds to minimization of
the force and this defines the most effective amplitude S.;r. This amplitude can be
determined by looking at the limit f—oo and setting dF, /dS = 0 in Eq. (6.38) which
leads to Sesr=Se 0. The reader should note that similarly as in the case of the flow rate in
zone C (Figure 6.7) an increase of £ for a fixed S improves the system performance, but
only if S<S.gr. If $>S.zr the best performance is obtained for a specific wavenumber

which shall be referred to as the most effective wavenumber S,zr. An increase of f



190

beyond S r decreases the system performance (see Figure 6.14). The range of pressure
gradients where the force reduction is possible is limited from below and the relevant
bound is determined from analyzes of the force correction Fy; y in the limit of large f.

This force can be expressed as

F,, = Re-l_l +,1d_p(1—§)—l/me“—/1d—p (6.40)
’ 2-S dx 20 2 dx

and setting it to zero leads to condition

(6.41)

0.88

10°

Figure 6.14: Variations of the normalized force acting on the fluid at the upper wall F, ;,/ Fyoy as
a function of S for Re*dp/dx=1.4 (zone E in Figure 6.11) for a channel with geometry defined by
Eq. (6.31). The most effective groove amplitude for such conditions is Sz = 0.8048 (see Section
6.4 for details). Asterisks denote the local minima which identify the most effective wavenumbers

B.sr- Solid and dashed lines correspond to S > S, and S < Sz, respectively.
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6.5 Groove optimization

Results discussed in the previous section identify the performance gains provided by the
grooves but predictions carry a certain error associated with the use of the reduced-order
geometry model. A more precise prediction requires the use of a larger number of Fourier
modes for geometry description. Since the number of possible geometries is uncountable,
we shall focus our attention on the identification of geometries that produce the largest
increases in the flow rates. Such geometries can be identified using optimization
techniques. Since the geometry is one of the unknowns, the problem becomes nonlinear
and the superposition principle does not apply. Accordingly, each combination of the

Couette and Poiseuille components has to be investigated separately.

We shall explain the optimization process by expressing groove shapes in terms of real

variables in the form

m=N ,
y()==1+ D A, cos(mPe+¢,,), (6.42a)
m=l1
m=N ,
Yo (D) =1+ Y A, cos(mfz+¢,,). (6.42b)

m=1

The normalized modification flow rate Q,/Qy is chosen as the cost function and thus
maximization of Q,/Qy as a function of Az, @nr, Amuvs Gnu, B and Re*dp/dx is sought.
Experiments with direct evaluations of Q,/Q as well as symmetry arguments lead to the
conclusion that the most efficient configurations correspond to shapes with zero phase
differences and thus ¢,,; and @, y do not need to be further considered. Pressure gradients
of interest are limited to zones A, B and C from Figure 6.7, and are treated as constant
during the optimization process. It is assumed that the wavelength of the grooves is fixed
during optimization and thus only coefficients of Fourier expansions (6.42a,b) need to be
determined. The optimization problem is posed as finding the maximum of a function F

defined as

0,10, =F(A ... Ay ,,A

s AN L ALyse

Ay ) (6.43)
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for a specified £ and Re*dp/dx. Additional constraints need to be introduced in order to
describe physical limitations that need to be imposed on the permissible height and depth

of the grooves. These constraints take the form

m=N 4,
max( DAL cos(m/)’z)j <S8, s (6.44a)
m=l1
m=N ,
min( DA Cos(mﬁz)] >-8, . (6.44b)
m=1
m=N 4
maX( Z Am,U COS(mﬂZ)] S SU,max > (644C)
m=1
m=N ,
min( DA Cos(mﬁz)j > =S, s (6.44d)
m=1

where  S;ua/Semin denote the maximum height/depth of the lower grooves and
SU.ma/Sumin stand for the maximum depth/height of the upper grooves. The complete
problem represents a nonlinear constrained optimization problem which is solved using
the “interior-point” algorithm (Coleman & Li 1994; Coleman & Li 1996). The algorithm
tries to maximize a scalar multivariable objective function subject to a set of constraints
starting with a given initial approximation while satisfying constraints at every iteration
(Byrd et al. 1999; Byrd et al. 2000; Waltz et al. 2006). As the search method is gradient-
based, it is necessary for the cost and the constraint functions to be continuous and to
have continuous first derivatives. The algorithm cannot guarantee identification of the
global maximum and, in order to reduce the possibility of being trapped in a local
maximum, one need to start the optimization process using a small number of Fourier
coefficients, e.g. 3 or 4. When the solution converges, the number of coefficients is
expanded by one and the search is restarted using the most recent solution as the starting
point and zero for the additional coefficient. This process is repeated until the optimal
shape has been determined within an acceptable accuracy. Such indirect process permits

determination of the optimal shape even when the direct optimization with simultaneous
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use of all admissible Fourier components fails. Identification of the global maximum has
been confirmed by computing Q; directly for a number of test cases without use of the
optimization algorithm. Most of the results presented in this paper have been obtained

with the convergence criteria set at 107"

Groove shapes are sought during optimization and, as it is not known how many Fourier
coefficients are required for their description, it is necessary to determine convergence
properties of Fourier expansions describing the optimal shapes. Results displayed in
Figure 6.15 demonstrate that the relevant expansions converge quite rapidly for the flow
conditions corresponding to zone A in Figure 6.7 permitting sufficiently accurate
description of the optimal shapes using at most five Fourier modes. Similar conclusions
have been reached in the case of flow conditions corresponding to zone B. Thus it is
possible to generalize the reduced-order geometry model and use it in the search for the

optimal groove shapes for such flow conditions.
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Figure 6.15: Variations of the normalized modification volume flow rate Q,/Q, for the optimal
equal-depth grooves placed at the lower wall with S = 0.5 as a function of the number of Fourier
modes N, used in the description of the groove geometry for Re*dp/dx = -1 and [s
corresponding to zone A in Figure 6.7. Similar results can be produced for conditions

corresponding to zone B.
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Groove optimization for flow conditions corresponding to zone C in Figure 6.7 lead to a
qualitatively different conclusion. The groove properties are dictated by the Fourier mode
with the shortest wavelength that is admitted in the analysis if the amplitude S<S.z0 (see
Figure 6.10). The optimal shape does not exist but the best system performance is
achieved using grooves with the shortest possible wavelength. When S>S it is possible
to find the most effective groove wavenumber and its magnitude keeps decreasing as S
increases, as illustrated in Figure 6.10. Shape of the optimal groove for such conditions
cannot be determined due to the slow convergence of the Fourier expansion describing
solution. This issue is illustrated in Figure 6.16 displaying variations of the Chebyshev

norm of a modal function as a function of the mode number. The norm is defined as

(n)
fun

[0

gl 1/2
= { [ £ £ - w(n)-dn} , (6.45)
n=-1

where @(n) =1/4/1-71* is the weight function, f,"” represents modal functions in the

infpd

n=N,,
Fourier expansion describing u-velocity, i.e. u({,n)= Z £ (me™* , and star denotes

n=—Ny,
the complex conjugates. The optimization procedure is able to capture the optimal shape
if the norm of the highest mode used in the analysis is at least 1-2 orders of magnitude
smaller than the desired optimization convergence criteria. Figure 6.16 displays results
for the equal-depth grooves when modes 1, 3, 5, 7 and 9 participated in the optimization
while a different numbers Ny, of Fourier modes were used in the solution. The reader may
note that this constraint eliminates all even modes from description of the groove
geometry. The norm of the highest mode remains of the order 10™° even for the largest
number of Fourier modes Ny =110 used in the solution. Figure 6.17 illustrates the
resulting groove shapes. It can be seen that the optimal shape can likely be approximated
using a trapezoid but it is not possible to make a more definite statement due to an

excessive computational effort required in order to guarantee the required accuracy.
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Figure 6.16: Variations of the Chebyshev norm (see Eq. (6.45)) as a function of the Fourier mode
number n for groove shapes obtained from the optimization process using Ny, Fourier modes and
the equal-depth constraint for the flow conditions corresponding to zone C in Figure 6.7 with

Re*dp/dx=1.4, S =1.2 and f=15.

1
0
=
-1
100, 110
2r N, =80
0 0.5 /A 1

Figure 6.17: Shapes of the equal-depth grooves obtained using different number of Fourier

modes N,. Other conditions are as in Figure 6.16.

Grooves can be optimized also from the point of view of minimization of the force acting
on the upper wall. In this case, the magnitude of the force IF, I becomes the cost
function. Results displayed in Figure 6.13 demonstrate that in zone D (see Figure 6.11)
and for $<S;5 (see Eq. (6.39)) the best system performance is achieved using grooves

with the shortest possible wavelength and thus the optimal shape does not exist. When
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S>S15 the best results are obtained using grooves with the most effective wavenumber
Berr (see Figure 6.13) leading, potentially, to a complete elimination of the force. The
optimization procedure cannot determine the corresponding optimal shapes as the
convergence rate of the Fourier expansions becomes too small to yield a practical

solution, similarly as in the case of the maximization of the flow rate in zone C.

Conclusion for conditions corresponding to zone E in Figure 6.11 is similar to zone C in
Figure 6.7. Figure 6.14 demonstrates that the best system performance is achieved for
grooves with the shortest possible wavelength provided that the amplitude S<S.;r and
thus the optimal shape does not exist. When S>S.4r it is possible to find the most
effective groove wavenumber S5 r and its magnitude keeps decreasing as S increases (see
Figure 6.14). The optimization procedure cannot identify the cyorresponding optimal

shape due to accuracy problems similar to those discussed above.

We shall now provide detailed discussion of performance of various classes of grooves
corresponding to zone A and B in Figure 6.7 measured in terms of their ability to
generate additional flow rate in the direction of the reference flow. For simplicity, we
have divided all grooves into two categories, i.e. grooves with equal height and depth
referred to as the "equal-depth" grooves and grooves with different depth and height

referred to as the "unequal-depth" grooves.

6.5.1 The equal-depth grooves

For the equal-depth grooves the depth of the groove is equal to its height, i.e. Sy uax=SL min
and Sy max=Sumin In Eq. (6.44). Discussion focuses on optimization of grooves placed at
the lower wall subject to constraints (6.44a,b) with Si,=Srmin=S. It has been
determined that the optimal shapes always correspond to grooves with the maximum
permissible amplitudes and thus the inequalities in Eq. (6.44a,b) can be replaced with

equalities.
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Figure 6.18: Variations of the optimal shape of the equal-depth grooves as a function of the

groove depth S for Re*dp/dx = —1. Results for f = 0.1, 0.5, 0.7 (zone A in Figure 6.7) are

displayed in Figures 6.18A, 6.18B and 6.18C, respectively. The y-coordinate is scaled with the

peak-to-bottom distance y, =(y, +1—-S5)/(2S). Thick lines illustrate the best-fitted trapezoids

characterized by (A) a=b=A/11 and c=d=4.54/11, (B) a=b=A/8 and c=d=34/8, and (C)

a=b=c=d=//4. The optimal shapes for the flow conditions corresponding to zone B in Figure 6.7

are identical.

Evolution of optimal shape as a function of S for flow conditions corresponding to zone

A in Figure 6.7 and for Re*dp/dx = —1 is illustrated in Figure 6.18. For grooves with

S<0.1 the optimal shape changes marginally when S increases (Figure 6.18A) resulting in
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a universal shape in the form of a trapezoid with a=b=A4/11 and c=d=4.54/11 (see Figure
6.18A for parameter definitions). As [ increases, the optimal shapes show more
variations as a function of S (see Figure 6.18B) with the largest changes taking place
when [ approaches the limiting value for which the flow rate increase is replaced by the
flow rate decrease (see Figure 6.18C). It is possible, nevertheless, to identify the
universal trapezoid for each f. The differences between the flow rates achieved using the
optimal grooves and using the universal trapezoidal grooves are negligible. The same
conclusions apply to flow conditions corresponding to zone B. It is worth observing that
optimization for flows with the pressure gradients corresponding to zones A and B but

with S outside these zones results in the removal of the grooves.

(A) (B)

Figure 6.19: Variations of the normalized modification flow rate Q,/Q, as a function of fand S
for a channel with the lower wall fitted with the equal-depth grooves approximated by a trapezoid
with a = b = A/8 and ¢ = d = 34/8 (solid lines) for Re*dp/dx = —1 taken from zone A in Figure 6.7
(Figure 6.19A) and for Re*dp/dx = 1.6 taken from zone B (Figure 6.19B). Results for the simple

sinusoidal grooves are illustrated using dashed lines.

Performance of the optimized grooves is illustrated in Figure 6.19 displaying variations

of 01/Qy as a function of S and f for the optimal grooves approximated by the universal
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trapezoid. Since details of the trapezoid shape change as a function of £, the mid-range
shape with a=b=A/8 and c=d=31/8 has been used. Figure 6.19A illustrates performance
of grooves under conditions corresponding to zone A in Figure 6.7 (Re*dp/dx=—1) and
Figure 6.19B illustrates performance for conditions corresponding to zone B
(Re*dp/dx=1.6). The same figure provides results for simple sinusoidal grooves and this

permits the reader to determine performance gains resulting from the optimization.

The placement of grooves on both walls leads to the best performance when these
grooves are out of phase. The flow rate gains for a set of such grooves with amplitude S
is approximately equal to the performance of grooves with amplitude 2S5 placed on only

one of the walls.

6.5.2 The unequal-depth grooves

For the unequal-depth grooves the depth of the groove is different from the height. A
simple reduced-order geometry model used in Section 6.4 is intrinsically limited to
grooves with the same depth and height and thus cannot offer any guideline regarding

performance of the unequal-depth grooves.

This discussion focuses on the grooves placed only on the lower wall, i.e. Sy max = Svmin =
0. Figure 6.20 shows variations of Q;/Qy for a fixed groove height S; ... = 1 and for
various depths for the flow conditions corresponding to zones A (Re*dp/dx = —1) and B
(Re*dp/dx = 1.6) in Figure 6.7. Q1/Q, monotonically increases for small fs for the range
of Sy, min considered. A non-monotonic growth is observed for larger f's, leading to the
identification of the optimal depth D,,, that produces the largest Q;/Qy. The optimal depth

decreases with increasing £.

Evolution of the optimal shape as a function of S, ,;, is shown in Figure 6.21 for the flow
conditions from zone A (Re*dp/dx = —1) in Figure 6.7. Results for zone B are very
similar and thus are not shown. For the long wavelength grooves with £< 0.1 the optimal

shape is nearly trapezoidal for S; ., < 3 with the trapezoid narrowing and its side walls
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becoming steeper as Sy .i» increases (see Figure 6.21A). Further increase of Sy i, results
in the groove morphing into a shape that is similar to a Gaussian function. The optimum
depth and thus the best groove performance correspond to the latter shape. Increase of S
to =0.5 produces a similar shape evolution as a function of S; ,,;, but the morphing into
the Gaussian function-like shape occurs at smaller Sy ,,;, and the optimal depth is smaller
(see Figure 6.21B). As [ approaches the limiting value where the flow rate increase is
replaced by the decrease, the phase where the shape can be approximated by a trapezoid

is eliminated and a direct morphing into the Gaussian function-like shape is observed (see

Figure 6.21C).
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Figure 6.20: Variations of the normalized modification flow rate Q,/Q, for a channel with a
smooth upper wall and the optimal grooves with height S, ... = 1 placed at the lower wall as a
function of the depth of the grooves S, ., for Re*dp/dx = —1 taken from zone A in Figure 6.7
(Figure 6.20A) and Re*dp/dx = 1.6 taken from zone B (Figure 6.20B). The dashed lines identify
the optimal depths.
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Figure 6.21: Evolution of the optimal shape of the unequal-depth grooves as a function of the
depth S, ,.;, for a constant height S; ... = 1 and for Re*dp/dx = —1 which corresponds to zone A in
Figure 6.7. Results for = 0.1, 0.5, 0.7 are displayed in Figures 21A, 21B and 21C, respectively.
Thick lines identify shapes corresponding to the optimal depths. Dashed lines identify positions

of the reference smooth walls.

The best groove performance occurs for the optimal depth and thus the optimal depth and
the corresponding shape will be referred to as the optimal geometry. Variations of the
optimal geometry as a function of the groove height S, .., are illustrated in Figure 6.22.
The universality of the shapes is illustrated in Figure 6.22A by re-scaling the vertical

coordinate with peak-to-bottom distance, and then in Figure 6.22B by rescaling the
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horizontal coordinate with the groove width at half height. All shapes nearly overlap and

. — _3572
can be approximated as y =—e "

'

(A) B)

Figure 6.22: Shapes of the unequal-depth grooves corresponding to the optimal depth, i.e. the
optimal geometry, for different groove heights S; ... for Re*dp/dx = —1 which corresponds to
zone A in Figure 6.7. The y-coordinate is scaled using the peak-to-bottom distance
V.=, +1=8, )8, pin +S1a) - The z-coordinate is scaled in Figure 6.22A using the
groove wavelength A, and in Figure 6.22B using the groove width at half height Wy, i.e.
z=(z2-2,)/W,,, - Solid and dashed lines correspond to = 0.1 and 0.7, respectively; these lines

nearly overlap in Figure 6.22B. Thick line in Figure 6.22B identifies the universal shape in the

form y=—e77% .

The gains in the flow rate are illustrated in Figure 6.23A and the scaling factors are given
in Figures 6.23B and 6.23C. Careful analysis of this data shows that the groove cut
occupies about 75% of the wavelength for £ close to where the transition from the flow
rate increase to the flow rate decrease occurs whereas it shrinks to approximately 25% of
the wavelength for = 0.1, i.e. it evolves to become a localized cut. Comparison of the
performance of the optimal equal-depth grooves (see Figure 6.19) and the grooves

corresponding to the optimal geometry (see Figure 6.23A) show significant advantage of
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the latter ones. Analysis of properties and performance of the optimal geometry for flow
conditions corresponding to zone B in Figure 6.7A (Re*dp/dx=1.6) leads to similar
conclusions, as illustrated in Figure 6.23 using dashed lines. Placement of the optimal
grooves on both walls results in the best performance if these grooves are out of phase
and have the same shapes, as in the case of only one grooved wall. The performance of
grooves placed on both walls is nearly the same as the performance of grooves placed on

only one wall but with doubled amplitude.

(A) (B)

©

Figure 6.23: Variations of Q,/Q, (Figure 6.23A), and the depth D, (Figure 6.23B) and the width
at half height W, (Figure 6.23C) of grooves forming the optimal geometry. Solid and dashed
lines correspond to Re*dp/dx = —1 (zone A) and Re*dp/dx = 1.6 (zone B), respectively.
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6.6 Summary

Effects of longitudinal grooves on the flow resistance in a channel flow driven by a
combination of the pressure gradient and the movement by one of the walls have been
studied. The groove geometry has been expressed using Fourier expansions and the
reduced-order geometry model has been used to extract features that are hydraulically
relevant. Three distinct zones leading to an increased flow rate have been identified
depending on the applied pressure gradient and the groove wavenumber. Two of these
zones correspond to grooves with long wavelengths and one to grooves with short
wavelengths. Optimization has been used to determine shapes that provide the largest
increase of the flow rate. It has been shown that no optimal shape exists in the latter case
if the groove amplitude is less than certain well defined limit as the shortest admissible
wavelength dominates the system performance. There exists the most effective groove
wavenumber for higher grooves but the optimal shapes cannot be determined due to
numerical limitations. It has been shown that in the case of the long wavelength grooves
the optimal shapes depend on the constraints. In the case of the equal-depth grooves, i.e.
grooves that have the same height and depth, the optimal shapes are well approximated
by a certain universal trapezoid. In the case of the unequal-depth grooves, there exists an
optimum depth which, combined with the corresponding shape, defines the optimal
geometry; this shape is well-approximated by a Gaussian function. Two distinct zones
emerge when the reduction of the force acting on the upper wall is used as the
performance criterion. The best system performance for both cases is obtained when the
short wavelength grooves are used; the system response is qualitatively similar to that

found in the case of the flow rate increase.
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Chapter 7

7 Conclusions and Recommendations

7.1 Conclusions

In this dissertation, the flow responses associated with grooves placed on either one wall
or both walls of a straight channel have been numerically analyzed. As the first step, a
spectral algorithm suitable for the analysis of flows in grooved channels has been
developed. Two-dimensional grooves with arbitrary shapes and arbitrary orientations
with respect to the reference flow direction have been considered. The reference direction
is defined as the flow direction when grooves are absent. In the case of transverse
grooves the flow is two-dimensional; the flow becomes three-dimensional for oblique
grooves and remains three-dimensional when grooves assume longitudinal orientation.
The algorithm models geometry of the grooves using Fourier expansions. Computations
are carried out in a fixed computational domain with the grooves submerged inside this
domain. The flow boundary conditions are enforced using the immersed boundary
conditions (IBC) method which results in the construction of constraints that provide
closing conditions for the field equations. The algorithm eliminates the need for costly
coordinate generation and provides flexibility required for an efficient analysis of various

possible grooves’ geometries.

The computational problem is formulated using an auxiliary reference system that has
one axis directed along the grooves’ ridges. This leads to a split of the three-dimensional
flow problem into a sequence of two-dimensional nonlinear flow problem across the
ridges to be followed by a two-dimensional linear flow problem along the ridges. The
spatial discretization is based on the Fourier expansions in the direction transverse to the
grooves, and Chebyshev expansions in the direction across the channel. An efficient
linear solver, from the point of view of execution time as well as memory use, that takes
advantage of the matrix structure has been used for iterative solution of the nonlinear

two-dimensional problem. It has been shown that it is more efficient to solve the linear
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two-dimensional problem using an iterative method as this method results in a matrix
structure that can be solved very efficiently. Various tests confirm that the algorithm
provides spectral accuracy. The absolute error increases with an increase of the extremity
of the geometry, as measured by the groove’s amplitude and wavenumber, and this
represent limitations of the IBC method. The error also increases with an increase of the
flow Reynolds number but this effect is due to the rapid increase in the magnitude of the
nonlinear terms. Both errors can be partially controlled through an increase in the number

of Fourier modes used in the computations.

In order to verify the numerical results, the same problem has been solved using the
domain transformation (DT) method. In this method, the irregularity of the physical
domain is removed by use of an analytical mapping which transforms the irregular flow
domain onto a regular computational domain. This permits enforcement of the boundary
conditions to be performed in the classical way as the edges of both computational and
physical domains overlap. The field equations are discretized using the same spectral
method discussed above. The IBC method is computationally significantly faster
compared to the DT method. However, the DT method can handle geometries with high

level of extremities.

Analysis of drag generation in conduits with corrugated walls has been carried out
analytically using long wavelength approximation. Range of validity of this
approximation has been determined by comparing analytical results with numerical
solution of the complete field equations. Three mechanisms for generation of additional
pressure losses have been identified. The first mechanism is associated with the alteration
of the shear stress distribution at the walls. The second mechanism is associated with the
presence of an obstacle (corrugation) in a flow with a mean pressure gradient and is
referred to as the form drag. The third mechanism is associated with the interaction of the
periodic part of the pressure field and the surface geometry and occurs due to a phase
shift between them. Explicit results have been presented for corrugations represented by a

single Fourier mode. Drag increases rapidly with an increase of the corrugation amplitude
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with pressure drags being responsible for up to 58% of the total drag in the case of single
corrugation when its amplitude extends up to the middle of the conduit. When both walls
are corrugated, phase difference between corrugations can change drag by a factor of up
to ~3.5 with the largest drag being generated by the corrugations with the phase shift

¢ =7 between them. Variations of fractions of the total drag show the same functional

relations for single and double corrugations, with a much more rapid increase of drag for
the double corrugation. It is demonstrated that corrugations that are placed at both walls
and are out of phase can generate the same drag as compared to corrugation with doubled

amplitude placed only at one wall.

In the next step, the effects of grooves with arbitrary orientations on the pressure losses
have been investigated. The groove-induced pressure losses are expressed in terms of an
additional pressure drop required in order to maintain the same flow rate in the grooved
channel as in the reference smooth channel. It has been shown that the total effect can be
expressed as a superposition of effects due to changes in the mean positions of the walls
and due to flow modulations associated with the wall shape. The former effect can be
evaluated analytically, while the latter one requires explicit computations. It has been
demonstrated that a reduced-order geometry model is an effective tool for representation
of the wall geometry, and this permits extraction of features of geometry that are relevant
to the drag generation associated with flow modulations. Projection of the wall shape
onto a Fourier space has been used to generate such a model. Explicit computations
demonstrate that in most cases the leading Fourier mode from the Fourier expansion,
representing the wall geometry, is sufficient to predict the pressure losses with accuracy

sufficient for most applications.

The modulation effect produces the largest additional pressure losses when the grooves
are placed transversely with respect to the flow direction and the smallest losses when
these grooves are parallel to the flow direction (longitudinal grooves). Grooves with 42°

inclination angle with respect to the flow direction have the highest flow turning



208

potential. Detailed analysis of the extreme cases, i.e. transverse and longitudinal grooves,

has been carried out.

The total drag associated with flow modulations induced by the transverse grooves
consists of a combination of shear drag, pressure form drag and pressure interaction drag.
The contributions of the different forms of drag change as a function of the groove
wavenumber and the groove amplitude. In the case of the small amplitudes of interest
here, the shear drag generally dominates for long-wavelength grooves while the
interaction pressure drag dominates in the case of short-wavelength grooves. The total
drag increases when groove wavelength decreases. The flow lifts up for sufficiently
short-wavelength grooves, resulting in an apparent thickening of the wall. This effect has
been quantified by introducing the concept of a hydraulically equivalent channel opening
defined as an opening of a smooth channel that has the same friction factor as the
grooved channel. The presence of separation bubbles trapped in the groove trough for
sufficiently short-wavelengths grooves provides potential for the creation of a drag-
reducing surface. The drag reduction can become practicable if a method for reduction of

the unwanted pressure interaction drag can be found.

Viscous shear is totally responsible for the drag generation in the case of longitudinal
grooves. When grooves with sufficiently long wavelength (f# <~ 1) are used, the drag
decreases in spite of the increase in the wetted surface area. The drag reduction is
associated with the redistribution of the mass flow, with the largest flow taking place in
the zone of the widest channel opening. A decrease of the wavelength results in an
increase of the drag above the level found in the smooth channel. When the groove
wavelength is sufficiently small, the flow lifts up, resulting in an apparent thickening of
the wall. At the same time, the fluid is squeezed out from the troughs, resulting in the
elimination of the shear over the majority of the wetted area. The potential for creation of
a drag-reducing surface is counteracted by a significant shear increase over the groove

tips. A proper shaping of the grooves may eliminate the formation of the shear peaks.
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Identification of laminar drag-reducing grooves in the pressure-driven flows motivated us
to further analyze shapes of these grooves in order to find groove geometries which
provide the least flow resistance. The analysis was focused on the optimization of the
groove shape from the point of view of maximization of drag reduction. The acceptable
shapes were subject to constraints expressing the maximum acceptable height and depth.
The geometries were represented in terms of Fourier expansions with an unknown
number of terms and the number of terms required in order to capture the relevant details
of geometry was one of the outcomes of the analysis. It has been found that the Fourier
expansions were rapidly convergent and, as a result, 3-5 Fourier modes were sufficient to
describe the optimal shapes, i.e. it is possible to construct reduced-order models for the

optimal shapes.

The grooves were divided into two categories for the purpose of discussion, i.e. equal-
depth grooves with the same height and depth, and unequal-depth grooves. In the former
case, use of optimal shapes increases drag reduction by up to 50% when compared with
the simple sinusoidal grooves. The critical groove wavenumber, which separates the drag
decreasing from drag increasing grooves, is essentially unaltered by use of optimal
grooves. The optimal shapes can be approximated over the whole range of drag
decreasing wavenumbers using a universal trapezoid. The error in predicting drag
reduction associated with the use of the universal trapezoid rather than the actual optimal
shape is negligible for most applications. Use of grooves on both walls doubles drag
reduction compared with grooves on one wall only. The best results are achieved when

grooves are moved by half wavelength with respect to each other.

Analysis of the unequal-depth grooves was focused on grooves with constant height and
a variable depth. It has been found that there exists a depth that results in the maximum
drag reduction. This depth and the corresponding groove shape define the optimal
geometry. The corresponding shapes can be approximated over the whole range of the
drag reducing wavenumbers using a universal Gaussian function. Use of the unequal-
depth grooves increases drag reduction by up to 50% when compared with the equal-

depth grooves of a similar height.



210

The same analysis has been extended to kinematically driven flows. It has been found

that grooves always increase flow resistance in such flows.

The effects of longitudinal grooves on the flow resistance in pressure and kinematically
driven flows have been studied. The analysis was focused on the identification of groove
shapes which improve the system performance as measured either by an increase of the
flow rate in the direction of the reference flow or by a reduction of the magnitude of the

force acting at the upper wall.

In the case of flow rate, use of the reduced-order geometry model led to the analysis of
sinusoidal grooves characterized by the amplitude S and the wavenumber £, and resulted
in the identification of three zones in the pressure gradient - wavenumber space leading to
an increase of the flow rate. The long wavelength grooves increase the flow rate for
Re*dp/dx < 0 and for Re*dp/dx > 1.5 and, in both cases, the reduction of the groove
wavenumber improves the system performance. The short wavelength grooves increase
the flow rate for 0.755[1—(1—0.55)3]_1 < Re*dp/dx < 1.5. An increase of the wavenumber
leads to an improvement of the system performance if the groove amplitude S<S.4 o but
there exists the most effective wavenumber S50 when S>S.40. Explicit estimate for the

most effective groove amplitude S.¢ has been given.

Optimization was utilized in order to find the best groove geometries. The admissible
shapes were constrained by specifying the maximum acceptable height and depth of the
grooves. It has been shown that the optimization process is able to accurately capture
optimal shapes of the long wavelength grooves and the relevant reduced-order geometry
model requires the use of only up to five Fourier modes. The optimal long wavelength
grooves with the equal depth and height can be approximated by a certain universal
trapezoid over the whole range of the relevant wavenumbers. These shapes show
marginal dependence on the pressure gradient and a weak dependence on the groove
wavenumber. The latter dependence becomes more pronounced as the groove
wavenumber approaches the critical value which separates the flow-rate-increasing

grooves from the flow-rate-decreasing grooves. In the case of the unequal-depth grooves,
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the height of the grooves is fixed and the depth and the shape are determined by the
optimization process. The resulting shapes can be approximated over the whole range of
the relevant wavenumbers using a Gaussian function. These shapes show similar
dependence on the pressure gradient and the wavenumber as the equal-depth grooves.
Use of the unequal-depth grooves rather than the equal-depth grooves increases the flow

rate by up to four times.

It has been shown that the optimal shapes do not exist in the case of short wavelength
grooves with §<S.:o where the system performance is dominated by the shortest
admissible groove wavelength. For §>S. ¢ the best system performance is found for the
wavenumber [,z but the optimal shape cannot be identified due to limitations of the

numerical procedure used in the analysis.

In the case of forces acting on the upper wall, analysis of sinusoidal grooves resulted in
the identification of two zones in the pressure gradient - wavenumber space where the
grooves are able to reduce the magnitude of this force. The first zone corresponds to
Re*dp/dx<-0.5 with grooves of any wavenumber being able to reduce the force. The
second zone corresponds to Re”‘dp/dx>(2—S)'1 but, in this case, only the short wavelength
grooves are able to reduce the force. No optimal shapes can be found under such
conditions as either the system performance is dominated by the shortest admissible
wavelength or the convergence rate of the relevant Fourier expansions is too small to

yield a practical solution.

7.2 Recommendations for future work

Effects of grooves as a subset of the general problem of interactions of surface
topography with the flow dynamics in laminar channel flows have been presented in this
dissertation. In order to further advance the research in this area, the following directions

may be considered for future work:

1) In this dissertation, the effects of a special class of surface geometry on channel

flows have been numerically investigated. The class of surface topography
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considered was two-dimensional grooves of arbitrary shapes and orientations with
respect to the reference flow direction. This analysis can be extended to consider
arbitrary three-dimensional geometries. There should be no conceptual difficulties
for the development of necessary tools to model such problems as the same
methodology used here is in principal capable of handling arbitrary three-
dimensional shapes. However, efforts may be required to develop efficient solvers
that can efficiently solve the problem with a reasonable computational cost.
Development of such tools provides flexibility to study all possible groove shapes

that are of practical interest in various engineering fields.

Since the surface topography changes the stability of the flow, studying the
stability behaviour of different classes of surface grooves is of great interest and
can be pursued for future research. For that purpose, the linear stability equations
should be developed in such a way that they can account for three-dimensional
disturbances. These equations can be solved to determine the stability properties

of different forms of grooves.

iii) Although a vast amount of work has been devoted to studying the effects of

surface irregularities in the fully turbulent flow regime, the conclusions regarding
their effects are not complete and thus there still exists many opportunities for
research to be conducted in this field. A systematic analysis of effects of different

features of surface geometries on flow response is of special interest.

iv) Enhancement of heat transfer by means of surface inhomogeneities of proper

forms represents another interesting field which is very important in many
applications. The main challenge is to optimize the surface geometries in such a
way that the heat transfer rate is increased and at the same time the pressure loss
associated to fluid movement is reduced. From numerical perspective, one needs
to develop algorithm that can solve the continuity, Navier-Stokes and energy
equations simultaneously with high accuracy. The spectral method presented in

this dissertation can be used to develop the required tool.
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v) With the knowledge of the findings presented in this dissertation, new research in
the area of the experimental fluid dynamics can be proposed. It is worthwhile to
set up experiments to verify the current predictions and to use this knowledge for

the development of new, energy efficient devices.
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Appendices

Appendix A

Appendix A: Description of the methodology used in the
evaluation of different inner products appeared in

Chapter 2.

The definition of the Chebyshev polynomials of the first kind (Mason & Handscomd

2002) is based on the following well-known recurrence relation, i.e.
T,(y) =1, Ii(y)=y, and Toa () =2yT,(y) =T, ,(y) for k=2. (A.1)

The inner product of two Chebyshev polynomials 7; and 7, (Mason & Handscomd 2002)

1s defined as

(T).L.), = [T (edy, @y =1/y1-y", (A2)

-1

where @ is the weight function and subscripts j and k denote the order of polynomial.
Orthogonality property of the Chebyshev polynomials leads to a simple solution to the

above integral, i.e.

n, Jj=k=0
T .
<Tj,Tk>=5Ck5j,k= n2, j=k>1, (A.3)
0, j#k

where & ik is the Kronecker delta and C; is defined as
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C_z, k=0 a4
TN, k=1 (A4)

First derivative of a Chebyshev polynomial can be expressed in terms of Chebyshev

polynomials in the form

x=k—1
DT, =2k CLTX’ k—x=o0dd, k=>x+1. (A.5)

x=0 x

Taking inner product of (A.5) with Chebyshev polynomial 7; gives

x=k—1 1
(1,.DT, ) =2k F<Tj,TX>, k—x=odd, k>x+1. (A.6)

x=0 x
Insertion of (A.3) into (A.6) results in the following simple relation for the inner product
of a Chebyshev polynomial of jth order and its first derivative of kth order, i.e.
(T,.DT,)=kn, k-j=odd, kxj+I. (A7)

Second derivative of a Chebyshev polynomial can be expressed in terms of Chebyshev

polynomials as

DT, = k(k>=x*)T,, k-x=even, k2x+2; (A.8)

:k—ZL
x=0 C

X

its inner product with Chebyshev polynomial 7; results in

<Tj,D2Tk>= k(kz—x2)<Tj,Tx>, k—x=even, k=2x+2. (A.9)

The simplified form of (A.9) can be obtained with the help of Eq. (A.3) which takes the

form

<Tf,D2Tk>:k<k2—j2)g, k—j=even, k2=j+2. (A.10)
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Taking derivative of (A.8) with respect to y leads to a relation for the third derivative of
Chebyshev polynomial T} in the form

DT, = k(k*-=x*)DT,, k—x=even, k>x+2. (A.11)

=k-2 1
x=0 Cx
Substitution of (A.5) into the above equation, leads to the following relation for the third

derivative of Chebyshev polynomial 7}

x=k=2

z=x-1
DT, = > —k(k* —xz){Zx > Lr

Il
>~

(A.12)

1
C, - C x—z=o0dd, x=2z+I.

(=]

X= z

} k—x=even, k=2x+2,

Taking inner product of (A.12) with 7; and using (A.3) result in a relation for inner

product of a Chebyshev polynomial of jth order and its third derivative of kth order, i.e.

x=k=2 k—x=even, k=x+2,

(1,,D°1,) (A.13)

x—j=odd, x=j+1.

Evaluation of the forth derivative of Chebyshev polynomial 7} begins with taking the

second derivative of (A.8) with respect to y in the form

k(k* = x*)D°T., k—x=even, k=>x+2. (A.14)

Replacing D*T with its equivalent from Eq. (A.8) gives

xzk=2 | S| k—x=even, k>x+2,
DT, = Y —k(k*-x" —x(x* =T, |, A.15
LA C, ( ){ZZ_; C. ( 2T, x—z=even, x=z+2. ( )
Taking the inner product of (A.15) with Chebyshev polynomial 7; leads to
*&5? 1 n| k—x=even, k2x+22j+4,
T..D'T )= —k(k? =D x(x* = H= ],
< ! k> = C. ( )[ ( / )2 x—j=even, x> j+2. (A.16)
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Evaluation of the inner product of 7, and u,T, begins with expressing uo in terms of

Chebyshev polynomials, i.e.
m=M

u,(») = D U,T,(3), (A.17)
m=0

where U,,’s are the coefficients of expansion and M is the highest order of Chebyshev

polynomial in the expansion. The relation between y and y given by Eq. (2.43) is re-

written for convenience in the form
j=ay+b,where a=T" and b=-T"+1+Y (A.18)

and its use in (2.29a) gives an expression for the x-component of the reference velocity ug

written in terms of y coordinate, which takes the form
uy(y)=(=a’y’ —2aby +1-b") cos(¢) . (A.19)

Expressing uo(y) in terms of the Chebyshev polynomials (A.1) leads to the determination

of the coefficients U, i.e.

U, = (1 - % - szcos(gb) : (A.20a)
U, =—2abcos(@), (A.20b)
U, = —%cos(;/)) : (A.20¢)

The inner product <Tj,u0Tk>, with the help of (A.2), (A.17)—(A.20) takes the form

L =2

(T,.u,T,) = IZTj U, T,T, wdy= memUTj T T, a)dyj , (A21)
m=0 e

_1m=0

Implementing the following property of the Chebyshev polynomials
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(T,+m +1,_,) (A.22)

in (A.21) gives

m=2

(T,.u ZU D T, T, ody+ j T T a)dy} S, (T [< o T+ <Tj_m,Tk>]. (A.23)

m—O m—O

With similar procedure, one can evaluate <Tj,u0 DTk> and <T<I.,u0 DZTk> in the form

(T,.u, DT, ) = miU,nij+m,DT> <Tj_m,DTk>], (A.24)
(T,.u, DT, ) = ;::OU [<Tj+m,D T.)+ <Tj_m,D2Tk>]. (A.25)

Evaluation of the inner products <Tj,DuO Tk> and <Tj,DwO Tk> begins with description of

Dugy and Dwy in terms of Chebyshev expansions in the form

Dy () =~2a(ay +b)cos(9) = miUd T,00. (A.26)
Duwy(y) = —2a(ay +b)sin(@) = 3 W, T, (). (A.27)
m=0

where U,,, and W,,, are the coefficients of expansions and take the form

U, ,=—2abcos(¢), U,, =—2a’cos(9), (A.28a,b)
W, , =—2absin(¢) , W, , =—2a’sin(@) . (A.29a,b)

Using (A.22), (A.26) and (A27), the inner products (7,,Du,T,) and (T,Dw,T,)

become
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(1) Du, T, ZUM[ Ty T) + (T T, >] (A.30)

(T,.Dw,T,) = Zdek T,,.T,)+ <1mTk>] (A31)

The definition for inner product <TJ.,D2u0 Tk> reduces to
(T,,D’u,T,) = =2a" cos(P)(T}. T, ). (A.32)

Finally, the following inner products can be easily evaluated with the help of (A.22) and

take the form

(r.01,1,) = {7,...08)+(1, .07, (A33)
(r.5,01) = {7,..07)+(1,,.07;)]. (A34)
(r.015)= 1 o)+ (o) (A35)
(1,1,D°T,) = ;[@H D7)+ (1,07, (A36)

<TJ DZTk+z> <T Dznk 1\> <T1+k D T> <7L'—k"D2TZ>

~(1,,.D°T,) - <T DT> (A7

(r,,DT,DT, ) =

-lk|>—‘

=1l
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Appendix B

Appendix B: Description of the methodology used in the
evaluation of Fourier coefficients of the reference
velocity and the reference stream function at the
grooved walls for the flow problem presented in

Chapter 2.

Consider the reference velocity component in the x-direction evaluated along the upper

wall. Using Eq. (A.19) one can write
Uy (Y (%)) =ty (x) = [—a’y;, (x) = 2aby, (x) + 1= b*] cos(¢) . (B.1)

With the help of (2.44a), it is easy to show

n=2%N, m=N,

y(Z] (X) — Z ZA[(]m)A((]n—m)ein(xx ) (B2)

n==2%N, m=—N,
The reader may note that the non-zero values of A"’ only occur for |k| <N,.

Substitution of (2.44a), (B.2) and (B.1) into (2.63a) and separation of Fourier modes

result in the determination of Fourier coefficients u.") , i.e.

m==N ,

m=N ,
uly =cos(9)| —a’ Y. AJPAYT — 2abA(§”>} : for 1<|n|<2%N,, (B.3a)
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m=N ,
ugy =cos(P)| —a® D AAS —2abA + (1—b2)] for n=0. (B.3b)
m=—=N 4

Similarly, Fourier coefficients w", take the form

B m=N 4,
wly =sin(¢)| —a’ ZA},’”)A,(}"”’ - ZabA,(]’)} , for 1< |n| <2%N,, (B.4a)
m==N ,
B m=N , )
oy =sin(@) —a® Y Ay AT —2abA)” +(1 —b%}, for n=0. (B.4b)
m=-N 4

Fourier coefficients u") and w;") can be evaluated using the same concept.

The reference stream function evaluated on the upper wall ¥ (y,(x)) represents a
known periodic function that can be expressed in terms of Fourier expansion in the form

n=3%N,

Yy ()= D Ope"™. (B.5)

n==3%N,
The reference stream function along the upper wall written in (x,y) coordinate system can
be evaluated by substitution of Eq. (A.18) into Eq. (2.39b), i.e.

W (y, (1) = {—%yz (1) = aby? () + a(l = b) y, (x) + b1 —%) +ﬂ cos(@). (B.6)

The Fourier expansion for y; (x) takes the form

n=3%*N, q=2¥*N, m=N,

o= D D DAPAITAI (B.7)

n==3%N, q=-2%N, m=—N,

Substitution of (2.44a), (B.2), (B.7) and (B.6) into (B.5) and separation of Fourier modes

provide expression for Fourier coefficients @}, i.e.



3 m=N, q=2%N,

of oo -5 5 "S-

m=-—N, q=-2%N,

3 m=N, ¢q=2%N,

_a D
0) _ 3 m=—N, g=-2%N
®,’ =cos(9) . . )
+a(l- bz)Al‘jo) +b(1 —%) +§

zAl(jm)Ai(/q_m)Al(Jq)* _
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aZb ZA[(]WL) (n—m)+a(1_b2)AL(,n)

m=N ,
9
m=—=N,

(B.8a)
for 1<[g<2%N,,
m=N ,
@b A A
= , for n=0. (B.8b)

Similar expressions can be easily derived for ©!" .
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Appendix C

Appendix C: Implementation of the fixed volume flow
rate constraints for the flow problem presented in

Chapter 2.

C.1 Fixed volume flow rate constraints

The constraints are expressed in terms of the flow rates in the X- and Z -directions, i.e.
the flow rate corrections Q,; and Q,. are specified. Since the solution is split into a
sequence consisting of a nonlinear problem describing flow in the (x,y) plane to be
followed by a linear problem describing flow in the (y,z) plane, the constraints have to be

expressed in term of the flow rates in the x- and z-directions. It follows from Eq. (2.37a,b)

that
Q,=(4/3+0Q,;)cos(9) — O, sin(9), (C.la)
Q. =(4/3+0Q,;)sin(@) + O, cos(P) . (C.1b)

This Appendix describes implementation of the above constraints.

C.2 Flow in the (x,y) plane

The flow rate per unit width of the channel in the x-direction can be evaluated by

integrating the x-velocity component across the channel, i.e.
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=4 =3y (x)

0. =% [ [luy()+1,(x, $)1dfdz =y (3, () + (5 (0) = F, (5, () - ¥ (5, (). (C.2)

=0 $=9,(x)
Insertion of the normalization condition (2.41) into (C.2) results in
0, =¥, (Vy () +¥,(Jy () = ¥y (yy () + ¥, (yy (X)) (C.3)
and insertion of (C.3) into (C.1a) leads to

Y (v, (x) ==Y, (y, (x)) +(4/3+ Q,;)cos(@) — O, sin(9) . (C4)

The flow modification stream function at the upper wall W,(y,(x))can be expressed

using Eqs (2.47a), (2.51a) and (2.58a) in the form

n=N; m=N, k=N;

Yy, )= > > Y.G"B ", (C.5)

n==N, m==Ny k=0

where the non-zero values of B;";" occur only for |n - m| < N . Substitution of (B.5) and

(C.5) into (C.4) and extraction of mode zero lead to the discretized form of condition

expressing the fixed flow rate constraint in the x-direction in the form

m=N, k=Np
> S GMB =-0 +(4/3+Q,;)cos(#) — Q. sin(g) , (C.6)
m==Ny, k=0

where the nonzero values of By} occur only for |m| < N. One needs to solve the field

equations (2.53) with the boundary conditions (2.64a,b)—(2.65a,b), the stream function
normalization condition (2.68) and the fixed volume flow rate constraint (C.6) replacing

the fixed pressure gradient constraint (2.72) in order to determine flow in the (x,y) plane.
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C.3 Flow in the (y,z) plane

The fixed flow rate constraint in the z-direction can be implemented by starting with the
y-derivative of Eq. (2.50b) in order to eliminate pressure gradient contributions, i.e.
m=Ny,

D’ £ —iaRel Y m[D?®™ £ +2DD™DF™ + D £ |=0. (C.7)

m=-=N,

The problem now consists of the third order equation (C.7) with two boundary conditions
corresponding to n=0 in (2.64c)—(2.65¢c) and requires a closing condition in order to form
a well posed problem. The mass flow rate constraint provides the required closing

condition.

Substitution of (2.51a,b) into (C.7) and application of the Galerkin projection method

result in

’(T,.D°T, )E”

k=N
; —i0Rel ZN li mG ™" [<Tf,D2Tl T,)+2(T,.DT, DT, ) +(T,.T, DT, >]E£m> =0 (C3)
m=—N,, 1=0

Similar procedure for the iterative method (see Eq. (2.84b)) leads to

k=Np k=Np
ZN: *(T,,D°T, )E" = Re ZN: [(T,.D°T,)J " . (C.9)
k=0 k=0

Three equations of either type (C.8) or type (C.9) corresponding to the highest
polynomials are dropped to create space for imposition of the boundary conditions and

the required constraint condition. These conditions are imposed in the tau-like manner.

A suitable form of the volume flow rate constraint can be determined by integrating the

w-velocity component across the channel, i.e.

x=4, §=9y (x)

0 =1 I Iw(x, dydx=1, +1, , (C.10)

x=0 9=F(x)
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where
x=2, $=9y (x)

L,=4' [ [w(®dpdx, (C.11a)
x=0 §=9, (x)
x=2A, $=Py (x)

Lo=4' [ [w(e9)dide. (C.11b)

x=0 $=3, (x)

It can be shown that the first integral reduces to the following form

T i () = 2(x)

1, =A!sin(@) [ {%(x)—&(x)—%}dx. (C.12)
x=0

This integral needs to be expressed in terms of the computational variable y. Use of

Eq.(A.18) in Eq. (C.12) results in

1, =A4sin(@)

w=2, (/3 3 3 —a*b[v:(x)—v?
{ (@’ 13)[y; (x) = y; (0] —a’bly; (x) yL(X)]}dx. (C.13)

—a(b® =Dy, (x) =y, (0]

x=0

Polynomials appearing in the above relation need to be expressed in terms of Chebyshev

polynomials, i.e.

y=T(), (C.14a)
v =[T,(N+T,(N/2 , (C.14b)
¥ =BL()+T,(y)]/4, (C.14c)

and values of these polynomials evaluated along the walls can be expressed using

Eq.(2.58a) resulting in the following form of the integral

I, =4 sin@)

Qs |- (@ 12(Byy - B) = @b/ DBy - By f "dx.  (C.15)
e . .
—[a* 14 +a(b’ ~DIBY ~ B @b/ 2)(BY) —BLY)

m=—N x=0
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Explicit evaluation of the integral appearing in the above relation reduces Eq. (C.15) to

the form

—(a’112)(B2 =B Y= (a’b/2)(B\”) — B\")
IWu :Sin(¢) 3 31; ! 0) (0) 2,IZJ o 0) (0) . (C16)
—[d’14+a(b®> -DI(BY —B))—(a’b/2)(By,, — ByY)

L

Evaluation of the second integral in (C.10), i.e. [, begins with the substitution of

wy 2

(2.47b) and (2.51b) into (C.11b) leading to the following relation

x=A, y=yy (x) n=Ny, k=N ) n=N, k=Nj x=A, ‘
L=AT [ [ 3 SETOEdd=AT" 3 > E" [[(0"d, (€17
x=0 y=y, (x) =Ny k=0 n=—Ny, k=0 x=0
y=yy (x)
where [, (x) = J-Tk (y)dy . The above integrals can be evaluated analytically resulting in
y=yp(x)

L =T =T, 10 =22 B0

9

(C.18)

Ik(x):l Tk+1(yU)_Tk+1(yL) Tk—l(yu)_Tk_l(yL) , > 1.
2 k+1 k—1

Values of Chebyshev polynomials at the upper and lower walls appearing in Eq. (C.18)
can be expressed with the help of Eq. (2.58a) resulting in

m=N;

_ T(m) imox
L(x)= Y IMe™™, (C.19)
m=—N;
where
N R B(m) _ B(m)
(m) __ (m) (m) (m) __ 2,U 2,L
10 _BI,U _BI,L 4 11 - 4 s

(C.20)

, k>1

(m) (m) (m) (m)
i(m) _ l Bk+1,U - Bk+l,L _ Bk—l,U - Bk—l,L
) k+1 k-1
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and max(N)=(Nr+1)*N4. It is simpler for the following presentation to consider
N;=(Nr+1)*N, with the additional terms taking zero values in a natural way. Equation

(C.17) can be brought with the help of (C.20) and (C.19) to the following form

n=Ny m=N, k=Ng x=4,
LEATTY S S EME [, (C21)
n=-Ng m==Ny k=0 x=0

where N,=(N,+1)*N,+ N, and the nonzero values of I =™ occur only for
|n - m| < N, . Explicit evaluation of integrals appearing in the above relation results in the

final form of the integral 1 yy s 1€

m=N,, k=N;

I, =r"% S E™I"™, (C.22)

m==N,, k=0

where the nonzero values of 7" occur only for |m| < N, . The final form of the flow rate

constraint in the z-direction is obtained by inserting (C.16), (C.22) and (C.1b) into (C.10),

1.e.

mNMkNT

T STEMIM =—1, +(4/3+Q,;)sin(@) + Q. cos(9) , (C.23)

m==N,, k=0

T (m)*

where the nonzero values of 1, occur only for |m| <N,.
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Appendix D

Appendix D: Evaluation of the pressure field for the
flow problem presented in Chapter 2.

The non-dimensional governing equations describing flow in the (x,y) plane, written in

terms of the primitive variables, take the form

du, +Id v =0, (D.1)
w0 1, +Tv,0 u, +TvDuy +ud 1, =—h, — 0.+ Re™ (Q2u, +I°0%u,) , (D.2)
ud v, +I'vid v, +ud v, =-I'd g+ Re ' (d%v, + anivl) ) (D.3)

Using the continuity equation (D.1) and the derivatives of the velocity products defined

as

3 {uu,) =2ud u,, (D.4a)
o {uyv,}=u0d v, +vo0u, (D.4b)
d,{vy,}=2v0 v, (D.4c)

one can replace the nonlinear terms on the left-hand side of Eqs (D.2) and (D.3) with the

above derivatives of the velocity products in the form

0, {uu;}+T0 {uy,} +TvDug +uyd u, =—h, —0,.q+Re (5, +T70%u,) (D.5)
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0 {uw}+10 {vy} +ud,v, =-T9 g+Re (O, +T70%v)). (D.6)

Re-arranging Eq. (D.5) gives an expression for the pressure gradient change in the x-

direction, i.e.
h,+0.q=-0 {uu}—T9 {uy}—TvDuy—u0d u +Re" (0%, +T°0u,). (D.7)

The modification velocity components and the x-periodic part of the pressure
modification can be expressed in terms of Fourier expansions with the help of Egs

(2.39¢,d) and (2.47a), i.e.

n=N,, )
u,(x,y) =T D DO (y)e" ™, (D.8a)
n=-=N,y
n=N,, )
v(x,y)=—ia Y n®" (y)e"", (D.8b)
n=-=N,y
n=Ny )
q(x. )= D.q"(ye" . (D.8¢)
n=—Ny,

Substitution of Fourier expansions (D.8a—c) and (2.48a,b) into Eq. (D.7) and separation

of Fourier modes result in

h, +inag™ (y) = —inadfuu, ) (y) = TD{uy,}” (y) + inad Duy(y)@" (y)

D.9
— inalu,(y)D®" () + Re”' |- n2a’TD®™ () + I*D*®™ (y)]. (B2

Equation (D.9) written for mode zero provides expression for the evaluation of the

pressure gradient change in the x-direction in the form
h,=Re"'T°D’® (y) —TD{up,}”(y); (D.10)

and its integration between walls results in
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y D0 (3, () =D (3, (0)]= ReTlfun (3 (0) =l } (v, 0]
' Rely, () =y, (x)]

(D.11)

The above relation can be used at any x-location. Although the analytical values of
{uv}”(y,(x)) and {up,}”(y,(x)) are zero, one needs to retain them in the

computations in order to obtain A, independent of x.

An alternative way to evaluate &, relies on the insertion of the Chebyshev expansions
(2.51a) and (2.52b) into (2.70), and taking the inner product of the resultant equation with
T(), 1.e.
k=N
ho=n"Y {CRe (1, D'T, )G ~I(,.DT, )M . (D.12)
k=0
Comparison of values of i, computed using either (D.11) or (D.12) provides a useful

consistency check for the algorithm.

Equation (D.9) written for n # 0 gives expression for the evaluation of 4" ), ie.

1 {_ ina{ui }" (y) = TD{uv, ) (y) + inal Duy (y)@" (y)
ino

(n)
g (="— . (D.13
_ ina'FuO(y)DCD‘")(y) L Re! [_ nza'ZFDCID(”)(y) i F3D3<I>(")(y)]} ( )

Modal functions of the pressure modification ¢™(y) can be expressed in terms of

Chebyshev polynomials as

k=N,

q" (y) = Y I"T.(»). (D.14)

Insertion of Chebyshev polynomials (D.14), (2.51a), (2.52a,b) into (D.13), taking the

inner product of both sides of this equation with 7,(y), and using the orthogonality

properties of Chebyshev polynomials result in
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—inoK"(T,.T,)~TM"(T,.DT,)

2 kN n#0
I ol +inarG;">[<Tj,Du0Tk>—<Tj,u0DTk>] , for {osj's N (D15
e +FRe‘1G,§”)[—n20(2<Tj,DTk>+F2<Tj,D3Tk>] '
2 j=0
where Cj:{l P20

One needs to use the y-momentum equation to evaluate ¢”’(y). Substitution of Fourier

expansions (D.8b,c) and (2.48b,c) into Eq. (D.6) and separation of Fourier modes give

FDq(n) (y) = _ina{ulvl }(n) (y) - FD{Vlvl }(n) (y) - nza’/zuo(y)q)(n) (y)

+ R i’ a’ @ (y) — inal*D*® (y)). (D.16)
Equation (D.16) written for mode zero takes the form
I'Dg"“ (y) =-TD{y}* (), (D.17)
which, after integration, becomes
g (=~} +e, (D.18)

where ¢ is the integration constant. Substitution of the Chebyshev expansions (D.14) and
(2.52¢) into (D.18), taking the inner product of the resultant relation with 7)(y) provide

. . 0) -
expression for evaluation of H(j ) ie.

k=Ny
o :;_2 > Rk<o><Tj,Tk>+%<Tj,T0>, for 0<j<N,. (D.19)

jT k=0 J

The pressure gradient change in the z-direction can be evaluated for the direct method by
re-arranging Eq. (2.73), i.e.
k=N m=Ny, =Ny

h =n"Re’ Z{F2<Z),D2E>Ek°’ —iaReT' > > mG"|(T,, DT T)+(T,. T, D7;>]E§'">}, (D.20)

k=0 m=—N,; 1=0
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and for the iterative method by re-arranging Eq. (2.84b)

k=Ng
h =n'Re’ zN: Ir2(z,.0°1,)E® - Rer(1,.DT, )} (D.21)

z
k=0

Pressure gradient corrections in the x- and Z -directions can be subsequently evaluated

from Eq. (2.69).

The total pressure field takes the form

n=Ny k=Ny

p(x,y,z)=—2Re” [xcos(¢) +z sin(¢)]+ hx+hz+ Z ZH;{”)T,( (y)e"™ +c, (D.22)

n=—Ny k=0

where the integration constant c¢; has been added to the arbitrary constant c.
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Appendix E

Appendix E: Domain transformation method for the

flow problem presented in Chapter 4.

The irregular flow domain in the physical (X,y) reference system is mapped onto a

regular computational domain (Husain et al. 2009) in the (&,7) reference system using a

transformation in the form

_ Zy_yU(-;C’)_yL(-;C’) .
Yy (X) =y, (%)

e
Il
=1

n (E.1)

E.1 Domain transformation method for transverse grooves
(¢=0°)

Equation (4.17) can be expressed in the (& 7)) system as

0y ¥ + Bi(&,1)0,,, ¥, + B,(&,m)9,, ¥, + B;(§,m)0, ¥, + B,($, 1m0, ¥, + Bs (5,19, P,
+B,(§,m09;, 'Y, + B, (§,1)0 'Y, + By(§,11)0 5, ', + By(§,1)0 25, ¥, + B, (§,7)9 P,
+B, (5.0 ¥+ Bo(§m0g ¥, = LEmMI NI+ L& ma, N }+ L& ma,, N} (E2)
+L,(&,m9,,{N, }+ Ly (£,m9, AN, }+ L (E,m)9, AN, }+ L, (E.1)0 (N, }

where,

{Nl}: i, _{‘71‘71}’ (E.3a)
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v =1av ), (E.3b)
By(&.m) =1z + 2050, + 11y, (E.4a)
B, (&, m) =605 + 20550, + 81150, 15, = ioRe(ryz = n:1)1/By (8.1 (E.4b)
B, (&,n) =303 + 403 zc + 40151, + 405, — 1o ReGns o + 2n:m )1 /By (E.1) (E.4c)
By(S.11) = [Txszz — ReitgTls + 20101 By (8,70) (E.4d)
B,(&.m) = (4n; +4m:1)/ By(£.1), (E.de)
By(&m) =[12015115; + 815,11, — W,Re(3n; +1)1/By (5. 11). (E.4f)
By (&.1) = (4155 —3ityRens; ) /By (S,1]) (E4g)
B, (&, 1) = (65 —3it,Ren;) /By (S, 1), (E.4h)
By(&,m) = (6n; +211,) /By (&, 1) , (E.4i)
By(&,m) =4n:/B,(S.n), (E.4j)
B, (&,n)=—2Re/B,(&,1) (E.4k)
B,,(&,m) =~ii,Re/ By(&, 1), (E.41)
B,(&.m) =1/By(&.m). (E.4m)

L(&,n)=Ren,/B,(&.n), (E.5a)
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L,(§,n)=Ren;,/B,(5.n), (E.5b)
Ly(&,m)=Renn,/By(S. 1), (B.5¢)
L,(&,n) = Re(n, —n3) /By(&.n), (E.5d)
Ly(&,n)=—Renw/By(5.n), (E.5¢)
L,(&.n)=—2Ren:/B,(&.n), (E.5f)
L,(&,n)=—Re/B,(&.n). (E.5g)

The coefficients arising from the transformation have the form

e == A+ (y)e + A=y )Yy = 1) » (E.6)
Ne =—12n:{(y, )5 _(yL)§}+(1+77)(yU )55 +(1_77)(yL)55]/(yU -y (E.7)
3 e =) e} 30y ) e = () g b+
wE : : * = I(yy = ¥.)» (E.8)
T+ ) gze + A=Y, e
477)?)?)?{()7(/) —()’L) }+677;;{(y(/) —()’L) }+
TEE : : * = I(yy = y.)> (E.9)
4n:{(yy deer — (yL)§§§}+ T+ ) geze + A=Y L) gz
n,=2/(yy =¥ (E.10)
Ny == Ay e = ()3 vy = y1) (E.11)
Xy =_[277}y{(yu )5 _(yL)5}+77y{(yU)§§ _(yL)gg}]/(yU - yL) ’ (EIZ)

Miszy :_[377}}}:{()7(/)5 _(yL)‘f } +377}y{(yu )‘55 _(yL)‘:/:}—i_ﬂ)v{(yU)éf‘: _(yL)g“gf}]/(yU - yL) . (E13)
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The definition of the stream function given by Eq. (4.16) remains unchanged and thus the

velocity components can be expressed as
i (G.1) =ity (&) + it (§.77) =11,0,¥, +77,0,'¥,, (E.14a)
V(G =V(6.1) ==, ¥, —11:9, ¥, , (E.14b)

where subscripts 0 and 1 refer to the reference flow and flow modifications due to the

presence of the grooves, respectively. The boundary conditions can be expressed as

17,0,%,(&.+1) =iy (5,+1), (E.152)
9., (& +1D) +77:0,F,(§,+1) =0, (E.15b)
17,0,%,(5.~1) =-iiy(5,-1), (E.15¢)
9. ¥, (&~ +77:9,,(5,-1)=0. (E.15d)

The stream function normalization condition (4.18) written in the (& 7)) system takes the

form

Y, (E-D+P (E-1)=0. (E.16)
The flow rate constraint can be expressed as

Y (EA+D) ==Y, (E+1)+4/3+Q,,. (E.17)

The resulting system has been solved using discretization based on the Fourier
expansions in the &direction and Chebyshev expansions (Mason & Handscomd 2002) in
the 7-direction. Mode separation and the Galerkin projection method were used to
develop algebraic equations. The linearization procedure treated all the nonlinear terms as
known and took their values from the previous iteration. The nonlinear terms were
updated by carrying out multiplications in the physical space and computing Fourier

expansions of the products using Fast Fourier Transforms. The aliasing error was
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controlled using 3/2 rule (Canuto et al. 1996). The spectral accuracy has been verified

through numerical experiments.

E.2 Domain transformation method for longitudinal grooves
($=90°)

Equation (4.17) reduces to the form

0::W, +0 W, — Reh. =0 (E.18)
and can be expressed in the (& 7) system as

am]wl + B] (f? n)aqwl + B2 (5777)85;7‘2}1 + B3(§’ 77)855\’/\71 - B3 (5’ U)Rehz = 0 H (E19)

where B, (E,7) =1y /(7 +170), B,(E,1) =207, /(12 +77;) and By(E, 1) =1/(5 +77.) . The

boundary conditions (4.11c) and (4.12c) take the form
W (EAD) =—{1-y5 ()], W (&) =—1- (] (E.20)

Equation (E.18) contains the unknown pressure correction, i.e. h.. The corresponding
equation is constructed on the basis of the flow rate constraint, i.e.

&= p=1

Q.= [ [[F(&m+WEMIly, (&) -y, (E1/2dndE =4/3+0,, (E.21)

£=0 p=-1

where /152/?? =2n/a . The resulting system has been discretized using the same

methodology as described in Appendix E.1. The resulting linear system was solved using
the LU decomposition. Various numerical experiments confirmed spectral accuracy of

the algorithm.
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Appendix F

Appendix F: Explicit solutions for the long wavelength

grooves presented in Chapter 5.

F.1 Grooves with shapes expressed using a single Fourier

mode
Consider a channel bounded by walls with grooves of the form
Yo (X) =1+ Beos(x +¢;), (F.la)

v, (x)=—-1+Acos(y+¢,). (F.1b)

The solutions have the form given by Eqs (5.28)—(5.31), where

H =145 cos(7+6,) =5 cos(7+0,). (F.22)
G =3 cos(z+6,)+ 4 cos(Z+4,). (F2b)
H, = =2 sin(z+8,)+ 5 sin(z+6,). (F.20)
G, == sin(z+gy) =2 sin(x+9,), (F2d)

H, :—gcos(;{+ ¢B)+§cos(;(+ ?,) (F.2e)
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d L 1. 1

%:ZRe 1112(— L+l —514) (F.2)
B A

G, :—Ecos(;(+ ¢B)—5cos(z+ 9., (F.2g)

I =1+2(A°+B )—ZABcos(é'), (F.2h)

O=0,—9,. (F.2i)

For a smooth upper wall, i.e. B =0, the above pressure gradient simplifies to

d_p_ 2+i 3A° —,Bzi 2A%(16+3A%)
dx Re Re

" Re 8 +3A> Re| (8+3A%)? }0(/3), F3)

which indicates that for long wavelength grooves the modification pressure gradient is

positive and thus the introduction of grooves reduces drag.

F.2 Grooves with an arbitrary shape placed at the lower wall

Consider a channel bounded by a smooth upper wall and the lower wall fitted with

grooves of an arbitrary form. The geometry of the channel is described as

yo =1, (F.4a)

m=N ,

() ==1+ Y A, cosimy+¢,). (F.4b)

m=1

The solution has the form

u=u,+0(S%), (F.5a)
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d

px) = (%)x+ c+0(B), (F.5b)
where
u,=I""H*(1-75%), (F.6a)
dp, _ 2RI, (F.6b)
dx

1 m=N ,
H :1_5 D A, cos(my+4,), (F.6¢)

m=1

i=Ny (3 , j=ir2]
I =1+, P D CAA A cos(@,+¢_,—9). (F.6d)

i=1 Jj=1

In the above, | ] is the floor function, C = =3/16 for j<i/2, and C=-3/32 for j=il2.



249

Appendix G

Appendix G: Details of the system of equations solved in
the limit of S—0 for the flow problem presented in
Chapter 6.

The system of equations arising in the limit f—0 (see Section 6.3) takes the form

2
0(B%: J Ugo =0, (G.1a)
an
UC()(g’_l) =0, (G.1b)
Ueo(§ A+ =1, (G.1¢)
9Up U;"O =H? (G.1d)
an
UP()(é/’il) =0, (G.1le)
o(B"): J Ugl =0, (G.2a)
on
U, (§x1)=0, (G.2b)
U,
P, 2
8772 (G.20)

U, (£ 41)=0, (G.2d)
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2
0(B%): aal;gz +[2H,G, + 29 H: ~H (G, +1H )] a;/;()
G.3
—2H (G, +nH )aZUC°+H282UC° =0 o
90y T e T
Ue,({£1) =0, (G.3b)
0°U oU
ang’z+[2H§G§+2;7H§—H(G§§+;7H§§)] 87;0
G.3
0°Upy 297Uy, 2 2 (€39
U,,(21)=0, (G.3d)
2
o(B): aa(;? =0, (G.4a)
Upy(£ 1) =0, (G.4b)
2
aa—(;ffzo, (G.4c)
U,y (£ 21)=0, (G.4d)

where subscript ¢ denotes derivative with respect to ¢
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