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Abstract 

     In this thesis, nanophotonic switching mechanisms and light-matter interactions are 

explored in photonic and metallic heterostructures and nanocomposites. These 

heterostructures are made using various combinations of photonic crystals (PCs), quantum 

dots (QDs), and graphene or metal nanoparticles (MNPs). 

     PC heterostructures are formed by combining different PCs so that photons in a specific 

energy range can propagate in certain regions along one direction and cannot propagate in 

others. This band structure engineering is used to form photonic quantum wells (PQWs) that 

have discrete energy states along one dimension. By simulating the photon transmission 

along the direction of confinement, resonant photon tunnelling is shown to occur at discrete 

energies. Double PQW (DPQW) heterostructures are also considered, where it is found that 

resonant states appear in split pairs due to coupling between PQWs.  

     Nonlinear DPQW heterostructures are also investigated, whereby two regions in the 

structure are made of Kerr-nonlinear PCs. Here it is shown that the application of an external 

pump laser field can be used to optically switch the resonant frequencies of bound states in 

the DPQW. 

     Energy transfer in a heterostructure made by embedding a QD-graphene nanodisk 

nanocomposite in a Kerr-nonlinear PC has been studied. Here it is shown that energy transfer 

occurs between the QD and graphene due to a dipole-dipole interaction. Energy transfer 

occurs for two distinct frequencies of an external probe laser field, and can be switched by 

changing the separation between the QD and graphene or by applying a pump laser field to 

the PC.  

     An alternative QD-graphene nanocomposite was investigated, where the local field 

created by plasmons in graphene is used to manipulate two-photon absorption in the QD. An 

external gate voltage is applied to graphene to modify the plasmon resonance frequency and 

therefore the frequency at which the local field enhancement has its maximum value. It is 

demonstrated that two-photon absorption in this nanocomposite can be switched on or off by 

modifying the gate voltage. 
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     Finally, nonlinear second harmonic (SH) generation and two-photon photoluminescence 

(TPPL) has been studied experimentally and theoretically in QD-MNP hybrid systems. It is 

found that a secondary laser field resonant with the plasmons in the MNP can be used to 

enhance SH generation in the QDs. 

Keywords 

Nanophotonics, heterostructure, nanocomposite, photonic crystal, quantum dot, graphene, 

metal nanoparticle, resonant tunnelling, dipole-dipole interaction, plasmon, transfer matrix 

method, density matrix method 
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Chapter 1

Introduction

1.1 Photonic Crystal Heterostructures

Considerable scienti�c e�ort has been devoted to the study of materials that can be used

to develop the next generation of smaller, faster, and more e�cient optoelectronic devices.

Towards this end, photonic crystals [1, 2] have been widely studied due to their unique optical

properties. Photonic crystals are materials which possess a dielectric constant that varies

periodically in one, two, or three spatial dimensions, due to which an energy gap appears in

the structure's photonic dispersion relation [3]. This so-called photonic band gap is a range

of energies (frequencies) for electromagnetic waves that are prohibited from propagating in a

photonic crystal, which gives it the ability to localize and control the ow of light within its

structure.

The photonic band gap arises due to periodic multiple partial reections of electromagnetic

waves at the interfaces between alternating dielectric constants in a photonic crystal. For

electromagnetic waves with frequencies that lie within the photonic band gap, these multiple

reections occur in phase and constructively interfere so that the incident wave is reected back

completely [3, 4]. The partial reections of electromagnetic waves with frequencies outside of

the photonic band gap are out of phase and destructively interfere, and so these waves can

propagate in the photonic crystal with very low attenuation [4]. The frequencies of light that

lie within the photonic band gap are determined by the periodic spacing of the constituent

dielectric materials in the photonic crystal, and typically the wavelength of light reected by
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a photonic band gap is comparable to the crystal's lattice constant. The size (width) of the

energy gap is determined by the contrast between the dielectric materials in the photonic crystal

[5].

The photonic band gap in a photonic crystal is often viewed as the photonic analogue

of the electronic band gap found in semiconductors [3, 4]. For this reason, signi�cant e�ort

has been devoted to the development of photonic crystal-based optical devices that mimic the

functions of electronic semiconductor-based devices, such as transistors, �lters, and integrated

circuits [3, 6]. Many successful electronic devices have been produced by combining two or

more semiconductors with di�erent band gaps to form semiconductor heterostructure devices.

In a semiconductor heterostructure, the electronic band gap varies with position, and therefore

charge carriers encounter di�erent potential energies in di�erent regions of the structure [6,

7]. This type of band gap engineering can be used to localize or direct the propagation of

electrons in a device. One well-known example of an electronic semiconductor heterostructure

is the electronic quantum well, in which a thin slab of a semiconductor material with a narrow

electronic band gap is placed within another semiconductor material that has a larger band

gap. The electric potential of the resulting heterostructure varies along one spatial direction

so that a potential well in the narrow-gap semiconductor layer is formed. This potential well

con�nes charge carriers within the narrow-gap semiconductor region, restricting their motion

in one dimension to discrete energy states [7]. The energies of these discrete or bound states

can be tailored simply by selecting the width of the quantum well.

Photonic crystal heterostructures, the photonic analogue of semiconductor heterostructures,

are formed by joining two or more photonic crystals with di�erent photonic band gaps into a

single structure. Here the photonic band gap varies with position, and therefore photons will

experience di�erent photonic band gaps in di�erent regions of the structure [6]. This method

of photonic band gap engineering can therefore be used to e�ciently direct and control the

propagation of light in an optical device. For example, Lin et al. [8] demonstrated highly

e�cient waveguiding in a two-dimensional photonic crystal slab waveguide consisting of a tri-

angular array of holes etched through a slab of GaAs. By etching a strip of larger holes in

the array, a photonic crystal heterostructure waveguide was formed. In their study, lossless

guiding of light at the 1:5 �m telecommunications wavelength was observed. Takano et al. [9]
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fabricated a multi-channel drop �lter with high e�ciency in a two-dimensional photonic crystal

slab. Their device consisted of multiple connected photonic crystals composed of etched holes

in a Si slab, each with their own lattice constant. Point-defect cavities were introduced in each

photonic crystal, and a linear-defect input waveguide ran through each photonic crystal in the

heterostructure. For multi-wavelength light propagating through the input waveguide, light

matching the resonant frequency of the defect cavity in each photonic crystal region becomes

trapped in that cavity, which is then extracted to separate outputs.

Photonic quantum wells [10-18] are a class of photonic crystal heterostructure that pro-

duces the photonic analogue of an electronic quantum well. A photonic quantum well can be

formed using a low-band gap photonic crystal and a high band-gap photonic crystal, where the

upper band edge of the low-band gap photonic crystal lies within the photonic band gap of the

high-band gap photonic crystal [6, 12, 14, 15, 17, 18]. The photonic quantum well is formed by

sandwiching the low-band gap photonic crystal between two high-band gap photonic crystals.

The high-band gap photonic crystals act as potential barriers for photons, and con�ne light in

one dimension within the low-band gap photonic crystal layer. Photons within the low-band

gap photonic crystal must occupy bound states with discrete energy levels in the direction of

con�nement. Alternatively, a photonic quantum well can be fabricated by placing a homo-

geneous dielectric layer between two photonic crystal barriers [10, 11, 13, 16]. Photons with

energies lying within the photonic band gap of the barriers will be con�ned in one dimension

within the dielectric layer, with discrete energy levels along the direction of con�nement.

The photonic con�nement e�ect in photonic quantum wells has been studied experimentally

in di�erent types of photonic quantum wells made using various photonic crystals [10, 11, 15,

17]. In these studies, bound states in a photonic quantum well were investigated by studying the

transmission spectrum for light travelling along the direction of con�nement. Electromagnetic

modes with a frequency corresponding to a bound state in the photonic well will tunnel through

the photonic barriers and occupy that bound state for a �nite period of time before escaping

by tunnelling back out; thus the photon is said to have occupied a quasi-bound or resonant

state within the well [6]. This phenomenon is known as resonant photon tunnelling, and leads

to the appearance of discrete, sharp peaks of perfect photon transmittance in the transmission

spectrum of a photonic quantum well [10-18]. The principle of resonant photon tunnelling can
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be used to select electromagnetic modes of speci�c frequencies, and therefore can be directly

applied to develop high-quality optical �lters and resonant cavities using photonic quantum

wells [6].

It is well-known that photonic crystals can be used to control the spontaneous emission

rate of embedded quantum emitters (e.g. uorescent atoms, molecules, or nanoparticles) due

to their ability to enhance or suppress the electromagnetic (photonic) density of states within

their structure [3, 5, 19-23]. The density of states in photonic crystals is strongly reduced

or completely inhibited for photon frequencies that lie within the photonic band gap, and

enhanced for frequencies outside the photonic band gap and near the photonic band edges.

This phenomenon has been experimentally demonstrated by Lodahl et al. [21], who measured

the spontaneous emission rate of CdSe quantum dots doped in three-dimensional TiO2 inverse

opal photonic crystals. They found that the spontaneous emission rate of the quantum dots

could be either enhanced or suppressed depending on the frequencies of the photonic band gap

in a photonic crystal sample. This principle has been used to develop quantum-optical devices

that may be used in quantum information processing or ultrafast communication networks,

including single-photon sources [22] and all-optical switches [20].

Photonic crystal heterostructures also o�er many opportunities to tailor light-matter in-

teractions in optically-active media such as atoms, molecules, or nanoparticles. In photonic

heterostructures such as photonic quantum wells or photonic nanowires, electromagnetic modes

are quantized along one or two directions. This quantization leads to sharp discontinuities in

the photonic density of states corresponding to the energy levels of bound photonic modes. If

the resonant frequency of an electronic transition in a quantum emitter matches the energy of

a bound photonic state in a photonic quantum well or nanowire, there is a strong dipole-bound

photon coupling. This phenomenon has been investigated by Singh, who has studied optical

switching in photonic quantum wells [24] and transparency in photonic nanowires [25]. Ma

and John have theoretically simulated all-optical logic operations with quantum dots doped in

a 2-D/3-D photonic crystal heterostructure made by embedding a two-dimensional photonic

crystal slab waveguide within a three-dimensional photonic crystal [26]. Their proposed switch-

ing mechanism relies on the sharp discontinuities in the photonic density of states provided by

the photonic heterostructure.
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1.2 Nonlinear Photonic Crystals

There is great demand for new types of communication and information processing systems that

can operate at speeds, bandwidths and e�ciencies that surpass those of today's microelectronic

devices. For this purpose, photonic crystal-based switching elements have been widely studied

in the literature [27-45]. Many photonic crystal switches are based on the idea of shifting

the photonic band gap to allow or prevent light of certain frequencies to propagate through

the crystal. By tuning the photonic band gap, the transmission of light through a photonic

crystal can then be turned \o�" or \on." However, the nature of a photonic band gap in

a photonic crystal depends on the lattice spacing and sizes of the constituent periodically-

arranged dielectric materials as well as their refractive indices. In order to dynamically alter

the photonic band gap, one or more of these parameters should therefore be tunable. Typically,

the geometry of a photonic crystal cannot be easily modi�ed after it is fabricated [43], and so

photonic crystal switching mechanisms usually rely on a modi�cation of the refractive index of

the constituent dielectric materials in a crystal.

Early all-optical switching mechanisms for photonic crystals were proposed by Scalora et

al. [27] and Tran [29], in which a refractive index change in a photonic crystal was achieved

through the nonlinear Kerr e�ect. The Kerr e�ect is a third-order nonlinear process by which

the refractive index of a medium changes by an amount proportional to the intensity of an

external laser �eld [44-46]. Scalora et al. [27] proposed that the transmission of a probe laser

�eld with a frequency near the photonic band edge of a one-dimensional photonic crystal with

a Kerr-nonlinear dielectric component could be switched on or o� by applying a su�ciently

intense pump laser �eld. In the \on" state, the frequency of the probe laser lies just outside of

the photonic band gap and the probe �eld is transmitted through the photonic crystal. In the

\o�" state, the pump laser is applied to the photonic crystal, causing the photonic band gap

to shift due to a change in the refractive index of the Kerr-nonlinear material. The frequency

of the probe laser �eld then lies within the photonic band gap and the probe laser can no

longer propagate through the photonic crystal. Tran [29] proposed a switching mechanism for

a Kerr-nonlinear one-dimensional photonic crystal with a localized state within the photonic

band gap that is created by a lattice defect in the crystal. A probe laser with a frequency

matching that of the defect state would then propagate through the photonic crystal. When an
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intense pump �eld is applied, the refractive index of the Kerr-nonlinear material shifts, thereby

altering the frequency of the localized state. The probe laser �eld is then completely reected

by the photonic crystal.

Singh and Lipson [40] proposed an alternative all-optical switching mechanism for a Kerr-

nonlinear photonic crystal doped with three-level nanoparticles. In this system, the resonance

energy of one electronic transition in the nanoparticles lies close to the photonic band edge of

the crystal, where the photonic density of states is enhanced. An external laser �eld couples

with another transition in the nanoparticles, probing their absorption spectrum. Here, strong

coupling between vacuum photons and the transition dipole moment in the nanoparticles leads

to a transparent state in the nanoparticles' absorption spectrum. Upon application of an

intense laser �eld, the photonic band edge of the nonlinear photonic crystal shifts away from

the resonance frequency of the nanoparticles. In this case the nanoparticles are switched to an

absorbing state.

Tunable photonic crystals that combine liquid crystals with photonic crystals have also

been developed. Busch and John [30], for example, proposed a tunable photonic crystal made

by in�ltrating the void regions in a three-dimensional inverse opal photonic crystal with an

optically birefringent nematic liquid crystal. They predicted that the application of an electric

�eld to such a system could completely open or close the photonic band gap. Mertens et al. [33]

fabricated three-dimensional macroporous silicon structures �lled with a liquid crystal. They

demonstrated that the photonic band edge of their photonic crystal can be shifted by changing

the temperature.

To achieve ultrafast optical switching in photonic crystals, the response time for the change

in a material's refractive index should be very low. Several groups have demonstrated ultrafast

all-optical switching mechanisms in semiconductor photonic crystal structures that rely on a

nonlinear refractive index change caused by the generation of photo-excited charge carriers [28,

32, 35, 39, 45]. Recently, ultrafast all-optical switching that relies on the nonlinear Kerr e�ect

has been demonstrated in two- and three-dimensional photonic crystals made with polystyrene

[36, 37, 41, 45]. Liu et al. [41] constructed a three-dimensional opal polystyrene nonlinear

photonic crystal and achieved 10 fs ultrafast all-optical switching using a femtosecond pump-

probe technique. The high performance of their all-optical switching mechanism was attributed
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to the strong and fast Kerr nonlinear optical response of polystyrene [36, 37, 41-43]. The

ultrafast all-optical switching mechanisms described here hold many promising applications in

the future development of integrated photonic circuits, optical communication networks and

ultrafast information processing systems [45].

1.3 Exciton-Plasmon Interactions in Nanocomposites

There has been growing scienti�c interest in the optoelectronic properties of nano-scale het-

erostructure systems composed of di�erent types of nanoparticles. Recent advances in nanofab-

rication techniques have allowed researchers to combine various nanoparticles with complimen-

tary optical properties into nanocomposite (hybrid) heterostructures, which provides attractive

opportunities to modify or design speci�c optical processes in the constituent nanoparticles

[47-60].

A signi�cant amount of research on nanocomposites has been devoted to the study of

exciton-plasmon interactions in metal-semiconductor nanostructures, which o�er a wide range of

opportunities to control light-matter interactions and electromagnetic energy ows on nanome-

ter length scales [47]. In semiconductor nanostructures (i.e., quantum dots), optical excitations

are dictated by the discrete energy levels of the electronic states in the semiconductor material's

conduction and valence bands. These discrete energy levels depend on the size and shape of

the nanostructure, and therefore can be controlled by their fabrication. Optical excitations

in semiconductor nanoparticles occur when an electromagnetic �eld with an appropriate fre-

quency excites an electron from a valence band state to a conduction band state, resulting in

the formation of a bound electron-hole pair, or exciton [47].

In metal nanoparticles, optical excitations occur due to the collective oscillations of con-

duction band electrons driven by an electromagnetic �eld. These excitations are known as

localized plasmons, and their resonance frequency depends on the size, shape, and composi-

tion of the metal nanoparticle, as well as the dielectric constant of the surrounding medium

[48]. The exciton-plasmon interaction between semiconductor and metal nanoparticles is very

strong when the nanoparticles are in close proximity and their optical excitation frequencies are

resonant. In metal nanoparticle-semiconductor quantum dot hybrid systems, strong exciton-
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plasmon coupling has been found to lead to many interesting e�ects such as energy transfer,

exciton energy shifts, interference, and local �eld enhancement [47-60].

Theoretical studies of exciton-plasmon interactions in nanocomposite systems have pre-

dicted two-photon plasmonic switching phenomena [52], plasmonic electromagnetically induced

transparency [56, 57, 59], and selective population transfer in three-level quantum dots [55,

60]. A number of experimental studies on these hybrid systems have also been performed. For

example, Mertens et al. [50] demonstrated polarization-selective enhancement of quantum dot

photoluminescence in silicon quantum dots coupled with elongated silver nanoparticles. Pons et

al. [51] fabricated a CdSe-Zns quantum dot-gold metal nanoparticle hybrid system, where the

quantum dot and metal nanoparticle were joined by a variable-length biological linker molecule.

They observed quenching of the quantum dot photoluminescence, which was attributed to long-

range energy transfer from the quantum dot to the proximal metal nanoparticle. Vasa et al.

[53] fabricated a hybrid metal-semiconductor nanostructure consisting of a GaAs quantum well

beneath a gold grating. They reported a signi�cant shift and broadening of the quantum well

exciton resonance due to strong exciton-plasmon coupling.

1.4 Plasmon-Enhanced Nonlinear Optics in Nanocomposites

Nanocomposite heterostructures that contain plasmonic (i.e. conducting) elements are partic-

ularly attractive in the study of nonlinear optical processes [47, 61-71], which scale with a high

power of electric �eld. A number of recent experimental and theoretical studies have demon-

strated that nonlinear optical processes such as two-photon absorption/luminescence [61-64]

and second- [65, 66, 71] or third-harmonic generation [67] in semiconductor quantum dots can

be enhanced by surface plasmons in metal nanoparticles, indicating that quantum dot-metal

nanoparticle hybrid systems can be used for nonlinear optical applications such as all-optical

switching, biosensing, and other types of signal processing [47, 48, 61, 62].

Nonlinear optical processes such as two-photon absorption and second harmonic generation

have been widely studied in nanoparticles for applications in high-resolution scanning optical

microscopy and biological imaging [68-70, 72-74]. In particular, two-photon uorescence from

biological markers (dyes, aptamers, etc.) enhanced by noble metal nanoparticles has numerous
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applications in biological imaging [68-70, 72-74]. Zhang et al. [69], for example, demonstrated

energy transfer between a commonly used molecular DNA label and gold nanoparticles under

two-photon excitation using uorescence lifetime imaging microscopy. They showed that this

energy transfer can be used to provide detailed information in biological studies. Li et al. [64]

demonstrated the enhancement of quantum dot uorescence under one- and two-photon excita-

tion in the presence of silica-coated gold nanorods. They concluded that their nanocomposite

could be used in biological applications such as bio-imaging or photo-thermal therapy.

Second harmonic generation microscopy of semiconducting nanoparticles has recently emerged

as a versatile and robust technique for molecular imaging of living cells and tissues, surpassing

the sensitivity and resolution of conventional uorescence microscopy. However, the second har-

monic signal produced by these nanoparticles alone tends to be relatively weak when compared

to two-photon uorescence/luminescence signals [74]. One strategy to improve the intensity of

second harmonic generation from semiconductor nanoparticles lies in exploiting the enhanced

local �eld from surface plasmons in a nearby metal nanoparticle. For example, Jais et al. [66]

observed an intensity enhancement factor of approximately 1000 for optical second harmonic

generation in CdS quantum dots placed near silver nanoparticles. They showed that the metal

nanoparticle plasmons are resonantly excited by the second harmonic emission of the quan-

tum dots, indicating that the enhancement of second harmonic generation is mediated by the

plasmons. Gong et al. [75] fabricated CdS-Ag core-shell nanocomposites and found that the

metal nanoparticles greatly enhanced the optical nonlinearity of the quantum dots. Singh [71]

has studied second harmonic generation in a quantum dot-metallic nanoparticle hybrid system,

demonstrating that second harmonic generation can be enhanced by the dipole-dipole coupling

between a two-photon excited quantum dot and metallic nanoparticle.

1.5 Objective and Outline of Thesis

The aim of this thesis is to explore nanophotonic switching phenomena and light-matter in-

teractions in photonic heterostructures and nanocomposites. These systems are formed by

combining two or more micro- or nano-structures with complementary optical properties into

single systems, which gives the resulting heterostructure unique optical properties that exceed
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the capabilities of its individual components. It is well-known that today's electronic com-

munication and information processing devices are approaching a fundamental limit in their

speed and e�ciency. The switching mechanisms described in this thesis can be applied towards

the development of fundamentally new types of optoelectronic devices that operate at higher

speeds and e�ciencies, surpassing those of their electronic counterparts. The one- and two-

photon switching mechanisms described here can also be applied towards nano-scale sensing

applications, whereby a change in an electronic or optical property of a device or nanostructure

due to the presence of a substance can alter its optical response. This change in optical re-

sponse can then be used to detect the substance or determine its optical or electronic properties.

Recent advances in nanofabrication techniques have led to an ever-increasing number of avail-

able photonic nanostructures which can be used to create the next generation of nano-sensors,

communication networks, and computational devices. In this thesis, the optical properties of

several types of photonic heterostructures and nanocomposites are investigated theoretically.

The thesis is organized as follows: In Chapter 2 the resonant photonic states of both single-

and double-photonic quantum well heterostructures are studied. Using the transfer matrix

method, the transmission coe�cients for each of these structures along the photon con�ne-

ment direction are calculated. For the single photonic quantum well heterostructure, isolated

peaks of perfect transmission appear in the transmission spectra of the superstructure. These

peaks correspond to the bound photonic states in the photonic well, for which resonant photon

tunnelling occurs. It is found that by changing the width of the photonic well, the number

of resonant transmission states can be controlled. For the double photonic quantum well het-

erostructure, the simulated transmission spectra indicate that resonant tunnelling peaks occur

in split pairs. This splitting is explained in terms of the coupling of degenerate bound photonic

states in the individual, isolated photonic quantum wells. By modifying the separation between

these photonic wells, the observed spectral splitting can be controlled. The results presented in

this chapter indicate that the resonant photonic states in single- or double-photonic quantum

wells can be used to develop photonic switching devices, waveguides, or high-quality optical

�lters.

In Chapter 3, the energy splitting of bound photonic states in Kerr-nonlinear double pho-

tonic quantum wells (waveguides) is investigated. Here a double photonic quantum well het-
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erostructure is formed by embedding two layers of Kerr-nonlinear photonic crystals in a linear

photonic crystal. When an intense laser �eld is applied to the heterostructure, two coupled

waveguides are induced. Due to the coupling between waveguides, degenerate bound states

in each waveguide split into symmetric and antisymmetric pairs. Using the transfer matrix

method, expressions for the energy levels of these split bound states were obtained. It is shown

that the energy splitting depends on the separation of the waveguides as well as the intensity of

the applied laser �eld. The energy splitting predicted by the analytical expression is found to

agree well with the splitting of the resonant states shown in the simulated transmission spectra

for the heterostructure along the con�nement direction. It is demonstrated that the nonlinear

double photonic quantum well heterostructure described here can be optically switched between

zero to one or more pairs of resonant states. The results described in this chapter can be applied

to the development of all-optical switches, tunable �lters, and nonlinear coupled waveguides.

In Chapter 4, a nanocomposite heterostructure consisting of a semiconductor quantum dot

and a graphene nanodisk is studied. Here, the dipole-dipole coupling between the quantum dot

and the graphene nanodisk under the action of external laser �elds is explored. Furthermore,

it is considered that the quantum dot-graphene nanodisk hybrid is contained within a Kerr-

nonlinear photonic crystal. The nonlinear photonic crystal acts as a tunable electromagnetic

reservoir for the quantum dot, and is used to further control the energy transfer process. Here

the density matrix method is used to calculate the power absorbed by the quantum dot and

the power transferred from the quantum dot to graphene. It is found that the spectrum of

power absorption in the quantum dot has two peaks due to the creation of two dressed excitons

in the presence of the dipole-dipole interaction. The energy transfer rate spectrum for the

graphene nanodisk also has two peaks due to the absorption of these two dressed excitons.

Energy transfer between the quantum dot and the graphene nanodisk can also be switched on

or o� by applying a pump laser �eld to the photonic crystal, or by adjusting the strength of the

dipole-dipole interaction. It is shown that the intensities and frequencies of the peaks in the

energy transfer rate spectra can be modi�ed by changing the number of graphene monolayers

in the nanodisk or the separation between the quantum dot and graphene. These results agree

with existing experiments on a qualitative basis. The principle of this system can be used to

fabricate nano-scale biosensors, optical switches, and energy transfer devices.
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In Chapter 5, nonlinear two-photon absorption and power absorption in a quantum dot-

graphene nanoake nanocomposite system have been investigated theoretically. It is considered

that an external laser �eld is applied to the nanocomposite to simultaneously observe two-

photon processes in the quantum dot and excite localized surface plasmons in the graphene

nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency

in the graphene nanoake via electrostatic gating. In this chapter, the density matrix method

has been used to calculate the two-photon absorption coe�cient and power absorption in the

quantum dot. It is found that the strong local �eld of the graphene plasmons can enhance and

control nonlinear optical processes in the quantum dot. Speci�cally, it is shown that two-photon

absorption in the quantum dot can be switched between single- or double-peaked spectra by

modifying the graphene-quantum dot separation. Two-photon absorption and power absorption

in the quantum dot can also be switched on or o� by slightly changing the gate voltage applied

to graphene. The �ndings presented in this chapter indicate that the present system can be used

for nonlinear optical applications such as all-optical switching, biosensing and signal processing.

In Chapter 6, second harmonic generation and two-photon absorption are investigated for

CdS quantum dots near metallic nanoparticles. A secondary control laser �eld is applied to

the hybrid system, which couples with the localized plasmons of the metal nanoparticles. The

polarized metal nanoparticles then interact with the quantum dots through the dipole-dipole

interaction, which enhances the intensity of the second harmonic signal from the quantum dots.

The density matrix method is used to numerically simulate the second harmonic signal emitted

by the quantum dots. It is found that the enhancement of the second harmonic signal can be

switched on and o� by changing the control �eld intensity. Alternatively, the second harmonic

signal enhancement can be turned on or of by changing the frequency of the control �eld. The

theoretical results presented here are found to agree with experimental data obtained for CdS

quantum dot-metal nanoparticle hybrid systems. This is an interesting �nding which can be

used to fabricate nonlinear all-optical nano-switching devices from hybrid systems.

Finally, in Chapter 7, the main results of the thesis are summarized and possible future

research directions are discussed.
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Chapter 2

Photon Tunnelling in Photonic

Crystal Heterostructures

In the previous chapter, the background material pertaining to the topics and systems studied

in this thesis was reviewed. Here, the resonant photonic states in single and double photonic

quantum well heterostructures are studied1. The resonant tunnelling phenomenon that occurs

in these photonic heterostructures is also investigated.

2.1 Introduction

Photonic crystals [1, 2] have attracted a great deal of attention due to their ability to localize

and control the ow of light within their structure. Considerable e�ort has been placed into

�nding ways to harness their potential for developing new photonic devices. To that end,

photonic crystal heterostructures have provided a promising means for turning raw photonic

crystals into functional devices [3, 4].

Photonic crystals are materials with a periodically modulating dielectric constant, which

may vary in one, two, or three spatial dimensions. Due to this periodic dielectric modulation,

a band gap forms in the structure's photonic dispersion relation. Light possessing a frequency

within this gap is prevented from propagating in the photonic crystal. Photonic crystal het-

1The material presented in this chapter has been published in: M. R. Singh and J. D. Cox, AIP Conf. Proc.
1147, 256 (2009) and J. D. Cox and M. R. Singh, Nanoscale Res. Lett. 5, 484 (2010).
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erostructures, as their name implies, are formed by joining two or more photonic crystals into

a single structure. Combining various photonic crystals with di�erent band gaps into a single

heterostructure gives it a more complicated band structure than that of a bulk photonic crys-

tal, which allows for greater customization and control over how light propagates within the

overall structure. Photonic crystal heterostructures have been used to develop devices such as

high-quality resonant cavities [6, 7], low-loss waveguides [8], and high e�ciency add-drop �lters

[9].

Photonic quantum wells (PQWs) are a class of photonic crystal heterostructure that possess

a distinct photonic band structure. A PQW consists of a photonic well embedded between

two photonic barriers. The photonic barriers are photonic crystals with band gaps that may

be regarded as potential barriers for photons, whereas the photonic well consists of either a

uniform dielectric material or another photonic crystal with a di�erent band gap than that of

the barrier. Due to the photonic band gap mismatch between the well and the barrier, photons

become con�ned within the well and occupy quantized states along one direction. This so-called

photonic con�nement e�ect has been studied in di�erent types of PQWs made using various

photonic crystals [10-23].

It has been shown that the phenomenon of resonant photonic tunnelling can occur for a

PQW with su�ciently thin photonic barriers [12-14]. Resonant tunnelling occurs when a photon

with an energy corresponding to a bound state of the PQW tunnels through one of the barriers,

where it occupies this bound state within the well for a �nite period of time before escaping by

tunnelling back out; thus the photon is said to have occupied a quasi-bound or resonant state

within the PQW [5]. As a consequence of this phenomenon, an incident photon with an energy

matching a resonant state of the PQW will undergo perfect transmission through both barriers.

In the transmission spectrum of a PQW, resonant states appear as sharp peaks approaching

unity [10-23].

In this chapter, resonant photonic states in both single PQW and double photonic quantum

well (DPQW) heterostructures are investigated. A DPQW heterostructure is formed by simply

adding another photonic well and photonic barrier to a single PQW system. Using the transfer

matrix method [24] the transmission coe�cient of these heterostructures along the direction of

photon con�nement is calculated as a function of the incident photon energy. For the PQW
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heterostructure, photons which would otherwise be prevented from travelling through the het-

erostructure by the photonic barriers undergo perfect transmission through the entire device

at speci�c, discrete energies. It is shown that by adjusting the width of the photonic well, the

number of resonant photon tunnelling states in the transmission spectrum can be controlled.

For the DPQW heterostructure, the transmission spectra indicate that resonant photon tun-

nelling states occur in pairs. The numerical simulations for the transmission spectra of these

structures reveals that the number of pairs of resonant tunnelling states depends on the width

of the photonic wells. By changing the separation of the photonic wells, the energy splitting

between the individual resonant tunnelling states in a transmitted pair can be controlled. It is

anticipated that the resonant tunnelling states described here will be useful for developing new

types of photonic switching devices, optical �lters, and other optoelectronic devices [4, 10-23].

2.2 Theoretical Formalism

A PQW heterostructure can be formed using two di�erent photonic crystals, which are denoted

as A and B. Photonic crystal A is used as the photonic well in the heterostructure, while

photonic crystal B denotes the photonic barriers which con�ne light within the well. The PQW

heterostructure considered here is constructed by embedding two parallel and separate planar

layers (i.e. slabs) of photonic crystal B within photonic crystal A, as illustrated in Figure 2-1.

In the present heterostructure there are �ve regions, i.e., the total system can be denoted as

A1/B2/A3/B4/A5.

Incident transverse electric (TE)-polarized electromagnetic waves propagating along the x-

direction in the heterostructure are described as Bloch waves, with wave vectors denoted by

KA and KB in photonic crystals A and B, respectively. The electric �eld in the j
th region of

the heterostructure is then given as

Ej(x) = �je
ikjx + �je

�ikjx, (2.1)

where �j and �j are the incident and reected electric �eld amplitudes, respectively, in the j
th

layer of the PQW heterostructure, and kj is the wave vector for photons propagating in the

jth region. For the present PQW heterostructure the wave vectors are k1 = k3 = k5 = KA and
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Figure 2-1: (a) Schematic diagram of the single PQW heterostructure. Two layers of photonic
crystal B are embedded within a host photonic crystal A. (b) Photonic band structure of
the PQW heterostructure, where the shaded regions correspond to photonic band gaps. The
"conduction band edge" and "valence band edge" energies ("icb and "

i
vb, respectively, where

i = A or B) of photonic crystals A and B are indicated. A photonic well is formed within the
central layer of photonic crystal A. The dashed horizontal line corresponds to the energy level
of a possible resonant state.

k2 = k4 = KB.

The transmission coe�cient for TE plane waves propagating along the x-direction is calcu-

lated using the transfer matrix method, which relates the incident and reected electric �eld

amplitudes in each photonic crystal layer of the heterostructure through a transfer matrix equa-

tion. The transfer matrix is obtained by using the continuity conditions for the electric �eld

and its �rst derivative at the interfaces between adjacent photonic crystal layers in the PQW

heterostructure [24, 25], which gives

Ej(xj) = Ej+1(xj) (2.2)

21



and �
@Ej(x)

@x

�
x=xj

=

�
@Ej+1(x)

@x

�
x=xj

. (2.3)

In the above expressions, xj is the coordinate of the j
th photonic crystal interface along the

x-axis, and hence the index j runs from 1 to 4 (i.e., there are four interfaces between photonic

crystal layers in the PQW heterostructure).

Using Eqs. 2.2 and 2.3, it is found that the electric �eld amplitudes in the outer layers A1

and A5 are related via the transfer matrix equation0@ �1

�1

1A =MPQW

0@ �5

�5

1A , (2.4)

where

MPQW =M12M23M34M45. (2.5)

In the above expression, MPQW is the transfer matrix for the entire PQW heterostructure

relating the incident and reected electric �eld amplitudes in layer A1 to those in layer A5,

whileMj;j+1 are the transfer matrices relating the incident and reected electric �eld amplitudes

between adjacent layers j and j + 1. The transfer matrix at the jth interface is given as [25]

Mj;j+1 =
1

2kj

0@ (kj + kj+1) exp [i (�kj + kj+1)xj ] (kj � kj+1) exp [i (�kj � kj+1)xj ]

(kj � kj+1) exp [i (kj + kj+1)xj ] (kj + kj+1) exp [i (kj � kj+1)xj ]

1A .
(2.6)

The transmission coe�cient for the PQW TPQW is de�ned as the ratio of the transmitted

electric �eld to the incident electric �eld, and can be obtained from the (1; 1) entry of the total

transfer matrix MPQW as [5, 25]

TPQW =

�����5�1
���� = ���� 1

[MPQW ]11

����2 (2.7)

The resulting expression for TPQW depends on the wave vectors Ki in each of the regions of

the PQW heterostructure, which in turn depend on the photon energy "k through the photonic

dispersion relation for a given region.

Here it is considered that the component photonic crystals in the PQW heterostructure each
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consist of dielectric spheres with refractive index n1i and radius ai embedded in a dielectric

background medium with refractive index n2i, where the subscripts i = A or B denote the

photonic well or barrier, respectively. The dielectric spheres in photonic crystals A and B are

arranged periodically in three dimensions with lattice constants LA and LB, respectively. The

dispersion relations for photonic crystals A and B are obtained by using the photonic crystal

band structure model proposed by John and Wang [26], where it is assumed that each crystal

possesses a three-dimensional photonic band gap that is equal for all propagation directions.

This assumption provides a simpli�ed model that exhibits many of the observed qualitative

features of three-dimensional photonic crystals [27]. In this model, the propagation of an

electromagnetic wave in a photonic crystal can be described by the scalar Maxwell wave equation

as

r2E = �n2(r)!
2

c2
E, (2.8)

where the periodically-varying refractive index function n(r) satis�es

n(r) = n(r + L), (2.9)

L being the lattice constant of the photonic crystal. From Bloch's theorem for a wave propa-

gating in a periodic structure, the solutions to the scalar Maxwell wave equation satisfy

E(r + L) = E(r)eiKL, (2.10)

where K is the Bloch wave vector. Using the electromagnetic boundary conditions within a

photonic crystal's unit cell and applying Bloch's theorem, the dispersion relations for photonic

crystals A and B are obtained as

cos (KiLi) =
X
�
�(n1i � n2i)

2

4n1in2i
cos

n"k
~c
[2n1iai � n2i (Li � 2ai)]

o
, i = A or B (2.11)

For a given set of photonic crystal parameters n1i, n2i, ai, and Li, the above expression leads

to a photonic band gap in the photonic dispersion relation for energies "ivb < "k < "
i
cb, where

"ivb and "
i
cb are the lower (i.e., "valence band") and upper (i.e., "conduction band") energies at

which the photonic band gap appears. To form a PQW, parameters are chosen for photonic
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Figure 2-2: (above) Schematic diagram of the double photonic quantum well heterostructure.
Three layers of photonic crystal B are embedded within a host photonic crystal A. (below)
Photonic band structure of the double photonic quantum well heterostructure, where the shaded
regions correspond to photonic band gaps. Two photonic wells are formed within the central
layer of photonic crystal A. The dashed horizontal line corresponds to the energy level of a
possible resonant state.

crystals A and B such that the condition "Bvb < "
A
cb < "

B
cb is satis�ed.

A DPQW heterostructure can be formed by adding another photonic well and photonic

barrier to the system. In this case the heterostructure is denoted as A1/B2/A3/B4/A5/B6/A7,

as illustrated in Figure 2-2. The transmission coe�cient for the DPQW heterostructure is

obtained as

TDPQW =

���� 1

[MDPQW ]11

����2 , (2.12)

where

MDPQW =

6Y
j=1

Mj;j+1 (2.13)

and the wave vectors used in the matrices Mj;j+1 are k1 = k3 = k5 = k7 = KA and k2 = k4 =

k6 = KB. In the following section, numerical simulations for the transmission coe�cient of

both PQW and DPQW heterostructures are performed.

24



Figure 2-3: Reduced band diagram for photonic crystal A (solid curve) and B (dashed curve).

2.3 Results and Discussion

It is considered that photonic crystals A and B each consist of a silica background material

(n1A = n1B = 1:45) embedded with air spheres (n2A = n2B = 1). The radii of the air spheres

in each crystal are taken as aA = aB = 125 nm, and the lattice constants of the two crystals

are taken as LA = 420 nm and LB = 410 nm. Using Eq. 2.11, the photonic dispersion relations

are plotted in Figure 2-3. The lower "valence" and upper "conduction" photonic band edges

of photonic crystal A were calculated as "Avb = 1:1026 eV and "Acb = 1:3965 eV, respectively,

while the lower "valence" and upper "conduction" photonic band edges of photonic crystal B

were calculated as "Bvb = 1:1360 eV and "
B
cb = 1:4382 eV, respectively. Note that the condition

"Bvb < "
A
cb < "

B
cb is satis�ed, and so a PQW can be formed using these photonic crystals.

The single PQW heterostructure is denoted in terms of the constituent photonic crystal

layers as A1/B2/A3/B4/A5. The thicknesses of the outer photonic barrier layers B2 and B4
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Figure 2-4: Photon transmission coe�cient for a PQW heterostructure versus incident photon
energy. Here the width of the photonic barriers is dB = 10LB and the photonic well width is
taken as (a) dA = 10LA, (b) dA = 20LA, and (c) dA = 30LA.

is denoted by dB and the width of the central photonic well layer is given by dA (see Figure

2-1). The transmission coe�cient of a PQW heterostructure is plotted in Figure 2-4 for photon

energies "k within the photonic well such that "
A
cb < "k < "

B
cb. Here the width of the photonic

barriers is taken as dB = 10LB while the width of the photonic well is varied. The transmission

spectra shown in Figure 2-4 show pronounced peaks for which perfect photon transmission

may occur through the heterostructure. These peaks correspond to the resonant quasi-bound

states of the PQW heterostructure, for which a photon tunnels through a layer of crystal B

and occupies a bound state within crystal A before tunnelling out again [5]. Note that as the

photonic well width is increased, the number of resonant tunnelling states also increases [12-14].

Similar behaviour is also observed for electronic quantum well heterostructures [5].

In Figure 2-5 a two-dimensional plot of the transmission coe�cient of the PQW heterostruc-
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Figure 2-5: Two-dimensional plot of the transmission coe�cient for the PQW heterostructure.
The incident photon energy "k is given along the horizontal axis while the width of the photonic
well dA is given along the vertical axis. Other parameters are the same as those used in Figure
2-4.

ture is presented for which the photon energy is varied along the horizontal axis and the width

of the photonic well is increased along the vertical axis. The two-dimensional plot can be used

to determine the width of the photonic well necessary to support a particular number of reso-

nant states, or to determine the energy of a resonant state as a function of the photonic well

width. Note that the actual width of a fabricated PQW should be an integer number of lattice

constants LA.

Thus far, the transmission spectra for single PQW heterostructures have been investigated.

In the following numerical simulations, DPQW heterostructures are addressed by considering

additional layers of photonic crystals A and B so that the total heterostructure is denoted as

A1/B2/A3/B4/A5/B6/A7. For the DPQW heterostructure, the parameter dB corresponds to

the thicknesses of the outer photonic barrier layers B2 and B6, the parameter dA denotes the
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Figure 2-6: Transmission coe�cient for the DPQW (solid curves) versus incident photon energy
"k. Here the outer photonic barrier widths are dB = 10LB while the central photonic barrier
width is d = 5LB. The photonic well widths are varied as (a) dA = 10LA, (b) dA = 20LA, and
(c) dA = 30LA. The dashed curves correspond to the transmission coe�cients of single PQWs
with the same dA and dB.

width of the photonic well layers A3 and A5 and the parameter d represents the width of the

central photonic barrier B4 (see Figure 2-2).

The transmission spectra of a DPQW heterostructure as well as those of an equivalent single

PQW heterostructure are presented in Figure 2-6 while varying the photonic well width dA. In

these spectra, resonant tunnelling states occur as single peaks for the PQW and as split pairs of

peaks for the DPQW heterostructure. Note that the split pairs of resonant peaks in the DPQW

heterostructure are centered on the single peaks from the single PQW heterostructure. This

illustrates the origin of the spectral splitting that occurs in the DPQW heterostructure, as each

isolated PQW would contain single, degenerate bound states. However, since the thickness

of the central photonic barrier is small, the electromagnetic �elds of these degenerate states
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Figure 2-7: Transmission spectra from a DPQW heterostructure where the inter-well separation
is d = 5LB (solid curve), 10LB (dashed curve) and 20LB (dash-dotted curve). The photonic
well widths are dA = 10LA and the outer photonic barrier widths are dB = 10LB.

overlap with one another, causing the bound states to split into symmetric and antisymmetric

pairs [19]. From Figure 2-6, it is observed that varying the thickness of the photonic wells in the

DPQW heterostructure causes the number of bound state pairs to change, as was observed for

the single bound states in the PQW. It is also found that the energy-splitting e�ect is stronger

for the degenerate states with higher energies. This is due to a larger electric �eld overlap

between bound photonic states at higher energies [19].

Transmission spectra for the DPQW heterostructure are presented in Figure 2-7 while vary-

ing only the inter-well separation d. Here it is found that as the inter-well separation is increased,

the energy splitting of the resonant peaks in the transmission spectrum decreases. This �nding

can be explained in terms of the coupling strength between the degenerate bound states in the

two PQWs. When the photonic wells are close to one another (or equivalently when the width

of the central photonic barrier is small), the overlap between the electromagnetic �elds of the

degenerate bound states is stronger. This leads to a greater amount of energy splitting for the

degenerate bound states. On the other hand, when the photonic wells are far away from one

another, the coupling between the degenerate bound states is weak and the energy splitting

e�ect decreases. For a great enough inter-well separation, the splitting of the degenerate states

cannot be resolved. At this point the transmission spectrum of the DPQW heterostructure ap-
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Figure 2-8: Two-dimensional plot of the transmission coe�cient for the double photonic quan-
tum well heterostructure. The incident photon energy "k is given along the horizontal axis while
the width of the central photonic barrier d is given along the vertical axis. Other parameters
are the same as those used in Figure 2-7.

proaches that of an equivalent single PQW, and the bound photons can be regarded as con�ned

to identical but separate and isolated wells [22].

In Figure 2-8 a two-dimensional plot of the transmission coe�cient for the DPQW het-

erostructure is presented. Here the horizontal axis indicates the photon energy while the value

of the inter-well separation d is given along the vertical axis. This result illustrates how the

spectral splitting of the resonant tunnelling states in the DPQW can be �nely tuned by varying

the width of the photonic barrier separating the wells.

Finally, the e�ect of the thicknesses of the outer photonic barriers is investigated in Figure 2-

9, where the transmission coe�cient of the DPQW heterostructure is plotted for di�erent values

of dB. For the transmission spectra presented in this chapter, there is some degree of spectral

broadening associated with each resonant peak. This broadening is attributed to the �nite
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Figure 2-9: Transmission spectra for the DPQW heterostructure where the outer photonic
barrier widths are (a) dB = 5LB, (b) dB = 10LB, and (c) dB = 15LB. Here the photonic well
width is dA = 10LA and the central photonic barrier width is d = 5LB.

widths of the photonic barriers [17], and results in a lower quality factor for the transmitted

resonant states. Figure 2-9 shows that by changing the width of the outer photonic barriers, the

spectral broadening of the resonant tunnelling peaks can be increased or decreased. The spectra

broadening is associated with the lifetime of a resonant photon which is contained within the

photonic quantum wells. This is because the energy of a bound state con�ned between photonic

barriers with �nite widths is not precisely de�ned, but instead has a linewidth ~=� , where � is

the lifetime of a photon in the photonic well [5]. By increasing the thickness of the photonic

barriers, the photon remains trapped for a longer period of time before it escapes by tunnelling

through the barriers.

The increased spectral broadening of the resonant tunnelling peaks at higher energies can

also be explained in terms of the lifetime of a con�ned photon. Photons with higher energies
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have a higher probability of tunnelling through the photonic barriers, and so they escape the

photonic wells more quickly than photons with lower energies. It is found that if the thickness

of the outer photonic barriers dB becomes too large, the transmission coe�cient is zero for the

range of energies between "Acb and "
B
cb. In this situation, an incident photon cannot penetrate

the outer photonic barrier because it is too wide.

2.4 Conclusions

In this chapter, photon transmission for both single PQW and DPQW heterostructures has

been investigated using the transfer matrix method. For the PQW heterostructure, numerical

simulations of the transmission coe�cient reveal that resonant photon tunnelling states appear

as discrete, sharp peaks in the transmission spectra along the con�nement direction of the

structure. The number of resonant tunnelling states can be controlled by changing the width

of the photonic well.

In the DPQW heterostructure, resonant tunnelling states appear in the transmission spec-

tra as split pairs, where the spectral splitting is centered on the energy corresponding to the

resonant states in the degenerate single PQWs within the heterostructure. The energy splitting

is attributed to the coupling of the degenerate states within each of the single PQWs through

the photonic barrier separating them. When the width of the separating barrier is small, the

electric �elds for the degenerate states overlap one another in each of the photonic wells, which

leads to the coupling e�ect and spectral splitting. By varying the thickness of the barrier

separating the photonic wells, the spectral splitting can be controlled. The energy-splitting

phenomenon described here is in qualitative agreement with reported experimental results for

a DPQW heterostructure consisting of one-dimensional photonic crystals [19]. It is antici-

pated that the resonant tunnelling phenomenon described here can be used to develop photonic

switching devices, high-quality optical �lters and other optoelectronic devices [4, 10-23].
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Chapter 3

Photonic States in a Nonlinear

Photonic Crystal Waveguide

Heterostructure

In the previous chapter, resonant photonic tunnelling in photonic quantum well (PQW) het-

erostructures was investigated. PQWs were formed by embedding one type of photonic crystal

within another photonic crystal, resulting in a photonic band structure that con�nes photons

along one direction. This type of photonic band gap engineering relies on the photonic band

gaps of the constituent photonic crystals within the heterostructure. In turn, the photonic

band gaps in these photonic crystals depend on the lattice spacings and sizes of the constituent

dielectric materials, as well as their refractive indices [1-3]. For PQW heterostructure device ap-

plications, the ability to dynamically alter the photonic band structure of the PQW(s) is highly

desirable. In this chapter, practical switching mechanisms in a double photonic quantum well

(DPQW) heterostructure are investigated1. These switching mechanisms rely on optical mod-

i�cation of the refractive index of the constituent dielectric materials in a photonic crystal, or

physical modi�cation of a photonic crystal's geometry.

1The material presented in this chapter has been published in: J. D. Cox and M. R. Singh, J. Appl. Phys.
108, 083102 (2010).
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3.1 Introduction

Recently, considerable e�ort has been placed into �nding classes of materials that can be used

to make smaller and faster optoelectronic devices. Towards this end, photonic crystals [1-

3] and their heterostructures have been widely studied due to their ability to localize light

and control its propagation in a manner analogous to a semiconductor material's control of

electrons. Photonic crystals are arti�cal nanomaterials possessing a dielectric constant that

varies periodically in one, two, or three spatial dimensions, due to which a photonic band gap

forms in the structure's photonic dispersion relation [3]. The photonic band gap is a range

of energies of light which are completely reected by the periodic dielectric structure, and

are thus prohibited from propagating through the photonic crystal. Due to this phenomenon,

photonic crystals have been intensively studied for the purpose of developing ultrafast and

e�cient nanophotonic devices.

Here the bound states of a nonlinear double photonic waveguide heterostructure are inves-

tigated, where the heterostructure is formed by combining two identical PQWs. The double

photonic waveguide heterostructure can also be referred to as a double photonic quantum well

(DPQW) heterostructure, and in this chapter these terms will be used interchangeably. PQWs

are a class of photonic crystal device which have been widely studied, and have many applica-

tions such as waveguides, high-quality �lters, and as components of photonic integrated circuits

[4-17]. They are formed by imbedding a photonic well between photonic barriers, where the

well and barrier materials are chosen so that for a range of frequencies, photon propagation is

permitted within the well but not the barriers. Photonic barriers are thus photonic crystals

with photonic band gaps that may be regarded as potential barriers for photons, while the

photonic well may consist of either a uniform dielectric material or a di�erent photonic crys-

tal. The overall photonic band structure of a PQW heterostructure causes photons to become

con�ned within the well and occupy quantized states along one direction. This e�ect has been

demonstrated in both theoretical and experimental studies, where it has been shown that in-

cident light with an energy corresponding to one of the con�ned states of a PQW undergoes

perfect transmission through the structure due to the resonant tunnelling e�ect, provided that

the photonic barriers are thin enough to allow photon tunnelling to occur [4-17].

In addition to single PQW heterostructures but to a lesser extent, multiple photonic quan-
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tum well heterostructures formed by combining two or more PQWs into a single structure have

been investigated [9, 13, 15-17]. In these studies, the coupling of individual PQWs along the pho-

tonic con�nement direction has been observed. Xu et al. [13], for example, fabricated a double

photonic quantum well (DPQW) heterostructure from one-dimensional photonic crystals made

from multilayered refractive-index-modulated porous silicon. From the measured transmission

spectra of the system, they found that bound states of the DPQW heterostructure underwent

a twofold energy splitting, where the separation between split states increased as the distance

between the two PQWs was decreased. This inter-well coupling e�ect in multiple PQW het-

erostructures occurs when the PQWs in the structure are identical, so that in each photonic

well the bound states are degenerate. When the distance between the wells is decreased, the

degenerate states interact and undergo an N -fold splitting, where N is the number of photonic

wells in the heterostructure [9, 15, 16]. Recently, Sadeghi and Li [17] proposed a type of DPQW

system induced in a photonic superstructure made up of an array of semiconductor quantum

wells. By applying laser light to speci�c regions of the photonic superstructure, two photonic

quantum wells were formed due to the change in the e�ective refractive index in those areas.

In their study, it was also shown that the bound photonic states in the laser-induced double

photonic quantum well system underwent a twofold splitting into symmetric (bonding) and

anti-symmetric (anti-bonding) pairs.

The double photonic waveguide system considered here is in essence a DPQW heterostruc-

ture composed of two types of photonic crystals, which are denoted as A and B. Crystals A

and B are each composed of dielectric spheres embedded in a dielectric background material.

It is considered that the dielectric spheres of crystal A are made from a material with a high

Kerr nonlinearity, so that their refractive index can be changed upon application of an intense

pulsed laser �eld (pump �eld). Nonlinear photonic crystals are ideal candidates for developing

ultrafast all-optical switching devices, and thus have been widely studied in the literature [18-

25]. In the present study, it is considered that the dielectric spheres in photonic crystal A are

composed of polystyrene, following a recent experimental demonstration by Liu et al. [18] of

ultrafast all-optical switching in a three-dimensional polystyrene photonic crystal. On the other

hand, the dielectric spheres in photonic crystal B are made of silica, which has a negligible Kerr

nonlinearity compared to that of polystyrene, and so their refractive index remains una�ected
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Figure 3-1: (a) Schematic representation of the nonlinear double photonic waveguide het-
erostructure. Photonic crystals A and B each consist of periodically-arranged dielectric spheres,
and are arranged in the sequence B/A/B/A/B along the x-direction. The di�erently sized and
shaded circles represent the di�erent types of dielectric spheres in each photonic crystal. The
thicknesses of each photonic crystal layer are indicated just below the diagram. (b) Photonic
band diagram of the double photonic waveguide heterostructure corresponding to the schematic
diagram in (a). The di�erently-shaded regions indicate the photonic band gaps of the di�erent
photonic crystals. The dashed boxes indicate a new location for the photonic band gap of
photonic crystals A when an external pump laser �eld is applied.

by the pump �eld. Parameters for photonic crystals A and B are chosen so that in the absence

of the pump laser, the upper edges of their photonic band gaps are very near one another.

To form the DPQW heterostructure, these crystals are arranged in the sequence B/A/B/A/B

along one direction, as shown in Figure 3-1(a). When the pump �eld is applied to the system,

the photonic band gap of photonic crystal A shifts in such a way that two photonic quantum

wells are induced in crystals A, thus forming the double waveguide heterostructure (see Figure

3-1(b)).

The e�ect of stress or strain �elds applied to photonic crystal B is also investigated in this

chapter. To incorporate the e�ect of an applied stress or strain �eld, it is considered that
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the application of such a �eld causes the radii of the silica spheres in photonic crystal B and

their spacing to change slightly. In absence of the stress or strain �eld, the upper edges of the

photonic band gaps of crystals A and B are almost identical, so that there are essentially no

photonic wells in the structure. Here it is shown that the deformation of photonic crystal B

due to an applied stress �eld can raise the upper edge of photonic crystal B's photonic band

gap (i.e., increase the height of the photonic barriers), thereby inducing photonic waveguides

in the heterostructure.

Using the transfer matrix method [26, 27], transcendental equations which give the energy

levels of the induced bound states of the system are obtained. By using a Taylor series expan-

sion, analytical expressions for the energy splitting of these states are derived. The transmission

spectra for the double photonic waveguide heterostructure are simulated using code developed

in MAPLE, from which the resonant tunnelling peaks corresponding to the bound states of the

system are found. The energy splitting of the resonant tunnelling peaks is then compared with

the analytical expressions obtained for the energy splitting.

In the absence of any external �elds (pump laser or stress/strain), the upper photonic band

edges of photonic crystals A and B have nearly the same value, and it is found that there are no

bound states supported by the system. Here, the depth of the photonic wells can be increased

by applying a su�ciently intense external �eld, allowing one or more bound states to appear

when the photonic wells become su�ciently deep. It is shown that the system may be switched

from zero to one or more bound photonic states by changing the intensity of the pump laser

�eld or by applying a su�ciently intense stress or strain �eld to photonic crystals B.

In the present study, the bound photonic states in the double photonic waveguide system

are shown to split into symmetric and anti-symmetric pairs when the two photonic wells are in

close proximity. This splitting e�ect is due to the inter-well coupling between the degenerate

states in each of the two identical PQWs of the system [9, 13, 15-17]. It is predicted that

the energy splitting of a bound state decreases exponentially with increasing distance between

the two PQWs. For a bound state in the laser-induced photonic wells, it is found that the

energy splitting decreases as the intensity of the pump �eld increases. From the theoretical

calculations and simulated transmission spectra of the system it is shown that the number of

resonant states, their energy levels and degree of splitting all depend on the intensity of the

39



pump �eld. Furthermore, the results from the analytical expressions of the energy splitting

have been shown to agree with those observed from the simulated transmission spectra. Within

the range of pump �eld intensities considered in these simulations, it is found that the laser-

induced double waveguide system may be optically switched from zero to one or two pairs of

bound states. It is anticipated that the results presented here can be used to develop all-optical

switching devices, tunable �lters and coupled waveguides.

3.2 Theoretical Formalism

The double photonic waveguide heterostructure is formed using two photonic crystals A (pho-

tonic well) and B (photonic barrier), which are arranged in the sequence B/A/B/A/B along

the x-axis as shown in Figure 3-1. The thicknesses of the outer photonic barrier layers and the

photonic well layers are denoted by dB and dA, respectively, while the thickness of the central

photonic barrier layer is denoted as d. Photonic crystals A and B are each composed of dielec-

tric spheres embedded in a dielectric background material. It is considered that each crystal

shares the same background dielectric material, which has refractive index n. The dielectric

spheres in crystal A (B) have radii denoted as rA (rB), and refractive index nA (nB). Lattice

constants of photonic crystals A and B are denoted by LA and LB, respectively.

The spheres in photonic crystal A consist of a nonlinear dielectric material, such that their

refractive index in the presence of a strong laser �eld is given as [25, 28]

nA = n0 + nnLIp, (3.1)

where n0 is the weak-�eld refractive index, nnL is the third-order nonlinearity susceptibility,

which can be positive or negative depending on the dielectric material, and Ip is the laser

(pump) �eld intensity. Here the e�ect of the pump laser �eld on the bound states in the

double waveguide system is investigated. Note that in the following simulations, the refractive

indices of the background dielectric (n) and dielectric spheres in photonic crystal B (nB) have

a signi�cantly weaker nonlinear optical response, and so remain una�ected by the pump laser

�eld.

Transverse electric, linearly polarized electromagnetic waves travelling in the x-direction

40



propagate in the form of Bloch waves in photonic crystals A and B due to their periodic,

spatially-modulating dielectric constants. HereKA andKB denote the components of the Bloch

waves propagating along the x-direction in crystals A and B, respectively. Using the continuity

conditions for a propagating electromagnetic wave at the interfaces between photonic crystals

A and B in the heterostructure, the following expressions were derived for the energies of the

bound photons within the double waveguide structure. The energy levels of the mth (m = 0,

1, 2, ...) symmetric and anti-symmetric bound states are denoted as "+m and "�m, respectively,

and are obtained from

KB ("
�
m)

KA
�
"�m
�
� = tan(KA �"�m� dA +m� � arctan

"
KB ("

�
m)

KA
�
"�m
�#) , (3.2)
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Expressions for the Bloch wave vectorsKA andKB in photonic crystals A and B are obtained

using the band structure model proposed by John and Wang [29], which has been widely used

to model the optical properties of photonic crystals [25, 27, 29-31]. From this model, the Bloch

wave vectors in photonic crystals A and B along the x-direction are given by

KA ("k) =
q
F 2A ("k)�K2

? (3.4)

KB ("k) =
q
K2
? � F 2B ("k),

where "k is the photon energy, K? is the component of the Bloch wave vector perpendicular to

the x-direction and

Fi ("k) =
1

Li
arccos

"X
�
�(ni � n)

2

4nin
cos

n"k
~c
[2niri � n (Li � 2ri)]

o#
, i = A or B. (3.5)

The bound state energies of the double waveguide system are calculated by using Eqs. 3.2 and

3.4 while taking K? = 0. When the two photonic quantum wells are far apart from one another

41



(i.e. the thickness of the central photonic barrier layer d is large), Eqs. 3.2 reduce to the single

transcendental equation obtained in reference [26]:

tan
h
KA ("m) dA +

m�

2

i
=

q
F 2A ("m)� F 2B ("m)�K2

A

KA ("m)
(3.6)

In the above equation, "m corresponds to the degenerate bound states in the two single, isolated

photonic quantum wells.

For a given quantum number m, the transcendental equations for the symmetric and anti-

symmetric bound states in Eqs. 3.2 have di�erent solutions for the energies "+m and "�m. Here

an analytical expression is derived for the energy splitting �"m of the mth degenerate bound

state, which is de�ned as �"m � "�m�"+m. The change in a degenerate bound state's energy due

to the coupling between PQWs can be written as "+m = "m + �"
+
m for the symmetric states and

"�m = "m+ �"
�
m for the anti-symmetric states. The energy splitting can then be calculated from

Eqs. 3.2 by solving these two equations self-consistently. This is done by Taylor expanding

near the degenerate state "m. After rigorous mathematical manipulations, the expression for

�"m is obtained as

�"m =
X
�
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and
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To calculate the energy splitting from Eq. 3.7, the Bloch wave vectors KA and KB are used.

Expressions for these wave vectors are de�ned by Eqs. 3.4 and 3.5, which show that they are

functions of the refractive indices of the dielectric spheres and background materials, lattice

constants, and sphere radii of photonic crystals A and B. When d� 1=KB ("m), the expression

for the energy splitting given in Eq. 3.7 is reduced to

�"m =
2KA ("m)KB ("m) exp [�KB ("m) d]h

�AdA � �BKA("m)��AKB("m)

KA("m)
2+KB("m)

2

i h
KA ("m)

2 �KB ("m)2
i . (3.11)

The above expression clearly indicates that �"m decreases exponentially with the well separa-

tion d, which means that when the well separation becomes large enough, the energy splitting

will no longer be resolved.

3.3 Results and Discussion

In the following simulations it is considered that photonic crystals A and B are each composed

of periodically arranged dielectric spheres embedded in a dielectric background material. The

dielectric background material for both crystals is taken as air so that n = 1. For photonic

crystal A, the dielectric spheres are made of polystyrene, a material which has a strong and fast

Kerr nonlinear optical response. Photonic crystals consisting of polystyrene have been used in

recent studies for developing ultrafast all-optical switches [18-20]. The refractive index of the

polystyrene spheres in photonic crystal A, nA, is obtained as a function of the applied pump

laser �eld intensity, Ip, using Eq. 3.1, with parameters n0 = 1:59 and nnL = 1:15 � 10�12

cm2/W [20]. The dielectric spheres in photonic crystal B are taken to be silica, with nB = 1:45.

Since the third-order nonlinear susceptibility of silica is on the order of 10�16 cm2/W [28], nB

remains una�ected by the pump laser �eld.

The energies of the upper ("conduction band") and lower ("valence band") edges of the

photonic band gaps for photonic crystals A and B are denoted as "Acb and "
A
vb for crystal A
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and as "Bcb and "
B
vb for crystal B, and are obtained numerically by solving the transcendental

equations given in Eq. 3.5. For photonic crystal A, the radius of the polystyrene spheres is

rA = 175 nm and the lattice constant is LA = 473 nm, for which it is found that "
A
vb = 0:83187

eV and "Acb = 0:97656 eV. For photonic crystal B, the radius of the silica spheres is rB = 188 nm

and the lattice constant is LB = 508 nm, from which "Bvb = 0:84819 eV and "
B
cb = 0:97241 eV

are obtained. Note that with the chosen parameters, the upper photonic band edges of crystals

A and B are approximately equal, i.e. "Acb � "Bcb. This means that virtually no photonic well

exists in the DPQW heterostructure until a su�ciently intense laser �eld is applied, and hence

the present structure is actually a laser-induced double waveguide. The photonic well depth of

the system is de�ned as �"BA � "Bcb � "Acb, and in the absence of any external �elds it takes

the value �"BA = �0:00415 eV. Note that with the chosen parameters, the upper photonic

band edge of photonic crystal A is close to and slightly above that of B. This means that in the

absence of any external �elds, no bound states can exist within the double photonic waveguide

system.

The energy levels of the bound photonic states formed in the double photonic waveguide

heterostructure are calculated by numerically solving Eq. 3.2 for various quantum numbers

m. The results are plotted in Figure 3-2, where the symmetric ("+m) and anti-symmetric ("
�
m)

bound state energy levels of the double waveguide system are shown for the quantum numbers

m = 0 and m = 1 as functions of the pump laser �eld intensity Ip. Here the lower and upper

pairs of solid curves correspond to the m = 0 and m = 1 states, respectively, and for each

pair the low- and high-energy curves correspond to the symmetric and anti-symmetric states,

respectively. The diagonal dashed curve in Figure 3-2 indicates the value of "Acb as a function of

Ip, which shows the change in the depth of the photonic wells as the pump laser �eld intensity

is increased. On the other hand, the horizontal dashed curve, corresponding to the value of

"Bcb, remains una�ected by the pump laser �eld intensities considered here due to the negligible

Kerr nonlinearity of photonic crystal B.

In the calculation of the bound state energies shown in Figure 3-2, the intensity of the pump

laser �eld ranges from zero to 80 GW/cm2, corresponding to a change in the e�ective refractive

index of polystyrene from 1:59 to 1:68. Note that although these intensities are somewhat large,

experimental studies on polystyrene photonic crystals have been conducted using comparable
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Figure 3-2: Bound state energy levels in the double waveguide heterostructure vs. pump �eld
intensity Ip. The low-energy and high-energy pairs of solid curves correspond to the m = 0
and m = 1 symmetric and anti-symmetric states, respectively. The horizontal and diagonal
dashed lines indicate the upper edges of the photonic band gaps in photonic crystals B and A,
respectively, as functions of Ip. Dotted vertical lines indicate threshold intensities I0 and I1 for
the formation of m = 0 and m = 1 states, respectively. The dimensions of the heterostructure
were taken to be dB = 10LB, d = 5LB, and dA = 20LA.

laser �eld intensities without damaging the samples [18-20]. Figure 3-2 shows that in the

absence of the pump laser �eld (i.e., when Ip = 0), the system cannot support bound states.

The minimum pump �eld intensity required to form a bound photonic state in the system (i.e.,

to induce PQWs) is indicated by the dotted vertical line on the left, for which Ip = I0 where

I0 = 7:85 GW/cm
2 is the threshold intensity for the m = 0 bound state to exist in the double

photonic waveguide heterostructure. Between this threshold intensity and the second, which

occurs at I1 = 32:58 GW/cm
2 and is represented by the dotted vertical line on the right, the

system contains only one degenerate state and thus two split states. By further increasing the

pump �eld so that Ip > I1, an additional pair of split resonant states appears, corresponding to
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the m = 1 degenerate state supported by the photonic wells. The results presented in Figure

3-2 clearly show that the number of resonant states formed in the nonlinear double waveguide

system can be changed by varying the pump �eld intensity. This e�ect occurs due to the

increase in photonic well depth (�"BA) as the pump �eld becomes more intense, which allows

more bound states to form within the photonic wells. To summarize, these results show that

the nonlinear double waveguide system described here may be optically switched between zero,

one or two pairs of bound states by changing the intensity of the pump laser �eld.

The transmission spectra of the DPQW heterostructure for an incident transverse electric,

linearly polarized electromagnetic �eld propagating along the x-axis are numerically simulated

using the transfer matrix method as outlined in Chapter 2. In Figure 3-3, the transmission

coe�cient for the heterostructure is shown as a function of incident photon energy for pump laser

�eld intensities of 30 and 60 GW/cm2. In each case, the transmission coe�cient is calculated

for the range of energies in which photon propagation is permitted in photonic crystal A but

not photonic crystal B. This ensures that the transmitted peaks correspond to bound photonic

states of the laser-induced DPQW system. In Figure 3-3(a), the transmission spectrum is

shown for Ip = 30 GW/cm2, which is between the critical intensities I0 and I1. Here the

transmission coe�cient is plotted for energies between "Acb = 0:96084 eV and "Bcb = 0:97241

eV, and the photonic well depth is �"BA = 0:01157 eV. For the pump laser �eld intensity

considered in Figure 3-3(a), the DPQW heterostructure only supports the m = 0 symmetric

and anti-symmetric states. In Figure 3-3(b) the transmission coe�cient is plotted for Ip =

60 GW/cm2, which is greater than the threshold intensity I1. In this case the transmission

coe�cient is plotted from "Acb = 0:94552 eV to "
B
cb = 0:97241 eV, and the photonic well depth is

�"BA = 0:02689 eV. For the pump �eld intensity considered in Figure 3-3(b), both the m = 0

and m = 1 states are supported by the laser-induced double photonic waveguide.

The peaks in the transmission spectra shown in Figure 3-3 correspond to the resonant

tunnelling states the system, which in turn indicate the energies of the bound states along

the direction of con�nement in the double photonic waveguide heterostructure. The resonant

tunnelling states occur in split pairs due to the coupling of the degenerate bound states in

the two photonic waveguides. Note that as shown in Figure 3-2, the spectral splitting of the

degenerate states is larger for the states with higher energies. This is attributed to an increased
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Figure 3-3: Transmission spectra for the double waveguide system for pump �eld intensities of
(a) Ip = 30 and (b) 60 GW/cm

2. In each case the transmission spectrum is plotted for energies
between the upper photonic band edges of photonic crystals A and B for the given intensity.
Dimensions of the heterostructure were taken as dA = 20LA, dB = 10LB, and d = 5LB.

photonic barrier tunnelling rate for those photons with energies near the upper edge of the

photonic barriers, resulting in a stronger electric �eld coupling between the degenerate states

[8, 13, 16]. The tunnelling rate enhancement near the barrier edge is also responsible for the

increased bandwidth of transmitted resonant peaks at higher energies [8]. Note that for pump

�eld intensities Ip < I0, no resonant tunnelling peaks were observed in the numerical simulations

of the transmission coe�cient. For these intensities, the photonic wells are not deep enough to

support any con�ned states.

In Figure 3-4 a two-dimensional plot of the transmission coe�cient for the DPQW het-

erostructure is presented in which the photon energy is varied along the horizontal axis and

the pump �eld intensity increases along the vertical axis. For pump �eld intensities such that

I0 < Ip < I1, only one degenerate state is shared by the coupled photonic wells, which splits
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Figure 3-4: Two-dimensional plot of the transmission coe�cient for the double photonic quan-
tum well heterostructure. The incident photon energy "k (in eV) is given along the horizontal
axis while the pump laser �eld intensity Ip (in GW/cm

2) is indicated by the vertical axis. Here
the dimensions of the heterostructure are dA = 20LA, dB = 10LB and d = 5LB.

into two transmission peaks corresponding to the symmetric (low-energy) and anti-symmetric

(high-energy) states. In the range of pump �eld intensities considered, Ip > I1 gives two res-

onant tunnelling peaks in the transmission spectrum. Note that in both regimes, the number

and locations of the resonant tunnelling peaks corresponds to the energy levels predicted in

Figure 3-2. These results clearly indicate that the double photonic waveguide system can be

switched between having zero, one, or several resonant states by changing the intensity of the

pump �eld below, between or above the critical intensities I0 and I1.

At this point, the bound state energies and resonant tunnelling peaks of the double waveg-

uide heterostructure have been investigated, but the degree of energy splitting between symmet-

ric and anti-symmetric states in the coupled waveguides has not yet been studied quantitatively.

The derived expression for the energy splitting of a degenerate bound state with quantum num-

ber m is given by Eq. 3.7. Here, the expression for �"m is compared with the spectral splitting
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observed in the numerically simulated transmission spectra. The e�ect of the inter-well cou-

pling in the double photonic waveguide system is investigated by changing the thickness of the

photonic barrier d, which separates the two layers of photonic crystal A in the heterostructure

(see Figure 3-1(a)). In Figure 3-5, the energy splittings for the m = 0 (solid curve) and m = 1

(dashed curve) states have been plotted as functions of the waveguide separation d. Here the

thicknesses of the outer photonic barriers and photonic wells are dB = 10LB and dA = 20LA,

while the pump �eld intensity is Ip = 60 GW/cm2. Note that this pump �eld intensity is

well above the critical intensity I1, and therefore results in two pairs of con�ned states in the

double waveguide structure. The energy splitting measured from the resonant peaks in the

corresponding simulated transmission spectra are also shown in Figure 3-5, where the circles

and diamonds indicate the m = 0 and m = 1 states, respectively.

The results presented in Figure 3-5 show that the energy splitting �"m decreases as the

separation between the PQWs d increases. When the photonic wells are further apart, their

coupling strength decreases, and hence so does the energy splitting e�ect. It is also found that

the energy splitting for the m = 1 state is larger than that for the m = 0 state, as higher-energy

states penetrate further into central photonic barrier and thus couple more strongly with their

degenerate counterpart in the neighboring photonic well. Figure 3-5 shows that there is good

agreement between the energy splitting measured from the transmission spectra of the double

photonic waveguide structure and that predicted by Eq. 3.7. Since the analytical expression for

�"m is based on a Taylor expansion, its accuracy increases as the energy perturbation becomes

smaller. Thus for a double waveguide system with a greater well separation, the expression

for �"m is more accurate because the coupling between photonic wells is weaker. For this

reason, Figure 3-5 shows better agreement between the �"m measured from the simulated

transmission spectra and from Eq. 3.7 for the m = 0 state than the m = 1 state. Note that as

the two photonic wells in the heterostructure become increasingly far away from one another,

the energy splitting decreases exponentially. For a large enough separation, the two waveguides

can be considered separate and isolated, and the energy splitting e�ect is negligible.

The energy splitting of bound states in the double waveguide heterostructure arises due to

the �nite width of the central photonic barrier separating the photonic wells, which allows the

electromagnetic �elds of degenerate bound states in each well to spatially overlap one another.
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Figure 3-5: Energy splitting �"m vs. photonic quantum well separation d in the double waveg-
uide heterostructure. The solid and dashed curves correspond to the energy splitting of the
m = 0 and m = 1 states, respectively, as given from Eq. 3.7. The circles and diamonds corre-
spond to the splitting of the m = 0 and 1 states, respectively, as measured from the resonant
tunnelling peaks in the simulated transmission spectra. In these calculations the dimensions of
the heterostructure are taken as dA = 20LA and dB = 10LB, and the pump �eld intensity is
Ip = 60 GW/cm

2.

This overlap causes the degenerate states to split into pairs of symmetric and anti-symmetric

states. Figure 3-2 shows that at higher pump �eld intensities, more bound states exist in

the heterostructure. Here, the depth of the photonic wells is proportional to the pump �eld

intensity, and deeper photonic wells contain more bound photonic states [7-11]. The present

theoretical predictions agree qualitatively with the results observed for various types of DPQW

structures [13, 16, 17].

According to Eq. 3.7, the energy splitting of the mth bound state is a function of the de-

generate bound state energy "m, which in turn depends on the intensity of the pump laser �eld.

Hence, the energy splitting of the bound states in the double photonic waveguide heterostruc-
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Figure 3-6: Energy splitting of bound states in the double waveguide system vs. pump laser
�eld intensity Ip. The solid and dashed curves correspond to the energy splitting of the m = 0
and m = 1 states, respectively, as given from Eq. 3.7. The circles and diamonds indicate
the energy splitting of the m = 0 and m = 1 resonant peaks as measured from the simulated
transmission spectra for the heterostructure. Here the dimensions of the heterostructure are
dA = 20LA, dB = 10LB and d = 5LB.

ture can be controlled by the pump laser �eld. In Figure 3-6, the energy splittings of the m = 0

and m = 1 states are plotted as functions of the pump laser �eld intensity Ip. The solid and

dashed curves correspond to the energy splitting of the m = 0 and m = 1 states, respectively, as

calculated using Eq. 3.7. These results are compared with the energy splitting measured from

the simulated transmission spectra, where the circles and diamonds in Figure 3-6 correspond

to the energy splitting of the m = 0 and m = 1 resonant tunnelling peaks, respectively.

The results presented in Figure 3-6 show that generally, the energy splitting of each degen-

erate state in the double waveguide structure decreases with increasing pump �eld intensity. As

the intensity of the pump �eld increases, the upper photonic band edge of photonic crystal A

("Acb) and the energies of the degenerate bound states in the photonic well ("m) decrease. In turn,
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the inter-well coupling between degenerate states is diminished, resulting in a decrease in their

energy splitting. The results from the analytical expression for �"m given by Eq. 3.7 shown

in Figure 3-6 (see solid and dashed curves) rise sharply as Ip increases at the appearance of a

new bound state, and then converge with the results measured from the simulated transmission

spectra. The deviation in the energy splitting predicted by the analytical expression for �"m

and that measured from the simulated transmission spectra for the double waveguide system

occurs when the lower-energy symmetric state lies within the photonic barrier, but the higher-

energy anti-symmetric state lies above the upper edge of the barrier. This situation occurs for

pump �eld intensities just above I0 or just above I1. In these cases, the transcendental equation

for "+m given in Eq. 3.2 is valid, while that for "�m given in Eq. 3.2 is not. Therefore, Eq. 3.7

does not apply in these cases because it is derived from Eqs. 3.2. However when the pump �eld

intensity is su�ciently high, both the symmetric and anti-symmetric split states lie below the

photonic barriers of the system. In this case, Eq. 3.2 is valid and the analytical expression for

�"m converges with that measured from the simulated transmission spectra. Note that there

is still some deviation in these results due to the inherent inaccuracy of the Taylor expansion

used to derive Eq. 3.7, an e�ect which is enhanced when the bound states have energies lying

close to the top of the photonic barrier.

Finally, the e�ect of an external stress �eld applied to photonic crystals B on the bound

states in the double waveguide heterostructure is investigated. The radius of the dielectric

spheres rB and the lattice constant LB along the x-direction in crystal B can be modi�ed

slightly by applying external stress and strain �elds. Simply put, the aim here is to study the

e�ect of the variation in the dielectric sphere radii in photonic crystal B on the bound states and

their energy splitting. In Figure 3-7, the bound state energy levels "+m and "
�
m and the photonic

band edges "Acb and "
B
cb are plotted as functions of the dielectric sphere radius rB. Here the

external pump laser �eld is absent, i.e., Ip = 0. The physical parameters for photonic crystal

A remain the same as those used elsewhere in this chapter, while for crystal B the relation

LB = 2rB=0:74 has been used as rB is varied between 180 and 188 nm. This corresponds to

at most a 8 nm decrease from the value of rB used in previous calculations. The symmetric

and anti-symmetric energy levels of the m = 0 and m = 1 states are plotted in Figure 3-7 as

solid curves, whereas the upper photonic band edges of crystals A and B are plotted as dashed
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Figure 3-7: Energy levels of the m = 0 (low-energy pair of solid curves) and m = 1 (high-
energy pair of solid curves) symmetric and anti-symmetric split states in the double waveguide
heterostructure as a function of the dielectric sphere radius in photonic crystal B. The upper
photonic band edges of photonic crystals A and B are indicated by the horizontal and diagonal
dashed curves, respectively. Dimensions of the heterostructure are dA = 20LA, dB = 10LB,
and d = 5LB, and the relation LB = 2rB=0:74 has been used.

curves. Note that here the photonic band gap of crystal A is independent of the value rB and

thus remains constant.

The results presented in Figure 3-7 indicate that for rB > 187 nm (r0), the system contains

no bound states. When r1 < rB < r0, the double photonic waveguide heterostructure supports

only the m = 0 pair of bound states, where r1 = 185 nm. The symmetric and anti-symmetric

m = 0 states are indicated by the lower energy pair of solid curves in Figure 3-7. The system

contains two pairs of split states when rB < r1, where the next pair of resonant states corre-

sponds to the m = 1 degenerate state in the PQWs. These pairs of resonant states appear

due to the increase in depth of the photonic wells of the double waveguide system (�"BA) as
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rB is decreased. In this case, however, the photonic wells become deeper due to an increase

in the height of the photonic barriers ("Bcb) as rB decreases, as opposed to decreasing "
A
cb with

the applied laser �eld as done in the previous calculations. Figure 3-7 shows that the double

waveguide system can be switched from zero to one or two pairs of resonant states by changing

the radius of the dielectric spheres in photonic crystal B.

3.4 Conclusions

In this chapter, the energy splitting of bound photonic states in a Kerr-nonlinear double pho-

tonic waveguide (quantum well) heterostructure has been investigated. The present photonic

heterostructure is fabricated using two photonic crystals A and B arranged in the sequence

B/A/B/A/B along one direction. It is considered that photonic crystals A and B are each

composed of periodically-arranged dielectric spheres in a dielectric background material. For

photonic crystal A, the dielectric spheres are made of polystyrene, which has a strong and fast

Kerr nonlinear optical response. Photonic crystal B contains dielectric spheres made of silica,

which has a negligible Kerr nonlinearity compared to that of polystyrene.

Parameters for photonic crystals A and B are chosen so that in the absence of external

�elds, the photonic band gaps of crystals A and B are nearly equal. In this situation, there are

no photonic wells in the system. It is shown that the application of an external pump laser �eld

changes the refractive index of the polystyrene spheres in photonic crystal A due to the Kerr

e�ect. This change in refractive index decreases the upper edge of photonic crystal A's photonic

band gap, inducing two coupled photonic wells in the heterostructure which each support one

or more bound photonic states. Similarly the application of external stress or strain �elds to

photonic crystal B can cause a change in the radius of its constituent dielectric spheres. This

causes the upper edge of photonic crystal B's photonic band gap to increase, which also induces

photonic wells in the heterostructure that can each support one or more bound states.

Here it is shown that the bound photonic states in each of the two photonic wells couple to

one another through the central photonic barrier in the heterostructure. This coupling causes

the degenerate bound states to split into symmetric and anti-symmetric states. Analytical

expressions for the energy levels of the symmetric and anti-symmetric bound states in the
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heterostructure and their energy splitting have been derived. Transmission spectra for the

heterostructure along the direction of con�nement have been numerically simulated, from which

resonant tunnelling peaks are observed. These peaks match the energy levels of the split bound

states in the double waveguide heterostructure.

The results presented in this chapter demonstrate that the nonlinear double photonic waveg-

uide system can be optically switched between supporting zero, one or more bound states. Nu-

merical simulations for this system have shown that the energy levels of these bound states and

their splitting can be controlled by variying the distance between the two waveguides, adjusting

the intensity of the applied pump laser �eld or by applying stress and strain �elds. It is shown

that the phenomenon of resonant photonic tunnelling can occur when incident light is applied to

the system along the direction of photon con�nement. The system described here can be used

as an all-optical switch for a probe laser applied along the direction of con�nement, whereby

resonant transmission of the probe �eld at a speci�c frequency can be switched on or o� by

the pump laser �eld. A similar type of switched mechanism was proposed by Tran [23] for a

Kerr-nonlinear photonic crystal with a defect state. The present system may also be used as a

tunable optical �lter, and by combining several such devices with photonic waveguides, tunable

multichannel �lters may be fabricated. The results presented here may be used to develop

ultrafast all-optical switching devices, tunable �lters and coupled waveguides.
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Chapter 4

Nanophotonic Phenomena in

Graphene Heterostructures

In the previous two chapters, photonic heterostructures containing photonic crystals as opti-

cally active components were studied and shown to exhibit optical properties which exceed the

capabilities of the sum of the individual components. For example, in Chapter 2, photonic

quantum well heterostructures were fabricated by combining two photonic crystals with dif-

ferent photonic band gaps. One might expect that in this case, the resulting heterostructure

would simply possess a larger photonic band gap which is the combination of the two band

gaps from the individual photonic crystals. However, the photonic heterostructure was shown

to have far more interesting properties, such as the ability to support bound photonic states

which allow resonant photonic tunnelling to occur through a photonic band gap. In this chapter,

heterostructures consisting of nano-scale graphene and semiconducting components are inves-

tigated1. Here, as well, the resulting heterostructure (or nanocomposite) is found to exhibit

optoelectronic properties that are not merely the sum of those for the individual components.

1The material presented in this chapter has been published in: J. D. Cox, M. R. Singh, G. Gumbs, M. A.
Ant�on, and Fernando Carre~no, Phys. Rev. B 86, 125452 (2012).
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4.1 Introduction

There has been growing interest in developing nanoscale optoelectronic devices by combining

nanomaterials with complementary optical properties into composite (hybrid) structures. The

number of possible composite systems that can be built from already existing nanostructures

is simply enormous. A signi�cant amount of research on nanocomposites has been devoted to

the study of exciton-plasmon interactions in metal-semiconductor nanostructures, which o�er a

wide range of opportunities to control light-matter interactions and electromagnetic energy ows

on nanometer length scales [1-6]. Strong exciton-surface plasmon coupling in semiconductor

quantum dot (QD)-metal nanoparticle systems could lead to e�cient transmission of quantum

information between qubits for applications in quantum computing and communication [2].

These nanostructures also have applications in biophotonics and sensing, where nonradiative

energy transfer between a QD and metal nanoparticle can be used to detect biological molecules

[3].

In this chapter, the dipole-dipole interaction and energy transfer between a quantum emit-

ter and a graphene nanodisk is investigated theoretically. The quantum emitter can be a QD,

nanocrystal or a chemical or biological molecule. In the present study, the quantum emitter-

graphene system is embedded in a nonlinear photonic crystal, which acts as a tunable photonic

reservoir for the emitter. Photonic crystals are engineered, periodically-ordered microstruc-

tures that facilitate the trapping and control of light on the microscopic level. Applications

for photonic crystals include all-optical microchips for optical information processing, optical

communication networks, sensors and solar energy harvesting [7-12]. The nonlinear photonic

crystal considered here has a refractive index distribution that can be tuned optically, and is

used to manipulate the interaction between the quantum emitter and graphene nanodisk.

For the present nanocomposite system, surface plasmons are created in the graphene nan-

odisk when an external electromagnetic is applied. Surface plasmons are the collective oscil-

lations of conduction band electrons at the interface between conducting and dielectric media.

Plasmonics is widely studied due to applications in ultrasensitive optical biosensing [13], pho-

tonic metamaterials [14], light harvesting [15], optical nanoantennas [16] and quantum informa-

tion processing [17]. Generally, noble metals are considered to be the best available materials

for the study of surface plasmon polaritons [18]. However, noble metals are hardly tunable
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and exhibit large Ohmic losses which limit their applicability to optical processing devices.

Graphene plasmons provide an attractive alternative to noble-metal plasmons as they exhibit

much tighter con�nement and relatively long propagation distances. Furthermore, surface plas-

mons in graphene have the advantage of being highly tunable via electrostatic gating. Compared

to noble metals, graphene also has superior electronic and mechanical properties, which orig-

inate in part from its charge carriers of zero e�ective mass [19]. For example, charge carriers

in graphene can travel for micrometers without scattering at room temperature. Graphene has

also been recognized as a useful optical material for novel photonic and optoelectronic appli-

cations [20-25]. For these reasons, the study of plasmonics in graphene has received signi�cant

attention both experimentally and theoretically [21, 22, 26-29].

Recently, experimental research on graphene has been extended to the fabrication and study

of QD-graphene nanostructures [30-34]. For example, a CdS QD-graphene hybrid system has

been synthesized by Cao et al. [30], in which a picosecond ultrafast electron transfer process

from the excited QD to the graphene matrix was observed using time-resolved uorescence

spectroscopy. Chen et al. [31] have fabricated CdSe/ZnS-QDs in contact with single- and

few-layer graphene sheets. By measuring the strong quenching of the QD uorescence, they

determined the rate of energy transfer from the QD to graphene. A similar study by Dong et

al. [32] was performed on a CdTe-QD and graphene oxide system, but in their case the QDs

were modi�ed with molecular beacons in order to demonstrate that the hybrid system can be

used for sensing biological molecules. Wang et al. [33] have synthesized graphene{CdS and

graphene{ZnS QD hybrid systems directly from graphene oxide, with CdS and ZnS QDs very

well dispersed on the graphene nanosheets. They also measured the QD photoluminescence

and observed the energy transfer between the QDs and graphene. Metal nanoparticle-graphene

hybrid systems have also been fabricated by several groups [21, 35-37].

In the present chapter a QD-graphene hybrid system is investigated, for which energy trans-

fer occurs due to the interaction between optical excitations in the QD and graphene nanodisk.

The optical excitations in the QD are excitons, which are electron-hole pairs, while those in

the graphene nanodisk are surface plasmon polaritons, which are created due to the collective

oscillations of conduction band electrons. The QD is taken as a three-level system in which

two distinct excitonic transitions occur. Three-level quantum emitters in the ladder- [3] and

60



V-type [38] con�gurations interacting with a metallic nanoparticle in the presence of two ex-

ternal laser �elds have been studied. Here a probe laser �eld is applied to the system, which is

coupled with one excitonic transition and measures the energy transfer spectra of the QD and

graphene. Additionally, it is considered that a control laser �eld is applied to monitor and con-

trol the energy transfer. Besides creating excitons in the QD, these �elds also generate surface

plasmon polaritons in graphene. The dipoles created by excitons in the QD and plasmons in

the graphene nanodisk then interact via the dipole-dipole interaction (DDI). This interaction is

strong when the QD and graphene are in close proximity and their optical excitation frequencies

are resonant.

It is found that the power absorption spectrum of the QD has two peaks when the QD and

graphene nanodisk are in close proximity, indicating the creation of two dressed excitons in

the QD due to the DDI. These dressed excitons are transported to graphene, and produce two

peaks in the spectrum of the energy transfer rate to graphene. The energy transfer between

the QD and graphene can be switched on and o� by changing the strength of the dipole-dipole

coupling or by applying an intense laser �eld to the nonlinear photonic crystal. The intensities of

peaks in the energy transfer rate spectra can be controlled by changing the number of graphene

monolayers or by changing the distance between the QD and graphene. It is also predicted that

the intensity of these peaks can be modi�ed in the presence of biological materials. The �ndings

presented in this chapter agree with the experimental results of Refs. [30-34] on a qualitative

basis. The present system can be used to fabricate nano-biosensors, all-optical nano-switches

and energy transfer devices.

4.2 Theoretical Formalism

The dipole-dipole interaction and energy transfer between a quantum dot (QD) and graphene

nanodisk are investigated theoretically for a graphene-QD heterostructure embedded in a non-

linear photonic crystal. The combined QD-graphene nanodisk system can also be referred to as

a QD-graphene nanocomposite or hybrid system. A schematic diagram for the present system

is shown in Figure 4-1(a). A graphene nanodisk (or nanoake) lies in the x-y plane, on top of

which a QD is deposited. The center-to-center distance between the QD and graphene nanodisk
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Figure 4-1: (a) Schematic diagram of the QD-graphene nanocomposite embedded in a photonic
crystal. (b) Energy level diagram for the lambda-type QD, where j2i and j3i denote the lower-
energy states which are both coupled to the common optically excited state j1i. (c) Energy
level diagram for the ladder-type QD, where j1i, j2i, and j3i denote the ground, �rst excited,
and second excited states.

is denoted by R. The distance between the quantum dot and graphene R can be controlled by

using the following methods: (a) by using a passive dielectric spacer between the quantum dot

and graphene, (b) using quantum dots with di�erent diameters, (c) by applying an external

stress or strain �elds to the system, and (d) by changing the concentration of quantum dots or

graphene nanodisks.

Here it is considered that the QD has three discrete energy states, denoted as j1i, j2i

and j3i. In this chapter, two types of three-level quantum dots are considered. These are

the so-called lambda- and ladder-type energy level con�gurations. In the lambda-type energy

level con�guration, states j2i and j3i are the lower-energy states and j1i is the higher-energy
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excited state. Optical excitation occurs via the transitions j2i $ j1i and j3i $ j1i, which

have resonance frequencies (dipole moments) !12 (�12) and !13 (�13), respectively (see Figure

4-1(b)). In the ladder-type energy level con�guration, j1i, j2i and j3i denote the ground,

�rst excited and second excited states, respectively. Optical excitation the occurs via the

transitions j1i $ j2i and j2i $ j3i, which have resonance frequencies (dipole moments) !12
(�12) and !23 (�23), respectively (see Figure 4-1(c)). In this section, the lambda-type energy

level con�guration is used to present the theoretical formalism for the dipole-dipole interaction

and energy transfer between a three-level quantum emitter (i.e., QD) and graphene nanodisk.

This energy level con�guration has been widely studied in atoms, where quantum optical e�ects

such as electromagnetically induced transparency and coherent population trapping have been

demonstrated [39, 40]. More recently, the lambda-type energy level con�guration has been

achieved in semiconductor QDs [41-43]. The extension of the following theoretical formalism

to the ladder-type system is very straightforward, and is presented at the end of the section.

In the present model, it is considered that two external laser �eld are applied to the nanocom-

posite system. The �rst �eld is designated as the probe laser �eld, and is assumed to couple

with the j1i $ j2i transition in the QD. The probe laser �eld has frequency !2 and electric

�eld E2 given by

E2 = e2E
0
2 cos (!2t) , (4.1)

where e2 is the polarization unit vector and E
0
2 is the electric �eld amplitude. The frequency of

the probe �eld (!2) is close to resonance with the transition frequency between states j1i and j2i

in the quantum dot (!12) such that !2 = !12+�2, where �2 is the probe �eld detuning parameter

and is a small quantity (i.e., �2 � !12). The second �eld applied to the nanocomposite system

is called the control laser �eld, and is assumed to couple with the j1i $ j3i transition in the

QD. The control laser �eld has frequency !3 and electric �eld E3 given by

E3 = e3E
0
3 cos (!3t) . (4.2)

Here e3 and E
0
3 are the polarization unit vector and electric �eld amplitude of the control �eld,

respectively, and the control �eld is close to resonance with the j1i $ j3i transition frequency

(!13) in the quantum dot such that !3 = !13 + �3, where �3 � !13.
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The probe and control laser �elds excite both the QD and graphene nanodisk. In the

QD, these �elds create excitons (electron-hole pairs) which produce dipole electric �elds that

interact with the nearby graphene nanodisk. Similarly in the graphene nanodisk, the probe

and control laser �elds generate surface plasmon polaritons, which produce dipole electric �elds

that interact with the QD. The dipole electric �eld produced by the QD at the location of the

graphene nanodisk is

EQDDDI =
glPQD
4��b�0R3

, (4.3)

while the dipole electric �eld produced by graphene at the location of the QD is

EGDDI =
glPG

4��b�0R3
. (4.4)

In the above expressions, PQD and PG are the polarization of the QD and graphene, re-

spectively, while �b is the dielectric constant of the background medium surrounding the QD-

graphene hybrid and gl (l = x, y, or z) is the polarization parameter, with gx = gy = �1 and

gz = 2 for electric �elds polarized in the x-y plane or in the z-direction, respectively [44]. In

Eq. 4.3, the polarization of the three-level QD PQD is obtained using the density matrix �,

which is de�ned as

� =
3X
i=1

pi jii hij . (4.5)

In the above expression, the quantity pi is the statistical probability that the QD is in the

state jii. The density matrix can be used to calculate the expectation value of any observable

quantity A using the following relation:

hAi = Tr (�A) . (4.6)

Here the polarization (dipole moment) of the QD is calculated as

PQD = h�i = Tr (��) , (4.7)

which gives

PQD = �12 (�12 + �21) + �13 (�13 + �31) . (4.8)
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In the above expression, �ij = hij� jji and �ij = hij � jji are the transition dipole moment and

density matrix element, respectively, for the transition jii $ jji in the QD.

The total electric �eld experienced by the graphene nanodisk is expressed as

EG = E2 +E3 +E
QD
DDI , (4.9)

where the �rst, second and third terms represent the contributions from the probe laser �eld,

control laser �eld and the QD dipole �eld, respectively. Using the quasistatic dipole approxi-

mation [44], the polarization of the graphene nanodisk is obtained as

PG = �b�0�
�
E2 +E3 +E

QD
DDI

�
, (4.10)

where � is the polarizability tensor for the graphene nanodisk given by

� =

0BBB@
�x 0 0

0 �y 0

0 0 �z

1CCCA . (4.11)

The elements in the polarizability tensor are obtained as

�l (!) =
4�dxdydz [�g (!)� �b]
3�b + 3Ll [�g (!)� �b]

, l = x, y, or z, (4.12)

where �g (!) is the dielectric function of graphene and Ll is called the depolarization factor,

which determines the optical response of the graphene nanodisk based on its shape [44]. Here

the graphene nanodisk is approximated as a thin oblate spheroid such that dx = dy and dx > dz.

In this situation, the depolarization factors for the nanodisk are obtained as

Lz =
1� e2g
e2g

�
1

2eg
log

�
1 + eg
1� eg

�
� 1
�

(4.13)

and

Lx = Ly =
1

2
(1� Lz) , (4.14)

where eg =
q
1� (dx=dz)2 is the eccentricity of the graphene nanodisk. The expression for
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the polarizability given in Eq. 4.12 has been widely used in the literature to study the optical

properties of metallic nanodisks, and has been found to give good agreement with experimen-

tal results [45, 46]. The quasistatic approximation may be used when the dimensions of the

graphene nanodisk are much smaller than the wavelength of the incident electromagnetic �eld,

which allows one to assume that the nanodisk experiences a spatially uniform but time-varying

electric �eld. Here the wavelengths of light considered are on the order of several hundred

nanometers, and thus the size of the graphene nanodisk must be less than 100 nm. It is impor-

tant to note that the present model is only valid for nano-sized graphene samples and not for

bulk materials. Furthermore, higher-order multipole moments (i.e., quadrupole, octopole, etc.)

are neglected in the present approximation as they have a neglibile contribution for nano-sized

graphene. For a very at and thin nanodisk such that Lx � Lz, Eqs. 4.13 and 4.14 reduce to

[47, 48]

Lz �= 1� �
2

dz
dx

(4.15)

Lx = Ly �=
�

4

dz
dx

The above method has been used to model the optical response of a graphene ake in Ref. [49].

The total electric �eld felt by the QD is written as

EQD =
E2
�bd

+
E3
�bd

+
gl�

�
E2 +E3 +E

QD
DDI

�
4��bdR3

, (4.16)

where the �rst, second, and third terms represent the contributions from the probe laser �eld,

control laser �eld, and graphene dipole �eld, respectively. In the above expression, �bd =

(2�b + �d) =3�b, �d being the dielectric constant of the QD. Using the expression for E
QD
DDI from

Eq. 4.3, Eq. 4.16 becomes

EQD =
E2
�bd

+
gl�E2
4��bdR3

+
g2l ��12

(4�)2 �b�0�bdR6
(�12 + �21) (4.17)

+
E3
�bd

+
gl�E3
4��bdR3

+
g2l ��13

(4�)2 �b�0�bdR6
(�13 + �31)

Here it is considered that only the probe laser �eld and its induced dipole �elds couple with
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the j1i $ j2i transition in the QD, while only the control laser �eld and its induced dipole �elds

couple with the j1i $ j3i transition in the QD. This scenario can be realized in the following

ways: (a) The probe �eld E2 is perpendicular to the dipole moment �13 and simultaneously

the control �eld E3 is perpendicular to the dipole moment �12. (b) The transition frequencies

!12 and !13 are very di�erent from each other, meaning that !2 is far away from !13 and !3

is far away from !12. Using Eq. 4.17, the interaction Hamiltonian for the QD interacting with

the total incident electric �eld is expressed in the rotating wave approximation as

HQD = �
�
�12 � e2E02
2�bd

+
gl�12 � (�e2)E02

8��bdR3
+
g2l �12 � (��12)
(4�)2 �b�0�bdR6

�12

�
�+12e

�i!2t + h:c: (4.18)

�
�
�13 � e3E03
2�bd

+
gl�13 � (�e2)E03

8��bdR3
+
g2l �12 � (��13)
(4�)2 �b�0�bdR6

�13

�
�+13e

�i!3t + h:c:,

where �+ij = jii hjj (�ij = jji hij) is the exciton creation (annihilation) operator. The above

expression contains terms which describe the dipoles of the QD interacting with the dipole

electric �eld produced by the graphene nanodisk, and vice versa. This interaction is known

as the dipole-dipole interaction. The interaction Hamiltonian in Eq. 4.18 is now written in

interaction representation in terms of the contributions from the external laser �elds and the

dipole-dipole interaction as

HQD = HQD�F +HQD�DDI , (4.19)

where

HQD�F = �~
2�+12e�i(!2�!12)t � ~
3�
+
13e

�i(!3�!13)t + h:c: (4.20)

and

HQD�DDI = �~ (�2 + �2�12)�+12e�i(!2�!12)t � ~ (�3 + �3�13)�
+
13e

�i(!3�!13)t + h:c: (4.21)

In the above expressions, parameters are de�ned as


i =
�1iE

0
i

2~�bd
, (4.22)

�i =
gl�l (!i) 
i
4�R3

, (4.23)
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and

�i =
g2l �l (!i)�

2
1i

(4�)2 ~�b�0�bdR6
, (4.24)

where i = 2 or 3.

The interaction Hamiltonian term HQD�F given in Eq. 4.19 represents the direct contribu-

tion from the external probe (i = 2) and control (i = 3) laser �elds incident on the QD, and is

written in terms of the Rabi frequencies 
i which characterize the coupling of these �elds with

their respective dipole moments in the QD. The second contribution HQD�DDI includes the

electric �elds incident on the QD due to the dipole-dipole interaction between the QD and the

graphene nanodisk, and contains two terms. The �rst term �i is due to the interaction of the

QD with the dipole electric �elds from the dipoles in the graphene nanodisk induced directly

by the probe and control laser �elds, and therefore is called the direct dipole-dipole interaction

term. The second term �i arises from the interaction of the QD with a dipole �eld from the

graphene nanodisk that is created when the polarization of the QD polarizes the graphene nan-

odisk. In other words, these contributions are the self-interaction of the QD, as they depend

on the polarization of the QD. For this reason this term is called the self-induced dipole-dipole

interaction parameter.

The surface plasmon polariton resonance frequency !lsp in the graphene nanodisk is obtained

by setting the real part of the denominator in �l (!) equal to zero and solving for !. When

the optical excitation frequencies of the QD lie near the surface plasmon polariton resonance

frequencies of the graphene nanodisk (i.e. when !1i � !lsp), the dipole-dipole interaction

terms �i and �i become very strong due to the enhanced local �elds in the vicinity of the

graphene nanodisk. This interaction leads to excitation and energy transfer between the QD

and graphene.

The combined QD-graphene system is embedded in a photonic crystal consisting of dielec-

tric spheres arranged periodically in three dimensions, which acts as a reservoir for the QD. The

excited state j1i spontaneously decays to the lower-energy states j2i and j3i due to excitons cou-

pling with Bloch photons in the photonic crystal (see Figure 4-1). The interaction Hamiltonian

for the QD-photonic crystal reservoir coupling is written in the rotating wave approximation
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and interaction representation as:

HQD�PC = �
3X
i=2

X
k

s
~!k

2�0�bVPC
(ek � �1i) ak�+1ie

�i(!k�!1i)t + h:c:, (4.25)

where ek is the polarization unit vector of the Bloch photons in the photonic crystal and VPC is

the volume of the photonic crystal. The operator a+k (ak) is the photon creation (annihilation)

operator, while !k and k are the Bloch photon frequency and wave vector, respectively.

Using Eqs. 4.19 and 4.25; total interaction Hamiltonian of the system is written as

Hint = HQD�F +HQD�DDI +HQD�PC (4.26)

= �
3X
i=2

~
�
Rie

i�i + �i�1i

�
�+1ie

�i(!i�!1i)t + h:c:

�
3X
i=2

X
k

s
~!k

2�0�bVPC
(ek � �1i) ak�+1ie

�i(!k�!1i)t + h:c:, (4.27)

where

Ri =

q
[
i +Re(�i)]

2 + [Im(�i)]
2 (4.28)

and

�i = arctan

�
Im(�i)


i +Re(�i)

�
. (4.29)

The density matrix method is used to evaluate the energy transfer between the QD and

the graphene. Using the interaction Hamiltonian given in Eq. 4.26 and the master equation

method [39], the equation of motion for the density matrix is written as

d�

dt
= � i

~
[HQD�F +HQD�DDI ; �] + L�, (4.30)

where

L� = ��21 (�11�+ ��11 � 2�11�22)� �31 (�11�+ ��11 � 2�11�33) . (4.31)

The equations of motion for the QD density matrix elements �ij are then obtained using Eq.
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4.30 as

d�22
dt

= 2�21�11 � iR2ei�2�21 � i�2�12�21 + iR2e�i�2�12 + i��2�21�12 (4.32)

d�33
dt

= 2�31�11 � iR3ei�3�31 � i�3�13�31 + iR3e�i�3�13 + i��3�31�13 (4.33)

d�12
dt

= �d12�12 + iR3ei�3�32 + i�3�13�32 � iR2e�i�2(�11 � �22) (4.34)

d�13
dt

= �d13�13 + iR2ei�2�23 + i�2�12�23 � iR3ei�3(�11 � �33) (4.35)

d�23
dt

= �i(�2 � �3)�23 + iR2e�i�2�13 + i��2�21�31 � iR3ei�3�21 � i�3�13�21 (4.36)

where

d1i = �21 + �31 � �id � i�id � i�i, (4.37)

�i = !i � !1i.

Here �i are the detuning of the probe (i = 2) and control (i = 3) �elds. Note that the diagonal

elements of the density matrix satisfy the relation �11+�22+�33 = 1. The quantities �id and �id

are the non-radiative decay rate and energy shift, respectively, due to self-induced dipole-dipole

interaction parameters �i. They are found as

�id = Im(�i) (�ii � �11) , (4.38)

�id = Re(�i) (�ii � �11) .

The parameters �i1 represent the spontaneous decay rates of excited state j1i to state jii due

to the Bloch photons in the photonic crystal, and are given as

�i1 = �
0
i1

�2c3

VPC!21i
D(!1i), (4.39)

where

D(!) =
X
�
sin

�
2!

c
(naa� nbb)

�
(na � nb)2 (naa� nbb)VPC arccos2 [F (!)]

2�2L3cnanb
p
1� F 2(!)

, (4.40)

70



and

F (!) =
X
�
�(na � nb)

2

4nanb
cos

�
2!

c
(naa� nbb)

�
. (4.41)

In the above expression, �0i1 is the exciton decay rate due to the background radiation �eld

in free space. Here L = 2a + 2b is the photonic crystal lattice constant, 2b is the spacing

between dielectric spheres and a is the radius of the spheres. Parameters na and nb denote

the refractive index of the dielectric spheres and background material in the photonic crystal,

respectively. The expression for the photonic density of states D(!) has been derived in Ref.

[50]. Here the Markovian approximation has been used in order to derive the decay rates for

the QD in the presence of the photonic crystal. This approximation ignores memory e�ects in

the electromagnetic reservoir due to the presence of the QD, and is valid when the photonic

density of states can be considered smooth and slowly-varying compared to the energy di�erence

between the edge of the photonic band gap and the resonance frequency of the QD [51]. Note

that the present calculations fall within the regime for which the Markovian approximation is

valid. Therefore the e�ect of the photonic crystal serves only to alter the decay rates of the

excitonic transitions compared to those in free space. The density matrix equations of motion

given in Eqs. 4.32{4.36 are solved numerically by �rst substituting �12 = e�12ei�2 , �13 = e�13ei�3
and �23 = e�23e�i(�2��3).

Following the method of Ref. [44] and using Eq. 4.26, the energy absorption rate of the QD

(WQD) and the energy transfer rate from the QD to graphene (WG) are found as

WQD =
3X
i=2

~!1i�11�i1 (4.42)

WG =

3X
i=2

g2l �
2
1i!i Im(�l) je�1ij2

8�2�b�0�
2
bd j�bgj

2R6
(4.43)

where �bg = (2�b + �g) =3�b. The expression for WQD is obtained by assuming that the power

radiated from the QD is equal to its energy absorption rate. Similar expressions have been

widely used in the literature on hybrid systems [2, 3]. Note that the energy transfer to graphene

depends on the coherences e�1i of the QD density matrix, which change depending on the center-
to-center distance between the QD and graphene, R. Therefore Eq. 4.43 does not simply depend

on R6, but rather is a much more complicated function of R.
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If a ladder-type three-level quantum emitter is considered, the density matrix equations of

motion take a di�erent form. In this case, states j1i, j2i and j3i denote the ground, �rst excited

and second excited states, respectively. The probe �eld with amplitude E02 and frequency !2

is coupled between states j1i and j2i, while the control �eld with amplitude E03 and frequency

!3 is coupled between states j2i and j3i. The decay of level j2i to level j1i (level j3i to level

j2i) is given as �21 (�32). Using the same methods as for the lambda-type system, the density

matrix equations of motion for the ladder-type energy level con�guration are obtained as

d�22
dt

= ��21�22 + �32�33 + iR2e�i�2�21 + i��2�12�21 � iR2ei�2�12 � i�2�21�12 (4.44)

�iR3e�i�3�32 � i��3�23e�32 + iR3ei�3�23 + i�3�32�23
d�33
dt

= ��32�33 + iR3e�i�3�32 + i��3�23�32 � iR3ei�3�23 � i�3�32�23 (4.45)

d�21
dt

= d21�21 + iR2e
i�2 (�22 � �11)� iR3e�i�3�31 � i��3�23�31 (4.46)

d�32
dt

= d32�32 + iR3e
i�3 (�33 � �22) + iR2e�i�2�31 + i��2�12�31 (4.47)

d�31
dt

= (i�2 + i�3 � �32) �31 � iR3ei�3�21 � i�3�32�21 + iR2ei�2�32 + i�2�21�32 (4.48)

where

d21 = i�2 + i�2d � �21 � �2d (4.49)

d32 = i�3 + i�3d � �32 � �3d

and

�2d = Re (�2) (�22 � �11) (4.50)

�2d = Im (�2) (�22 � �11)

�3d = Re (�3) (�33 � �22)

�3d = Im (�3) (�33 � �22)

In the above expressions, all quantities are the same as given previously for the lambda-type

system but with the substitutions !13 ! !23, �13 ! �23 and �31 ! �32. The QD energy
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absorption rate and the power transfer in this system are calculated using Eqs. 4.42 and 4.43

with the substitutions �11 ! �ii, �13 ! �23.

4.3 Results and Discussion

In the literature, it is reported that the size of the graphene nanodisk should not be less than

10 nm in diameter in order for edge e�ects to be neglected [52]. Here a graphene nanodisk

with a diameter of 14 nm is considered. The thickness of the nanodisk is taken as dz = 0:35

nm, corresponding to a single graphene layer, and its size ratio is dx=dz = 20. The plasmon

frequency and background dielectric constant of graphene are taken from experiments as 6:02

eV and 1:964, respectively [21]. The decay rate in graphene is taken as G = 5 THz, which is

consistent with the relaxation rates reported in Refs. [22] and [26]. With these parameters, the

surface plasmon resonance frequencies in the graphene nanodisk are calculated as ~!xsp = 0:8026

eV and ~!zsp = 4:1250 eV.

The QD dielectric constant and dipole moments are taken as �d = 12 and �12 = �13 = 0:1

e � nm, respectively, while the free space decay rates for the QD are taken as �021 = �031 = 0:2

�eV. These parameters are comparable to those commonly found in the literature for QDs

[2-4]. Here the transition energies in the QD are taken to lie near the plasmon resonance ~!xsp
as ~!12 = 0:8046 eV and ~!13 = 0:8036 eV.

The combined QD-graphene nanodisk hybrid is contained within a photonic crystal made of

polystyrene spheres arranged periodically in air. Similar photonic crystals have been fabricated

by Liu et al. [9], in which ultrafast all-optical switching was experimentally demonstrated.

Photonic crystal parameters are taken as a = 170 nm, L = 480 nm, na = 1:59 and nb = 1. With

these parameters, the photonic band gap of the photonic crystal appears between frequencies

0:8225 eV and 0:9843 eV. Note that the lower edge of the band gap lies near !xsp and the

QD transition frequencies !12 and !13. The vacuum decay rates for the QD are taken as

�02 = �
0
3 = 0:2 �eV, and in the presence of the photonic crystal it is found that �21 = 1:1370

�eV and �31 = 1:1127 �eV. Here the background dielectric constant was taken as �b = 2:081.

Throughout the following calculations, it is considered that the intensity of the probe and

control �elds are 1:0 and 3:0 W/cm2, respectively.
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Figure 4-2: Energy absorption rate of the QD as a function of probe �eld detuning �2 when the
QD-graphene nanodisk separation R is varied. (a) �3 = 0; (b) �3 = 10 �eV. Inset: Polarization
of the probe and control �elds.

Initially it is considered that the excitonic transition j3i $ j1i is coupled with the surface

plasmon resonance of the graphene nanodisk. In this con�guration, the transition frequency !13

is near !xsp while both the control �eld E3 and the transition dipole moment �13 are polarized in

the x-y plane. Conversely, the transition j2i $ j1i is not coupled with the graphene nanodisk.

This situation occurs when the probe �eld E2 and transition dipole moment �12 are polarized

in the z-direction and !12 is far away from !zsp (see Figure 4-2 inset). The energy absorption

rate in the QD is evaluated from Eq. 4.42 and the results are presented in Figure 4-2(a) when

the QD-graphene separation R is varied and the control �eld is resonant with the j3i $ j1i

transition such that �3 = 0. It is found that the power absorption spectrum has a single peak

with an extremely narrow transparent window at �2 = 0 when the QD and graphene are further
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away with each other (i.e., R = 20 nm). This narrow minimum is due to electromagnetically

induced transparency in the system. When the QD is close to graphene (i.e., R = 8 nm) the

power absorption peak splits into two peaks and a clear minimum appears at �2 = 0. The

observed splitting is due to the dipole-dipole interaction and surface plasmon coupling.

The splitting of the power absorption spectrum can be explained using the theory of dressed

states. When the QD is close to the graphene nanodisk there is strong coupling due to the

dipole-dipole interaction for the transition j3i $ j1i. This causes the excited state j1i to

split into two dressed states, namely j1+i and j1�i. Therefore, there are now two transitions

j2i $ j1+i and j2i $ j1�i which give two peaks and a minimum in the spectrum. In other

words, a single exciton splits into two dressed excitons, and their energy di�erence is found to

be proportional to the dipole-dipole interaction. As the distance between the QD and graphene

increases, the splitting decreases since the direct dipole-dipole interaction term �i is inversely

proportional to R3. In Figure 4-2(b) the energy absorption rate is plotted for various values of

R when the control �eld is detuned such that �3 = 10 �eV. Here the power absorption spectrum

has one peak and negligible electromagnetically-induced transparency when R is large. When

R decreases, the single peak splits into two peaks due to the dipole-dipole interaction. These

results show that the dipole-dipole interaction can be used to split one exciton into two excitons,

and also to control the electromagnetically-induced transparency phenomenon.

In Figure 4-3 the e�ect of the photonic crystal has been investigated on the energy absorption

rate in the lambda-type QD. Initially, the lower band edge of the photonic crystal lies far away

from the resonance energies of the QD (see solid curve), and there is weak coupling between the

QD and photonic crystal. When the lower photonic band edge is moved closer to the resonance

frequency !13 of the QD, the two peaks in the power absorption spectrum merge into a broad

peak with a narrow electromagnetically-induced transparency window at �2 = 0 (see dashed

curve). Note also that the height of the peaks decreases. The merging of the split peaks in the

QD power absorption spectrum occurs because the spontaneous decay rates become larger than

the dipole-dipole interaction splitting for the two peaks. The value of the decay rate is large

because the photonic density of states is large when the resonance energy of the QD lies near

the band edges. For example, it is found that �21 = 6:40 �eV and �31 = 3:81 �eV whereas the

energy splitting is about 2:80 �eV. Here, the location of the photonic crystal band edges can be
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Figure 4-3: Energy absorption rate in the QD as a function of probe �eld detuning �2 when
the lower band edge of the photonic crystal is taken as "v = ~!12 + 17:88 meV (a) and "v =
~!12+0:56 meV (b). Here R = 13 nm and �3 = 0. Inset: Polarization of the probe and control
�elds.

changed by applying an intense pulsed laser �eld. The intense laser �eld causes the refractive

index of polystyrene, a material with a strong and fast nonlinear optical response, to change

due to the Kerr e�ect. This change is quanti�ed by the expression n0a = na+n3Ipump where n3

is the Kerr nonlinearity constant and has the value n3 = 1:15 � 10�12 cm2/W for polystyrene

[10]. For the pump �eld intensity Ipump = 31:0 GW/cm
2 it is found that the photonic crystal

band edge shifts such that �"v = � 17:32 meV. This means that the hybrid system can be used

to study the nonlinear properties of photonic crystals. Using an external pump �eld to induce

a large Kerr nonlinearity in the polystyrene photonic crystal is also an e�ective way to switch

the energy transfer between two states; from high to low energy transfer peaks. Alternatively,

the refractive index of the background material in the photonic crystal can also be modi�ed

by immersing the photonic crystal in another material. Therefore the present QD-graphene

system can also be used as a nano-sensor.

The energy transfer rate from the QD to graphene is plotted in Figure 4-4 as a function of the
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Figure 4-4: Energy transfer rate from the QD to graphene as a function of probe �eld detuning
�2 when the QD-graphene nanodisk separation R is varied and �3 = 0. Inset: Polarization of
the probe and control �elds.

probe �eld detuning when the QD-graphene separation R is varied. It is found that the power

transfer spectrum has a single peak with a narrow electromagnetically-induced transparency

window when R is large (i.e., R = 20 nm). When the QD is brought closer to graphene

(i.e., R = 8 nm), the power transfer spectrum has one large minimum and two peaks with

separation proportional to the DDI. This indicates that energy is transferred from the QD to

the graphene when the two dressed excitons created in the QD are absorbed by graphene. This

is an interesting �nding, and can be used to transfer energy absorbed by the QD from a light

source (i.e., the sun) to graphene where it can be stored. Therefore, one can fabricate energy

transfer and storage devices (i.e., solar cells) from the present hybrid system.

It is also found that the height of the energy transfer peaks increases as the QD-graphene

separation decreases (see Figure 4-4). This e�ect has been observed experimentally by Chen et

al. [31] and Dong et al. [32]: They found that as the distance between CdTe-QDs and a graphene

oxide sheet decreases there is a strong quenching of the QD uorescence. They concluded that

the uorescence quenching could be due the energy transfer from the QD to the graphene sheet.

For example, Chen et al. [31] deposited graphene on quartz substrates and then CdSe/ZnS-QDs
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were deposited on graphene. The uorescence measurements were performed on the individual

QDs located both on the bare quartz substrate and on a graphene layer. They observed strong

uorescence quenching for QDs deposited on the graphene sheet, which was attributed to the

energy transfer between QD and graphene and not due to photoinduced electron transfer from

the QD to graphene. Similarly Wang et al. [33] performed photoluminescence measurements on

CdS{QDs and ZnS{QDs on graphene and observed a strong quenching of photoluminescence for

these QDs due to the presence of the graphene sheet. They also performed transient photovoltaic

experiments on their hybrid systems and found a very unexpected strong positive photovoltaic

response due to the dipole-dipole interaction. Conversely, it was found that separate samples of

graphene and CdS-QDs of a similar size do not show any photovoltaic response. They concluded

their experimental �ndings can be explained due to the energy transfer between the QD and

the graphene sheet. Similar energy transfer between a QD and carbon nanotube has also been

found experimentally by Shafran et al. [34].

When a QD is in contact with biomolecules, molecular beacons, DNA or aptamers, its

dielectric constant can be modi�ed. Therefore, the role of the dielectric constant of the QD

on the energy transfer to graphene has been investigated. The results are plotted in Figure

4-5(a) for three values of �d. It is found that by changing the dielectric constant of the QD, the

height of the energy transfer peaks can be modi�ed. For example by increasing or decreasing the

dielectric constant, the height of the energy transfer spectra decreases or increases, respectively.

This is because the the energy transfer is inversely proportional to the square of the dielectric

constant, as shown by Eq. 4.43. This e�ect has also been veri�ed experimentally by Dong

et al. [32], where upon integrating a molecular beacon to a CdTe-QD it was found that the

uorescence quenching due to graphene is modi�ed. Note also that at certain values of probe

detuning, say for example �2 � �1:5 �eV, the sensitivity of the energy transfer rate to the

change in dielectric constant is quite high. This is an interesting �nding, particularly if one

considers that the present hybrid system can be used to fabricate nano-biosensors.

In Figure 4-5(b) the energy transfer rate to graphene is plotted when a single graphene layer

or two layers are considered. Here the ratio dx=dz = 20 is preserved in order to keep the surface

plasmon polariton resonance frequency constant. Note that for two layers of graphene the height

of the energy transfer peak increases. As additional layers of graphene are added, its volume
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Figure 4-5: (a) Energy transfer rate from the QD to graphene when the dielectric function
of the QD is taken as �d = 10 (dotted curve), 12 (solid curve) and 14 (dashed curve). Here
R = 13 nm and �3 = 0. (b) Energy transfer rate from the QD to graphene when the thickness
of graphene is varied between one layer (solid curve) or two (dashed curve). Here R = 13 nm
and �3 = 0. Inset: Polarization of the probe and control �elds.

increases. In turn, the dipole-dipole interaction between the QD and graphene is enhanced.

Therefore, both the height of the peaks in the energy transfer spectrum and their splitting

are increased. This e�ect has also been veri�ed experimentally by Chen et al. [31], where it

was found that increasing the number of graphene layers in a CdSe/ZnS nanocrystal-graphene

composite system enhanced the QD uorescence quenching e�ect.

An alternative con�guration for the QD-graphene nanocomposite system is also considered,

where both transitions j2i $ j1i and j3i $ j1i couple with the surface plasmons in the graphene

nanodisk. In this con�guration, both !12 and !13 are close to !
x
sp and the transition dipole
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Figure 4-6: Energy transfer rate from the QD to graphene as a function of probe detuning �2
for the second con�guration of dipole moments and �elds (see inset). (a) The QD-graphene
separation is varied from R = 13 nm (solid curve) to R = 11 nm (dashed curve). (b) R = 11
nm and the lower band edge of the photonic crystal is taken as "v = ~!12 + 17:88 meV (solid
curve) and "v = ~!12+0:56 meV (dashed curve). Here �3 = 0. Inset: Polarization of the probe
and control �elds.

moments (electric �elds) �12 (E2) and �13 (E3) are aligned along the x- and y-directions,

respectively. In Figure 4-6(a), the energy transfer rate from the QD to graphene is plotted

as a function of the probe �eld detuning while varying R. Here the physical parameters are

the same as those considered in previous calculations. Note that two peaks appear due to the

dipole-dipole interaction as in the �rst con�guration considered. Previously the two peaks were

symmetric, but in this case they are asymmetric. This is due to the self-induced dipole-dipole

interaction parameter �2, which causes both peaks to shift towards positive detuning due to

the change in the e�ective probe �eld detuning from �2 to �2+ �2d, as shown in Eq. 4.34.

Here also the width of both peaks increases due to the non-radiative decay �2d. In the previous
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Figure 4-7: Energy absorption rate of to the ladder-type QD as a function of probe �eld
detuning �2 when the QD-graphene nanodisk separation R is varied. Here ~!23 = 0:8036 eV
and the intensities of the probe and control �elds are 1:0 and 3:0 W/cm2, respectively. Other
parameters are the same as considered previously. Inset: Schematic of the QD-graphene hybrid
system with ladder-type energy level structure. Here DDI coupling occurs only for the j2i $ j3i
transition.

con�guration the self-induced dipole-dipole interaction parameter �2 was zero because there

was no coupling between the QD transition j2i $ j1i and graphene. These e�ects are enhanced

by decreasing R.

In Figure 4-6(b) the e�ect of the photonic crystal is investigated in the same way as in

Figure 4-3, and similar results are found as for the previous con�guration. By applying an

external pump laser �eld to the polystyrene photonic crystal, the power transfer to graphene

can be switched from high to low values. Note that due to the asymmetry of the power transfer

spectrum in this con�guration, the sensitivity of this switching e�ect can change drastically

depending on the value of probe �eld detuning. For example, negative detunings close to

�2 = 0 show a sharp peak in the energy transfer spectrum when the pump �eld is absent, and

this peak is suppressed when the pump �eld is applied.

Finally, the energy absorption rate in a ladder-type QD coupled with the graphene nanodisk

is investigated. Here it is considered that the control �eld is coupled with the QD transition

j2i $ j3i and the graphene nanodisk, while the probe �eld is only coupled to the QD transition
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Figure 4-8: Energy absorption rate of the ladder-type QD as a function of the probe �eld
detuning �2 when the lower band edge of the photonic crystal is taken as (a) "v = ~!23+17:88
meV and (b) "v = ~!23+0:10 meV. Here R = 10 nm, �3 = 0 and other parameters are the same
in Figure 4-7. Inset: Schematic diagram of the QD-graphene hybrid system with ladder-type
energy level structure. Here the dipole-dipole coupling occurs only for the j2i $ j3i transition.

j1i $ j2i. This situation can occur when the resonance frequency !23 lies near !xsp, while !12
is uncoupled from both !xsp and !

z
sp. Note that this con�guration is analogous to that explored

in Figure 4-2 for the lambda-type QD.

In Figure 4-7 the energy absorption rate in the ladder-type QD is plotted when the QD-

graphene nanodisk separation R is varied. It is found that the power absorption spectrum gives

two peaks and a minimum when R is small (i.e., R = 8 nm), as was found in Figure 4-2. Note

that for the ladder-type QD, the narrow minimum due to electromagnetically induced trans-

parency does not appear. This is because the same electromagnetically induced transparency

e�ect does not appear in ladder-type systems [39].

The e�ect of the photonic crystal on the energy absorption rate in the ladder-type QD has
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also been investigated, and the results are shown in Figure 4-8. Once again a pump �eld of

intensity 31:0 GW/cm2 is applied, which causes the photonic crystal band edge to shift and

increases the decay rate of the QD. Note that the power absorption spectrum merges into a

broad peak in the same way as it did for the lambda-type QD (see Figure 4-3(b)). Here,

however, the narrow minimum present in the lambda-type QD is absent and two peaks merge

into one.

4.4 Conclusions

In this chapter, the dipole-dipole interaction and energy transfer have been investigated in a

quantum dot (QD)-graphene nanodisk system embedded within a photonic crystal. The results

indicate that in this system, multiple excitonic states (dressed states) can be created in the

quantum dot and then transferred to graphene with di�erent frequencies. This phenomenon

occurs purely due to the dipole-dipole interaction between the QD and graphene, and results

in energy transfer.

It is demonstrated that the energy absorption of the QD and/or the energy transfer from

the QD to graphene can be switched on and o� by changing the strength of the dipole-dipole

interaction or by applying an intense external laser �eld to the photonic crystal. The �ndings

presented in this chapter also agree qualitatively with recent experimental observations on the

energy transfer in QD-graphene nanocomposite systems.

The results of the numerical simulations presented here provide motivation for future ex-

perimental and theoretical investigations on nanocomposites made from graphene, carbon nan-

otubes, quantum dots and photonic crystals. The present theory can be applied to hybrid sys-

tems consisting of graphene with quantum emitters such as quantum dots, nanocrystals, atoms

and chemical or biological molecules; the only requirement is the quantum emitter should have

at least three states. The proposed nanocomposite system can be used to fabricate nano-sensors,

all optical nano-switches, energy transfer devices and energy storage devices.
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Chapter 5

Nonlinear Two-Photon Absorption

in Graphene Heterostructures

In the previous chapter, a graphene nanocomposite system was investigated in which linear-

optical processes resulted in energy transfer between a quantum emitter and a graphene nan-

odisk. In this chapter, nonlinear optical processes are explored in a graphene nanocomposite

(heterostructure) system.

5.1 Introduction

Recent advances in nanofabrication techniques have led to a rising interest in the optoelec-

tronic properties of nanocomposite systems that combine quantum emitters (e.g., quantum

dots or uorescent molecules) with plasmonic (i.e., conducting) nanoparticles [1]. Typically,

these types of nanocomposites employ the strong local electromagnetic �eld produced by local-

ized surface plasmons in noble metal nanoparticles to enhance and/or control optical processes

in nearby molecules or semiconductor nanoparticles. Strong local �elds generated by localized

surface plasmons are particularly attractive in the study of nonlinear optical processes [1-11],

which scale with a high power of the electric �eld. A number of recent experimental and

theoretical studies have demonstrated that nonlinear optical processes such as two-photon ab-

sorption/luminescence [2-5] and second- [6, 7] or third-harmonic generation [8] in semiconductor

quantum dots (QDs) can be enhanced by surface plasmons in metal nanoparticles, indicating
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that QD-metal nanoparticle hybrid systems can be used for nonlinear optical applications such

as all-optical switching, biosensing, and other types of signal processing [2, 3]. Two-photon

uorescence from biological markers (dyes, aptamers, etc.) enhanced by noble metal nanopar-

ticles has also been widely studied for applications in biological imaging [9-11]. Zhang et al.

[10], for example, demonstrated that energy transfer between a commonly used molecular DNA

label and gold nanoparticles under two-photon excitation using uorescence lifetime imaging

microscopy can be used to provide detailed information in biological studies.

Graphene has also attracted a great deal of attention in experimental and theoretical in-

vestigations on nanocomposite systems. In several studies, graphene-QD nanocomposites were

fabricated and resonant energy transfer was observed through the photoluminescence of the

QDs, which was strongly quenched in the presence of graphene [12-14]. Energy transfer in a

QD-graphene nanocomposite system has been investigated theoretically [15]. Hybrid graphene-

QD phototransistors have been fabricated and were found to exhibit ultrahigh photodetection

gain with high quantum e�ciency [16]. In the �eld of plasmonics, graphene has been recognized

as a promising alternative to noble metals, as plasmons in chemically or electrostatically doped

graphene have been shown to facilitate strong light-matter interactions and can be easily tuned

electrostatically [17, 18]. Strong coupling between plasmons in nanostructured graphene with a

quantum emitter has been predicted in theoretical studies, which could lead to the development

of quantum plasmonic devices that operate at the single-photon/plasmon level [19-21].

In several experimental studies, interesting nonlinear optical e�ects in graphene-based nanocom-

posites have been observed. For instance, Feng et al. [22] synthesized graphene nanosheets dec-

orated with tiny CdS QDs and observed nonlinear scattering and nonlinear absorption at two

distinct excitation wavelengths. Lee et al. [23] deposited gold nanocrystals of various shapes

on graphene oxide and examined the linear and nonlinear optical properties of the graphene

oxide-gold nanocrystal composites. They observed a four-fold enhancement in the two-photon

excitation emission intensity of the nanocomposite compared to that of pure gold nanocrystals.

In the present chapter, a theory has been developed for the enhancement and control of two-

photon absorption in a nanocomposite made by combining an electrostatically doped graphene

nanoake with a QD. In this hybrid system, the electrostatically tunable localized surface

plasmons in the graphene nanoake generate a strong local electromagnetic �eld that enhances
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the nonlinear optical response of the QD. It is shown that the two-photon absorption coe�cient

and power absorption in the QD can be controlled by changing the Fermi level in the graphene

nanoake via electrostatic gating. This e�ect can be used to manipulate two-photon absorption

and/or uorescence from the QD. The present �ndings are also directly applicable to graphene

nanocomposites made with other types of quantum emitters such as molecules, dyes, etc. It is

anticipated that the present hybrid system can be used to fabricate nonlinear optical devices

such as switches, biological sensors and signal processors.

5.2 Theoretical Formalism

5.2.1 Local Field Enhancement

In the present model, a semiconductor QD is placed above a graphene nanoake lying in the

x-y plane, where the center-to-center distance between the nanoake and the dot is denoted

as R. A schematic diagram of the system is shown in Figure 5-1(a). Together the QD and

graphene nanoake form a nanocomposite or hybrid system. It is considered that the graphene

nanoake is deposited on a dielectric substrate with relative permittivity �s, while the QD

is surrounded by a background dielectric material with relative permittivity �b. An external

laser �eld E0 cos (!t) is applied to the system, which interacts with both the QD and graphene

nanoake.

In the graphene nanoake the optical excitations are localized surface plasmon polaritons,

which have a resonance frequency !sp. When the frequency of the external �eld lies near the

surface plasmon resonance frequency (i.e., ! � !sp), there is a strong excitation of surface plas-

mons in the graphene nanoake. These plasmons create a dipole moment Pg in the nanoake,

which in turn produces an enhanced local �eld at the location of the QD given as

Eg =
gkPg

4��b�0R3
. (5.1)

Here gk (k = x; y; z) is called the polarization parameter, with gx = gy = �1 when the applied

�eld is in the plane of the graphene nanoake and gz = 2 when the applied �eld is perpendicular

to the nanoake. To calculate the polarization of the graphene nanoake Pg, the quasistatic
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Figure 5-1: (a) Schematic diagram of the QD-graphene nanoake hybrid system. The graphene
nanoake lies on a dielectric substrate and a QD is placed directly above at a distance R from
the nanoake. A gate voltage Vg is applied to the graphene nanoake. (b) Energy level diagrams
for the QD and graphene nanoake. The external �eld excites surface plasmons in graphene
and excitons in the QD via two-photon absorption.

approximation is used, in which a spatially uniform but time-varying electric �eld is assumed to

interact with the nanoake. Note that this approximation is only valid for nanoparticles with

dimensions much less than the wavelength of the incident light [24]. An analytic expression

for Pg is obtained by modelling the graphene nanoake as a very at and thin oblate spheroid

with semimajor axes dx = dy and semiminor axis dz, where dx > dz. The in-plane polarization

of the nanoake for an electric �eld applied in the plane of the nanoake (x-y plane) is then

found as

Pg = �sb�0�x (!)E0, (5.2)
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where

�x (!) = �d
3
x

h
�g(!)
�sb�0!dx

i
i

1 + 3�
16

h
�g(!)
�sb�0!dx

i
i
. (5.3)

In the above expression, �x (!) is the dipole polarizability in the two-dimensional limit dx � dz

[24], while the quantity �sb = (�s + �b) =2 is the e�ective relative permittivity of the medium

surrounding the graphene nanoake, which accounts for the di�ering dielectric media on either

side of the nanoake [26]. In Eq. 5.3, �g (!) is the in-plane conductivity of graphene and is

obtained as [19]

�g (!) = �intra (!) + �inter (!) , (5.4)

where

�intra (!) =
e2EF
�~2

i

! + i��1
(5.5)

is the Drude-like intraband conductivity and

�inter (!) =
e2

4~

�
� (~! � 2EF ) +

i

�
log

����~! � 2EF~! + 2EF

����� (5.6)

is the interband conductivity. In the above expressions, the parameter EF is the Fermi energy

of the doped graphene nanoake and � = �EF =ev
2
F is the intrinsic relaxation time, where vF

is the Fermi velocity and � is the dc mobility. Here, incident photon frequencies such that

~! < 2EF are considered, and so only the intraband contribution to the total conductivity

�intra (!) plays a signi�cant role in the generation of surface plasmons. At the surface plasmon

resonance frequency !sp, the real part of the denominator in Eq. 5.3 becomes zero and �x

becomes large. This gives the following condition for the surface plasmon resonance frequency

in the graphene nanoake:

!sp =

s
3e2EF

16~2�sb�0dx
� ��2 (5.7)

Note that the local �eld from the graphene nanoake (Eg) is strongest when ! = !sp.

In a number of experimental studies it has been shown that the Fermi energy in graphene

can be controlled via electostatic gating, where the relationship between EF and an external
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gate voltage Vg can be described using a simple capacitor model as [27, 28]

jEF j = ~vF
q
�Cg jVg + V0j. (5.8)

In the above expression, Cg is a constant which depends on the gate capacitance and V0 is the

o�set voltage caused by natural doping. Hence, the polarizability �x (!) and surface plasmon

resonance frequency !sp of the graphene nanoake, which depends on the Fermi energy, can be

tuned by varying the gate voltage.

Since the QD is near the graphene nanoake it interacts with both the external laser �eld

and the local �eld produced by graphene, both of which oscillate at frequency !. The total

electric �eld experienced by the QD is then given by

Eqd =
1

2�eff
(E0 + Eg) e

�i!t + c:c:, (5.9)

where �eff = (2�b + �qd)=3�b, �qd being the dielectric constant of the QD. The QD is treated as

a two-level system, where j1i and j2i are the ground and excited states, respectively, and the

resonant frequency for the transition j1i $ j2i is denoted by !0. Here it is considered that the

two-photon resonance frequency of the QD is twice the surface plasmon resonance frequency

of the graphene nanoake, i.e., !0 = 2!sp (see Figure 5-1(b)). This resonance condition can

be achieved for a speci�c QD simply by choosing an appropriate value for Vg + V0. Due to

the strong local �eld from the graphene nanoake, nonlinear two-photon absorption occurs

in the QD when 2! = !0. In the present model, the QD undergoes two-photon excitation

from the ground state j1i to excited state j2i through virtual transitions involving one or more

intermediate states jni which are far from resonance with the external �eld. In this case the

polarization of the QD Pqd can be expressed as [29]

Pqd = (k11�11 + k22�22)

�
E0
�eff

+
Eg
�eff

�
+ 2k21

�
E0
�eff

+
Eg
�eff

��
�21. (5.10)

In the above expression, �ij (i; j = 1 or 2) are the two-level density matrix elements which are

obtained in the following section of this chapter, and kij are called the two-photon coe�cients
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and are given as

k21 =
1

~
X
n

�2n�n1
!n1 � !

(5.11)

kii =
2

~
X
n

j�nij2 !ni
!2ni � !2

.

Here !ni and �ni and the transition frequencies and dipole matrix elements, respectively, be-

tween states jni and jii. The �rst and second terms in Eq. 5.10 represent the contributions

to the polarization of the QD from the o�-resonant dipoles (which depends on the populations

in states j1i and j2i given by �ii) and the two-photon two-level coherence �21, respectively [29,

30].

5.2.2 Density Matrix Formalism

The density matrix elements appearing in Eq. 5.10 are evaluated from their equations of motion

obtained using the master equation method [29, 31]. Using Eq. 5.9, the two-level two-photon

density matrix equations of motion are obtained as

d�22
dt

= ���22 + i
0 (1 + �g)2 �12 � i
0
�
1 + ��g

�2
�21 (5.12)

d�12
dt

= � [ � i (� +�S)] �12 + i
0
�
1 + ��g

�2
(�22 � �11) , (5.13)

where

�S = �S
0 j1 + �gj2 , (5.14)


0 =
k21E

2
0

2~�2eff
, (5.15)

and

�g =
gx�x(!)

4�R3
. (5.16)

Here � = 2! � !0 is the two-photon detuning parameter, � and  are the relaxation and

dephasing rates, respectively, for the transition j1i $ j2i, and �S = (k11 � k22) = (2k21) [29].

The equations of motion for the remaining density matrix elements are easily obtained through

the relations �11 + �22 = 1 and �12 = �
�
21. In the above expressions, the parameter 
0 denotes
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the two-photon Rabi frequency due to direct two-photon absorption in the QD from the external

�eld, while the term �g represents the local �eld enhancement factor due to the plasmons excited

in the graphene nanoake. Finally, the parameter �S represents the dynamic Stark shift which

appears due to frequency shifts in the levels j1i and j2i induced by virtual transitions to the

intermediate level(s) jni [29, 30]. The density matrix equations of motion are solved under

steady-state conditions to obtain the elements �ij , which are used to calculate Pqd.

5.2.3 Two-Photon Absorption

The QD absorbs energy from the external �eld and from the enhanced local �eld of the graphene

nanoake through a two-photon absorption process. The two-photon absorption coe�cient of

the QD can be obtained from Pqd as [29]

�TPA = Re

�
� i!

2�b�0cVqd

Pqd
Eqd

�
(5.17)

where Vqd is the volume of the QD. Analytical expressions for the density matrix elements �ij

are obtained in the steady-state and used in Eq. 5.10 to obtain the two-photon absorption

coe�cient of the QD as

�TPA =
!k21
�b�0cVqd

�
0 j1 + �gj2

�
h
2 + (�+�S)

2
i
+ 4
20 j1 + �gj

4
(5.18)

Notice that the above expression depends on both the external �eld (
0) and the local �eld

produced by the graphene nanoake (�g). The second term in the denominator leads to a

broadening of the absorption spectrum that depends on the intensity of the external �eld

through 
0. This broadening is referred to as power broadening in the literature [32]. However,

the second term in the denominator also depends on the local �eld from the graphene nanoake

through the term �g, which depends on the graphene polarizability �x(!) and the center-to-

center distance between the nanoake and the QD R. This is an interesting e�ect which here

will be referred to as local �eld broadening. Note also that the two-photon absorption coe�cient

is inversely related to 
0 and �g.

Following the method of Ref. [15], the power absorbed by the QD via the two-photon
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absorption process is calculated as

Wqd = ~!0��22 (5.19)

Using the steady-state solution for �22, the expression for the QD power absorption is obtained

as

Wqd =
2~!0�
20 j1 + �gj

4

�
h
2 + (�+�S)

2
i
+ 4
20 j1 + �gj

4
(5.20)

Note that the power absorbed by the QD depends on the population density �22 of the excited

state j2i, which in turn depends on the local �eld enhancement from the graphene nanoake

through �g. This shows that energy absorbed by the graphene nanoake can be transferred to

the QD. However, there is no energy transfer from the QD to the graphene nanoake because

conservation of energy would not be satis�ed in this process (since !0 6= !sp).

5.3 Results and Discussion

The graphene nanoake has a radius dx = 17 nm and is deposited on a silica substrate (�s =

1:96). To calculate the optical response of the graphene nanoake, parameters Cg = 2 � 1016

m�2V�1 and Vg + V0 = 36:6 V are used, while vF = c=300 is the Fermi velocity and � = 10000

cm2V�1s�1 is the dc mobility [19]. For �nite-sized graphene akes, a small band gap appears

in the electronic dispersion relation [33]. In the present investigation, it is considered that the

Fermi level of the doped graphene nanoake is well above any band gap arising due to size

e�ects. Therefore, edge e�ects due to the �nite size of the graphene nanoake are neglected. It

has been reported in the literature that edge e�ects play a signi�cat role in the optical response

of graphene nanoakes with sizes below 10 nm [34].

The background dielectric material for the hybrid system is taken as GaAs (�b = 10:95).

Using the parameters given above, the surface plasmon resonance frequency of the graphene

nanoake is calculated using Eq. 5.3 as !sp = 175 meV. A p-type InAs/GaAs self-assembled

QD (�qd = 11:84) as described in Ref. [35] is chosen as a realistic example. For this QD

the energy di�erence for the transition from the ground state j1i to the intermediate state

jni as ~!n1 = 160 meV, while the two-photon resonance frequency and relaxation rate are

~!0 = 350 meV and ~� = 200 �eV, respectively [35]. Note that the p-type InAs/GaAs QD was
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chosen so that the resonance frequencies of the graphene nanoake and QD satisfy the condition

2!sp = !0. The in-plane transition dipole moments are obtained in Ref. [35] as �n1 = 0:11 e�

nm and �2n = 0:21 e� nm. In the following simulations it is considered that the external driving

�eld is polarized along the x-axis and has an intensity of 750 kW/cm2.

5.3.1 E�ect of Quantum Dot-Graphene Separation

Initially, the e�ect of the separation distance between the QD and graphene nanoake on two-

photon processes in the QD is studied. In Figure 5-2 the two-photon absorption coe�cient

(�TPA) is plotted as a function of the two-photon detuning parameter � for various values of

QD-graphene nanoake separation R.

The results presented in Figure 5-2(a) show that when the graphene-QD separation is larger

(i.e. R = 40 nm or higher) the absorption spectrum consists of a single, narrow peak located at

� = 0. As R is decreased to 35 and 30 nm (dashed and dash-dotted curves, respectively), the

peak in the absorption spectrum broadens and its height decreases. The observed broadening

is attributed to the local �eld broadening as discussed in Eq. 5.18, while the asymmetry in the

two-photon absorption spectrum is a result of the dynamic two-photon Stark shift. The Stark

shift parameter �S also depends on the local �eld enhancement factor �g, and it increases as

R decreases (see Figure 5-2(a) inset).

In Figure 5-2(b) the two-photon absorption spectrum of the QD is investigated when smaller

values of the graphene-QD separation R are considered. In this case the absorption spectrum

switches from a single narrow peak at R = 30 nm (solid curve) to two local �eld-broadened

peaks near � = �3 meV and a minimum at � = 0 when R = 15 nm (dash-dotted curve). The

observed splitting in the absorption spectrum occurs due to the local �eld enhancement term

�g in Eq. 5.18, which has frequency-dependence from the graphene polarizability �x(!). The

local �eld enhancement term has a maximum at � = 0, where the frequency of the external

�eld coincides with the plasmon resonance frequency in graphene (i.e. ! = !sp), and increases

as R decreases (see Figure 5-2(b) inset). For su�ciently small values of R, the local �eld from

the graphene nanoake (Eg) is large enough to suppress two-photon absorption in the QD at

frequencies near � = 0. This phenomenon is also evident by inspection of Eq. 5.18, which

shows that �TPA approaches zero as j�gj becomes very large.
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Figure 5-2: Two-photon absorption coe�cient (�TPA) vs. two-photon detuning (�) for di�erent
values of the graphene-QD separation R. Here the gate voltage in graphene is held �xed so
that V0 + Vg = 36:6 V. (a) R = 40 nm (solid curve), R = 35 nm (dashed curve), and R = 30
nm (dash-dotted curve). Inset: Stark shift parameter �S as a function of R. (b) R = 30 nm
(solid curves), R = 20 nm (dashed curves) and R = 15 nm (dash-dotted curves). Inset: Local
�eld enhancement factor j�gj as a function of �.

The QD power absorption spectrum given by Eq. 5.20 is plotted in Figure 5-3(a). It is

found that for larger QD-graphene separation values (i.e. R = 40 nm, solid curve) the power

absorption spectrum has a single, narrow peak. The width of the power absorption peak

drastically increases as R is decreased to R = 25 nm (see dashed curve) due to local �eld

broadening, as explained for the results shown in Figure 5-2(a), and the height of the peak also

increases. A further decrease of the separation to R = 15 nm results in the emergence of a two-

peaked, asymmetric structure in the power absorption spectrum, and two maxima (points A

and C) and a local minimum (point B) are observed. This behavior arises from the competition

between the local �eld enhancement of both the two-photon Rabi frequency and the Stark shift.
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Figure 5-3: (a) Quantum dot power absorption (Wqd) vs. two-photon detuning (�) for cases
where the graphene-quantum dot separation is R = 40 nm (solid curves), R = 25 nm (dashed
curves), and R = 15 nm (dash-dotted curves). Here V0 + Vg = 36:6 V. Inset: E�ective two-
photon Rabi frequency 
eff normalized to �0 vs. two-photon detuning. (b) E�ective detuning
�eff = �+�S normalized to �0 vs. two-photon detuning, where same labels are used as those
for the distances considered in (a).

To illustrate this point, consider the equations of motion for the density matrix elements, Eq.

(5.13): The e�ective Rabi frequency which drives the QD is given by 
eff � 
0
�
1 + ��g

�2
,

while the e�ective detuning is given by �eff � (� +�S). Note that �S takes negative values

since 
0 < 0; hence the system will be close to resonance in the situation that minimizes �eff

while keeping a value of 
eff high enough to e�ciently drive the QD from the ground level

to the upper level through the two-photon step. These two competing e�ects produced by the

plasmon interaction balance each other to produce the two maxima at points A and C, while

at point B the e�ect of the Stark shift �S dominates, resulting in a reduced value of the power

transfer to the QD. This can be inferred by considering the �-dependence of both magnitudes
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(
eff and �eff ) presented in the inset of Figure 5-3(a) and in Figure 5-3(b). The global

maximum at point C is obtained when magnitude of �eff is small (see Figure 5-3(b)) while

the e�ective Rabi frequency remains appreciable (Figure 5-3(a) inset). The amount of power

absorbed at point A is obtained for a point where the e�ective detuning reaches a large value:

In a conventional two-level system this situation would result in a negligible population of the

upper-level. However, in the current system the e�ective Rabi frequency is also �-dependent

and exhibits a large enhancement, which allows for a large population of the upper level even

in the presence of such a large value of �eff at point A.

To summarize, it has been demonstrated that two-photon processes in the QD can be

enhanced by the local �eld created by plasmons in the graphene nanoake. For the present

hybrid system, the value of the graphene-QD separation R can be controlled by changing the

thickness of GaAs between the graphene nanoake and the QD during fabrication. Once the

system has been fabricated, the separation can be changed by applying stress and strain �elds

(i.e., the hybrid system can act as a pressure sensor). The results presented here are also valid if

the QD is replaced by a chemical or biological molecule for which two-photon absorption occurs.

In this case the hybrid system can be used as a biological sensor, where di�erent molecules

attached to the graphene nanoake will have di�erent e�ective separations R. Another potential

application for the present system lies in thermal sensing, where a thermally-sensitive spacing

material between the quantum emitter and graphene is used. As the temperature increases the

thermal spacer will expand, thereby changing R.

5.3.2 E�ect of Gate Voltage

The e�ect of the gate voltage applied to graphene on the two-photon processes in the QD is

now investigated. Recent studies have shown that plasmons in graphene can be conveniently

controlled using electrostatic gating [16-21]. By changing the gate voltage Vg applied to the

graphene nanoake, one can change the concentration of conducting electrons in the nanoake.

This changes the Fermi energy in graphene through Eq. 5.8, which in turn changes the plasmon

resonance frequency of the nanoake through Eqs. 5.4 and 5.3. To consider the e�ect of the

gate voltage in these calculations, Vg in Eq. 5.8 is replaced by Vg + �Vg and �Vg is varied.

Note that in the present investigation the applied gate voltage does not alter the energy levels
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Figure 5-4: Two-photon absorption coe�cient (�TPA) vs. two-photon detuning (�) for cases
where �Vg = 0 (solid curve), �Vg = 1:0 V (dashed curve), and �Vg = 2:0 V (dash-dotted
curve). Here Vg+V0 = 36:6 V and R = 15 nm. Inset: Magnitude of the local �eld enhancement
factor (�g) as a function of the two-photon detuning when �Vg = 0 (solid curve), �Vg = 1:0
V (dashed curve), and �Vg = 2:0 V (dash-dotted curve).

of the QD, but merely modi�es the properties of the graphene nanoake.

The two-photon absorption coe�cient of the QD is plotted in Figure 5-4 as a function of the

two-photon detuning parameter for various values of �Vg. Here the graphene-QD separation

is �xed at R = 15 nm. Note that the solid curve in Figure 5-4 corresponds to the dash-dotted

curve in Figure 5-2(b), where �Vg = 0 and a minimum appears at � = 0. By increasing the

gate voltage such that �Vg = 1:0 and 2:0 V (see dashed and dash-dotted curves, respectively,

in Figure 5-4), it is found that the minimum in the absorption spectrum shifts towards positive

detunings. This phenomenon occurs due to the shift in the plasmon resonance frequency of the

graphene nanoake, which changes from its original value !sp = 175 meV to !
g
sp = !sp + 1:24

meV and !gsp = !sp + 2:41 meV when �Vg = 1:0 and 2:0 V, respectively. The shift in the

plasmon frequency changes the frequency at which �g reaches its maximum value (see Figure

5-4 inset). It is also worth pointing out that the local �eld enhancement factor decreases

signi�cantly at � = 0 as the gate voltage changes from �Vg = 0 to �Vg = 2:0 V (i.e., the
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Figure 5-5: (a) QD power absorption (Wqd) vs. two-photon detuning (�) when the gate
voltage in graphene is changed so that �Vg = 0 (solid curve), �Vg = 1:5 V (dashed curve), and
�Vg = 3:0 V (dash-dotted curve). Here V0+Vg = 36:6 V and R = 25 nm. Inset: E�ective two-
photon Rabi frequency 
eff normalized to �0 vs. two-photon detuning. (b) E�ective detuning
�eff = �+�S normalized to �0 vs. two-photon detuning, where the same labels for the gate
voltages considered in (a) are used.

peak in j�gj is shifted away from � = 0). When the gate voltage is increased the enhancement

factor has a very small value at � = 0 and the two-photon absorption coe�cient switches from

a minimum to a maximum value.

The above discussion indicates that the minimum in the two-photon absorption spectrum

can be shifted by changing the applied gate voltage. The secondary peaks in the absorption

spectrum at higher detunings (i.e., at � � 5 meV when �Vg = 1:0 V or at � � 7 meV when

�Vg = 2:0 V) are smaller because the external �eld is detuned from the two-photon resonance

of the QD. By varying the external gate voltage, these secondary absorption peaks can also be

switched from high to low values.
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In Figure 5-5(a) the two-photon power absorption spectrum when R = 25 nm has been

plotted for cases where �Vg = 0, 1:5 and 3:0 V (see solid, dashed and dash-dotted curves,

respectively). Note that the peak in the power absorption spectrum shifts away from � = 0

towards positive detuning as the gate voltage is increased. This result demonstrates that the

power absorption at � = 0 can also be switched from high to very low values as �Vg is

increased only slightly. As the plasmon resonance is shifted to new frequencies by the change in

gate voltage, the e�ective Rabi frequency also moves to higher detunings. The primary peaks

in the power absorption spectra then indicate the location of the maxima in 
eff (see Figure

5-5(a) inset). In Figure 5-5(b) the e�ective detuning �eff is shown for the same values of �Vg

used in Figure 5-5(a). At point A, the e�ective detuning is close to resonance, whereas it is

slightly further from resonance at point B. Thus, the enhancement of the pumping by 
eff

is less e�ective, which would account for the fact that in Figure 5-5(a) the peak value of the

dashed curve is less than that for the solid curve.

5.3.3 E�ect of Graphene Size

Here, the inuence of the graphene nanoake's size on the power transfer to the QD is inves-

tigated. This question is pertinent in view of the fact that the plasmon resonance frequency

can be roughly estimated to be given by !sp =
p
3e2EF =16~2�sb�0dx, which explicitly depends

on dx. In order to analyze the e�ect of the graphene ake's size on Wqd, numerical simulations

in which the value of dx is slightly changed around the original value of 17 nm are performed,

while keeping �xed the intensity of the driving �eld (750 kW/cm2) and the value of R = 15

nm. The results are depicted in Figure 5-6(a) for cases where dx = 16 nm and dx = 18 nm.

In the case of the largest value (dx = 18 nm, dashed curve) the power transferred to the

QD exhibits a two-peaked structure: One peak is located close to � = 0 whereas the other

shifts to the negative detuning region. For a nanodisk of this size, the new plasmon resonance

!sp falls downward to 170:8 meV, which in turn leads to a shift of the resonance for the local

�eld enhancement factor �g to the negative detuning region. In the case of the smallest value

considered in Figure 5-6(a) (dx = 16 nm, solid curve), the power transferred to the QD exhibits

a three-peaked structure: A peak (point A) is recovered close to � = 0, two outer maxima

(points B and D) with similar heights are obtained, and a local minimum (point C) is found
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Figure 5-6: (a) QD power absorption (Wqd) vs. two-photon detuning (�) for cases where the
size of the graphene nanodisk is dx = 16 nm (solid curve) and dx = 18 nm (dashed curve). (b)
E�ective Rabi frequency 
eff normalized to �0 vs. two-photon detuning for the case where
dx = 16 nm. Inset: E�ective detuning �eff = � +�S normalized to �0 vs. �. Here R = 15
nm and the rest of the parameters are the same as those used in Figure 5-3.

between these two maxima. For this particular size of graphene nanodisk, the new plasmon

resonance !sp rises upward to 181:1 meV, which in turn results in a shift of the resonance for

the local �eld enhancement factor �g to the positive detuning region. The split of the expected

maximum into two maxima (points B and D in Figure 5-6(a)) arises again from the competition

between the dynamical Stark shift and the local �eld enhancement of the Rabi frequency, in

a similar way to the results obtained for the dash-dotted curve in Figure 5-3(a). This can

be further con�rmed by inspecting Figure 5-6(b), which depicts the e�ective two-photon Rabi

frequency and the e�ective detuning: The Stark shift at point C is at its maximum (see Figure

5-6(b) inset), and simultaneously, the enhancement of the Rabi frequency reaches its maximum
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value. Thus, at point C the Stark shift dominates over the enhancement of the Rabi frequency,

whereas at points B and D the latter dominates and produces the maxima.

5.4 Conclusions

In this chapter, two-photon absorption in a QD-graphene nanoake nanocomposite system is

investigated theoretically. It is found that when the frequency of an applied external laser

�eld coincides with the plasmon resonance of the graphene nanoake, a strong local �eld is

generated by the plasmons in the nanoake. When the QD is near the nanoake, the local

�eld from graphene causes a broadening of the two-photon absorption spectrum. If the QD

is brought even closer to the nanoake, the spectrum of two-photon absorption splits from

a single peak to two peaks. It is also found that power absorption in the QD is enhanced

by the local �eld from the graphene nanoake. It is also shown that for this nanocomposite

system the two-photon absorption process in the QD can be further manipulated by changing

the Fermi energy in the graphene nanoake via electrostatic gating. The present �ndings

indicate that two-photon absorption and power absorption in the QD can be switched on or

o� by changing the gate voltage across the graphene nanoake. These results suggest that the

QD-graphene nanoake hybrid system can be used for nonlinear optical applications such as

all-optical switching, biosensing and signal processing.
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Chapter 6

Nonlinear Switching Mechanism in

Metallic Heterostructures

In the previous chapter, nonlinear two-photon absorption was investigated in a graphene-

quantum dot (QD) nanocomposite system. There the local �eld produced by plasmons in

graphene was used to control two-photon absorption in the QD. In this chapter, nonlinear

second harmonic generation and two-photon photoluminescence are studied in a QD-metal

nanoparticle (MNP) nanocomposite system1. Here, the nonlinear optical processes in the QD

are mediated by the plasmons in MNPs through the dipole-dipole interaction. In this chapter,

theoretical results are used to explain experimental observations for several QD-MNP hybrid

systems.

6.1 Introduction

In the �eld of nano-optics there has been considerable interest in studying the strong light-

matter interactions that occur due to the enhanced local electromagnetic �elds produced by

metallic nanoparticles (MNPs) [1-3]. Strong local �elds are particularly important for nonlin-

ear optical processes, such as surface-enhanced Raman scattering and SH (second harmonic)

generation [4, 5], which scale with a high power of the applied �eld(s). The symmetry of a

1The material presented in this chapter has been published in: J. D. Cox, M. R. Singh, C. von Bilderling,
and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

109



MNP and the polarization of the applied �eld have also been shown to play very important

roles in local �eld enhancement [6]. SH generation has been investigated in metallic tips [7],

T-shaped gold nano-dimers [8], bowtie-shaped nano-antennas [9], and metallic nanowires [10].

Controllable local �eld enhancement would also bene�t other photonics applications such as

nanoscale antennas [11], nanoscale lenses [12], and two-photon microscopy [13].

In a number of studies, semiconductor quantum dots (QDs) have been combined with MNPs

to investigate the strong light-matter interactions that occur due to the enhanced local �eld of

the MNP plasmons [1-3]. QDs are ideal for this purpose because of their size-tunable optical

properties. They can also be used for optoelectronic applications such as low-threshold lasers,

light-emitting diodes, solar cells, and nonlinear photonic devices. A variety of optical processes

in QD-MNP hybrid systems are enhanced by the interaction of excitons in the QD with lo-

calized surface plasmons in the MNP. The optical processes that have been studied in these

systems include enhanced photo-catalysis, light-harvesting and photovoltaics [14], SP-enhanced

uorescence [15], and F�orster resonance energy transfer [16].

It has also been shown that the nonlinear optical response of semiconductor QDs can be

enhanced by surface plasmons in metallic nanostructures. For example, MNPs on the surface of

semiconductor QDs can greatly enhance the optical nonlinearity of the QDs [17]. Furthermore,

the enhancement of SH generation in non-centrosymmetric semiconductor QDs was observed

when the QDs were placed in close proximity to silver nanoparticles [18].

In this chapter, SH generation and two-photon photoluminescence (TPPL) in QD-MNP

hybrid systems is investigated. In the present theoretical model, these nonlinear optical pro-

cesses occur in a QD which is also interacting with a proximal MNP. A probe laser �eld is

applied to the hybrid system, which drives SH generation and TPPL in the QD. A secondary

control laser �eld is also applied to the system, which can couple with surface plasmons in the

MNP. The MNP is strongly polarized when the frequency of the control �eld matches the MNP

surface plasmon resonance frequency, leading to a dipole-dipole interaction between the QD

and MNP. It is shown that when the control laser �eld is resonant with the plasmons in the

MNP, the intensity of the SH signal from the QD can be increased by increasing the intensity

of the control laser �eld. Conversely, the control �eld has little e�ect on the SH signal from

the QD when it is not resonant with the plasmons in the MNP. These results indicate that the
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SH signal enhancement can be switched on or o� by changing the intensity or frequency of the

control laser �eld.

The theoretical model presented here is used to explain an experimental study in which SH

generation and TPPL are observed in QD-MNP hybrid systems consisting of CdS QDs in the

presence of either Au or Ag MNPs. In the experiment, a pulsed laser �eld (probe �eld) was

used to generate the SH signal from the hybrid system in the presence of a continuous-wave

laser �eld (control �eld). SH generation and TPPL was measured in samples of CdS QDs alone,

Au MNPs alone, CdS QDs with Au MNPs, and CdS QDs with Ag MNPs. In the CdS QD-Au

MNP hybrid system, an increase in the SH signal intensity was observed as the power of the

control laser �eld was increased. Here the control laser �eld was resonant with the localized

surface plasmons in the Au MNPs. Conversely in the CdS QD-Ag MNP hybrid sample, the

control �eld intensity was observed to have a negligible e�ect on the SH signal intensity. In this

case, the control �eld was not resonant with the surface plasmons in the Ag MNP. The results

of the theoretical simulations are compared with the experimentally-obtained data, and good

qualitative agreement is found. It is anticipated that the results described here can be used to

develop nonlinear all-optical nano-switching devices using hybrid systems.

6.2 Experimental Methods

Figure 6-1 shows schematically the experimental setup used to measure SH generation and

TPPL from CdS QDs in the presence of MNPs. The experiment was performed in transmis-

sion with spectrally-resolved photon counting detection (1P28 Hamamatsu photomultiplier and

Stanford Research SR400 Gated Photon Counter). The pulsed laser (probe �eld) used to gen-

erate the SH signal was a tunable modelocked Ti:Sapphire (KMLabs) set at a wavelength of

�p = 790 nm, with 50 fs pulse width and 80 MHz repetition rate. A residual continuous-wave

(CW) laser �eld (control �eld) originating from the �c = 532 nm doubled Ng:YAG pumping

laser also reaches the sample.

For preparation of the hybrid Au MNP-QD sample, a drop (3 �l, 1010 NP/ml) of the MNP

colloidal solution was dried onto a clean coverslip. Here commercial gold nanoparticles (Ted

Pella) with an average radius of 40 nm were used. The colloids are surrounded by citrate
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Figure 6-1: (a) Schematic diagram for the experimental setup. The pulsed Ti:Sa laser was
tightly focused through l1 onto the coverslip containing the hybrid QD-MNP sample. A second
lens, l2, collects the signal, which is sent to the monochromator by two mirrors (m2 and m3).
A �lter is interposed at its entrance in order to reduce the strong laser signal. Photon counting
detection is performed with the photomultiplier (PMT). (b) Schematic diagram for the QD-
MNP hybrid sample.

molecules, which provides them with a negative charge that electrostatically attaches them

to the glass surface. The �nal surface concentration of the Au MNPs, measured from SEM

images, is about 20 NPs per �m2 (see Figure 6-2(a)). Finally, a drop of a 1 �M CdS QD

colloidal solution is deposited on top of the sample until the solvent is evaporated. The QD

solution has a high concentration of aminosilanes that forms a layer about 5 �m in height, so

that the QDs are immersed in an aminosilane matrix (see Figure 6-2(b)). From AFM and SEM

images it is concluded that there are 200 QDs per Au MNP on average, and that the average

radius of the QDs is 1:5 nm. Silver MNPs of average radius 10 nm were synthesized as indicated

in Ref. [18]. A similar protocol described above for the Au MNP-QD samples has been followed
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Figure 6-2: (a) SEM image of the Au MNPs, 40 nm in radius (about 20 MNPs per �m2). (b)
SEM image of the Au MNP-QD hybrid sample. It is no longer possible to view the nanoparticles
since the QDs at high concentration form a thick layer (~5 �m) when dried.

to prepare the hybrid Ag MNP-QD sample, resulting in about 10 QDs per Ag MNP.

Spectrally-resolved photon counting experiments were performed on the QD-MNP hybrid

samples as a function of the wavelength, keeping the incoming Ti:Sapphire laser wavelength

�xed. A typical signal is shown by the square points in Figure 6-4 for the Au MNP-QD

hybrid sample. The SH signal was highly visible, while a reduced signal of the two photon

photoluminescence coming from the QDs was also detected around 490 nm (see Figure 6-7). At

the maximum of the SH signal, the intensity is measured as a function of the green (�c = 532

nm) CW laser power at a �xed Ti:Sapphire power (see Figures 6-6(a) and 6-6(b)). To do this

experiment, low-pass �lters were interposed, taking special care not to a�ect the Ti:Sapphire
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power. In Figure 6-6(a) the peak SH signal is collected for the Au MNP-QD hybrid system and

in Figure 6-6(b) the peak SH signal is presented for the Ag MNP-QD system. In Figures 6-6(a)

and 6-6(b) the horizontal axis gives the power of the �c = 532 nm CW laser �eld. Note that

the Au nanoparticles have a plasmon resonance at about �spAu = 532 nm, whereas the plasmon

resonance for the Ag nanoparticles is at about �spAg = 400 nm. In Figure 6-6(a), an increase in

the SH signal intensity is observed as the CW laser �eld power is increased for the Au-MNP-QD

system, whereas in Figure 6-6(b) the Ag-MNP system does not show a signi�cant increase.

6.3 Theoretical Formalism

The present system of interest consists of a QD and a MNP embedded in a background dielectric

material with dielectric constant �b. The QD is modelled as a two-level system, where j1i and j2i

denote the ground and excited states, respectively, and the resonant frequency for the transition

j1i $ j2i is denoted as !0. It is considered that the MNP has a surface plasmon resonance

frequency !sp, which is taken to lie near the excitation frequency of the QD such that !sp � !0.

The energy level diagram for the QD-MNP hybrid system is illustrated in Figure 6-3.

A probe laser �eld with amplitude Ep and frequency !p = !0=2 + �=2 is applied to the

hybrid system, where � is called the two-photon detuning parameter and is a small quantity

compared to !0. Similarly, an applied control �eld with amplitude Ec and frequency !c are

applied to the hybrid system. The interaction of the probe �eld with the QD leads to nonlinear

two-photon excitation and SH generation due to the transitions j1i ! jni ! j2i, where jni are

intermediate (virtual) states of the QD. The nonlinear polarization of the QD can be obtained

in terms of the two-level density matrix elements �ij as [19]

Pqd = (k11�11 + k22�22 + 2k21�21)Ep, (6.1)

where kij are the two-photon coe�cients and are given explicitly in Ref. [19].

In the presence of the probe and control �elds, dipole moments Pqd and Pmnp are induced in

the QD and the MNP, respectively. These dipole moments each generate dipole electric �elds

(also called near or local �elds) around the nanoparticle from which they originate. The electric
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Figure 6-3: Energy level diagram of the QD-MNP hybrid system. A dipole-dipole interaction
occurs between the QD and MNP.

�eld created by the MNP at the location of the QD is denoted as Emnpddi , and is given as

Emnpddi =
gkPmnp
4��b�0R3

. (6.2)

Similarly the electric �eld created by the QD at the location of the MNP is denoted as Eqdddi,

and is given by

Eqdddi =
gkPqd

4��b�0R3
. (6.3)

In the above expressions gk is called the polarization parameter, which takes values gk = 2

(gk = �1) when the dipole lies parallel (perpendicular) to the vector R linking the centers of

the MNP and QD [20].

The total electric �eld experienced by the MNP is expressed as

Emnp = Epe
�i!pt + Ece

�i!ct + Eqdddie
�i2!pt + c:c:, (6.4)

where the �rst, second, and third terms represent the electric �eld of the probe, control, and

nonlinear QD-dipole �eld, respectively. Note that here !c � 2!p. Using the quasistatic approx-

imation, the dipole moment induced in the MNP due to the above electric �eld is obtained as

[20]

Pmnp = �
(1)
mnp (!c)

�
Ec + E

qd
ddi

�
e�i!ct + �(2)mnp (!p)E

2
pe
�2i!pt, (6.5)
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where

�(1)mnp (!) = 4��b�0a
3 �m (!)� �b
�m (!) + 2�b

, (6.6)

and

�(2)mnp (!) =
me

(4�)3 e3
�
h
�(1)mnp (!)

i2
�(1)mnp (2!) . (6.7)

In the above expressions, �m (!) is the dielectric constant of the MNP, a is the radius of the

MNP, me is the electron mass, e is the electron charge, and � is the nonlinear coe�cient

[21]. In Eq. 6.5, the linear contribution to the MNP polarization from the probe �eld (i.e.,

�
(1)
mnpEpe

�i!pt) has been neglected because !p is far away from !sp. Note that the surface

plasmon resonance frequency !sp for the MNP can be calculated by setting the real part of the

denominator in �
(1)
mnp (!) equal to zero and solving for frequency. When !c � !sp, the value of

�
(1)
mnp becomes very large and the MNP produces an enhanced local electric �eld. This leads to

a dipole-dipole interaction between the QD and MNP, which is very strong when they are in

close proximity to one another and there is resonance coupling between the QD, MNP, and the

driving electric �elds (i.e., when !sp = !c = 2!p).

The total electric �eld felt by the QD is written as

Eqd =
1

2�eff

�
E0pe

�i!ptei�p + Emnpddi e
�i!ctei�c + Emnpshg e

�i!ctei�c
�
+ c:c:, (6.8)

where �p = kpz, �c = kcz, and �eff =
�
2n2b + n

2
qd

�
=3n2qd, nb and nqd being the refractive index

of the background dielectric material and QD, respectively. In the above expression, Emnpshg is

the electric �eld at the QD produced by SH generation in the MNP, and is expressed as

Emnpshg =
gk

4��b�0R3
�(2)mnp (!p)

�
E0p
�2
. (6.9)

Using Eq. 6.8, the equations of motion for the two-level two-photon density matrix elements
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�ij are obtained using the master equation method [19, 22] as

d�22
dt

= ��qd�22 + i
h

2p + �ddie

i�� + �mnpshg e
i��
i
ei2�p�12 (6.10)

�i
h

2p + �

�
ddie

�i�� +
�
�mnpshg

��
e�i��

i
e�i2�p�21

d�12
dt

= � [�qd=2� i (� +�S)] �12 + i
h

2p + �

�
ddie

�i�� +
�
�mnpshg

��
e�i��

i
e�i2�p (�22 � �11) ,

where �� = �c � 2�p and

�S = �S

���
2p + �ddi + �mnpshg

��� , (6.11)


2p =
k21

�
E0p
�2

2~�2eff
, (6.12)

�ddi =
gk�21�

(1)
mnp (!c)

4�~�b�0�effR3

�
E0c +

gkPqd
4��b�0R3

�
, (6.13)

and

�mnpshg =
gk�21�

(2)
mnp (!p)

4�~�b�0�effR3
�
E0p
�2
. (6.14)

In Eq. 6.10, �qd and �21 are the linewidth and dipole moment, respectively, for the transition

j1i $ j2i, and �S is de�ned in Ref. [19]. The equations of motion for the remaining density

matrix elements are easily obtained using the relations �11 + �22 = 1 and �12 = ��21. In the

above expressions, the parameter 
2p denotes the two-photon Rabi frequency due to direct two-

photon absorption in the QD from the probe �eld, the term �ddi accounts for the dipole-dipole

interaction between the QD and MNP, and the quantity �mnpshg is the contribution from the �eld

produced by SH generation in the MNP. Finally, the parameter �S represents the dynamic

Stark shift which appears due to frequency shifts in the levels j1i and j2i induced by virtual

transitions to the intermediate levels jni [19].

Transforming the density matrix elements as �12 = e�12e�i2�p and �21 = e�21ei2�p , the density
matrix equations of motion in Eq. 6.10 reduce to

d�22
dt

= ��qd�22 + i
�

2p + �ddi + �

mnp
shg

�e�12 � i h
2p + ��ddi + ��mnpshg

��ie�21 (6.15)

de�12
dt

= � [�qd=2� i (� +�S)]e�12 + i h
2p + ��ddi + ��mnpshg

��i
(�22 � �11) .
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Note that the elements �11 and �22 are not a�ected by the phase factors because they are real

quantities. Here kp = 2�=�p and kc = 2�=�c are used in the expressions of the phases for the

probe and control �eld, respectively, where �p (�c) is the wavelength of the probe (control)

�eld. The phase factors are then rewritten as exp(i2�z=�p) and exp(i2�z=�p). In the present

study, �p and �c are on the order of several hundred nanometers, while the distance z is on

the order of the diameter of the QD, i.e., ~3 nm for a typical CdS QD. Hence, the phase

factors exp(i2�z=�p) and exp(i2�z=�p) are close to unity. This is known as the quasistatic

approximation in the literature [20, 23]. Here the quasistatic approximation is used to calculate

the dipole-dipole interaction, SH generation and TPPL. In the quasistatic approximation the

phase-matching condition is also satis�ed. One can also say that the phase-matching condition

does not apply in the quasistatic approximation.

SH generation occurs in the QD due to the nonlinear polarization induced by the transition

j1i $ j2i. The electric �eld produced by SH generation in the QD is obtained as

ESHqd =
Pqd
r3qd�b�0

, (6.16)

where Pqd is the nonlinear polarization of the QD given in Eq. 6.1. The intensity of the electric

�eld produced by SH generation in the QD is then calculated as ISHqd = 1
2"0c

p
�b

���ESHqd ���2, which
gives

ISHqd =
"0c
p
�b

2

�����(k11�11 + k22�22 + 2k21�21)Epr3qd�b

�����
2

. (6.17)

Note that the intensity of the electric �eld produced via SH generation from the QD depends

on the density matrix elements �ij , which in turn depend on the dipole �eld produced by the

MNP as shown in Eqs. 6.15. In a similar manner the SH �eld intensity produced by the MNP

is calculated as

ISHmnp =
1

2
"0cnb

������
(2)
mnp (!p)E

2
p

r3mnp�b�0

�����
2

. (6.18)

In this case, however, SH generation in the MNP does not depend on the dipole �eld produced

by the QD.

The QD absorbs energy from the external probe �eld through a two-photon absorption

process. The energy acquired via two-photon absorption is subsequently emitted through TPPL.
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The power absorbed by the QD is denoted by Wqd and can be calculated as [2]

Wqd = ~!0�pl�22. (6.19)

Here �pl is the TPPL decay rate. Notice that Wqd depends on �22, which in turn depends

on the dipole-dipole interaction between the QD and MNP through Eqs. 6.15. For a sample

consisting only of QDs, the power absorbed by the QD is W 0
qd, which is evaluated from Eqs.

6.15 in the absence of the dipole-dipole interaction terms (i.e. �ddi = �
mnp
shg = 0). On the other

hand, the power absorbed by the QD solely due to the interaction with the MNP is denoted

as W ddi
qd and is evaluated from Eqs. 6.15 in the absence of the probe laser �eld (i.e. 
2p = 0).

The intensity of the TPPL signal from the QDs alone can then be expressed as

Iqd2p =
W 0
qd

4�r2qd
, (6.20)

while the intensity of the TPPL signal from the QD-MNP hybrid is

Iqd�mnp2p =
W 0
qd �W ddi

qd

4�r2qd
. (6.21)

6.4 Results and Discussion

Numerical simulations for the intensity of the SH �eld produced by a CdS QD in the presence

of either a Au or Ag MNP have been performed. In these simulations, parameters �qd = 6:4 and

�b = 1:96 have been used, while the dielectric constant of the MNP is taken for Au and Ag from

the experimental data in Ref. [24]. To calculate the thermo-optic properties of the background

dielectric medium, parameters �th = 0:2 W/(mK) and �b = 1 � 10�3 K�1 were used, while

those for the CdS QDs were taken as �th = 0:2 W/(mK) and �qd = 10�6 K�1 [25]. Note

that the volume expansion coe�cient for CdS is much smaller than that for the background

aminosilane matrix, and so in our calculations only �b can be a�ected signi�cantly by plasmonic

heating. The surface plasmon resonance wavelengths for the Au and Ag MNPs were measured

experimentally as �spAu ' 532 nm and �spAg ' 400 nm, respectively. The two-photon coe�cient

and dipole moment in the CdS QD were taken as k21 = 0:9 � 10�34 C2m/N and �21 = 1:3 e
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nm, respectively, and in the numerical simulations the e�ective linewidth ~�qd = 0:06 eV was

used, which was determined from the experimental data (Figure 6-4).

In the numerical simulations, the probe �eld is described by a Gaussian pulse such that

Ep = E
0
pe
�i�p exp

"
�(t� t0)

2

2�2

#
(6.22)

where � = 50 fs is the pulse width and E0p is the peak amplitude obtained from the average

power of the probe laser (270 mW) and the spot diameter (5 �m). The density matrix elements

are obtained by numerically solving Eqs. 6.15 at the time of probe �eld pulse center, t0.

In Figure 6-4 the (normalized) intensity of the SH �eld from the CdS QD in the presence

of the Au MNP is plotted (see solid curve). For this calculation only the strongest QD-MNP

dipole-dipole interaction is considered, corresponding to QDs that have di�used close to the Au

MNP, i.e., when R is its minimum value (R = rqd + a). The majority of the QDs in the ~5 �m

QD-aminosilane �lm are comparatively further away and do not participate in the dipole-dipole

coupling. Note that a good agreement between theory and experiment is found. The inset in

Figure 6-4 shows numerical simulations for the SH signal intensity when the control �eld is

applied and the separation between the Au MNP and the CdS QD, R, is increased. Here the

simulations show that increasing the QD-MNP separation decreases the strength of the dipole

coupling �eld, thereby reducing the SH signal enhancement due to �ddi. A similar e�ect can

be observed if the control �eld power is decreased.

Theoretical calculations for the SH signal intensity have also been presented in Figure 6-5(a)

as a function of the CW control �eld power for the Au MNP-QD hybrid system (see solid curve

in Figure 6-5(a); square points correspond to experimental data). It is found that there is an

increase in the SH signal intensity from the CdS QDs as the control �eld power is increased.

There is a good agreement between the theoretical calculations and experimental results. The

observed enhancement is due to the dipole �eld produced by the Au MNPs. Here, a strong

dipole �eld is produced by the coupling between the CW control �eld and the Au MNP because

the control �eld (�c = 532 nm) is in resonance with the surface plasmon frequency of the Au

MNP (�c = �
sp
Au = 532 nm). Additionally, the SH signal intensity is plotted for the case where

the MNP is far away from the QD or when the control �eld is not in resonance with the surface
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Figure 6-4: (a) Photon counting experiment on the a = 40 nm Au MNP-QD hybrid system
(square points) and numerical simulation results (solid curve) in arbitrary units. Here the
control �eld power is 15 mW. In the numerical simulation, R = a+rqd and k11 = �k22 = k21=10.
Inset: Numerical simulations for the SH signal for R = 50 nm (solid curve), 70 nm (dashed
curve) and 100 nm (dash-dotted curve).

plasmon frequency. In either situation the numerical results are indicated by the dashed curve

in Figure 6-5(a). Note that the hybrid system can be switched from a low-SH signal intensity

state (dashed curve) to a high-SH signal intensity state (solid curve) by applying the CW control

laser �eld. The enhancement of the SH signal can also be switched on and o� by changing the

frequency of the control laser �eld. When �c = �spAu, the SH signal will be enhanced due the

strong dipole-dipole coupling (solid curve) and when �c 6= �spAu the SH signal will not change

(dashed curve) because the dipole-dipole coupling is absent.

In Figure 6-5(b) the SH signal intensity as a function of the CW control �eld power is pre-

sented for the Ag MNP-QD hybrid system. In this case there is only a very small enhancement

of the SH signal when the CW control laser �eld is applied. This is because there is negligible

coupling between the control �eld (�c = 532 nm) and the surface plasmon resonance of the Ag

MNPs (�spAg ' 400 nm). The inset in Figure 6-5(b) shows a numerical simulation for the SH

signal as a function of the control �eld power when the control �eld is resonant with the surface
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Figure 6-5: (a) SH signal (at � = 395 nm) for the Au MNP-QD hybrid system vs. control
�eld power. The square points and solid curve correspond to the experimental and numerical
results, respectively. The dashed line indicates the SH signal when the control �eld is absent.
(b) SH signal for the Ag MNP-QD hybrid vs. control �eld power, where the square points and
solid curve correspond to experimental and numerical results, respectively. Inset: Numerical
simulation of the SH signal for the Ag MNP-QD hybrid system when �c = �

sp
Ag = 400 nm.

plasmons in the Ag MNPs such that �c = �
sp
Ag = 400 nm. In this case it is found that the SH

signal is enhanced as the control �eld power is increased. Note however that the increase in

the SH signal intensity predicted for the QD-Ag MNP hybrid when �c = �
sp
Ag = 400 nm is less

than that observed from the QD-Au MNP hybrid when �c = �
sp
Au = 532 nm. The enhancement

of SH generation is weaker for the Ag MNP because its size is less than that of the Au MNP

(aAg = 10 nm whereas aAu = 40 nm), and dipole �eld produced by the MNP depends on the

size of the MNP through Eq. 6.5.

In Figure 6-4, the SH signal intensity spectra originating from the QD-MNP hybrid system
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Figure 6-6: (a) Experimental data for the SH signal intensity from the CdS QDs alone (solid
diamonds) and Au MNPs alone (solid circles). For the QD sample the Ti:Sa wavelength has
been taken at � = 780 nm rather than 790 nm elsewhere. Numerical simulation results for the
QD and MNP are shown by the dashed and dash-dotted curves, respectively. (b) The combined
results from Figures 6-4 and 6-6(a).

is plotted. However, it is not clear from this �gure alone what the contributions to this signal

are from the QD and the MNP individually. Therefore, a control experiment consisting of

measurements on samples that contain only gold, silver or QDs has been performed. The

experimental results are plotted in Figure 6-6(a), where the solid circles and solid diamonds

correspond to the data obtained from the QDs and Au-MNPs, respectively. Using the present

theory for SH generation, numerical simulations for the SH signal intensity from the QD and Au-

MNP alone have also been performed, which are indicated in Figure 6-6(a) by the dashed and

solid curves, respectively. A good agreement between the theoretical and experimental results

is obtained for both the QD and Au-MNP. To compare the contribution from SH generation
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Figure 6-7: Two-photon photoluminescence (TPPL) signal from the CdS QDs in the absence
(solid diamonds, dashed curve) and presence (solid squares, solid curve) of the Au MNPs. The
points and curves correspond to the experimental and theoretical results, respectively. In these
simulations, ~�pl = 6:6 �eV was used.

of the isolated QDs and MNPs with the QD-MNP hybrid system, the combined results of

Figures 6-4 and 6-6(a) are plotted in Figure 6-6(b). Figure 6-6(b) shows clearly that there is an

enhancement of the SH signal intensity from the QDs in the presence of the Au-MNPs. This

enhancement is due to the dipole-dipole interaction between the QDs and MNPs as mentioned

previously.

TPPL from the QD has also been measured experimentally and studied theoretically. The

results for TPPL are presented in Figure 6-7, where the solid diamonds (dashed curve) and

solid squares (solid curve) correspond to the experimental data (numerical simulations) for

the QDs alone and QD-Au MNP hybrid system. In both the theoretical and experimental

results, there is a quenching of the TPPL signal from the QD in the presence of the MNPs.

Similar TPPL quenching has been observed by Jais et al. in Ref. [18] for a CdS-QD/Ag-

MNP hybrid system. Single-photon excitation photoluminescence quenching has also been

observed experimentally for CdSe-ZnS QDs in the presence of Au MNPs [26]. For the QD-MNP
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hybrid system considered here it is found that as the intensity of the control �eld increases the

photoluminescence quenching is enhanced.

The inuence of plasmonic heating on SH generation has been investigated theoretically in

the Appendix of this chapter, as the SH spectrum from the QDs is inuenced by the plasmonic

heating due to the MNPs. In the present case is was found that the plasmonic heating has a

negligible e�ect on SH generation in the QDs (see Figure 6-9 in the Appendix of this chapter).

Finally, to understand the physics of SH generation and TPPL, the time evolution of the

QD density matrix elements �22 and �12 has been studied, as they are directly related to SH

generation and TPPL. Note that �12, which controls the coherence between states j1i and j2i,

is a complex quantity and can be expressed as �12 = j�12j ei� where � = arctan(Im �12=Re �12).

On the other hand, �22 represents the probability of �nding the QD in the excited state j2i.

The time variation of �11 can be found from �22 via the condition �11 + �22 = 1.

In Figures 6-8(a) and 6-8(b), �22 and j�21j, respectively, are plotted as functions of time

for zero probe �eld detuning (� = 0 or �p = 790 nm). Here the solid and dashed curves are

plotted in the presence or absence of the dipole-dipole interaction between the QD and MNP,

respectively. In performing these simulations, it is considered that initially only the ground

state in the QD is populated, i.e., �11(0) = 1, and the excited state is empty, i.e., �22(0) = 0.

Note from Figure 6-8(a) that when the probe �eld is applied, �22 increases with time and reaches

a steady-state. There are no observable Rabi oscillations because in the present case the Rabi

frequency 
2p related to the probe �eld is smaller than the linewidth �qd. This behaviour is

consistent with results found in the quantum optics literature [21, 22].

When the dipole-dipole interaction is included in the simulation, it is found that the value

for �22 increases, which in turn enhances the TPPL quenching. In Figure 6-8(b) the amplitude

of the density matrix element �21 has been plotted both in the absence or presence of the dipole-

dipole interaction. Note that in either case, j�21j also increases in time and reaches a steady-state

value. In the presence of the dipole-dipole interaction this term also increases. To understand

the enhancement of the SH signal produced by the QD due to the dipole-dipole interaction, one

can use the following argument: It is found that in Eq. 6.17, the main contribution originates

from the term which depends on �12. If the �rst two terms in this equation are ignored then

the SH signal intensity is proportional to j�12j2, and the phase factor does not appear. In other
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Figure 6-8: Time evolution of the density matrix elements �22 (a) and j�21j (b) in the absence
(solid curves) or presence (dashed curves) of the dipole-dipole interaction. Initially the QD is
in the ground state, i.e. �11(0) = 1.

words, due to the enhancement in j�12j from the dipole-dipole interaction the SH generation

process in the QD is enhanced.

6.5 Conclusions

In conclusion, SH generation and TPPL in QD-MNP hybrid systems have been investigated

both theoretically and experimentally. It is found that an applied CW control �eld can be used

to enhance the SH signal intensity from the QDs. The enhancement of the SH signal intensity

can be switched on or o� by changing the intensity of the control �eld when it is resonant with

the surface plasmons in the MNP. Alternatively, the SH signal enhancement can be switched on

or o� by changing the frequency of the control �eld. These �ndings can be used to fabricate all-

optical nano-switching devices using QD-MNP hybrid systems. The role of plasmonic heating
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from the MNPs in the observed SH signal enhancement has also been investigated, and is found

to have a negligible e�ect on SH generation in the QDs.

Appendix: Plasmonic Heating

Here the inuence of plasmonic heating on the SH signal intensity spectrum of the QD-MNP

hybrid system is investigated theoretically. Due to the plasmonic heating of the MNP, the tem-

perature of the surrounding aminosilane matrix increases, which in turn changes its refractive

index (dielectric constant). The SH spectrum is inuenced by the plasmonic heating because

it also depends on the refractive index of the background medium, nb.

Plasmonic heating is the process by which power is transfered out of the surface plasmons in

an MNP and converted to thermal energy [27, 28]. The mechanism for plasmonic heating can

be understood as follows: The applied electric �eld drives surface plasmons in the MNP and

the energy gained by these surface plasmons is converted into heat. This heat di�uses away

from the MNP and leads to an elevated temperature in the surrounding medium. Because

MNPs are very poor light emitters, one can consider that all the power absorbed by the MNP

from an external �eld is converted into thermal energy. Therefore, it is considered that the

power absorbed by the MNP from probe �eld, control �eld and the dipole �eld from the QD is

converted into thermal energy.

The power absorbed by the MNP due to the external �elds can be calculated as follows [23,

28]

Qmnp =

�Z
jmnpEmnpdV

�
. (6.23)

In the above expression, jmnp is the magnitude of the electric current density induced in the

MNP and the integration is performed over the volume of the MNP, Vmnp = 4�a3=3. The

symbol h:::i denotes the time average taken over the period of the oscillating laser �elds. The

current density in the MNP is calculated as

jmnp =
1

Vmnp

dPmnp
dt

. (6.24)

After performing some mathematical manipulation, an expression for the plasmonic heating
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power is obtained as

Qmnp = !cE
2
c Im

h
�(1)mnp (!c)

i
. (6.25)

Here the contributions to Qmnp from the probe �eld and dipole �eld produced by the QD are

negligible compared to that from the CW control �eld, and so they have been neglected in the

above expression for simplicity. Note that the thermal power Qmnp generated by the MNP

becomes especially strong in the regime of plasmon resonance, i.e. when Re �m ' �2�b (see Eq.

6.5).

The heat generated by the MNP raises the temperature of the surrounding medium by some

amount �T , which is quanti�ed by [28]

�T =
Qmnp
4�R�th

, (6.26)

where R is the distance from the center of the MNP and �th is the thermal conductivity of the

surrounding medium.

The medium surrounding the MNP in the present case consists of CdS QDs and aminosi-

lanes. Due to the change in the temperature there is also a change in the refractive index of

the surrounding medium. This phenomenon is known as the photothermal e�ect, which leads

to a shift in the refractive index of the QDs (nqd) and aminosilanes (nb) as [29]

n0i = ni +
j�ij
6ni

�
n2i + 2

� �
n2i � 1

�
�T (6.27)

In the above expression, the subscript i denotes either i = qd (CdS QD) or i = b (aminosilane

matrix), and �i is the volume expansion coe�cient of the i
th material.

In the present model for the QD-MNP hybrid system, the SH �eld intensity and TPPL are

calculated from the dipole moment of the QD Pqd, which in turn depends on the refractive

indices of the aminosilane matrix nb (i.e. �b) and QD nqd (i.e. �qd). Due to plasmonic heating

from the MNP, the refractive indices of the QD and aminosilanes will change, thereby a�ecting

SH generation and TPPL.
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Figure 6-9: SH signal intensity from the QD-Au MNP hybrid system when the e�ect of plas-
monic heating is included (solid curve) and omitted (dash-dotted curve). The solid curve shown
here corresponds to the solid curves shown in Figures 6-4 and 6-6(b). Inset: Temperature change
in the aminosilane matrix surrounding the Au MNP vs. control �eld power. Here the solid,
dashed and dash-dotted curves correspond to R = rqd + a, 60 nm and 100 nm, respectively.
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Chapter 7

Concluding Remarks

In this thesis, nanophotonics and light-matter interactions were studied in a variety of photonic

and metallic heterostructures. The nanophotonic systems explored in this thesis included sin-

gle and double photonic quantum wells (waveguides), nonlinear photonic crystal waveguides,

and graphene/metallic nanocomposites. These heterostructures were found to possess novel

optical properties that surpass the capabilities of their individual components. For example,

the combination of two di�erent photonic crystals in a photonic quantum well heterostructure

resulted in the formation of bound photonic states and resonant tunnelling peaks in the struc-

ture's transmission spectrum, while individually the constituent photonic crystals would simply

reect light at certain frequencies. Similarly, the dipole-dipole interaction between excitons in

a quantum dot and plasmons in a graphene nanodisk or metal nanoparticle was shown to lead

to energy transfer or the enhancement of optical nonlinearities in the individual nanostruc-

tures. As nanofabrication techniques improve, the number of available nanostructures that can

be combined to create heterostructures or nanocomposites with exotic optical properties will

increase signi�cantly. The results presented in this thesis can be used to motivate future experi-

mental or theoretical investigations on heterostructures made using photonic crystals, quantum

dots, graphene, and noble metal nanoparticles.

In Chapter 2, the resonant photonic tunnelling e�ect was studied in both single (PQW)

and double photonic quantum well (DPQW) heterostructures made using two photonic crys-

tals. The transfer matrix method was used to simulate the transmission coe�cient of these

heterostructures along the direction of con�nement. The transmission spectra for the PQW
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and DPQW heterostructures reveal sharp peaks of perfect transmission at speci�c energies,

indicating the energy levels of resonant states. In the PQW heterostructure, discrete resonant

tunnelling peaks appear in the transmission spectra, the number of which can be changed by

adjusting the width of the photonic well. In the DPQW heterostructure, resonant tunnelling

peaks occur in split pairs due to the coupling of degenerate states in two photonic wells. It

is shown that the energy splitting can be controlled by varying width of the photonic barrier

separating the wells. It is anticipated that the resonant tunnelling phenomenon described in

this chapter can be used to develop photonic switching devices, high-quality optical �lters and

other optoelectronic devices.

In Chapter 3, the resonant states and transmission spectra in DPQW heterostructures

were investigated in greater detail. Expressions for the energy levels of bound photonic states

and their energy splitting in the DPQW heterostructure were derived, and the transmission

coe�cient of the system was simulated using the transfer matrix method. In this chapter, Kerr-

nonlinear photonic crystals were included in the design of the DPQW heterostructures. The

use of nonlinear photonic crystals in the DPQW heterostructure allows the system to function

as an all-optical switch, whereby an incident probe laser �eld applied along the direction of

con�nement can be switched between transparent or reecting states by an external pump laser

�eld. It is demonstrated that the nonlinear DPQW heterostructure can be switched between

zero to one or more pairs of resonant states by varying the intensity of the pump laser �eld or

by applying external stress or strain �elds to the system. The results presented in this chapter

may be used to develop all-optical switching devices, tunable �lters, and coupled waveguides.

Light-matter interactions in a graphene nanocomposite heterostructure were investigated

in Chapter 4. In this chapter, the dipole-dipole interaction and energy transfer were studied

in a quantum dot (QD)-graphene nanodisk nanocomposite system using the density matrix

method. The graphene nanocomposite was embedded in a Kerr-nonlinear photonic crystal,

which served as an optically-tunable photonic reservoir for the QD. Here it was demonstrated

that energy absorption in the QD and energy transfer from the QD to graphene can be switched

on or o� (i.e. controlled) by changing the distance between the QD and graphene or by ap-

plying a pump laser �eld to the nonlinear photonic crystal. It was also shown that the energy

absorption/transfer rates in the graphene nanocomposite are highly sensitive to changes in
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the thickness of graphene or the dielectric constant of the QD. The theory presented in this

chapter is very general and can be applied to nanocomposite systems consisting of graphene

and three-level quantum emitters such as quantum dots, nanocrystals, atoms, molecules, etc.

The proposed nanocomposite system can be used to construct sensors, all-optical switches, and

energy transfer/storage devices.

In Chapter 5, the enhancement and control of nonlinear optical processes in a graphene

nanocomposite (heterostructure) was studied. Here, the strong local �elds produced by plas-

mons in a graphene nanoake were used to manipulate two-photon absorption in a proximal

quantum dot. In this chapter, the density matrix method was used to simulate the two-photon

absorption coe�cient and power absorption in the QD. It was found that the two-photon ab-

sorption coe�cient of the QD can be switched between single- or double-peaked spectra by

changing the separation between the QD and graphene. The e�ect of an electrostatic gate

voltage applied to the graphene nanoake was also studied in this chapter. By tuning the gate

voltage, the plasmon resonance frequency in the graphene nanoake can be adjusted, thereby

changing the frequency at which the maximum local �eld enhancement occurs. This phe-

nomenon was used here to electrostatically control the two-photon absorption coe�cient and

power absorption in the QD, demonstrating that the present nanocomposite system can func-

tion as an electro-optic switch. The results presented in this chapter indicate that the present

QD-graphene nanocomposite system can be used for nonlinear optical applications such as

all-optical switching, biosensing, and signal processing.

Finally in Chapter 6, nonlinear optical processes in QD-metallic nanoparticle (MNP) hybrid

systems were investigated both theoretically and experimentally. In the theoretical model, two-

photon photoluminescence (TPPL) and second harmonic (SH) generation were studied using the

density matrix method. A probe laser �eld is used to excite the QD via two-photon absorption,

while a control �eld is applied to excite plasmons in the MNP. It is predicted that the dipole-

dipole coupling between the QD and MNP results in an enhancement of SH generation and

TPPL in the QD. In this chapter, experimental measurements of SH generation and TPPL

in nanocomposite systems consisting of CdS QDs with either Au or Ag MNPs are reported.

An enhancement of SH generation was observed when a control laser �eld was applied to the

hybrid system and was resonant with the plasmons in the MNP. Good qualitative agreement
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was found between the theoretical results and experimentally-obtained data for the QD-MNP

nanocomposites. These �ndings can be used to fabricate all-optical nonlinear switching devices

using QD-MNP hybrid systems.

There is already a colossal number of available photonic and metallic nanostructures that

can be used to create optically-active heterostructures and nanocomposites. Countless possibil-

ities for future research on heterostructures exist, as many di�erent combinations and permu-

tations of nanostructures can be explored. As an immediate extension of the present research,

photonic crystal heterostructures can be combined with semiconductor and metallic nanocom-

posites. In such a system, the exciton-plasmon interaction between a quantum dot and a noble

metal (or graphene) nanostructure could be manipulated by their interaction with the tun-

able bound photonic states in a Kerr-nonlinear photonic quantum well. Numerous possibilities

also exist for metamaterial-based heterostructures. Metamaterials are a new class of arti�cal

materials which possess exotic optical properties determined by the nano-scale organization of

their structural components. For example, metamaterials based on periodic arrangements of

metallic nanocomposites have been demonstrated to possess simultaneously negative dielectric

permittivity and permeability for a range of frequencies in the electromagnetic spectrum. The

interaction of metamaterials with optically-active media such as quantum dots or uorescent

molecules is currently being pursued.
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