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ABSTRACT 

Pedicle screws are commonly utilized in spinal surgery; however, traditional 

designs often do not provide adequate fixation in osteoporotic spines.    The objective of 

this thesis was to develop a novel expanding screw for use in osteoporotic lumbar 

pedicles.  Helical screws capable of expanding post insertion were built on a rapid 

prototype machine. A materials testing machine performed axial load to failure tests in 

both Sawbones and cadaveric specimens comparing the new design to traditional screws 

(rate = 10mm/min to 20 mm).   Output parameters included yield load, ultimate load, 

stiffness, energy to failure and total energy.  The expanding screw showed a 36% 

increase in total energy (p=0.02), but no other differences were identified.  Based on this 

initial design, the expandable pedicle screws failed to demonstrate improved screw 

pullout; however, differences may be observed in other loading modes (i.e., toggle) and 

further design modifications and improvements in post-build machining may provide 

beneficial enhancements.    

  

Keywords:  spine, biomechanics, implant fixation, mechanical testing, pedicle screws, 

osteoporosis, biomechanics, pullout strength, expanding screws  
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1 CHAPTER 1:  INTRODUCTION 

OVERVIEW:  This chapter provides the basic background knowledge 

related to spinal surgery and surgical implant use, particularly pedicle 

screws.  Relevant information regarding spinal anatomy, surgical 

treatment of spinal disorders and use of spinal instrumentation is 

reviewed.  Due to the clinical aspects of this work, the use of anatomical 

terms was necessary; these are defined in Appendix A. 

1.1 THE HUMAN SPINE 

The bony spinal anatomy is a complex structure designed to support the weight of 

the upper body, allow physiologic motion, and protect the spinal cord [1].  The spine is 

made up of vertebral bodies, which are composed of a hard outer shell of cortical bone 

and a spongy inner structure of cancellous bone.  There are a total of 33 vertebras in the 

human body: seven cervical, twelve thoracic, five lumbar, five fused sacral and three to 

four fused coccygeal vertebrae.  Together, the vertebrae form the spinal column, which is 

divided into four main regions based on curvature of the column in the sagittal plane: the 

cervical and lumbar regions are lordotic, while the thoracic and sacral regions are 

kyphotic (Figure 1).   

Unique anatomic variations exist between different levels of vertebra; however, 

excluding the very caudal and cranial ends of the spine (i.e., C1/C2 and the coccyx), the 

rest of the spine shares many common design features. Each vertebra is composed 

anteriorly of the vertebral body and posteriorly of the arch, which protects the spinal 

cord. Projecting posteriorly from each vertebral body are two pedicles, which are made of 

a thick cortical tube filled with cancellous bone and serve as the only connection between 

the vertebral body and posterior arch (Figure 2).  This anatomic structure is of particular 

importance for spinal surgery. The majority of modern instrumentation, including the 

novel devices described in this thesis, passes through the pedicle from a posterior to 

anterior direction to reach the vertebral body via a safe channel and utilize the strong 

pedicle as the main point of fixation for screw implantation.  
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Figure 1: The Human Spine 

The human spine is split into four unique regions: cervical (C1-C7), thoracic (T1-T12), 

lumbar (L1-L5), and sacral (sacrum and coccyx).  Curvature in the cervical and lumbar 

spine is lordotic, while the thoracic and sacral are kyphotic. 
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Figure 2: Lumbar Vertebra 

The vertebra is split in the coronal plane into the body and the arch. The body is the large 

anterior mass. The arch, positioned posteriorly, is made up of the pedicles and processes, 

forming the spinal canal to house and protect the spinal cord.  The pedicles are bony 

tunnels that connect the body to the arch.  
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Morphometry of both the thoracic and lumbar spine has been described by previous 

authors [2, 3].  These studies were key resources in the designing process of the novel 

screws described in this chapter, as well as determining the insertion angle of each screw 

during biomechanical testing.  In brief, excluding the cervical spine, the smallest 

transverse pedicle diameter is found on average to be 4.5mm at T5 level, while the largest 

average transverse pedicle diameter is approximately 18mm at the L5 level.  

Furthermore, the pedicle is oval shaped with the sagittal diameter being slightly larger 

than the transverse diameter, although the degree of this difference is variable.  This plays 

a major role in implant design, since the best fit can only be obtained if the 

instrumentation system allows the use of multiple screw sizes to accommodate variation 

in pedicle size.  With current surgical techniques, most surgeons attempt to obtain an 

80% screw-pedicle diameter fill, which is thought to be optimal and a good balance 

between safety and secure fixation [4]. 

 

1.2 SURGICAL INSTRUMENTATION OF THE PEDICLE  

The use of pedicle screws in spinal surgery is broad and encompasses the 

treatment of deformity, trauma, cancer and degenerative disorders, including 

degenerative lumbar spine disease [5, 6].  Degenerative lumbar disease causing nerve 

compression is a common problem, and it responds well to surgery.  The frequency of 

this disease is increasing due to an aging demographic.  A common form of treatment is 

fusion and decompression of the lumbar spine with use of pedicle screws as the primary 

mode of stabilization (Figure 3). 

Although multiple forms and types of spinal instrumentation exist, the pedicle 

screw is the most commonly utilized [1]. These screws are inserted from posterior to 

anterior (i.e. from the back to the front of the vertebral body).  Screws in adjacent bodies 

are rigidly connected via rods to one another to achieve fusion or stabilization of adjacent 

vertebra (Figure 3). 
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Figure 3: Pedicle Screw Instrumented Fusion 

Lumbar spine fusion is used to eliminate motion and provide stability across degenerative 

or unstable motion segments.  This lateral x-ray of the lumbar spine shows pedicle screw 

instrumentation of the L4 vertebra and L5 vertebra.  An intervertebral cage is also used to 

re-establish lost vertebral disk height and to promote bony fusion. 
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 The pedicle represents the only safe bony channel available to enter the vertebral 

body from a posterior approach. The pedicle is much like a tunnel with a softer 

cancellous core and dense cortical shell. As such, the angle of the pedicle to the vertebral 

body determines the angle at which a screw must be inserted in order to enter the body 

without breaking through the pedicle walls. Outside of these walls exist important 

neurological structures, such as nerve roots and spinal cord. Knowledge of the angle that 

the pedicle joins the body is critical as surgeons usually cannot visualize the pedicle 

directly.  Fortunately, these angles have been well described in morphometric studies [2, 

3].  In the transverse plane, the pedicle emerges from the thoracic vertebral body at an 

angle of approximately 10 degrees of medial angulation (from posterolateral to 

anteromedial), which then increases progressively in the lumbar spine such that, at L5, 

the medial angulation  of the pedicle measures on average of 30 degrees.  In the sagittal 

plane, the pedicle is angled at 15 degrees cephalad (angled up with the subject standing) 

in the thoracic spine while remaining neutral in the lumbar spine with the exception of L5 

where on average five degrees of caudal angulation exits compared to the vertebral body.   

In regards to the possible length of instrumentation used in the pedicle, 

morphometric studies have demonstrated an average distance of 40mm from the posterior 

aspect of the pedicle to the anterior aspect of vertebral body in the thoracic spine and on 

average 50mm in the lumbar spine (as measured from the posterior aspect of the pedicle 

going through the pedicle along its long axis towards the anterior vertebral body. For the 

current commercially available pedicle screw systems, the ideal length of screw depth 

insertion is utilized to allow for maximum strength with minimum complications.  

Biomechanical studies show that approximately 60% of the screw strength is within the 

pedicle, while the remaining 40% is divided equally between the cancellous screw 

purchase in the vertebral body and the anterior vertebral cortex; for a screw which 

penetrates the anterior wall of the vertebral body [1].  In other words, a screw that 

penetrates the anterior vertebral body will be 20% stronger than a screw which remains in 

the body.  However, perforation of the anterior vertebral cortex is associated with 

potential injury to the major anterior vasculature including the aorta. Thus, the risk 
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 associated with breaching the anterior cortex is thought to exceed the benefits 

gained from additional strength [7, 8].  Although this rule applies to the entire thoracic 

and lumbar spine, the values are reversed in the sacrum.  The sacrum has a strong anterior 

weight bearing column of bone that contributes to 60% of the screw strength and 

therefore consideration for anterior wall penetration in this region should be made [7]. 

As such, a surgeon should insert a pedicle screw such that the screw: 1) is inserted 

along the long axis of the pedicle, 2) has the largest possible diameter without fracturing 

the pedicle, and 3) reaches maximum length without perforating the anterior vertebral 

body wall (with exception of sacrum) [7].  In order to achieve these goals, any 

instrumentation designed as a pedicle screw device must be engineered to allow for 

insertion at different angles while allowing for variability in length as well as diameter. 

1.3 HISTORY OF THE PEDICLE SCREW 

The development of pedicle screws has revolutionized spinal surgery, with 

widespread use and acceptance by spinal surgeons across the world.  The current pedicle 

screw design is a relatively recent invention, having been developed in 1970.  However, 

the first described treatment of spinal disease with surgical instrumentation was published 

by Hadra in 1891, during which time, he utilized a wiring technique to stabilize a 

pathologic cervical spine fracture-dislocation secondary to Pott’s disease [9] [10].  The 

person often credited with developing methods of screw fixation in the spine is King, 

who introduced facet screws for the fusion of degenerative lumbar disease in 1948 [11].  

Later on, Boucher was first to consider pedicle fixation by extending the screw 

previously described by King to the pedicle, and although this was not truly a pedicle 

screw in the modern sense, Boucher is credited for having conceptualized pedicle screw 

fixation in spinal surgery [12].  The current technique of passing a screw through the 

isthmus of the pedicle in order to gain fixation in the pedicle and vertebral body was first 

described by Harrington and Tullose in 1969 for use in treatment of spondylolisthesis in 

children [13].  However, this technique did not become widely accepted in North 

America for another 10 years.  During the 1979 American Academy of Orthopedic 

Surgeons meeting in San Francicso, Roy-Camille introduced the pedicle screw fixation 

method to North American surgeons [5].  Shortly after, Steffee helped further develop 
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pedicle instrumentation and broadened its utility by inventing the variable-screw-

placement plate, which allowed for the pedicle screws to be placed according to 

individual patient anatomy [14].  Nonetheless, at this point in its development, spinal 

instrumentation lacked the high-quality internal fixation methods that were available for 

long bones [5]. Significant research and effort was therefore put into place in the 

development of the modern spinal instrumentation systems, the majority of which utilizes 

novel materials such as titanium alloys.  One significant design change was the addition 

of “tulips”, allowing for variable angle attachment of each screw to a rod with few 

limitations for screw placement.   

The development of pedicle screws and its use by spinal surgeons has 

dramatically improved the surgical care of patients with spinal disease.  Improved clinical 

outcomes have been demonstrated in a variety of spinal disorders including: scoliosis, 

kyphosis, spinal fractures, spondylolisthesis, degenerative lumbar disease, neoplasms, 

autoimmune disease and more.  In the case of scoliosis, the use of pedicle screws has 

resulted in better achievement and maintenance of alignment correction, along with a 

reduction in the need for brace utilization [15-17]. In trauma, the pedicle screw construct 

has allowed surgeons to fuse fewer segments and better correct post-traumatic kyphotic 

deformities with greater success [18-23].  For the treatment of spondylolisthesis, the 

fusion rates have increase substantially.  The surgeon’s ability to reduce and maintain the 

deformity has also improved, increasing the overall rate of surgical success and 

acceptable outcome with a corresponding reduction in overall risk.  Furthermore, the use 

of pedicle screw fixation has allowed for percutaneous and minimally invasive 

approached to be developed for the treatment of spondylolisthesis and other spinal 

deformities [24-29]. In the treatment of cancer, the use of short constructs with only a 

few levels instrumented has allowed for safe radical resection of primary spinal tumors to 

be performed with improved outcomes [30, 31]. 

Although the pedicle screw represents state of the art treatment in spinal disease, 

it has major limitations.  One of these is the inability of the current screw designs to 

provide sufficient fixation in osteoporotic bone, or with revision surgery, as well as 

insufficient stability in badly traumatized patients. 
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In the case of spinal instrumentation, the screw-bone interface is the critical 

element that determines the strength of the surgical construct and, therefore, failure or 

success of the surgery.  This screw-bone interface is compromised substantially in 

osteoporosis [32-45].  Beyond bone quality, other factors have been shown to effect 

screw bone fixation including: screw diameter pedicle match (i.e., ability of screw to fill 

the pedicle), screw length, thread pitch, thread type, shape of the minor diameter, shape 

of major diameter, angle of screw insertion, use of cross-linking, insertion torque, pre-

tapping the pedicle, bilateralism of fixation, augmentation with bone cement, use of 

hollow screws and more [46-72]. Although this knowledge has been incorporated in 

today’s spinal instrumentation and surgical techniques, the issue of bone fixation remains 

a concern in osteoporotic patients. Investigators have demonstrated that elderly patients 

with multiple spontaneous compression fractures, secondary to osteoporosis, are very 

poor candidates for pedicle screw fixation such that the advantages gained by modern 

forms of instrumentation are neutralized in osteoporotic patients [44].  Soshi et al. have 

described the JIKEI Index, which relates bone-mineral density and pedicle screw pullout 

strength using an x-ray based scheme.  The patient is graded on a scale ranging from 0 to 

3.  A grading of 0 represents normal trabecular pattern and density while grade 3 

demonstrates very poor bone quality with disappearance of transverse trabeculae and 

ground-glass appearance of bone on x-ray imaging.  Spontaneous compression fractures, 

which are commonly seen in elderly, generally occur in stages 2 and 3 of this grading 

system, in which bone quality is so poor that the authors concluded pedicle fixation to be 

contraindicated [44].  However, since pedicle screw fixation represents the best mode of 

fixation available in spine surgery, only inferior options for the treatment of these patients 

remain. Some authors have recommend a hook based construct in osteoporotic patients, 

but, this does not lead to an improved outcome [34]. 

In order to address the issue of poor screw purchase in osteoporotic bone, 

researchers have proposed methods to further supplement the pedicle screw fixation.  

One such technique is the addition of  bone cement such as methyl methacrylate, calcium 

triglyceride, or polypropylene glycol fumarate [35, 48, 57, 59, 65, 73].  Although this 

technique demonstrates significant improvement in pullout strength and construct 
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rigidity, it carries the risk of cement extrusion into the spinal canal which can lead to 

considerable complications, the worst being paralysis. 

1.4 IMPLANT MATERIALS 

Metallurgy (the study of metals and their properties) is of importance when 

designing and using metallic implants for surgical purposes.  Without this knowledge, 

inappropriate material selection can lead to failure of an implant despite appropriate 

geometric design.  Most spinal implants are made of an alloy, which is a mixture of 

metallic elements.  These elements commonly include: aluminum, titanium, vanadium, 

chromium, manganese, iron, cobalt, nickel, zirconium, niobium and molybdenum [1].  

Out of these, only titanium is used in its pure form to make spinal implants, with four 

different commercially available grades; grade 1 is the most pure, containing no 

contaminants, while grade 4 is the least pure.  The higher grades have higher moduli of 

elasticity and increased tensile strength, making them a better option for use in 

production of spinal instrumentation. Currently, the alloys used in the manufacturing of 

spinal implants and, in particular, pedicle screw systems are: 316L stainless steel, 22-13-

5 stainless steel, Co-Cr-Mo and Ti-6Al-4V (a mixture of titanium, aluminum and 

vanadium). Although many different materials have been investigated for manufacturing 

of pedicle screws, the most widely used material for pedicles screw production is the 

alloy form of titanium.   This alloy is ideal for spinal instrumentation due to:  1) excellent 

magnetic resonance imaging (MRI) compatibility with minimal “noise” production 

compared to other metals, 2) relatively low modulus of elasticity when compared to the 

other commonly used surgical metals listed above, and 3) decreased allergic reactions 

compared to metals containing nickel or chromium.  The lower modulus of elasticity 

allows for a less stiff construct that reduces the phenomenon of stress shielding (i.e., bone 

resorption), which leads to osteoporosis around implants [74].  However, stainless steel 

and cobalt chrome continue to be valid options as implant materials for spinal surgery.  

Some systems utilize a variety of materials for different parts of the system to create a 

hybrid construct (for example, titanium alloy for the screw and cobalt chromium for the 

connecting rods)  [4, 75]. 
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1.5 SCREW DESIGN 

As previously mentioned, pedicle screws are commonly utilized in surgical 

stabilization of the spine (i.e., spinal fusion surgery).  The indications for their use extend 

from pediatric to adult patients. As the primary mode of fixation in deformity, trauma, as 

well as the management of chronic or degenerative conditions of the spine, their ability to 

retain bony purchase is paramount to procedural success.  Even though current pedicle 

screws offer the strongest surgical construct available; in cases of osteoporosis, revision 

surgery or severe trauma, conventional pedicle screws can be inadequate, leading to early 

failure through loss of fixation (i.e., screw loosening). 

Figure 4 illustrates the key screw features that must be considered in screw 

design.  The screw can be divided into 4 basic components: head, core, thread and tip.  

Alterations to any of these components will change the mechanical properties of the 

screw, as well as its interface with bone.  Screws are commonly utilized in surgical 

procedures involving bone, and different screw attributes and designs have been well 

studies and optimized to allow for the best possible fixation strength to be achieved. 

The head of spinal pedicle screws is often referred to as a ‘tulip’.  Generally a 

screw head functions to resist the translational force created by the rotation of the screw 

once the screw is fully tightened with its head abutting against the surface into which the 

screw is placed.  However, for modern pedicle screws, the head must play two roles: 

resist the translation force and act as the anchor point for fixation to a rod which connects 

the other screws along the screw-rod construct.  This mechanism has been well studied 

and well designed and is very rarely the point of failure.  As such the screw design 

modifications suggested in this thesis do not attempt to alter the tulip designs.   

The core of the screw (i.e., minor diameter) is the primary determinant of the 

screw’s fracture resistance to both bending and torsional forces.  The screw’s strength is 

proportional to the cube of the minor diameter.  As such, the fracture strength of the  
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Figure 4: Basic Screw and Thread Terminology 

Key feature of the screw design are labeled: A = screw head or tulip, B = head body 

junction, C =pitch, D = thread angle, E = major diameter, F = minor diameter and G = 

screw length. 
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screw increases exponentially as the minor diameter is increased [76].  It would 

then seem intuitive that the screw with the largest minor diameter that is anatomically 

possible would be the best treatment option; however, this is not the case.  One issue with 

a large core diameter is sacrifice of the thread depth, a factor discussed in detail below.  

Furthermore, increased minor diameter results in a stiffer screw and subsequently a stiffer 

surgical construct, which has been associated with stress shielding of the bone [74].  This 

must be weighed against the fact that if the construct is not rigid enough, excessive 

movement may result in non-union [77].  The other factor to consider regarding minor 

diameter is its shape.  Investigators have studied the effect of changing the shape of the 

core from cylindrical to conical with the end closer to the head of the screw having a 

larger diameter.  This produces compression forces at the bone screw interface and, 

despite sacrificing thread depth near the screw head, has been show to result in increased 

pull-out strength [55].  One example of such a screw is the Xia® instrumentation system 

(Stryker®, Spine Michigan, Kalamazoo). 

The screw thread is of critical importance to pull-out strength and multiple aspects 

of the thread can be modified. The 3 most critical design elements are thread depth, pitch, 

and type.  Thread depth is defined as the difference between the minor and major 

diameters, where the latter is the largest diameter of screw measured to the tips of the 

threads.  Generally speaking, larger thread depth results in better bone purchase and 

stronger screw pull-out in soft cancellous bone such as the bone in the vertebral body.  

However, increasing thread depth results in sacrifice of minor diameter, and thus fracture 

strength.  Thread pitch, when considered in metric measurement, is defined as the 

distance between two adjacent threads.  Alternatively, the pitch as defined as the number 

of threads per inch or TPI in the standard measurement system.  For simplicity, the metric 

system will be used to define screw pitch in this thesis.  Finally, thread type refers to the 

shape of the thread, of which there are nearly infinite options. The designs utilized most 

often in surgical implants include: “V” shaped treads (which are in most cases a 60 

degree “V”), buttress shaped treads and square shaped threads. 

In surgery, two types of screws are generally utilized depending on the type of 

bone that is being instrumented (cortical bone vs. cancellous bone).  Cortical screws are 
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more like machine screws, meaning that they have a low thread depth and low thread 

pitch, an ideal combination for gaining screw purchase in a hard material.  On the other 

hand, cancellous screws are more like wood screws in that they have a high thread pitch 

and large thread depth.  This combination allows for screw purchase in relatively weak 

material such as cancellous bone because it allows for a larger amount of bone to be 

present between each thread thus increasing its strength.  Since pedicle screw fixation 

(even within the pedicle) is mostly within cancellous bone [78], most pedicle screws are 

designed like wood screws. 

For pedicle screws, the ideal thread type, shape, pitch, core shape, and size, have 

been determined [1, 4, 5, 55, 69].  Ultimately, for the purposes of increasing pull out 

strength, V shaped threads should be utilized with a pitch of approximately 2.8mm and 

thread depth of approximately 1mm with a core that has a conical shape.  Some 

manufacturers (such as the Xia® screw from Stryker®) have capitalized on these 

parameters, by producing screws with these specifications that have proven to be very 

successful in clinical use.  Therefore, any new screw design must consider incorporation 

of these previously established design features. 

Several types of bone-implant interfaces are employed to achieve bony fixation. 

These include: penetrating, gripping, conforming, osteointegration, and abutting 

interfaces.  Current pedicle screw designs primarily take advantage of the penetrating 

interface to gain fixation into bone.  However, in weaker or compromised bone, this 

single mode may be insufficient to achieve the necessary required fixation.  It may be 

possible to provide additional abutting fixation at the anterior aspect of the pedicle or the 

junction at which the pedicle connects to the body by changing the shape of the screw at 

this site (i.e., penetrating and abutting).  Other spinal instrumentations work by utilizing 

other methods of fixation.  For example, hooks used in surgery work by gripping the 

bone, and when cement is used, it functions by conforming to the bone.  Another method 

of fixation depends on bone in or on growth on to the device called osteointegration, 

which  can be expected if the implant is coated with substances such hydroxyl apatite [79, 

80]. 
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In an attempt to address the deficiency of a pedicle screw for use in osteoporotic bone 

investigators have attempted to design and produce expandable pedicle screws with some 

success. These screws have been reported to increase mean pullout strength by 

approximately 30% while also demonstrating safe in-vivo use [35, 81-85].  However, 

little clinical data exist today to support the efficacy or safety of these devices.  An 

example of such a device available for use in North America is the OsseoScrew-Zodiac® 

(Alphatec Spine Inc, Carlsbad, CA). This screw is an expandable titanium screw 

marketed for use in osteoporosis.  Short term clinical data and in-vitro biomechanical 

studies have been performed on this device.  The biomechanical studies do demonstrate a 

30% increase in ultimate failure load as compared to standard screw and it is debatable if 

a modest increase outweighs the added cost and complexity. 

1.6 THESIS RATIONALE 

The pedicle screw has revolutionized spinal surgery.  However, the lack of sufficiently 

strong instrumentation for the treatment of patient with compromised bone justifies the 

need for development of a novel fixation device.  By designing a screw that combines 

penetrating and abutting fixation, this may be realized.  By drawing an analogy to 

expanding drywall screws, which have a successful track record for achieving a strong 

grip into an otherwise weak and fragile drywall surface, the concept of developing a 

pedicle screw with an expansion-type mechanism for gaining fixation in a compromised 

vertebra was developed.  This lead to the overall thesis objective of: designing, building 

and testing a pedicle screw, capable of expanding within the vertebral body post 

insertion. 

 

1.7 OBJECTIVE AND HYPOTHESIS 

The specific objectives of this study were:  

1. to design multiple versions of novel pedicle screws capable of expanding after 

insertion through the pedicle;  
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2. to build working prototypes of these designs using recently available rapid-

prototyping technology at our institution (i.e., selective laser melting machine 

(SLM)); 

3. to test and compare these designs against each other and the current ’gold 

standard’ pedicle screws in pullout testing using Sawbones; and 

4. to develop a final working prototype and compare it to a ’gold standard’ 

pedicle screw in osteoporotic cadaveric models.   

The hypotheses of this investigation were: 

1. a novel expanding screw design could be built using SLM technology, and  

 

2. this novel expanding screw design would improve bony fixation in the 

osteoporotic spine as demonstrated through improved pullout strength 

compared to the current ‘gold standard’ traditional pedicle screw.  
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2 CHAPTER 2: MATERIALS AND METHODS 

2.1 IMPLANT DESIGN 

To develop an effective and user friendly expanding pedicle screw system, a 

design team was assembled consisting of fellowship trained spinal surgeons and 

biomechanical engineers.  This expert team determined several critical design parameters 

for the novel pedicle screw design. The team determined that: 1) the screws should be 

usable with standard surgical techniques for pedicle screws, 2) the amount of expansion 

should be adjustable intraoperative, 3) the expansion should occur in the same location, 

specifically the vertebral-body pedicle junction, despite anatomic variations amongst 

patients, 4) the expansion should be reversible so that the screw can be extracted if 

required, and 5) the pullout strength of the new design should be at least 50% greater than 

the pull-out strength of the ’gold standard’ screw in osteoporotic bone. 

To achieve these goals, four different screws were initially taken through the 

conceptualization stage to prototype development.  Three of these designs utilized the 

approach of an expanding helical shell over top of a central threaded core (Figures 5–7).  

Expansion of the helix is achieved post insertion by turning the central core which 

contracts the helix while increasing its diameter (see Appendix B).  The expansion is 

dictated by the leading and lag angles of the helix, and the number of turns given to the 

central core.  Through the building of multiple prototypes and subsequent pilot testing, it 

was established that an angle differential of 40 degrees was necessary to optimize device 

expansion, meaning that the helix groove is cut in such a manner that the top wall is 

angled at 80 degrees and the bottom wall at 40 degrees (Figure 7).  This is critical as it 

allows for a gradient inclination from one wall to the next, reducing resistance during 

expansion.  The difference between the three designs is the length of the helical screw 

shell.  In Design #1, the helix runs nearly the entire length of the screw (referred to as the 

complete helix).  In Design #2, the helix is only the end of the screw (referred to the 

distal helix).  Design #3 has the helix in the central region of the screw (referred to as the 

central helix).  The 4
th

 design, utilizes a simpler expansion mechanism.  It has two open 

slits on each side that hinge on a single pivot point near the head of the screw and open 
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due to the presence of an internal ramp (Figure 9).  These two slits open similar to a 

window, thereby naming this design as a ’window’ screw.  

2.1.1 COMPLETE HELIX 

The complete helix screw is designed specifically for pedicle fixation in the 

lumbar spine (Figure 5).  The dimensions of the screw are based on the most commonly 

utilized pedicle screw in the lumbar spine (Figure 6).  The length of the screw is 45mm 

from screw tip to the shaft-head junction.  The minor diameter measures 4.5mm while the 

major diameter is 6.5mm.  The threads are V shaped with a 60 degree angle and the 

thread pitch is set at 2.8mm with a resulting thread depth of 1mm.  The screw body is 

hollow with a cylindrical bore diameter of 3.0mm.  The distal 4.0 mm (at the tip) is cut to 

2.5mm and has an inner thread based on a metric M3 thread (pitch = 0.5mm).  The main 

novelty of the expanding shell is the grooved, left-handed helix.  The direction of the 

helix is reversed from that of the screw thread to prevent the helix from unwinding during 

screw insertion.  The pitch of the helix is 5mm.  Of notable importance is the angle of the 

walls of the helix (Figure 7).  For the helical screw to expand post-insertion, an inner 

screw is required (Figure 5). The inner screw is designed as a standard shaft screw with 

slight modifications.  It has an overall length of 45mm and is threaded at the tip for a total 

of 25mm with standard M3 threading to match the inner threading of the previously 

described helical screw tip.  The head of this inner screw is designed to accept a 2.5mm 

Hex driver.  The head-body junction is contoured to fit flush against the top of the helical 

screw upon complete insertion, providing the buttressing force that in turn expands the 

outer screw shell.     

The helical screw shell works simply by shortening in length during insertion of 

the inner screw.  Once the helix has closed, the walls of the helix come into contact with 

one another and overlap, causing expansion of the outer screw shell in a circumferential 

fashion.  Furthermore, since the expansion is allowed to occur along the entire length of 

the helix, the expansion will follow the path of least resistance, preferentially expanding 

inside of the vertebral body, abutting against the inner wall of the pedicle for support.  

The preferential expansion is an ideal characteristic for an expandable device because it 
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protects against fracture of the pedicle or body if the screw is not placed perfectly in the 

center of the pedicle or vertebral body. 

This device uses a helical design to allow for reduced resistance during expansion 

of the screw post insertion into the pedicle.  The helix is unique in that it allows for the 

amount of expansion to be known (i.e., directly related to the number of turns applied to 

the inner screw), and the surgeon will be able to dial in the amount based on anatomic 

limitations or patient specific parameters.   

2.1.2 DISTAL AND CENTRAL HELIX 

To control the exact location of expansion, placement of the helix on the screw can be 

altered (i.e., distal and central helix).  The distal and central helix were identical in every 

aspect to the complete helix with the exception of location (Figure 8).  In the distal helix 

design, the helix starts 5mm from the tip and extends towards the head of the screw for a 

total of 25mm (i.e., leaving the top 15mm of the screw without helix).  The central helix 

has the helix designed into its central aspect with the top and bottom 10mm of the screw 

not having a helix.  These are only a few of the many modifications that could also be 

viable variations of the proposed helical screw shell.  However, ultimately the goal is to 

have a device that expands at the pedicle body junction and abuts against the back of the 

body preventing screw pullout, which is accomplished with the current designs. 

 

2.1.3 WINDOW SCREW 

The window screw differs from the others mainly by the method that it achieves 

expansion and abutment at the pedicle body interface.  The overall length of this screw is 

also 45mm with a minor diameter of 4.5mm and major diameter of 6.5mm.  The threads 

are V shaped with a pitch of 2.5mm and thread depth of 1mm.  The head is an 8mm hex 

nut.  The expansion mechanism of this screw occurs through the opening of 2 slits on 

opposite sides of the screw designed to open in the cranial and caudal ends of the pedicle 

via insertion of a 3mm inner set screw.  This screw is designed such that it is hollow for a 

total length of 30mm from head down.  The top part of the screw is threaded on the inside  
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Figure 5: Design of complete helix expandable pedicle screw and the central 

threaded core 

These imaged demonstrated the Outer Shell or the expandable portion of the design as 

well as the Inner Screw which drives the expansion after insertion into the Outer Shell. 
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Figure 6: Fully Helical Expandable Screw Cross section 

Cross sectional rendering of the Outer shell demonstrated the threaded distal segment into 

which the Inner screw is engaged as well as screw dimensions. 
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Figure 7: Side wall angle and dimensions for helical screw 

Dashed box in top image is shown in lower inset image up close.  The wall of the helix is 

designed with a 40 degree differential in angle and total wall thickness of 0.5mm. 
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Figure 8: Modification of the complete helical screw 

By changing the location of the helix, two modifications to the complete helix screw 

were created: (A) central helix screw, and (B) distal helix screw. 
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Figure 9: “Window” Srew design 

(A) Rendition of the window screw.  (B) Cross section of the window screw. 30mm of 

the screw is bored out and the top is threaded with M3 threading allowing for insertion of 

inner screw which will expand the screw due to a slopped inner wall. 
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for a total length of 5mm with standard M3 thread, to allow for the inner screw to be 

threaded into place.  The inner screw is a 3.0mm metric M3 set screw with thread pitch of 

0.5mm.  It is threaded for its total length and is driven by a 1mm hex driver.  Upon full 

insertion it sits flush with the top of the expandable screw.  The two “windows” have a 

length of 25mm and width of 2mm, on the inside, they are designed with a 12.5 degree 

ramp which starts at the tip of the “window” and goes towards the tip of the screw for a 

total distance of 1cm.  Overall, the insertion of a 3mm inner screw, results in a maximum 

diameter of 12mm at the tip of the windows. 

2.2 TESTING PROTOCOL 

Five copies of the four screw prototypes described in Sections 2.1.1 through 2.1.3 

were produced and prepared for testing.  These screws were manufactured from grade 

316L stainless steel on a SLM machine (DM 125, 3D Systems, South Carolina, USA) 

housed in the Robarts Research Institute of Western University. After extraction from 

the SLM, all screws were further polished and tapped by hand to remove any residue or 

burrs remaining from the manufacturing process.  All screws were carefully examined 

under 2.5 times magnification for defects. Size accuracy (i.e., length = 45mm and major 

diameter = 6.5mm) was confirmed utilizing an electronic caliper with accuracy of 

±0.02mm (Mitutoyo®, Tokyo, Japan).   

 

2.2.1 SAWBONES TESTING 

Thirteen L5 Sawbones® (Pacific Research Laboratories, USA), specifically 

designed to be radio-opaque under fluoroscopy, were prepared for screw insertion. 

Each vertebra was placed in a small clamp and oriented such that the posterior vertebral 

body was horizontal.  This was accomplished by using a laser level to ensure that the 

posterior vertebral body remained horizontal throughout the screw hole preparation.  A 

45mm deep pilot hole was drilled using a 2.5mm “twist” metric drill bit attached to a 

Dremel® 4000 Rotary Tool mounted on a Dremel® Works Station™ Model 220-01.  

The rotary tool was set at 5000 RPM, while the work station was tilted to 30 degrees.  

Additionally, a 5 degree wedge was placed under the clamp.  Combined, this allowed 

for the consistent drilling of every pedicle with 30 degrees of medial angulation and 5 



26 

 

 

degrees of caudal angulation.  This trajectory was selected based on previously reported 

morphometric characteristics data [2].  The pilot track was followed with a standard 

straight pedicle probe to a depth of 45mm; it was than rotated 180 degrees in each 

direction once, prior to removal as per standard surgical technique.  The pedicle probe 

was used to allow the surgeon proprioceptive feedback while creating a passage for the 

pedicle screw thus minimizing the chance of breakout of the pedicle (Figure 10).  These 

preparations were performed in both pedicles of each Sawbone®, creating a total of 26 

testing sites.  Five screws of each type (5 Distal Helix, 5 Central Helix, 5 Complete 

Helix, 5 Window Screws) were selected and randomized to one of the testing locations.  

For ‘gold standard’ control, 5 size-matched (i.e., 6.5mm by 45mm) screws from the Xia 

Titanium pedicle screws system were utilized (Stryker, Xia spine system, Kalamazoo, 

Michigan, USA) and placed in randomized testing sites.   The screws were inserted by 

hand, maintaining a constant angle and speed by a trained spine surgeon until the entire 

length of the screw had entered the vertebra. The screws were stopped 3mm prior to 

reaching the end of the screw, which was not dependent on insertional torque. For the 

helical screws, the central core was inserted to stabilize the screw during implantation; 

however, the screws were not expanded until after they were fully inserted.  To produce 

expansion, all of the helical screws required 20 revolutions on the inner core, except for 

the Complete Helix screws that required 25 revolutions.  The inner core of the Window 

screw was inserted to its full length.  The specimens were all subsequently imaged 

using fluoroscopy (C-arm model 850, General Electric Mississauga, ON,) to confirm 

appropriate screw trajectory and expansion (Figure 11).  Orthogonal views were used to 

confirm central placement of all screws within the pedicle.  The vertebras were also 

examined thoroughly to rule out any fractures or defects caused by screw insertion and 

expansion.  

 

Each of the 13 vertebra were than potted in metal boxes using Denstone™ 

cement (Heraeus Kulzer Inc., South Bend, IN).  To increase fixation, several drywall 

screws were placed in the vertebra prior to potting, and buried within the Denston.  

Judicious potting was performed to ensure that the cement did not come  
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Figure 10: Pedicle Preparations for Screw Insertion 

(A) Pilot hole was drilled into the vertebral body with 30 degrees of medialization and 5 

degrees of caudal angulation. (B) A standard surgical pedicle probe or “bonker” was 

inserted as part of the final preparation of the pedicle for screw insertion. 

 

  

A 

B 
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Figure 11: X-Ray Post Screw Insertion 

Fluoroscopic image of L5 Vertebra post insertion and expansion of a Fully Helical 

Expandable screw.  (Note: “Dots” observed within the vertebral body are part of the 

Sawbone® design) 
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into contact with any portion of the pedicle screw.  Post testing, examination of the 

screws and screw hole was performed to confirm that the Denston had not penetrated 

the specimen, a concern previously stated by other authors [86].  The potting boxes 

were mounted on to a materials testing machine (Instron® 8874; Instron, 

Massachusetts, USA) to allow for axial pullout testing of the screws (Figure 12).  The 

pedicle screws were connected to the Instron’s load cell by a custom-made apparatus 

capable of grabbing a screw head with a low profile.  The potted fixture was than 

attached to a universal joint clamp fixed to the Instron’s base table via a bearing 

platform designed to allow complete freedom in the x-y planes of motion.  Because the 

fixture was free to move in the x and y directions and the angle of pull was adjustable 

through the universal joint, the line of pull of each screw was standardized.  In order to 

ensure that all screws were positioned vertically prior to pull-out, a ’bulls eye’ level 

was attached to the top of each screw and the universal joint adjusted until the screw 

was vertically positioned.  The screws were then loaded in displacement control at a 

constant rate of 10mm/minute for a total displacement of 2 cm in accordance with 

published literature on axial pull out testing and standards set by the American Society 

for Testing and Materials (ASTM) [35, 81, 82].  Load and displacement data were 

collected at 100Hz, resulting in approximately 1000 data points per screw tested.  

Failure was defined as the maximum load or the load peak prior to decrease in load 

associated with increasing displacement [35, 82, 85].  In addition to randomized 

placement of the screws, right and left sides of each vertebra were tested in random 

order to lower potential confounding effects of surgical technique.  After the pull-out 

was completed, the specimen and the screws were closely examined for signs of 

fracture and damage, and these findings carefully recorded. 

From the data points collected, ultimate load was calculated as the largest load 

experienced during the test.  Statistical comparisons were performed using a one-way 

analysis of variance (ANOVA) test on SPSS v. 17 (IBM, Chicago, IL).  Using this data 

along with feedback from clinicians, the full helical screw design was considered to 

have the most desirable properties.  As such this design was selected for further testing 

in human osteoporotic cadaveric bone. 
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Figure 12: Setup for screw pullout protocol 

(A) Specimens were positioned on a universal joint and bearing plate allowing for 

accurate centering and vertical positioning of all screws. (B) Custom made clamp held 

the screw with low profile (C) Materials testing machine (Instron 8874; Instron, 

Massachusetts, USA) allowed for axial pullout testing of the screws. 
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2.2.2 CADAVERIC TESTING 

 

Additional testing of the complete helix screw was performed using three fresh frozen 

lumbar cadaveric spines (T12-L5).  A total of 16 vertebra or 32 test sites were 

estimated to be required following a power analysis based on pilot data utilizing a 

standard deviation of 250, a beta of 0.8 and an alpha of 0.05 to detect a difference equal 

to or greater than 50% in ultimate failure load. Therefore, six vertebral bodies (T12 to 

L5) per spine were dissected free of all soft tissues while maintaining the bony 

elements. All 3 specimens belong to female donors aged 75, 95 and 72 years old, 

selected due to low bone density.  They were examined visually to rule out any bone 

based defects and scanned using Computed Tomography (GE Discovery 750 HD) to 

identify any internal bony abnormalities.  Helical CT scans were performed with full 

rotations at 0.6 sec per rotation under high resolution, with scan thickness and interval 

set at 0.625 mm by 0.625mm. Furthermore, the bone density of each specimen was 

calculated based on comparison to a known standard phantom bone density placed in 

the CT scan simultaneously with each specimen.  Density is related to Hounsfield units 

(HU), which were determined for each vertebra using multiple samples from each 

vertebra.  Bone density was subsequently calculated for each specimen. The 

demographics and bone density of each specimen is listed in Table 1.   

For a ‘gold standard’ comparison, replicas of the matching Xia screws were built 

on the SLM, ensuring standardized screw build quality, materials and finish. 

Eighteen expandable screws and eighteen standard 45mm X 6.5mm pedicle screws 

were inserted in the prepared cadaveric specimens using the protocol described in 

Section 2.1.1.  Each vertebra had one standard screw and one expandable screw 

inserted, with randomization to the left or right pedicle. This allowed for a  repeated-

measures design, since each screw design was compared within the same vertebra 

(one screw inserted into each pedicle), therefore improving the study power, such that a 

limited number of test cadavers were needed to achieve the desired statistical 

significance.  Fluoroscopy was utilized to: 1) confirm screw placement, 2) identify  
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Table 1: Cadaveric specimen demographics and bone density 

Age, sex, and reason for death, and bone density of each specimen. 
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fractures, and 3) confirm screw expansion. The remainder of the testing protocol and 

potting procedures were identical to those described earlier in Section 2.1.1. 

Using load displacement curves, yield load, ultimate load, energy to peak, energy 

to end of test, and stiffness were calculated.  Yield was define as the load under which 

the load displacement slope changed (i.e., plastic deformity was noted).  Energy was 

calculated as the area under the load displacement curve to peak load as well as to end 

of protocol.  Stiffness was defined as the slope of the load displacement curve before 

reaching the yield point.  The mean values of each of these outcome measures were 

calculated and statistically compared using independent t-test (alpha = 0.05) for the 

expandable screw and standard screw. 
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3 CHAPTER 3: RESULTS 

3.1 SAWBONES TESTING 

In all cases, the standard screws and expandable screws were inserted successfully 

without fractures or break-out of the pedicle.  X-ray images of the specimens confirmed 

central placement of all screws within the pedicle with appropriate angulation following 

the anatomic axis of the pedicle.  In regards to surgeon feedback, all screws could be 

inserted using standard surgical technique with proprioceptive feedback similar to that of 

the standard screw.  A rotational weakness of the window screw was noted.   

Expansion was successful in all cases.  For the helical screws, the distal helix 

expanded fully after twenty revolutions of the inner screw to a maximum diameter of 

10mm as measured post extraction.  This expansion occurred primary around the junction 

between the pedicle and the vertebral body with some variability existing in the shape of 

the expansion with the screws expanding both symmetrically and asymmetrically.  The 

same was true for the central screw, despite more proximal position of the helix, the helix 

expanded primarily around the area of the body-pedicle junction with a maximal diameter 

of expansion being approximately 10mm.   In the case of the fully helical screw, full 

expansion occurred after 20 revolutions of the inner screw to a maximum diameter of 

10mm.  Despite the extension of the helix into the pedicle, very little expansion occurred 

within the pedicle with the maximum diameter of expansion occurring at the body 

pedicle junction similar to the other screw designs.    The total expansion was limited by 

lack of threading on the inner screw.  Therefore, further expansion was possible and safe 

and only limited by amount of screw threading.  The maximum expansion of the Window 

screw was 8.5mm, which occurred at a distance of 30mm from the head of the screw.  All 

the window screws expanded successfully; however, the creation of the window had 

resulted in decreased rotational rigidity of the screw to a point that some plastic deformity 

occurred in the screws during insertion.  This was primarily a twisting deformity, but did 

not affect screw expansion or result in the screw breakage. 

During pull-out testing the majority of the screws failed at the screw-bone (in this 

case, screw foam) interface.  Essentially, the threads that cut into the bone during 
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insertion fractured, allowing for the screw to slip out.  In exception, 2 out of the 5 distal 

helical screws failed due to screw fracture at the junction of the proximal end of the helix 

(near the head) and the solid screw.   

The highest mean ultimate failure load of 989 N was found in the complete helix 

screw (Figure 13).  The second largest value occurred in the central helix, which had 

mean ultimate failure load of 941 N.  The Distal Helix, Window Screw and Xia screw 

had mean ultimate failure loads of 910 N, 849 N and 924 N, respectively.  These values 

were not significantly different from one another (p > 0.05) (Table 2). 

 

3.2 CADAVERIC TESTING 

Based on observations from the Sawbones testing, the inner core threads of the 

complete helix were extended an additional 5mm allowing for 10 more revolutions if 

needed. The specifications listed in Section 2.1.1, are for this final design, being 25mm of 

threading at the end of the inner screw.  

The average bone density of the 3 specimens was 97 mg/cm
3
 (Samples: 75 year 

old female; 95 year old female; 72 year old female). The CT scans obtained from the 

specimens did not demonstrate any bony abnormalities or fracture.  
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Figure 13: Mean Ultimate failure load of four novel and one standard screw 

Graph comparing mean ultimate failure load of all four designs and the standard screw as 

tested in sawbones.  Error bars indicate standard deviation. No significant difference was 

found between the screws (p > 0.05). 
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Table 2:Ultimate failure load values for all 4 prototypes and Standard Screw 

This table demonstrates the mean ultimate failure load of the four prototypes and the 

standard screw as tested in Sawbone® specimens.  Five tests were performed in each 

case. 
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During insertion of the expandable screws and standard screws, no fractures 

occurred and x-rays post insertion confirmed appropriate screw placement and expansion.  

In every case, the expandable screw expanded successfully with a maximum expansion 

of 11mm.  The majority of the expansion occurred at the pedicle-body junction and, 

despite the screw being fully helical, very little expansion (on average less than 1mm) 

occurred within the pedicle itself.  Screw expansion did not result in any fractures.  In 

two cases (i.e. L2 of Specimen 1 and T12 of Specimen 2), the testing resulting in failure 

of potting and therefore these specimens were excluded from the study.  The potting 

failure occurred at the specimen cement interface in both cases and prior to any obvious 

screw loosening. 

For the standard screws, failure occurred at the screw-bone interface with the 

inner threads of the pedicle stripping, resulting pull out of the screw.  In the case of the 

expandable screws, the majority of the failures (13/16) were due to failure of the screw-

bone interface.  However, in 3 specimens, failure occurred due to fracture of the pedicle. 

These fractures extended from the lateral wall of the pedicle to the medial wall of the 

pedicle and exited through the lateral aspect of the lamina.  These fractures did not affect 

the contralateral pedicle or vertebral body. 

Figure 14 shows a representative load-displacement curve, from which ultimate 

load, energy to peak, total energy, yield and stiffness were calculated.  Tabulated data for 

all specimens is shown in Tables 3 and 4.   The mean ultimate failure loads were 623N 

and 656N for the standard and expandable screw, respectively (Figure 15).  The standard 

deviation was 277 for the standard screw and 250 for the expandable group.  These 

values were not significantly different (p=0.73).  Mean energy to peak load was 21360 

Nmm for the standard screw and 33401 Nmm for the expandable screw (Figure 16) (p = 

0.1).  Mean total energy was calculated to be 34463Nmm and 53943Nmm for the 

standard and expandable screw, respectively (Figure 17).  This represents a 36% increase 

in energy favoring the expandable screws (p=0.02).  Stiffness values for both groups 

were similar (p=.89) (Figure 18).  For the standard screw, mean stiffness was measured at 

224 N/mm, while in the expandable screws it was 238 N/mm.  The yield load value were 

also the same between two groups (p=0.25) (Figure 19).  The standard screws had yield 
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value of 380 N/mm and the expandable group had a yield value of 484 N/mm (Table 3.1 

and 3.2). 
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Figure 14: Sample Load Displacement Curve 

Load displacement curves for the expandable screw and standard screw in L4 of 

Specimen 1 are shown as a representative sample.  The ultimate failure load, yield point, 

energy to peak and energy to end are labeled. 
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Figure 15: Mean ultimate failure load of standard screw vs. expandable screw 

This graph compares the ultimate failure load of a standard screw vs. the fully helical 

expandable screw as tested in the cadaveric specimens.  The Standard screws had a mean 

ultimate failure of 623 N with a standard deviation of 250 (shown as error bar).  The 

expandable screw had a mean ultimate failure load of 656 with a standard deviation of 

277.  These values are not statistically different. 
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Figure 16: Mean energy to peak load of standard screw vs. expandable screw 

This graph compares the mean total mean energy to peak of the standard screws vs. the 

fully helical expandable screws as tested in cadaveric specimens.  The standard screws 

had mean energy of 21360 Nmm vs. 33401 Nmm for the expandable screw.  The error 

bars indicate the standard deviation.  These values are not statistically different. 
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Figure 17: Mean total energy of standard screw vs. expandable screw 

This graph compares the mean total energy until the end of the pull-out test for the fully 

helical expandable screw vs. the standard screw as tested in cadaveric specimens.  The 

expandable helical screw resulted in 36% increase in energy. The standard screws had 

mean total energy of 34462 Nmm vs. 53943 Nmm in the expandable screws.  These 

values are significantly different (p = 0.02). 
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Figure 18: Mean stiffness of standard screw versus the expandable screws 

This graph demonstrates mean stiffness values for the standard and the fully helical 

expandable screws as tested in cadaveric specimens.  The standard screw had a mean 

value of 224N/mm while the expandable screw had a value of 238 N/mm. The error bars 

indicate standard deviation values.  No significant difference was found. 
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Figure 19: Mean yield values for the standard screw versus expandable screws 

This graph demonstrates the mean yield values of the standard screw versus the fully 

helical expandable screws as tested in cadaveric specimens. The mean yield value for the 

standard screw was 380 N and for the expandable screw it was 484 N. The error bars 

indicate standard deviation.  No significance difference was found between these values. 
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Table 3: Data for testing of the standard screws in Cadaveric specimens 

This table demonstrates the collective data for all testing in cadaveric specimens 

including all 3 specimens for the standard screws.  Ultimate failure load, energy to peak, 

energy to end, yield and stiffness values are shown.  
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Table 4: Data for testing of the Helical screws in Cadaveric specimens 

This table demonstrates the collective data for all testing in cadaveric specimens 

including all 3 specimens for the Helical screws.  Ultimate failure load, energy to peak, 

energy to end, yield and stiffness values are shown. 
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4 CHAPTER 4: SUMMARY AND DISCUSSION 

In the surgical treatment of spinal disease, pedicle screws represent the gold 

standard of fixation in the thoracic and lumbar spine [5].  Their presence has substantially 

changed the surgical treatment of a wide variety of spinal disease, including but not 

limited to, degenerative, traumatic, deformity and cancer-related diseases.  In most cases, 

the stability and screw purchase obtained with pedicle screws is sufficient to manage 

patients with spinal pathology.  However, in cases of osteoporosis, severe trauma or 

revision surgery, the current pedicle screw represents a significant limitation, as it cannot 

provide sufficient bony purchase and can lead to early failure.  This failure can have 

catastrophic outcomes for the patient and represent a grave challenge to the surgeon. 

For patients who have had severe trauma to their spine, current instrumentations 

are not strong enough to maintain the patients’ alignment.  As such, patients must often 

undergo further surgery, such as reconstruction of the anterior spinal column, to achieve 

sufficiently stability [87].  Improving a posterior construct to withstand progressive 

deformity secondary to the instability resulting from the trauma would limit the need for 

a second, larger anterior procedure.  

The treatment of patients with osteoporosis is an even more significant problem. 

In the face of osteoporosis, pedicle screws have substantially decreased insertional 

torque, pull-out strength and toggle strength [39, 41, 88]. Osteoporosis is associated with 

high rates of early and late instrumentation related failure, and  is a major challenge and 

cost to our health care system [43].  For example, one study demonstrated a 13% early 

complication rate and a 26% late complication rate directly related to inadequate fixation 

including pedicle fractures, compression fractures, pseudoarthrosis and progressive 

deformity [36]. Surgeons face severe limitations in treating osteoporotic patients with 

spinal instrumentation due to the tendency for these to fail secondary to pullout and 

subsidence.  Often the surgeon is forced to rely on multilevel instrumentation to establish 

multiple points of fixation [36].  This requires longer procedures with increase 

complication rates in patients already compromised by age related co-morbidities [42].  

Some surgeons advocate the use of cement to improve fixation in osteoporotic patients.  
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While this can increase pull-out strength of a standard screw,  it is not an ideal solution 

[44].  Once a screw is cemented into position, the removal results in injury to the entire 

vertebral body.  Furthermore, the cement is injected in a liquefied state and can easily 

penetrate into the canal, potentially causing irreversible nerve injury [4, 48].  Other 

groups have recommended routine bone mineral density testing in all patients who are at 

risk of osteoporosis.  Even if osteoporosis is identified, however, few surgical options 

exists to help compensate for the osteoporotic bone [41].  Another option recommended 

for the treatment of osteoporotic patients is the use of larger diameter screws.  Although 

increase screw diameter in normal bone results in increased pullout strength, this does not 

appear to be a valid option in the osteoporotic case as a few published reports have found 

them to be ineffective [49, 89].  Regardless, screw diameter is limited by pedicle canal 

size, and using larger diameter screws increase the risk of pedicle fracture. 

Since the original conception of the pedicle screw, researchers have investigated 

multiple screw shapes and thread patterns in order to achieve better screw fixation.  It is 

well established that  a screw with a conical minor diameter and “V” shaped threads with 

a pitch of 2.8 mm provide the best form of fixation in both osteoporotic and normal bone 

[46, 51, 55, 56].  However, standard, commercially available pedicle screws, such as the 

Xia® screw distributed by Stryker®, which take advantage of these design elements, 

remain insufficient in the treatment of a patient with poor quality bone.  Furthermore, 

utilization of a conical minor diameter is associated with decreased pull-out strength if 

the screw is backed up [58].  The backing up of a screw is not an infrequent event in the 

operation room and is required in cases were the connecting bar will not match with the 

adjacent screw due to height inequality or simply if the screw is placed deeper than 

initially planned. 

Other authors have attempted to increase pull-out strength of the pedicle screw by 

modifying the methods by which the screw hole is prepared or the angle at which the 

screw is placed.  It appears that the method of the preparation makes little difference in 

overall pullout strength and that a screw placed horizontally will be stronger than one 

placed along the anatomic axis of the pedicle [68, 70, 90].  As such, for our screw hole 

preparation we used a technique similar to that utilized intraoperatively with the screw 
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placed along the anatomic axis of the pedicle.  However, unlike the standard operative 

technique, we did utilize a Dremel® work station to drill a pilot hole in order to 

standardize the angle of insertion.  As this pilot hole only measured 2.5mm in diameter, 

we do not believe it is likely to influence outcome. 

In an attempt to address the deficiency of a pedicle screw for use in osteoporotic 

bone or in cases of revision surgery, several investigators have attempted to design and 

produce expandable pedicle screws with some success.  The majority of these screws 

expand within the vertebral body post insertion.  Most have reported a 30% increase in 

mean pullout strength as well as safe applications of this technology in-vivo [35, 81-85].  

However, little clinical data exist today to support the efficacy or safety of these devices.  

An example of such a device not yet available for use in North America is the 

OsseoScrew-Zodiac® (Alphatec Spine Inc, Carlsbad, CA). This screw is an expandable 

titanium screw marketed for use in osteoporosis.  Short term clinical data and in-vitro 

biomechanical studies have been performed on this device.  The biomechanical studies 

do demonstrate a 30% increase in ultimate failure load as compared to standard screw.   

Our team was able to design and build a novel expanding screw on a recently 

acquired advanced SLM. Utilizing a rapid prototype machine allowed our team to design 

and test multiple designs making modifications quickly and effectively as they were 

needed in a timely manner.  Furthermore, use of this device eliminated the need for 

expensive specialized machining techniques that would have otherwise made this project 

financially non-feasible. We also build our standard screws on this machine for the 

purposes of testing and comparison. This was done primarily due to two factors. Firstly, 

screws build on the SLM have a rough finish equivalent approximately to that of 80 grit 

sand paper.  This high friction surface would likely influence pull-out strength and 

become a confounding factor.  Secondly, the SLMs capability was restricted to use of 

316L stainless steel, a material with higher modulus of elasticity than Titanium Alloy 

used to build the standard pedicle screws.  

We tested this device initially in sawbones.  These models, which include both the 

outer cortical shell and inner cancellous bone, are designed with accurate anatomy as well 
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as material properties to mimic real human bone in a standardized, repeatable manner.  

Moreover, they are less expensive with fewer restrictions for use, storage and disposal 

then cadaveric specimens making them an ideal product for preliminary testing.   

Although we build four different prototypes, ultimately, the higher pullout 

strength of the Fully Helical Screw, as well as, its ability to expand more than the other 

designs lead to its selection for further development and cadaveric testing. It was the fully 

helical screw that was further tested in osteoporotic human vertebra. The helical screw 

design described in this thesis successfully meet the majority of the objectives and 

parameters set out by the design team: 1) expanded in-vitro, 2) expanded at the pedicle 

body junction in all specimens despite size of pedicle or vertebral body, 3) expanded 

without fracturing the pedicle or vertebral body. Furthermore, it used previously 

established design parameters for pedicle screw manufacturing with the exception of a 

conical inner diameter.  Due to the complexity of the design, it was not possible to 

incorporate a conical inner diameter without sacrificing wall thickness substantially. 

None-the-less, the goal of reaching a 50% increase in ultimate failure load was not 

achieved.  

In regards to ultimate load, the helical expandable screw was no better than a 

standard screw.  This finding was unexpected, as the increased diameter of the screw and 

the buttressing effect at the pedicle body junction was thought to increase pull out 

strength.  However, it appears that current screw designs are likely utilizing the fixation 

ability of the pedicle to its full capacity.  Furthermore, the expandable pedicle screw was 

associated with a greater number of pedicle fractures (during pull-out) suggesting that 

pedicle fixation is maximized with the use of standard screw design. Although it is 

difficult to know the exact reason and mechanism behind these fractures, it is likely that 

in some pedicles the expanded screw gains a full buttress fit against the cortex making it 

impossible for the screw to pull-out without a fracture. It would be useful for future 

studies to consider pull-out testing under live fluoroscopy to better characterize this mode 

of failure. As such, despite successful expansion of this design, an increase in pull-out 

was not detected.  Furthermore, expansion of this design requires proximal retraction of 
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previous threads; this in turn results in stripping of some bone threads made during initial 

screw insertion resulting in some loss of fixation.. 

The yield point of this device was also the same as the standard screw.  This was 

an expected finding.  In the case bone screws, the bone is substantially softer than the 

screw despite the type of metal used.  As such, the yield point test is really that of bone 

and not screw and as such not likely to be altered substantially by screw design. In the 

same manner stiffness was also similar between both groups. 

Although both values for energy to peak and energy to pull-out completion were 

increased by 36%, only the value for total energy reached significance.  It is suspected 

that with a larger number of specimens tested, both of these values would likely be 

statistically different.  The pattern of the load displacement curves suggests that this is as 

a result of the expandable screws ability to hold the peak load for a longer period of time.  

The clinical implication of this is currently unknown; however, it is reasonable to 

conclude that a construct with expandable screws in-vivo would take longer to fail when 

compared to the standard screw if exposed to the same loads.   

In regards to other pedicle screw design options considered, 2 out of the 5 distal 

helical screws failed due to screw fracture at the junction of the proximal end of the helix 

(near the head) and the solid screw.  Therefore, this may be an area of force concentration 

which causes the weakened junction between helical and none helical part of the shell to 

brake.   On the other hand, the window screw was deemed to be a non-feasible option as 

the creation of the windows resulted in substantial rotational weakening of the screw 

making it susceptible to deformity with minimal torsional force. 

Nonetheless, the goal of achieving a greater than 50% increase in peak load was not 

reached despite meeting all of the initially determined design parameters.  These data 

provide essential ground work for future design considerations and approaches in 

development of spinal instrumentation for treatment of osteoporotic or otherwise 

compromised bone. 
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5 CHAPTER 5:  FUTURE DIRECTIONS AND LIMITATIONS 

When testing any new surgical instrumentation, a major consideration is the 

realization and reproduction of a realistic mechanism of failure in-vivo.  The testing 

method employed in this study, followed standards of testing outline by American 

Society for Testing and Materials (ASTM) for bone screws.  However, axial screw pull-

out only represents one possible method of screw failure.  In reality, a toggle mechanism 

is likely to be involved in failure of screws in-vivo.  As such it is critical that all new 

designs be tested not only for screw pull-out but also for fatigue failure and toggle failure 

[91, 92]. In that regard, fatigue testing and toggle testing of this screw are likely to 

provide further information as to the clinical applicability of an expandable pedicle 

screw.  

Any replacement of the current pedicle screw should increase pullout strength and 

overall construct strength by more than 50%. This is because any new device will be 

associated with increased monetary cost as well as potential complication rates especially 

during its initial introduction.  As such, moderate increases in bone purchase would not 

justify an entirely new device.  Furthermore, this device should be made to accommodate 

current existing spinal instrumentation systems as much as possible to reduce cost and 

also decrease the amount of training required by surgeons and the operating room staff.   

The ideal implant would meet the criteria of: 1) substantially increasing the 

mechanical properties of fixation, 2) be implantable using standard surgical techniques, 

3) be compatible with existing spinal instrumentations systems, 4) be removable without 

causing extensive bone injury, 5) not expose patient to additional risks, 6) be easy to use 

by the surgeon, and 7) be relatively inexpensive.  In order to achieve these goals, 

researchers need to “think outside the box”.  It is likely that experimentations with other 

materials will be needed as the expansion and elastic properties of metals such as 

titanium and stainless steel are limiting factors in the design and development of 

instrumentation.  Furthermore, this device should utilize greater points of fixation and not 

rely nearly exclusively on the pedicle.  Therefore, other vertebral body structures such as 

the very strong endplates should be considered as possible points of fixation. 
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In summary, the devices studied in this thesis were all capable of achieving 

expansion within the vertebral body and were able to buttress against the pedicle 

effectively. Furthermore, we were able to establish that an advanced rapid prototype 

machine could be utilized effectively to manufacture testable models of complex 

implants.  Also, our study demonstrated than an expandable screw could be inserted and 

expanded safely.  However, despite this, the biomechanical properties were not increased 

to a satisfactory level. There are several possible reasons for this. It is possible that any 

device which utilizes the pedicle alone as a mode of fixation is not likely to increase 

pullout strength sufficiently. However, it is also possible that more traditional 

manufacturing techniques, such as machining from solid, may produce higher quality 

screws than the SLM which could improve the performance of this device.   As such, 

further investigation and design modifications with special consideration given to 

exploration of other biocompatible materials, use of alternate manufacturing process and 

dependents on other points of bony fixation are needed. The experienced gained in this 

body of work, should help researchers work towards developing a superior mode of 

spinal instrumentation for treatment of patients with poor quality bone. 
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7 APPENDIX A – GLOSSARY 

Anterior:  Situated at or directed toward the front; opposite of posterior; refers to the 

front of the body when in the anatomical position. 

Anteromedial:  Directed from the front towards the mid-line of the body. 

Aorta:  The large arterial trunk that carries blood from the heart to be distributed by 

branch arteries through the body 

Arthrodesis:  The surgical immobilization of a joint so that the bones grow solidly 

together. 

Articular:  Of or relating to a joint. 

Atlas:  The first vertebra of the neck. 

Axis:  The second vertebra of the neck. 

Bicortical:  Passing through two cortical walls. 

Bilateral:  Affecting the right and left sides of the body or the right and left members of 

paired organs. 

Cancellous Bone:  A spongy, lattice-like structure of bone, also known as traebecular 

bone. 

Caudal:  Situated in or directed toward the hind; inferior to another structure, in the 

sense of being below it. 

Cervical:  The vertebrae immediately beneath (posterior to) the skull and above the 

thoracic vertebrae. 

Coccyx:  A small bone that articulates with the sacrum and that usually consists of four 

fused vertebrae which form the terminus of the spinal column. 

Contralateral:  Occurring on, affecting, or acting in conjunction with a part on the 

opposite side of the body. 

Cortical Bone:  The dense, outer layer of bone; a hard shell surrounding cancellous 

bone. 

Cranial:  Directed toward the skull, superior to another structure, in the sense of being 

above it. 
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Degenerative:  Deterioration of a tissue or an organ in which its vitality is diminished or 

its structure impaired. 

Fusion:  The surgical immobilization of a joint. 

Graft:  To implant (living tissue) surgically. 

Implants:  Something (as a graft or device) implanted in tissue. 

Inferior:  In anatomy, used in reference to the lower surface of a structure, or to the 

lower of two (or more) similar structures. 

In Situ:  In the natural or original position or place. 

In Vitro:  In an artificial environment outside the living organism. 

In Vivo:  Within the living organism. 

Kyphosis:  Outward curvature of the thoracic region of the spinal column resulting in a 

rounded upper back. 

Lateral:  Denoting a position farther from the median plane or mid-line of the body or a 

structure; refers to being away from the mid-line of the body when in the anatomical 

position. 

Lordotic:  Forward curvature of the lumbar and cervical regions of the spinal column. 

Lumbar:  The vertebrae between the thoracic vertebrae and sacrum. 

Medial:  Situated towards the mid-line of the body or a structure. 

Monocortical:  Passing through one cortical wall. 

Morphometric:  The quantitative measurement of the form especially of living systems 

or their parts. 

Orthopaedics:  The branch of surgery dealing with the preservation and restoration of 

the function of the skeletal system, its articulations, and associated structures. 

Osteoporosis:  A condition that is characterized by decrease in bone mass with decreased 

density and enlargement of bone spaces producing porosity and brittleness. 

Pathology:  The anatomic and physiological deviations from the normal that constitute 

disease or characterize a particular disease. 

Pediatric:  A branch of medicine dealing with the development, care, and diseases of 

children. 
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Pedicles:  Two short pieces of bone that form the lateral sides of the vertebral arch 

connecting the arch to the vertebral body. 

Physiological:  In accordance with or characteristic of the normal functioning of a living 

organism. 

Posterior:  Directed toward or situated at the back; opposite of anterior; refers to the 

back of the body when in the anatomical position. 

Posterolateral:  Posterior and lateral in position or direction 

Proximal:  Situated next to or near the point of attachment or origin. 

Sacral:  Region of the spine containing the sacrum and coccyx. 

Sacroiliac:  The region of the joint between the sacrum and the ilium. 

Sacrum:  A large, triangular bone formed by five fused vertebrae at the base of the spine; 

exists below the lumbar region and above the coccyx. 

Sagittal plane:  Of, relating to, situated in, or being the median plane of the body or any 

plane parallel to it. 

Scoliosis:  A lateral curvature of the spine. 

Spondylolisthesis:  Forward displacement of a lumbar vertebra on the one below it 

producing pain by compression of nerve roots. 

Superior:  Situated above, or directed upward. 

Thoracic:  The vertebrae between the cervical and lumbar vertebrae. 

Thoracolumbar:  Of, relating to, arising in, or involving the thoracic and lumbar 

regions. 

Trabecular Bone:  See Cancellous Bone. 

Transverse:  Extending from side-to-side; at right angles to the long axis. 

Vertebra:  The individual, irregular bones that make up the spinal column 
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8 APPENDIX B – SUPPLEMENT DESCRIPTION OF HELICAL 

SCREW 

Supplement to Description of Invention 

To further clarify the main novelty of this invention and the mechanics causing the 

expansion, in addition to the previous description, a series of images are shown below to 

explain how the expansion occurs.  

 

Figure B20: Section View of Helical Shell 

The outer shell of the novel expanding screw is designed to have an appearance similar to 

other pedicle screws, with a long threaded outer surface connected to a bulbous head (on 

left side of the image).  The unique features of this design is the hollow canal running 

through the screw, the helical shell, and the inner threaded region at the tip of the screw.  

With the hollow canal, the gaps in the helical shell are visible, making it appear as though 

the screw consists of many separate pieces. Instead, this is a function of this cross 

sectional view. The shell of the screw is a helix, similar to a thick spring, with very small 

gaps between the leading and lagging edges.  The final feature of the shell is the threaded 

inner end of the tip, designed to fit an M3 thread. 
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Figure B21: Section View of Helical Shell and Inner Screw at Initial Ingagement 

To engage the helical shell, an inner screw is inserted within the hollow canal of the outer 

shell.   The body of the inner screw is sized to fit the width of the canal (clearance fit, not 

press fit).  The end of the inner screw consists of 25mm of M3 thread. The inner screw 

slides easily into the canal (yellow arrow), until the head of the inner screw cannot 

proceed further (buttressed by the taper of the outer shell).  At this point, the critical 

action here is that as the inner screw is continually rotated, engaging the threads at the tip 

of the helical shell (yellow curved arrow).  Since the inner screw cannot proceed any 

further, this rotation instead causes the helical shell to retract towards the head of the 

screw (red arrow).  In other words, the rotation of the innerscrew results in translation 

and shortening of the shell from its tip. 
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Figure B22: Helical Shell Expansion 

As described in Figure 2, the inner screw is continually rotated (yellow curved arrow) 

until the end of the outer helical shell retracts along the threaded end of the inner screw 

(red arrows pointing left).  The expansion of the helix then begins to occur as the walls of 

the helix come in contact with each other (red arrows pointing up and down).  This 

expansion phenomenon is shown in the schematic figure where the lagging edge (80° 

shown) will translate up the leading edge of the next loop of the helix (40° shown) as the 

helix closes. 
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Figur B23: Engineering Drawing of Novel Expanding Screw 

Dimensions shown are for the original prototype design. 
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