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ABSTRACT 

Mechanical loosening is a common mode of joint replacement failure.  For cemented 

implants, loosening at the implant-cement interface may be affected by stem surface design.  

Altering the surface topography facilitates the infiltration of bone cement onto the stem, 

creating a mechanical interlock, improving interface stability.  However, few in-vitro studies 

have investigated this.  Therefore, the purpose of this thesis was to investigate the effect of 

stem surface treatments and substrate materials on stem-cement interface stability in-vitro. 

Four separate studies were performed to assess the stability of various stem surface 

treatments, with two substrate materials, under three loading modes.  Titanium and cobalt 

chrome implant stems were custom machined and treated with one of four surfaces: smooth, 

sintered beads, plasma spray, and circumferential grooves.  Sintered bead and plasma 

sprayed stems were tested in independent torsion, compression and bending; circumferential 

groove designs were compared in torsion and then compression.  All stems were potted in 

aluminum tubes using PMMA, and loaded cyclically using a materials testing machine.  A 

custom optical tracking system (resolution under 5 μm) was validated for use, and 

subsequently employed to measure stem-cement interface motion during loading.  Overall, 

results showed surface treatments improved stability, but this was affected by substrate 

material.  Across all loading modes, beaded treatments applied to titanium stems, and plasma 

spray treatments applied to cobalt chrome stems, improved interface stability and strength 

when large surface treatment areas were employed.  Additionally, the machining of 

circumferential grooves onto the stem surface improved interface strength in compression, 

with no influence in torsion.   

A final study was performed using μ-CT imaging to observe stem and cement motion 

under bending loads.  A custom-built loading device applied static loads to smooth titanium 

stems, while acquiring CT images of the stem-cement interface.  Interface motion was 

quantified by comparing scans before and after the stem underwent cyclic loading.  Results 

indicated the stem and the surrounding cement had displaced following loading, yet the stems 

remained relatively stable. 
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These studies offer valuable information regarding the effect of stem surface 

treatments on stem-cement interface mechanics under various loading modes and will be 

used in the development of future implant systems. 

Keywords:  joint replacement system; implant design; stem loosening; stem surface 

treatment; stem material; bone cement, stem-cement interface; implant stability 
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CHAPTER 1: INTRODUCTION 

 

Overview:  Stemmed joint replacement systems play an important role in the 

treatment of diseased or damaged joints; however, their success depends on the stability 

of the system after implantation, and its ability to withstand implant loosening over time.  

As such, the overall goal of this thesis was to investigate the stability at the implant-

cement interface, using mechanical testing and an imaging technique, to determine the 

contribution of stem surface designs and substrate material in resisting the onset of 

implant loosening.  This chapter introduces stemmed components of joint replacement 

systems, describes various stem design parameters considered for successful 

implantation, overviewing techniques used in this thesis for quantifying implant stability, 

and concludes with the study rationale, objectives and hypotheses. 

 

1.1 JOINT REPLACEMENT SYSTEMS 

Joint replacement systems (i.e., implant systems) are used in field of orthopaedic 

surgery as a treatment option for joints affected by degenerative diseases such as 

osteoarthritis, osteoporosis or rheumatoid arthritis, where the articular cartilage of the 

joint is destroyed.  The damage imposed by these diseases is generally considered as 

irreversible.  As such, replacement of the damaged joint is required.  Similarly, traumatic 

injury to joints requires removal of the destroyed anatomy, to be replaced with an 

artificial prosthesis that restores the joint structure and function.   

Implant systems are specific to the joint being replaced.  In particular, stemmed 

joint replacement systems are unique to the treatment of synovial joints.  These include 

joints of the lower (i.e. hip, knee, and ankle) and upper (i.e. shoulder, elbow, and wrist) 

extremities (Figure 1.1).  Compared to the other joints of the body (i.e., cartilaginous and  
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Figure 1.1:  Examples of Synovial Joint Types in the Upper and Lower Limb 

The above schematic shows examples of the synovial joints found in the human body; (1) 

hinge joint found between the humerus and ulna at the elbow, (2) saddle joint between 

the thumb and wrist, (3) plane joint found between the bones of the tarsus in the foot, (4) 

ball-and-socket joint located between the femoral head and acetabulum at the hip, (5) 

condyloid joint found between the bones at the wrist, and (6) pivot joint found between 

the head of the radius and radial notch of the ulna at the elbow. (Joint images modified 

from Tortora and Nielson, 2009) 
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fibrous joints), synovial joints provide a large range of motion (Tortora and Nielsen, 

2009). 

During the joint replacement procedure, the damaged or diseased joint is removed 

using established surgical techniques, and the host bone is prepared to accommodate the 

artificial joint.  This is done by resecting the damaged joint head, and creating a canal 

through the remaining bone.  The surgeon then inserts the stem of the artificial joint into 

host bone canal to allow for implant fixation.   

Stemmed replacement systems typically consist of two main parts; the articulating 

component and intramedullary stem.  The articulating region makes up the bearing 

surface, and depending on the degrees-of-freedom in the joint being replaced, may be 

classified as; (i) hinge joint, (ii) saddle joint, (iii) plane joint, (iv) ball-and-socket joint, 

(v) condyloid joint, and (vi) pivot joint (Figure 1.1) (Tortora and Nielsen, 2009).  The 

intramedullary stem does not mimic a particular structure of the natural joint, but instead 

has a role in implantation of the artificial joint.  That is, the stemmed region is inserted 

into the reamed host bone canal, and allows for fixation and anchoring of the replacement 

system to the healthy bone, which remains once the damaged articulating portion is 

removed (Figure 1.2). 

The success of these replacement systems to stay implanted over time (i.e., to avoid 

loosening) depends on the ability of the stemmed component to keep fixated within the 

host bone canal.  Therefore, to improve on the longevity of joint replacement systems, the 

fixation process of the intramedullary stem needs to be thoroughly explored, with the 

purpose of ensuring secure anchorage of the implant to the healthy bone. 

 

1.1.1 IMPLANTATION TECHNIQUE 

There are two methods used to create a mechanical connection at the implant-

bone interface; biologic fixation and cemented fixation (Figure 1.3).  The choice of 
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Figure 1.2:  Joint Replacement System at the Hip 

(A) Healthy hip joint, and (B) replaced hip joint.  During joint replacement surgery, the 

damaged or diseased joint is removed and replaced with the artificial joint.  The joint 

replacement consists of the articulation region that replaces the structure and function of 

the joint.  The intramedullary stem is inserted into the canal of the host bone and allows 

for implant fixation. (Drawing of hip provided by Dr. Angela Kedgley) 
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fixation method may be dependent on implant design, surgeon preference, and patient 

specificity (Bauer and Schils, 1999; Morshed et al., 2007; Ni et al., 2005; Park, 1992). 

 

1.1.1.1 BIOLOGIC FIXATION 

Biologic fixation involves the osseointegration, or direct structural and functional 

connection of the bone with the implant surface (Brånemark et al., 2001).  The success of 

osseointegration as a method for implant fixation is dependent on the material properties 

and the design of the implant stem (Bauer and Schils, 1999; Skinner, 2006).  In 

particular, implant stem designs incorporating rough finishes, porous surfaces, and 

bioactive coatings have been utilized in biologic fixation (Bauer and Schils, 1999). 

Rough or porous surfaces are applied to the implant surface to promote bone 

growth and ensure biological anchoring of the healthy bone to the implant (Incavo et al., 

2004; Park, 1992).  These surface designs have been explored with regards to optimum 

surface roughness and pore size needed to optimize bone ingrowth (Bobyn et al., 1980; 

Engh and Bobyn, 1988). 

In addition to roughened surfaces, the application of bioactive coatings has also 

been used in biologic fixation.  Incorporating a bioactive coating such as hydroxyapatite 

(HA) facilitates stimulation of bone formation on the stem surface (Geesink et al., 1988), 

and its osetoconductivity is dependent on the coating composition, density, thickness and 

texture (Bauer and Schils, 1999). 

Biologic fixation is typically used in younger patient populations, where the quality 

the healthy bone can successfully accommodate ingrowth onto the stem surface.  

Additionally, depending on the stage of joint replacement surgery (i.e., initial 

replacement versus revised replacement), along with the joint being replaced (i.e., upper 

limb versus lower limb), biologic fixation may be preferred. 
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1.1.1.2 CEMENTED FIXATION 

Orthopaedic bone cement is another method used for stem fixation.  This method 

involves the incorporation of bone cement into the reamed bone canal, followed by the 

subsequent insertion of the intramedullary stem of the joint replacement system, ensuring 

appropriate alignment during implantation.  Once inserted, a cement mantle thickness of 

approximately 2–3 mm (Banaszkiewicz, 2009a) is generated at the fixation interface, 

matching the surface of the implant to the bone canal.  Cemented fixation is typically 

performed in the older patient population, where compromised bone quality may affect 

the success of implantation.  In addition, a major advantage of using this type of fixation 

is the shorter recovery time associated with its procedure, allowing almost immediate 

weight bearing at the replaced joint.    

One example of the cement used for fixation is polymethylmethacrylate (PMMA) 

bone cement, which is a synthetic polymer that works to secure the implant into the bone 

canal.  PMMA bone cement is packaged as a polymethylmethacrylate powder and a 

monomer methacrylate liquid.  When the powder and liquid are mixed together, the 

monomer is polymerized in a free radical process, to form the viscous paste that hardens 

over time (Navarro et al., 2008; Serbetci and Hasirci, 2004; Webb and Spencer, 2007).  

Mixing of bone cement can be done using hand mixing techniques or under vacuum 

pressure (Dunne et al., 2004; Geiger et al., 2001; Lewis, 1997).  After implantation, the 

PMMA bone cement does not adhere the implant to the bone, but instead enters the space 

between the bone and implant, providing a mechanical connection between the implant 

and the bone (Janssen et al., 2008; Scheerlinck and Casteleyn, 2006).  As such, when 

introduced into the bone canal, the cement conforms itself to the shape of the canal as 

well as the shape of the implant stem, creating a ‘customized’ prosthesis fit (Wroblewski 

et al., 2008). 

There are four main phases that occur during cement preparation and curing.  Phase 

1, or the mixing phase, begins immediately after the powder and liquid monomer are 

combined.  When the mixture becomes fully integrated and sticky in consistency, the 

start of Phase 2 begins.  When the sticky consistency is lost and the mixture starts to 
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appear doughy, this signals the start of Phase 3, the duration of which is termed the 

working time.  The final phase occurs when the mixture can no longer be manipulated, 

but instead begins to harden, signaling Phase 4 (Kuhn, 2009; Serbetci and Hasirci, 2004).  

Typically the stem is inserted during Phase 3, and the exact time point of the working 

phase in which the insertion takes place is important to the success of stem implantation 

(Iesaka et al., 2003; Park, 1992; Smeds et al., 1997).  A longer working time, with 

doughy cement consistency, facilitates better positioning and support of the implant 

(Smeds et al., 1997); however, a shorter working time, with lower viscosity cement may 

be useful to allow for better intrusion of the bone cement into interface spaces (Hansen 

and Jensen, 1990). 

In addition to the different phases of cement preparation and curing, the physical 

properties of the PMMA bone cement during those phases play an important role in 

implant fixation (Lewis, 1997; Saha and Pal, 1984).  Porosity and viscosity are two such 

properties that can affect the static and dynamic loading response of bone cement (Lewis, 

1997; Saha and Pal, 1984; Verdonschot and Huiskes, 1995).  These properties have been 

shown to be affected by the temperature during preparation and handling, as well as 

mixing method of the cement just prior to implantation (Dall et al., 2007; Hernigou et al., 

2009; Macaulay et al., 2002; Smeds et al., 1997).  As such, it is important to ensure a 

controlled environment for the preparation of bone cement during joint replacement 

implantation. 

 

1.1.2 IMPLANT LOADING 

Mobility of the replaced joint is facilitated by muscles, tendons and ligaments 

acting together to both stabilize the joint while still allowing motion.  Forces exerted by 

the individual muscles and ligaments, along with external loads supported by the limb, 

work collectively to produce resultant forces acting at the replaced joint.  These resultant 

forces generate torsion, tension/compression and bending, which typically occur in a 

combined state (Figure 1.4).  These loads have been shown to be up to three times body 
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Figure 1.3:  Methods of Implant Fixation at the Elbow Joint 

Shown above are examples of implant fixation at the elbow joint.  Non-cemented fixation 

incorporates a porous coating onto the surface of the implant stem (humerus), allowing 

ingrowth of the surrounding healthy bone.  In comparison, cemented fixation uses 

orthopaedic bone cement as a filler to match the surfaces of the implant stem (ulna) to 

that of the healthy bone. (Image of replaced elbow adapted from www.orthogate.org.) 

  

http://www.orthogate.org/
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Figure 1.4:  Loading at the Replaced Shoulder Joint 

Resultant forces (Fres) occur at the joint due to internal muscle and ligamentous forces, 

and external joint loads.  These forces generate torsion, compression and bending, which 

typically occur in a combined state at the joint. (Image of replaced shoulder adapted from 

www.orthogate.org.) 
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weight for many joints (i.e., elbow, hip and knee) during daily activities, and even higher 

for strenuous activities (Amis et al., 1980; Bergmann et al., 2004, 1993; Kutzner et al., 

2010). 

Torsional loads refer to those that occur around the longitudinal axis of the 

implanted stem (i.e., z-axis of Figure 1.4).  This type of loading is common at the hip 

joint, where studies done by Bergmann et al., have shown that torque about an 

instrumented prosthesis ranged between 5 Nm and 17 Nm for routine daily activities 

(Bergmann et al., 2001, 1993).  Daily activities included walking, sitting and 

ascending/descending stairs, with the highest torques occurring during stair ascent 

(Bergmann et al., 2001).  At joints such as the knee, shoulder and elbow, these torsional 

loads are present in lower magnitudes than at the hip (Guerra, 2004; Kutzner et al., 2010; 

Westerhoff et al., 2009), but can increase during strenuous joint activity. 

In addition to torsional loading, all joints are exposed to axial loads (i.e., tensile and 

compressive forces) which act along the length of the implant stem (Figure 1.4).  At the 

lower limb joints such as the hip and knee, compressive loads are apparent due to the 

weight bearing nature of the joint.  At the hip, these loads can be up to 2000 N during 

normal gait (Bergmann et al., 2001, 1993), and up to 7000 N during stumbling 

(Bergmann et al., 2004).  At the tibial component of the knee joint, compressive forces of 

up to 3000 N have been recorded for daily activities (Kutzner et al., 2010).  Upper limb 

joints such as the elbow and shoulder experience similar compressive loads, despite being 

considered non-weight bearing joints (Amis, 2012; Amis et al., 1980; Bergmann et al., 

2007; Johnson and King, 2005).  For the shoulder joint, a force of one times body weight 

is generated across the glenohumeral joint during 90º of shoulder abduction, and up to 2.5 

times body weight when lifting a weight of approximately 50 N (Bergmann, 1987).  

Similarly, during 90º elbow flexion carrying a weight, the compressive force at the 

ulnohumeral joint can be up to six times the external load at the hand, and even higher 

during elbow extension (Amis, 2012; Amis et al., 1980).  It is important to note that in 

addition to compressive forces at the replaced ulnohumeral joint, tensile forces may also 

be apparent.  These tensile forces act along the length of the unlar component of linked 

elbow prostheses during elbow hyperflexion.  The effect of these forces may also be 
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exaggerated when impingement occurs between bony structures or cement, and the 

anterior flange of the implant, further creating distraction forces along the length of the 

ulnar component (Cheung and O’Driscoll, 2007).   

Bending loads applied to implant occur as a result of forces acting perpendicular to 

the longitudinal axis of the implant (i.e., Fx, Fy of Figure 1.4).  These forces, although 

smaller than those axially, have been reported to be approximately 0.5 times body weight 

at the hip and shoulder during routine activities (Bergmann et al., 2007, 2001).  At the 

elbow and knee, these forces were shown to be lower in magnitude (Guerra, 2004; 

Kutzner et al., 2010). 

Taking into consideration the various types and magnitudes of loads that occur at 

the joint, it is necessary to assess the ability of implanted systems to withstand these 

loads, in order to determine the overall success of joint replacement systems. 

 

1.2 STEM LOOSENING 

Although cemented replacement systems have been a successful treatment option, 

stem loosening is the most common method of implant failure (Australian Orthopaedic 

Association, 2010; New Zealand Orthopaedic Association, 2010).  Stem loosening occurs 

when there is disruption to the mechanical connection at the stem-cement interface, as a 

result of continuous loading that occurs at the joint, which is transferred to the fixation 

interface.  There are a variety of factors that can contribute to stem loosening such as 

patient profile, surgical technique, and implant stem design (Barrack, 2000; Harris and 

Tarr, 1979; Rodriguez-Gonzalez, 2009).  Stem design, in particular, can be explored by 

biomechanical analysis. 
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1.2.1 STEM DESIGN 

 Stem design is important for ensuring adequate implant fixation and mechanical 

stability to the implant system (Barrack, 2000; Mohler et al., 1995; Scheerlinck and 

Casteleyn, 2006).  Since the stem undergoes a mechanical connection with the cement 

during fixation, altering its design to improve that connection can play a key role in stem 

stability, and resistance to stem loosening. 

 

1.2.1.1 STEM SHAPE AND LENGTH 

Stem shape is one factor of stem design that can contribute to the mechanical 

stability of the implant system.  Over the years, many studies have investigated the role 

of stem shape on implant stability, and proposed shape designs that are specific to joint 

type and loading (Einsiedel et al., 2008; Evans et al., 1988; Huiskes et al., 1998; Kedgley 

et al., 2007; Olofsson et al., 2006; Westphal et al., 2006).  Stem cross-sectional shape and 

curvature are two examples of stem shape that have been proposed to provide implant 

stability under torsional loading (Berzins et al., 1993; Callaghan et al., 1992; 

Crowninshield et al., 2006; Hosein et al., 2012; Kedgley et al., 2007).  With regards to 

cross-sectional shape, it has been explained that stems with longer edges provided the 

greatest stability under torsional loading (Kedgley et al., 2007).  Likewise, the 

longitudinal curvature of stem can work to improve the torsional stability of the implant 

(Berzins et al., 1993; Callaghan et al., 1992), however, this may be dependent on the 

degree of stem curvature (Hosein et al., 2012).   

Stem length is another factor that is important in the design of implants.  The length 

of the implant stem can influence the load transfer to the cement and bone.  A study by 

Mann et al., demonstrated that shorter stems contributed to higher cement mantle 

stresses, which can result in cement damage and initiation of implant loosening (Mann et 

al., 1997).  With regards to interface fixation, the length of the stem may also affect 

implant stability, where a longer stem increases the length of the fixation interface, 

thereby increasing the stem-cement connect, and improving initial implant stability.  
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However, this is often at the expense of decreased stresses to bone, which may ultimately 

lead to bone loss around the implant and subsequent loosening through the process 

known as stress shielding (Austman et al., 2007). 

 

1.2.1.2 STEM SURFACE MODIFICATION 

In addition to the stem’s shape and length, stem surface modifications such as 

surface finish and surface treatments can also play a role in stabilization of cemented 

implant systems.  Stem surface finishes have been investigated in cemented implant 

designs with the premise that a roughened surface would contribute frictional resistance 

to interface loading (Davies and Harris, 1993; Huiskes et al., 1998; Jamali et al., 2006).  

Likewise, implant surface treatments are used with some cemented stem designs (Van der 

Lugt and Rozing, 2004) to accommodate infiltration of bone cement onto the textured 

stem surface, providing improved fixation and stability (Jeon et al., 2012).  Both methods 

are aimed at providing mechanical resistance to loading at the stem-cement interface. 

 

1.2.1.2.1 STEM SURFACE FINISH 

The role of stem surface finishes in implant stability has been described based on 

their surface characteristics.  These characteristics include the stem’s average surface 

roughness (Ra), and mean roughness depth (Rz).  The Ra value is the arithmetic average of 

all departures from the center line of the roughness profile, the center line being located 

where the area of the roughness profiles above and below are equal (Crowninshield, 

1998). The Rz is the mean of the depths (highest peak to lowest valley) of five 

consecutive sample lengths within the roughness profile.  Ra values are, however, more 

commonly used to describe implant surfaces.  A review by Verdonschot classified 

implant surfaces based on these values; smooth (Ra < 1 µm), matte (Ra < 2 µm), and 

rough surfaces (Ra  > 2 µm) (Verdonschot, 2005). 
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Although rougher surface finished implants have been shown to increase interface 

strength due to their frictional resistance to loading, additional studies have argued that 

the micro-roughened surfaces of the implant stem also contributed to abrasion and 

fretting at the stem-cement interface (Beksac et al., 2006; Crowninshield et al., 1998; 

Hinrichs et al., 2003; Mohler et al., 1995). Interface abrasion would ultimately promote 

the onset of loosening, in addition to causing concern for the patient as a result of the 

accumulation of cement and/or metal debris at the replaced joint.  As such, there has been 

mixed reviews regarding the use of surface finished stems in cemented implant systems. 

 

1.2.1.2.2 STEM SURFACE TREATMENT 

In comparison to surface finishes, stem surface treatment is the alteration of the 

surface topography of the implant stem.  Surface treatments can involve the addition of 

material (i.e., plasma spray and sintered beads), or removal of material (i.e., machined 

surface patterns) from the implant stem surface.  Both methods change the surface profile 

of the stem, accommodating infiltration of bone cement onto the stem surface.  

Surface treatments such as plasma spray and sintered beads involve the addition of 

porous metal coatings onto the implant stem (Bundy and Penn, 1987; Glass and 

Pierfrancesco, 2011; Ryan et al., 2006).  Initially, surface treatments were incorporated 

into non-cemented implant designs to allow for bony ingrowth, however, within recent 

years, cemented elbow implant designs have incorporated surface treatments to enhance 

the mechanical interlock between the stem and cement (Evans et al., 1988; Skytta et al., 

2009; van der Lugt and Rozing, 2004) (Figure 1.5).  The type of surface treatment, along 

with its fabrication process, can dictate the porosity of the stem’s surface to allow for 

infiltration of bone cement. 
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1.2.1.2.2.1 PLASMA SPRAY FABRICATION 

Plasma spraying is a surface treatment used to create macro-roughened surface 

textures on implant stems.  The roughness value (Ra) associated with plasma spray 

treatments, however, are greater than those defined by Verdonschot et al., to describe 

micro-roughed surfaces (Verdonschot, 2005).   

During the plasma spraying process, an electric arc is generated by a high voltage 

discharge, and formed between two water-cooled electrodes (see Davis, 2003).  The 

electric arc heats plasma gas flowing through the electrodes to extreme temperatures, as 

high as 22000 ºC, partially ionizing the gas to form plasma.  The powder used for coating 

the implant surface is introduced into the plasma gas stream using a carrier gas, and the 

mixture is accelerated at high speeds onto the stem substrate material (Figure 1.6).  The 

degree of roughness of the coating can be varied by adjusting the spraying parameters of 

the process (Ryan et al., 2006).  For application of titanium plasma spray coatings, 

controlled atmospheric plasma spray (CAPS) or vacuum plasma spray (VPS) are used.  

Titanium is extremely sensitive to oxidization in high temperature environments, and as 

such, the CAPS units applies the coating in a positive pressure inert atmosphere, while 

the VPS unit applies the coating in controlled low vacuum pressure (Glass and 

Pierfrancesco, 2011).  The plasma spray coatings prepared with this method result in 

irregular pores that facilitate a mechanical connect between the stem surface and bone 

cement during implant fixation. 

 

1.2.1.2.2.2 SINTERED BEAD FABRICATION 

Another method for creating roughened stem surfaces is the attachment of bead 

particles to the stem surface, thereby creating a porous network through which bone 

cement can fill the spaces.  Sintered bead coatings are applied to implant stem by a 

process that involves binding and sintering metal beads onto the stem surface (Davis, 

2003; Ryan et al., 2006).  A binder is first used to attach the metal beads to the stem 
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Figure 1.5:  Stem Surface Treatments used in Cemented Elbow Systems 

Three commercially available elbow systems that incorporate stem surface treatments 

onto their cemented implant designs.  (A) Coonrad/Morrey I Total Elbow (Zimmer) with 

sintered beads on a titanium substrate (www.zimmer.com), (B) Discovery Elbow System 

(Biomet) with plasma spray on a titanium substrate (www.biomet.com), and (C) Latitude
®

 

EV Total Elbow (Tornier) with plasma spray on a cobalt chrome substrate (www.tornier-

us.com).  
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Figure 1.6:  Schematic of the Plasma Spray Process 

An electric arc is generated by a high voltage discharge formed between the cathode and 

anode within the chamber.  This arc heats the plasma gas flowing into the chamber, 

partially ionizing the gas to form plasma.  The titanium powder used for coating the 

implant is incorporated into the plasma gas stream, and the mixture is accelerated at high 

speeds onto the stem substrate. (Image of implant: Discovery Elbow System (Biomet); 

www.biomet.com.) 
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substrate material.  The attached beads are then sintered at high temperatures in a high 

vacuum oven, where the binder is vaporized, and the beads are diffused onto the stem 

substrate material, as well as with each other.  The sintering process generally involves 

heating the implant stem to one half times the melting point of the metal alloy, to allow 

for diffusion of the beads to the stem surface and one another (Davis, 2003) (Figure 1.7).  

Typically, the same stem substrate metal is needed to make the beads that will be sintered 

to the stem surface (i.e., cobalt chrome beads on cobalt chrome stem, or titanium beads 

on titanium stems).  The volume fraction of sintered bead surfaces can be altered by 

changing the bead size as well as the number of layers of bead coating on the stem.  It can 

be controlled by variables such as compacted powder density, sintering temperature and 

time, and alloy additions (Ryan et al., 2006).  The pore size, morphology, distribution of 

the beads, and the inter particle neck size can all have a major impact on the mechanical 

properties of the resulting coating (Davis, 2003; Ryan et al., 2006). 

 

1.2.2 STEM SUBSTRATE MATERIAL 

Implant stems utilize metal alloys as their base substrate material (Korkusuz and 

Korkusuz, 2004; Navarro et al., 2008), with the goal of providing a suitable material 

replacement for the resected bone.  Commonly used metals include iron-based, cobalt-

based and titanium-based alloys.  These alloys are chosen based on their 

biocompatibility, strength, wear, and corrosion characteristics.  Within recent years, 

however, the use of iron-based alloys in stem design has been restricted because of 

inferior mechanical and corrosion properties compared to cobalt-based and titanium-

based alloys (Navarro et al., 2008). 

Cobalt-based alloys are useful as an orthopaedic implant material due to their high 

fatigue strength, and high ultimate tensile strength, which make them suitable for their 

longevity and ability to resist fracture (Buechel et al., 2012; Korkusuz and Korkusuz, 

2004; Navarro et al., 2008).  With regards to its biocompatibility, the addition of 

chromium is known to inhibit corrosion (Rodriguez-Gonzalez, 2009), and have also 
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Figure 1.7:  Schematic of the Sintering Process 

Sintered bead coatings are applied to the stem in a process that involves both binding and 

sintering the metal beads to the stem’s surface.  A binder is incorporated with the beads 

to hold the particles together, while high temperatures are used to diffuse the beads onto 

the stem surface, and with one another.  Temperatures used for sintering are at least one 

half times the melting temperature of the metal alloy.  The resultant coating is a porous 

structure, through which bone and cement can fill the spaces (Note:  Picture at the top is 

from an SEM scan at x50 magnification.) 

 



20 

 

shown good resistance to wear (Navarro et al., 2008).  In addition, the introduction of 

small quantities of molybdenum and tungsten has also been used to harden the cobalt 

chrome alloys (Rodriguez-Gonzalez, 2009). 

Titanium-based alloys were introduced into stem design because of their low 

density, moderate elastic modulus, and good corrosion resistance, which made them 

biocompatible to the surrounding environment (Hallab et al., 2004; Navarro et al., 2008).  

The corrosion resistant nature of titanium is due to an oxide layer that is formed on the 

surface, which acts as a protective barrier to corrosion of the material substrate beneath it.  

Although titanium is known to exhibit poor shear strength and wear resistant properties, 

the addition of aluminum and vanadium in orthopaedic applications improves the 

mechanical properties of the metal alloy (Navarro et al., 2008; Rodriguez-Gonzalez, 

2009). 

However, there has been much debate between the choices of titanium or cobalt 

chrome stem material.  Within recent years, titanium has been a controversial material for 

use with femoral cemented stem designs, since it has been reported to experience 

increased rates of loosening, as well as high sensitivity to corrosion (Boyer et al., 2009; 

Maurer et al., 2001; Thomas et al., 2004; Willert et al., 1996).  It is thought that 

micromotion of the stem within the cement leads to abrasion of the titanium protective 

oxidized layer, resulting in exposure and gradual corrosion of the base titanium material 

over time (Hallam et al., 2004).  In contrast, non-cemented titanium femoral stems are 

believed to be less prone to corrosion because oxygen is readily available from the 

surrounding bone, allowing for a stable oxide-layer to re-accumulate on the surface of the 

titanium stem (Willert et al., 1996).  Despite mixed reviews about the use of cemented 

titanium in femoral implants, it is still commonly employed in cemented upper-limb 

implant applications (Van der Lugt and Rozing, 2004).   
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1.3 IMPLANT STABILITY 

Implant stability is a term used to describe the ability of a joint replacement system 

to resist movement and loosening.  In the case of cemented implants, stability can be 

measured (in part) by quantifying the displacement, or micromotion of the implant stem 

relative to the surrounding cement.   

A stable implant system incorporates a stem design that utilizes optimal geometry, 

surface mechanics, and material properties that facilitate transmission of loads to the 

surrounding cement and bone, without creating damaging stresses and excessive stem 

motion (Scheerlinck and Casteleyn, 2006).  To achieve stability of implant systems, two 

methods of implant design are explored to ensure mechanical longevity over repeated 

loading; force-closed and shape-closed designs (Huiskes et al., 1998). 

Force closed systems, such as straight, polished stem designs, are aimed to allow 

initial stem subsidence during interface loading (Huiskes et al., 1998).  Subsidence of the 

implant stem after interface debonding generates frictional forces at the stem-cement 

interface, which balances the applied load.  This equilibrium of forces at the interface, 

therefore, creates a stable implant condition.  In comparison, shape-closed systems such 

as longitudinally curved and non-circular cross section stems, as well as modified stem 

surface designs (i.e., surface treatments and finishes), take into consideration initial 

stability of the implant system.  This is done by ensuring a well fixed stem-cement 

system during fixation, so that migration of the stem does not occur. This method aims to 

guarantee no motion at the stem interface, therefore preventing the initiation of loosening 

(Huiskes et al., 1998).  Although some force closed systems have been successful for 

particular joint replacement designs, this thesis will focus on shape closed systems with a 

particular interest in surface treatments. 
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1.3.1 IMPLANT STABILITY MEASUREMENTS IN-VITRO 

Clinically, implant migration is observed from radiographic analysis of the stem-

cement interface, particularly regions of radiolucency surrounding the implant stem 

(Chambers et al., 2001), with regions greater than 1 mm indicative of definite loosening 

(Banaszkiewicz, 2009b).  Experimentally, there are a variety of tools used to measure 

implant micromotion. 

Linear variable differential transducers (LVDT’s) are used to measure displacement 

of the implant stems in-vitro.  By drilling window holes through the bone and/or cement 

mantle, the LVDT or pins connected to the LVDT, can be inserted through the holes to be 

in direct contact with the implant stem (DiSilvestro et al., 2004; Doehring et al., 1999; 

Engh et al., 1992; Maher et al., 2001).  Once there is displacement of the stem, this is 

recorded by the LVDT as a voltage change and resulting micromotion measurement.  

This technique has proven useful, however, the method is invasive and LVDT’s are 

specific to measuring linear displacement only, so therefore not very effective when 

rotational motion is of interest.   

Radiostereophotogrammetric analysis is another method used for implant 

displacement measurement both in-vivo and in-vitro.  Metal bead markers are placed onto 

the bone, cement and implant during the replacement procedure, and motion at the 

interfaces can be measured from stereoradiograph images taken before and after loading 

(Nilsson et al., 1991). Although this method offers information about motion occurring at 

the interface, it can only measure displacement of the implant once loading is complete.  

This can be problematic for studies interested in investigating how loading affects 

micromotion in real time. 

Another technique incorporates the use of an optical system with reflective markers 

to observe motion of the implant relative to the bone (Westphal et al., 2006).  Markers 

are placed on the implant and bone, and cameras are used to track the motion of the 

markers throughout mechanical tests.  The software associated with optical systems can 

then determine the relative distances of the implant and bone markers, to obtain 

measurements of implant stability.  This method, however, may not be suitable for 
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measuring motion at the level of the stem cement-cement interface, since optical markers 

associated with these systems may be limited by the size and volume restrictions at the 

cemented interface. 

More recently, stability studies done by Mann et al., and Race et al., discussed 

digital image correlation (DIC) as a method for measuring micromotion at the stem-

cement and cement-bone interfaces (Mann et al., 2010; Race et al., 2010).  This method 

involved using a camera with telecentric lens, and custom written software to document 

motion occurring at the stem, cement and bone interfaces during torsional loading of 

transverse sections of the implanted stem.  The optical system (i.e., camera and 

telecentric lens) recorded video of the interfaces during mechanical loading, and the 

software program measured relative displacement of sampling locations placed on either 

side of the interfaces.  While this methodology was only useful for detecting interface 

motion of sectioned implant stems during torsional loading, the optical system served as 

an imaging modality for observing the interfaces.  As such, a similar system could be 

adapted for use in future interface stability studies with careful selection of the required 

optical components (see below). 

 

1.4 OPTICAL SYSTEMS 

As mentioned previously, optical systems can be useful as a tool for measuring 

interface motion.  Depending on the environment of implant testing, as well as the 

resolution of the intended measurement, the hardware and software components of the 

optical system can be carefully chosen to ensure best optical system design.  While the 

software components are specific to the optical system, the hardware components are 

generally standard, and include a camera system (i.e., camera with lens) and source of 

illumination (Relf, 2004). 
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1.4.1 CAMERA SYSTEMS 

Like all digital based cameras, those used in optical systems operate on a principle, 

where reflected light from the object being imaged enters the camera through the lens, 

and is focused and transmitted to the camera sensor (Figure 1.8) (Relf, 2004).  The 

camera’s sensor is made up of an array of sensors called pixel elements (i.e., pixels), 

which act as sites for the collection of the transmitted light.  One type of sensor used in 

cameras is known as a charged couple device (CCD), where the collected light photons in 

each of the sensors are converted to electric charges (Relf, 2004).  The produced charge 

is directly proportional to the number of light photons that hit the sensor.  The charge is 

then converted to voltage that is read by a digital converter as a range of integers, which 

represents the location and brightness value for each element of the sensor array.  These 

brightness values can range between 0–255 in the red, green and blue channels that make 

up the image’s color (Nakamura, 2005). 

The camera system’s resolution is the measure of detail that can be discerned in an 

image (see Relf, 2004) (Figure 1.8).  For measurement applications, the resolution of the 

camera system should be appropriate in order to detect changes in the image.  Camera 

system resolution is influenced by its sensor pixel size, in addition to the characteristics 

of the lens (Nakamura, 2005).  For a good system resolution, the lens must be compatible 

with the sensor, facilitating optimal diffraction of light relative to the sensor’s pixel size.  

This characteristic of the lens is controlled by its f-number, which is a ratio of the lens 

focal length to the diameter of its aperture (Relf, 2004). 

In addition to the system resolution, the characteristics of the lens also influence the 

magnification changes with working distance (Figure 1.8).  Typical lenses show greater 

magnification for shorter working distances (i.e., the object is closer to the lens).  This is 

not useful for optical measurement systems, since it gives a false representation of object 

sizes in the image’s field of view.  As such, telecentric lens have been introduced to 

mitigate the dependency of object distance on image magnification, by controlling the 

path of the rays entering the optical system. 
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With a telecentric lens, the magnification of the object is independent of working 

distance, providing the object stays within the lens’ depth of field (see Relf, 2004) 

(Figure 1.8).  Telecentric lens are designed with specific features in order to limit the type 

of rays entering the optical system.  Only light rays that are parallel to the main axis, or 

have a principle angle of zero, are collected by the lens.  For a conventional lens, this 

principle ray angle can be quite large depending on the distance of the object from the 

lens, resulting in large changes in image magnification (Figure 1.9).  However, by 

limiting the size of the principle angle, the magnification errors can be reduced.  In 

addition to magnification control, high quality telecentric lens show low degrees of image 

distortion and reduced perspective errors. 

 

1.4.2 ILLUMINATION 

The source of illumination is another important hardware component of the optical 

system.  The basis of optical systems depends on the harvesting of light to form images.  

In particular, the harvesting of light for optical systems used in experimental design needs 

to be of a controlled nature, to reduce effects of variability in resulting image 

measurements (Relf, 2004).  By determining an appropriate source of illumination for a 

particular optical system, light rays can be controlled to fall within the image’s field of 

view, reducing the effects of glare.  

When choosing an appropriate light source, the type of reflection expected from the 

object needs to be considered.  There are two main types of reflections expected; specular 

and diffuse (Relf, 2004).  Specular reflection is bright, and occurs in a single direction, 

such as the reflection from smooth, shiny surfaces.  This type of reflection is variable 

because it disappears with change in positioning of the illuminator or object.  Specular 

surfaces are best lit with diffused illumination, which allows optical imaging without 

bright reflections.  In comparison, diffuse reflection is quite faint but not variable, and 

occurs in many directions.  Reflection from rough or textured surfaces is an example of 

diffuse reflection.  
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Figure 1.8:  Schematic of a Typical Camera System 

The optical system consists of a lens positioned at a working distance from the object 

being imaged, through which reflected light is focused onto the camera sensor, and 

produces a resultant image.  The distance between the lens and the camera sensor is a 

measure of the focal length (f).  The overall size of object space is known as the Field of 

View (FOV).  For any two objects located within this field of view, the resolution of the 

camera system dictates how far apart the objects can be, and still be perceived as 

individual entities.  The depth of field represents the range of the working distance in 

which the objects are in focus. 
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Figure 1.9:  Schematic of a Conventional Lens versus Telecentric Lens  

For a conventional lens, the magnification of the image is dictated by the distance of the 

object from the lens.  An object situated close to the lens would appear larger due to the 

larger angle of the principle ray entering the lens.  In comparison, a telecentric lens limits 

the type of rays entering the lens, filtering only the light rays that are parallel to the main 

axis.  As a result, the principle rays are maintained at angles close to 0º, producing an 

image with magnification independent of the objects’ distance from the lens.   
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1.5 COMPUTED TOMOGRAPHY (CT) IMAGING 

Computed tomography (CT) has been used in the field of orthopaedics as a tool 

for studying bones and joints in a three-dimensional space.  In particular, CT imaging has 

been used to investigate fracture biomechanics of joints, as well as joint contact 

mechanics (Greenspan, 2011; Lalone, 2012).  With regards to the biomechanics of joint 

replacement systems, CT analysis has been less popular due to the sensitivity of the 

system to metal artifacts.  Metal artifacts can produce bands or streaks across the image, 

causing loss of visualization, as well as image data.  The effect that metal has on CT 

images can be explained by the operations of the CT system. 

CT systems work on the basis of x-ray imaging, where x-rays emitted from a 

source interact with an object, and results in absorbance, scatter, and transmission of rays 

(Stock, 2009).  With CT imaging, the source produces a narrow, fan-shaped beam of x-

rays which rotate around the object being imaged, and detectors on the exit side of the 

object receive the transmitted rays.  During one rotation of the source, multiple x-rays are 

transmitted through the object at various angles.  Depending on the density value of the 

object being irradiated, the amount of x-rays absorbed or scattered varies, causing 

reduced intensity (i.e., attenuation) of the transmitted rays.  The attenuation is measured 

by the ratio of absorbed or scattered rays per unit thickness of the object, and this value is 

used to determine the corresponding Hounsfield Unit (HU) or CT number of the object.  

The attenuated rays collected by the detector are represented as individual images at the 

various angles of x-ray projection, which are stitched together to create a cross-sectional 

image of the object.  When the object is translated through the rotating x-ray source, 

multiple cross-sectional images are collected along the translational length, and are used 

to create a three-dimensional model of the object being imaged. 

With regards to metals, however, the density values and resulting CT numbers are 

beyond the normal range that can be handled by the CT software, causing incomplete 

attenuation profiles and resulting metal artifacts (Barrett and Keat, 2004).  Metal artifacts 

are more prominent in higher atomic number metals such as stainless steel and cobalt 

alloys, but are less prominent with lower atomic number metals such as titanium (Boas 
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and Fleischmann, 2012).  CT imaging is more likely to be affected by metal artifacts 

compared to conventional radiographs due to the larger number of detector measurements 

obtained in a single scan (Barrett and Keat, 2004).  However, techniques have been 

proposed to reduce metal artifacts in CT images (Boas and Fleischmann, 2011; Olsen et 

al., 2000; Wang et al., 2000). 

In addition to artifact limitations of joint replacement systems in CT imaging, 

resolution of the CT system has not been useful for the study of joint replacement 

biomechanics.  Conventional CT scanners provide a resolution on the order of 1–2 mm 

(Kalender, 1995), however, instability of implant systems is detected by micromotion 

occurring at the stem-cement interface.  This can potentially be overcome through the use 

of micro-computed tomography (µCT).  As a high resolution CT technology, voxel sizes 

of µ-CT systems can vary between 50–250 μm, depending on the manufacturer and 

specifications (Stock, 2009).  µ-CT systems differ from conventional systems with 

regards to their smaller field-of-view, as well as higher resolution detector.  These 

changes allow for more detailed models of micro-architecture.  As such, µ-CT analysis 

has been used orthopaedics to quantify implant wear (Bowden et al., 2005; Teeter, 2012), 

as well as for the analysis of bone micro-architecture (Waarsing et al., 2005).  However, 

its use in joint replacement biomechanics has not been well-established.  With new 

methods being developed to improve on metal artifact limitations, µ-CT imaging may 

prove useful as a tool for assessing implant loosening micromechanics at the stem-cement 

interface. 

 

1.6 STUDY RATIONALE 

The prevalence of joint replacement surgeries has increased over the last decade, 

and numbers are expected to continue to increase as a result of the treatment of 

musculoskeletal conditions (degenerative joint diseases and joint injury) with the aging of 

the baby boomer population (Kurtz et al., 2009; Perruccio et al., 2006).  Within recent 
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years, joint replacement surgeries alone accounted for 25% of all orthopedic surgeries in 

Ontario (Canizares et al., 2009). 

 This demand for joint replacement surgery, however, is not limited to the older 

population, with reports showing an increase in total joint replacements performed on 

younger patients or patients less than 65 years old (Kurtz et al., 2009). In addition, 

because of increasing rates of obesity, arthritis and expanded clinical criteria for 

eligibility, the need for joint replacement surgery has become overwhelming (Gelber et 

al., 1999; Karlson et al., 2003). 

The rise in popularity for primary joint replacement surgeries is also expected to 

trigger the increase in revision joint replacement surgeries. Although joint replacements 

are successful, failure of the replacement systems can result in revision surgeries (Clohisy 

et al., 2004).  Taking this into consideration, it seems necessary to explore ways of 

improving the longevity of these implant systems.   

This may be realized, in part, through the alteration in the design of implant stems.  

Stem surface modification is an example of stem design that can contribute to reducing 

the onset of implant loosening.  Stem surface finish has been explored for improving 

cemented implant stability (Datir et al., 2006; Huiskes et al., 1998; Jamali et al., 2006), 

however, the use of stem surface treatments with cemented implants is one area of stem 

design that has not been widely investigated.  A clinical study by Jeon et al., addressed 

the success of surface treated stems (i.e., plasma sprayed and beaded) on the survival 

rates of cemented elbow systems (Jeon et al., 2012), but there are no known experimental 

studies that have assessed these surface treatments for improved implant stability.  While 

these treatments are currently only employed with cemented upper limb replacement 

designs, knowledge regarding their stability response could also be applied to the design 

of other joint replacement systems.    

Titanium and cobalt chrome are two common metals used in implant stem design 

(Korkusuz and Korkusuz, 2004; Navarro et al., 2008).  However, there has been varied 

clinical success with the use of titanium and cobalt chrome stem substrate materials with 

surface treated implants, where increased rates of fracture have been reported for sintered 
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bead treatments on titanium components  (Athwal and Morrey, 2006; Jeon et al., 2012).  

In addition to the variability with surface treated stems, there has also been mixed 

reviews over the use of cemented titanium stems in lower limb joint.  In particular, 

studies have reported increased rates of loosening, and high sensitivity to corrosion, 

associated with the femoral component at the hip joint (Hallam et al., 2004; Schweizer et 

al., 2005).  Despite these varied clinical outcomes with titanium stems, they are still 

commonly used in upper limb joints (Van der Lugt and Rozing, 2004), and as such, are 

important to consider in stability studies of cemented implant systems. 

The stability of implant systems is directly affected by joint loading.  Joint loads 

acting on the implant are transmitted to the stem-cement interface.  If the fixation 

strength at the interface is less than that of the acting loads, the stem can experience 

debonding and eventual loosening.  Therefore, it is necessary to explore the effects of 

joint loading in implant stability studies.  

Taking these factors into consideration, the overall goal of this thesis was to 

determine the role of stem surface treatment and substrate material on the stem-cement 

interface stability of implanted stems under various loading modes.  Studies presented 

within this thesis focused on surface treatments used clinically with upper limb 

replacement systems; however, their role in cemented implant stability was analyzed for 

generic joint replacement applications, as well as elbow specific components.  With the 

knowledge gained from this research, it is expected that improvements can be made to 

the surface design of current implant stems.  Improved implant stem design will enhance 

the longevity of implant systems by enhancing the stem’s function as an implant 

stabilizer, thus reducing the implant’s rate of loosening.  Ultimately, this will improve 

patient care by decreasing the chances of revision surgery after a joint replacement 

procedure, and consequently reduce the number of joint replacement surgeries, and 

subsequent costs to the healthcare system. 
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1.7 SPECIFIC OBJECTIVES AND HYPOTHESES 

The specific objectives of this work were as follows, to: 

1. develop and validate an optical tracking system to quantify stem-cement interface 

micromotion in stemmed implant components; 

2. experimentally investigate the effect of stem surface treatment on the torsional 

stability of titanium and cobalt chrome stems; 

3. compare the roles of stem surface treatment and substrate material on the stability 

of implant stem subjected to cyclic compressive loading; 

4. determine the contribution of stem circumferential grooves to the stability of 

cemented stemmed joint replacement systems under compression and torsional 

loading; 

5. compare the stability response of stem surface treatment and substrate material 

during the application of a bending moment; and 

6. use µ-CT imaging to visualize the stem-cement interface during bending, and 

thereby investigate the influence of bending loads on internal stem-cement 

interface motion. 

 

The corresponding hypotheses were as follows: 

1. A custom optical tracking system could be developed to quantify stem-cement 

interface motion, on the order of 5 µm in stemmed implant systems, and this 

system could be used to non-invasively analyze interface motion. 

2. Surface treated implant stems would provide improved torsional stability 

compared to smooth surfaces, with cobalt chrome stems showing less rotation in 

torsion than titanium stems, due to its higher shear modulus. 
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3. Smooth stems would provide the least resistance to cyclic compressive loading 

compared to the surface treated stems, and there would be no effect of stem 

material on implant stability under compression. 

4. Application of circumferential grooves would not affect torsional stability of 

cemented stemmed joint replacement systems, but would have a stabilizing 

influence in compression. 

5. Smooth stem surfaces would show greatest instability under bending, with 

titanium stems experiencing greater interface motion than cobalt chrome stems 

due to a lower flexural modulus of elasticity. 

6. Micro-CT analysis of cemented stems would show that motion along the internal 

length of the stem-cement interface during bending is influenced by creep of the 

surrounding bone cement, causing the implant to experience tilting without 

apparent loosening. 

 

1.8 THESIS OVERVIEW 

This thesis is written in an integrated article format, with each of the above 

objectives corresponding to a chapter of the thesis.   

Chapter 2 describes the development and validation of the optical tracking system 

used for measuring stem-cement interface micromotion in subsequent chapters of this 

thesis.  The chapter outlines the resolution, accuracy and reliability of the tracking system 

to reproduce motion applied by a micrometer gauge. 

Chapter 3 investigates the role of clinically relevant surface treatments (i.e., 

smooth, beaded and plasma spray) on the torsional stability of titanium and cobalt 

chrome stems.  The failure torques and interface stability were analyzed for each of the 

surface treated stems under simulated joint torsional loads.   
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Chapter 4 investigates the effect of stem surface treatments and material on the 

pistoning failure scenario of implant stems.  Smooth, beaded and plasma spray surface 

treatments applied to cobalt chrome and titanium stems were compared for differences in 

interface strength and interface stability, under cyclic compression loads.   

Chapter 5 investigates the effect of a new stem surface design, circumferential 

grooves, on the stability of cemented stems under compression and torsional loading.  

Applying the observations and results from Chapters 3 and 4, an alternate surface 

morphology was investigated to address the failure mechanisms associated with surface 

treated stems. 

 Chapter 6 investigates the effect of stem surface treatments and material on 

implant stability under bending loads.  The interface motion for each of the surface 

treated stems was observed using the optical tracking system described in Chapter 2, and 

the contribution of the cement mantle in interface stability was addressed. 

Chapter 7 uses µ-CT imaging to visualize and quantify motion at the stem-cement 

interface with an applied bending moment.  Based on the results from Chapter 6, it was 

determined that a technique to visualize internal stem- cement motion was needed to 

understand the contribution of bending moments to interface stability.  Micro-CT 

measurements, made along the length of the stem-cement interface, were used to 

investigate the contribution of the stem and cement to interface motion during the 

application of real-time bending loads. 

Chapter 8 is the concluding chapter of this thesis, and outlines the main findings of 

the individual studies detailed within this thesis, along with their strengths and 

limitations, as well as offers some suggestions for future work in the area of implant 

interface biomechanics.  
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CHAPTER 2: DEVELOPMENT AND VALIDATION OF A CUSTOM 

OPTICAL TRACKING SYSTEM TO QUANTIFY STEM-CEMENT 

INTERFACE MICROMOTION IN STEMMED IMPLANT 

COMPONENTS 

 

Overview:  Implant loosening is the most common mode of implant failure, which can 

begin as small scale micromotion at the implant-cement interface.  Quantifying 

differences in the magnitude of interface motion is one approach to compare the relative 

stability offered by varying implant designs, and serves as a measure of their ability to 

resist the effects of loosening.  As such, a suitable tool was needed to quantify 

micromotion occurring directly at the stem-cement interface. This chapter describes the 

development and validation of a custom optical tracking system that will be used for 

reliable detection and measurement of interface motion in subsequent chapters. 

 

2.1 INTRODUCTION 

 Implant micromotion is one measure of implant stability, and can be used in both 

clinical and in-vitro studies as a predictor of implant loosening.  Most in-vitro studies 

have used linear variable differential transducers (LVDT’s), extensometers or sensoring 

devices to detect and quantify overall implant motion (Cristofolini et al., 2003; Jamali et 

al., 2006; Maher et al., 2001).  However, the ability to quantify motion occurring directly 

at the stem-cement interface can offer valuable information on implant stability, 

eliminating the effects of motion contributed by surrounding fixturing or anatomy.  A few 

studies have described new methods of investigating interface specific motion (Choi et 

al., 2010; Race et al., 2010; Zhang et al., 2009); however, their application involved 

invasive methods of accessing the stem-cement interface, in addition to being specific to 

loading mode type.   



49 

 

 Within the field of biomechanics, optical motion capture systems have been used 

for defining joint kinematics by tracking the relative motion of landmark markers placed 

across the joint (Anglin and Wyss, 2000; Zhou and Hu, 2008).  While this method is non-

invasive, optical motion capture systems used for these purposes do not have the system 

resolution required for detecting micromotion (Maletskyet al., 2007).  However, it was 

hypothesized that using appropriate optical equipment and markers, it would be possible 

to develop a measurement system capable of non-invasively detecting and measuring 

stem-cement interface motion during in-vitro testing.  

Therefore, the purpose of this study was to develop and validate an optical 

measurement system that incorporated a high resolution camera, appropriately scaled 

optical markers, and a custom written data collection and analysis program, to measure 

relative micromotion between two moving landmarks in a two-dimensional image space. 

 

2.2 MATERIALS AND METHODS 

 A pilot GigE Series piA 2400–12gm/gc camera (Basler AG, Ahrensburg, 

Germany) with telecentric lens (Opto Engineering, Matua, Italy) and axial diffuse 

illuminator (Advanced Illumination, Rochester, VT, USA) comprised the hardware 

selected for the optical system (Figure 2.1).  These components were carefully chosen to 

meet the design requirements of the system; high image resolution with minimal image 

distortion or error (Appendix B). 

For calibration of the optical system, a grid pattern with 0.1 mm squared grid 

intervals (Pyser-SGI Ltd, Kent, UK) was used with a custom written calibration program 

(National Instruments Corporation, Austin, TX, USA) (Appendix C.1) to determine the 

pixel to millimeter conversion (Figure 2.2).  The program incorporated a pixel counting 

method, and based on a selected region of the calibration grid chosen by the user, output 

the resulting horizontal and vertical pixel count within that region.  Using an integrated 

scaling method, the pixel to millimeter conversion for both the horizontal and vertical 

orientations were determined based on the known intervals of the calibration grid.  This 
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conversion was done over nine regions of the grid pattern, which allowed for calibration 

over the entire field of view, and an average pixel to mm value was determined and used 

for calibration of the optical system.  Before the start of the each testing trial, the system 

was recalibrated to ensure the accuracy of the resultant measurements. 

A custom written LabVIEW program (National Instruments Corporation, Austin, 

TX, USA) (Appendix C.2) integrated with the camera capture program (National 

Instruments Corporation, Austin, TX, USA), was used for image analysis.  This program 

used a color thresholding method to detect markers of a specific red-green-blue (RGB) 

value in the image capture region, and output a corresponding threshold image (Figure 

2.3).  The program further incorporated a centroid tracking method to determine the (x,y) 

coordinates of the marker centroids in the threshold image window.  The data output of 

the program included these (x,y) centroid coordinates throughout the video capture 

duration, as well as the relative displacement between the markers. 

For validation of the optical measuring system, a digit counter inch-micrometer 

screw gauge (Fowler Inc., Newton, MA, USA) was used as the gold standard to apply 

known displacements.  Droplets of fluorescent paint were used as colored markers, and 

attached to the anvil and spindle of the micrometer (Figure 2.4).  The gauge was moved 

through displacements that started at 0.0002 inch (0.005 mm), and increased in 

increments of 0.0002 inch (0.005 mm) to a maximum of 0.001 inch (0.025 mm), after 

which displacements were set at 0.002 inch (0.051 mm), 0.0039 inch (0.099 mm), 0.0098 

inch (0.249 mm), and 0.0197 inch (0.500 mm).  This range of displacements was applied 

in both the horizontal and vertical directions, over the nine regions of the image field of 

view (Figure 2.2).  Each displacement was repeated five times, while the optical system 

tracked and measured the relative displacement of the markers during each trial. 
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Figure 2.1:  Hardware of the Optical Tracking System 

A high resolution camera with telecentric lens, and axial diffuse illuminator composed 

the hardware of the optical tracking system.   
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Figure 2.2:  Calibration Grid used for Pixel to mm Conversion 

The calibration grid shown above, with 0.1 mm squared grid spacing, was used for 

calibration of the optical system.  The exploded view displayed on the far right 

shows the grid as seen in the field of view of the optical system.  The grid was 

divided into nine regions of interest (shown in inset), and pixel to mm conversion 

was determined for each of the regions.  An average conversion value over all nine 

regions was calculated and used for calibration of the optical system. 
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Figure 2.3:  Optical Tracking Software 

The display of the custom written LabVIEW program used for tracking colored 

markers placed on specific landmarks.  Shown in the image are the controls used 

for setting the color threshold, along with the corresponding camera and threshold 

image.  Also shown are the (x,y) pixel coordinates of the centroid position of each 

marker detected in the camera’s coordinate system. 
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Figure 2.4:  Experimental Set-up for Validation of Optical Tracking System 

A micrometer screw gauge, with colored markers attached to the anvil and spindle 

(shown in the inset image), was used for validation of the optical system.  The 

micrometer was used as the gold standard to apply known displacements, and the optical 

system tracked relative motion of the colored markers. 
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A Bland and Altman plot (Bland and Altman, 1999, 1986; Myles and Cui, 2007) 

was used to evaluate agreement between the micrometer gauge and optical system, as 

was the percent error measurement.  In addition, the reliability of the optical system was 

evaluated using the intra-class correlation coefficients (ICC (2,1)) (Shrout and Fleiss, 

1979) and Standard Error of Measurements (SEM) of the measured displacements over 

the nine regions of the image field of view. 

 

2.3 RESULTS 

The Bland and Altman plot showed good agreement between the optical system 

and micrometer measurements, based on the scatter of the differences between the 

measurements from each system, against the average of the measurements (Figure 2.5).  

The scatter of the points generally fell within 1.96 standard deviations of the mean 

difference between measurements, with some outliers for measurements greater than 

0.1 mm.  These outliers were more apparent with 0.5 mm vertical measurements.  In 

addition, as the average measurement increased, the spread of the data also increased.  

This was observed for both the vertical and horizontal displacements, as represented by 

the red and black scatter points in Figure 2.5, respectively.    

The overall difference based on all of the measured data pooled together between 

the micrometer and optical system, as measured by the percent error, was found to be 

+8.8% and -9.3% for the displacement output of 0.005 mm to 0.500 mm (Appendix E). 

The ICC’s and SEM’s of the vertical and horizontal measurements from the optical 

system, over the nine regions of the image field of view are shown Table 2.1.  Excellent 

reliability was found among the repeated measures from the optical system, where results 

of the ICC’s for the vertical and horizontal displacements were all greater than 0.99, and 

SEM’s ranged from 0.002 mm to 0.007 mm. 

  



56 

 

 

 

 

Figure 2.5:  Bland & Altman Plot Comparing Agreement of Measurement Systems 

The Bland and Atman plot showing the difference between the optical system and 

micrometer measurements against their average measurements for both vertical and 

horizontal displacements.  Each point on the plot represents the difference in 

measurements (i.e., optical system – micrometer) for the nine applied displacements of 

the micrometer, over the nine individual regions of the field of view (Note: To see Bland 

and Altman plots for the individual regions, please refer to Appendix D).  The plot shows 

good agreement between the measurements for all displacements, as most difference 

values fall within ±1.96SD of the mean difference.  For measurements greater than 

0.1 mm, however, there were some outliers that fell outside the region of agreement, 

particularly for vertical measurements of 0.5 mm. 
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Table 2.1:  Intra-class correlation coefficients (ICC’s) and Standard Errors of 

Measurement (SEM) for the Vertical and Horizontal Displacement Measurements 

of the Optical System. 

 

 

  

Image

Region  ICC SEM (mm) ICC SEM (mm) 

1 0.9996 0.003 0.9998 0.002

2 0.9976 0.007 0.9998 0.002

3 0.9997 0.003 0.9994 0.004

4 0.9996 0.003 0.9991 0.005

5 0.9996 0.003 0.9997 0.004

6 0.9996 0.003 0.9994 0.004

7 0.9996 0.003 0.9983 0.006

8 0.9987 0.005 0.9994 0.004

9 0.9995 0.003 0.9996 0.003

Vertical Displacement Horizontal Displacement 
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2.4 DISCUSSION 

Implant micromotion is a useful measure for defining implant stability.  Many 

experimental studies involving cemented implants have assessed the survival of implant 

systems based on their ability to resist implant micromotion (Burke et al., 1991; 

Cristofolini et al., 2003; Maher et al., 2001).  These studies, however, assessed implant 

motion as a function of stem motion relative to the bone, and not specific to motion 

occurring at the stem-cement interface.  For cemented implants in particular, it has been 

shown that bone cement is susceptible to ‘creep’, where deformation of the cement 

occurs under loading conditions (Jeffers et al., 2005; Lewis, 2011; Verdonschot and 

Huiskes, 1995).  As such, measurement of implant motion at the stem-cement interface 

may be a more reliable measure of implant loosening, eliminating the effect of implant 

motion from the surrounding cement, as well as the surrounding testing fixtures. 

Few studies have reported on stem-cement interface motion as a measure of 

implant stability (Choi et al., 2010; Mann et al., 2010; Zhang et al., 2009).  Mann et al., 

used a method incorporating digital image correlation to measure displacement along the 

interface of sectioned regions of cemented implants under torsional loading (Mann et al., 

2010).  In comparison, Zhang et al., described a method which used a custom made 

sensor with strain gauges to detect motion occurring between the stem and cement under 

compression (Zhang et al., 2009).  Each measurement tool was successful at measuring 

interface motion, but involved invasive methods of accessing the stem-cement interface, 

in addition to being specific to loading mode type.  For use in this thesis, however, a non-

invasive measuring tool capable of detecting motion under different loading conditions is 

required, as future studies will be investigating implant micromotion under torsion 

(Chapter 3 and 5), axial (Chapter 4 and 5), and bending (Chapter 6) loads.  As such, the 

purpose of this study was to develop and validate a measurement system capable of 

detecting and measuring stem-cement interface micromotion during mechanical testing of 

implant stems. 

Optical measurement systems offer a non-invasive approach to measuring motion 

in biomechanics studies.  The choice of optical system depends on the requirements of 
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the measurement being made.  For interface motion, which is expected to occur on the 

order of micrometers, an appropriate optical system with high pixel resolution was 

required.  As such, the pilot GigE series camera with sensor size of 2454 x 2056 pixels; 

3.45 μm/pixel, and telecentric lens was incorporated into the optical system.  The 

telecentric lens allowed for consistent image magnification with low distortion and 

perspective errors.  The source of illumination (i.e., axial diffuse illuminator) was also 

specific to the needs of the measurement system, providing uniform light intensity with 

low specular deflection.  This ensured that there was no light scatter that may 

compromise the resulting image, and influence the thresholding method used to detect the 

markers. 

From calibration of the optical system, it was determined that the resolution of the 

system was appropriate for micrometer measurements, with pixel values on the order of 

0.003 ± 0.002 mm (Appendix F).   

The Bland and Altman plot was chosen to compare the agreement between the 

optical system and the micrometer measurements, since it allowed comparison of the 

differences between the measuring systems, based on the expected confidence interval 

(i.e., limits of agreement) in which 95% of the differences were expected to fall (Bland 

and Altman, 1999, 1986).  Results from the Bland and Altman plot demonstrated good 

agreement between both measuring tools, since the majority of scatter points fell within 

95% confidence interval of the mean difference between the systems’ measurements 

(Figure 2.5).  However, for target vertical displacements of 0.5 mm, the optical system 

consistently underestimated the measurement.  This underestimate is believed to be due 

to systematic error in obtaining large vertical displacements.  In addition, as the target 

displacements increased, the difference in the measurements between the optical system 

and micrometer also increased as well, suggesting that the optical system was less 

sensitive to measuring larger displacements from the micrometer.  Since interface motion 

is expected to be small (i.e., less than 200 µm) this observation was not of concern for the 

intended application of the measurement system.   
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When comparing the error in the optical system based on known displacements 

applied by the micrometer, it was found that for the range of measurements between 

0.005 mm and 0.500 mm the percent error was +8.8% and -9.3% (Appendix E).  This 

accuracy measurement seems appropriate for the measuring capabilities required for 

stem-cement interface motion.  While there may be room for improvement, it was 

determined that the error in the system was acceptable for its intended function of 

comparing stem-cement interface motions.   

With regards to the reliability of the optical system, ICC’s were used to compare 

the correlation among repeated measures of the optical system.  This statistic was 

expected to give information on the precision of the optical system, and its reliability in 

obtaining repeated measures with little variation.  Results of the ICC demonstrated that 

the correlation values for each of the image regions (i.e., Regions 1–9) were greater than 

0.99 (Table 2.1).  This agreement among the repeated measures illustrated that the optical 

system was reliable at reporting ‘test-re-test’ measurements, which is important for multi-

trial testing. 

The micrometer screw gauge was used as the gold-standard for assessing the 

validity of the optical system, since it is a standard measurement tool with system 

resolution on the order of 0.0001 inch (i.e., 0.0025 mm).  However, because the optical 

system was validated against another measurement tool, it is important to note that errors 

in the measures obtained by the optical system may also be contributed to by errors 

inherent in the micrometer screw gauge. 

The color thresholding method of the optical system’s software detected markers 

based on a single R-G-B value, which allowed distinction of the colored markers from 

their surroundings.  This was done by hand-tuning the R-G-B scale to a set value, 

ensuring that only the makers appeared in the resultant thresholded image.  While this 

was a time consuming process to ensure a stable centroid was achieved, no concerns with 

system performance were noted.  However, a range of R-G-B values could have also 

been used to capture the markers.  It is possible that this range may have allowed easier 
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definition of the marker shapes and boundaries within the thresholded image, to achieve 

the required stable centroid during static images. 

The markers used for validation of the optical system were similar to those 

expected to be used during mechanical testing in subsequent chapters, with regards to the 

respective R-G-B values.  However, because of the restrictions and difficulty of marker 

attachment to the micrometer’s anvil and spindle, the markers were slightly larger in 

shape compared to those expected to be used with mechanical testing.  In addition, the 

markers were positioned at the nearest proximity to the center of the anvil and spindle to 

reduce offset motion during spindle rotation to the target displacement.  However, offset 

motion was still apparent, therefore analysis of relative marker motion in the horizontal 

and vertical orientations were broken down into individual x and y components.  Despite 

meticulous methods to control for appropriate marker size and placement on the 

micrometer’s anvil and spindle faces, the centroid tracking method of the optical system 

may have been influenced by the non-uniformity of the markers.  This may have further 

contributed to the error detected in the optical measurement system. 

 

2.5 CONCLUSION 

Overall, this study was able to demonstrate the efficacy of the presented optical 

system at meeting the system requirements needed for measuring interface motion.  

Taking into consideration the reliability and accuracy of the system to measure 

displacements on the order of micrometers, it was concluded that the optical system was 

satisfactory for the application in this thesis, to compare interface motion of various stem 

surface designs. 
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CHAPTER 3: THE EFFECT OF STEM SURFACE TREATMENT 

ON THE TORSIONAL STABILITY OF TITANIUM AND COBALT 

CHROME CEMENTED JOINT REPLACEMENT SYSTEMS  

 

Overview:  Stem surface treatment and substrate material are two design factors that can 

contribute to the stability at the stem-cement interface, in resisting the effects of torsional 

loads that occur at the upper limb joints.  This chapter compared the torsional stability of 

three stem surface treatments (smooth, beaded and plasma spray), applied to two 

substrate materials (titanium and cobalt chrome), using the custom optical tracking 

system described in Chapter 2 to measure interface rotation. 
1
 

  

3.1 INTRODUCTION 

Implant loosening is a complication that affects the success of joint replacement 

systems, leading to revision surgery (Australian Orthopaedic Association, 2010; New 

Zealand Orthopaedic Association, 2010).  Loosening can be affected by implant stem 

design (Verdonschot, 2005) and joint loading (Bergmann et al., 1995).  For cemented 

implants, a successful stem design has the capability of providing secure mechanical 

fixation and stability at the stem-cement interface, resisting the effects of loosening 

caused by various loading modes applied to the joint.  

Stem surface treatment is one aspect of stem design that plays a role in cemented 

implant stability.  It has been demonstrated that cemented roughened surfaces 

                                                 

1
 A version of this work is under review:  Y.K. Hosein, G.J.W. King, C.E. Dunning (2013). “The Effect of 

Stem Material and Surface Treatment on the Torsional Stability at the Metal-Cement Interface of Cemented 

Upper Limb Joint Replacement Systems” Journal of Biomedical Materials Research: Part B Applied 

Biomaterials. 
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experienced greater interface strength when compared to smooth polished surfaces (Chen 

et al., 1998; Crowninshield, 1998; Walsh et al., 2004).  These studies compared surface 

treatment based on average roughness values (Ra), where surfaces used were classified as 

polished (Ra < 1 µm), matte (Ra < 2 µm) or rough (Ra > 2 µm) (Verdonschot, 2005).  

While this classification is relevant to micro surface modifications, it does not represent 

surface treatments that are used clinically with cemented upper extremity stemmed 

components (i.e., plasma spray and beaded).  A study by Jeon et al. addressed the clinical 

success of the Coonrad/Morrey Total Elbow implant which incorporated these treatments 

(Jeon et al., 2012), however, no known in-vitro studies have specifically compared their 

role in implant stability.  Such information may be beneficial to the design of future joint 

replacement systems. 

 Stem material is another aspect of stem design that may influence implant 

stability.  Titanium and cobalt chrome alloys are two conventional materials used with 

implant stems (Buechel et al., 2012).  With regards to cemented implants, however, there 

has been much debate over the use of titanium stems with femoral components, due to 

increased rates of loosening, as well as high sensitivity to corrosion (Hallam et al., 2004; 

Schweizer et al., 2005).  Despite lack of success with lower limb joint replacements, 

cemented titanium implants remain extensively used in upper limb applications (Van der 

Lugt and Rozing, 2004).  In such cases, the type of stem material may influence the 

success of surface treatments applied to the implant stem, by affecting the strength of the 

bond formed between the stem and coating during the finishing process (Davis, 2003). 

Joint loading can also affect implant loosening.  Torsional loading that occurs at 

the joint is one such example that can lead to failure of the prosthesis.  This failure 

mechanism can be initiated during lifting movements with the elbow in a flexed position.  

During this motion, internal rotational loads are directed at the humerus of the elbow 

joint (Van der Lugt et al., 2010).  Such is the case in lifting with an abducted arm, or the 

throwing motion of the arm. 

Considering the role stem surface roughness plays in implant stability, as well as 

the lack of literature comparing surface treatments that are clinically relevant to cemented 
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upper extremity stemmed components, the purpose of this study was to investigate the 

effect of stem surface treatment on the torsional stability of both titanium and cobalt 

chrome cemented stems in-vitro. 

  

3.2 MATERIALS AND METHODS 

Thirty generic implant stems of circular cross-section (Ø = 8 mm) were custom-

machined from cobalt chrome (n = 15) and titanium (n = 15) by Tornier S.A.S. 

(Montbonnot Saint Martin, France) (See Appendix G for engineering drawings).  Each 

stem was given a polished smooth surface.  The fifteen stems of each material were split 

into three equal groups.  One group of stems retained their smooth surface (n = 5), while 

the remaining groups had two different surface treatments: beaded (n = 5) and plasma 

sprayed (n = 5), applied over a 20 mm stem length region by Orchid Bio-Coat 

(Southfield, MI, USA) (Figure 3.1).  The plasma sprayed surfaces were titanium plasma 

spray (TPS) and had a Ra value of 48.5 ± 3.9 µm.  The beaded surfaces consisted of one 

layer of beads, with a bead diameter of approximately 500 µm. 

All stems were centralized in square aluminum tubes, and potted using vacuum-

mixed PMMA bone cement (Simplex P


, Stryker


, Kalamazoo, MI, USA) to a fixed 

depth of 20 mm, such that there was full coverage of the surface treated regions (for 

detailed potting and centralization techniques, refer to Appendix H).  The stems were 

maintained in air at 22 ºC for 24 hours during curing.  Subsequently, the potted stems 

were secured in a materials testing machine (Figure 3.2) (Instron


 8874, Norwood, MA, 

USA) and cyclically tested at 1.5 Hz under torsion.  Custom machined fixturing ensured 

that stems were fully centralized during testing (Appendix G.10), allowing the 

application of pure torsional loads with minimal contribution of off-axis loading, as 

monitored by the 6 degrees of freedom load cell of the materials testing machine. 

Loading cycled from a lower limit of 0 Nm to an upper limit that started at 1 Nm, 

increasing in increments of 1 Nm every 100 cycles to a maximum of 30 Nm, or until a 
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Figure 3.1:  Surface Treated Stems used for Torsional Testing 

(A) Smooth surface, (B) beaded treatment, and (C) plasma spray treatment.  All stems 

were cemented to a fixed depth of 20 mm, to ensure coverage of only the surface treated 

region of the stem. 
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rapid increase in rotation of the stem occurred without resistance; the latter being termed 

catastrophic failure. 

Motion at the stem-cement interface was quantified using the custom optical 

tracking system described in Chapter 2 of this thesis (Basler Pilot GigE Camera [Basler, 

Ahresnburg, Germany]; Opto Engineering Telecentric Lens [Opto Engineering, Mantua, 

Italy]; Axial Diffuse Illuminator [Advanced Illumination, Rochester, VT, USA]; and 

LabVIEW Vision Acquisition System [National Instruments,Austin, TX, USA]).  This 

system incorporated a colour thresholding method to optically track the centroid of 

markers placed on the stem and cement (Figure 3.2), to determine their relative distances 

throughout loading.   

Stem-cement interface strength and interface stability were both quantified.  

Interface strength was determined from the values of torque at failure, as obtained from 

the materials testing machine.  Interface stability was determined from the relative 

rotational displacement between the markers on the stem and cement immediately prior 

to failure, as obtained from the optical tracking system (i.e., termed “interface toggle”; 

Figure 3.3).   

Two-way analyses of variance with post-hoc Student-Newman-Keuls tests 

(α = 0.05) were used to examine the role of stem surface treatment and stem material on 

torsional stability, based on the measures of interface strength and stability. 

 

3.3 RESULTS 

Overall, torsional load targets were achieved with minimal off-axis loads and 

moments detected.  To assess stem-cement interface toggle, graphs of relative stem 

rotation versus the number of loading cycles were created (Figure 3.3).  In addition to 

interface toggle, which was measured just prior to failure, the presence of offset stem 

motion was observed in these graphs.  This motion, which was representative of the 
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Figure 3.2:  Experimental Set-up for Torsional Testing of Implant Stems 

Cemented stem within the aluminum tube, secured in an Instron
®
 Materials Testing 

Machine.  Shown in the inset are optical markers attached to the stem and the cement.  

The stem was cyclically loaded under torque, and a camera system was used to detect 

stem-cement interface motion throughout loading.  
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Figure 3.3:  Stem Rotation for Titanium and Cobalt Chrome Surface Treated Stems 

The graphs of relative stem rotation display interface toggle for all stems, which was a 

measure of the stem-cement interface stability just prior to failure.  Offset stem motion, 

as represented by the deviation of the titanium beaded and titanium plasma spray stems 

away from their points of origin, is also shown.  Stems that did not complete the full 3000 

cycles of the loading protocol experienced catastrophic failure, as depicted by the rapid 

increase in relative stem rotation. 
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deviation of the stem away from its point of origin, qualitatively appeared to vary with 

both surface treatment and substrate material, but was not quantitatively analyzed. 

From the initial results, it was noted that stem rotation increased with increasing 

applied torque (Figure 3.3).  Therefore, due to the staircase loading protocol employed, 

the interface toggle was normalized to the value of torque at failure.   

Of the three stem surfaces tested, the smooth stem was the only surface that 

consistently experienced catastrophic failure for both titanium and cobalt chrome stems.  

The beaded surface experienced catastrophic failure with the cobalt chrome stem material 

only, and post-testing inspection found that this resulted in mechanical damage to the 

beaded coating (Figure 3.4).  The plasma spray stems, with both the titanium and cobalt 

chrome stem materials, never experienced catastrophic failure (Figure 3.5). 

As such, there was an overall effect of surface treatment on interface strength 

(p < 0.001), where smooth stems required less torque to cause interface failure than either 

the beaded (p < 0.05) or plasma spray stems (p < 0.05), and plasma spray was also 

superior to beaded (p < 0.001) (Figure 3.5).  Stem material also had an overall effect on 

strength (p = 0.001), where titanium stems experienced higher torques at failure than 

cobalt chrome stems.  In addition, the ANOVA demonstrated a significant interaction 

between stem surface treatment and stem material (p < 0.001).  Thus, appropriate one-

way ANOVAs were conducted, and differed from the main effect in that there was no 

difference between material for plasma spray only (p = 1.0), and no difference between 

beaded and plasma spray for titanium stems only (p = 1.0).  

With regards to interface stability, stem surface treatment had an overall effect 

(p = 0.002) with smooth stems, demonstrating more interface toggle than either beaded 

(p < 0.05) and plasma spray (p < 0.05) treatments (Figure 3.6).  However, the effect of 

surface treatment depended on stem material (i.e., significant interaction; p = 0.001).  

One-way ANOVA’s showed that all three surfaces were different from one another for 

titanium stems (p < 0.05), with a stability ranking of: beaded > plasma spray > smooth.  

By comparison, surface treatment did not have an effect on stability for cobalt chrome 
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Figure 3.4:  Inspection of Stem Surface Treatments Post-Torsion Tests 

(A) Smooth titanium (left) and smooth cobalt chrome (right), (B) beaded titanium (left) 

and beaded cobalt chrome (right), and (C) plasma spray titanium (left) and plasma spray 

cobalt chrome (right).  The beaded cobalt chrome was the only stem that experienced 

mechanical damage to its coating at failure, as depicted by (**) in the figure above. 
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Figure 3.5:  Torque at Failure for Surface Treated Stems 

Graph showing torque at failure (i.e., as a measure of interface strength) for smooth, 

beaded and plasma sprayed surface treatments, on titanium and cobalt chrome stems.  

The bars marked with white stars represent those stems that consistently experienced 

catastrophic failure.   
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Figure 3.6:  Normalized Interface Toggle for Surface Treated Stems in Torsion 

Graph showing normalized interface toggle prior to failure (i.e., as a measure of interface 

motion) for smooth, beaded and plasma sprayed surface treatments, on titanium and 

cobalt chrome stems.  The bars marked with white stars represent those stems that 

consistently experienced catastrophic failure. 
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stems (p > 0.05).  Stem material also showed an overall effect on interface stability, 

where titanium stems experienced more toggle than cobalt chrome stems (p = 0.031). 

 

3.4 DISCUSSION 

Improved implant longevity remain a continuous goal for orthopaedic implant 

research.  Therefore, investigating factors affecting implant loosening is important for 

understanding possible failure mechanisms.  Stem design at the stem-cement interface is 

one factor that may contribute to the overall stability of the implant system, and 

subsequent loosening (Barrack, 2000). 

Stem surface treatments have been incorporated into implant designs to improve 

implant fixation.  Surface treatments such as sintered beads and plasma spray are 

typically incorporated into non-cemented implant designs, with the expectation that the 

porous surface would allow for bony-in-growth onto the implant stem.  However, these 

surface treatments are also utilized with cemented upper limb implant designs, such as 

the Zimmer
®

 Coonrad/Morrey Total Elbow (Zimmer, Warsaw, IN, USA) (titanium 

plasma spray and beads on titanium stems), Latitude
®
 EV Total Elbow Prosthesis 

(Tornier SAS, Montbonnot Saint Martin, France) (titanium plasma spray on cobalt 

chrome stems), and Discovery
®
 Elbow System (Biomet, Warsaw, IN, USA) (titanium 

plasma spray on titanium, or cobalt chrome stems).  It is expected that the viscous bone 

cement fills the spaces of the porous stem surface during cement application, and when 

cured, initiates mechanical interlock of the bulk cement to the stem surface.  This 

mechanical interlock can improve implant fixation by allowing for better anchoring of the 

implant stem within the cement.  In addition, during the lifespan of the implant system, 

these surface treatments are likely to provide frictional resistance to implant motion that 

may be caused as a result of loading occurring at the joint. 

Cobalt chrome and titanium are two established materials among the orthopaedic 

community.  Within recent years, titanium has been a controversial material for use in 

femoral cemented stem designs, since it has been reported to experience increased 
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loosening rates, as well as high sensitivity to corrosion (Jergesen and Karlen, 2002).  

Despite this, titanium is still commonly used in cemented upper-limb implant 

applications (Sanchez-Sotelo, 2011; van der Lugt and Rozing, 2004).  As such, this study 

aimed to examine the effect of stem surface treatment on the stability of cemented 

titanium and cobalt chrome implant stems under torsional loading. 

Stem surface treatment affected stem stability, where beaded and plasma sprayed 

surfaces experienced more resistance to rotation prior to failure when compared to the 

smooth stems.  In addition, the smooth stems consistently experienced catastrophic 

failure at the lowest torque values for both the titanium and cobalt chrome stems. 

Beaded stem surfaces appeared to perform better with a titanium stem material, as 

observed from their resistance to catastrophic failure, when compared to cobalt chrome 

stems.  Post-testing inspection of the stems showed that catastrophic failure occurred as a 

result of the beaded coating being completely ripped off the stem surface (Figure 3.4).  

Thus, it is likely that the torque experienced at failure is more representative of the 

bonding strength of the beaded coating to the cobalt chrome stem, which is a factor of the 

coating fabrication process, and not necessarily a representation of the stem-cement 

interface strength. 

For titanium stems examined in our study, the beaded stems experienced less 

interface toggle than the plasma spray stems, with no difference seen in interface strength 

(Figure 3.6 and 3.5, respectively).  This may be explained based on the mechanism 

explained previously, involving mechanical interlock of the stem surface with cement.  

Beaded coatings have greater surface deviation based on the diameter of the sintered 

beads.  This may allow for deeper infiltration of bone cement, subsequently improving 

the anchoring and stability of the implant system.  

Overall results showed that titanium stems experienced more interface toggle 

throughout loading than cobalt chrome stems (Figure 3.3).  This seems reasonable taking 

into consideration their respective material properties.  Titanium is more ductile 

compared to cobalt chrome, as defined by its lower elastic modulus (Navarro et al., 
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2008), and therefore likely to result in greater stem twisting with respect to the surface of 

the cement.  

From Figure 3.3 it was observed that in addition to interface toggle, there were 

also offsets of the relative stem rotation for stems that did not experience catastrophic 

failure (i.e, plasma sprayed and beaded titanium).  The offsets represent deviation of the 

stem away from the point of origin with increased loading.  This deviation may be due to 

cement creep at the interface as a result of cement exposure to fatigue loading (Jeffers et 

al., 2005; Lewis, 2011, 1997).  One method of defining implant loosening is detection of 

implant migration within the host bone.  As such, it is important to acknowledge bone 

cement creep when defining interface stability as a measure of implant motion only, since 

cement creep may cause stem motion without interface loosening.  

Plasma spray coatings are applied using a thermal spray in a reduced pressure 

inert gas chamber at high temperatures, to produce an irregular surface on the stem.  In 

comparison, beaded coatings are applied via a sintering process, where the beads are 

bonded to the substrate surface of the stem (Ryan et al., 2006).  The strength of the bond 

formed is affected by the carbon content of the base metal substrate, where a lower 

carbon content reduces the effectiveness of the sintering process, causing an inferior bond 

at the level of the substrate surface and beads (Davis, 2003).  Thus, it is possible that the 

effect of substrate carbon content on bonding strength may have played a role in our 

study, where post-testing inspection of the cobalt chrome stems found the beaded coating 

completely ripped off the stem surfaces during failure, but remained intact for the 

titanium stems (Figure 3.4). 

 For this study, only the torsional stability of various surface treatments was 

investigated.  The loading protocol used was chosen based on a review of available 

literature directly measuring the torque through the use of instrumented implants at 

various joints (i.e., shoulder, hip, knee) (Bergmann et al., 2007, 2001; Kutzner et al., 

2010), as well as incorporation of a cyclic staircase method at a rate of 1.5 Hz to mimic 

fatigue loading that typically occurs in-vivo.  This is in keeping with the literature, for 

example, femoral components have been tested using loading rates between 1–3 Hz (Bell 
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et al., 2007; Britton et al., 2004; Hernández-Rodríguez et al., 2005; Westphal et al., 

2006; Wilson et al., 2009).  This protocol ensured comparison of the surface treatments 

based on clinically relevant joint loads, since upper limb joints experience similar loading 

patterns to those at the lower limbs (Goldberg et al., 1988).  Anatomically, however, the 

joint is exposed to a variety of loading modes in addition to torque, which typically work 

in a combined state at the joint.  Therefore, future studies will look at investigating stem 

surface treatment on implant stability under other loading modes.  

The optical tracking system used in our study calculated the relative distances 

between optical markers attached to the exposed surfaces of the stem and cement, to give 

measurements of interface motion throughout loading.  This method is a better 

representation of interface motion compared to marker attachment to the implant only, 

since it measures motion solely at the stem-cement interface, regardless of any possible 

motion in the surrounding fixtures.  The measurement, however, does not discern 

interface motion along the length of the cemented stem.  Therefore, future studies will 

incorporate linear variable differential transducers embedded in the cement mantle, or 

imaging techniques to detect internal motion of the stem and cement. 

Square aluminum tubes were used instead of cadaveric bone for cementing of the 

implant stems.  Although this does not represent a clinically cemented intramedullary 

component, aluminum tubes were chosen since the study was only interested in the 

effects at the stem-cement interface.  The use of aluminum tubes did have the benefit of 

providing a controlled cementing and testing environment, reducing any variation in the 

results that may be caused by varying bone quality. 

With regards to the implant stem designs, circular cross-section generic stems, 

with 20 mm length surface treated regions were used to compare implant stability.  This 

design is not representative of a specific joint implant stem in terms of its geometry and 

surface treated area, but allowed for comparison of implant stability solely dependent of 

surface treatment.  Circular cross-section implant stems provided the least resistance to 

torque (Kedgley et al., 2007), and as such, it was intentionally incorporated into the study 

design to minimize the effects of stem geometry on implant stability.  Similarly, a 20 mm 
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length surface treatment region was used, since pilot testing showed that greater surface 

coverage did not allow for interface failure in the desired testing period, and reduced 

surface coverage was not optimal for relative comparison of surface treatments. 

The findings from this study suggest that stem surface treatment influences 

implant stability, offering greater interface strength and resistance to motion than a 

smooth surface.  When comparing surface treatments, the plasma spray finish offered 

superior interface strength compared to the beaded finish with cobalt chrome stems; 

however there was no difference in their performance with titanium stems.  With regards 

to interface stability, the beaded finish was more stable than the plasma spray for titanium 

stems, but showed no difference for cobalt chrome stems.  In addition to surface 

treatment, our study demonstrated that stem material affected implant stability, with 

titanium stems experiencing greater interface strength but reduced resistance to interface 

motion than cobalt chrome stems. 

 

3.5 CONCLUSION 

For surface treated stems tested under cyclic torsional loading, plasma spray 

performed better than beaded treatments on a cobalt chrome stem substrate, and beaded 

treatments performed comparable to plasma spray treatments on a titanium stem 

substrate. 
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CHAPTER 4: THE EFFECT OF STEM SURFACE TREATMENT 

AND MATERIAL ON PISTONING OF ULNAR COMPONENTS IN 

LINKED CEMENTED ELBOW PROSTHESES  

 

Overview:   The ulnar component of a total elbow replacement can fail via stem 

“pistoning”, which occurs as a result of axial loads generated at the ulnohumeral joint in 

routine daily activities.  The application of stem surface treatments to titanium and cobalt 

chrome elbow systems has resulted in improved clinical success, but with varied 

responses.  This chapter compares the stability response of smooth, beaded and plasma 

spray surface treatments, applied to titanium and cobalt chrome stems, in resisting axial 

forces at the stem-cement interface.  Results of this study explain the relationship between 

stem surface treatments and substrate material in overall implant stability, as well as 

suggest various failure mechanisms associated with each of the surface treatments. 
2
 

 

4.1 INTRODUCTION 

Ulnar component pistoning has been described as one of the main failure 

mechanisms of total elbow prostheses (Cheung and O’Driscoll, 2007), leading to 

loosening of the implant system.  Joint reaction forces that result in tension/compression 

loads acting across the ulnohumeral joint occur when the elbow is in the flexed position 

and can lead to this pistoning effect (Amis, 2012; Goldberg et al., 1988; Johnson and 

King, 2005).  Stem design factors, including the application of surface treatments, are 

expected to resist the effects of mechanical loosening caused by these forces (Evans et 

                                                 

2
 A version of this work has been published:  Y.K. Hosein, G.J.W. King, C.E. Dunning (2013). “The Effect 

of Stem Surface Treatment and Material on Pistoning observed in Ulnar Components of Linked Cemented 

Elbow Prostheses” Journal of Shoulder and Elbow Surgery. [E-pub ahead of print; PMID:  23668920] (See 

Appendix I for the letter of permission) 
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al., 1988).  With surface treatments, improved cement fixation can be hypothesized based 

on the premise of a mechanical interlock formed between the bulk cement and treated 

stem surface.  For ulnar components specifically, a clinical study by Jeon et al., showed 

that various surface treated stems experienced different rates of loosening (Jeon et al., 

2012); however, no known in-vitro studies have compared the success of these surface 

treatments relative to one another.   

 Sintered beads and thermal plasma sprays are two common surface treatments 

used in ulnar stem designs.  The Coonrad/Morrey Total Elbow (Zimmer Inc.), in 

particular, has modified its titanium prosthesis design over the years based in part on 

varying these two surface treatments (Jeon et al., 2012).  In addition, the Latitude EV 

(Tornier Inc.) (cobalt chrome stem) and Discovery Elbow System (Biomet Inc.) (titanium 

stem) incorporate a plasma spray surface treatment in their ulnar component designs.  

When taking into consideration the varying surface topographies of the respective surface 

treatments (i.e., beaded and plasma spray), it can be hypothesized that the type of stem 

surface treatment may affect the strength of the mechanical interlock formed between the 

stem and cement.  Comparisons of this mechanical interlock can offer insight into failure 

mechanisms associated with these surface treated implants. 

Titanium and cobalt chrome alloys are both used as the substrate material in 

elbow prosthesis stem designs.  Stem substrate material may play a role in the success of 

the applied surface treatment, since the composition of the substrate can influence the 

strength of stem-treatment bond formed during treatment process (Davis, 2003).  As 

such, it is important to consider stem material when investigating the role of surface 

treatments in prosthesis loosening. 

Therefore, the purpose of this in-vitro study was to investigate the role of stem 

surface treatment and substrate material on the stability of a simulated ulnar implant stem 

subjected to cyclic compression loading. 
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4.2 MATERIALS AND METHODS 

 Sixty smooth, circular, implant stems (Ø = 8 mm) were custom machined from 

both titanium (n = 30), and cobalt chrome (n = 30) by Tornier S.A.S. (Grenoble, France).  

For each material, the stems were sub-divided into five equal groups.  The first group 

retained their full length smooth surface (n = 6), while the remaining four groups had 

standard commercially employed stem surface treatments applied by Orchid Bio-Coat 

(Southfield, MI, USA).  Two groups received a beaded surface treatment with coverage 

lengths of 20 mm (n = 6) and 10 mm (n = 6), while two groups received a plasma spray 

surface treatment with coverage lengths of 20 mm (n = 6) and 10 mm (n = 6) (Figure 4.1) 

(Appendix G).  The beaded surfaces consisted of one layer of beads, with a bead diameter 

of approximately 500 µm.  The plasma sprayed surfaces were titanium plasma spray 

(TPS) and had a Ra value of 48.5 ± 3.9 µm. 

All stems were potted to a fixed depth of 20 mm in square aluminum tubes using 

vacuum-mixed PMMA bone cement (Simplex P


, Stryker


, Kalamazoo, MI, USA), such 

that there was full coverage of the surface treated regions.  For the 10 mm surface treated 

stems, this potting method allowed for cement coverage of the 10 mm treated region, as 

well as an additional 10 mm of proximal smooth stem surface (Figure 4.1).  The potted 

stems were maintained in air at 22 ºC for 24 hours during curing.  Subsequently, they 

were secured in a materials testing machine (Figure 4.2) (Instron


 8874, Norwood, MA, 

USA).  Custom machined fixturing ensured that stems were fully centralized during 

testing (Appendix G.10), accommodating stem push-out under compression, with 

minimal contribution of off-axis loading, as monitored by the 6 degrees of freedom load 

cell of the materials testing machine. A Delrin
®
 stopper was placed inside the aluminum 

tube at the base of the cement mantle to ensure push-out of the stem only, without 

slipping of the cement mantle within the aluminum tube.   

Loading cycled at 1.5 Hz under compression, keeping loads between 500 N and 

an upper limit.  The upper limit started at 1000 N and increased in increments of 1000 N 

every 100 cycles to a maximum 10000 N, after which it cycled for a further 25000 cycles  
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Figure 4.1:  Surface Treated Implant Stems used for Compression Testing 

Implant stems with various surface treatments: (A) smooth, (B) 20 mm length beaded 

treatment, (C) 10 mm length beaded treatment, (D) 20 mm length plasma spray 

treatment, and (E) 10 mm length plasma spray treatment.  Stems were cemented to a 

fixed 20 mm depth, as highlighted by the region between the parallel lines.  For the 

10 mm length surface treated stems, this allowed full cement coverage of the surface 

treated region, as well as an additional 10 mm length of proximal smooth stem surface. 

 

  



88 

 

to complete the testing protocol (i.e., total 25900 cycles).  Failure of the stem-cement 

interface was defined as 2 mm push-out of the stem relative to the cement, termed 

‘catastrophic failure’, or until completion of the loading protocol. 

Motion at the stem-cement interface was quantified using the custom optical 

tracking system described in Chapter 2 (Basler Pilot GigE Camera, Ahresnburg, 

Germany; Opto Engineering Telecentric Lens, Mantova, Italy; and LabVIEW Vision 

Acquisition System, National Instruments, Austin, TX, USA).  This system incorporated 

a colour thresholding method to optically track the centroid of markers placed on the 

stem and cement (Figure 4.2), to determine their relative distances throughout loading.  

Immediately following testing, the cemented stems were placed into Acetone 

(Caledon Laboratories Ltd., Georgetown, ON, Canada) for 24 hours to allow dissolution 

of the surrounding bone cement.  The stems were subsequently cleaned and visually 

inspected to determine the presence of any surface treatment damage associated with 

testing.  

Stem-cement interface strength and stem motion were both quantified.  Interface 

strength was determined from the number of cycles required to cause failure for each of 

the stems, as obtained from the materials testing machine.  Stem motion was determined 

from the relative distances between the markers on the stem and cement prior to failure 

(i.e., termed “interface toggle”) (Figure 4.2).  For those stems that reached 10000 N in the 

loading protocol, and survived beyond the first 100 cycles, an additional measure of stem 

motion (i.e., termed “global motion”) was used.  Global motion measured the 

displacement of the stem within the camera’s coordinate system (i.e., not relative to the 

cement) from 901 cycles (i.e., start of the 10000 N load step) until failure, and allowed 

relative comparison of surface treatments at the constant 10000 N load level (Figure 4.2).   

Two-way analyses of variance with post-hoc Student-Newman-Keuls tests 

(α = 0.05) were used to examine the role of stem surface treatment and substrate material 

on cemented stem stability, based on the measures of interface strength and stem motion.  
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Figure 4.2:  Experimental Set-up for Compression Testing of Implant Stems 

Schematic of the cemented stem in the materials testing machine, showing application of 

a compressive load.  The camera was used to track markers placed on the stem and 

cement throughout loading as shown in the inset image.  The relative distance between 

the stem and cement was used to determine interface toggle (I.T.) just prior to failure.  

The change in global motion of stems from 901 cycles (i.e., start of 10000 N load step) 

until failure (G.S.M) was used to compare axial motion of surface treated stems at a 

constant load level. 
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4.3 RESULTS 

 Post-testing visual inspection of the stems found that the 10 mm beaded titanium 

and 10 mm beaded cobalt chrome stems were the only surfaces to experience mechanical 

damage at failure (Figure 4.3).  This was observed as debonding of the beaded treatments 

from the stem surfaces.  All other stem surfaces remained intact, with no visual damage 

evident. 

Survival curves illustrated that stem surface treatment did affect stem stability 

under compression loading, where the 20 mm length, beaded stems outlasted the other 

stem surfaces (Figure 4.4).  Data obtained from the optical tracking system showed that 

stem motion increased simultaneously with the cyclic staircase loading protocol (Figure 

4.5), and as such, all motion data (i.e., interface toggle and global stem motion) was 

normalized to their respective loads and cycles, to allow for relative comparison of stem 

surfaces. 

With regards to cycles to failure, the two-way ANOVA found an overall effect of 

surface treatment (p < 0.05) and no overall effect of substrate material (p = 0.25), but 

there was a significant interaction between these factors (p = 0.02) (Figure 4.6A).  

Therefore, one-way ANOVAs were performed, and showed that for titanium, the 20 mm 

beaded stems outlasted all other treatments (p < 0.05).  For cobalt chrome, the 20 mm 

beaded stems outlasted all other treatments (p < 0.05), but the 20 mm plasma spray stem 

also performed better than the 10 mm beaded, 10 mm plasma spray, and smooth stems 

(p < 0.05).  

With regards to interface toggle, the two-way ANOVA again found an overall 

effect of surface treatment (p < 0.05), no overall effect of substrate material (p = 0.78), 

and a significant interaction between these factors (p = 0.01) (Figure 4.6B).  One-way 

ANOVAs showed that for titanium, the 20 mm beaded, 10 mm beaded, and 20 mm 

plasma spray stems experienced less toggle than the 10 mm plasma spray and smooth 

(p < 0.05), with the 10 mm plasma spray stem exhibiting less toggle than the smooth 

(p < 0.05).   
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Figure 4.3:  Inspection of Stem Surface Treatments Post-Compression Tests 

(A) Titanium (left) and cobalt chrome (right) 20 mm length beaded stems, (B) titanium 

(left) and chrome (right) 10 mm length beaded stems, (C) titanium (left) and cobalt 

chrome (right) 20 mm length plasma spray stems, and (D) titanium (left) and cobalt 

chrome (right) 10 mm length plasma spray stems.  The 10 mm length beaded titanium 

and cobalt chrome stems were the only stems to experience debonding of the treatment 

from the stem surface at failure, as highlighted by the starred region. 
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Figure 4.4:  Survival Curves for Titanium and Cobalt Chrome Stems 

Survival curves for titanium (top), and cobalt chrome (bottom) stems.  The 20 mm length 

beaded stem experienced longest survival, while smooth stem surface experienced 

shortest survival, as defined by the number of cycles required to cause failure. 
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Figure 4.5:  Stem Motion for Titanium and Cobalt Chrome Stems under 

Compression 

Representative graphs of stem motion relative to cement (top row), and global stem 

motion (bottom row) for titanium and cobalt chrome stems.  The 20 mm length beaded 

stem did not experience catastrophic failure, as defined by 2 mm of stem push-out, for 

eleven of the twelve stems tested. 
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Figure 4.6:  Interface Stability Offered by the Surface Treated Stems in 

Compression 

(A) Cycles at failure:  For titanium, the 20 mm beaded treatment experienced the most 

cycles compared to all stem surfaces (p < 0.05
¥
).  For cobalt chrome, the 20 mm beaded 

stem outlasted the other treatments (p < 0.05*), with 20 mm length plasma spray 

treatment also showing greater cycles to failure than the other stem surfaces (p < 0.05
†
).  

(B) Interface Toggle prior to failure: For titanium, the 20 mm beaded, 10 mm beaded, and 

20 mm plasma spray stems showed the smallest magnitudes of interface toggle 

(p < 0.05
‡
), with the 10 mm plasma spray stem experiencing less toggle than the smooth 

(p < 0.05
§
).  For cobalt chrome, the 20 mm beaded, and 20 mm plasma spray treatments 

showed reduced interface toggle compared to all other stems (p < 0.05
¤
). 
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For cobalt chrome, the 20 mm beaded and 20 mm plasma spray stems experienced less 

toggle than the 10 mm length surface treatments and smooth stems (p < 0.05). 

When comparing the global motion of surface treated stems at a constant 10000 N 

load level, it was found that surface treated stems demonstrated various magnitudes of 

stem motion (Figure 4.7).  Overall, the 20 mm and 10 mm beaded treatments experienced 

the least stem motion (p < 0.05), with the 20 mm plasma spray treatment also showing 

less stem motion than the 10 mm plasma spray treatment (p < 0.05).  Cobalt chrome 

stems showed less motion than titanium (p = 0.02). 

 

4.4 DISCUSSION 

Surface treatments have been added to cemented ulnar components of total elbow 

arthroplasties with the aim of improving stem fixation and long term stability (Jeon et al., 

2012).  Bone cement is considered a connecting agent, much like a grout material.  When 

used with a surface treated component, it is expected to fill the spaces of the treated 

surface, initiating a mechanical interlock between the stem and cement.  The strength of 

the interlock formed may subsequently improve immediate and long term stem fixation.  

The evolution of ulnar component designs over the last decade has incorporated 

different stem surface treatments, specifically sintered beads and plasma spray, with the 

goal of improving the strength of the stem-cement interlock formed, while preserving the 

mechanical integrity (i.e., fracture properties) of the substrate stem material (Jeon et al., 

2012).  While clinical studies have assessed the success of various commercially 

available elbow prosthesis designs incorporating these surface treatments (Fevang et al., 

2009; Skytta et al., 2009; van der Lugt and Rozing, 2004), there are no known in-vitro 

studies that have compared their role in component stability, or provided information on 

the failure mechanisms associated with these stem surface treatments.   
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Figure 4.7:  Global Stem Motion of Surface Treated Stems in Compression 

Global motion of the surface treated stems from 901 cycles (i.e., start of the 10000 N load 

step) until failure.  The 20 mm and 10 mm beaded stems demonstrated the smallest 

magnitudes of stem motion (p < 0.05
∞
), with the 20 mm plasma spray treatment also 

showing less stem motion than the 10 mm plasma spray treatment (p < 0.05
¶
).  Overall, 

cobalt chrome stems showed less motion than titanium (p = 0.02). 

 

 

  



97 

 

Pistoning of the ulnar component of linked total elbow replacements is one source 

of implant loosening, and can occur from axial forces acting at the implant-cement 

interface.  These axial forces result from dynamic loading of the ulnohumeral joint in 

routine daily activities (Amis, 2012; Goldberg et al., 1988; Johnson and King, 2005), or 

from impingement of coronoid processes or protruding cement during elbow 

hyperflexion, causing distraction forces to occur on the ulnar component (Cheung and 

O’Driscoll, 2007).  Therefore, in order to compare the effects of different surface 

treatments on component stability, axial forces that may contribute to stem pistoning 

should be considered.  Pistoning forces that occur in-vivo typically act in tension at the 

proximal end of the ulnar component; however, the shear forces produced at the stem-

cement interface are the same as those expected if the stems were exposed to similar 

compression loads.  As such, the purpose of this study was to investigate the role of stem 

surface treatment on the stability of titanium and cobalt chrome implant stems, using a 

study design incorporating cyclic compression loading to mimic ulnar pistoning at 

failure. 

Stem surface treatment had a major effect on overall stem stability.  When 

looking at interface strength and stem motion, the 20 mm beaded treatment showed 

greatest survival and least toggle when compared to the other stem surfaces for both 

titanium and cobalt chrome stems (Figure 4.6).  Beaded treatments have greater surface 

deviations with regards to its surface topography, when compared to other stem surfaces.  

Based on the diameter of the sintered beads applied to the stem surface, this may allow 

for greater infiltration of bone cement onto the stem surface.  Failure of the stem-cement 

interface would therefore be dependent on the amount of shearing force needed to 

overcome each interlock along the stem’s surface.  Greater cement infiltration, in terms 

of depth and number of interlocking sites, would therefore require greater cyclic loads to 

cause stem instability, resulting in interface failure and stem push-out. 

For stems that failed catastrophically (i.e., experienced 2 mm push-out), 

significant interaction was observed between stem surface treatment and substrate 

material for measures of interface strength and toggle.  The 20 mm plasma spray cobalt 

chrome stem performed better than both of the 10 mm length, surface treatments and 
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smooth cobalt chrome stems (Figure 4.6).  For titanium stems, however, the 20 mm 

plasma spray treatment performed similar to the 10 mm length, surface treatments and 

smooth surfaces.  Therefore, although stem surface treatment contributed to improved 

interface stability prior to catastrophic failure, this was dependent on the stem substrate 

material. 

When comparing the interface mechanics for the individual stem-cement 

interfaces at catastrophic failure, the smooth stem surfaces appeared to offer no resistance 

to the shearing force at the interface, and as such, once the stem-cement bond was 

broken, the stem failed rapidly.  In comparison, for cobalt chrome stems, the roughened 

surface of the 20 mm plasma spray stem provided frictional resistance to the shearing 

force at the stem-cement interface, which was greater than that provided by the 10 mm 

length, plasma spray and 10 mm length, beaded treatments.  Once the shearing force at 

the interface became larger than the frictional force, the stems experienced push-out. 

Post-testing inspection of the stem surfaces found that the 10 mm beaded stem 

was the only surface to experience mechanical damage at failure (Figure 4.3).  This 

suggests that the number of cycles to failure for the 10 mm beaded treatment may not be 

representative of the stem-cement interface strength, but more likely a measure of the 

strength of the bond between the beads and stem surface.  The strength of this bond is 

directly related to the carbon content of the base substrate material, where a lower carbon 

content can affect the success of the sintering process, causing a weaker bond between 

the stem substrate material and attached beads (Davis, 2003).  Although beaded 

treatments are likely to contribute to satisfactory interface strengths, as observed from the 

20 mm beaded treatments, there may be variability in its performance based on the 

success of the sintering treatment during the fabrication process.  As such, stringent 

standards should be placed on the fabrication process of beaded stem designs, ensuring 

adequate material composition of the base substrate metals before application of the 

beaded treatments. 

For stems that surpassed the staircase region of the loading protocol, and reached 

1000 cycles without failure, global stem motion was used to compare the contribution of 
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stem surface treatments to stem motion at the constant 10000 N level.  Global stem 

motion included motion of the stem with cement, and offered information on the failure 

patterns associated with the different stem surface treatments.  Overall, beaded stems 

experienced less stem motion compared to the plasma spray surfaces.  As mentioned 

previously, the roughened surface of the plasma spray treatment provided frictional 

resistance to the shearing force at the stem-cement interface, and this resistance was 

represented by the gradual increase in stem motion prior to catastrophic failure (i.e., 

gradual interface failure).  In comparison, catastrophic failure of 10 mm length, beaded 

stems was influenced by the bond broken between the beads and the stem surface, 

resulting in a stable interface with little stem motion before stem push-out (i.e., rapid 

interface failure).  When analyzing stem motion for the 20 mm length beaded stems that 

did not experience catastrophic failure, it was seen that these values were comparable to 

the 10 mm length beaded surfaces, even at the end of the loading protocol (i.e, 10000 N; 

25900 cycles).  This suggests that the 20 mm length beaded treatment contributed to a 

stable stem-cement interface. 

Titanium and cobalt chrome are two common stem metals used in ulnar 

component designs (Van der Lugt and Rozing, 2004).  Each offers its own advantages to 

implant systems in terms of biocompatibility, wear resistance and mechanical properties 

(Hallab et al., 2004; Navarro et al., 2008).  However, application of surface treatments to 

the substrate metal can influence the success of the implant system.  Clinical studies have 

reported that beaded treatments on titanium stems can cause increased rates of component 

fracture, believed to be caused by weakening of the metal during the bead sintering 

process (Athwal and Morrey, 2006; Jeon et al., 2012).  Our study did not evaluate the 

strength of the metal stemmed components, but found that the success of the surface 

treatments was directly related to stem material type.  As mentioned before, variations in 

the metal composition, specifically the carbon content of the substrate metal, can directly 

affect the strength of the bond formed between the beads and stem during the sintering 

process.  Therefore, future studies should look into investigating the effect of stem 

substrate material composition on the bonding strength of beaded treatments, as well as 

the effect of the bead sintering process on the fracture properties of different stem 

substrate materials commonly used with elbow prostheses. 



100 

 

During elbow flexion, the ulnohumeral joint is under compression/tension, where 

resultant forces act upwards onto the distal end of the humerus (Amis, 2012), and varies 

depending on the angle of elbow flexion.  These joint forces can act on linked total elbow 

prostheses in a similar manner, where resultant forces act upwards onto the humeral 

component causing pull-out of the connected ulnar component.  It is postulated that pull-

out of the ulnar component may also occur from distraction forces produced when the 

elbow is hyperflexed past a limit set by an impinging structure (i.e., flange, cement, 

bone), creating a fulcrum loading scenario (Jeon et al., 2012), or from carrying a heavy 

object during elbow extension, causing forces at the trochlea of up to twenty times the 

external load at the hand (Amis et al., 1980).  Both axial loading examples create shear 

forces along the length of the stem-cement interface, which can cause interface de-

bonding and resultant pistoning of the ulnar component.  Our study incorporated a cyclic 

compressive load to mimic dynamic shear forces that may cause pistoning of the implant 

stem under axial loading, similar to that experienced by the ulnar component.  As such, 

the loads used for compression testing (i.e., 500–10000 N) were intentionally chosen to 

compare the effect of the different surface treatments in a cyclic pistoning scenario, 

similar to that caused by resultant joint forces or distraction forces at the ulnohumeral 

joint. 

From the measures of stem motion as detected from the optical tracking system, it 

was observed that the cement directly surrounding the stem contributed to overall stem 

motion.  This was seen in measures of relative and global stem motion, where the stem 

experienced greater motion in the global frame when compared relative to the cement 

(Figure 4.5).  This may be explained by the creep properties exhibited by bone cement 

under dynamic loading (Lewis, 2011).  This contribution of cement creep may also 

explain the variability seen in our motion results for smooth stems.  The stability of 

smooth stems was influenced by the stem-cement bond formed at the interface, and as 

such, any motion detected prior to failure may have been solely dependent on the visco-

elastic nature of the cement on individual testing days.  Bone cement properties could 

have also affected the minimal stem motion observed for the 20 mm beaded stems that 

completed the testing protocol (i.e., 25900 cycles), since previous work showed that bone 

cement becomes stiffer with increasing loading cycles (Verdonschot and Huiskes, 1995). 
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This in-vitro study, to the authors’ knowledge, is the first to compare the effects 

of stem surface treatment and substrate material on pistoning of an implant stem under 

axial load.  The study was successful at showing the contribution of beaded and plasma 

spray surface treatments to stem-cement interface stability, as well as able to provide 

information on the failure mechanisms associated with these surface treated stems.  

Overall, the 20 mm beaded stems offered the greatest stability among all stem surfaces, 

and for cobalt chrome stems only, the 20 mm plasma spray stems contributed to 

improved stability as well.  When comparing mechanisms of catastrophic failure, smooth 

stems failed via debonding at the stem-cement interface, beaded stems failed via 

debonding of the beaded surface treatment from the stem surface, and plasma spray stems 

failed via loss of frictional force between the plasma spray treatment and bone cement.  It 

is expected that the results from this biomechanical analysis will help to understand the 

contribution of surface treatments in component pistoning, and provide information about 

the failure mechanisms associated with similar clinical stem designs. 

 

4.5 CONCLUSION 

For surface treated stems tested in cyclic compression loading, beaded performed 

better than plasma spray treatments on titanium and cobalt chrome stem substrates.  

However, plasma spray treatments performed better on cobalt chrome than titanium stem 

substrate.  Overall, for both beaded and plasma spray treatments stem stability was 

improved with a greater surface treatment coverage length. 
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CHAPTER 5:  THE EFFECT OF STEM CIRCUMFERENTIAL 

GROOVES ON THE STABILITY AT THE IMPLANT-CEMENT 

INTERFACE  

 

Overview:  Previous chapters of this thesis discussed the application of beaded and 

plasma sprayed treatments for improving stem-cement interface stability in joint 

replacement systems; however, results showed variable success of these surfaces.  As 

opposed to the addition of a treatment or finish to the base stem material, altering stem 

design through changing the surface topography by removal of a portion of the base stem 

material may offer some advantages.  This study compared the effect stem 

circumferential grooving, with varying grooved dimensions, on the torsional and axial 

stability of cemented stems. Findings from this study show the difference in stability 

response between the two grooved designs, and allowed relative comparison of the 

circumferential grooves with surface treatments tested in previous chapters of this 

thesis.
3
 

 

5.1 INTRODUCTION 

Implant stem design plays an important role in the mechanical stability of implant 

systems (Barrack, 2000; Evans et al., 1988).  Stem surface modifications, such as the 

application of a surface treatment or surface finish, is one such design factor that can 

have an influential effect on implant stability (Crowninshield et al., 1998; Jeon et al., 

2012; Scheerlinck and Casteleyn, 2006; van der Lugt and Rozing, 2004).  Thus far, 

Chapters 3 and 4 of this thesis have explored the effect of stem surface treatment on the 

                                                 

3
 A version of this work is in the revision stage of publication: Y.K. Hosein, G.J.W. King, C.E. Dunning 

(2013). “The Effect of Circumferential Grooves on the Stability of Cemented Joint Replacement Systems” 

Journal of Medical Devices.   
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torsional and axial stability of cemented implant systems.  These studies were interested 

in the overall effect of stem surface treatments on the mechanical response at the stem-

cement interface, since it was reported that surface treated implants contributed to 

reduced rates of loosening in ulnar component systems (Jeon et al., 2012).  This clinical 

finding seemed reasonable considering the expectation of the altered stem surfaces at the 

fixation interface, which would facilitate infiltration of bone cement during the cement 

application and curing process.  The resulting mechanical connect formed would 

therefore provide improved implant anchorage, and resistance to implant loosening. 

From the results reported in Chapters 3 and 4, it was confirmed that plasma spray 

and sintered bead treatments improved the overall stability of implant systems under 

torsional and axial loading; however, their individual contribution to implant stability was 

quite variable.  Beaded coatings appeared to be more stable than plasma spray coatings, 

but depended on the stem substrate material (i.e., cobalt chrome versus titanium).  In 

addition to this variable stability response, other authors have reported higher fracture 

rates associated with beaded implant stems, compared to plasma spray stems, which may 

result from the weakening of the stem substrate metal during the bead sintering process 

(Athwal and Morrey, 2006; Jeon et al., 2012).  As such, the choice between surface 

treatment types for improving fixation is not a straightforward decision. 

 Similarly, there have also been mixed reviews over the use of stem surface 

finishes in cemented lower limb implant designs.  It is believed that surface finished 

stems produce increased cement and/or metal wear at the fixation interface, as a result of 

the inevitable micromovement of the stem after implantation (Scheerlinck and Casteleyn, 

2006).  As such, although the surface finish designs initially provide improved implant 

fixation, they may potentially limit the success of the implant system over time. 

An alteration in the surface topography of the base stem material, such as the 

machining of grooves onto the stem, would eliminate the contribution of an additional 

interface (i.e., surface treatment onto the stem) to the stability of the cemented stem 

construct, as well as reduce wear caused by surface finishes at the stem-cement interface, 

while still allowing for improved mechanical connect and stem fixation during the 
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cementing process.  However, the effect on implant stability is unknown.  As such, the 

purpose of this study was to investigate the effect of circumferential grooves on the 

stability of cemented stems under compression and torsional loading.  It was 

hypothesized that the application of circumferential grooves would not affect torsional 

stability, but would have a stabilizing influence in compression, which is of particular 

interest to upper limb replacement systems that often fail due to tension-compression 

forces at the joint (Cheung and O’Driscoll, 2007).  

 

5.2 MATERIALS AND METHODS 

Fifteen metal stems with circular cross-sections (Ø = 8 mm) were custom 

machined from cobalt chrome, and made with smooth (n = 5) or circumferentially-

grooved (n = 10) surfaces (Tornier S.A.S., Grenoble, France) (Figure 5.1) (Appendix G).  

Individual grooves (i.e., not threaded) were machined along a fixed 20 mm length region 

of the stem surface.  Groove spacing and depths were either 0.6 mm (n = 5) or 1.1 mm 

(n = 5), at a spacing to depth ratio of one.    

 All stems were potted into square aluminum tubes, to a fixed depth of 20 mm, 

using vacuum-mixed polymethylmethacrylate (PMMA) bone cement (Simplex P


, 

Stryker


, Kalamazoo, MI, USA).  The potted stems were maintained at 22 ºC, and left 24 

hours to cure until testing.  Subsequently, stems were placed in a materials testing 

machine (Instron


 8874, Norwood, MA, USA) for application of loads at room 

temperature.  Compression and torsional tests were done on separate testing days, using 

the same implant stems, cleaned with acetone (Caledon Laboratories Ltd., ON, Canada), 

and re-potted with new cement.   

Compression tests were done using a cyclic staircase loading protocol, similar to 

that described in Section 4.2.  Cyclic loads fitted a sine wave function, at a frequency of 

1.5 Hz.  Load targets oscillated between 500 N and an upper limit, which started at 

1000 N and increased in increments of 1000 N every 100 cycles to a maximum 10000 N.  
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At 10000 N, cycling continued for a further 25000 cycles, totaling 25900 cycles at the 

end of the protocol.  Failure was defined as 2 mm of stem push-out, termed catastrophic 

failure, or until completion of the loading protocol.  For torsional loading of the stems, a 

similar protocol to that described in Section 3.2 was incorporated, using a sine wave 

pattern to apply cyclic loads at a frequency of 1.5 Hz.   Torque values cycled between 

0 Nm and an upper limit, which started at 1 Nm and increased in 1Nm increments every 

100 cycles to a maximum of 30 Nm.  Failure of the implant stem was defined as a rapid 

increase in rotation of the stem without resistance, termed catastrophic failure, or until 

completion of the protocol. 

The custom optical tracking system (Basler Pilot GigE Camera, Ahresnburg, 

Germany; Opto Engineering Telecentric Lens, Mantova, Italy; and LabVIEW Vision 

Acquisition System, Austin, TX, USA) previously described in Sections 2.2, 3.2 and 4.2 

of this thesis, was used to detect motion at the stem-cement interface during compression 

and torsional loading.  The measure of interface toggle was assessed by the width of the 

relative stem motion and rotation graphs (Figure 5.2A and 5.2B).  For stems that did not 

fail catastrophically before reaching the maximum load/torque (i.e., 10000 N or 30 Nm), 

global stem motion was quantified (Figure 5.2C).  Global stem motion represented the 

displacement of the stem within the camera’s coordinate system (i.e., not relative to the 

cement), which occurred during the loading cycles at the maximum load only (indicated 

by the starred region in Figure 5.2C). 

One-way ANOVAs (α = 0.05) were used to compare the effect of stem surface 

condition on interface strength (i.e., load to failure), and stem motion (i.e., both interface 

toggle and global stem motion). 

 

5.3 RESULTS 

The failures observed were dependent upon the loading mode.  In compression, 

only the smooth stem experienced catastrophic failure prior to the maximum load, with 
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Figure 5.1:  Smooth and Circumferential Grooved Surface Designs Tested in Both 

Compression and Torsion  

(A) Smooth, (B) 1.1 mm Grooved, and (C) 0.6 mm Grooved.  All stems were cemented 

to fixed 20 mm depth, as indicated by the region highlighted by the double arrows. 
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both grooved surfaces completing the loading protocol without stem push-out (Figure 

5.2A).  When subjected to an applied torque, all stem surfaces experienced catastrophic 

failure prior to reaching the maximum torque (Figure 5.2B).    In both loading modes, 

stem motion increased with increasing cycles of the staircase loading protocols, and as 

such, stem motion data were normalized to their respective load/torque data for statistical 

comparisons. 

Overall, the presence of grooves increased the number of compressive loading 

cycles achieved prior to failure (p < 0.001) (Figure 5.3A), but had no effect on loading 

cycles for torsion (Figure 5.4A).   

Under compression, grooved stems experienced less interface toggle prior to 

failure compared to smooth surfaces (p < 0.01), with no differences between the two 

grooved designs (p = 0.97) (Figure 5.3B).  For torsion tests, motion data showed that 

grooved 1.1 mm stems experienced the greatest interface toggle prior to catastrophic 

failure (p < 0.01), with no differences between the smooth and grooved 0.6 mm surfaces 

(p = 0.76) (Figure 5.4B). 

When comparing stems that reached the maximum load under compression 

without catastrophic failure, grooved 1.1 mm stems showed greater stem motion with 

increased cycling, compared to grooved 0.6 mm stems (p = 0.03) (Figure 5.5). 

 

5.4 DISCUSSION 

Implant stem designs are constantly evolving in an effort to reduce the incidence 

of loosening.  Stem surface modification (i.e., application of surface treatment or surface 

finish) is one factor of implant design that may reduce the effects of loosening.  By 

incorporating a roughened stem surface onto cemented implant designs, the bone cement 

is allowed to infiltrate the stem surface, providing mechanical fixation between the stem 

and cement.  For femoral components, surface finished stems are described based on their 

roughness value (Ra value) (Verdonschot, 2005), and studies have shown that an  
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Figure 5.2:  Stem Motion for Smooth and Circumferential Grooved Stems 

Representative graphs of stem motion for smooth, grooved 0.6 mm and grooved 1.1 mm. 

(A) Relative stem motion under compression, and (B) relative stem rotation in torsion, 

was used to determine interface toggle prior to failure.  (C) Global stem motion was used 

to determine the change in stem motion with increased number of cycles at the maximum 

load, as indicated by the starred region. 
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Figure 5.3:  Interface Stability for Smooth and Circumferential Grooved Surfaces in 

Compression 

(A) Loads required to cause failure and, (B) interface toggle prior to failure.  All stems 

failed at consistent loads, resulting in zero standard deviation for the measures of load at 

failure, as seen in part (A).  Smooth stems showed the least stability (p < 0.001**) 

compared to the grooved surfaces. 
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Figure 5.4:  Interface Stability for Smooth and Circumferential Grooved Surfaces in 

Torsion 

(A) Torque at failure and, (B) interface toggle prior to failure.  No differences were found 

in the torque to failure among all stems (p = 0.1), however, grooved 1.1 mm stems 

showed greatest interface toggle prior to failure (p < 0.01*). 
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Figure 5.5:  Stem Motion with Increased Number of Cycles 

Stem motion during the loading cycles at maximum compression load, for grooved 

0.6 mm and grooved 1.1 mm stems.  Grooved 1.1 mm stems showed increased stem 

motion compared to the grooved 0.6 mm (p = 0.3). 
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increased roughness value contributed to increased interface strength; however, there 

were implications of interface wear and abrasion once debonding had occurred 

(Crowninshield et al., 1998; Scheerlinck and Casteleyn, 2006).  Similarly for ulnar 

components, stem surface treatments such as sintered beads and plasma spray 

incorporated onto cemented stem designs have shown improved clinical success (Jeon et 

al., 2012; van der Lugt and Rozing, 2004); however, in-vitro testing of these surfaces in 

previous chapters of this thesis has demonstrated variable outcomes dependent on stem 

substrate material.  As such, this chapter examines a different design concept for the stem 

surface, with the aim of improving implant fixation without the contradictory effects 

contributed by roughened stem surfaces.  Therefore, the purpose of this study was to 

investigate the effect of circumferential grooves on the stability of implant stems under 

compression and torsional loads. 

 The hypotheses for this study were accepted.  Under compression, both grooved 

surfaces significantly improved the interfacial strength compared to the smooth surface.  

When comparing interface strength for torsional loading, no statistical differences were 

found among the grooved and smooth surfaces, as expected, given the direction of the 

grooves relative to the applied torque.  Despite this, there was a trend towards increased 

interface strength with the application of grooves (Figure 5.4A).  Thus, with regards to 

interface strength, it appears that the circumferential design of the grooves created 

mechanical interlocks along the length of the stem-cement interface and increased the 

stem surface contact with cement, offering superior resistance to shear forces at the 

interface.  This interfacial resistance would be dictated by the mechanical properties, and 

in particular, the shear strength of the integrated bone cement.  In comparison, smooth 

stems created an adhesive-type bond with the cement at the interface, and provided some 

frictional resistance to interface forces.  Once these bonding and frictional forces were 

overcome by the interface shear forces, the smooth stems experienced failure. 

 Toggle results for compression loading showed that both grooved surfaces 

experienced little interface toggle compared to the smooth surface, suggesting superior 

interface stability and resistance in compression.  When comparing the grooved stems at 

the constant 10000 N load with increasing load cycles, the grooved 1.1 mm stem 
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experienced increased stem motion prior to failure.  Similarly, results of interface toggle 

under torsional loading showed that the grooved 1.1 mm surfaces experienced the largest 

magnitudes of toggle compared to the other stem surfaces.  This may be explained by the 

size and number of grooves associated with the grooved 1.1 mm stem, which would 

accommodate a larger volume of cement integration onto the stem surface.  As such, the 

mechanical properties of bone cement would have a greater influence on the interface 

motion of the grooved 1.1 mm stem surface compared to grooved 0.6 mm, and smooth 

surfaces.  Although bone cement is used as a connector, it is a viscoelastic material 

(Lewis, 2011), and can cause increased motion of the stem without leading to interface 

failure. 

When comparing the results of this study to those previously reported for surface 

treated implants in Sections 3.3 and 4.3 of this thesis, circumferential grooves performed 

comparable to, or better than, surface treated stems in compression.  Although they did 

not improve torsional stability, other stem design factors such as stem cross-sectional 

shape (Kedgley et al., 2007) and curvature (Berzins et al., 1993; Evans et al., 1988), may 

work in combination with the circumferential grooves to provide increased torsional 

stability when incorporated into implant stem designs.  In addition, applying longitudinal 

grooves in combination with the circumferential design may work in synergy to improve 

both axial and torsional stability; however, further studies are needed to confirm this 

hypothesis. 

Cobalt chrome was the stem material chosen for testing stem circumferential 

grooves within this study, since results from Sections 3.3 and 4.3 of this thesis showed 

that this stem substrate material contributed to the variable mechanical response of the 

beaded treatments in compression and torsional loading.  Therefore, the present study 

aimed to determine the stability response of stem circumferential grooves on cobalt 

chrome stems, to consider its possible use as an alternative surface design to the beaded 

treatment on cobalt chrome stems.  In addition, it was not expected that stem material 

would influence the mechanical response of the respective circumferential grooved 

surfaces; therefore, only one stem material was utilized in the study design. 
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Cementing technique plays an important role in the fixation mechanics of joint 

replacements (Faber et al., 1997; Iesaka et al., 2003).  Likewise, the properties of the 

bone cement during preparation (i.e., viscosity, temperature) can affect the mechanical 

connect formed at the stem-cement interface.  This study used low viscosity bone cement 

for fixation of the implant stems, allowing for better infiltration of cement into the 

grooved surfaces and improving the mechanical interlock formed once the cement was 

cured.  For the grooved 0.6 mm stems, in particular, low viscosity bone cement would 

likely ensure sufficient infiltration into the smaller groove spacing.  As such, it is 

important to consider cement consistency during implantation, to allow for proper 

interdigitation of cement with the grooved stem surface.  

Cement shrinkage is another property of bone cement that can affect the success 

of cemented interfaces (Bishop et al., 1996; Eveleigh, 2001; Kwong and Power, 2006; 

Lennon and Prendergast, 2001; Lewis, 1997; Orr et al., 2003).  In particular, the cement 

used in this study (i.e., Simplex P) has been shown to have approximately 6 percent 

decrease in its initial volume during curing (Kwong and Power, 2006).  Shrinkage of the 

cement is initiated by polymerization and temperature effects of the cemented construct 

(Draenert and Draenert, 2005).  However, reports on the effect of cement shrinkage at the 

stem-cement interface have been variable, ranging from the formation of gaps (Bishop et 

al., 1996), to shrinkage and compression of the cement onto the stem (Draenert and 

Draenert, 2005).  While this study did not investigate the effects of cement shrinkage on 

the interface formed with the grooved surfaces, it is important to consider, since the 

overall stability of the grooved stems were shown to be influenced by the properties of 

the integrated bone cement.  Therefore, future studies should look into methods for 

quantifying cement shrinkage at the stem-cement interface.   

 Although the grooved surface improved implant stability, the effect of the 

grooved edges within the cement should be acknowledged.  Sharp edges at the stem-

cement interface can act as stress risers (Crowninshield et al., 1980; Evans et al., 1988), 

initiating cement fracture.  Incorporating a rounded edge on the grooved corners may 

prevent stress fractures in the cement.  While this study did not investigate the effects of 
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the grooved stem surface on fractures within the bone cement, this should be addressed in 

future finite element studies. 

 Another limitation of adding grooves to the stem surface is their potential effect 

on stem strength.  The presence of the grooves reduces the minimum cross sectional area 

of the stem.  In addition, the notches created by the grooves on the stem surface may act 

as stress risers, reducing the overall strength of the stem.  However, by controlling the 

groove dimensions and adding fillets (i.e., rounded internal corners) these effects may be 

mitigated.   

Stem circumferential grooves improved implant stability under compression, with 

no significant effects in torsion.  Overall, grooved 0.6 mm stems experienced less stem 

motion compared to the grooved 1.1 mm stems.  Therefore, introducing circumferential 

grooves onto implant stem surface designs may reduce the effects of implant loosening 

caused by compressive forces.   

 

5.5 CONCLUSION 

When comparing grooved stems, the grooved 0.6 mm stems showed improved 

stem stability compared to grooved 1.1mm stems in compression, with a trend towards 

improved stability in torsion as well.  This alternative surface topography may address 

the concerns associated with surface treated and surface finished stems, and potentially 

reduce the cost of the stem fabrication process. 
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CHAPTER 6: THE EFFECT OF STEM SURFACE TREATMENT 

AND MATERIAL ON THE STABILITY OF JOINT REPLACEMENT 

SYSTEMS SUBJECTED TO BENDING LOADS 

   

Overview:  Joint loading and resultant interface stresses play a key role in the stability of 

cemented implants.  Previous chapters of this thesis have focused on the effect of 

torsional and axial loads on implant stability, and discussed the role of stem surface 

treatments in resisting the resultant shear stresses at the stem-cement interface.  Bending 

loads at the joint, however, result in both normal and shear stresses at the stem-cement 

interface, which can have a varied effect on the interface’s mechanics.  As such, this 

chapter investigates the effect of stem surface treatment on the interface stability of 

cemented implants subjected to bending loads. 

 

6.1 INTRODUCTION 

The influence of stem surface treatments on the stability of cemented implant 

systems is dependent on their ability to resist interface stresses caused by joint loading.  

However, depending on the loading mode type, resultant stresses at the stem-cement 

interface can vary.  These variable interface stresses can lead to different mechanisms of 

stem debonding, and resultant implant loosening.  

 Chapters 3 and 4 of this thesis have already explored the role of surface treated 

implant stems on the axial and torsional stability of implant systems.  In particular, these 

studies showed similar results with regards to the performance of sintered beads and 

plasma spray treatments, on titanium and cobalt chrome stems, in both loading conditions 

(Sections 3.3 and 4.3).  The results seem reasonable considering the resultant stresses that 

occur at the stem-cement interface due to these loading modes.  Shear stresses act 
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concentric to stem-cement interface in torsional loading, and parallel to the interface 

under axial loading.  

In addition to torsional and axial loads occurring at the replaced joint, bending 

loads are also apparent, as a result of joint forces acting perpendicular to the longitudinal 

axis of the implant (Bergmann and Graichen, 2010; Bergmann et al., 2007, 2004, 1993; 

Guerra, 2004; Kutzner et al., 2010; Westerhoff et al., 2009).  These forces result in 

normal interface stresses that act perpendicular to the stem-cement interface, in addition 

to shear interface stresses that act parallel to the stem surface. 

Normal interface stresses that occur during bending of the stem can be tensile or 

compressive in nature, depending on the location of the interface relative to the applied 

perpendicular load.  These interface stresses can lead to gradual stem debonding, which is 

more likely to occur at the region of the stem-cement interface that experiences tensile 

stresses (Huiskes and Schouten, 1980; Huiskes, 1985).  Debonding at the interface can 

subsequently lead to instability of the stem within the cement.  As such, implant systems 

subjected to bending loads should also be considered when investigating the overall 

effect of surface designs on implant stability. 

 Therefore, the purpose of this study was to investigate the effect of stem surface 

treatment on the stability of titanium and cobalt chrome implant stems under bending 

loads.  It was hypothesized that smooth stems would offer inferior stem fixation 

compared to the surface treated stems, forming a weak bond at the stem-cement interface 

that would be susceptible to debonding and stem instability under bending loads.  In 

comparison, it was expected that the surface treated stems would show minimal motion at 

the stem-cement interface, due to the mechanical resistance to interface tensile and shear 

stresses.  In addition, it was expected that titanium stems may experience greater stem 

motion as a result of its lower modulus of elasticity than cobalt chrome. 
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6.2 MATERIAL AND METHODS 

 Fifty implant stems (Ø = 8 mm) were custom machined from titanium (n = 25) 

and cobalt chrome (n = 25) by Tornier S.A.S. (Montbonnot Saint Martin,France).  For 

each stem substrate material, five stems retained their smooth stem surface, and twenty 

stems had standard commercially employed stem surface treatments applied by Orchid 

Bio-Coat (Southfield, MI, USA); 20 mm length beaded treatment (n = 5), 10 mm length 

beaded treatment (n = 5), 20 mm length plasma spray treatment (n = 5), and 10 mm 

length plasma spray treatment (n = 5), as previously described in Chapter 4.   

 The fixation method used in this study was similar to that in previous chapters, 

where all stems were centralized, and potted to a fixed cement depth of 20 mm using 

vacuum-mixed PMMA bone cement (Simplex P


, Stryker


, Kalamazoo, MI, USA).  The 

stems were cured for 24 hours in a temperature controlled environment, and subsequently 

tested in a materials testing machine (Instron


 8874, Norwood, MA, USA).  Custom 

fixturing was used to secure the stem at the base of the materials testing machine.  The 

cemented stem in the aluminum tube was positioned on its side, so that the longitudinal 

axis of the stem was parallel to the base of the materials testing machine.  A ball bearing 

attached to the end of the load applicator was used to apply compressive forces to the 

centre of the stem head, creating a bending moment about the stem head (Figure 6.1).  A 

cyclic compressive staircase loading protocol was used for testing of the stems; they were 

pre-loaded to 10 N in compression, and cycled between 10 N and upper load limit value, 

which started at 50 N and increased in 50 N increments every 100 cycles, to a maximum 

of 1000 N in compression (limited to ensure there was no permanent deformation to the 

stem external to the cement). 

 Stem-cement interface motion was observed using the optical tracking system 

(Basler Pilot GigE Camera, Ahresnburg, Germany; Opto Engineering Telecentric Lens, 

Mantova, Italy; and LabVIEW Vision Acquisition System, National Instruments, Austin, 

TX, USA) described in previous chapters of this thesis (Section 2.2. 3.2, 4.2, and 5.2).  

The displacement between markers placed on the stem and cement (Figure 6.1) was used  



124 

 

 

 

 

 

Figure 6.1:  Experimental Set-up used for Bending Tests of Implant Stems 

Cyclic compressive loads were applied to the stem head, inducing bending of the stem 

within the cement construct (side view shown in schematic at top right).  The camera was 

used to track markers placed on the stem and cement (shown in inset image), and the 

distance between the markers was defined as relative stem motion.  
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to determine the relative stem motion during loading.  From the graphs of relative stem 

motion over time, interface stability was quantified by “maximum interface toggle”, 

which represented the maximum width of the relative stem motion graphs during loading.  

An additional measure of stem stability was the “offset stem motion”, which was a 

measure of the average deviation of the stem from its original position at the start of 

loading (Figure 6.2). 

 Visual analysis of the cemented stem construct was done post-testing, to 

determine whether the stem was loose within the cement mantle, or if the cement mantle 

appeared to be compromised, during mechanical testing.  

Two-way analyses of variance with post-hoc Student-Newman-Keuls tests 

(α = 0.05) were used to examine the role of stem surface treatment and stem material on 

implant stability under bending loads, using measures of interface toggle and offset stem 

motion. 

 

6.3 RESULTS 

 Post-testing visual inspection of the cemented stem construct found that all stems 

remained wedged within the cement mantle, without indications of stem loosening.  In 

addition, there were no signs of damage or fracture to the exposed regions of bone 

cement.  However, it was observed that stems appeared displaced within the cement, 

where analysis of the stem from the proximal and distal ends of the construct showed the 

stem tilted from its central axis, which was originally in a horizontal configuration 

(Figure 6.3).  This tilt was quantified by the measure of offset stem motion (Figure 6.2). 

 Statistical analysis of maximum interface toggle found an overall effect of stem 

surface treatments (p = 0.033), where the smooth stems (0.074 ± 0.023 mm) experienced 

greater interface toggle compared to the 20 mm beaded treatment (0.047 ± 0.012 mm) 

(p = 0.018).  However, there were no differences found among the other surface 
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Figure 6.2:  Stem Motion of Surface Treated Stems under Bending Loads 

Representative graphs of relative stem motion for surface treated stems with titanium and 

cobalt chrome substrate materials.  Maximum interface toggle was defined as the 

maximum width of the relative motion graphs ( ), and offset stem motion was defined as 

the average deviation of stem motion from the starting position, shown by dashed line 

and (¥). 
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Figure 6.3:  Proximal and Distal Views of Stems Post- Bending Tests 

Post-testing inspection of the (A) proximal, and (B) distal views of the cemented implant 

stems found that the stems deviated from their central axes (yellow dotted line), and 

appeared offset within their cement mantles. 
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Figure 6.4:  Maximum Interface Toggle for Surface Treated Stems in Bending 

The 20 mm length beaded treatments experienced less toggle than the smooth stems 

(p = 0.018) (as indicated by *), with no differences found between stem materials 

(p = 0.587). 
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treatments (p > 0.05), as well as no difference in interface toggle between stem materials 

(p = 0.587) (Figure 6.4). 

For offset stem motion, differences among the surface treatments were found 

(p = 0.041), where smooth stems (0.051 ± 0.023 mm) experienced greater stem deviation 

within the cement mantle than the 20 mm beaded treatment (0.031 ± 0.008 mm).  In 

addition, there was no effect of stem material on offset stem motion (p = 0.577) (Figure 

6.5). 

 

6.4 DISCUSSION 

Joint loads acting perpendicular to the implant stem can induce bending of the 

cemented stem construct.  Throughout various joints of the body, these loads have been 

shown to range between 0.05 to 5 times body weight during routine daily activities 

(Bergmann and Graichen, 2010; Bergmann et al., 2007, 2004, 1993; Guerra, 2004; 

Kutzner et al., 2010; Westerhoff et al., 2009), resulting in varied bending moments acting 

about the stem head.  During bending of the cemented stem, loads are transferred across 

the stem-cement interface creating regions of tensile, compressive and shear stresses 

along the interface.  These stresses can initiate debonding of the stem from the cement, 

leading to implant micromotion and subsequent implant loosening.   

Chapters 3 and 4 of this thesis discussed the role stem surface treatments played 

in interface stability under torsional and axial loads, and in particular their contribution to 

resisting shear stresses at the stem-cement interface.  With bending loads, however, the 

response of surface treatments to resist normal stresses (i.e., tensile and compressive) at 

the interface may vary.  As such, the purpose of this study was to investigate the effect of 

stem surface treatment on the stability of titanium and cobalt chrome stems under 

bending loads.  
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Figure 6.5:  Offset Motion for Surface Treated Stems in Bending 

The 20 mm length beaded stems demonstrated less offset stem motion than the smooth 

stems (as indicated by *), with no differences found between stem materials (p = 0.577). 
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Analysis of interface stability found that stem surface treatment had an overall 

effect on interface stability under bending loads, where smooth stems showed greater 

interface toggle compared to the 20 mm beaded treatment (Figure 6.4). As discussed 

previously within this thesis, smooth stems create a chemical bond with the cement at the 

interface, which is more susceptible to interface stresses compared to the mechanical 

interlock created by the 20 mm beaded treatment.  As such, it is likely the smooth stems 

may have experienced debonding resulting in greater interface instability compared to the 

20 mm beaded treatment.  

 The results of interface toggle observed among the surface treatments (i.e, 20 mm 

beaded, 20 mm plasma spray, 10 mm beaded, and 10 mm plasma spray treatment) could 

be explained by the mechanism of stability expected for the surface treatments under 

bending loads.  Surface treated stems promote interdigitation of bone cement onto the 

stem surface, which reduces the chances of stem debonding due to normal and shear 

stresses acting at the stem-cement interface during stem bending.  However, the improved 

interface fixation offered by the surface treated stems may result in the contribution of 

bone cement to interface toggle measurements.  As such, similar interface toggle 

observed among the surface treated stems may likely be influenced by the mechanical 

properties of the interlocked bone cement.  Despite the non-difference in the results, the 

overall trend of interface toggle for each of the surface treatments may be indicative of 

the contribution of the individual surface treatments to interface stability. 

This contribution of the mechanical properties of bone cement was also observed 

in the measure of offset stem motion, where results found that all stems deviated from 

their original position within the cement mantle during loading, and smooth stems 

appeared to show greater deviations compared to the 20 mm beaded treatment (Figure 

6.5).  Depending on the stem-cement interface condition (i.e., fixed or debonded), the 

load transfer across the interface can vary (Huiskes and Schouten, 1980; Huiskes, 1985).  

For smooth stems that experience stem debonding, tensile interface stresses are no longer 

able to be transmitted, and as such, compressive stresses at stem-cement interface are 

likely to increase.  This increase in compressive interface stresses can cause increased 

loading of the surrounding bone cement.  The bone cement consequently exhibits its own 
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mechanical response to loading, which has been shown to be viscoelastic in nature 

(Lewis, 2011, 1997; Saha and Pal, 1984), and results in creep of the cement and 

subsequent drift of the stem within the cement mantle. 

Although post-testing inspection of the cemented stem construct found that the 

stems were offset from their original position, all stems appeared to be securely wedged 

within the cement mantle.  This is important to note since surgical analysis of the 

cemented stem constructs may assume that a secure stem is indicative of a stable stem 

construct; however, our results have shown that although stems were not physically loose 

within the cement mantle, all stems appeared to experience some interface toggle and 

stem deviation under bending.  While these values may appear small in magnitude, they 

are likely to increase with continuous exposure to interface stresses, as expected in the 

case of in-vivo joint loading. 

The loading protocol used in this study was chosen to represent typical bending 

moments expected at the shoulder, elbow, hip and knee joints (Bergmann et al., 2007, 

1993; Guerra, 2004; Kutzner et al., 2010), taking into consideration the dimensions of the 

cemented stem construct.  As such, a cyclic staircase protocol was used with bending 

loads between 50–1000 N, which created bending moments of 1–20 Nm about the stem 

head.  This protocol also allowed direct comparison of the various surface treatments 

within the time-frame required for 24 hours testing of the cemented stem samples. 

The optical system used for measuring interface stability proved useful for 

determining stem-cement motion based on analysis of the exposed regions of the stem 

and cement.  However, considering the influential role that bone cement plays in stem 

stability under bending stresses, analysis of the full length of the cemented stem construct 

may be needed to fully understand the interface mechanics involved in implant bending.  

As such, future studies should look into experimental or computational methods that 

allow analysis of the entire cemented stem construct. 

The findings from this study demonstrated that smooth stems experienced greater 

instability compared to the 20 mm beaded treatments under bending loads, with no 

differences found among the other surface treatments.  Overall, stem substrate material 
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had no effect on stem stability.  Additionally, results from this study suggest that bone 

cement plays a significant role in the mechanical response of cemented implant stems 

exposed to bending loads; however, future studies will be needed to confirm this. 

 

6.5 CONCLUSION 

Stem surface treatments did not improve implant stability under cyclic bending 

loads; however, overall stem motion appeared to be influenced by creep or motion of the 

surrounding bone cement. 
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CHAPTER 7: THE USE OF MICRO-COMPUTED TOMOGRAPHY 

(µ-CT) IMAGING TO VISUALIZE AND QUANTIFY MOTION AT THE 

STEM-CEMENT INTERFACE WITH AN APPLIED BENDING 

MOMENT 

 

7.1 INTRODUCTION 

Stem-cement interface motion is a useful measure for investigating the stability 

response of cemented implant systems exposed to joint loading.  It provides information 

regarding the localised motion of the stem relative to the adjacent cement, but can be 

influenced by the mechanical properties (i.e., creep) of the connecting/interface cement.  

Bone cement is viscoelastic in nature, and as such, exhibits displacement under loads 

(Lewis, 2011, 1997; Saha and Pal, 1984).  The extent of this response depends on several 

factors, including the type of loading that occurs at the joint (i.e., compression/tension, 

torsion, bending) (Lewis, 2011, 1997; Saha and Pal, 1984; Verdonschot and Huiskes, 

1995), and can affect the overall stability at the stem-cement interface.  Therefore, 

investigation into the effects of loading on the response at the internal stem-cement 

interface can offer insight into the interface mechanics that dictate implant stability.   

Bending loads, in particular, offer a unique loading response at the stem cement 

interface, which has been discussed in previous sections of this thesis (i.e., Section 6.1 

and 6.4).  Depending on the direction of the load, the interface experiences regions of 

tensile and compressive stresses (Huiskes and Schouten, 1980; Huiskes, 1985).  

However, the effect of these bending stresses on the displacement response at the 

interface is not intuitive.  Based on the results from Section 6.3, it was found that all 

implant stems experienced stem motion under bending loads; however, post-testing 

inspection found that the stems remained securely held within their cement mantles.  As 

such, it was hypothesized that bone cement creep contributed to the observed stem 

motion, rather than motion resulting from interface loosening.  This inference could not 
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be validated, however, since the optical tracking system was only capable of measuring 

motion of the exposed regions of the stem and cement (i.e., where the stem exited the 

cement), with no direct indication of the motion occurring along the length of the stem 

within the cement mantle.  Therefore, an appropriate tool was needed to access the 

internal stem-cement interface during bending, to determine motion along the entire 

length of the cemented stem. 

Micro-computed tomography (µ-CT) imaging is a useful visualization tool that 

has been used in orthopaedic research to investigate the internal properties of bone and 

implanted systems (Bernhardt et al., 2006; Blok et al., 2013; Stock, 2009a; Teeter, 2012; 

Waarsing et al., 2005).  The high resolution of the acquired images (i.e.,50–100 µm) 

(Stock, 2009b), allows detection of microstructure details within the object.  This has 

proven useful for studies, including the investigation of bone morphology (Bernhardt et 

al., 2006; Blok et al., 2013; Waarsing et al., 2005), and wear characteristics of joint 

replacement components (Teeter, 2012).  It was hypothesized that the detailed images 

provided by the µ-CT technology may also be suitable for detecting micromotion at the 

interfaces of an implanted system. 

As such, this study aimed to use µ-CT imaging to observe changes at the internal 

stem-cement interface during loading.  Taking into account the observations from 

Chapter 6 of this thesis, where ambiguity remained regarding the influence of bending 

loads on the mechanical response at the internal stem-cement interface, this chapter also 

intended to address those uncertainties.  Therefore, the purpose of this study was to 

investigate the influence of bending loads on internal stem-cement interface motion, 

using micro-computed tomography (µ-CT) imaging to visualize the interface. 
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7.2 MATERIALS AND METHODS 

7.2.1 TESTING SPECIMENS 

  Nine implant stems were tested, each machined from titanium by Tornier (France) 

to consist of a circular cross-section body (Ø = 8 mm), with full length smooth surface.  

All stems were potted to a fixed depth of 10 mm in aluminum tubes using an orthopaedic 

bone cement (Simplex P, Stryker, Kalamazoo, MI) mixture incorporating miniature steel 

beads (Metaltec Steel Abrasive Co., Canton, MI) (Ø = 500microns) (please see Appendix 

K for details on mixing method).  The beads were used as cement markers in subsequent 

CT images of the stem-cement construct.  The appropriate bead to cement ratio was 

determined to ensure the original flexural modulus of the bone cement was best 

maintained, while still allowing a reasonable dispersion of beads within the cement 

mantles (see Appendix K for details concerning the selection of this ratio). 

Once the stems were potted, they were left to cure at a constant 22 ºC 

temperature.  All stems were allowed 24hrs of curing time before subsequently being 

placed into a custom built loading device for application of bending loads. 

 

7.2.2 CUSTOM-BUILT LOADING DEVICE 

The custom built loading device, previously designed for application of bending 

loads to ulna bone specimens, was modified to incorporate the cemented stem constructs 

(Figure 7.1) (see Appendix M for details of the loading device).  Using the initial design 

concept and the major components of the device, minor modifications were made to 

accommodate the application of bending loads to the cemented stem constructs.  The 

design specifications ensured that the device was made of CT-compatible materials, and 

able to fit within the bore of the CT scanner.  In addition, the final prototype was 

evaluated to ensure its durability during the application of bending loads.   
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The mechanical components of loading device incorporated a stepper motor 

(Robbins and Myers, Electrocraft, Willis, TX) connected to an offset bearing cam, which 

was further attached to a pivoted carbon fibre beam (Figures M.1 and M.2).  During one 

revolution of the motor, the cam connection actuated the pivoted carbon fibre beam in a 

see-saw motion, with approximately 1 mm of vertical displacement.  An aluminum high 

accuracy S-beam load cell (LCR Series, Omega, Stamford, CT) was mounted at the top 

of the carbon fibre beam, above which a ball bearing was placed for the application of 

load to the head of the cemented stem construct.  An aluminum jig secured onto the 

device’s platform was used to hold the cemented stem construct in a horizontal 

orientation above the carbon fibre beam (Figure 7.1).  This configuration allowed forces 

to be applied perpendicular to the cemented stem construct, resulting in a bending 

moment applied to the implant stem.  

 

7.2.3 LOADING AND IMAGING PROTOCOL 

Stems were loaded in a combination of static and dynamic conditions, from a 

minimum load of 50 N to a maximum load of 960 N, in the following sequences:  1) 

monotonic increase, 2) cyclically loaded at a rate of 0.9 Hz for 1000 cycles (to initiate a 

fatigue type response within cemented stem construct), and 3) monotonic increase 

(Figure 7.2).  

For each of the static load levels (i.e., pre- and post-dynamic testing), CT scans of 

the cemented stem were obtained at the unloaded and loaded condition (Figure 7.2), 

using a micro-CT scanner with voxel spacing of 154 µm (eXplore Ultra, GE Healthcare, 

London, Canada).  The scans were acquired at an x-ray potential of 120 kVp, with 40 mA 

tube current, over the duration of 8 seconds.  The resultant image volume was 1024 mm x 

1024 mm x 360 mm. 
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Figure 7.1:  Custom-Built Loading Device used for Application of Bending Loads 

 (A) The loading device was designed to be secured onto the CT bed, and fit within the 

bore of the scanner.  For application of bending loads, (B) the cemented stem was 

secured in a horizontal orientation into an aluminum holding jig, which was fixed to the 

base of the loading platform.  The platform housed a stepper motor connected to an offset 

cam, which was attached to a pivoted carbon fibre beam.  During one revolution of the 

motor, the beam translated vertically in a sinusoidal displacement pattern.  A load cell 

attached to the top of the beam recorded the load applied to the stem head during vertical 

translation of carbon fibre beam.  The applied load induced bending within the cemented 

stem construct, as shown in the inset schematic.  The region highlighted by the dashed 

red box indicates the volume of the bending device which was included in scanner’s field 

of view. 
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Figure 7.2:  Schematic of Loading and Imaging Protocol used for Static and 

Dynamic Tests 

All stems were loaded in a combination of static and dynamic conditions from a 

minimum load of 50 N to a maximum load of 960 N, in the following sequences: 1) 

monotonic increase, 2) cyclically loaded at a rate of 0.9 Hz for 1000 cycles, and 3) 

monotonic increase.  CT scans were acquired for the unloaded and loaded condition of 

the pre- and post- dynamic sequences, as highlighted by the red dashed boxes, and used 

for comparison of stem-cement motion during loading.  A cyclic sequence was 

incorporated between the two monotonic sequences to initiate a fatigue type loading 

response within the cement mantle. 
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7.2.4 DATA ANALYSIS 

Scans of the cemented stems were reconstructed, and converted from .vff’s (i.e., 

image files) to .stl’s (i.e., surface geometry files) using MicroView 3D Image Viewer and 

Analysis Tool (Parallax Innovations, Ilderton, ON).  The surface files were subsequently 

imported into Geomagic Qualify (Geomagic, Morrisville, NC) for analysis of stem-

cement interface motion (see Appendix N for details of analysis).  For each stem, the 

unloaded and loaded surfaces of the pre dynamic scans were compared to determine the 

response of the stem and the surrounding beads embedded within the cement to the 

applied static loads. The same analysis was done using the post-dynamic scans.  In 

addition, the unloaded surfaces of the pre- and post-dynamic scans were compared to one 

another, to determine offsets in stem position as a result of dynamic loading. 

   This comparison involved registering the surfaces from the two scans, using the 

square aluminum tube containing the stem as the fixed point of reference, and 

determining the deviations between the two surface profiles (Figure 7.3A).  2D sections 

along the length of the implant (Figure 7.3B) were used to analyse changes in the stem 

and bead surfaces.  Measurements of stem surface deviation were obtained from the 

central 2D profile, while measurements of bead motion were obtained from 2D profiles 

located within a 2 mm range of this central 2D profile (such that the nearest bead was 

identified).  The vertical change in the stem surface between the unloaded and loaded 

conditions was quantified (Figure 7.3 C), and the vertical and horizontal changes in bead 

surfaces were analyzed.  However, due to inconsistent deformations in a few of the bead 

surfaces (see Appendix O), a stringent criteria was applied to analyze bead surface 

deviation.  That was, bead deviation was only recorded if contralateral edges on the bead 

surface experienced similar quantities of deviations.  

Measurements of stem motion were taken at four specific locations along the 

stem:  at the point of load application (i.e., stem head), the beginning of the stem shaft 

(i.e., uncemented shaft), the beginning of the cement mantle (i.e., cemented shaft #1), and 

the end of the cement mantle (i.e., cemented shaft #2) (Figure 7.4).  The beads embedded 

within the cement were analyzed based on their location relative to two specific regions  
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Figure 7.3:  Surface Deviation Analysis with Geomagic
® 

Motion of the stem and cemented beads was measured from deviation of their respective 

surfaces between unloaded and loaded scans.  Shown above is the loaded stem with beads 

embedded within the cement.  (A) The 3D color plot shows the change in stem position 

from the unloaded to loaded scan, with red (+ve) and blue (-ve) regions showing greatest 

stem surface deviation.  (B) A 2D section along the length (highlighted by the plane) of 

the cemented implant was used to analyze changes in the stem and bead surfaces. (C) 

From the sectioned profiles, the vertical change in the stem surface between the unloaded 

(red profile) and loaded (black profile) conditions was measured both before and after the 

cyclic loading phase.  The load was applied to the head of the stem using a ball bearing, 

as seen in Figure 7.1. (Note: The aluminum tube containing the cemented stem was 

removed from the image for better visualization of the stem-cement interface). 
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within the cement (Tables 7.1–7.3).  Region 1 of the cement represented the length 

between cemented shaft #1 and the midpoint along the length of the cement mantle.  

Region 2 represented the cement length between cemented shaft #2 and the same 

midpoint of the cement mantle. 

A one-way repeated measures ANOVA, with Student-Newman-Keuls post-hoc 

tests (α = 0.05), was used to compare the magnitudes of stem motion from the pre- and 

post-dynamic scans, thereby determining the effect of cyclic bending loads on the 

internal mechanical response of the cemented stem constructs.  Bead deviations, 

however, were inconsistent among stems, and as such, provided only a qualitative 

measure of cement motion (i.e., no statistical analyses were performed). 

 

7.3 RESULTS 

Inspection of the stems post-testing (i.e., after completion of the three loading 

sequences) found that all stems remained securely wedged within their cement mantles, 

with no signs of stem loosening.  Statistical analysis comparing the change in stem 

motion between the pre- and post- dynamic CT images, found no difference in the motion 

of the stem head (p = 0.373), or either of the uncemented (p = 0.162) and cemented 

regions of the stem shaft (p > 0.05) (Figure 7.4).  However, the average motion observed 

for each of stem regions showed a trend towards reduced stem motion following the 

application of dynamic loads (Figure 7.4).   

When observing motion along the entire length of the stem during loading, it was 

found that stems experienced tilting about a pivot point within the cement mantle.  This 

pivot point varied in position among the stems, shifting from the center to the proximal 

and distal regions (i.e., regions 1 and 2, respectively) of the cement (Tables 7.1 and 7.2).   

Analysis of bead motion within the cement found that some beads experienced 

vertical and horizontal translation, while others remained fixed (Tables 7.1 and 7.2).   
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Figure 7.4:  Average Stem Motion during Loading for the Pre- and Post-dynamic 

Scans 

Comparison of stem motion (i.e., head, uncemented shaft and cemented shaft) between 

the unloaded and loaded scans, for the pre- and post-dynamic sequences, found that there 

was no difference in stem motion (p > 0.05) as a result of dynamic loading.  However, 

there was a trend towards decreased stem motion after exposure to cyclic loads, as 

observed from the reduced displacement in the post-dynamic sequence. 
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Table 7.1:  Pre-dynamic Cemented Stem and Bead Motion 

Displacement along the length of the cemented mantle for the cemented stem shaft and 

beads embedded within the cement prior to the cyclic loading sequence. The arrows (↑, ↓) 

indicate the direction of stem and bead motion.  The presence of beads was not consistent 

between regions, or among the stem samples tested, therefore, dashes (-) represent the 

absence of a bead within the region, while zero (0) represents an identifiable bead that did 

not displace.  

 

 

 

  

Stem 

#

Cemented 

Shaft  

(mm)

Cemented 

Shaft  

(mm)

# 1 # 2 Region 1 Region 2 Region 1 Region 2

1 0.040 ↑ 0.059 ↓ - 0.039 ↓ 0 0.045 ←

2 0.021 ↑ 0.010 ↓ 0.036 → - 0.050 ↑ -

3 0.034 ↑ 0.025 ↓ - 0.041 → - 0

4 0.067↑ 0.063 ↓ 0.031 ↑ 0 - 0.134 ←; 0.078 ↓

5 0.033 ↑ 0.026 ↓ 0 - 0 -

6 0.055 ↑ 0.012 ↓ 0 0.025 ↓ 0 -

7 0.050 ↑ 0.044 ↓ - 0.032 →, 0.062 ↓ 0 0.036 ←; 0.047 ↓

8 0.042 ↑ 0.035 ↓ - - 0 0

9 0.040 ↑ 0.039 ↓ - - 0 0

Bead Motion (Above Stem) (mm) Bead Motion (Below Stem) (mm)
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Table 7.2:  Post-dynamic Stem and Bead Motion 

Displacement along the length of the cemented mantle for the cemented stem shaft and 

beads embedded within the cement following the cyclic loading sequence. The arrows (↑, 

↓) indicate the direction of stem and bead motion.  The presence of beads was not 

consistent between regions, or among the stem samples tested, therefore, dashes (-) 

represent the absence of a bead within the region, while zero (0) represents an identifiable 

bead that did not displace. 

 

 

  

  

Stem 

#

Cemented 

Shaft  

(mm)

Cemented 

Shaft  

(mm)

# 1 # 2 Region 1 Region 2 Region 1 Region 2

1 0.029 ↑ 0.050 ↓ - 0.040 ↓; 0.037→ 0 0

2 0.059 ↑ 0.002 ↓ 0 - 0 -

3 0.049 ↑ 0.045 ↓ - 0.020→ - 0.049 ←

4 0.037 ↑ 0.005 ↓ 0 0 - 0.031 ↓

5 0.052 ↑ 0.026 ↓ 0 - 0 -

6 0.058 ↑ 0.011 ↓ 0 0 0 -

7 0.038 ↑ 0.012 ↓ - 0 0.027 ↑ 0

8 0.039 ↑ 0.027 ↓ - - 0 0

9 0.004 ↑ 0.042 ↓ - - 0 0.028 ↓

Bead Motion (Above Stem) (mm) Bead Motion (Below Stem) (mm)
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Table 7.3:  Offset Stem and Bead Motion 

Displacement along the length of the cemented mantle for the cemented stem shaft and 

beads embedded within the cement obtained when comparing the unloaded scans from 

pre- and post-dynamic testing. The arrows (↑, ↓) indicate the direction of stem and bead 

motion.  The presence of beads was not consistent between regions, or among the stem 

samples tested, therefore, dashes (-) represent the absence of a bead within the region, 

while zero (0) represents an identifiable bead that did not displace. 

 

 

                    

 

  

  

Stem 

#

Cemented 

Shaft  

(mm)

Cemented 

Shaft  

(mm)

# 1 # 2 Region 1 Region 2 Region 1 Region 2

1 0.014 ↑ 0.018 ↓ - 0 0 0.071←

2 0.016 ↑ 0.003 ↓ 0 - 0 -

3 0.009 ↑ 0.014 ↓ - 0 - 0

4 0.040 ↑ 0.042 ↓ 0 0 - 0.119←; 0.027↓

5 0.010 ↑ 0.010 ↓ 0 - 0 -

6 0.015 ↑ 0.006 ↓ 0 0 0 -

7 0.029 ↑ 0.012 ↓ - 0 0.080 ← 0.068←

8 0.009 ↑ 0.025 ↓ - - 0.035 → 0

9 0.007 ↑ 0.013 ↓ - - 0 0

Bead Motion (Above Stem) (mm) Bead Motion (Below Stem) (mm)
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When comparing offset stem and bead motion between the pre- and post-dynamic 

unloaded scans, it was observed that all cemented constructs experienced offset motion as 

a result of dynamic testing, with some constructs showing greater motion than others 

(Table 7.3). 

 

7.4 DISCUSSION 

The clinical success of implant systems is dependent, in part, on the stability 

provided by the connection formed at the stem-cement interface (Barrack, 2000; Mohler 

et al., 1995).  However, the ability of this connect to resist forces that occur at the 

interface, may be influenced by the mechanical properties of the individual interface 

materials (i.e., bone cement and metal).   Bone cement, in particular, is known to exhibit 

a time-dependent displacement response when loaded (Lewis, 2011, 1997; Saha and Pal, 

1984).  Therefore, in order to fully understand the interface mechanics that occur during 

joint loading, the contribution of individual interface components to overall stem stability 

needs to be explored. 

Chapter 6 of this thesis discussed the unique interface stress response initiated by 

bending loads.  From those results, it was hypothesized that bone cement displaced under 

interface stresses, and thereby affected the overall stability of the stem.  This contribution 

is important to consider since displacement of cement can cause motion of the stem 

without loosening, eventually leading to implant misalignment.  As such, a thorough 

investigation into the effect of bending loads on the response of the internal stem-cement 

interface was needed.   

Visual inspection of the cemented stem constructs post-testing found that all 

stems were secured within their cement mantles, with no signs of stem instability or 

loosening.  This would suggest that any motion observed for the loaded stems may have 

been contributed to by the displacement of the surrounding bone cement.  Statistical 

analysis found no difference in stem motion between the pre- and post-dynamic loaded 

scans, implying that exposure to short-term dynamic loading did not cause a significant 
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increase in stem instability.  However, from the graphs of stem motion between the pre- 

and post- dynamic conditions, there was a trend towards reduced stem motion with 

application of dynamic loads (Figure 7.4).  This may be explained by the mechanical 

response of bone cement to cyclic loads.  If stem motion was dictated by displacement of 

the surrounding cement, it would seem reasonable that the stems experienced less motion 

as a result of short–term stiffening of bone cement with increased number of loading 

cycles (Verdonschot and Huiskes, 1995).   

When comparing the motion of the stem along the cemented interface, a distinct 

pattern was observed in the motion path of the stem.  During loading the stems appeared 

to experience tilting about a pivot point within the cement mantle, suggesting that 

displacement of the surrounding cement facilitated stem motion (Tables 7.1 and 7.2).  For 

some stems this pivot point occurred at the midpoint along the length of the mantle, 

where a positive displacement of the stem in the proximal region of the cement 

reciprocated to negative displacement in the distal region.  For other stems this pivot 

point shifted to the proximal or distal region of the cement mantle.  The difference in the 

location of the pivot point may offer an explanation into the fixation condition along the 

length of the interface during bending.   In a fully-fixed stem condition the normal 

stresses across the interface would be higher at the proximal and distal ends of the 

cemented construct, with a middle region of minimal stress transfer (Huiskes and 

Schouten, 1980; Huiskes, 1985).  This would result in increased stem motion at the 

proximal and distal ends of the cemented stem.  In a partially-fixed stem condition, 

however, the stress transfer across the interface would change (Huiskes and Schouten, 

1980; Huiskes, 1985), shifting the pivot point to the fixed region of the interface.  It is 

important to note though, that a well-fixed or partially-fixed interface condition in 

bending may not be indicative of immediate stem loosening, since all stems remained 

securely wedged within the cement mantle.  Over time, however, the partially-fixed 

condition may result in increased stem motion and complete debonding at the interface.  

These interface conditions, particularly for the pre-dynamic scans, demonstrate the 

variability of bond formation created at the stem-cement interface during cement fixation 

of smooth stem surfaces.   
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The specific response of cement to bending loads was observed in the motion of 

beads within the cement.  While all beads did not experience displacements, the beads 

that showed motion under loading did so in accordance with the direction of the applied 

load.  This observation further verified that the cement experienced some displacement 

under bending loads.  It is believed that the observed bead movement within the cement 

may have been dictated by the bead position along the length of the stem, along with the 

fixation condition at the interface.  Therefore, for a fully fixed stem condition that 

experiences pivoting about a central position within the cement mantle, the beads at the 

proximal and distal regions of the cement (i.e., Regions 1 and 2) may likely show 

displacement as a result of normal stress transfer across the interface.  In comparison, for 

a partially fixed condition where the pivot point shifts within the mantle, bead motion 

may only occur in the region of the fixed interface.  However, due to the inconsistency of 

bead distribution within the cement, among the various stems, this hypothesis could not 

be fully validated.  As such, future work should look into embedment methods that allow 

for controlled positioning of markers within the cement mantle.  

 The beads used in this study were made of steel, with an approximate density of 

8 g/cm
3
, which made them easy to detect within the cement (approximate density of bone 

cement = 1.2 g/cm
3 

(Saha and Pal, 1984)).  However, this difference in density may also 

result in the beads not being able to move freely with the bone cement.  It may be likely 

that motion of the bulk cement could have occurred around the embedded beads, rather 

than initiate bead motion.  This would explain the variation in bead displacements 

observed with the cemented constructs.  A less dense bead material may have shown 

greater motion with the cement during loading.  In addition, because of the high density 

of the steel bead, it is possible that metal artifacts could have been introduced into the 

CT-images.  These artifacts would have subsequently affected the surface profiles used 

for bead motion analysis (Appendix O).  Therefore, it is advised that future studies using 

this technique should incorporate a suitable cement marker made of a less dense material 

than the surrounding bone cement. 

Analysis of the stem and bead motion during loading utilized a method that 

measured deviations in stem and bead surfaces between the unloaded and loaded scans.  
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While this method was useful and allowed relative comparison of stem and bead motion, 

it depended on the quality of the surfaces created during the conversion of image to 

surface files.  Image parameters used for conversion were standardized for all surfaces; 

however, variability in image quality between scans could have affected the resultant 

surface quality. 

Smooth surface, titanium stems were used for testing within this study.  Smooth 

stems were chosen based on the results from Chapter 6, which showed an overall trend 

towards increased stem motion compared to the other stems, and significant increase in 

stem motion compared to the 20 mm beaded treatment.  Additionally, smooth surfaces 

showed large variability in their stability results, and as such, it was believed that 

investigation of the internal stem-cement interface of smooth stems under bending 

moments could offer insight into the interface mechanics associated with these stem 

surfaces.  Titanium was chosen as the material for CT-testing because it is a low density 

metal, and was not expected to significantly contribute to metal artifacts within the 

image.  However, based on pilot testing comparing the surface deviation between two 

consecutive scans of unloaded stems (Appendix O), it was found that some artifacts may 

have still occurred, showing small deviations in the stem surface without the application 

of a load.  Despite this, titanium stems were still useful for CT-imaging tests, compared 

to other high density implant metals, and offered satisfactory image quality and results 

during testing. 

This study was able to interpret the effect of cyclic loads on the mechanical 

response of the interface by comparing the motion of the stem and beads during static 

loading, both before and after the application of dynamic loads (Figure 7.4), where load 

magnitudes (i.e., 50–980 N) and rate (i.e., 0.9 Hz) were chosen in close accordance with 

the bending protocol used in Chapter 6.
4
   While this method was useful for the purposes 

of this study, it does not give a true representation of the interface’s response during 

                                                 

4
 The loading rate of 0.9 Hz was selected for use in future studies, aimed at acquiring scans during dynamic 

testing.  This rate would be required to ensure appropriate gating of the loading device with the acquisition 

of images from the CT scanner (Armitage et al., 2012). 
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dynamic loading.  A better representation would involve the comparison of scans 

obtained during cyclic loading.  This could be done using a unique imaging technique 

described by Armitage et al., where a gated CT-image acquisition method would be used 

to acquire scans of the moving stem (Armitage et al., 2012).  The technique would 

involve image acquisitions of the cyclically loaded stems, and retrospective sorting of the 

projection data, to reconstruct images at appropriate phases of the cyclic protocol.  This 

would result in a series of reconstructed images of the cemented stem construct at 

different time points of the cyclic waveform, which could be used to determine the 

motion of the stem and beads within the cement during one complete cycle of the 

dynamic protocol.  The loading fixture, dynamic protocol and analysis methods 

developed in this study were designed such that they could be readily employed for such 

a test.  Future studies will look at incorporating this technique to measure dynamic 

motion of the stem and beads within the cemented stem construct. 

This is the first known in-vitro study to incorporate µ-CT imaging to determine 

real-time interface motion during loading, by incorporating an active loading device 

within a µ-CT scanner, to obtain images of loaded cemented stem constructs.  The study 

showed that stem stability was not significantly altered by exposure to dynamic bending 

loads, but found that cement displacement contributed to stem motion during bending.   

 

7.5 CONCLUSION 

From µ-CT image analysis along the length of the internal stem-cement interface, 

all stems experienced tilting motion about a fixed pivot point within the cement mantle 

during the application of bending loads, and the bone cement adjacent to the stem 

demonstrated motion as well. 
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CHAPTER 8: GENERAL DISCUSSION AND CONCLUSIONS 

 

Overview:  This chapter re-examines the original objectives and hypotheses proposed in 

Chapter 1 of this thesis to assess whether each of them were successfully accomplished 

and proven.  Overall strengths and limitations of this body of work are discussed, along 

with potential future directions for similar implant biomechanics studies.  Finally, the 

overall significance of this type of basic science research in the field of orthopaedics is 

highlighted. 

 

8.1 SUMMARY  

Implant loosening remains the most common mode of joint replacement failure 

(Australian Orthopaedic Association, 2010; New Zealand Orthopaedic Association, 

2010), with mechanical loosening resulting from exposure of implant systems to joint 

loads.  Basic implant biomechanics studies, such as those presented within this thesis, can 

offer an explanation to clinical questions surrounding mechanical loosening.  This thesis 

focused specifically on the implant’s stem surface design and its role in the clinical 

success of implant systems.  Within the literature, surface modified, cemented implants 

have been reported to experience reduced rates of loosening (Jeon et al., 2012); however, 

the mechanical response associated with these stem surface designs have not been 

explored.  Therefore, the overarching purpose of the series of studies presented within 

this thesis was to investigate the effect of clinically-relevant stem surface designs on the 

mechanical stability at the stem-cement interface, under various loading modes, using in-

vitro biomechanical analysis tools to assess stem micromotion.   

Chapter 1 provided the basic concepts and background knowledge that was used 

to prepare the study designs for subsequent chapters within the thesis.  This chapter 

introduced joint replacement systems, and factors that may contribute to their clinical 

success.  In addition, various tools used in the biomechanical analysis of implant motion 
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were detailed, with focus on the use of optical systems as a non-invasive method for 

interface analysis.  This chapter concluded with the expected objectives and hypotheses 

for each study within this thesis. 

Initial focus was the development of an appropriate measurement tool to assess 

interface micromotion (Objective #1).  Chapter 2 described the development and 

validation of a custom optical tracking system that was capable of measuring 

displacements on the order of micrometers.  The hardware components of the optical 

system were carefully chosen to meet these requirements.  The software used for 

displacement measurements incorporated a color thresholding method that detected the 

(x,y) coordinates of coloured markers placed on specific landmarks, and calculated the 

relative distances between them.  The system was validated by comparing motion applied 

by a micrometer screw gauge, with that measured by the optical tracking system.  It was 

determined that the optical system showed agreement with the micrometer screw gauge 

for measurements between 0.005 mm and 0.250 mm, based on the scatter of the Bland-

Altman plots, and these measurements were reliable based on the results of intraclass 

correlation coefficients (ICC’s) greater than 0.99.   Therefore, it was concluded that the 

optical system was satisfactory for its application in measuring interface motion within 

subsequent chapters of this thesis (Hypothesis #1 accepted). 

Using the optical tracking system described in Chapter 2, the stability response of 

clinically-relevant stem surface treatments was investigated under torsional loads 

(Objective #2, Chapter 3).  Cemented titanium and cobalt chrome implant stems 

consisting of smooth, plasma spray and beaded surface treatments were mechanically 

tested using a cyclic staircase torsional loading protocol, and motion between the stem 

and cement was observed.  Overall, it was found that stem surface treatments improved 

the torsional stability of stems compared to smooth stem surfaces (Hypothesis #2 

accepted), but the individual stability responses of plasma spray and beaded treatments 

were dependent on the stem substrate material.  For cobalt chrome stems, the 20 mm 

length plasma spray treatment showed greater interface strength than the 20 mm length 

beaded treatments, with no differences in stem rotation prior to failure.  However, for 

titanium stems, no difference in interface strength was found between the 20 mm length 
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plasma spray and 20 mm length beaded treatment, but the plasma spray stem experienced 

more stem rotation prior to failure.  In addition, titanium stems showed greater torques at 

failure, but greater stem rotation prior to failure, compared to cobalt chrome stems. 

The axial stability of surface treated stems was also considered.  This was of 

particular interest to the upper limb literature, since it has been reported that ulnar 

components of linked elbow replacement systems commonly experienced failure via stem 

‘pistoning’, or pull-out (Cheung and O’Driscoll, 2007).  For cemented implants, 

improvement in the mechanical connect at the stem-cement interface, by incorporation of 

stem surface treatments, may result in improved resistance to ulnar component pistoning.  

Therefore, Chapter 4 of this thesis investigated the effect of stem surface treatment and 

material on the stability of implant stems under compression (Objective # 3).  Similar to 

Chapter 3, it was found that stem surface treatment improved the axial stability of 

implant stems compared to smooth surfaces, and this effect was dependent on stem 

material (Hypothesis #3 accepted).  It was found that the 20 mm length beaded treatments 

showed greatest interface strength, with the 20 mm length plasma spray treatment on 

cobalt chrome stems also showing improved interface strength, compared to the 10 mm 

beaded and plasma spray treatments.  In addition, the 20 mm length beaded and plasma 

spray treatments showed least interface motion, with the 10 mm length beaded and 

plasma spray treatments on titanium stems showing reduced interface motion as well.  

When comparing stem material, titanium and cobalt chrome stems performed similar to 

one another under compression. 

 Considering the variable response of stem surface treatments in Chapters 3 and 4 

of this thesis, where results found that the success of surface treatments were dependent 

on the stem substrate material to which they were applied, Chapter 5 aimed to investigate 

an alternative stem surface design (i.e., circumferential grooves) and its contribution to 

the axial and torsional stability of cobalt chrome implant stems (Objective #4).  It was 

determined that the application of 0.6 mm and 1.1 mm circumferential grooves to the 

stem surface (i.e., separation and depth) offered improved axial stability compared to 

smooth stems, but offered similar stability response in torsion (Hypothesis #4 accepted).  

When comparing groove dimensions, no differences were found in interface strength and 



159 

 

interface motion between the 0.6 mm and 1.1 mm circumferential grooved surfaces under 

compression, however, grooved 1.1 mm stems showed greater stem motion than the 

grooved 0.6 mm stems in torsion.  In addition, it was suggested that motion observed for 

the grooved stems was influenced by the creep properties of the infiltrated bone cement, 

since the 1.1 mm grooved stems showed greater overall stem motion than the 0.6 mm 

grooved stems. 

Besides torsional and axial loads, joint replacement systems are also exposed to 

bending loads, which result from joint forces acting perpendicular to the length of the 

implant stem.  Bending loads produce both shear and normal stresses along the length of 

the stem-cement interface, with regions of interface experiencing both tensile and 

compressive stresses, dependent on the direction of the applied load.  This unique loading 

profile can result in varied mechanical response from surface treated implant stems.  

Chapter 6 of this thesis investigated the role of stem material and surface treatment on the 

stability of implant stems exposed to bending loads (Objective #5).  Based on 

observations of implant stem motion, it was found that titanium and cobalt stems showed 

similar stability responses under bending loads, with only the 20 mm length beaded 

treatments experiencing less interface motion than the smooth stem (Hypothesis #5 

rejected).  In addition, stem motion was thought to be influenced by the displacement, or 

creep, of the surrounding bone cement, since all stems demonstrated offset stem motion 

within their cement mantle during loading, without any indication of stem loosening.  

This was further supported by the observed tilt of the stem away from its central axis, in 

post-testing analysis.   

Taking into consideration the contribution of bone cement creep to the stability 

response of the stems tested under bending in Chapter 6, it was determined that analysis 

of the full length of the stem-cement interface was needed to determine the response of 

both the stem and cement under bending loads.  Chapter 7 of this thesis used µ-CT 

imaging to access the internal stem-cement interface, and facilitated motion analysis 

along the full length of the interface (Objective #6).  A custom built loading device was 

used to apply a static load to a smooth implant stem, while allowing real-time scanning of 

the loaded stem.  Beads embedded within the cement were used as cement markers to 
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detect motion of the cement during loading.  Scans of the loaded implant stem, obtained 

before and after exposure to cyclic dynamic testing, detected stem and cement embedded 

bead motion during loading (Hypothesis # 6 accepted).  Motion of the stem appeared to 

occur about a pivot point within the cement, where stem tilting similar to that observed in 

Chapter 6 was noted.  However, the location of this pivot point within the cement mantle 

was variable among the stems tested, suggesting different fixation conditions at the 

interface during loading.  Although motion of the cement embedded beads were not 

consistent among stems, this preliminary result was able to prove that cement motion 

does occur with implant stems during loading. 

 

8.2 STRENGTHS AND LIMITATIONS 

Specific strengths and limitations for each of the individual studies within this 

thesis have already been discussed within their respective chapters, but the consolidation 

of these studies showed overall strengths and limitations as well.   

The series of basic science studies presented within this thesis allowed 

investigation of implant stability, dependent of the effects of stem surface design and 

material.  The studies tested circular cross-section implant stems (Ø = 8 mm), with 

altered surface topography along a 20 mm or 10 mm region of the implant stems.  While 

these stems were not representative of a specific implant design, they allowed relative 

comparison of stem surface treatment and material.  In particular, circular cross-section 

implant stems were chosen since they were shown to exhibit the least resistance to 

torsional loads (Kedgley et al., 2007).  In addition, since this study was only interested in 

motion occurring at the stem-cement interface, stems were potted in standard sized 

aluminum tubes, without incorporation of variable bone specimens.  The use of 

aluminum tubes controlled the cement volume and interfaces, but contributed to thicker 

cement mantles, approximately twice the size of those used clinically.  The increased 

thickness could have contributed to the bone cement creep observed in the studies; 

however, larger mantle sizes allowed testing of implant stems without compromise to the 
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surrounding bone cement.  Thinner cement mantles may have resulted in failure of the 

bone cement, subsequently affecting the stability results of the surface treated implants.  

Therefore, although this bench top study design may have limited the clinical scope of 

these studies, it facilitated exclusive testing of the stem design features without 

contribution from other variables.  Furthermore, given that the cement mantle thickness 

was consistent across all stems tested, the relative differences would still be reasonable 

given the repeated measures design of the studies. 

The in-vitro environment used for testing implant stems within this thesis was 

different from that expected at the joints in the body.  In particular, the temperature and 

physical environment did not represent typical in-vivo conditions.  All stems were potted 

and tested at approximately 22 ºC; however, temperatures within the human body are 

higher.  Temperature differences can affect the rate of polymerization of bone cement, 

with higher temperatures increasing the polymerization rate, and may result in a different 

loading response of bone cement than that observed in this thesis.  In addition, the 

anatomical joint is exposed to joint fluids and blood that are likely to affect the adhesion 

properties of stem with the cement.  Therefore, while the stems tested within this thesis 

were compared relative to one another in the same testing environment, it is important to 

note that in-vivo conditions could have resulted in different implant stability outcomes.  

The overall aim of this thesis was to investigate the effect of stem surface design 

under various loads, to determine the stability response of these designs for improved 

resistance to loosening.  Therefore, studies within this thesis tested stems under 

individual loading modes using custom designed fixtures to secure and accurately align 

the cemented stems within the materials testing machine, minimizing the effects of off-

axis loading, as monitored by the six degree of freedom load cell of the materials testing 

machine.  Although loading that occurs at the anatomical joint acts in a combined state, 

the individual contribution of each of these components are important for a thorough 

understanding the mechanical response of surface treatments under specific loads.  This 

is especially useful for studies like the one presented in Chapter 4, where its study design 

was developed based on the specific failure response (i.e., pistoning) exhibited by ulnar 

components at the elbow joint (Cheung and O’Driscoll, 2007).  As such, testing the effect 
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of surface treatments to resist these dominant axial loads was imperative for providing 

knowledge regarding failure mechanisms associated with these surface designs at the 

ulnohumeral joint. 

The magnitudes of loads used for testing of implant stems in torsion, compression 

and bending, were chosen based on a review of the literature reporting joint loads 

measured by instrumented implants at the hip, knee and shoulder. However, the 

maximum loads chosen for the individual testing protocols were on the higher end of 

loads expected at the joints.  While this did not simulate typical joint loads in daily 

activities, it allowed relative comparison of various surface treatments, by initiating a 

failure response in the majority of stem surfaces.  In addition, the loading protocol used 

for all implants was cyclic, staircase in nature.  This protocol was specifically chosen to 

ensure that all stems were subjected to a range of dynamic loads, which mimicked 

repetitive loading experienced by the human joint, while still allowing comparison of 

interface strength based of loads required to cause failure.  

In- vitro implant biomechanics have used stem motion as an indicator of implant 

stability.  Few studies however, have compared stem motion relative to the surrounding 

bone cement.  This measurement, however, is more representative of interface motion, 

and allows analysis of implant motion independent of motion occurring within the 

surrounding fixturing.  The optical tracking system (Chapter 2) and CT measurement 

technique (Chapter 7) used in this thesis facilitated micromotion measurements at the 

level of the stem-cement interface. This was advantageous to studying localized interface 

motion, and further provided additional information regarding the contribution of the 

bone cement to implant stability. 

 

8.3 FUTURE DIRECTIONS 

The work done within this thesis has provided the framework for investigation of 

interface mechanics associated with various stem surface designs.  Considering the 

influential role that stem surface designs play in the mechanical connect at the stem-
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cement interface, future work should analyze the response of these varying connections 

on the loading response at the interface.  This could be done using finite element analysis, 

by creating models of the stem-cement interface (Mann et al., 1991), with interface 

conditions governed by the different mechanical connects associated with the various 

surface designs.  These analyses would offer information about the resultant stresses and 

strains induced at the interface as a result the varied stem surfaces connects, and more 

specifically, the response of the interfacial cement to these varied surface designs. 

In addition to utilizing modeling techniques to assess the loading response at the 

stem-cement interface, embedment of strain gauges within the cement could be also used 

to experimentally analyze the effect of stem surface designs on interface strains (Fetterly, 

2012).  This would allow stability testing of surface modified implant stems, with 

simultaneous analysis of the strain response at the interface.  The combination of these 

measurements may prove useful in future implant studies to provide a comprehensive 

analysis of the interface mechanics that govern the success of cemented stem surface 

designs. 

The alternative stem surface design (i.e., stem circumferential grooves) tested in 

Chapter 5 of this thesis, showed promising results with regards to its stability response 

under torsional and axial loads.  This concept of machining patterns onto the stems, rather 

than incorporating an additional material interface, can limit the variable mechanical 

response associated with stem surface treatments and coatings, while improving the 

interface connect and overall stem stability.  However, this notion of removing material 

from the stem needs to be further tested, since alteration to the stem design can also affect 

the mechanical strength of the stem.  Therefore, future studies should look into 

alternative stem surface designs that involve machining patterns onto the stem surface, 

and compare these stems for improved interface stability, and mechanical response under 

various loading conditions. 

Considering the influential role that bone cement played in the stability response 

of implant stems throughout this thesis, future studies should also look into the 

mechanical behavior of bone cement specific to implant stability.  Chapter 7 of this thesis 
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introduced a preliminary method using CT-imaging to observe motion within the cement 

mantle during loading of implant stems; however, this technique is still in its rudimentary 

stage and needs to be further developed and explored.  In addition to acquiring scans 

during static loads, the methodology could also be used to analyze stem and cement 

motion under dynamic loading, by incorporating unique CT-acquisition techniques to 

obtain scans at specific time points of the dynamic loading cycle.  The resultant series of 

images could then be analyzed to determine interface motion for one full cycle of the 

dynamic waveform.  The ground work for analyzing stem-cement interface motion from 

CT images has already been developed within Chapter 7, therefore future studies could 

look at implementing this methodology in the analysis of dynamic interface motion.  

Additionally, an improved CT-compatible loading device could be designed to facilitate 

testing of implant stems under various loading modes (i.e., compression, torsion, 

bending, and combined loading), for analysis of the internal stem-cement interface 

response to these individual loading conditions. 

 

8.4 SIGNIFICANCE 

  In conclusion, the studies presented within this thesis are the first known in-vitro 

studies to assess the effect of clinically-relevant stem surface treatments on the stem-

cement interface stability, under various loading modes.  The results support the theory 

that stem surface designs affect the mechanical connection at the stem-cement interface, 

with surface treatments generally providing increased resistance to interface loosening.  

Overall, the findings from this thesis have provided valuable information to the literature 

regarding the interface mechanics and failure mechanisms associated with stem surface 

treatments and machined grooved surfaces, as well as demonstrated the influential role of 

stem material on the success of surface treated implants.  Across all loading modes, 

beaded treatments applied to titanium stems, and plasma spray treatments applied to 

cobalt chrome stems, improved interface stability and strength when large surface 

treatment areas were employed.  In addition, the machining of circumferential grooves 

onto the stem surface improved interface strength in compression, with no influence in 

torsion.  However, smaller groove dimensions resulted in improved stem stability.  It is 
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expected that this knowledge can be applied to future cemented implant designs, to 

improve on the stability of these systems in resisting the onset of loosening, consequently 

increasing the longevity of joint replacement systems.   
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Appendix A: Thesis Glossary 

This appendix defines the terminology used throughout this thesis, to assist with 

understanding the technical terms that may not be familiar to the reader.
5
 

 

Abduct:  To draw away from a position near the middle axis of the body (as in a limb).   

Alloy:  A substance composed of two or more metals, or of a metal and non-metal fused 

together when molten. 

Attenuate:  The decrease or lessening of the amount of energy.  

Bioactive:  Having the effect of a living organism. 

Biocompatibility:  The condition of being compatible with living tissue, or not being 

toxic to living tissue. 

Camera/Image sensor:  A device that responds to the stimulus of light and transmits a 

resulting impulse. 

Cartilage:  Flexible connective tissue found in many areas in the bodies of humans and 

other animals   

Cartilaginous joints:  Joints that are connected by cartilaginous material. 

Charged couple device (CCD):  A semiconductor device, used as an optical sensor, 

which stores charge and subsequently transfers it to an amplifier and detector. 

Diffraction:  A modification that light undergoes, especially in passing by the edges of 

opaque bodies or through narrow openings. 

                                                 

5
 The medical definitions listed here were obtained from the Marriam-Webster, Medline Plus Medical 

Dictionary, a service of the U.S. National Library of Medicine and National Institutes of Health.  The 

general terminology was modified from the Marriam-Webster online dictionary, and Wikipedia Online 

Encyclopdia. 
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Extension:  The unbending movement of a joint in a limb, that increases the angle 

between the bones of the limb and the joint. 

Fibrous joints:  Joints that are connected by fibrous, connective tissue such as collagen. 

Field-of-view (FOV):  The maximum observable area (as seen from a camera). 

Flexion:  A bending movement around a joint in a limb that decreases the angle between 

the bones of the limb and the joint. 

f-number:  Quantitative measure of the lens speed, and is the ratio of the focal length to 

the diameter of the lens opening. 

Focal length:  Measure of how strongly the system converges or diverges light; the 

distance (from the lens) over which the light rays are brought into focus.  

Glenohumeral:  The connection between the glenoid cavity and humerus of the 

shoulder. 

Glenoid cavity:  The shallow cavity of the upper part of the scapula, in which the 

humerus articulates. 

Hounsfield unit (HU):  Quantitative scale for describing radiodensity of a material, 

relative to the radiodensity of distilled water and air at standard pressure and temperature. 

Humerus:  The longest bone of the upper arm or forelimb extending from the shoulder to 

the elbow. 

Image distortion:  Deviation of projected image, in which straight lines of an object do 

not maintain similar straightness in the image. 

Implant fixation:  Surgical implementation and anchoring of joint replacement systems. 

Intramedullary:  Situated or occurring within the medulla of bone; use of the marrow 

space of a bone for support. 

In-vitro:  Outside the living body and in an artificial environment.  
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In-vivo:  Inside the living body, or within a living organism 

Lens aperture:  The opening or hole of a lens through which light enters. 

Micromotion:  Motion, such as that of an implant, occurring on the order of 

micrometers. 

Monomer:  A molecule that may bind chemically to other molecules to form polymers. 

Osseointegration:  The firm anchoring of a surgical implant by growth of bone around 

it, without fibrous tissue formation at the interface 

Osteoarthritis:  Degenerative joint disease that causes changes in the bone and cartilage 

at the joint, resulting in wearing down of joint surfaces. 

Osteoporosis:  Decrease in bone mass with decreased density and enlargement of bone 

spaces. 

Perspective error:  Difference in the image magnification as a result of object 

position/distance from the lens. 

Photons:  The unit intensity of light; smallest physical quantity of electromagnetic 

radiation. 

Pixels:  Small discrete elements that make up a image; picture elements. 

Plasma spray:  Coating in which melted or heated materials are sprayed onto a surface. 

Polymer:  Chemical compound consisting of repeating structural units or molecules. 

Stereophotogrammetry:  Technique used for the assessment of three-dimensional 

migration of joint replacement from bone, using an imaging technique to obtain real-time 

moving images of markers attached to the bone and implant.   

Resolution:  The detail and image holds; quantification of how close lines can be and 

still visibly resolved. 
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Sintered bead:  Coating in which beads are diffused onto a surface at high temperatures. 

Substrate material:  Material on which a process is conducted; surface to which coating 

is applied. 

Synovial joints:  Most common of the moveable joints characterized by two bony 

surfaces covered with cartilage, contained in a fibrous capsule containing joint fluid.  

Telecentric lens:  Compound lens for which chief rays are parallel to the optical axis in a 

object/image space, making the object appear to be the same size independent of its 

location in space. 

Tibia:  The large, inner bone of the lower leg, located between the knee and ankle. 

Ulna:  One of the two bones located in the forearm, situated on the side of the forearm 

with the little finger, and articulates with the humerus in the elbow joint. 

Ulnohumeral:  The connection between the ulna and humerus bone of the elbow joint. 
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Appendix B: Specifications for Hardware of Optical System  

This appendix details the specifications for the hardware used in the optical system 

discussed in Chapters 2,3,4,5 and 6. 

 

 

Figure B.1:  Specifications for the Basler Pilot AG piA 2400- 12gc Camera 

(Adapted from the User Manual for GigE Vision Cameras; Document No.AW000151, 

Version 16; Basler Vision Technologies) 
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Figure B.2:  Specifications for the Opto Engineering Telecentric Lens  

(Product test report provided with the telecentric lens) 
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Figure B.3:  Specifications for the Advanced Illumination, Axial Diffuse Illumintor 

(Adapted from sales sheet for Advanced Illumination products; 

http://www.1stvision.com/lighting/AI/uploads/products/DL072.pdf) 
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Appendix C: LabVIEW
® 

Programs 

This appendix shows the LabVIEW
®
 back panels for the custom written programs used 

for calibration of the optical system and marker tracking data collection.  These 

programs were used for Chapters 2 ,3, 4, 5 and 6. 

 

 

 

Figure C.1:  Back Panel of Calibration Program 

The calibration program determines the vertical and horizontal pixel count for a 

rectangular region of interest of the calibration grid, set by the user.  Based on the known 

spacing of the calibration grid (i.e., 0.1 mm), the pixel to millimeter conversion for the 

region of interest is found. 
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Figure C.2:  Back Panel of the Optical Tracking Program 

The optical tracking program incorporating a thresholding method to detect markers 

placed on landmarks of interest.  The program determines the centroids of the detected 

markers, and tracks their respective (x,y) coordinates throughout the duration of the 

program.  The program outputs the individual (x,y) coordinates of the marker, the length 

between the two points, and the corresponding load and position data from the materials 

testing machine. 
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Appendix D: Bland-Altman Plots for Optical System Validation 

This appendix shows the individual Bland-Altman plots for the various regions of the 

optical system field of view (Region 1-9), as discussed in Chapter 2. 

 

 

 

Figure D.1:  Bland Altman plots for Region 1-9 of Horizontal Displacement 

Individual plots for horizontal displacements within the nine regions of the image field of 

view.  Regions 7 and 9 show some scatter points outside 95% limit of agreement (as 

indicated by dashed lines). 
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Figure D.2:  Bland Altman plots for Region 1-9 of Vertical Displacement 

Individual plots for vertical displacements within the nine regions of the image field of 

view.  All regions show some scatter points outside 95% limit of agreement (as indicated 

by dashed line) for measurements of 0.5 mm. 
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Appendix E: Calculation of Optical System Accuracy 

This appendix details the calculations used for determining the accuracy of the optical 

system as described in Chapter 2. 

 

Accuracy as measured by percent error for the range of applied displacements (0.005-

0.500 mm). 

Procedure 
6
: 

1) Determine line of best-fit for data from optical system (i.e., measured) and 

micrometer (i.e., true) (Figure E.1). 

Equation of best-fit:                  (Eq. F.1) 

 

2) Evaluate errors in the measurements by creating a deviation plot from the data sets 

(Figure E.2).   

                      (                   )                       

                    (               ) 

 

3) Accuracy of the system, presented as % error of the range of output displacements: 

 

- Range of output displacements from equation of best-fit: 

o 0.507 mm-0.007 mm= 0.500 mm 

 

 

                                                 

6
 As described in:  Wheeler AJ, Ganji AR. 2010.  Chapter 2: General Characteristics of Measurement 

Systems.  In: Introduction to Engineering Experimentation; Pearson Higher Education, NJ.  pp 21-24 
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- Positive limit: 

   
(         )

         
               

 

- Negative limit: 

   
(        )

         
               

 

 

Therefore, the accuracy of measurements from the optical system is (        , 

        ) of the measured value. 

 

  



181 

 

 

 

 

 

 

Figure E.1:  Line of Best-Fit for Measured against True Displacements 

The plot shows the scatter of points, along with the line of best fit relating the measured 

data from the optical system to the true data from the micrometer. 
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Figure E.2:  Deviation Plot for Optical System Measurements 

This deviation plot shows the difference in measurements from the optical system and 

micrometer, against true displacements (i.e., micrometer).  The dashed lines parallel to 

the horizontal axis are the accuracy limits of the data (+0.039 mm, -0.041 mm), such that 

data points not considered to be outliers are contained within them. 
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Appendix F: Calculation of Optical System Resolution 

This appendix details the calculations used for determining the resolution of the optical 

system, based on the calibration method described in Chapter 2. 

 

Calibration Method: 

1) The calibration grid (Figure F.1) (grid spacing 0.100 ± 0.002 mm (Pyser-SGI Ltd, 

Kent, UK)) was placed in the camera field of view, at the location expected for 

marker placement.    

  

2) Using the LabVIEW calibration program described in Appendix C.1, the horizontal 

and vertical pixel length (i.e., pixel to millimetre conversion) was determined for the 

nine regions of the image field of view.     

 

3) Two trials were done in each region of the image field of view, and an average pixel 

size was determined from the measured vertical and horizontal lengths of the pixels. 
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Figure F.1:  Calibration Grid used for Pixel to mm Conversion 

The calibration grid, with grid spacing 0.100 ± 0.002 mm, was divided into 9 regions of 

the image field of view to determine the pixel to mm conversion for each region. 
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Table F.1:  Vertical and Horizontal Pixel Lengths 

 

  

1 1 0.0033 0.0034

1 2 0.0033 0.0035

1 3 0.0033 0.0033

1 4 0.0034 0.0034

1 5 0.0033 0.0033

1 6 0.0033 0.0033

1 7 0.0033 0.0034

1 8 0.0034 0.0034

1 9 0.0033 0.0033

2 1 0.0033 0.0034

2 2 0.0033 0.0034

2 3 0.0033 0.0034

2 4 0.0034 0.0033

2 5 0.0034 0.0033

2 6 0.0034 0.0033

2 7 0.0033 0.0033

2 8 0.0033 0.0033

2 9 0.0033 0.0034

Average pixel size 0.003 0.003

Trial # Region FOV Pixel vertical length (mm) Pixel horizontal length (mm)
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Uncertainty in calibration measurement 
7,8

: 

   (    
      

  )
   

   (Eq. G.1) 

Where: 

UC = Total uncertainty 

BC = Systematic error, based on manufacturer specifications of grid 

PC = Random error in repeated measurements of pixel size  

 

Random Error in Repeated Measurements of Pixel Size: 

         ̅        (Eq. G.2) 

Where: 

   ̅  = standard deviation of the mean from repeated pixel to mm conversions 

(n=36)  

t = t-statistic with 95% confidence interval for 36 repeated pixel to mm 

conversions, as obtained from the student’s  t-distribution table  

            (
           

√  
)     (Eq. G.3) 

 

                                                 

7
 Wheeler AJ, Ganji AR. 2010.  Chapter 7: Experimental Uncertainty Analysis.  In: Introduction to 

Engineering Experimentation (3
rd

 Ed); Pearson Higher Education, NJ.  pp 199-230 

 

8
 Figliola RS, Beasley DE.2006.  Chapter 5: Uncertainty Analysis.  In: Theory and Design for Mechanical 

Measurements (4
th 

Ed); John Wiley and Sons, NJ.  pp 149-182 
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Therefore, total uncertainty for pixel to mm conversion from equation G.1: 

   (    
      

  )
   

 

   (     
   (        (

           

√  
))

 

)

   

 

           

  

Optical System Resolution = 0.003 ± 0.002 mm 
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Appendix G: Engineering Drawings and Assemblies 

This appendix includes the dimensioned drawing of parts and assemblies for the stems 

and jigs used in Chapters 3,4,5,6 and 7 of this thesis.  The models were created in 

Solidworks (Dessault Systems, Concord, MA).   

 

 

 

Figure G.1:  Engineering Drawing of Smooth Implant Stem 
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Figure G.2:  Engineering Drawing of 20 mm Length Plasma Spray Implant Stem 
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Figure G.3:  Engineering Drawing of 20 mm Length Beaded Implant Stem 
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Figure G.4:  Engineering Drawing of 10 mm Length Plasma Spray Implant Stem 
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Figure G.5:  Engineering Drawing of 10 mm length Beaded Implant Stem 
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Figure G.6:  Engineering Drawing of 0.6 mm Grooved Implant Stem 
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Figure G.7:  Engineering Drawing of 1.1 mm Grooved Implant Stem 

 

  



195 

 

 

 

 

Figure G.8:  Engineering Drawing of Parts for Potting Jig Assembly 
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Figure G.9:  Engineering Drawing of Delrin® Block used to Centralize Stems for 

Potting 
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Figure G.10:  Engineering Assembly of Jig used for securing Stem in Torsion and 

Compression 

(Assembly drawing done by University Machine Services) 
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Figure G.11:  Engineering Drawing of Securing Plates used for Bending Tests 
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Figure G.12:  Engineering Assembly of Cement Sample Template 
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Figure G.13:  Engineering Drawing of Parts for the Cement Sample Template 
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Figure G.14:  Engineering Assembly of Stem Holder used in µCT-imaging Bend 

Tests 
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Figure G.15:  Engineering Drawing of Parts for Stem Holder Assembly used in 

µCT-imaging Bend Tests 
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Figure G.16:  Engineering Drawing of Back Plate for Stem Holder Assembly used in 

µCT-imaging Bend Tests 
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Appendix H: Cement Preparation and Potting Technique 

This appendix describes the cementing procedure used in Chapters 3, 4, 5 and 6 of this 

thesis, for fixation of the implant stems.  The technique details the centralization and 

positioning of the implant stem (Appendix G) for potting, the mixing of bone cement, and 

application of cement to the aluminum tubes containing the stems. 

 

Preparation of Stem and Cement 

In preparation for cementing the following are needed: implant stems, aluminum tubes, 

delrin blocks, adhesive tape, potting jig. 

1) Prior to cementing, clean all stems and aluminum tubes with Acetone, and rinse 

with distilled water.  

 

2) Insert Delrin
®
 blocks (19 mm x 19 mm x 30 mm) (Appendix G.9) into the base of 

the aluminum tubes (internal diameter: 19 mm x 19 mm x 50 mm), and secure the 

tube’s base using adhesive tape.  These blocks are machined with an extruded 

through-cut down their center (diameter 8mm), through which stems will be 

positioned along the central axis of the aluminum tubes.  

 

3) Insert stems into the Delrin
®
 blocks and carefully position, ensuring all stem are 

aligned along the central axis of the tubes.  These Delrin
® 

blocks will also act as 

stoppers to control the depth to with the stems are potted in subsequent steps of 

this process (Figure H.1). 

 

4) Once the stems are appropriately positioned within the aluminum tubes, secure all 

tubes within the potting jig for application of bone cement (Figure H.1).  This jig 

will allow the maintenance of stem alignment during the cementing and curing 

process, as well as eliminate motion of the stem and aluminum tube during the 

cement application. 
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Figure H.1:  Potting Jig used for Securing Stems during Cementing 

(A) All stems are centralized into aluminum tubes using Delrin
®

 blocks placed at the base 

of the tube (indicated by black dashed double arrow).  The blocks ensure appropriate 

positioning of the stem along the central axis of the aluminum tube, as well as control the 

depth to which the stems are potted (20 mm).  (B) Once stems are aligned, the aluminum 

tubes with stems are placed in the potting jig for cement application and curing. 

  



206 

 

Mixing and Application of Bone Cement 

1) Place the package of Simplex P
®
 bone cement in freezer at least 24 hrs prior to 

cement preparation, to allow for chilling of the monomer liquid and polymer 

powder. 

 

2) Within the fume hood of the laboratory, attach the vacuum mixing system 

(Optivac
©

, Biomet Inc., Warsaw, Indiana, USA) to a vacuum pump maintaining 

the pressure at 15-20 mmHg.  The temperature within the fume hood should be 

maintained at 22 ºC. 

 

3) Place the provided funnel over the larger cartridge (N.B., a small and large 

cartridge is included in the vacuum mixing system), and empty one packet of the 

polymer powder into the cartridge. 

 

4) Remove the funnel, and empty the monomer liquid into the cartridge already 

containing the powder. 

 

5) Immediately close the vacuum container, and allow 10 seconds for the vacuum 

pressure to form within the system. 

 

6) Begin rapid plunging, rotating the plunger through the cement during each 

plunging motion.  Ensure that the plunger makes contact with both ends of the 

cartridge to allow the polymer powder to fully integrate with the monomer liquid. 

 

7) After 60 seconds of plunging, the cement mixture should have a viscous 

consistency.  Pour the entire mixture into a 60 ml syringe, and immediately insert 

the syringe’s plunger. 

 

8) Tilt the syringe upwards and slowly plunge the mixture towards the application 

tip, to remove the excess air within the syringe. 
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9) Use the syringe to apply the cement mixture to the aluminum tubes containing the 

implant stems (Figure H.1).   

 

10)  Leave the cemented construct within the fume hood for 24 hours, at the 

controlled 22 ºC, for curing.  
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Appendix I: Tabulated Data 

 

Table I.1:  Tabulated Data for Titanium Surface Treated Implant Stems in Torsion 

 

 

  

TITANIUM

Surface Treatment Stem # Torque (Nm) Toggle Rotation (deg) Normalized Toggle (deg/Nm)

Smooth 1 10.00 0.650 0.065

2 10.00 0.530 0.053

3 5.00 0.260 0.052

4 12.00 0.410 0.034

5 4.00 0.310 0.078

Average 8.20 0.432 0.056

SD 3.49 0.160 0.016

Beaded 20mm 1 30.00 0.400 0.013

2 30.00 0.570 0.019

3 30.00 0.650 0.022

4 30.00 0.380 0.013

5 30.00 0.780 0.026

Average 30.00 0.556 0.019

SD 0.00 0.169 0.006
Plasma Spray 20mm 1 30.00 1.070 0.036

2 30.00 1.610 0.054

3 30.00 0.840 0.028

4 30.00 0.790 0.026

5 30.00 1.290 0.043

Average 30.00 1.120 0.037

SD 0.00 0.339 0.011
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Table I.2:  Tabulated Data for Cobalt Chrome Surface Treated Implant Stems in 

Torsion 

 

 

  

COBALT CHROME

Surface Treatment Stem # Torque (Nm) Toggle Rotation (deg) Normalized Toggle (deg/Nm)

Smooth 1 9.00 0.320 0.036

2 18.00 0.200 0.011

3 13.00 0.450 0.035

4 13.00 0.310 0.024

5 5.00 0.270 0.054

Average 11.60 0.310 0.032

SD 4.88 0.091 0.016

Beaded 20mm 1 16.00 0.590 0.037

2 16.00 0.420 0.026

3 17.00 0.510 0.030

4 16.00 0.540 0.034

5 17.00 0.650 0.038

Average 16.40 0.542 0.033

SD 0.55 0.086 0.005

Plasma Spray 20mm 1 30.00 0.700 0.023

2 30.00 0.600 0.020

3 30.00 0.530 0.018

4 30.00 0.430 0.014

5 30.00 0.730 0.024

Average 30.00 0.598 0.020

SD 0.00 0.123 0.004
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Table I.3:  Tabulated Data for Titanium Surface Treated Implant Stems under 

Compression 

 

 

 

 

 

TITANIUM

Smooth 1 0.025 - 3.00 202 4.13E-05 -

2 0.009 - 3.00 201 1.49E-05 -

3 0.006 - 3.00 201 9.95E-06 -

4 0.031 - 3.00 206 5.02E-05 -

5 0.005 - 2.00 101 2.48E-05 -

6 0.028 - 3.00 201 4.64E-05 -

Average 0.017 - 2.83 185 3.12E-05 -

SD 0.012 - 0.41 41 1.70E-05 -

Bead 20mm 1 0.160 0.149 10.00 25900 6.18E-07 5.96E-06

2 0.050 0.207 10.00 25900 1.93E-07 8.28E-06

3 0.120 0.211 10.00 25900 4.63E-07 8.44E-06

4 0.040 0.179 10.00 25900 1.54E-07 7.16E-06

5 0.037 0.194 10.00 25900 1.43E-07 7.76E-06

6 0.080 0.207 10.00 25900 3.09E-07 8.28E-06

Average 0.081 0.191 10.00 25900 3.13E-07 7.65E-06

SD 0.050 0.024 0.00 0 1.92E-07 9.51E-07

Bead 10mm 1 0.121 0.635 10.00 1889 6.41E-06 6.42E-04

2 0.080 1.214 10.00 4583 1.75E-06 3.30E-04

3 0.072 0.339 10.00 2269 3.17E-06 2.48E-04

4 0.100 0.417 10.00 10435 9.58E-07 4.37E-05

5 0.090 0.923 10.00 4499 2.00E-06 2.56E-04

6 0.100 1.156 10.00 4091 2.44E-06 3.62E-04

Average 0.094 0.781 10.00 4628 2.79E-06 3.14E-04

SD 0.017 0.373 0.00 3069 1.92E-06 1.95E-04

Plasma Spray 20mm 1 0.120 0.800 10.00 2349 5.11E-06 5.52E-04

2 0.163 0.851 10.00 1980 8.23E-06 7.88E-04

3 0.100 1.120 10.00 9469 1.06E-06 1.31E-04

4 0.163 0.989 10.00 1601 1.02E-05 1.41E-03

5 0.108 0.751 10.00 1288 8.39E-06 1.94E-03

6 0.102 0.872 10.00 1610 6.34E-06 1.23E-03

Average 0.126 0.897 10.00 3050 6.55E-06 1.01E-03

SD 0.029 0.135 0.00 3166 3.22E-06 6.48E-04

Plasma Spray 10mm 1 0.150 - 8.00 722 2.60E-05 -

2 0.142 - 8.00 791 2.24E-05 -

3 0.141 - 9.00 871 1.80E-05 -

4 0.181 - 9.00 842 2.39E-05 -

5 0.175 - 9.00 887 2.19E-05 -

6 0.115 - 9.00 805 1.59E-05 -

Average 0.151 - 8.67 820 2.13E-05 -

SD 0.024 - 0.52 60 3.76E-06 -

NormalizedToggle 

(mm/kN*#cycles)

Normalized Stem 

Motion Post-10kN 
Surface Treatment Stem # Interface Toggle (mm)

Stem Motion Post- 

10kN (mm)

Load 

(kN)

# 

Cycles
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Table I.4:  Tabulated Data for Cobalt Chrome Surface Treated Implant Stems 

under Compression 

 

 

 

  

COBALT CHROME

Smooth 1 0.003 - 2.00 101 1.49E-05 -

2 0.020 - 3.00 201 3.25E-05 -

3 0.007 - 3.00 232 1.01E-05 -

4 0.018 - 3.00 201 2.99E-05 -

5 0.006 - 2.00 101 2.97E-05 -

6 0.007 - 2.00 101 3.47E-05 -

Average 0.010 - 2.50 156 2.53E-05 -

SD 0.007 - 0.55 61 1.02E-05 -

Beaded 20mm 1 0.100 0.195 10.00 25900 3.86E-07 7.80E-06

2 0.080 0.201 10.00 25900 3.09E-07 8.04E-06

3 0.045 0.373 10.00 7965 5.65E-07 5.28E-05

4 0.019 0.201 10.00 25900 7.34E-08 8.04E-06

5 0.018 0.208 10.00 25900 6.95E-08 8.32E-06

6 0.150 0.165 10.00 25900 5.79E-07 6.60E-06

Average 0.069 0.224 10.00 22911 3.30E-07 1.53E-05

SD 0.052 0.075 0.00 7322 2.26E-07 1.84E-05

Beaded 10mm 1 0.018 - 3.00 201 2.97E-05 -

2 0.005 - 3.00 204 8.17E-06 -

3 0.005 - 3.00 209 7.97E-06 -

4 0.006 - 2.00 101 2.72E-05 -

5 0.049 0.415 10.00 25900 1.91E-07 1.66E-05

6 0.011 - 3.00 201 1.82E-05 -

Average 0.016 0.415 4.00 4469 1.52E-05 1.66E-05

SD 0.017 - 2.97 10499 1.18E-05 -

Plasma Spray 20mm 1 0.160 1.045 10.00 6621 2.42E-06 1.83E-04

2 0.165 1.175 10.00 7155 2.31E-06 1.88E-04

3 0.100 0.252 10.00 25900 3.86E-07 1.01E-05

4 0.129 1.206 10.00 15323 8.41E-07 8.36E-05

5 0.133 1.124 10.00 15700 8.47E-07 7.59E-05

6 0.162 1.190 10.00 9990 1.62E-06 1.31E-04

Average 0.141 0.999 10.00 13448 1.40E-06 1.12E-04

SD 0.026 0.370 0.00 7236 8.43E-07 6.87E-05

Plasma Spray 10mm 1 0.100 9.00 804 1.38E-05 -

2 0.193 0.028 10.00 911 2.12E-05 -

3 0.114 0.869 10.00 1139 1.00E-05 3.64E-03

4 0.125 0.148 10.00 923 1.35E-05 -

5 0.159 0.02 10.00 909 1.75E-05 -

6 0.145 9.00 824 1.96E-05 -

Average 0.139 0.266 9.67 918 1.59E-05 3.64E-03

SD 0.034 0.406 0.52 119 4.20E-06 -

Normalized Stem 

Motion Post 10kN 
Interface Toggle (mm)

# 

Cycles
Surface Treatment Stem #

Load 

(kN)

Stem Motion post- 

10kN (mm)

Normalized Toggle 

(mm/kN*#cycles)
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Table I.5:  Tabulated Data for Circumferential Grooved Implant Stems under 

Compression 

 

COBALT CHROME

Smooth 1 3000 201 0.004 6.08E-06 - -

2 3000 201 0.006 9.95E-06 - -

3 3000 201 0.004 7.19E-06 - -

4 3000 201 0.012 2.05E-05 - -

5 3000 201 0.002 3.32E-06 - -

Average 3000 201 0.006 9.40E-06 - -

SD 0 0 0.004 6.62E-06 - -

Grooved 1.1mm 1 10000 25900 0.054 2.10E-07 0.457 1.83E-05

2 10000 25900 0.099 3.84E-07 0.449 1.80E-05

3 10000 25900 0.097 3.76E-07 0.420 1.68E-05

4 10000 25900 0.084 3.23E-07 0.268 1.07E-05

5 10000 25900 0.043 1.66E-07 0.308 1.23E-05

Average 10000 25900 0.076 2.92E-07 0.380 1.52E-05

SD 0 0 0.026 9.87E-08 0.087 3.47E-06

Grooved 0.6mm 1 10000 25900 0.066 2.54E-07 0.133 5.32E-06

2 10000 25900 0.085 3.29E-07 0.295 1.18E-05

3 10000 25900 0.041 1.58E-07 0.320 1.28E-05

4 10000 25900 0.046 1.79E-07 0.253 1.01E-05

5 10000 25900 0.025 9.65E-08 0.248 9.92E-06

Average 10000 25900 0.053 2.03E-07 0.250 9.99E-06

SD 0 0 0.023 9.01E-08 0.072 2.87E-06

Normalized Stem 

Motion post 10kN 

Stem Motion 

post 10KN 
Surface Treatment Stem #

Load 

(N)

# 

cycles

Interface 

Toggle (mm)

Normalize Toggle 

(mm/N)
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Table I.6:  Tabulated Data for Circumferential Grooved Implant Stems in Torsion 

 

 

COBALT CHROME

Surface Treatment Stem # Torque (Nm) Toggle Rotation (deg) Normalized Toggle (mm/Nm)

Smooth 1 9 0.200 0.022

2 18 0.163 0.009

3 13 0.322 0.025

4 13 0.240 0.018

5 5 0.189 0.038

Average 11.600 0.223 0.022

SD 4.879 0.062 0.010

Grooved 1.1mm 1 17 0.720 0.042

2 19 0.719 0.038

3 15 0.749 0.050

4 18 0.802 0.045

5 15 0.569 0.038

Average 16.800 0.712 0.043

SD 1.789 0.087 0.005

Grooved 0.6mm 1 20 0.194 0.010

2 20 0.459 0.023

3 14 0.422 0.030

4 10 0.224 0.022

5 23 0.450 0.020

Average 17.40 0.350 0.021

SD 5.27 0.130 0.007
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Table I.7:  Tabulated Data for Titanium Surface Treated Implant Stems in Bending 

 

  

TITANIUM

Surface Treatment Stem # Interface Toggle (mm) Offset Stem Motion (mm)

Smooth 1 0.065 0.045

2 0.066 0.043

3 0.052 0.036

4 0.067 0.050

5 0.083 0.052

Average 0.067 0.045

St Dev 0.011 0.006

Bead 20mm 1 0.050 0.034

2 0.073 0.045

3 0.054 0.034

4 0.040 0.026

5 0.047 0.030

Average 0.053 0.034

St Dev 0.012 0.007

Bead 10mm 1 0.054 0.039

2 0.066 0.036

3 0.046 0.026

4 0.044 0.027

5 0.047 0.032

Average 0.051 0.032

St Dev 0.009 0.006

Plasma Spray 20mm 1 0.064 0.034

2 0.059 0.038

3 0.074 0.042

4 0.058 0.035

5 0.057 0.037

Average 0.062 0.037

St Dev 0.007 0.003

Plasma Spray 10mm 1 0.068 0.048

2 0.085 0.066

3 0.087 0.064

4 0.095 0.066

5 0.051 0.028

Average 0.077 0.054

St Dev 0.018 0.017
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Table I.8:  Tabulated Data for Cobalt Chrome Surface Treated Implant Stems in 

Bending 

 

 

COBALT CHROME

Surface Treatment Stem # Interface Toggle (mm) Offset Stem Motion (mm)

Smooth 1 0.091 0.071

2 0.060 0.049

3 0.131 0.102

4 0.057 0.014

5 0.070 0.051

Average 0.082 0.057

St Dev 0.031 0.032

Bead 20mm 1 0.044 0.027

2 0.056 0.039

3 0.037 0.024

4 0.040 0.031

5 0.033 0.015

Average 0.042 0.027

St Dev 0.009 0.009

Bead 10mm 1 0.042 0.039

2 0.122 0.099

3 0.093 0.087

4 0.037 0.033

5 0.046 0.030

Average 0.068 0.058

St Dev 0.038 0.033

Plasma Spray 20mm 1 0.061 0.042

2 0.051 0.035

3 0.056 0.034

4 0.050 0.025

5 0.040 0.029

Average 0.052 0.033

St Dev 0.008 0.006

Plasma Spray 10mm 1 0.038 0.036

2 0.040 0.025

3 0.061 0.054

4 0.062 0.044

5 0.063 0.044

Average 0.053 0.041

St Dev 0.013 0.011
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Appendix J:  Letter of Permission 

This appendix includes the letter of permission from the publisher, for the re-print of 

published material within Chapter 4 of this thesis. 
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Appendix K: Bead Embedment Procedure 

This appendix describes the procedure used in Chapter 7 for embedding steel bead 

markers into bone cement during the cementing process.  The methodology highlights the 

cement mixing and application technique used to ensure appropriate suspension of the 

beads within the cement mantle. 

 

1) Using the cement preparation technique described in Appendix H, vacuum mix 

the pre-chilled bone cement in the controlled environment of the fumehood. 

 

2) After 60 seconds of vacuum-mixing, pour the mixture from the vacuum cartridge 

into an open bowl, and continue mixing with a spatula for an additional 60 

seconds. 

 

3)  After 60 seconds of hand mixing, the bead-cement mixture should appear doughy 

in consistency.  At this time-point, incorporate the steel beads into the cement and 

continue mixing.  With the doughy consistency of the cement, the beads should 

remain suspended (as opposed to sinking) within the mixture. 

(N.B.  If the cement mixture does not appear doughy after 60 seconds, continue hand 

mixing until the doughing phase begins.  ONLY incorporate the beads into the mixture 

when this consistency is reached.  This is important for appropriate suspension of the 

beads within the cement) 

4) When the beads appear to be fully integrated into the cement, pour the mixture 

into the 60ml syringe, and immediately insert the syringe’s plunger. 

 

5) Tilt the syringe upwards and slowly plunge the mixture towards the application 

tip, to remove excess air within the syringe. 

 

6) Use the syringe to apply the bead-cement mixture to aluminum tubes containing 

the stem, or to the cement template used for moulding cement samples. 
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Appendix L: Mechanical Testing of Beaded Cement Samples 

This appendix describes the three-point bend tests used to compare cement samples 

prepared with different bead-cement ratios.  The results from this appendix was used to 

determine the appropriate bead-cement ratio to be used in Chapter 7, ensuring 

mechanical integrity of the bone cement, while allowing optimum dispersion of beads 

within the cement mantle. 

 

Introduction:  

  The incorporation of steel beads into bone cement can be useful as imaging 

markers, when studying the internal mechanics of the cemented systems using CT-

imaging techniques.  The vast difference in density values between the steel beads and 

the surrounding bone cement make the beads appropriate as high contrast markers within 

the cement.  However, this difference in density values may also affect the mechanical 

properties of bone cement.  As such, this pilot study aimed to determine the change in 

mechanical properties of bone cement by incorporation of various bead-cement ratios.  

Therefore, the purpose of this study was to investigate the effect of different bead-cement 

ratios on the flexural modulus of Simplex P
®
 bone cement. 

 

Materials and Methods: 

  Cement preparation was done using the procedure described in Appendix I, where 

the beads were incorporated into the bone cement during the doughing phase of cement 

preparation.  Four ratios of cement-bead mixtures were made using four separate 

packages of pre-chilled Simplex P
®
 bone cement; 0%, 0.15%, 0.2%, and 0.25%.  Bead 

ratios represented the volume of beads relative to the volume of bone cement.  One 

package of cement powder mixed with monomer liquid created a cement mixture volume 

of approximately 40 cm
3
.   
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Once the beads appeared fully integrated into the cement, the mixture was poured 

into the syringe for subsequent application to an aluminum cement template.  This 

template created five cement samples of dimensions of 80 mm x 10 mm x 3.3 mm, based 

on specifications from the ISO 5833 standards
9
 (Figure L.1).  The cement samples were 

left to cure for 24 hrs within the template, after which they were removed for mechanical 

testing.  

The remaining bead-cement mixture that was left over from creation of cement 

samples was incorporated into aluminum tubes containing a stem (Appendix I), and 

potted to a fixed depth of 10 mm.  These cement mantles were used for micro-CT 

imaging to determine the internal distribution of the beads within the aluminum tubes.  

Using this bead distribution, along with the results of mechanical testing (see below), the 

appropriate bead ratio was determined for embedment into the cement mantles. 

  Mechanical testing was done using a uni-axial materials testing machine (Instron


 

8872, Canton, MA).  The cement samples were positioned on a three-point bending 

platform placed at the base of the materials testing machine (Figure L.2), and exposed to 

monotonic loading at a rate of 2 mm/min.  The samples were tested to failure, defined by 

the sudden decrease in load after initial linear increase, accompanied by instantaneous 

fracture of the cement samples. 

  The slope of the force-displacement graphs, generated by the data from the 

materials testing machine, was used to calculate the bending modulus of the 0%, 0.15%, 

0.2% and 0.25% cement samples.  The respective moduli were compared to determine 

the effect of bead ratio on the mechanical properties of bone cement. 

                                                 

9
 ISO International Standards, ISO 5833/1. Implants for Surgery. Acrylic Resin Cements. Part I: 

Orthopaedic Applications. 



221 

 

 

 

 

 

Figure L.1:  Bead Embedded Cement Samples 

Cement samples used to determine the effect of bead ratio on the mechanical properties 

of bone cement.  From top to bottom; 0%, 0.15%, 0.20%, 0.25%. 
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Figure L.2:  Experimental Set-up for Three-point Bending of Cement Samples 

The cement samples were placed on the three-point bending platform for application of 

loads at a rate of 2 mm/min.  Failure was defined as a sudden decrease in load 

accompanied by instantaneous fracture of the cement sample. 
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Table L.1:  Bending Modulus of Bone Cement with Various Bead- Cement Ratios 
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Results: 

 From visual analysis of the five samples created for each bead ratio, it was 

observed that the 0.25% samples showed the greatest bead distribution compared to the 

other bead ratios.  In comparison, the 0.15% beaded sample showed the least bead 

distribution.  

Results of mechanical testing showed that the addition of beads caused an overall 

increase in the bending modulus of bone cement, as seen in Table K.1.  In addition, it was 

found that the 0.15% sample showed the greatest variability in its mechanical response to 

the three-point bend tests, based on its large standard deviation, compared to the other 

cement samples. 

CT imaging of the various cement mantles found that the 0.20% and 0.25% bead 

ratios showed suitable dispersion of beads within the samples of cement, with the 0.15% 

sample showing most inconsistent distribution. 

 

Discussion: 

 The cementing technique previously described in Appendix J, proved useful for 

embedment of steel beads within the bone cement.  From the observations of bead 

distribution within the cement samples, all beads appeared reasonably dispersed 

throughout the sample volumes, with the 0.25% bead ratio showing greatest dispersion 

and bead consistency within its samples (Figure L.1).   

 Mechanical testing showed that the addition of beads to bone cement increased 

the stiffness of the cement samples.  When comparing the bending modulus of bone 

cement observed in this study, to that found within the literature, it was seen that the 
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modulus for the 0% bead sample (2.89 GPa) was comparable to that described by Lee 
10

 

(2.55 GPa).   

 Imaging analysis found that the 0.20% and 0.25% bead ratios showed satisfactory 

dispersion of beads within the cement mantle surrounding the stem, and it was 

determined that either of the ratios would be optimal for bead visualization in Chapter 7. 

 When considering the appropriate bead ratio for inclusion in CT analysis of the 

cemented construct, it was determined that although 0.25% sample showed the greatest 

bead dispersion, it caused the largest change in the mechanical properties of bone cement.  

In comparison, the 0.15% sample showed the least change in the mechanical response of 

bone cement, but the variability among its measurements was quite high.  In addition, CT 

analysis of its cement mantle showed minimal appearance and distribution of beads.  As 

such, it was decided that the 0.2% bead ratio would be optimum for the use as cement 

markers in subsequent CT imaging studies. 

  

                                                 

10
 Lee, C. 2005, “Properties of Bone Cement: The Mechanical Properties of PMMA Bone Cement” In: 

Breusch, S.J., Malchau, H (eds), The Well-Cemented Total Hip Arthroplasty, Springer Verlag, Germany, 

pp 61. 
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Appendix M: Custom-built Loading Device 

This appendix details the custom built loading device used for testing implant stems in 

Chapter 7 of this thesis.  The device was initially developed by a fourth year design group 

(Goutam Datta, Micheal Dottor, Emily Harvey, Geoffrey McLellan) 
11

 in the Department 

of Mechanical and Materials Engineering at Western University, under the supervision of 

Dr. Cynthia Dunning and Dr. Jeffrey Wood, and modified slightly for use in this thesis.  

 

The initial design of the loading device was developed based on the requirements 

for a CT-compatible, displacement controlled, loading system, which could apply static 

and cyclic loads to the human ulna, while simultaneously collecting real-time image data.  

Based on the specific environment required for the loading device (i.e., within the bore of 

a micro-CT scanner, while x-ray images are acquired), the design constraints were 

focused on the CT compatibility, physical size requirements and load requirements.   

CT Compatibility 

The device was intended to be place within the CT scanner to acquire real-time 

images of the loaded specimen.  As a result, the material specifications were limited to 

polymers and low density metals, which would limit artifacts in the resultant CT images.  

Therefore, the final design incorporated aluminum metal for the fixtures and loading 

platform, with Delrin
®
 and carbon fibre for the load applicator and actuating parts of the 

device. 

Size Requirement 

 In addition to the material constraints imposed by the CT environment, the 

dimensions of the device were limited to the size of the micro-CT scanner’s bore.  The 

scanner’s bore is 15 cm in diameter, which restricted the design and configuration of the 

device to this height and width.  As such, all parts were machined to these constraints, 

                                                 

11
 Datta, G., Dottor M., Harvey E., McLellan G., 2007 Cyclic Loading Device for Micro CT Scanner, 

Department of Mechanical and Materials Engineering, The University of Western Ontario. 
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and the mechanical parts of the device were chosen to function within the restricted 

volume. 

Load Requirements 

  The loading requirements for the initial design were based on the load expected to 

test the material properties of human ulna.  As such, the device was designed to apply 

maximum loads of 100 N, as well as maintain rigidity under these loads.  For the 

purposes of the implant stem testing within this thesis, however, the loading requirements 

were increased to 1000 N.  Therefore minor modifications were made by replacing the 

load cell, and motor used for actuation. 

 

Final Design of Loading Device 

   The mechanical parts of the loading device consist of a stepper motor connected 

to an offset cam, which is further attached to a carbon fibre beam (Figure M.1).  The 

motor provides rotational motion, which is converted to vertical translation of the carbon 

fibre beam through the offset bearing cam.  Translation is recorded by a linear variable 

differential transducer (LVDT) located near cam. Vertical translation of the pivoted 

carbon fibre beam produces a see-saw motion along the length of the beam. 

The entire mechanical set-up is housed on an aluminum platform, which is 

designed to be attached the bed of the CT-scanner.  An aluminum holding jig further 

attached to this platform secures the specimen in a horizontal orientation above the 

carbon fibre beam (Figure M.2).  Therefore, during one rotation of the motor, the see-saw 

motion of the carbon fibre beam applies a perpendicular load to the head of the specimen.  

This load is measured by a load cell positioned just below the specimen. 
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Figure M.1:  Mechanical Parts of Loading Device 

The motor connected to the offset cam, which was further connected to a pivoted carbon 

fibre beam.  During one rotation of the motor, the offset cam facilitated vertical 

translation of the pivoted carbon fibre beam, resulting in a see-saw motion along the 

length of the beam 
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Figure M.2:  Custom-Built Loading Device 

The mechanical parts were attached to the loading platform, which was fixated to the bed 

of the CT scanner.  A holding jig secured the specimen in a horizontal orientation above 

the carbon fibre beam, allowing cantilever bending of specimen during one rotation of the 

motor. 
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Appendix N: Surface Deviation Analysis 

This appendix describes the process used to analyze stem surface deviations between the 

unloaded and loaded condition in Chapter 7 of this thesis.  This process allowed 

comparison of stem-cement motion during the application of bending loads. 

 

Immediately after the scanning protocol is complete, the image data from CT-

scanner is reconstructed into .vff files to be viewed as a 3-D volume made up individual 

image slices.  This reconstruction is done within MicroView 3D Image Viewer and 

Analysis Tool (Parallax Innovations, Ilderton, ON).  Once the files are reconstructed, they 

are further converted to surface files (.stl) within MicroView, to be exported to, and 

analyzed with Geomagic
®
 Qualify (Geomagic, Morrisville, NC).  The process below 

describes the series of steps used for analysis of the CT data files; from the conversion of 

the reconstructed images (.vff) into surfaces (.stl), to the analysis tools used within 

Geomagic
®
 Qualify. 

 

STEP 1: Conversion of .vff’s to .stl’s in MicroView 

1) Open the .vff image file within MicroView, File Open Select file.  The file 

should contain a series of image slices which make up the volume of the imaged 

object.  By placing the mouse cursor over the image volume and left clicking 

while dragging the mouse, the orientation of the image volume can be 

manipulated. 

 

2)  Within the MicroView program, the ‘Tools & Applications’ tab should be 

located on the left side of the window.  Click on the ‘Standard ROI’ icon under 

the Tools & Applications tab.  This will introduce a yellow region of interest 

(ROI) box in the image volume on the right. 
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3)  Within the Standard ROI tab, the ‘Box’ tool and ‘Millimeter’ unit is set as the 

default options.  These defaults may remain as is.   

 

4)  To select the region of interest from which the surface files will be created, place 

the mouse cursor over each of the four walls of the yellow ROI box, and click on 

the mouse’s wheel to extend these walls in the horizontal and vertical directions 

over the desired region.  This will cause a change in the ROI size and ROI center 

(x,y,z) coordinates shown on the tab located to the left of the program window.  

The ‘ROI size’ and ‘ROI center’ coordinates can be altered to make fine 

adjustments to the region of interest. 

 

5)  Once the desired ROI is shown within the yellow ROI box, select the ‘Visualize’ 

tab on the toolbar located at the top of the program window, and choose the 

‘Isosurface’ option. 

 

(Within the Isosurface tab, various isosurfaces can be created dependent on the image 

threshold chosen for the ROI.  For analysis of the cemented implant stems, two different 

isosurfaces are created; one of the cemented stem contained in the aluminum tube 

(Figure N.1A), and the second of the stem and embedded cement beads without the 

aluminum tube (Figure N.1B).  An image threshold value of 2000 is typically chosen for 

the isosurface with the aluminum tube, while the isosurface of the implant stem with 

beads is set to an image threshold of 3000)   

 

6) Under the ‘Isosurface Properties’ of the ‘Isosurface tab’, insert the desired 

image threshold value (see above) required for creation of the isosurface.  Adjust 

the surface quality factor to 0.75, and click the ‘Update’ icon.  This will create the 

desired surface from the image ROI on the right.  Once the surface is deemed 

suitable, select the ‘Save Surface’ option, and save the resultant isosurface as a 

.stl file to the desired location (Figure N.1). 
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Figure N.1:  Region of Interest (ROI) used to Create Isosurfaces 

(A) The region of interest used to create isosurface for the stem with aluminum tube, and 

(B) the same region of interest updated with a new image threshold value, to create 

isosurface of the stem and beads only. 
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STEP 2:  Analysis using Geomagic Qualify
® 

 

Within Geomagic, a single study compares the loaded and unloaded condition for 

each of the implant stems.  This is done by first opening the isosurface of unloaded stem, 

and setting this as the reference surface.  Subsequently, the isosurface of the loaded stem 

can be imported and set as the test surface.  Analysis tools within Geomagic can then be 

used to compare the deviation of the test surface (loaded) relative to the reference surface 

(unloaded) (Figure N.2).   

In order compare the isosurfaces, however, the images must be registered to 

ensure that stem motion is evaluated within the same coordinate system.  As such, the 

isosurfaces of the cemented stem within aluminum tubes are used for registration, by 

matching the faces of the reference and test aluminum tubes to one another.  This allows 

comparison of stem motion within the reference frame of the aluminum tubes. 

 

Step 2a: Registration of Aluminum Tubes in Geomagic 

1) Open the .stl containing the isosurface of the unloaded stem contained within the 

aluminum tube: File Open Select file  

 

2) The file should appear within the ‘Model Manager’ tab to the left of the program 

window.  Right click on the file, and select the option “Set as Reference”.  This 

will result in the abbreviation ‘REF-’ appearing adjacent to the file name in the 

Model Manager window. 

 

3) Import the .stl containing the isosurface of the loaded stem contained within the 

aluminum tube: File Import Select file  

 

4) Right click the imported file in the Model Manager tab, and select the option “Set 

as Test”.  This will result in the abbreviation ‘TEST-’ appearing adjacent to the 

file name in the Model Manager window. 
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5) Select the rectangular icon (6
th

 icon from the top) located on the vertical toolbar 

at the right of the program window.  Use this option to highlight the rectangular 

faces of the aluminum tubes by outlining the edges of the faces with the 

rectangular cursor. 

 

6) Once all faces of the aluminum tubes are highlighted for the ‘REF-’ and ‘TEST-’ 

surfaces, click on the ‘Home’ tab located at the top of the program window, and 

select the ‘Best Fit’ option.  By applying the best fit alignment tool, all surfaces 

of the aluminum tubes will be registered. 

 

7) To save the transformation matrix used to align the aluminum tubes, click on the 

‘Tools’ tab located at the top of the program window, and select the ‘Transform’ 

option.  This will display the individual translation and rotation matrices that 

make up the transformation matrix.  Choose the ‘Save Matrix’ option below these 

coordinates, and save the matrix to the desired folder. 

 

The transformation matrix saved from the registration of the aluminum tube surfaces will 

be used to align the isosurfaces of the implant stem and beads without the aluminum tube. 
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Step 2b: Analysis of Surface Deviation Between the Unloaded and Loaded Stem 

1) Open the .stl containing the isosurface of the unloaded implant stem and beads 

without the aluminum tube: File Open Select file  

 

2) The file should appear within the ‘Model Manager’ tab to the left of the program 

window.  Right click on the file, and select the option “Set as Reference”.  This 

will result in the abbreviation ‘REF-’ appearing adjacent to the file name in the 

Model Manager window. 

 

3) Import the .stl containing the isosurface of the loaded implant stem and beads 

without the aluminum tube: File Import Select file  

 

4) Right click the imported file in the Model Manager tab, and select the option “Set 

as Test”.  This will result in the abbreviation ‘TEST-’ appearing adjacent to the 

file name in the Model Manager window. 

 

5) Click on the ‘Alignment’ tab located at the top of the program window.  Select 

the ‘Load Matrix’ option. Choose the transformation file saved in (7) of Step 2a.  

This will align the unloaded and loaded surfaces of stem and beads relative to one 

another, based on the transformation matrix used to register the aluminum tubes.  

 

6) To compare the surface deviation between the the loaded to unloaded isosurfaces, 

click the ‘Home’ tab at the top of the program window, and select the ‘3D 

Compare’. This will create a 3D- color plot comparing the deviation in the stem 

surfaces between the loaded and unloaded surfaces (Figure N.2A). 

 

7) The cross sections through the isosurfaces along the x, y, z planes could also be 

compared, to determine the change in surface deviation through each section.  On 

the ‘Home’ tab, click ‘Section Through Object’ to select the plane along which 

analysis is desired.  For comparison of stem deviation along the length of the 

stem-cement interface, the Y-Z plane is chosen. 
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8) To analyze the sections through the object, select ‘2D Dimensions’ from the 

‘Home’ tab at the top of the program window.  This tool allows the user to select 

various locations along the reference (unloaded) and test (loaded) profiles, to 

determine the vertical and horizontal deviations of the test (loaded) surface 

relative to the reference (unloaded) surface (Figure N.2 B). 
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Figure N.2:  Geomagic
®

 Surface Deviation Analysis 

(A) The 3D Compare color plot shows the deviation in the stem and bead surfaces 

between the unloaded and loaded condition, and (B) the 2D Dimensions from the section 

through the Y-Z plane of the cemented stem and beads measure the vertical and horizontal 

translation of the surfaces.  The red profile represents the reference (unloaded) surface, 

and the black profile represents the test (loaded) surface. 
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Appendix O: Uncertainty of Stem and Bead Displacements 

This appendix describes the scan-rescan technique used to determine the uncertainty in 

the measured displacement of the cemented stems and beads embedded within the 

cement, described in Chapter 7. 

 

Introduction: 

 The CT imaging methodology described in Chapter 7 of this thesis provided a 

useful technique for analysing motion along the stem-cement interface.  However, the 

apparatus used for testing (i.e., holding jig, aluminum tube, titanium stem, steel beads, 

aluminum load cell) incorporated metal components, which were carefully chosen to 

meet CT-compatible requirements, but may have resulted in some error from inherent 

metal artifact.  In particular, the embedment of high density steel beads used for analysis 

of cement motion in Chapter 7 (Appendix J) could have imposed artifact errors in the CT 

generated surface profiles, which would result in uncertainty in the cement motion 

measurements.  As such, it was necessary to determine the amount of error imposed on 

the stem and bead displacement measurements as a result of metal artifact contribution. 

 

Materials and Methods: 

 Three smooth implant stems, similar to those used in Chapter 7, were potted into 

square aluminum tubes using a 0.2% mixture of orthopaedic bone cement and steel beads 

(Appendix J).  The stems were left 24 hours to cure, and subsequently used for scan-

rescan testing. 

 The stems were secured within the custom built loading device (in the same 

configuration expected for testing, without the application of a load) and two consecutive 

scans similar to those described in Chapter 7 (x-ray potential of 120kVp; 40mA tube 

current; duration of 8 seconds; image volume was 1024 mm x 1024 mm x 360 mm) were 

acquired.  No changes were made to the set up between scans. 
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 The two scans for each of the stems were analyzed using the methodology 

described in Appendix M.  For Geomagic
®
 analysis, the first scan was set as the 

reference, with the second scan (i.e., re-scan) was set as the test.  Scan and re-scan 

surfaces for the three stems were compared to determine the average deviations of the 

stem and bead surface between the scan and re-scan surface profiles. 

 

Results: 

 Comparison of surface deviation among the three cemented construct showed that 

on average, the stems (i.e., head, uncemented shaft and cemented shaft) showed an 

average surface deviation of 0.014 ± 0.010 mm, and beads (Region 1 and 2, above and 

below stem) showed an average surface deviation of 0.018 ± 0.011 mm (Table N.1). 

 

Discussion and Conclusion: 

 Based on results from this pilot test, it was determined that uncertainty in the stem 

and bead displacement measurements using CT-scanning and Geomagic analysis was on 

the order of tens of microns.  However, from this pilot study, stringent criteria for 

analysing surface deviation of the stem and bead surfaces were developed, to exclude any 

inconsistencies in surface morphology from the motion measurements.  This included 

analyzing contralateral edges of the stem and bead surfaces (i.e., top and bottom of stem 

2D surface profile, top and bottom/ left and right of bead 2D surface profile), and finding 

the average surface deviation value to represent motion.  If contralateral deviations were 

not similar, the measurement was excluded from the analysis. 
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Table O.1:  Deviation in Stem and Bead Surfaces between Scan- Re-scan Tests 

 

 

  

Stem #

Stem 

Head 

(mm)

Un-

cemented 

Shaft

Cemented 

Shaft  

(mm)

Cemented 

Shaft  

(mm)

# 1 # 2 Region 1 Region 2 Region 1 Region 2

1 0.013 0.008 0.006 0.010 0.010 - 0.008 0.008

2 0.009 0.008 0.008 0.027 - 0.019 0.025 0.021

3 0.019 0.011 0.008 0.040 - 0.029 0.025 -

Average 0.013 0.009 0.007 0.025 0.010 0.024 0.019 0.014

SD 0.005 0.002 0.001 0.015 - 0.007 0.010 0.009

Bead Motion 

(Above Stem) 

(mm)

Bead Motion 

(Below Stem) 

(mm)
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