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Abstract

With the increasing number of “machines” (either virtual or phys-
ical) in a computing environment, it is becoming harder to monitor
and manage these resources. Relying on human administrators, even
with tools, is expensive and the growing complexity makes manage-
ment even harder. The alternative is to look for automated ap-
proaches that can monitor and manage computing resources in real
time with no human intervention. One of the approaches to this
problem is policy-based autonomic management. However, in large
systems having one single autonomic manager to manage everything
is almost impossible. Therefore, multiple autonomic managers will
be needed and these will need to cooperate in the overall manage-
ment. We propose a management model using multiple autonomic
managers organized in a hierarchical fashion to monitor and man-
age the resources in a computing environment based on provided
policies. We develop a communication protocol to facilitate collabo-
ration between different autonomic managers, define the core opera-
tions of these managers and introduce algorithms to deal with their
deployment and operation. We also introduce an approach for the
inference of the communication messages from policies and develop
several algorithms for joining and maintaining the management hi-
erarchy. We propose a deployment system that can discover relevant
resources in a computing environment automatically to facilitate the
deployment of autonomic managers at different levels of a physical
system. We then test our approach by implementing it in a small
private Infrastructure-as-a-Service (IaaS) cloud and show how this
collaboration of autonomic managers in a hierarchical way can help

to adopt to high stress situations automatically and reduce the SLA
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violation rate without adding any new resources to the environment.

Keywords: Cloud Computing, Autonomic Management, Policy-

Based Management, Collaborative Management.
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Chapter 1

Introduction

In recent years, there has been a lot of research into “Autonomic
Computing” [17], especially about how to build autonomic elements
and managers [19]. Autonomic managers (AMs) try to monitor
and manage resources in real time to ensure that the components
they manage are self-configuring, self-optimizing, self-healing and

self-protecting (so called “self-*” properties [36]).

1.1 Motivation

The basic idea behind a self-management system is inspired from the
autonomous nervous system of human body [39]. The need for hav-
ing such systems is becoming more obvious as the number of com-
puting machines (such as virtual or physical) is increasing. Data
centers are becoming larger and more complex, particularly those
focused on providing cloud services. The challenges of monitoring
and managing these cloud computing environments in order to meet
users’ expectations of highly available and responsive systems are

increasingly more difficult. Therefore, as the number of cloud users

1



2 CHAPTER 1. INTRODUCTION

are growing, having self-managed systems seems to be inevitable in

the future management of the computing infrastructures.

In the broader vision of autonomic computing, large complex data
centers and systems will consist of numerous autonomic managers
handling systems, applications and collections of services [20]. Some
of the systems and applications will come bundled with their own
autonomic managers, designed to ensure the self-properties of par-
ticular components. Other managers will be part of the general man-
agement of the computing environment. Therefore, the complexity
of managing a large system will entail a number of different auto-
nomic managers which must cooperate in order to achieve the overall
objectives set for the computing environment and its constituents.
However, the relationships between these managers and how they

cooperate introduce new challenges that need to be addressed.

More specifically, there are questions regarding how different au-
tonomic managers should be organized and how they should interop-
erate in a large computing environment, such as an Infrastructure-
as-a-Service (laaS) cloud. There are questions on how they should
interact with each other to achieve a global goal in the system, how
and when this communication should happen, how to minimize asso-
ciated overhead, etc. Besides communication among managers, there
are other problems that need to be addressed: How each manager
gets deployed in the appropriate position of the management system,
how is the configuration and the deployment of the managers done
so that they can collaborate with each other in the system, how is

the management relationship among managers maintained as new
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managers start and others end in response to changes in the system?
In order to ensure that service level agreements are met and that
we use the infrastructure more efficiently, we have focused on the

following problems:

e How to deploy autonomic managers dynamically in a scalable

manner”?

e How autonomic managers should collaborate with each other in

a large computing environment to achieve global goals?

e How to automate the configuration of autonomic managers and
the communication process itself, to minimize the administra-

tive costs of managers’ setup and maintenance?

e What should happen when a new autonomic manager gets added
or when an already running one stops working? How system re-

act to these changes dynamically?

We consider the use of policy-based managers [6] in addressing
these problems. The ultimate goal is to automatically monitor and
manage a large system by a collective of collaborating local auto-
nomic managers. In such an environment, we assume that each
local autonomic manager has its own set of policies and is trying to
optimize the behaviour of the elements that it manages by respond-
ing to the changes in the behaviour of those elements. We assume
some managers will also be expected to monitor multiple systems

and directly or indirectly to monitor other local AMs.

The focus of this research is on a management model for multiple
autonomic managers and in particular the collaboration and commu-

nication between different managers. We consider this initially where
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the autonomic managers are organized into a hierarchy and inves-
tigate how they can communicate at different levels of a hierarchy
based on the active policies. Although there are other approaches
to communications between managers, such as peer-to-peer, multi
agent, etc. we have chosen a hierarchical approach since a) it is a
good starting point and has advantages over flat structures and it is
important to understand how it can be effectively utilized or where
there may be limitations and b) it has a natural alignment with an

[aaS cloud architecture - our particular system focus.

The core issues addressed are how these local managers should
communicate with each other, how they should be deployed auto-
matically across the computing environment and what information
they have to exchange to achieve global performance goals. We will
also focus on how to automate the collaboration process itself by
inferring the communication messages from the active policies in a
particular autonomic manager. In a hierarchical organization of au-
tonomic managers, policies are used at different levels to help man-
agers decide when and how to communicate with each other as well
as using polices to provide operational requirements. We assume
that one of the roles of a higher level manager is to aid other au-
tonomic managers when their own actions are insufficient to meet

operational requirements.

1.2 Towards Autonomic Cloud Management

A special focus of this thesis is on the management of laaS cloud

environments. These cloud computing environments often depend
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on virtualization technology where client applications can run on
separate operating virtual machines (VMs). Such environments can
consist of many different host machines each of which might run
multiple VMs. As the number of hosts, virtual machines and client
applications grow, management of the environment becomes much
more complicated. The cloud provider must worry about ensuring
that client service level agreements (SLA) are met, must be con-
cerned about minimizing the hosts involved, and minimizing power

consumption.

As part of this thesis, we focus on how our management model
and approach can be applied to such environments (e.g. IaaS clouds)
and implement these ideas in a small cloud. We also explain the ap-
plication of our approach to a real world problem where we worked
with a private company to evaluate these ideas in a high frequency
trading cloud environment and tuned the general strategy based on

practical experiences.

1.3 Contributions

The main contributions of this work and the novel ideas are as fol-

lows:

e There has been generally a little work in the area of multi-
ple autonomic managers and how to handle dynamic changes.

Therefore, this work is to somewhat unique in this area.

e Cluster management typically has a focus on the cluster as a

whole often ignoring management of individual elements, such
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as nodes. Our hierarchical approach in this thesis encompasses
a focus on local and intermediate managers as well as including
global cluster level managers which makes it unique in address-

ing this problem.

The design of a hierarchical autonomic management model for
large computing environments with formal definition of different

elements in that model (Chapter 4).

The design of a communication protocol between autonomic
managers that facilitates their collaboration in achieving global
goals (Section 5.2). Some of these communication messages can
be inferred from policies and therefore can help with automating

the collaboration between managers.

Introduction of multiple algorithms that define the behaviour
of a specific autonomic manager and its relationship with other
managers in that management model. These algorithms include
the start-up, processing, termination detection and communi-

cation message inference from policies (Chapter 5).

Design of a deployment system based on the management model
proposed to automate the deployment of different autonomic
managers across the computing environment with minimum ad-

ministrative efforts (Chapter 6).

Creation of multiple algorithms as part of this deployment sys-
tem such as element discovery, members addition and members
removal (Section 6.4 and Section 6.5). The time complexity of
element discovery algorithm is O(n?) where n is the number of
AMs that should be deployed in the whole computing environ-

ment (e.g. number of nodes in the management tree). The time
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complexity of members addition algorithm is O(log(n)) and the

members removal is O(n) in the worst case.

We also evaluated these ideas in two different experimental set-
tings. In one case, we implemented this approach in a small private
cloud and measured the potential advantages of a hierarchical ap-
proach. We also implemented some of our ideas and algorithms in
a real world setting involving a high frequency trading cloud infras-

tructure.

1.4 Roadmap

The structure of the remainder of the thesis is as follows: Chapter
2 presents a literature review and a summary of the most related
work. Chapter 3 explains some of the background information re-
quired and defines the scope of this research outlining the specific
challenges that are addressed throughout the thesis. Chapter 4 ex-
plains the basic assumptions in our approach, discusses the proposed
management model and introduces formal definitions of different ele-
ments in this model. Chapter 5 introduces and discuses the multiple
algorithms that are developed to explain the behaviour of an auto-
nomic manager and its relationship with other managers within the
scope of the proposed management model. Chapter 6 addresses the
issue of dynamic autonomic manager deployment in a large com-
puting environment and explains several algorithms that are used
inside the deployment system to make sure that managers are auto-
matically deployed to the right position with the right configuration

parameters. Chapter 7 describes the implementation and evaluation
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of these ideas through a performance study and describes some prac-
tical experiences in using the ideas in this thesis in a private cloud
environment. Finally, Chapter 8 provides a summary of the thesis

and concludes by identifying some potential future work.



Chapter 2

Related work

There has been wide range of research dealing with the issues in-
volving multiple autonomic managers for managing large systems.
In this Chapter, we review some of the key works in this area and
discuss the similarities and differences with our work. We focus in
particular on previous work that looks at having multiple managers
and examine how the interactions or collaboration are addressed. We
also discuss some of the previous research that involves policy-based
management with multiple autonomic managers, cloud management

and general approaches towards coordination of multi-agent systems.

2.1 Multiple Managers

Some researchers have already begun to study how collaboration
among local autonomic managers can be done in order to achieve
a global goal. A hierarchical communication model for autonomic
managers has also been used by some researchers. In this section,
we describe some of the relevant research in this area and explain

the differences with our work.
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Famaey, et al. [14] used a policy-based hierarchical model for
network management. They showed how this model can be mapped
to the physical infrastructure of an organization and how this hier-
archy can dynamically change by splitting and/or combining nodes
to preserve scalability. They also introduced the notion of “context”
that needs to be accessible in the hierarchy. The “context” is the
information that is made available from a child to its father. Their
work focused on the network layer and studied the transmissions be-
tween autonomic elements by looking at the number of bytes trans-
mitted during communication. In this work, “context” is basically
the monitoring information that can be retrieved from standard pro-
tocols such as the Simple Network Management Protocol (SNMP).
The limitation of these protocols is that they only provide network
management information at the macro levels and they do not deal
with detailed organized information that is required for manage-
ment at higher levels. It is also difficult to perform request/response
type of communication due to protocol constraints. We have also
adopted the hierarchical approach used in this work, but we develop
a new protocol to exchange communication messages between auto-
nomic managers. We also use a mechanism to infer communication
messages from policies automatically and show when and how this

communication should happen.

Aldinucci, et al. [4] described a hierarchy of managers dealing
with a single concern (Quality of Service-QoS). In their work, each
manager is trying to pursue a goal defined in a QoS contract. There-

fore, the relationship between managers is bound to the contracts
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they are pursuing. This means that policies are defined based on
these QoS contracts and that the topmost contract is the main QoS
for the whole system and other contracts within the hierarchy should
be derived from their parents. This is similar to policy decomposi-
tion process where one can define global policies for the root node
and then it gets decomposed to lower level policies and placed on to
the lower level components. They assume that if a lower level com-
ponent can not satisfy its QoS parameters, it will trigger a “contract
violation” message to its parent and enter a passive mode until it
receives a new contract. This means that the parent node should
be able to generate a new policy set upon QoS violations to pass it
down to its child. They used a simulator to evaluate the framework.
The communication between elements in this work is hard-wired
and the hierarchical structure is static which makes it difficult to
deal with dynamic environments. The focus of our work is not on
how the policies get distributed between different managers (though
for completeness we describe an approach in our work), we assume
that autonomic managers have the right policies in place and that
these policies can change over time if required. We focus on defining
a communication protocol between managers that is loosely-coupled
and on what should happen in case of adding/removing a manager
to the hierarchy which is not discussed in this paper. We consider
dynamic join and leave of autonomic managers to the management
hierarchy and design algorithms that can detect these changes and

adopt the hierarchy accordingly.
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2.2 Coordination of Managers

Mukherjee, et al. [32] used coordination of three managers work-
ing on three different parts of a system (Power Management, Job
Management, Cooling Management) in a flat structure to prevent a
data center from going to a critical state. The critical state is when
there is a possibility of the ambient temperature to reach the redline
temperatures. They showed how the three managers can cooperate
with each other to keep the data center temperature within a cer-
tain limit that is suitable for serving the current workload and at the
same time not using more power than required. They showed how
these three managers can be configured to work based on different
business policies. Their approach used three different strategies to
combine the three management tiers and preconfigured the system
to work based on these three strategies. The three management tiers
are fixed and adding new managers to this system will be challenging
both in terms of collaboration and scalability, particularly because
the coordination between management tiers depends on their con-

figuration and can not change dynamically.

The same approach as in [32] is used in [18, 49] to show the col-
laboration between a power and a performance manager (only two
managers) to minimize the power usage as well as maximizing the
performance. This method however does not seem to be general-
izable to a larger environment with more autonomic managers in-
volved because of the complexity introduced in terms of interactions
between managers. In contrast, we look to deal with multiple man-
agers and an environment where the managers can join and leave the

management system dynamically. The configuration of managers is
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not fixed and can be changed based on the active policies. The poli-
cies themselves can also change on the fly based on new demands

rising from time to time.

Schmelz, et al. [44] have proposed a coordination framework for
Self-Organizing Networks (SON). They use a coordinator (Align-
ment Function) to coordinate the decisions of multiple managers for
a specific network entity based on predefined high-level performance
objectives. This work is focused on resolving conflicting parameter
settings for the network entities because SON functions (managers)
are not necessarily aware of each other and may cause making mul-
tiple conflicting decisions for one specific element. This means that
one element can be managed by more than one manager and there-
fore each manager might change the settings of the element without
knowing about decisions of other managers. They used a policy de-
composition framework to map and distribute high level performance
objectives defined by network operators to cell-specific policies, SON
function-specific policies and SON coordinator-specific policies. The
SON coordinator will then resolve the conflicts based on these poli-
cies try to harmonise the control parameter changes towards the
operator policies. In our work, we assumed that each managed el-
ement is being managed by one and only one autonomic manager
and therefore the only possible way to have conflicting decision is
when there are conflicting policies in place. Each manager might
be involved in a relationship with its higher level manager and in
case of conflicts in enforcing policies at different levels, we assume
the higher-level manager has more authority and therefore its policy

should override the local lower level manager’s policy. However, the
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policy distribution and how policies are derived from higher level
objectives is not the focus of our work. If we assume the SON coor-
dinator as a higher level manager then this system can be considered

as part of the hierarchical system proposed in our work.

Tuncer, et al. [51] have developed a coordinated mechanism to
control the distribution of traffic load in the IP networks. Their
ultimate goal is to balance load in the network by moving traffic
away from busy nodes towards underutilized ones in order to adapt
to dynamic traffic changes. This work does not deal with autonomic
managers, but they have explored two different models for the or-
ganization of nodes. They used full-mesh and ring topology models
for organizing nodes in a decentralized way and developed an al-
gorithm for their coordination. However, the nodes in these two
models are fixed and they do not consider faulty/error situations.
They also used a message based means of communication between
nodes to facilitate the coordination. They created a structure for
messages and defined two types of messages that can be exchanged
(i.,e. REQUEST, RESPONSE). This communication protocol can
only handle simple messages with a focus on networking (i.e. it is
not generalizable to another system). Our focus is on a hierarchical
organization of autonomic managers with a message based communi-
cation. The experiences in this work such as defining different types
of messages, and the communication protocol can be used in our
work. However, we extended the communication protocol to include
other types of messages such as NOTIFY message and also added
useful organized information in the body of messages. We also deal

with dynamic addition and removal of nodes in the system and pro-
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vide algorithms to handle these cases.

Multi-agent approaches toward autonomic manager collaboration
have been explored by some researchers. In these systems, each
autonomic manager is represented as an agent and multi-agent com-
munication techniques are used for their interactions. We explain

some of the most relevant ones to our work.

The “Unity” architecture [50] uses performance utility functions
that need to be calculated by each agent with the result being sent
to a central coordinator (“Arbiter”) for computing the globally op-
timal resource allocation. The same kind of approach is used in [12]
by having a coordinating agent that tries to coordinate power and
performance agents. This approach could be used as part of the hi-
erarchical approach that will be presented in this thesis, but it does
not seem to be scalable to a larger system just by itself, because
adding a new agent to this system will introduce challenges in agent
interactions and configurations. This can be considered as a special
case of the hierarchical approach proposed later in the thesis, but

with only one level of hierarchy.

Soares and Madeira [48] have used a multi-agent architecture for
autonomic management of virtual networks. In this architecture each
autonomic manager (agent) monitors part of the network and up-
dates its own knowledge base (KB). In order to facilitate the decision
making process, each agent should have access to the KB informa-
tion of other agents so that it can get a global view of the system

(network). Therefore, each agent should sync its own KB with all
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other agents in the system. The agents do not request information
on demand. This approach can lead to a major overhead in large sys-
tems and turn into a bottleneck itself. In our model, each manager
does not need to have information about all other managers mostly
because of the layered hierarchical architecture. It is also possible to

get updated information on demand if it is needed.

2.3 Policy-Based Interactions

Salehi and Tahvildari [41] published a survey article on self-adaptive
systems and the main research challenges. They proposed [40] a
policy-based orchestration approach for resource allocation to dif-
ferent autonomic elements. They suggested the use of a global or-
chestrator to coordinate the resource provisioning at a global level
between multiple autonomic elements. They used crisp action poli-
cies for non-competitive states where there is no conflict on resource
requests and fuzzy utility policies to resolve conflicts in competitive
states. In this work, the interactions between autonomic managers
and the orchestrator is limited to resource requests, the managers
are fixed and the communications are tightly coupled. This system
can be considered as one level of hierarchy that will be explained in
this thesis. However, we developed a new communications protocol
which includes different types of messages and considered the dy-

namic joining and leaving of managers from the system.

Schaeffer-Filho, et al. [42, 43] have introduced the interaction
between Self-Managed Cells (SMCs) that was used in building per-

vasive health care systems. They proposed “Role” based interactions
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with a “Mission” that needs to be accomplished during an interac-
tion. This mission is based on predefined customized interfaces for
each role. This approach is similar to interactions in ad-hoc net-
works and SMCs need to discover each other and try to accomplish
missions based on their defined role in the system. There are cer-
tain policies for each role which facilitate the interactions. In our
work, we deal with a hierarchy of managers and therefore each man-
ager needs to communicate with either its children or its parent and
there is no need to define “role” for each manager to make the in-
teractions possible. Although, this SMC role based approach might
also be applicable in a hierarchical fashion, the overhead in defining
unnecessary interfaces introduces a challenge. Another major differ-
ence is that we try to infer communication messages from policies
dynamically to the extent that is possible but in the SMC system

all interactions have to be specified beforehand through missions.

2.4 Cloud Management

Zhu, et al. [58] introduced an integrated approach for resource man-
agement in virtualized data centres. They used three controllers (e.g.
Node, pod and pod set controllers) to monitor physical nodes, a clus-
ter of nodes and the whole data center. Their approach is similar to
the hierarchical approach we used in our work, but the relationships
between different controllers are tightly coupled whereas we suggest
a loosely coupled communication style to better accommodate fail-
ures, heterogeneous autonomic managers and dynamic changes in
the system and managers. They also only focus on management of

the physical elements; i.e., they do not consider any controllers that
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could monitor the changes inside a virtual machine. In the applica-
tion of our model to a cloud environment, it is possible to have at
least one autonomic manager inside virtual machines which can join
and leave the management hierarchy dynamically. Another differ-
ence is that they use a polling mechanism with multiple time-scales
to do the monitoring at different levels. For example, they monitor
virtual machines in seconds, the “pods” in minutes and the “pod
sets” in hours or days. In our work, we proposed the use of notifi-
cation messages for communication between managers and therefore
managers can communicate based on demand rather than polling
which reduces the overall overhead. We also focus on policies and
how they affect the relationship between managers in a dynamic
structure where multiple autonomic managers can join and leave the
management system, but the number of controllers in their system
is limited to three with hard-wired connections between them which

limits the scalability of their approach.

Li, et al. [23] have developed an integrated and multi-layer ap-
proach towards automatic management of cloud environments. They
used three different controllers to monitor and manage cloud infras-
tructure at three different layers. The virtual machine controller
(VMC) uses a multi-input multi-output (MIMO) resource controller
and a model estimator to estimate the required resource allocations
of the applications running inside the VM to satisfy their service level
objects (SLOs). The node controller (NC) collects all VM resource
demands and satisfies these demands according to SLO differenti-
ation which means lower priority applications will be given fewer

resources if there are not enough resources available or when the
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total demands are more than available resources at the node level.
The global controller (GC) monitors all nodes in the cloud and uses a
statistical machine learning technique to rearrange virtual machines
among nodes. These migrations help to optimize virtual machine
placements and meet the SLOs. Basically they use different models
at each level to estimate the demands and adjust the environment
and as a result it is more complex to change the model dynami-
cally. In our work, we use the same Monitor-Analyse-Plan-Execute
(MAPE) loop/model at all levels of the hierarchy but policies can
change on the fly. In their work, the interactions between controllers
are tightly coupled. For example, the VMC sends resource requests
to NC and the NC responds to that request by using a resource
actuator to change the VM parameters. This also shows the tightly-
coupled relationship between controllers and can become an issue
for scalability of the approach when the number of virtual machines
and nodes increase. In our work, we develop algorithms to handle
dynamic joining and departure of managers to the hierarchy and the

message based communication protocol is loosely-coupled.

There has been some other research about management of the
virtual machines in a cloud environment. Pokluda, et al. [38] looked
into how to change VM’s memory allocation dynamically in stress
situations. Urgaonkar, et al. [53] developed an algorithm for dy-
namic resource allocations at the virtual machine level to adapt to
unpredictable changes. Researchers in [55, 45, 57] have developed
multiple algorithms for virtual machine migrations in data centers
to address stress situations. However, in all of these works the ap-

proach was based on a single centralized manager that gathered all
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required information from the virtual machines and made decisions
based on that information. This approach is limited in terms of
scalability and single point of failure. In our management model, we
consider multiple autonomic managers deployed at different levels of
the system. We consider dynamic joining and leaving of these man-
agers so that the system can still operate if one or some of them are
terminated. We also focus on a range of managed elements in the
data center, such as applications, virtual machines, physical servers
and so on but in these works the main focus is only on virtual ma-
chines. Overall, the algorithms developed in these works can be used
as part of our management model and inside some of the managers
that are responsible for managing virtual machines. These could be

embedded in to the policy sets defined for those managers.

2.5 Summary

We explored some of the work most relevant to this thesis and dis-
cussed some of their limitations and constraints. We also explained
how our work is different from each. In general, understanding of
the collaboration between policy-based autonomic managers is still
a relatively new area of research with a lot of research challenges
yet to be answered. It is still a work in progress in the autonomic
computing area; some areas where the previous work has not yet

studied include:

1. A good communication protocol between managers that is loosely-
coupled, can handle different types of interactions and can in-

clude detailed organized information as part of the communica-
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tion.

2. An organizational model that can handle the dynamic joining
and leaving of managers and adapt to the changes in the infras-

tructure.

3. Methods that address scalability concerns as the number of el-
ements increase in the computing environment and automation

of communication between managers to the extent that is pos-
sible.

4. Means of deploying multiple managers to the right position and
keep them up to date and running with the least human admin-

istrative efforts.

We focus on these main issues in the rest of this thesis and explain

our approach in more detail.



Chapter 3

Scope and Challenges

In this Chapter, we cover some of the background information for
our work before describing our approach in more detail. This Chap-
ter is meant to give readers a clear view of the scope and challenges

addressed in this thesis.

We first explain the basic concepts of autonomic management and
associated techniques used in this thesis. We then describe the IaaS
(Infrastructure-as-a-Service) cloud architecture since it is the envi-
ronment we focus on to explore our approach and test our ideas.
This Chapter also provides some of the background behind why we
have initially chosen to focus on the hierarchical structure for orga-
nization of autonomic managers. Moreover, the cloud architecture
will be used in the evaluation of our approach and discussed fur-
ther in the description of our experiments. We also discuss the main

questions we have addressed in this thesis.
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3.1 Autonomic Management

Autonomic Management has been a very active field of research in
the past decade [20, 36, 17] and a variety of research challenges have
been raised in this area [19]. It is used for service level guarantees
28], aggregated information monitoring [26, 25| and many other
applications [27]. However, the main idea behind autonomic man-
agement is to build systems that are self-configuring, self-healing,
self-optimizing and self-protecting and it is inspired from the human

body’s Autonomous Nervous System (ANS) [39].

The ANS gives our bodies the ability to adapt to dynamic changes
in the environment around us automatically by sensing these changes,
deciding what actions the body should take and enforcing those ac-
tions. Similarly, an autonomic manager which is responsible for mon-
itoring and management of one or more elements of a computing
system (i.e. Managed Elements - MEs) should be able to sense the
changes in those elements, decide what actions need to be taken and

enforce those actions, to adapt the whole system automatically.

The general architecture of an autonomic manager looks like Fig-
ure 3.1. In this architecture [33]|, the managed element provides
some sensors and effectors/actuators to the manager. The auto-
nomic manager can then monitor available metrics through these
sensors and analyse the monitored information. It can then plan for
a series of actions that needs to be executed, if any, and then execute
those actions through the provided effectors. The manager will then
keep monitoring those metrics to see the effects of its decisions in

the previous management interval. This process is a feedback loop
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called Monitor-Analyze-Plan-Execute (MAPE) loop.

There are various ways a manager can choose the best actions, but
we use policy-based management in this thesis. Policy-based man-
agement assumes that the knowledge base in the autonomic man-
ager includes defined policies and therefore it can look into those
provided policies to pick the appropriate actions that need to be
enforced. Policy-based management is explained in more detail in
section 3.1.1. The autonomic manager combined with one or more
managed elements is called Autonomic Element (AE). Therefore, in
order to be able to manage an AE itself, the AE can provide sen-
sors and effectors to the outside world. This will help forming multi

layers of autonomic management in a system.

Sensors Effectors

Autonomic Element

Analyze ™  Plan

Autonomic
Manager

Monitor

R L = g o
/ "nowledsa
- Knowledge

11

Sensors H Effectors

. Q Element )

Managed
Element

Figure 3.1: Autonomic Manager Architecture (from [33])

In this work, we use the same basic architecture for building au-

tonomic managers and the MAPE loop can be configured to run on
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different management intervals. That is, one manager can run its
MAPE loop every 100 millisecond whereas another manager can run
the loop every 10 minutes. This is useful for enforcing management
at different levels of the hierarchy while trying to minimize over-
head. At the lowest levels, monitoring is required more often as the
changes are very dynamic and happen more frequently, while man-
agers at higher levels need less frequent monitoring and therefore can
in principle operate at higher management intervals. This will result

in less traffic and processing overhead in the management system.

3.1.1 Policy-Based Management

Policy-based management is a well-known technique in the auto-
nomic management area. An overview of policy-based management
along with relevant standards and implementation techniques can
be found in [3, 6]. Many languages have been developed to express
policies however only some of them support Event-Condition-Action
paradigm [16]. Ponder [11] is one of the most famous policy lan-

guages that supports this paradigm.

An autonomic manager can have different types of policies which
can be useful for certain purposes. For example, it might rely on
configuration policies for self-configuration of managed elements, or
might utilize expectation policies for optimization of the system or
for ensuring that service level agreements (SLAs) are met. Elastic-
ity policies [15] can also be used to automatically add or remove

resources in a computing environment.
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In this work, we use policies expressed as event, condition, action

(ECA) policies. In general, all of our policies are of the form:

OnEvent: E
if Set of Conditions then

Set of ordered actions
end if

Upon raising an event inside the autonomic manager, then any
policy which matches the event will get evaluated. If the conditions
in the policy are met, then the policy actions get triggered. We pro-

vide examples of policies in the following sections.

At AM start-up there are configuration policies that set up the
autonomic manager environment, identify the appropriate managed
elements and configure them. It is however possible to automatically
perform policy mapping [35] at start-up time and configure elements
based on other types of policies. A sample configuration policy ex-

plicitly defined in the policy set of an autonomic manager would look
like:

OnEvent: VMConfigurationEvent

if true then
VirtualMachineMEI.setRefreshInterval (4000ms)

end if

This policy happens on AM start-up and configures the refresh
interval for this AM. If we assume that this AM is responsible for
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checking the CPU utilization, then the intent of this policy is that
the AM will check the utilization every 4000 milliseconds and exe-

cute policies after each refresh.

These policies represent how the management system should react
to dynamic changes in the environment and might change from time
to time based on a strategy-tree approach [46, 47] or administrative
needs. However, the focus of our work is not on how the policies get
distributed between different managers (though for completeness we
describe an approach in our work), we assume that multiple auto-
nomic managers can retrieve their policy sets from a repository and

that these policies can change over time if required.

3.2 Cloud Architecture

The focus of this thesis is on autonomic management and commu-
nication among multiple autonomic managers. However, while the
focus is on autonomic management, we want to explore our ideas in
an environment that has some structure. Given the importance of
cloud computing environments, we choose to focus on this environ-

ment and, more specifically, we choose TaaS clouds to test our ideas.

The infrastructure of IaaS cloud providers is typically composed
of data centers with hundreds to thousands of physical machines or-
ganized in multiple groups or clusters. Each physical machine runs
several virtual machines and the resources of that server are shared
among the hosted virtual machines. There are a large number of

virtual machines that are executing the applications and services of
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different customers with different service level requirements (via Ser-

vice Level Agreement (SLA) parameters).

To have a better understanding of a cloud provider environment
and architecture, we take a closer look at Eucalyptus [34] (an open
source software for building private and hybrid clouds). There are
three main distinct components that form the Eucalyptus architec-
ture in a hierarchical fashion and each of the components have a
different role in the system. These separate components can be
physically located on one single machine to form a cloud or can be
distributed over several machines. An overview of the Eucalyptus

architectural model is illustrated in Figure 3.2.

The main three components of the Eucalyptus architecture are

briefly described below:

e Cloud Controller (CLC): The CLC is the top level component
for interacting with users and getting the requests. It handles all
incoming requests and performs high level resource scheduling
and system accounting. The CLC makes the top level choices
for allocating new instances of virtual machines, authentication,
reporting and quote management. Only one CLC can exist in

each cloud.

e Cluster Controller (CC): The CC manages the virtual machine
execution and service level agreements. It decides which node
should run the VM instance. This decision is based upon sta-
tus reports which the Cluster Controller receives from each of
the nodes. CC has three primary functions: schedule incom-

ing instance run requests to specific nodes, control the instance
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Cluster A Cluster B

Figure 3.2: Eucalyptus Hierarchical Architecture (from [34])

virtual network overlay, and gather /report information about a

set of nodes.

e Node Controller (NC): The NC runs on the physical machine
responsible for running virtual machines and the main role of
the NC is to interact with the OS and hypervisor running on
the node to start, stop, deploy and destroy the VM instances.
An NC makes queries to discover the node’s physical resources
the number of cores, the size of memory, the available disk space
as well as to learn about the state of VM instances on the node.
The information thus collected is propagated up to the Cluster
Controller in response to “describeResource” and “describeln-

stances” requests.
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This architecture shows a hierarchical relationship between dif-
ferent components of a typical IaaS cloud. A deeper look at the
cloud architecture and the management needs suggest that provid-
ing management capabilities in real time through a single centralized
manager is almost impossible, because of the hierarchical layers in
the architecture with different responsibilities at each layer. Also,
the dynamics of load changes and the need to react to these changes
in real time with increasing number of virtual machines and physi-
cal nodes makes it much more difficult to achieve these goals with a

traditional centralized manager.

We adopt the same hierarchical approach towards the autonomic
management of this infrastructure. We organize policy-based auto-
nomic managers in a hierarchical fashion which corresponds roughly
to the underlying infrastructure components. Hence, the overall
management of the system is then possible by having a set of collabo-
rating autonomic managers organized in this hierarchy. At the same
time, each manager in the hierarchy acts autonomously to manage

part of the cloud on its own, based on given policies.

3.3 Challenges

All of the specified components in the cloud architecture are needed
for instantiation of new images or destroying currently deployed vir-
tual machines and they have some minimal management capabili-
ties. The main job of these components is to pick the best host
to place a new VM (VM placement). There has been a lot of re-
search about VM placement [8, 37] which is usually relevant to the
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problem of server/VM consolidation [9, 22, 54]. However, the main
challenges in monitoring and managing the cloud environment occur
after the virtual machines are placed and start working and receiving
loads. After a virtual machine is placed with some specific service
level agreements and starts working, the clients can connect to it for
servicing. The number of clients and their interactions with the ap-
plications on the virtual machine will vary and create a dynamically
changing workload. There may be times that the traffic is too high
and the virtual machine gets overloaded or there may be some other
times that the traffic is too low so that the virtual machine is un-
derutilized. In the first case, SLA violations might occur whereas in
the second case the energy and allocated resources might be wasted.
One of the approaches to this problem is dynamic consolidation of
VMs which usually is a heuristic based approach and does not allow

explicit specification of QoS metrics [5].

In the context of an IaaS cloud, these problems are compounded
with multiple virtual machines, multiple different applications and
different service requirements. There are also many related man-
agement challenges that need to be addressed [56], including, how
to initially configure and deploy autonomic managers, how multiple
managers located at different parts of the system should communi-

cate, etc. In this thesis, we focus on the following problems:

e How should multiple autonomic managers collaborate in order
to manage the varying workloads in different virtual machines?
To answer this question we need to understand what should

happen to maximize the performance of a specific virtual ma-
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chine (or an application inside it) according to the agreed SLA
while minimizing the resource usage. We should also know if
there is any way to get help from another manager while one
manager has reached its local limits (e.g. communication and

collaboration).

How can we achieve autonomic elasticity in the cloud? Auto-
nomic elasticity happens when a virtual machine can grow and
use more resources if needed, and shrink back again and re-
lease resources if there is no demand for them. The answer to
this problem would show what autonomic managers are needed,
where they should be deployed and what kind of policies are re-

quired on each one.

How to automate the collaboration of managers in the system?
In order to deal with a dynamic environment where applications
can start and stop and where virtual machines may come an go,
there is a need to ensure that managers can communicate and
collaborate. However, the interaction between managers must
be dynamic too. How can communication between managers
be defined in a changing environment as managers come and
go? How is the communication structured and what informa-
tion is exchanged (e.g. communication protocol). We look at a
means of inferring the communication messages needed between

different autonomic managers from their active policies.

What is a scalable approach for the deployment of autonomic
managers? In an IaaS system, there will be many autonomic
managers that need to be deployed on different parts of the

cloud, each monitoring some number of managed elements, and
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the managers will change dynamically as applications and vir-
tual machines come and go. What is a good strategy for de-
ploying these managers so that it requires minimal manual ad-

ministrative efforts?

e How can autonomic managers detect the addition or removal
of different elements and automatically restructure their orga-
nization (e.g. hierarchy) without human intervention? In a
real cloud, applications, virtual machines and physical nodes
can join or leave the system at any time and thus their related
autonomic managers can also join or leave the management sys-
tem at any time. So, how does the organization of managers

(e.g. hierarchy) restructure on the fly to reflect these changes?

e How to automate the manager configuration and minimize the
administrative costs to setup autonomic managers? Each auto-
nomic manager needs to be configured before or upon start-up.
However, in a large system configuring all managers one by one
can become a challenging and error prone job for administra-
tors. How can this process be automated to help administrators

and reduce the costs associated with it?

These problems can basically be categorized into two main areas:
1) Dealing with multiple managers: What managers are needed?
How they are organized and communicate? What policies are re-
quired? When they should communicate? etc. 2) Management of
the managers: How to address concerns arising from the manage-
ment of the mangers: configuration, deployment, dynamic changes

to the collection of managed elements, etc.
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Approach and Model

In this Chapter, we explain our approach and assumptions towards
autonomic management of a large system (e.g. laaS cloud) with
a particular focus on the challenges outlined in Section 3.3. We
propose a hierarchical model and provide definitions of different el-

ements in this model.

Based on the previous discussions, we propose to use a number
of different autonomic managers at different parts of the system. By
doing this, the problem of managing a large system entails a num-
ber of autonomic managers where each one is dealing with smaller
or more localized elements. Then each manager’s job is to focus on
managing that element (or small set of elements) efficiently based on
certain policies. For example, an autonomic manager for an Apache
web server should only focus on the behaviour of the web server itself
and not the performance of the machine that this server is running
on or, the autonomic manager for a Node Controller (NC) should

only focus on the performance and behaviour of that specific node.
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4.1 Assumptions

In this Section we describe the general assumptions we have for a
management system that consists of multiple autonomic managers

working collaboratively to achieve certain goals.

We assume that inside each autonomic manager there is an event
handling mechanism for processing and generating events and no-
tifying the interested parties inside that manager. For example,
there could be an event bus and different components within the
autonomic manager (AM) subscribe to certain events and upon rais-
ing any of those events, the subscriber would get notified. This
event handling mechanism is useful for handling event-condition-

action policies and also for communication between managers.

We assume each autonomic manager operates based on a set of
policies provided to it. These policies could be a decomposition of
global business policies [13] down to operational policies as suggested
in [7, 10] or they could be given to different autonomic managers
manually. We assume that policies can change over time, if needed.
The focus of this research is not on exploring different approaches
for how policies are distributed to managers. Rather, we assume
one approach for our work, namely, that all policies are stored in
a central repository and can be retrieved by an AM upon request.
Each AM can retrieve its own set of policies on start-up and get
updates each time policies change in the repository. We assume that
each AM can evaluate these policies with a policy engine, which is
basically a rule engine that provides the tools to evaluate rules (e.g.

policies) based on available facts (e.g. latest values). Algorithm 5.4
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shows the usage of this policy engine.

We assume that there is a central registry and that each AM will
contact this registry during its start-up process. This registry will
be used by each manager to find the contact information (e.g. ID
in Definition 6) of its parent in the management hierarchy and is
used to facilitate the process of adding new managers to the system

dynamically.

In order to remove the single point of failure for registry and pol-
icy repository and also to increase the availability of the system, one
can have backups (e.g. registry, repository) running at the same
time which can be replaced upon a failure. This is beyond the cur-

rent focus of this thesis.

We also assume that each manager should provide an interface
for receiving messages from other managers. This interface should
be able to receive different message types, parse them and do the
proper actions according to the specification of that message. The

message format and types are explained in more detail in Section 5.2.

4.2 Hierarchical Model

There are many ways to organize multiple autonomic managers in
a large computing system (e.g. peer-to-peer, ring topology, etc.),
but we focus on and explore a hierarchical management system to

organize autonomic managers which might appear as in Figure 4.1.
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AMyms AMyma
AMyp2

Figure 4.1: AMs hierarchy based on the cloud architecture
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We choose the hierarchical approach because it is straightforward
and a good starting point to explore collaboration between auto-
nomic managers. A hierarchy provides a simple, yet useful, struc-
ture and has several advantages over a flat structure (e.g. improved
scalability by reducing communication overhead that only happens
between parent and child). This hierarchical model is also in natu-
ral alignment with the architecture of a typical Infrastructure-as-a-

Service (IaaS) cloud which is our particular system focus.

The physical structure of a typical IaaS cloud would look like Fig-
ure 4.2. In this layout, every host machine is shared among multiple
virtual machines and there could be many applications running in-
side each virtual machine. The host machines are grouped together
to form a cluster and a combination of these clusters will form the

cloud.

The management hierarchy can be expanded into more levels if
needed. It can represent either the physical structure, logical struc-
ture or a combination of both in the computing environment. At
the lowest level of our example management hierarchy in Figure 4.1,
the autonomic managers are managing virtual machines and appli-
cations running inside them. It is, however, possible to have other
application specific autonomic managers which will be located under
these managers in the hierarchy, but for our initial work in explor-
ing communication among automatic managers in an IaaS cloud, we
have opted to consider autonomic managers of the virtual machines

as the lowest level.



4.2. HIERARCHICAL MODEL 39

laaS Cloud 1
VM1 | VM2 | VM3 VM10| VM11|VM12
Host1 ; Host4
VM4 | VM5 | VM6 VM13 | VM14|VM15
Host2 ; Host5
‘ VM7 | VM8 | VM9 ‘ VM16 | VM17|VM18
‘ Host3 ‘ ‘ Host6 ‘
Cluster1 . Cluster2

Figure 4.2: TaaS Cloud Structure

The AMs at the node controller (NC) level monitor and manage
the physical nodes. An AM at the NC level can monitor the overall
performance of the physical node and adapt to stress situations as
much as possible. An AM at this level might have interactions with
the AMs running at the virtual machine level to get updated mon-
itored information or to request changes to happen inside virtual
machines. This AM is aware of virtual machines specifics that are
hosted by this node and it can allocate more resources (e.g. mem-
ory, cpu cores) to the stressed virtual machines based on availability
of local resources or service level differentiations (e.g. Gold virtual

machines get more resources than Silver ones in case of stress).
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Then the AMs at the cluster controller (CC) level are responsible
for monitoring a cluster with all physical nodes inside it. These AMs
have a global view of the whole cluster and know which nodes are
overloaded with traffic and which nodes are underutilized. In case
of a virtual machine migration, these AMs can decide where should
be the destination of the candidate VM for migration and inform
the appropriate child AM to perform the migration to the selected

destination.

Similarly, the AM at cloud controller (CLC) level monitors and
manages all of the clusters. The overall monitoring of the whole
cloud can happen at this level. This AM is the main entry point
for defining business policies for the cloud. In case one cluster is
overloaded and there is an underutilized cluster, this AM can choose
that cluster and ask the overloaded child (Autonomic Manager) to
offset some of the load to the underutilized cluster by migrating a

few virtual machines to that cluster.

This is a logical organization of autonomic managers and does not
necessarily reflect the physical allocation of the AMs, i.e., they do not
necessarily need to be located on different physical machines. In a
large cloud they could be located on separate machines or some may
be located on the same machines. These AMs should then collec-
tively work together to ensure that policies are met, e.g. policies for
optimizing performance, minimizing resource usage, avoiding SLA

violations, etc.

For management to happen in this hierarchical model, the big or
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more complex tasks should be divided into smaller tasks and deliv-
ered to different responsible managers at lower levels. For example,
the AM at the Cloud Controller (CLC) level should take care of bal-
ancing the load between different clusters and the AM at the Cluster
Controller (CC) level should look after balancing the load between
different nodes inside that cluster. Similarly, the AM at the node
level should optimize the resource usage of that physical machine
among different VMs and while the autonomic manager inside a VM
should work on optimizing the applications performance. Assuming
that the management “tasks” are specified in terms of policies, this
means that we need policies with different granularity deployed at
different levels of the infrastructure and we need to ensure that AMs

can communicate properly with each other to enforce those policies.

These autonomic managers can be added or removed from this hi-
erarchy based on demands of the computing infrastructure. There-
fore, any particular hierarchy of AMs is not fixed and can change
over time depending on what managers get created or removed dy-
namically. Automatic deployment and removal of AMs is a very im-
portant feature in order to minimize the impact of the management
system on overall system performance and so that administrators do
not have to worry about the hierarchy configuration every time there
is a change in the infrastructure. The management system should
be able to adapt to the infrastructure changes and automatically re-
configure itself as changes happen. We will explain this process in

more detail in Chapters 5 and 6.

The policies for AMs can be defined via a repository, as we have



42 CHAPTER 4. APPROACH AND MODEL

assumed, by the administrators directly or by some other process.
A good “rule of thumb”, however, would be to define similar sets
of policies for autonomic managers that manage the same kinds of
entities, e.g. the AMs that manage virtual machines would have
similar policies, those that manage physical nodes would have sim-
ilar policies. The rationale for this is that managers of the same
kind of entity will have many similar or identical policies, e.g. a
set of policies for managers of virtual machines might make use of
the same policy to handle the situation when a VM has insufficient
computing resources to meet an SLA. This way, sets of policies can
then be stored in the policy repository and be retrieved upon AM
start-up based on the kind of entity that the AM is managing.

4.3 Defining Elements of the Model

In this Section, we define various elements of our model. These def-
initions help to make concepts clear and we also use them in our

algorithms and operations introduced in subsequent chapters.

4.3.1 Managed System

Our managed system is composed of a set of elements that can be
monitored and managed automatically. Each autonomic manager is
typically monitoring and managing one or more managed elements
(ME). The managed elements could be equivalent to what is found
in ordinary cloud infrastructures such as a virtual machine, a phys-

ical node, a software resource, or a cluster.
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We assume the supported characteristics and operations of each
ME is defined in a ManagedElementiInfo, which is used to define the
policies. For example, the AM responsible for managing a virtual
machine, could be provided information in a VirtualMachineMan-
agedElementInfo, which would include all supported metrics and ac-
tions of a general virtual machine. This is like a class definition for a
specific ME which is used by the manager for policy definition. An

instantiation of this class can then be used to evaluate the policies.

Definition 1 A ManagedElementInfo, MEI, is a tuple MEI=(M, A),

where:

o M is a finite set of metrics, M={M, ..., M;}, where:
VM; € M, M; = (N;,T;) | N; = Identifier(MetricName),T; =
MetricType € {String,int, double, ...}

e A is a finite set of possible actions, A={Ay, ..., A}

We denote the finite set of MEI by MEISet={ M E1, ..., MEI,}

Actions are supported operations that can be done on that man-
aged element. For example, actions for a VirtualMachine MEI could
be Shutdown, StartService, etc. The metrics associated with a MET
include both attributes like VirtualMachineName which is a string,
and metrics such as CPUUtilization and MemoryUtilization which

are floating point numbers (e.g. type double).

Moreover, an MEI can be “subclassed” from another MFEI to

preserve reusability. For example, a KVMVirtualMachineMEI and
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XENVirtualMachineMEI can both inherit actions and metrics/prop-
erties of a VirtualMachineMFEI like virtual machine name, CPU uti-

lization, etc.

Once an MET is defined, it can be instantiated several times based
on the need - an instantiation is referred to as a ManagedElementO-
bject, defined below. For example, after a change in CPUUtilization
or upon receipt of an event a VirtualMachineMEI can get instan-
tiated with the latest facts/values and be passed to the policies for
evaluation. This is done as part of the “Monitor” phase in MAPE
loop (see Section 3.1). Basically, in order to monitor (gather infor-
mation through sensors) a specific managed element the AM can
instantiate its MEI and update the metrics that are available for

that element.

Definition 2 Given a set MEISet, a ManagedElementObject (MEQ)
is a tuple (m,a) where there is a MEI=(M, A) € MFEISet such that

o a=A4,

om = {(N,Vi,T1),.... (N, Vi, T)) } | M = {(Ny, Th), ..., (N;, T}) }

and V; is the value of a metric.

We denote the set of managed objects by MEOSet={ M EOy, ..., MEO,, ...}

A MFEQO is an instance of a MFEI and represents actual values of
a managed element information in the system. The metrics in an
MEQ are those in the definition of the class and the V,; are values
associated with those metrics. Each V; would typically be a value

obtained by measuring some aspect of the actual managed element.
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These MEQ; are used for policy evaluation from time to time.

The metrics and actions defined inside a ManagedElementInfo can
be used in defining policies. For example, a VirtualMachineMEI can
have a “CPUUtilization” metric and a “StopService(serviceName)”
action both defined in its MFEI. CPUUtilization represents the CPU
utilization of the virtual machine which gets updated from time to
time and StopService action takes a service name and stop that ser-
vice from running. Therefore, an example policy to manage virtual

machine stress can be:

OnEvent: ManagementInterval

if VirtualMachineMEI.CPUUtilization > 85 then
VirtualMachineMEI StopService(“XY”);

end if

This policy get executed at each management interval (e.g. upon
raising Managementinterval event), and checks the CPUUtilization
of the virtual machine and if it is above 85%, it stops a service called
“XY”. Other possible ManagedElementinfos are: Apache MEI, Host-
Machine MEI, ClusterMFEI etc.

Therefore at the time of policy definition, administrators use an
MEI (e.g. one can think of it as a “class”) to define policies but at
run time the instantiated MEI (e.g. MEQ) is passed to the policy
engine to evaluate the policy’s condition and perform actions. It is
the job of the policy engine to match the MFEQO values with the right
MEI metrics defined in the policies. The policy engine is the rule
engine that evaluates the policies based on provided MEQOs. This
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happens inside the manager and Algorithm 5.4 described in Chapter

5 defines this policy evaluation process.

4.3.2 Events

We assume that inside each autonomic manager there is an event
handling mechanism for generating events and notifying the inter-
ested parties (such as policy evaluator) inside the AM. For example,
there could be an event bus and different subscribers to certain events
and upon raising those events any subscribers will get notified. This
event handling mechanism is useful for handling event, condition,
action policies and also for communication between managers. We
assume that for a given system and MFEIs, that there are a finite

number of event types.

Definition 3 Given a set MEISet, an event type, Et, is a pair (N, M)

where:

e N is the name of the event type,

o M={mq,...,m,}, and m; is the name of a metric from an MEI
€ MEISet.

We denote the finite set of event types by ET ={Fty, ..., Et.}.

Definition 4 Given a set ET, an event E is a pair (n,m) where

there is an event type Et = (N, M) € ET and

e 1 1s the name of the event n = N,

o m ={(my,v1),....,(My,v,)}, where M ={myq,....,m,}, and v; is

the value of m.
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We denote the set of events by EventsSet ={Ex, ..., E,, ...}.

For a given set of event types, there may be an infinite number of
possible events, depending on the values associated with the metrics
of that event type. In this respect, an event is an instantiation of an

event type with the associated metrics assigned values.

One sample event is Managementinterval event, which is a simple
event with no metrics that gets triggered on a time interval to trigger

management loop.

El = (ManagementInterval, null)

Another sample event is HelpRequest event, which can have one
or more metrics attached to it. In this example, CPUUtilization of

a virtual machine is attached to this event.

E2=(HelpRequest, {{(Virtual M achineM EI.C PUUtilization, 95)})

4.3.3 Policies

All of the policies are expressed as event, condition, action (ECA)

policies. In general, all of our policies are of the form:

PolicyName: N

OnEvent: E

if Set of Conditions then
Ordered Set of Actions

end if
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Upon raising an event inside the autonomic manager, then any
policy which matches the event will get evaluated. If the conditions
in the policy are met, then the policy actions get triggered. We pro-

vide examples of policies in the following sections.

Definition 5 Given a set MEISet and a set of events types ET, then
a policy is a tuple (N, E,C, A) where N is the policy name, E € ET
1s one of the event types, C is a finite conjunction of conditions, and
A 1s an ordered set of actions defined in MEI € MFEISet. Therefore,
PI=(N,E,C A), where:

o /€ ET,

o C={C1,..C,} and C;=(M Name, Operator,T) or “true”, where
MName s the metric name, Operator is a relational operator

and T is a constant indicating a threshold value,
o A={A,,... A}, VA, € A, 3 MEI; € MEISet | A; = MEI;. A;
We denote the set of policies by PL={Ply, ..., Pl }.

PL is the set of all available policies in the management system,
but each autonomic manager would have its own subset of policies.
Upon raising an event inside the AM, it checks all of its own policies
and if a policy event F matches the raised event type then policy
conditions will get evaluated based on the latest monitored metrics
available in the relevant MEQO and if they satisfy to true then it will
take the policy actions based on the order in which they are defined.
A single “true” condition implies that the actions should always be
taken. A sample expectation policy for monitoring the Apache re-

sponse time is:
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Ply = { “ApacheResponseTimePolicy”,
ManagementiInterval,
{ApacheMEI. ResponseTime > 500},
{ApacheMEI IncreaseMaxClients(25)} }

In this policy, Managementinterval is an event that gets triggered
in a certain time interval (e.g. every 1500ms) and it has no metrics
associated with it. ApacheMEI is the managed element information
for Apache and ResponseTime is one of the metrics defined in it.
IncreaseMaxClients is one of the actions defined in ApacheMFEI and
will increase the MaxClient property of the Apache web server by a

certain number (in this case 25).

At AM start-up there are configuration policies that set up the

AM environment. A sample configuration policy would look like:

Ply = { “StartUpConfPolicy”,
Configuration,

{true},
{ VirtualMachineMEI. RefreshInterval=5000} }

This policy happens on autonomic manager start-up (once the
Configuration event is raised) and configures the refresh interval of

the AM. The AM will then refresh available metrics every 5000 mil-

liseconds.
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4.3.4 Structural Relationship of Autonomic Managers

In order to explain the relationship between autonomic managers,
we first need to define the AM itself.

Definition 6 Given a set MEISubSet C MFEISet, a set of event type
ETSubSet C ET and a set of policies PLSubSet C PL, an Autonomic
Manager(AM) is a tuple

(ID, Name, M EISubSet, ET SubSet, PLSubSet, M I, RI) where ID
1s the AM’s unique identifier which other AMs can use for commu-
nication purposes, Name is the AM name, MI is the management
interval which determines the time wnterval for triggering the man-
agement loop and RI is the refresh interval which determines the time

interval to refresh metrics of the managed elements in MEISubSet.
We denote the set of AMs by AMSet={AM;, ..., AM,;}

The autonomic manager ID is a globally unique identifier among
all AMs and can be changed from time to time. This can be a
URL or a physical IP and port where the AM can be accessed. The
autonomic manager Name is a string and is set as a configuration
parameter. This name is mapped to the AM ID and will be stored in
the registry to be used to dynamically discover AMs for connection
purposes. As part of the start-up process (Algorithm 5.1) each AM

should register its name and ID in the registry.

Since AMs are organized in a hierarchical manner to reflect differ-
ent authority levels, the structural relationship between them con-

sists of a tree.
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Definition 7 Given an AMSet, a Hierarchy H of AMs is a tuple
(AM Set, Edges) where AMSet is the set of autonomic managers as
the nodes of the tree and Edges={(AM;, AM;)|AM;, AM; € AM Set}
15 the set of edges connecting two AMs to each other. The following

properties exist in this hierarchy:
o JAM c AMS | P AM; ¢ AMS, (AM;, AM)
o if (AM;, AM;) € Edges = B AM; | (AMy,AM;) € Edges

o if (AM;, AM;) € Edges = (AM;,AM;) ¢ Edges

This definition means that there is at least one root manager in
the hierarchy and for each AM there is only one parent. Also if a
manager is the parent of another AM, then it cannot be that AM’s
child (e.g. there are no loops).

4.4 Summary

We have introduced a hierarchical management model and explained
the assumptions for this system. We also defined different elements
that are part of this model. In order to address challenges explained
in Section 3.3, each autonomic manager needs to follow some com-
mon behaviour. In Section 3.1 we explained the general architecture
of an autonomic manager including the MAPE loop, however we are
dealing with a number of these managers running on different places
in the hierarchy and they need to be able to communicate with each

other to achieve common goals. The AMs might start or stop at
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any time and therefore it is important to have mechanisms in place
to detect these dynamic changes and the impact they have on the

management hierarchy.

In the next Chapter we explain this general behaviour and mech-
anisms that each AM has to follow individually to work in collabo-
ration with other managers. We explain specific algorithms for AM
start-up, policy evaluation and termination detection and develop a
communication protocol that facilitates the managers’ communica-

tion and collaboration.



Chapter 5

Autonomic Manager Behaviour

This Chapter describes the general algorithms that each autonomic
manager has to follow individually to make the communication and
collaboration between managers in the hierarchy possible. We ex-
plain general behaviour of an autonomic manager and describe dif-
ferent algorithms that run inside it. These algorithms specify the
process of an AM start-up, how policy evaluation is done and how
termination detection is handled in the hierarchy. We also explain

how to infer certain kinds of communication messages from policies.

By having a collective of autonomic managers each following these
algorithms, it will be possible to build a hierarchical management
system and preserve it while dynamic changes happen in the system

(e.g. AMs start or stop working).

5.1 Naming Scheme

Each autonomic manager should have a name that can be resolved
to an ID at runtime. The name and ID for each AM is explained

in Definition 6. Separating name from [ID, which is basically the

93
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main access point for each AM, helps autonomic managers to dy-
namically register themselves in the registry and also to search for,
identify and contact their parent manager in the hierarchy. An AM
ID might change over time (e.g. as result of an IP change on system
restart) but that manager will still be accessible after it updates its

new /D in the registry (e.g. as part of the start-up process).

An AM name is dynamically provided to it as a configuration
parameter by the deployment system explained in Chapter 6 and
theoretically can be anything, however we propose a naming scheme
in which this name includes the parent name of the manager. In
other words, instead of having two configuration parameters (one
for AM name and one for its parent name) we embed the parent
name as part of the AM name itself. This approach is based on the
assumption that each AM must be given its parent name as well
to be able to look it up in the registry and start the communication
process, because in the hierarchical system each manager is only able
to communicate with either its children or its parent. Therefore, in
this proposed naming scheme an AM name is acceptable as long as
an autonomic manager can extract its parent name from it. In this
section, as part of the proposed naming scheme we suggest a process
of naming different AMs at different levels of the hierarchy which

includes the parent name as part of it.

We suggest that an AM name depends on the location that AM
is running on (e.g. machine name) plus the kind of entity that it
manages. It should not be in conflict with other AM names (e.g.

should not be the same) because these names should be registered
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in the registry. Therefore we use a hierarchical naming convention to
name AMs too. An AM name will be the name of its parent in the
hierarchy plus the location and managed element name separated by

a symbol (e.g. dot in this case).

AM Name = Parent Name“.” (Location[“-” Managed Element Name])

The location is a physical or virtual machine name that this AM
is running on and the managed element name is either the name of
the entity this AM is managing or is null. Therefore, the name of the
root manager responsible for the whole cloud can be “hostl-cloud”
or simply “host1” and for a manager responsible for the first cluster
of that cloud can be “hostl-cloud.host2-clusterl” or if it is running
on the same machine as the cloud AM it can be “host1-cloud.host1-
cluster1”. Similarly for the manager of a physical node in the first
cluster can be “hostl-cloud.host2-clusterl.host3”, the managed ele-
ment name is not added to the location in this name (e.g. it is null).
This naming scheme helps the deployment system to automatically
deploy autonomic managers to the right place and the process of dy-
namically creating this name is explained in Algorithm 6.2 of Chap-
ter 6. Moreover, administrators have the ability to decide and choose
the structure of the managed element name and when it should be
null (through technology scripts explained in Section 6.2) based on

their administrative needs and their computing environment.

In a lower level, the name of the AM responsible for managing a
virtual machine can be “hostl-cloud.host2-clusterl.host3.vinl” and

this approach is used for all managers running inside the virtual ma-
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chines. For example, the name of an AM managing Apache inside
vml will be “hostl-cloud.host2-clusterl.host3.vm1l.vml-apache”. In
this way, it is possible to have another AM for managing Apache on
a different virtual machine with no naming conflict since the name
of that manager will be “host1-cloud.host2-clusterl.host3.vm2.vm2-
apache”. By having a name like this, each manager has straightfor-
ward access to the name of its parent (e.g. a prefix of its own name)
and it can easily use that for communication. For example, the AM
with name “hostl-cloud.host2-clusterl.host3.vm1” can use “hostl-
cloud.host2-clusterl.host3” to contact its parent in the hierarchy by
looking up its ID in the registry.

Another challenge will be how this name can be set as a configu-
ration parameter in an autonomic manager in a dynamic way. This
happens as part of the deployment process (see Chapter 6) but the
basic idea is that, at the time of deploying a new manager, one of
the required steps is to configure this name based on the level on
which that manager is being deployed; this is particularly relevant
in IaaS. For example, when a virtual machine is being placed into
a physical server, its manager should be configured with the right
name which includes both the physical and virtual machine names.
This process happens dynamically as part of the deployment system
(see Algorithm 6.2).

In the IaaS cloud environment, this name does not change very
often for most AMs, since after racks, chassis, physical servers and
other elements are installed and started working in a data center

they barely move around and therefore the AMs’ names that get
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deployed on them do not change frequently. One exception to this
are virtual machines. It is possible to migrate virtual machines from
one node to another either as result of a policy or manually by an
administrator. If a virtual machine migrates from one node to an-
other the manager responsible for that virtual machine and all its
children should change their names to reflect this migration to a
new host (e.g. a new parent in the new host is now responsible for
these managers). This migration will be detected by the deployment
system automatically (see Algorithm 6.1 in Chapter 6) and as a re-
sult, all AMs on the migrated virtual machines get redeployed with
their new names. As part of this redeployment, AMs restart and go
through the start-up process explained in Algorithm 5.1 which will
result in registering the new names. The old names get invalidated
in the registry by the old parent after missing to receive a response
from the migrated child. This process is explained later as part of

the termination detection algorithm (Algorithm 5.5).

Therefore, we propose to use a hierarchical naming scheme for
different AMs and these names are configured automatically at the
time of deployment by the deployment system. If there is a change
in the infrastructure, the deployment system will detect that and re-
deploy managers automatically with their new names which will lead
to a change in the management hierarchy to reflect the changes in
the infrastructure. The autonomic manager deployment algorithm
which includes how to determine an AM name is explained later in
Algorithm 6.2.
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5.2 Communication Protocol

In the hierarchical model explained before there are multiple au-
tonomic managers deployed at different parts of the system. Each
manager should be able to communicate with its parent or children
and as part of this communication there needs to be a communica-

tion protocol that all managers agree on and understand.

AMs can start or stop working at any time and therefore other
relevant AMs need to get notified about these changes in the sys-
tem. Also, each AM works independently from others and the only
means of communication is through a protocol that other AMs can
understand too. AMs should not be dependent on a direct communi-
cation with each other, since they should act autonomously. There-
fore, we need a way of communication that is reliable, asynchronous
and loosely coupled. Considering all these facts we use a message-
based means of communication between different AMs. This means
that each AM can compose and send a message to another AM in a
loosely coupled fashion. The message gets delivered by underlying
layers but the AM does not wait for the delivery and moves on to its
own operations. We assume that underlying layers guarantee that
the messages will get delivered to the receiver (e.g. by using TCP
and message queues). In this section, we define a communication
protocol that is used between managers and explain different types

of messages in detail.

Definition 8 Given an AM € AMSet, A message Msg is a tuple
(Type, Info) where
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e Type is the message type € {NOTIFY , UPDATE REQ,INFO}

and

o Info={my,...m;},V 1<k <j3 MEI € AM.MEISubSet | my, =
instance of MEIL.m for UPDATE_REQ) and INFO types and

o Info = {e}, 3 EF € AM.ETSubSet | e = instance of E, for NO-
TIF'Y messages.

Each manager should be able to receive messages from or send
messages to other managers. By using a message “Type”, we intro-
duce the possibility of different types of relationships between man-
agers (e.g. request, response) and based on the type of message, one
manager can expect the kind of information that would be available
in the Info section of the message. Three different types of messages
(NOTIFY, UPDATE _REQ, INFO) are proposed for communication

between managers.

Having a small set of different types of messages also makes it
easy to define the operation of each AM. The form of each of these

types of messages is as follows:

e (NOTIFY,Info): When one manager wants to raise an event
in another manager it can be encapsulated inside a notify mes-
sage. The type and content (metrics) of the event is very system
specific and can be defined in the Info portion of the message.
Possible events would be a “HelpRequest”, “SLAViolation”,
“SystemRestart” or “ValueUpdate” event. When a manager
receives a notify message from another manager, it will publish
its event and deliver it to the interested subscribers (e.g. eval-

uate proper policies). This type of communication message can
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be either specifically declared in policies that used for a commu-
nication or it can be inferred automatically from policies (see
Section 5.6).

e (UPDATFE _REQ,Info): This is a message asking for the sta-
tus of the metrics declared in Info. Another manager can re-
spond to this message by sending an INFO message back. The
metrics are very dependent on the nature of the system and
can be different from one system or application to another. FEx-
amples of such information include CPU utilization, memory
utilization, number of requests/second, number of transactions,
available buffer space, packets per second, etc. One usage of this
message is illustrated in termination detection of child managers

as explained in Algorithm 5.5.

e (INFO,Info): This message can be used to send the latest
metrics of elements managed by a particular local manager
to another AM. This is a message that provides information
which can help the process of decision making in the higher

level manager. This message is usually sent in response to the
UPDATE_REQ message from a higher level manager.

The UPDATE_REQ message is sent from one AM to another
to request an update of information, e.g. from higher level man-
agers to lower level ones. INFO messages are sent in response to the
UPDATE_REQ message and NOTIFY messages are sent from one

manager to another based on the need.

As noted, we assume that the underlying layer guarantees mes-

sage delivery. However, since communications are asynchronous, we
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also assume that after sending an UPDATE_REQ message the au-
tonomic manager waits for a configurable amount of time to receive
an INFO message back. If it does not receive any response back
during this time period it assumes that the other manager has ter-
minated and raises an event inside the manager. We will explain in
more detail how we can use policies to generate NOTIFY messages
for communication among AMs. Since we are dealing with a hier-
archy of managers, each manager needs to communicate with either
its father or its children. However, it is also possible for an AM to
send NOTIFY messages to another AM in some other part of the

hierarchy based on a request.

5.3 Start-up

There are certain steps that need to be accomplished at each AM
start-up. This start-up can happen after a successful deployment
of the AM (Algorithm 6.2), after a failure/crash for any reason or
upon the request of the parent manager (e.g. based on a policy).
The start-up algorithm is shown in Algorithm 5.1. Each AM (see
Definition 6) is provided with two pieces of information at the time of
deployment: 1) AM name 2) Set of managed elements it’s supposed
to monitor in the form of ManagedElementInfos (e.g. MEISubSet).
Therefore, an AM has access to its parent’s name by extracting it
from its own name (using our current naming scheme). MEISubSet

helps the manager to load the relevant policies from the repository.

The AM identifier (AM_ID) is a globally unique identifier that
gets created at AM start-up. This ID is the main access point of
the AM and can be a URL or an IP address etc. based on the
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actual implementation of the system. The AMName is configured
automatically through configuration parameters for each AM by the

deployment system (Algorithm 6.2).

Algorithm 5.1 AM Startup

Require: AM Name, M EISubSet

. ParentName prefzx(AMName)

AM_ID <« Create unique ID (e.g. URL || IP)

PolicyLocation <— Registry.register(AM_ID; AM Name)

Policies <— LoadPolicies(PolicyLocation, M E1SubSet)

KnowledgeBase.store( Policies)

StartManagementThreads()

if ParentName == null then > No parent is configured
return > Return and wait for child AMs to connect

end if

Parentl D <+ null

: while ParentlID == null do > Parent Name is configured, Beaconing starts

ParentI D <+ Registry.getI D(ParentName)

Sleep(K eepAliveTimer)

: end while > Beaconing ends

. Event < (NewChildManager,{{“Name”, AM Name) , (“ID”  AM _ID)})

: Msg < (NOTIFY, Event)

. SendMessageTo(ParentI D, Msg)

e e T e T e T T = Sy =Y

The autonomic manager starts by contacting the central registry
(see Section 4.1) and registers its own name with the unique ID.
The registry will then return the location of policy repository and
the manager loads all related policies from the policy repository
based on the set of ManagedElementinfos (e.g. MFEISubSet) that
this AM is managing (see Definition 6). For example, if a manager
is responsible for monitoring a virtual machine, it loads all policies
that are related to a virtual machine. Similarly, if it is responsible
for monitoring Apache and MySql applications, it will only load all
policies defined for these two elements. After loading these policies,

they will be stored in the common knowledge base (e.g. Knowledge-
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Base.store()) of the autonomic manager (see Section 3.1) so that

other parts of the manager can access them.

It then starts other parts of this autonomic manager (e.g. Start-
ManagementThreads()) such as monitoring loop (Algorithm 5.2),
management interval loop (Algorithm 5.3), policy evaluation loop
(Algorithm 5.4) and termination detection loop (Algorithm 5.5). We
assume these algorithms will run on separate threads and since we
have adopted the event driven approach they can publish new events
to the system and will be notified about the events that they sub-

scribed to receive.

In case there is no parent name set up for an AM (e,g, Parent-
Name == null), it just waits for its child managers to contact it.
If there is a parent name available, it will look up its parent’s ID
by contacting the registry and providing the parent’s name. This
mechanism is very similar to phone book lookup, when someone can
lookup a person’s phone number by having his name. In this process,
when an AM gets started it knows the name of its father (through
the configuration parameters set by the deployment system) and will
look its ID up in the central registry and will be able to contact the
parent after that.

In the case there is a parent name configured and no parent 1D
available in the registry, the AM will keep asking the registry in
a configurable time interval (e.g. KeepAliveTimer) until its parent
becomes available (e.g. register itself in the registry). We call this

process “beaconing” when an AM beacons out and looks for a par-
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ent in the management hierarchy. This case only happens if the
parent AM is not deployed yet or it is terminated because of an er-
ror. In both of these cases, the periodic discovery algorithm in the
deployment system (Algorithm 6.1) makes sure that the parent AM
gets deployed and starts running eventually. During the beaconing
period, other parts of the manager continues its job (e.g. running
on separate threads) and enforces its policies based on the latest
updated metrics. So, the manager continue its monitoring and man-

agement as well as periodically checking for its parent.

After a successful beaconing, the AM creates a new event (e.g.
NewChildManager event) and add its own name and identifier to it
to be sent to the parent. The manager will then wrap this event in a
NOTIFY message (see Definition 8 for details of a message format)
and send it to its parent which will result in getting added to the
children list of the parent.

Therefore, after an AM is deployed and during its start-up it will
find the right position in the hierarchy and will get added to the
management hierarchy automatically. Algorithm 5.1 shows this pro-
cess. After an AM starts-up it will be able to register itself and join
the management hierarchy and acquire its policies from the policy
repository for enforcement. We assume that there are policies de-
fined for different elements that need to be managed and they are
stored in this repository. For example, we assume that there are a
set of policies for virtual machines and that those managers who are
monitoring VMs will extract these policies for enforcement. There

are a set of policies for host machines, applications, etc.
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5.4 Processing

After a successful AM start-up, the manager needs to monitor man-
aged elements and enforce loaded policies which are now stored in
the common knowledge base and all parts of the manager have ac-
cess to them. This essentially happens as part of the MAPE loop
explained in section 3.1 but different algorithms are involved as part
of this process. In this section we explain multiple algorithms that
are running separately (e.g. on separate threads) but can communi-
cate with each other, either through publishing events or accessing

elements in the common knowledge base as shown in Figure 3.1.

Algorithm 5.2 shows the monitoring loop (e.g. M in the MAPE
loop) which monitors all managed elements of this autonomic man-
ager in a configurable time interval (e.g. RI - see Definition 6).
It first instantiates all MFEIs that are configured for this AM (e.g.
MEISubSet) and stores them in the common knowledge base (e.g.
KnowledgeBase.store(MEOSet)) so that other algorithms (e.g. threads)
can access them. It will then start refreshing the metrics available
in those MFEQOs in a loop on every RI time period. The new values
are automatically updated in the common knowledge base once the

refresh is done.

Algorithm 5.3 shows the management interval loop inside each
autonomic manager. This loop is triggered based on a configurable
management interval which can be in the milliseconds, seconds or

minutes time scale. Upon each management interval (e.g. MI - see
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Algorithm 5.2 Monitoring Loop
Require: RI, MEISubSet
: MEOSet < null
: for all MEI € MEISubSet do
MEO < new MEI > Instantiate MEI
MEOSet.add(MEO)
end for
KnowledgeBase.store(MEOSet)
while true do
for all MEO € MEOSet do
MEO.refreshMetrics()
end for
Sleep(RI) > Refresh Interval
: end while

— = =
Mo 2

Definition 6) it raises a Managementinterval event which will then
be received and processed by the policy evaluation loop (Algorithm
5.4). Since we use event-condition-action policies the policy evalua-
tion loop can subscribe to receive different events and this manage-
ment interval loop acts as a timer that trigger an event on each MI

to enforce relevant policies.

Algorithm 5.3 Management Interval Loop

Require: MT
1: while true do
2: Sleep(MI) > Management Interval
3: MgmtIntervalEvent <— (ManagementInterval, null) > No event metrics

4: Publish(MgmtIntervalEvent)
5: end while

The autonomic manager determines the set of actions that needs
to be executed in each management interval (e.g. A and P in the
MAPE loop) based on the latest monitored information of managed
elements (e.g. MEOSet - see Definition 2) which are available in
the common knowledge base (see Algorithm 5.2), raised events and

active policies (e.g. PLSubSet - see Definition 6).
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Algorithm 5.4 shows the policy evaluation loop that happens
inside each autonomic manager. We adopted an interrupt-driven
(blocking) approach towards event-condition-action policy evalua-
tion. In this approach, the thread first subscribes to receive all
events that are related to the policies (e.g. Subscribe(ETSubSet))
and then waits silently until new events are published in the system.
This event could be a Managementinterval event or a HelpRequest
event that was sent from a child manager. PLSubSet and ETSubSet
are defined in the Definition 6. PLSubSet is the set of policies that
this manager acquired from the repository during the start-up pro-
cess (Algorithm 5.1) and ET'SubSet is the set of event types used in
those policies. MEOSet is the set of MEQOs available in the common
knowledge base and are refreshed by Algorithm 5.2.

Algorithm 5.4 Policy Evaluation
Require: M EOSet, ET' SubSet, PLSubSet

1: Subscribe(ETSubSet) > Subscribe to receive all policy events
2: while true do

3: Event < Block and wait to receive new events

4: for all Pl € PLSubSet do > Received new events
5: if PI.E = Fvent then > Policy event is triggered
6: for all MEO; € MEOSet do > Latest monitored information
7: success ful < Policy Engine.evaluate(Pl, M EO;)

8: if successful = true then

9: ExecuteActions(Pl.A, M EO;)
10: end if
11: end for
12: end if
13: end for

14: end while

Upon receiving new events (e.g. Event), the AM checks all poli-

cies one by one to see if the event in the policy matches the published
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event. If for a specific policy, the event is triggered, then the pol-
icy engine matches the MEQO values with the conditions defined in
the policy (in terms of MEI metrics) and if the policy condition is
satisfied, the AM then executes the policy actions in the same order
that are defined. The EzecuteActions method is explained in more
details in Algorithm 5.6. This process gets repeated for all active
policies in the policy set PLSubSet and after that it blocks and wait
for other events to get published.

5.5 Termination Detection

An AM might shut down at any time either because of a failure
or because of a normal termination, such as when the objects that
it manages terminate. When a particular AM shuts down, its par-
ent needs to detect that in order to take necessary actions. One of
these actions is to update the registry and invalidate the entry for
the dead child. Another action is to raise an event which leads to

enforcing those policies that are related to the termination of a child.

Algorithm 5.5 shows the process of termination detection inside a
manager. This algorithm also runs on a separate thread and starts
as part of the start-up algorithm (Algorithm 5.1). In order to detect
this termination, each AM has a configurable keep alive timer (e.g.
KeepAliveTimer) to check if its children are still alive or not. It will
send an “UPDATE_REQ” message asking for an update and will
wait for an “INFO” message to come back. If it does not get any
response back, it will assume that the child is dead and will raise an

event (e.g. AMTerminationEvent- to be evaluated in the policies)
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and remove it from its ChildrenlList.

Algorithm 5.5 AM Termination Detection and Removal
Require: ChildrenList

1: while true do

2 for each C'hild in ChildrenList do

3 Metrics < {(“Name” ,null) , (“I D" ,null) }

4 Msg < (UPDATE_REQ, Metrics)

5: SendMessage(Child. AM _ID, Msg)
6: if NoResponse then
7
8
9

ChildrenList.remove(Child)
Registry.InvalidateEntry(Child. Name, Child.AM I D)
Info < {(“Name”,Child.Name) , (“ID”,Child. AM _ID)}

10: AMTerminationEvent < (AMTermination, Info)

11: Publish(AMTerminationEvent) > Raise the event
12: end if

13: end for

14: Sleep(K eepAliveT imer)
15: end while

If at a later time, the child starts communicating with this AM,
it will get added to the ChildrenList again. When an AM dies, its
parent will detect that and will raise the proper event for policy eval-
uation. Note that, if, for example, a virtual machine shuts down then
all the applications inside that VM are also shut down and therefore
all the children of the virtual machine AM are already dead. Hence,
sometimes if an AM in the hierarchy terminates, the whole subtree

rooted at that AM will be terminated too.

However, if one manager is terminated due to an error/fault, it is
possible that its children are still running and become disconnected
from the hierarchy temporarily. In this case, the deployment system
will detect the termination of that AM during its periodic checking
and will restart it. The AM then goes through the start-up process
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(Algorithm 5.1) and gets added to the management hierarchy again.
It will then be able to receive its children’s messages and also send
messages to its parent. This checking process is explained later in
Algorithm 6.1 in Chapter 6, but the idea is that as part of periodic
checking for changes in the infrastructure, the deployment system
will also check the running status of the deployed managers and if
they are terminated it will restart them. Therefore, for a short pe-
riod of time, the subtree rooted at the terminated AM might be
disconnected from the rest of the hierarchy but it will recover once
the manager is restarted. However, during this temporary discon-
nection those managers are still working and continue enforcing their
policies locally. The scaning period to dicover terminated AMs is a
configurable time interval in the deployment system. However, the
children of the terminated node can detect that their parent has been
terminated by checking the central registry - a terminated node’s
name is invalidated in the registry. This algorithm is linear (O(n))

in the number (n) of child managers for this autonomic manager.

5.6 Inferring Messages From Policies

One of the challenges in collaboration between managers is to deter-
mine when they need to send/receive a message from another AM in
the hierarchy. Since we are using a policy-based approach, one way
to specify when a message should be sent is to have a specific policy
that determines when an AM is to communicate. For example, one
could include a policy explicitly identifying a communication action
to send a help request event from a lower level to a higher level man-

ager; such as:
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OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 1000 then
ApacheMEI. SendHelpRequestEvent = true

end if

This approach requires work by the administrators in order to
define all the policies needed. An alternative would be to automat-
ically infer from policies the right time for sending a message and
the content of that message. In the remainder of this section, we ex-
plain how autonomic managers can infer certain kinds of messages;
determine the right message type and the right time for sending a

message to another AM.

When a manager has detected an SLA violation it tries to exe-
cute the associated corrective actions. If one of those actions fails
or cannot be executed, e.g., an action to increase the value of some
parameter but has reached some limit in changing that parameter,
then it cannot make a local adjustment. Given the message types we
have described, it will then create a NOTIFY message and send it
to the higher level manager to ask for help. That is, as long as there
is something that can be done locally there is no need for further

communication unless it is an UPDATE_REQ message.

Algorithm 5.6 is in fact the EzrecuteActions method in Algorithm
5.4 and shows how an autonomic manager can infer a NOTIFY com-
munication message automatically at the time of executing actions
(e.g. E in the MAPE loop). This algorithm should run during a pol-
icy evaluation and the proper MEO and ActionSet are given to it at

that time. In other words, when policy conditions are met (e.g. be-
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Algorithm 5.6 ExecuteActions
Require: ActionSet, M EO

1: local Limitation < false

2: for all A € ActionSet do

3: if Execute(A) == false then > An action failed to execute
4: local Limitation < true

5: break

6: end if

7: end for

8: if local Limitation == true then

9: Event < (HelpRequest, M EO.m) > Attach latest metrics

10: Msg <+ (NOTIFY, Event)
11: SendMessageTo(ParentI D, Msg)
12: end if

cause of an SLA violation) a set of ordered corrective actions should
take place to fix the stress situations. At the time of performing
these actions if one of them fails due to reaching a limitation or an
error, it means that local adjustments are not possible and therefore
this manager should notify a higher level manager. So, after exe-
cuting these actions and if there is a failure in execution of one of
them, other actions will not be executed because of the “ordered”
property on this set of actions (see Definition 5) and the manager
will create a HelpRequest event and attach all of the latest metrics
of the proper MEO to it. It then creates a NOTIFY message and
sends it to its parent. Note that ParentlD is retrieved at start-up
time (e.g. Algorithm 5.1) and is available in the common knowledge

base.

In order to better illustrate this process, we show several exam-
ples of policies that can be used at different levels of a hierarchy and
how these policies can influence the relationship between managers.

Assume that on a virtual machine there is a LAMP (Linux-Apache-



5.6. INFERRING MESSAGES FROM POLICIES 73

Mysql-PHP) stack that hosts web applications and that one AM is
managing the applications inside this virtual machine. We use event,
condition, action (ECA) policies to specify operational requirements,
including requirements from SLAs, and we also use policies to iden-
tify and react to important events. Assume that the following policy
is being utilized by AM,,,,1 (see Figure 5.1) and is a policy specifying
the requirements needed to meet an SLA. The policy indicates that
the Apache response time should not go above 500ms. This policy

gets evaluated once a “ManagementInterval” event happens.

OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 500 then
ApacheMEIIncreaseMaxClients(25)

end if

This policy specifies that if the response time of the Apache server
goes beyond 500ms, then the manager should increase the Maz-
Clients configuration parameter (inside Apache) by 25. Now, as-
sume that the limit for MaxClients is 200, which means that the
manager can not increase it to more than 200. The actual actuator
that performs the increase will be aware of this limitation. There-
fore, upon reaching this limit there is no further local adjustment
possible and the action execution will fail. This manager can then
automatically create a NOTIFY message and send it to its parent
manager. It basically means that after reaching the local limits of
any parameters or when other actions fail each manager can ask for
help from the parent manager in the hierarchy automatically. The
parent manager will then receive this help request and reacts to it

based on its own set of policies.
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AMyms AMypa

Figure 5.1: AMs hierarchy based on the cloud architecture
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Upon receipt of a HelpRequest notify message from another AM
(e.g. AMym1), a HelpRequest event gets triggered inside the receiv-
ing manager and those policies that match that event get evaluated
by the manager. Another sample policy for an AM at the node con-
troller level (e.g. AM,) is:

OnEvent: HelpRequest

if VirtualMachineMEIL. MemoryUtil>85 &

VirtualMachineMEI.CPUUtil>95 then
VirtualMachineMEI. IncreaseVMMemory(50)

end if

This policy specifies that when a HelpRequest event happens, if
the memory utilization of the VM in need is more than 85% and its
CPU utilization is more than 95%), then the manager should increase
its memory by 50 MB to help the stressed virtual machine. Again,
this can only be done to some limit. In this case, the maximum
limit can be determined at runtime by the actuator responsible for

increasing the memory.

Therefore, if there is no extra memory available to be added to
the stressed virtual machine, the actuator will fail, the action fails
and the manager will automatically create a NOTIFY message to
be sent to its parent in the hierarchy. In this case, it is basically
notifying its parent about a stress situation that can not be resolved
locally and asks for more help. This process is implemented and

illustrated in more detail in Section 7.1 of Chapter 7.
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In this way, an AM can determine exactly when it has reached
the local limits and create the NOTIFY message to be sent to the
higher level manager. Thus, the AM can infer automatically from
the policy when to send this type of message at run time. This
happens when the manager has reached the local limits in trying to
enforce actions specified in a policy. However, the need to have an-
other policy at the higher level manager to respond to these events
is not removed. The process of creating/inferring and sending of the
messages from one manager to another is automated but there still
should be another policy that react to these incoming events (e.g.
NOTIFY messages). Since there are a lot of possible ways to define
these policies and it is different from one organization to another, we
assume that administrators of each organization should define these
policies based on their needs. The UPDATE_REQ and INFO mes-
sages are used to maintain the hierarchy and detect the termination

of an AM as explained in Section 5.5.

Based on this technique we can build a system with different AMs
working autonomously at different levels and interacting with each
other based on demand but the important point is that all these
AMs are collectively trying to adhere to a set of policies that mini-
mize the number of SLA violations (or maximize performance based
on SLA parameters), and minimize resource usage at the same time.
This happens while each manager has a local view of the system and
is trying to solve problems locally but when no further local adjust-

ment is possible it asks the higher level manager for help.



Chapter 6

Autonomic Manager Deployment

In large systems there are multiple elements that need to be man-
aged. For example, in a typical data center there are elements like
clusters, physical nodes, virtual machines and applications running
on them. Some of these elements can get added to or removed from
the system dynamically and therefore the management should be

able to adapt to these changes.

The deployment of autonomic managers at different parts of the
system can be a challenging task for administrators as the number of
elements grow. Deployment in our hierarchical management context
means installing an AM with correct set of ManagedElementiInfos
(e.g. MEISubSet) in the right place and, in our case using our nam-
ing scheme, configuring the correct AM name which is prefixed with
the parent name in the hierarchy. We introduce a deployment sys-
tem that can automate the autonomic manager deployment process
and which can keep the management hierarchy up to date as changes

happen in the infrastructure.

There are two possible ways of autonomic manager deployment:

77
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1)Manual: which is useful for monitoring and management of custom
applications running inside virtual machines and are not already in-
cluded in the VM image and 2) Automatic: which happens as part of
the deployment system explained here. For manual autonomic man-
ager deployment, an administrator can install the AM and configure
its name and therefore has to know the management hierarchy struc-
ture and the parent name of the AM to be installed. This process
is similar to the traditional way of installing AMs and configuring
them by an administrator. The naming scheme we introduced ear-
lier can help the administrator create these names. For automatic
deployment, the deployment system needs to be able to create the
AM name on the fly based on the location of that AM and there-
fore needs to have access to the list of different elements’ names in
the computing environment. For example, depending on the naming
convention being used and in order to deploy an AM in a virtual ma-
chine, the deployment system needs to know the virtual machine’s
name, its host physical machine’s name and the cluster’s name that

it is running on in order to be able to create a name for that AM.

The deployment system consists of several management tables
and each one holds some information that facilitates the automatic
deployment process. In this section we explain details of these ta-
bles and how each table should be filled. Throughout this section we
assume that the right credentials are put in place and the deploy-
ment system has authorized access to the physical nodes and virtual
machines located in the computing environment. In the rest of this
Chapter, we explain how a deployment system can be created to

automatically deploy AMs in the right position with the right name
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and make sure that these AMs are running.

6.1 Management Groups

To be able to deploy AMs that are organized in a hierarchical fash-
ion the deployment system first needs to know what management
groups exist in the system and their relation to one another. These
management groups can correspond, for example, to the levels of
the hierarchy common in an laaS cloud, e.g., application, virtual
machine, compute node, etc. Since we focus on a hierarchical orga-
nization of AMs, we assume that the management groups are defined
as a tree structure; the groups are defined as Management Groups
(MG) and get added to the deployment system manually by admin-

istrators.

Each management group is associated with one level of the hier-
archy and represents a group of elements that should be managed
in the same way (e.g. have the same policies). There is no limit
on the number of levels in the management tree or the number of
management groups at each level. Administrators of any computing
environment can decide on the number of levels and how to organize
their infrastructure into a hierarchical structure. These management
groups are stored in the MG table. Table 6.1 shows an example of
a management group table and the level column shows the level of
each group. We assume that Level 0 is the root level, level 1 is one
level below with all root’s children and so on. Another example of

this table in IaaS clouds is explained in Section 6.6.
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Table 6.1: Management Groups
Level MG Name

0 MG1
1 MG2
2 MG3
2 MG4
3

MGH

In order to support different possible management approaches at
each level, one can define multiple management groups for each level
of the management hierarchy. For example, there might be multi-
ple nodes using different hardware at the node level and therefore
administrators need to manage them differently. They can define
multiple management groups in this table for that specific manage-
ment level (e.g. level 2 in Table 6.1). By defining different manage-
ment groups, we can now assign multiple attributes to each group in

order to facilitate the AM deployment for each level of the hierarchy.

6.2 Management Group Attributes

All attributes that belong to a certain management group are added
to another table. Note that this table and the previous table (e.g.
MG table) can both be combined into one table. However, for ex-
planatory reasons we split them into two tables to explain elements

more clearly.

One of the main attributes that has to be assigned to each group
is the set of elements that need to be managed in that group (e.g.

MEISubSet). Administrators have to specify what elements are im-
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portant to them to be monitored in each group by adding the de-
sired ManagedFElemmentinfo to the correct group. This can be done
in MGAttributes table. This table helps the deployment system to
determine which MFIs should be included with a specific AM de-
ployment. For example, when deploying an AM responsible for a
cluster it might not be necessary to include an Apache MEI or when
deploying an AM responsible for a virtual machine, some of the
application MFEIs (e.g. MySqIMEI, ApacheMEI etc.) as well as Vir-
tualMachineMEI might be included in the deployment process.

Another attribute is the name of a technology script that is used
at that level of the hierarchy. This could be the name of a predefined
supported script that is included with the deployment system (in
the form of executable scripts) or any new script that administrator
add to the system based on their computing environment technology
stack. For example, administrators can specify a script name that is
used at the Eucalyptus cloud level (e.g. management group). The
script name specified in this table is in fact the path and name of an
executable script. The scripts can also be stored on a specific folder
under the deployment system file structure to avoid including path
for each one (e.g. “/opt/deployment /scripts/”). This script helps
the deployment system to extract proper information (e.g. children
names) from each level of the management hierarchy. For example,
in order to get access to the physical machine names at a cluster level
(part of discovery process explained in Algorithm 6.1), the deploy-
ment system needs to know which technology is used in order to get
these names from the right place (e.g. a MySQL DB, a specific file,
etc.) and these scripts will help the deployment system to extract
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this information.

These scripts are extensible and can be added or modified to sup-
port more technologies in the deployment system based on what
infrastructure this deployment system will be run on. The main
jobs of each script are 1) Check to see if a technology (or multi-
ple technologies) is available on a specific machine or not (e.g. the
technology is properly installed on it) and 2) Extract the children
names based on the logic that administrators have provided inside
the script and in compliance with the naming scheme explained in
Section 5.1 (e.g. “Location-Managed Element Name”). For example,
there might be a shell script named “Eucalyptus-0.sh” that provides
the functionality to check if a specific machine has Eucalyptus cloud
controller installed on it or not and also can extract the children
machine names (e.g. machines with Eucalyptus cluster controller)
from the Eucalyptus database based on the logic that is provided in
that script. Another shell script name might be “KVM.sh” which
can determine if KVM virtualization is available on a machine or
not and can extract the children names (e.g. virtual machine names
inside that host) based on the logic provided in that script (e.g. by
running KVM commands). These scripts can be written in differ-
ent scripting programming languages such as Python, Ruby, shell
commands, etc. Appendix B shows two examples of these scripts in

Ruby programming language.

In this way, administrators can add, remove or modify these
scripts to ensure that the deployment system supports proper tech-

nologies and fits with their requirements. After defining and adding
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Table 6.2: Management Group Attributes

MG Name MEI(s) Technology Script Name
MG1 MEI1 T1.sh
MG2 MEI2,MEI3 T2.py

MG3 MEI4,MEI5,MIE6 T3.rb

Table 6.3: Management Groups Members
Name MG Name Parent Name

Host1 MG1 null
Host2 MG2 Host1

VM1 MG3 Host2

these technology scripts, their names can be used in this table inside
the Technology Script Name field. Table 6.2 shows an example of
MG Attributes table. For example, MG1 has only one element to be
monitored (ME1) and the script used at this level is a shell script
named “T'l.sh”. Another example of this table in IaaS cloud envi-

ronments is provided in Section 6.6.

6.3 Management Group Members

Each management group has members that are candidates for an
AM deployment at that level of the management hierarchy. Another
table, the Members table, is used for storing information related to
these members of management groups. Table 6.3 shows an example
of the Members table.

Each member belongs to a management group and represents a

location (e.g. virtual or physical machine) that an autonomic man-
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ager should be deployed on and the names used in this table will be
used to configure the AM names at the time of deployment based
on the naming scheme explained in Section 5.1. Each member can
have child members associated with it which form the hierarchical
structure of the computing environment. The Name field in this
table is a name that uniquely specifies a machine (either virtual or
physical) to deploy an AM on it and the Parent Name field repre-
sents the member name of its parent. Names added to this table
have to be unique but they do not necessarily have to be only a
machine name. For example, a name can be “VM1” which is only
a virtual machine name and uniquely identifies that machine or it
can be “VM1-Apache” which also uniquely specify the same virtual
machine but is a different name than the first one (e.g. are not in
conflict). Having names that uniquely specify a machine and are
different (e.g. unique) at the same time will help us construct AM
names automatically (Algorithm 6) at the time of deployment based

on the naming scheme explained in Section 5.1.

The first entry to this table is the root member of the manage-
ment hierarchy which belongs to the first management group (e.g.
level 0) and must be added by administrators manually. However,
the other members (e.g table entries) can be discovered automati-
cally by the deployment system and the help of scripts in MGAt-
tributes table. Therefore, script writers (e.g. administrators) can
decide how to name different elements in their computing environ-
ment as long as these names uniquely identify a machine and is not
in conflict with other names. The deployment system uses this table

to discover other members automatically by starting from the root
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member. This discovery process is explained in Algorithm 6.1. This
is a very important table because each entry that gets added to this
table means that a new AM deployment should take place and if an
entry is about to be deleted from this table, it means that a previous
deployment is no longer valid and therefore all children of that entry
should be deleted too.

Another key aspect of this table is that it represents the layout of
the computing environment and therefore has to be kept in sync with
the actual infrastructure layout (both physical and application-level
layout). This means that any changes in the infrastructure has to
be detected and get updated in this table. For example, if a virtual
machine is no longer running on a physical host (either because of
a migration or termination) then its entry to this table and all its
children has to be deleted to keep this table in sync with the actual
environment. This process of keeping this table up to date happens
as part of the discovery algorithm by a polling mechanism that is

explained in more details in Algorithm 6.1.

6.4 Discovery Algorithm

So far we have defined tables that hold important basic informa-
tion about the computing environment. We can now use this basic
information to automatically extract other information or discover
members in the infrastructure and start the deployment process.
Discovery of available members in the system is the heart of this de-
ployment system because it reduces the burden of defining all mem-

bers manually and helps administrators to automate the deployment
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process.

The discovery process happens periodically in a configurable time
interval to ensure that all dynamic changes that happen in the in-
frastructure from time to time will be detected. It starts from the
root member and discovers all children members. Upon discovering
a new member/child, it adds the new member to the Members table
which then leads to a new AM deployment on that member. Simi-
larly, if it detects that an existing member is no longer available it
will remove it from the Members table which results in removing all

child members associated with it.

Algorithm 6.1 shows the discovery process. It performs the discov-
ery at every Discoverylnterval which is a configurable time interval
and the overall process is a breatdh-first-search (BFS) of the com-
puting environment. It starts from the root member which belongs
to the first management group (MG.getFirstMG() returns the first
Management Group and Members.getMembers() returns the mem-
bers that belong to a specific MG) and uses a queue to discover new
members. It starts by checking the status of the autonomic man-
ager deployed on the current member (isAMDeployed()) checks the
AM deployment status on a specific member). If there is an auto-
nomic manager already deployed on that member then it should be
started. The StartAM method starts the AM if it is not running al-
ready, otherwise it does not do anything. This status checking acts
as a heartbeat polling mechanism to make sure that an AM is not
terminated due to a fault or error. If an AM is terminated for any

reason, then the discovery process ensures that it gets started again.
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Algorithm 6.1 Member Discovery

Require: Members, MG, MG Attributes, DiscoverylInterval

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

while true do
Root <— Members.getMembers(MG.get FirstMG())
Queue.enqueue(Root)

while !Queue.isEmpty() do > There are more members to discover
Curr Member < Queue.dequeue()
if isAM Deployed(Curr Member) then > Check AM status
Start AM (Curr Member)
end if

CurrChildSet < Members.getChildren(CurrMember)
CurrM G < Members.get M G(CurrMember)
TechScript < MG Attributes.getTechnology(Curr M G)
DiscoveredChildSet <— DiscoverChildren(CurrMember, TechScript)
AddSet < DiscoveredChildSet — CurrChildSet
RemoveSet < CurrChildSet — DiscoveredChildSet
Members.remove M embers(RemoveSet) > Update Members table
NextMGSet <+ MG.getNextMG(CurrMG)
for all MG € NextMGSet do
MGTechScript <+ MG Attributes.getTechnology(MG)
for all member € AddSet do
if isValid(member, MGTechScript) then
Members.addMember(member, MG, Curr Member)
AddSet.remove(member)
end if
end for
end for
Queue.enqueue(Members.getChildren(Curr Member))

end while
Sleep(DiscoveryInterval)

20: end while
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The discovery algorithm then gets the set of all current available
children of that member (e.g. Members.getChildren() method) which
is stored in the Members table (e.g. from previous discoveries) and
store it in CurrChildSet. This set can be calculated by a simple
search on the parent name field of the Members table but it might
be outdated due to the changes that happened in the environment
from the last discovery and therefore it might not represent the most
recent infrastructure layout. This is the current view of the infras-

tructure in the deployment system.

It then gets the management group which that member belongs
to and retrieves the technology script that is used on that manage-
ment group (e.g. MGAttributes.get Technology(CurrMG) method).
At this point, it can connect to this specific member and perform
a discovery based on the technology script that is provided (e.g.
DiscoverChildren() method). The script will then retrieve a set of
children names and return it to be stored in the DiscoveredChildSet.
CurrChildSet represents the current view of the deployment system
about the infrastructure and DiscoveredChildSet represents the ac-
tual most recent infrastructure layout. Therefore, the two relative
complements of these two sets give us two other sets: one is the set of
members that are newly discovered and should be added to the sys-
tem (e.g. AddSet) and one is the set of members that are no longer

available and should be removed from the system (e.g. RemoveSet).

So far, the discovery process has calculated two separate lists

that need to be updated in the system. It can then update the
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Members table based on these two sets. It first removes the obsolete
members from the table (e.g. Members.removeMembers(RemoveSet)
method) and then calculates the next management group (e.g. get-
NextMG(CurrMG) method) and since there might be multiple man-
agement groups for each level, it will return a set of management
groups for the next level (e.g. NeztMGSet). It now needs to de-
termine the new members to be added belong to which manage-
ment group. This can be done with the help of the technology
script. One job of the technology script is to provide functional-
ity for determining that if the technology is available on a specific
member or not. Therefore, for each management group in the next
level, it will get the associated technology script name (e.g. MGAt-
tributes. get Technology(MG)) from the MG Attributes table and check
to see if that technology is available on the newly discovered mem-
bers (e.g. isValid(member, MGTechScript)). If the technology is
available then this member belongs to that management group and
can be added to the Members table. The addMember method gets
a member to be added, the management group (e.g. MG) that it
belongs to and its parent member (e.g. CurrMember) and add this
member to the Members table. After adding a member to the table
it will be removed from the AddSet and the loop continue for other
members. The algorithm for adding or removing a member from the
Members table is explained in the next section. After updating the
table, it then retrieve the final list of children (most recent) for this
member and add them to the queue for further discovery (e.g. in

the lower levels) based on the same BFS approach.

This discovery algorithm should run from a machine inside the
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administrative domain that has proper access (administrative priv-
ileges) to all members, we assume this is happening in a trusted

administrative network with proper authorizations in place.

The time complexity of this algorithm is O(n?) in the worst case
where n is the number of members in the Members table and is equiv-
alent to the number of AMs in the management hierarchy because it
performs a BFS of the computing environment (O(n)) and on each
iteration of the while loop it removes the obsolete members (Mem-
bers.removeMembers() method) which is another BFS of a subset of
the Members table (O(n) in worst case).

6.5 Deployment Algorithms

As explained in the previous section the output of the discovery pro-
cess is basically two sets, one is the set of members that have to be
added to the Members table (new discoveries) and one is the set of
members that have to be removed from this table (not available any
longer). In this section we explain what should happen after adding

an entry to or removing it from the Members table.

Each addition to the Members table means discovering a new
member and therefore a new AM deployment has to be performed
on it. In order to perform an AM deployment, the deployment sys-
tem needs to calculate two pieces of information: 1) The set of MEIs
that has to be installed with the AM and 2) the AM name which
includes the parent name as a prefix (See Section 5.1). Algorithm

6.2 shows this process and how to calculate this information on the



6.5. DEPLOYMENT ALGORITHMS 91

fly upon adding a new entry to the members table. This Algorithm

is called upon each addition to the Members table.

Algorithm 6.2 Members Addition: Autonomic Manager Deployment
Require: Member Name, Members, MG Attributes
: CurrMG <+ Members. getMG(MemberName)
: MEISubSet < MG Attributes.get M E1s(Curr M Q)
AM Name < Member Name
ParenName < Members.get Parent Name(Member N ame)
while ParentName # NULL do > Not reached root member
AM Name < ParentName + “.” + AM Name
ParenName < Members.get Parent Name(ParenName)
: end while
: DeployAM (Member Name, AM Name, M E1SubSet)

© PNy

During the AM deployment to a new member, the deployment
system can retrieve the appropriate MFEIs by accessing the mem-
ber’s management group. The MGAttributes table can return the
set of MEIs that has to be shipped with this deployment. The parent
name however has to be added step by step by searching through the
Members table. It starts by adding the current member name to the
AM name and then while it has not reached the root member it keeps
adding the parent name of each member to the AM name. Basically,
it starts from the leaf of the management tree and goes one step up
the hierarchy each time and adds each parent’s name until it reaches
the root. The parent name is accessible in the Members table and
is set to null for the root member. The getParentName method re-

turns the parent name of a specific member from the Members table.

After extracting these two sets of information, the deployment
system can then access that member and deploy an autonomic man-

ager on it by shipping the right MFEISubSet and configuring the right
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name which will eventually result in getting added to the manage-

ment hierarchy through the start-up algorithm (Algorithm 5.1).

The time complexity of this algorithm is O(log(n)) where n is the
number of members in the Members table because it basically tra-
verses the height of the management tree from the leaf to the root,

one step at a time.

Another change in the Members table happens when removing
an entry from it. Removing a member means that this member is
no longer available in the computing environment as the child of a
specific member and therefore itself and all sub-tree rooted at this
member have to be removed. For example, if a physical server is
no longer available in the list of a cluster’s machines, then both the
server and all its previously discovered virtual machines inside it are

no longer available and have to be removed from the Members table.

Algorithm 6.3 Members Removal
Require: Member Name, Members
1: Queue.enqueue(Member Name)
2: while |Queue.isEmpty() do > There are more members to remove
3 CurrentMember < Queue.dequeue()
4 ChildrenSet <— Members.getChildren(Current Member)
5 for all child € C'hildrenSet do
6: Queue.enqueue(child) > Will be removed
7
8
9:

end for
Members.remove(Current Member)
end while

Algorithm 6.3 shows the process of removing an entry from Mem-
bers table. This algorithm uses a queue and performs a breadth-

first-search of the sub-tree rooted at the member to be removed and
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remove all these members.

For each member to be removed (e.g. CurrentMember), it first
get the set of its children from the Members table (e.g. Mem-
bers.getChildren(CurrentMember)) and add them to the queue and
then remove the member itself from the Members table (e.g. Mem-
bers.remove(CurrentMember)). It then repeat this process until there

is no further member in the queue for removal.

This algorithm is a BFS of a subset of the members in Members
table. Therefore, the time complexity of this algorithm in the worst

case is O(n) where n is the number of members in this table.

6.6 Deployment in IaaS Clouds

We first explain operations in a typical IaaS cloud to have a better
understanding of how the deployment system will integrate with this
environment. To set up an IaaS cloud, racks and physical servers are
installed in a data center. Then a host operating system will be in-
stalled on these machines which will later host virtual machines. In
a typical TaaS architecture (see Section 3.2), the cloud controller is
installed first, along with a cluster controller which is responsible for
all physical nodes in that cluster. After that, the cluster controller
gets a list of active physical nodes either by discovering them auto-

matically or by administrators who have to define them manually.

After a successful setup, cloud users can request one or more

virtual machines from cloud controller. Cloud controller will then
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chooses the cluster and sends the request to its cluster controller.
The cluster controller chooses the nodes that should host these vir-
tual machines and places them on to those nodes. As part of this
virtual machine placement, it will configure the virtual machine with
the right customized information (e.g. credentials, application and
services, etc.) and then the user can connect to the virtual machine
and use it. Therefore, cluster controllers have access to the names
of physical machines that are available in that cluster. Physical ma-
chines have similar access to the virtual machine names running on
them. These lists can change over time and new servers added to or

removed from the system.

6.6.1 Sample IaaS Layout

In this section we explain the physical layout of a sample TaaS cloud
and explain how our deployment system can integrate with it to dis-
cover members and deploy autonomic managers. We assume that
this cloud consist of two clusters, each with two physical servers to
host virtual machines. Figure 6.1 shows the physical layout of this
cloud. There are two racks, each have four physical servers with an
operating system (e.g. Ubuntu) installed on them. Host! is where
cloud controller is installed and the two cluster controllers are in-
stalled in Host2 and Host6. Let us assume that we use FEucalyptus
technology to create this cloud and that each cluster is using a dif-
ferent virtualization technology (e.g. KVM or Xen). Hosts in the
first cluster (e.g. Host3 and Host4 ) are using KVM and hosts in the

second cluster (e.g. Host7 and Host8) are using Xen.
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VM1 | VM2 VM5 | VM6
Host4 (KVM) ~ Host8 (Xen)
VM3 | VM4 VM7 | VM8
Host3 (KVM) Host7(Xen)
‘ Cluster Controller 1 ‘ ‘ Cluster Controller 2 ‘
Host2 Host6
‘ Cloud Controller ‘ ‘ Deployment Server ‘
‘\ Host1 7 ‘ ‘ Host5 7 ‘
Rack 1 Rack 2

Figure 6.1: TaaS Cloud Layout

6.6.2 Deployment Tables

In order to setup the autonomic management deployment system
for this sample cloud, there are several possible ways to define the
management groups and form the hierarchy and depending on the
actual management requirements administrators can pick one that
matches their needs better. However for illustration purposes let us
assume that the administrators define four management levels and

five management groups for this computing environment:

1. “CloudMG”: This group represents the members in the top
level of the hierarchy (e.g. level 0). This group will have only

one member which is the cloud controller machine (e.g. Host1).
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Table 6.4: TaaS Cloud Management Groups

Level MG Name

0 CloudMG

1 ClusterMG

2 KVMServerMG

2 XenServerMG

3 VirtualMachineMG

2. “ClusterMG”: This group represents members running at the

cluster controller level (e.g. Host2 and Host6).

3. “KVMServerMG”: This group represents all physical machines
that uses KVM as their virtualization (e.g. Host3 and Host4 ).

4. “XenServerMG”: This group represents all physical machines
that uses the Xen as their virtualizations and should be man-
aged differently than KVMServerMG members (e.g. Host7 and
Host8).

5. “VirtualMachineMG”: which represents all virtual machine avail-

able in the cloud.

All deployment tables are stored in Host5 located in the sec-
ond rack and the deployment algorithms will run from this machine.
Administrators can now define these management groups by sim-
ply adding their names to the management groups table. Table 6.4
shows the MG table for this cloud.

Note that both KVMServerMG and XenServerMG management
groups are defined to be in the second level of the hierarchy (e.g.
level 2).
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Table 6.5: IaaS Cloud MGAttributes

MG Name MEI(s) Technology Script Name
CloudMG CloudMEI Eucalyptus0.py
ClusterMG ClusterMEI Eucalyptusl.sh
KVMServerMG KVMPhysicalMachineMEI KVM.rb
XenServerMG XenPhysicalMachineMEI Xen.sh
VirtualMachineMG  VirtualMachineMEI, ApacheMEI Ubuntu.rb

After defining management groups, administrators can add proper
ManagedElementInfos to the MGAttributes table based on what el-

ements needs to be managed at each level of the hierarchy in cloud.

Table 6.5 shows an example of MGAttributes table for this cloud.
Based on available MFEIs and technologies in the deployment sys-
tem they can define multiple entries in to this table. For example,
the Eucalyptus technology is used at the CloudMG level and the
autonomic manager should monitor cloud level elements based on
the CloudMFEI FEucalyptus0.py is the name of a Python script that
will extract the children names (e.g. Eucalyptus cluster controller
machine names) from the Eucalyptus cloud controller (level 0). Sim-
ilarly, KVM is used at the KVMServerMG level and members of
this group should monitor and manage physical servers based on
the KVMPhysicalMachineMEI The KVM.rb is the name of a Ruby
script that can extract children names (e.g. virtual machine names)

from a KVM virtualized server.

The last step in configuring the deployment system is to add the
first entry of Members table, which is the root member of the hierar-
chy and is a member of the first management group. Table 6.6 shows
an example of the Members table for this cloud. Host1 is the root

machine that cloud controller is installed on and can be accessed



98 CHAPTER 6. AUTONOMIC MANAGER DEPLOYMENT

Table 6.6: Initial Taas Members Table
Name MG Name Parent Name

Hostl CloudMG null

from the deployment server.

At this point the configuration of the deployment system is com-
pleted and administrators can run this service. After running the de-
ployment service, members discovery loop (see Algorithm 6.1) starts
running and the deployment process starts based on the Algorithm
6.2 and upon discovering new members they get added to this Mem-

bers table which causes other AM deployments to take place.

As explained in the Algorithm 6.1, deployment server can now
connect to the root member, extract children names by using the
technology script and add them to the Members table. It will then

continue this process until there is no member available in the queue.

Table 6.7 shows the completed Members table after running the
discovery algorithm. Note that the discovery algorithm runs period-
ically to detect dynamic changes in the environment and update the
Mempbers table accordingly. It also checks the running status of the

currently deployed AMs to make sure that they are running.

6.6.3 Deployed Managers

As described before in Algorithm 6.2, upon adding a new member in
to Members table a new autonomic manager deployment happens.

This algorithm will calculate the AM name based on the naming
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Table 6.7: Completed TaaS Members Table

Name MG Name Parent Name
Host1 CloudMG null
Host2 ClusterMG Host1
Host6 ClusterMG Host1
Host3 KVMServerMG Host2
Host4 KVMServerMG Host2
Host7 XenServerMG Host6
Host8 XenServerMG Host6

VM3 VirtualMachineMG Host3
VM4 VirtualMachineMG Host3
VM1 VirtualMachineMG Host4
VM2 VirtualMachineMG Host4
VM7 VirtualMachineMG Host7
VM8 VirtualMachineMG Host7
VM5  VirtualMachineMG Host8&
VM6 VirtualMachineMG Host8

scheme explained in Section 5.1 and deploy an autonomic manager

on this member with proper MFEISet and name.

Table 6.8 shows the AM names calculated for these managers
based on members available in the Members table. The first column
shows the member name that this AM is deployed on and the second
column is the AM name configured for that AM.

Upon each AM start-up, it will register its name in the registry
and contact its parent which will result in forming the management
hierarchy. It also gets the proper policies from the repository based
its MEISet and starts enforcing them. Figure 6.2 shows the manage-
ment hierarchy of these AMs after it starts working in our sample

cloud.
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Table 6.8: Deployed AM Names

Member Name AM Name
Host1 Host1
Host2 Host1.Host2
Host6 Host1.Host6
Host3 Host1.Host2.Host3
Host4 Host1.Host2.Host4
Host7 Host1.Host6.Host7
Host8 Host1.Host6.Host8
VM3 Host1.Host2.Host3. VM3
VM4 Host1.Host2.Host3.VM4
VM1 Host1.Host2.Host4. VM1
VM2 Host1.Host2.Host4. VM2
VM7 Host1.Host6.Host7.VM7
VMS Host1.Host6.Host7. VM8
VM5 Host1.Host6.Host8. VM5
VM6 Host1.Host6.Host8. VM6

A 4 A 4

AM: AM:
Host1.Host2 Host1.Host6
A 4
AM: < AM: >
@Stl HOStZ HO% Gstl Host2 Host) Host1.Host6.Host7 Host1.Host6.Host8

A

A \ 4 v
AM: AM:
Host1. Host2 Host3 VM3 Host1. Host2 Host3 VM4 Host1.Host6.Host8.VM5 Host1.Host6.Host8.VM6

Figure 6.2: AMs hierarchy after deployment on IaaS cloud




Chapter 7

Experiments and Evaluation

In order to test our ideas, we evaluated elements of the hierarchical
management model proposed in the previous Chapters in different
settings. In the first setting, we used a private cloud environment and
performed several experiments to evaluate the hierarchical model. In
the second setting, we collaborated with a private company to ad-
dress their real life management issues and implemented portions of
our management model to manage their infrastructure which shows
a successful application of our ideas in practice. Section 7.1 explains
the details of a prototype cloud system and presents an evaluation of
the hierarchical model by implementing the communication proto-
col, autonomic manager algorithms, such as the message inference,
processing, event-condition-action policy evaluation. Section 7.2 ex-
plains the architecture and implementation details of the case study
in which the ideas related to a central policy repository, registry
techniques, start-up and termination detection algorithms were eval-

uated.

101
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7.1 Evaluation: Performance Study

We performed experiments to evaluate the autonomic manager algo-
rithms explained in Chapter 5, including the collaboration between
different autonomic managers using the communication protocol and
including the message inference from policies. We implemented a
small experimental cloud environment and developed a hierarchi-
cal management system based on our approach and algorithms and
measured an application’s performance - in this case, Apache’s re-
sponse time against a service level agreement that was defined in the
policies. We measured the number of SLA violations that happened

during the experimental period in three different scenarios.

7.1.1 Experimental Setup

We built a small cloud with three servers, each server has 4GB of
memory with Intel core i7 CPU @ 3.4GHz (4 cores) and is connected
to a 10/100Mbps switch with a 100Mbps CAT5 Ethernet cable.

All servers are running a 64bit Ubuntu 11.04 and two of these
servers are configured to be able to host virtual machines (VMs)
using KVM virtualization [21]. We used Ubuntu Enterprise Cloud
software to build this cloud which is powered by Eucalyptus (see
Section 3.2). All VMs within a server can be monitored and man-

aged from a privileged VM (e.g. Domain 0).

There are applications, e.g. an Apache web server, a MySql

database server, running on the VMs. The privileged autonomic
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manager runs in the physical server and its job is to manage (opti-
mize based on policies) the behaviour of that server by collaborat-
ing with the managers running inside each VM. We used two VMs
running on a single server with LAMP (Linux-Apache-Mysql-PHP)
installed on them and a two tier web application based on an online

store was configured to run on the VMs.

Guest virtual machines run Ubuntu 11.04 as well. “Domain 07 is
the first operating system that boots automatically and has special
management privileges with direct access to all physical hardware
by default. The manager running inside Domain 0 has the authority
to change the configuration of other VMs, such as allocated memory,
allocated CPU cores, etc. Figure 7.1 shows the physical structure of
the system. Serverl hosts two VMs each running a web application
that receive loads. We implemented the autonomic manager using
Java programming language and the Ponder2 [52] platform and used

Ponder Talk to implement communication between managers.

Physical Server 1 Physical Server 2
(KVM) (KVM)
Domain0 ( AM2 ) Domain0 ( A )
Mem: 3GB Mem: 4GB
VM1 VM2
Mem: 400MB Mem: 400MB
AM1 AM3

I I Physical Server 3
( AM4 >
Apache Apache

Figure 7.1: Experiments Cloud Physical layout
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e

4 A

B

v Y
( AM1 ) AM3
Figure 7.2: Hierarchy of managers based on physical layout

We used an open source online store called “Virtuemart” [2] as
the web application, a three tier application with a Model-View-
Controller (MVC) architecture, to measure the response time of
Apache web server running on VM1. We also used JMeter [1] to
generate loads to this virtual store and measured the response time
of Apache in three scenarios. We used two thread groups in JMeter
for generating HTTP requests to the online store. The first thread
group is configured to have 23 threads (representing users) with a
ramp up period of 55 seconds and loop count of 9. The ramp up
period tells JMeter how long it should take to run the full number
of threads chosen, e.g. If 100 threads are used, and the ramp-up
period is 1000 seconds, then JMeter will take 1000 seconds to get all
100 threads up and running. The loop count is the number of times
this test (e.g. thread group) should be repeated. The second thread
group has 20 threads with a ramp up period of 10 seconds and loop

count of 6. We used the same configuration for all test scenarios.



7.1. EVALUATION: PERFORMANCE STUDY 105

Table 7.1: Experiment’s Management Groups

Level MG Name

0 ClusterMG

1 PhysicalMahcineMG
2 VirtualMachineMG

Table 7.2: Experiment’s MGAttributes

MG Name MEI(s) Technology Script Name

ClusterMG NodeMEI Eucalyptus.rb
PhysicalMahcineMG  VirtualMachineMEI KVM.rb
VirtualMachineMG ApacheMEI Ubuntu.rb

The ultimate goal of the whole system is to keep the response time

under a certain threshold (e.g. 500 ms) that we assumed was defined
in an SLA.

There are three different management groups for this cloud (see
Chapter 6) that are shown in Table 7.1 and at each level there are
certain MFEIs (see Definition 1) that get deployed with the autonomic
manager. Table 7.2 shows the attributes of each management group.
Appendix B shows two technology scripts written in Ruby program-
ming language. “KVM.rb” is the name of a script that checks if the
machine has KVM virtualization or not (e.g. by checking “virsh”
command) and it can also provide the virtual machine names as the
list of its children. As it is shown in the scripts, “Ubuntu.rb” return
an empty list of children because this is used at the last level of our

hierarchy and there is no child after this level.

Each of the AMs has its own set of policies and tries to optimize
the performance of its local system. Manager AM2 (see Figure 7.1)

manages physical server “1”7, trying to optimize its performance and
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behaviour based on the policies given to it. This includes monitoring
the other VMs (VM1 and VM2) in order to help them when they are
in need. Because AM2 is running in Domain 0, which is a privileged

domain, it can change/resize VMs.

Although we have implemented this system for only three levels
of hierarchy, the architecture and concepts used are generalizable to
the larger systems such as an entire organization, a data center, etc.
Figure 7.2 shows the hierarchy and relationship between AMs in our

system.

7.1.2 Policies

In order to define our managed elements, we implemented multi-
ple ManagedElementInfos (MFEIs-See Definition 1) as Java classes.
Apache MEI VirtualMachine MEIL SystemMEI and NodeMEI are de-
fined as the managed elements information. Therefore, an instanti-
ation of these MFEIs will act as the MEOs (e.g. Java objects, Defi-
nition 2) in our system. Appendix A shows the metrics and actions
available in these MEIs.

After defining MEIs, we can define policies being used at different
levels of the management hierarchy. AM1 and AM3 are running at
the virtual machine level and therefore they have Apache MEI. AMs
at this level are usually meant to preserve applications SLAs and
optimize the virtual machine’s performance. In our implementation,
AM1 is trying to keep Apache’s response time below 500ms as de-
fined in an SLA and has this policy:
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OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 500 then
ApacheMEIIncreaseMaxClient(25,200);

end if

This policy checks the Apache response time on every Manage-
mentinterval and if it’s above 500ms, it increases the MaxClients
property of the Apache web server by 25. The max limit for this
property is 200. Therefore, it can not be increased to more than
200 and if this action fails due to this local limitation the message
inference algorithm (e.g. Algorithm 5.6) will automatically create a

NOTIFY message and sends it to the parent manager.

At a higher level, AM2 and AM5 are running at the physical
machine level and try to optimize the performance of the physical
server by balancing the resources among virtual machines. They
have access to VirtualMachine MEI and SystemMFEI and two impor-

tant policies that are used at this level are:

OnEvent: HelpRequest

if VirtualMachineMEIL. MemUtil>85 &

VirtualMachineMEI.CPUUtil>95 then
VirtualMachineMEI IncreaseMem(50, limit);

end if

This policy checks the memory and CPU utilization of a specific

virtual machine upon receiving a HelpRequest message and if they



108 CHAPTER 7. EXPERIMENTS AND EVALUATION

are above certain thresholds (e.g. 85 and 95) it then increases the
memory assigned to that virtual machine by 50MB based on available
memory in the physical server. This available memory is included in
the “limit” variable. “limit” specifies the maximum possible memory
that this virtual machine can have (e.g. in this case 500MB) and it
can be changed over time. Note that this policy is running on AM?2
at Domain 0 which is a privileged domain and therefore AM2 has
the authority to change virtual machine’s memory. Another policy

running at this level is:

OnEvent: Migration
if true then

VMName = SystemMEIfindBest VM()

SystemMEI MigrateVMTo(VMName, Migration.NodeName);
end if

This policy shows that upon receiving a Migration event it should
migrate a virtual machine to the destination specified in the Migra-

tion event (e.g. Migration. NodeName).

This policy says that upon receipt of a Migration event at AM?2
(Node Controller Level), find the best VM (e.g. least busy), and
migrate it to the node specified in the migration event. After a
successful migration, it increases the available free memory limit.
SystemMFEI has access to all VMs running in this server and can

find the least busy VM and migrate it to another server.

AM4 is one level higher in the hierarchy. It is running at the
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cluster controller level and has an overview of all physical machines
in that cluster. It has access to NodeMEI and SystemMFEI A policy

that is running at this level is:

OnEvent: HelpRequest
if NodeMEI.MemoryUtil > 50 then
BestNode = SystemMEI.findBestNode()
SystemMEIsendMigrationNotifyMsg(NodeMEI.Name, BestN-
ode)
end if

This policy says that upon receipt of a Help Request event by AM4,
if the server asking for help has a memory utilization of more than
50% then find the best node in the cluster (e.g. the least busy) and
generate a Migration event and send it to the needy AM in a NO-
TIFY message. It basically finds the least busy node and notifies

the needy child to migrate one of its virtual machines to that node.

We use a greedy approach (e.g. least busy) both for finding the
best node and the best virtual machine for migration. We ran three
different experiments and measured the Apache response time SLA

violations in each scenario.

7.1.3 Scenario 1: No Collaboration

In the first scenario we disabled all communications between man-
agers. In this case, the local managers tried to optimize the system

only based on policies that they had and with no further communi-
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cation with another manager. Figure 7.3 shows the response time of

the Apache web server in this case.

In this case, when the load increases the local manager tries to
adjust the web server by allocating more resources. For example at
points A, B, C and D in Figure 7.3 an SLA violation was detected
by the manager. In response to the SLA violation at points A, B,
C and D and based on the policies explained before, the autonomic
manager (AM1) increased the MaxClients property of the Apache
server that it was managing by 25. After point D it also detects an
SLA violation, but cannot increase MazClients since it has already

reached the maximum value for the MaxClients property (i.e., 200).
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Figure 7.3: Apache response time with no manager collaborations
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As a result, the system will face more SLA violations and the
response time will get worse (see Figure 7.3). Thus, the load is more
than what this system can handle alone. This also causes a long
term violation of the SLA (e.g. Apache response time above 500

ms) which could mean more penalties for the service provider.

We calculate two performance measures in this case: the total
time that the system could not meet the SLA (T) and the percent-
age of time that the system spent in a “violation” (V). For these
experiments each time interval was 1 second and the x-axis in the
graph shows the time interval. Therefore, the results for Scenario 1

are:

T1 = 18 seconds
S1 = Total Experiment Time = 25 seconds
V1 =T1/S1=0.72 = 72%

7.1.4 Scenario 2: One Level Collaboration

In the second scenario, we consider the situation when the local
manager can request help. When the local manager can no longer
make adjustments to the system, it requests help from the higher
level manager. This is specified in the policies of AM1 and AM2, as

mentioned in the previous section.

The VMs starts with 400MB of memory already allocated to
them. The current limit for increasing memory is set to a default
value (e.g. limit = 500MB, meaning the max memory this VM can

have is 500MB) but it can change over time based on the changes in
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the system. We will see an example of this in Scenario 3. Figure 7.4

shows the Apache response time in this case.
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Figure 7.4: Apache response time with one level of collaboration

As in the previous scenario, the local manager (AM1) tries to ad-
just the web server to handle the increasing load at points A, B, C
and D. Eventually, there are no more local adjustments possible (af-
ter D) and so the local manager does nothing. In this case, however,
when the next SLA violation happens (point E), AM1 generates a
HelpRequest NOTIFY message and sends it to AM2. In response,
AM2 allocates more memory to VM1 (according to its own policies).
At this point, the response time starts decreasing, but since the load
is still high, AM1 detects another SLA violation at point F and asks
for help again, and AM2 allocates 50 more megabytes of memory to
VM1, which will reach the maximum allowed memory for the VM
(since limit is 500MB).



7.1. EVALUATION: PERFORMANCE STUDY 113

After the adjustment of memory at point F, there is a sharp spike
in the response time as the VM is adjusted to accommodate the
increase in memory allocated to it. Moreover, the load is also in-
creasing as well because of the ramp up period configured in JMe-
ter. Once this is completed, the response time decreases. There are
still subsequent instances where there are occurrences of heavy load
and occasional SLA violations still happen. In these cases, AM1
still sends the help request to AM2, but since AM2 has allocated
all available memory to VM1 (as per its policy), it cannot do more
and simply ignores these requests. To solve this problem, we add
another level of management to the system which is explained in
scenario 3. Based on the output for this scenario, we calculated the

same measures of performance:

T2 = 10.5 seconds
S2 = 25 seconds
V2 =T2/S2 = 0.42 = 42%

As is evident in the graph (Figure 7.4), the time that the system

spends in “violation” of the SLA is much less.

7.1.5 Scenario 3: Two Level Collaboration

In the third and final scenario, we use another level of management
to help reduce the occasional SLA violations that happened in Sce-

nario 2. Figure 7.5 shows the Apache response time in this case.

Like the previous scenarios, the local manager (AM1) tries to ad-

just the web server at points A, B, C and D. At points E and F, AM2
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assigns 50 more megabytes to VM1 to solve the stress. At point G
there is another SLA violation. At this point, AM1 asks for help
from AM2 but since AM2 already assigned all the available mem-
ory as per its policy, it cannot provide more help and automatically
creates a help request NOTIFY message which it sends to its parent
(AM4; see Figure 7.1 and Figure 7.2).
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Figure 7.5: Apache response time with two levels of collaboration

AM4, running at the cluster controller level, has a global view of
all physical servers and finds the least busy server. It then tells the
AM?2 to migrate one of the VMs to that server based on the policies
explained before. AM2 can then use the host name passed to it in the
NOTIFY message to migrate one of its VMs and reduce some load in

the server again based on its policy explained in the previous section.

When AM2 receives the NOTIFY message on migration, it chooses
a VM to be migrated to the new server. In our implementation, we
adopted a greedy approach in both finding the best physical node
and finding the best VM for migration. We choose the least busy
(based on memory utilization) VM to be migrated. After this VM
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is migrated, then there will be more memory available for the bus-
iest VMs. In this case, AM2 migrates VM2 (it had lower memory
utilization) to Server2 and removes it from the list of its children.
Note that VM1 is the virtual machine in stress situation but VM2
which was less busy (e.g. had lower memory utilization) was chosen
for migration. We used the live migration capability in KVM to mi-
grate this VM. Therefore, neither of the virtual machines stopped

working during migration.

.
S

AM1 AM3

Figure 7.6: Managers hierarchy after migration of VM2 to Server 2

Figure 7.6 shows the hierarchy of AMs after this dynamic change
in the VMs structure. In this case, after migration, there is more
memory available at the AM2 level and the memory limit is in-

creased. Therefore, at point H (Figure 7.5) when the load is getting
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higher and another SLA violation happens, AM1 asks for help and
AM2 responds by adding 50 more megabytes to VM1. The same
process happens at point I where AM2 adds another 50MB to VM1
(reaching the total of 600MB) and after that the response time stays
below the SLA threshold although the load is still very high. The

calculation of our measures for this scenario is as follows:

T3 = 10.5 seconds
S3 = 43 seconds
V3 =T3/S3 = 0.24 = 24%

In this case, even with the migration of one of the VMs, the per-

centage of time in a “violated” state is much less than in Scenario 2.

7.1.6 Discussion

Table 7.3 summarizes the percentage in a “violated” state for the
three scenarios. Not surprisingly, having more AMs making changes
to the system and components decreased the impact of violations.
Most importantly, this happened automatically without administra-
tor intervention and without adding any new hardware which means

improvement in the current system efficiency.

The results show that there is definitely an advantage when AMs
can collaborate. A single autonomic manager cannot solve all per-
formance problems just by itself because it has only a local view of
the system with some limited authority to change things. Thus, the

current infrastructure can be used more efficiently and provide bet-
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Table 7.3: Results of three scenarios

Scenario SLA Violation(%)
1: No collaboration between AMs 72
2: One-Level collaboration in the hierarchy 42
3: Two-levels collaboration in the hierarchy 24

ter services with less chance of violating SLAs without adding new

computational resources.

7.2 Case Study: High Frequency Trading

CTS is a private company that I had the opportunity to spend an
internship working with them on the application of some of these
ideas. They are interested in autonomic management of their in-
frastructure and the research area of this thesis is highly relevant to

their management requirements.

CTS develops automated trading technology for financial firms.
Their client base includes hedge funds, brokers, banks and profes-
sional traders. Their solutions enable the creation of trading algo-
rithms, co-located global deployment, custom connectivity and the
automation of entire strategies or portfolios across all asset classes.
They work closely with clients to deliver cutting-edge, competitive
and cost effective proprietary trading solutions. The company pro-
vides a high frequency trading framework for building and running
trading algorithms that can perform in real-time. This infrastruc-
ture will be referred to as Cloud Trader (CT). Cloud Trader is an
automated trading solution that enables development, testing and

global deployment of proprietary algorithmic trading strategies.
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Clients can develop and test their algorithms using this framework
and then launch, monitor and control the algorithm’s behaviour. CT
is composed of several parts which are running in a distributed man-
ner across the company’s private cloud infrastructure. There are
thousands of different trading algorithms running at the same time

on different virtual machines.

The automation framework has a Complex Event Processing(CEP)
system which is designed to analyze massive amounts of market data
in real-time, providing rapid identification and response to trading
opportunities. The multi-threaded engine separates tasks by differ-
ent threads on different cores, resulting in a highly scalable system
that can support thousands of algorithms running simultaneously.
Parallelization and load balancing further ensure consistent high per-

formance of all running algorithms.

Every client has at least one virtual machine which hosts their
trading algorithms and can be expanded to more VMs if there is
a demand for it. Due to the vast number of framework elements
and fast changes in the environment there needs to be a way of
managing the whole infrastructure in near real-time without human
intervention. The trading orders are being performed in the matter
of milliseconds and any change in the infrastructure can have a great

impact on a client’s revenue as they might lose a lot of money.

Since Cloud Trader is composed of several parts that are being

deployed separately and each has a certain role in the system, hav-
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ing multiple managers each responsible for managing a particular
element seems to be a good solution for managing the whole infras-
tructure. The infrastructure is very similar to the IaaS clouds since
within the Cloud Trader architecture there are multiple layers that
require management: there is the algorithm layer which represents
trading algorithms that are running inside a virtual machine, there

is the virtual machine layer, there is the host machine layer and so on.

Given this, it seemed that an approach similar to our proposed
hierarchical system would be a good strategy towards management
of this infrastructure. AMs could be installed with the managed
elements in different parts of the system and would be started when-
ever their corresponding managed element was started. For exam-
ple, when a new virtual machine gets installed, its manager would
also be installed with it, or when a new application is installed its
manager would be installed with it. Therefore, upon starting up a
virtual machine the AM inside that virtual machine is automatically
started and will contact the registry to find the right position in the
hierarchy.

7.2.1 Management Architecture

The physical layout of the experimental system is illustrated in Fig-
ure 7.7. The virtual machine is running on a Windows server 2008
with hyper-v virtualization and has a Windows 7 installed on it. One
of the company applications called “Sliver” is deployed as a windows
service inside the virtual machine. Sliver is responsible for facilitat-
ing the communication between trading algorithms running inside

the virtual machine with the outside world. Both Sliver and the VM
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have their own agent which is installed with them.

NM]' - Windows 7 “Sliver” WindoD

Service
VM Sliver

Host1 - Windows Server 2008

\_ (Hyper-V) -

Figure 7.7: Case Study Physical Layout

We implemented this system for two levels of the hierarchy (shown
in Figure 7.8). In the first level, there is an autonomic manager for
Sliver that monitors the Sliver behaviour. At the higher level, there
is an autonomic manager for a virtual machine which monitors the
health status of a typical VM. This manager can monitor metrics
like CPU utilization, memory utilization, service status, etc. and

enforce related policies.

Therefore there are two management groups (see Chapter 6) at
two different levels and Table 7.4 shows the management groups
in this system. Table 7.5 show the attributes of each management

group including the MFEIs.
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Figure 7.8: Management’s Hierarchy - two levels

Table 7.4: CTS Management Groups

Level MG Name
0 VirtualMachineMG
1 SliverMG

Table 7.5: CTS MGAttributes

MG Name MEI(s) Technology Script Name
VirtualMachineMG  VirtualMachineMEI Windows.wsf
SliverMG SliverMEI Sliver.wsf

7.2.2 Implementation

We implemented a central policy repository and each manager can
retrieve related policies at start-up time. We also implemented the
central registry where managers are registered upon start-up and
tested the start-up (Algorithm 5.1) and termination detection (Al-
gorithm 5.5) algorithms.

We implemented these ideas within the CTS infrastructure. The

company also wanted the management framework to be consistent
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and integrated with their internal software and therefore this was
considered during the design of the management framework. We
used the C# programming language for the autonomic managers
and used Microsoft’s BizTalk [24] rule engine for the policy evalua-
tion. All policies are defined using the BizTalk rule composer and
stored in a Microsoft SQL server as the central repository for all poli-
cies. We also used Windows server 2008 and Hyper-V technology to
host Windows 7 virtual machines. All ManagedElementInfos(MEIs)

are defined as C# classes.

In order to integrate this management system with the current
CTS infrastructure and deploy them easily across different parts of
the CTS infrastructure, we split each manager into two different
parts: 1) The monitoring and action execution part is implemented
in an “Agent” (the sensor/actuator part of the manager); 2) The
policy processing and decision making part is implemented and run
in a different process. By separating the sensor/actuator part of the
autonomic manager from the decision making part (policy evalua-
tion) we introduce a way for the agents to be installed and run in
a loosely-coupled manner which does not affect the functionality of
the rest of system. If the decision making part needs to get updated
or changed it will not affect the sensor/actuator elements in the core
part of the operational system. It also introduces the possibility of
detecting terminated elements. For example, if the virtual machine
shuts down, then the agent inside the VM will also shut down but
the manager is still alive and can detect this situation. Similarly,
if the virtual machine turns back on, the agent inside the VM will

start working again and the manager can now detect that and en-
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force relevant policies. This facilitates the installation and removal

of managers in the hierarchy.

For example, a virtual machine autonomic manager would have a
virtual machine agent which will be installed and run inside of the
virtual machine. This agent is able to monitor different parts of the
VM and report them to the decision making part which is running
somewhere else in the system (outside of the VM). The agent is also
able to perform any action that its decision making component asks

it to do. The agents basically act as a sensor/actuator in the system.

Each agent is configured with the AM name and parent name. For
example, the AM name for an agent that is monitoring a virtual ma-
chine is the virtual machine name and can be obtained automatically
when the program starts running, however the parent name is the
host machine name in which the virtual machine is running and this
should be set as a configuration parameter. Each agent will contact

the central registry upon start-up and send a message to its manager.

Each agent gathers information and creates a ManagedFElemen-
tObject(MEO) when a useful event happens. The MFEO will then
be sent to its manager. The manager evaluates all relevant policies
against the received MFEO, updates the output actions and returns
the MFEO to the agent. The agent then inspects the received MEQO

and executes code to satisfy the result actions.

The overall data flow for a sample host machine agent is illus-

trated in Figure 7.9:
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Figure 7.9: Data flow for a host machine agent

1. The host agent gets installed on the host machine through a
Microsoft MSI installer as a Windows service. It then register

itself in the central registry to contact its manager.

2. Registry will register the name and start the relevant manager

(if not running).

3. The Manager loads the policies related to this agent (e.g. if it
is a host agent, it would load host related policies) and evaluate
them. This includes running the configuration policies for the

first time.

4. The Manager then sends the result of that policy evaluation
back to the agent for enforcement, which includes the config-
uration parameters or actions that have to be performed on
that machine. After a successful agent configuration, the agent
starts monitoring the host based on the thresholds and config-
uration parameters and will notify its manager with the new

MEQs from time to time.
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The central registry is also implemented in C# and uses some of
the libraries developed by the company. It receives incoming mes-
sages from agents and passes them on to the right manager. If the
relevant manager is dead, it will start it and pass the incoming mes-
sage. The manager will then add that agent to the list of its managed
elements and enforce the policies by sending a response message back
to the agent. When the agent contacts its manager for the first time,

the manager will enforce the configuration policies.

The system administrator can view, edit and deploy different poli-
cies at run time through the Biztalk rule composer GUI which will
then get updated in the policy repository and be used by the man-

agers.

7.2.3 Policies

There are two types of policies that are used in the system: configura-
tion policies and operational policies. An example of a configuration

policy used at the virtual machine level is the following:

OnEvent: VMManagedObjectReceived

if VirtualMachineMEIL getConfMode()= true then
VirtualMachineMEIset CPUUtilization Threshold(85);
VirtualMachineMEI.set RefreshInterval(2000);

end if

A VM agent sends the VMManagedObjects to the manager to
report the status of different metrics. Based on this policy, upon

receiving a new VMManagedObject, if the agent is in configuration
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mode, it will then set the CPU utilization threshold to 85% and set
the refresh interval for monitoring the CPU utilization to 2000ms.
The VMManagedObject will then be sent back to the agent for en-
forcement. After a successful configuration, the agent will check the
CPU utilization every 2000ms and will report it to the manager only

if it goes above 85%.

An example of an operational policy used at the virtual machine

level is:

OnEvent: AMTermination
if VirtualMachine M E1.getServiceStopped() = “Sliver” then
VirtualMachineMEILstartService( “Sliver”);

VirtualMachineMEI.sendEmail To( “x@company.com” );
end if

If the Sliver Windows service dies (as explained before, Sliver is
one of the applications of the company), its agent gets terminated
and its manager will also stop working because the TCP connection
of the registry and the agent will be terminated and the registry
will notify the manager about this termination. At this point, the
higher level manager (AM_vm1) will detect removal of its child AM
(see algorithm 5.5) and raise an AMTermination event. In this pol-
icy, the manager checks to see if the name of the service stopped is
equal to “Sliver”. If the service stopped is in fact the Sliver service
it will then start that service by telling the virtual machine agent
which service to start and send an email to the responsible person to

report this failure. After a successful start of the Sliver service, its
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agent starts working again and therefore its manager will get added

to the management hierarchy automatically (see Algorithm 5.1).

These policies are defined by using Microsoft Biztalk rule com-
poser graphical user interface (GUI) and stored in the SQL server
database. The system administrator can change and redeploy these
policies at any time on the fly. All traffic between agents and man-

agers are transmitted over TCP and a secure administrator network.

7.2.4 Lessons Learned

During the four months internship period, we were able to implement
and test managers at only two levels of the hierarchy, but have the
related machinery implemented, the registry, the policy repository,
etc. We were also only able to do limited testing and evaluation.

However, we can make some observations:

e While it did take some time to implement the underlying sup-
port mechanisms, the creation of AMs (the agent (sensor/ac-
tuator) part and decision making part) has gone well and is
straightforward. The decision making part is very similar across
the AMs and the real dependencies are in the metrics to collect
and actions to take for different management elements, i.e., the

specific sensors and actuators.

e Separating the sensor/actuator and decision making parts of the
AMs has worked well. Once decisions are made on what data
to collect and what actions can be taken, the sensor/actuator

part can be implemented and left. Different behaviours can be
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accommodated through the policies specified.

e The start-up and termination detection algorithms work well in
the hierarchical approach and these algorithms run fast enough
in the context they were used; something very important to the

company given their domain.

e The central policy repository makes it easier for administra-
tor to manage different policies from a single point and modify
these policies on the fly based on new requirements and without

affecting the running autonomic managers.

e The naming registration and central registry worked well and
the communication between agents and managers was facili-

tated by this registry.

The main points tested in this implementation is the exploration
of central policy repository as well as testing the start-up, processing,
policy evaluation and termination detection algorithms explained

before.

7.3 Summary and Discussion

As part of the testing of the proposed management model, we im-
plemented a prototype in a small cloud environment and evaluated
hierarchical organization of managers, automatic message inference
mechanism and collaboration of multiple managers using the com-
munication protocol developed in this work. We also explained what
policies look like at different levels of this hierarchy and how one can
enforce policies at different authoritative locations. The important

point is that all of this is happening automatically with no human
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intervention.

We also explained a practical case study and applied our ideas
in developing a hierarchical management system for a private com-
pany. We tested central repository, registry techniques and start-up

and termination detection algorithms.

The communication protocol seems to be general enough in the
context that we tested it, which can cover various types of messages
with detailed information to be sent from one manager to another
and it can also be used in other types of organizations (e.g. it is not

only limited to a hierarchical organization).

Automatic message inference algorithm helps to automate the
communication process between managers which leads to faster re-

actions to dynamic changes in the environment.

Central policy repository and registry with start-up algorithm
helps to automate the process of policy distribution between man-
agers, facilitate the collaboration process and makes future policy
updates easier. It also helps building a dynamic hierarchy that can

restructure on the fly.

Overall, the autonomic management model proposed in this the-
sis seems to be a good approach for monitoring and management of
large computing environments where there are multiple managers in-
volved. This model helps building more automated clouds that use

their resources more efficiently while meeting their users’ require-
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ments.



Chapter 8

Conclusion

8.1 Summary

We explored the use of multiple autonomic managers in a computing
environment to facilitate the autonomic management of that envi-
ronment. We addressed the problem of how different autonomic
managers should be organized in a large computing environment
such as an Infrastructure-as-a-Service (IaaS) cloud, how they should
interact with each other to achieve the goals of the system and when
this communication should happen [29, 31, 30]. We also explored
how different autonomic managers should be deployed across the in-
frastructure and how we could automate this deployment process.
However, a particular focus of this research was on IaaS clouds as a

good infrastructure to apply our ideas.

More specifically, we focused on the following problems:

e How should “multiple” autonomic managers collaborate with
each other in a large computing environment to achieve global

goals?
e How to automate the collaboration of managers in the system?

131
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In order to deal with a dynamic environment where applications
can start and stop and where virtual machines may come an
go, there is a need to ensure that managers can communicate
and collaborate. How can communication between managers be
defined in a changing environment as managers come and go?

How is the communication structured and what is exchanged?

e What is a scalable approach for the deployment of autonomic
managers? What is a good strategy for deploying these man-

agers so that it requires minimal manual administrative efforts?

e How can autonomic managers detect the addition or removal
of different elements and automatically restructure the hierar-
chy of managers without human intervention? How does the
management hierarchy restructure on the fly to reflect these

changes?

e How to automate the manager configuration and minimize the
administrative costs to setup autonomic managers? Each auto-
nomic manager needs to be configured before or upon start-up.
However, in a large system configuring all managers one by one
can become a challenging and error prone job for administra-
tors. How can this process be automated to help administrators

and reduce the costs associated with it?

We proposed a hierarchical approach towards management of
such systems and developed a communication protocol between au-
tonomic managers. We used policies as a means of describing op-
erational behaviour and SLA definitions and showed how some of
the communication messages can be inferred from these policies

automatically based on the demand. We focused on some practi-
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cal challenges in the management and use of multiple autonomic
managers and explained how multiple policy-based autonomic man-
agers organized in a hierarchical fashion can monitor and manage
an Infrastructure-as-a-Service type of cloud. We developed several
algorithms which describe the behaviour of a particular autonomic
manager and addressed issues of automatic deployment, termination
detection and configuration of managers and proposed a novel solu-

tion that is easy to maintain.

We tried to keep the number of messages that used for commu-
nication between two managers limited in order to keep message
overhead reduced to the extent that was possible. The measurement
of the actual overhead and the scalability testing of the management
system is part of the future work since testing the scalability of this
approach requires a lot of physical resources or should be considered

in a simulated environment which is beyond the scope of this thesis.

8.2 Main Contributions

The main contributions of this work and the novel ideas are as fol-

lows:

e There has been generally a little work in the area of multi-
ple autonomic managers and how to handle dynamic changes.

Therefore, this work is to somewhat unique in this area.

e Cluster management typically has a focus on the cluster as a
whole often ignoring management of individual elements, such

as nodes. Our hierarchical approach in this thesis encompasses
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a focus on local and intermediate managers as well as including
global cluster level managers which makes it unique in address-

ing this problem.

The design of a hierarchical autonomic management model for
large computing environments with formal definition of different

elements in that model (Chapter 4).

The design of a communication protocol between autonomic
managers that facilitates their collaboration in achieving global
goals (Section 5.2). Some of these communication messages can
be inferred from policies and therefore can help with automating

the collaboration between managers.

Introduction of multiple algorithms that define the behaviour
of a specific autonomic manager and its relationship with other
managers in that management model. These algorithms include
the start-up, processing, termination detection and communi-

cation message inference from policies (Chapter 5).

Design of a deployment system based on the management model
proposed to automate the deployment of different autonomic
managers across the computing environment with minimum ad-

ministrative efforts (Chapter 6).

Creation of multiple algorithms as part of this deployment sys-
tem such as element discovery, members addition and members
removal (Section 6.4 and Section 6.5). The time complexity of
element discovery algorithm is O(n?) where n is the number of
AMs that should be deployed in the whole computing environ-

ment (e.g. number of nodes in the management tree). The time
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complexity of members addition algorithm is O(log(n)) and the

members removal is O(n) in the worst case.

We also evaluated these ideas in two different experimental set-
tings. In one case, we implemented this approach in a small private
cloud and measured the potential advantages of a hierarchical ap-
proach. We also implemented some of our ideas and algorithms in
a real world setting involving a high frequency trading cloud infras-

tructure.

8.3 Future Work

Cooperating autonomic managers for managing a cloud infrastruc-
ture seems to offer some promises. The hierarchical organization
of managers has advantages and seems to be a good approach in
the application domain in which we used it. However, there are
other means of organizing managers that need to be investigated

(e.g. peer-to-peer).

Specific items for future work include:

e Considering other types of organizations for autonomic man-
agers (e.g. peer-to-peer approach) and compare it with the cur-

rent hierarchical structure.

e There will be more autonomic managers deployed in the system
as the number of levels increase in the management hierarchy.
As part of the future work, it would be interesting to see what

is the overhead of this management model (e.g. in terms of
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network traffic due to communication messages) where there

are more levels of hierarchy involved.

e It would also be interesting to see what policies will look like
in higher level managers when the levels of the management

hierarchy increase.

e There has been a lot of research about policy decomposition.
Are those methods applicable to a management model like this?
or does the hierarchical organization of managers in this model

help to facilitate the decomposition process?

Further work on this approach can lead to more automated man-
agement of cloud environments enabling more efficient use of the
cloud infrastructure and as well as meeting SLA requirements while

using fewer resources.
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Appendix A

Managed Element Infos

Listing A.1: LocalMEI. java

package net.ponder2.managedobject;

/**
* imports removed to save space
*/
public abstract class LocalMEI extends P20bject{
private static Logger logger =
Logger .getLogger (LocalMEI.class);
private String name;

private String amName;

public LocalManagedObject(String name, String amNameInside) {
this.name = name;

this.amName = amNamelInside;

@Ponder2op ("getAMName")
public String getAmName () {

return amName;

public void setAmName (String amName) {

this.amName = amName;

public String getName () {

return name;
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public void setName(String name) {

this.name = name;

protected abstract void refreshMetricValues ();

@0verride
public P20bject readXml(TaggedElement xml,
Map<Integer , P2Serializable> read)
throws Ponder20perationException,
Ponder2ArgumentException {
// TODO Auto-generated method stub

return null;

Listing A.2: ApacheMEI. java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/
public class ApacheMEI extends LocalMEI {
private static Logger logger =

Logger .getLogger (ApacheMEI.class);

/**

* MEI Metrics

*/
public float responseTime;
public float totalAccesses;
public float totalKBytes;
public float cpuload;
public float upTime;
public float reqPerSec;
public float bytesPerSec;
public float bytesPerReq;
public float busyWorkers;
public float idleWorkers;

public boolean runningStatus = false;
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@Ponder2op ("runningStatus")
public boolean isRunning() {

return runningStatus;

@Ponder2op ("responseTime")
public float getResponseTime () {

return responseTime;

/**

* MEI Attributes

*/
private float maxClients;
private float maxKeepAliveRequests;
private float keepAliveTimeout;
private float minSpareThreads;
private float maxSpareThreads;

private float threadsPerChild;

QPonder2op ("maxClients")
public float getMaxClients () {

return maxClients;

QPonder2op ("maxClients:")

public void setMaxClients(float maxClients) {
this.maxClients = maxClients;
writeProperties ();

restartServer ();

}

private String apachePath;
private String confFilePath;

VAZ

* Constructor

*/
public ApacheMEI (String name, String amName) {
super (name , amName) ;

apachePath = "/etc/apache2";
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null) {

throw new RuntimeException("Noypath,for Apacheyset.");

if (apachePath =

by
confFilePath = apachePath + "/apache2.conf";
readProperties () ;

}

J**
* MEI Actions
*/
public void startServer () {
if (Common.executeCommand("/etc/init.d/apache2,start")
== null)
logger.error ("Could not,start apache");
else
logger.info ("apache started successfully");

readProperties ();

3

public void stopServer () {

if (Common.executeCommand("/etc/init.d/apache2 ,stop")
== null)

logger.error ("Could not,stopyapache");

else

logger.info ("apache stoped successfully");

QPonder2op ("restart")

public void restartServer () {

if (Common.executeCommand("/etc/init.d/apache2 restart", true)
== null)

logger.error ("could not,restart apache");

else
logger.info("apache restarted successfully");

readProperties ();

3

QPonder2op("increaseMaxClients:max:")
public void increaseMaxClients(float amountToIncrease, float max){
if (this.maxClients + amountToIncrease <= max)
setMaxClients (this.maxClients + amountTolIncrease);
else {
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String ponderTalkString =
"root/event/SendHelpReqEvent create";
String result;
try {
String p2xml = P2Compiler.parse(ponderTalkString);
P20bject value = new XMLParser ().execute(
SelfManagedCell.RootDomain, p2xml)
} catch (Exception e) {
e.printStackTrace ();

/* *
* Private and protected methods (Helper methods)
* removed to save space

*/

Listing A.3: VirtualMachineMEI. java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/
public class VirtualMachineMEI extends LocalMEI{
private static Logger logger =

Logger .getLogger (VirtualMachineMEI.class);

/**

* MEI Metrics

*/
private float cpuUtilization;
private float memoryUtilization;
private String ip;
private int memoryMB; // In MB

@Ponder2op ("getIP")
public String getIp() {

return ip;
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public float getCpuUtilization() {

return cpuUtilization;

QPonder2op ("memoryUtil")
public float getMemoryUtilization() {

return memoryUtilization;

public int getMemoryMB () {

return memoryMB;

@Ponder2op ("setIP:")
public void setIp(String ip) {
this.ip = ip;

private static final int CONVERSION_MB_TO_KB = 1024;

VAT
* Constructor
*/
public VirtualMachineMEI (String name, String amName) {
super (name , amName) ;

readProperties () ;

/ k%
* MEI Actiomns
*/
QPonder2op ("setMem:")
public void setMemoryMB(int mbMem) {
int kbMem = toKB(mbMem);

if (Common.executeCommand("virsh,-c,qemu:///system setmem "

+ this.getName () + "," + kbMem) == null) {
logger.error ("Could_ not,setymemory, to," + kbMem + " KB");
return;
} else {

logger.info("set memory, Successfully to:," + kbMem + "_KB");
this.memoryMB = mbMem;

}
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@Ponder2op ("increaseMem:max:")
public void increaseVMMemory (int amountToIncrease, int max) {
if (this.memoryMB + amountToIncrease <= max) {
setMemoryMB (this.memoryMB + amountTolIncrease);
logger.info("Increasedmemory,to:," + (this.memoryMB));
} else {
String ponderTalkString = "root/event/SendHelpReqEvent create";
String result;
try {
String p2xml = P2Compiler.parse(ponderTalkString);
P20bject value = new XMLParser ().execute(
SelfManagedCell.RootDomain, p2xml);
} catch (Exception e) {
e.printStackTrace ();
}
}
¥
public void startVM() {
if (Common.executeCommand("virsh,-c,qemu:///system,start,"
+ this.getName ()) == null)
logger.error ("Could not,start VM " + this.getName ());
else

logger.info(this.getName () + " VM started, successfully");

readProperties () ;

}

/%%
* Private and protected methods (Helper methods)
*/

private void readProperties() {

BufferedReader domainInfoReader;

String line = null;
try {
domainInfoReader = Common

.executeCommand ("virsh,,-c qemu:///system_ dominfo "
+ this.getName ());
while ((line = domainInfoReader.readlLine()) != null) {
if (line.startsWith("Usedmemory:")) {
memoryMB = toMB(Integer.parseInt((line.split("y")[5]1)));
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}

domainInfoReader.close ();

} catch (IOException e) {
logger.error ("Problem_ reading,,domain_ info", e);

} catch (NumberFormatException e) {

logger.error ("Could not,parse", e);

3

private void writeProperties () {
int kbMem = toKB(memoryMB) ;
if (Common.executeCommand ("virsh,-c,qemu:///system setmem’
+ this.getName () + "_," + kbMem) == null)

logger.error ("Could not,set memory");

@0verride
protected void refreshMetricValues () {
try {
RMIReceiveInterface pt = (RMIReceiveInterface) Naming
.lookup("rmi://" + ip + "/" + this.getAmName ());
memoryUtilization =
pt.executePonderTalk("root/am/system memUtil")
.asFloat ();
cpuUtilization = pt.executePonderTalk("root/am/system,cpultil")
.asFloat ();
} catch (Exception e) {
logger.error ("Getting MemUtil, from: rmi://" + ip + "/"
+ this.getAmName ());
e.printStackTrace ();
memoryUtilization = O;

cpuUtilization = 0;

private int toMB(int kbMem) {
return kbMem / CONVERSION_MB_TO_KB;

private int toKB(int mbMem) {
return mbMem * CONVERSION_MB_TO_KB;
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Listing A.4: NodeMEI java

package net.ponder2.managedobject;

/* *

* imports removed to save space

*/
public class NodeMEI extends LocalMEI{
private static Logger logger =

Logger .getLogger (NodeMEI.class) ;

/**

* MEI Metrics

*/
private float cpuUtilization;
private float memoryUtilization;

private String ip;

public float getCpuUtilization() {

return cpuUtilization;

QPonder2op ("memoryUtil")
public float getMemoryUtilization() {

return memoryUtilization;

@Ponder2op ("getIP")
public String getIp() {

return ip;

@Ponder2op ("setIP:")
public void setIp(String ip) {
this.ip = ip;

public boolean helpReq = false;

/% %

* Comstructor
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*/
public NodeMEI(String name, String amName) {

super (name , amName) ;

ok *
* Private and protected methods (Helper methods)
*/
@0verride
protected void refreshMetricValues () {
try {
RMIReceivelInterface pt =
(RMIReceivelInterface) Naming.
lookup("rmi://"+ip+"/"+this.getAmName ());
memoryUtilization =
pt.executePonderTalk ("root/am/system memUtil").asFloat ();
cpuUtilization =
pt.executePonderTalk ("root/am/system,cpultil").asFloat ();
} catch (Exception e) {
logger.error ("Getting MemUtil, from: rmi://"+ip+"/"+
this.getAmName ());
e.printStackTrace ();
memoryUtilization = O0;

cpuUtilization = O;

Listing A.5: SystemMEI. java

package net.ponder2.managedobject;

/* *
* imports rTemoved to save space
*/

public class SystemMEI{

private static Logger logger = Logger.getlLogger (SystemMEI.class);

/% %
* MEI Metrtics: All other MEOs
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* 2n this system
*/
private HashMap<String, LocalMEI> managedObjects;

@Ponder2op ("create")
public SystemMEI () {
managedObjects = new HashMap<String, LocalManagedObject>();

PropertyConfigurator.configure("src/resource/logger.properties");

}

@Ponder2op ("remove:")
public void removeManagedObject (String name) {

managedObjects.remove (name);

@Ponder2op ("refresh")
public void refreshAll (O{
for (LocalManagedObject mo : managedObjects.values()) {

mo.refreshMetricValues ();

/% *
* MEI Actions
*/

/%%
* (Greedy approach: find the least busy node.
* @return NodelName
*/
QPonder2op ("findBestNode")
public String finsBestNode (){
float minMemUtil = Float.MAX_VALUE;
String bestNode = "";
for (LocalMEI mo : managedObjects.values()) {
if (mo instanceof NodeMEI){
if (((NodeMEI) mo).getMemoryUtilization ()
< minMemUtil ){
minMemUtil =

((NodeMEI) mo).getMemoryUtilization();
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bestNode =
((NodeMEI) mo).getName ();
}
}
}
logger.info ("Thebest node toymirate toyis:" + bestNode);

return bestNode;

3

QPonder2op ("sendMigrationNotifyMsg:bestNode: ")
public void sendMigrationNotifyMsg(String toNode, String bestNode) {
String ponderTalkString = "root/event/MigrationEvent create";
try {
String p2xml = P2Compiler.parse(ponderTalkString);
P20bject value = new XMLParser ().execute(
SelfManagedCell.RootDomain, p2xml);
} catch (Exception e) {
e.printStackTrace ();

/**

* Greedy Approach: find the least busy VM to migrate.

* Q@return

*/
@Ponder2op ("findBestVM")
public String findVMToMigrate (){
float minMemUtil = Float.MAX_VALUE;
String bestVM = "";
for (LocalMEI mo: managedObjects.values()) {
if (mo instanceof VirtualMachineMEI)({
if (((VirtualMachineMEI) mo).getMemoryUtilization ()

< minMemUtil ){
minMemUtil =
((VirtualMachineMEI) mo).getMemoryUtilization () ;
bestVM = ((VirtualMachineMEI) mo).getName ();

}
}
}
logger.info ("Thebest VM, toymirate is:" + bestVM);
return bestVM;

}
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QPonder2op ("migrate:To:")

public void migrate(String vmName, String destIP){

if (vmName == null || vmName.isEmpty ()){
logger.error ("No,VM_ has,chosen to, be migrated.");
return;

}

String destURI = "qgemu+ssh://" + destIP
+"/system,--migrateurigtcp://" + destIP + ":49154";

if (Common.executeCommand ("virsh ,-cyqemu:///system migrate ,--live"
+ vmName + "_," + destURI) == null){
logger.error ("Could notymigrate, " + vmName

+ ",To,"+destURI);

return;
}else{
logger.info ("Successfully_ migrated," + vmName
+ ",To,"+destURI);
¥
X




Appendix B

Technology Scripts

Listing B.1: KVM.rb

#!/usr/bin/ruby

def hasKVM
if ‘which virsh ‘.include?("noyvirsh_,in")
return "no"

else

return "yes
end

end

def 1listVMs
return [] if not hasKVM()
return ‘virsh list ‘.split("\n")[2..-1].
map{|line| line.strip().split("y")[1]1}

end

command = ARGV [0]

puts hasKVM() if command == "isvalid"

puts 1listVMs() if command == "childrenlist"

Listing B.2: Ubuntu.rb

#!/usr/bin/ruby

def isUbuntu
if ‘lsb_release -a 2>/dev/null | grep ID°‘.
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split ("
return
else
return
end
end

def listChildren
return []

end

ARGV [0]
puts isUbuntu ()
puts listChildren() if

command

if command

CHAPTER B. TECHNOLOGY SCRIPTS

:")[1].strip()=="Ubuntu"
llyesll

no

"isvalid"

command == "childrenlist"
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