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Abstract 

Habitat fragmentation and loss are leading threats to global biodiversity and can alter patterns 

of dispersal, population dynamics, and genetics with implications for long-term species 

persistence. Most habitat fragmentation research has focused on recently fragmented species 

that historically occupied interconnected habitat patches. We know comparatively little about 

how naturally fragmented species may respond to habitat loss. For these species, local habitat 

patch quality may influence the dynamics and genetics of populations more than the structure 

of the surrounding landscape (e.g., degree of isolation of suitable habitat). I examined aspects 

of the ecology and evolution of populations inhabiting fragmented landscapes, using two 

butterfly species representing relict populations that are 1) recently fragmented by 

anthropogenic activities (Mormon metalmark, Apodemia mormo), and 2) naturally 

fragmented (bog copper, Lycaena epixanthe). I assessed patterns of genetic (amplified 

fragment length polymorphism, AFLP) and flight-related morphological variation, and their 

relationship to measures of surrounding landscape structure and local habitat quality.   

 Population genetic analysis of the anthropogenically fragmented Mormon metalmark 

revealed a high degree of spatial genetic structure, indicating limited gene flow, despite a 

small geographic scale (<20 km). Management of this endangered population should focus 

on increasing connectivity among the most isolated sub-populations and through urban areas. 

For the naturally fragmented bog copper, genetic diversity was explained by variables related 

to patch quality rather than landscape structure. Movement ability in the bog copper (inferred 

by flight morphology) appeared to depend on both local habitat conditions and the 

surrounding landscape. Also, using an AFLP-based genome scan approach, I identified 

signatures of selection in the bog copper associated with fine-scale landscape heterogeneity. 
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My work on the bog copper highlights the importance of considering the effects of local 

habitat conditions, in addition to habitat isolation, for conservation of fragmented 

populations.  

 Finally, I also reviewed the current literature (470 articles) to evaluate the quality of 

AFLP data used in ecological and evolutionary research. I discovered a pervasive lack of 

consistency and transparency in both the methods used to assess data reproducibility, and in 

the details of methodology presented. This work has identified an important publishing gap 

in molecular ecology research.  
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Chapter 1  

1 Introduction and literature review 

1.1 Habitat fragmentation 

Habitat fragmentation is the breaking up of a previously continuous expanse of habitat 

into a number of smaller sized patches, isolated from one another by an unfavourable 

landscape matrix (Noss et al. 2006; Habel and Zachos 2012). Habitat fragmentation is 

often accompanied by habitat loss, and is considered a leading threat to biodiversity 

worldwide (Caughley 1994; Debinski and Holt 2000; Sala et al. 2000; Foley et al. 2005), 

with negative impacts that have been documented across a wide range of taxonomic 

groups including plants (Hobbs and Yates 2003), invertebrates (Didham et al. 1996), 

amphibians (Stuart et al. 2004), birds and mammals (Andrén 1994). Predicting whether 

populations in highly fragmented landscapes will be able to survive and evolve in small, 

isolated habitat patches has thus become a major research theme for conservation 

biologists (Fazey et al. 2005). Changes in landscape structure and composition associated 

with habitat fragmentation result in the alteration of many biological processes, including 

gene flow and genetic drift, which influence levels of genetic diversity within and among 

local populations (Keyghobadi 2007). Alterations in patterns of population genetic 

variation may, in turn, affect individual fitness and evolutionary potential, with 

implications for both short- and long-term population viability (Frankham et al. 2002). 

Consequently, conservation biologists have increasingly become concerned with studying 

the genetic impacts of habitat fragmentation on populations (Pertoldi et al. 2007).  
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 While habitats can be fragmented by anthropogenic activities such as agriculture 

and urbanization, they can also be naturally fragmented due to abiotic (e.g., geology, 

climate) and biotic (e.g., presence of hosts, food) factors (Hampe and Jump 2011; Habel 

and Zachos 2012). The process of natural habitat fragmentation may take place slowly 

over longer time scales (e.g., millennia; Lomolino et al. 2010), in contrast to 

anthropogenic habitat fragmentation which typically occurs within a relatively short time 

period (i.e., centuries, decades or even years; Lindenmayer and Fischer 2006).  

 

1.2 Relict species and populations 

Species or populations which occur as small and geographically isolated remnants of a 

formerly more widespread distribution are known as ‘relicts’ (Cassel-Lundhagen 2010; 

Lomolino et al. 2010) and their formation can be attributed to either historical or 

contemporary habitat fragmentation. For example, many arctic-alpine species which are 

currently restricted to disjunct areas on mountain tops and/or more Northern latitudes 

(e.g., mountain avens flowering plant, Dryas octopetala, Skrede et al. 2006; violet copper 

butterfly, Lycaena helle, Habel et al. 2011) are relicts species whose once widespread 

distributions have been gradually restricted by warming temperatures and the 

accompanying loss of suitable habitat following the last glacial period (Habel et al. 

2010). On the other hand, species which were until relatively recently quite prevalent and 

widespread may have become spatially restricted to remnant relict populations as result 

of human-induced habitat loss and fragmentation (e.g., North American brown bear, 

Ursus arctos, Paetkau et al. 1998; regal fritillary butterfly, Speyeria idalia, Keyghobadi et 

al. 2012). In some cases, the small, isolated nature of naturally formed relict habitat 
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patches may be further exacerbated by contemporary fragmentation processes            

(e.g., inland hypersaline environments in Western Mediterranean, Gómez et al. 2005). 

Due to their limited distributions and increasing rarity, many relict species and 

populations are now of high conservation concern (Habel et al. 2010). As the overall rate 

and manner in which habitats become fragmented (i.e., anthropogenic vs. natural) can 

cause divergent evolutionary and genetic trajectories for populations (MacDougall-

Shackleton et al. 2011; Habel and Zachos 2012), it is vital that management strategies for 

relict species and populations consider the history of the landscape and the processes by 

which population isolation has arisen. 

 

1.3 Habitat fragmentation versus fragmented habitats  

Species which occur in naturally interconnected habitats are predicted to be negatively 

affected by sudden human-induced habitat fragmentation (Habel and Zachos 2012). In 

theory, smaller and more isolated habitat patches will support small populations which 

experience reduced gene flow and increased genetic drift as a result of decreased 

dispersal and small local effective population sizes, respectively (Keyghobadi 2007). 

Over time, genetic diversity within populations will erode as a result of increased genetic 

drift and reduced gene flow, at the same time increasing genetic differentiation among 

populations (Templeton et al. 1990; Frankham et al. 2010). Additionally, intrapopulation 

genetic diversity may be further lost and genetic differentiation increased through 

bottlenecks and local extinctions which often accompany population fragmentation 

(Gilpin 1991; Andersen et al. 2004; Keller et al. 2004; Broquet et al. 2010). The 

disruptions to the drift-gene flow equilibrium which occur in recently fragmented 
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populations are also predicted to lead to an increase in the occurrence of inbreeding and 

inbreeding depression, as well as the random fixation of deleterious mutations and a loss 

of adaptive potential (Lande 1998; Keller and Waller 2002; Frankham et al. 2010). 

Changes in these genetic processes will contribute to an overall decline in population 

viability as well as the ability to respond to future environmental change, and thus 

increase the probability of extinction (Reed and Frankham 2003; Frankham 2005a). 

 In contrast, organisms which occupy naturally fragmented habitats are typically 

specialist species adapted to living within a habitat-matrix mosaic (Habel and Zachos 

2012). Because of their ecological specialisation, populations are geographically isolated 

in discrete habitat patches and experience limited gene flow. As a result, local 

populations are typically small in size and exhibit lower genetic diversity, as well as 

increased interpopulation genetic differentiation (Habel and Schmitt 2012). Interestingly, 

however, these specialist species appear to have the capacity to persist over long periods 

of time despite the genetic isolation of populations (Habel and Schmitt 2012). It is 

theorized that deleterious alleles may have been purged from these populations over 

many generations (Frankham et al. 2001; Habel and Zachos 2012), and that their current 

genetic make-up consists of a small number of alleles which are highly adapted to local 

habitat conditions (Watt et al. 2003; Karl et al. 2008). Thus, low genetic diversity in these 

populations is actually associated with the ability to resist the negative consequences of 

genetic bottlenecks, inbreeding or fluctuations in local population size (Crnokrak and 

Barrett 2002; Reed 2010) and means that populations are not dependent on gene flow for 

genetic refreshment (Habel and Schmitt 2012). Indeed, several studies have now 

documented long-term persistence of genetically depauperate populations living in 
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geographic isolation (e.g., black mangrove tree, Aegiceras corniculatum; Ge and Sun 

1999; San Nicolas Island fox, Urocyon littoralis dickeyi, Aguilar et al. 2004; Chillingham 

cattle, Bos taurus, Visscher et al. 2001; Red Apollo butterfly, Parnassius apollo, Habel et 

al. 2012). However, while low genetic variation may not pose an immediate concern for 

populations living under isolated conditions, the adaptive scope of populations to respond 

to future environmental change will surely be limited.  

 Clearly landscape history is important to consider when studying the ecology and 

genetics of species inhabiting discrete habitat patches (Habel and Zachos 2012). 

Although many naturally patchy habitat types are now becoming further fragmented due 

to contemporary anthropogenic activities, the specialists which occupy these habitats may 

not be as negatively affected by increased habitat isolation as other species because they 

have essentially adapted to persist under conditions of low gene flow and genetic 

diversity. For such specialists, local habitat patch characteristics (e.g., habitat size and 

quality) may be more likely to affect population persistence than habitat isolation. A 

recent theoretical simulation supports this hypothesis (Ye et al. 2013), however, empirical 

evidence of this relationship is limited.  

 

1.4 Role of habitat quality in fragmented landscapes 

In the context of habitat fragmentation and species conservation, most theoretical and 

empirical research to date has focused on understanding how habitat patch area and 

isolation influence dispersal, population size and the likelihood of extinction (i.e.,‘patch 

area-isolation paradigm’; Hanski and Gaggiotti 2004; Prugh et al. 2008) with 
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considerably less emphasis on the role of within-habitat patch quality (Ye et al. 2013). 

However, there is an increasing body of evidence which indicates that heterogeneity in 

quality among habitat patches can be an extremely important driver of local population 

dynamics and long-term persistence in fragmented landscapes (Thomas et al. 2001; 

Baguette et al. 2011; Ye et al. 2013) and thus should be included in ecological models 

(Fleishman et al. 2002; Schooley and Branch 2007). Several studies have now 

demonstrated the negative impacts of decreased habitat quality on the abundance and 

distribution of populations occupying fragmented landscapes (e.g., Dennis and Eales 

1997; Thomas et al. 2001; Fleishman et al. 2002; Krauss et al. 2004). In contrast, there 

have been very few studies to date which have sought to evaluate the effects of spatial 

heterogeneity in habitat patch quality on measures of population genetic structure and 

diversity (but see Porlier et al. 2009; Pitra et al. 2011; Alda et al. 2013). In theory, higher 

quality habitat patches should support larger populations which are more genetically 

diverse; however, empirical evidence of this relationship is still largely lacking (de Vere 

et al. 2009; Pitra et al. 2011). Understanding of the genetic consequences of changes in 

habitat quality in addition to habitat patch size and isolation will be enable us to more 

accurately predict the dynamics and long-term persistence of populations in fragmented 

landscapes.  

 

1.5 Evaluating the evolutionary potential of fragmented 
populations 

Given the low levels of genetic diversity characteristic of fragmented populations, both 

anthropogenically and naturally induced, a major challenge in species conservation is 
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how to maintain the evolutionary potential of populations so that they have the ability to 

respond to future environmental stressors such as climate change, introduced diseases or 

parasites (Frankham 2005b; Allendorf et al. 2010). Most studies of the genetic effects of 

habitat fragmentation to date have focused on neutral genetic variation through which the 

relative influences of genetic drift and gene flow on fragmented populations can be 

inferred (Keyghobadi 2007). However neutral markers do not evolve directly in response 

to selection, and whether estimates of neutral genetic diversity accurately reflect adaptive 

potential is debated (Luikart et al. 2003; Holderegger et al. 2008; Frankham 2010). 

Therefore, in order to fully understand the effects of habitat fragmentation on patterns 

and levels of genetic diversity, adaptive genetic variation should also be examined 

(Holderegger et al. 2010). This will provide for more accurate assessments of local 

population viability and predictions on whether populations have the capacity to respond 

to changing environmental conditions (Allendorf et al. 2010). This is an area of research 

which has up until recently been relatively underexplored. However, new genomic 

methods and analytical tools provided through the emerging disciplines of population and 

landscape genomics (Luikart et al. 2003; Storz 2005; Joost et al. 2007; Manel et al. 2010) 

now make it possible to more readily study patterns of adaptive genetic variation in 

natural populations of non-model organisms (Holderegger et al. 2008).  

 

1.6 The role of movement in fragmented landscapes 

Particularly for small, isolated populations inhabiting fragmented landscapes, dispersal is 

a key life-history trait which influences local and regional population dynamics, 

population genetics and adaptive evolution (Hanski 1999; Ronce 2007; Nitepõld et al. 
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2009; Benton and Bowler 2012). Dispersal ability or tendency may itself become altered 

due to changes in landscape structure however, thereby affecting many aspects of the 

ecology and evolution of populations. Therefore, understanding how movement ability or 

propensity is influenced by habitat fragmentation may allow us to better predict how the 

dynamics and genetics of local populations will respond to landscape change (Stevens 

and Coulon 2012). Increasing isolation of habitat patches could potentially select for 

individuals with more mobile phenotypes who are able to traverse longer distances (e.g., 

Taylor and Merriam 1995). Conversely, because movement between habitat patches is 

physically costly and associated with many risks, increased isolation of patches may 

select for a decreased dispersal propensity (e.g., Dempster 1991; Schtickzelle et al. 2006). 

Such changes to the movement abilities of individuals among local habitat patches have 

the potential to either exacerbate or ameliorate the effects of habitat fragmentation on 

populations.  

 In addition, it has been recently suggested that spatial heterogeneity (e.g., in 

resource availability) within habitat patches can impose significant selective pressures on 

routine movements which can affect overall dispersal ability and morphology (Baguette 

and VanDyck 2007). ‘Routine’ or ‘station keeping’ movements are daily tasks which for 

the most part occur within a habitat patch, for example mate-location and foraging 

activities (Van Dyck and Baguette 2005). Local conditions within habitat patches may 

affect mobility, potentially in contrasting directions to the effects of surrounding 

landscape structure (Van Dyck and Baguette 2005; Turlure et al. 2010). While the effects 

of habitat fragmentation on movement and dispersal ability have been relatively well 

studied (e.g., Thomas et al. 1998; Hill et al. 1999a, b; Norberg and Leimar 2002; Merckx 



9 

 

et al. 2003; Vandewoestijne and Van Dyck 2011), we know comparatively very little 

regarding the influence of within-patch habitat heterogeneity (e.g., spatial variation in 

resource availability) on the evolution of movement ability (Turlure et al. 2010; Ye et al. 

2013). Therefore, future studies which examine movement ability in relation to both 

landscape structure and local habitat characteristics will provide new insights into the 

factors shaping dispersal propensity of populations. 

 

1.7 Butterflies: important flagship species and a model 
system for the study of habitat fragmentation 

Butterflies (Order: Lepidoptera) are one of the most extensively studied and well-

described groups of invertebrates (Gaston 1991). Due to their strict ecological 

requirements, butterflies are recognized as potentially valuable indicators of ecosystem 

health (McGeoch 2007) and climate change (Hellman 2002; Parmesan 2003). In recent 

years many species have experienced marked declines in abundance, and in some 

regions, such as the U.K., these losses have been well-documented and the causes well-

understood. Consequently, butterflies are often the focus of conservation efforts as 

protection of their habitat is seen as a proxy for more general species conservation (e.g., 

Fox et al. 2011). In addition, in comparison to other threatened invertebrate taxa, 

butterflies are perceived as charismatic and aesthetically appealing animals, and have 

thus become an important flagship for raising awareness and developing new 

methodologies for invertebrate species conservation (Samways 1994; New 1997).  
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 Butterflies have long been used as a model organism for the study of population 

biology (Gilpin and Hanski 1991; Hanski 1999; Ehrlich and Hanski 2004). Their utility in 

this field stems from the relative ease with which they can be observed and manipulated 

in both laboratory and field experiments and their well studied life-histories and general 

ecology (Boggs et al. 2003). As well, species within this taxonomic group are 

ecologically diverse and exhibit population structures ranging from tightly ‘closed’ to 

extremely ‘open’, possess dispersal abilities ranging from sedentary to migratory, and 

utilize resources which range in distribution from spatially restricted to widespread 

(Dover and Settele 2008 and references therein). Furthermore, these ecological traits can 

even vary considerably within species (Stevens et al. 2010). Much research has been 

conducted on the factors affecting butterfly dispersal, population genetic structure, 

population dynamics and spatial structure (e.g., Hill et al. 1996; Keyghobadi et al. 1999; 

Schtickzelle et al. 2002; Louy et al. 2007). Thus they are ideal candidate species with 

which to study the effects of habitat fragmentation on populations.  

 

1.8 Population genetic studies of butterflies using AFLPs 
and non-lethal tissue sampling 

Microsatellite molecular markers (short, tandemly repeating DNA sequences with a 

repeat motif of one to six nucleotides) are one of the most powerful and commonly 

applied marker systems in current population genetic and evolutionary research due to 

their high variability and presumed selective neutrality (Bruford and Wayne 1993; Zhang 

and Hewitt 2003). In most Lepidoptera species however, microsatellite sequences are 

associated with repetitive flanking regions which makes it extremely challenging to 
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isolate successfully a sufficient number of microsatellite markers (e.g., > 10 loci) for 

population genetic studies (Nève and Meglécz 2000; Zhang 2004). Furthermore, scoring 

microsatellites and calculating population genetic estimates for many Lepidopteran 

species is often complicated by particularly high null-allele frequencies which must be 

accounted for (Meglécz et al. 2004). Consequently many genetic studies of butterflies 

have employed other marker types including allozymes (e.g., Nève et al. 2008), 

mitochondrial DNA (mtDNA; e.g., Proshek et al. 2013), random amplified polymorphic 

DNAs (RAPDs; e.g.,Vandewoestijne and Baguette 2004), and amplified fragment length 

polymorphisms (AFLPs; Takami et al. 2004; Collier et al. 2010; Leidner and Haddad 

2010 ).  

 For studies of population genetic structure and diversity in non-model species, 

AFLPs are arguably the most suitable alternative marker system (Meudt and Clarke 

2007). The AFLP technique (Vos et al. 1995) generates a large number of informative 

and reproducible multilocus markers (>100) which are widely distributed throughout the 

genome (Meudt and Clarke 2007). AFLPs are relatively quick and inexpensive to 

produce, and a priori sequence knowledge of the study organism is not required (Mueller 

and Wolfenbarger 1999; Bensch and Åkesson 2005). In comparison to other multilocus 

genomic techniques such as randomly amplified polymorphic DNA (RAPDs) and 

intersimple sequence repeats (ISSRs), AFLPs have been shown to be far more robust, 

informative and reproducible (Meudt and Clarke 2007 and references therein). Briefly, 

the AFLP protocol involves complete digestion of genomic DNA with restriction 

enzymes, followed by two cycles of selective polymerase chain reaction (PCR) 

amplifications and capillary electrophoresis of a subset of the fragments to produce a 
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multi-locus profile for every individual (Bensch and Åkesson 2005). Unlike PCR-based 

molecular systems where the target marker is directly amplified (e.g., microsatellites, 

mtDNA), the first step of the AFLP method involves a restriction and ligation, and thus 

requires a sufficient quantity (~ 100-1000 ng) and quality of template DNA (Meudt and 

Clarke 2007). AFLP markers are dominant, meaning that heterozygotes are not 

distinguishable from homozygotes (Meudt and Clarke 2007). Thus, a limitation of using 

AFLPs (or any dominant marker type) for population genetic analyses is that allele 

frequencies must be estimated (Krauss 2000). For AFLPs this is commonly accomplished 

through the use of a robust Bayesian method (Zhivotovsky 1999). As well, the di-allelic 

nature of AFLP loci means that individually, they are less informative than 

microsatellites. However, because such a large number of loci are typically generated, 

AFLPs have the statistical power to detect even small genetic differences and in studies 

examining taxonomic and population differentiation AFLPs have actually been shown to 

out-perform microsatellites (Perrie et al. 2003; Woodhead et al. 2005; Meudt and Clarke 

2007). As well, an additional advantage to generating such a large number of markers 

which are scattered across the genome is that some loci may be linked to genes or 

genomic regions under selection (Bonin et al. 2007). Using genome scan approaches it is 

possible to identify those AFLP loci exhibiting signatures of selection, which can then be 

used for example to study relationships between adaptive genetic variation and 

environmental factors (Holderegger et al. 2010). Thus for non-model species when no 

prior genomic or phenotypic information is available, AFLPs are a particularly useful 

molecular tool for studying the role of selection in shaping patterns of genetic variation 

among populations (Meudt and Clarke 2007).  
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  In genetic studies of butterflies, particularly for threatened species, non-lethal 

methods of tissue sampling (e.g., wing tissue sampling, leg removal) are increasingly 

being employed in an effort to minimize the effects of sampling on populations and 

justify the collection of larger sample sizes (Lushai et al. 2000; Keyghobadi et al. 2006, 

2009; Vila et a. 2009; Hamm et al. 2010). Yet to my knowledge no AFLP studies to date 

have used DNA samples collected non-lethally. Recently, my colleagues and I 

demonstrated that small, non-lethally sampled, pieces of butterfly wing tissue yield DNA 

in concentrations adequate for the generation and analysis of AFLPs (Keyghobadi et al. 

2009). We have also found non-lethal sampling to have no effect on individual survival, 

and flight and reproductive behaviours in two butterfly species thereby validating the use 

of these methods which have long been assumed to be non-detrimental (Koscinski et al. 

2011; Crawford et al. 2013). For population genetic studies of butterflies therefore, not 

only do AFLPs represent a suitable alternative molecular marker to microsatellites, but 

through the use of non-lethally sampled tissue they are particularly useful for the study of 

endangered populations. 

 

1.9 The quality of AFLP data in ecological and evolutionary 
research 

An important caveat to consider when using AFLPs for population genetic studies is that 

differences in laboratory, peak-calling and locus-selection protocols can generate datasets 

varying widely in genotyping error rate (i.e., mismatch error rate of AFLP primer 

combinations), the number of loci used and, potentially, estimates of genetic diversity or 

differentiation. In my experience the majority of even recently published AFLP studies 
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do not provide clear details regarding the methodology followed, and do not quantify and 

report genotyping error. As a result, it can be challenging to make meaningful 

comparisons among studies. For example, in genetic studies of fragmented populations, 

researchers may be interested in evaluating how levels of genetic diversity and estimates 

of gene flow compare to other more connected populations. Without knowing the details 

of the methodologies used to generate the AFLP datasets and the overall quality of the 

loci used in genetic analyses (genotyping error rate) inter-study comparisons must be 

made with caution. Moreover, these problems also exist for other marker types such as 

microsatellites and next-generation sequencing techniques, particularly those which use 

restriction enzymes for fragment generation. Therefore, in order for genetic studies to be 

of value to conservation research it is important that all genotyping studies more 

transparently report the methodological details followed, and in particular the assessment 

of dataset reproducibility. Currently, I am not aware of any journals which enforce such 

standards for the publication of AFLP or any other genotype data. 

 

1.10 Dissertation structure 

My thesis consists of five data chapters which were designed as separate studies for 

independent publication. Chapters 2 and 3 have previously been published, and Chapters 

4 – 6 will soon be submitted for publication. The data chapters represent a compilation of 

case studies focused on understanding aspects of the ecology and evolution of remnant 

butterfly populations inhabiting fragmented landscapes. I employ multiple 

methodological approaches including analyses of neutral and adaptive genetic variation 

(AFLP-based), and flight-related morphology, to examine how local habitat 
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characteristics and surrounding landscape structure contribute to the dynamics and 

genetics of fragmented populations. As well, my thesis also includes a review study 

which examines the use of AFLPs in ecological and evolutionary research, highlighting 

the challenges associated with employing this marker system for genetic studies.  

 In Chapter 2 (“A call for more transparent reporting of error rate: the quality of 

AFLP data in ecological and evolutionary research”; Crawford et al. 2012) I conduct a 

detailed and extensive literature review to quantify the extent to which AFLP studies 

provide adequate information on AFLP locus reproducibility. I review current molecular 

ecology literature (470 recently published AFLP articles) to determine the proportion of 

studies that report an error rate and follow established guidelines for assessing error. 

Based on my results, I highlight current gaps in the publication standards for AFLP data 

and provide recommendations for both researchers and publishers regarding ways to 

improve the quality and transparency of the data used in all genotyping-based studies. 

 In Chapter 3 (“Fine-scale genetic structure of an endangered population of the 

Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs”; Crawford et al. 

2011), I investigate the genetic structure and diversity of a relict Canadian population of 

the Mormon metalmark butterfly using, for the first time, AFLP markers generated from 

non-lethal samples of butterfly wing tissue. Within the last century, the geographic range 

of the Mormon metalmark in British Columbia, Canada has been considerably restricted 

due to human activities. Currently, only a single population occurs, distributed across a 

small number of fragmented habitat patches. The functional connectivity and genetic 

status of these remnant sub-populations has been unknown, making it difficult to predict 

future population trends and develop an effective management strategy. Thus, the 
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objective of this study was to assess patterns of neutral genetic variation within and 

among sub-populations in order to identify potential barriers to movement and genetic 

exchange which could be targeted in future recovery plans. 

 In Chapter 4 (“Local patch characteristics determine patterns of genetic diversity 

in a glacial relict, peatland specialist butterfly”) I used AFLP markers to describe patterns 

of population genetic structure and diversity among local populations of the bog copper 

(Lycaena epixanthe), a glacial relict butterfly endemic to naturally fragmented peatland 

habitats. Relict species which inhabit naturally fragmented habitats are adapted to living 

under conditions of limited gene flow and low genetic diversity. It has been recently 

proposed that for these habitat specialists, population viability may be more dependent on 

local habitat patch characteristics than on structural characteristics of the surrounding 

landscape. However, few empirical tests of this hypothesis exist. In this study, I first 

aimed to evaluate whether the bog copper exhibits the genetic characteristics of a habitat 

specialist, and secondly whether differences in intrapopulation genetic diversity could be 

best explained by local patch characteristics (habitat patch size and quality) rather than by 

the surrounding landscape structure (structural connectivity of potential habitat). 

 In Chapter 5 (“Flight morphology corresponds to both broad and fine-scale 

landscape structure in a highly specialized glacial relict butterfly (Lycaena epixanthe)”), I 

investigated variation in flight-related morphology among populations of the bog copper. 

Flight morphology characters (e.g., thorax mass and wing loading) are a reliable proxy of 

flight ability in many butterflies, and have been shown to respond rapidly to ecological 

and landscape change. For habitat specialists like the bog copper, flight and mobility may 

reflect ecological conditions within habitat patches rather than broad-scale landscape 
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structure. However, we currently know very little about how within-patch habitat 

heterogeneity influences movement ability and related aspects of morphological design. 

Therefore, the purpose of this study was to determine the relative influence of local 

habitat patch characteristics and surrounding landscape structure on inter-population 

variation in flight morphology in the bog copper. 

 In Chapter 6 (“Molecular signatures of selection associated with fine-scale 

landscape heterogeneity in a relict butterfly, Lycaena epixanthe”), I assessed whether 

local populations of the bog copper butterfly exhibited molecular evidence of local 

adaptation using an AFLP-based genome scan approach. For relict habitat specialists 

such as the bog copper, which are naturally geographically restricted to discrete habitat 

patches, fine-scale landscape heterogeneity may be an important driver of local 

adaptation among populations. However, few empirical studies have explored this 

question. My previous genetic and morphological analyses (Chapters 4 and 5) suggested 

that both habitat patch characteristics and aspects of surrounding landscape structure may 

be imposing selective pressures on populations of the bog copper. Thus, the objectives of 

this study were to 1) identify candidate AFLP loci potentially under divergent selection 

using an outlier approach and 2) test for associations between allele frequencies of these 

candidate loci and habitat and landscape variables identified as influential in my previous 

genetic and morphological studies. 

 Finally, in Chapter 7, I conclude my thesis with a general summary of the insights 

provided by my dissertation research. 
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Chapter 2  

2 A call for more transparent reporting of error rate: The 
quality of AFLP data in ecological and evolutionary 
research1 

 

2.1 Introduction 

Amplified fragment length polymorphism (AFLP) analysis is an established multilocus 

genomic fingerprinting technique commonly employed in ecological and evolutionary 

research in a broad range of taxa (Bensch and Åkesson 2005). The popularity of the 

AFLP technique (Vos et al. 1995) can be attributed to the large number of informative 

markers (>100) that can be developed relatively easily and inexpensively without a priori 

knowledge of the study organism’s genome (Meudt and Clarke 2007). Applications of 

AFLPs in molecular ecology research are wide ranging and include determining levels of 

genetic diversity and population genetic structure, detecting hybridization, parentage 

analysis, detecting loci of ecological relevance, assignment of individuals, detecting 

markers associated with phenotype, and reconstruction of phylogenies (Bensch and 

Åkesson 2005; Meudt and Clarke 2007).  

                                                 

1
 A version of this chapter has been published and is presented here with permission from 

John Wiley and Sons. 

Citation: Crawford LA, Koscinski D and Keyghobadi N. 2012. A call for more 

transparent reporting of error rates: The quality of AFLP data in ecological and 

evolutionary research. Molecular Ecology, 21: 5911-5917. 
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 Though considered robust and reproducible, particularly in comparison to other 

dominant marker systems such as random amplified polymorphic DNAs (RAPDs) and 

inter simple sequence repeats (ISSRs), AFLPs are still susceptible to genotyping error 

(Mueller and Wolfenbarger 1999; Meudt and Clarke 2007). Genotyping errors are 

discrepancies found among multiple genotypes generated from the same sample (Bonin 

et al. 2004) and, regardless of the markers used, can result from causes such as low 

quality DNA, sample contamination, biochemical artefacts, and human error (Bonin et al. 

2007). For AFLPs specifically, errors can also arise from incomplete restriction digest 

reactions, co-migration of non-homologous fragments (allele homoplasy), PCR plate 

boundary artifacts, and errors during the interpretation of AFLP profiles such as scoring 

background noise as real peaks (Vekemans et al. 2002; Bonin et al. 2007; Holland et al. 

2008; Zhang et al. 2012). Detailed reviews of how genotyping error can be generated are 

provided by Bonin et al. (2004) and Pompanon et al. (2005).   

 In AFLP studies, reproducibility (i.e., inverse of genotyping error) often varies 

among loci, such that not all peaks in an AFLP profile should necessarily be retained for 

analysis. Rather, loci that contribute disproportionately to high error rates can be 

excluded and objective methods for doing so have been proposed (Whitlock et al. 2008; 

Herrmann et al. 2010). Thus, the overall reproducibility of AFLP datasets can vary as a 

result of differences in laboratory, peak-calling and locus-selection protocols (Pompanon 

et al. 2005). Conversely, for a given dataset, the number of loci retained for analysis can 

vary depending on the genotyping error rate that is accepted (e.g., Chapter 3, Crawford et 

al. 2011; Zhang et al. 2012).  
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Relatively little is known regarding the effects of AFLP error rate on downstream 

analyses and subsequent biological conclusions. In theory, genotyping errors could lead 

to inaccurate estimates of genetic diversity and population structure or false detection of 

selection (Vekemans et al. 2002; Koopman and Gort 2004; Bonin et al. 2007; Caballero 

et al. 2008). For example, Zhang et al. (2012) compared the results obtained from AFLP 

datasets varying in error rates (0, 1, 2, 3, 4 and > 4 %) and found that inaccurate 

inferences of a previously determined phylogeographic pattern were made based on 

datasets with > 4 % error. While it is possible that genotyping errors may not 

significantly bias overall conclusions (e.g., Bonin et al. 2004) such errors may contribute 

to higher levels of noise and reduce the power of the dataset (Meudt and Clarke 2007). 

Herrmann et al. (2010) showed that AFLP fragments selected using stringent criteria 

designed to reduce genotyping error resulted in marked differences in estimates of 

genetic diversity and genetic differentiation when compared with a dataset composed of 

randomly selected fragments.  

Thus, variation in results and parameter estimates among AFLP studies may in 

part be related to how the AFLP profiles were analyzed and how reproducible they are. 

Without knowing the methodological details for how a dataset was produced and its 

overall reproducibility, it is virtually impossible to critically assess the results, and make 

meaningful comparisons among studies (Pompanon et al. 2005).  

 The importance of quantifying and reporting genotyping error in molecular 

ecology studies has been well reviewed (see Bonin et al. 2004; Pompanon et al. 2005). 

However, in our experience, even recently published papers rarely provide adequate 

information on the reliability of AFLP datasets. To quantify objectively the extent of this 
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problem, we assessed the quality of AFLP datasets used in current molecular ecology 

research. We reviewed studies published in 2010-2011 that used AFLPs in population 

genetic or phylogenetic research, to determine what proportion reported error rate, and of 

those how many appropriately followed recommended guidelines for assessing and 

reporting genotyping error (as per Bonin et al. 2004 and Pompanon et al. 2005). We 

report trends in error reporting among studies by taxonomic group, fragment scoring 

methods, and journal calibre (based on impact factor). Our review highlights a current 

gap in publication standards and we aim to encourage researchers to estimate and report 

AFLP genotyping error using existing guidelines, and to more transparently report how 

such error was quantified.  

 

2.2 Methods 

2.2.1 Literature search 

We conducted a literature search using the citation database ‘Web of Science’ 

(Thompson Reuters; http://www.isiknowlege.com), restricting our search to those 

published articles available in-print in 2010 and 2011 (up to November 21 2011). Our 

intent was to examine evolutionary and ecological studies which employ AFLP data to 

make population genetic and phylogenetic inferences. We therefore used the topic 

keywords “AFLP” NOT “linkage” so as to exclude any research articles which used 

AFLPs exclusively for linkage mapping or quantitative trait analysis. We also searched 

using the keywords “AFLP” AND “linkage disequilibrium” in case any relevant studies 

had been removed by the previous search because the term linkage disequilibrium had 
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been mentioned. Only articles which contained “AFLP” in the title and/or abstract were 

retained.  

 We used EndNote x4 (Thompson Reuters) to search for AFLP studies which 

conducted research specifically in the fields of molecular ecology and/or evolution. Key 

terms were selected from an initial subset of articles. The most common key terms that 

were consistently listed in this subset were then used (‘structure’, ‘varia*’, 

‘differentiation’, ‘diversity’,  ‘phylo*’, ‘taxonomy’, ‘scan’, ‘gene flow’, ‘biogeography’, 

‘adapt*’). We recognize that this is not an exhaustive search. However, the number of 

papers generated by our initial search without filtering would have been logistically 

infeasible to characterize in detail. We used keywords which encompassed the research 

themes of most molecular ecology studies, and although we recognize that by using only 

a few keywords we may have excluded several relevant papers, we are reasonably 

confident that articles selected using these criteria should be representative of all 

molecular ecology studies that employ AFLP markers.  

 We read through all articles identified in this way and removed any non-relevant 

studies still retained by our keyword search. A study was only considered relevant if it 

specifically used AFLPs to conduct some form of population genetic or phylogenetic 

analyses, such as estimating He, FST, AMOVA, genetic distance, or generating a 

neighbour-joining tree. We used only empirical studies that reported an AFLP dataset for 

the first time, removing literature reviews, conference proceedings, primer notes, purely 

theoretical papers, etc.  
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2.2.2 Data collection  

For each article, we collected the publication name as well as the taxonomic group 

studied: broadly classified as (i) plants and red algae, (ii) animals, (iii) fungi, (iv) 

bacteria and (v) protists. For all articles we recorded the total number of genotyped 

individuals, the number of AFLP primer combinations used, and the total number of loci 

and number of polymorphic loci retained in the final dataset. We also recorded the 

methodology used to score AFLP fragments. Typically scoring is either conducted by 

eye, or by using software such as GeneMapper (Applied Biosystems), GeneMarker 

(Softgenetics), RawGeno (Arrigo et al. 2009; available from 

http://sourceforge.net/projects/rawgeno/) or AFLPSCORE (Whitlock et al. 2008; 

available from www.shef.ac.uk/molecol/software/aflpscore) to analyse automatically and 

score AFLP datasets based on user specified parameters. As well, some studies now 

employ a ‘semi-automated’ approach where the positions of the marker bins used for 

allele calling are first determined or verified by the researcher, before the automated 

software is allowed to score the AFLP data (e.g., Whitlock et al. 2008; Herrmann et al. 

2010). Thus, we classified the scoring approaches used by AFLP studies as either (i) 

manual (fragments scored visually), (ii) automated (fragments scored by a software 

program) or (iii) semi-automated (marker bins are determined or inspected manually 

before fragments are scored by software). Finally, we also noted the impact factor of 

every journal represented in our dataset using the 2010 ISI Impact Factor (Thomson 

Reuters). 

Using replicate samples from the focal dataset (i.e., not standards) is considered 

the most robust way to estimate genotyping error rate (Bonin et al. 2004). It is 
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recommended that a substantial proportion of the total sample size be replicated (5-10%) 

and that original tissue samples, or at least the same DNA extract, be used to generate 

replicates so that estimated error rates are reflective of the entire genotyping process 

(restriction-ligation, pre-selective PCR, selective PCR, scoring) and include both 

technical and human errors (Bonin et al. 2004; Pompanon et al. 2005). We categorized all 

articles based on whether they reported an assessment of dataset reproducibility using 

replicate samples. We found that many studies claimed to use ‘reproducible’ loci based 

on replicates, but did not actually report a specific genotyping error rate for their dataset. 

Thus, articles were classified as: 1) genotyping error rate reported (GE), (2) 

reproducibility assessed but genotyping error rate not reported (NGE) and (3) no 

assessment of reproducibility reported (NR). For studies that assessed dataset 

reproducibility (GE and NGE) we determined the proportion of the total sample size that 

was replicated (i.e., number of replicate samples / total sample size), and the stage of the 

AFLP protocol at which replicates were generated: (i) different DNA extractions of the 

same tissue sample, tissue, (ii) from the same DNA extraction, extraction, (iii) different 

restriction-ligation reactions, R-L, (iv) different PCR reactions, PCR, (v) different 

sequencing runs, sequencing or (vi) AFLP profiles scored more than once, scoring.  

 Studies which presented more than one dataset (e.g., multiple species were 

examined) were represented multiple times in our analysis where a variable of interest 

(e.g., number of primer pairs, loci, or replicate samples) differed among the datasets. 

Impact factor scores, the total number of loci and the number of polymorphic loci were 

normalized by log10 transformation. We used a non-parametric test (Kruskal-Wallis) to 

examine differences in the number of primer combinations used among error reporting 
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categories, as the former was not normalized even by transformation. All statistical 

analyses were conducted in SPSS v.16.0 (SPSS Inc., Chicago) and all tests were two-

tailed.  

 

2.3 Results 

2.3.1 Overall trends 

Following our filtering steps to select appropriate AFLP-based articles in ecology and 

evolution, we reviewed a total of 470 studies published in 205 different journals between 

2010 and 2011. We found that 54 % of these studies did not report any evaluation of the 

reproducibility of the AFLP datasets (category NR). Of the studies which did claim to use 

a ‘reproducible’ dataset based on assessment of replicate samples (GE and NGE), 41 % 

(or 19 % of the total) did not report an associated genotyping error rate (NGE; Figure 

2.1). 

 Overall, a large proportion of the studies examined were of plant species (plants 

and red algae: 60 %; animals: 22 %; fungi: 9 %; bacteria: 8 %; protists: 1 %). 

Interestingly however, a higher proportion of animal studies reported an AFLP error rate 

(35 %) than any other group (range = 10-27 %; Figure 2.2). 

 The number of primer combinations used by studies did not differ among the 

error reporting categories, GE, NGE and NR (average 5.4 - 6.8 / category; Kruskal-

Wallis, χ
2
 (2, n = 502) = 1.802, P = 0.406). While the total number of loci and the number of 

polymorphic loci retained in the final analysis also did not differ significantly among 

categories (one-way ANOVA, F2, 359 = 1.432, P = 0.240; F2, 363 = 1.723, P = 0.180, 
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respectively), we observed a trend of fewer total loci and polymorphic loci being retained 

in GE studies compared to NR studies, with NGE being intermediate (Figure 2.3).  

 We also found variation in the scoring method used among studies: a greater 

proportion of GE studies (76 %) used either a semi-automatic or automatic approach than 

either the NGE (45 %) or NR (50 %) groups. 

 In addition we found that journal impact factor differed significantly among 

papers in the different error reporting categories (one-way ANOVA, F2,440 = 32.589, P < 

0.001; Figure 2.4). On average the impact factor of journals of GE studies was 

significantly greater than that of both NR and NGE studies (post-hoc Tukey HSD test,    

P < 0.001).  
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Figure 2.1 AFLP studies surveyed, categorized by reporting of dataset 

reproducibility. GE, genotyping error rate reported; NGE, reproducibility assessed 

but genotyping error rate not reported, NR, no assessment of reproducibility 

reported. Total sample size = 470 (GE = 126; NGE = 89; NR = 255). 

  

NR = 54 % 

NGE = 19 % 

GE = 27 % 
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Figure 2.2 Within each taxonomic group, the proportion of surveyed AFLP studies 

where reproducibility was assessed and genotyping error rate was reported (GE), 

reproducibility was assessed but genotyping error rate was not reported (NGE) and 

where reproducibility was not reported at all (NR). Total sample size = 472. 
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Figure 2.3 Average number of polymorphic AFLP loci retained for final analysis in 

studies, grouped by reporting of dataset reproducibility. Total sample size = 369 

(GE = 99; NGE = 69; NR = 201). GE, genotyping error rate reported; NGE, 

reproducibility assessed but genotyping error rate not reported, NR, reproducibility 

was not reported. 
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Figure 2.4 The average journal impact factor of surveyed AFLP studies within each 

error reporting category. Total sample size = 420 (GE = 123; NGE = 82; NR = 215). 

GE, genotyping error rate reported; NGE, reproducibility assessed but genotyping 

error rate not reported, NR, reproducibility was not reported. 
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2.3.2 Comparisons among ‘reproducible’ studies 

Among all studies which reported some assessment of dataset reliability using replicate 

samples (GE and NGE), we observed that 35 % either did not include information on the 

number of samples replicated, or did not replicate a minimum of 5 % of the total sample 

size (Table 2.1). This proportion was greater for NGE studies than GE studies (43 and 31 

%, respectively; Table 2.1). Although they represent only a small portion of all studies 

reviewed, it is worth noting that multiple studies (7 %) determined the reproducibility of 

their datasets based on only a very small number of replicate samples (< 2 %). Indeed, in 

some cases we recorded values as low as one replicate sample. We also noted that several 

studies determined reproducibility for only a portion of the final dataset (i.e. the 

reliability of all primer combinations used in the study was not examined).  

 Many of the studies which reported using replicate samples did generate them as 

recommended at either the tissue or DNA extraction stage of the AFLP protocol (37 %; 

Table 2.2). When we examined the studies within GE and NGE separately we found that 

a greater proportion of studies within GE replicated samples at the tissue and DNA 

extraction stages (42 and 29 %, respectively; Table 2.2). However, 10 % of studies did 

not replicate samples until further on in the AFLP protocol, at either the R-L, PCR, 

sequencing or scoring stages, and, more importantly, more than half of the total studies 

examined (53 %) did not report clear details for how the replicates were generated (Table 

2.2). We found that the language used to describe how replicate samples were generated 

was often very unclear and ambiguous (e.g., “replicates of the AFLP protocol were 

conducted”, “individuals underwent a second amplification”). If neither of two 
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researchers (LAC, DK) could interpret the methodology used, the stage of replication was 

classified as NA (information not available; Table 2.2).  

 

2.4 Discussion 

2.4.1 Genotyping error reporting in AFLP studies 

Despite much discussion on the importance of quantifying and reporting genotyping error 

(Bonin et al. 2004; Pompanon et al. 2005; Meudt and Clarke 2007) our review indicates 

that this is still not standard practice in the AFLP literature. Indeed we found that more 

than half of the AFLP studies we reviewed did not report any form of assessment of the 

reliability of their datasets. Of the studies that indicated using a ‘reproducible’ dataset, a 

large proportion did not report a specific error rate and did not provide specific details of 

how reproducibility was assessed. Moreover, many of the papers which did report an 

error rate failed to follow the recommended standards (Bonin et al. 2004; Pompanon et al. 

2005) for quantifying error. Thus the quality of these datasets may not actually be as high 

as suggested by the reported error rate.  
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Table 2.1 Replicate sample size, as a percentage of the total number of samples in 

the dataset, for studies which assessed reproducibility of AFLP datasets. Results are 

presented as the proportion of studies within each reporting category (GE; NGE; 

overall, GE and NGE combined) that reported replicate sample sizes of < 2 %, ≥ 2 

and < 5 %, ≥ 5 and < 10 %, and ≥ 10 %. Values in bold type indicate the proportion 

of studies which replicated a minimum of 5 % of total sample size as recommended 

by Bonin et al. (2004). 

 Size of replicate sample (percentage of total # of samples) 

 NA < 2 % ≥ 2 & < 5 % ≥ 5 & < 10 % ≥ 10 % 

GE 0.09 0.07 0.16 0.25 0.44 

NGE 0.18 0.08 0.17 0.11 0.46 

Overall 0.12 0.07 0.16 0.20 0.45 

Total sample size (n) = 223; GE = 139; NGE = 84 

NA, information not available; GE, genotyping error rate reported; NGE, reproducibility 

assessed but genotyping error rate not reported 
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Table 2.2 The stage at which replicate samples were generated for studies which 

assessed reproducibility. Results are presented as proportion values, and were 

calculated in relation to the total number of studies within each reporting category 

(GE; NGE; overall, GE and NGE combined). Values in bold type indicate the 

proportion of studies which met recommended guidelines of Bonin et al. (2004). 

 NA 
Post- DNA 

extraction 
DNA 

extraction 
Tissue 

GE 0.51 0.07 0.20 0.22 

NGE 0.57 0.14 0.12 0.17 

Overall 0.53 0.10 0.17 0.20 

Total sample size = 240; GE = 148; NGE = 92 

Post-DNA extraction, represents all studies classified as R-L, PCR, sequencing or scoring 

NA, information not available; GE, genotyping error rate reported; NGE, reproducibility 

assessed but genotyping error rate not reported 
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 We recognize that failing to report genotyping error does not necessarily mean 

that the data used are unreliable or that the results of such studies should be considered 

invalid. Certainly in many cases we found that although studies did not report an actual 

error value, they did report precautions taken to limit genotyping error from occurring 

throughout the AFLP protocol. We argue however, that reporting an associated error rate 

for a given dataset is an indication of a study’s robustness, and it allows for appropriate 

evaluation of the significance of results and comparison to other studies. This is 

especially important for AFLPs, where the number of loci retained in the final dataset and 

the error rate are correlated and decisions regarding locus filtering could potentially affect 

the accuracy and precision of population genetic analyses (Herrmann et al. 2010; Zhang 

et al. 2012). In the current study, we found that AFLP articles which reported genotyping 

error tended to be published in journals with higher impact factors. In general, studies 

published in such journals are very thorough in design, so it is possible that these studies 

would be more likely to report genotyping error. We are not aware of variation among 

journals in explicit standards followed for publication of AFLP data.   

 More animal studies tend to report AFLP genotyping error rate compare to any 

other taxonomic group. Pompanon et al. (2005) documented an increase in the number of 

population genetics papers which dealt with genotyping error from 1989 to 2004; 

although their search was not exclusive to AFLPs, they also found that more non-human 

animal studies dealt with genotyping error than genetic studies of humans or plants. They 

noted that most of the animal studies addressing error had used non-invasive methods of 

DNA sampling, where low quality and quantity of DNA is a concern and where 

determining genotyping error is therefore a common practice in order to ensure dataset 
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quality. Thus, taxon-related differences in the assessment of dataset reliability may result 

from taxon-related variation in the nature of tissue sampling. 

 While the average number of primer combinations used did not differ among GE, 

NGE and NR studies, we found that the number of loci retained for analysis tended to be 

lower in studies which assessed reproducibility. Given that these studies also made 

efforts to filter out ‘error-prone’ loci, we would expect these datasets to contain on 

average fewer loci than unfiltered datasets. Interestingly, even though the majority of GE 

studies used automated sequencers to detect AFLP fragments (results not shown), and 

this technique is known to produce a larger number of loci than traditional gel 

electrophoresis for the same primer combinations and study species (Terefework et al. 

2001; Papa et al. 2005; Reunova et al. 2010), we still found that the number of loci 

retained for analysis in these studies was less than the other reporting categories which 

used traditional gels more often. This suggests that in these studies the locus-filtering step 

is removing a large number of loci which might otherwise contribute error and hence 

noise to the dataset. 

 Throughout the articles reviewed in this study, we noted that the words ‘reliable’ 

and ‘reproducible’ were consistently used by authors to imply that their datasets were of 

high-quality. However, we found that many studies which claimed to use ‘reproducible 

loci’ did not actually report any details for how reproducibility was assessed and were 

therefore considered under the NR category. Still more concerning was our finding that 

even for those studies which did use replicates to assess reproducibility (GE and NGE), 

many did not follow the recommended guidelines entirely or did not report sufficient 

details of their methodology. For example, a relatively small proportion of samples were 
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replicated, samples were not replicated from the beginning of the protocol, and most 

critically genotyping error was not reported. Thus in some cases, both the terminology 

used and values of error reported may be very misleading to readers and indicate that the 

presented data are more reproducible than they actually are. Providing clear, complete 

details for how the dataset was generated and quantifying the associated genotyping error 

using a standard protocol is critical to ensure accurate interpretation of results. 

 Finally, we also observed a considerable amount of variation in the type of error 

rate which was reported among GE studies. In AFLP research, the most commonly 

employed metric of genotyping error is the mean error rate per locus (Pompanon et al. 

2005; Bonin et al. 2007), which can be calculated as the ratio between the total number of 

mismatched phenotypes (band presence vs. absence) to the number of replicated 

phenotypes (Pompanon et al. 2005). While other acceptable methods to calculate error 

also exist (Pompanon et al. 2005; Holland et al. 2008) the link between these measures is 

not always straightforward, making them difficult to compare. Mean error rate per locus 

is considered a universal quality index metric in molecular research, which permits 

comparisons among studies and different marker systems to be made (Pompanon et al. 

2005) and should therefore be considered the preferred metric of error to use in AFLP 

studies. While we had originally intended to examine trends in genotyping error rate 

values among taxonomic groups, journal impact factors, etc., we found that there was too 

much variation among articles in the calculations used to determine genotyping error as 

well as the amount of detail reported. Thus we could not easily extract this information 

for all studies, and conducting comparison among different groups would not have been 

meaningful.  
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2.4.2 Conclusions and recommendations 

The results from this review indicate that there is currently a general lack of consistency 

among AFLP studies in the methods used to assess reproducibility and even in the details 

of methodology presented. This makes it extremely difficult to assess the quality of the 

AFLP datasets and to compare the results of different studies. This is an issue not only 

for the researchers employing these datasets, but more importantly for the integrity of 

AFLPs used in ecological studies. To demonstrate robustness to reviewers and readers, as 

well as to facilitate comparisons among studies, we encourage researchers to employ 

established recommended guidelines for determining genotyping error in AFLP data, and 

to report the following items explicitly in every publication: 

 All steps taken throughout the AFLP protocol to minimize genotyping error  

 Number of samples or proportion of total sample size that was replicated 

 Stage in AFLP protocol at which samples were replicated 

 Methods and parameters used to score and select loci for final analysis 

 The specific formula which was used to calculate genotyping error, ideally reporting 

the commonly employed mismatch error per locus (as per Bonin et al. 2004) to allow 

for inter-study comparisons 

 The error rate associated with the final dataset used for genetic analysis 

 The initial number of loci obtained and the final number of loci retained for analysis 

 Following the recommended guidelines, and reporting the items listed above, will 

certainly improve the quality and transparency of AFLP studies for those researchers who 
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choose to follow them. However, it is clear that several past calls for improved reporting 

of genotyping error have failed to effectively promote change in how AFLP data are 

presented in the literature. We thus propose that journals implement publication standards 

for AFLP studies, and require the reporting of genotyping error rate following a specific 

set of guidelines (for example the list provided above) as a condition of publication, 

similar to requiring DNA sequence data to be publicly archived. Other molecular science 

disciplines, such as forensic genetics, and gene expression already follow strict reporting 

standards to ensure data quality (Brazma et al. 2001; Pompanon et al. 2005; Schneider 

2007).  

As demonstrated by our current study, even when genotyping error rates are 

reported, most researchers fail to comply with recommended error reporting standards. 

While in some cases these details may be caught during the review process, this is clearly 

often not happening. Standardizing the reporting of genotyping error for AFLP studies 

would serve several important functions including: (1) Ensure that genotyping error rates 

are consistently reported for all AFLP studies, and that they follow a common set of 

guidelines, (2) Encourage confidence in and continued use of AFLPs in population 

genetic research by demonstrating that the AFLP datasets used are reproducible and 

robust, (3) Enable accurate interpretation of results, and facilitate inter-study comparisons 

and meta-analyis and (4) Provide better quality control of AFLP studies, by both the 

researcher and the reviewers. We are not aware of any journals that currently enforce 

standards for reporting of genotyping error for AFLPs or any other genotype studies.  

 We foresee few major challenges for both researchers and journals in making the 

details of genotyping error rate calculations a standard requirement of AFLP studies. For 
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the most part, journal space limitations should not be an issue as only a few lines of text 

are typically required to outline the methodological details and results of calculating 

genotyping error (e.g., Chapter 3, Crawford et al. 2011). Should more in-depth details be 

required, they could be provided as supplementary information, especially when space 

limitations are an issue.  

 Over time, the use of AFLPs in molecular ecology research will likely be replaced 

by emerging high-resolution next-generation sequencing (NGS) techniques. However, 

until these technologies become more cost-effective and widely accessible, we anticipate 

the continued use of AFLPs in molecular ecology research. Furthermore, the problems 

we have highlighted in this review are not specific to just the AFLP literature alone. 

Indeed, a survey by Guichoux et al. (2011) of 100 microsatellite studies recently 

published in Molecular Ecology noted that only 26 % of articles reported a measure of 

genotyping error. As well, NGS techniques particularly those which rely on restriction 

enzymes for the generation of fragments (e.g., reduced-representation sequencing, 

restriction-site-associated DNA sequencing and multiplexed shotgun genotyping) are still 

susceptible to genotyping error, and require quality control (Davey et al. 2011). 

Therefore, a policy for reporting genotyping error should apply not only to AFLP studies, 

but for all genotyping studies in general. Establishing standardized guidelines (perhaps 

specific to different genotyping methods) that researchers should follow for publishing 

genotype data, will ensure the continued quality of data used in molecular ecology 

research, even as the technologies used change over time.  

 Finally, a group of ecology and evolution journals including Molecular Ecology, 

Evolution, Heredity, The American Naturalist, and Journal of Evolutionary Biology 
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recently joined together and introduced parallel data archiving policies (Whitlock et al. 

2010). We propose that a consortium of journals could similarly implement a common set 

of guidelines for reporting genotyping error across all genotype studies to further ensure 

consistency and promote data quality among studies published in different journals.  
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3 Fine-scale genetic structure of an endangered 
population of the Mormon metalmark butterfly 
(Apodemia mormo) revealed using AFLPs2 

 

3.1 Introduction 

Genetic techniques are now widely employed in conservation biology to tackle such 

problems as assessing extinction risk, resolving taxonomic status, detecting hybridization, 

and identifying sources for reintroduction (Frankham et al. 2002). To date, the 

management plans of many threatened species have been greatly enhanced by the 

knowledge gained through genetic studies (e.g., Madsen et al. 1999; Ralls et al. 2000; 

Wilson et al. 2000; Haig et al. 2001).  Genetic markers are also powerful tools for 

revealing information about a species’ status that may not be evident based on physical, 

behavioural, or demographic observations alone (Frankham et al. 2002). In particular, 

there are an increasing number of invertebrate animals of conservation concern for which 

little is known about their population structure and dispersal behaviours (New 1995). 

These important variables may be extremely difficult to study directly because of the 

small size and/or cryptic behaviour of many invertebrate species. Genetic data may thus 

be particularly critical in revealing key aspects of the ecology of such species. 

                                                 

2
 A version of this chapter has been published and is presented here with permission from 

Springer-Verlag. 

 

Citation: Crawford LA, Desjardins S and Keyghobadi N. 2011. Fine-scale genetic 

structure of an endangered population of the Mormon metalmark butterfly (Apodemia 

mormo) revealed using AFLPs. Conservation Genetics, 12: 991-1001. 
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The arid lowlands of the south Okanagan and Similkameen valleys of British 

Columbia (BC), Canada constitute a nationally rare habitat that supports approximately 

15,000 invertebrate species (Cannings and Cannings 1995) and is at risk due to increasing 

human activity (Guppy et al. 1994). Many of the invertebrates found in this region are 

provincially, nationally, and even globally rare, yet relatively little is known regarding 

their biology including, in some cases, such basic parameters as their range and habitat 

requirements (Cannings and Cannings 1995). Of these rare invertebrates, several butterfly 

species, including the Mormon metalmark butterfly (Apodemia mormo; C & R Felder 

1859), were among the first to be identified as threatened or endangered in this area 

(Guppy and Sheppard 2001).  

 While the Mormon metalmark in BC historically (early 1900s) occurred as far 

north as the Okanagan (Guppy et al. 1994), it now exists only in the Similkameen Valley.  

The BC population of the Mormon metalmark survives at low numbers (estimated as 

approximately 2000 individuals; S. Desjardins unpublished), confined to a highly 

restricted geographic area consisting of a small number (~15) of fragmented habitat 

patches. Given the population’s confinement to a single valley, coupled with the 

butterfly’s strong association with its larval food plant (snow buckwheat, Eriogonum 

niveum) and assumed sedentary habits, the BC Mormon metalmark population is 

considered extremely vulnerable to natural stochastic events (e.g. climatic extremes or 

disease outbreaks) as well as human activity (e.g., agricultural development) and was 

designated as endangered on the Canadian Species At Risk Act in 2003 (COSEWIC 

2003). Efforts to protect critical habitat and stabilize the population since then have been 

hindered by a general lack of knowledge surrounding basic life history traits, habitat 
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requirements, dispersal capabilities and population structure of the butterfly, making it 

difficult to predict future population trends and develop an effective recovery strategy 

(COSEWIC 2003). Here, we use amplified fragment length polymorphism (AFLP) 

markers generated from non-lethally sampled wing tissue to assess the genetic diversity 

and structure of the BC population of the Mormon metalmark and provide information 

regarding the population’s status that will be of value for future conservation and 

management plans.  

Molecular techniques are increasingly employed in the study of endangered 

butterfly populations (e.g., Mountain apollo, Parnassius apollo: Lushai et al. 2000; 

Cranberry fritillary, Boloria aquilonaris: Vandewostejine and Baguette 2002; Karner 

blue, Lycaedies melissa samuelis: Gompert et al. 2006; Regal fritillary, Speyeria idalia: 

Keyghobadi et al. 2006; Marsh fritillary, Euphydryas aurinia: Sigaard et al. 2008, Crystal 

skipper, Atrytonopsis sp.: Leidner and Haddad 2010). Microsatellite markers are a 

popular marker of choice in conservation genetic studies due to their putative neutrality 

and high variability. For most Lepidoptera, however, microsatellite development is 

extremely challenging because of the occurrence of repetitive flanking regions (Zhang 

2004) and the number of microsatellite markers used in most butterfly studies is 

consequently relatively low. More recently, several genetic studies of butterflies have 

successfully employed amplified fragment length polymorphisms (AFLPs) instead (e.g., 

Takami et al. 2004; Kronforst et al. 2007). However, in only a few cases have AFLPs 

been applied in a conservation context (Gompert et al. 2006; Collier et al. 2010; Leidner 

and Haddad 2010). 
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The AFLP technique (Vos et al. 1995) provides a large number (> 100) of 

informative and reliable genetic markers that can be developed quickly and inexpensively 

(Bensch and Akesson 2005). The markers generated are dominant and widely distributed 

throughout the genome, allowing an assessment of genome-wide variation (Meudt and 

Clarke 2007). The technique is particularly useful in non-model organisms as previous 

knowledge of the genome is not necessary (Bensch and Akesson 2005). Furthermore, it 

has been recently demonstrated that small, non-lethally sampled, pieces of butterfly wing 

tissue provide sufficient quantities of DNA for the analysis of AFLPs (Keyghobadi et al. 

2009) and that they can be taken without lowering individual survival or affecting 

behaviour (Vila et al. 2009; Hamm et al. 2010; Koscinski et al. 2011; Crawford et al. 

2013). Thus, the use of AFLPs for population genetic studies represents a promising tool, 

particularly for the study of endangered butterfly species where neither lethal sampling of 

individuals nor the development of microsatellites is preferable. 

Best practices for AFLP marker development, scoring and analysis have been 

well reviewed (see Bensch and Akesson 2005; Bonin et al. 2007; Meudt and Clarke 

2007). However, among studies that apply AFLPs (e.g., Lepidoptera studies; Table 3.1) 

there exists little consistency in the methods used or even in the details of methodology 

presented. In particular, the scoring parameters used, the mismatch error rate of AFLP 

primer combinations, as well as the total number of loci initially generated (not the total 

number of polymorphic loci) are often not reported. As a result, it is difficult to compare 

and interpret results, such as estimates of genetic diversity, among studies. These 

comparisons are of particular value for studies of endangered populations, where 

researchers are interested in examining whether levels of genetic diversity and estimates 
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of gene flow are lower in relation to those found in other populations or other organisms. 

Therefore, for the use of AFLP markers to truly be of value to conservation research it is 

critical for AFLP studies to provide detailed, transparent reports of the methodologies 

used and to only use loci with low genotype error rates. We intend for our work to act as 

a case study for applying AFLPs to endangered butterfly populations in general, and thus 

we provide detailed accounts of the entire AFLP fragment scoring process, the methods 

used to calculate genetic diversity measures, and we report mismatch error rates so that 

our results may be more meaningfully interpreted. 

 

 

3.2 Methods 

3.2.1 Study species 

The Mormon metalmark is a small butterfly (wingspan of 25-35mm) in the family 

Riodinidae that is closely associated with disturbed, arid regions that contain its larval 

host plant (wild buckwheats, Eriogonum sp.). The range of Apodemia mormo, sensu lato 

is widespread in Mexico, and the western United States, while in Canada, the species 

occurs only in southern British Columbia and southwestern Saskatchewan (SK; Layberry 

1998). While morphologically similar, the two Canadian populations of the Mormon 

metalmark in southern BC and southern SK are considered discrete, nationally significant 

populations, as they are geographically isolated from each other, as well as from other 

populations in the core of the species’ distribution to the south (but see  
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Table 3.1 Summary of representative studies using AFLPs to measure genetic diversity in natural populations of 

Lepidoptera. 

Species 
Sample 

size 

Fragment analysis 

method 

AFLP scoring 

program(s) used 

AFLP scoring 

parameters 

Assessment of 

genotyping error 

Initial no. 

loci 

Polymorphic 

loci (%) 
He Source 

Vanessa 

atalanta 

277 6% polyacrylamide 

gel  

NA 

 

Bands clear and easily 

scored in all gels 

NA 199 84.9 NA Brattsröm et al. 

(2010) 

Theclinesthes 
albocincta 

248 ABI Prism 3730 
automated 

sequencera 

GENEMAPPER 
v3.7a 

60-350bp; >50-70rfu; 
1.2bp bin width 

NA 363 13.8-41.9 0.066-
0.139 

Collier et al. 
(2010) 

Trichoplusia 

ni 

1082 LI-COR 4200 

automated 

sequencerb 

SAGA v2.0b NA 5.4% error rate 

(laboratory and 

scoring) 

204 82.8 0.165- 

0.303 

Franklin et al. 

(2010) 

Atrytonopsis 

new species 1 

98 LI-COR 4200 and 

4300 sequencersb 

Quantar v1.08c NA 1.7 % error rate NA 68.5-100.0 0.274-

0.416 

Leidner and 

Haddad (2010) 

Ostrinia 

nubilalis  

180 LI-COR 4200 

automated 

sequencerb 

SAGA v3.2b NA NA 164 72.0-94.0 0.237-

0.376 

Krumm et al. 

(2008) 

Tortrix 

viridana 

401 ALF express II 

automated 

sequencerd 

ALF win 

Fragmentanalyser 

v1.02d 

NA NA 74 62.7-77.9 0.130-

0.160 

Schroeder and 

Degen (2008) 

Grapholita 

molesta 

87 6% polyacrylamide 

gel 

NA Only scored reproducible 

fragments  

NA 236 58.2-99.4 

 

0.186-

0.100 

Timm et al. 

(2008) 

Lycaides 
melissa 

melissa 

79 ABI Prism 377  

automated 

sequencer a 

GENESCAN a ≥150rfu; 

excluded bands present 

in <5% individuals 

95.5% scored 

bands detected in 

replicate samples 

143 90.9 

 

NA Gompert et al. 

(2006) 

Lycaides 
melissa 

samuelis 

111 ABI Prism 377  
automated 

sequencer a 

GENESCAN a ≥150rfu; 
excluded bands present 

in <5% individuals 

95.5% scored 
bands detected in 

replicate samples 

143 86.7 NA Gompert et al. 
(2006) 

Cydia 
pomonella 

128 6% polyacrylamide 
gel 

NA NA NA 214 35.2-98.9 0.060-
0.180 

Timm et al. 
(2006) 

Pieris rapae; 

 

626 

 

ABI  Prism 373 

automated 
sequencer a 

GENESCAN 

v3.1.2, 
GENOTYPER 

v2.5 a 

≥90bp NA 484 10.1-24.0 0.044-

0.064 

Takami et al. 

(2004) 

Pieris melete 235 ABI  Prism 373 
automated 

sequencer a 

GENESCAN 
v3.1.2, 

GENOTYPER 

v2.5 a 

≥90bp NA 484 6.4-16.5 
 

0.031-
0.056 

Takami et al. 
(2004) 

He, expected heterozygosity; NA, information not reported; * Individuals collected from greenhouse and field populations; 
a
Applied Biosystems; 

b
LI-

COR Biosciences; 
c
KeyGene; 

d
Amersham Biosciences 
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Proshek et al. 2013). The BC and SK populations also differ in their choice of host plant: 

Eriogonum niveum (snow buckwheat) and Eriogonum pauciflorum (fewflower 

buckwheat) respectively (COSEWIC 2003). 

 

3.2.2 Sample collection 

We sampled adult butterflies using hand nets from fourteen separate habitat patches 

during 2006-2008 (mid-August to early-September) within the Similkameen River 

Valley, British Columbia, Canada (49°12.469’ N, 119°49.295’ W; Figure 3.1). These 

sites represent all currently known BC populations that occur on Crown land or privately 

owned property. We used fine iris scissors and forceps to remove a small piece of tissue 

(3mm x 3mm, or ~1-5% of the hind wing area) from the hind wings of each individual. 

These ‘wing clips’ were immediately stored in absolute ethanol. All butterflies were 

released from the location of their initial capture.  

 

3.2.3 DNA extraction and AFLP analysis 

Genomic DNA was extracted from the wing tissue samples using the QIAgen DNeasy® 

Blood and Tissue Kit, and then concentrated using a standard ethanol precipitation (as in 

Keyghobadi et al. 2009). For AFLP analysis we used the commercial AFLP Plant 

Mapping Kit (Applied Biosystems) following a modified version of the manufacturer’s 

protocol (Keyghobadi et al. 2009). Based on relative polymorphism and reproducibility, 

the following five selective primer combinations were used to obtain AFLP profiles for 

A. mormo: EcoRI-AAC/MseI-CAC, EcoRI-AGC/MseI-CAC, EcoRI-AGC/MseI-CAT,  
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Figure 3.1 Locations of the 14 studied sub-populations of Apodemia mormo in the 

Similkameen River Valley, British Columbia, Canada.  

Site codes correspond to the general orientation of each sub-population in relation to the 

town of Keremeos (W = west; C = central; E = east; N = north). The insert shows the 

location of the studied population in British Columbia. The Similkameen River is 

depicted in blue, major roads are depicted in black, and elevation is depicted in grey and 

measured as meters above sea level. Areas of high genetic differentiation within the 

British Columbian population of Apodemia mormo, as identified by BARRIER v2.2 

(Manni et al. 2004), are indicated by dashed black lines. Barriers which possessed high 

bootstrap support (>50 %) are labelled in order of importance (A, B, C, and D). 

 

A 

B 

C 

D 



71 

 

EcoRI-AGC/MseI-CTT, and EcoRI-AAG/MseI-CAA. To ensure that no contamination 

occurred we included negative controls (i.e., Milli-Q purified water in place of DNA 

template and PCR products) at each step of the protocol. Fluorescently labelled AFLP 

fragments were separated and sized using a 3730S Genetic Analyzer (Applied 

Biosystems). 

We determined AFLP fragment sizes and peak heights in GENEMAPPER v.4.0 

(Applied Biosystems) using a semi-automated approach. Specifically, we allowed 

GENEMAPPER to identify automatically AFLP loci (bins) between 100 and 500 base 

pairs (bp) in size. We ignored fragments smaller than 100 bp to reduce the incidence of 

size homoplasy (Vekemans et al. 2002). All bins were set to a width of one base pair, and 

those fragments with peak heights below 50 relative fluorescence units (rfu) were 

assumed to represent instrument noise (Keyghobadi et al. 2009) and were not scored. To 

ensure that bin positions were assigned accurately, all bins were then checked manually. 

Any bins possessing fragments that overlapped with adjacent bins were removed. As 

well, we adjusted bins assigned off-centre of any peak distributions. Finally, all AFLP 

profiles were checked manually to ensure successful amplification and were either re-run 

or removed from analysis if the fingerprint failed to amplify or appeared to possess many 

unique fragments.  

 We left the AFLP peak-height data un-normalized in GENEMAPPER, and then 

normalized and scored the data in AFLPSCORE v.1.3b (Whitlock et al. 2008) using the 

data filter and absolute phenotype-calling threshold settings. Based on mismatch error 

analysis of replicate samples, AFLPSCORE is an objective method of AFLP phenotype 

scoring that establishes optimal scoring parameters while minimizing genotyping error. 
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Briefly, a locus selection threshold based on mean peak-height is applied, and loci with 

peak-heights equal or above this threshold are retained for further analysis. For each 

AFLP profile, a phenotype-calling threshold is then used to identify fragments as either 

present or absent. We estimated mismatch error rate separately for each primer 

combination using 36 replicate individuals. Due to the small size of the wing-clips used 

in this study and the small amounts of DNA thus available to us, replicate samples were 

generated by subjecting two aliquots of the same DNA extraction to the entire AFLP 

protocol independently. 

 We initially tested various combinations of locus and phenotype scoring 

thresholds in AFLPSCORE, ranging from 60-250 rfu each, to determine the optimal 

scoring parameters. We found that error rate did not decrease appreciably above values of 

100 rfu for both thresholds, and therefore we chose to use locus and phenotype scoring 

thresholds of 100 rfu to ensure the reliability of the loci we retained. Upon conducting 

downstream genetic analyses, however, we found low estimates of population genetic 

variability and were concerned that we had used overly stringent scoring criteria that may 

have removed the more variable peaks. Therefore, we compared estimates of variability 

and population structure obtained using a less stringent criterion of 75 rfu (for both locus 

and phenotype-calling) which slightly increased error rate but retained more loci 

compared to using the 100 rfu thresholds. We did not include an additional comparison to 

threshold values of 60 rfu due to concerns that background instrument noise could affect 

peak calling. 

In addition, for each set of threshold values (75 rfu and 100 rfu) we also compared 

the results obtained from genetic analyses using a dataset with all retained loci (dataset 
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A) versus using a dataset from which we further removed all loci (peaks) that were 

present in only a single individual (dataset B). The removal of such singleton peaks is 

often performed in AFLP analyses, since singleton loci may represent false markers (e.g., 

as a result of incomplete digestion) which can upwardly bias estimates of homozygosity 

(following a 5% polymorphism criterion; Milot et al. 2007). All subsequent population 

genetic analyses were thus conducted separately using the four described datasets (75-A, 

75-B, 100-A, 100-B) with the exception of the measures of inbreeding (FAFLP) which 

were only calculated using dataset 100-B. 

 

3.2.4 Data analysis 

3.2.4.1 Genetic diversity 

We first estimated allele frequencies for each sample (hereafter referred to as a ‘sub-

population’) using the program AFLP-SURV v.1.0 (Vekemans et al. 2002). We applied a 

Bayesian method with a non-uniform prior distribution of allele frequencies which is 

robust to minor departures from Hardy-Weinburg equilibrium (Zhivotovsky 1999). We 

then measured levels of genetic diversity within each sub-population by calculating the 

number and the proportion of loci that were polymorphic at the 5% level, as well as 

unbiased estimates of expected heterozygosity (or Nei’s genetic diversity) (following 

Lynch and Milligan 1994). We also calculated pairwise FST values, with significance tests 

based on 10,000 permutations. Input files for AFLP-SURV were prepared using the R 

script AFLPDAT (Ehrich 2006).  

An AFLP-based measure of individual inbreeding coefficient, FAFLP, was 

estimated for each individual sampled using a simulation approach in the program 
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FAFLPcalc (Dasmahapatra et al. 2008). Using raw AFLP counts, FAFLPcalc estimates 

band frequencies, which are then employed to produce simulated data assuming a wide 

range of inbreeding ( f ) values. The optimal fit between the observed distribution of f 

values and one of the simulated data sets is then determined. This method assumes that at 

least half of the individuals surveyed are outbred (f = 0), and that inbred individuals are 

more homozygous and will possess more null phenotypes than under random 

expectations. FAFLPcalc is a Visual Basic Macro for use in Excel, written with the 

capacity to handle up to 250 loci (less than our current dataset).  To calculate FAFLP values 

representative of the entire AFLP dataset we ran the simulation analysis in FAFLPcalc 

using a dataset consisting of 250 randomly selected loci, selected using a random number 

generator in Excel. This procedure was repeated a total of 20 times and the results were 

then averaged.  

 

3.2.4.2 Population genetic structure 

Using estimated allele frequencies and following Lynch and Milligan (1994) we 

calculated in AFLP-SURV the following unbiased estimates of population genetic 

structure: total gene diversity (expected heterozygosity or gene diversity in the overall 

sample), average gene diversity within sub-populations, average gene diversity among 

populations in excess of that observed within populations and FST (the ratio of between-

site relative to within-site genetic variation). 

We used Monmonier’s (1973) maximum difference algorithm implemented in the 

program BARRIER v2.2 (Manni et al. 2004) to identify whether any significant genetic 

discontinuities existed among sites in the BC population. In brief, a Voronoï tessellation 
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is produced using geographic coordinates of the sampling locations, and from this a 

Delaunay triangulation is obtained. Using this geographic network, along with a 

corresponding genetic distance matrix, the Monmonier’s algorithm then identifies 

barriers or zones along the edges of the triangulation where genetic distance values are 

greatest, based on the number of barriers defined by the user. The significance (or 

robustness) of the identified barriers is then assessed by means of bootstrap matrix 

analysis, and typically decrease with rank. We tested a series of barrier numbers, ranging 

from 1-14, and used 100 pairwise FST matrices (generated in AFLP-SURV) to assess the 

robustness of the computed barriers.  

We also examined patterns of genetic differentiation among sub-populations by 

applying principal coordinates analysis (PCoA) to a genetic distance matrix of pairwise 

FST estimates using the data standardization option in GenAlEx v.6.0 (Peakall and 

Smouse 2006). 

Finally, we tested for patterns of isolation-by-distance (IBD) by plotting measures 

of genetic dissimilarity between pairs of habitat patches (pairwise FST) against geographic 

distance (km). We determined the statistical significance of these correlations using the 

Mantel test (Mantel 1967) implemented in GenAlEx based on 9,999 permutations. Both 

FST and geographic distance were linearly transformed (FST/(1-FST), ln(geographic 

distance), respectively; Rousset 1997). For IBD analysis we used two measures of 

geographic distance: (1) straight-line distance between sites, and (2) distance between 

sites along valley bottoms, which reflects the more likely flight route of individuals.  The 

straight-line distance between all pairs of sites was calculated based on their geographical 

coordinates using GenAlEx. To estimate the pairwise distance between sites, constraining 
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movement of individuals to the Similkameen valley (minimizing movement over 

topographical barriers) we used the ruler function in Google Earth v. 5.1 (Google Inc.). 

 

3.3 Results 

3.3.1 AFLP analysis and phenotype scoring 

Out of a starting sample size of 479, the AFLP phenotypes of 467 individuals were 

successfully scored. For six individuals, selective amplification appeared to fail; thus 

these individuals were removed from further analyses. As well, we excluded six 

individuals exhibiting many unique peaks not present in any other individuals in our 

study. Based on the 100-rfu scoring criterion, the five selective primer combinations 

generated a total of 484 AFLP loci with a mean mismatch error rate of 1.55% (dataset 

100-A; Table 3.2).  In comparison, the 75-rfu scoring criterion produced 526 loci with a 

mean mismatch error rate of 1.59% (dataset 75-A; Table C.1). When singletons were 

removed from both datasets, 326 (dataset 100-B) and 484 (dataset 75-B) loci were 

retained. 

A comparison of all statistical analyses performed using the four datasets is 

provided in Appendix C. Briefly, we found that the estimates of genetic diversity were 

slightly higher for the 100-rfu datasets compared to the 75-rfu datasets, and for B datasets 

compared to A datasets (Table C.2). All population genetic structure analyses produced 

similar results (Table C.3-C.6). However, for the principal coordinates analysis more 

variation was explained by the first two coordinates for the 100-B dataset than the other 

datasets (Table C.5). As well, in the IBD analysis both 100-rfu datasets possessed higher 
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r
2
 values and lower P values than their 75-rfu counterparts, while both B datasets 

possessed higher r
2
 values but identical P values when compared to their A counterparts 

(Table C.6). Given its apparently higher explanatory power in these analyses, all further 

results reported are based on the 100-B dataset. 

 

3.3.2 Genetic diversity 

In general, levels of polymorphism were low within all BC sub-populations (PPL range = 

0.172 – 0.236; He range = 0.068 – 0.090; Table 3.3). The proportion of polymorphism did 

not differ greatly among sites, with the most polymorphic site differing from the least 

polymorphic site by 6.4 % (or 21 loci). Similarly, expected heterozygosity was low and 

of similar value across all sub-populations (greatest difference between sites: 2.2 % 

points; Table 3.3).  

Although not significantly different from zero, estimates of mean individual 

inbreeding within sub-populations, measured as average FAFLP /sub-population, appeared 

higher in the two eastern sites (E1, E2) and the most western site (W1), than in sites W4, 

W5, W6 and W7 (Table 3.3).  

 

3.3.3 Population genetic structure 

Total gene diversity of the BC population was estimated at 0.082, with average gene 

diversity within and among sub-populations estimated as 0.079 (± 0.002 SE) and 0.004 (± 

0.0004 SE), respectively. The estimate of differentiation among sub-populations (FST) 

was found to be statistically significant (0.043 ± 0.105 SE, P < 0.00001). 
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 BARRIER identified four regions of high genetic differentiation within the BC 

population that exhibited high bootstrap support (bootstrap support >50 %; Figure 3.1) 

when four or more barriers were defined (Table C.4). The first and strongest barrier to be 

identified separated the western and northern sites from the central and eastern sites. The 

second barrier separated the most western site (W1) from the rest of the population, 

suggesting that this site is genetically isolated. The third barrier separated the central and 

eastern sites indicating that despite being geographically proximate, the eastern sites are 

genetically distinct from the central sites. Finally, the fourth barrier separated the second 

most western (W2) site from the rest of the population suggesting that, similar to W1, it is 

also genetically isolated. When we removed the most geographically isolated sites (W1, 

N1 and N2) from the barrier detection analysis the same barriers, in the same order, were 

detected as before (excluding the second barrier which separated W1). 

 Principal coordinates analysis clustered sites into four main groups (Figure 3.2). 

These clusters are consistent with results of pairwise FST comparisons between sites 

(results not shown) as well as the groups identified by BARRIER analysis. Together, the 

first two coordinates explained 69.54 % of the variation present within the data set.  

We found a significant isolation by distance relationship among the BC sub-

populations, and this relationship was stronger when we used geographic distance along 

valleys (r
2

 = 0.247, P < 0.0001; Figure 3.3b) compared to Euclidean geographic distance 

(r
2

 = 0.182, P = 0.002; Figure 3.3a).  
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Table 3.2 Summary of the AFLP phenotype scoring results for all selective primer 

combinations. Mismatch error rates generated by setting both locus and phenotype 

thresholds to 100rfu. 

Selective primer combination Mismatch error rate% Initial number of loci Number of loci retained 

EcoRI-AAC/MseI-CAC 1.43 112 94 

EcoRI-AGC/MseI-CAC 1.74 107 93 

EcoRI-AGC/MseI-CAT 1.68 135 112 

EcoRI-AGC/MseI-CTT 1.28 109 80 

EcoRI-AAG/MseI-CAA 1.63 129 109 

 (Mean 1.55) (Total 592) (Total 488) 

 

Table 3.3 Within sub-population and global genetic diversity for the British 

Columbia population of Apodemia mormo. Global measures are reported as mean 

values.  

Site N PPL He (±SE) FAFLP (±SE) ** 

W1 45 0.224 0.088 (0.008) 0.477 (0.105) 

W2 39 0.221 0.077 (0.008) 0.197 (0.079) 

W3 19* 0.221 0.068 (0.008) 0.118 (0.128) 

W4 38 0.224 0.072 (0.007) -0.079 (0.077) 

W5 44 0.181 0.071 (0.008) 0.074 (0.074) 

W6 41 0.181 0.068 (0.007) -0.048 (0.083) 

W7 15* 0.227 0.083 (0.008) 0.017 (0.130) 

W8 38 0.230 0.082(0.008) 0.196 (0.107) 

C1 38 0.218 0.070 (0.007) 0.098 (0.066) 

C2 40 0.172 0.070 (0.008) 0.143 (0.077) 

E1 40 0.236 0.090 (0.008) 0.511 (0.140) 

E2 29 0.227 0.090 (0.008) 0.435 (0.120) 

N1 28 0.209 0.085 (0.008) 0.290 (0.124) 

N2 13* 0.227 0.087 (0.008) 0.263 (0.195) 

All 467 0.214 0.079 (0.008)  

N, number of analysed samples; PPL, proportion of polymorphic loci; He, expected 

heterozygosity; FAFLP, individual inbreeding coefficient, averaged across individuals per 

sub-population. 

* The minimum recommended sample size for detecting polymorphism using a 5% 

criterion is 20 individuals, thus caution should be employed when interpreting the results 

for these sub-populations. 

**Average of 20 runs, each consisting of 250 loci which were randomly selected from a 

possible 326 loci using a random number generator in Excel. Standard error values were 

calculated separately for each run and then averaged. 
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Figure 3.2 Principal coordinate analysis (PCoA) of all 14 sub-populations of 

Apodemia mormo based on a genetic distance matrix (FST). The genetically 

differentiated regions previously identified by BARRIER are indicated by red 

circles. 
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Figure 3.3 Relationship between genetic differentiation (FST/ (1-FST)) and 

geographical distance (ln transformed) among all studied sub-populations.  

Geographic distance was measured as (a) straight line distance between sites, or (b) 

‘adjusted’ distance between sites (based on constraining movement to valley bottoms). 

Each point represents a pair of sub-populations. The linear regression lines are shown to 

indicate the underlying trends (r
2 

= 0.182; 0.247 respectively). 
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3.4 Discussion 

3.4.1 AFLP analysis and phenotype scoring 

We successfully applied AFLPs generated from non-lethally sampled wing tissue to 

examine the genetic structure and diversity of an endangered butterfly population. Our 

study is among only a few to apply AFLPs to an endangered butterfly (Gompert et al. 

2006; Leidner and Haddad 2010) and is the first to do so using non-lethal tissue samples. 

Given the difficulties often associated with developing and scoring microsatellite markers 

for many Lepidoptera species (Zhang 2004; Meglécz et al. 2007) our results indicate that 

AFLPs represent a suitable alternative molecular marker for conducting conservation 

genetic studies of butterflies.  

Our final method of scoring and phenotyping AFLP variation is a conservative 

one compared to most other AFLP studies (Table 3.1). We removed questionable peaks 

contributing to phenotype error rate, used scoring parameters to select loci (100-500bp, 

100rfu) and call phenotypes (100 rfu), and removed singleton loci from the final AFLP 

dataset. Our stringent approach to locus selection resulted in a lower number of loci 

retained for genetic analyses, but led to lower error rates and ultimately, a more powerful 

dataset for inferring population structure. In comparing four datasets generated using 

different threshold values and in the inclusion or exclusion of singleton loci, we found 

that the most stringent dataset (thresholds of 100rfu and singleton loci removed), despite 

retaining the fewest number of loci, produced the strongest signals of population structure 

as indicated by lower variability in estimates, higher r
2
 values and higher levels of 

statistical significance (Appendix C).  In combination with a very low mismatch error 

rate, these results indicate that the loci retained under the more conservative selection 
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criteria were highly repeatable and informative, generating the dataset with the highest 

‘signal to noise’ ratio. Given these results, it is clear that increasing the number of loci in 

AFLP datasets by lowering selection stringency does not necessarily compensate for the 

decreased reliability of the additional loci (e.g., Herrmann et al. 2010). To obtain a 

sufficient number of AFLP loci, we strongly recommend the maintenance of more 

conservative locus selection criteria coupled with the use of additional selective primer 

combinations rather than applying loose selection criteria across a small number of 

selective primer sets (as discussed in Whitlock et al. 2008). Furthermore, as indicated in 

Table 3.1, locus selection criteria are often not reported in many studies using AFLPs, 

nor are error rates. To enable comparisons among studies, as well as adequate evaluation 

of the data, it is therefore equally important that details of the analysis methods, and 

associated error rates, be provided. 

 

3.4.2 Population genetic structure of the Mormon metalmark 

Despite the small geographic scale of the studied region, our analyses indicate that a high 

degree of spatial genetic structure exists among the BC Mormon metalmark sub-

populations. Our results thus suggest that many sub-populations may be experiencing low 

levels of gene flow and/or high levels of genetic drift.  Similar findings have previously 

been reported for other endangered butterfly species inhabiting fragmented landscapes. 

For example, Vandewoestijne and Baguette (2004) observed high genetic differentiation 

in a vulnerable Belgian population of the Bog fritillary using RAPD (randomly amplified 

polymorphic DNA) markers. Limited dispersal and gene flow among populations, 

particularly among the most isolated populations that showed the greatest differentiation, 
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were thought to have contributed to population sub-structuring. Similarly, Sigaard et al. 

(2008) attributed the patterns of restricted gene flow observed among isolated Danish 

populations of the Marsh fritillary, detected using microsatellites, to increasing habitat 

fragmentation. As well, a very isolated population of the Regal fritillary, typically 

considered to be a high gene flow species, was shown to exhibit high genetic 

differentiation and restricted gene flow at a small spatial scale (<10km) using 

microsatellite and mitochondrial markers (Keyghobadi et al. 2006). Restricted gene flow 

in the Mormon metalmark may in part be due to the natural patchiness of the host-plant 

distribution, but habitat fragmentation has most likely been further intensified as a result 

of agriculture and urban development. 

Overall, sub-populations of the Mormon metalmark displayed a significant pattern 

of isolation by distance, and PcoA analysis and pairwise FST comparisons also suggested 

that gene flow may be highest among sites that are geographically most proximate (e.g., 

W2-W8). The two northern sites (N) are an exception to this pattern however, as they 

appear to be more genetically similar to the western sites (W) than the central sites (C) 

despite being geographically closer to the latter. The northern sites may therefore not be 

as isolated as was previously thought. Although much of the landscape separating the two 

regions is currently dominated by agriculture, along the base of the mountain ranges there 

may be suitable, but not yet recognized, habitat patches through which dispersal can 

occur. A thorough survey of this region has not been performed as much of the land is 

privately owned. 

BARRIER analysis identified four areas of high genetic differentiation (with high 

bootstrap support) within the BC population. The second and fourth barriers identified 
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(B, D) are likely a result of geographic distance isolating the two most western sites. The 

distances between these sites and all others exceed the suggested dispersal capability of 

the butterfly based on mark-recapture data (600 m estimated by Arnold and Powell 1983; 

4 km estimated by S. Desjardins, unpublished), with very few suitable intervening habitat 

patches available. In contrast, the first and third barriers to be identified likely represent 

regions of high genetic differentiation that are not simply a result of geographic isolation. 

The first barrier to be identified (A) separated the central and eastern sites from the 

northern and western sites, despite the fact that the northern sites are geographically the 

most isolated. Furthermore, when we removed the northern sites from the BARRIER 

analyses we still observed the same barrier between the central and western regions, thus 

providing further evidence that the observed barrier is not an artefact of isolation by 

distance. As both central sites are located within the town of Kermeos, this strongly 

suggests that the town is acting as an important barrier preventing individuals from 

dispersing to the nearest western sites. While there is urban development separating the 

two central sites from one-another, C1 is a newly established site which occurs within a 

man-made gravel pit and is thought to have been colonized by individuals from the 

nearby C2 site (COSEWIC 2003). This recent colonization (approximately 5-11 years 

ago; COSEWIC 2003) may account for why these two sites appear genetically similar.  

Urban areas have been shown to significantly hinder dispersal and gene flow in a 

variety of taxa including insects, amphibians, reptiles and birds (e.g., Noel 2007; 

Vandergast 2009; Delaney et al. 2010). In particular, several butterfly species inhabiting 

urban areas have been found to exhibit limited gene flow among local populations and 

reduced genetic diversity in comparison to populations inhabiting rural areas (Wood and 
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Pullin 2002; Takami et al. 2004). However, not all species are hindered by urbanization, 

and some may even thrive in such areas. Leidner and Haddad (2010) found that 

urbanization posed no physical barrier to dispersal and gene flow for the highly mobile 

Crystal skipper, and in fact, may have facilitated the movement of individuals over short 

distances. 

The third barrier to be identified in our study (C) separated the central sites from 

the eastern sites. Geographically, these sites are not exceptionally distant. For example, 

2.5 km separate C2 from E1. In comparison, a similar distance separates W4 from W5, 

which were not found to be genetically dissimilar from each other. Therefore, a barrier to 

gene flow other than simply distance also separates the central and eastern sub-

populations, however the exact nature of that barrier is not apparent. The eastern sites are 

the only sites to be located on the south side of the Similkameen river, but are also 

separated from the nearest neighbouring sub-populations by a large amount of cultivated 

land and urban development. While agricultural and urban areas have been shown to limit 

butterfly dispersal (e.g., Dover 1991; Ries and Debinski 2001; Wood and Pullin 2002; 

Schtickzelle and Baguette 2003; Takami et al. 2004), the river itself may also be a factor. 

There are few examples where water bodies have been identified as limiting gene flow in 

butterfly species. However, Leidner and Haddad (2010) identified ocean inlets separating 

barrier islands to be barriers to gene flow in the Crystal skipper. 
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3.4.3 Genetic variation 

Through comparison to other AFLP studies of Lepidoptera (Table 3.1), the BC 

population of the Mormon metalmark appears to exhibit low genetic diversity. However, 

differences in AFLP scoring methodology may influence these diversity estimates, 

making direct comparisons among species difficult. It should also be noted, that as the 

BC population is located at the northern boundary of the Mormon metalmark’s 

distribution, low genetic diversity within this population may simply be a result of its 

peripheral location (as reviewed in Eckert et al. 2008).  

 While no estimates of mean individual inbreeding coefficient (FAFLP) within sites 

were statistically different from zero, variation in their magnitude among sites suggests 

that some of the more geographically isolated sites (E1, E2 and W1) may be more 

homozygous than some of the more connected sites (W4-W7). This is concordant with 

our observation that the geographically isolated sites also appear to be genetically 

isolated. Likewise, the lowest inbreeding estimates were observed for the western sub-

populations W4-W7, previously suggested to be the largest sub-populations (in both 

habitat availability and population numbers; COSEWIC 2003).  

 

3.4.4 Future management and recommendations 

As a host-plant specialist with limited dispersal capabilities, the survival of the BC 

population of the Mormon metalmark will be highly dependent on habitat availability. 

We found significant genetic structure within this population, indicating limitations to 

dispersal and potentially high levels of drift in some sub-populations. Thus, our results 
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underline the importance of maintaining habitat patches of sufficient size and 

connectivity for the persistence of this population.  

  Our results also suggest that small habitat patches may act as important stepping-

stones between sub-populations. Specifically, such stepping-stones may be facilitating 

the connectivity of the geographically distant northern sub-populations to the western 

ones. Thus, ideally as many habitat patches as possible should be conserved, regardless of 

size. 

 Finally, we identified the town of Keremeos to be an important genetic barrier, 

which was not intuitive based on the geographic location of known sub-populations. 

Previous studies of various butterfly species inhabiting urban areas have reported habitat 

availability to be a critical factor in determining the likelihood of population persistence 

in such environments, particularly when dispersal ability is limited (Maes and Van Dyck 

2001; Wood and Pullin 2002). Consequently, future management should include 

establishing stepping-stone habitat sites within the town of Keremeos which would 

facilitate movement of individuals within the town itself as well as from the west to the 

east side of the Similkameen valley. 
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Chapter 4  

4 Local patch characteristics determine patterns of 
genetic diversity in a glacial relict, peatland specialist 
butterfly 

 

4.1 Introduction 

The conservation of populations and communities within fragmented landscapes is often 

focused on preserving large, well-connected areas of habitat (Fahrig 2001; Baguette 

2004). Within a conservation genetics framework, this can maintain a high level of 

genetic variability since, in theory, smaller and more isolated habitat patches support 

small populations that are genetically impoverished due to reduced gene flow and 

increased genetic drift and inbreeding (Keyghobadi 2007). Maintenance of genetic 

diversity, in turn, is important as genetic variation is often correlated with individual 

fitness as well as population viability and persistence (e.g., Saccheri et al. 1998; Hansson 

and Westerberg 2002; Reed and Frankham 2003; Vandewoestijine et al. 2008; but see 

Reed 2010). However, habitat quality can also significantly influence population 

dynamics (Thomas et al. 2001; Baguette et al. 2011), and higher quality habitat patches 

generally support larger populations which are more genetically diverse (de Vere et al. 

2009; Pitra et al. 2011). Thus, in addition to area and isolation, the overall quality of a 

habitat patch can be an important determinant of genetic variability and long-term 

population persistence.  
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 Some habitats, such as glacial relict habitats (e.g., temperate peatlands) are 

naturally fragmented due to abiotic and/or biotic factors (Hampe and Jump 2011). The 

species that occur in these habitats are often highly specialized and adapted to specific 

environmental conditions (Habel and Schmitt 2012) which constrain their occurrence to 

isolated populations (Spitzer and Danks 2006; Hampe and Jump 2011). Given this 

geographic restriction, such specialist species usually experience reduced gene flow, 

which results in lower intrapopulation genetic diversity and increased interpopulation 

genetic differentiation (Habel and Schmidtt 2012). Despite a lack of genetic exchange, 

highly isolated populations may nonetheless persist because of purging of deleterious 

alleles over multiple generations (Habel and Zachos 2012), making them less susceptible 

to the negative consequences of genetic bottlenecks or inbreeding (Crnokrak and Barrett 

2002; Reed 2010). As biota inhabiting naturally highly fragmented habitats appear to be 

adapted to reduced dispersal and gene flow, genetic variation and population viability are 

predicted to be less sensitive to changes in the surrounding landscape, such as increased 

isolation and loss of potential habitat (Habel and Schmitt 2012; Habel and Zachos 2012). 

For these specialists, local patch characteristics (e.g., habitat patch size and quality) may 

be the more critical factors influencing genetic diversity and population persistence; 

however, to our knowledge few empirical tests of this prediction currently exist.  

 Across much of Europe and the northeastern United States, relict peatland habitats 

have become increasingly degraded and isolated due to human activities (Giberson and 

Hardwick 1999; Spitzer and Danks 2006; Savage et al. 2011). Consequently, many of the 

specialized plant and animal species endemic to these unique habitats are now of high 

conservation concern (van Sway et al. 2006; Turlure et al. 2009). Furthermore, peatland 
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ecosystems are sensitive to increases in atmospheric nitrogen deposition (Tomassen et al. 

2003) as well as changes in precipitation and temperature regimes (Breeuwer et al. 2010). 

Although many plant and animal species have responded to current climate change by 

shifting their phenology or distribution ranges (Parmesan et al. 1999; Parmesan 2006), 

glacial relict species cannot easily disperse from sites that become unsuitable because 

they often have limited dispersal abilities and rely on resources that only occur under 

very specific environmental conditions (Hampe and Petit 2005; Franco et al. 2006; 

Goffart et al. 2010; Habel et al. 2011).  Therefore, determining to what extent landscape 

structure versus local patch characteristics influence patterns of population genetic 

structure and diversity in peatland specialist species may allow us to better predict how 

they will respond to increasing habitat fragmentation and degradation. Such an 

understanding will also aid in assessing vulnerability of populations to environmental 

change and guide appropriate mitigation and management plans to conserve populations 

that are most at risk. Patterns of gene flow and population genetic structure have been 

described for several glacial relict species inhabiting western Europe (e.g., 

Vandewoestijne and Baguette 2004; Nève et al. 2008; Finger et al. 2009; Habel et al. 

2010; Drees et al. 2011), while comparatively little research has been conducted for such 

species in North America. 

 In this study, we examined patterns of population genetic structure and diversity, 

and their relationships with local patch characteristics and surrounding landscape 

structure, in the bog copper (Lycaena epixanthe, Boisduval and Le Conte 1835), a glacial 

relict butterfly endemic to temperate Nearctic peatlands. We examined local populations 

within a landscape in central Ontario, Canada, where peatland habitat remains relatively 
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untouched by human activities. The objectives of our study are: (1) to establish whether 

local populations of the bog copper exhibit the genetic characteristics of a habitat 

specialist (i.e., low genetic variability within populations and high genetic differentiation 

among populations) and (2) to test the hypothesis that for a habitat specialist, differences 

in intrapopulation genetic diversity are better explained by local patch characteristics 

(area, quality) than by the surrounding landscape structure (isolation, composition). By 

addressing these questions in an undisturbed landscape, we aim to assess the dispersal 

potential and natural levels of gene flow among populations of the bog copper, as well as 

identify which landscape features may be most influential for the long-term persistence of 

this species. The results of this study will have important implications for the 

conservation of the bog copper as well as other relict habitat specialists.  

 

4.2 Methods 

4.2.1 Study species 

The bog copper is a very small (wingspan: 17-22 mm), univoltine butterfly found in 

eastern North America. It is considered a relict species whose distribution was more 

widespread before the Pleistocene glaciation (Wright 1983). In Canada it ranges in a band 

from Riding Mountain National Park, Manitoba east to St. John’s, Newfoundland, and it 

also occurs along the eastern United States as far south as Virginia (Layberry et al. 1998). 

Both the larvae and adults feed exclusively on cranberry plants (Vaccinium macrocarpum 

and V. oxycoccos) which typically grow in acid peatlands, and thus the species is 

considered a strict habitat specialist (Wright 1983; Cech and Tudor 2005). While 
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cranberries can grow in less saturated substrates, the bog copper is only known to occur 

in open wetland habitats with permanently wet, sunny substrates (Opler and Malikul 

1992; Layberry et al. 1998). The adult’s flight behaviour is slow and low to the ground, 

and butterflies typically occur in discrete colonies in which they are believed to carry out 

their entire lifecycle (Wright 1983; Cech and Tudor 2005). Within suitable habitat 

patches, this species is often locally abundant and can reach high population densities 

(e.g., mean relative abundance > 200 (individuals/hour), Swengel and Swengel 2011). 

Given the species’ sedentary flight behaviour and strict habitat requirements it is 

expected to be a relatively poor disperser whose movement is constrained by the amount 

of surrounding forest and open water habitat. While this species’ global status is 

apparently secure (G4, NatureServe 2013), in the United States bog coppers are listed as 

imperiled in Pennsylvania and critically imperiled in West Virginia and Maryland, 

primarily due to habitat loss and fragmentation (Cech and Tudor 2005).  

 

4.2.2 Study area 

The study was conducted within the southern region of Algonquin Provincial Park, 

Ontario, Canada (UTM: 17N 692550E 5049669N; Figure 4.1). At an elevation of 443 m 

above sea level, the climate of this region is generally cool and moist, with a mean annual 

temperature of 4 °C and a mean annual precipitation of 1182.8 mm (Environment 

Canada; Canadian Climate Normals 1971-2000; station Dwight, Ontario, 

http://www.climate.weatheroffice.gc.ca). Algonquin Provincial Park is situated within the 

Great Lakes-St. Lawrence forest region of Ontario, a transition zone between the 

southern deciduous forest of eastern North America and the northern coniferous boreal 
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forest. In this region coniferous tree species such as eastern red cedar (Juniperus 

virginiana), eastern hemlock (Tsuga canadensis), eastern white pine (Pinus strobus), and 

red pine (P. resinosa) occur amongst deciduous broad-leaved species such as yellow 

birch (Betula alleghaniensis), northern red oak (Quercus rubra), sugar maple (Acer 

saccharum), and red maple (A. rubrum). As well, several boreal species including white 

birch (Betula papyrifera), tamarack (Larix laricina), white spruce (Picea glauca), and 

black spruce (P. mariana) also occur. The landscape is predominated by forest (81%), 

freshwater lakes (10%) and wetland habitats (8%) including acid bogs and poor fens 

(collectively referred to as ‘peatlands’). Peatlands are classified as permanently saturated 

wetlands exhibiting an accumulation of un-decomposed organic matter (peat). Water is 

contained within these habitats via either a high water table, an underlying impervious 

stratum or by climatic conditions that limit evaporation (Johnson 1985; Marshall et al. 

1999). The rate of decomposition of plant material is very slow in these habitats due to a 

lack of inflowing nutrients, poor drainage and a buildup of acids (Gore 1983; Tiner 

1999). Bogs are extremely acidic (e.g., pH < 4.2) and nutrient-poor peatlands, whose only 

water input is through precipitation (Mitsch et al. 2009). In contrast, fens are less acidic 

and nutrient-poor than bogs as they are also fed by slow-moving ground water (Gore 

1983; Spitzer and Danks 2006). Depending on groundwater flow and chemistry, the pH 

of fens can range from mildly acidic ‘poor fens’ (e.g., pH = 4.1-5.8), to extremely 

alkaline, ‘rich fens’ (e.g., pH > 6.7; Mitsch et al. 2009). Bogs and poor fens are inhabited 

by a unique set of flora which are highly adapted to living under waterlogged and acidic 

conditions (Johnson 1985) including sphagnum mosses (Sphagnum spp.), low-growing 

heaths (e.g. bog laurel, Kalmia polifolia; cranberry, Vaccinum spp.; labrador tea, Ledum 
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groenlandicum; and leatherleaf, Chamaedaphne calyculata) and carnivorous plants (e.g. 

northern pitcher plant, Sarracenia purpurea; and sundews, Drosera spp.). Due to 

increased nutrient availability, poor fens can also support a wider array of tree and shrub 

species than bogs (Johnson 1985; Tiner 1999). 

 

4.2.3 Sample collection 

Tissue from adult butterflies was non-lethally sampled in 13 separate peatlands in July 

2009 (Table 4.1, Figure 4.1).  Within five of those peatlands we collected individuals 

from two discrete regions (Table 4.1). Because bog coppers are thought to be extremely 

sedentary, we were interested in whether individuals from different sampling locations 

within a peatland represented discrete colonies, and we initially conducted population 

genetic analyses for these sub-samples separately.  

 Individuals were captured using hand-nets, and a small piece of tissue or ‘wing-

clip’ (~0.1 cm
2
) was removed from both hind-wings using iris scissors and immediately 

stored in absolute ethanol.  All butterflies were then marked, to prevent resampling, and 

released from the location of their initial capture. We have demonstrated previously for 

other butterfly species that small pieces of wing tissue can be sampled non-lethally 

without lowering individual survival, or affecting short-term flight behaviour, mating, 

and oviposition (Koscinski et al. 2011; Crawford et al. 2013). 
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a) 

c) 

b) 

Figure 4.1 Map of the study system and sampling locations for Lycaena epixanthe 

outlining the location of Algonquin Provincial Park in Ontario, Canada (a), the 

study region within Algonquin Provincial Park (b) and the locations of the 13 

studied populations (b, c). Forest, the dominant land cover is depicted in white, open 

water in blue, wetlands in dark gray and the studied peatlands in black. 
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Table 4.1 Collection record of the 13 studied populations of Lycaena epixanthe in 

Algonquin Provincial Park, Ontario, Canada, with coordinates measured as the 

centroid of butterfly capture in each peatland or survey region, the number of 

individuals initially collected (ncollected) and the number of individuals successfully 

amplified and phenotyped for AFLP analyses (nAFLP). 

   UTM Coordinates (17N)  

Code Peatland Region Easting Northing ncollected nAFLP 

BUG ‘Buggy’  - 679515.01 5049067.38 25 25 

WH Wolf Howl Pond - 680263.51 5049909.77 41 41 

DL Dizzy Lake a 680239.50 5046830.66 20 20 

  b 680420.74 5047193.93 20 20 

ML Mizzy Lake a 681141.86 5047379.28 19 18 

  b 680892.62 5047327.68 24 24 

WR West Rose Lake - 680935.89 5049256.81 38 38 

KB ‘Kearney’  - 698978.67 5050431.11 39 37 

MIN Minor Lake a 701460.15 5057456.41 25 25 

  b 701446.35 5057410.10 15 15 

BAB Bab Lake - 701436.90 5055911.00 40 40 

ZEN Zenobia Lake - 701883.80 5055742.06 39 38 

SB Spruce Bog - 705183.73 5052048.05 16 16 

EOS Eos Lake a 706133.08 5052006.34 11 11 

  b 705978.98 5051977.83 29 29 

OPL Opeongo Lake - 706267.58 5056808.38 41 41 

DT D. Thompson Lake a 712915.21 5044885.79 20 20 

  b 713048.59 5044791.02 20 19 
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 Throughout tissue collection in each surveyed peatland, we kept a record of the 

total time required to capture all sampled individuals (Table D.1). This allowed us to 

determine the catch per unit effort (number of individuals / person-hour), a coarse index 

of population density, in each peatland. Weather conditions were similar across all 

sampling sites (i.e., we only captured butterflies on warm and sunny days). 

 

4.2.4 DNA extraction and AFLP marker selection 

Wing-clips were removed from ethanol, allowed to air dry for several minutes, and 

genomic DNA was extracted using the DNeasy® Blood and Tissue Kit (QIAgen, 

Germantown, MD) following the manufacturer’s protocol. The DNA was eluted in two 

volumes of 200µL (total = 400 µL) to maximize total yield and DNA concentrations 

ranged from ~ 50-100 ng/µL.  

 Population genetic data were obtained using amplified fragment length 

polymorphism (AFLP) molecular markers, a multilocus genomic fingerprinting technique 

widely used in ecological and evolutionary research on non-model species (Bensch and 

Åkesson 2005). We have shown previously that small pieces of butterfly wing tissue 

provide sufficient quantities of DNA for the development of AFLPs
 
(Keyghobadi et al. 

2009; Crawford et al. 2011). AFLP profiles for the bog copper were generated following 

a protocol adapted from two standard fluorescent AFLP methods, that of Clarke and 

Meudt (2005) and the commercial AFLP Plant Mapping Kit (Applied Biosystems, Foster 

City, CA), the details of which are outlined in Appendix A. After initially screening 64 

selective primer combinations (Table A.1), the following five combinations were selected 

based on relative polymorphism and reproducibility of fragments: EcoRI-ACA/MseI-
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CTT, EcoRI-AAC/MseI-CAC, EcoRI-AAC/MseI-CTC, EcoRI-AAG/MseI-CAA, and 

EcoRI-ACC/MseI-CAC. Negative controls were included in each step of the protocol to 

detect potential DNA contamination (i.e., Milli-Q purified water was used in place of 

DNA template, and restriction-ligation and PCR products). Fluorescently labelled AFLP 

fragments were separated and sized using a 3730S Genetic Analyzer (Applied 

Biosystems). 

 

4.2.5 AFLP Analysis 

AFLP fragment sizes and non-normalized peak heights were determined using 

GENEMAPPER v.4.0 (Applied Biosystems) based on comparison to a size standard 

ladder (LIZ-500) loaded with each sample. To reduce the incidence of size homoplasy 

(Vekemans et al. 2002) and artefactual peaks caused by instrument noise, we used 

GENEMAPPER to identify initially those AFLP loci (i.e., fragments that fall within user-

defined size ‘bins’) between 100 and 500 base pairs (bp) in size, and above 100 relative 

fluorescence units (rfu) in height (see Chapter 3). We set bin width to one bp, and 

visually checked the position of all bins to ensure that they were accurately assigned by 

GENEMAPPER. Specifically, we adjusted bins if they were off-centre of a peak 

distribution, and removed bins if they contained fragments that overlapped with an 

adjacent bin. As well, we manually checked every AFLP profile to confirm successful 

amplification. If a sample failed to amplify or appeared to possess many unique 

fragments it was run through the AFLP protocol again using a new aliquot of the same 

DNA extraction, and if the amplification failed a second time then the sample was 

removed from analysis.  
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 The AFLP peak-height data were then normalized and scored in AFLPSCORE 

v.1.3b (Whitlock et al. 2008) using the data filter and absolute phenotype-calling 

threshold settings. AFLPSCORE applies an objective approach to AFLP phenotype 

scoring and uses mismatch error rate analysis of replicate samples to ascertain optimal 

phenotype scoring parameters that both minimize mismatch error and maximize the 

number of loci retained. First a locus selection threshold is determined based on mean 

peak height, and only loci whose peak-heights are equal or above this threshold are 

retained. Then a phenotype-calling threshold is applied for each AFLP profile to score 

loci as either present or absent. We used 32 replicate individuals (~ 7 % of total sample 

size; see Chapter 2) to estimate mismatch error rate for each primer combination. All of 

the collected wing tissue was required for DNA extraction, thus replicate samples 

represent two aliquots of the same DNA extraction which were independently subjected 

to the entire AFLP protocol.  

For each primer combination we determined the optimal scoring parameters by 

testing multiple combinations of locus and phenotype scoring thresholds (from 100-3000 

and 100-1000 rfu, respectively) and we identified those thresholds which provided the 

maximal number of retained loci while maintaining a mismatch genotyping error rate of 

less than 5 % (acceptable error rates for AFLPs; Bonin et al. 2004).  Using the 

appropriate threshold values we then created four increasingly inclusive datasets with 

decreasing stringency regarding mean mismatch error rates (< 5, < 4, < 3 and < 2 %) 

across all primer combinations, herein after referred to as datasets 5A, 4A, 3A and 2A. 

Estimates of homozygosity (following a 5% criterion) can be upwardly biased by unique 

or ‘singleton’ loci which may not represent true AFLP loci (e.g., as a result of incomplete 
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digestion; Milot et al. 2007). Thus, for each dataset we created a second more stringent 

dataset where we removed all loci that were present in only a single individual, here after 

referred to as datasets 5B, 4B 3B and 2B. 

 Using the eight described datasets (5A, 5B, 4A, 4B, 3A, 3B, 2A and 2B) we 

calculated estimates of population genetic structure and genetic variability (described 

below) and examined the trade-offs between reduced genotyping error and the number of 

retained loci on our ability to detect population genetic structure and variation in genetic 

diversity estimates among populations. Based on these comparisons we identified the 

optimal data set for our study system, which we subsequently used to perform all 

population genetic analyses. 

 

4.2.6 Landscape evaluation 

4.2.6.1 Surrounding Landscape Structure 

We assessed landscape structure in the area surrounding each surveyed peatland, by 

evaluating a circular sector of 1 km radius surrounding the centroid of butterfly capture at 

each site. Given the bog copper’s presumed limited dispersal capabilities, close 

association with its host-plant, and based on preliminary genetic analyses which 

suggested pronounced genetic differentiation among populations located less than 500 m 

apart, a 1 km radius represents a suitable scale at which we would expect the bog copper 

to be influenced by landscape structure. We confirmed this by initially testing for 

landscape effects on intrapopulation genetic diversity (details below) using radii of 100 

m, 250 m, 500 m and 1 km. Indeed we found that the 1 km scale explained the most 
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variation in all genetic diversity measures among populations (results not shown), thus 

we present the results of the landscape analysis using data extracted from the 1km scale. 

Some surveyed peatlands were geographically proximate which resulted in considerable 

overlap of radii at larger spatial scales. Thus, to avoid pseudoreplication we did not test 

radii larger than 1km. 

 We used a digital raster-based land cover classification map (Ontario Ministry of 

Natural Resources, Forest Resources Inventory, 2005) with a grain size of 5 m
2
 to 

determine, for the circular sector surrounding each peatland: the area proportion and an 

index of proximity of potentially suitable habitat (wetland), and the area proportion of 

forest and open water habitat (Table B.1). Based on field observations, we considered all 

classified wetland types in our study area (open muskeg, treed muskeg and brush and 

alder), as potentially suitable habitat for the bog copper. We assumed that all forest 

stands, regardless of species composition, would serve as significant barriers to dispersal 

for the bog copper. Thus we classified the land cover types in our study area generally as 

either forests, wetlands, open water, rock or unclassified land. The proximity index 

provides a measure of both the degree of isolation and the degree of fragmentation of a 

particular habitat type within a defined neighborhood or search radius (McGarigal et al. 

2002). It was calculated as the sum of the area of all potentially suitable wetland habitat 

whose edges fall within a 500 m radius of the focal patch, divided by the squared distance 

between the focal patch and all other wetland patches. Thus, all else being equal, a patch 

within a neighbourhood containing more wetland habitat will have a larger mean 

proximity index. Likewise, a patch will have a larger mean proximity index when 

surrounding wetland habitat occurs as larger, more contiguous, and/or proximate patches 
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(McGarigal et al. 2002). Other studies have previously demonstrated open water to be a 

barrier to dispersal in butterflies (Leidner and Haddad 2010) and therefore we considered 

open water as an aspect of surrounding landscape structure predicted to be negatively 

related to genetic diversity. However, given the bog copper’s reliance on a generally high 

water table, the amount of water in the surrounding landscape could also affect local 

patch quality, in which case it would be predicted to have a positive relationship with 

genetic diversity. All measures of landscape spatial structure were performed using 

ArcGIS v.10.0 (Esri, Redlands, CA) and FRAGSTATS v.4.0 (McGarigal et al. 2002). 

 

4.2.6.2 Local Patch Characteristics 

We determined the geographic area (ha) of each sampled peatland (Table B.1) using a 

combination of high resolution aerial imagery (Ontario Ministry of Natural Resources, 

Forest Resource Inventory 2006, 40 cm accuracy), a vector-based version of the same 

land cover classification map described above, and our own ground truthing. 

 Within each surveyed peatland we also estimated the abundance and distribution 

of host-plant available for the bog copper (Table B.1). In July 2010 we recorded 

cranberry cover (as a proportion) within 1 m
2
 quadrats spaced 15 m apart along 

continuous transects. Transects were parallel, separated by 20 m and covered the length 

of each peatland. The total number of surveyed quadrats varied among peatlands in 

proportion to total area, and we recorded their locations using high-accuracy GPS 

(Trimble GeoHX). Mean host-plant density was calculated as the mean cranberry cover 
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for all quadrats in a peatland.  We then calculated an index of total host-plant abundance 

for each peatland by multiplying mean host-plant density by total peatland area. 

 

4.2.7 Data analysis 

4.2.7.1 Population genetic structure 

Unbiased estimates of population genetic structure based on estimated allele frequencies 

were calculated in AFLP-SURV v.1.0 (Vekemans et al. 2002). Allele frequencies are 

estimated using a Bayesian approach with a non-uniform prior distribution which is 

robust to minor departures from Hardy-Weinberg equilibrium (Zhivotovsky 1999). We 

first calculated pairwise FST values between all populations and sampling locations within 

populations (N = 18 sampling locations; Table 4.1). We evaluated the statistical 

significance of pairwise FST based on 10,000 random permutations, and only considered 

values greater than the 99
th

 percentile of the null distribution to be statistically significant 

(Vekemans et al. 2002). Within DL, DT and EOS sub-samples were not significantly 

differentiated (P > 0.05, Table E.2), thus all individuals within each of these peatlands 

were considered to represent a single population and were pooled in subsequent analyses. 

Sub-samples from MIN and ML did however exhibit significant differentiation (P< 0.01, 

Table E.2) and to be conservative we considered these samples as separate sub-

populations in subsequent analyses (i.e., N =15).  

 Patterns of genetic differentiation among populations were examined using 

principal coordinates analysis (PCoA) of a covariance matrix of pairwise FST estimates in 

GenAlEx v.6.0 following the data standardization option (Peakall and Smouse 2006). As 

well, we assessed the degree of between-population relative to within-population genetic 
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variation using analysis of molecular variance (AMOVA) with significance of the 

variance components tested using 10,000 random permutations in the program Arlequin 

v.3.1 (Excoffier et al. 2005). Based on estimated allele frequencies we also used AFLP-

SURV to calculate global FST. 

We tested for patterns of isolation-by-distance (IBD) by plotting measures of 

genetic dissimilarity between pairs of populations (pairwise FST) against geographic 

distance, and determined the statistical significance of these correlations using the Mantel 

test (Mantel 1967) in GenAlEx based on 9,999 permutations. Both FST and geographic 

distance were linearly transformed (FST/(1-FST) and log10(1 + geographic distance in km), 

respectively). Geographic distances among populations were calculated as straight-line 

distances between the centroids of butterfly capture using ArcGIS. 

 

4.2.7.2 Genetic diversity 

Measures of genetic diversity based on estimated allele frequencies were determined for 

each population using AFLP-SURV. For each population, levels of genetic diversity were 

measured as the proportion of loci that were polymorphic at the 5% level (PPL), and as 

unbiased estimates of expected heterozygosity (He) or Nei’s genetic diversity (following 

Lynch and Milligan 1994). For each population we also report the mean number of loci 

(nm), the number of private loci or loci unique to a single population (np), and the number 

of fixed loci (nf) as determined by FAMDv.1.25 (Schlüter and Harris 2006).  
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4.2.7.3 Landscape effects on genetic diversity 

We used multiple linear regressions to investigate the effects of surrounding landscape 

structure (proportion of wetland, forest, and water habitat, and mean proximity of 

wetland habitat) and local patch characteristics (peatland size, mean host-plant density 

and host-plant abundance) on intrapopulation genetic diversity measures (PPL, He). 

Because we found evidence of very limited gene flow, even for nearby peatlands (see 

Results), each peatland could be treated as an independent replicate with respect to 

genetic diversity measures. Prior to analysis, proportion variables (PPL, He, % cover) 

were logit transformed (Warton and Hui 2011) and all predictors centered as is 

recommended for multiple regressions (Aiken and West 1991). We then confirmed 

normality for all variables (Kolmolgorov-Smirnov tests; all P > 0.05) and evaluated 

collinearity among predictors based on pairwise Pearson’s correlation coefficient values. 

Area and host-plant predictor variables were highly correlated (Pearson’s correlation; all 

r > 0.75, all P < 0.05), as was wetland and forest cover (Pearson’s correlation; all r > 

0.75, all P < 0.05). Thus we retained the four predictors which did not exhibit significant 

collinearity (i.e., peatland area, proportion of forest cover, proportion of open water and 

mean proximity of wetland habitat) for analyses. Starting from a full-model (all main 

factors and two-way interaction terms), we removed non-significant terms with P-values 

above 0.10 following a stepwise mixed selection method. To avoid pseudoreplication of 

the two peatlands with differentiated sub-populations (MIN and ML) the analysis only 

included the sub-population with the larger sample from each of those peatlands (i.e. 

MINa and MLb). 
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 To assess how host-plant availability varies with peatland patch size, we used 

linear regressions to examine the relationships between patch size and mean cranberry 

density, the coefficient of variation in cranberry density, and the index of total cranberry 

abundance. We assessed variability in host-plant density within each peatland by 

calculating the coefficient of variation in cranberry density among all quadrats. High 

coefficient of variation values indicate a heterogeneous range of cranberry densities, 

whereas low values indicate that cranberry density is fairly homogenous. We also used 

linear regression to explore whether variation in our estimates of population density 

among surveyed peatlands could be explained by variation in cranberry density. All 

statistical analyses were performed using IBM SPSS v.20 (IBM Corp, New York) and 

JMP v.8 (SAS Institute Inc, Cary, NC). 

 

4.3 Results 

4.3.1 AFLP analysis and phenotype scoring 

The AFLP phenotypes of 477 individuals (of 482 sampled) were successfully scored 

(Table 4.1). The selective amplifications of one individual failed, and that individual was 

removed from further analyses. Five other individuals were excluded because they 

possessed many unique peaks not present in any other individuals in our study. Using 

different phenotype scoring criteria which allowed for varying levels of mean mismatch 

error, the number of AFLP loci generated by the five selective primer combinations 

ranged from 126-319 (Table E.3). Overall, increasing genotyping error tolerated resulted 

in a greater number of loci to be retained. After removing singleton loci from each 

dataset, the final number of loci retained was reduced to 112-294 (Table E.3).  
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A comparison of all statistical analyses performed using the eight datasets is 

provided in Appendix B (Tables E.4-E.7).  Briefly, for the estimates of overall 

differentiation (global FST; Table E.4) and the proportion of molecular variance among 

populations (AMOVA; Table E.5) we observed very little effect of increasing mismatch 

error rate, and observed only limited differences between the original datasets (A) and the 

datasets from which singletons were omitted (B). As well, comparison of the PCoA 

results revealed that the variation explained by the first two coordinates was not greatly 

improved by increasing genotyping error tolerance, nor by removing singletons (Table 

E.6). However, in the IBD analysis, increasing mismatch error tolerance resulted in 

higher r
2
 and lower P-values (Table E.7).  We found that mean estimates of genetic 

diversity (PPL, He) remained relatively unchanged, but that the range of values estimated 

for each population generally decreased with increasing genotyping tolerance. As well, 

the mean genetic diversity estimates and the range of population values generated by 

Dataset B were greater than those of Dataset A (Table E.4). Overall, the singleton 

datasets with moderate levels (< 3- 4 %) of genotyping error appear to be most 

informative for genetic studies of the surveyed bog copper populations, as in comparison 

to the other datasets,  they provided both good explanatory power to detect population 

structure and an ability to resolve variation in genetic diversity among populations. Thus, 

we report the results of all further analyses based on the 4B dataset which has a mean 

mismatch error of 3.62% (Table 4.2) and after removing singletons consists of 190 loci 

(Table E.3).  
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Table 4.2 Summary of the AFLP phenotype scoring results for Lycaena epixanthe for all selective primer combinations 

following a < 4% mismatch error rate criterion. 

 Scoring Threshold (rfu)     

Selective primer 

combination Locus Phenotype 

Mismatch 

error rate % 

Initial no. of 

loci 

No. of loci 

retained 

EcoRI-ACA/MseI-CTT 900 300 3.92 161 37 

EcoRI-AAC/MseI-CAC 2000 500 3.98 177 34 

EcoRI-AAC/MseI-CTC 900 300 3.09 122 49 

EcoRI-AAG/MseI-CAA 500 100 3.23 123 62 

EcoRI-ACC/MseI-CAC 2500 1200 3.89 177 42 

   3.62 (mean) 760 (total) 224 (total) 
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4.3.2 Population structure 

All pairwise FST values, except for that between EOS and OPL, suggested significant 

genetic differentiation between populations (P < 0.01, Table 3.3). Overall estimated 

differentiation among populations (global FST) was statistically significant (0.095 ± 0.175 

SE, P < 0.001), and AMOVA results indicated a relatively large proportion of variance 

was partitioned among populations (% of variance among and within populations: 9.11%, 

90.89 %, respectively, P < 0.001). 

 The first two coordinates of the PCoA explained 68.57 % of the variation present 

within the dataset (Figure 4.2). Consistent with the pairwise FST comparisons, the PCoA 

indicated no obvious spatial pattern of population structure. Interestingly, the separation 

of populations along the first axis, which explains more than half of the variation  

(51.54 %), appears to correspond to levels of genetic diversity (see below) rather than to 

geographic location. For example, DT and BAB, the peatlands with the highest genetic 

diversity estimates (Table 4.4), were closely grouped together despite being separated by 

over 16 km. 

 Across all Algonquin populations, we found a significant pattern of IBD  

(r
2

 =0.182, P < 0.001; Figure 4.3a). Given the high genetic differentiation indicated by 

the FST and AMOVA analyses we also tested for IBD among nearby populations (i.e., 

separated by less than 7 km) located within the western and eastern halves of the study 

area (western: BUG, DL, ML, WH, WR; eastern: BAB, EOS, MIN, OPL, SB, ZEN; 

Figure 4.1). Within each of these regions we did not find a significant relationship 

(western sites: r
2

 = 0.057, P = 0.191; eastern sites: r
2

 = 0.039, P = 0.158; Figure 4.3b, c).  
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4.3.3 Genetic diversity 

Levels of genetic diversity were relatively low within the Algonquin population of the 

bog copper in comparison to other butterfly species (see Table 3.1); however there was 

considerable variation in estimates of diversity among populations (Table 3.4). 

Specifically, nf, the number of fixed loci, ranged from 3 to 73; PPL, the proportion of 

polymorphic loci varied from 0.237 to 0.632; He, expected heterozygosity, ranged from 

0.100 to 0.287. All estimates of genetic diversity were highly correlated with one another 

(Pearson’s r > 0.90, P < 0.05 in all cases). 

 

4.3.4 Effects of landscape 

For both dependent variables (PPL, He), multiple linear regression results indicated that 

all land cover composition predictors (% forest and open water) and the index of 

proximity of wetland habitat had no influence on genetic diversity estimates (Table 4.5). 

There was a strong negative relationship between genetic diversity and total peatland 

patch size; however, the predictor was only statistically significant in the model which 

included % water cover (Table 4.5). Examining the relationship between total patch size 

and genetic diversity, site ML appeared to be an outlier that deviated considerably from 

the overall trend. By removing this site, the explanatory power of all predictor variables 

increased, and a significant proportion of the variation in genetic diversity estimates 

among the studied sites could be explained by both the total peatland patch size (negative 

relationship) and the proportion of open water in the surrounding landscape (positive 

relationship; Table 4.5). Mean proximity and the proportion of forest habitat still had no 

significant effect on genetic diversity estimates. 
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 Among our studied sites, mean cranberry density was negatively related to 

peatland patch size (r
2 

= 0.481, P = 0.009; Figure 4.4a), while overall cranberry 

abundance and the coefficient of variation in mean cranberry density were positively 

related to peatland size (r
2 

= 0.526, P = 0.005, and r
2 

= 0.484, P = 0.008, respectively; 

Figure 4.4b, c). Estimates of population density of the bog copper in each peatland, 

derived from catch by unit effort, were positively associated with mean cranberry density 

(r
2 

= 0.142, P = 0.205; Figure 4.5a) and negatively associated with total peatland size (r
2 

= 0.024, P = 0.614; Figure 4.5b), although these relationships were not significant. Two 

populations, SB and WR, were clear outliers to this relationship, and their removal 

resulted in a highly significant positive linear relationship with mean cranberry density (r
2 

= 0.897, P < 0.001). The explanatory power of peatland size on population density also 

improved considerably, but the relationship was still not significant (r
2 

= 0.256, P = 

0.113).
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Table 4.3 Pairwise FST values for the surveyed populations and sub-populations (N = 15) of Lycaena epixanthe in 

Algonquin Provincial Park, Ontario, Canada.   

 BUG WH DL MLa MLb WR KB MINa MINb BAB ZEN SB EOS OPL DT 

BUG -               

WH 0.083 -              

DL 0.093 0.074 -             

MLa 0.109 0.066 0.101 -            

MLb 0.098 0.049 0.094 0.049 -           

WR 0.101 0.044 0.096 0.078 0.072 -          

KB 0.156 0.103 0.179 0.106 0.055 0.109 -         

MINa 0.171 0.111 0.188 0.120 0.064 0.114 0.038 -        

MINb 0.140 0.107 0.181 0.107 0.070 0.085 0.073 0.034 -       

BAB 0.200 0.124 0.198 0.122 0.071 0.162 0.034 0.062 0.118 -      

ZEN 0.093 0.049 0.111 0.080 0.045 0.077 0.064 0.058 0.073 0.065 -     

SB 0.118 0.056 0.116 0.051 0.040 0.085 0.054 0.072 0.095 0.071 0.042 -    

EOS 0.120 0.061 0.130 0.079 0.040 0.086 0.058 0.062 0.068 0.058 0.048 0.045 -   

OPL 0.146 0.087 0.160 0.107 0.064 0.110 0.070 0.063 0.073 0.068 0.055 0.060 0.021* -  

DT 0.237 0.158 0.242 0.167 0.108 0.189 0.056 0.091 0.148 0.026 0.116 0.106 0.080 0.099 - 

* populations that are not significantly differentiated, α = 0.01 level  
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Figure 4.2 Principal coordinate analysis of all surveyed Lycaena epixanthe 

populations in Algonquin Provincial Park based on a covariance matrix of pairwise 

FST values. 
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c) 

 

Figure 4.3 Relationship between genetic differentiation (FST/(1-FST)) and 

geographical distance (log10 transformed) among a) all 15 studied populations and 

sub-populations, b) western populations (BUG, DL, MLa, MLb, WH and WR) and 

c) eastern populations (BAB, EOS, MINa, MINb, OPL, SB and ZEN).  
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Table 4.4 Mean population genetic diversity for Lycaena epixanthe in Algonquin Provincial Park, Canada. For 

peatlands with differentiated sub-populations (ML and MIN), estimates are presented for each sub-population 

separately, and with all individuals pooled. 

Peatland Region nm (± SE) 

 

nf 

 

np PPL He (± SE)  

BUG  108.880 (0.821) 72 0 0.237 0.107 (0.011) 

WH  107.707 (0.809) 45 0 0.389 0.152 (0.012) 

DL  109.300 (0.473) 73 0 0.237 0.100 (0.011) 

ML a 107.500 (1.138) 64 1 0.305 0.155 (0.013) 

 b* 100.958 (2.017) 41 0 0.389 0.184 (0.014) 

 pooled 103.762 (1.318) 30 1 0.453 0.183 (0.013) 

WR  107.842 (0.547) 55 0 0.321 0.130 (0.012) 

KB  100.135 (1.682) 15 1 0.542 0.231 (0.014) 

MIN a* 101.440 (1.591) 31 0 0.453 0.211 (0.014) 

 b 103.867(1.133) 59 0 0.316 0.165 (0.014) 

 pooled 102.350 (1.087) 25 0 0.495 0.201 (0.014) 

BAB  95.125 (1.941) 5 0 0.595 0.262 (0.015) 

ZEN  106.026 (0.913) 28 1 0.479 0.190 (0.013) 

SB  103.313 (1.632) 46 0 0.374 0.188 (0.014) 

EOS  102.000 (1.077) 20 0 0.505 0.198 (0.014) 

OPL  101.439 (1.080) 28 0 0.458 0.185 (0.013) 

DT  93.154 (2.519) 3 0 0.632 0.287 (0.016) 

*sub-population used in multiple linear regression analyses 

nm, mean number of loci; nf, number of fixed loci; np, number of private loci; PPL, proportion of polymorphic loci using a 5% 

criterion; He, expected heterozygosity.
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Table 4.5 Effect of landscape and patch predictors on estimates of genetic diversity in Lycaena epixanthe for a) all 13 

surveyed peatland sites, and b) for all sites except Mizzy Lake (ML). 

Model adj. r
2
 

df 

error 

df 

total F P-value Variable Coefficient (±SE) t 

P-value 

for t-test 

        

a) All sites        

PPL 0.297 10 12 3.529 0.069 Intercept 0.441 (0.071) 6.17 <0.001 

      Water 0.437 (0.223) 1.96 0.079 

      TotArea -0.075 (0.032) -2.32 0.043 

          

He 0.275 10 12 3.279 0.080 Intercept -0.102 (0.031) -3.33 0.008 

      Water -0.169 (0.097) 1.75 0.110 

      TotArea -0.032 (0.014) -2.32 0.043 

b) ML removed        

PPL 0.422 9 11 5.013 0.034 Intercept 0.400 (0.072) 5.55 <0.001 

      Water 0.524 (0.217) 2.41 0.039 

      TotArea -0.118 (0.041) -2.85 0.019 

          

He 0.611 9 11 9.641 0.006 Intercept -0.129 (0.025) -5.09 <0.001 

      Water 0.226 (0.076) 2.96 0.016 

      TotArea -0.060 (0.015) -4.16 0.003 

PPL, proportion of polymorphic loci; He, expected heterozygosity 
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a) 

 

b) 
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c) 

 

Figure 4.4 Relationships between peatland size (ha) and a) mean cranberry density, 

b) cranberry abundance, and c) the coefficient of variation in cranberry density, for 

peatlands in Algonquin Provincial Park, Canada. 
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a) 

 

 

 

 

 

 

b) 

  

Figure 4.5 Relationship between catch per unit effort (number of individuals / 

person-hour) of Lycaena epixanthe and a) mean cranberry density and b) peatland 

size. Two outlier populations, SB and WR, are indicated. 
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4.4 Discussion 

4.4.1 AFLP analysis and phenotype scoring 

Using a modified version of standard AFLP protocols, we successfully amplified AFLPs 

generated from non-lethally sampled wing tissue in the bog copper butterfly. In contrast 

to the majority of current AFLP studies (see Chapter 2, Crawford et al. 2012; Chapter 3, 

Crawford et al. 2011), we applied a rigorous approach to select only the most repeatable 

and highly informative AFLP loci for use in population genetic analyses. Comparisons of 

results obtained from datasets varying in genotyping error rate indicate a trade-off 

between mean mismatch error and dataset resolution. The AFLP datasets with a moderate 

level of genotyping error tolerance (< 3-4%), but still within the acceptable range for 

AFLP studies (Bonin et al. 2004), provided the best compromise for detecting both 

genetic divergence among populations and genetic variability within populations. Our 

results suggest that using overly stringent locus selection criteria aimed at essentially 

removing all genotyping error (< 2%) may limit the information content of the resulting 

dataset by excessively reducing the number of retained loci. In a recent comparative 

study examining the effects of reduced AFLP genotyping error on population genetic 

analysis, Zhang and Hare (2012) similarly concluded that for their study system, an 

intermediate level of genotyping error tolerance (3-4%) was optimal for making 

population genetic inferences. That being said, overall we detected the same patterns of 

population genetic structure and diversity among populations regardless of which dataset 

was examined. Thus, for this particular study, datasets varying in mismatch error rates 

from < 2% to < 5% did not result in a dramatic gain or loss of population genetic signal. 
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4.4.2 Population genetic structure 

Our results support the prediction that the bog copper butterfly exhibits a pattern of 

population genetic structure typical of a relict habitat specialist. Even at a small 

geographic scale (approximately 35 km), and within a relatively undisturbed natural 

landscape, we observed a high degree of spatial genetic structure among populations of 

the bog copper in Algonquin Provincial Park (Table 4.3).  Recent analyses using neutral 

microsatellite molecular markers (E. Winkler, L. Crawford and N. Keyghobadi 

unpublished) and variable wing-spot pattern traits (C.Y. Kim, L. Crawford and N. 

Keyghobadi unpublished) also suggest significant divergence among the studied 

populations. High genetic differentiation has been reported for other specialist insect 

species inhabiting naturally fragmented landscapes (e.g., Finger et al. 2009; Ortego et al. 

2010). Among locally situated populations of the bog copper, there was no detectable 

pattern of isolation by distance (Figure 4.3b, c), which in combination with high 

differentiation suggests that gene flow is highly restricted in this species even among 

geographically proximate populations (Hutchison and Templeton 1999). Indeed, our 

results indicate that genetically distinct colonies may exist even within the same peatland, 

a pattern which has also been thought to occur in Agonum ericeti, a peatland specialist 

ground beetle (Drees et al. 2011). Unlike other butterfly species which have demonstrated 

increasing genetic differentiation as a result of recent anthropogenic habitat 

fragmentation and isolation (e.g., Vandewoestijne and Baguette 2004; Sigaard et al. 

2008), the high genetic structure of the bog copper in this landscape is likely a result of 

an extremely low dispersal ability, and the natural patchiness of their habitat. 
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 The significant pattern of isolation by distance (IBD) observed at the larger scale 

(all populations pooled) is counterintuitive given the marked genetic structure indicated 

by the FST and AMOVA analyses, and the lack of IBD at smaller scales. It is unlikely that 

this pattern reflects an equilibrium between ongoing gene flow and genetic drift 

(Hutchinson and Templeton 1999). Interestingly, the larger-scale pattern of IBD appears 

to be linked to differences in levels of genetic diversity among populations. Lower 

genetic divergence (pairwise FST) appears to be related to similar estimates of genetic 

diversity of populations, as seen in the PCoA analysis where populations were grouped 

along the first coordinate axis according to differences in observed levels of genetic 

diversity (Figure 4.2). Several populations which share similar estimates of genetic 

diversity and thus lower measures of genetic divergence, also happen to be 

geographically proximate to each other (e.g., BUG and DL; Figure 4.1, Table 4.4). This 

may be driving the pattern of IBD observed at the larger scale. The large-scale IBD could 

also reflect historical relationships among populations related to post-glacial colonization 

patterns. However, analysis of the same samples using microsatellites found no evidence 

of IBD at this spatial scale (E. Winkler, L. Crawford and N. Keyghobadi unpublished). 

Thus, the larger-scale IBD pattern observed here is more likely an artefact of using a 

dominant marker with only two alleles per locus, where populations with low diversity 

(i.e. many invariant loci) are more likely to display similar allele frequencies.  

 

4.4.3 Genetic variation  

Levels of genetic diversity in the Algonquin Park populations of the bog copper appear to 

be moderate to low in comparison to other AFLP studies of Lepidoptera (Table 3.1 



134 

 

Chapter 3; Crawford et al. 2011). However, as Chapter 2 (Crawford et al. 2012) discusses 

in more detail, differences in laboratory protocol and the methods used to score AFLP 

phenotypes can generate datasets that greatly vary in the number of loci retained, 

potentially influencing estimates of genetic diversity and population differentiation (e.g., 

Herrmann et al. 2010; Zhang and Hare 2012). Thus, direct comparisons among species 

and studies should be made with some caution. Nevertheless, we detected considerable 

variation in genetic diversity measures among different populations within our study. All 

measures of genetic diversity varied considerably among the 13 populations analysed 

(Table 4.4), and demonstrated a larger range of values than was previously observed for 

the Mormon metalmark butterfly (Table 3.3 in Chapter 3; Crawford et al. 2011). This 

phenomenon (i.e., high among population variation in genetic diversity) has similarly 

been reported for other glacial relict species using different molecular techniques (peat 

moss, Polytrichum commune, Wilson and Provan 2002; violet copper butterfly, Lycaena 

helle, Finger at al. 2009; pitcher plant midge, Metriocnemus knabi, Rasic and 

Keyghobadi 2012).  

 

4.4.4 Landscape effects on genetic diversity 

Our results support the hypothesis that local habitat patch characteristics are more 

important predictors of population genetic diversity in the bog copper than features of the 

surrounding landscape related to isolation. Multiple linear regression analyses suggest 

that total peatland patch size and the proportion of water in the surrounding landscape 

were the factors that best explained variation among populations in genetic diversity 

measures, while the index of proximity (geographic isolation) and the proportion of forest 
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(composition) in the surrounding landscape did not influence genetic variation. We 

initially considered that proportion of open water could be an isolation variable as open 

water has been shown to be a major barrier to dispersal in other butterfly species (e.g., 

Leidner and Haddad 2010), in which case it would have a negative effect on population 

genetic diversity in the bog copper. However, our results revealed a strong positive 

relationship between proportion of open water and genetic diversity, which suggests that 

in fact proportion of water in the surrounding landscape is indicative of local peatland 

conditions (as outlined below) and should actually be considered as a patch quality 

characteristic. Geographic isolation and habitat connectivity have been shown to be good 

predictors of genetic diversity for other insect species inhabiting fragmented landscapes 

(e.g., Lange et al. 2010; Ortego et al. 2012). However, our results suggest that for the 

glacial relict bog copper, the geographic distance separating habitat patches and the 

amount of nearby habitat have little influence on local population genetic diversity. This 

is consistent with our population genetic structure analyses which showed no pattern of 

isolation by distance at the local scale, and high genetic differentiation among all 

surveyed populations indicated by the FST estimates and AMOVA. 

 It has been demonstrated by many genetic studies, including in peatland specialist 

species (Drees et al. 2011), that habitat patch size is positively correlated with genetic 

diversity, and this effect is likely mediated by higher population size in larger patches 

(reviewed in Frankham 1996; Keyghobadi 2007). Interestingly, in our study, we detected 

a significant negative relationship between genetic diversity and total peatland patch size. 

We hypothesize that this inverse relationship results in part from differences in the 

distribution of cranberry among different sized peatlands; specifically, the host-plant 
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density is greater and its distribution less spatially variable in smaller peatlands compared 

to larger ones (Figure 4.4). Not only is the plant the exclusive larval and adult food 

source, but cranberry plants are the preferred location used by adults for basking, 

perching, and courtship and pairing activities (Wright 1983). Thus, for this weak-flying 

species, a high host-plant density may concentrate adults (e.g. Turlure et al. 2010a) 

providing access to both essential resources and to mating partners which may increase 

mean reproductive success and local population density. This results in a situation where 

bog copper population density is actually highest in the smallest peatland patches, and 

population size does not increase in proportion to increasing patch size. In this respect, 

our results are consistent with a population abundance study conducted in Northern 

Wisconsin, USA, that noted the highest abundances of bog coppers in some of the 

smallest peatlands examined (Swengel and Swengel 2011). Indeed the positive 

association between mean cranberry density and our estimates of bog copper population 

density suggest that in our study area the butterfly’s abundance is positively linked to 

cranberry density rather than total bog size. Furthermore, in populations inhabiting larger 

peatlands where the host-plant density is lower and less evenly distributed, individuals 

are more sparsely distributed across the peatland and may thus be more likely to 

experience skewed success in mate-finding and reproduction. The combination of higher 

population density and more even distribution of reproductive success would result in 

higher effective population size, and thus higher genetic diversity, in the smaller 

peatlands with high concentrations of host-plants. 

 In butterflies, variation in microclimatic conditions (e.g., moisture, light intensity, 

and temperature) can affect female oviposition behaviours, egg and larval survival, and 
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overall habitat use (e.g., Merrill et al. 2008; Ashton et al. 2009; Gibbs et al. 2012; Krämer 

et al. 2012) and likely contributed to differences in habitat quality among our study sites. 

Wright (1983) observed that female bog coppers specifically target cranberry plants 

located on Sphagnum hummocks for oviposition or they lay their eggs along the 

perimeter of the peatland on cranberry located at the base of sedges. The Sphagnum 

carpet on the peatland floor is an important thermoregulator (Spitzer and Danks 2006), 

which provides a cool, humid environment that helps to reduce desiccation of both the 

eggs and larvae of the bog copper (Wright 1983).  Similarly, other Palaearctic peatland 

butterflies (bog fritillary, Proclossia eunomia; cranberry fritillary; Boloria aquilonaris; 

and violet copper, Lycaena helle) have been found to preferentially lay their eggs in 

Sphagnum hummocks or in areas with high moisture and cool temperatures (Turlure et al. 

2009; 2010a). Thus, these microenvironmental conditions may be important non-

consumable resources that can significantly impact fitness and ultimately population 

dynamics. As well, the geometry of different sized peatlands may also affect the overall 

habitat quality for the bog copper, as smaller peatlands tend to have a higher perimeter-

to-area ratio which could potentially provide a larger area for oviposition. 

 Many glacial relict insects are well-adapted to cool and humid environments 

(Addo-Bediako et al. 2002; Spitzer and Danks 2006). Indeed, Turlure et al. (2010a) 

experimentally demonstrated greater larval survival of the cranberry fritillary caterpillar 

at lower temperatures. As well, they also used a field study of two Belgian peatlands to 

determine that higher caterpillar densities were particularly associated with Sphagnum 

hummocks located within early successional or humid areas. In these high-quality areas, 

the interior of hummocks provide a stable, relatively cool environment, which buffers 
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against fluctuating air temperatures and likely serves as a cold thermal refuge for 

caterpillars improving their survival. Accordingly Turlure et al. (2010a) found fewer 

caterpillars in drier and later successional areas of the peatland where the thermal 

buffering ability of the hummocks was reduced. They also noted that among their two 

study sites, the density of adult butterflies differed six-fold. They attributed the varying 

densities to the quality and quantity of adult and caterpillar resources present in each site 

which may have been affected by oviposition behaviour and larval survival.  

 While neither the presence or distribution of hummocks, nor the successional state 

of peatlands, were explicitly recorded in this study, the proportion of open water in the 

surrounding landscape may be indicative of the relative moisture content (patch 

characteristic) of different peatlands.  Lower water tables are associated with increased 

shrub cover and a reduction of Sphagnum hummocks (Turlure et al. 2010a) and thus 

would result in lower quality habitat for the bog copper. In addition, water bodies 

function as thermoregulators (Caissie 2006) so it may be that the spring air temperatures 

in peatlands occurring in areas with more open water (higher water tables) are reduced 

which provides a more favourable thermal microclimate for larval growth and survival. 

Further study is required in order to determine the exact influence of the amount of open 

water on habitat quality for the bog coppers. Alterations in hydrology in the surrounding 

landscape through anthropogenic activities (e.g., drainage, de-forestation) or via climate 

change could indirectly affect the natural dynamics of peatland habitats, which in turn, 

may have dire consequences for their inhabitants. 

 



139 

 

4.4.5 Management and Conservation Implications 

The current focus of many landscape genetic studies is to examine the influence of the 

intervening landscape on patterns of population genetic structure and diversity 

(Holderegger and Wagner 2008; Storfer et al. 2010). The results of our study, however, 

emphasize that local patch characteristics can also have important effects on population 

genetics. Particularly for highly specialized species, such as the bog copper, intervening 

landscape configuration and composition may have little influence on genetic structure 

and diversity, as these species are adapted to living under highly isolated conditions. For 

genetic studies of specialist species, patch characteristics, including descriptors of habitat 

quality, need to be considered in landscape analyses.  

 Recent ecological research has shown that an understanding of the functional 

habitat of a butterfly species (i.e., host-plant availability, microclimatic conditions) can 

significantly improve conservation efforts and population viability analyses (Dennis et al. 

2006; Grundel and Pavlovic 2007; Turlure et al. 2010b). While many studies have 

empirically demonstrated habitat quality to be an important predictor of patch occupancy, 

and population abundance (e.g., Dennis and Eales 1997; Thomas et al. 2001; Fleishman 

et al. 2002; Krauss et al. 2004), relatively little research has focused on examining the 

genetic signatures of habitat quality across different populations (but see Porlier et al. 

2009; Pitra et al. 2011; Alda et al. 2013). A more comprehensive understanding of the 

genetic consequences of changes in habitat quality, will contribute to developing more 

effective conservation and restoration strategies for at-risk populations, especially for 

those species such as the bog copper that are naturally highly fragmented.  
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 In addition to being very closely tied to the distribution of its host-plant, the bog 

copper may also be strongly affected by local microclimatic conditions as have been 

found for other glacial relict butterflies (Turlure et al. 2009; 2010a; Goffart et al. 2010; 

Habel et al. 2011). While humidity, temperature, successional stage and the presence of 

Sphagnum hummocks were all found to influence caterpillar survival and density in the 

cranberry fritillary (Turlure et al. 2010a), different species inhabiting the same the 

environment often require different ecological resources (e.g., bog fritillary and violet 

copper; Turlure et al. 2009).  Thus, species-specific detailed investigations are required to 

determine the functional adult and larval resources required for the bog copper.  

Increasing habitat fragmentation may not directly impact isolated populations of this 

species; however degradation of peatland habitat through direct destruction or through 

alterations to the hydrology of the surrounding landscape may indirectly change local 

environmental conditions which are important to ensuring long-term population 

persistence. 

 



141 

 

4.5 Literature Cited 

Addo-Bediako A, Chown SL and Gaston KJ. 2002. Metabolic cold adaptation in insects: 

a large-scale perspective. Functional Ecology, 16: 332-338. 

Aiken LS and West SG. 1991. Multiple regression: testing and interpreting interactions. 

Sage Publications, Newbury Park, CA.  

Alda F, Garcia J, Garcia JT and Suarez-Seoane S. 2013. Local genetic structure on 

breeding grounds of a long-distance migrant passerine: the bluethroat (Luscinia 

svecica) in Spain. Journal of Heredity, 104: 36-46. 

Ashton S, Gutiérrez D and Wilson RJ. 2009. Effects of temperature and elevation on 

habitat use by a rare mountain butterfly: implications for species responses to climate 

change. Ecological Entomology, 34: 437-446. 

Baguette M. 2004. The classical metapopulation theory and the real, natural world: a 

critical appraisal. Basic and Applied Ecology, 5: 213-224. 

Baguette M, Clobert J and Schtickzelle N. 2011. Metapopulation dynamics of the bog 

fritillary butterfly: experimental changes in habitat quality induced negative density-

dependent dispersal. Ecography, 34: 170-176. 

Bensch S and Åkesson M. 2005. Ten years of AFLP in ecology and evolution: why so 

few animals? Molecular Ecology, 14: 2899-2914. 



142 

 

Bonin A, Bellemain E, Bronken E, Pompanon F, Brochmann C and Taberlet P. 2004. 

How to track and assess genotyping errors in population genetic studies. Molecular 

Ecology, 13: 3261-3273. 

Breeuwer A, Heijmans M, Robroek B and Berendse F. 2010. Field simulation of global 

change: transplanting northern bog mesocosms southward. Ecosystems, 13: 712-726. 

Cassie D. 2006. The thermal regime of rivers: a review. Freshwater Biology. 51: 1389-

1406. 

Cech R and Tudor G. 2005. Butterflies of the East Coast. Princeton University Press, 

Princeton, NJ. 

Clarke A and Meudt H. 2005. AFLP (amplified fragment length polymorphism) for 

multilocus genomic fingerprinting. Alan Wilson Centre for Ecology and Evolution, 

Massey University, New Zealand. Available at: http://www.clarkeresearch.org. 

Crawford LA, Desjardins S and Keyghobadi N. 2011. Fine-scale genetic structure of an 

endangered population of the Mormon metalmark butterfly (Apodemia mormo) 

revealed using AFLPs. Conservation Genetics, 12: 991-1001. 

Crawford LA, Koscinski D and Keyghobadi N. 2012. A call for more transparent 

reporting of error rates: the quality of AFLP data in ecological and evolutionary 

research. Molecular Ecology, 21: 5911-5917. 



143 

 

Crawford LA, Koscinski D, Watt KM, McNeil JN and Keyghobadi N. 2013. Mating and 

oviposition success of a butterfly are not affected by non-lethal tissue sampling. 

Journal of Insect Conservation. doi: 10.1007/s10841-013-9566-8. 

Crokrak P and Barrett SCH. 2002. Purging the genetic load: a review of the experimental 

evidence. Evolution, 56: 2347-2358. 

de Vere N, Jongejans E, Plowman A and Williams E. 2009. Population size and habitat 

quality affect genetic diversity and fitness in the clonal herb Cirsium dissectum. 

Oecologia, 159: 59-68. 

Dennis RLH and Eales HT. 1997. Patch occupancy in Coenonympha tullia (Müller, 

1976) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and 

isolation. Journal of Insect Conservation, 1: 167-176. 

Dennis RLH, Shreeve TG and Van Dyck H. 2006. Habitats and resources: the need for a 

resource-based definition to conserve butterflies. Biodiversity and Conservation, 15: 

1943-1966. 

Drees C, Zumstein P, Thorsten B-D, Härdtle W, Martern A, Meyer H, von Oheimb G and 

Assmann T. 2011. Genetic erosion in habitat specialist shows need to protect large 

peat bogs. Conservation Genetics, 12: 1651-1656. 

Excoffier L, Laval G and Schneider S. 2005.  Arlequin ver. 3.0: An integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics, 1:47-50. 

Fahrig L. 2001. How much habitat is enough? Biological Conservation, 100: 65-74. 



144 

 

Finger A, Schmitt T, Zachos FE, Meyer M, Assmann T and JC Habel. 2009. The genetic 

status of the violet copper Lycaena helle – a relict of the cold past in times of global 

warming. Ecography, 32: 382-390. 

Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL and Murphy DD. 2002. Assessing the 

roles of patch quality, area, and isolation in predicting metapopulation dynamics. 

Conservation Biology, 16: 706-716. 

Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B and 

Thomas CD. 2006. Impacts of climate warming and habitat loss on extinctions at 

species’ low-latitude range boundaries. Global Change Biology, 12: 1545-1553. 

Frankham R. 1996. Relationship of genetic variation to population size in wildlife. 

Conservation Biology, 10: 1500-1508. 

Gibbs M, van Dyck H and Breuker CJ. 2012. Development on drought-stressed host 

plants affects life history, flight morphology and reproductive output relative to 

landscape structure. Evolutionary Applications, 5: 66-75. 

Giberson D and Hardwick ML. 1999. Pitcher plants (Sarracenia purpurea) in eastern 

Canadian peatlands: ecology and conservation of the invertebrate inquilines, in: 

Invertebrates in freshwater wetlands of North America, eds. Batzer DP, Rader RB and 

Wissinger SA. John Wiley and Sons, Inc., New York. 

Goffart P, Schtickzelle N and Turlure C. 2010. Conservation and management of the 

habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and 



145 

 

Lycaena helle, in: Relict species: phylogeography and conservation biology, eds. 

Habel JC and Assmann T. Springer, Heidelberg, Germany. 

Gore AJP. 1983. Ecosystems of the world Vol 4A: Analytical studies. Mires: swamp, 

bog, fen, and moor. Elsevier, Amsterdam. 

Grundel R and Pavlovic NB. 2007. Resource availability, matrix quality, microclimate, 

and spatial pattern as predictors of patch use by the Karner blue butterfly. Biological 

Conservation, 135: 135-144. 

Habel JC, Finger A, Schmitt T and Neve G. 2010. Survival of the endangered butterfly 

Lycaena helle in a fragmented environment: genetic analyses over 15 years. Journal of 

Zoological Systematics and Evolutionary Research, 49: 25-31. 

Habel JC, Rödder D, Schmitt T and Nève G. 2011. Global warming will affect the 

genetic diversity and uniqueness of Lycaena helle populations. Global Change 

Biology, 17: 194-205. 

Habel JC and Schmitt T. 2012. The burden of genetic diversity. Biological Conservation, 

147: 270-274. 

Habel JC and Zachos FE. 2012. Habitat fragmentation versus fragmented habitats. 

Biodiversity and Conservation, 21: 2987-2990. 

Hampe A and Jump AS. 2011. Climate relicts: past, present, future. Annual Review of 

Ecology, Evolution and Systematics, 42: 313-333. 



146 

 

Hampe A and Petit RJ. 2005. Conserving biodiversity under climate change: the rear 

edge matters. Ecology Letters, 8: 461-467. 

Hansson B and Westerberg L. 2002. On the correlation between heterozygosity and 

fitness in natural populations. Molecular Ecology, 11: 2467-2474. 

Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Taberlet P and Gugerli F. 2010. 

Selection criteria for scoring amplified fragment length polymorphism (AFLPs) 

positively affect the reliability of population genetic parameter estimates. Genome, 53: 

302-310. 

Holderegger R and Wagner HH. 2008. Landscape genetics. BioScience, 58: 199-207. 

Hutchinson DW and Templeton AR. 1999. Correlation of pairwise genetic and 

geographic distance measures: inferring the relative influences of gene flow and drift 

on the distribution of genetic variability. Evolution, 53: 1898-1914. 

Johannesen J, Veith M and Seitz A. 1996. Population genetic structure of the butterfly 

Melitaea didyma (Nymphalidae) along a northern distribution range border. Molecular 

Ecology, 5: 259-267. 

Johnson CW. 1985. Bogs of the northeast. University Press of New England, 

Hanover,NH. 

Keyghobadi N, Crawford L and Maxwell S. 2009. Successful analysis of AFLPs from 

non-lethally sampled wing tissues in butterflies. Conservation Genetics, 10: 2021-

1024. 



147 

 

Keyghobadi N. 2007. The genetic implications of habitat fragmentation for animals. 

Canadian Journal of Zoology, 85: 1049-1064. 

Koscinski D, Crawford LA,  Keller HA and Keyghobadi N. 2011. Effects of different 

methods of non-lethal tissue sampling on butterflies. Ecological Entomology, 36: 301-

308. 

Krämer B, Kämpf I, Enderle J, Poniatowski D and Fartmann T. 2012. Microhabitat 

selection in a grassland butterfly: a trade-off between microclimate and food 

availability. Journal of Insect Conservation, 16: 857-865. 

Krauss J, Steffan-Dewenter I and Tscharntke T. 2004. Landscape occupancy and local 

population size depends on host plant distribution in the butterfly Cupido minimus. 

Biological Conservation, 120: 355-361. 

Lange R, Durka W, Holzhauer SIJ, Wolters V and Diekötter T. 2010. Differential 

threshold effects of habitat fragmentation on gene flow in two widespread species of 

bush crickets. Molecular Ecology, 19: 4936-4948. 

Layberry RA, Hall PW and Lafontaine JD. 1998. The Butterflies of Canada. University 

of Toronto Press, Toronto. 

Leidner AK and Haddad NM. 2010. Natural, not urban, barriers define population 

structure for a coastal endemic butterfly. Conservation Genetics, 11; 2311-2320. 

Lynch M and Milligan BG. 1994. Analysis of population genetic structure with RAPD 

markers. Molecular Ecology, 3: 91-99. 



148 

 

Mantel N. 1967. The detection of disease clustering and a generalized regression 

approach. Cancer Research, 27: 209-220. 

Marshall SA, Finnamore AT and Blades  DCA. 1999. Canadian peatlands: diversity and 

habitat specialization of the Arthropod fauna, in: Invertebrates in freshwater wetlands 

of North America, eds. Batzer DP, Rader RB and Wissinger SA. John Wiley and Sons, 

Inc., New York. 

McGarigal K, Cushman SA, Neel MC and Ene E. 2002. FRAGSTATS: Spatial pattern 

analysis program for categorical maps. Available at: 

http://www.umass.edu/landeco/research/fragstats/fragstats.html. 

Merrill RM, Gutiérrez D, Lewis OT, Gutiérrez J, Díez SB and Wilson RJ. 2008. 

Combined effects of climate and biotic interactions on the elevational range of a 

phytophagous insect. Journal of Animal Ecology, 77: 145-155. 

Milot E, Weimerskirch H, Duchesne P and Bernatchez L. 2007. Surviving with low 

genetic diversity: the case of albatrosses. Proceedings of the Royal Society B, 274: 

779-787. 

Mitsch WJ, Gosselink JG, Anderson CJ and Zhang L. 2009. Wetland Ecosystems. John 

Wiley and Sons, Inc., Hoboken, NJ. 

NatureServe. 2013. NatureServe Explorer: An online encyclopedia of life. NatureServe, 

Arlington, VA. Available from: http://www.natureserve.org/explorer. 



149 

 

Nève G, Barascud B, Descimon H and Baguette M. 2008. Gene flow rise with habitat 

fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC 

Evolutionary Biology, 8: 84.  

Opler PA and Malikul V. 1992. Eastern Butterflies. Peterson Field Guide. Houghton 

Mifflin Company, Boston. 

Ortego J, Aguirre MP, Cordero PJ. 2010. Population genetics of Mioscirtus wagneri, a 

grasshopper showing a highly fragmented distribution. Molecular Ecology, 19: 472-

483. 

Ortego J, Aguirre MP and Cordero PJ. 2012. Landscape genetics of a specialized 

grasshopper inhabiting highly fragmented habitats: a role for spatial scale. Diversity 

and Distributions, 18: 481-492. 

Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, 

Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA and Warren M. 1999. 

Poleward shifts in geographical ranges of butterfly species associated with regional 

warming. Nature, 399: 579-583. 

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. 

Annual Review of Ecology, Evolution and Systematics, 37: 637-669. 

Peakall R and Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population 

genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. 



150 

 

Pitra C, Suárez-Seoane S, Martín CA, Streich W-J and Alonso JC. 2011. Linking habitat 

quality with genetic diversity: a lesson from great bustards in Spain. European Journal 

of Wildlife Research, 57: 411-419. 

Porlier M, Bélisle M and Garant D. 2009. Non-random distribution of individual genetic 

diversity along an environmental gradient. Philosophical Transactions of the Royal 

Society B: Biological Sciences, 364: 1543-1554. 

Rasic G and Keyghobadi N. 2012. From broadscale patterns to fine-scale processes: 

habitat structure influences genetic differentiation in the pitcher plant midge across 

multiple spatial scales. Molecular Ecology, 21: 223-236. 

Reed DH and Frankham R. 2003. The correlation between population fitness and genetic 

diversity. Conservation Biology, 17: 230-237. 

Reed DH. 2010. Albatrosses, eagles and newts, oh my!: exceptions to the prevailing 

paradigm concerning genetic diversity and population viability? Animal Conservation, 

13: 448-457. 

Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W and Hanski I. 1998. 

Inbreeding and extinction in a butterfly metapopulation. Nature, 392: 491-494. 

Savage J, Wheeler TA, Moores AMA and Taillefer AG. 2011. Effects of habitat size, 

vegetation cover, and surrounding land use on Diptera diversity in temperate Nearctic 

bogs. Wetlands, 31: 125-134. 



151 

 

Schlüter PM and Harris SA. 2006. Analysis of multilocus fingerprinting data sets 

containing missing data. Molecular Ecology Notes, 6: 569-572. 

Sigaard P, Pertoldi C, Madsen AB, Søgaard B and Loeschcke V. 2008. Patterns of 

genetic variation in isolated populations of the endangered butterfly Euphydryas 

aurinia. Biological Journal of the Linnean Society, 95: 677-687. 

Spitzer K and Danks HV. 2006. Insect biodiversity of boreal peat bogs. Annual Review of 

Entomology, 51: 137-161. 

Storfer A, Murphy MA, Spear SF, Holderegger R and Waits LP. 2010. Landscape 

genetics: where are we now? Molecular Ecology, 19: 3496-3514. 

Swengel AB and Swengel SR. 2011. High and dry or sunk and dunked: lessons for 

tallgrass prairies from quaking bogs. Journal of Insect Conservation, 15: 165-178. 

Tiner RW 1999. Wetland indicators: a guide to wetland identification, delineation, 

classification, and mapping. Lewis Publishers, Boca Raton. 

Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R and 

Goodger B. 2001. The quality and isolation of habitat patches both determine where 

butterflies persist in fragmented landscapes. Proceedings of the Royal Society of 

London B: Biological Sciences, 268: 1791-1796. 

Tomassen HBM, Smolders AJP, Lamers LPM and Roelofs JGM. 2003. Stimulated 

growth of Betula pubsescens and Molinia caerulea on ombrotrophic bogs: role of high 

levels of atmospheric nitrogen deposition. Journal of Ecology, 91: 357-370. 



152 

 

Turlure C, Choutt J, Baguette M and Van Dyck H. 2010a. Microclimate buffering and 

resource-based habitat in a glacial relict butterfly: significance for conservation under 

climate change. Global Change Biology, 16: 1883-1893. 

Turlure C, Choutt J, Van Dyck H, Baguette M and Schtickzelle N. 2010b. Functional 

habitat area as  a reliable proxy for population size: case study using two butterfly 

species of conservation concern. Journal of Insect Conservation, 14: 379-388. 

Turlure C, Van Dyck H, Schtickzelle N and Baguette M. 2009. Resource-based habitat 

definition, niche overlap and conservation of two sympatric glacial relict butterflies. 

Oikos, 118: 950-960. 

van Sway CA, Warren MS and Loïs G. 2006. Biotope use and trends of European 

butterflies. Journal of Insect Conservation, 10: 189-209. 

Vandewoestijne S and Baguette M. 2004. Genetic population structure of the vulnerable 

bog fritillary butterfly. Hereditas, 141: 199-206. 

Vandewoestijne S, Schtickzelle N and Baguette M. 2008. Positive correlation between 

genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 

6: 46. 

Vekemans X, Beauwens T, Lemaire M and Rodán-Ruiz I. 2002. Data from amplified 

fragment length polymorphism (AFLP) markers show indication of size homoplasy 

and of a relationship between degree of homoplasy and fragment size. Molecular 

Ecology, 11: 139-151. 



153 

 

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, 

Peleman J, Kuiper M and Zabeau M. 1995. AFLP: a new technique for DNA 

fingerprinting. Nucleic Acids Research, 23: 4407-4414. 

Warton DI and Hui FKC. 2011. The arcsine is asinine: the analysis of proportions in 

ecology. Ecology, 92: 3-10. 

Wilson PJ and Provan J. 2003. Effect of habitat fragmentation on levels and patterns of 

genetic diversity in natural populations of the peat moss Polytrichum commune. 

Proceedings of the Royal Society B: Biological Sciences. 270: 881-886. 

Whitlock R, Hipperson H, Mannarelli M, Butlin RK and Burke T. 2008. An objective, 

rapid, and reproducible method for scoring AFLP peak-height data that minimizes 

genotyping error. Molecular Ecology Resources 8: 725-735. 

Wright DM. 1983. Life history and morphology of the immature stages of the Bog 

Copper butterfly Lycaena epixanthe (Bsd. & Le C.) (Lepidoptera: Lycaenidae). The 

Journal of Research on the Lepidoptera, 22: 47-100. 

Zhang H and Hare MP. 2012. Identifying and reducing AFLP genotyping error: an 

example of tradeoffs when comparing population structure in broadcast spawning 

versus brooding oysters. Heredity, 108: 616-625. 

Zhivotovsky L. 1999. Estimating population structure in diploids with multilocus 

dominant DNA markers. Molecular Ecology, 8: 907-913. 



154 

 

Chapter 5  

5 Flight morphology corresponds to both broad- and fine-
scale landscape structure in a highly specialized glacial 
relict butterfly (Lycaena epixanthe) 

 

5.1 Introduction 

Movement of individuals is a key process that mediates the response of population 

dynamics, population genetics and local adaptation to landscape structure (Clobert et al. 

2001; Hanski et al. 2004). However, movement ability itself may change with shifts in 

selection pressures accompanying ecological and landscape change. With increasing 

habitat fragmentation, and the associated extinction risks, there is considerable interest in 

understanding factors that affect movement ability or propensity in mobile organisms 

(Van Dyck and Baguette 2005; Baguette and Van Dyck 2007; Baguette et al. 2012). 

 Morphological traits associated with flight in insects, such as relative thorax mass 

and wing loading (total body mass/wing area), have been shown to be reliable proxies for 

movement across many different species (e.g., Chai and Srygley 1990; Dudley 1990; 

Kuusaari et al. 1996; Berwaert et al. 2002; Turlure et al. 2010b). As well, several within-

species comparisons have revealed that these flight-morphological traits have a heritable 

basis and can thus evolve in response to environmental change (Thomas et al. 1998; Hill 

et al. 1999a,b; Roff and Fairbairn 2001; Merxck et al. 2003). Consequently, flight-

morphological traits including thorax mass, wing area and wing loading are commonly 

used to study how the mobility of insects responds to different ecological conditions, 

particularly in the context of habitat fragmentation (e.g., Taylor and Merriam 1995; 
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Thomas et al. 1998; Berwaerts et al. 1998; Hill et al. 1999a, b; Van Dyck and Matthysen 

1999; Norberg and Leimar 2002). 

 In insects, the thorax and abdomen together comprise over 80% of the total insect 

body mass (Thomas et al. 1998). The thorax consists primarily of flight muscles (for 

example, in adult butterflies it consists of 90 % flight muscle by mass; Dudley 1991), and 

thus thorax size is considered a dependable approximation of the overall flight muscle 

allocation of an individual (Wickman 1992). Likewise, because the abdomen contains the 

reproductive organs, its size can be used as an indication of overall fecundity (i.e., 

spermataphore or egg production; Hill et al. 1999a, b). Thus the relative allocation to 

thoracic muscle versus abdomen is expected to reflect differences in selection pressures 

on flight versus reproduction (Marden and Chai 1991; Zera and Denno 1997). Flight 

types involving rapid acceleration and manoeuvrability generally require a larger 

investment into flight muscles and thorax mass relative to abdomen size (Chai and 

Srygley 1990; Srygley and Dudley 1993; Marden 2000). Wing loading is positively 

related to flight speed and wing-beat frequency in many butterfly species, but also 

contributes to an increased cost of flight as a higher wing-beat frequency requires a 

higher body temperature and is energetically expensive (Bartholomew and Casey 1978). 

Particularly for small butterflies, individuals with a higher wing loading must spend 

relatively more time basking in order to increase their body temperature (Gilbert 1984; 

Heinrich 1986). Thus for many species, prolonged flight is often associated with larger 

wing area and lower wing loading (Dudley 2000).  

 Insects use flight for many purposes including dispersal, defined here as the 

movement of individuals between discrete habitat patches (Bowler and Benton 2005; 
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Ronce 2007). With increasing habitat fragmentation, the costs and benefits associated 

with dispersal for a given species may be altered, leading to evolutionary changes in 

flight-related morphology (Van Dyck and Matthysen 1999; Baguette et al. 2012).  The 

strength and direction of selection imposed by habitat fragmentation on flight-

morphology is highly species-specific, however, and largely depends on the spatial 

configuration of required resources (Van Dyck and Matthysen 1999). When all necessary 

resources are concentrated within a single habitat patch, increased isolation is expected to 

select against more mobile phenotypes due to an increased cost of dispersal out of the 

natal habitat patch (e.g., Dempster 1991; Schtickzelle et al. 2006). In contrast, when 

complementary resources become spatially segregated across different habitat patches 

due to habitat fragmentation such that an individual cannot obtain all required resources 

in a single patch, selection is expected to favour individuals with higher mobility (e.g., 

Taylor and Merriam 1995). Moreover, beyond its role in moving among habitat patches, 

flight is also important in insects for many daily tasks known as ‘station keeping’ or 

‘routine movements’, including mate-location, foraging and oviposition site selection, 

which generally occur within a single habitat patch (Van Dyck and Baguette 2005). 

Changes in local conditions within habitat patches that alter the routine movements of 

individuals may thus also affect flight-morphology. For example, variation in the spatial 

heterogeneity of adult nectar resources was found to correspond with flight-morphology 

in four butterfly species (Boloria aquilonaris, Clossiana selene, Lycaena hippothoe and 

Proclossiana eunomia) across two peatlands (Turlure et al. 2010b). Where nectar 

resources were widespread, individuals exhibited lower wing loading and larger wing 
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areas, as well as an increase in female abdomen size and investment into fecundity, as 

inferred by the ratio between thorax and abdomen volumes. 

 Flight in insects is a multifaceted trait that is likely influenced by many factors 

including surrounding landscape structure, and resource distribution and quality. Current 

research on the evolution of flight morphology in butterflies has primarily focused on the 

effects of landscape structure (e.g., Thomas et al. 1998; Hill et al. 1999a; Hill et al. 

1999b; Norberg and Leimar 2002; Merckx et al. 2003; Vandewoestijne and Van Dyck 

2011). For some species, however, fine-scale variation in local habitat conditions may 

exert more influence on morphological traits (as a result of routine movements) than 

broad-scale landscape structure, and empirical studies examining this relationship are 

needed (Norberg and Leimar 2002; Turlure et al. 2010b). For example, glacial relict 

species, such as those that live in temperate peatland habitats, are highly specialized and 

adapted to live under very particular environmental conditions (Spitzer and Danks 2006; 

Hampe and Jump 2011). This close habitat association naturally restricts the spatial 

distribution of such species, and dispersal and gene flow among populations are often low 

(Schtickzelle et al. 2006). Thus, variation in flight-related morphology among 

populations may reflect adaptation to local ecological conditions rather than to 

surrounding landscape structure. 

 Currently, many animal species endemic to relict peatland habitats are listed as 

species of high conservation concern (van Sway et al. 2006; Turlure et al. 2009). This is 

primarily due to the increasing degradation and isolation of peatland habitats as a result 

of human land-use activities (Giberson and Hardwick 1999; Spitzer and Danks 2006; 

Savage et al. 2011). As well, these species are predicted to be extremely sensitive to 



158 

 

changes in local environmental conditions brought on by global climate change (e.g., 

changes in precipitation and temperature regimes; Turlure et al. 2010a; Habel et al. 

2011). Understanding which factors influence mobility in such species is important for 

predicting future responses to landscape and environmental change.  

 Here, we use a glacial relict butterfly (bog copper, Lycaena epixanthe Boisduval 

and Le Conte 1835) to investigate the relative influence of surrounding landscape 

structure and local habitat characteristics on inter-population variation in flight 

morphology. The bog copper is a strict habitat specialist, endemic to temperature 

Nearctic peatlands where its adult and larval food plant (bog cranberry, Vaccinium 

macrocarpum and V. oxycoccos) typically grows (Wright 1983; Cech and Tudor 2005). 

We conducted our study within a relatively undisturbed landscape in central Ontario, 

Canada, where peatland habitat occurs as naturally fragmented networks. Previous 

population genetic analyses in this study system (Chapter 4) indicated that local 

populations are highly genetically differentiated, suggesting limited dispersal among 

habitat patches even at a small spatial scale. If the surrounding landscape structure 

(composition and configuration) limits dispersal in this species, and given that all 

necessary resources are found within individual habitat patches, we predict that 

individuals will invest less into flight ability as habitat patch connectivity decreases, due 

to increased costs of dispersal. Such individuals should thus exhibit a reduced relative 

thorax mass and wing area, and an increased relative abdomen mass and wing load, 

relative to individuals in landscapes with higher among connectivity. On the other hand, 

because populations are potentially highly genetically isolated, functional flight 

morpholoigy may be adaptated to local (within-patch) habitat conditions, such as within-
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patch variation in resource distribution. In Chapter 4 we found that host plant density 

decreased and was less evenly distributed with increasing peatland size. In larger 

peatlands then, adult butterflies may require higher mobility to access an adequate 

quantity of this critical resource. Thus, if fine-scale habitat conditions influence 

individual mobility over evolutionary time, we predict more mobile flight types (larger 

relative thorax mass and wing area, and smaller relative abdomen and wing loading) in 

larger peatlands.  

 

5.2 Methods 

5.2.1 Study species 

The bog copper is the smallest of the North American coppers (Lycaeninae) with a 

wingspan of 17-22 mm (Layberry et al. 1998). Adult flight behaviour is typically slow 

and low to the ground, and males have been observed to follow a ‘perching’ mate-

location strategy: they establish territories on cranberry plants and sit and wait, flying out 

to intercept passing females (Wright 1983). Females lay eggs singly on the underside of 

host plant leaves, apparently selecting sites near the water’s edge and/or in regions where 

the peatland substrate (Sphagnum moss spp.) is well-saturated (Wright 1983). Adults 

nectar almost exclusively on Vaccinium spp. and feed on drops of dew (Wright 1983).  

 The bog copper’s distribution ranges across central and eastern Canada, in a band 

from Riding Mountain National Park, Manitoba east to St. John’s Newfoundland, and 

south along the eastern United States to Virginia (Layberry et al. 1998). It is a common 

and often locally abundant species (Ehrlich 1984; Swengel and Swengel 2011), however, 
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due to increasing habitat  loss and fragmentation the species is now listed as imperiled in 

Pennsylvania, and critically imperiled in West Virginia and Maryland (Cech and Tudor 

2005).  

 

5.2.2  Study area 

We conducted this study within the Great Lake-St. Lawrence forest region of Ontario, 

Canada, in Algonquin Provincial Park (UTM: 17N 692550E, 5049669N; Figure 5.1). 

This region is a transition zone between northern boreal coniferous forest and southern 

deciduous forest and spatially isolated patches of acid bog and fen habitat (collectively 

referred to as ‘peatlands’) are prevalent across the landscape. Forested habitats which 

predominate the landscape (81% of land cover) include the deciduous broad-leaved 

species yellow birch (Betula alleghaniensis), northern red oak (Quercus rubra), sugar 

maple (Acer saccharum), and red maple (A. rubrum), as well as the conifers eastern red 

cedar (Juniperus virginiana), eastern hemlock (Tsuga canadensis), eastern white pine 

(Pinus strobus), and red pine (P. resinosa). Boreal species common to the area include 

white birch (Betula papyrifera), tamarack (Larix laricina), white spruce (Picea glauca), 

and black spruce (P. mariana). The remaining land cover consists primarily of freshwater 

lakes (10%) and wetland habitats including peatlands (8%). Peatlands, also known as 

‘organic wetlands’ are highly saturated ecosystems, characterized by an excess 

accumulation of plant detritus (Marshall et al. 1999; Charman 2002). Waterlogging and 

oxygen-poor conditions encourage the formation and accumulation of peat in these 

habitats (Charman 2002). Bogs are particularly acidic, nutrient poor peatlands, which 

receive water solely through precipitation (Gore 1983; Tiner 1999). They are home to an 
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endemic plant community specially adapted to living under nutrient poor, waterlogged 

and acidic conditions (Johnson 1985) including sphagnum mosses (Sphagnum spp.), low-

growing heaths (e.g., bog laurel, Kalmia polifolia; cranberry, Vaccinum spp.; labrador 

tea, Ledum groenlandicum; and leatherleaf, Chamaedaphne calyculata) and carnivorous 

plants (e.g., northern pitcher plant, Sarracenia purpurea; and sundews, Drasera spp.). 

Peatlands which also receive water from additional ground water sources tend to be less 

acidic and nutrient poor, and can support a wider community of plant species (Johnson 

1985; Tiner 1999). These ecosystems are generally classified as fens, however depending 

on groundwater flow and chemistry, pH levels can vary dramatically from ‘poor fens’ 

which are slightly acidic to ‘rich fens’ which are strongly alkaline (Mitsch et al. 2009). 

 

5.2.3 Specimen collection and preparation 

Adult male and female bog coppers were collected from eight different peatlands in 

Algonquin Provincial Park, Ontario, Canada in July 2011 (Figure 5.1; Table 5.1). 

Butterflies were captured using hand nets, placed in glassine envelopes, and subsequently 

stored at -20 °C. In an effort to survey a representative sample of the morphological 

variation present within each population, we collected butterflies from each peatland on 

at least two separate occasions, allowing two to three days to pass between each 

collection. We collected only newly emerged individuals, which we identified based on 

their degree of wing wear following a four category scale (1, very fresh and intact, to 4, 

heavily damaged wings; Vandewoestijne and Van Dyck 2011). We identified the sex of 

each individual based on the spot patterning of the dorsal forewings which differs 

between the sexes (Cech and Tudor 2005). Working within a protected provincial park, 
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we limited the number of individuals collected per site so as to minimize the effects of 

sampling on each population. 

 

5.2.4 Measurement of morphological characters 

Adults were thawed to room temperature, and body parts (head, thorax, abdomen, legs 

and wings) were carefully dissected and dried to a constant mass at 50 °C for 24h. Body 

parts were individually weighed on a high-precision microbalance (sensitivity ± 0.001 

mg, Mettler Toledo MX5). Wings were then mounted between glass microscope slides, 

and digitally photographed under standardized light conditions using a Nikon D3X series 

camera (105 mm macro lens). We used ImageJ software v.1.5m (available from 

http://image.nih.gov/ij/) to measure the area of the ventral forewing of each individual, 

randomly selecting the right or left side for measurement. Wing area was calculated using 

a macro which automated the outlining and area measurement of the wings in ImageJ. 

Using a sub-set of samples, the area measurements as determined by the macro were 

found to be highly correlated with the mean of three area measurements obtained 

manually in ImageJ (Pearson’s r = 0.959, P < 0.001, N =20). Wing loading was 

calculated as total mass/forewing area (Van Dyck and Wiklund 2002; Vandewoestijne 

and Van Dyck 2011).  
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Table 5.1 Collection records for adult male and female butterflies of Lycaena 

epixanthe in Algonquin Provincial Park, Ontario, Canada. UTM coordinates (17N) 

represent the centroid of butterfly capture. 

Site Peatland Easting Northing Nmales Nfemales 

WH Wolf Howl Pond 680263.51 5049909.77 23 11 

WR West Rose Lake 680935.89 5049256.81 19 13 

MIN Minor Lake 701460.15 5057456.41 18 16 

BAB Bab Lake 701436.90 5055911.00 15 17 

SUN Sunday Creek 705574.81 5051097.38 17 18 

EOS Eos Lake 706133.08 5052006.34 19 14 

COS Costello Creek 707014.15 5054251.22 17 13 

OPL Opeongo Lake 706267.58 5056808.38 17 14 
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Figure 5.1 Map of the study system and sampling locations of Lycaena epixanthe: (a) 

location of Algonquin Provincial Park in Ontario, Canada; (b, c) location of the 

eight studied populations. Within Algonquin Park, forest habitat is indicated in 

white, open water in blue, and wetlands in gray. 
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5.2.5 Landscape evaluation 

The geographic area of each sampled peatland (Table B.1) was determined as previously 

described in Chapter 3 through use of high-resolution orthophotography (Ontario 

Ministry of Natural Resources, Forest Resources Inventory 2006, 40 cm accuracy), a 

digital vector-based land cover classification map of Algonquin Park (Ontario Ministry of 

Natural Resources, Forest Resource Inventory, 2005) and personal ground truthing. We 

established in Chapter 4, through extensive transect surveys of 13 peatland habitats 

located within the same study system (six of which are included in the current study), that 

peatland size is a reliable indicator of the spatial dimension of host-plant resources. There 

was a significant negative relationship between peatland size and the density of cranberry 

cover (r
2 

= 0.481, P < 0.009; Figure 4.4a) and conversely, a significant positive 

relationship between peatland size and the coefficient of variation in cranberry density (r
2
 

= 0.484, P < 0.008; Figure 4.4c). Thus, the density of cranberry was higher and its 

distribution less variable in smaller peatlands compared to larger ones. In the present 

study we therefore use peatland size as a proxy for the spatial dimension of host-plant 

resources. Two of the surveyed peatlands in this study (COS and SUN) were extremely 

large in size (> 22 ha) and it was logistically infeasible to conduct extensive surveys of 

cranberry cover to the same resolution as used in Chapter 4. 

 Following the same methods and justifications as described in Chapter 4, we also 

assessed landscape structure within a 1 km buffer radius around the centroid of butterfly 

capture in each surveyed peatland (Table B.1). Based on a rasterized version of the land 

cover classification map described above (grain size = 5 m
2
), we determined the area 

proportion of wetland (potentially suitable habitat), forest and open water habitat.  In 
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addition, we also determined the mean proximity of wetland habitat as an index of the 

relative isolation and fragmentation of wetland habitat within each buffer (McGarigal et 

al. 2002). Extraction of all landscape variables were performed using ArcGIS v.10.0 

(ESRI, Redlands, California) and FRAGSTATS v.4.0 (McGarigal et al. 2002).  

 

5.2.6 Statistical analyses  

All morphological traits were first log10 transformed (Hill et al. 1999b) and we used the 

Kolmogorov-Smirnov test to confirm that they did not significantly deviate from 

normality (in all cases P > 0.05). We then confirmed whether morphological traits 

differed between males and females; since trait variances differed between the sexes, we 

used the Mann-Whitney U test to evaluate sex differences for each morphological 

character. To assess whether variation in local mobility (i.e., flight-morphological 

phenotypes) among populations was related to surrounding landscape structure, and/or to 

within-patch habitat size and resource distribution, we used residual values of each 

morphological character (i.e. thorax mass, abdomen mass, wing area and wing loading) 

that accounted for body size and thus represented the relative investment to different 

body parts (Hill et al. 1999a, b). Because males and females may differ in their allocation 

patterns, and response to landscape and local conditions, we conducted all analyses 

separately for each sex. 

 We confirmed that the slopes of the relationships between total mass and each of 

thorax mass, abdomen mass, wing area, and wing loading were consistent among 

populations using ANCOVAs with site as a fixed factor and total mass as a covariate. In 
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both sexes, all traits were significantly correlated with total mass (P < 0.001), and for all 

traits there were no significant interaction effects of site*total mass (P > 0.05). Thus, for 

each sex separately, we conducted one linear regression of each of thorax mass, abdomen 

mass, wing area and wing loading on total mass, and used the residual values for each 

individual in further analyses. 

 To determine whether the relative investment into different morphological 

characters was associated with local patch size and/or surrounding landscape structure, 

we applied linear mixed-effect models using the R package lme4 v.0.999999-2 (D. Bates, 

M. Maechler and B. Bolker, available at http://mumin.r-forge.r-project.org/). Peatland 

area and mean proximity variables were log10 transformed to improve normality, and 

proportion variables (wetland, forest and open water habitat) were logit transformed 

(Warton and Hui 2011). Tests for collinearity among all landscape variables had 

identified strong correlations (i.e., Pearson’s r > 0.70) between proportion of wetland 

habitat and peatland area and between wetland habitat and proportion of forest habitat. 

Thus we retained only uncorrelated landscape measures (i.e., peatland area, proportion of 

forest habitat, proportion of open water habitat, and mean proximity) as explanatory 

variables. Also, individuals were nested within each peatland as a random effect, since 

individuals captured within the same peatland represent non-independent replicates. All 

predictor variables were standardized by subtracting the mean from each observation and 

dividing by the standard deviation. 

  To determine the best model and the relative contribution of each predictor in 

explaining variation in the response variables, we employed a multimodel inference 

approach (Burnham and Anderson 2002) using the R packages MuMIn v.1.9.5 (K Bartoń,  
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available at http://mumin.r-forge.r-project.org) and AICcmodavg v.1.30 (MJ Mazerolle, 

available at http://cran.r-project.org/package=AICcmodavg). We generated a candidate 

set of models, consisting of all possible combinations of predictor variables (i.e., 16 

models). Models were then ranked based on second order Akaike information criterion 

values (AICc), which corrects for small sample sizes (Burnham and Anderson 2002). The 

top model in the set was determined as the model exhibiting the lowest AICc value, and 

we considered any additional models within 2 AICc values of the top model (ΔAICc 

values < 2) to be equally well supported (Burnham and Anderson 2002). Support for the 

top-ranked model was evaluated based on Akaike model weights (wi). Assuming that the 

true model has been included within the candidate model set, wi can be considered as the 

probability that model Mi represents the true model explaining variation in a given 

morphological trait. Strong support for a top-ranked model is evidenced by a weight (wi)  

of 0.9 or greater, and an AICc value that is at least four units smaller than the second-

ranked model (Burnham and Anderson 2002).  

 In this study we found in all cases that more than one model was equally well 

supported (ΔAICc values < 2) so we used model averaging of the top candidate models 

(AICc < 2) to determine the relative importance of each explanatory variable (w+(i)) in 

explaining the response, as well as to obtain parameter estimates and their unconditional 

standard errors. We calculated relative importance for each predictor by summing the 

AICc weights of that predictor across those top models in which it was included. Model 

averaged parameter estimates and unconditional standard errors for each predictor were 

determined using the weighted average of the parameter estimates across the same top 

models. All statistical analyses were performed using IBM SPSS v.20 (IBM Corp, 
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Armonk, NY) and R version 3.0.0 (R Development Core Team 2013; R Foundation for 

Statistical Computing, Vienna). 

 

5.3 Results 

As expected, values of all morphological traits differed significantly between the sexes 

(Table 5.2). The overall body size of females was larger than males, as were absolute 

measures of thorax size, abdomen size, wing area and wing loading (Mann-Whitney U, 

all P-values < 0.001). After accounting for body size, there were no significant 

differences observed between the sexes in relative investment into different body parts 

(Mann-Whitney U, all P-values > 0.05). 

 AICc model selection results indicated that the morphological traits of both males 

and females were associated with multiple landscape variables (Table 5.3). Overall, the 

relative importance of each landscape predictor varied depending on the morphological 

trait examined. The estimated effects of predictors also differed between males and 

females, however, the direction of responses were fairly consistent (Table 5.4). In males, 

the results of the linear mixed model regression analyses indicated that our data provided 

very strong support for a negative relationship between relative thorax mass (i.e., residual 

of thorax mass on total body mass) and both peatland size and forest cover (w+(i) = 1.00 

and 1.00, respectively; Table 5.4). For relative abdomen mass we found strong support 

for a positive relationship with peatland size and water cover (w+(i) = 1.00 and 0.711, 

respectively; Table 5.4), and we found good support for water cover negatively 
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influencing both relative wing area and relative wing loading (w+(i) = 0.682 and 0.615, 

respectively; Table 5.4).  

 In females, our analyses suggest a very strong negative influence of the 

proportion of forest cover on relative thorax mass (w+(i) = 1.00). Relative thorax mass 

was also negatively related to peatland size and proportion of open water with good 

support (w+(i) = 0.604 and 0.572, respectively; Table 5.4). Although forest cover, 

peatland size and open water all demonstrated the expected positive relationship with 

abdomen mass, forest cover was the only predictor with considerable weight (w+(i) = 

0.714; Table 5.4). Relative wing area and wing loading were both best explained by mean 

proximity of wetland habitat, but with only limited support (w+(i) = 0.429 and 0.466, 

respectively; Table 5.4). 
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Table 5.2 Absolute mean morphology measurements (± SE) of adult male and female Lycaena expixanthe collected 

from eight peatlands in Algonquin Provincial Park, Ontario, Canada. Total mass, thorax mass and abdomen mass (mg) 

represent dry weights. Wing loading was calculated as total dry mass / wing area. 

 

Site 

Total mass 

(mg) 

Thorax mass 

(mg) 

Abdomen mass 

(mg) 

Wing area 

(mm
2
) Wing loading 

Males      

WH 4.898 (0.120) 1.831 (0.040) 1.242 (0.051) 0.546 (0.007) 8.971 (0.174) 

WR 5.028 (0.114) 1.847 (0.023) 1.374 (0.063) 0.549 (0.007) 9.203 (0.213) 

MIN 4.838 (0.876) 1.795 (0.265) 1.300 (0.064) 0.527 (0.007) 0.406 (0.003) 

BAB 4.858 (0.094) 1.800 (0.035) 1.300 (0.043) 0.544 (0.010) 8.959 (0.169) 

SUN 5.226 (0.941) 1.881 (0.034) 1.613 (0.047) 0.535 (0.008) 9.779 (0.175) 

EOS 5.501 (0.119) 2.01 (0.032) 1.554 (0.058) 0.564 (0.007) 9.746 (0.188) 

COS 5.422 (0.176) 1.952 (0.039) 1.589 (0.102) 0.556 (0.009) 9.740 (0.231) 

OPL 4.746 (0.108) 1.819 (0.031) 1.284 (0.053) 0.530 (0.007) 8.955 (0.149) 

      

Females     

WH 7.466 (0.235) 1.960 (0.046) 3.798 (0.159) 0.546 (0.0132) 13.693 (0.342) 

WR 7.914 (0.258) 2.021 (0.055) 4.115 (0.182) 0.582 (0.011) 13.596 (0.332) 

MIN 7.184 (0.270) 1.927 (0.049) 3.536 (0.204) 0.547 (0.009) 13.145 (0.456) 

BAB 7.748 (0.234) 1.976 (0.048) 3.988 (0.171) 0.588 (0.006) 13.194 (0.394) 

SUN 8.316 (0.204) 2.171 (0.037) 4.276 (0.144) 0.590 (0.009) 14.113 (0.319) 

EOS 7.216 (0.199) 2.110 (0.032) 3.318 (0.154) 0.591 (0.012) 12.354 (0.417) 

COS 7.633 (0.415) 2.176 (0.083) 3.624 (0.299) 0.596 (0.010) 12.813 (0.668) 

OPL 7.736 (0.308) 2.113 (0.053) 3.812 (0.246) 0.589 (0.009) 13.024 (0.526) 
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Table 5.3 Summary of model selection results for morphological traits in male and female Lycaena epixanthe. Models 

with Δi AICc < 4 are presented, and are ranked according to AICc. 

Model logLik AICc ΔiAICc wi Model logLik AICc ΔiAICc wi 

          

FEMALE     MALE     

Relative thorax mass    Relative thorax mass    

Area+For+Wat 

For 

Area+For 

For+Wat 

Prox 

For+Prox 

Area+For+Prox 

Area+For+Wat+Prox 

59.712 

63.013 

61.576 

60.851 

62.918 

61.189 

59.510 

57.459 

-130.2 

-129.0 

-128.9 

-128.6 

-127.9 

-127.8 

-126.7 

-126.6 

0.00 

1.18 

1.26 

1.59 

2.29 

2.41 

3.42 

3.59 

0.244 

0.135 

0.130 

0.110 

0.078 

0.073 

0.044 

0.040 

Area+For 

Area+For+Wat 

Area+For+Prox 

Area+For+Wat+Prox 

142.919 

139.211 

139.455 

135.751 

-298.7 

-297.3 

-296.8 

-295.1 

0.00 

1.45 

1.91 

3.64 

0.378 

0.183 

0.145 

0.061 

 

Relative abdomen mass 

    

Relative abdomen mass 

   

Prox 

For 

Area+For+Wat 

Area+For 

For+Wat 

Intercept 

For+Prox 

Wat+Prox 

Area+Prox 

Area+For+Prox 

Area 

Wat 

For+Wat+Prox 

Area+For+Wat+Prox 

12.816 

12.493 

9.797 

11.439 

10.651 

13.366 

11.088 

10.482 

10.566 

9.825 

11.399 

11.286 

9.072 

8.084 

-26.1 

-26.1 

-26.0 

-25.8 

-25.2 

-25.0 

-24.7 

-23.6 

-23.5 

-23.5 

-23.2 

-23.1 

-22.6 

-22.4 

0.00 

0.02 

0.16 

0.35 

0.89 

1.16 

1.38 

2.56 

2.61 

2.62 

2.94 

3.05 

3.51 

3.76 

0.139 

0.138 

0.128 

0.117 

0.089 

0.078 

0.070 

0.039 

0.038 

0.037 

0.032 

0.030 

0.024 

0.021 

Area+Wat 

Area 

Area+For+Wat 

Area+Wat+Prox 

Area+Prox 

Area+For 

80.006 

81.981 

77.607 

77.215 

79.503 

79.484 

-169.4 

-168.3 

-167.6 

-166.7 

-166.6 

-166.0 

0.00 

1.11 

1.76 

2.68 

2.77 

3.39 

0.298 

0.172 

0.123 

0.078 

0.075 

0.055 

 

Relative wing area 

    

Relative wing area 

   

Prox 

Intercept 

209.063 

211.822 

-426.0 

-425.7 

0.00 

0.34 

0.227 

0.192 

Wat 

Area+Wat 

301.300 

296.907 

-615.0 

-614.4 

0.00 

0.56 

0.194 

0.146 
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For 

Area 

For+Prox 

Area+Prox 

Wat+Prox 

Wat 

For+Wat 

208.193 

207.934 

205.105 

204.960 

204.852 

207.677 

204.131 

-424.6 

-423.9 

-423.5 

-423.5 

-423.4 

-423.4 

-422.3 

1.44 

2.11 

2.56 

2.57 

2.60 

2.62 

3.76 

0.111 

0.079 

0.063 

0.063 

0.062 

0.061 

0.035 

Intercept 

For+Wat 

Area 

For 

Wat+Prox 

Area+Prox 

For+Prox 

Prox 

Area+Wat+Prox 

Area+For+Wat 

305.138 

296.456 

300.833 

300.574 

296.619 

296.629 

296.765 

300.576 

292.396 

292.486 

-614.0 

-613.5 

-613.3 

-612.6 

-612.2 

-612.0 

-611.9 

-611.9 

-611.7 

-611.5 

1.01 

1.51 

1.67 

2.35 

2.82 

3.01 

3.03 

3.10 

3.31 

3.51 

0.117 

0.091 

0.084 

0.060 

0.047 

0.043 

0.042 

0.041 

0.037 

0.033 

 

Relative wing loading 

    

Relative wing loading 

   

Prox 

Intercept 

For 

Area 

Area+Prox 

For+Prox 

Wat+Prox 

Wat 

For+Wat 

-139.187 

-139.529 

-140.081 

-140.304 

-140.181 

-140.045 

-140.287 

-140.575 

-140.046 

 

 

282.9 

283.2 

284.4 

285.0 

285.4 

285.5 

285.5 

285.5 

286.8 

0.00 

0.32 

1.50 

2.08 

2.56 

2.58 

2.59 

2.62 

3.87 

0.228 

0.194 

0.108 

0.081 

0.063 

0.063 

0.062 

0.062 

0.033 

Wat 

Area+Wat 

Intercept 

Area 

For+Wat 

For 

Area+Prox 

Wat+Prox 

Prox 

Area+For+Wat 

Area+Wat+Prox 

For+Prox 

Area+For 

-101.892 

-103.311 

-100.759 

-102.140 

-103.720 

-102.515 

-103.424 

-103.589 

-102.431 

-104.714 

-104.857 

-103.472 

-103.640 

202.8 

203.0 

203.6 

204.1 

205.0 

205.1 

205.3 

205.6 

205.6 

205.8 

205.9 

205.9 

206.6 

0.00 

0.29 

0.82 

1.36 

2.28 

2.33 

2.56 

2.85 

2.88 

3.07 

3.09 

3.13 

3.81 

0.184 

0.160 

0.122 

0.093 

0.059 

0.057 

0.051 

0.044 

0.044 

0.040 

0.039 

0.039 

0.027 

Log likelihood statistics (logLik), second order Akaike information criterion (AICc), Δi AICc, and Akaike weights (wi) are 

derived from linear-mixed model regressions. Area, total peatland area; For, proportion of forest habitat; Wat, proportion of 

open water habitat; Prox, mean proximity of potentially suitable wetland habitat.
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Table 5.4 Effect of landscape variables on morphological traits in male and female Lycaena epixanthe. Model-averaged 

Akaike weights (w+(i)), parameter estimates (     , and standard errors (SE) are derived from linear mixed-model 

regressions after model selection. 

 

 

 

 

 

 

 

 Relative thorax mass Relative abdomen mass Relative wing area Relative wing loading 

Variable w+(i)       
SE w+(i)       

SE w+(i)       
SE w+(i)       

SE 

Males             

Peatland 

area 

1.000 -0.033 0.012 1.000 0.042 0.017 0.364 -0.003 0.003 0.452 0.058 0.047 

Forest cover 1.000 -0.033 0.012 0.208 0.021 0.027 0.144 0.002 0.002 - - - 

Water cover 0.260 -0.006 0.007 0.711 0.025 0.015 0.682 -0.004 0.002 0.615 0.071 0.038 

Proximity 0.205 -0.006 0.011 - - - - - - - - - 

             

Females             

Peatland 

area 

0.604 -0.053 0.038 0.323 0.080 0.062 - - - 0.161 -0.083 0.150 

Forest cover 1.000 -0.059 0.028 0.714 0.073 0.046 0.209 -0.006 0.006 0.228 0.115 0.157 

Water cover 0.572 -0.027 0.021 0.287 0.039 0.034 - - - 0.175 0.022 0.143 

Proximity - - - 0.275 -0.092 0.053 0.429 0.012 0.008 0.466 -0.272 0.191 
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5.4 Discussion 

In this study, we examined variation in flight-related morphological traits among local 

populations of the bog copper butterfly. Using an AICc inferential approach our results 

provide evidence for effects of both the surrounding landscape structure, and the 

distribution of local host-plant resources, on flight morphology. This suggests that for 

naturally fragmented species like the bog copper, local conditions in addition to 

landscape structure may be important in influencing mobility, and thus should be 

considered in long-term species management plans.   

 Given the bog copper’s small size and thus inherent limited dispersal ability 

(Sekar 2012), coupled with its dependency on cranberry as the sole adult and larval food 

source, the cost of long, continuous flights through an inhospitable matrix of forest and 

open water habitat is presumed to be high. As well, previous population genetic analyses 

of the bog copper detected a high degree of genetic differentiation among local 

populations (Chapter 4). Thus, we hypothesized that increasing habitat isolation should 

increase the cost of dispersal among habitat patches and select against mobile 

phenotypes. Indeed we found strong evidence that in both sexes, thorax allocation 

decreased with increasing amount of forest in the surrounding landscape. Following 

colonization of peatland habitats, long-distance movements in the bog copper (as inferred 

by relative thorax mass) may have been selected against in response to increasing forest 

cover over time (Hanski et al. 2004). Changes in dispersal propensity and allocation to 

thorax muscles in relation to the degree of habitat isolation have been demonstrated in 

other insect species experiencing contemporary habitat fragmentation (e.g., Dempster 

1991; Heidinger et al. 2010). The populations examined here however have likely been 
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isolated over relatively long time scales, and may have become adapted to local 

conditions, which could overrule the effects of landscape structure (e.g., Turlure et al. 

2009). Our results however, indicate that at least for the bog copper butterfly, habitat 

isolation (as measured by the amount of forest in the surrounding landscape) appears to 

negatively affect morphological traits associated with mobility.  

 In addition to dense forest cover, open water has been shown to be a significant 

barrier to movement in other butterfly species (e.g., Leidner and Haddad 2010), and thus 

we predicted that we might observe less mobile phenotypes with increasing amounts of 

open water in the surrounding landscape. Our results showed that in males, relative 

abdomen size and wing loading were larger and relative wing area smaller in habitat 

patches surrounded by more open water. While these results support our hypothesis of 

water as a dispersal barrier, we did not find any influence of proportion of open water on 

male relative thorax mass. Furthermore, although proportion of forest in the landscape 

strongly influenced flight morphology in females, our analyses did not provide strong 

support for any effect of open water on female morphology. In Chapter 4 we found that 

estimates of genetic diversity increased when populations were surrounded by a higher 

proportion of open water habitat, indicating that the amount of open water may be linked 

to differences in habitat quality among sites, including differences in water and nutrient 

availability. Thus it is possible that the proportion of open water may indirectly lead to 

changes in male morphology as a result of varying local habitat conditions, rather than by 

directly hindering mobility through the surrounding landscape. Mounting evidence 

suggests that variation in microclimatic conditions and host-plant quality, via changes in 

water and nutrient availability, can indirectly influence morphological as well as 
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behavioural and life-history traits in butterflies (Talloen et al. 2004; Turlure et al. 2010a; 

Gibbs et al. 2012; Turlure et al. 2013; Van Velde et al. 2013). For example, male Pararge 

aegeria butterflies reared on drought-stressed plants in which leaf nitrogen, carbon and 

water concentrations were reduced were found to invest less into reproduction 

(spermatophore size) compared to control individuals (Van Velde et al. 2013). In a 

separate experiment on the same species, females reared on drought-stressed plants 

exhibited lower wing loading and reproductive output (reduced fecundity). The results of 

these studies highlight that the functional morphology of butterflies can also be 

influenced by fine-scale, local heterogeneity in ecological conditions in addition to 

broader landscape features. Thus the connection between proportion of open water in the 

landscape, male flight morphology, and habitat quality identified in this study warrants 

further exploration. 

 It is now well-established that the abundance and spatial distribution of nectar and 

larval host-plants can influence the movement of butterflies across fragmented landscapes 

(Brommer and Fred 2001). While few empirical examples currently exist, it is also 

thought that fine-scale resource heterogeneity within habitat patches can impact mobility 

(Baguette and Van Dyck 2007; Turlure et al. 2010b). While we predicted investment in 

flight to increase with increasing peatland size due to more heterogeneous host-plant 

coverage, our results instead showed that allocation to the thorax in both sexes increased 

with declining peatland size, although the effect was not significant in females. One 

explanation for the relatively large thoraxes observed in smaller peatlands, is that smaller 

habitat patches are more likely to experience local extinctions and have subsequently 

been re-colonised by dispersive individuals with larger thoraxes, as shown in some other 
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butterfly species (Kuussaari et al. 1996; Hanski et al. 2002; 2004; Hill et al. 1999a). 

However, we have established that host-plant density is greater and more homogenous in 

smaller peatlands in our study system (Chapter 4), and previous genetic analyses 

(Chapter 4) and population abundance surveys of the bog copper (Swengel and Swengel 

2011) both indicate that small habitat patches may have the carrying capacity to support 

relatively large, stable populations. Thus it seems unlikely that populations in small 

habitat patches are more likely to have recently undergone extinction. Given that the 

effects of peatland area on thorax and abdomen mass were considerably stronger in males 

than females, it is possible that peatland size affects male morphology by influencing 

mate location behaviours. Bog coppers have been classified as a perching species (Wright 

1983) and this is likely to be the case in small peatlands with dense cranberry cover, 

where males need to establish territories in order to ensure access to mates. In larger 

peatlands where cranberry cover is less dense and more heterogeneous however, males 

may instead switch to a more ‘patrol’ type of mate location behaviour, more actively 

flying around in order to locate mates (Scott 1986). Typically, perchers have relatively 

large thoraxes compared to patrollers, which allows for more quick, rapid and powerful 

flight (Betts and Wootton 1988; Dudley 1990; Wickman 1992). A similar explanation 

was proposed by Thomas et al. (1998) to account for the negative relationship between 

relative thorax mass and habitat patch area observed in a metapopulation of the lycaenid 

Plebejus argus occupying fragmented patches of limestone grassland. Furthermore, 

males of the butterfly species P. aegeria have been shown to exhibit different mate-

location strategies and corresponding differences in flight morphological design in 

relation to habitat structure (Shreeve 1984; Van Dyck and Matthysen 1999; Van Dyck 
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2003). Whether males of the bog copper similarly adopt alternative mate-location 

strategies depending on resource distribution is unknown and requires further study.  

 We found that males and females exhibited sexual dimorphism, as is common 

across most butterfly species, with females being generally larger than males (Wickman 

1992; Layberry et al. 1998; Scott 1986; Turlure et al. 2010b). While the morphological 

traits of both sexes generally responded in the same direction to landscape predictors, the 

relative importance and statistical significance of explanatory variables differed. This 

may reflect sex-specific differences in ecology whereby investment into flight-related 

morphology is shaped by different factors (Norberg and Leimar 2002; Heidinger et al. 

2010). As males spend most of their active time searching for mates (Shreeve 1992), their 

morphology is likely to be highly influenced by local conditions that affect mate location 

(i.e., mobility at the local scale) rather than long-distance dispersal (mobility at the 

landscape scale; Wickham 1992; Hanski et al. 2004). In butterflies, females are often the 

more dispersive sex (Baker 1984; Scott 1986) and in contrast to males their morphology 

may be more reflective of factors that impede or facilitate movement at the landscape 

scale. Additionally, trade-offs between flight ability and fecundity have been shown to 

occur in females of many insect species (Zera and Denno 1997; Zera and Harshman 

2001; Hughes et al. 2003, but see Hanski et al. 2006), therefore it is also possible that the 

morphology of female bog coppers may be responding to factors influencing 

reproduction rather than movement per se (Hanski et al. 2004).  

 Flight morphology characters have been demonstrated for many insect species to 

be reliable proxies of flight ability (Chai and Srygley 1990; Kuusaari et al. 1996; 

Berwaert et al. 2002; Turlure et al. 2010b). Thus, we interpret the variation in flight 
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morphology observed here among local populations of the bog copper butterfly to reflect 

real differences in movement ability. As the functional relationship between flight 

morphology and flight performance has not been evaluated specifically for the bog 

copper, however, we caution that future work is still needed to confirm this relationship. 

Our correlative approach using direct measurements of wild-caught adults allows us to 

examine patterns of phenotypic variation among populations; however it does not allow 

us to identify whether the underlying mechanism responsible for these differences is local 

adaptation or phenotypic plasticity. The life-history of the bog copper makes it extremely 

challenging to rear under laboratory conditions (Wright 1983; L. Crawford unpublished), 

and thus conduct a common garden experiment which would allow us to identify whether 

phenotypic variation among sites is due to genetic differences. Regardless, we observed a 

considerable amount of morphological variation among local populations of the bog 

copper suggesting that the flight morphology of these butterflies is responding on some 

timescale to both local habitat conditions and landscape structure. 
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Chapter 6  

6 Molecular signatures of selection associated with fine-
scale landscape heterogeneity in a relict butterfly, 
Lycaena epixanthe 

 

6.1 Introduction 

Humans have induced wide-spread environmental change, such as land-use and climate 

change as well as the introduction of invasive species and environmental contaminants, 

which has placed new selective pressures on species (Reusch and Wood 2007), altering 

dispersal patterns, the timing of life-history events, population dynamics and overall 

fitness (Lovejoy and Hannah 2005; Parmesan 2006). While broad-scale shifts in 

geographic distributions in response to environmental change have been predicted fairly 

accurately for many species (Thuiller et al. 2008; Pereira et al. 2010), current distribution 

models do not possess the spatial and biological resolution necessary to forecast the 

evolutionary response of populations at a local level (Hampe and Jump 2011). Local 

adaptation to fine-scale landscape heterogeneity (i.e., variation in habitat size, quality and 

isolation) has the potential to buffer populations against larger-scale climatic and 

landscape changes (Thuiller et al. 2008; Willis and Baghwat 2009). Thus, an 

understanding of how current local adaptations have been shaped by fine-scale landscape 

heterogeneity may allow us to more accurately predict the future geographic distributions 

and survival of organisms (Manel et al. 2010a; Hampe and Jump 2011).  
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 The emerging field of landscape genomics provides a framework for studying the 

effects of the environment/landscape on adaptive genetic variation in natural populations 

(Holderegger et al. 2008; Joost et al. 2007; Manel et al. 2010a; Schoville et al. 2012). 

Through the integration of high-resolution genomic data, environmental datasets and 

spatial statistical methods, landscape genomic studies seek to link the spatial distribution 

of alleles potentially under selection to environmental variables (Schoville et al. 2012). 

Putative adaptive loci are identified using genome-scan methods which screen genetic 

markers such as amplified fragment length polymorphisms (AFLPs), single nucleotide 

polymorphisms (SNPs) and microsatellites (SSRs), and apply either a population-based 

outlier locus detection method or a correlative landscape genetics approach to find loci 

exhibiting signatures of natural selection (Manel et al. 2010a). Outlier locus detection 

methods identify potentially adaptive loci as those exhibiting higher genetic 

differentiation (e.g., FST) among populations than expected under a neutral model (Vitalis 

et al. 2001; Beaumont 2005). In contrast, the landscape genetics approach identifies 

candidate loci based on the correlation of allele frequencies with clinal ecological data 

(Joost et al. 2007; Holderegger et al. 2010). In most cases, these identified molecular 

markers are closely linked to genomic regions under selection rather than directly 

experiencing selection themselves (Maynard Smith and Haigh 1974; Holderegger et al. 

2008).  

 Particularly in non-model species for which little or no genomic information is 

available, genome scans using AFLP molecular markers have proven to be a useful tool 

for detecting signatures of selection (Meudt and Clarke 2007). Compared to other marker 

systems, the AFLP protocol is relatively inexpensive, and can easily screen hundreds to 
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thousands of reliable polymorphic loci distributed across the entire genome (Bensch and 

Åkesson 2005). Indeed an increasing number of landscape genomic studies on non-model 

species have employed AFLP-based genome scans in parallel with environmental data to 

identify genomic regions potentially under selection as well as the corresponding 

ecological factors acting as drivers of selection (reviewed in Holderegger et al. 2008; 

Schoville et al. 2012). To date, the focus of many of these AFLP-based studies has been 

to identify broad-scale environmental variation (e.g. gradients of latitude, altitude, 

temperature, and precipitation) associated with patterns of adaptive genetic variation 

surveyed across relatively large spatial scales (e.g., Bonin et al. 2006; Joost et al. 2007; 

Manel et al. 2010b; Poncet et al. 2010; Keller et al. 2012; Bothwell et al. 2013) or to 

identify loci of adaptive relevance associated with contrasting habitat types (e.g., 

Campbell and Bernatchez 2004; Collin and Fumagalli 2011; Buckley et al. 2012). In 

contrast, relatively little research has sought to explore how fine-scale landscape 

heterogeneity can contribute to patterns of adaptive genetic variation. 

 Relict species represent a natural laboratory for investigating the influence of 

landscape heterogeneity on local adaptive processes. Most relict species are habitat 

specialists, and possess limited dispersal abilities, thus, they typically occur as discrete 

populations in small and isolated habitat patches which may experience largely 

independent evolutionary processes and trajectories (Spitzer and Danks 2006; Habel et al. 

2010; Hampe and Jump 2011). Landscape heterogeneity, defined as variation in the size, 

quality and connectivity of suitable habitat patches, exposes these isolated populations to 

different ecological selection pressures through which local adaptations may evolve 

(Kawecki and Ebert 2004). Strong ecological selection generally acts more rapidly in 
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small, isolated populations (Maynard Smith 1976; Habel et al. 2010); however, if 

selective pressures are weak, the negative effects of genetic drift associated with small, 

isolated populations may overwhelm selection and result in an overall loss of adaptive 

genetic variation (Nei et al. 1975). Furthermore, small populations which experience 

fluctuating demographics are also likely to lose adaptive genetic variation over time 

through genetic drift (Kawecki and Ebert 2004). Thus, signatures of selection may be less 

evident in relict populations as a result of small population demography. Nevertheless, 

relict populations are well-known for exhibiting adaptations to local ecological conditions 

(Kawecki and Ebert 2004) and thus represent a candidate system to study the effects of 

landscape heterogeneity on patterns of adaptive genetic variation at a fine spatial scale. 

 Here we use the bog copper butterfly (Lycaena epixanthe, Boisduval and Le 

Conte 1835), a relict species endemic to temperate Nearctic peatlands, as a model to 

explore the relationship between fine-scale landscape heterogeneity and adaptive genetic 

variation. While the bog copper’s distribution is thought to have been much more 

widespread prior to the Pleistocene glaciation (Wright 1983), today the butterfly occurs 

across eastern North America, from Manitoba east to St. John’s Newfoundland in 

Canada, and as far south as Virginia in the United States, in areas with relatively cool and 

humid microclimatic conditions (Layberry et al. 1998; Hampe and Jump 2011). The bog 

copper is a strict habitat specialist as both the larvae and adults feed exclusively on the 

bog cranberry (Vaccinium macrocarpum and V. oxycoccos) which typically only grows in 

acidic peatlands (Wright 1983; Cech and Tudor 2005). Adult butterflies are very small in 

size (wingspan = 17- 22 mm) and exhibit limited flight capabilities (Wright 1983; Cech 

and Tudor 2005), which, together with their close habitat association spatially restricts 
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the distribution of the bog copper to discrete habitat patches. Even at a small spatial scale, 

however, the ecological conditions within different peatland habitats (e.g., host-plant 

availability and quality, moisture content, and exposure) and the composition of the 

landscape surrounding each habitat patch can be extremely diverse, and populations 

occupying different peatlands are likely exposed to different selection pressures as a 

result of this heterogeneity. 

 In a previous population genetic study of the bog copper butterfly using AFLP 

molecular markers (Chapter 4), we demonstrated that nearby populations were 

genetically differentiated (significant pairwise FST values and no pattern of isolation by 

distance), suggesting limited gene flow among populations at a very small spatial scale. 

We also found that population genetic diversity was negatively associated with peatland 

size, and positively with the amount of open water surrounding the studied peatland. We 

hypothesized that these landscape variables may reflect differences in microclimatic 

conditions among habitat patches (e.g., host-plant distribution, water availability and 

thermal regimes) which are known to affect population viability in other butterfly species 

(e.g., Turlure et al. 2010a; 2013). In another study (Chapter 5) we examined 

morphological variation associated with flight ability among local populations of the bog 

copper and found that individual phenotypes varied in relation to both the surrounding 

landscape structure and local patch characteristics. In particular, increasing forest cover 

was associated with decreased investment into flight in both males and females. As well, 

the relative allocation to flight in males corresponded positively to peatland size and 

amount of open water in the surrounding area, suggesting that male mate-location 

strategies may differ among populations as a result of differences in local ecological 
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conditions. Although we were unable to disentangle the underlying mechanism 

responsible for the observed morphological variation (i.e., genetic adaptation vs. 

phenotypic plasticity), these results as well as those of the former study lend support to 

the hypothesis that fine-scale landscape heterogeneity (i.e., both local patch 

characteristics and surrounding landscape structure) may be imposing selective pressures 

on populations of this relict butterfly species. 

 In the present study, we used an AFLP-based genome scan to identify putative 

candidate outlier loci under divergent selection. We then used a multimodel inference 

approach to test for associations between allele frequencies of these candidate loci and 

the fine-scale landscape variables previously identified as important predictors through 

population genetic and morphological analyses (Chapters 3 and 4). This allowed us to 

evaluate the relative influence of each landscape variable as a potential selective force 

shaping patterns of genetic differentiation across the genome of the bog copper. 

 

6.2 Methods 

6.2.1 Study sites and data collection 

We surveyed a total of 551 bog copper butterflies (16 - 43 individuals from each site) 

collected from 15 discrete peatland sites within Algonquin Provincial Park, Ontario, 

Canada during July 2009 and 2010 (Table 6.1; Figure 6.1). The samples from 13 of these 

locations were evaluated in Chapter 4 for AFLP-based population genetic analyses (Table 

4.1 in Chapter 4). We chose peatland sites that varied in total size and relative isolation. 

For each study site, we used four uncorrelated landscape variables previously described 
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in Chapters 4 and 5 which encompass measurements of local habitat patch area and 

quality, as well as surrounding landscape composition and isolation: (1) the geographic 

area of each sampled peatland, which can also be considered as a proxy for host-plant 

density and distribution; (2) the area proportion of forest; and (3) open water habitat; and 

(4) the mean proximity of wetland habitat. Landscape variables 2-4 were evaluated 

within a 1 km buffer radius of the centroid of butterfly capture in each surveyed peatland. 

As outlined in Chapters 4 and 5 the extraction of all landscape variables was performed 

using ArcGIS v.10.0 (ESRI, Redlands, California) and FRAGSTATS v.4.0 (McGarigal et 

al. 2002). 

 As described in Chapters 3 (Crawford et al. 2011) and 4 we employed a non-

lethal method (Koscinski et al. 2011; Crawford et al. 2013) to collect tissue samples for 

genetic analyses. Adult butterflies were captured using hand-nets and a small piece of 

tissue (~0.1 cm
2
) was removed from both hind-wings using fine iris scissors. The wing 

tissue (‘wing-clip’) was immediately stored in absolute ethanol, and the butterfly marked 

and released from its initial point of capture. 

 DNA was extracted from each wing-clip sample using the DNeasy® Blood and 

Tissue Kit (QIAgen, Germantown, MD), following the methods described in Chapter 4. 

We then used a modified AFLP protocol (outlined in Chapter 4 and Appendix A) to 

generate unique AFLP profiles for each bog copper individual based on five selective 

primer combinations. Non-normalized AFLP profiles were visualized and sized using 

GENEMAPPER v.4.0 (Applied Biosystems) based on a size standard ladder (LIZ-500). 

As before, we excluded any AFLP fragments falling within user-defined size ‘bins’ that 

were less than 100 base pairs in size and/or less than 100 relative fluorescent units in 
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height, in order to minimize the occurrence of size homoplasy (Vekemans et al. 2002) 

and artefactual instrument noise in our dataset. The locations of all bins assigned by 

GENEMAPPER were manually confirmed and adjusted if necessary (outlined in Chapter 

4) and we manually reviewed the AFLP profile for every individual and removed any 

profiles that harboured multiple unique fragments or failed to properly amplify. 

Following the same procedure described in Chapter 4 we then used AFLPSCORE v.1.3b 

(Whitlock et al. 2008) to normalize and score the peak-height data for the AFLP profiles 

of all individuals surveyed across the 15 peatlands (i.e., we conducted an independent 

AFLPSCORE analysis on this updated AFLP dataset which included sites COS and 

SUN). The mismatch genotyping error rate of the AFLP dataset was determined by 

AFLPSCORE based on 35 replicate samples (~6 % of total sample size). Replicate 

individuals were selected at random, and represent two aliquots of the same DNA 

extraction which have separately undergone the whole AFLP procedure. 

 Previously in Chapter 4, we compared the results of population genetic analyses 

performed using analogous AFLP datasets varying in overall genotyping error rate (2 – 5 

%) and established that a mismatch genotyping error rate of approximately 4 % was 

optimal for our study system. Therefore, in the current study, we used AFLPSCORE to 

identify the optimal locus and phenotype scoring thresholds which would allow us to 

achieve a mismatch error rate of approximately 4 % while retaining the maximal number 

of loci possible. To limit the occurrence of false positives in the outlier detection 

analyses, we also removed all monomorphic loci as well as any loci with a minor allele 

frequency less than 0.05 (as recommended by Foll and Gaggiotti 2008).  
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Table 6.1 Collection record of the 15 studied populations of Lycaena epixanthe in 

Algonquin Provincial Park, Ontario, Canada. Individuals were surveyed in July 

2009 and 2010, and the coordinates for each peatland are measured as the centroid 

of butterfly capture. Both the number of individuals initially collected (ncollected) and 

the number of individuals successfully amplified and phenotyped for AFLP analyses 

(nAFLP) are presented. 

   UTM Coordinates (17N)   

Code Peatland Year Easting Northing ncollected nAFLP 

BUG ‘Buggy’  2009 679515.01 5049067.38 25 25 

WH Wolf Howl Pond 2009 680263.51 5049909.77 41 41 

DL Dizzy Lake 2009 680239.50 5046830.66 40 40 

ML Mizzy Lake 2009 681141.86 5047379.28 43 42 

WR West Rose Lake 2009 680935.89 5049256.81 38 38 

KB ‘Kearney’  2009 698978.67 5050431.11 39 37 

MIN Minor Lake 2009 701460.15 5057456.41 40 40 

BAB Bab Lake 2009 701436.90 5055911.00 40 40 

ZEN Zenobia Lake 2009 701883.80 5055742.06 39 38 

SUN Sunday Creek 2009 705574.82 5051097.38 41 41 

SB Spruce Bog 2009 705183.73 5052048.05 16 16 

EOS Eos Lake 2009 706133.08 5052006.34 40 40 

COS Costello Creek 2010 707014.15 5054251.22 27 27 

OPL Opeongo Lake 2009 706267.58 5056808.38 41 41 

DT D. Thompson 

Lake 

2009 712915.21 5044885.79 40 39 
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Figure 6.1 Sampling locations of Lycaena epixanthe in Algonquin Provincial Park, 

Ontario, Canada. The predominant land cover types within the study system are 

indicated: forest, white; open water, blue; and wetlands, green. The inset shows the 

location of Algonquin Provincial Park in Ontario.  
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6.2.2 Detecting potentially adaptive loci 

Previous genetic structure analysis of the bog copper within the same study system 

(Chapter 4) established that individuals occupying different peatland habitat patches were 

essentially genetically isolated. Thus we considered each peatland as an independent 

population in outlier detection analyses. To identify AFLP loci exhibiting signatures of 

divergent selection (greater differentiation among populations than expected under a 

neutral model of evolution) we used two FST outlier-based programs: (1) DFDIST 

(Beaumont and Balding 2004), as implemented in the workbench Mcheza (Antao and 

Beaumont 2011) which uses a frequentist inference method, and (2) BayeScan v.2.1 (Foll 

and Gaggiotti 2008) which employs a Bayesian inference method.  Identifying loci as 

putative outliers via two different algorithms allows for a more rigorous test for 

signatures of selection (Perez-Figueroa et al. 2010; Narum and Hess 2011). 

 DFDIST compares observed population differentiation (FST) coefficients at each 

locus to a null distribution generated by coalescent simulations under a classical island 

model (i.e., drift-migration equilibrium) and identifies loci which display comparatively 

high levels of differentiation. We used 50 000 loci to model the null distribution, with a 

mean neutral FST calculated from a trimmed version of the observed dataset with putative 

outlier loci removed. Employing a 5% significance level, we considered those AFLP loci 

exhibiting observed FST values greater than the 95% upper quantile of the null 

distribution as putatively adaptive loci experiencing divergent selection. To correct for 

multiple testing we also set a false discovery rate (FDR) of 10% (Benjamin and Hochberg 

1995). The simulated neutral distribution generated by DFDIST has been shown to be 

robust to mild departures from the simple island model (Beaumont 2005).  
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 BayeScan, in contrast, considers all of the data simultaneously and directly 

estimates the probability of a locus being under selection. BayeScan is considered a more 

conservative outlier test that is less likely to detect false positives, because it does not 

assume a simple island model, allowing effective population sizes and the amount of 

genetic drift between populations to vary (Perez-Figueroa et al. 2010), and because it 

directly accounts for the issue of multiple testing (Foll and Gaggiotti 2008). Two 

alternative models of differentiation are defined for each locus, a selection-based model 

and a neutral-based model. A reversible jump Markov Chain Monte Carlo (RJ-MCMC) 

approach is then used to estimate the posterior probability for each model. As 

recommended by Foll and Gaggiotti (2008), we employed the default values for the RJ-

MCMC algorithm parameters: 5000 iterations conducted for 20 pilot runs (i.e., total 

iterations = 100 000), and to reduce the occurrence of false positives we used 

conservative prior odds of 10:1 in favour of a neutral model. In Bayesian statistics 

posterior probabilities are used for model choice decision, although they cannot be 

directly interpreted or compared to classical P-values such as those calculated in DFDIST 

(Foll and Gaggiotti 2008). Instead, we used a posterior probability threshold > 0.76 to 

identify putative candidate outlier loci demonstrating ‘substantial’ evidence for selection 

according to Jeffreys’ scale (Jeffreys 1961; Foll and Gaggiotti 2008).  

 

6.2.3 Identifying landscape variables associated with putative 
outlier loci 

The loci identified to be potentially under directional selection were used in separate 

multiple linear regression analyses to explore whether variation in allele frequencies at 
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each locus could be explained by the landscape factors examined. The frequency of 

individuals scored for the presence allele at a given candidate locus in each population 

was used as the response variable and was logit transformed. As predictor variables we 

used log-transformed measures of peatland size and mean proximity of wetland habitat, 

and logit transformed measures of proportion of forest habitat and open water habitat. 

Prior to analyses, all explanatory variables were standardized by subtracting the mean 

from each observation and dividing by the standard deviation. We applied a multimodel 

inference approach (Burnham and Anderson 2002) which allowed us to determine the 

best model explaining allele frequency variation among populations, as well as identify 

which landscape predictors (if any) were most influential for each locus. Candidate 

models composed of all 16 possible combinations of explanatory variables were ranked 

according to Akaike information criterion values corrected for small sample size (AICc; 

Burnham and Anderson 2002). All models within 2 AICc values of the top-ranked model 

(ΔAICc values < 2) were considered to be equally well supported, top candidate models 

(Burnham and Anderson 2002). The relative importance of each explanatory variable 

(w+(i)) then was evaluated based on its Akaike model weight (wi) calculated through 

model averaging of the top candidate models. Model selection and averaging was 

performed using the R package MuMIn v.1.9.5 (K Bartoń, available at http://mumin.r-

forge.r-project.org), and all statistical analyses were conducted using R statistical 

software version 3.0.0 (R Development Core Team 2013; R Foundation for Statistical 

Computing, Vienna, Austria). 
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6.3 Results 

6.3.1 AFLP analysis and phenotype scoring 

We successfully scored the AFLP phenotypes for a total of 545 individuals representing 

15 bog copper populations (Table 6.1). Six individuals repeatedly failed to amplify or had 

many unique alleles and were therefore excluded from further analyses. Following 

genotyping error analysis in AFLPSCORE, the resulting dataset consisted of 226 

repeatable AFLP loci with a mean mismatch error rate of 3.76 % across the five selective 

primer combinations (Table 6.2). To limit the occurrence of false positives, only 

polymorphic loci with a minor allele frequency ≥ 0.05 were retained for outlier detection 

analyses. Thus the final AFLP dataset consisted of 130 loci (Table 6.2). 

 

6.3.2 Outlier locus detection 

Applying two different FST outlier-based approaches to our AFLP dataset, we detected 

multiple loci exhibiting notably high levels of differentiation among populations 

suggestive of divergent selection. DFDIST identified eight AFLP loci as putative outliers 

above the 95 % upper quantile of the neutral distribution (Table 6.3). However, after 

controlling for multitest correction (FDR = 10 %) none of the loci remained significant. 

BayeScan identified five loci exhibiting substantial support (posterior probabilities > 

0.76) for divergent selection according to Jeffrey’s scale (Jeffreys 1961; Table 6.3). The 

corresponding FDR (q-value) for all loci was equal or lower than 11 % (Table 6.3). This 

q-value threshold is considerably more rigorous than a classic P-value threshold of 11% 

(Foll and Gaggiotti 2008). Overall, five different candidate loci were consistently 



204 

 

detected by both BayeScan and DFDIST (before multi-test correction): loci 34, 54, 87, 94 

and 100 (Table 6.3). We considered these five loci to be potentially under divergent 

selection and used each in a separate multiple regression analysis to test for associations 

with landscape variables. 

 

6.3.3 Associations between landscape variables and putative 
outlier loci 

Using an AICc inferential model selection approach our results suggest that all of the 

landscape variables were associated with at least one putative outlier locus (Table 6.4). 

Allele frequencies of four of the five loci were associated with variation in peatland size, 

while proportion of open water also explained allele frequency variation for three of the 

five loci (Table 6.5). As well, our data provide substantial support for an influence of 

proportion of forest cover and moderate support for an influence of wetland proximity on 

allele frequencies at locus 54 (Table 6.5). 



205 

 

Table 6.2 Details of the five selective primer combinations used and their contribution to the final AFLP dataset. The 

results of the phenotype scoring and mismatch error rate analysis performed using AFLPSCORE are presented, with 

the scoring parameters (locus and phenotype scoring thresholds) used for each primer combination indicated. We 

present the number of AFLP loci initially identified using GENEMAPPER, the number of loci retained by 

AFLPSCORE, and the final number of loci used in outlier detection analyses following the removal of loci with minor 

allele frequencies < 0.05. 

 Scoring Threshold   Number of AFLP loci 

Selective primer 

combination Locus Phenotype 

Mismatch 

error rate % GENEMAPPER AFLPSCORE Final dataset 

EcoRI-ACA/MseI-CTT 600 100 3.74 161 39 22 

EcoRI-AAC/MseI-CAC 1400 100 3.95 176 35 16 

EcoRI-AAC/MseI-CTC 1100 400 3.94 121 43 21 

EcoRI-AAG/MseI-CAA 600 200 3.51 123 69 50 

EcoRI-ACC/MseI-CAC 2800 1300 3.68 123 40 21 

   3.76 (mean) 704 (total) 226 (total) 130 (total) 
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Table 6.3 AFLP loci identified as putatively under divergent selection for Lycaena 

expixanthe. The results from DFDIST (P-value, FST) and BayeScan (posterior 

probability, q-value, FST) are presented for each candidate locus. 

 DFDIST*  BayeScan** 

Locus 

no. P-value FST  

Posterior 

probability q-value FST 

34 0.990 0.143  0.866 0.094 0.155 

54 0.994 0.163  0.803 0.111 0.142 

62 0.983 0.129  0.484 0.327 0.108 

87 0.995 0.163  0.914 0.061 0.152 

91 0.979 0.143  0.405 0.351 0.104 

94 0.994 0.162  0.964 0.036 0.169 

100 0.970 0.129  0.877 0.084 0.155 

130 0.998 0.190  0.073 0.525 0.071 

We used an AFLP dataset consisting of 130 loci to detect putative candidate outlier loci 

(locus no.). Bolded values indicate loci which met criteria for outlier detection: DFDIST 

= P < 0.05; BayeScan = posterior probability > 0.76.  

*After controlling for multitest correction (false discovery rate = 10 %) all loci initially 

identified by DFDIST were no longer significant. 

**Note that q-value thresholds calculated in BayeScan are considerably more stringent 

than the equivalent P-value threshold used in classical statistics.  
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Table 6.4 Summary of model selection results for the five candidate outlier loci 

identified to be under divergent selection by DFDIST and BayeScan. Models with 

ΔiAICc  < 4 are presented, and are ranked according to AICc values. 

Locus no. Model logLik AICc ΔiAICc wi 

34 Intercept 

Area 

Wat 

Prox 

For 
 

-24.309 

-23.828 

-24.033 

-24.226 

-24.309 
 

53.6 

55.8 

56.2 

56.6 

56.8 
 

0.00 

2.22 

2.63 

3.01 

3.18 
 

0.429 

0.142 

0.115 

0.095 

0.088 
 

      

54 Area+For+Prox 

For 

Area+For 

For+Prox 

Intercept 
 

18.671 5 

23.113 5 

21.719 5 

21.742 5 

25.359 5 
 

4.0 

4.4 

5.4 

5.5 

5.7 
 

0.00 

0.40 

1.43 

1.48 

1.71 
 

0.260 

0.213 

0.127 

0.124 

0.111 
 

      

      

87 Area+Wat 

Intercept 

Wat 

Area 

For+Wat 

For 
 

-18.609 

-22.624 

-21.086 

-21.418 

-20.469 

-22.486 
 

49.2 

50.2 

50.4 

51.0 

52.9 

53.2 
 

0.00 

1.03 

1.13 

1.80 

3.72 

3.94 
 

0.284 

0.169 

0.161 

0.115 

0.044 

0.040 
 

      

94 Area+Wat 

Wat 

Intercept 

Area+Wat+Prox 

Wat+Prox 

Area 

For+Wat 
 

20.712 5 

22.827 5 

25.239 5 

19.410 5 

22.027 5 

24.472 5 

22.665 5 
 

3.4 

3.8 

5.5 

5.5 

6.1 

7.1 

7.3 
 

0.00 

0.41 

2.05 

2.06 

2.63 

3.70 

3.91 
 

0.28 

0.228 

0.100 

0.100 

0.075 

0.044 

0.040 
 

      

100 Wat 

Area+Wat 

Intercept 

For+Wat 

Wat+Prox 

Area 
 

-22.204 

-20.341 

-24.763 

-21.591 

-22.114 

-24.137 
 

52.6 

52.7 

54.5 

55.2 

56.2 

56.5 
 

0.00 

0.09 

1.94 

2.59 

3.64 

3.87 
 

0.292 

0.279 

0.111 

0.080 

0.047 

0.042 
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Log likelihood statistics (logLik), second order Akaike information criterion (AICc), 

ΔiAICc, and Akaike weights (wi) are derived from linear multiple regressions. Area, total 

peatland area; For, proportion of forest habitat, Wat, proportion of open water habitat; 

Prox, mean proximity of potentially suitable wetland habitat. 

 

Table 6.5 The relative importance of landscape variables acting as potential drivers 

of genetic variation in the five candidate outlier loci for Lycaena epixanthe. For each 

locus, model-averaged AICc weights (w+(i)) derived from multiple linear regressions 

after model selection are presented. 

Locus 

no. 

Peatland 

size 

Forest 

cover Water cover Proximity 

34     

54 0.464 0.868  0.460 

87 0.547  0.609  

94 0.551  1.000  

100 0.409  0.837  
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6.4 Discussion 

We applied an AFLP-based genome scan approach to detect signatures of selection 

among local populations of a relict species, the bog copper butterfly, and used AICc 

model selection to assess the relationship between landscape variables and candidate 

outlier loci. While most landscape genomic studies to date have examined patterns of 

adaptive genetic variation surveyed across much larger spatial scales (e.g., Bonin et al. 

2006; Joost et al. 2007; Manel et al. 2010b; Poncet et al. 2010; Keller et al. 2012; 

Bothwell et al. 2013) or between contrasting habitat types (e.g., Campbell and Bernatchez 

2004; Collin and Fumagalli 2011; Buckley et al. 2012), our study provides evidence for 

natural selection influencing populations at a relatively fine spatial scale due to landscape 

heterogeneity. Using two different FST-based outlier detection programs we identified 

five different loci potentially under divergent selection, representing 3.8 % of the total 

loci surveyed. Allele frequency variation at four of these five loci was associated with 

landscape variables, particularly peatland size and the proportion of open water habitat in 

the surrounding landscape. Despite the potential for small population size to overwhelm 

the effects of selection, our results provide molecular evidence of local adaptation in the 

bog copper, and suggest that patterns of adaptive genetic differentiation among 

populations are indeed influenced by fine-scale landscape heterogeneity. Our study thus 

demonstrates the utility of relict species as a model system for investigating the influence 

of landscape heterogeneity on local adaptive processes. 
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6.4.1 Detecting potentially adaptive loci using an FST-based outlier 
approach 

Using a conservatively generated AFLP dataset, consisting of only highly repeatable, 

polymorphic loci, we made efforts where possible to control for factors that could 

potentially increase the probability of type I error in the statistical outlier detection tests. 

In particular, during our initial selection of AFLP loci, we limited the occurrence of 

AFLP size homoplasy (Caballero et al. 2008), we evaluated population genetic structure 

prior to outlier analyses (Excoffier et al. 2009) and we accounted for multiple 

comparisons (Perez-Figueroa et al. 2010). Outlier loci were then classified using DFDIST 

and BayeScan following stringent criteria, and we used the results of these two programs 

in combination to further reduce the risk of using false outlier loci. All five of the 

putative adaptive loci identified by BayeScan were also identified by DFDIST (before 

multi-test correction), indicating considerable concordance between the two programs. 

When compared under a range of different simulated scenarios (i.e., varying values of 

mean neutral FST, mean selection coefficients and proportion of true selective loci) 

BayeScan has been shown to perform more efficiently than DFDIST after multi-test 

correction, particularly in fully neutral and low selection scenarios (Pérez-Figueroa et al. 

2010). However, false signatures of evolutionary divergence can be generated by spatial 

and historical effects (Kawecki and Ebert 2004; Schoville et al. 2012), and it is 

recommended that the results of any outlier detection analyses be cautiously evaluated 

with this issue in mind (Manel et al. 2010a; Perez-Figueroa et al. 2010; Narum and Hess 

2011). For example, if gene flow is spatially restricted among populations (i.e., isolation 

by distance, IBD), genetic drift could cause neutral alleles to change in frequency 

(Wright 1943).  However, the effects of drift should be apparent across the entire genome 
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rather than at specific loci. As well, spatial genetic structure among populations can result 

in correlated allele frequencies, which if hidden and/or not accounted for, can generate a 

large number of false positive loci in outlier tests (Excoffier et al. 2009). Furthermore, 

past demographic events such as population bottlenecks could also increase genetic drift 

and population differentiation resulting in false outliers (Holderegger et al. 2008). 

BayeScan takes demographic effects into account when modelling population divergence 

(Foll and Gaggiotti 2008), and we accounted for population structure and the presence of 

IBD prior to the population-level outlier analyses. Thus, we can be confident that the five 

outliers identified by both BayeScan and DFDIST represent differentiation caused by 

natural selection rather neutral evolutionary processes. 

 

6.4.2 Identifying landscape variables affecting potentially adaptive 
loci  

AICc analyses indicated that the proportion of open water habitat, as well as peatland 

size, most strongly influenced the allele frequencies of the candidate loci. The proportion 

of forest cover and mean proximity of wetland habitat, both indicators of habitat 

fragmentation and isolation, were found to associate with one of the selected loci (locus 

54). Interestingly both peatland size and proportion of open water were also found to be 

the best predictors of variation in genetic diversity, and measurements of male flight-

morphology among populations of the bog copper (Chapters 4 and 5). They likely reflect 

variation in local ecological conditions (e.g. host-plant availability, moisture content, and 

exposure) within each peatland habitat patch which could be responsible for the putative 

adaptive genetic variation observed here.  
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 Differences in host-plant distribution and microclimatic conditions are known to 

affect female oviposition behaviours, male mate-location strategies and overall habitat 

use in butterflies (e.g., Merrill et al. 2008; Ashton et al. 2009; Krämer et al. 2012) which 

could induce evolutionary changes in traits such as flight ability, thermal regulatory 

ability and fecundity (Shreeve 1986; Berwearts et al. 1998; Vandewoestijne Van Dyck 

2011; Gibbs et al. 2012; Vande Velde et al. 2013). As well, most peatland-associated 

species are thought to be cold-adapted (Addo-Bediako et al. 2002; Spitzer and Danks 

2006), and indeed a recent experimental study of the cranberry fritillary butterfly 

(Boloria aquilonaris), a Palearctic peatland specialist, found that larval survival was 

greater under cooler environmental conditions (Tulure et al. 2010a). Sphagnum moss 

which carpets peatland floors is an important thermoregulator (Spitzer and Danks 2006) 

and particularly Sphagnum hummocks which tend to be located within peatlands in early 

successional or humid areas (Turlure et al. 2010a, b), provide cool, moist environments 

which buffer against fluctuating air temperatures (Turlure et al. 2010a). Differences 

among sites in the availability and quality of these thermal refuges may contribute to 

different thermal tolerances among populations. Furthermore, these hummocks may also 

serve as important oviposition sites, as both the eggs and larvae of the bog copper are 

known to be sensitive to desiccation (Wright 1983) and thus individuals may be locally 

adapted to differences in water availability.  

 In Chapter 5, we found evidence for a negative relationship between proportion of 

forest cover and relative thorax mass in male and female bog coppers, suggesting a 

reduction in flight capability in response to increasing habitat isolation. Changes in flight 

morphology (indicative of a loss in dispersal propensity) in response to habitat 
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fragmentation have similarly been documented for other butterfly species (Dempster 

1991; Schtickzelle et al. 2006), and based on common garden experiments several lines 

of evidence now suggest a genetic basis for these morphological differences (Thomas et 

al. 1998; Hill et al. 1999a, b; Merxck et al. 2003). In this study we found substantial 

support for forest cover influencing genetic variation at locus 54, suggesting that indeed 

the proportion of forest in the surrounding landscape may be an important selective force 

affecting populations of the bog copper. It is important to note that we screened a 

relatively small proportion of the genome (i.e., < 150 loci) here, which certainly limited 

the number of candidate outliers we were able to detect. Screening hundreds or thousands 

of loci would potentially allow us to identify additional outlier markers also associated 

with surrounding landscape structure.  

 

6.4.3 Conclusion and future perspectives 

Many relict habitat specialists, including the bog copper butterfly, are currently under 

threat throughout much of their range and are at risk of extinction due to ongoing 

anthropogenic induced environmental change.  Understanding how local landscape 

heterogeneity contributes to the evolution of populations will allow us to better predict 

how species may respond to future habitat change. In this study, we used candidate AFLP 

markers identified using an outlier-based genome scan approach, to characterize potential 

local adaptation among isolated populations of a non-model species and identify several 

measurements of landscape heterogeneity which may be acting as causal agents of 

selection. Using anonymous AFLP markers of unknown sequence content does not 

provide conclusive evidence that the genetic variation observed at these loci affords a 
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selective advantage (Nunes et al. 2012). Thus, in order to confirm the role of these 

candidate loci in local adaptation, the functional mechanisms operating at these loci need 

to be determined (Reusch and Wood 2007; Holderegger at al. 2010). This can be 

accomplished through a combination of molecular characterisation and hypothesis-driven 

selection experiments (e.g., common garden; Holderegger et al. 2008). Determining the 

functional significance associated with genetic variation at outlier loci would allow us to 

examine how tolerable different bog copper populations are to changes in ecological 

conditions. Such information is pertinent for ensuring the long-term viability of this 

highly specialized species, especially for those populations experiencing habitat change. 

As well, the ability to accurately identify populations harbouring distinct signatures of 

local adaptation will be invaluable for the selection of source populations for 

reintroduction or supplementation of threatened populations (Thomas 2011; Turlure et al. 

2013). This may be particularly challenging for relict species where populations are often 

locally adapted. Indeed, our results highlight that even at a relatively small spatial scale, 

local populations exhibited evidence of genetic adaptations potentially due to habitat 

patch-specific ecological conditions.  
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Chapter 7 

7 General Discussion 

In heterogeneous landscapes, spatial variation in biotic and abiotic factors influence local 

and regional population dynamics, genetics and evolutionary adaptation (Stevens and 

Coulon 2012). For many species, recent anthropogenic land-use change has led to sudden 

and dramatic increases in landscape heterogeneity by fragmenting natural habitats into 

smaller, more isolated patches over a relatively short time period (Habel and Zachos 

2012). Understanding the implications of increased habitat fragmentation for ecological 

and evolutionary dynamics of populations is one of the most pressing concerns in 

conservation research (Debinski and Holt 2000). Relict populations created via both 

anthropogenic and natural fragmentation processes are currently of high conservation 

concern (Habel et al. 2010), and determining which landscape components are most 

important for maintaining population viability in these two types of relict species is 

important for future species management.  

 While most ecological and genetic studies to date have considered the negative 

impacts of habitat fragmentation on recently isolated populations, comparatively little 

research has explored whether naturally fragmented populations exhibit the same 

response (Habel and Zachos 2012). Using butterflies as a model system, the overarching 

goal of my dissertation was to evaluate, for populations inhabiting fragmented 

landscapes, how patterns of genetic and morphological variation are spatially partitioned 

in relation to features of the landscape and local habitat. To this end, I studied relict 

populations which have been recently fragmented due to anthropogenic activities as well 
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as relict populations which are fragmented primarily due to natural processes. Taken 

together, the chapters of my dissertation provide valuable insight into how landscape 

history and species ecology can influence the genetics of relict populations. 

 

7.1 AFLPs: an alternative marker system for assessments 
of neutral and adaptive genetic variation in butterflies 

I successfully generated and analysed AFLP profiles for two different butterfly species 

using, for the first time, DNA extracted from non-lethal samples of butterfly wing tissue. 

Following two different AFLP protocols, a proprietary commercial protocol (ABI AFLP 

Plant Mapping Kit; Applied Biosystems, Foster City, CA; Chapter 3), as well as a 

modified AFLP protocol using standard PCR reagents (Chapters 4 and 6), I demonstrated 

that small pieces of wing tissue can provide sufficient quantities of DNA for AFLP 

generation. For both butterfly species, I surveyed populations within a relatively small 

geographic range (< 20 km, Mormon metalmark; <35 km, bog copper), and using AFLP 

datasets consisting of a few hundred loci was able to elucidate genetic signatures of 

population differentiation (Chapter 3 and 4). In addition, in Chapter 6, I successfully 

applied a genome-scan approach to the bog copper AFLP dataset and identified 5 outlier 

loci demonstrating unusually high genetic differentiation, providing evidence for 

divergent selection. These results demonstrate the utility of AFLPs as an alternative 

molecular marker system for genetic studies of butterflies and other non-model 

organisms. By generating a large number of multilocus markers which provided an 

estimate of genome-wide genetic variation (Meudt and Clarke 2007), my datasets were 

sufficiently powerful to resolve genetic differences among populations at a relatively fine 
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spatial scale. As well, by screening a large portion of the genome the likelihood of 

finding several markers linked to genomic regions under selection was high (Bensch and 

Åkesson 2005). Thus AFLPs are an extremely informative and versatile marker system 

which can be applied to address research questions in both population genetics and 

population genomics.  

 My review of the current AFLP literature in Chapter 2 revealed that published 

results for the majority of studies using AFLPs, are based on datasets in which the 

reproducibility of the AFLP loci has not been adequately assessed. As well, I found that a 

pervasive lack of consistency exists among AFLP studies in both the methods used to 

assess reproducibility and in the details of methodology presented. This is of concern 

because loci which exhibit high genotyping error are likely to contribute noise to a 

dataset, thereby reducing the dataset’s resolution and power (Meudt and Clarke 2007). 

Furthermore, it has been theorized that genetic analyses generated using such inconsistent 

datasets may result in erroneous estimates of genetic diversity and population structure, 

or false detection of signatures of selection (Vekemans et al. 2002; Koopman and Gort 

2004; Bonin et al. 2007; Caballero et al. 2008). For this reason it has been previously 

recommended that non-reliable loci (i.e., exhibiting relatively high genotyping error 

rates) be removed from the dataset prior to downstream analyses (Bonin et al. 2004; 

Pompanon et al. 2005). This in part ensures that the loci retained for genetic analyses are 

highly reproducible, and also allows the results among studies to be meaningfully 

evaluated and compared (Pompanon et al. 2005). My review of the literature has thus 

highlighted an important gap in the publishing standards of AFLP data in ecological and 

evolutionary research.  
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 Given the problems with analysis and reporting of AFLP error which I identified 

in the literature (Chapter 2), I provided detailed accounts of the methodology used to 

generate, score and analyse the AFLP data presented in Chapters 3, 4 and 6. I followed 

the recommended guidelines for assessing and quantifying genotyping error (Bonin et al. 

2004; Pompanon et al. 2005), and used an objective method (Whitlock et al. 2008) to 

identify those loci which contributed disproportionately to high error rates. Filtering out 

these ‘error-prone’ loci lowered the total number of loci retained for use in final genetic 

analyses, although arguably this step removed a considerable amount of noise from the 

datasets which provided for greater power to detect population structure. Indeed my 

ability to identify genetic differences among populations at relatively small spatial scales 

(Chapters 3 and 4) suggests that the information content of the AFLP datasets was 

extremely high. By transparently reporting the methodological details followed and the 

genotyping error associated with each AFLP dataset used, my data chapters can serve as 

models for other AFLP studies to follow.  

 

7.2 Genetics of relict populations in fragmented landscapes 

7.2.1 Relict populations in anthropogenically fragmented habitats 

Contemporary habitat fragmentation as a result of anthropogenic activities has been 

shown to significantly hinder dispersal and gene flow among populations in a variety of 

taxa (reviewed in Saunders et al. 1991; Fahrig 2003). A reduction in gene flow can be 

detrimental to the long-term persistence of populations as it is gene flow which maintains 

genetic variation within populations by opposing the force of genetic drift, and 
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introducing potentially adaptive alleles (Segelbacher et al. 2010). Thus, one major goal of 

many species conservation plans is to maintain functional connectivity among remnant 

populations in order to promote gene flow and sustain levels of genetic diversity (Van 

Dyck and Baguette 2005). Evaluating patterns of neutral genetic variation within and 

among populations inhabiting fragmented landscapes, through the use of molecular 

genetic markers, allows us to infer patterns of gene flow and connectivity (e.g., 

Vandewoestijne and Baguette 2004; Schwartz and Karl 2005). These results can provide 

valuable insights into the genetic diversity and structure of fragmented populations which 

can be useful for conservation purposes, for example by identifying populations 

particularly vulnerable to extinction or, conversely, integral for the maintenance of the 

larger population network and therefore a top priority for protection (Keyghobadi 2007).  

 In Chapter 3, I found that sub-populations of the Mormon metalmark in the 

Similkameen Valley in British Columbia (BC), Canada, exhibited patterns of genetic 

diversity and structure highly characteristic of anthropogenically fragmented populations. 

Levels of genetic diversity were generally low within all sub-populations, and in 

particular, the most geographically isolated sites exhibited some evidence of decreased 

homozygosity in relation to the other sites. This was concordant with estimates of sub-

population genetic differentiation, in which I found that the more geographically isolated 

sites were also the most genetically isolated (higher differentiation). Despite a small 

geographic range (<20 km), sub-populations exhibited a high degree of spatial genetic 

structure overall, indicating limited dispersal and restricted gene flow, particularly among 

sub-populations separated by urban development. These results suggest that the 

functional connectivity among sites is very low, and that increased gene flow is necessary 



230 

 

to ensure the long-term persistence of this population. Thus future management plans 

should target preserving existing habitat patches as well as creating or restoring 

additional patches which will facilitate the movement of individuals across the landscape.  

 It is important to note that based on my assessment of genome-wide genetic 

variation, I cannot infer whether the low levels of genetic diversity observed in small, 

isolated sub-populations of the Mormon metalmark correspond to adverse consequences 

for fitness (i.e., decreased survival and/or reproductive success) and long-term population 

viability. Ideally, a causal link between neutral or genome-wide genetic diversity and 

fitness could be demonstrated through common-garden breeding experiments examining 

key life-history traits such as female fecundity and offspring growth and survival. 

However, for endangered populations like the Mormon metalmark, such manipulations 

are not feasible because they would require the removal of a considerable proportion of 

the overall population. As an alternative, a correlative approach could be used to relate 

estimates of genetic variation with life history traits indicative of fitness (Fjerdingstad et 

al. 2007). For example, to demonstrate a relationship between neutral genetic diversity 

and fitness in a metapopulation of the chalk-blue butterfly (Polyommatus coridon), 

Vandewoestijne et al. (2008) used an estimate of adult lifetime expectancy as a measure 

of individual fitness. For many butterfly species, life span determines lifetime 

reproductive success and thus can be considered an important fitness component 

(Thornhill and Alcock 1983). Despite the inherent limitations of using a correlational 

approach, for threatened populations such as the BC population of the Mormon 

metalmark, examining relationships between genetic diversity and readily measured 
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fitness surrogates is a feasible approach that can provide insight into whether populations 

with lower genetic diversity suffer a loss in fitness.  

 

7.2.2 Relict populations in naturally fragmented habitats –the 
importance of local habitat patch characteristics 

Most studies examining the genetic implications of habitat fragmentation consider 

species which normally occupy interconnected habitats (Keyghobadi 2007), and focus on 

understanding the influence of patch size and isolation, and the characteristics of the 

intervening landscape, on patterns of population genetic diversity and structure 

(Holderegger and Wagner 2008; Storfer et al. 2010). While increasing habitat loss and 

isolation are expected to have negative consequences for many species (Fahrig 2003), 

those which occur in naturally patchy habitats may show a contrasting response to 

contemporary anthropogenic habitat fragmentation (Habel and Zachos 2012). Because 

these habitat specialists are thought to be adapted to persist under isolated conditions, 

changes in the surrounding landscape structure as a result of anthropogenic activities (i.e., 

increased habitat isolation and loss of suitable habitat ) may have little impact on 

populations (Habel and Schmitt 2012; Habel and Zachos 2012). Instead, the dynamics 

and long-term persistence of populations are more likely to be dependent upon local 

habitat characteristics (e.g., habitat patch size and quality). In Chapter 3, I provide 

empirical evidence in support of this prediction.  Multiple linear regression analyses 

revealed that a significant proportion of variation in genetic diversity within local 

populations of the bog copper butterfly was explained by two habitat patch descriptors: 

total peatland patch size and proportion of water in the surrounding landscape, likely 
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indicators of local habitat quality (i.e., host-plant quality and distribution, temperature 

and moisture regimes). In contrast, I found descriptors of habitat isolation (mean 

proximity of wetland habitat) and landscape composition (proportion of forest habitat) to 

have no significant effect on diversity estimates. These results indicate that for the bog 

copper butterfly, local habitat conditions rather than surrounding landscape structure may 

be the main determinants of population dynamics and genetics.  My study highlights the 

importance of considering species ecology and habitat history when predicting population 

viability in fragmented landscapes (Ye et al. 2013). For specialist species which are 

naturally fragmented, the most effective strategy to ensure long-term persistence may be 

the management and restoration of remaining suitable habitat patches (Habel and Zachos 

2012). The genetic consequences of changes in habitat quality have largely been 

underexplored to date (but see Porlier et al. 2009; Pitra et al. 2011; Alda et al. 2013). 

However, as my results indicate, for specialist species it is particularly critical that future 

work be conducted in order to understand the relationship between habitat quality, and 

genetic diversity and fitness.  

 While naturally fragmented species may be somewhat resistant to the negative 

impacts of increasing habitat isolation, their typically low levels of genetic diversity may 

nonetheless limit adaptive potential and the ability to respond to changing environmental 

conditions. Changes in habitat quality and suitability due to global change (e.g., changes 

in climate, and nutrient and hydrological cycles, etc.,) and also via local human 

intervention (e.g., deforestation, drainage, etc.,), are prevalent worldwide. Naturally 

fragmented species often have limited dispersal capabilities and habitat tolerances, which 

limit their ability to move across the landscape should their habitat patch become 
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unsuitable (Ye et al. 2013). Thus, the ability to respond via genetic adaptation to changes 

in local habitat conditions is essential for long-term persistence of such species (Reusch 

and Wood 2007). In Chapter 6 I used an AFLP-based genome scan approach to search for 

molecular evidence of selection among local populations of the bog copper butterfly, a 

relict habitat specialist. I identified five candidate outlier loci exhibiting unusually high 

levels of genetic differentiation, which is indicative of divergent selection across sample 

sites. Several measurements reflective of local landscape heterogeneity, both local habitat 

patch conditions and surrounding landscape structure, were identified as potential agents 

of selection. Molecular evidence for local adaptation in response to varying ecological 

conditions has been demonstrated in organisms distributed across large geographic ranges 

(e.g., European Alps, Manel et al. 2010b; Bothwell et al. 2013) and among contrasting 

habitat types (e.g., benthic vs. pelagic zone; Campbell and Bernatchez 2004). However, 

my study is one of the first to document patterns of adaptive genetic variation in relation 

to landscape heterogeneity at a relatively fine spatial scale. Understanding how current 

local adaptations in populations have been influenced by fine-scale landscape 

heterogeneity is important for making accurate predictions regarding the future 

geographic distributions and survival of organisms experiencing environmental change 

(Manel et al. 2010a; Hampe and Jump 2011). Thus, my study provides new insights into 

the landscape factors influencing patterns of adaptive genetic variation in a naturally 

fragmented species.  
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7.3 Mobility in naturally fragmented relict populations 

Dispersal ability or tendency is a heritable trait which has been shown to respond rapidly 

to ecological and landscape change (Thomas et al. 1998; Hill et al. 1999a, b; Merxck et 

al. 2003). Most research to date has focused on understanding the effects of habitat 

fragmentation (i.e., habitat loss and isolation) on mobility and dispersal, and the resulting 

consequences for local population genetics and dynamics (e.g., Norberg and Leimar 

2002; Vandewoestijne and Van Dyck 2011). However, spatial heterogeneity within 

habitat patches may also affect dispersal ability by altering patterns of routine movement 

(Turlure et al. 2010). Such an effect may be particularly prominent in naturally 

fragmented species, where dispersal of individuals among populations is generally low 

due to their close habitat association (Hampe and Jump 2011). Thus, it is important to 

understand how both landscape structure and local ecological conditions within habitat 

patches may influence mobility in order to accurately predict how the dynamics and 

genetics of local populations may respond to future landscape change. This is an area of 

research where few empirical examples currently exist. 

 In Chapter 5, I evaluated whether local habitat patch characteristics and/or 

measurements of surrounding landscape structure were responsible for variation in 

potential mobility observed among local populations of the bog copper butterfly. To 

assess movement ability, I used morphological measurements associated with flight (e.g., 

thorax mass and wing loading) which have been demonstrated to be reliable indicators of 

flight ability in other butterfly species (Chai and Srygley 1990; Kuusaari et al. 1996; 

Berwaert et al. 2002; Turlure et al. 2010). My results provided evidence for an effect of 

both local habitat conditions and landscape structure on flight-related morphological 
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traits. For example, increasing amounts of forest in the surrounding landscape, indicative 

of increased habitat patch isolation, appeared to correspond with less mobile phenotypes 

in both males and females. However in males, we also found that investment in flight was 

greatest in smaller peatlands in which host-plant density is higher and more 

homogeneously distributed. A potential explanation for this finding is that individuals 

may be using different mate location strategies (i.e., perching vs. patrolling), which 

require different flight designs (Betts and Wootoon 1988; Dudley 1990; Wickman 1992), 

in response to differences in population and host-plant density among peatlands. This 

study highlights that for a naturally fragmented species, morphological traits associated 

with mobility may be responding to both local habitat patch characteristics and 

surrounding landscape structure. It also supports the hypothesis that local habitat 

conditions contribute to morphological variation in butterflies, and should thus be 

considered when predicting the response of population dynamics and genetics to 

landscape change. 

 

7.4 Conclusion 

My doctoral research demonstrates the utility and power of AFLP analysis to study non-

model and threatened organisms, and has identified current gaps in error rate reporting 

amongst published AFLP literature. I established best practices for AFLP analysis and 

applied them to study population connectivity and structure in an anthropogenically 

fragmented butterfly species, as well as a naturally fragmented butterfly species. The 

findings of my dissertation demonstrate that for populations inhabiting fragmented 

landscapes, both landscape-scale and within-patch characteristics can contribute to 
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patterns of genetic and phenotypic variation among populations. With increasing 

anthropogenic fragmentation of natural habitats, such information and tools will be 

valuable for predicting future population trends and preserving evolutionary potential of 

relict species and populations, particularly those with specialized habitat requirements. 
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Appendix A: Laboratory protocol used to optimize AFLPs for 
Lycaena epixanthe 

 

Amplified fragment length polymorphism (AFLP) profiles for Lycaena epixanthe were 

generated following a protocol adapted from the standard AFLP methods of Clarke and 

Meudt (2005) and the commercial AFLP Plant Mapping Kit (Applied Biosystems, Foster 

City, CA):  

1) Genomic DNA was digested with the restriction enzymes EcoRI and MseI, and 

synthetic DNA adaptors (Table A.1) with complementary sticky ends were 

simultaneously ligated to the resulting overhangs created by the restriction enzymes (i.e., 

a ‘restriction-ligation’ (R-L) reaction). Five and a half microlitres of template DNA 

(approximately 250 ng) were added to 1.0 µL of enzyme master mix and 4.5 µL of R-L 

master mix to a total reaction volume of 11.0 µL (see Table A.2 for adaptor annealing 

protocol and Table A.3 for detailed R-L protocol). The R-L reactions were incubated 

overnight at 24 °C, subsequently diluted with 89.0 µL of TE0.1 buffer and stored at -20°C.   

2) Diluted R-L fragments were then amplified through PCR using two ‘pre-selective’ 

primers (Eco-A and Mse-C) that are complementary to the adaptor sequences and have 

one additional nucleotide base at the 3’ end (Table A.1). Only R-L fragments which 

contain bases complementary to these additional bases at the 3’ end of the primers, 

immediately next to the restriction sites, will be amplified. Thus, the number of fragments 

is reduced by approximately 1/16 (Bensch and Åkesson 2005). In this pre-selective PCR 

reaction, 4.0 µL of diluted R-L DNA was added to 16.0 µL of pre-selective master mix 

for a total reaction volume of 20.0 µL (see Table A.4 for detailed pre-selective PCR 
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protocol). Ten microlitres of pre-selective PCR product was subsequently diluted with 

25.0 µL TE0.1 and stored at -20 °C.  

3) A sub-set of the pre-selective fragments was then amplified through a second PCR 

using two ‘selective’ primers (Eco-Axx and Mse-Cxx) that have an additional two 

nucleotide bases at the 3’ end (Table A.5), further reducing the number of fragments by 

1/256 (Bensch and Åkesson 2005). All Eco-Axx primers were labelled using fluorescent 

dyes (Table A.1) to allow for visualization and scoring on an automated sequencer. For 

the selective PCR reaction, 3.0 µL of the diluted pre-selective PCR product was added to 

17.0 µL of selective master mix to a total volume of 20.0 µL (see Table A.5 for detailed 

selective PCR protocol).  

Different subsets of fragments are produced by using selective primers that vary in 

the last two nucleotide bases. We initially trialed all different pairwise combinations of 

eight Eco+Axx primers and eight Mse+Cxx primers (total of 64 combinations; Table A.1) 

and selected the following five selective primer combinations based on relative 

polymorphism and reproducibility of fragments: EcoRI-ACA/MseI-CTT, EcoRI-

AAC/MseI-CAC, EcoRI-AAC/MseI-CTC, EcoRI-AAG/MseI-CAA, and EcoRI-

ACC/MseI-CAC. Negative controls were included in each step of the protocol to detect 

any contamination, and all PCR reactions were performed using a Bio-Rad DNA Engine, 

Peltier Thermal Cycler. Fluorescently labelled AFLP fragments were separated and sized 

using a 3730S Genetic Analyzer (Applied Biosystems) at the Nucleic Acid Protein 

Services Unit in the Michael Smith Laboratories at the University of British Columbia. 
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Table A.1 Oligonucleotides used for the AFLP analysis of Lycaena epixanthe. PCR 

primer sequences are indicated in the 5’ to 3’ orientation, and the lengths of the 

oligonucleotides in base pairs (bp). Note that the two EcoRI and MseI adaptors must 

be separately annealed prior to use in the restriction-ligation reaction (Table A.2). 

Bolded type denotes selective sequences.  

*Fluorescently labelled dye; 
F 

= 6 FAM; 
V
 = VIC, 

N 
= NED 

Protocol Stage Primer Sequence (5'-3') Length (bp) 

Restriction-Ligation 

EcoRI Adaptor:   

   EcoRI Adaptor 1 CTCGTAGACTGCGTACC 17 

    EcoRI Adaptor 2 AATTGGTACGCAGTCTAC 18 

 MseI Adaptor:   

    MseI Adaptor 1 GACGATGAGTCCTGAG 16 

    MseI Adaptor 2 TACTCAGGACTCAT 14 

    

Pre-Selective 

PCR 

EcoRI Primer:   

   Eco+A GACTGCGTACCAATTCA 17 

 MseI Primer:   

    Mse+C GATGAGTCCTGAGTAAC 17 

    

Selective PCR EcoRI Primers:   

 
*
Eco+ANN 

F
GACTGCGTACCAATTCAAC 19 

  
F
GACTGCGTACCAATTCAAG 19

 

  
F
GACTGCGTACCAATTCACA 19

 

  
V
GACTGCGTACCAATTCACC 19

 

  
V
GACTGCGTACCAATTCACG 19

 

  
V
GACTGCGTACCAATTCACT 19

 

  
N
GACTGCGTACCAATTCAGC 19

 

  
N
GACTGCGTACCAATTCAGG 19

 

 MseI Primers:   

    Mse+CNN GATGAGTCCTGAGTAACAA 19 

  GATGAGTCCTGAGTAACAC 19 

  GATGAGTCCTGAGTAACAG 19 

  GATGAGTCCTGAGTAACAT 19 

  GATGAGTCCTGAGTAACTA 19 

  GATGAGTCCTGAGTAACTC 19 

  GATGAGTCCTGAGTAACTG 19 

  GATGAGTCCTGAGTAACTT  
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Table A.2 Protocol for annealing a) EcoRI and b) MseI adaptors: for each reaction 

component, the initial concentration and volume are indicated. EcoRI and MseI 

adaptor reactions were independently prepared.  

 

Rxn components 

Initial 

concentration Volume (µL) 

 

a) EcoRI Adaptor Master Mix 

 

EcoRI Adaptor 1 1 nmol/ µL 1.00 

EcoRI Adaptor 2 1 nmol/ µL 1.00 

Milli-Q water - 108.00 

T10E1
*
 - 90.00 

Total  200.00 

 

b) MseI Adaptor Master Mix 

 

MseI Adaptor 1 1 nmol/ µL 10.0 

MseI Adaptor 2 1 nmol/ µL 10.0 

Milli-Q water - 90.0 

T10E1
*
 - 90.0 

Total  200.00 

* T10E1 = 10 mM Tris, 1 mM EDTA 

Adaptor Master Mixes were heated for 8 minutes at 93 °C in a dry heating block, then 

cooled at room temperature for 10 minutes, centrifuged for 10 seconds at 1400 g and 

stored at -20 °C. 
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Table A.3 Restriction-ligation (R-L) protocol outlining for a) Enzyme Master Mix, 

b) R-L Master Mix, and c) R-L Reaction: the components, initial concentration and 

volume. 

Components 

Initial 

concentration Volume (µL) 

 

a) Enzyme Master Mix 

  

Milli-Q water - 0.55 

T4-DNA ligase buffer 

(with ATP) 

10 x 0.10 

NaCl  0.5 M 0.10 

BSA 1.0 mg/µL 0.05 

MseI 100 U 0.10 

EcoRI 500 U 0.05 

T4 DNA Ligase 100 Weiss U 0.05 

Total  1.00 

   

b) R-L Master Mix  

T4 DNA ligase buffer 

(with ATP) 

10x 1.00 

NaCl 0.5 M 1.00 

BSA 1.0 mg/µL 0.50 

MseI Adaptor 1nm/µL 1.00 

EcoRI Adaptor 1nm/µL 1.00 

Total  4.50 

   

c) R-L Reaction   

Enzyme Master Mix - 1.00 

R-L Master Mix - 4.50 

Genomic DNA ~250 ng 5.50 

Total  11.00 
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Table A.4 PCR protocol for Pre-Selective AFLP amplification, outlining for each 

reaction component the initial concentration and volume. 

Rxn components Initial concentration Volume (µL) 

Milli-Q Water - 3.05 

Betaine 3M 7.00 

dNTPs  10 mM 0.50 

MgCl2 25 mM 1.25 

PCR Buffer  

(no MgCl2) 

10x 2.00 

Eco+A Primer 10 pmol/µL 1.00 

Mse+C Primer 10 pmol/µL 1.00 

Taq Polymerase 5 U/ µL 0.20 

Diluted R-L DNA  - 4.00 

Total  20.00 

Cycling parameters were: one cycle of 72°C for 2 minutes; 25 cycles of 94°C for 20 

seconds, 56°C for 30 seconds, and 72°C for 2 minutes; and a final cycle of 60°C for 30 

minutes. Ramp speed was set to 1.0°C / second. 
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Table A.5 PCR protocol for Selective AFLP amplification outlining for each 

reaction component the initial concentration and volume. 

Rxn components Initial concentration Volume (µL) 

Milli-Q Water - 8.80 

dNTPs  10 mM 0.50 

MgCl2 25 mM 3.50 

PCR Buffer  

(no MgCl2) 

10x 2.00 

Eco+Axx Primer 10 pmol/µL 1.00 

Mse+Cxx Primer 10 pmol/µL 1.00 

Taq Polymerase 5 U/ µL 0.20 

Pre-Selective PCR 

Product 

- 3.00 

Total  20.00 

Cycling parameters were: one cycle of 94°C for 2 minutes; 11 touchdown cycles of 94°C 

for 20 seconds, 66-57°C for 30 seconds, and 72°C for 2 minutes; 22 cycles of 94 °C for 

20 seconds, 56°C for 30 seconds, and 72°C for 2 minutes; and a final cycle of 60°C for 

30 minutes. Ramp speed was set to 1.0 °C / second. 

 

Literature Cited 

Clarke A and Meudt H. 2005. AFLP (amplified fragment length polymorphism) for 

multilocus genomic fingerprinting. Alan Wilson Centre for Ecology and Evolution, 

Massey University, New Zealand. Available from: http://www.clarkeresearch.org. 
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Appendix B: Landscape data reported in Chapters 3-5 

Table B.1 Summary of the landscape variables collected for the 15 Algonquin 

Provincial Park populations of Lycaena epixanthe. Surrounding landscape structure 

measures i) proportion of wetland, ii) forest and iii) water habitat, and iv) mean 

proximity of wetland habitat, were assessed within a 1 km buffer radius 

surrounding the centroid of butterfly capture in each surveyed peatland. Local 

patch characteristics v) peatland size (ha), vi) mean host-plant density (/m
2
), vi) the 

coefficient of variation in mean host-plant density (CV) and viii) total host-plant 

abundance (/m
2
) reflect particular attributes of each surveyed site.  

 Proportion land cover    Host-plant distribution 

Peatland Wetland Forest Water 

Mean 

proximity 

Peatland 

size  

Mean density 

(CV) 

Total 

abundance 

BUG 0.11 0.83 0.04 18.77 3.49 0.08 (0.98) 16.50 

WH 0.16 0.82 0.02 34.36 2.52 0.14 (1.00) 32.81 

DL 0.08 0.86 0.04 0.90 5.78 0.15 (1.22) 32.56 

ML 0.10 0.85 0.05 4.27 8.29 0.09 (1.01) 36.49 

WR 0.16 0.81 0.04 383.96 5.74 0.08 (0.93) 25.36 

KB 0.09 0.70 0.15 27.92 3.06 0.28 (0.81) 49.55 

MIN 0.06 0.89 0.04 38.64 0.91 0.19 (0.87) 13.74 

BAB 0.04 0.92 0.03 19.24 1.05 0.13 (0.93) 9.92 

ZEN 0.06 0.90 0.03 18.60 0.70 0.14 (0.94) 8.37 

SUN 0.21 0.65 0.09 66.23 47.65 - - 

SB 0.23 0.72 0.02 80.24 0.24 0.15 (0.95) 3.70 

EOS 0.12 0.81 0.02 245.43 0.93 0.21 (0.75) 7.41 

COS 0.29 0.67 0.01 321.83 22.3 - - 

OPL 0.09 0.69 0.19 109.43 4.16 0.12 (1.09) 30.05 

DT 0.23 0.66 0.09 59.00 2.44 0.12 (1.13) 21.21 

Peatland size represents the overall area of the sampled habitat patch, mean host-plant 

density was calculated as the mean cranberry cover for all quadrats in a surveyed 

peatland, and total host-plant abundance was determined by multiplying mean host-plant 

density by total peatland area. 
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Appendix C: Chapter 3 Supplementary Material 

 

AFLP datasets were generated by setting both loci and phenotype scoring thresholds to 

either 75- or 100-rfu in AFLPSCORE v1.3b (Whitlock et al. 2008). ‘A’ indicates the 

original dataset produced from AFLPSCORE consisting of all retained loci; ‘B’ indicates 

the original dataset with singleton loci removed. The values reported in the body of the 

text are indicated in bold. 

Table C.1 Summary of the AFLP phenotype scoring results for all selective primer 

combinations. 

 Scoring Threshold    

Selective primer 

combination 

Locus Phenotype Mismatch 

error rate % 

Initial number 

of loci 

Number of 

loci retained 

EcoRI-AAC/MseI-CAC 75 75 1.46 112 99 

 100 100 1.43 112 94 

EcoRI-AGC/MseI-CAC 75 75 1.77 107 101 

 100 100 1.74 107 93 

EcoRI-AGC/MseI-CAT 75 75 1.71 135 117 

 100 100 1.68 135 112 

EcoRI-AGC/MseI-CTT 75 75 1.30 109 95 

 100 100 1.28 109 80 

EcoRI-AAG/MseI-CAA 75 75 1.71 129 117 

 100 100 1.63 129 109 

 75 75 1.59 (mean) 592 (total) 529 (total) 

 100 100 1.55 (mean) 592 (total) 488 (total) 
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Table C.2 Within sub-population and global genetic diversity for the British Columbia population of Apodemia mormo. 

Global measures are reported as mean values.  

 

 

 

 

 

 

 

 

 

 

 

N, number of analysed samples; PPL, proportion of polymorphic loci; He, expected heterozygosity. 

 

 

 

 

  75 rfu thresholds 100 rfu thresholds 

Site N A (526 loci) B (380 loci) A (484 loci) B (326 loci) 

  PPL He (±SE) PPL He (±SE) PPL He (±SE) PPL He (±SE) 

W1 45 0.154 0.061 (0.006) 0.213 0.083 (0.007) 0.151 0.061 (0.006) 0.224 0.088 (0.008) 

W2 39 0.144 0.050 (0.005) 0.200 0.069 (0.007) 0.149 0.052 (0.005) 0.221 0.077 (0.008) 

W3 19 0.141 0.044 (0.005) 0.195 0.060 (0.007) 0.149 0.046 (0.005) 0.221 0.068 (0.008) 

W4 38 0.150 0.050 (0.005) 0.208 0.069 (0.006) 0.151 0.049 (0.005) 0.224 0.072 (0.007) 

W5 44 0.135 0.047 (0.005) 0.187 0.064 (0.007) 0.122 0.048 (0.005) 0.181 0.071 (0.008) 

W6 41 0.144 0.044 (0.005) 0.200 0.061 (0.006) 0.122 0.046 (0.005) 0.181 0.068 (0.007) 

W7 15* 0.152 0.055 (0.006) 0.211 0.075 (0.007) 0.153 0.057 (0.006) 0.227 0.083 (0.008) 

W8 38 0.144 0.053 (0.005) 0.200 0.073 (0.007) 0.155 0.056 (0.006) 0.230 0.082 (0.008) 

C1 38 0.143 0.047 (0.005) 0.197 0.064 (0.006) 0.147 0.048 (0.005) 0.218 0.070 (0.007) 

C2 40 0.143 0.047 (0.005) 0.197 0.064 (0.007) 0.116 0.048 (0.005) 0.172 0.070 (0.008) 

E1 40 0.171 0.063 (0.006) 0.237 0.086 (0.008) 0.159 0.062 (0.006) 0.236 0.090 (0.008) 

E2 29 0.156 0.061 (0.006) 0.216 0.083 (0.007) 0.153 0.062 (0.006) 0.227 0.090 (0.008) 

N1 28 0.135 0.056 (0.005) 0.187 0.077 (0.007) 0.140 0.058 (0.006) 0.209 0.085 (0.008) 

N2 13* 0.146 0.060 (0.006) 0.203 0.081 (0.008) 0.153 0.061 (0.006) 0.227 0.087 (0.008) 

All 467 0.147 0.053 (0.005) 0.204 0.072 (0.007) 0.144 0.054 (0.009) 0.214 0.079 (0.008) 
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Table C.3 Genetic structure summary for the British Columbian population of Apodemia mormo.  

 

 

 

*p < 0.00001 

Ht, total gene diversity; Hw, average gene diversity within populations; Hb, average gene diversity among populations in excess 

of that observed within populations; FST, proportion of the total gene diversity that occurs among as opposed to within 

populations. 

 

  Ht Hw (±SE) Hb (±SE) FST (±SE) 

75 A 0.055 0.053 (0.002) 0.002 (0.0003) 0.039 (0.113)* 

 B 0.075 0.072 (0.002) 0.003 (0.0003) 0.039 (0.112)* 

100 A 0.056 0.054 (0.002) 0.002 (0.0003) 0.042 (0.107)* 

 B 0.082 0.079 (0.002) 0.004 (0.0004) 0.043 (0.105)* 
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Table C.4 Robustness of the genetic barriers identified by BARRIER based on 100 

permuted genetic distance matrices (FST). Barriers are listed in order of importance 

(A, B, C, etc.), and are considered to possess high bootstrap support when bootstrap 

values are greater than 50. 

Number of 

barriers tested 

for: 

Scoring criteria 

75-A 75-B 100-A 100-B 

1 barrier 75-76 72 74-75 70-87 

2 barriers 

   A 

   B 

 

91-92 

65 

 

91 

62 

 

87-89 

71 

 

88-91 

70 

3 barriers 

   A 

   B 

   C 

 

97-99 

96 

88 

 

95-96 

86 

92 

 

94-96 

92 

81 

 

94-97 

90 

83 

4 barriers 

   A 

   B 

   C 

   D 

 

98-100 

100 

96 

71 

 

98-99 

96 

99 

74 

 

98-100 

100 

98 

84 

 

97-100 

99 

100 

87 

5 barriers 

   A 

   B 

   C 

   D 

   E 

 

98-100 

100 

99 

90 

45 

 

99-100 

98 

100 

90 

45 

 

99-100 

100 

100 

97 

45 

 

98-100 

100 

100 

96 

39-48 
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Table C.5 Summary of the principal coordinate analysis (PCoA) of all studied sub-

populations, based on a genetic distance matrix (FST). The amount of variability that 

is accounted for by the first two coordinates is reported. 

Scoring 

criteria 

% of variation explained 

 Coordinate 1 Coordinate 2 

75 A 45.26 24.47 

 B 45.11 24.50 

100 A 45.78 23.95 

 B 45.59 23.95 

 

 

Table C.6 Summary of the mantel tests results examining the relationship between 

genetic differentiation (Fst/ (1-Fst) and geographical distance (ln transformed) 

among all studied sub-populations. Geographic distance was measured as both 

straight line distance between sites (Euclidean), and ‘adjusted’ distance between 

sites (based on constraining movement to valley bottoms). 

Geographic 

distance 

measure 

Scoring 

criteria 

r
2
 P 

Euclidean 75 A 0.144 0.005 

  B 0.147 0.005 

 100 A 0.179 0.002 

  B 0.182 0.002 

Adjusted 75 A 0.206 0.001 

  B 0.209 0.001 

 100 A 0.242 <0.0001 

  B 0.247 <0.0001 

α = 0.05
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Appendix D: Chapter 4 Supplementary Material 

 

Table D.1 Capture record for individuals of Lycaena epixanthe surveyed in 13 

peatlands in Algonquin Provincial Park. An index of relative butterfly density 

(number of individuals captured per hour) was determined for each peatland by 

dividing the total number of individuals captured by the capture duration, and then 

standardized by the number of butterfly catchers (capture effort). 

Peatland 

# individuals 

captured Time (hr) 

Capture 

effort 

Relative butterfly 

density (# indvs. /hr) 

BUG 18 1.75 1 10.29 

WH 40 1.00 1 40.00 

DL 40 2.25 1 17.78 

ML 30 1.75 2 8.57 

WR 40 1.00 1 40.00 

KB 40 1.00 1 40.00 

MIN 40 1.00 1 40.00 

BAB 40 1.50 1 26.67 

ZEN 40 1.50 1 26.67 

SB 12 1.25 1 9.60 

EOS 29 1.00 2 14.50 

OPL 41 2.00 1 20.50 

DT 40 2.00 1 20.00 
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Table D.2 Pairwise FST values for 13 surveyed populations of Lycaena epixanthe in Algonquin Provincial Park, Ontario, 

Canada. Sub-samples from the five bogs where individuals were collected from two discrete regions (DL, ML, MIN, 

EOS and DT) are analysed as separate sub-populations. Values in bold indicate populations which were not 

significantly differentiated (α = 0.01). 

 BUG WH DLa DLb MLa MLb WR KB MINa MINb BAB ZEN SB EOSa EOSb OPL DTa DTb 

BUG -                  

WH 0.083 -                 

DLa 0.108 0.093 -                

DLb 0.090 0.066 0.025 -               

MLa 0.109 0.066 0.130 0.090 -              

MLb 0.098 0.049 0.120 0.082 0.049 -             

WR 0.101 0.044 0.117 0.085 0.078 0.072 -            

KB 0.156 0.103 0.196 0.175 0.106 0.055 0.109 -           

MINa 0.171 0.111 0.208 0.179 0.120 0.064 0.114 0.038 -          

MINb* 0.140 0.107 0.213 0.161 0.107 0.070 0.085 0.073 0.034 -         

BAB 0.200 0.124 0.219 0.192 0.122 0.071 0.162 0.034 0.062 0.118 -        

ZEN 0.093 0.049 0.129 0.100 0.080 0.045 0.077 0.064 0.058 0.073 0.065 -       

SB 0.118 0.056 0.137 0.110 0.051 0.040 0.085 0.054 0.072 0.095 0.071 0.042 -      

EOSa 0.104 0.046 0.138 0.096 0.077 0.042 0.066 0.085 0.088 0.088 0.103 0.059 0.050 -     

EOSb 0.119 0.063 0.155 0.121 0.077 0.040 0.089 0.055 0.057 0.063 0.050 0.045 0.045 0.009 -    

OPL 0.146 0.087 0.183 0.154 0.107 0.064 0.110 0.070 0.063 0.073 0.068 0.055 0.060 0.037 0.019 -   

DTa 0.180 0.105 0.203 0.181 0.120 0.062 0.138 0.040 0.068 0.110 0.016 0.071 0.069 0.087 0.043 0.062 -  

DTb 0.280 0.199 0.301 0.279 0.205 0.147 0.229 0.076 0.116 0.181 0.043 0.154 0.139 0.162 0.104 0.134 0.019 - 
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Comparison of AFLP datasets varying in genotyping error rate 

AFLP datasets were generated using AFLPSCORE v1.3b (Whitlock et al. 2008) using the 

data filter and absolute phenotype-calling threshold settings. ‘Dataset A’ indicates the 

original dataset produced from AFLPSCORE consisting of all retained loci; ‘Dataset B’ 

indicates the original dataset with singleton loci removed.  

Table D.3 Summary of the optimal AFLP phenotype scoring parameters and 

associated mismatch error rates and number of retained loci for all selective primer 

combinations. The values reported in Chapter 3 are indicated in bold. 

 Scoring Threshold  Number of loci 

Selective primer 

combination Locus Phenotype 

Mismatch 

error rate % Initial Dataset A Dataset B 

EcoRI-ACA/MseI-CTT 1300 200 1.75 161 23 21 

 1200 200 2.51 161 26 23 

 900 300 3.92 161 36 30 

 500 100 4.78 161 52 46 

 

EcoRI-AAC/MseI-CAC 

 

3000 

 

100 

 

2.42 

 

177 

 

16 

 

16 

 2800 500 3.08 177 22 22 

 2000 500 3.98 177 34 29 

 1300 500 4.75 177 57 52 

 

EcoRI-AAC/MseI-CTC 

 

1800 

 

400 

 

1.66 

 

122 

 

30 

 

24 

 1000 300 2.89 122 41 32 

 900 300 3.09 122 48 37 

 400 100 4.72 122 70 65 

 

EcoRI-AAG/MseI-CAA 

 

1000 

 

100 

 

1.94 

 

123 

 

28 

 

28 

 800 200 2.97 123 51 49 

 500 100 3.23 123 62 60 

 300 100 4.59 123 94 93 

 

EcoRI-ACC/MseI-CAC 

 

2100 

 

600 

 

1.95 

 

177 

 

29 

 

25 

 2300 800 2.61 177 37 31 

 2500 1200 3.89 177 41 34 

 2000 800 4.49 177 46 38 

       

  <2% 1.94 (mean) 760 (total) 126 (total) 112 (total) 

  <3% 2.81 (mean) 760 (total) 177 (total) 157 (total) 

  <4% 3.62 (mean) 760 (total) 221 (total) 190 (total) 

  <5% 4.67 (mean) 760 (total) 319 (total) 294 (total) 
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Table D.4 Summary of the overall genetic structure and intrapopulation genetic 

diversity results for Lycaena epixanthe in Algonquin Provincial Park (sub-samples 

within bogs are not pooled; N = 18). For each AFLP dataset we present global FST  (± 

standard error), and proportion of polymorphic loci (PPL) and expected 

heterozygosity (Hj) averaged across sub-samples, with the range indicated in 

parentheses.  

Scoring 

criteria Dataset FST (±SE) PPL Hj 

     

<2% A 0.112 (0.215)* 0.363 (0.571) 0.157 (0.251) 

 B 0.111 (0.216)* 0.408 (0.643) 0.177 (0.282) 

     

<3% A 0.107 (0.186)* 0.355 (0.474) 0.157 (0.207) 

 B 0.107 (0.187)* 0.400 (0.535) 0.176 (0.232) 

     

<4% A 0.103 (0.170)* 0.355 (0.434) 0.158 (0.184) 

 B 0.103 (0.171)* 0.410 (0.490) 0.183 (0.198) 

     

<5% A 0.094 (0.161)* 0.352 (0.383) 0.158 (0.153) 

 B 0.094 (0.162)* 0.382 (0.415) 0.171 (0.166) 

*P < 0.001 
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Table D.5 Summary of analysis of molecular variance (AMOVA) results for the 

Algonquin Provincial Park populations of Lycaena epixanthe (sub-samples within 

bogs were not pooled; N =18).   

Scoring 

criteria Dataset 

Source of 

variation d.f. 

Sum of 

squares 

Variance 

component 

% of 

variance 

       

<2% A Among 

populations 

17 261.539 0.403 7.75 

  Within populations 459 2200.909 4.795 92.25 

       

 B Among 

populations 

17 260.997 0.403 7.79 

  Within populations 459 2187.535 4.766 92.21 

       

       

<3% A Among 

populations 

17 449.845 0.725 8.90 

  Within populations 459 3402.843 7.414 91.10 

       

 B Among 

populations 

17 448.797 0.724 8.96 

  Within populations 459 3377.168 7.358 91.04 

       

       

<4% A Among 

populations 

17 619.233 1.005 9.12 

  Within populations 459 4595.079 10.011 90.88 

       

 B Among 

populations 

17 618.157 1.005 9.18 

  Within populations 459 4565.338 9.946 90.82 

       

       

<5% A Among 

populations 

17 894.526 1.419 8.48 

  Within populations 459 7027.832 15.310 91.52 

       

 B Among 

populations 

17 893.533 1.419 8.51 

  Within populations 459 7001.455 15.254 91.49 
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Table D.6 Summary of the principal coordinate analysis (PCoA) for all studied 

populations of Lycaena epixanthe (sub-samples within bogs were not pooled; N = 

18). Based on a covariance matrix of pairwise FST values, the amount of variability 

that is accounted for by the first two coordinates is reported.  

  % of variation explained 

Scoring 

criteria Dataset Coordinate 1 Coordinate 2 

    

<2% A 53.55 18.40 

 B 53.72 18.28 

    

<3% A 56.48 17.10 

 B 65.29 13.42 

    

<4% A 55.25 16.02 

 B 56.11 15.94 

    

<5% A 60.27 13.77 

 B 54.42 15.74 
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Table D.7 Summary of the mantel test results examining the relationship between 

genetic differentiation (FST/ (1-FST)) and geographical distance (log transformed) 

among all studied populations of Lycaena epixanthe (sub-samples within bogs were 

not pooled; N = 18).  

Scoring 

criteria Dataset r
2
 

Significance  

(P -value) 

    

<2% A 0.132 <0.001 

 B 0.132 <0.001 

    

<3% A 0.168 <0.001 

 B 0.148 <0.001 

    

<4% A 0.190 <0.001 

 B 0.191 <0.001 

    

<5% A 0.177 <0.001 

 B 0.158 <0.001 

α = 0.05 
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Appendix E: Permission to reproduce published material 

A version of Chapter 2 was previously published in Molecular Ecology. Permission to 

reproduce this work in my PhD thesis has been granted by John Wiley and Sons. 
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reproduce this work in my PhD thesis has been granted by Springer-Verlag. 
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