
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-14-2013 12:00 AM 

Fluorescent Cytidine Analogues Fluorescent Cytidine Analogues 

Kirby J. Chicas 
The University of Western Ontario 

Supervisor 

Robert. H.E. Hudson 

The University of Western Ontario 

Graduate Program in Chemistry 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Kirby J. Chicas 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Organic Chemistry Commons, and the Other Chemistry Commons 

Recommended Citation Recommended Citation 
Chicas, Kirby J., "Fluorescent Cytidine Analogues" (2013). Electronic Thesis and Dissertation Repository. 
1576. 
https://ir.lib.uwo.ca/etd/1576 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=ir.lib.uwo.ca%2Fetd%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/141?utm_source=ir.lib.uwo.ca%2Fetd%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1576?utm_source=ir.lib.uwo.ca%2Fetd%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


FLUORESCENT CYTIDINE ANALOGUES 
 

(Thesis format: Monograph) 
 
 
 

by 
 
 
 

Kirby Chicas  
 
 
 
 

Graduate Program in Chemistry 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Master of Science 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Kirby Chicas 2013 

 



 

ii 

 

Abstract  

Two luminescent cytidine analogues have been synthesized in order to perform single 

nucleotide polymorphism (SNP) analysis by fluorescence spectroscopy. Herein is described 

the synthesis of 6-pyrenylpyrrolocytidine (PypdC), its photophysical characterization, and its 

subsequent incorporation into oligodeoxynucleotides (ODNs). The behavior of PypdC in 

ODNs is described as well as fluorescence intensity changes with respect to the match and 

mismatch cases. In order to obtain a greater understanding of pyrene’s interaction with 

pyrrolocytidine, a congener, pyrenyl ethynyl cytidine (PyEtdC) was synthesized. The 

congener was photophysically studied and prepared for oligo synthesis  

Keywords 

Nucleic Acid, Cytidine, Fluorescent Nucleoside Analogue, Single Nucleotide Polymorphism, 

Pyrene 
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Chapter 1 - Introduction 

1 Nucleic Acids  

The importance of nucleic acids is of no secret to us. We became privy when Watson and 

Crick famously declared, “[we] discovered the secret of life” on February 28, 1953 at The 

Eagle pub in Cambridge, England. Near to their place of work, the lunchtime destination 

would become the location in which we were gifted the structure of DNA. The 

elucidation however, was not solely the work of Watson and Crick. It was the 

culmination of work dating to the mid 19
th

 century.  

Swiss chemist Friedrich Miescher isolated a non protein substance from the nuclei of 

white blood cells in 1869. He would call this substance nuclein 
1
.  He would isolate 

nuclein from white blood cells and later from salmon sperm. Despite his efforts he found 

the isolated substance tainted with protein. It wasn’t until 1889 that Richard Altmann 

would isolate a protein free sample and call it nucleic acid 
1
. 

Identification of the sugar, phosphate, and nitrogenous base components of nucleic acid 

came by way of Levene and Jacobs in 1909 
1
. Female scientist, Rosalind Franklin from 

Kings College at The University of London would later provide a key component to the 

mystery of nucleic acid. It was her work with Maurice Wilkins that would produce the X-

ray diffraction pattern needed to lead Watson and Crick towards the double helix. The 

elucidation of DNA structure was recognized with a Nobel Prize in 1962 and shared 

amongst James Watson, Francis Crick, and Maurice Wilkins.  

Francis Crick would frame the gravity of DNA through the central dogma of molecular 

biology. It explained in a simplified manner the flow of genetic information: transcription 

of DNA coding for phenotypic traits to messenger RNA (mRNA) in preparation for 

translation into proteins and expression of those coded phenotypes (Figure 1.1). By this 

model and still in line with our understanding, DNA is the blueprint defining our very 

traits.    
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Figure 1.1 – The central dogma of molecular biology 

We are by now well aware of the antiparallel nature of the duplex (Figure 1.2). We know 

that nucleic acids are composed of a sugar phosphate backbone and of a nitrogenous base 

whose strand direction has been defined by its ribose moiety. Much progress has been 

made since 1953 and in 2003 the Human Genome Project was declared complete - the 

complete sequencing of the approximately 20 500 genes or three billion chemical units 

coding for the human being.  

 

Figure 1.2 – Watson-Crick hybridization of the purines (G / A) and the pyrimidines (C / 

T) in antiparallel strands. 
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1.1 Modified Nucleic Acids 

The important and complex nature of DNA and RNA has generated a great demand for 

tools and techniques to examine and treat nucleic acids. Modified nucleosides have been 

successfully applied to both therapeutic and diagnostic technologies in nucleic acids. 

1.1.1 Therapeutics – Small Molecules and Antisense 

Small molecule nucleosides have attracted attention due to their use in the treatment of 

cancer and viral diseases. These small molecules fall into one or both of the categories 

typically used to identify modified nucleosides: (1) ribose modified and / or (2) base 

modified nucleosides
2
. Research has led to the development of Entecavir for the 

treatment of chronic hepatitis B virus infection and Clofarabine (Figure 1.3) for the 

treatment of refractory acute lymphoblastic leukemia (ALL) in children. 

 

Figure 1.3 – Entecavir (left) & Clofarabine (right) 

Modified nucleosides have also found success in the world of antisense therapy. 

Antisense therapy is a treatment for genetic disorders or infections. If a gene is known to 

be responsible for a particular disease state, nucleic acids capable of binding 

the messenger RNA (mRNA) of the gene can be synthesized in order to prevent 

translation into protein. Binding of the exogenous strand with mRNA effectively silences 

the gene and turns it "off". The off response is brought about by the requirement for 

mRNA to be in single stranded state for translation
3
.  

The synthetic nucleic acid is known as the "anti-sense" strand. The term antisense 

describes the nucleic acids’ complementary base sequence to the gene's messenger RNA 

(mRNA) known as the "sense" sequence
3
.  
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Zamecnik and Stephenson
4
 first proposed the concept of antisense therapeutics in 1978. 

Their seminal publication detailed the synthesis of a 13 mer oligoribonucleotide (ORN), 

complementary to a sequence in the respiratory syncytial virus genome. They suggested 

that the ORN could be stabilized by terminal modifications and showed evidence of 

antiviral activity
4
.  

The Hudson group has forayed into antisense technologies through the incorporation of 

boPhpC (Figure 1.4) into peptide nucleic acids with the help of the Corey Group at The 

University of Texas Dallas Southwestern Medical School. They planned to use PNA 

oligomers for the selective inhibition of mutant Huntington (HTT) protein. Mutant HTT 

is responsible for Huntington’s disease (HD), an incurable neurological disorder. The 

Corey group reasoned that silencing of the mutant HTT protein would be a useful 

strategy for the treatment of Huntingtin’s disease. When oligos containing the boPhpC 

moiety were added at 1 μM concentration, selective HTT inhibition was observed
5
. The 

introduction of one or two boPhpC substitutions did not greatly increase the potency of 

inhibition of mutant HTT or improve selectivity. Alternatively, introduction of three or 

four boPhpC bases significantly eroded selectivity
5
.  The boPhpC insert included the 

added advantage of intrinsic fluorescence which permitted visualization and localization 

of intracellular PNAs without the need for an appended fluorophore.  Confocal 

fluorescence microscopy showed punctate intracellular PNA distribution consistent with 

known uptake / distribution mechanisms for PNA
5
.   

 

Figure 1.4 – [bis-o-(aminoethoxy)phenyl]pyrrolocytosine, R = PNA 
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1.1.2 Diagnostics – Fluorescent Nucleic Acids 

Of the many diagnostic tools available for nucleic acids, none may find the ease of use 

and potential for broad application as readily as fluorescent nucleoside analogues. 

Possessing no analytically exploitable fluorescence 
6
, natural nucleosides are readily 

given fluorescence properties enabling them to be used for spectroscopic studies. The 

combination of hybridization specificity and fluorescence enables them to fulfill a 

number of requirements needed for an ideal detection device or assay. 

Ideal detection devices and assays must offer great selectivity, excellent sensitivity, ease 

of use and low cost of production 
7
. Nucleic acids have long been admired for their 

genetic coding properties but have recently emerged as important materials for molecular 

diagnostic technologies. Nucleic acids satisfy ideal detection device and assay 

requirements by a number of assets such as specific Watson-Crick base pairing, high 

stability (DNA), low cost of synthesis and excellent adaptability to modifications 
7
. 

Nucleic acids are often used in combination with fluorescence spectroscopy for a number 

of reasons: (1) a large selection of fluorophores for nucleic acid conjugation exists; (2) 

there are minimal health risks associated with fluorophore handling; (3) there is 

instrumentation capable of detection at ultralow concentrations; (4) portability of 

instrumentation for on-site detection; (5) the relatively long shelf life of fluorophores
 7

. 

Fluorescent nucleoside analogues have shown utility in a wide range of applications 

including but not limited to single nucleotide polymorphism (SNP) detection 
8a - e

, nucleic 

acid structure and function, and microenvironmental studies. Structure and function 

experiments have allowed for the resolution of hybridization events 
9
, folding 

10
, 

conformational change 
11

, and enzyme action 
12

. Microenvironmental probing studies 

with fluorescent nucleosides have shown nucleobase damage 
13

, 

depurination/depyrimidation 
14

, and base flipping 
10

. To this day new uses for fluorescent 

nucleoside analogues continue to emerge broadening the utility of the technique and 

driving development in the field. 

Numerous modifications have been explored to introduce favourable fluorescent 

properties to nucleic acids. Classical fluorophores such as fluorescein, rhodamine, and 
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their congeners such as the Alexa dyes have been appended to oligonucleotides by linkers 

to the sugar phosphate backbone or have been tethered to nucleobases. Modifications 

have also been conjugated to the base or utilize the base as the fluorophore itself. Due to 

the seemingly limitless possibilities for modification, numerous classifications have been 

assigned to the fluorescent nucleoside field. Tor has divided the field into five categories; 

(1) chromophoric base analogues; (2) pteridines; (3) expanded nucleobases; (4) extended 

nucleobases and (5) isomorphic bases
15

. Wilhelmson has segmented the field in terms of 

internal (base) and external (sugar or phosphate) modifications 
16

. Further classifications 

have been offered by Asseline 
17

 and terms such as base discriminating fluorophore 

(BDF) have been introduced by Saito
 18

. 

The Hudson group focuses upon modifications of cytosine for the fluorescent probing of 

nucleic acids. Typical modifications fall into two fields capable of canonical base 

pairing: base analogues possessing pendant fluorophores (extrinsic) and intrinsically 

fluorescent nucleoside analogues 
19

. These terms are used frequently within the Hudson 

group to classify C modifications. 

The pendant class often has an advantage in that higher overall brightness (defined as  

× ) is obtained by the attachment of a well characterized fluorophore.  The high 

brightness is due to the combination of efficient luminescence (high quantum yield, ) 

and large molar absorptivity coefficients (). Despite the usually favourable 

photophysical properties, this class suffers from a number of drawbacks. The use of a 

fluorophore covalently bound by a tether to a nucleobase can allow for the independent 

movement of the fluorophore making interpretation difficult.  Furthermore, due to the 

distance of the fluorophore from the base-pairing moiety, fluorescence does not directly 

report on the bases’ environment. Thus, observed fluorescence does not reflect 

hybridization at a specific base, protonation or other electronic changes at the site of 

interest 
19

.  

Intrinsically fluorescent base analogues are those in which fluorescence is observed from 

the nucleobase itself and not from an appended (extrinsic) moiety. Intrinsically 

fluorescent nucleosides are attractive as the base itself communicates 



7 

 

microenvironmental changes, thus enabling one to elucidate events occurring in close 

proximity to the nucleobase.  Modest chemical modifications can also yield stunning 

photophysical properties allowing them to be competitive with traditional fluorescent 

probes. Historically, intrinsically fluorescent base analogues have been able to 

communicate hybridization change.  

The Hudson group continues to work towards new fluorescent C analogues for 

applications in both antisense and diagnostic systems.  

1.2 Fluorescent C Analogues 

Described by Albrecht Kossel in 1903 
20

, the pyrimidine cytosine enjoys a three hydrogen 

bond Watson-Crick face for complementary pairing with guanine and shows good 

tolerance for chemical modifications (Figure 1.5).  

 

 

Figure 1.5 – Watson Crick bonding of G  and C and common modification sites of C. 

 

Cytosine is readily halogenated at the 5-position, providing a handle for well established 

carbon-carbon bond forming chemistry.  Modification of the exocyclic amine also 

provides entry into fluorescent C analogues. Modifications of the C scaffold either by 

manipulation at the 5-position or of the amine generally produces a C analogue where 

additional substituent’s or structure are found in the major groove (Figure 1.5). These 
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modifications tend to be nonperturbing in nucleic acids and in many cases increase 

duplex stability by favourable base stacking or additional hydrogen bond engagement of 

G.  Modification at the 6-position is generally regarded to be detrimental due to the steric 

interaction of the sugar moiety in the anti-glycosidic conformer 
21

.   

A wide variety of fluorescent C analogues have been developed over the years, each with 

their own unique characteristics and applications. The following is a brief window into 

the scope of fluorescent C analogues.  

Tricyclic cytosine (tC, Figure 1.6) was first reported in 1995 for use in antisense 

systems. 

 

Figure 1.6 – Tricyclic cytosine (tC) 

 Studies on tC showed melt temperature increases with respect to 5-methylcytidine 
22 

and 

in 2001, spectrophotometric studies were undertaken 
23

. Wilhelmsson showed that tC 

could be selectively excited over DNA (λabs = 260 nm) at a wavelength of 375 nm with 

corresponding emission at 505 nm 
23

. Wilhelmsson reported increased melt temperatures 

24
 as was also reported by Matteucci in 1995. Quantum yield determinations by Albinsson 

et al. showed moderate quantum yield values for the free nucleoside (Φ = 0.13) in water 

25
.  Incorporation of tC into ODNs produced slightly greater quantum yields than that of 

the free nucleoside. Values ranged from 0.17 – 0.24 in the ss form and 0.16 – 0.21 in the 

ds form. Very little change in quantum yield was observed with respect to flanking bases 

or incorporation into dsDNA making it a relatively insensitive analogue to 

microenvironment. Tricyclic cytosine has seen application in FRET 
26

, in DNA 
27

 and 
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RNA 
28

 polymerase experiments in their respective ribo and deoxy forms, and in DNA / 

protein interaction experiments
 29

. 

The Tor group at UCSD investigated a number of conjugated five member ring systems 

based upon 2-phenylfuran. 2-phenylfuran is a fluorophore (λex = 280 nm; λem. = 340 nm) 

with a desirably high molar extinction coefficient of 20 000 M
-1

cm
-1

 and good quantum 

yield (Φ = 0.4) 
30 

. By the conjugation of a furan moiety to the six member aromatic 

system of cytosine (Figure 1.6), Tor hoped to emulate the favourable properties 2-

phenylfuran. Following a previously reported synthesis 
31

, Tor produced the furan labeled 

C analogue from 5-iodo-2-deoxyuridine.  

 

Figure 1.7 - 5-(fur-2-yl)-2'-deoxycytidine (C
FU

)
 

Unfortunately the quantum yield of the C
FU

 nucleoside proved to be less than ideal with a 

value of 0.02 in water. Although possessing a low efficiency, the C
FU

 base could still be 

selectively excited over DNA at ~ 310 nm with emission at ~ 440 nm. The Tor group 

proceeded to investigate the fluorescent C analogue as a potential candidate for the 

detection of 8-oxoG. C
FU 

proved sensitive to 8-oxo-G and relatively insensitive to 

unmodified G 
32

. Anticipating transverse mutation, fluorescence response with respect to 

T was also measured and determined to provide the greatest fluorescence intensity. 

Moreover, the emission wavelength was observed to change with complementary base. 

From these observations it was proposed that C
FU

 could facilitate rapid and non-

destructive real time fluorescence based methods for the in vitro monitoring of oxidative 

stress 
32

. 

The Tor group has since sought ways to increase the efficiency of their C analogues. In 

looking to improve quantum yields of their furan- and thiophene-substituted pyrimidines, 
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the group turned their attention to the pC core which had been shown to possess 

favourable fluorescence characteristics in other systems. 

 

Figure 1.8 – Thiophen-2-yl pC 

 The group synthesized both the deoxy and ribose variants of the thiophen-2-yl pC base. 

Foregoing acylation of the exocyclic amino group (Discussed in Chapter 2, Scheme 2.1) 

it was observed that the intermediate nucleoside resisted annulation by copper and 

formation of the pyrrole ring. The intermediate nucleoside was screened against metal 

catalysts to induce cyclization. It was found that sodium tetrachloroaurate(III) dihydrate 

produced the desired cyclized product in low to moderate yield 
33

. Photophysical 

characterization of the deoxy and ribose thiophen-2-yl pC nucleosides yielded little to no 

difference in their photophysical properties. It was found that they underwent excitation 

at ~ 370 nm and emission at ~ 471 nm in water with an efficiency of ~ 0.42. A greater 

efficiency was observed in dioxane (~ 0.48) 
33

 with red shifted absorption and blue 

shifted emission corresponding to decreased Stokes shifts with respect to those in water. 

The extinction coefficients when taken into consideration with quantum yield led to 

brightness factors that were approximately 14 – 24 times brighter than those of the MepC 

or MepdC.  

Characteristics of C analogues range from the insensitive (tC) to the sensitive and from 

the highly fluorescent to nominally fluorescent. Our work develops the scope of C 

analogues in the hopes of obtaining new favourable fluorescence properties or improved 

properties from those in literature. The archetypal structure we have studied is 
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phenylpyrrolocytosine developed from pyrrolocytosine and is further discussed in 

Chapter 2.  

1.3 Fluorescence Characterization of C Analogues 

Traditionally the Hudson group has obtained a particular set of values for photophysical 

characterization of C analogues. The values obtained allow for the comparison of 

fluorescent C analogues and the development or improvement of nucleic acid probes. 

Typically photophysical characterization includes: excitation and emission spectra in 

ethanol and water; fluorescence quantum yield determination in ethanol & water; molar 

absorptivity determinations in ethanol & water. In addition to the above mentioned 

values, the Hudson group has recently added the Et(30) method of polarity sensitivity 

measurement. 

Excitation and emission spectra provide insight into the excitation and relaxation 

pathways used in the molecule of interest. The excitation spectra in conjunction with 

UV/Vis, details the excited states involved upon photon absorption. Peaks of defined 

structure or shoulders become clear indicators of excitement of ground state electrons 

into a multitude of Sn levels. Mirror image emission spectra detail a relaxation process 

which participates in the release of a photon from the excited Sn state. More often than 

not, a mirror image is not obtained as the rate of internal conversion tends to be much 

greater than the rate of fluorescence emission. This rate difference manifests itself as a 

radiationless relaxation from Sn  S1 followed by photon emission and relaxation from 

S1  S0 which we observe as a single fluorescence peak lacking significant structure. 

From the excitation and emission spectra we further derive Stokes shift thus determining 

the energy difference between the S0 and S1 states.  

Fluorescence quantum yield (Φf) provides a measure of the fluorescence efficiency for a 

molecule. Φf is defined as the ratio of the numbers of photons emitted over the number of 

photons absorbed, it is a process that competes with internal conversion (IC); inter system 

crossing (ISC) and other functions of excited state decay. Excited state decay can be 

expressed as the sum of the possible pathways or, 1 = Φf + ΦIC + ΦISC + Φn. The higher 

the fluorescence quantum yield, the better the conversion of excited stated energy to 



12 

 

photonic emission. Vice versa, the lower the fluorescence quantum yield, the more the 

molecule dissipates energy by non fluorescent processes. Quantum yield (a measure of 

fluorescence efficiency) cannot be directly ported or compared to other molecules as it is 

a concentration independent value and provides little information on the luminosity of 

molecules at varied concentrations. 

Molar absorptivity also known as the molar extinction coefficient (ε) is expressed by the 

Beer-Lambert law, A = εlC, where A = absorption; ε = molar extinction coefficient; l = 

path length; C = concentration. It relates the concentration of a molecule to its 

absorptivity making it a valuable measure for concentration determinations. More 

specifically, ε is a measure of the probability, favourability, or likelihood of a transition 

(absorption) at a particular wavelength. The product of epsilon taken in conjunction with 

fluorescence quantum yield (ε x Φf) is a value deemed brightness. The value can be 

conceptualized as a measure of fluorescence efficiency per unit volume and allows for 

the direct comparison of two molecules that exhibit fluorescence. 

Recently, the Hudson group has begun polarity sensitivity measurements in the hopes of 

probing duplexes and biological pockets. Microenvironmental understanding is key since 

intra and intermolecular forces are dependent on their immediate surroundings. In the 

past many methods of polarity measurement have been used. Unfortunately many of 

these studies utilize the dielectric constant - a bulk solvent property expressed in units of 

Debye (D). The value represents a molecule’s ability to attenuate an electric field 

generated between electrodes relative to vacuum 
34

.  It can be thought of as the ability of 

a group of molecules to respond to the applied field and reorganize to minimize the 

generated potential. A solvent such as water is highly capable of attenuating the 

generated field and would therefore have a high dielectric constant. Conversely, 

hydrocarbons have little or no ability to respond to an applied field and attain low 

dielectric constants. These bulk values do not represent the first or second solvation 

spheres surrounding a molecule and do not represent the environment within a small 

biological cavity 
35

. Microenvironmental analysis became plausible when spectroscopic 

studies were approached.  Recently the Et(30) scale developed by Dimroth and Reichardt 

has gained popularity. An ET(30) value ( kcal mol
-1

) is determined by measuring a charge 
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transfer band of a pyridinium betaine dye in a solvent or mixture of solvents. It is thought 

that the ET(30) value then reflects the polarity of the immediate environment surrounding 

the dye as it is the first or second solvation spheres that cause changes in the measured 

transfer band.  

The polarity sensitivity of a new molecule can be determined by plotting the stokes shift 

of the new molecule in varied mixtures of dioxane / water against the predetermined 

Et(30) value for the same mixture. It has been shown that the linear relation typically 

produced is of greater reliability than other spectroscopic methods and the dielectric 

methods for polarity determinations 
23

. The slope of the resultant line is termed the 

polarity sensitivity of the molecule. The greater the slope of the line, or the greater the 

change in stokes shift with respect to change in solvent composition, the greater the 

polarity sensitivity. Table 1.1 contains ET(30) values for common solvents displaying the 

trend that as polarity increases the Et(30) value also increases 
35

.  
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Table 1.1  - Et(30) polarity values in comparison to dielectric constants. 

Solvents ε
a
  ET(30)

b
 

Hexane 1.889 31.0 

1,4-dioxane 2.219 36.0 

2-propanol 20.190 48.4 

1-propanol 20.800 50.7 

Ethanol 25.290 51.9 

Methanol 33.520 55.4 

Water 80.180 `63.1 

a
in units of Debye (D), 

b
 kcal mol

-1 

1.4 DNA Synthesis – Incorporation of Modified 
Nucleosides 

Currently the most popular method of oligodeoxynucleotide (ODN) synthesis is the 

phosphoramidite approach (Figure 1.7) 
36

. Construction of the DNA biopolymer follows 

sequential additions of the phosphoramidite monomer to an already coupled base tethered 

to a solid support by a succinyl arm.  
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Figure 1.9 – DNA synthesis utilizing phosphoramidite chemistry. 

The already present base undergoes detritylation by treatment with low percentage DCA 

or TCA in DCM - typically at percentages below 3% m/v. Detritylation affords the free 

5` hydroxyl which reacts readily with a monomer activated by treatment with tetrazole. 

To ensure easy purification, a capping step is involved to minimize the ODN products by 

“sealing” unreacted 5’ hydroxyls through acetylation. Capping is followed by oxidation 

of the phosphite triester to create the cyanoethyl protected phosphate. The cycle is 

repeated until the desired ODN length is met at which point cleavage from the solid 
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support and deprotection of the phosphate backbone is undertaken by heating in the 

presence of ammonia.  

1.5 Objective 

The aim of the research described herein is to expand the scope of fluorescent analogues 

by the synthesis and characterization of new fluorescent C analogues. We aim to test the 

limits of base discriminating fluorescence and duplex stability of these new analogues by 

the conjugation of the large and bright fluorophore pyrene.  

We will describe the development of new synthetic procedures towards pyrene modified 

C analogues (Figure 1.7) as well as their incorporation or progress towards synthetic 

ODNs. We will then outline their ability to act as sensors in nucleic acids by the means of 

fluorescence spectroscopy.    

 

 

Figure 1.10 – Pyrene modified C analogues: PypdC (left), PyEtdC (right) 

The analogues will have their photophysical properties studied in the nucleoside form. 

We will gain insight into the interactions of substituent and base electronics and the 

consequences that these electronics may have on the analogues as fluorescence sensors. 

Specifically we aim to answer whether or not the fluorescence we observe from these 

pyrene modified C analogues is attributed to the pyrene substituent, the base, or some 

combination of the two moieties.  
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Chapter 2 – Pyrenylpyrrolocytidine 

2 Introduction: Precedence and Development 

Initially, with the intent of synthesizing 5-alkynylpyrimidines to determine their affect on 

the biophysical properties of PNA oligomers 
1
, Hudson and coworkers “rediscovered” the 

cyclization of N
4
-acyl-protected cytosine to pyrrolcytosine - an observation first made by 

Ohtsuka that had gone largely underappreciated 
2
.  During these studies, conditions were 

defined for the synthesis of the simple cross-coupled products versus the annulated 

furanouracil and pyrrolocytosine (Figure 2.1).  It was found that the structurally simple 

5-alkynylpyrimidine derivatives were luminescent 
3
; however, the similarly substituted 

pCs were determined to be better fluorophores 
4
.  

 

Figure 2.1 – The pyrimidines, the alkynypyrimidines, and their 5-endo dig products 

Pyrrolocytosines possessing aromatic substitutions were discovered to be remarkably 

good fluorophores; better than those with aliphatic substitution (Figure 2.2).  The pCs 

shown in Figure 2.2 are blue fluorophores ( em ~ 450 nm) except for the para-(N,N-

dimethylamino)phenyl which is bathochromically shifted (em ~ 500 nm) and the para-

nitrophenyl which displays weak orange fluorescence (em ~ 575 nm). Interestingly the p-

nitrophenyl exhibits an absorbance band that overlaps the emission of 6-

phenylpyrrolocytosine (PhpC).  Good luminescence is maintained in water as PhpC 

displays a  ~ 0.35, approximately 10-fold greater than that of the well established 

MepdC (vide infra) analogue (Figure 2.3). 
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Figure 2.2 – Aliphatic vs. aromatic substituted pCs and their quantum yields in ethanol 

6-Methylpyrrolo-dC (MepdC), a fluorescent C analogue dating back to the late 1980s  
2 

was a relatively unexploited modification until the turn of the century. In the early 2000s, 

methylpyrrolo-dC experienced a surge 
5
 in use and has since become one of the more 

popular fluorescent C analogues. The popularity is likely due in part to its commercial 

availability 
6
. Methylpyrrolo-dC has been shown to act similarly to C in terms of 

hybridization selectivity and stability 
7
. MepdC has been used for the characterization of 

the transcription bubble of T7 RNA polymerase 
5
, the kinetics of DNA repair by a human 

alkyl transferase 
8
, and in investigations of the HIV-1-polypurine tract 

9
. With 

methylpyrrolo-dC proving its utility in a number of experiments with considerably lesser 

fluorescence than PhpC, it is not surprising that PhpC garnered much excitement within 

the Hudson group 

 

 

 

 

Figure 2.3  - MepdC & phenylpyrrolocytosine-N
1
-methylene carboxylate 
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Hudson continued his investigation by converting the PhpC acetate to the Fmoc PNA 

monomer followed by incorporation into PNA and DNA duplexes. It was found that the 

PhpC containing PNA bound complementary DNA with stability on par to the 

corresponding unmodified PNA.  The PNA oligomers also displayed excellent sequence 

discrimination for a complementary G versus mismatch that rival or best C 
4
.  

The first pC studies in DNA carried out by Hudson included the synthesis and 

incorporation of 6-methoxymethyl pyrrolodeoxycytidine (
Mme

pdC) into ODNs for the 

purpose of selective fluorimetric detection of guanosine-containing sequences. Prior to 

the synthesis of the 
Mme

pdC analogue, it had been well known from PNA systems that 

aromatic substitutions provided the most dramatic fluorescence response and that 

interesting characteristics would be observed from a phenylpyrrolodeoxycytidine 

(PhpdC) (Figure 2.4). The analogue was synthesized by the deoxyuridine route (vide 

infra). It was found that the PhpdC phosphoramidite could be synthesized in three steps 

with good overall yield 
10

.  

 

Figure 2.4  - 
Mme

pdC & PhpdC 

Thermal denaturation experiments of a centrally located PhpdC yielded a moderate 

increase in duplex stability (+3.3 °C) 
11

   relative to dC while maintaining excellent 

mismatch discrimination that was equal to or better than that of MepdC. Fluorescence 

emission from the PhpdC ODN was 18 times greater than that of MepdC 
11

. Additional 

fluorescence studies showed the ability of PhpdC to communicate the identity of the 

complementary base by fluorescence intensity change (Figure 2.5). 
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It was proposed that modification of pyrrolocytosine with the large polycyclic aromatic 

hydrocarbon, pyrene, would yield interesting fluorescence properties as it is a well known 

fluorophore with a desirably high quantum yield (0.65) in ethanol. It was also thought 

that the substitution would yield insight into a number of questions important to pC 

understanding. We aimed to explore: (1) does conjugating highly fluorescent moieties to 

pC overwhelm fluorescence identification of the complementary base? (2) How large can 

a substitution become before it compromises duplex stability?  

In regard to question (1), 6-(1-pyrenyl)pyrrolodeoxycytidine (PypdC) was suggested to 

behave in one of two ways. (A) It would act like PhpC as a sensitive reporter group in 

nucleic acid studies, or (B) the pyrene substituent would overwhelm any fluorophore-like 

contribution from the nucleobase. If (B) were to be true it was imagined that the 

hybridization dependent fluorescence would be lost.  
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Figure 2.5 – Fluorescence intensity changes with respect to complementary base 
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Figure 2.6 – 6-(1-pyrenyl)pyrrolodeoxycytidine (PypdC) 

In regard to question (2), duplex stability was expected to change in one of two ways: 

either the duplex stability would increase through greater base stacking interactions or the 

duplex stability would decrease due to the sheer size of the modified base. In a wild type 

vs. mutant case as in boPhpC (Chapter 1), these stability changes could possibly manifest 

themselves as such. In the case of a net stabilization for the match and mismatch cases, 

little to no selectivity would be observed.  However if fluorescence changes were 

observed then a fluorimetric SNP probe would be possible. A reduction in duplex 

stability would either increase match strand selectivity or in the case of severe 

destabilization impair the target as a fluorimetric probe for G containing sequences and 

SNP associated disorders. In the case of increased selectivity, an antisense ODN could be 

developed. 

2.1 General pC Synthesis 

Synthetic routes towards the pC nucleoside typically follow one of two methodologies. 

The general features of pC synthesis are illustrated in Scheme 2.1.  The chemistry 

utilized depends on the substitution desired at the 6 position of the pyrrole and the nucleic 

acid required.  For peptide nucleic acid (PNA), the most convenient starting point is the 

cytosine or uracil nucleobase.  For DNA / RNA structures, the deoxy- or ribonucleosides 

are most commonly used. 

 The substrates are prepared for derivatization by halogenation at the C5 position, most 

often iodination, in preparation for Sonogashira cross coupling chemistry. The desired, 
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fused bicyclic structure is achieved by the intramolecular cyclization (5-endo dig 

annulation) of the 5-alkynyl pyrimidine.  The annulation reaction (Scheme 2.1, Approach 

1) usually occurs under mild conditions for the uracil derivative, although there is some 

substrate dependence. For instance, electron rich alkynes cyclize more rapidly than those 

that are electron deficient.  The cyclization reaction is metal 
12a-f

, base 
13a-b

 or electrophile 

14
 catalyzed and is facilitated by conventional heating or microwave irradiation 

15
.  Lewis 

acidic, alkynophilic metals have proven to be effective for this type of reaction (M
+
 =  

Cu(I) 
2
, Zn(II) 

12c
, Au(III) 

12a-b
, Hg(II) 

12a
, Pd(0) 

12f
). Utilizing approach one, the final 

transformation is the atom exchange reaction to convert the furanouracil nucleobase to 

pyrrolcytosine by treatment with ammonia 
16

.  This step is critical, of course, because 

furanouracil no longer pairs with any of the natural nucleobases.  Complementarity to 

guanine is manifested once the furanouracil is converted to the pyrrolocytosine (Figure 

2.7).  

Figure 2.7 – The Watson Crick binding faces of a) furanouracil; b) pC; c) G 

The second approach starts with cytosine or cytidine in preparation for cross-

coupling by iodination of the base.  In approach 2 (Scheme 2.1), partitioning of the 

products between the simple cross-coupled 5-alkynylcytosine and the annulated 

pyrrocytosine is controlled by the substrate.  If the nucleobase is unprotected (pathway a), 

and the conditions are not forcing, then the 5-alkynylcytosine derivatives are achieved in 

good yield 
17

.  For the intramolecular cyclization to occur (pathway b), acylation of the 

N
4 

must be undertaken prior to Sonogashira chemistry.  Using this substrate and elevated 

temperatures (60 to 80 ºC), a domino reaction sequence of cross-coupling and cyclization 
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occurs during which the benzoyl group is cleaved. The N-benzoylpyrrolocytosine is not 

fluorescent and not stable to silica gel column chromatography.  Thus, the benzoyl group 

is removed to facilitate isolation and purification of the desired pyrrolcytosine.   

Foregoing benzolyation of the exocyclic amine, cyclization has been reported using a 

gold catalyst providing low to moderate yields 
18

.  

 

Scheme 2.1 – General methodologies of pC synthesis 

The best synthetic route towards a pC analogue is case specific and must be chosen 

appropriately as each modification to the pC scaffold will generate its own synthetic 

challenges. 

2.2 Results and Discussion 

2.2.1 Towards PypdC 

Our work towards a pyrene modified pC can be divided in terms of the two synthetic 

schemes (vide supra) generally utilized to synthesize pC analogues.  

Initial attempts towards the target utilized the 2’-deoxy-5-iodouridine (II-1) starting 

material. The iodinated nucleoside readily underwent tritylation under standard 

conditions to produce the 2’-deoxy-5’-O-(4,4-dimethoxytrityl)-5-iodouridine (II-2) in 

high yield.  Usual protocol demands a one pot conversion of (II-2) to produce the 
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furanouracil intermediate (II-3) that would allow ready entry into the trityl protected 

nucleoside via ammoniolysis. Attempts at a one pot conversion of the cross coupled 

product via Cu(I) and Ag(I) catalysis after Sonogashira conditions with 1-ethynyl pyrene 

failed to produce the furanouracil intermediate (Figure 2.8). Prolonged exposure to 

catalytic amounts of the metals at elevated temperatures produced intractable mixtures 

defiant of characterization 

 

Scheme 2.2  - First attempt towards PypdC 

The 4,4-dimethoxytrityl (DMT) protecting group, was thought to be the culprit for 

degradation as our group has known it to become labile under prolonged exposure to 

elevated temperatures. In order to circumvent decomposition related to protecting group 

loss, 5-iodouridine (II-1) was acetylated to afford the 3’,5’-acetyl protected iodouridine 

(II-4). Treatment of the nucleoside with 1-ethynylpyrene under Sonogashira conditions 

and attempts at one pot cyclization (Scheme 2.3) failed. It was only upon isolation of the 
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acetyl protected cross coupled product and treatment under the aforementioned Lewis 

acidic conditions that the furanoruracil was observed in low impure yields. 

Ammoniolysis of the furanouracil afforded only intractable mixtures of non fluorescent 

products. This deoxyuridine route was left in favour of the deoxycytidine scheme.  

 

Scheme 2.3 – Second attempt towards PypdC 

2.2.2 Synthesis of PypdC 

It was unfortunate that at the time of PypdC synthesis the deoxycytidine route had fallen 

out of favour within the Hudson group as it would prove to be the most successful and 

portable method of pC synthesis. The issue of contention lay within the reproducibility of 

the benzoylation of the exocyclic amine contained within C. Seemingly attempts at 

benzoylation of the amine led to uncontrollable bis-benzoylation and a product unsuited 

for the required following transformations.  With failure observed via the deoxyuridine 

route, the deoxycytidine methodology was undertaken (Scheme 2.4).  

Deoxycytidine was treated under acidic conditions with acetyl chloride to generate the 

3’,5’-acetyl protected cytidine (II-7) in quantitative yield. The protected nucleoside 

proved highly amenable to iodination (II-8) with subsequent purification by column 

chromatography made possible by its increased lipophilicity.  

To realize the monobenzoyl intermediate (II-9), microwave conditions were utilized. The 

reaction mixture was subjected to 120 °C at 45 s intervals and checked by TLC until 

completion. While facile and highly reproducible the scale to which the microwave could 
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be applied and the lack of constant access to a microwave lead to the exploration of 

thermal techniques to reach the intermediate. Treatment of (II-8) with benzoic anhydride 

in dry pyridine at 90 °C under nitrogen allowed for the selective production of 

monobenzoylated C (II-9) with little to no bis benzoylated product observed.  Despite a 

lower yield and increased reaction time, we were able to circumvent the need for 

microwave chemistry and produce (II-9) on the gram scale.  

With the selective protection and therefore access to the aforementioned acyl protected  

N
4
 cytidine  possible (II-9), the application of the Sonogashira tandem annulation 

reaction was attempted. While a number of conditions were screened, only one provided 

the desired result in acceptable yield. An oven dried flask charged with 1-ethynyl pyrene 

and (II-9) in dry deoxygenated DMF with subsequent addition of the metal catalysts and 

triethylamine in appreciable excess would allow for the eventual isolation of the acyl 

protected PypdC. Purification of the reaction mixture proved problematic. Initial attempts 

followed conditions outlined within the group led to the capture of impure acetylated 

PypdC. The impurities were due to excessive band broadening and rapid coelution of 

products. The purification process was revised. The crude reaction mixture was washed 

against EDTA and brine as opposed to the suggested removal of DMF by rotary 

evaporation. Column chromatography was then performed under a number of conditions, 

however, the most successful conditions were determined to be the use of 

toluene/methanol with gravity controlled flow. The desired fractions were taken to 

dryness, dissolved in DCM and added by slow drop wise addition to stirring hexanes. The 

slow addition was pivotal as rapid addition yielded inferior product with severe 

discolouration and impurity by NMR.     
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Scheme 2.4 – Synthesis of PypdC phosphoramidite 
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To reach oligonucleotide synthesis and to obtain nucleoside photophysical 

characterization, a deacetylation procedure was required. While conceptually simple, 

preliminary attempts proved only mildly fruitful. The conditions chosen called for 

potassium carbonate in alcoholic solvent. The conditions were based upon the idea of 

easy clean up (filtration of the insoluble base) as column chromatography of the 

unprotected nucleoside was an unattractive proposition considering the difficulty in 

processing the protected nucleoside.  First attempts at deacetylation proved only mildly 

fruitful as reaction progress was difficult to obtain reliably. This was likely due to the 

production of a molecule that on one end contained a hydrophilic carbohydrate and on the 

other a hydrophobic pyrene “head”. This functionality led to difficulty in the monitoring 

of reaction progress by TLC as extreme streaking was observed. To take advantage of the 

potential clean reaction, UPLC ESI/MS was employed to follow reaction progress. UPLC 

allowed resolution between the three possible materials whose identities were confirmed 

by the in tandem mass spectrometer. Monitoring the reaction by this method allowed for 

complete conversion of (II-10) to the PypdC nucleoside (II-11) in high yield. First 

success was observed in methanol, however the reaction times proved far too long to be 

suitable. The alcoholic solvent was changed to ethanol and a reduction in reaction time 

from 4 days to 18 hours was obtained.  

In order to obtain selectivity for the carbohydrate hydroxyls in preparation for 

phosphoramidite ODN synthesis, the bulky 4,4-dimethoxytrityl protecting group is used 

to protect the primary alcohol of the carbohydrate. A notoriously finicky reaction, the 

tritylation reaction was attempted under stringent dry conditions with firm thermal 

controls to allow the combination of the requisite materials under cool temperatures and 

reaction at room temperature. Utilizing oven dried flasks and anhydrous pyridine treated 

with 4 Ǻ molecular sieves, the nucleoside (II-11) was dried by rotary evaporation with 

dry pyridine a number of times and placed under high vacuum overnight to ensure an 

absence of water. Both the dried nucleoside and protecting group chloride were gently 

dissolved in their respective dry flasks under nitrogen with pyridine at 0 °C by dropwise 

dissolution. Rapid dissolution had been observed to reduce yields and even cause no 

reactions for otherwise simple substrates. Mixing of the solutions at 0 °C under nitrogen 

provided the trityl protected PypdC (II-12) in acceptable yield. Purification, while 



31 

 

initially expected to be an unpleasant affair, mirrored the acetyl protected PypdC and was 

undramatic. 

The phosphoramidite monomer for oligo synthesis contains not only the trityl protected 

primary hydroxyl but the phosphitylated secondary hydroxyl of the carbohydrate 

allowing for orthogonal deprotection and coupling steps. Entry into the PypdC monomer 

followed conditions outlined by Dr. Ghorbani Choghamarani 
11

 and while allowing for 

facile synthesis of the monomer provided a phosphorous based impurity. The impurity 

carried through aqueous work up, chromatography and even precipitation from 

DCM/hexanes. Distillation of the phosphitylating agent removed the impurity from the 

reaction mixture and isolated material.  

2.2.3 Incorporation into DNA 

The PypdC phosphoramdite was incorporated into synthetic oligodeoxynucleotides 

(ODNs) utilizing the standard phoshphoramadite cycle and purified by the trityl ON 

method (Scheme 2.5). All sequences synthesized utilized a T-resin.  Three sequences 

containing PypdC were synthesized, Mano 1 Mod, Mano 2 Mod, and CFTR Mod. 

Incorporation of the modifications was a facile process and proceeded by acceptable yield 

without the modification of standard coupling time (Table 2.1).  

Table 2.1 – Coupling efficiency of the PypdC phosphoramidite 

Sequence Name Sequence (5’  3’) Coupling Yield (%) 

 Mano 1 Mod (II-14) GTA GAT X ACT 89.2 

 Mano 2 Mod (II-15) GTA GAT CXC T 94.6 

CFTR Mod (II-16) CTT TCC TXC CAC TGT 93.5 

X = PypdC 

 

Mano 1 Mod and Mano 2 Mod were chosen as synthetic targets as they have a rich 

literature history first developed by Manoharan for studies on a C analogue known as “g-
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clamp” 
19

. Use of the known sequences is an attempt by the Hudson group for the 

standardization of initial sequences for comparison of newly synthesized analogues. 

 The CFTR Mod sequence was chosen as a practical application model. CFTR, an 

acronym for Cystic Fibrosis Transmembrane Conductance Regulator describes a 

particular gene susceptible to mutation leading to the disease state of Cystic Fibrosis (CF) 

20
. CF is the most frequent recessive autosomal disease in the Caucasian population and 

can be caused by a number of point mutations in the CFTR gene. One of these point 

mutations (SNP) known as W1282X 
20

   is thought to be the most common CF mutation 

in the Askenzai Jewish population where it may be present in up to 50 – 60 % of CF 

chromosomes 
20

.  

We aimed to develop a fluorescent probe capable of seeking out and identifying the 

W1282X mutation. We implemented the PypdC modification in the hopes of observing 

fluorescence changes communicating the SNP condition. 

The modified oligos were cleaved from the T-resin by treatment with ammonia in water 

at 50 °C overnight in small screw cap vials. After cleavage the vessels were left at the 

elevated temperature sans cap to remove any ammonia in preparation for HPLC 

purification. The vessels were heated until ammonia could not be sensed by smell. 
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Scheme 2.5 – The trityl ON / OFF methods of ODN purification 

Filtration of the cleaved oligo from the glass resin typically uses a 0.2 μM pore filter 

fed by 1 mL syringe. However, due to the viscosity of the solution and small pore size of 

the filter, filtration using the syringe proved impossible as excessive force was required 

causing the syringes to break. To prevent the loss of material by mishandling and 
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filtration losses, the pore size was increased to 0.45 μM. The increased pore size of the 

filter proved sufficient for the separation of the solvated oligo from the resin.  

In order to avoid preparative scale HPLC and expedite the purification process, the 

solvated oligos were treated by lyophilization and taken to dryness. They were re-

dissolved in 250 μL pH 7 buffer (triethylammonium acetate) in preparation for 

concentrated injections upon the analytical scale HPLC column. Most of the residual 

white solid dissolved readily, however, a fine white cloud was observed and 10 μL 

injections provided UV-Vis spectra with absorptions at ~ 4 minutes; a retention time too 

fast to be an olignucleotide. The absorption proved so dominant that any present oligo 

was not observed by UV-Vis trace. Despite suspension in mixtures of up to 25% DMSO 

and 75% buffer, dissolution was not observed and the ODNs could not be detected. The 

suspensions were therefore treated by centrifugation for purification of only the mother 

liquor was undertaken. Removal of the mother liquor from the resulting white pellet and 

observation by HPLC yielded both the desired DNA and truncated sequences produced 

by the DNA synthesizer.  The trityl ON sequences were then separated from the truncated 

sequences. The trityl ON sequences were deprotected by treatment with 80% acetic acid 

in water for 45 minutes and purified as above.    

2.2.4 Nucleoside Fluorescence  

Pertinent to our understanding of the interaction of the substituent pyrene with the 

scaffold pdC, is the fluorescence characterization of the naked nucleoside. Observation of 

these properties helps to explain the electronics of the molecule when incorporated into 

oligonucleotides or when used as a standalone probe. 

Fluorescence characterization began with obtaining the normalized excitation and 

emission profiles in ethanol and water (Figure 2.8 / Figure 2.9). 
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Figure 2.8 – Luminescence profile of PypdC at 2.2 μM in ethanol 

 

Figure 2.9 - Luminescence profile of PypdC at 2.2 μM in water normalized to Figure 

2.8. 

It is evident that equimolar concentrations of PypdC behave very differently in ethanol 

than in water. Likely due to polarity difference, one observes λex = 388 nm and λem = 443 

nm in ethanol in contrast to λex = 377 nm and λem = 485 nm in water. A considerable 
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change in Stokes shift of 53 nm occurs when traversing between the two solvents (Table 

2.2). Concurrent with Stokes shift change is marked decrease in fluorescence intensity.  

The increased Stokes shift in water points towards a destabilization of the excited state in 

comparison to ethanol. The energy required to cause transition becomes larger in the 

more polar solvent or conversely smaller in the less polar solvent. The change in energy 

between the So and S1 may even go as far as to explain the decrease in fluorescence 

intensity. As the energy gap becomes larger (greater stokes shift), then the likelihood of 

non radiative processes such as internal conversion becomes more favourable. The 

consequence of this is that as ΦIC increases, Φf decreases. This would manifest itself as 

decreased fluorescence intensity at equimolar concentration and as a decrease in quantum 

yield (Table 2.2) 

Table 2.2 – Photophysical summary of PypdC 

Compound Solvent λex
a 

λem
a
 ε

b
 Φf 

Stokes 

Shift
a
 

Brightness 
Polarity 

Sensitivity 

PypdC ethanol 388 443 16.0 0.6 55 9.6 

34 

 water 377 485 - 0.02 108 - 

a
nm, 

b
10

3
 M

-1
cm

-1
,
c
cm

-1
/(kcal∙mol

-1
) 

With such a drastic change in behaviour observed in fluorescence intensity (an 

approximate 30 fold increase in ethanol vs. water) and near doubling of stokes shift from 

ethanol to water, one becomes tempted to label PypdC as a solvatchromatic fluorophore. 

Such a fluorophore could be envisioned as a polarity reporter of enzymatic active sites, a 

reporter of duplex polarity, or more classically as a base discriminating fluorophore.  

To test the possibility of PypdC as a microenvironmental polarity reporter, the Et(30) 

method was applied. Unfortunately, the polarity sensitivity determined proved to be of 

lesser value and less dramatic than literature molecules. The use of PypdC as a polarity 

reporter probe is yet to undergo further investigation. 
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Normalized luminescence plots of PypdC and pyrene (Figure 2.10) were used to 

understand pyrene’s interaction with pdC. We observe a red shift in tandem with the 

retention of the S3, S2, and S1 (left to right respectively – Figure 2.10) excited states 

indicative of pyrene in the plot of PypdC. While we see excitation structure similar to that 

of pyrene, we see very little in the emission that is reminiscent of the moiety. The lack of 

fine structure points towards a high rate of internal conversion from upper energy states 

to the S1 followed by relaxation to the S0 with the release of light. The broadening of the 

excitation and emission curves of PypdC with respect to that of pyrene indicates a mix of 

electronic character between that of pdC and pyrene and that the fluorescence emission 

may not be wholly attributed to the pyrene moiety itself.     

 

Figure 2.10 – Normalized luminescence of PypdC vs. pyrene. 
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Figure 2.11 – Normalized lumincescence of PhpdC and PypdC 

Further bolstering the mixed electronic character hypothesis of PypdC is the comparison 

of normalized excitation and emission plots of PhpdC with that of PypdC (Figure 2.11). 

Both the excitation and emission plots of PypdC closely resemble those of PhpdC in 

structure and even wavelength emission maxima indicating that PypdC electronics more 

closely resemble that of PhpdC than that of pyrene. 

2.2.5 Oligonucleotide Stability 

When introducing a modification into DNA, one needs to consider the effect that the 

modification has upon the hybridization of the duplex it is forming. Hence, “how large 

can the substitution become before it comprises duplex stability?” is of great importance 

to practical application in biological samples and with respect to the tuning of 

fluorescence properties.   

We set out to understand the effect that the large poly aromatic hydrocarbon 

substituted pdC might have on hybridization by performing UV-Vis thermal denaturation 

experiments. Of the three oligonucleotides synthesized only a partial data set of CFTR 

Mod could be obtained due unfortunate material shortages and instrumental errors. The 

CTFR Mod oligo was compared to its natural C counterpart and it was found that a 
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stabilization effect of + 6 °C was observed for the PypdC modified oligo vs. its C 

counterpart (Table 2.3).  

Table 2.3 – Thermal denaturation of CFTR Mod and control 

 

Tm (°C) 

Target strand (5’3’) 

ACA GTG GXA GGA AAG 

DNA Sequence 

(5’3’) 
 X = G  X = A  X = C  X = T 

     

CTT TCC T PypdC C CAC TGT (II-16) 51 ± 1 42 ± 1 46 ± 1 45 ± 1 

 CTT TCC TCC CAC TGT 45 ± 1 - - - 

100 mM NaCl, 10 mM Na2HPO4, 0.1 mM EDTA, pH 7 

The stabilization effect is reminiscent of a tricyclic cytosine analogue which was 

designed as a helix stabilizing modification for antisense applications in 1995 by 

Matteucci and coworkers 
21

. Matteuci planned to use an extended aromatic face to engage 

greater pi stacking with neighbouring bases in order to produce irreversible binding for 

gene knockdown. Their studies similarly showed melt temperature increases with respect 

to the control in addition to good discrimination between guanine and adenine 
21

. 

While an incomplete data set for the CFTR Mod oligo makes interpretation difficult, if 

not impossible, one is able to recognize the unusually high and yet consistent Tm values 

for the mismatch cases. One would expect melt temperatures for the mismatch cases with 

respect to the natural C to be greatly reduced from the match case by up to 10 °C. One 

could postulate mismatch melts to be in the 30 – 40 °C range, which is yet lower than the 

temperatures observed for the mismatch cases of the CFTR Mod oligo. These early melt 

studies indicate that a net destabilization should not be observed for the modification but 

rather a net stabilization will be observed likely due to the extended aromatic face of 

pyrene interacting with neighbouring bases. If the net stabilization for the mismatch cases 
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should be true then little to no discrimination may be observed in terms of wild type vs. 

mutant gene selection allowing for fluorimetric signaling of matches and mismatches. 

2.2.6 ODN Fluorescence 

Fluorescence intensity studies of CFTR Mod were carried out to determine whether or 

not PypdC could be used as a classical base discriminating fluorophore reporting 

complementarity by fluorescence intensity (Figure 2.11).   

 

Figure 2.12 – Fluorescence intensity change of CFTR Mod against G,A,C,T and in the ss 

state at 1.5 μM 

Like pdC analogues before it, it seems that the PypdC modification is able to 

fluorimetrically respond to its base pairing partner by changes in fluorescence 

intensity. Arguably more interesting than the observed intensity changes, is the 

change in Stokes shift in the match case versus the mismatch and single strand cases 

(Table 2.4). To our knowledge, pdC analogues have yet to communicate base pairing 

partners by a change in Stokes shift. PypdC is the first example of such a 

discriminating base which in tandem with a quenching effect could readily signal a 

match or mismatch case by Stokes shift change 
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Table 2.4 – Photophysical summary of CFTR Mod 

X
a
 λex (nm) λem(nm) 

Stokes shift 

(nm) 

Intensity 

change (%)
b
 

G 397 487 90 -48 

A 396 478 82 -12 

C 397 473 76 + 16 

T 396 474 78 + 2.0 

SS
c
 396 471 75 - 

a
CFTR target, 

b
from ss intensity, 

c
CFTR Mod single strand 

The ability of PypdC to discriminate a match or mismatch by changes in Stokes shift 

as opposed to intensity would circumvent the need for an internal standard for ratiometric 

analysis of the base partner. Intensity changes may be attributed to a number of 

possibilities such as inner filter effect or quenching due to molecules in solution. While 

quenching effects are subject to a number of conditions a Stokes shift change is 

representative of the immediate microenvironment surrounding the base and would 

eliminate some uncertainty observed for previous pyrrolocytosine analogues.    

2.3 Conclusions and Future work 

The PypdC nucleoside was synthesized and photophysical characterization was 

completed. The DNA monomer was prepared and was successfully incorporated into 

three synthetic ODNs in acceptable coupling yields. Preliminary hybridization studies 

and fluorescence measurements performed upon the CFTR Mod sequence showed that a 

stabilization effect upon the duplex is observed in the C case if a PypdC insert is present 

(question 1). PypdC seems to be the first example of an intrinsic fluorophore capable of 

base discrimination by Stokes shift change rather than intensity change (question 2). 

Due to the unique nature of the PypdC modification and because of pyrenes’ ability to be 

involved in excimer and monomer based fluorescence we have designed (and have begun 

to implement) new diagnostic technologies. 
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 In hopes of capitalizing upon the colour changing behavior of the PypdC insert, we 

propose a technology in which three inserts lay adjacent to eachother (Figure 2.12). 

 

Figure 2.13 – Possible PypdC excimer based probe 

 We imagine that this beacon, when hybridized to a match/mismatch will cause a colour 

change in the excimer if not classical intensity change typical of pdC analogues.  

An initial attempt at synthesizing this probe was undertaken, however, the coupling of 

three consecutive modifications proved problematic as three oligonucleotides were 

observed when cleaved from the resin (Figure 2.13). Each ODN is likely due to a failed 

coupling after each insert followed by capping. Presumably increased coupling times will 

lead to fewer (if no) side products. 

 

Figure 2.14 – HPLC trace of a failed synthesis towards a new PypdC probe 
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2.4 Experimental 

2.4.1 Synthetic Procedures and Characterization 

Synthesis of 3’,5’-O-acetyl-2’-deoxycytidine (II-7) 

Acetyl chloride (4.2 mL, 59.3 mmol) was taken into 10 mL chloroform and added 

dropwise to 2’-deoxycytidine (1.2 g, 5.39 mmol) dissolved in 10 mL acetic acid cooled to 

0 °C. After stirring at r.t. for 24 h the reaction mixture was placed on ice and allowed to 

cool for 15 minutes. The reaction was then quenched by the dropwise addition of 

methanol (10 mL) and allowed to stir at r.t. for 10 minutes. After quenching, the solvent 

was removed by rotary evaporation yield to yield an amorphous white solid (1.86 g, 

quantitative). 
1
H NMR (DMSO-d6): δ = 9.58 (br,s, 1H), 8.62 (br,s,1H), 7.92 (d, J1 =7.82 

Hz, 1H), 6.16 (m, 1H), 6.09 (t, J1 = 6.84 Hz, 1H), 5.18 (m, 1H), 4.23 (br,s,3H), 2.41 (m, 

2H), 2.06 (s, 3H), 2.04 (s, 3H). 
13

C NMR (DMSO-d6): δ = 170.19, 170.06, 160.66, 

148.30, 143.78, 94.47, 86.11, 81.88, 73.83, 63.57, 36.58, 20.78, 20.63. HRMS (ESI) m/z 

calcd for C13H18N3O6 [MH
+
] 312.1196, found 312.1198. 

Synthesis of 2’-Deoxy-3’,5’-O-acetyl-5-iodocytidine (II-8) 

To 3’,5’-O-acetyl-2’-deoxycytidine (2.0 g, 6.42 mmol) dissolved  in 8 mL water was 

added 8 mL carbon tetrachloride, I2 (0.98 g, 3.85 mmol), HIO3 (0.34 g, 1.92 mmol), and 

16 mL acetic acid. The mixture was heated to 40 °C and subjected to vigorous stirring. 

Upon completion the solvent was removed by rotary evaporation to afford a dark brown 

residue. The residue was taken into 50 mL DCM and washed against two 50 mL portions 

of 1 M sodium bicarbonate. The organic layer was dried with sodium sulphate and 

removed by rotovap to produce dark brown coloured foam. The foam was subjected to 

column chromatography. Utilizing gradient elution (DCM 2:3 DCM / acetone) 2’-

Deoxy-3’,5’-O-acetyl-5-iodocytidine was obtained in 65 % yield (1.82 g).
 1

H NMR 

(DMSO-d6): δ = 9.14 (br, s, 1H), 8.47 (br, s, 1H), 8.17 (s, 1H), 6.06 (t, J1= 6.84 Hz, 1H), 

5.18 (m, 1H), 4.26 (m, 3H), 2.47 (m, 1H), 2.37 (m, 1H), 2.09 (s, 1H), 2.06 (s, 1H). 
13

C 

NMR (DMSO-d6): δ = 170.06, 170.01, 161.34, 149.97, 148.52, 86.18, 81.91, 73.81, 

63.51, 57.31, 48.61, 36.76, 20.78. HRMS (EI) m/z calcd for C13H16IN3O6 [M
+
] 437.0084, 

found 437.0084. 
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Synthesis of 2’-Deoxy-3’,5’-O-acetyl-N
4
-benzoyl-5-iodocytidine (II-9) 

To an oven dried flask was added 2’-deoxy-3’,5’-O-acetyl-5-iodocytidine (1.0 g, 2.28 

mmol) and benzoic anhydride (0.77 g, 3.43 mmol). The solids were placed under N2 and 

10 mL dry pyridine was syringed into the reaction vessel. The stirring mixture was heated 

to 90 °C until completion.  The reaction solvent was then removed by rotary evaporation 

and the subsequent residue was subjected to multiple co evaporations with toluene to 

produce a white solid. The solid was further purified by column chromatography and 

gradient elution (DCM  95:5 DCM/acetone) to yield 2’-deoxy-3’,5’-O-acetyl-N
4
-

benzoyl-5-iodocytidine (0.81 g, 67 %). 
 1

H NMR (DMSO-d6): δ = 12.83 (s, 1H), 8.24 (m, 

3H), 7.62 (m, 1H), 7.53 (m, 1H), 6.12 (t, J1= 6.84 Hz, 1H), 5.21 (m, 1H), 4.28 (m, 3H), 

2.54 (m, 1H), 2.36 (m, 1H), 2.13 (s, 3H), 2.07 (s, 3H). 
13

C NMR (DMSO-d6): δ = 178.04, 

170.05, 170.00, 156.14, 147.21, 146.43, 136.19, 132.84, 129.51, 128.38, 85.96, 81.94, 

73.78, 69.97, 63.50, 36.50, 20.81, 20.75. HRMS (EI) m/z calcd for C20H20IN3O7 [M
+
] 

541.0346, found 541.0331.
 

Synthesis of 2’-Deoxy-3’,5’-O-acetyl-6-(1-pyrenylethynyl)pyrrolocytidine (II-10) 

To dry DMF (5 mL) was added 2’-deoxy-3’,5’-O-acetyl-N
4
-benzoyl-5-iodocytidine (0.20 

g, 0.369 mmol) and 1-ethynylpyrene (0.12 g, 0.554 mmol). The stirring mixture was 

degassed and placed under N2 utilizing a dry ice / acetone bath and dry line. To the 

degassed mixture was added Pd(PPh3)4 (42 mg, 0.03 mmol) and CuI (14 mg, 0.07 mmol) 

followed by further deoxygenation utilizing the previously described procedure. 

Deoxygenated triethylamine (0.18 mL, 1.4 mmol) was then added to the reaction mixture. 

The reaction mixture was stirred in darkness at 50 °C for 18 hrs. 10 mL anhydrous 

ethanol and 0.18 mL triethylamine was further added to the vessel once 18 hrs had 

elapsed. The reaction was kept in darkness under N2 at 50 °C for an additional 18 hrs. 

Upon completion the reaction was diluted with 25 mL DCM and washed against five 50 

mL portions of 5% EDTA and one 50 mL portion of brine. The organic layer was dried 

over sodium sulphate and removed by rotovap. The resulting orange/red solid was 

purified by column chromatography utilizing a toluene/methanol mobile phase (toluene 

 98:2 toluene/methanol). The desired fractions were collected and dried and taken into 
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1 mL DCM. The DCM was then dropped by pipette into 10 mL stirring hexanes to 

produce a light yellow precipitate. The precipitate was gravity filtered and allowed to air 

dry overnight. 2’-Deoxy-3’,5’-O-acetyl-6-(1-pyrenylethynyl)-pyrrolocytidine was 

collected off the filter paper as a light yellow powder (0.14 g, 75 %). 
1
H NMR (DMSO-

d6): δ = 12.02 (s, 1H), 8.62 (s, 1H), 8.52 (d, J1 = 9.38, 1H), 8.36 (m, 3H), 8.25 (m, 4H), 

8.13 (m, 1H), 6.74 (s, 1H), 6.38 (t, J1 = 6.64 Hz, 1H), 5.27 (d, J1 = 6.25, 1H), 4.37 (br, s, 

3H), 2.62 (m, 1H), 2.42 (m, 1H), 2.11 (s, 3H), 2.09 (s, 3H). 
13

C NMR (DMSO-d6): δ = 

170.28, 170.13, 159.87, 153.85, 138.79, 136.54, 130.92, 130.87, 130.35, 128.30, 128.10, 

128.04, 127.29, 127.09, 126.64, 126.30, 125.78, 125.42, 124.86, 124.34, 124.18, 123.84, 

109.72, 101.98, 87.41, 82.11, 74.23, 63.76, 38.02, 20.82, 20.69. HRMS (ESI) m/z calcd 

for C31H26N3O6 [MH
+
] 536.1822, found 536.1816. 

Synthesis of 2’-Deoxy-6-(1-pyrenylethynyl)pyrrolocytidine (II-11) 

To a suspension of 2’-deoxy-3’,5’-O-acetyl-6-(1-pyrenylethynyl)pyrrolocytidine (0.10 g, 

0.187 mmol) in 20 mL ethanol was added potassium carbonate (5 mg, 0.037 mmol). The 

reaction was stirred under ambient conditions until completion. The reaction mixture was 

filtered through a cotton plugged pipette and the mother liquor was removed by rotary 

evaporation. The remaining residue was taken into DCM and gravity filtered. A yellow 

solid was recovered from the filter paper and recrystallized from water/ethanol to produce 

the target unprotected nucleoside (0.0844 mg, 85%). 
1
H NMR (DMSO-d6): δ = 11.97 (s, 

1H), 8.86 (s, 1H), 8.52 (d, J1=9.38 Hz, 1H), 8.36 (m, 3H), 8.25 (m, 4H), 8.13 (m, 1H), 

6.69 (s, 1H), 6.33 (t, J1= 6.25 Hz, 1H), 5.32 (d, J1= 3.91 Hz, 1H), 5.17 (t, J1=5.08, 1H), 

4.30 (m, 1H), 3.94 (q, J1=3.91, 1H), 3.69 (m, 2H), 2.42 (ddd, J1= 13.29 Hz, J2=5.86, 

J3=3.91, 1H), 2.09 (dt, J1=13.38 Hz, J2= 6.4 Hz).  
13

C NMR (DMSO-d6): δ = 159.61, 

153.99, 138.38, 136.91, 130.94, 130.82, 130.38, 128.28, 128.08, 128.04, 127.32, 127.10, 

126.64, 126.43, 125.77, 125.40, 124.88, 124.11, 124.20, 123.87, 109.30, 101.92, 88.04, 

87.19, 70.06, 61.12, 41.64. HRMS (ESI) m/z calcd for C27H22N3O4 [MH
+
] 452.1610, 

found 452.1601. 
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Synthesis of 2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-6-(1-

pyrenylethynyl)pyrrolocytidine (II-12) 

2’-Deoxy-6-(1-pyrenylethynyl)pyrrolocytidine (0.10 g, 0.187 mmol) was dissolved in 10 

mL pyridine and dried by rotovap three times. The residue was then placed on high 

vacuum overnight. The dried nucleoside was placed under N2 and dissolved in 10 mL 

dried pyridine and stirred with DIPEA (0.09 mL, 0.559 mmol) at 0 °C. A separate oven 

dried vessel was charged with dimethoxytritylchloride (0.082 g, 0.242 mmol), placed 

under N2 and cooled to 0 °C. The DMTCl was then taken into 5 mL dry pyridine by slow 

dropwise dissolution on ice under N2. Upon dissolution, the DMTCl solution was added 

dropwise to the cold nucleoside mixture. The reaction mixture was allowed to stir on ice 

for 15 minutes then brought to room temperature for 18 hours. The vessel was 

subsequently brought to 0 °C and the reaction was quenched with 5 ml methanol. After 

15 minutes stirring at room temperature, the solvent was removed by rotovap and 

remaining pyridine was removed by co evaporation with toluene. The resulting 

orange/red solid was purified by column chromatography (99:2:1 

toluene/methanol/triethylamine) and the fractions of interest were gathered and 

precipitated from DCM/hexanes (0.098 g ,70 %). 
1
H NMR (DMSO-d6): δ = 11.98 (s, 

1H), 8.77 (s, 1H), 8.38 (m, 4H), 8.24 (m, 3H), 8.13 (m, 2H), 7.44 (d, J1= 7.42 Hz, 2H), 

7.32 (m, 6H), 7.25 (m, 1H) 6.90 (m, 4H), 6.34 (t, J1=5.67 Hz, 1H), 5.95 (s, 1H), 5.48 (br, 

1H), 4.47 (m, 1H), 4.05 (m, 1H), 3.66 (s, 3H), 3.64 (s, 3H), 3.41 (m, 1H), 3.33 (m, 

1H),2.53 (m, 1H), 2.27 (m, 1H). 
13

C NMR (DMSO-d6): δ = 159.61, 158.17, 153.81, 

144.72, 138.48, 136.41, 135.43, 135.18, 130.90, 130.81, 130.35, 129.82, 128.2, 127.99, 

127.92, 127.75, 127.28, 127.00, 126.84, 126.63, 126.26, 125.77, 125.44, 124.84, 124.24, 

124.14, 123.82, 113.30, 109.12, 101.24, 86.90, 86.11, 85.85, 69.42, 62.86, 54.96, 41.67. 

HRMS (ESI) m/z calcd for C48H40N3O6 [MH
+
] 754.2917, found 754.2902. 
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Synthesis of 2’-Deoxy-3’-(2-cyanoethyldiisopropylphosphoramidite)-5’-O-

(4,4’dimethoxytrityl)-6-(1-pyrenylethynyl)pyrrolocytidine (II-13) 

2-Cyanoethyldiisopropylphosphoramidochloridite (0.1354 g, 0.5724 mmol) was added to 

a solution of 2’-deoxy-5’-O-(4,4’-dimethoxytrityl)-6-(1-pyrenylethynyl)pyrrolocytidine 

(0.2862 mmol) and Et3N (0.5 mL) in dry DCM (2 mL). The reaction was allowed to stir 

at room temperature under N2 for 3 hours. The reaction was quenched with MeOH (0.5 

mL), washed with 0.5 M NaHCO3 (10 mL) and the organic phase was dried with Na2SO4. 

The residue was purified by column chromatography using gradient elution 

(DCM/acetone/Et3N, 99:0:1 to 94:5:1) to give a mixture of diastereomers as a yellow 

foam, 0.2147 g (80%). 
1
H NMR (DMSO-d6): δ = 11.99 (br, 1H), 8.80 and 8.76 (2 s, 1H), 

8.1 – 8.40 (m, 9 H), 7.25 – 7.46 (m, 9 H), 6.88 – 6.92 (m, 4 H), 6.32 – 6.39 (2 m, 1H), 

5.96 – 6.00 (2 s, 1 H), 4.69 (m, 1H), 4.17 – 4.22 (2 m, 1H), 3.69 – 3.78 (m, 1H), 3.65 – 

3.67 (3 s, 6H), 3.51 – 3.60 (m, 2H), 2.78 – 2.61 (m, 2H), 2.67 – 2.70 (m, 2H), 2.59 – 2.65 

(m, 1H), 2.40 – 2.45 (m, 1H), 1.02 – 1.17 (m, 14 H). 
31

P NMR (DMSO-d6): δ = 147.76, 

147.54.  HRMS (ESI) m/z calcd for C57H57N5O7P [MH
+
] 955.4074, found 954.3995. 

Mano 1 Mod (II-14) HRMS (ESI) calculated for C116H132N37O58P9 [M-H]
-1

 :  3248.5995, 

Found:  3248.5566 

Mano 2 Mod (II-15) HRMS (ESI) calculated for C115H132N35O59P9: 3224.5965 [M-H]
-1

, 

Found: 3224.5976 

CFTR Mod (II-16) HRMS (ESI)    for C161H195N43O93P14: 4650.8100 [M-H]
-1

, Found: 

4650.6897 
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Chapter 3 – Pyrenylethynylcytidine 

3 Introduction – Serendipity   

Arguably, for a fluorophore there are at minimum three main components for 

fluorescence tuning, (1) fluorescence quantum yield; (2) molar absorptivity; (3) stokes 

shift.  For intrinsic fluorophores such as the pdCs to become competitive with 

commercially available fluorophores such as the rhodamines and alexa dyes, one needs to 

maximize their brightness. Brightness maximization could mean either increasing the 

fluorescence quantum yield or increasing the molar absorptivity of the molecule.  

In Chapter 2 we discussed how pyrrolocytidines were a serendipitous discovery made by 

the Hudson group some years ago.  The initial molecules of interest were 5-

alkynylpyrimidines which only displayed modest fluorescence properties.  Now as 

serendipity would have it that as progress was made towards PypdC, a 5-

pyrenylethynyluracil was synthesized  

Under ambient conditions and sunlight, the 5-pyrenylethynyluracil derivative exhibited a 

prominent dark purple fluorescence. Even upon serial dilutions the uracil analogue 

displayed a highly attractive level of fluorescence. This was attributed to a number of 

possibilities, one of which it was assumed that the molecule must have a high brightness 

factor in order to be seen in the well lit room.  

We set out to synthesize a base that would take advantage of this increased brightness yet 

still be base pairing competent with G. The corollary of these demands was a PypdC 

congener, or rather a pyrenylethynylcytidine (PyEtdC) base (Figure 3.1).  

The prospect of the new molecule opened a new set of possibilities for exploration. How 

do the electronics of the base change when pyrene is directly connected to the base rather 

than conjugated through a pyrrole? What causes the visible brightness change? Does it 

maintain its ability to act as a BDF? And finally, what new technologies can we develop 

to harvest these new discoveries?  



51 

 

 

Figure 3.1 – PypdC (left) & PyEtdC (right) 

3.1 Results and Discussion 

3.1.1 Towards PyEtdC in DNA 

Synthesizing a pyrene cross coupled C analogue seems simple. In fact, synthesizing the 

nucleoside for photophysical analysis is a matter of one reaction. The goal of the project 

however, was not to merely synthesize the nucleoside but rather to synthesize it and 

incorporate it into ODNs. This requirement brought with it a host of demands. 

Introduction of the benzoyl protecting group after cross coupling, while valid, drastically 

reduces ease of purification and increases material loss of the intermediates by 

purification (Scheme 3.1).  More specifically (III-2) does not lend itself easily to column 

chromatography and unacceptably low yields are obtained during the purification process 

of the molecule. 
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Scheme 3.1 – Proposed route to PyEtdC phosphoramidite 

To meet these problems we utilized the lesser known dimethylformamidino (dmf) 

protecting group. Dimethylformamidino was reasoned to not open the annulation 

pathway, introduce sufficient lipophilicity for easy column chromatography, and still 

allow orthogonal protection and deprotection for ODN synthesis. We further realized that 

unlike previous syntheses, the use of acetyl protecting groups would become 

unnecessary. The dmf protection would afford us chemoselective protection of the 

exocyclic amine, which could then be followed by regioselective protection of the 

primary alcohol of the carbohydrate by standard treatment with DMTCl. The fully 

protected and halogenated nucleoside could then undergo cross coupling with ethynyl 

pyrene and subsequent phosphitylation to produce the desired DNA monomer.  
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Scheme 3.2 – Synthesis of PyEtdC phosphoramidite 

Introduction of the dimethyl formamidino group proved to be a facile process which not 

only proceeded in high yield but provided a substrate (III-7) highly amenable to trityl 

protection. As mentioned in Chapter 2, tritylation reactions have been known to be 

problematic. Presumably the issues lies with the substrate as uridine protection occurs in 

high yield (~ 90%) while dC protection or pdC protection requires the utmost stringency 

to obtain moderate success. In this case, protection of the dmf protected 5-iodo C (III-7) 

nucleoside proceeded in an unprecedented 88% yield. 

 Cross coupling of the pyrene moiety to the protected nucleoside (III-8) proved less 

effective than tritylation. Isolation of the title compound (III-9) only occurred in 
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moderate yield and numerous attempts at optimization proved fruitless. The yield was 

sufficient however for forwards progress and the nucleoside was prepared for 

phosphitylation.  

Preparation of the DNA monomer (III-10) with phosphitylating agent resulted in a 

yellow foam that has yet to undergo complete characterization. However, preliminary 

analysis by ESI / MS has revealed the presence of the desired phospharamidite.  

3.1.2 Synthesis of PyEtdC  

It is important to characterize the photophysical properties of the unprotected nucleoside 

in order to gain a better understanding of the modification in ODNs. With the importance 

of the bare nucleoside known, it was important to determine a facile method to synthesize 

the desired material.  

Review of the synthesis proposed for the DNA monomer (III-10) showed an unnecessary 

number of steps to obtain the nucleoside and would consume precious material better 

utilized for DNA synthesis.  

In order to combat wasteful chemistries, a simple one step coupling was proposed 

between 5-iododeoxycytidine (III-6) and 1-ethynyl pyrene. The reaction was performed 

without difficulty as the reagents proved soluble in DMF. As was expected however, 

purification of the resultant nucleoside (III-11) proved difficult. Observed by TLC was a 

spot to spot conversion of the limiting reagent (III-6). This would seemingly imply a 

complete consumption of material by coupling rather than degradation due to the 

relatively gentle Sonogashira conditions. This assumption proved difficult to corroborate 

as work up and purification produced only a 50% yield. The expectant difficulty in 

isolation was and always has been attributed to the polarity of the unprotected nucleoside. 

The molecule generally irreversibly binds to silica and is commonly, “lost” in column 

chromatography.  
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3.1.3 PyEtdC Photophysics  

We began our photophysical survey of the PyEtdC nucleoside by examining the 

characteristic excitation and emission spectra in ethanol and water (Figure3.2 / Figure 

3.3).  

 

Figure 3.2 – Luminescence profile of PyEtdC in ethanol at 1.1 μM  

 

Figure 3.3 - Luminescence profile of PyEtdC in water at 1.1 μM normalized to the 

highest intensity peak in Figure 3.2 
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Of immediate interest is the very small Stokes shift (Table 3.1) not observed in pyrene 

(Figure 3.4). We further observe less dramatic red shifting of the PyEtdC profile (in 

comparison to PypdC) from pyrene (Figure 3.4). Now, as is the case in PypdC we 

observe the involvement of the S3, S2, and S1 excited states in the fine structure of the 

excitation plot. However, unlike PypdC we observe emission reminiscent of pyrene. This 

may indicate that the base contributes little fluorescence character and that the molecule 

more closely reflects the electronics of the substituent.  

 

Figure 3.4 – PyEtdC luminescence profile vs. pyrene. 

Further bolstering the argument, we see very little fluorescence character reminiscent of 

PhpdC (Figure 3.5) showing a drastic departure from the traditional Hudson group 

fluorophore. These excitation and emission spectra further provide evidence that PyEtdC 

is less like PhpdC and PypdC and more closely related to pyrene.   
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Figure 3.5 – Normalized fluorescence of PhpdC and PyEtdC 

A greater ON response in ethanol is observed for that of PyEtdC nucleoside (~ 333 times 

more fluorescent) than that of the PypdC analogue (~ 66 times more fluorescent) in 

water. PyEtdC further displays aggregative behaviour in water as excimer emission is 

observed (Figure 3.3) which is not observed (Figure 3.2) at equimolar concentration in 

ethanol. The aggregative behaviour may indicate a high affinity for base stacking which 

may imply facile entrance into excimer technologies that may not be possible with the 

PypdC analogue. 

A photophysical survey of PyEtdC in comparison to PypdC (Table 3.1) shows two very 

different molecules.  
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Table 3.1 – Comparison of PypdC & PyEtdC 

Compound Solvent λex
a
 λem

a
 ε

b
 Φf 

Stokes 

shift
a
 

Brightness 
Polarity 

sensitivity
c
 

PypdC Ethanol 388 443 16.0 0.6 55 9.6 

34 

 Water 377 485 - 0.018 108 - 

PyEtdC Ethanol 363 393 31.0 .55 30 17 

31 

 water 383 394 - 0.003 11 - 

a
nm, 

b
10

3
 M

-1
cm

-1
,
c
cm

-1
/(kcal∙mol

-1
) 

 

In terms of brightness, we clearly observe a molar absorptivity difference between PypdC 

and PyEtdC of nearly two fold in favour of PyEtdC. The fluorescence quantum yields are 

quite close, so this difference can be attributed solely to the difference in molar extinction 

coefficient. Thus PyEtdC is a significantly brighter fluorophore even at the mismatched 

molarities (Figure 3.5). 
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Figure 3.6 – Brightness comparison; PypdC (2.2 μM) vs. PyEtdC (1.1 μM) in ethanol  

3.1.4 Conclusions and Future Work 

The PyEtdC monomer for DNA synthesis has been completed in a quantity sufficient for 

preliminary ODN studies and photophysical studies on the nucleoside have been 

completed. Due to time constraints ODN synthesis has not yet been undertaken.  

Future work will include incorporation of the PyEtdC nucleoside into the Mano 1 Mod, 

Mano 2 Mod, and CFTR Mod sequences for direct comparison to PypdC and literature 

pdC analogues. Once a survey of PyEtdCs qualities has been completed, it will likely find 

itself in use as the key component in excimer and  monomer switching molecular 

beacons. 
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3.2 Experimental 

3.2.1 Synthetic Procedures and Characterization 

Synthesis of 2’-Deoxy-5-(1-pyrenylethynyl)cytidine (III-11) 

To dry DMF (5 mL) was added 2’-deoxy-5-iodocytidine (0.50 g, 1.41 mmol) and 1-

ethynylpyrene (0.41 g, 1.83 mmol). The stirring mixture was degassed and placed under 

N2 utilizing a dry ice / acetone bath and dry line. To the degassed mixture was added 

Pd(PPh3)4 (0.16 g, 0.141 mmol) and CuI (53 mg, 0.282 mmol) followed by further 

deoxygenation utilizing the previously described procedure. Deoxygenated triethylamine 

(0.72 mL, 5.64 mmol) was then added to the reaction mixture. The reaction mixture was 

stirred in darkness at r.t. for 18 hrs. Upon completion the reaction solvent was removed 

by reduced pressure and dried overnight by high vacuum. The resulting orange/red solid 

was purified by column chromatography utilizing a DCM/methanol mobile phase (95:5 

DCM/MeOH). The desired fractions were collected and dried to produce 2’-deoxy-5-(1 

pyrenylethynyl)-cytidine (0.31 g, 50%). 
1
H NMR (DMSO-d6): δ = 8.63 (s, 1H), 8.57 (d, 

J1=9.38 Hz, 1H), 8.43 (d, J1= 7.82 Hz, 1H), 8.35 (m, 4H), 8.23 (q, J1= 8.99, 2H), 8.12 (m, 

1H), 7.91 (br, s, 1H), 7.25 (br, s, 1H), 6.19 (t, J1=6.25, 1H), 5.28 (m, 2H), 4.30 (m, 1H), 

3.85 (m, 1H), 3.69 (m, 2H), 2.19 (m, 2H). HRMS (ESI) m/z calcd for C27H22N3O4 [MH
+
] 

452.1610, found 452.1590.  

Synthesis of 2’-Deoxy-N
4
-dimethylformamidino-5-iodocytidine (III-7) 

 An oven dried flask was charged with 2’-deoxy-5-iodo-cytidine (0.50 g, 1.41 mmol) and 

placed under nitrogen. To the flask was syringed 5 mL dry DMF and N,N-

dimethylformamide dimethyl acetal  (0.94 mL, 7.07 mmol). The reaction was heated to 

50 °C and stirred for 24 hrs. The reaction solvent was removed by rotovap and the 

remaining solid was subjected to column chromatography (95:5 DCM/MeOH) and the 

desired dmf protected nucleoside was isolated as white foam (0.52 g, 90 %). 
1
H NMR 

(DMSO-d6): δ = 8.58 (s, 1H), 8.46 (s, 1H), 6.08 (t, J1= 6.25 Hz, 1H), 5.22 (d, J1= 4.3 Hz, 

1H), 5.13 (t, J1=4.88 Hz, 1H), 4.21 (dd, J1=5.86 Hz, J2=3.91 Hz, 1H), 3.80 (q, J1= 3.52 

Hz, 1H), 3.64 (m, 1H), 3.55 (m, 1H), 3.20 (s, 3H), 3.12 (s, 3H), 2.18 (ddd, J1=13.19 Hz, 

J2 = 5.96, J3 = 3.91), 2.01 (dt, J1= 13.19 Hz, J2 = 6.5 Hz, 1H). 
13

C NMR (DMSO-d6): δ = 
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168.02, 158.29, 154.18, 147.33, 87.49, 85.68, 69.80, 68.71, 60.74, 40.97, 40.90, 34.92. 

HRMS (ESI) m/z calcd for C12H18N4O4I [MH
+
] 409.0373, found 409.0385. 

Synthesis of 2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-N
4
-dimethylformamidino-5-

cytidine (III-8) 

2’-Deoxy-N
4
-dimethylformamidino-5-iodocytidine (0.33 g, 0.809 mmol) was dissolved 

in 10 mL dry pyridine and taken to dryness by reduced pressure three times and subjected 

to high vacuum for a period of 12 hours. The dried nucleoside was dissolved in 5 mL 

pyridine under an inert atmosphere of nitrogen and placed on an ice bath. In a separate 

oven dried flask, DMTCl (0.41 g, 1.21 mmol) was placed under nitrogen and brought to 0 

°C. The DMTCl was dissolved by the dropwise addition of 5 mL dry pyridine and was 

transferred to the reaction vessel containing the dried nucleoside by syringe and slow 

addition on ice. Upon completion, the reaction mixture was placed in an ice bath for 15 

minutes, 5 mL methanol was added, and the reaction was allowed to stir at r.t. for 10 

minutes. The solvent was removed by rotary evaporation and the crude mixture was 

purified by column chromatography (89:10:1 DCM/MeOH/Et3N). 2’-Deoxy-5’-O-(4,4’-

dimethoxytrityl)-N
4
-dimethylformamidino-5-iodocytidine was isolated as a white foam 

(0.50 g, 88%). 
1
H NMR (DMSO-d6): δ = 8.58 (s, 1H), 8.13 (s, 2H), 7.40 (d, J1 = 7.42, 

2H), 7.30 (m, 6H), 7.23 (m, 1H), 6.91 (s, 2H), 6.89 (m, 2H), 6.11 (t, J1=6.64, 1H), 5.30 

(br, 1H), 4.20 (m, 1H), 3.93 (m, 1H), 3.73 (br, s, 6H), 3.21 (s, 3H), 3.12 (s, 3H), 2.25 (m, 

1H), 2.12 (m, 1H). 
13

C NMR (DMSO-d6): δ = 168.17, 158.37, 158.08, 154.08, 146.32, 

144.75, 135.46, 135.41, 129.73, 127.96, 127.65, 126.71, 113.31, 85.91, 85.86, 70.67, 

69.14, 63.65, 55.07, 40.92, 34.94. HRMS (ESI) m/z calcd for C33H36N4O6I [MH
+
] 

711.1680, found 711.1655. 

Synthesis of 2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-N
4
-dimethylformamidino-5-(1 

pyrenylethynyl)cytidine (III-9) 

To dry DMF (5 mL) was added 2’-deoxy-5’-O-(4,4-dimethoxytrityl)-N
4
-

dimethylformamidino-5-iodocytidine (0.50 g, 1.22 mmol) and 1-ethynylpyrene (0.41 g, 

1.83 mmol). The stirring mixture was degassed and placed under N2 utilizing a dry ice / 

acetone bath and dry line. To the degassed mixture was added Pd(PPh3)4 (0.14 g, 0.12 
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mmol) and CuI (46 mg, 0.244 mmol) followed by further deoxygenation utilizing the 

previously described procedure. Deoxygenated triethylamine (0.62 mL, 4.88 mmol) was 

then added to the reaction mixture. The reaction mixture was stirred in darkness at r.t. for 

18 hrs. Upon completion the reaction was diluted with 25 mL DCM and washed against 

five 50 mL portions of 5% EDTA and one 50 mL portion of brine. The organic layer was 

dried over sodium sulphate and removed by rotovap. The resulting orange/red solid was 

purified by column chromatography utilizing a DCM/methanol mobile phase (DCM  

97:2:1 DCM/methanol/Et3N). The desired fractions were collected and dried and taken 

into 1 mL DCM. The DCM was then dropped by pipette into 10 mL stirring hexanes to 

produce a light yellow precipitate. The precipitate was gravity filtered and allowed to air 

dry overnight. 2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-N
4
-dimethylformamidino-5-(1 

pyrenylethynyl)cytidine was collected off the filter paper as a light yellow powder (0.59 

g, 60 %). 
1
H NMR (DMSO-d6): δ = 8.81 (s, 1H), 8.73 (d, J1=8.99, 1H), 8.41 (s, 1H), 8.32 

(d, J1=7.82 Hz, 2H), 8.15 (m, 5H), 7.49 (m, 3H), 7.38 (dd, J1=8.99 Hz, J2=2.34 Hz, 4H), 

7.30 (t, J1=7.82 Hz, 2H), 7.13 (m, 1H), 6.84 (m, 4H), 6.21 (t, J1=6.45 Hz, 1H), 5.37 (d, 

J1= 4.3 Hz, 1H), 4.32 (dd, J1 = 5.86 Hz, J2=3.52 Hz, 1H), 4.05 (m, 1H), 3.55 (s, 3H), 3.54 

(s, 3H), 3.38 (s, 3H), 3.31 (s, 3H), 3.23 (m, 2H), 2.40 (ddd, J1=13.38 Hz, J2=  6.15 Hz, 

J3= 3.13 Hz, 1H), 2.23 (m, 1H). HRMS (ESI) m/z calcd for C51H45N4O6 [MH
+
] 809.3339, 

found 809.3303. 

Synthesis of 2’-Deoxy-3’-(-cyanoethyldiisopropylphosphoramidite)-5’-O-(4,4’-

dimethoxytrityl)-N
4
-dimethylformamidino-5-(1 pyrenylethynyl)-cytidine (III-10) 

2-Cyanoethyldiisopropylphosphoramidochloridite (0.0998 g, 0.4219 mmol) was added to 

a solution of 2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-N
4
-dimethylformamidino-5-(1 

pyrenylethynyl)cytidine (III-9) (0.1705 g, 0.2109 mmol) and Et3N (0.4 mL) in dry DCM 

(2 mL). The reaction was allowed to stir at room temperature under N2 for 3 hours. The 

reaction was quenched with MeOH (0.5 mL), washed with 0.5 M NaHCO3 (10 mL) and 

the organic phase was dried with Na2SO4. The residue was purified by column 

chromatography using gradient elution (DCM/acetone/Et3N, 99:0:1 to 94:5:1) to give a 

yellow foam (0.16 g, 80%).  
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HRMS (ESI) m/z calcd for C60H62N6O7P [MH
+
] 1009.4418, found 1009.4417 
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4 Summary and Conclusion 

We successfully developed a synthetic route leading to the PypdC phosphoramidite for 

DNA synthesis (Scheme 2.4). We incorporated the phosphoramidite into ODNs in 

acceptable yield without the modification of coupling time or changing of the standard 

synthetic cycle. Attempts at coupling three adjacent modifications failed and requires 

further work to make contiguous synthesis possible.  

Thermal denaturation studies on duplexes of PypdC containing oligos showed a possible 

stabilization effect due to the presence of the modified insert with respect to natural C. 

This is attributed to a favourable pi stacking interaction due to the presence of pyrene 

allowing greater overlap with adjacent bases. 

The PypdC nucleoside underwent photophysical characterization to understand the 

effects of the pyrene substituent on the fluorescent nature of the C analogue. It was found 

that the PypdC nucleoside exhibited excitation character similar to that of pyrene with a 

featureless emission similar to that of previous pdC analogues. It was determined that 

PypdC fluorescence is less characteristic of pyrene and more indicative of 

pyrrolocytosine. 

Spectroscopic studies on PypdC containing oligos showed fluorescence intensity change 

with respect to the complementary base as has been previously observed for 

pyrrolocytosine analogues.  In addition to intensity change a Stokes shift change was 

observed for the match case which was not observed for the mismatch and ss cases. The 

intrinsically fluorescent nature of the pyrene substituent would then seem inconsequential 

to the base discriminating nature of the C analogue.  

Future work will include thermal denaturation experiments on the remaining PypdC 

containing oligos. Characterization of the ODNs fluorescence response with respect to 

base complement will be conducted confirming or disproving the base discriminating 

nature and stabilizing effect thought to be attributed to PypdC. 
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In addition to the PypdC analogue we further reported the synthesis of the PyEtdC 

monomer (Scheme 3.2). The phoshoramidite was not incorporated into ODNs however 

photophysical studies on the nucleoside were completed. 

It was determined that PyEtdC excitation and emission is closely related to that of 

pyrene. This may indicate that the fluorescent C analogue may act more like a base with a 

pendant pyrene fluorophore rather than a traditional base discriminating fluorophore.  

To further understand the electronics of the analogue it will be incorporated into ODNs 

for stabilization and fluorescence study.  
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General Remarks 

All chemicals were obtained from commercial sources and used without further 

purification. Flash column chromatography (FCC) was performed on Merck Kieselgel 60 

TLC plates. NMR spectra were performed on a Varian Mercury 400 instrument. 

Chemical Shifts are reported in parts per million (δ), were measured from 

tetramethylsilane (0 ppm) and are referenced to the residual proton in the deuterated 

solvent: acetone – d6 (2.05 ppm), CDCl3 (7.26 ppm), DMSO – d6 (2.49 ppm) for 
1
H NMR 

and acetone – d6 (29.8, 206.3 ppm), CDCl3 (77.0 ppm), DMSO – d6 (39.5 ppm)for 
13

C 

NMR spectroscopy. Mulitplicities are described as s (singlet), d (doublet), t (triplet), q 

(quartet), p (pentet), m (multiplet), and br s (broad singlet). Coupling constants (J) are 

reported in Hertz (Hz). High resolution mass spectra (HRMS) and low resolution mass 

spectra were obtained using electron impact (EI) or electrospray ionization (ESI) 

methods.  
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(II-14) Mano 1 Mod (5’ – GTA GAT PypdC ACT – 3’) 

 

(II-15) Mano 2 Mod (5’-GTA GAT C PypdC CT – 3’)
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(II-16) CFTR Mod (5’- CTT TCC T PypdC C CAC TGT – 3’) 
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2’-Deoxy-5-(1-pyrenylethynyl)cytidine (III-11)  

 

02-Jul-2013KJC

Time
0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

A
U

0.0

5.0e-2

1.0e-1

1.5e-1

2.0e-1

2.5e-1

3.0e-1

3.5e-1

4.0e-1

4.5e-1

5.0e-1

5.5e-1

6.0e-1

6.5e-1

7.0e-1

7.5e-1

8.0e-1

8.5e-1

9.0e-1

9.5e-1

1.0

1.05

KJC2a 3: Diode Array 
380

Range: 1.065

4.79
230.84



91 

 
 



92 

 

 



93 

 

 



94 

 

 



95 

 

 



96 

 
 



97 

 

2’-Deoxy-5’-O-(4,4’-dimethoxytrityl)-N
4
-

dimethylformamidino-5-(1 pyrenylethynyl)-cytidine (III-9) 
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