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Abstract

This thesis deals with theoretical study and numerical simulation of 2 × 1 MISO

system with Alamouti coding and imperfect channel estimation at the receiver. We

adopt two channel models to represent scattering environment. One is Sum of Sinu-

soids model, which is simple, but does not properly reflect the geometry of scattering

environment. The second model uses a set of Modulated Discrete Prolate Spheroidal

Sequences to represent the channel in a scenario with scattering from one or more

clusters with predefined geometry. The effect of clusters location on estimation qual-

ity is examined. Furthermore, we derive reduced complexity Wiener filters for slow

flat fading channel estimation in pilot aided receiver. Our approach is based on the

approximation of the channel covariance function to zero and second order Taylor

series to reduce computational effort of the filter design. Theoretical MMSE is devel-

oped, verified through simulation and compared to one of a full Wiener filter.

Keywords: Alamouti coding, MIMO channels, scattering, DPSS, channel es-

timation, Wiener filter, STTD, STBC
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Chapter 1

Introduction

Radio transmission system simulators play a very important role in development of

wireless communications. They allow us to perform numerous tests in lab conditions

with fewer time and cost demands than field experiments [1]. While significant efforts

have been invested in this problem, increasing sophistication of systems and different

conditions of their deployment call for continuous additional efforts in modeling of

every single stage of communication stage: from channel modeling and its estimation

to information coding and modulation schemes.

1.1 Channel Simulators

Proper simulation of characteristics of wireless channels is of a great interest and rel-

evance for design of communication systems. Numerous techniques and models have

been proposed to describe fading channels in different scenarios. We consider the

case of communication in the urban area, where the received signal is a combination

of rays reflected/diffracted from the different obstacles and rough objects, which is

called multipath [2]. Rayleigh fading is one of the most popular models for description

of rich scattering environments [3]. The family of Sum of Sinusoids (SoS) simulators

is frequently used to emulate flat-fading Rayleigh channels [4] - [5]. More about these

channel simulators can be found in Chapter 2 of the thesis.

One of our goals is to simulate a complex scenario, with one or more rough

clusters in scattering environment, which is characteristic to communication sites

with different objects in surroundings, for example city or countryside streets. This

scenarios feature the presence of specular components along with those of Line of

Sight (LoS) and diffusive ones. The geometry-based model, which was adopted for

this work, is described in Chapter 2. This model is represented by 4-dimensional
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tensor of the channel response using Modulate Discrete Prolate Spheroidal Sequences

(MDPSS) [6]. By modulation of the bandwidth of a set of DPSS [7] we achieve

different scattering scenarios with parameters defined by theoretical models or/and

measurements [6]. Application of this channel model allows us to evaluate the per-

formance of different modulation schemes in different fading scenarios. Moreover

aforementioned channel model is very flexible in definition of the geometry and lo-

cation of different clusters what enables us to analyze various scattering scenarios

of interest. At the same time, it allows us to define number of antennas along with

velocities and movement directions of each communication side.

1.2 Space-Time Transmit Diversity Systems

The idea of Space-Time Block Coding (STBC) systems is to code modulated data

stream in time and space (i.e. across different transmit antennas) and to transmit it

block-wise via several complex symbol streams. At the receiver side these streams are

detected, decoded and demodulated and the information is recovered. Such schemes

increase system diversity what results in lower bit error rates, [2], [8]. At the same

time, they firmly rely on the channel information at the receiver side. Therefore high

quality channel estimation is of a great importance for these systems. Over the past

two decades linear STBC have become very popular in both research and industrial

communities and it is widely adopted in a number of global standards. Multiple In-

put Single Output (MISO) is a very common scenario in the downlink of a cellular

system. Therefore in our project we focus on simple but yet one of the most elegant

coding techniques for 2×1 MISO system, Alamouti scheme [9], which is used in some

third/fourth generation wireless mobile standards and whose concept played an im-

portant role in consequent development of wireless communication industry. Linear

combining scheme suggested by Alamouti is used for symbol detection and the Wiener

filter is used as a pilot filter for channel gains estimation [10]. Detailed analysis of

Alamouti coding is given in Chapter 3.
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1.3 Channel Estimation

As it has been mentioned above, the Alamouti scheme (and many others) relies on

accurate channel knowledge at the receiver side during the decoding stage, therefore

channel estimation is essential for reliable performance of any such scheme. Channel

estimation could be performed by sending a known signal (or pilot tone) parallel to the

data sequence [11] - [12]. This technique utilizes a pilot tone to provide the receiver

with explicit information about the phase and amplitude reference for the detection.

However, it requires complex signal processing or an expensive spectrum allocation for

the tone. Use of such technique is unpractical. Another method is to use previously

detected symbols in order to estimate channel fluctuations [2], [13]. This technique

does not need any pilot sequences for estimation, however it is prone to mistakes

which can affect blocks and even frames of detected information. The most popular

approach nowadays is estimation via training sequences (pilots) which are periodically

inserted into the data stream. At the receiver pilots are accumulated and are used

for calculation of channel gains via different pilot filters. The most common scheme

in use is called Pilot Symbol Assisted Modulation (PSAM) [14], [10], [8]. In this work

pilot-assisted estimation scheme is utilized and the estimation is done by means of

the Wiener filter at the receiver side [10], [15]. Detailed analysis of the Wiener filter

and its performance evaluation in different channel conditions are shown in Chapter

3.

1.4 Summary of Contribution

One of the goals of this work is to apply MDPSS channel model to simulate real

environment containing several different clusters in vicinity of the mobile movement.

As the outcome we expect to gain a deeper insight into performance of systems in

different scatering environments. This approach is useful in Vehicle to Infrastructure

(V2I) and, most importantly, in Vehicle to Vehicle (V2V) communication scenarios,

as new channel models for precise emulation of complex urban environment are still

on demand [16]. We show in Chapter 3 how one can use available online tools (like
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Google Maps c⃝) in order to provide the mobile with accurate channel tracking as it

moves through altering city environment. Several common real-life street scenarios

are presented and analyzed. Extension to any other site geometries are straight for-

ward.

The second main contribution of this thesis is development of reduced order

Wiener filters for estimation of narrow-band slowly fading channels. It is well-known

that if the observation of the process is made in Additive White Gaussian Noise

(AWGN), Wiener filter is the optimal linear filter in minimum mean square root

sense [17], [15]. However, full Wiener filter is difficult to implement especially for

slow fading and uncertainty in knowledge of channel statistics, because it requires

implementation of auto-covariance function of the channel process in order to calcu-

late filter taps coefficients. Moreover, it is difficult to estimate channel auto-covariance

function, and, once we know it, it is computationally inefficient to apply it for filter co-

efficients calculation, which is wasteful of battery energy of the mobile. Our approach

is to suggest a reduced order (light) Wiener filter, which is based only on a partial

knowledge of channel covariance function. More specifically, we develop a frame-

work for analysis and design of filter coefficients for channel estimation by providing

the theoretical performance, validated by the simulation, of 2× 1 MISO Space-Time

Transmit Diversity (STTD) system assuming imperfect Channel State Information

(CSI) at the receiver in slowly varying channels, whilst we conjecture that in cases of

highly correlated pilot signals, there is no need to calculate full covariance function

of the process, in order to achieve good performance, and it is sufficient to provide

its low order polynomial approximation. This assumption allows us to work with

partially unknown channel statistics at the receiver and reduces computational effort,

decreasing the delay and increasing a battery life of the devise. Analytical expressions

for tap coefficients and Minimum Mean Square Error (MMSE) are derived for zero

and second order Light Wiener filters, the results are validated by the simulation and

compared.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 SoS and MDPSS

channel models and their implementations are discussed and verified. The descrip-

tion of STTD system with Alamouli coding and pilot-assisted channel estimation via

full Wiener filter is provided in Chapter 3. At the same chapter the simulation of

movement of mobile, equipped with aforementioned system, through an urban area

is presented and analyzed. Several different scenarios of V2I and V2V communi-

cations are taken into consideration. In Chapter 4 theoretical derivation of Light

Wiener filters is shown and verified by the simulation. The performances of both

filters are compared to each other and to a full Wiener filter case. Finally in Chapter

5 conclusions are derived and future work directions are discussed.
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Chapter 2

Channel Models

Wireless channel simulators are widely used for reproducing channel behavior during

the signal transmission over propagation medium. They gained popularity because

they allow us to evaluate systems in lab conditions, which is much easier and cheaper

than running field experiments. There are many statistical models known nowadays

for description of multi-path fading behavior of channels. For example, Rayleigh

fading model is the most frequently used one due to its simplicity. This model is

based on the assumption that the signal arrives to the receiver via many independent

paths, which are uniformly distributed around the receiver, with random phase and

gain. According to Central Limit Theorem in this case the channel impulse response

converges to a circularly symmetric complex Gaussian process with zero mean [2].

A more complex statistical model for this scenario is Nakagami-m distribution [18],

which is more flexible and accurate in matching the statistics of the channel. Another

frequently used exemplar is Rician fading model, in which along with large number

of scuttered components, there is not negligible specular path (or Line of Sight com-

ponent), which has some known magnitude. A statistical model due to Clarke, which

is widely used to describe flat fading Rayleigh distributed channels whose autocor-

relation function is Bessel function of first kind and zero order, and its simplified

version Jake’s simulation model. Weichselberger model which describes Multiple In-

put Multiple Output (MIMO) link with cross-correlation between antenna’s elements

and both link sides as well, Bello’s model, Key-hole model, etc. All of these models

are built to depict different types of channel environments.

In our work we use two different models: SoS model for representing Rayleigh

flat fading channels [4] and MDPSS model for representing non-uniform scattering

from one or more clusters or rough surfaces [6]. These models are sufficient to describe

the most common real life scattering scenarios.
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2.1 Sum of Sinusoids Model

Let us assume that the received signal can be represented in a baseband form as

follows [2]:

y[m] = h[m]x[m] + w[m] (2.1)

where x[m] is an information bit, that one is interested to transmit, w[m] is an

additive Gaussian White noise, i.e. w[m] ∼ CN(0, N0), h[m] is a flat fading channel

gain sample. The purpose of this section is to introduce simulational model which

reproduces statistical properties of Clarke’s mathematical reference model with a

finite number of sinusoids. This model is used throughout our work to simulate flat-

fading channels. The main characteristics, i.e. autocorrelations and cross-correlations

of the quadrature components, autocorrelation of the complex envelope, Probability

Density Functions (PDF) of envelope and phase, Level Crossing Rate (LCR), Average

Fade Duration (AFD) and autocorrelation of the squared envelope of this model are

discussed, compared to those of theoretical model and confirmed by the simulation.

These characteristics are important to simulate as they represent major statistical

properties of random channels, which are deduced from measurements of real life

environment. Therefore an important purpose of channel simulators is to represent

these statistical characteristics.

2.1.1 Rayleigh Fading and Clarke’s model

One of the most common communication scenarios which might be found in urban

and sub-urban areas is described by Mobile Station (MS) surrounded by rich scatter-

ing environment [1], see Fig. 2.1. In this kind of scenario there is no LoS component

and scattered signal is seen by a MS as arriving from all directions Fig. 2.2.

According to Clarke’s model [2], if number of scattered signal waves N im-

pinging on the receiver is very big, i.e. N → ∞, channel gains process converges to

Complex Circularly Symmetric Gaussian Process:

h(t) = hR(t) + jhI(t) (2.2)
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BS MS

Figure 2.1: Example of a rich scattering environment near MS

MSMS

Figure 2.2: A signal is seen by a MS as arriving from all directions

Here the real and imaginary parts hR(t), hI(t) are real Gaussian distributed processes

with auto-correlation and cross-correlation functions described by:

RhRhR(τ) = E [hR(t)hR(t+ τ)] = J 0(ωdτ) (2.3)

RhRhI (τ) = E [hR(t)hI(t+ τ)] = 0 (2.4)

Where E[·] denotes expectation and J0(·) denotes zero-order Bessel function of the

first kind. Fading envelope of h is Rayleigh distributed:

f|h|(x) =

 x
σ2

exp
(
− x2

2σ2

)
, (0 ≤ x ≤ ∞)

0, (x < 0)
(2.5)
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where σ2 is the time-average of the received signal before envelope detection. The

phase Θh(t) of the complex envelope is Uniformly distributed:

fΘh
(θh) =

1

2π
, −π ≤ θh < π (2.6)

2.1.1.1 Simulation Reference Model

According to [19] and [3] one may build a simulator for a frequency-nonselective

Rayleigh fading channels as a sum of a finite number of periodic components with

random phase and gain:

g(t) = E0

N∑
n=1

Cn exp [j(ωdt cosαn + ϕn)] (2.7)

Here Cn, αn and ϕn are real valued random gain, angle and initial phase of the n’s

path, ωd is the maximum radian Doppler frequency, E0 is a scaling constant and N

is a number of propagation paths. Then (2.7) might be written as a sum of a sine

and cosine parts:

g(t) = gc(t) + jgs(t) (2.8a)

gc(t) = E0

N∑
n=1

Cn cos (ωdt cosαn + ϕn) (2.8b)

gs(t) = E0

N∑
n=1

Cn sin (ωdt cosαn + ϕn) (2.8c)

According to Central Limit Theorem gc(t) and gs(t) converge to a Gaussian dis-

tributed random processes for large N . Assuming, that αn and ϕn are Uniformly

distributed over [−π, π) for all n and independent variables (according to Clark’s

model), one may derive the following desired second-order statistics (autocorrelation
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and cross-correlation functions of sine and cosine terms) [19], [20]:

Rgcgc(τ) = E [gc(t)gc(t+ τ)] = J0(ωdτ) (2.9a)

Rgsgs(τ) = J0(ωdτ) (2.9b)

Rgcgs(τ) = 0 (2.9c)

Rgsgc(τ) = 0 (2.9d)

Rgg(τ) = E [g(t)g∗(t+ τ)] = 2J0(ωdτ) (2.9e)

R|g|2|g|2(τ) = 4 + 4J0(ωdτ) (2.9f)

Without loss of generality we assume that
N∑
n=1

E
[
C2
n

]
= 1 and E0 =

√
2. Hence it

might be shown that PDFs of fading envelope |g(t)| and the phase Θg(t) equal to:

f|g|(x) = x · exp
(
−x

2

2

)
, x > 0 (2.10a)

fΘg(θg) =
1

2π
, θg ∈ [−π, π) (2.10b)

Hence, the above model is clearly Rayleigh fading channel with Rayleigh distributed

envelope and Uniformly distributed phase.

2.1.2 Jake’s Model

In Jake’s model it is assumed that [4]:

Cn =
1√
N

(2.11a)

αn =
2πn

N
, n = 1, 2, . . . , N (2.11b)

ϕn = 0, n = 1, 2, . . . , N (2.11c)

This simplifies the model and makes it deterministic [21]. Nevertheless, this model

is wide sense non-stationary, when averaged over many channel realizations or non-

ergodic [22]. Other issue is higher order statistics, which do not match the theoretical

desired higher order statistics, even though infinitely large number of sinusoids is
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taken. Hence, many other models were proposed as an improvement of Jake’s model,

what gave rise to a family of Jake’s simulators (see [4] for more examples). Al-

though some of these models succeed to eliminate the non-stationarity, they still did

not match higher-order statistics (like autocorrelations and cross-correlations of the

quadrature components or squared envelope) even when the number of sinusoids ap-

proaches infinity.

According to [4] with several modifications of Jake’s model it is possible to

achieve desired statistical requirements with quick convergence to a Rayleigh fading

channel while using as small number of sinusoids as a single-digit integer and with only

50 random trials. This model might be used to generate not correlated waveforms for

MIMO channel scenario.

2.1.3 Sum of Sinusoids Model with Correct Statistical

Properties

The authors of [4] proposed a different approach by representing the definition of

random variables αn, ϕn and Cn as follows:

C̃n =
exp(jψn)√

N
, n = 1, 2, . . . , N (2.12a)

α̃n =
2πn− π + θ

N
, n = 1, 2, . . . , N (2.12b)

ϕ̃n = −ϕ̃N
2 +n

= ϕ, n = 1, 2, . . . ,
N

2
(2.12c)

Therefore simulation prototype function takes a form of:

g̃(t) = E0

N∑
n=1

C̃n exp
[
j(ωdt cos α̃n + ϕ̃n)

]
(2.13)

Here ψn, ϕ and θ uniformly distributed over [−π, π) and mutually independent, N2 is

an integer. It might be shown that this model is Wide-Sense Stationary (WSS) model

for Rayleigh fading channel. Then (2.13) is rearranged and simplified by choosing
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M = N/4, and ωn = ωd cos α̃n:

ĝ(t) =
E0√
N

M∑
n=1

√
2ejψn

[
ej(ωnt+ϕ) + e−j(ωnt+ϕ)

]
(2.14)

Hence, the normalized low-pass fading process of SoS model might be written as:

X(t) = Xc(t) + jXs(t) (2.15a)

Xc(t) =
2√
M

M∑
n=1

cos (ψn) · cos(ωdt cosαn + ϕ) (2.15b)

Xs(t) =
2√
M

M∑
n=1

sin (ψn) · cos(ωdt cosαn + ϕ) (2.15c)

with

αn =
2πn− π + θ

4M
, n = 1, 2, . . . , N (2.16)

It is shown in [4], that the theoretical values of auto-correlation and cross-correlation

functions of imaginary and real parts of X(t), complex envelope and squared envelope

are:

RXcXc(τ) = J0(ωdτ) (2.17a)

RXsXs(τ) = J0(ωdτ) (2.17b)

RXcXs(τ) = 0 (2.17c)

RXsXc(τ) = 0 (2.17d)

RXX(τ) = 2J0(ωdτ) (2.17e)

R|X|2|X|2(τ) = 4 + 4J20 (ωdτ) +
4 + 2J0(2ωdτ)

M
= 4 + 4J20 (ωdτ), if M → ∞ (2.17f)

As we may see, auto-correlation and cross-correlation functions (2.17a) - (2.17e) do

not depend on number of sinusoids M used in the model and match exactly the

statistics of the reference model. Fourth order statistics (2.17f) match the desired

ones when M approaches the infinity, and have a good approximation even when M
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is as small as 8.

Then the PDFs of a fading envelope |X(t)| and the phase ΘX(t) =

arctan[Xc(t), Xs(t)] are presented, and it is also shown, that when M approaches

infinity, the envelope’s PDF converges to Rayleigh distribution, and phase’s PDF

converges to Uniform over [−π, π). Hence:

f|X|(x) = x · exp
(
−x2

2

)
, x > 0 (2.18a)

fΘX (θX ) =
1

2π
, θX ∈ [−π, π) (2.18b)

LCR is defined as the expected rate at which the Rayleigh fading envelope, normalized

to the local Root Mean Square (RMS) signal level, crosses a specified threshold level ρ

in a positive slope, and the AFD is defined as an average time duration for which the

fading envelope remains below some specified threshold ρ. Both these functions allow

us to evaluate error statistics to provide an appropriate error-correction techniques.

WhenM approaches infinity, the LCR (or L|X|) and AFD (or T|X|) are described by:

L|X| =
√
2πρfde

−ρ2 (2.19a)

T|X| =
eρ

2 − 1

ρfd
√
2π

(2.19b)

where ρ is the normalized fading envelope level, ρ =
|X|

|X|rms
, |X|rms is a root mean

square envelope level.

2.1.4 Simulation Evaluation of SoS Model With Correct

Higher Order Statistics

The evaluation of the properties of the proposed channel model (2.15) is based on

the comparison with theoretical curves of a Rayleigh fading channel (2.7). We chose

M = 8, the number of sinusoids, fdTs = 0.025, the normalized sampling period, and

ensemble averages K = 10, 50, 100 of random trials, as indicated in plots below.
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2.1.4.1 Autocorrelation and Cross-correlation Functions

The simulation results of auto-correlation of real and imaginary parts are shown in

Figs. 2.3-2.4, cross-correlation between imaginary and real parts of the simulator are

shown in Fig. 2.5. Then real and imaginary parts of the auto-correlation function of

the complex fading channel are shown in Figs. 2.6-2.7. The auto-correlation of the

squared envelope, R|X|2|X|2 is plotted in Fig. 2.8. As we may see, there is a good

agreement between the simulated results and the reference even though the number

of sinusoids used in simulation is only 8 and number of random trials is only 50. With

greater number of trials for averaging we may achieve better match with theoretical

curves.
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Figure 2.3: Autocorrelation of the simulated real part of X(t), Xc(t). Nstat denote the
number of random trials

2.1.4.2 PDF of the Envelope and the Phase

The Probability Density Functions of the envelope |X(t)| and the phase of the fading

simulator are shown in figures (2.9) and (2.10). As we may see in case of the fading

envelope there is a very good convergence to the theoretical curve, when the number

of random trials is only 10. The PDF of the phase though is more sensitive to the

number of trials.
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Figure 2.4: Autocorrelation of the imaginary part of the simulated channel, Xs(t).
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Figure 2.5: Cross-correlation of the real and imaginary parts of the simulated channel.

2.1.4.3 LCR and AFD evaluation

LCR and AFD are shown in Figs. 2.11 - 2.12. Again we may observe a very good

agreement with the theory for already 10 random trials.
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Figure 2.6: The real part of the autocorrelation of the complex envelope X(t), Re[RXX ].
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Figure 2.7: The imaginary part of the autocorrelation of the complex channel envelope
X(t), Im[RXX ].
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Figure 2.8: The autocorrelation of a squared envelope of the fading channel X(t),
R|X|2|X|2.
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Figure 2.9: The PDF of the envelope of the fading channel simulator X(t), f|X|(x).
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Figure 2.10: The PDF of the phase of the fading channel simulator X(t), fΘx(Θx).
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Figure 2.11: The LCR of the simulated envelope |X(t)|
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Figure 2.12: The AFD of the simulated envelope |X(t)|.
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2.2 Modulated Discrete Prolate Spheroidal

Sequences Model

SoS is a very popular model for MIMO channel modeling and simulation, but when we

want to evaluate some specific features of a communication system such as prediction

and estimation, use of this model may mislead by overmuch optimistic results since

the received signal is a sum of periodic components. Moreover, this model describes

uniform scattering around the mobile, hence it is not appropriate when non-uniform

scattering is required to be modeled for some particular scenarios.

A different approach for channel modeling was reviewed in [23]. This approach

utilizes Thomson Multitaper analysis in communication problems like channel mod-

eling, prediction or estimation. The set of MDPSS might be applied for accurate

representation of a bandlimited channel in scenario of scattering from one or more

clusters. Discrete Prolate Spheroidal sequences form a set of orthogonal functions

which might be used as a basis. An example of first four DPSS are shown in Fig.

2.13.

As described in [23], nt × nr MIMO channel matrix could be composed of
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Figure 2.13: An example of first four Discreet Prolate Spheroidal Sequences
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three components: Line of Sight (HLoS), Diffusive (Hdiff ) and Specular (Hsp):

H = HLoS +Hdiff +Hsp (2.20)

LoS component is represented by:

HLoS =

√
PLoS
ntnr

aLb
H
L exp (jϕLoS) (2.21)

Here aL and bL are receiving and transmitting antenna manifold vectors with unity

amplitude describing phase shifts with respect to some reference point. PLoS is a

power of LoS component, ϕLoS is a constant deterministic phase of angle of arrival

of LoS component.

Hdiff component is composed of zero-mean complex circularly symmetric Gaus-

sian variables. This component is due to a composition of large amount of reflected

and scattered from large rough surfaces waves with uniformly distributed and uncor-

related phases.

Last component, Hsp, is an intermediate case between LoS and diffusive com-

ponents, which caused by the scattering from mildly rough surfaces (or First Fresnel

zones), resulting in strong correlation of phases of upcoming waves and a certain

angular spread of the received signal. For a singular specular component:

Hsp =

√
Psp
ntnr

[a⊙wa] [b⊙wb]
H ξ (2.22)

Where Psp is a power of a specular component, ξ is a random complex Gaussian

variable with parameters: mI + jmQ, σ
2
I , σ

2
Q and independent in-phase and quadra-

ture components. Angular spread is depicted by window terms wa and wb, which are

shown to be well-approximated by known Discrete Prolate Spheroidal Sequences. For

multiple specular components case the resulting matrix is a weighted sum of contri-

butions (2.22) from different clusters what results in different angles of arrival and
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departure:

Hsp =
∑
k=1

√
Psp,k
ntnr

[
ak ⊙ wa,k

] [
bk ⊙ wb,k

]H
ξk (2.23)

Moreover, different elements of (2.23) are not i.i.d. since they have different absolute

mean value, which have to be estimated individually. Nevertheless, in case of a

very narrow angular spread of each component, windows wa,k, wb,k have only unity

elements, resulting in equivalent variances of in-phase and quadrature elements of all

elements of matrix Hsp.

2.2.1 Geometry of Scattering Environment

For simulation of a single cluster environment we use a geometry description from

Fig. 2.14: there are two horizontal multi-element linear antenna arrays on both

receiving and transmitting sides, the space between antennas contains a single scat-

tering cluster. Impulse response h(τ, t) is assumed to be sampled at the rate Fst

(τ = n/Fst = nTst) and the channel is sounded at the rate Fs (t = m/Fs = mTs).

The carrier frequency is fc; nr, nt, dr, dt are the number of isotropic elements and

Figure 2.14: Geometry of a single cluster problem

the distance between them at receiving and transmitting antennas respectively; vr

and vt are velocities at which receiver and transmitter move making angles αt and αr

with corresponding broadside vectors; ϕt, ϕr are azimuthal angles at which a cluster

center is seen from receiving and transmitting sides. For simplicity it is assumed that

co-elevation angles θt = θr = π
2 and there is no spread at this direction. Due to

a large distance between antennas and a scatterer, the angular spread in horizontal
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direction might be assumed very small comparing to the angular resolution of arrays:

∆ϕt ≪
2πλ

(nt − 1)dt
, ∆ϕr ≪

2πλ

(nr − 1)dr
(2.24)

Also the cluster produces small delay spread ∆τ , which is assumed to be no greater

than a few samples interval Tst = 1/Fst.

2.2.2 Statistics of the Channel

It is well known, that angular and spatial domains are dual to each other, hence

angular spread results into a spatial selectivity which could be expressed by the

following covariance function (which is inverse Fourier Transform of Angle of Arrival

(AoA) or Angle of Departure (AoD) spread PDF):

ρ(d) =

π∫
−π

exp

(
j2π

d

λ
ϕ

)
ρ(ϕ)dϕ (2.25)

As we have assumed before, the angular size of a cluster is much smaller than antennas

angular resolutions, therefore AoA and AoD spreads might be considered uniform and

not correlated, and the joint distribution becomes:

pϕt,ϕr(ϕt, ϕr) = pϕt(ϕt)pϕr(ϕr) =
1

∆ϕt

· 1

∆ϕr

(2.26)

The spatial covariance function might be approximated then by:

ρ(d) ≈ exp

(
j
2πd

λ
sinϕ0

)
sinc

(
∆ϕ

d

λ
cosϕ0

)
(2.27)

The correlation matrix between antennas elements might be decomposed then in

terms of frequency MDPSS:

R ≈ WUDA
ΛDA

UH
DA

WH =

DA∑
k=1

λkuku
H
k (2.28)
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where N is a number of antennas, DA ≈ ⌈2∆ϕdAλ cosϕ0⌉ + 1 (an effective number

of degrees of freedom generated by the process with correlation matrix R), dA is a

distance between antenna elements, ΛDA
is a diagonal matrix of size DA × DA, U

is N ×DA matrix of the DPSS and W = diag
{
exp

(
j2π

dA
λ n sinϕ0

)}
, 1 ≤ n ≤ N .

It might be shown that for a case of a narrow cluster number of degrees of freedom,

DA, is much smaller than the number of antennas, N , hence the transfer function,

H(ω, t), takes a form:

H(ω, t) =

Dt∑
nt

Dr∑
nr

√
λntλnru

(r)
nr u

(t)H
nt hnt,nr(ω, t) (2.29)

This equation is Karhunen-Loeve series in spatial domain which is known to require

the smallest number of terms needed for representation of a spatial selective process

[7]. From the equation (2.29) we may conclude, that by modulating the spatial

response of the channel from both receiving and transmitting sides we may achieve

angular spread, which represents scattering from the cluster. The same procedure

might be performed in Frequency and Doppler domains: let us assume that we want

to represent bandlimited process [−W : W ] using NF equally spaced samples in

Frequency domain. We also assume, that cluster produces a certain delay spread in

time ∆τ (τ is a mean delay associated with the cluster). Hence, if the variation of

power is relatively small during the ∆τ delay window, we may again represent the

frequency channel variations as a sum of MDPSS:

h(ω, t) =

Df∑
nf=1

√
λnfu

(ω)
nf hnf (t) (2.30)

whereDf = ⌊2W∆τ⌋+1. In Doppler domain, the resulting Doppler shift is calculated

by:

fD =
fc
c
[vt cos (ϕt0 − αt) + vr cos (ϕr0 − αr)] (2.31)
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The widening of the Doppler spectrum as a result of cluster angular spread is ex-

pressed by:

∆fD =
fc
c
[vt∆ϕt| sin (ϕt0 − αt)|+ vr∆ϕr| sin (ϕr0 − αr)|] (2.32)

And the variation of the spectrum in this expansion (due to a very narrow cluster an-

gular extent) is small, so that again we may use MDPSS to describe channel response

in Doppler domain:

hd =
D∑

nd=1

ξnd

√
λndu

(d)
nd (2.33)

Here D = ⌊∆fDTmax⌋ + 1 is a number of MDPSS needed, Tmax is the duration

of the simulation and ξnd are complex Gaussian i.i.d. variables with unit variance.

Therefore a sample of a complete frequency selective MIMO channel representation

takes a form of four dimensional tensor:

H4 = W4 ⊙
Dr∑
nr

Dt∑
nt

Df∑
nf

D∑
nd

√
λ
(r)
nr λ

(t)
nt λ

(ω)
nf λ

(d)
nd ξnr,nt,nf ,nd·

· 1u
(r)
nr ×2 u

(t)
nt ×3 u

(ω)
nf ×4 u

(d)
nd (2.34)

where u
(r)
nr , u

(t)
nt , u

(ω)
nf , u

(d)
nd are DPSS representing dimensions of a signal at the re-

ceive, transmit, frequency and Doppler domains with ”domain-dual domain” prod-

ucts: |∆ϕr Nrdr
λ cosϕr0|, |∆ϕtNtdt

λ cosϕt0|, W∆τ , Tmax
∆fD
2 respectively. W4 is a

tensor of modulating sinusoids described as follows:

W4 =1w
(r)×2w

(t)×3w
(ω)×4w

(d) (2.35)
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w(r) =

[
1, exp

(
j2π

dr
λ

)
, · · · , exp

(
j2π

dr
λ

sinϕr0(Nr − 1)

)]T
w(t) =

[
1, exp

(
j2π

dt
λ

)
, · · · , exp

(
j2π

dt
λ
sinϕt0(Nt − 1)

)]T
w(ω) =

[
1, exp (j2π∆Fτ), · · · , exp

(
j2π∆Fτ(Nf − 1)

)]T
w(d) = [1, exp (j2πfDTs), · · · , exp (j2πfD(Tmax − Ts))]

T (2.36)

Here ∆F =
2W

Nf − 1
, Tmax = LTs, and ⊙ is element-wise (Hadamard) product of two

tensors.

2.2.3 Multi-Cluster Environment

In general, one may simulate channel representing scattering from several clusters

(multi-cluster environment). In this case the total channel response is a superposition

of independently generated single-cluster responses:

H4 =

Nc∑
k=1

√
PkH4(k),

Nc∑
k=1

√
Pk = P (2.37)

Where Nc is the total number of clusters and H4(k) is a normalized response from

k-th cluster with relative power Pk; E
[
∥H4(k)∥2F

]
= 1, P is a total power. This

representation depicts composition signals with different delays arriving from different

directions, rather than real location of the clusters. Thus it is possible to have two

clusters with the same AoA and AoD but different excess delay or same excess delay

but different angles of arrival and departure.

2.2.4 Auto-Covariance Function

Spectrum analysis of the problem shows that Power Spectrum Density (PSD) of one-

cluster problem is approximately a window around f = fD with width ∆fD and

height
P

∆fD
, when P is a total power of the channel or its variance σ2c , see Fig. 2.15

for description. Therefore one may calculate the covariance function of the channel
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Figure 2.15: Example of PSD of one-cluster environment

process applying Fourier Analysis. Assume that PSD is a perfect window function

W (f) which is located around fD. Then it might be expressed as:

W (f) =
P

∆fD
· rect

(
f

∆fD

)
∗ δ (f − fD) (2.38)

When δ(·) is Kronecker Delta function and Rectangle function is defined as follows:

rect (f) =

1 if − 1
2 ≤ f ≤ 1

2

0 else
(2.39)

As well known, covariance function is an inverse Fourier Transform of PSD:

R(τ) = F−1 {W (f)} =
P

∆fD
exp (j2πfDτ)∆fD · sinc (∆fDτ) = (2.40)

= P exp (j2πfDτ) sinc (∆fDτ) ,

here sinc function of variable x is defined as sinc(x) =
sin(x)

x
. Therefore auto-

covariance function of the channel process is a multiplication of an exponent and a

sinc functions:

R(τ) = P exp (j2πfDτ)sinc(∆fDτ) (2.41)
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In a case of multi-cluster environment with Nc clusters, each cluster produces a win-

dow Wk around frequency fDk (corresponding to cluster k), k = 1, . . . , Nc at PSD

profile. Hence PSD takes a form of a sum of Nc independent windows and auto-

covariance function Rtot(τ) is a sum of Nc auto-covariance functions Rk(τ) corre-

sponding to each cluster (due to linearity of Fourier Transform operation):

Rtot(τ) = R1(τ) +R2(τ) + . . .+RNc(τ) = (2.42)

= P1 exp
(
j2πfD1

τ
)
sinc

(
∆fD1

τ
)
+

+ P2 exp
(
j2πfD2

τ
)
sinc

(
∆fD2

τ
)
+ . . .+

+ PNc exp
(
j2πfDNc

τ
)
sinc

(
∆fDNc

τ
)
=

=

Nc∑
k=1

Pk exp
(
j2πfDk

τ
)
sinc

(
∆fDk

τ
)

Where Pk ≥ 0 is a relative power of cluster k,
Nc∑
k=1

Pk = P . Total power P is usually

normalized to unity, P = 1.

2.2.5 Simulation Evaluation of the MDPSS Model

In this section we show an example of simulation of one and two clusters environments

and compare the results to theoretical derivations, discussed previously.

2.2.5.1 One Cluster Environment

Example of simulation of a sample of one-cluster flat fading channel is given in Figs.

2.16 - 2.18. See Tab.2.1 for simulation parameters summary. Fig. 2.16 shows an

absolute value of time-varying frequency response of a channel sample. Black areas

indicate deep fading whereas white areas indicate a good channel quality. In Fig. 2.17

the normalized Power Delay Profile (PDP) of the channel sample is plotted, where

we clearly see a peak at delay associated with a particular cluster delay τ = 0.3µsec

with delay spread of 0.1µsec, and at Fig. 2.18 we may see resulting widened Doppler

spectrum at frequency fD ≈ 54.7[Hz] with Doppler spread of 4.8Hz (calculated from
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equations (2.31) - (2.32)).

Theoretical and simulated auto-correlation functions are plotted in Figs. 2.19 -

2.21 as functions of normalized time fD0
τ , when fD0

= fc
|vt|+ |vr|

c
. One may find

the real part of auto-correlation function Re{R(τ)} in Fig. 2.19, the imaginary part

of auto-correlation function Im{R(τ)} in Fig. 2.20 and the fading envelope |R(τ)| in
Fig. 2.21. In all cases there is a very good convergence of simulation to the theoretical

curve.
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Figure 2.16: Absolute value of time varying frequency response H(f, t) of a channel
sample
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Param. Value Description
Nr 8 Number of antennas on the receiving side
Nt 8 Number of antennas on the receiving side
vr 30 [km/h] Speed of the receiver
vt 0 [km/h] Speed of the transmitter
W 6 [MHz] Required channel half-bandwidth
fc 2 [GHz] Carrier frequency
dr, dt 0.5 Receive/transmit antenna spacing nor-

malized to wave length
Pc 0.8 Power weights for clusters
ϕ0r 10o Azimuthal angle at which center of the

cluster is seen to the receiver
ϕ0t 20o Azimuthal angle at which center of the

cluster is seen to the transmitter
αr, αt 0o The angle between broadside vector and

movement direction
∆ϕr 5o Angular spread seen from receiving side
∆ϕt 8o Angular spread seen from transmitting

side
τ 0.3 [µsec] A mean delay associated with the cluster
∆τ 0.1 [µsec] Corresponding delay spread
Fst 50 [MHz] Sampling frequency in delay domain
Fs 250 [Hz] Rate of sampling in Doppler domain
irL 142 Length of the impulse response (num of

samples)
L 1024 Number of samples (in Doppler domain)
Nf 128 Number of equally spaced samples for pro-

cess representation at bandwidth [-W,W]

rate 105 [bps] The transmission rate, bits per second

Table 2.1: Example of simulation parameters for the channel with one scattering cluster
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Figure 2.17: PDP of one-cluster channel response, τ = 0.3 µsec
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Figure 2.18: Doppler PSD of one-cluster channel response, fD ≈ 54.7Hz
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Figure 2.19: Real part of auto-covariance function of the channel process, Re{R(τ)}
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Figure 2.20: Imaginary part of auto-covariance function of the channel process, Im{R(τ)}
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Figure 2.21: Fading envelope of auto-covariance function of the channel process, |R(τ)|
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2.2.5.2 Two Clusters Environment

A two clusters case is depicted in Fig. 2.22. Parameters of two clusters are given in

Tab.2.2. If some parameters are not mentioned in the table, they remain the same

as for one cluster case and equal for both clusters. Simulation results are plotted in

Figs. 2.23 - 2.24. Real and imaginary parts of auto-correlation function are plotted

in Figs. 2.25 - 2.26, as well as its envelope in Fig. 2.27.

Figure 2.22: Two-clusters environment example

Cluster Parameter Value

Cluster1
ϕ0r1 10o

τ1 0.3 µsec
P1 0.6

Cluster2
ϕ0r2 120o

τ2 0.8 µsec
P2 0.4

Table 2.2: Two-clusters environment parameters
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Figure 2.23: PDP of two-clusters case, τ1 = 0.3 µsec, τ2 = 0.8 µsec
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Figure 2.24: Doppler PSD of two-clusters channel, fD1 ≈ 55.7 Hz, fD2 ≈ −27.8 Hz
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Figure 2.25: Real part of auto-covariance function of two-clusters channel process,
Re{R(τ)}
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Figure 2.26: Imaginary part of auto-covariance function of two-clusters channel process,
Im{R(τ)}
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Figure 2.27: Fading envelope of auto-covariance function of two-clusters channel process,
|R(τ)|
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2.3 Summary

• Channel simulators are widely used to test a variety of different communication

systems in laboratory conditions what reduces time and financial expenses of

experiments.

• One of the most famous channel models is Rayleigh fading model, which as-

sumes that signal comes to the receiver in infinitely large number of independent

paths (uniform scattering of the signal around the mobile). This assures that

channel tap gains are complex circularly symmetric Gaussian processes, and

their magnitude is Rayleigh distributed and phase is Uniformly distributed.

This scenario is a very common in urban and suburban environments.

• A family of SoS channel simulators is built to mock flat fading Rayleigh channels

behaviour, and is very popular due to its simplicity. These simulators are a sum

of sinusoidal and cosinusoidal terms with random phase, AoA and amplitude.

One of the most common problems with this kind of simulators is higher order

statistics (such as covariance function of a squared envelope of the channel),

which very often do not match desired one. In this chapter we reviewed a special

SoS model with a proper higher order statistics, which we use throughout our

work.

• Another common scenario in urban area is scattering from one ore more clus-

ters, affecting the signal to come to the receiver from particular angels with

narrow angular spreads (contrary to uniform distribution of paths in the previ-

ous scenario). MDPSS-based multi-cluster model for MIMO link, discussed in

this chapter, is very flexible in determination of clusters geometry and hence is

suitable to describe any site of interest. Moreover, it enables one to determine

number of antennas on each side of communication and whether one or both

sides are in motion, what allows to apply this model either for infrastructure

to mobile or mobile to mobile cases.

• Combination of these two models is sufficient to generalize all common scenarios

in urban and suburban areas.
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Chapter 3

Simulation of a Transmission System

A general block scheme of a digital communication system is shown in Fig. 3.1, [24]. In

Figure 3.1: A general block diagram of a digital transmission system

general, information is coded, modulated and sent via one or more antennas through a

fading channel, then it is detected at the receiver (again, via one or multiple antennas)

along with Additive White Gaussian noise, demodulated and decoded. A channel is

viewed as a linear time and space varying filter, what allows us to use a concept of

system transfer/impulse response functions, which is well-studied for both wide band

and narrow band channels.

Since in the process of transmission the information is corrupted by fading

effect of a channel and the noise, it is a subject to errors. Therefore one of the central

criteria of evaluation of the system is Bit Error Probability (BEP) or Bit Error Rate

(BER) as a function of Signal to Noise Ratio (SNR). In this chapter we examine the

effect of a fading channel on the system performance. We adopt Alamouti space-time

coding scheme to improve BER. As the next step we discuss full CSI, no CSI and

incomplete CSI (i.e. with channel estimation) cases at the receiver side and how it
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affects the performance of the whole system. We also discuss methods of obtaining

the information about channel gains during the transmission.

3.1 Perfect CSI at the Receiver

First of all, we would like to observe the effects of presence of different adverse factors,

like noise or fading channel, on the the quality of communications, and what are the

possible ways to improve the system’s performance.

3.1.1 AWGN channel

It is instructive to compare performance of the communication system over a fading

channel with AWGN channel, which introduces no channel fading, but only addi-

tive Gaussian noise distortion to a signal. Thus AWGN performance is the limiting

performance (the best case) for scenarios involving channel fading. The discrete-time

baseband equivalent model of the received signal in Single Input Single Output (SISO)

system is:

y[m] = x[m] + w[m] (3.1)

Here x[m] is a signal with amplitude
√
Eb at time m and w[m] ∼ CN (0,

N0
2 ) is com-

plex circularly symmetric Gaussian white noise. It is well known, that for antipodal

signals in AWGN scenario with Maximum Likelihood (ML) detector at the receiver,

BER is given by [17]:

pe =
1√

2πN0/2

∞∫
√
Eb

e
− t2

2N0/2dt = (3.2)

= Q

√ E2
b

N0/2

 = Q
(√

2γ
)
= (3.3)

=
1

2
erfc (

√
γ) , (3.4)
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where γ =
Eb
N0

is the received signal to noise ratio per symbol time. Q(·) is the com-

plementary cumulative distribution function of normally distributed random variable.

Q(x) function decays exponentially with x2

2 , hence the upper bound of the perfor-

mance is [2]:

Q
(√

2γ
)
< e−γ , γ > 0 (3.5)

The lower bound might be found as well:

Q (
√
γ) >

1√
4πγ

(
1− 1

2γ

)
e−γ , γ > 1 (3.6)

The simulation results are presented in Figure(3.2).
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Figure 3.2: BEP in AWGN channel as a limiting case
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3.1.2 Detection in Rayleigh Fading Channel

Now we add the fading effect to our communication system. Let us consider first

the simplest example of Rayleigh fading channel process, where channel gains are

complex Gaussian i.i.d. random variables. We consider the discrete-time baseband

equivalent model at the receiver as follows [10]:

y[m] = h[m]x[m] + w[m] (3.7)

where w[m] is the sampled low-pass filtered Complex White Gaussian noise, w[m] ∼
CN (0, N0), h[m] is a flat-fading Rayleigh channel gain with normalized variance, i.e.

h[m] ∼ CN (0, 1). x[m] is a Binary Phase Shift Keying (BPSK) modulated signal,

x[m] = ±
√
Eb, where Eb is an energy of one bit sent.

Non-coherent detection is the scenario when the receiver does not have any

information or prior knowledge about the channel state. In this case due to random-

ness in the phase of the received signal the detection of uncoded BPSK modulation

scheme completely fails. Since the channel gains are Rayleigh distributed, their phase

is Uniform in [−π, π), therefore the phase of the received signal is also Uniformly dis-

tributed regardless of the transmitted symbol. Thus the binary phase modulation,

as well as any other phase modulation scheme will be flawed. Moreover, in [2] it was

shown that non-coherent detection is energetically non-efficient for other modulation

schemes, therefore usually coherent detection is used.

Now we assume that there is full CSI (channel state information) at the receiver

side (we will discuss no CSI case later). Knowledge of channel gains allows us to per-

form coherent detection of the signal [2]. Since the decoding of the received signal is

performed symbol by symbol, we may drop time index:

y = hx+ w (3.8)
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For antipodal signals (BPSK) with bit amplitude a, the detection is similar to

AWGN case, where we evaluate the symbol of real part of the sufficient statistics:

r = Re

{(
h

|h|

)∗
y

}
= |h|x+ z (3.9)

where z ∼ G(0, N0/2). Conditioned on h, the error probability is:

Q

(
a|h|√
N0/2

)
= Q

(√
2|h|2γ

)
(3.10)

Overall error probability might be calculated by averaging over random channel gain

|h|, hence:

pe = E
[
Q

(√
2|h|2γ

)]
=

1

2

(
1−

√
γ

1 + γ

)
(3.11)

Here E[x] denotes mean value of random variable x. Fig. 3.3 compares between

performance of the system in Rayleigh fading channel with coherent detection and at

AWGN channel. We can clearly see, that the performance significantly degrades in
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Figure 3.3: Bit error probability of coherent detection in Rayleigh fading channel

presence of a fading channel even when CSI is known. For high SNR and coherent
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detection (in SISO case):

pe ≈
1

4γ
(3.12)

is inversely proportional to SNR, in contrast to AWGN case when the probability

decays exponentially with SNR. Hence, we may conclude that the reason for poor

performance of the system in fading channel is not because the receiver does not have

knowledge about channel gains or the noise is high, but because the gains are random

and there is a probability, that the channel is in deep fade. The probability of the

channel to be in a deep fade is given by [2]:

p
deep fade

≈ 1

γ
(3.13)

In contrast, the the performance at AWGN channel is corrupted only by noise, hence

the performance over this channel is better.

The solution for this problem is to exploit different diversity techniques, which

operate over time, frequency and/or space. It is desired to send information not

over only one path, but over several independent signal paths, each of which fades

independently, what ensures us that if one of the paths is in a deep fade, we would

still have a reliable communication over other signal paths. The simplest diversity

technique is repetition coding. More complex techniques exploit channel diversity and

its degrees of freedom, providing coding gains as well. In this work we concentrate

on space-time Alamouti Coding scheme for 2× 1 MISO channel.

3.1.3 Space-time Coding: Alamouti Scheme

Multiple Input Single Output (MISO) is a very common scenario in the downlink

of a cellular system, because it has one base station and multiple antennas at every

handset. Consider a system with L transmitting antennas and one receiving. We

may get a diversity gain of L, if we transmit the same symbol over L symbol times:

every time only one antenna is transmitting and others are silent. This is the simplest

case of coding: repetition code over space, which is shown to be wasteful of degrees

of freedom at the system [2]. There is a lot of research done in the area of time-space



Chapter 3: Simulation of a Transmission System 45

coding, and here we focus on one of the most elegant coding techniques: Alamouti

scheme, which is used in some third generation wireless mobile standards. This

time-space diversity scheme is designed for 2 by 1 antennas system, and might be

generalized for more transmitting antennas as well.

Let us consider the scenario where two antennas are transmitting and only one is

receiving. Hence, the received signal is:

y[m] = h1[m]x1[m] + h2[m]x2[m] + w[m], (3.14)

where hi is the channel gain of transmitting antenna i. Alamouti scheme transmits

two complex symbols u1 and u2 from two antennas over two transmission times in

the following order:

1. At first symbol time we transmit x1[1] = u1, x2[1] = u2

2. At second symbol time we transmit x1[2] = −u∗2, x2[2] = u1∗
3. We also assume that the channel remains constant over two symbol times:

h1[1] = h1[2] = h1, h2[1] = h2[2] = h2

The equation (3.14) could be rewritten in a matrix form:

[
y[1] y[2]

]
=
[
h1 h2

] [ u1 −u∗2
u2 u∗1

]
+
[
w[1] w[2]

]
, (3.15)

or after some rearrangement,[
y[1]

y[2]∗

]
=

[
h1 h2

h∗2 −h∗1

][
u1

u2

]
+

[
w[1]

w[2]∗

]
= Hu+w (3.16)

The columns of the square matrix H are orthogonal, hence we may separate the

equation (3.16) into two orthogonal problems. To decode information we project y

onto each of the two columns of the matrix: [h1 h
∗
2]
t, [h2 − h∗1]

t:

ri = ||h||ui + wi, i = 1, 2 (3.17)
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where h = [h1, h2]
t and wi ∼ CN(0, N0) (w1, w2 are independent), and then we

perform ML detection for each of the decoded signal. In this scheme two symbols

are transmitted over two symbol times, and each time each symbol is transmitted

with half a power. Effectively, both symbols are transmitted over two non-interfering

parallel channels.

It is shown in [2], that bit error probability might be bounded using conditioned

on fading gains h pairwise error probability of confusing a block of codeword XB with

XA, when XA is transmitted, averaged over statistics of the channel:

P {XA → XB} =

= E

[
Q

(√
γ h∗(XA −XB)(XA −XB)

∗h
2

)]
=

= E


√
γ
∑L
l=1 |h̃l|2λ2l

2

 (3.18)

Here P{A} represents probability of an event A and λl are singular values of the

codeword difference matrix (XA − XB). Second step was due to the fact that this

matrix is Hermitian with thus diagonalizable by a unitary transformation UΛU∗,

where U is unitary and Λ = diag{λ21, . . . , λ
2
L}, therefore h̃ = U∗h. In Rayleigh

fading model the above expression might be bounded by:

P{XA → XB} 6 42

γ2 det [(XA −XB)(XA −XB)
∗]

(3.19)

In general, Alamouti scheme works for any constellation. In the following we are in-

terested in BPSK case to isolate the effects of fading. The exact Bit Error Probability

was derived by [10] as a limiting case for perfect CSI:

Pb =
1

4

(
2 +

√
γ

γ + 2

)(
1−

√
γ

γ + 2

)2

∼ 1

γ2
(3.20)
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The last step in 3.20 is due to the fact that the first term in brackets converges to

constant for high SNR and the second term could be approximated as:

(
1−

√
γ

γ + 2

)2

=

1− 1√
1 + 2

γ

2

∼
[
1−

(
1− 1

γ

)]2
=

1

γ2
, (3.21)

what declares diversity gain of 2.

From the simulation results we may clearly see, that comparing to coherent

detection of uncoded information Alamouti space-time coding scheme improves com-

munication quality by decreasing Bit Error Probability, see Fig. 3.4. In this case Pe

converges to zero much faster than in uncoded case. Similarly the simulation results
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Figure 3.4: Bit error probability, Alamouti Scheme, perfect CSI at the receiver side

show, that SoS and MDPSS channel generators, discussed in Chapter2 demonstrate

the same performance as Gaussian i.i.d. channel. As well known in ideal case of

perfect CSI the performance of the system depends only on the first order statistics

of the channel, and because in all cases channel gains are Gaussian distributed, we

do not expect any differences in simulation results. See simulation verification is in

Fig. 3.5.

However, in reality, the receiver does not possess perfect channel gains in-
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Figure 3.5: Comparison of the system’s performance when different channel generators
were applied

formation. Hence, we need to estimate the channel from the received data, and in

this case the correlation between channel gains takes an important role, which makes

possible to predict channel behavior at the receiver side in case of no CSI. The accu-

racy of estimation depends on the amount of available measurements, rate of channel

change, noise at the receiver, etc., and as the consequence, the decoded information

is not perfect, what is expressed in estimation noise, which bounds the achievable

rates. In our work we employ the pilot symbol assisted channel estimation scheme

with Wiener filter as a pilot filter at the receiver side [25], [10].

3.2 No CSI at the Receiver, Channel Gains

Estimation

As we mentioned before, the receiver usually does not possess any information about

the current channel state. Therefore different estimation schemes could be employed,

see [25] - [26], [10] for example. We adopt pilot-based estimation with Wiener filter

at the receiver [14], [10] because of its simplicity and ubiquitousness in many com-
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munication scenarios. In this section we introduce briefly the theory of Wiener filter

and then we explain how we implement it in our transmission system. At the end we

present simulational results which show how different system parameters affect the

quality of estimation, and at the end we present different scenarios of mobile to base

station or mobile to mobile communication.

3.2.1 Wiener Filter

According to [15] a linear discrete time filtering problem could be described as shown

in Fig. 3.6. Linearity of the filter is assumed for convenience and ease of mathemat-

Figure 3.6: Block scheme of a linear filtering problem

ical analysis and assumption of discrete time is made for its applicability in digital

hardware and software. Moreover this problem is assumed to be a finite impulse

response problem (FIR), because it contains only forward filtering paths and hence

it is stable (in contrary to an infinite impulse response problem (IIR), where both

feedforward and feedback structures are involved, and therefore the output is prone

to oscillate). The filter has an impulse response w0, w1, w2, the input of the filter is a

sequence of samples of a stochastic zero-mean process in time y(0), y(1), y(2)..., and

the actual output is ĥ(n) (n denotes discrete time sample), which is then subtracted

from the desired output at time n, h(n) to produce an estimation error e(n). If we

denote the filter coefficients to be complex-valued (in case of a complex input), which
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take form of:

wk = ak + jbk, k = 0, 1, 2, ... (3.22)

the output of the filter could be expressed as follows:

ĥ(n) =
∞∑
k=0

w∗
ky(n− k), n = 0, 1, 2, ... (3.23)

The goal here is to bring the mean-square value of the error e(n) to the minimum

[15]. Therefore one may define the cost function J as follows:

J = E [e(n)e∗(n)] = E
[
|e(n)|2

]
(3.24)

where E is an expectation operation and the error e(n) is defined as the difference

between estimated and desired processes:

e(n) = h(n)− ĥ(n) (3.25)

It might be shown, that the necessary and sufficient condition to bring the cost

function J to its minimum is to find a special value of estimation error e0(n), which

is orthogonal to each sample of the input process taken for the estimation of the

desired process at time n. This is called the principle of orthogonality and this is one

of the most important theorems in linear filtering theory. Therefore

E [y(n− k)e∗0(n)] = 0, k = 0, 1, 2, ... (3.26)

and

Jmin = E
[
|e0(n)|2

]
(3.27)

Following the principle of orthogonality, the next corollary could be attained:

E
[
ĥ0(n)e

∗
0(n)

]
= 0 (3.28)
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that means that the output of optimized in the mean-square error sense filter ĥ0(n) is

orthogonal to the corresponding estimation error en(n) at time n. The desired output

process takes the form of:

h(n) = ĥ0(n) + e0(n) (3.29)

Then if one evaluates mean of both sides and applies the principle of orthogonality,

the following expression of the minimum value of the cost function could be derived:

Jmin = σ2h − σ2
ĥ

(3.30)

where σ2h and σ2
ĥ
are the variances of the desired and estimated processes respectively.

The normalized mean-square error can be expressed as shown below:

ε =
Jmin
σ2h

= 1−
σ
ĥ2

σ2h
(3.31)

It is clear that ε can never be negative and it takes values in the range of:

0 ≤ ε ≤ 1 (3.32)

If ε = 0, the error-less estimation is achieved, i.e. filter’s operation is perfect. If ε = 1,

there is no correlation between input and output of the filter, what corresponds to

the worst case scenario.

The optimality condition of the filter could be restated by substituting eq.(3.23)

and eq.(3.25) into eq.(3.26):

E

[
y(n− k)

(
h∗(n)−

∞∑
i=0

w0iy
∗(n− i)

)]
= 0, k = 0, 1, 2, ... (3.33)

what is equal to:

∞∑
i=0

w0iE [y(n− k)y∗(n− i)] = E [y(n− k)h∗(n)] (3.34)
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We can define the auto-correlation of the input process for the lag (i− k) as

E [y(n− k)y∗(n− i)] = r(i− k) (assuming h being a stationary process) and

E [y(n− k)h∗(n)] = p(−k), the cross-correlation between input and the desired pro-

cesses for a lag −k. Therefore eq.(3.34) takes a form of:

∞∑
i=0

w
0ir(i− k) = p(−k), k = 0, 1, 2, ... (3.35)

and defines the most general representation of optimal filter coefficients in terms of

two correlation functions in an infinite set of equations. They are called the Wiener-

Hopf equations [15].

The simplified solution could be obtained in the special case of FIR filter (or

linear transversal filter), which impulse response is finite. Its structure is shown in

Fig. 3.7 and contains three main operations: storage, multiplication and addition.

The storage operation is described by M-1 taps, or delay blocks. Therefore if the

Figure 3.7: Transversal filter

current input of the filter is y(n), there are M − 1 past samples stored in taps, see

Fig. 3.7, which are called tap inputs. Multiplication operation involves scalar inner

products of M tap outputs with appropriate tap gains wi (i = 0, 1...,M − 1). These

blocks are denoted as w∗
i . Then adders sum up outputs of multipliers to form the filter
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output at time n. Therefore Wiener-Hopf equations reduce to a set of M equations

only, i.e.:
M−1∑
i=0

w
0ir(i− k) = p(−k), k = 0, 1, ...,M − 1 (3.36)

here w
0i are the optimal filter weights.

Now one can formulate Wiener-Hopf equations in matrix form and find an

explicit expression for the filter coefficients and the estimation error. Equation (3.36)

could be represented as:

Rw0 = p, (3.37)

where R is denoted as an M ×M correlation matrix of M × 1 input vector y(n) =

[y(n), y(n− 1), ..., y(n−M + 1)]T :

R = E
[
y(n)yH(n)

]
(3.38)

or

R =


r(0) r(1) · · · r(M − 1)

r∗(1) r(0) · · · r(M − 2)
...

...
. . .

...

r∗(M − 1) r∗(M − 2) · · · r(0)

 (3.39)

Vector p is the correlation vector between output of the filter and the desired response:

p = E [y(n)h∗(n)] = [p(0), p(−1), ..., p(1−M)]T (3.40)

And w0 =
[
w
00, w01, ..., w0M−1

]T
is the M × 1 vector of the optimal filter weights.

Therefore assuming non-singularity of the correlation matrixR, these coefficient could

be calculated as:

w0 = R−1p (3.41)

From this equation it is clear that in order to calculate Wiener filer coefficients one

is required to posses information about correlation matrix of the input vector and

cross-correlation vector between the desired response and input vector.
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The output of the filter could be expressed as:

ĥ = wH
0
y(n) (3.42)

with variance:

σ2
ĥ
= E

[
wH

0
y(n)yH(n)w0

]
= wH

0
Rw0 = pHR−1p (3.43)

Therefore, following eq.(3.30) the estimation MMSE is:

Jmin = σ2h −wH
0
Rw0 = σ2h − pHR−1p (3.44)

3.2.2 Pilot-Based Channel Estimation Scheme Using Full

Wiener Filter

As the perfect CSI is not available in real-life communication, estimation of channel

gains at the receiver is always required. One of the most commonly used estimation

schemes is pilot-assisted scheme with Wiener filter at the receiver [14], [15]. The

information codewords (or blocks of two symbol times length each in Alamouti coding

case) are divided into frames and interleaved with pilot symbols known to the receiver.

Each frame contains Nb+1 blocks: Nb blocks of information symbols and one block of

pilot which is added at the beginning of the frame. The symbol time is Ts. We assume

that the receiver possesses the information about channel statistics, bit rate and the

frame length, and hence, it is able to extract pilot signals from the data stream and

store them in the buffer of length 2M + 1. Then, based on the information from the

buffer and known correlation function between pilots, the receiver is able to perform

channel estimation, decoding and decision. An example of a division into frames and

pilot interleaving is visualized in Fig. 3.8. In addition to the baseband representation

(3.14), we express the pilot signal rp (which has energy 1, i.e. 1/2 per antenna) and
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the buffer r⃗p for each antenna as follows [10]:

r
j
p[m] =

1√
2
hj [m] + ξj [m], j = 1, 2 (3.45)

r⃗
j
p[m] =

[
r
j
p[m−M ] · · · rjp[m] · · · rjp[m+M ]

]T
Here index m represents time and index j represents antenna. Since the receiver

processes data at time m, we may consider first M and last M pilots in the buffer

as ”past” and ”future” pilots, see Fig. 3.9. Therefore data processing of a certain

frame is performed at delay of 2M(Nb + 1) symbol periods (in order to have needed

amount of pilots in the buffer for estimation). On the other hand, greater number

of pilots allows more accurate channel estimation, hence the trade-off between delay

and accuracy of estimation can be reached based on the application needs.

Frame 1 Frame 2

Prediction horizon

...

Figure 3.8: An example of a stream with 3 pilot signals, M = 1

Outputs of the filter are given by:

ĥ1[i] = hHr1p[i], ĥ2[i] = hHr2p[i] (3.46)

where ĥj [i] represents estimated channel gain for antenna j, and the vector h repre-

sents pilots filter coefficients: [hM . . . h0 . . . h−M ]T . Assuming, that channel does not
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out

in

Figure 3.9: The scheme of a buffer accumulating pilot signals

change in the duration of the frame [10], these coefficients take a form of [15]:

h =
1√
2

(
D0

2
+ γ̄−1

p I2M+1

)−1

ρ0 (3.47)

Where R is channel autocorrelation function, De denotes a square matrix of size

(2M + 1) with entrances given by

De(k, l) = R(−eTs + (k − l)TsN), (3.48)

k, l = 1, . . . , 2M + 1;

e = 0, . . . , 2Nb + 1

and ρe is the (M + 1)th column of De (in a case of stationary channel during one

frame we take e = 0 for both De and we), γ̄p denotes the average pilot SNR or pilot

Ep/N0. I2M+1 is Identity matrix of size (2M+1). Substituting (3.47) into (3.46) one

may calculate channel gain estimates for the frame i. However, in our work we assume

that channel gains have a slight variation in the duration of a frame, hence, based on

the variation of the correlation function, the filter coefficients should be recalculated

every symbol time in a frame duration. This will increase reliability of estimation

scheme (in terms of smaller MMSE). Therefore we may express the coefficients for
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each symbol time in the frame as follows

he =
1√
2

(
D0

2
+ γ̄−1

p I2M+1

)−1

ρe (3.49)

Therefore

ĥ1[i, e] = hHe r1p[i], ĥ2[i, e] = hHe r2p[i] (3.50)

where index i runs on frames’ times with interval 2(Nb+1)Ts and index e runs within

a single frame with interval Ts. That means, that in the above scheme, matrix D0

is a covariance matrix between pilot signals given in a buffer, and ρe is a vector of

correlations between a specific frame element at place e and the nearest pilot signals,

see Fig. 3.10 for visualization. For example, for M = 1, ρe for e = 0, 1, 2 ρe takes a

Figure 3.10: Estimation scheme within a frame. R(·) is a Covariance Function between
elements

form:

ρ0 =


R(2(Nb + 1)Ts)

R(0)

R(−2(Nb + 1)Ts)


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ρ1 =


R((2Nb + 1)Ts)

R(−Ts)
R(−(2Nb + 3)Ts)



ρ2 =


R(2NbTs)

R(−2Ts)

R(−2(Nb + 2)Ts)


It is worth mentioning, that since we deal with Gaussian distributed channel gains,

Wiener filter is the optimal estimation filter.

BER of this scheme has been derived in [10] and is a function of SNR and

correlation between the pilots at e = 0 as the best-case scenario:

Pe=0 =
1

4
(2 + Υ) (1−Υ)2 (3.51)

Here

Υ =

(
4
(
1 + γ̄−1

s

)
ϵ0

−
(
ϵ1
ϵ0

)2
)−1

2

(3.52)

and

ϵ0 = ρH0

(
D0

2
+ γ̄−1

p I2M+1

)−1

ρ0 (3.53)

ϵ1 = ρH1

(
D0

2
+ γ̄−1

p I2M+1

)−1

ρ0

In case of perfect CSI, R(τ) = 1, (3.51) reduces to (3.20). Theoretical MMSE is given

by:

σ2e = 1− ρHe

(
D0

2
+ γ̄−1

p I2M+1

)−1

ρe (3.54)
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3.2.3 Simulation Evaluation of the System Performance

In this section we evaluate by numerical simulation the performance of the discussed

transmission system and we observe how it depends on different channel and estima-

tion scheme parameters. Further we look into different real-life scenarios of MS to

Base Station (BS) or MS to MS transmission and check how environment can affect

the quality of estimation in STTD system.

3.2.3.1 General Evaluation of the System

In general simulational evaluation of the discussed transmission system we used SoS

channel generator because of its simplicity and stationarity. We were interested in

verifying how different parameters, for example, length of frame (or length of a buffer)

or channel fading speed may affect the quality of estimation of the system. First we

evaluated how number of pilots M affects estimation. We run the simulation with

normalizes bit rate fDTs = 1.5 · 10−3 and Nb = 5, the number of blocks per frame.

Estimation error and BER are shown in Figs. 3.11 - 3.12. As we may see from
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Figure 3.11: Effect of a buffer length M on quality of estimation. Estimation error σe as
a function of SNR and M , SoS channel
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Figure 3.12: Effect of a buffer length M on quality of estimation. BEP as a function of
SNR and M , SoS channel

Fig. 3.11, the greater number of pilot signals in the buffer decreases estimation error.

This is due to the fact that with more pilots available at the receiver, the coefficients

of Wiener filter are calculated with better precision, hence the estimation is more

rigorous. In all cases there is an excellent agreement with the theory. Increasing

estimation error with decreasing number of pilots affects as well BEP of the system,

see Fig. 3.12. With 10 pilots BEP curve is fairly close to curve in perfect CSI case,

what is equivalent to a very good estimation.

In Figs. 3.13 - 3.14 we may see how frame length affects the quality of es-

timation. As we may infer from Fig. 3.13, with growing number of blocks in a

frame MMSE increases. The reason is that with greater Nb, an effective number

of pilots in a buffer decreases, i.e. the covariance function at 2πfDTs2(Nb + 1)M

(corresponding to the farthest pilot in a scheme) has considerable attenuation, or

R(2πfDTs2(Nb + 1)M) ≤ 0.5, which is equivalent to less pilots in possession of the

receiver, as pilots with low correlation do not add any additional information about
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Figure 3.13: σe as a function of SNR and a number of blocks per frame Nb, SoS channel
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the channel. Again, there is a very good agreement of simulation and theory. BEP

is plotted in Fig. 3.14, where we may observe how growing estimation error (as a

result of additional blocks per frame) decreases reliability of the system. In general,

as the number of blocks increases, the better channel utilization is achieved, but on

the other hand, as we see from the simulation it decreases reliability of the system and

as a result the achievable rates. According to [25] an optimal frame length Nb could

be found numerically through simulation of the capacity of the system as a function

of frame length at a desired SNR level. Also we may observe saturation floor effect

for large Nb: when the number of effective pilots is one orMeff = 0, and we estimate

channel gain at the middle of the frame, e = Nb, it is equivalent to prediction of the

point which is Nb samples ahead in future from the pilot signal. Therefore, when

the prediction error is greater than estimation one saturation occurs. The saturation

thresholds are higher for longer frames, as the prediction point becomes less corre-

lated to the effective pilot.

In Figs. 3.15 - 3.16 the estimation error and BEP are plotted as functions of

SNR and rate of channel variation, fDTs. In Fig. 3.15 we may observe MMSE,
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Figure 3.15: σe as a function of SNR and channel variation rate fDτs, SoS channel

and we see good agreement with theory again. MMSE is sensitive to alterations in
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Figure 3.16: BEP as a function of SNR and fDτs, SoS channel

channel speed, what results in different saturation levels. We can explain it as follows:

with faster channel rates elements within a frame become less correlated, and once

the correlation between the pilot signals and estimated point in a frame is close to 1/2

or less (which we consider as a low correlation, or independence) MMSE saturates

(estimation error is smaller than prediction error). BEP is plotted in Fig. 3.16. Sat-

uration in BEP on high SNR levels is a result of two reasons: first is the saturation

in MMSE due to rapidly varying channel and decaying correlation between pilots,

as we discussed previously. Second, it is due to the fact that with faster channel

alterations, Alamouti Coding assumption becomes not valid, i.e. h1[1] ̸= h1[2] and

h2[1] ̸= h2[2]. In order to check that, we simulated a case of perfect CSI at the

receiver, when changing speed of cannel variations, see Fig. 3.17. As we assumed,

in perfect CSI case with increasing fading speed BEP curves start saturating, as the

Alamouti coding assumption becomes less accurate. We may clearly see, that satura-

tion levels at high SNR in Fig. 3.17 are approximately the same as in case of no CSI

at the reciver, Fig. 3.16, therefore we infer that in our estimation scheme inaccuracy

of Alamouti coding makes the major contribution to saturation of BEP curves on

high SNR. At the same time, increasing estimation error puts the curves further off
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Figure 3.17: BEP as a function of SNR and channel speed fDTs in case of SoS channel
and perfect CSI at Rx

the theoretical perfect CSI case in low SNR.
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3.2.3.2 Effect of Scattering Environment on Performance of Alamouti

Scheme with Imperfect Channel Estimation

In this section we analyze the influence of presence of one or more clusters in the trans-

mission environment in different real-life scenarios. MDPSS channel model, which we

discussed in section 2.2.5.2, is very flexible in definition of the geometry and location

of different clusters that enables us to analyze various scattering scenarios of interest.

3.2.3.3 Vehicle to Infrastructure Communications (V2I)

This type of communications is featured by the motion of one transmission side

(Mobile Station) and stationarity of the other side (Base Station). We discuss two

different scenarios where clusters are located on the way of the mobile or on the side

of the road, and mobile is passing by. For visualization look up Figs. 3.19 and 3.23.

Then we model a real-life scenario from one of the intersections in city of London,

ON.

Reciprocally to the previous section, first we run some general simulations with

use of MDPSS channel model to validate the performance of the system. Thus, for

example, Fig. 3.18 shows how number of pilots M used for estimation affects MMSE

of the scheme. The simulation was performed for the rate of 50 Kbps, Nb = 5, e = 0

and cluster parameters given in Table 2.1. As we would expect, the greater number

of pilots reduces estimation error for any SNR. It happens because larger number of

pilots provides more information to the receiver about correlation of channel gains,

therefore better estimation is achieved. There is a good convergence between theory

and simulation.

At the first scenario we assume that a mobile, for example a car, is moving

along the road and passing under a big road sign, as in Fig. 3.19. The base station

is assumed to be far away. In this case the angular spread ∆ϕr changes as a function

of time (or distance to the cluster) and as we may see from the figure ∆ϕr increases

as the car approaches the cluster. The expression for the varying angular spread is
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Figure 3.18: Estimation quality as a function of SNR and number of pilot signals M

then:

∆ϕr(t) = 2 tan−1

 a tan
(
∆ϕr0
2

)
a− 2vrt · tan

(
∆ϕr0
2

)
 (3.55)

Here the initial angular spread is ∆ϕr0 = 50, ϕr ≈ 00, a = 5 m is the width of the road

sign and all the other parameters are as in Table 2.1. Fig. 3.20 shows behaviour of

Δϕr(t)

vr
a

d

Figure 3.19: Scenario 1, a mobile is moving under a big road sign

absolute value of autocorrelation function of channel gains as a function of normalized

delay time and a distance to the cluster. Negative distance implies that the mobile is

located on the left side of the cluster (according to Fig. 3.19) and positive distance
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implies that it is located to the right. The cluster is located at d = 0 m. It can be

seen, that as the mobile gets closer to the cluster, autocorrelation function decays

quicker. As a consequence, the pilot signals become less correlated, which results

into higher estimation error. The behaviour of channel gains estimation MMSE as a
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Figure 3.20: Absolute value of autocorrelation function of channel gains, |R(d, fD0τ )|,
Scenario 1

function of distance to the cluster at SNR = 10 dB and 50 Kbps rate with M = 1

and e = 0 for the estimation is shown in Fig. 3.21 and the resulting BER is given in

Fig. 3.22. If we compare BER curves to perfect CSI case (or error-free estimation) we

may see that the initial increase of 4 dB in BER presents because of the estimation

based on 3 pilots only. Further increase in BER is introduced as the car is nearing

the cluster. As we may observe the effect of cluster’s presence is more pronounced

at longer frames. If the frame is built of more that 100 blocks, MMSE increases

dramatically when the vehicle approaches the cluster. For example, for 200 blocks

length frames the increase in MMSE is more than 10 times with resultant increase in

BER by 4.7 dB (see Fig. 3.22) when the car is under the road sign. Therefore this

kind of clusters produce significant shadowing effect on communication session. On

the other hand this apparent decrease of communication quality is fleeting and does

not last more than a couple of seconds.

The second scenario depicts a mobile passing by two significant clusters located

on a side of the road, see Fig. 3.23. In this case we assume that clusters are far enough
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Figure 3.21: Estimation MMSE as a function of distance to the cluster and frame length
at SNR = 10dB, 50Kbps rate and 3 pilot-based estimation, Scenario 1
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Figure 3.22: BER as a function of distance to the cluster at SNR = 10dB, 50Kbps rate
and 3 pilot-based estimation, Scenario 1
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so that their angular spread ∆ϕr1, ∆ϕr2 are small and do not change as a car passes

by. The initial angle between the vector of movement and the first cluster’s centre is

ϕr10 = 100. Moreover we assume for simplicity that both clusters are located on the

same perpendicular to the mobile movement vector with equal distances between each

other and the road, h = 10 m, as shown in Fig. 3.23, and clusters’ angular spreads do

not change. Hence the initial angle of the second cluster with the receiving side equals

vr

ϕr1(t)

ϕr2(t)

ϕt1

ϕt2

d
h

h

Figure 3.23: Scenario 2, a mobile is passing by two significant clusters located on the side
of the road

ϕr20 = tan−1(2 tan(ϕr10)) ≈ 190. The angles from the BS to clusters are arbitrary

taken to be ϕt1 = 1850, ϕt2 = 1750 and they are constant. Each one of angels ϕr1(t),

ϕr2(t) changes in accordance with distance change (as a function of time) between

clusters and the car:

ϕr,i(t) = tan−1
(

h tan(ϕr0,i)

h− vt tan(ϕr0,i)

)
, i = 1, 2 (3.56)

The autocorrelation function of the channel in this scenario is shown in Fig. 3.24.

Corresponding BER and MMSE graphs are shown in Figs. 3.25 - 3.26. As in previous

case, there is an initial recession of 4 dB in BER because of estimation based on 3

pilot signals only (when comparing to perfect CSI). Furthermore, as we expected,

autocorrelation function of the channel decays more rapidly in vicinity of clusters,

what affects the performance of the system, increasing estimation error and thus

BER by additional 3 dB. In contrast to the previous case, the increase in MMSE is

not as sharp, but its duration is considerably longer, about 5 seconds. The notable

attribute in this case is that when the mobile is located precisely at d = 0 m, i.e.

perpendicular to clusters, autocorrelation function has an instant escalation (see Fig.
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Figure 3.24: Absolute value of autocorrelation function of channel gains, |R(d, fD0τ )|,
Scenario 2

3.24), what results in a notch in MMSE and BER curves around zero (Fig. 3.25 and

Fig. 3.26). This behaviour has a simple explanation: when the mobile is located at

d = 0 m, both clusters have equivalent angular parameters, what in terms of auto-

correlation function equals to summation of two equally modulated sink functions,

therefore when absolute value is taken it behaves like a one-cluster case: a very slow

decay in correlation as an absolute value of a pure sink function. Or effectively the

mobile ”sees” one cluster with unity power.

Now we model a scenario from a real intersection in the city of London, On-

tario. The picture in Fig. 3.27 was taken at the intersection of Wonderland Road and

Oxford Street (East of Wonderland Road view to the North-West). The view on the

same intersection, but from Google Maps Street Viewer c⃝, is shown in In Fig. 3.28.

Let us assume, that some mobile equipped with our system is passing through the

intersection with speed of 30km/h and moving to the North along Wonderland Road.

Let us assume as well that there is a downlink between the mobile and a Bell cellular

tower located on the roof of one of the apartment buildings on the left-hand side of

the road, at the address 720 Wonderland Rd., which is approximately 400 m to the

North from the intersection, see Fig. 3.29. From the picture of the intersection, we



Chapter 3: Simulation of a Transmission System 71

−40 −30 −20 −10 0 10 20
10

−2

10
−1

d [m]

M
M

S
E

 

 

N
b
 = 10

N
b
 = 100

N
b
 = 200

N
b
 = 300

N
b
 = 400

N
b
 = 500

Figure 3.25: Estimation MMSE as a function of distance to clusters and frame length at
SNR = 10dB, 50Kbps rate and 3 pilot-based estimation, Scenario 2
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Figure 3.26: BER as a function of distance to clusters at SNR = 10dB, 50Kbps rate and
3 pilot-based estimation, Scenario 2

may clearly define several clusters in vicinity of the mobile station: Petro-Canada and

Esso gas stations on the Western side of Wonderland Road (and on opposite sides
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Figure 3.27: Real Street View, Wonderland Rd. and Oxford St. intersection, London,
Ontario, Canada, ON N6H

Figure 3.28: Google Map Street View c⃝, Wonderland Rd. and Oxford St. intersection,
London, Ontario, Canada, ON N6H

of Oxford), a big metal poster, a convenience store near the Esso gas station, and

Malibu Restaurant West Intc. to the North from Esso, see Fig. 3.30. All the rest of

buildings and obstacles are either shadowed by these four clusters (for example, Clus-

ter 5 on the picture) or approximately too far to contribute to the signal scattering

with respect to the current mobile location, but might be taken into the consideration

when recalculating the communication site layout as the mobile moves forward and

approaches them. The distances, angles and angular spreads of each cluster can be
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

ϕr [0] 121.3 46.1 26.3 22

∆ϕr [0] 25.7 35.7 2.4 16.7

ϕt [
0] 134.8 143.9 134.3 134.9

∆ϕt [
0] 3.4 5.1 0.6 6

τ [µsec] 1.68 1.43 1.38 1.38
∆τ [µsec] 0.09 0.08 0.003 0.01
h [m] 55.7 64.55 31.88 42.78
P 0.3 0.3 0.1 0.3

Table 3.1: Parameters of clusters in scenario on Wonderland Road and Oxford Street
intersection

easily measured and calculated using Google Distance Measurement Tool c⃝, see Fig

3.31. The parameters of each cluster are listed in Table. 3.1. Powers of clusters were

chosen arbitrary for simplicity purposes, but could be verified through more elaborate

calculations, for example with use of Radar Equation. Auto-correlation function of

the channel in this scenario is shown in Fig. 3.33 as a function of normalized Doppler

time and distance to cluster 2. As we may see, cluster 1 almost does not contribute

to the fading, cluster 2 and cluster 4 make the major contribution and we may clearly

distinguish them on the auto-covariance graph. Contribution of cluster 3 is merged

with one of cluster 2, because this cluster is small and is located really close to the big

cluster, therefore the mobile is not able to distinguish it. We may think that it adds

up to the power of cluster 2. Overall, the correlation snapshot appears blurred with a

lot of grey-level corresponding to correlation of 0.3-0.6 with no very pronounced dark

areas (a very low correlation), as we saw in previous cases. The reason is that in this

scenario the distances between the mobile and clusters are bigger than in previous

cases (30-64 meters compared to 10-20 meters) as well as angular spreads (20 − 350

compared to 100−190). An example of MMSE and BER for 200 blocks frame-length

and with 3 pilot signals prediction at 50 kbps is shown in Fig. 3.34, where we can

see the influence of clusters at 0 and around 40 meters (with respect to the second

cluster).

In a similar way we may analyze communication in any type of terrain

containing multiple obstacles. Of course, extension to more complicated scenarios
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Figure 3.29: Google Map Street View c⃝, locations of base station and mobile station

MS
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Petro-Canada

cluster 3
Poster
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Figure 3.30: Google Map Street View c⃝, clusters contributing to the signal diffusion
around the mobile

describing bigger number of clusters with non-symmetrical allocation is straightfor-

ward. Also another various kinds of modulation and transmission schemes could be

evaluated to improve the overall performance of the system.
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Figure 3.31: Google Map Street View c⃝, Distance Measurement Tool

(a) (b)

Figure 3.32: The geometry of the site around the mobile

3.2.3.4 Vehicle to Vehicle Communications (V2V)

Vehicle to Vehicle communication is currently a quickly developing area of wireless

communications. Many new applications are designed in order to improve vehicular

active safety, for example critical distancing between cars, collision warnings, alert

about poor road conditions, etc., other applications are in demand to enhance trans-

portation systems efficiency, i.e. avoiding transport jamming or construction sites, as

well as improving passengers comfort [16]. Realistic models for V2V physical channels

characterization are essential for reliable design and testing of V2V systems. Since

this kind of communication is accompanied by the motion of both receive and transmit
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Figure 3.33: Auto-correlation function in a real-life scenario, Oxford Street - Wonderland
Road intersection, London ON
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Figure 3.34: Estimation Error and Bit Error Rate as a function of distance to the cluster,
Oxford Street - Wonderland Road intersection, London ON

sides with low elevation antennas and scatterers which are assumed to be located on

perimeters of multiple co-focal ellipses (where the receiver and the transmitter are at

ellipse’s focals), the MDPSS channel model might be used as Regular-Shaped Geom-
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Figure 3.35: V2V scenario with two clusters

etry Based Stochastic Model (RS-GBSM) for the description of underlying physical

channel between communicating sides in Moderate Spatial Scale (MSS) or Small Spa-

tial Scale (SSS) scenarios. Assuming that the exact geometry description of clusters

and obstacles is available through different accessible applications like Google Maps

c⃝ for 3D street view or through different global navigation and positioning satellite

systems like GPS [27], GLONASS [28] or QZSS [29], it is possible to model the ge-

ometry of any site of interest.

The scenario, shown in Fig. 3.35, is similar to scenario 2, but now both the

receiver and the transmitter are moving at the same direction and are passing two

identical clusters, which are located on the side of the road. Again, for simplicity,

we assume that both clusters are located on the same perpendicular to the mobile

movement vector with equal distance between each other and the road, h = 10 m.

Also, we assume that the angular spread of both clusters is the same and approx-

imately does not change as mobiles pass by, ∆ϕ1,∆ϕ2 ≈ 50. The initial angles

between the first cluster’s centre and the vectors of movement of the receiver and

the transmitter respectively are ϕr10 = 50, ϕt10 = 70. Hence the angle between

mobile’s movement vectors and the center of the second cluster is calculated from:

ϕr20,t20 = tan−1(2 tan(ϕr10,t10)) and equal approximately 100 and 140. Each one

of angels ϕr1(t), ϕr2(t), ϕt1(t), ϕt2(t) changes in accordance with distance change
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Figure 3.36: Absolute value of autocorrelation function of channel gains, |R(d, fD0τ )|,
V2V scenario

between clusters and the car:

ϕr,t,i(t) = tan−1
(

h tan(ϕr0,t0,i)

h− vt tan(ϕr0,t0,i)

)
, i = 1, 2 (3.57)

The snapshot of auto-covariance function in the case when both vehicles’ speed equal

30km/h is shown in Fig. 3.36. Resulting estimation MMSE and BER are shown in

Figs. 3.37 - 3.38. Fig. 3.37 shows the estimation error as a function of frame length

Nb and the distance from the cluster with respect to the receiver. As we can see, longer

frames increase MMSE due to decreasing correlation between pilots. On the graph we

can distinguish two notches at d = −40m and d = 0m, where the system experiences

quick decrease in estimation MMSE, corresponding to the vehicles’ location strictly

perpendicular to clusters, where the mobiles effectively ”see” one cluster with the

unity power (same explanation as in Sec. 3.2.3.3, scenario 2). In addition, the

greatest estimation error is induced when vehicles are located from the different sides

of the cluster (−40m ≤ d ≤ 0m on the graph). From the graph of BER we see that,

as in V2I case, there is an initial recession of 4 dB in BER because of estimation based
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Figure 3.37: Estimation MMSE as a function of distance to the cluster with respect to Rx

and a frame length Nb at SNR = 10db and 3 pilot-based estimation, V2V scenario
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Figure 3.38: BER as a function of distance to the cluster with respect to Rx and a frame
length Nb at the rate SNR = 10db and 3 pilot-based estimation, V2V scenario

on 3 pilot signals only (when comparing to the perfect CSI), and further increase of

3.8 dB is introduced because of the clusters presence.
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3.3 Summary

• Communication over a wireless channel includes different factors which cor-

rupt the information sent over the medium. The most pronounced of them are

noise and channel fluctuations in time and frequency. While the performance

in AWGN channel in terms of BER improves exponentially with growing SNR,

with presence of a random channel it improves only linearly, even with a perfect

knowledge of CSI at the receiver. This happens because there is a probabil-

ity greater than zero, that the channel is in a deep fading state. Therefore

different diversity techniques should be applied in order to improve system’s

performance. In our work we focus on 2 × 1 STTD system with Alamouti

coding.

• Alamouti scheme significantly relies on the channel knowledge at the receiver

side. In a real-life communication system perfect CSI is not available and there

is a need in channel estimation unit. One of the most popular estimation

schemes is pilot-based estimation with Wiener filter for pilot signals at the

receiver.

• It was shown trough the simulation, that different parameters of estimation

system and the channel affect the quality of communications. Thus, the greater

number of pilot signals (or length of the buffer) improves system’s performance

in terms of BER and estimation MMSE, since the receiver has more information

about the channel. On the other hand bigger number of blocks per frame and

faster channel fading were shown to deteriorate system’s performance, because

both of these factors decrease pilots correlation, making the effective buffer

length smaller.

• A number of real-life scenarios of V2I communications was investigated: one

of them includes a big cluster located on the way of a moving mobile, like a

road sign. The other one consists of two similar clusters located on one side

of the road and the mobile passes by, for example, houses or gas stations, or

any other obstacles, which could be found on the side of a road. In both cases

increase in estimation MMSE was detected in vicinity of clusters resulting in



Chapter 3: Simulation of a Transmission System 81

degradation of system’s performance in terms of BER. At the same time, the

effect of performance’s downgrading is bigger in cases of longer frames between

pilot signals, as a straightforward result from quickly decaying autocorrelation

function of channel gains in occurrence of clusters in the environment. In first

scenario increase in MMSE and BER was higher, although with shorter dura-

tion, than in second scenario. A scenario, which describes the channel analysis

from a real street, located in London, ON, is demonstrated as well, where we

explain in detail how we can use different tools (like Google Maps c⃝) in order

to calculate the parameters of clusters which contribute to signal scattering in

vicinity of mobile during the communication session.

• We have shown how MDPSS model could be easily applied to mimic channels

in mobile to mobile communications scenario, where we assume, that clusters

are located on the perimeters of co-centric ellipses and their geometry can be

calculated from available online resources.

• It is worth mentioning that due to flexibility of the MDPSS simulator the

description of a vast variety of different scenarios is available, allowing one to

easily test any kind of environment with different positioning of clusters.
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Chapter 4

Light Wiener Filters for Channel

Estimation of Slowly Varying Wireless

Channels

As it was previously mentioned, classical Wiener filter (or full Wiener filter as we

refer to it in this work) is an optimal filter for gaussian signals because it minimizes

the estimation error [15], therefore it is optimal for pilot symbol assisted modulation

(PSAM) as well [14], [15]. But in order to apply it, the receiver needs to know the

statistics of the channel, i.e. the auto-covariance function. In real life communication

this information is usually unavailable and its estimation is complicated. In the best

case scenario, the receiver has some partial knowledge about the channel process,

for example mean value and variance, but in many cases even this is not available.

Therefore Wiener filters are not practical and other estimators are used, which are

suboptimal, but do not require full knowledge of covariance function. Some of the in-

terpolation filters used in previous works include lowpass and approximately Gaussian

filters [14], [30], Least-Squares Estimates (LSE) [31], [32], James-Stein estimate [33],

ML estimates [10] or Minimum Variance Unbiased (MVU) estimates [34], [35], [36].

The research in this topic is still relevant and new reduced complexity estimators are

proposed, for example see [37].

Let us assume the case of downlink or uplink between the mobile and the base

station. When data rates are relatively high, the channel features in slow fading. In

this case, channel gains remain highly correlated during relatively long time slots,

what leads to slowly change in auto-covariance function. We assert that in these

communication conditions during the channel estimation stage via Wiener filter at

the receiver it is unnecessarily to calculate the whole auto-covariance function, but it
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is sufficient to provide its low order approximation. This can be useful when statis-

tics of the channel are partially unknown, as the estimation of polynomial coefficients

is much easier, than estimation of the precise covariance function. Moreover, this

approach would reduce computational load of the receiver and would result in more

efficient energy source utilization. In this chapter we provide theoretical derivations

of Light Wiener filers, which are based on the approximated channel auto-covariance

functions and support our assumption by the simulation. In our analysis we address

both real-valued and complex covariance functions cases. Simulation is performed

for channels discussed in Chapter 2 and with 2 × 1 narrowband MISO transmission

system, discussed in Chapter 3.

4.1 Zero Order Approximation of Covariance

Function

For simplicity we write the general representation for Wiener filter coefficients as

follows (energy normalization between antennas is dropped for the same reason):

he =
(
R+ γ−1

p I
)−1

ρe (4.1)

Here he is the vector of filter coefficients for calculation of the channel gain at place

e at the frame (see Fig. 3.10), R and ρe are pilots correlation matrix and vector

respectively. In the case of a very slow fading, channel covariance function might be

approximated by a zero order polynomial (first term of Taylor Series expansion), i.e.

R(τ) ≈ 1 +O(τ), (4.2)

where τ = nTs. This approximation is valid for any kind of covariance functions

(both real and complex). If we denote N = 2M + 1 to be the total number of pilots,
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correlation matrix R can be written as a unit matrix:

RN×N =


1 1 . . . 1

1 1 . . . 1

. . . .

1 1 . . . 1

 = 1⃗N 1⃗HN (4.3)

where 1⃗N is N × 1 unity vector:

1⃗N =


1

1
...

1


Under similar conditions the correlation vector could be approximated as:

ρe = 1⃗N (4.4)

Equation (4.1) now could be approximated as follows:

he0 ≈
(
1⃗N 1⃗HN + γ−1

p I
)−1

1⃗N (4.5)

In order to evaluate (4.5) explicitly, we can use Sherman-Morrison identity [7]:

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
(4.6)

where A is an invertible matrix and uvT is a product of a column vector u and a

row vector vT . In our case:

A = γ−1
p I ⇒ A−1 = γpI (4.7)

u⃗ = v⃗ = 1⃗N
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Therefore

(
1⃗N 1⃗HN + γ−1

p I
)−1

= γpI−
γpI 1⃗N 1⃗HN γpI

1 + 1⃗HN γpI 1⃗N
= γpI−

γ2p 1⃗N 1⃗HN
1 +Nγp

(4.8)

Substituting (4.8) into (4.5) one obtains the expression for the zero order approxima-

tion filter coefficients he0 :

he0 =

(
γpI−

γ2p 1⃗N 1⃗HN
1 +Nγp

)
1⃗N = (4.9a)

=

(
γp1⃗N −

γ2pN

1 +Nγp
1⃗N

)
= (4.9b)

=
γp

1 +Nγp
1⃗N =

Nγp
1 +Nγp

1

N
1⃗N , (4.9c)

where in the transition from (4.9a) to (4.9b) we used the identity

1⃗N 1⃗HN 1⃗N =


1 1 . . . 1

1 1 . . . 1

. . . .

1 1 . . . 1




1

1

.

1

 = N


1

1

.

1

 = N 1⃗N (4.10)

If we define:

hN0 =
1

N
1⃗N (4.11)

the final expression for Wiener filter coefficients of zero order becomes as follows:

he0 =
Nγp

1 +Nγp
hN0 (4.12)

Thus the filter hN0 is simply an averaging filter with all weights equal to 1/N at

high SNR. This could be expected, as the problem we consider is equivalent to noise

reduction in constant channel for Ts = 0. The scale coefficient
Nγp

1 +Nγp
reflects the

property of MMSE estimators to account for variance of noise and prediction error.
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The next step is to find the expression for the estimation error:

σ2e0 = 1− hHe0

(
R+ γ−1

p I
)
he0 = (4.13)

= 1−
γ2p

(1 +Nγp)2
1⃗HN

(
1⃗N 1⃗HN + γ−1

p I
)
1⃗N =

= 1−
γ2p

(1 +Nγp)2
1⃗HN

(
N 1⃗N + γ−1

p 1⃗N

)
=

= 1−
γp

1 +Nγp
1⃗HN 1⃗N = 1−

Nγp
1 +Nγp

Therefore:

σ2e0 = 1−
Nγp

1 +Nγp
(4.14)

Thus, as we may see, if γp → 0 so σ2e0 → 1, and if γp → ∞ so σ2e0 → 0. Moreover

this filter improves SNR by factor of N , as γp in (4.14) is multiplied by N .

4.2 Real Covariance Functions Case: Second

Order Approximation

Any real-valued covariance function could be approximated to the second order poly-

nomial:

R(τ) ≈ 1 +
R

′
(0)

1!
τ +

R
′′
(0)

2!
τ2 +O(τ3) = (4.15)

= 1− a

2
τ2 +O(τ3)

Here a is a real constant. Estimation of this constant is much easier than calculation

of full covariance function, what significantly reduces processing effort. Note, that in

case of real covariance functions the first order polynomial term in (4.15) is dropped,

since in this case R
′
(0) = 0.
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Therefore approximation of the channel covariance matrix R in (4.1) is given by

R ≈


1 1 · · · 1

1 1 · · · 1
...

. . .
...

1 1 · · · 1

− 2a(Nb + 1)2T 2
s


(0)2 (1)2 . . . (N − 1)2

(−1)2 (0)2 . . . (N)2

...
. . .

...

(−N + 1)2 . . . (0)2


This could be written as:

R ≈ 1⃗N 1⃗HN +∆E (4.16)

where

∆E = −2a(Nb + 1)2T 2
sE (4.17)

Ekl = (l − k)2, k, l = 1 · · ·N

Here E is a full rank Hermitian matrix, hence the inverse of this matrix always exists.

Furthermore, vector ρe in (4.1) could be then approximated as:

ρe ≈



1

1
...

1
...

1

1


− a

2
T 2
s



(2NbM − e)2

(2Nb(M − 1)− e)2

...

(−e)2
...

(−2Nb(M − 1)− e)2

(−2NbM − e)2


(4.18)

or:

ρe ≈ 1⃗N − a

2
T 2
s k = 1⃗N +∆ρe (4.19)

kk =

[
2(Nb + 1)(

N − 1

2
+ 1− k)− e

]2
k = 1, . . . N
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4.2.1 Wiener Filter Coefficients

Substituting R and ρe into eq. (4.1) and after some algebra, the expression for the

second order Wiener filter coefficients takes the following form:

he2 = (I+A∆E)−1 ·
(

Nγp
1 +Nγp

hN0
+A∆ρe

)
(4.20)

where

A =

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
(4.21)

and

hN0
=

1

N
1⃗N (4.22)

See Appendix A for step by step derivation. If we assume, that

∥ A∆E ∥≪ 1 (4.23)

equation (4.20) could be further simplified by using the following identity [7]:

(I+A∆E)−1 ≈ I−A∆E (4.24)

After cancelling higher order terms as insignificant eq. (4.20) takes a form of:

he2 =
Nγp

1 +Nγp
hN0

+A

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
(4.25)

It is important to note, that given a and for a predetermined length of the filter and

the frame we may easily calculate all constants in (4.25), which do not change from

one communication session to another. This significantly simplifies calculations and

decreases computational effort. Also, if correction terms ∆E and ∆ρe equal zero,

equations (4.25) and (4.20) reduce to zero order approximation case (4.12).
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4.2.2 Estimation Error

Now we can find an expression for MMSE by using covariance function approximated

to the second order. In this case MMSE is given by:

σ2e2 = 1− hHe2

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 (4.26)

If we substitute he2 and ∆E which were calculated in eqs. (4.25) and (4.17) into

(4.26), after some algebra, which is described in detail in Appendix B, one may find

the expression for MMSE:

σ2e = 1−
Nγp

1 +Nγp
− 2

γp
1 +Nγp

1⃗HN∆ρe +
γ2p(

1 +Nγp
)2 1⃗HN∆E 1⃗N (4.27)

Here again we may clearly see, that if the correction terms ∆ρe and ∆E equal zero,

the expression reduces to zero order approximation. We can rewrite the equation

(4.27) in explicit way:

σ2e2 = 1−NC(γp)
(
1− aT 2

s e
2
)
+

4aMNT 2
sC(γp)

3
(Nb + 1)2(M + 1)(1−NC(γp))

(4.28)

where

C(γp) =
γp

1 +Nγp

When γ → 0, σ2e2 → 1, and when γ → ∞, σ2e2 → aT 2
s e

2, where the estimation error

saturates. Therefore, if we estimate at e = 0, estimation error would not have a

saturation threshold.

4.2.3 Zero Order and Second Order Approximations

From our theoretical results we can conclude that in order to satisfy zero order ap-

proximation assumption (4.2), the actual channel must be very slow (or equivalently

data rates have to be high), so that the correlation between pilots is approximately

unity. Moreover, for the same reason filter length should be short (one or two pilots),

so that the first and the last pilot signals in the buffer are still highly correlated. The
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last condition is often satisfied as the usual number of pilots in use for STTD schemes

with estimation does not exceed more than three pilots for optimality reasons. More-

over, it has been mentioned at the end of Sec. 4.1, that theoretical zero order MMSE

should decay to zero with growing SNR and it does not depend on channel speed or

on frame length. In the reality, these factors make pilots less correlated, what leads

to inaccuracy of the assumption and as a result, MMSE practical curves (obtained

by simulation) saturate, whereas theoretical curve continues to decay. Assumption of

the second order approximation of covariance function reliefs the tight condition of

unity correlation between pilots and allows us to work with faster channels or slower

bit rates. The most general analytical expression for second order coefficients is ob-

tained in (4.20) and the corresponding MMSE is obtained by substitution of (4.20)

into (4.26). Furthermore, in order to simplify the expression, we make an assumption

(4.23), which is valid only when pilot signals are highly correlated. Nevertheless,

according to our simulation results, it gives us a very precise theoretical description

of MMSE at a marginal case of zero-order filter coefficients derived in (4.12). There-

fore we refer to this expression as to a corrected zero order MMSE and mark it as

corrected σe0 in our simulations.

4.3 Simulation Results in Real Covariance

Function Case - Bit Error Probability and

Estimation Error Evaluation

In this section we validate the quality of estimation by means of simulation in cases of

full Wiener filter, zero and second order approximations for different channel fading

rates. In our simulation we used SoS channel model, described in Section 2.1, because

it is well known that its covariance function is real-valued Bessel function of first kind

and zero order. We start with the case of full filter in order to provide a reference

of performance of STTD scheme with estimation at the receiver side. In Fig. 4.1

estimation MMSE is shown as a function of SNR and normalized Doppler time fDTs.

Corresponding BER is shown in Fig. 4.2. The simulation parameters are: Nb = 5
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Figure 4.1: MMSE in a case of estimation with full Wiener filter as a function of SNR
and fDTs, M = 10, Nb = 5

blocks per frame and M = 10, averaging is performed over 106 bits. Prediction point

was set to e = Nb, in the middle of the frame, what represents the worst case scenario.

As we can see, the higher fading rates increase estimation error which translates to

a higher BER. It happens due to the fact, that faster channels lead to quicker decay

in correlation between symbols, and as a result estimation is performed on effectively

smaller number of pilots what induces less precise estimation. There is a perfect

agreement between theory and simulation.

In Fig. 4.3 theoretical and simulational results are shown for different channel

fading rates in case of zero order approximation. The coefficient a is obtained from

the second derivation of Bessel function at τ = 0, and equals a = 2π2f2D. In order to

assure that condition (4.2) is valid, we run the simulation at relatively high channel

rates with M = 1 pilots and Nb = 5 information blocks and e = 5 (middle of

the frame). As we expect, with higher fading rates the approximation becomes less

precise and simulational MMSE curves saturate (this is called fading floor), whereas

theoretical one, based on equation (4.14), does not (theory σe0 at the graph). Also,

corrected version of estimation error (4.28) allows us to track precisely the MMSE in
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Figure 4.2: BER in a case of full Wiener filter as a function of SNR and fDTs, M = 10,
Nb = 5

marginal channel rates, where zero order approximation becomes less accurate.

The simulation of a general equation of second order approximation (4.20) is
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Figure 4.3: Theoretical, corrected theoretical and simulational zero order approximation
MMSE, σe0. Effect of channel fading rate on quality of estimation, M = 1, Nb = 5
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shown in Fig. 4.4, from which we can see fading rates, at which the approximation

works well, and when it starts increasing the MMSE due to inaccuracy. Failing of

approximation is well-pronounced at high SNR as it is where the error is due to a

lack of accuracy in the receiver’s knowledge of statistics and not due to the noise.

Therefore we may infer that this scheme works very well with channel rates up to

about fDTs = 6 · 10−3. In a case of slow fading channels simulation shows that the

approximation works precisely and theory matches simulation.

In Fig. 4.5 we compare performance of second order approximation with the

zero order approximation schemes. As we expect, the second order approximation
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Figure 4.4: Theoretical and simulational second order approximation MMSE, σe2. Effect
of channel fading rate on quality of estimation, M = 1, Nb = 5

performs more precise estimation than zero order on higher SNR, what enables us

to work with faster channels. It is important to mention that for these channel

rates (and lower) second order approximation performs as good as estimator with full

Wiener filter (see Fig. 4.5). Increasing order of approximation of covariance function

increases accuracy of estimation for higher rates, but it also enlarges computational

effort.
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Figure 4.5: Comparison between performances of zero and second order approximations,
σe0 versus σe2, M = 1, Nb = 5

4.4 Light Wiener Filters for Estimation of

Channels with Complex Covariance Functions

In this section we extend our work to a case of channels with complex covariance

functions. Any complex auto-correlation function can be approximated by second

order Taylor series as follows [38]:

R(τ) ≈ 1 +
R

′
(0)

1!
τ +

R
′′
(0)

2!
τ2 +O(τ3) = (4.29)

= 1 + jaτ − b

2
τ2 +O(τ3)

As we may see from the above equation, this could be reduced to a case of real auto-

covariance functions by posing a = 0. Therefore the following coefficients and MMSE

derivation are a generalization for any kind of covariance functions. In a similar way

as we derived Winer filter coefficients in previous sections, we found coefficients for

the general case, when we approximated R(τ) is given by 4.29 and they take a form
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of:

he2 = (I+A∆E)−1 ·
(

Nγp
1 +Nγp

hN0
+A∆ρe

)
(4.30)

when

A =

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
(4.31)

hN0
=

1

N
1⃗N

and

∆E = j∆EIm +∆ERe (4.32)

∆ρe = j∆ρ
eIm

+∆ρ
eRe

∆ERe and ∆ρ
eRe

are given by:

∆ERe = −2b(Nb + 1)2T 2
sE2 (4.33)

E2(kl) = (l − k)2, k, l = 1 · · ·N

and

∆ρ
eRe

= − b
2
T 2
s k2 (4.34)

k2k =

[
2(Nb + 1)(

N − 1

2
+ 1− k)− e

]2
k = 1, . . . N

It is important to note that E2 and k2 are exactly as described in equations (4.17)

and (4.20). ∆EIm and ∆ρ
eIm

are defined below:

∆EIm = 2a(Nb + 1)Ts


0 1 . . . N − 1

−1 0 . . . N
...

. . .
...

−N + 1 . . . 0

 (4.35)
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or

∆EIm = 2a(Nb + 1)TsE1 (4.36)

E1(kl) = (l − k), k, l = 1 · · ·N

and:

∆ρ
eIm

= aTs



2NbM − e

2Nb(M − 1)− e
...

−e
...

−2Nb(M − 1)− e

−2NbM − e


(4.37)

or

∆ρ
eIm

= aTsk1 (4.38)

k1k =

[
2(Nb + 1)(

N − 1

2
+ 1− k)− e

]
k = 1, . . . N

With further assumption of:

∥ A∆E ∥≪ 1 (4.39)

filter coefficients in equation (4.30) take a form:

he2 =
Nγp

1 +Nγp
hN0

+A

(
∆ρ

eRe
−

Nγp
1 +Nγp

∆ERehN0

)
+ (4.40)

+ jA

(
∆ρ

eIm
−

Nγp
1 +Nγp

∆EImhN0

)
and the MMSE is:

σ2e2 = 1−NC(γp)
(
1− bT 2

s e
2
)
+ (4.41)

+
4MbT 2

sNC(γp)

3
(Nb + 1)2(M + 1)

(
1−NC(γp)

)
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where

C(γp) =
γp

1 +Nγp

For the detailed derivation, please look at the Appendix C. When γp → 0, σ2e2 → 1,

and when γp → ∞, σ2e2 → bT 2
s e

2,i.e. estimation error reaches saturation floor. As in

previous case with real covariance functions this result is shown to accurately track

the behaviour of zero order filter in conditions when the approximation is already not

precise (saturation mode). Therefore in our simulation we refer to it as corrected zero

order filter and denote it as σe0 corrected.

4.5 Simulation Results - MMSE in Estimation of

Channels with Complex Covariance Function

Approximated to Zero, First and Second

Orders

In this section we verify analytical expressions/derivations of Section 4.4 by simula-

tion. As previously, we test estimation quality of a system, described in Chapter 3,

in environment which contains clusters and scatterers, what induces non-symmetric

Doppler Spectrum and complex covariance function of channel gains. Therefore the

MDPSS channel model, discussed in Section 2.2.5.2, was taken for the simulation.

For simplicity we take a case with a single cluster. As it was discussed previ-

ously, auto-covariance function of the channel is:

R(τ) = P exp (j2πfDτ)sinc(∆fDτ) (4.42)

where we take the power P of the cluster to be 1. All other parameters are specified

in Table 2.1. Polynomial coefficients in 4.29 can be easily found by derivation of the

covariance function at τ = 0, therefore a = 2πfD and b =
(
1
3∆

2 + 4π2f2D

)
. Fur-

thermore, we run the simulation for estimation with 3 pilot signals (M = 1) and for

Nb = 5 frame length.
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In Fig. 4.6 we show the performance of zero-order approximation filter. As

in the case of real covariance functions, MMSE curves saturate, because the approx-

imation is not accurate for higher rates, whereas zero order theoretical curve does

not depend on neither on data or channel rates nor on frame length (see eq. (4.14)).

On the other hand the corrected theoretical curve σe0 corrected, which is an ap-

proximation of the second order filter, tracks accurately the saturation of zero order

approximation.

In Fig. 4.7 we can observe rates at which second order Wiener filter achieves
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Figure 4.6: Theoretical, corrected theoretical and simulational zero order approximation
MMSE, σe0. Effect of channel fading rate on quality of estimation, M = 1, Nb = 5,

complex covariance function case

good performance in terms of MMSE and when it starts behave not adequately due to

the lack of positive definiteness property of polynomial covariance function. As it may

be seen from the graph, MMSE becomes unstable at higher SNRs at fDTs ≈ 2 ·10−3.

In Fig. 4.8 we compare zero order and second order filters, where we see,

that at higher SNRs second order filter shows considerably better performance (up

to 25dB improvement) than zero order one. Again, the reason is that at higher rates

zero order approximation becomes not valid, whereas, second order approximation

still holds very well. Furthermore, up to rates of fDTs ≈ 1.5 · 10−3 second order
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Figure 4.7: Theoretical and simulational second order approximation MMSE, σe2. Effect
of channel fading rate on quality of estimation, M = 1, Nb = 5, complex covariance

function case

approximation performs as good as full Wiener filter (see the figure), while zero order

approximation is already saturating. With increasing filter order one may achieve

better performances for higher rates in expense of complexity.

4.6 Non-Uniform Scattering Effect on Estimation

with Light Wiener Filter

As we have derived in previous sections, the estimation error for a second order filter

is given by:

σ2e2 = 1−NC(γp)
(
1− bT 2

s e
2
)
+ (4.43)

+
4MbT 2

sNC(γp)

3
(Nb + 1)2(M + 1)

(
1−NC(γp)

)



Chapter 4: Light Wiener Filters for Channel Estimation of Slowly Varying Wireless Channels 100

−5 0 5 10 15 20 25

10
−3

10
−2

10
−1

10
0

M
M

S
E

SNR [db]

 

 

σ
e2

 sim,  f
D

T
s
 = 1⋅ 10−4

σ
e2

 sim, f
D

T
s
 = 1⋅ 10−3

σ
e2

 sim, f
D

T
s
 = 1.2⋅ 10−3

σ
e2

 sim,  f
D

T
s
 = 1.5⋅ 10−3

σ
e0

 sim, f
D

T
s
 = 1⋅ 10−4

σ
e0

 sim, f
D

T
s
 = 1⋅ 10−3

σ
e0

 sim, f
D

T
s
 = 1.2⋅ 10−3

σ
e0

 sim, f
D

T
s
 = 1.5⋅ 10−3

σ
e full

 sim, f
D

T
s
 = 1.5⋅10−3 

Figure 4.8: Comparison between performances of zero and second order approximations,
σe0 versus σe2, M = 1, Nb = 5, complex covariance function case

With a slight rearrangement of terms we can write this equation as follows:

σ2e2 = 1−NC(γp)+ (4.44)

+ bT 2
sNC(γp)

(
e2 +

4

3
M(Nb + 1)2(M + 1)

(
1−NC(γp)

))
Here the value b is a function of clusters geometrical parameters. For example, for

two clusters scenario, which is shown in Fig. 2.22, b is equal:

b = P1

(
1

3
∆f2D1

+ 4π2f2D1

)
+ P2

(
1

3
∆f2D2

+ 4π2f2D2

)
(4.45)

and

fDi
=
fc
c

(
vti cos(ϕt0i) + vri cos(ϕr0i)

)
(4.46)

∆fDi
=
fc
c

(
vti∆ϕti | sin(ϕt0i)|+ vri∆ϕri | sin(ϕr0i)|

)
,
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for i = 1, 2.

It can be seen from equation (4.44), that parameter b affects the estimation

error. As b becomes larger, MMSE grows as well. Moreover, if we know the geometry

of clusters, this parameter (along with parameter a) can be calculated very easily and

no covariance function estimation will be needed.
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4.7 Summary

• In the case of highly correlated pilots it is not necessarily to know full correlation

function in order to achieve a good quality of estimation, and it is enough to

assume its low order polynomial approximation. Such approach allows us to

work with scenarios where statistics of the channel are partially unknown and

significantly reduces computational effort of the estimator at the receiver and

hence saves the battery energy of the mobile.

• Theoretical representation for zero order and second order Light Wiener filter

coefficients and estimation errors for channels with real-valued and complex

covariance functions have been provided.

• All theoretical results are verified by the simulations. It is shown, that in the

case of highly correlated pilots, zero and second order approximations work as

good as full Wiener filter.

• As channel fading rates increase, zero order approximation becomes inaccurate

what results in saturation of MMSE on high SNRs, whereas second order ap-

proximation still achieves a rather good performance (compared to that of full

Wiener filter). This allows us to work with faster channels while keeping low

filter complexity.

• As order of approximation is increased, we reach a better estimation, but with

the price of higher computational load. Therefore the trade off should be

achieved based on the environment, demands of the application and the ex-

pected battery life.

• It is possible to calculate polynomial coefficients if the geometry of clusters and

their location is known. Therefore channel estimation could be performed with

no channel statistical knowledge or its estimation at the receiver.
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Chapter 5

Conclusion

Wireless channels modeling and simulation techniques have been discussed. Two

main approaches had been implemented: channels which describe environment with

rich scattering around the mobile (i.e. uniform AoA distribution) and channels which

describe scattering from one or more clusters with rough surfaces, resulting in spec-

ular components with angular and delay spread. Combination of these scenarios is

sufficient to describe majority of urban or suburban environments. First scenario was

simulated with use of SoS simulational model with correct higher order statistics,

and the second scenario can be simulated with MDPSS channel model. Both channel

simulators were studied in detail, and verified by simulation.

As the next step we have studied a realistic 2 × 1 transmission system with

Alamouti coding and pilot assisted noisy channel estimation. BPSK modulation was

adopted for simplicity. At the receiver Wiener filter was used as pilots filter. The

correlation function of channel gains was assumed to be known to the receiver. The

evaluation of the system was performed via simulation, when influence of different pa-

rameters was tested: length of pilot sequence, channel fading rates, length of frames.

It was shown that with longer pilot sequence the receiver provides better estimation.

When the number of pilot signals is infinitely long, the system achieves perfect CSI

case performance. In practice, 10 pilot signals is enough to achieve this performance.

Increasing number of information blocks per frame increases MMSE, because pilot

signals become less correlated, hence the receiver possesses effectively smaller num-

ber of pilots, what results in worse estimation, and hence larger bit error rates. Also,

saturation floor effect has been observed as a consequence of estimation of a point in

the middle of the frame with only one effective pilot signal in present (M = 0), what
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is equivalent to prediction of a channel gain Nb samples ahead from the known pilot.

In this case prediction error is greater than estimation one and saturation occurs. As

we increase channel fading rate fDTs, the system shows poorer performance. In this

case the reasons are lower correlation between pilot signals as well as invalidity of

Alamouti coding assumption about slow fading rate of the channel (two consequent

channel gains should be equal). This results in saturation thresholds. Simulation

has shown that in this case the main reason of saturation is inaccuracy of Alamouti

coding condition.

Several real-life scenarios of V2I and V2V communications in urban environ-

ment were simulated to evaluate how clusters geometry and location can affect the

performance of Alamouti scheme with imperfect channel estimation. The channel

was simulated with use of MDPSS channel simulation model, discussed in Chapter

2. The flexibility of this model in definition of clusters geometry and the direction

of movement of both communication sides allows us to simulate any site and mobile

configuration of interest. It was shown by simulation that nearing clusters, located

on a side of the movement trajectory of the mobile increases MMSE and BER due to

quick decay of covariance function of pilot signals in vicinity of clusters. The effect

was shown to be prolonged in time and increasing with nearing clusters. Another

scenario described a cluster, located on the mobile movement direction (for example,

a big road-directions poster above the road). In this case the simulation has shown a

dramatic increase in MMSE and BER, when the mobile is passing under the cluster.

Though this effect is fleeting and does not last more than a couple of seconds. In ad-

dition, a site from one of city’s intersections was simulated to show how we can apply

this model in real life. In another case we showed how this channel model could be

easily adopted to mock mobile to mobile communications in urban area, when clusters

are assumed to be located on the perimeters of co-centric ellipses, when two mobiles

are located at ellipses focuses. This approach is important since V2V communica-

tions is currently a new and developing area of communications and novel channel

models which can mimic realistic environments in this type of communications are on

demand. Since MDPSS model requires manual adjustment of the site geometry (i.e.

clusters locations and their angular and delay spreads), which might be easily calcu-
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lated through online applications like Google Maps c⃝, it can pose some unsuitability

in dynamic recalculation of the site (with the mobile movement, the environment is

very likely to change), therefore one of the future projects in this topic should include

the development of a specific software, which will be able to automatically recalculate

clusters geometry, based on available mobile location (via GPS, for instance) and the

current city map.

Finally we have developed reduced complexity Wiener filters for estimation of

slowly time-varying narrowband channels. These light filters are based on approxi-

mation of channel auto-covariance function by a zero and second order Taylor series.

This approach is useful when the statistics of the channel are partially unknown, and

the receiver needs to estimate the correlation function in order to perform channel

estimation. Moreover, reduced complexity filters are beneficial for lowering energy

consumption in order to extend the battery life of the mobile. The coefficients of

the polynomial can be estimated through spectrum analysis, which is much easier

than estimation of the whole covariance function. We derived equations for Wiener

filter coefficients and estimation error for both real and complex covariance func-

tions cases. Furthermore, we run the simulation to verify at what data/channel rates

approximations becomes invalid (as the correlation between pilots decays). In simu-

lation of reduced order estimation of channels with real covariance function we used

SoS model. The covariance function of this model is known to be real-valued Bessel

function of first kind and zero order. For the simulation of estimation of channels with

complex covariance functions we adopted MDPSS model, whose covariance function

is a sinc function modulated by complex exponent (or a linear combination of several

alike multiplications). For now we have assumed that the receiver perfectly knows

the coefficients of the polynomial approximation, and leave the estimation of these

coefficients and its influence on the system performance to the future work. In both

cases Second order filters showed superiority over Zero order filters in performance in

terms of MMSE (and consequently in BER) at higher channel rates. At low channel

rates (i.e. high data rates), both filters perform as good as full Wiener filter. Accu-
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rate performance tracing in case of practical saturation of Zero order filter (at higher

rates) was derived through additional approximation of Second order filter. Also the

additional simulation was performed to determine at what channel fading rates the

Second order filters become unstable due to the lack of an important condition of pos-

itive definiteness in polynomial covariance function. In a particular case of a channel

with one or more clusters, the coefficients of approximation can be derived from direct

analysis of clusters geometry, therefore spectral analysis will not be necessary. As the

complexity of the filter increases, one can achieve better performance for higher chan-

nel rates, but in expense of greater computational load. Future fork should include

investigation of the trade-off between the complexity of the filter and desirable system

performance (of course with consideration of required channel and/or data rates). As

it was mentioned before, the estimation of the polynomial covariance function coeffi-

cients should be investigated in depth and a case of non-stationary processes should

be considered. We believe that our approach could be extended to MIMO systems to

investigate their performance in more realistic scattering scenarios.
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Appendix A
Wiener Filter Coefficients, Second Order

Approximation

Substituting R and ρe from (4.16) and (4.20) accordingly into (4.1) one may derive:

(
R+ γ−1

p I
)
he2 = ρe (A.1)(

1⃗N 1⃗HN +∆E + γ−1
p I
)
he2 = 1⃗N +∆ρe(

1⃗N 1⃗HN + γ−1
p I
)
he2 +∆Ehe2 = 1⃗N +∆ρe(

1⃗N 1⃗HN + γ−1
p I
)
he2 = 1⃗N +∆ρe −∆Ehe2

Now we multiply both sides by
(
1⃗N 1⃗HN + γ−1

p I
)−1

from the left:

he2 =
(
1⃗N 1⃗HN + γ−1

p I
)−1 (

1⃗N +∆ρe −∆Ehe2
)

(A.2)

If we flip sides of the equation and open the brackets:

(
1⃗N 1⃗HN + γ−1

p I
)−1 (

1⃗N +∆ρe

)
−
(
1⃗N 1⃗HN + γ−1

p I
)−1

∆Ehe2 = he2 (A.3)(
1⃗N 1⃗HN + γ−1

p I
)−1 (

1⃗N +∆ρe

)
=

((
1⃗N 1⃗HN + γ−1

p I
)−1

∆E + I

)
he2

As in section 4.1 we may again apply Sherman-Morrison identity:

(
1⃗N 1⃗HN + γ−1

p I
)−1

=

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
(A.4)
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Therefore the equation (A.3) becomes:(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)(
1⃗N +∆ρe

)
= (A.5)

=

((
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆E + I

)
he2

he2 =

(
I+

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆E

)−1

· (A.6)

·

(
γp

1 +Nγp
1⃗N +

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆ρe

)

If we denote A as follows:

A =

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
(A.7)

and

hN0
=

1

N
1⃗N (A.8)

equation (A.6) takes a form of:

he2 = (I+A∆E)−1 ·
(

Nγp
1 +Nγp

hN0
+A∆ρe

)
(A.9)

If we assume, that

∥ A∆E ∥≪ 1 (A.10)

equation (A.9) could be further simplified by using the following identity:

(I+A∆E)−1 ≈ I−A∆E (A.11)
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Hence (A.9) equals:

he2 =

(
I−

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆E

)
· (A.12)

·

(
Nγp

1 +Nγp
hN0

+

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆ρe

)
=

=
Nγp

1 +Nγp
hN0

+

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆ρe−

−

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆E ·

Nγp
1 +Nγp

hN0
+

+

������������������(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)2

∆E∆ρe

The last part of the equation is canceled because the multiplication ∆E∆ρe defines

higher order term which might be neglected. After a little reorganization of terms

Wiener coefficients are:

he2 =
Nγp

1 +Nγp
hN0

+

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
(A.13)

or

he2 =
Nγp

1 +Nγp
hN0

+A

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
(A.14)
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Appendix B

Estimation Error, Second Order

Approximation

We want to calculate estimation error for the second order approximation case, which

is given by:

σ2e2 = 1− hHe2

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 (B.1)

when the expressions for he2 and ∆E are given by equations (4.25) and (4.17). Lets

calculate first the multiplication of a column vector he2 from the right side of the

noisy approximated matrix:

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 = (B.2)

=
(
1⃗N 1⃗HN +∆E + γ−1

p I
)[ Nγp

1 +Nγp
hN0

+

+

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)]
=

=
Nγp

1 +Nγp
1⃗N 1⃗HNhN0︸ ︷︷ ︸
1∗

+

+ 1⃗N 1⃗HN

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
︸ ︷︷ ︸

2∗

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
+

+
Nγp

1 +Nγp
∆EhN0

+

+

(((((((((((((((((((((((((((((

∆E

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
︸ ︷︷ ︸

3∗

+
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+
1

γp

Nγp
1 +Nγp

hN0
+

+
1

γp

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
=

=
Nγp

1 +Nγp
1⃗N + 1⃗N 1⃗HN

γp
1 +Nγp

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
+

+
Nγp

1 +Nγp
∆EhN0

+
1

γp

Nγp
1 +Nγp

hN0
+

+

(
I−

γp
1 +Nγp

1⃗N 1⃗HN

)(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
=

=
Nγp

1 +Nγp
1⃗N + 1⃗N 1⃗HN

γp
1 +Nγp

∆ρe − 1⃗N 1⃗HN
Nγ2p(

1 +Nγp
)2∆EhN0

+

+
Nγp

1 +Nγp
∆EhN0

+
N

1 +Nγp
hN0

+∆ρe −
Nγp

1 +Nγp
∆EhN0

−

−
γp

1 +Nγp
1⃗N 1⃗HN∆ρe +

Nγ2p(
1 +Nγp

)2 1⃗N 1⃗HN∆EhN0
=

=
Nγp

1 +Nγp
1⃗N +

1

1 +Nγp
1⃗N +∆ρe =

Nγp + 1

1 +Nγp
1⃗N +∆ρe = 1⃗N +∆ρe

1*
Nγp

1 +Nγp
1⃗N 1⃗HNhN0

= 1⃗N 1⃗HN 1⃗N
Nγp

1 +Nγp

1

N
=

Nγp
1 +Nγp

1⃗N (B.3)

2*

1⃗N 1⃗HN

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
= (B.4)

= γp1⃗N 1⃗HN −
γ2p 1⃗N 1⃗HN 1⃗N 1⃗HN

1 +Nγp
= γp1⃗N 1⃗HN −

γ2pN 1⃗N 1⃗HN
1 +Nγp

=

= 1⃗N 1⃗HN
γp +Nγ2p −Nγ2p

1 +Nγp
= 1⃗N 1⃗HN

γp
1 +Nγp

3* This part is neglected as a multiplication of higher order terms
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Therefore: (
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 = 1⃗N +∆ρe (B.5)

Now we can calculate the left-hand multiplication of the equation (B.1):

hHe2

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 = hHe2

(
1⃗N +∆ρe

)
= (B.6)

=

[
Nγp

1 +Nγp

1

N
1⃗HN+

+

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)H (
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)H ·

·
(
1⃗N +∆ρe

)
=

γp
1 +Nγp

1⃗HN 1⃗N+

+

(
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
1⃗N︸ ︷︷ ︸

4∗

+

+
γp

1 +Nγp
1⃗HN∆ρe+

+

((((((((((((((((((((((((((((((((
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆ρe︸ ︷︷ ︸

5∗

=

=
Nγp

1 +Nγp
+

γp
1 +Nγp

∆ρe
H 1⃗N −

γ2p(
1 +Nγp

)2 1⃗HN∆E 1⃗N+

+
γp

1 +Nγp
1⃗HN∆ρe =

=
Nγp

1 +Nγp
+

γp
1 +Nγp

(
∆ρe

H 1⃗N + 1⃗HN∆ρe

)
− (B.7a)

−
γ2p(

1 +Nγp
)2 1⃗HN∆E 1⃗N =

=
Nγp

1 +Nγp
+ 2

γp
1 +Nγp

1⃗HN∆ρe −
γ2p(

1 +Nγp
)2 1⃗HN∆E 1⃗N

In (B.7a) we used the fact that ∆ρe and 1⃗N are real, therefore their conjugate

transpose equals to their regular transpose, therefore the following statement is valid:

∆ρe
H 1⃗N = 1⃗HN∆ρe.
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4* (
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
1⃗N = (B.8a)

=

(
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γp1⃗N −

Nγ2p 1⃗N

1 +Nγp

)
=(

∆ρe
H −

γp
1 +Nγp

1⃗HN∆EH
)

γp
1 +Nγp

1⃗N =

=
γp

1 +Nγp
∆ρe

H 1⃗N −
γ2p(

1 +Nγp
)2 1⃗HN∆E 1⃗N

Where we used the fact, that ∆EH = ∆E , because it is real and symmetric.

5* This part is neglected as a multiplication of higher order terms.

Therefore the expression for the estimation error is:

σ2e2 = 1−
Nγp

1 +Nγp
− 2

γp
1 +Nγp

1⃗HN∆ρe +
γ2p(

1 +Nγp
)2 1⃗HN∆E 1⃗N (B.9)

which we can write in explicit way as follows:

σ2e2 = 1−NC(γp) + aT 2
sC(γp)

[
Ne2 + 8(Nb + 1)2· (B.10)

·
M−1∑
n=0

(M − n)2

− 2aT 2
sC

2(γp)(Nb + 1)2
2M∑
k=0

2M∑
l=0

(l − k)2 =

= 1−NC(γp) + aT 2
sNC(γp)

[
e2 +

4M

3
(Nb + 1)2(M + 1)

]
−

− 4aMT 2
sN

2

3
C2(γp)(Nb + 1)2(M + 1) =

= 1−NC(γp)
(
1− aT 2

s e
2
)
+

4aT 2
sMNC(γp)

3
(Nb + 1)2(M + 1)(1−NC(γp))
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or

σ2e2 = 1−NC(γp)
(
1− aT 2

s e
2
)
+

4aMNT 2
sC(γp)

3
(Nb + 1)2(M + 1)(1−NC(γp))

(B.11)

where

C(γp) =
γp

1 +Nγp
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Appendix C

Extension to Complex Covariance

Functions - Wiener Filter Coefficients

Any complex-valued covariance function has Taylor series expansion as follows:

R(τ) ≈ 1 +
R

′
(0)

1!
τ +

R
′′
(0)

2!
τ2 +O(τ3) = (C.1)

= 1 + ajτ − b

2
τ2 +O(τ3)

Therefore correlation matrix R could be expressed as:

R ≈ 1⃗N 1⃗HN +∆E = 1⃗N 1⃗HN +∆ERe + j∆EIm (C.2)

Where

∆EIm = 2a(Nb + 1)TsE1 (C.3)

E1(kl) = (l − k), k, l = 1 · · ·N

and

∆ERe = −2b(Nb + 1)2T 2
sE2 (C.4)

E2(kl) = (l − k)2, k, l = 1 · · ·N

Vector ρe could be approximated then as follows:

ρe ≈ 1⃗N +∆ρe = 1⃗N +∆ρ
eRe

+ j∆ρ
eIm

(C.5)
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where:

∆ρ
eIm

= aTsk1 (C.6)

k1k =

[
2(Nb + 1)(

N − 1

2
+ 1− k)− e

]
k = 1, . . . N

and

∆ρ
eRe

= − b
2
T 2
s k2 (C.7)

k2k =

[
2(Nb + 1)(

N − 1

2
+ 1− k)− e

]2
k = 1, . . . N

In order to find Wiener filter coefficients we use the result for real-valued co-

variance functions case, (A.9):

he2 = (I+A∆E)−1 ·
(

Nγp
1 +Nγp

hN0
+A∆ρe

)
(C.8)

where

A =

(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
(C.9)

hN0
=

1

N
1⃗N

and now:

∆E = ∆ERe + j∆EIm (C.10)

∆ρe = ∆ρ
eRe

+ j∆ρ
eIm

As previously, we can use the approximation:

∥ A∆E ∥≪ 1 (C.11)
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And the equation (C.8) becomes:

he2 =
Nγp

1 +Nγp
hN0

+A

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)
= (C.12)

=
Nγp

1 +Nγp
hN0

+A

(
j∆ρ

eIm
+∆ρ

eRe
−

Nγp
1 +Nγp

(j∆EIm +∆ERe)hN0

)
or:

he2 =
Nγp

1 +Nγp
hN0

+A

(
∆ρ

eRe
−

Nγp
1 +Nγp

∆ERehN0

)
+ (C.13)

+ jA

(
∆ρ

eIm
−

Nγp
1 +Nγp

∆EImhN0

)
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Appendix D

Extension to Complex Covariance

Functions - Estimation Error

Estimation error derivation is very similar to one that we done for real covariance

functions in B, but now we need to keep in mind that matrices ∆E and ∆ρe are

complex. The expression for MMSE is:

σ2e2 = 1− hHe2

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 (D.1)

when he2 was found in (C.13), and ∆E and ∆ρe are given by (C.2) - (C.4) and (C.5)

- (C.7) respectively. The right hand side multiplication is exactly the same as we

calculated in (B.2)-(B.5), therefore:

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 = 1⃗N +∆ρe (D.2)
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Note, that ∆ρe is complex now. Left hand side multiplication takes the form of:

hHe2

(
1⃗N 1⃗HN +∆E + γ−1

p I
)
he2 = hHe2

(
1⃗N +∆ρe

)
= (D.3)

=

[
Nγp

1 +Nγp

1

N
1⃗HN+

+

(
∆ρe −

Nγp
1 +Nγp

∆EhN0

)H (
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)H ·

·
(
1⃗N +∆ρe

)
=

γp
1 +Nγp

1⃗HN 1⃗N+

+

(
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
1⃗N+

+
γp

1 +Nγp
1⃗HN∆ρe+

+

((((((((((((((((((((((((((((((((
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γpI−

γ2p
1 +Nγp

1⃗N 1⃗HN

)
∆ρe︸ ︷︷ ︸

higher order term

=

=
Nγp

1 +Nγp
+

(
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)(
γp1⃗N −

γ2pN 1⃗N

1 +Nγp

)
+

+
γp

1 +Nγp
1⃗HN∆ρe =

=
Nγp

1 +Nγp
+

(
∆ρe

H −
γp

1 +Nγp
1⃗HN∆EH

)
γp

1 +Nγp
1⃗N +

γp
1 +Nγp

1⃗HN∆ρe =

=
Nγp

1 +Nγp
+

γp
1 +Nγp

(
∆ρe

H 1⃗N + 1⃗HN∆ρe

)
−

γ2p(
1 +Nγp

)2 1⃗HN∆EH 1⃗N =

=
Nγp

1 +Nγp
+ 2

γp
1 +Nγp

1⃗HN∆ρ
eRe

−
γ2p(

1 +Nγp
)2 1⃗HN∆EHRe1⃗N+

+ j
γ2p(

1 +Nγp
)2 1⃗HN∆EHIm1⃗N︸ ︷︷ ︸

0

=

=
Nγp

1 +Nγp
+ 2

γp
1 +Nγp

1⃗HN∆ρ
eRe

−
γ2p(

1 +Nγp
)2 1⃗HN∆EHRe1⃗N
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Hence:

σ2e2 = 1−
Nγp

1 +Nγp
− 2

γp
1 +Nγp

1⃗HN∆ρ
eRe

+
γ2p(

1 +Nγp
)2 1⃗HN∆EHRe1⃗N (D.4)

Note, that the resulting estimation error is real, as it was expected. We may further

expand the formula (D.4) and find the analytical representation of matrix and vectors

multiplications. Thus:

1⃗HN∆ERe1⃗N = −2bT 2
s (Nb + 1)2 ·

2M∑
k=0

2M∑
n=0

(n− k)2 = (D.5)

= −4bT 2
sMN2

3
(Nb + 1)2(M + 1)

1⃗HN∆ρ
eRe

= −bT
2
s

2

 M∑
k=0

((M − k)2(Nb + 1)− e)2+ (D.6)

+
M−1∑
k=0

(−(M − k)2(Nb + 1)− e)2

 =

= −bT
2
s

2

Ne2 + 8(Nb + 1)2
M−1∑
k=0

(M − k)2

 =

= −bT
2
sN

2

[
e2 +

4M

3
(Nb + 1)2(M + 1)

]
Therefore:

σ2e2 = 1−NC(γp) + C(γp)bT
2
sNe

2 + C(γp)bT
2
sN

4M

3
(Nb + 1)2(M + 1)− (D.7)

− C2(γp)
4bT 2

sMN2

3
(Nb + 1)2(M + 1) =

= 1−NC(γp)
(
1− bT 2

s e
2
)
+

+
4MbT 2

sNC(γp)

3
(Nb + 1)2(M + 1)

(
1−NC(γp)

)
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σ2e2 = 1−NC(γp)
(
1− bT 2

s e
2
)
+ (D.8)

+
4MbT 2

sNC(γp)

3
(Nb + 1)2(M + 1)

(
1−NC(γp)

)
where

C(γp) =
γp

1 +Nγp
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