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Abstract

In this thesis, we use mathematical models to study the pnabhbout the evolution of
hosts and parasites. Firstly, we study a within-host ageststred model with mutation
and back mutation which is in the form of partiaffgrential equations with double-
infections by two strains of viruses. For the case when tbhdywmtion rates of viruses
are gamma distributions, the PDE model can be transferte@mODE one. Then, we
analyze our model in two cases: one is without mutation, hedther is with mutation.
In the first case, we prove that the two strains of virusesautimutation would die
out if both of the individual reproductive numbers are Idsantone; otherwise, their
evolution will comply with competitive exclusion princlmeaning that the stronger
one will survive finally. In the second case, we verify thatltan coexist under some
specific conditions in the sense that there exists a coexistequilibrium which is
globally asymptotically stable.

Secondly, we explore the viral evolutionary strategies $ipg a within-host mod-
el under body immune response. We consider two types of-wfidenvolving the
viral production rate, the host death rate caused by imdfediie., virulence), and the
transmission rate. By choosing appropriate fitness, we shatithe evolutionary and
convergent stability of an evolutionary singular strategy ne &ected by the shapes
of the trade-ff functions. We also find that the evolutionary branching meguo at
the singular strategy for some special tradiefonctions. The results imply that the
immune response has an importafieet on viral evolution. Finally, two classes of
trade-dt functions are specified which yield some more detailed m#tion on the
virus evolutionary strategies.

Thirdly, we investigate the cost ofimmunological up-regjidn caused by infection
in a between-host transmission dynamical model with sapeetion, which describes
disease transmission between a single host and two paragiteer introducing mu-
tant hosts to original model, we explore this problem in tases: (A) monomorphic
case; (B) dimorphic case. For (A), mutant hosts have twoiplesmfections: one is
by parasite 1; the other is by parasite 2. In each of these &8es; we identify an
appropriate fitness for the invasion of the mutant hosts layyaing the local stability
of the mutant free equilibrium. Then, We consider the trafidetween the production
rate of infected hosts and their recovery rate. By employiregadaptive dynamical
approach, we analyze the evolutionary stability and cayemee stability of this singu-
lar point, leading to some the conditions for continuousabke strategy, evolutionary
branching point and repeller. For (B), we define a new fitnegad¢asure the invasion
of mutant hosts with parasite 1 and 2 by the same method. Wieetnade-€ function
is chosen to be linear, we are able to obtain conditions tatliisic stability and abso-
lute convergence stability through simulations. We find #gtdhough immune response
is benign to hosts, the host evolution would not favor higgrde of immunological
up-regulation, implying that an intermediate degree of imwlogical response will be
helpful to the host evolution. Moreover, superinfectiorebhelp weaker virulent par-
asite exist in hosts.



Keywords: hosts, parasites, mutation, global asymptotical stgb#olutionary
stable strategy, convergence stable strategy, evolutidmanching, monomorphic, di-
morphic.
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Chapter 1

Introduction

Researchers have questioned and studied the outbreak read s disease for many
years. If scientists could make predictions about disegsessple will be able to e-
valuate inoculation or isolation plans. This may help toidish the mortality rate of
a particular epidemic. Mathematical modeling of infectialiseases is a tool which
has been used to study the mechanisms by which diseased,dprpeedict the future

course of an outbreak and to evaluate strategies to comtrepigemic [14].

Through utilizing mathematics to quantify a disease, welcaw the disease bet-
ter and predict its trend. A physician, Daniel Bernoulligread out the earliest account
of mathematical modeling of spread of disease in 1766 [6]. ash@matical model is
created by Bernoulli [26] to defend the practice of inodulgtagainst smallpox. The
calculations from this model showed that universal incioiteagainst smallpox would
increase the life expectancy from 26 years 7 months to 2%\8&earonths [7]. Certain-
ly, our modern understanding of germ theory is preceded byidd&8ernoulli’'s work.
Meanwhile, the modern theoretical epidemiology began withresearch of Ronald
Ross into the spread of malaria [38, 39, 40]. Following treeaech of Ronald Ross
and others, A. G. McKendrick and W. O. Kermack publishedrtsenple determin-
istic (compartmental) model in 1927 [28]. The model was ssgstul in predicting

the behavior of outbreaks which were very similar to thateobed in many recorded
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epidemics [11].

1.1 A between-host model

In this section, two basic mathematical models, one for betwhost and the other for

within-host, are further introduced.

In 1927 Kermack and McKendrick [28] proposed a model by dhgda constant

population into three compartments [2&(t), | (t) andR(t) where

e S(t) is used to represent the number of individuals not yet befibavith the dis-

ease at time t, or those susceptible to the disease;

¢ |(t) denotes the number of individuals who have been infected the disease

and are capable of spreading the disease to those in theotibkeeategory;

e R(t) is the compartment used for those individuals who have lrg#fected and
then recovered from the disease. Those in this categoryoaebte to be infected

again or to transmit the infection to others.

The flow of this model is described as follows:
S—-1-R

Kermack and McKendrick assumed a constant populahig),= S(t) + I () + R(t). So,

their S IRmodel was the following ordinary fierential equations:

BO = _BSEIY),
40 = BSE)I(L) - yI(L), (1.1)

dR
% = yl(1),
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whereg is the transmission rate ands the removal rate of infective individuals [28,
34]. AssumeS(0) = So > 0 andI(0) = I, > 0. The corresponding analysis was given
in [18, 34], respectively. To measure disease, a quaRtityasic reproduction number

is defined by scientists.

In epidemiology, the basic reproduction numiggrof an infection is the number of
new cases one case generates on average over the coursafetctisus period [20].
Let us take system (1.1) as an example to show how the nfneorks. In system

(1.1),
= .

RQI

e WhenR, < 1, the disease will die out;
e whenR, > 1 the disease will be able to spread in a population;

¢ in neither of the above cases, the disease finally dies ohegfdpulation, leaving

part of population; denoted .., untouched by the disease.

The untouched pa., is often referred as the final size of (1.1). It is determingd b

the equation

|Q+So—%|nSo:Sm—%|nSm.

Due tolg should be sfiiciently small, above equation could be approximated by

So—-2InSp=S. - ZInS..
B B
In previous epidemic case, the duration of the disease wasres] to be short
compared to life expectancy of the host. Thus, any birth aseage-unrelated death
could be neglected. Normally, we would like to consider #watendemic disease is

habitually in a population [13], which is called endemice&a&urthermore, the long-
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term behavior is interesting to us. In mathematics, theespwnding model is

BO = pN-BSHI(N) - dS,
o BSE)I(t) —yI(t) — dI(t), (1.2)

E50)

a yI(0) - dR().

In this case, the basic reproduction rate is a perfect tbtdslondition to determin-
ing the future of disease in epidemiological models. Mataieally, it is a threshold
parameter for the stability of an disease-free equilibramd is related to the peak and
final size of a disease [12]. Next generation method is commethod to obtairRy.
The basic reproductive numbgg is defined as the spectral radius of the next genera-

tion matrix [19, 18].

From above summary, we can have a rudimentary knowledgesefsgé dynamics
on population level and its analysis approaches. In ourdhws utilize another method
to compute the basic reduction number and compare the sesititt the value obtained

by next generation method.

1.2 A within-host model

Once a pathogen enters a host, it will produeglicate and infect other target cells
within the host. To understand the dynamics of the pathoggulation and the inter-
action with the cells and possibly the immune response,invithst models are typi-

cally used. The simplest and most classic within-host mdile following system of
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ordinary dtferential equations [1, 2, 4, 8, 33, 35]:

O = 1-dT-kTV,
40 = kTV-4l, (1.3)
& = pl-cv

whereT (t) is the density of susceptible target cellg) is the density of infected target
cells andV/(t) is the density of viruses. Here it is assumed that targds can be
produced from a source at a rateand die at a ratd. Productively infected celld {
that are produced by infection produce new viruses at ap;aaed die at a raté. The

clearance rate of free virusesdas

The first attempts to model the dynamics of the immune systmfdom the 1976
[2, 5, 37], and dynamic models for the interaction betweeragites and the immune
system, based on the analogy with ecological interactifoiowed about a decade
later [3, 29, 36]. So far, scientists have conducted a lawgeber of studies of within-
host dynamics of microparasites. Several of these assua@dnasites are resource
limited, but it is striking that the majority does not exjilig model dynamics of the
immune response of the host [1]. Here, we briefly introduce thos approach, even

in a simplified version, takes into account immunologicaiawics.

There are a great variety of ways to model immunity in withost models. How-
ever, following the dierential equation describing prey dynamics in a Lotka-&fo#
predator-prey system [30, 25], similar equations are sipiaitilized to model the dy-
namics of the parasite. Thus, several life-stages (suckaasmBdium) of parasites and

their resource competition would not be described in modéien, changes in parasite
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density takes the form [1]:

G = (p-onx
¥ = o+ exy-dy.

wherex is the density of parasitg,is the density of immunefector ,¢ is the growth

rate of parasiter is the killing rate of the hosts by the immune systegis the lympho-

cyte baseline production ratejs the proliferation rate due to the presence of parasites
or their antigens, and is the lymphocyte death rate. In order to focus researches on
the parasites, usually, the simple structure of the immuysim is given in within-host
models compared with typical models in theoretical immogg! Important oscilla-
tions are predicted in this model, which is consistent withltotka-\Volterra model (see
figure 1.1, [1]). If the growth rate of parasite is very low qoamned with the strength of

densities

time

Figure 1.1:Parasite (dashed line) and lymphocyte (solid line) degssftir persistent infections
with a predator-prey model. Parameter valuesgazel, o = 1,¢ = 5,6 = 1, andb = 0.01.

immune system, instantaneous clearance would occur. Bioceurs before the infec-
tion, this model cannot be used to describ an acute infeclibis means the parasite
never really settles in the host. Therefore, this model gdp account for persistent

infection [1].

Regardless of types of disease model, however, either boptarasites’ traits, i.e.
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the parameters in models, should never be constants whevaehgion of species is

took into account. As a challenge, many traits of a speciaklatect its evolution.

1.3 Adaptive dynamical approaches

In recent years, a new set of techniques, i.e. adaptive dgsahas been developed for
understanding the long-term consequences of small mogatiothe traits expressing
certain phenotype [16, 17, 21, 32, 31, 41]. In adaptive dyognpopulation dynamics
are linked to evolutionary dynamics by incorporating andegalizing the fundamental
idea of frequency dependent selection from game theory. @y many papers used
this versatile tool to various evolutionary models. In tbédwing, we introduce the

fundamental ideas behind adaptive dynamics.

Two fundamental ideas of adaptive dynamics are that theeespopulation can
be assumed to be in a dynamical equilibrium when new mutaqgsar, and that the
eventual fate of such mutants can be inferred from theirainggrowth rate when rare
in the environment consisting of the resident [41]. Thierit known as fitness to
measure the invasion of mutants. The initial exponentiamn rate of mutants or the
corresponding basic reproductive number is usually refeto as invasion fitness of
mutants [17]. In this way, a mathematical model is requiedxplicitly incorporate
the traits undergoing evolutionary change. Meanwhilehlibe environment and the
population dynamics depending on the environment shoulieleribed in the model.

Below, we use a monomorphic case as an example to introdadzasic theory.

A monomorphic population is a population consisting of indiials with the same
trait. The trait is assumed as a real number without exiatement dierently. Let
r andm denote the trait value of the monomorphic resident poputatind that of an

invading mutant, respectively. A functidd (m) is defined as théitnessto measure
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the invasion of mutant. By the classical views, evolutionassidered an optimization
process towards higher value of fitness instead of highelevad trait. So, we need to
consider the selection gradient [17, 41] which is definedchasstope of the fitness at
m=r, S/(r). As we know, the mutants may invade successfully(in) > O; otherwise
they may eventually die out. There is linear approxima8em) = S,(r)+S; (r)(m-r),
which vanishes whenevern = r. In the case;(r) > 0, if the mutants are with slightly
higher trait values, i.&,(m) > 0, they may invade successfully; otherwise they may

eventually die out.

The generic outcome of an invasion is that the mutant repleeresident, and the
fitness landscape as experienced by a rare mutant changed$dally, the outcome of
the resulting series of invasions could be determined hyyise-invasion plotsKIPs).

The figure 1.2 coming from [41] shows three examples. In tley grea marked with

i /
- - -
E £l + + E
= E = i
= i F -
E 4 E 3
= A = e = Y i
o ~ 4
¥ /t ; L H 4 @
S ! y |
// + i v f
 Resident trait value Resident trait value Resident trait value

Figure 1.2: Examples of pairwise invasion plots. Gray shading denotes positive invader
growth rateS; (m), white shading negativ8; (m), the black diagonal lineS;(m) = 0. (a) Evo-
lutionary stable strategy but not convergence stable. Suiategies should be rare in nature: if
the strategy is once established it cannot be invaded yotait it cannot be approached gradu-
ally in small steps, either. (b) Evolutionary stable siggtand convergence stable. A possible
endpoint of evolution: the strategy can be attained grdylaald then it will resist any invader-
s successfully. (c) Convergence stable strategy but ndtitemoary stable, i.e. evolutionary
branching. A scenario where a population can become dinmrfite singular strategy can be
established gradually, but then it can be invaded by mutzotts above and below the resident
strategy at the same time.

+, S;(m) > 0. So, aresident population with trait valueould be successfully invaded

by a mutant if ¢, m) locates pair in the grey area.
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Obviously, a mutant with a slightly higher trait-value wd@generically invade and
replace the resident 8;(r) > 0. Thus, the direction of evolutionary change could be
determined by the selection of gradi&(r). WhenS;(r) vanishes, traits or strategies
r* for whichS;(r*) = 0 are callecvolutionary singular strategigs7, 4, 10, 15, 23, 22,
24, 9, 41]. The fitness landscape experienced by a rare mutard be locally ‘flat’
near such points. In figure 1.2, the singular strategiescaaned where the boundary of
the region of positive invasion fitness intersects the diatjoWe use three graphes in

Figure 1.3 [41] to show three types of singular points.

r. Resident trait vale r: Resident trait value
- o Mutant trait value

1: Resident trait value

m: Mustant trait value m: Mutant trait value

expected growth rate

°s expected growth rate

Mutant s expected growth rate

Mustant
Mutant's

Figure 1.3:Three qualitatively different singular strategies: (a) a local fitness maximum
representing a possible endpoint of evolutionary chandp.L¢cal fithess minimum where
evolutionary branching can occur. (c) A degenerate casaenine criteria fail because the
second order derivative &;(m) vanishes, but practically these cases are without signifie,
since finite evolutionary steps will lead evolution pastst@oints. Fitness is defined here as
the expected growth rate of an initially rare mutant and mivg the invasion exponeis; (m).

A strategyr* is anevolutionary stable strategfeSS if S,(m) as a function ofn
has maximum at*. Once it established, this trait cannot be invaded by neamiigants.
Mathematically, the strategy would locally maximize fitaésts corresponding second

derivative is negative. Thus, at an evolutionary stablgestyyr* we have

S/(r) < 0.

Otherwise, the strategy is evolutionary unstable. In ti#a Band 1.2b of figure 1.2,

evolutionary stable strategies are showed since the mwasiponent is negative both
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above and below the singular strategy.

A convergence stable strategyis a singular strategy that is attracting in the sense
that monomorphic populations playing a strategy néatan be invaded by mutants
closer to it. This means that the selection grad#it) in a neighbourhood af* must
be positive forr < r* and negative for > r* [41]. Hence, the slope d&/(r) as a
function ofr atr* should be negative, or equivalently

d (0S(m)
a( om r=m)’r=r*<0'

In figure 1.2, only the 1.2b and 1.2c are convergence stable.

As a result, if a strategy is both evolutionary and convecgestable, it represents
a possible endpoint of evolutionary change. However, thguar strategy would be
a branching point if it only has convergence stability. listtase, the population will

become dimorphic. If neither of these stabilities can bestadl, it is a repellor.

1.4 Scope of Thesis

We study the ffects of mutation and back mutation in a within-host dynahmuadel
in Chapter 2. The phenomena of mutation and back mutatioinuses are briefly de-
scribed at the beginning of the chapter. After introducimg hew terms about mutation
and back mutation into the age-structured model in [24], vesent the formulation of
a new mathematical model with two strain viruses. Then, wWee@tinear chain trick to
simplify our model and convert the partiafidirential equations to ordinaryftgrential
equations [42, 44]. By following the method to calculate dlput in a control system
(see Iggidr, Abderrahman et. al. [27]), a basic reprodeatumber for the model is
identitified for this model. Furthermore, we study the etites of equilibria and their

stability in two situations: one is without mutation and thier is with mutations.
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The case in absence of mutation has an infection-free bquith and two boundary
equilibria. We construct a Lyapunov function and demonstthat the infection-free
equilibrium is globally asymptotic stable if the basic reguctive number is less than
1. Meanwhile, we prove that the stability of the two boundaquilibria complies

with the competitive exclusion principle. When considgrimutations, the system still
have infection-free equilibrium. Moreover, the existent@ coexistence equilibrium
is proved in this case when basic reproductive number igtdlhgan 1. When mutations
are considered as small perturbations, the globally asytiegsgtability of this equilib-

rium can be established by the average Lyapunov functicoryh&Ve end this chapter

with a brief discussion about our results.

In Chapter 3, we utilize the classic adaptive dynamical apgin [23, 21] to further
discuss how a strain of viruses succeeds under the immupenss of hosts in evo-
lution when mutations happen. Firstly, we introduce a miusénain into a within-host
model with CTL response and analyze the local stability sfnitutant free equilib-
rium. The critical value that can decide its stability is defi as the fithess for the
mutant strain of viruses. Then, two parameters are choseriables and two relevant
trade-dfs are studied in this fitness function, respectively. The fiesle-df involves
the infected cell death rate and the disease transmisdienaiad the second trad€Fo
is between the virion production rate and the mortality déated cells. At first, we
discuss the existence conditions of an evolutionary sarcqaoint for two cases, respec-
tively. Then, we analyze the evolutionary stability and\@ngence stability of this
point. Examples are provided revealing insight to our te@oal results in both cases,
respectively. Based on our mathematical conclusions, seuds their corresponding
biological implications in the end and mention some relgtezblems to broaden this

topic.

We study the host-parasite co-evolution under immune respon population level
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in Chapter 4. In Section 4.2, we analyze the local stabilitgaexistence equilibrium
in a two parasites and one host strain model. Then, a mutattifiintroduced to
this model. We explore the invasion of the mutant hosts in ¢ages, monomorphic
case and dimorphic case. In Section 4.3, we discuses twibpmsgections of mutant
hosts, one is by parasite 1; the other is by parasite 2. Theadwalue for local stability
of corresponding mutant-free equilibrium is defined as ttme$is of mutant hosts. We
study the evolutionary and convergence stabilities of wiahary singular strategies
through utilizing the adaptive dynamical approaches [23,48] in these two cases,
respectively. We also investigate on how the convexitieswaf trade-dfs afect the
evolutionary and convergence stabilities. In Section 4.dimorphic case is studied.
We define a new fitness to measure the invasion of mutant hatgarasite 1 and
2 and obtain the conditions for evolutionary stability. Tivade-dfs are specify by
two simple linear functions to explore the conditions faraknic stability and absolute
convergence stability. We show some numerical conclusi@spectively. Meanwhile,
the value of superinfection rate is varied to observe howfécas the conditions for
isoclinic stability and absolute convergence stabilggectively. In Section 4.5, some
discussions on the biological implications of the mathécaatresults are provided.

Moreover, some related problems for future work on thisa@pe discussed.
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Chapter 2

A within-host age-structured model

with mutation between two strains

2.1 Introduction

Viruses using RNA (ribonucleic acid) as their genetic matere called RNA viruses.
They can cause extraordinary tough human diseases, suclvasdpatitis C, SARS
and influenza, due to their high infection rates. Comparm®MNA virus, they have
more rapid mutation rates [4, 2]. In the case of HIV-1, a pomitation occurs with
probability Q25 during every cycle of replication [7, 13]. This is one @asvhy it is
difficult to develop &ective vaccines to prevent diseases caused by this kindusfes
[17]. Furthermore, in the virion evolution, the fitter strawhich may produceftspring
faster than others, can beat others due to selection. Hoyesvers always occur during
reproduction, which lead to mutations. As a result, the cstitipe balance may be
shifted as a result of mutation sometimes. With selectianedical treatment, not only
forward mutants but also backward mutants could surviverad evolution because of

their drug resistance surveillance [14].

18
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Mathematical models are commonly used to study the diseamesed by RNA
viruses, particularly HIV, for over 25 years [11, 12, 10]. elfesearch achievements
about within-host virus disease models are fruitful. Theginclusions illustrate that
two strains of viruses without mutation can coexist onhhiy have the same basic re-
productive rates, which are veryflicult to actualize in the real world. However, if mu-
tations are considered, the situation changes. The witbgt-model about two strains
has a unique coexistence equilibrium. Its global stabilias proved when mutations
are treated as small perturbations [6, 1, 9]. However, arglidifferential equations are
too idealised to study the viral infection and productiorneiiefore, motivated by the
model

& = s-dT(t) - KTRV(),

e+ =—@T" (a1, o1

¥ = [ p@@T*(a t)da- cV(t),
T*(0,t) = kVi()T(t), t > O.

in the paper of Nelson and et al. [8], we will extend the resledry introducing an mu-
tant strain of viruses into this age-structured model antsictering forward mutation

and back mutation between these two strains of virusessrctiapter.

The rest of this chapter is organized as follows. In the netisn, we present the
formulation of mathematical model. In Sections 2.3 and &d,utilize linear chain
trick to simplify our model and convert the partialfidirential equations to ordinary
differential equations and work out the basic reproductive raurfdr this model. In
Section 2.5, we study the equilibria and their stabilitywotsituations; one is with-
out mutation and the other is with mutation. Finally, we ehi$ thapter with brief

discussions about our results.
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2.2 Model

We assume that the state variables @réhe population of susceptible host cells),
T7(a,t) (the population of target cells infected by virusvith age of infectiona at
timet), V; (the population of virus), wherei = 1, 2. Uninfected cells are produced at
constant rat®, die at rated. After infection at constant rajg by straini, they progress

to the productively infected class. There are two deattsrdteing this class. One is
a constant background death rate and the other is an infection dependent mortality
rateui(a). Then, the infected cells can produce virus at an infectiependent rate
pi(a). Free viruses are cleared at a constant catdVleanwhile, we suppose that the
mutation and back mutation happen between the two stravisusfes at rate; ande,,
respectively. The corresponding disease transmissigmnatiais shown in the following

figure:

Lh (@) + my
. p1(a) C1
B1V1 Ty 3 i T ——
_b
T €1 €
d l B2
TZ* v N VZ
p2(a) 2
Hz(a) + m,

Figure 2.1:The flow chart of the model.
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Translating the diagram in Figure 2.1 into equations, oudehtakes the form:

0~ b—dT(t) - BT (EVa(L) - BT ()Va(b),

AFNEL

2o+ 70 = —(u(@ +m)T;(a 1),
aT:  oT: .
-2+ 52 = —(u2(a) + M) T3 (a, 1),
vy

Y= (1-a) [ p@Ti(@0da+ e [ p@Ts@ hda-cva(t),  (22)
S =(1-e) [ p@T;(atda+e [ pu(a)T;(a tyda— cVa(t),

T7(0.1) = B VA(OT(V),

T5(0,t) = BoVo ()T (1), t > 0.

The system (2.2) will be reduced into DDE. By the method ofrabteristics, the

following two partial diferential equations with boundary conditions

or:  oT:
68: + atl = —(u2(a) + m)T;(a 1),
aT; (9T§

. Ti(ab),
9a + ot (/JZ(a)"' m2) 2(a, )

T1(0,t) = B1Vi()T (1),

T5(0,t) = BaVo()T(T),t > 0,

can be solved and their solutions are:

TI(a, t) _ ﬁlvl(t - a)T(t - a)O'l(a), t>a, (23)
0, t<a,

T;(a, t) _ ﬁZVZ(t - a)T(t - a)O'z(a), t>a, (24)
0, t<a,

whereo(a) = e b ®O+m¥ ander,(a) = e b WOmE (see details in Appendix A.1).
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Substituting (2.3) and (2.4) into (2.2), the system (2.2) loa rewritten as:

&= b—dT(®) - TOVAD - BT OVa(1),
L= p(l-e) fot P1(@)T(t — @)Vi(t — a)o(a)da

826, [ P2(@)T (t — Q)Va(t — B)ora(a)da— c;Va(t), (2.5)
Y = By(l-e) [, paB)T(t - A)Va(t - )orz(a)da

dt
+Bre [, po(@)T(t — )Vt — )ora(a)da— cVa(t).

For convenience, we assume thaf) is just a constant;. So, there isri(a) =
e irma wherei = 1, 2. Replacing variables in the integratian£ t — a, da = —du,

t — u = a; and leta = u), above system (2.5) is transformed into

§ = b—dT®) =BT OVi() - BT (R)VA(1),
M= Bi(1-a) [ pilt - Qe AT @)V (@)da
+0326 fot Po(t — a)e rmEAT (g)V,(a)da— ciVi(t), (2.6)
Y = By(l-e) [ palt - @)e AT (Q)V,(a)da
+Baer [ pult — a)e e mEAT ()Vy(a)da— cVa(t).

2.3 Equivalent ODE system under Gamma distribution

For convenience to show our main idea, we assume that twiostrave same natural

death rate and disease remove rate, i+ u, = p andmy, = m, = m. Moreover,
according to the properties of production rate, we selecGhmma distribution [19],

which can approximate to many other frequently used digtion, for p,(a) andp,(a):

n-1
P1(8) = P2(@) = Pun(@) = =gy @7)
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wherea is a positive real number amds an integer that is greater than 1. Denoting

— o
¥=—"",
1+ (u+ ma

SO
a\n

[L+@+ma]= (=)

We can rewrite the last two equations in (2.6) as:

av. an [ an [
- = @-a)(3) f By(@)Pralt - da+ =)’ f Bo(@) pan(t - @)da— ¢V,

0 0

dV —_ t - t
= = @-a)(3) f Bo(@) prn(t — B)da+ ex(~ )’ f B (@) pan(t - @)da- Vs,

a 0 a 0

whereBi(t) = BViO)T(0),i = 1, 2.

Let
xi() = @@)" [} Bi@ps,;(t - a)da
yi) = @@)" [ B(a)ps,(t — a)da,

forj=12,...,n. Thenforj e {2,...,n}

dt - 1)l
. n t (t _ a)j—l
-a(3)

o (j—Dlai*

= %[xj_l(t) = Xj(t)].

dqit) _ _aw M-1t-a) s
= a(a) fo ¥ e = By(a)da
a

e B.(a)da

Similarly, j =1,2,...,n,

0

12 = Sy -y
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Forj =1, we have

x(t) = af

Q| R)

t
1 (s
) [ e@ze P da
0 [0

— @\n t 1 a
ya(t) Q(E) fOBg(a)Ee‘(a)da,

yielding

WO = O VIOT(R) - B2(D)" f 2T Vi()T(a)da,
Bi(H) V1T (t) — 2x4(t),
Ba(2) V()T (t) — 2ya(t)

w1
dt
Thus, withp;(a) and p,(a) specified by (2.7), the system (2.6) is equivalent to the

following system of ordinary dierential equations:

T = pb—dT-BTVL BTV,
= Bi(B)"WIT - ix,,

i %(Xl—xz),

%0 = 11— X),

Y= B(D)VLT - Ly, (2.8)
¥ = Ly -y,

% = %\(yl’l—l - yn),

&= —(1;1)Xn + 2Yn — Vs,

e = Loy 4 ax,-oV,.

In the rest of this chapter, we only need to study the ODE ay$#e8).

It is easy to prove (e.g. by Smith [15], page 81, Theorem df)for a nonnegative
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initial set, the corresponding solution of (2.8) remainaimegative.

Lemma 2.3.1 The systen2.8)is dissipative, i.e. there is a forward-invariant compact

setl c R2™3 such that every solution eventually entBrs

Proof Adding equations abOL%[T—, %1 and% in (2.8) gives

d
E[T + (%)nxl + (%)nﬁ]
n

[0
=b—-dT - ﬁ(xl + V1)

<b-d* [T + (%)nxl + (%)nyl]

whered* = min{d, £}. Thus, limsup, [T + (£)" + (£)"y1] < 2. Similarly, we can

obtain that
. b, a\n .
imsuts ) = () =23
\n
limsup(Vi1 + Vo) < ——(—) ,
t—oo F( ! 2) - Cad*(a)
and
limsupT < l—)
t—o0 d

Consequently, the feasible region is given by:

f = {(T, X, X2, oo o5 X Y1, Y2, - -5 Yo Vi, V2) c R(+2n+3)|

T8 T+ () %+ [L+ v ma)'yy < 2, (2.9)
X +Yi < 2(9)" Vi + Vo < (5

i=2,...,Nn.

It can be verified thaF in (2.9) is positively invariant with respect to (2.8). Djss-
tivity now follows by noticing that all the above bounds anelépendent of the initial

condition.
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2.4 Basic reproductive number

It is easy to see that

b
Eo = (a, 0.0,....0) (2.10)
is an equilibrium of (2.8) which is called the infection4requilibrium. The basic

reproductive number of the model is closely related to thbibty of the E,.

For ODE models, the next generation matrix is typicallyizgiti to calculate repro-
ductive number. See, e.g., van den Driessche and Watmo@&gh IHere we choose
an alternative approach developed in Iggidr et al [3] towale this important number
because this approach can reveal some special relatioe ofvthvirus strains for the

model (2.8)

Following [3], we now rewrite (2.8) as

T = p—dT-BTVi - BTV,

dx

& — Ax+B,TVB,

a Al (2.11)
Y = Ay+B.TV;B,

¥ = Dyx+Dyy-cV,

wherex = (X, X, ..., X0)', ¥ = (V1. Yoo -, Yo)', V = (Vo, Vo)T, € = (€1, Cp), B =

(2)"es(n),
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-2 0 O 0
i 10 0
o & -1 0
A — a a ,
0 0 0 ..... -2
ande;(n) = (1, 0, ..., 0)" thatis amn x 1 column.

During the mean duration of its lifetime, a virion of the fisgttain can actually
generate a Dirac inpuiB;/c;d in the second controlled systexh= Ax+ 8, T V,B (see

[3]). This input then generates secondary viruses giverobydla:

b [ 05,

A _ Pl p-l P
ed Jo D;e”Bdt Clo|D.(A )B, i=12
Since
a 0 0 0
a a 0 . 0
a a o 0

Al
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we obtain
a 0 ... 0 0
00..%lava off o
D;(-A™)B = ,
00.. &
aa ...all @®"

(1- €1)(§)n

(%)

Therefore, based on the inpg, /¢, d, two fractions in éfsprings are given by

Rii=(1- €1)(§)n%, Ri2 = 61(3\)

b5,

o (2.12)

both of which result from virus one.

Similarly, the numbers offéspring of strains 1 and 2 produced by a single virion of
strain 2 are given respectively by
nﬁzb

Roz = (1- )220 213)

a ﬂ,sz
) cd C2d

R21=€2(a o’
2

Now, assume that a single virus particle is brought into &,tso=l letp (q) be the
probability that this initially invaded virion is strain Stfain 2). Therp+ q = 1, and
all new viruses resulted from this virion are distributedoaim the two strains by the

following formula:

Ri1 Ra p PR11 + qR12
Ro1 Ra q PR21 + qR22

Therefore, the total number of new virions resulted fromittigal single virion is the
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L, norm of the above vector, i.e.,

PR11 + gR12
= (PR11 + dR12) + (PR21 + gR2))

PR21 + gR22
= P(R11+ R21) + d(R12 + R22) = pR1 + qR>

where

_ _ ﬁlb \n _ _ ,ng a\n
Rl = Rll + R12 = m(a) s R2 = Rgl + R22 = Cz_d(a) . (214)

account for the individual reproductive numbers of straimntl strain 2 virus respec-
tively. Thus, the basic reproductive number of the modd)(i&. obtained by taking the

maximum over all possible initial distribution:

Rll R12 p
RO = maXx
P Ry Ry | g
Ri1 R
= L maxRi1 + Riz, Ra1 + Ra2} = maxRy, Ry}
R21 R22

This conclusion is consistent with the result obtained bygishe next generation

method, see details in Appendix A.2.

2.5 Equilibria and their stabilities

We already knew that the system (2.8) has the infectionegedibriumEg = (b/d, 0,0,---

The following theorem discusses the stability of the viftee equilibriumE,.

Theorem 2.5.11f Ry < 1, the infection-free equilibrium §&s globally asymptotically

stable onR2™3,

Proof Let us consider the stability of infection-free equilibmug, in T under the con-
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dition Ry < 1. We construct the Lyapunov function as follows:

n
V= TO(Tlo —In Tlo - 1) + (%)n{ ;(Xi +Vi)+ Vi + Vz}.

Calculating the derivative o’ along trajectories of (2.8), we obtain:

¢v _dr, T
d ~ ot

1- =)+ (%)”[Bl(g)”vlT —eVy+ ﬁl(g)”va - V]

= b-dT - b% + dTo +,81V1T0 +ﬁ2V2T0 - Cl(g)nvl - Cz(g\)nVZ
a a
T T a\n a\n b
= b(1- T =)+ 1(%) do - 1](%)"°1V1 +], Z(E)nd—CZ - 1](%)n°2V2
= bf1- Tlo - %) +(Ry - 1)(%)”c:1v1 +(Ry— 1)(%)”c2v2.

Notice that 1- T/To — To/T < 0 and the equality holds if and only T = Ty, V; =0
andV, = 0. Thus,&¥ < 0if Ry < 1; and%¥ = Ois if and only if (T, X, y, V) is atEo.
Therefore, we can conclude that the virus free equilibritys globally asymptotically

stable in the positive orthant.

WhenRg > 1, eitherR; > 1 orR, > 1. If Ry > 1, then there is the single-strain

equilibriumE; = (T3, &, ---, &, 0,---,0V%,0) given by
1 Xﬂ 1

e '%(%)”, xl:af(fl)(g)”, =1 .n, Vi= f((:T;l)(g)”, (2.15)

wheref(T?) = b—dT2. In parallel, ifR, > 1, then there is the single-strain equilibrium

E,=(TL0,---,0,%2 - ,$20,V2) given by

2= 2(2), %:af(fz)(g)”, I=1.-.n V3= ff’(’g)’i (2.16)

B2 a
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wheref(T2) = b— dT2. In the sequel, we will discuss the stability Bf and E, and
possible positive (coexistence) equilibrium. We distisuhe case when the mutation

is absent and the case when the mutation are present.

2.5.1 Inthe absence of mutation

First, let us consider the cage = &, = 0. SinceR; andR, depend on many model
parameters, the critical caBg = R; is sensitive in the sense that a small change of any
model parameter would destroy this identity. Thus, for pcat purpose, we exclude

this case in our discussion.

Note thatR; = 34 fori = 1,2. Thus

R;>R, iff Tt<T? (2.17)

The following theorem establish the global stabilityf or E,, depending which

strain has larger basic reproduction number.

Theorem 2.5.2 Assume thaR, > 1.

() If Ry > R, andR; > 1, then F is globally asymptotically stable with respect to

positive initial conditions.

(i) If R, > Ry andR;, > 1, then B is globally asymptotically stable with respect to

positive initial conditions.

Proof We only need to prove (i), since (ii) is parallel to (i). We stmuct a Lyapunov

function on

H = {(T’ Xl’ yl? X2? YZ, ey Xl"l’ yn, Vl’ VZ) € R(2n+3)|T’ Xi’ yi’ Vl’ V2 > O’I = l’ 2’ ey n}
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as follows:

n
+ Z Yi + Vz].
i=1

Then, the derivative of along the trajectories of (2.8) is calculated as below:

dc  dr, T! . NI N Vi
& = a T @) 5 e )

dt E T (0% X1 —
+ Z v+ Vz]
i=1
T! @ a@\n
= M=)~ GTVi+ETV:)(1- —) (=) [BvT()

ol

1 an& 1 1 1,
=X —,31V1T(—) —+=x]+ A(Xl - Xo) — ——Xl + = Xz A(Xz — X3)
a a’ X, @ @ X

18 1. 1 1% 1., 1\711 |
—=—X X c+ =(Xn-1— — =" X1t =X - =— CVi + =
% 2+ =X3 + a(xnl Xn) a/Xan1+aXn av1X”+ 1+axn

—_

1 1 1 1
—C1V1 +/52V2T(E) - 5)/1 + 5()’1 —Yo) + -+ E(Yn—l —Yn) + E\Yn - szz]
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= f(M)(1- E)+,81V1'I°1 AAE +(g)n[ AL ) "%
2 a’ X
l Xl l Xl 1 ol Vl
———X ———Xg ————— ﬁXr, 1——Xn+C1V —C1V1—C2V2]
a Xo a X3 a Xn Vq

A

S 16 R BPAVA P VAR KA TP

_Xiﬁ_ﬁ_&_ﬁ_m_ﬁj_ﬁﬁ]
Vi % X3 X X Vi
T? £1 2 1 T? X n
= (1= ) +BVaT = BVoT2 - (Y1 - =) + =(5) [(n+2)
TN X% X _ﬁi_W%]
T ViTy X X X X ViXg
) ) )
= (fM - f{TY(1- =) +LV(TH -T2 + 2(3) [0 +2)- =
ATH x X X Yo i
Vil X X X X ViXg

It is obvious that

T1 T1

. T R T
[f(T) - f(TH1A - ?) =d(T*-T)1- ?) <0.

By (2.17), the second term of right part is nonpositive. Mwer, the relation of iso-

meric and geometric means implies that

'fl VITR x % X Vi
il S A S = 1)A(:_(n+2)
T V1T1x1 X2 X X Xo o VaXg

Thus, we have prove% <0; anddL = 0 if and only if state is at the equilibriurg;.
Then, we can conclude thit; is globally asymptotically stable iH and the proof is

completed.

This theorem shows that when the basic reproduction nursbarger than 1, then

competition exclusion would be the generic result in theeabs of mutation, implying
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that coexistence is in general impossible. Taking (i) as>ample, ifR; > R, and
R; > 1, then regardless of whethBr, < 1 orR, > 1, E; is globally asymptotically

stable, meaning that strain 1 will win the competition. Tfere there will no co-

existence equilibrium.

2.5.2 With the dfect of mutation

In this section, we investigate thé&ect of the mutations by assuming tkat> 0 and
e, > 0. The first result along this line is that the co-existenceildyium becomes

possible due to the presence of mutations,

Theorem 2.5.3 Assume; > Oande, > 0. If one of the following conditions holds,then

the model systeif2.8) has a unique positive equilibriu:
() Ry>1andR; > 1;
(i) Rz < 1butRy > 1+2(1-Ry);
(ii)) Ry<1butR;>1+%X(1-Ry),

where Kk is a positive constant to be determined by a quadeapi@tion in the proof of

the theorem.

Proof If a positive equilibriums exists, its components are gilagn

—_

%o=%oa = =% = GBTVA(S)"
o= os = = Va = BTV )
T b

" d + V1 + BV
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with V; andV, being determined by

ﬂl(l—fl)b Q n— ﬂzszb
(d+ﬂ1v1+ﬁzvz)(a) Vit (d+ﬂ1V1+ﬁzV1)(

Ba-eb  (w\"\/. Bireib
(d+ﬁ1V1+,82V2)(a) Va + (d+B1V1+,32V2)(

RIR)

n_ —
Vo = ¢V
)V t (2.18)

R IR)

)n\71 = C2\72.
By simplification, the equations (2.18) can be rewritten as

R11C1\71 + R21C2\72 - C1\71(1 + %\71 + %\72)

I
o

vi iy _ (2.19)
RlZClvl + R2202V2 - C2V2(1 + %Lvl + %VZ)

I
©

After calculating, we can further rewrite them as follows:

(Rll - 1)CJ_C2\71\72 + R21C§\722 — C102\71\72(%\71 + %\72) = 0, (2 20)
R12GV2 + (Rop — 1)01GoViVa — C1GoViVo(4Vy + £V) = 0.

Subtracting the second equation in (2.20) from the first endd to

R21C2V2 — R15C2V2 + (Ryy — Ra2)C1 G Vi Vs = 0. (2.21)
Because/; # 0, it can be transformed into

RZl‘é(%)z + (R - Rzz)Clcz(%') — Ry,¢f = 0. (2.22)
Settingz = V./ V4, the equation (2.22) becomes the quadratic equation

aZ +az+ay =0, (2.23)

where

a = -Ri,C5, a = (Ri1 = R2)CiCp, @ = Rzlcﬁ.
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Note that ife; = 0 = &, thenR;, = 0 = Ry; and hencey = 0 = a,, and thus, (2.23)
can not have a positive root and thus, (2.8) can not have aiy@sguilibrium. But
now, we have assumesg > 0 ande, > 0, implyingR,; > 0 andR, > 0. Henceag < 0

anda, > 0, implying that the quadratic equation (2.23) has one pesibot, denoting
it by k, corresponding to a non-zero solutidh (V) of (2.19) withVi, Vs, having the

same sign.

SubstitutingV, = kV; into (2.19) gives

R11C1\71 + R2102k\71 - C1\71(1 + %\71 + B—;k\71) = 0,
R12C1\71 + R22C2k\71 - C2k\71(1 + %\71 + %k\71) = 0.
from which, we obtain the following expression for:
_ |(Re=1)e1 + (Rp - 1)cek]d
Vl = . (224)

(C1 + ke)(B1 + KB2)

ThereforeV; > 0 provided that at least one of the three conditions statétkitheorem

holds. The proof is completed.

So far, we proved the existence of the positive equilibrﬁmse changes. Further-
more, we begin the analysis with the two boundary equiliBsi@ndE; to investigate
the origin of the equilibriun’E_. Denoting vector field of the system (2.8) X, ¢), we
find thatg(E;, 0) = 0, wherei = 1, 2. Then, ifj—;"((Ei,O) is invertible, we can establish
a unique equilibriung;(e) nearE; by implicit function theorem for smak. So, let’s

verify our conjecture.

Proposition 2.5.4 Assume the equilibrium;Exists (i.e.R; > 1). g—?((Ei,O) are invert-

ible fori = 1, 2, respectively.

Proof Firstly, we consider the situation fé;. The Jacobian matrix of linearized sys-
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tem (2.8) at; is given by
Ji(n)  Ja(n)

J=
0 Ja(n)
where,
—~\n ~
B(2)Vi 0 0 0 At
—~\n ~ —~\N A~
MBIV -3 0 - 0 B(E)T
0 i1 1.0 0
R ,
0 0 0 -1 0
0 0 O i —
@ (n+1)x(n+1)
00 0 —B,T1
00-.---0 0
00-.---0 0
o= ,
00-.---0 0
0 0 - 0
(n+1)xn
and
-1 0 0 A(Z) T
A
Ja(n) =] :
0 0 -1 0
0 0 %\ —C>

nxn

Then, detl) = det(J.(n)) detd4(n)). This means that, if both dek(n)) and det{4(n))
do not equal zero, the determinant bfat E; is nonzero. Next, we will prove that

neither of detd;(n)) and detd,(n)) is zero.
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After adding the third column of dei{(n)) to its second column and expanding the

new determinant along its third row, we achieve the follayvaguation:

4BV 0 0 - 0 T
AEVE -3 0 0 p(E)T
i _1 ..
det@) = ( - %) det 0 @ @ 0 0
0 0 0 -1 0
0 0 0 1 g

nxn

Arguing similarly as before, we have

-3 0 0 py5) T
1 _1 0 0
1 o .
det@y(n) = (- ,5) det
0 0 -1 0
0O O 1 —C
@ (n-1)x(n-1)

Repeating these steps- 2 times, we obtain

—-d - /3’1\711 0 B! R
1\(-2) A ar g _B1Vic
det@(n)) = ( - 5) det Iglvil(g)n _% ,BlTl(%)n = (_]_)(n l)ﬁa{(nill)l #0,

0 i —Cy

a

and

(n-2)C2B1 — B1C1 0

1\(n-2)
) = (_ 1) Igla(n—l)

det(n) = (- =
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under the assumptioo, # c,. Therefore, the determinant of Jacobian mattiis

nonzero ak;.

In the same way, we can demonstrate thatXjef 0 atE,. Hence,g—g(Ei,O) are

invertible for alli = 1, 2.

WhenR;, < 1, only E; exists in absence of mutation. Obviously, the positive
equilibrium E bifurcates from the equilibriunk; when mutation happens. However,
the situation about the origin & becomes more complicated whBa > 1. Next, we
will analyze the case when (2.17) holds (iR, > R») to find out wetheE is equal to

El(E) or EZ(E).

Define that
l1-¢€ €
P(E) _ 1 1 ’
€2 1- €2
which is a mutation matrix and
P(e) = 1 + Q(e),
- €
whereQ(e) = Y™ is a matrix with positive &-diagonal entries. Each row of
€2 —€2
Q sums to zero. SinC®, = Xp-1 = ... = Xy andy, = Vo1 = ... = Y1, then the rest of

equations when system (2.8) equals to zero except the fusttieg can be simplified

to

KVT -BT* = 0, (2.25)

P(e)BT* - MV

I
L

(2.26)
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where
—\ N
« | Ao ° 1 oe-| " M =
0 /52(%)

SubstituteBT* = KVT into (2.26) :

QO Rl
Rl O
o 9
L o

(M*H@K—%NEQ

Denote
pull-e) (@\" peer(z)"
Ale) = ,81: a E}“) ﬁjl—(s(:)) a\"
c_l(E) c—z(Z)
Then,
1.,—
M@—?W:Q

Finally, the problem about a positive solution become thisterce of positive eigen-

value associated with positive eigenvector of ma#(x). Calculating

pa)(z)'_ g’

a

C1 C \«a —
. 2 =0, (2.27)
_1_61(2) M(e) -2
CL \«a C2 a
we obtain
2
(e = [‘2—1(1—61)+ﬁ—§(1—52>]+\/[‘;—1(1—51)#2—3(1—6»] +4 22 (1-a1-e2) (2.28)
! 2(2) ’
and
2
2o() = [‘2—;(1—61)+ﬁ—§(1—52>]—\/[‘;—;(1—51)#2—;(1—6»] +4 22 (1-e1-e) (2.29)
? 2(2)" '

Because oft;(e) > 0 > 1,(¢), the principle eigenvalu, (e) owns a positive eigenvector
by Perron-Frobenius theorem. In addition, it is easy to firad.t;(0) = T* and.,(0) =
T2. Thus,Ex(e€) is nonpositive and the unique positive equilibriﬁequalfl(e) when

R1>R2>1.
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In the following, the average Lyapunov function method iéizgd to analyze the

stability of the equilibriunE.

Theorem 2.5.5WhenR; > R, > 1, E is globally asymptotically stable iH’ for all
e <0, €.

Proof Before the whole proof, we define a new set
I'=Tx[0, &.

It is clear thaf" is compact and forward invariant under system (2.8).

We will use the same Lyapunov function

T v
L:Tl(ﬁ—ln——l Z ——|n——1)+v1(V1

as before. Calculat%té along the trajectories of system (2.8)

ds < -'I;l f1 )’Zl Tl
o = -1 (1= )+ BVl —T)+—(—) [(n+2)-—
_VTH u e X Yea VXn] ()HV(
\7111°1x1 X2 X3 X4 X Vi Vi
€
+=Yn)
a
A Tl el T Tt . x
[F(T) - £(TH)(1- +) a(a)[T T Tt
X _ \ L A
Bt o+ (L= @)l - (14 2)(1- @] - V(TP -

1 1L Qo Lo,
+=(+2)[1- (1 - &)™](=)"% - =(=)"eyn
a « aa
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- T KTl VT x X

1 1 11 A1 1 2
< M- fMN1-+)-=E) |+ e e %
“1

X3 Xn-1
+ 2+ 1-e
o Dy

Xn—(n+2>(1 €)™ | - BaVo(T2 - T7)

A(n+ 2)1-(1- el)n+z]( )%

By Lemmab5in [6], we can find,, n > 0 such thaV/,(t)+V,(t) > pforall e € [0, €]
and all sifficiently larget when (2.17) holds. Leg = B,(T2 - T1), then

Ba(T? = THYV, = YV > y( — Va).

Then, the following inequality

ds . T &an T VUITR X X%
= < (fM-fd ))(1——)——(—) [+ + T T

1

X3 Xn-1
+—4+.. . +—+(1-
( 1)

Vi~ (n+2)(1-e) ”*2] yn+yVi

1
+=(n+2)1- (1~ el)m](i) e

would hold inI" for all € € [0, &].

Suppose a positive constagtcan satisfy
l—ae( 1], 2(+20 - 1-e)@)(2)'%E -y < -2
1 > = 1 3 Yn = 4

for all € € [0, g)]. Denotee = min(e,, ). Thus, for any € [0, €], we obtain that

T1
UL - - - 2EyT

-fl VlT)’Z X1 X
+=+=
dt

T V1T1X1 X2 X3

1
Ui — (e 2)(1-e)] - Ty,



CHAPTER 2. A WITHIN-HOST AGE-STRUCTURED MODEL WITH MUTATION BETWEEN TWO STRAINS 43

A sufficiently largeN is chosen such that
1 1 a\N
=(n+ 21— 1+ equ)™](=) K-y + V1< N,
a a
for all solutions of (2.8) in” and alle € (0, €]. Meanwhile, lets; > 0 be such that
. T!
[f(T) - f(THIA - 7)) <-(N+1),

forall T < ¢, and alle € (0O, €]. It is easy to show that there existéa> 0 such that

—

(0

+T+
T Uiy % X X

—

(01

=
Xn
\71

V. Xn 1
+(1- El)vikg — (N+2)(1+ equ)™?| < =(N + 1)

for all Vﬁl <z and alle € (0, €]. Atlast, we can find @; > 0 to make-Z! + yV; < %

for all V; < 63 and alle € (0, €]. Denote
Ts = {(T, X0, Y1, X2, V2o - -« » Xon Yoo Vi, Vo) € H N T|T > 651, X, > 62V, Vy > 63},
If (T, X1, Y1, X2, Yo, - - - » X Yo V1, Vo) € (HNT) \ I; and alle € (0, €], at least one of
following results holds:
(1) T <6y, then®e < —(N+1)+N = -1;
(2) 3 <6 thendt < —-(N+1)+ N =-1;
(3) V1< 83, thent < -2,

Therefore, for all T, X1, V1, X2, V2, - . . s Xn, ¥ V1, Vo) € (HN ) \ ﬁ; and alle € [0, €,

there is
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It is easy to see that nonnegative functibfI, x4, y1, . . ., X, Yn, V1, V2, €) iS continuous
and bounded on s&t; x [0, €] since thafT, X3, Y1, ..., X, ¥n, V1, V» are bounded away

from zero. Thus, it can reach a finite positive maximum:

p = ma)f*dx(o’aL(T’ Xl, yl’ ) Xn, Yn, Vl’ V2’ 6) > O

Define a new set

F5 :{(T? X1, yl’ X2, YZ, cees Xny yn, Vl’ V2) eHN F|L(T’ X1, yl’ e s Xny yl’]’

Vl’VZ’ E) SP’VG € [O’ E_l}

Then, we obtain thaf“(; c I's c HNT. ThatTs is closed can be implied by the

continuity of £. Thus, it is compact if.

In the following, we need to show that all solutions of (28H enter and remains
in Ts for all large time. BecausFE is an absorbing set for adl > 0, without loss of

generality, we need to prove this for all solutiondin

Let ©(t) = (T, X1, Y1, X2, Y2, . . ., X0, Yn» V1, V2) € H N T be a solution of (2.8) for
some fixede € [0, €]. It's easy to verify that the inequalit% < 0 holds in sef" \ T';.
Because of” > 0, there exists & > 0 such thatd(ty) € I; c T5. Next, we will prove
that®(t) € I's for all t > to. For the sake of contradiction, let's assume that there is a
t; > to such thatb(t;) ¢ I's. Then there should betae [to, t;) such thatd(t,) € I's and

d(t) ¢ I'; for all t € (5, t1]. On the one hand, we have that
L(D(t2), €) < p < L(D(t), €)

by definition of's. But, on the other hand, for dile (t,,t;], we haved(t) ¢ I's and

consequentlyd(t) ¢ I's so thatd%jj(d)(t), €) = ‘jj—f < 0. This contradiction shows that
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O(t) e I's for all t > to.

Let us define

H’ = {(T, X1, Y1, X2 Y25 - - - » X1, Yn» Vi1, Vo) € REYIT 4+ 3% + Vp > 0,
i=12...,n}D>H.

SinceE;(0) € IntH’ is globally asymptotically stable id’ for e = 0 whenR; > R, > 1.
Then, the conditionH1) of Corollary 23 in the paper [5, 16] holds. As a reSLEE,(or

E1(€) ) is globally asymptotically stable iH’ for all € € [0, €] if R; > R, > 1.

2.6 Discussion and Conclusion

In this chapter, we have studied the within-host age-atrect model of two strain-
s. Different with the multiple-strains model in [6], we used an atgaetured model
to study the coexistence between two strains of virusestuiately, under some as-
sumptions, we can restore the information about viral itndecage to new variables.
Then, our age-structured model were transformed into @ stexglel. To understand the
process that begins with viral attachment and end with tlease of new viruses bet-
ter, we treated our stage model as a controlled system talgaicorresponding basic
reproductive number. Comparing the numerical conclusid8], we proved the glob-
al stabilities of two boundary equilibria without th&ects of mutations. Moreover, if
both boundary equilibria exist, we demonstrated that #an@iution would comply with
competitive exclusion principle that the stronger one wsuitvive finally. Furthermore,
we discussed the existence and stability of the uniqueipesquilibrium when the
forward and backward mutations were considered. We exgudaiow these two strains
coexist with the help of small mutation rates in mathematiésanwhile, the coexisted

equilibrium would be globally asymptotically stable if theutation is considered as a
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small perturbation.

As we all know, the mutation rates cannot be always fixed inviled evolution.
Even there is a small change in environment, it can alter itreetibn of the evolution
of viruses. So, we are interested in the case when natuesdtg®el is considered. S-
ince mutation rates can change as times goes by, how woudd tfeangesftect the
viruses evolution? This could be also a very interestingla@m as our future work.
Furthermore, if mutation rates exceed these critical \&gludl these stabilities change
or not? Although we found that it would not in our simulatipme cannot assert that
it is globally asymptotically stable with any values of miidas. The corresponding

mathematical demonstration is necessary.
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Chapter 3

Within-host viral evolution under

Immune control

3.1 Introduction

In the last decades, scientists provided a simple systenffefehtial equations [2, 3,

5,17, 19]:
T = A-dT-kTV
| = kTV-6l, (3.1)
V = pl-cV

to study the dynamics of human immunodeficiency virus, hepa& virus, hepatitis
B virus and cytomegalovirus infections in vivo. Target s€ll) that are susceptible to
infection are infected by viruse¥] with a constant rat&. They assumed that target
cells can be produced from a source at a leai@d die at a ratd. Productively infected
cells (1) that are produced by infection produce new viruses at gxaad die at a rate

0. The clearance rate of free viruseisThis detail is showed in the Figure 3.1 [20].

In the meantime, however, immune system is activated to éighinst viruses. De-

49
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Figure 3.1:Basic model of viral infection.

pending on the characteristics of the infection agentsptbst dfective mechanisms
are used by immune system. Both viral particles and infectdid are the goals of
adaptive immunity. Antibodiesfter the most important mechanism against viral par-
ticles; while the cytotoxic mechanisms play a most significale against infected
cells. In this paper, we only discuss the cytotoxic mechmasjparticularly in cytotoxic
T-lymphocyte (CTL) response. A cell-mediated responseptxiic foreign antigen-

s associated with cells are provided by cytotoxic T-lymptes (CTLs), also called
killer T cells. As being activated by recognition of specifistigen on a cell, CTLs
release the cytotoxins perforin, granzymes, and granulyspoptosis can be induced
in two ways: one is through the action of perforin; the othagws via the cell-surface

interactions between T cells and infected cells.

We incorporate CTL response into a basic model of virus iidacand investi-
gate its é&ect on viral evolution. Usually, people treat the parangessr constants and
analyze the stabilities of corresponding equilibria in glagion dynamics. However,
viruses evolve to adapt the defense from hosts in naturéhelipaper of Perelson and
et al. [12], the viral burst size is chosen as viral fitnessnstdering the competition
between resident and mutant strains, we define the fithnesataims based on analysis

about the local stability of the mutant-free equilibriumaar model. Then, the viral
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evolution will be explored in trait space in this chaptemians that a trait is selected as
the evolutionary strategy of each strain. Although virusesate quickly and random-
ly, only suitable strains can escape immune response angdetinally [18, 14, 16, 4].
So, strategies that they choose can be vitally importantifeir destinies. The two
strategies: the viral production rate and the virulencd, lvei took as variables in the

fitness function and studied, respectively.

An increment of the value of one strategy may cause variatfoime other. To
explore the relation of strategies, we consider two traffie-d he first one is between
virion production rate and mortality of infected cells, whiis taken as viral virulence.
Nutrient from host cells consumed by virus is used to repditself, so the death rate
of infected cells will be assumed to increase as viral prtidndncreasing. There are
a number of reasons to expect that a virus utilizes the resswof its host in order to
produce viral proteins in the process of replication. Bseanf the loss of cell resources
and possible cytotoxicfiects of viral proteins, the death rate of cells is likely eased
[21, 13, 15]. We take this mortality as production-dependéhe trade-& between the
infected cell death rate and the disease transmissionsrated considered. According
to previous researches [8, 1, 6, 22], an increase in trasgmisate can only evolve
with a parallel increase in virulence, which is assumed toease with virulence and
eventually converge towards an upper limit. Due to lack claate experimental data,
we only study the general cases instead of some specificidmsct By the classical
adaptive dynamical approach, (Gertiz, Kisdi et al., [11]),1@e have obtained some
information on how the CTL response shape these two typeadéidfs and &ect the

viral evolution.

The rest of this chapter is as follows. In Section 3.2, we firstsent the mathe-
matical model, and then analyze the local stability of theantufree equilibrium and

define the fitness of mutant viruses. In Section 3.3, the {oditiavolving the infected
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cell death rate and the disease transmission rate is stuli€tection 3.4, we discuss
the trade-& between the virion production rate and the mortality of atéel cells. In
addition to the theoretical results, examples are givet&bh cases. In the end, some
discussions on the biological implications of the mathecaatesults are given; more-

over, some related problems about future work on this togaacussed.

3.2 Thefithess

We use bilinear function to replace Holling Type Il functiorthe model of Nowak and

Wodarzs’ [22] and obtain the following one strain withinghonodel:

X = y—dx—pxy,

y = BXv—ay- pyz

y B y— Py (3.2)
v = ky-uy,

Z = cyz—bz

where the variables and parameters are explained as below:

X : Abundance of uninfected cells;

y : Abundance of infected cells;

v : Abundance of free viruses;

z : Abundance of CTLs;

v : Birth rate of healthy cells;

d : Natural death rate of healthy cell;

¢ : A stimulant rate of CTLs;
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p : Akilling rate of infected cells;

B : Infection rate;

a : Death rate of infected cell;

=~

: Virus production rate;

u : Virus clearance rate;

(on

: Death rate of CTL.

This model always has an infection-free equilibrity = (§ 0, 0, O). It also has

an immune-free equilibrium

au kyB —aud kyB - aud O)
k3" kg T ug T

=<

If the immune mediated basic reproduction number

_ypk bk

=2 _ T,
17 aud duc

a unique positive equilibriurk = (X, Y, V, 2) exists, where
X=gs y=2 V=Y 7=1i(4x-a), (3.3)

We have demonstrated in Appendix B.1 that this positiveldayium E of system (3.2)

is locally asymptotic stable under the conditi@n= 2% — 2% 5 1.

aud duc
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Next, assumed that a mutant strain is introduced, and aoghydhe system (3.2)

is naturally modified to the following two strain model

X = y—dx—pxv — X,

Y1 BXvi —ay; — py1z,

Vi = Kkyi—uv, (3.4)

z = (cyp+¢Cy)z-bz

Yo Bxv; — By, — PY,Z,

VQ = Ryz—leQ.

A mutant-free equilibrium of the system (3.4) is:

~ y b k. 1,k3._
E_(d+B\71’ C’ uyl’ p(ux a)7 07 O)'

We have proved that this equilibrium is locally asymptotalde if det(J,,) > 0 and

it becomes unstable defJ,;) < O (see details in Appendix B.2). This implies that

the mutant strain can invade successfullyléft(J,,) < 0. As such, it is natural and

reasonable to definedet(J,,) as the fitness of mutant strain viruses:

w

>

|
Q
@
X
@
N
&

= v —a+ 2(¥x-a) (3.5)

From above, it is easy to see that the value of the fithess depenthe diterence
between two basic reproductive numbers of resident straimautant strain with CTL

response. If the mutants have bigger reproductive numewndlue of fithess is posi-
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tive, which means that the mutant strain can invade suadéssf the future. Diferent

with the fitness in [12], the competitiveness of both straiaus be reflect in our fitness.

3.3 Trade df betweena and k

In this section, the tradeflobetween the viral production rate and the mortality of
infected cells is studied. Because viruses need to consuitnemt from host cells
to replicate themselves, the replication will increase dkath rate of infected cells.
Meanwhile, possible cytotoxicfiect of their proteins can also raise the mortality [7,
3, 12]. Thus, the mortality of infected cells is taken as piitbn-dependerd(k). So,
different strategies will have corresponding values of maytakor convenience, we
assume the rest of parameters for the mutant strain to bethe as the quantities for
the resident strain. Therefore, the fitness function ablostitade-d is written as

Wk k) = (k- K g + ulak) - a). (3.6)

Firstly, when the fitness gradient vanishes:

owW|  pyuc

0K liex  duc+ bk ual(k) = 0.

The solutions of this equation define as evolutionary siagpbints. The above equa-

tion can be written as the following ordinaryfidirential equation:

s BYC
a0 = Foc+ Aok 3.7)

The solutions of this dierential equation are defined as critical functiagg(k). Thus,

the trade-€ function is tangential to one of the critical functions at@aresponding
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evolutionary singular point. The numerical solutions of7{3by giving a range of
initial values ofk are shown in the Figure 3.2a. Furthermore, we vary the sétiau

rate c to observe the changes of one critical function in the Figugb. It is found

c=0.5

—+—c=0.8

I L I I I L L L
0 5 10 15 20 25 30 35 40 45 50

Figure 3.2:Figures of critical functions. (a). A family of critical functions with dierent
initial values. (b). Critical functions for étierent values of. In figure (b), a less concave down
(concave) critical functiomi;(k) can be caused by a greater stimulation cate

that the greater the stimulation rates, the less concave down (concave) the critical
functionagit(K) is in the Figure 3.2b. Moreover, the stimulation ratean also govern

the shape of the tradeffdunction by adjusting the critical functions.

Suppos&* is an evolutionary singular point. If

*W

— = —Ua"(k*) < O,
Ok? li=k=k:

it is evolutionary stable. Obviously, this singular poisitevolutionary stable when the

trade-df functiona(k) is all concave up (convex) or locally concave ugxat
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The condition for convergence stable strategy is as below:

dow) oW S
dk' 9K lick ek OkOKlkekeke K2 lkekeke
ﬁzbyuc @i
___PONC k<o,
(ducs ok Ua (k) <0

Sincea];, (k") = —(dﬁ% < 0, the above condition is equivalent to

() < ua' (k). (3.8)

So, if the trade-fi function is concave up or locally concave upkat then it is a

convergence stable strategy.

At k*, if the trade-dF function is all convex (concave up) or partial conveX‘athis
evolutionary singular point is a continuously stable &gt which is both evolution-
ary and convergence stable. If only (3.8) holds, this ewohary singular point is an

evolutionary branching point. Otherwise, it is a repelldrem neither of them holds.

Next, two particular types of tradeffidunctions are introduced to discuss this prob-

lem, with a hope to gain more detailed information aboutétstgategies.

3.3.1 Exponential function

Denotea(k) = de/*, where¢ is a scaling factor to reflect the sensitivity of infected
cells to virus production. To find an evolutionary singulaim, we solve the following

equation abouk:
oWl  pycu

R - - k =
%l = duc+ kgb udge’™ = 0. (3.9)
Suppose that" is a solution of (3.9), then
BYC e _ g — duc= 0. (3.10)

d¢
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Figure 3.3:Exponential function. Where¢ = 0.043,d = 0.01.

Let us discuss the existenceldf Denote

Byc

P aok _
o e Bbk - duc

f(k) =
Sincef (k) is a decreasing function &f k* is a positive solution of (3.9) if

f(O):%C _duc> 0.

So, the equation (3.9) has a unique positive solutiowheng < %. Then, the evolu-

tionary and convergence stability of this strategy is aredy

Because that both
AW

2 = —ud¢?¢’ <0
Ok? |k=k=k: dg
and
d oW 3 ﬁZ,ycub ) e
&(ﬁ R:k) e ductkpb udg<e”™ <0

hold, the viral production ratk* is both the evolutionary and convergence stable, i.e.,

a continuously stable strategy.



CHAPTER 3. VITHIN-HOST VIRAL EVOLUTION UNDER IMMUNE CONTROL 59

1000 |

©
8
8

Mutant strategy

ES
3
3

3
3
8

L L L L
500 550 600 650 700 750 800 850 900 950 1000

Resident strategy

Figure 3.4:Pairwise invasion plots Only locating in the positive regions, the strategies can
invade successfully. Since a vertical line throlgltan entirely lie within the white regions, it

is a continuously stable strategy.

3.3.2 Power function

In this part, we utilize power functions of the form
ak)=ak"+d, n>1...

to describe the relationship between the virus producta and the mortality of in-

fected cells.

Figure 3.5:Power functions. Wherea = 0.01,d = 0.01.

n=1

By solving the equation
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oWl  pycu 3
%l = duc+ kgb ua =0 (3.12)
for k, we obtain that the unique positive root:
K = (By — adu)c

Bba

under the conditioBy — adu > 0. Then, the cross derivative and the second derivative

with respective tk of the fitness are calculated, respectivelys‘as

E(M | =- B?ycub __bLIa2<O
dk gk lkieilkle (duc+keBb)2 — yc
and

W

o2 lkakae

According to the conclusion in [10K" is an evolutionary stable strategy. Since it
also satisfied the condition for convergence stable styakégs a continuously stable

strategy.

800

700

600

>
=

o

400

E

= 300
200

100!

60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800
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(@a=01 (b)a =0.01

Figure 3.6: Two pairwise invasion plots whenn = 1. Since the mutants fitness is a lin-
ear function of the mutants stratedy, is always an ESS according to the conclusion in [10].
According to our observation, the locationkdfmoves to right as decreases.
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n=2

In such a case, the equation as below:

oW Bycu
—| =—1 —2uak=
oK lik ~ duc+kgp ¢ 0
is simplified to
2bBak? + aduck — Byuc = 0. (3.12)

This quadratic equation has a unique positive solution:

_ —diPca + +/(diPca)? + 28%baryuc

k*
2bBa

Then, we discuss the evolutionary and convergence stabflithis singular point. S-

ince
d ow B?ycub
— (£ - PV oauk
dk( ok R:k) keke (duc+ k*Bb)? auke <0,
and
2
M = —2auk <0,
Ok? [ik=k=k*

this singular poink® is a continuously stable strategy for viruses (see the Eiguf).

20 25 30
Resident strategy

(@)a=0.01 (b) @ = 0.001

Figure 3.7:Two pairwise invasion plots whenn = 2. Both of them are continuously stable
strategies. Comparing the figure (a) with (b), the locatibtihe evolutionary singular point can
be shifted by varying the value ef which is opposite to the case o0& 1.
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3.4 Trade df betweens and a

The trade-& between the disease transmission rate and the viral voelenstudied
in this section. The larger death rate of infected cell canlteén increase of the trans-
mission rate. The other parameters are assumed to be thd@amve strains. So, the

fitness takes the from:

Kk
Wia.2) = (8@ ~B(@) gyt 175 ~ A~

An evolutionary singular poird* is the solution of the following equation:

oW ycku

02 |a-a=ar =p(@ )duc+ khg(ar) u=0
which is equivalent to
. o duc+ kbs(a
yck

The second dierential equation illustrates that the trad&fanction is tangential to its
solution, i.e., the critical functiofi;(a), at the pointa*. The numerical solutions of
(3.7) are simulated by giving a range of initial valuesadh the Figure 3.8a. Further-
more, there are five curves of critical functions witlffelient stimulation ratesin the
Figure 3.8b, respectively. It is shown that the convexity ofitical functions.i;(a) can
be dfected by the stimulation rate Thus, the stimulation rate can also shape this

trade-df function through corresponding critical functions.

Next, we focus on the biologically evolutionary and conesrge stability of the

pointa*. When the following inequality

0°W
0 az a=a=a*

ycku

duc+ kg ~ >

= (@)
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100
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60 ¢=0.675
—¢=0.8

Be(@

40

Figure 3.8:Figures of critical functions. (a). A family of critical functions. (b). The critical
functions with diferent initial values of the variable From (b), the greater stimulation rate
can cause the less concave up (convex) critical function.

holds, the poin&* is evolutionary stable. So, it is demonstrated that theutiaiary
singular pointa® is an evolutionary stable strategy if the trad&fanction3(a) is all

concave down (concave) or locally concave down at this point

A convergence stable strategyshould satisfy the following condition:

o)

PW
dada |x

W
9a2

a=a* d=a=a S—a—a*

_ 2 kasz 1 ycku
- _(B @) (duc+kpa(@))2 +p" (@ )duc k(@) <0.

from which we obtain

B"(@) < B (@), (3.13)

wheregy, (a) = Fbyz(duc+ kbs(a*)). Thus, we can conclude that the singular paint
is a continuously stable strategy when the traffdumnctiong(a) is all concave down
(concave) or locally concave down at this point. OtherwiBere could be two possi-

bilities: if the critical function is less concave down thidue trade-€ function ata®, it
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is an evolutionary branching point; or it is a repellor.
An example.

We assume that the trad@-function is a power function [8]:

p@=md, n=12..

wheremis an arbitrary positive constant. Evolutionary singulsategies are the solu-

)
> (=)
i

N

N
T

Figure 3.9:Specific function. Wherem = 0.5.
tions of the following equation:

oW _ vkcu
— =mndt——" _ —u=0,
0A l3za duc+ kmba

which can be transformed to:
kbm- a" — mnyck- a"* + duc= 0. (3.14)

Since the existence of the solutions of the equation (3sl#a complicated to discuss
whenn > 5, a positive solutiom* is assumed to exist under some special conditions.

Let us study evolutionary and convergence stability of sustrategy.

Consider the two conditions as below:

#lo)

«yn-2___ Ckwy An-1y2  bckuy
a=a* mr(n a 1)(a )n ducrkmba )" (mr(a )n ) {ducrkmi(a)"? (3 15)

ki *\N—2 "
etz [(n — 1)duc— kmi(a’)"]
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and
ckuy
duc+ kmh(a)n” (3.16)

oW = mn(n - 1)@)"?

0% laamar
The expressions (3.15) and (3.16) show that the singulart @oiis a continuously
stable strategy ih < 1. Whenn > 1, the sign of the function (3.15) depends on the
quantity of @—1)duc—kmhka*)". Because okml(a*)" = mncky(a*)"* -dug the value

of the functionnduc— mcky(a*)"* can also decide the sign of the function (3.15).
In the sequel, we choose two values iido demonstrate our results.
Forn = 1, the equation (3.14) is rewritten as
kbm- a? — %myck- a?+duc=0.

This equation has a unique positive solutiondor

o = [—duc+ V(dug? + 2myckkbmy
- 2kbm ‘

Substituting thisa* into (3.15) and (3.16), the singular poiait can be proved to be a

continuously stable strategy (see the Figure 3.10).

Mutant strategy

Resident strategy

Figure 3.10:A pairwise invasion plot whenn = % Based on our theoriesg} is a continuously
stable strategy.
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Whenn = 2, the equation (3.14) takes the form:

kbm- a® — 2myck - a+ duc= 0,

which has two positive roots:

o mncky + +/(mcky)2 — kmbduc

L kbm
and
. mncky — y/(mcky)2 — kmbduc
a2 = N
kbm
whenm > dub

= cky*

In this case, neither root can be evolutionary stable. Adtdtinga;, i = 1,2, into
the condition (3.15), respectively, we demonstrate thetdota; is convergence stable,
but the other road; is not. Therefore, the singular poitis an evolutionary branching

point (see the Figure 3.11a) and the paifis a repellor (see the Figure 3.11b).

utant strategy

04 03 02

01 0o 01
Resident Strategy

(b) &

Figure 3.11:Two pairwise invasion plots whenn = 2. (a). We find that there is a+” above
the diagonal on the left and below the diagonal on the rigiat oAlso, a vertical line through]
lies entirely within a region marked+”. a] is an evolutionary branching point. (b). A vertical
line througha; lies entirely within a region marked+”, so it is a repellor.
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3.5 Conclusion and discussion

In this chapter, viral evolution was studied from two typésrade-dfs: one is between
viral production rate and virulence; the other is betweenlgnce and transmission
rate. We chose the critical value of the local stability cé thutant free equilibrium,
which was obtained from a within-host model with CTL respmnas the fitness to
measure the invasion of mutant strain viruses. Then, figets of the two trade{b
functions were discussed through the fitness, respectivalgording to the adaptive
dynamical approach, evolutionary singular strategiesevieund from the equations
when the gradients of fithess is set to zero. To explore tlvelugonary and conver-
gent stability, the geometrical properties of the two traffdunctions were studied by
comparing corresponding critical functions at evolutignsingular points, respective-
ly.

In the first trade-&, viruses choose their production rate as the evolutionaay-s
egy. With the &ect of CTL response, the existence of the evolutionary lmaigowas
demonstrated in a large portion of the parameter spacegvhetocal concavity of the
trade-dt is more tharﬁ times that of the critical functions. This result does ithase the
diversity of virus strains. Too concave up (convex) traéfer@sults in an evolutionary

stable strategy, whereas too concave down (concave) efadesults in a repellor.

For the second tradeffp the viral evolutionary strategy was represented by the vi-
ral virulence, i.e., the death rate of infected cells. The_@&sponse still played a
significant role in viral evolution through shaping the &aaff. In this case, too con-
cave down (concave) tradéfoesults in an evolutionary stable strategy; otherwise it is
a repellor. We excluded the existence of the evolutionaaything in the examples.
Therefore, neither a too high nor too low degree of virulewoelld be favored by the
virus evolution. Due to the choice of our simple functionghie examples, the exis-

tence of evolutionary branching was not observed. Howéver between-host model
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with superinfection [6], the authors utilize the logistiogth and a specific tradeffo

function.

We point out that our model can be improved many ways. For pl@nnstead of
the bilinear function, the Holling Type Il function can beliaed to describe immune
response. Meanwhile, the relationship between viral prbidn rate and disease trans-
mission rate can be researched as a new tréde-a nested model. According to the
paper [9], higher rate of production implies higher cleammate. Thus, the traddfo
between viral production rate and its corresponding cleaas also an interesting top-
ic for us. Furthermore, the impact caused by the cost of bauhgune response should

be taken into account when considering the host-virus oduéon.
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Chapter 4

The dfects of superinfection and cost
of Immunity on host-parasite

co-evolution

4.1 Introduction

It is well known that the relationship between hosts and gtes is extremely con-
voluted [5, 14]. Parasites can be divided into two types:tthditional one is called
macroparasite (typically protozoa and helminths); theptme is called microparasite,
which is typically smaller, such as viruses and bacterid,@m be directly transmitted
between hosts of the same species or evéierént species [4]. Although parasites
harm hosts and possibly cause death, they live on or in theedod the hosts and are
dependent on them. Host-parasite co-evolution is stilliguwitbus phenomenon of po-
tential importance to all living organisms, including humaMany medically relevant
diseases (e.g. malaria, AIDS and influenza) are caused byaleing parasites. There-

fore detailed understanding of the co-evolutionary adaptdetween parasite "attack

72
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strategy” and host "defence strategy” (i.e. immunologreaponse), may result in the

development of novel medications and vaccines and thussaghuman lives [24].

In this chapter, we are interested in thEeet of superinfection and the cost caused
by immune response on this co-evolution. Complex immunéegys are developed
in vertebrate animals that can target parasites througtacowith body fluids. Host-

s are protected from infection with layered defenses ofeasing specificity by their
immune systems. So, the benefits of such defences to a hosbwmis. However,

according to the argument in the paper [18], the immunokdgip-regulation response
would cause costs in other nutrient-demanding processbésasugrowth, reproduction,
and thermoregulation. Thus, the production rate of an tefeadividual is a decreas-
ing function of the corresponding disease recovery rateexfdore the impact of this

phenomenon on host evolution, Day and Burns [8] providedpéteeniologic model:

B = bSi+ bl - Sy +cl - BSih - BSil,

% = ,BS]_']_ +,BS]_|2—(U+V+C)|1, (4 1)

% = b582 + b| (é)'z —,LLSZ + C|1 —ﬁ52|1 —ﬁ52|2,

Q2 = BS,ly+BSol, — (U+v+E)ly,

where the degree of immunological up-regulation is represkbyc (€), the infec-

tion clearance rate of a resident (mutant) host. They assuhe the birth rate by
an infected hosth,(c), is a decreasing function af It imposes the fecundity cost of
up-regulation (this formulation assumes an instantansaitsh in resource allocation

once a host is infected).

However, single infection is very rare in our real world. koare always attacked
by many diterent parasites simultaneously. So, multiple defence amesims would
also evolve to recognize and neutralize these pathogensTHis, the infection can

not be so simple as demonstrated by the above mathematicil miche influence of



CHAPTER 4. THE EFFECTS OF SUPERINFECTION AND COST OF IMMUNITY ON HOST-PARASITE CO-EVOLUTION 74

parasites competition on host evolution attracts our attenWe develop an epidemi-
ological model with superinfection. Superinfection regaets an intermediate level of
complexity in the sense that a more virulent parasite ofcind@ can "take over” a host
that is already infected with a less virulent strain, but lilest will, in efect, harbour
only one strain of infection at any one time [3, 21, 22, 2]. i#iae this mathemati-
cal model with superinfection to analyze th&eet of the cost caused by immunologic

up-regulation on host-parasite co-evolution.

The rest of this chapter is organized as follows. In Secti@nwe introduce mutant
hosts to a basic superinfection model and explore theisiovan two cases, monomor-
phic case and dimorphic case. In Section 4.3, we discusepdasible infections of
mutant hosts, one is by parasite 1; the other is by parasitbelocal stabilities of their
corresponding equilibria are analyzed to obtain fithess siivdy the evolutionary and
convergence stabilities of evolutionary singular stregethrough utilizing the adaptive
dynamical approaches [13, 11, 23] in two cases, respegtivigé also focus on how
the convexities of two tradefis dfect the evolutionary and convergence stabilities. In
Section 4.4, a dimorphic case is studied. We define a new ditioesieasure the inva-
sion of mutant hosts with parasite 1 and 2, and obtain theitiond for evolutionary
stability. Two trade-@'s are specified by two simple quadratic functions to exploee t
conditions for isoclinic stability and absolute convergestability. We show some nu-
merical conclusions, respectively. Meanwhile, the valisuperinfection rate is varied
to observe how itfiiects the conditions for isoclinic stability and absolutevergence
stability, respectively. In Section 4.5, some discussmmshe biological implications
of the mathematical results are provided. Moreover,sorate problems for future

work on this topic are briefly discussed.
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4.2 A two-parasite model within a single host type

Our resident model is based on a classical SIR framework.3s/nae that the resident
hosts can be infected by two strains of the parasites. Thelatn of susceptible hosts
is denoted by5, and the population infected by the parasite denoted by;, where
i=12.

The susceptible host can be produced at lbzded die at rate.. For convenience,
the two types of infections are assumed to have the samentisgisn ratgs and death
rate 6 caused by infection. Moreover, the parasites 1 are assumbédve stronger
virulence than parasites 2. So, individuals infected by ®parasite can be re-infected
(superinfection) by contacting the type 1 parasites andrehtl; class with ratep.

With these assumptions, the model takes the form:

6~ bS+ f(Co)ly +9(C)l2 + Cal1 + Caly — S = BS(ly + 1),
dh o~ BSh—(u+6+C)ly+Belaly, 4.2)
dTltz = ,88'2—(/J+5+C2)|2—,8(,D|2|1.

In this model, the parametecg andc,, which are the recovery rates of resident host,
represent the degrees of immunological up-regulationsé& o parameters are con-
sidered as the traits for each type of infection, respelgtivé/e assume that the birth
rates by infected resident hosftgc;) andg(c,), are decreasing functions of the param-

etersc; andc, because of the fecundity cost of up-regulation.

Our model is based on the model (4.1) in whigkeither grow or decay exponen-
tially. Asin (4.1), (4.2) always has the trivial equilibriugq = (0, 0, 0) instead of an
infection-free equilibrium. Also, we find that there may liber three equilibria when

b > u. We will discuss their existences below:

Firstly, whenb > y andu + 6 > f(cy), there is an equilibrium with infection by
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parasite 1 only:

u+o+c (b—p)(u+d+cy) O).

Bo= (S bt = (5 T e

Similarly, whenb > u andu + § > g(c,), the model (4.2) has another equilibrium with

infection by parasite 2 only:

H+O+C (b—ﬂ)(/l+5+02))
B Bu+s-9() "

E1=(S 112 = (

Now, we explore the possibility of coexistence equilibrimDirectly solving for

this equilibrium with non-zero components give:

E = (S 11,1
— ((#+5)(Cl—02+f(01)—9(02))+02f(Cl)—Clg(Cz) BS—(u+s+c2) (#+5+Cl)—ﬁé)
Ble(b—p)+f(c1)-g(c2)] ’ ety K By ’

By the formulas foiS, [; andl>,, we know that

o if
Ci—C>0, b>u (4.3)
and
g(cp) — f(cy) > max{cy — ¢, (b — )} > 0, (4.4)
S is positive;
o if

f(cy)(c1 — C2) + (b — p)cy < [(C1 — C2) + (e — B)](1 + 9), (4.5)

I, is positive;
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o f
g(C2)(Cy — C2) + p(b — p)C2 > [(C1 — C2) + @(u — b)](u + ), (4.6)

I, is positive.

In appendix C.1, we show that the coexistence equilibriEis locally asymptotic

stable if the conditions (4.3)-(4.6) and

CL—C

—(b-p)>0 (4.7)

hold.

As illustrated in Day [6, 7], the condition; > c, reflects that the virulence of

parasite 1 is stronger than that of parasite 2, which is in@gent with our hypothesis.

Our goal is to study the host-parasite co-evolution undegtiect of superinfection
and immune response, so we assume that the mutant hostseebseause of some
reasons such as drug resistance, or radiation, etc in floe/fof sections. Furthermore,
the discussion is divided into two cases: (i) the mutant$ioah only be infected by
one of these two types of parasites; and (ii) the mutant re@stisbe infected by both

two types parasites.

4.3 Monomorphic cases

According to the paper by Gandon et al [10], mutant hosts rbvégin some new charac-
ters which can help them immune to parasites. This suggestseario which assumes
that a mutant host can only be infected by one parasite sffaien, there are two pos-
sible infections in mutant hosts. Furthermore, the infécteitant hosts are assumed

not to infect resident hosts.
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4.3.1 Mutant hosts with the parasitel

At first, we study the case that only parasites 1 can infecantutosts. As an natural
extension of model (4.1) and (4.2), our new model with thevalszenario incorporated

is given by the following system of flerential equations:

1 = bS; + f(C)lu +9(C2) 12 + Calus + Col1p — uSy — BS1(l1a + 12 + 122),
Qi = BSi(la + 1) — (e + 6+ C)laa + Beliolia,

% = BSiliy— (u+ 6+ )l — Beoliali,

dT?tz = bS; + f(Cin)l21 + Cinl2a = BSa(l21 + 111) — uSy,

Q2 = BSy(lyg + l21) = ( + 6 + Cin)l o1,

(4.8)

where the meanings of the variables and parameters are lie 44b

Notation Meaning

S Abundance of susceptible residents

S, Abundance of susceptible mutants

l11 Abundance of residents infected by the parasites 1
l12 Abundance of residents infected by the parasites 2
l21 Abundance of mutants infected by the parasites 1
122 Abundance of mutants infected by the parasites 2
b Birth rate of a host

u Background mortality rate of a host

B Infection rate of a host

) Disease induced death rate per host

© Superinfection rate per host

c; (cin)  Recovery rate of a resident (mutant) host infected by fteras
c2 (con) Recovery rate of a resident (or mutant) host infected bagite 2

Table 4.1:Descriptions of the variables and parameters in section 4.3

To explore the survivability of such a mutant host that caly be infected by strain

1 parasite, firstly we need to define its fitness. To this endzamsider the stability of
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the equilibrium of mutant hosts free for this system (4.8):

[T
|

(Sl’ Ill’ |12’ SZ’ |21)

((/1+5)(01—Cz+f(01)—9(02))+Czf(Cl)—Clg(Cz) BS1—(utd+cp)  (u+d+c1)—BS: 0 O)
Ble(b—p)+f(c1)-g(c2)] ’ ety ’ By > )

Based on the criteria for the local stability Bf the fitness of the mutant hosts that can

be infected by parasite 1 is defined as:

FlCin €1 C) = (D= p)(u+ 6+ Can) + sl 8 [2(c; — ) (u + 6 — 9(C2)

@(b—p)+f(c1)-g(c2)
—(b— @)+ 0+ )]
(4.9)

(see detail in Appendix C.2).

Since the parasite 2 has nffext on mutant hosts, we takgas a positive constant
value in this case. Denotc,) = g, whereg is a positive constant. Due to the im-
munological up-regulation would decrease the fecundityasits g should be less than

b. So, the fitness (4.9) can be simplified to

F(Cin C1) = (b= p)(u+ 06+ Cn) + s 2t [ 1(Cy — Co)(u + 6 — G)

—(b- ) +6 +c2)]

(4.10)

In the following, we utilize the adaptive dynamical meth¢ti] to examine wether

this fitness functions can be optimized.

At first, we need to find singular points, i.e. the solutionewlhe fitness gradient

[ 9F(c1n,C1) ]

0Cih

C1h=C1 (411)
= b+ grnreralsC A+ -8 ~ (- +6+ca)l,

is equals to zero. Assume ttgjtis a positive solution of (4.11), that is; is a singular
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point. It follows from (4.11) that

(1 —b)lpb-p) + f(c) - g

f'(c) = . (4.12)
Y-t o -9 - (- +d+c)
Associating with (4.12) is the following ordinaryfterential equation
f/(cl) — (lu - b)[‘P(b _/'t) + f(C]_) - m (413)

sC-C)u+6-9) - (b-p)(u+d+0c)

A solutions of which is referred to as a critical function kitespect to the fitness
function F(cy, €1), and is denoted by (c1). Thus, the trade4® f(c;) should be the
slope offgit(c) atc;. Then, the critical functiorfei(c1) can help us better know the

trade-df f(cy).

Evolutionary stability analysis

Now, we study the evolutionary stability of this singulaiiqtac;. Following the adap-

tive dynamical approach [12], its evolutionary stabiligncbe decided by the sign of

& = Lpa = Fof"(c), (4.14)
a9 1h c1h=cl=c’i
where
|~: _ %(C’i—Cz)(ﬂ+6—§)—(b—u)(ﬂ+6+02)
2 —

w(b—p)+f(c))-g

According to the equation (4.12), the formulafefcan be rewritten as

- u-b
Fo= TN

(4.15)

Because of the conditions (4.3) and (4.5), it is easy to shawf; is positive. So, the

sign of&; only depends on the sign éf (7). If f”(c;) < 0 (i.e. f(cy) is concave down
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atcj), then&; < 0 and thus, the singular poio} is an evolutionary stable strategy.

Convergence stability analysis

Firstly, let us calculate the cross-derivativg, of the fitnesd~:

_ PF(c.c) _ C #\12 | *
Ml = - (3C1521h1 Clh:C1=C3i - FlZ[f,(Cl)] + Fllf,(cl)a

where
BT ob-w+fc)-a 7 eb-p+fc)-g

For the convergence stability of, we need to consider

_d_(9F(cin.c1) —
dCl( acy Clhzcl) o=c; Gt M (4.16)
= IE2f"(q) + I~:12[f'((3§)]2 + ﬁllf'(ci)'
Noticing that
. (-b)-2u+5-9
fcrit(cl) =

- c)U+5-0) - (b-p+o+c)

the right hand side of (4.16) can actually be expressed as
E1+ My =R £7(c}) - fZ(c]-
Therefore, if
£(c;) < fu(ch). (4.17)

then&; + M, < 0. Thus, according to the conclusion of [18],is a convergence stable
strategy if the trade{® f(c;) is more concave down than the critical functiyr (c,) at

the singular point;. It means that; would evolve tac; from its neighbourhood in this
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case.

From the above analysis, we conclude that if the trafid<@;,) is locally concave
down atc; and more concave down than the critical functiigr(c,) atc;, this evolu-
tionary singular point; is a continuously stable strategy, which is both evolutigna
and convergence stable; otherwise, it is a repellor. If thdd-df is not locally con-
cave down at; but (4.17) still holdsg; should be an evolutionary branching point. In
addition, if the trade-f f(c,) is all concave down or locally concave downcatbut
the inequality (4.17) is violated, the problem will be so gdivated that we will not

discuss here.

An example

To demonstrate our results obtained above, we choose dispiesade-dt function. To

make life easy, we choose the following simple concave doslyrmmial of degree 2:

f(c) =b- k]_Cz, (4.18)

wherek; > 0, see (4.1) for its graph fay > 0.

0.054

-0.054

-0.104

S(er)

Figure 4.1:Trade off 1: whereb = 0.059883 k; = 0.075. f(c;) is a concave down function.
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Substitute the expression bfc;) into the fitness function (4.10):

b—k; 2 Th~H—0

F(Cin, 1) = (b—ﬂ)(/l+5+01h)+m[¢(01—02)01+5 9)
—(b— ) + 6+ c)].

According to previous theoretical conclusion, the singptzint should be evolutionary
stable if it exists. The convergence stability will needtiigr discussion by applying

our previous result.

To find the evolutionary singular point(s), we need to sohefbllowing equation

resulting from setting the fitness gradle[]g%g—] to zero:

C1h=C1
b-p— 8 (l(c - ) +6-) - (b-pu+5+c)] = 0 (419)

Equation (4.19) can be simplified into a quadratic equation:

&12C5 + a11C; + a0 = 0, (4.20)

where
a12 = ky[(b—p) + é(ﬂ +6-0),
a1 = —2k1[c—;(ﬂ +60-0)+(b—p)(u+6+c)l,
a0 = —[p(b - ) + (b - g)(b - ).
Note that

Ay = 4k§[%(,u+5—@)+(b—,u)(p+5+cz)]2
+akq[(b - p) + %(.U +6 - g)l[e(b—p) + (b - g)](b - p).

Thus, if 0< g < min{b, £(b — u) + (u + 6)}, thenay, > 0, a;; < 0, a;p < 0 andA; > 0,



CHAPTER 4. THE EFFECTS OF SUPERINFECTION AND COST OF IMMUNITY ON HOST-PARASITE CO-EVOLUTION 84

and consequently, (4.20) has a unique positive root whigiven by

o= Ki[Z(u+6~0) +(b— ) +6+ )] + VA
- al(b =4 + 5 +6 - )]

9

In this situation, the impact of the cost of immunologicatneégulationk; and the su-
perinfection ratep on c; can be reflected by the above formula. For example, fixing

or k; at some value, Figure 4.2 gives some plotsjads function ok, or ¢. Therefore,

i2a¢
L38%

1
ky

(@ci(ky), ¢ =03

(b) c;(¢), ks = 05

Figure 4.2:Dependence of the value of evolutionary singular point on tb cost of immuno-
logical up-regulation k; and the superinfection rateg , whereé = 0.095,b = 0.6, ¢; = 0.3,

andg = 0.15. From two figures, bothj(k;) andc;(k.) are decreasing functions in first quad-
rant. In (a) and (b), the four curves are obtained by vanyiregvalue ofu, respectively. In (a),
the curves are moved up whgrincreases. However, the movement in (b) are in two direction
and more complicated than itin (a).
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it is straightforward to observe that the valuechkeeps decreasing until reaches a cer-
tain value when the variable is increasing in the Figurea &l 4.2b respectively. In
Figure 4.2a, the curve is moving up as the mortality of irédddiosts increasing. When
the level of superinfection maintains in some value, thggsificant. The evolutionary
increases in the degree of up-regulation in host will begbgselected by evolutionary
increases im by parasite. However, it would become more complicated whetevel

of superinfection is also changing.

If (b—u)+ %(,u +06-0) =0,ie.a; = 0,then (4.20) has no positive root because
a1 < 0 andag < 0.

If b>g> %(b-u)+ (u+06), thenh(cy) = a1l + a11¢; + ayp is concave down
because o1, < 0. TakingA; as a function of, i.e. A1(g), we can find that its quadratic

codficient is positive. Meanwhile, straightforward verificatgshow that
, . ¥ (P
A1(0) > 0, A}(0) < O; Al(E(b — )+ (u+0)) >0, Al(E(b — )+ (u+0)) <0,
and

A((+8) + (b~ p)(u + 5~ ©2)) < 0. (4.21)
C2

According to the properties of quadratic function, we cderithat
(,u+5)+C£(b—,u)(p+5—Cz)>%(b—,u)+(p+6)>0. (4.22)
2

There could not have a positive root whgg (u+6) + £(b—)(u+6-¢y), i.e.a11 < 0.

ifb>g> (u+06)+ Z(b-pw)(u+d-c), we can havey; > 0 anday, < 0 due to

(4.22). Through calculation, we obtakj(b) > 0. So,

1. if Ay(b) < O, there is no real root;

2. if A(b) = 0, there is no real root either;
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3. if Ay(b) > 0O, there are three possible situations:

(1) whenA4(g) < 0, we cannot have any positive roots;

(2) whenA4(g) = 0, we can only have a positive root

Cz(,u+5 ) + (b — ) + 6 +cz)]

gk

' [(b—p) + 2(u + 5 - G

(3) whenAy(g) > 0, we can have two positive roats and

. kl[%(ﬂ+5—@+(b—,u)(p+6+c2)]— VAL
b Kal(b = ) + 20+ 6 - 9] |

Since the existence conditions are extremely complic@tesdnot easy to find a set
of values of parameters to meet all of them for us. Thus, we simbw above theoretical

conclusions.

4.3.2 Mutant hosts with the parasite2

Now, we study the case that only parasites 2 can infect matasis. With this assump-
tion, the model building on (4.1) and (4.2) is given by thédwiing system of ordinary

differential equations:

1 = pSy+ f(C)lu +9(C) 12+ Colag + Colio — St — BS1(l1 + 112 + 12),
du = Syl — (u+6+C)lig + Beliol,

Sz = BSi(l12+ l22) — (1 + 6+ C2)l12 — Bepliolua,

B = bSy+9Can)lz + Canloz = BSallz + 112) — 1S,

%2 = BSy(lip+ l22) = (1 + 6 + Can)l 22,

(4.23)

where the meanings of the variables and parameters arareegbia Table 4.1.

Since the parasite 1 has n@fext on mutant hosts in this case, we takeas a



CHAPTER 4. THE EFFECTS OF SUPERINFECTION AND COST OF IMMUNITY ON HOST-PARASITE CO-EVOLUTION 87

positive constant. Denotg(c,;) = f, wheref is a positive constant. Due to that fact
that the immunological up-regulation would decrease tharidity of hostsf < b will

be assumed in the sequel.

By similar consideration to that in Section 4.3.1, we caraobthe fithess of mutant

hosts with parasite 2:

G(Con o) = (b—p)(u+ 6+ Con) + E2L[ () — ¢)(f — - 0)

(4.24)
+(b—p)(u+6+cy)].
The gradient of fitness is
[ 9G(Con,C2) ]
o Heam=c; (4.25)

= bop+ S el - —p=8) + (- p)(u + 6+ ).

The evolutionary singular points are then determined biingethe gradient to zero
and solving the resulting equation for. We assume that; is such a positive singular
point. From (4.25), we then have

_ Goblb-prfoae) .26
- —u=0)+ bW +s+c)

g(c) =
Associated to (4.26) is the following ordinaryfidirential equation

B Tl G CRVD R ) I 4.27)
sC-c)(f —pu-06)+(O—-p)(u+6+c)

g'(c2) =

a solution of which is referred to as a critical function, amdenoted byi;(c;). Thus,
the trade-@ should a slope of the critical functiag,;;(c;) at atc;. Then, the trade{d

g(c) can be studied through the critical functiggi(cy).

Next, we discuss the evolutionary stability of the singplaintc;.



CHAPTER 4. THE EFFECTS OF SUPERINFECTION AND COST OF IMMUNITY ON HOST-PARASITE CO-EVOLUTION 88

Evolutionary and convergence stabilities analysis

Let

& = l’sz(;zgh,Cz) — ézg”(CZ), (4.28)
2h leon=0p=C}

where B
= 1(c; ;) (F—u=0)+(b-p)(u+5+C;)
o(b—p)+f-g(cy)

Due to the condition (4.31:;2 is positive. Thus, the sign @’(c;) fully determines the
signs ofé&,. If g7(c;) < 0, i.e.g(-) is locally concave down at;, &, is negative, the;

is an evolutionary stable strategy.

For the convergence stability of, we need to consider

d ( 9G(Can,C2)
dc ocy

= 82+M2

C2h=C2) C2=C;

ézg"(CZ) + élZ[g/(CZ)]z + éllg’(CZ) (4.29)
Galg”(c5) - g ().

Therefore, ifg”(c;) < g;;(C), C; is a convergence stable strategy if the trafieg(c,)
is more concave down than the critical functiggi(c;) at the singular point;. It

means that, would evolve toc;, from its neighbourhood in this case.

Actually, both monomorphic cases are based on a assumpaboie parasite can
evolve but the other can not. This is a very ideal assumpbefinitely, we can explore
the host-parasite co-evolution when mutant hosts can herdifected by parasite 1
or by parasite 2 which both evolve. The corresponding amaban be implemented
similarly as the case in [23]. Thus, a pair of singular pogaisolution, at which
both fithess gradients vanish. The discussion about itsi#gohry and convergence
stability could be our future project. Alternatively, welhstudy the case that mutant

hosts can be infected by both parasite 1 and 2 in next section.
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4.4 Dimorphic case

In this section, we assume that both parasites can infea@mhhbstswvithout superin-
fection We also assume the infected mutant hosts will not infectleas$ hosts. With

these assumptions, we arrive at the following model alorditte of (4.1) and (4.2):

dT?tl = bS; + f(c)lu + g(e) 12 + Calag + Colip — uS1 = BSa(l11 + 112 + 121+ 122),
= BSi(lug+ l21) = (u + 6 + Co)lug + Belialus,

Q2 = BSi(liz+122) = (1 + 6+ Co)l1z2 — Beplaolia,

2 = bSy+ f(Can)la + 9(Can)l22 + Canlas + Conlaz — BSa(la1 + 111 + 12 + 122) — S,
U = BSy(lag + lp1) = (u + 6 + Can)laa,

Uz = BSy(lz+ 122) = (u + & + Con)l 2z,

(4.30)
where the meanings of the variables and parameters are e 4db Trade-f's f(c,)

andg(c,) are still decreasing function.

The mutant host-free equilibrium of (4.30)

Es = (SL 11y 115 S5 150, 130)
— ((l‘+5)(cl—02+f(Cl)—g(cz))"'CZf(cl)—clg(cz) BSi-(urdtey)  (urorc) S O)
Ble(b—u)+f(c1)-g(c2)] ’ By ’ By PP

exists under conditions (4.3)-(4.7). And the quantitiepasitive components are the

same as before.

The local stability of this mutant host-free equilibriu&s is determined by the
eigenvalues of the Jacobian matrix:

. NITRINIPY
J =|--—-+ - - -

0 1 J
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at the equilibriunks, where

b—u—pB>;, +17) fcm)+cm  g(Can) + Con
I = | Biy —(u+0d6+cpy) O
B, 0 —(i + 6 + Cp)

andJy; is exactly the same as in Appendix C.2. When the conditior®&-4.7) hold,
the local stability of the equilibriunk; will depend on the signs of the eigenvalues of

the matrixJ,,". So, we only need to analyze the eigenvalue,gf

Calculating the characteristic equation gives

A-(b—p)+ %(Cl —C2) —Cin— f(Cin) —0g(Czn) — Con
A =J3 = | -[BS—(u+6+C)] A+ (u+5+cp) O
~I(u+6+c)-pS] O A+ (i + 6+ Con)
—Cin — f(Cn) —9g(Czn) — Can

—1[(u+ 6+ c1) - B8]
A+@+d+cy) O

A-(b-p)+ é(Cl —Cp) —Cin— f(Cw)

+[A + (u + 6 + Con)]
2h _%[ﬁé—(/l+5+02)] /1+('u+5+C1h)

Hence, the characteristic equationJgf” is

A3 + A% + Aol + Ag = 0, (4.31)
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where

Ay = 1>0,

A = (utd+cCm)+u+d+cm)—(b-p)+3(c—c)>0,

Ao = —¢l(u+ 6+ 1) = BSN(G(Can) + Can) + (€2 = C2) = (b — )] (ut + 6 + Can)
—é[ﬂé—(/J+5+C2)](f(C1h)+C1h)+(/1+5+C1h)(/1+5+02h)
+H[Z(c1 — ) = (b~ )] (1 + 6 + Can),

and
As = —2[(u+6+c) — BS1(9(Can) + Con)(ut + & + Can)

+[Z(c1 - ) = (b~ )] + 6 + Cn)( + 6 + Can)
_%[ﬁé — (1 + 6 + )] (f(cn) + Can)(u + 6 + Con).
Corresponding to the cubic polynomial, there are the falhgwhree quantities needed

for applying the Ruth-Hurwitz criteria:

Ar = 1>0,
A, = AAL—-Ag
= [(u+6+Can) +2(c1— ) = (b= p)]{( + 6 + Can)(ut + 6 + Can)
(e + 6+ Can)[2(er = ©2) = (b - )] = 2[(e + 6 + €2) = BSI(G(Can) + Can)}
[(u+6+cp)+ %0(01 —c)—(b —/1)]{(/1 + 6 + Cin)(u + 6 + Cop)
+(+ 6+ can)[ (e = €2) = (b - )] = 2[BS — (u + 5 + C)](F(Cm) + )},
Az = AgA,.

The necessary and ffigient conditions, under which all the roots of the polyndmia
(4.31) have negative real parts, are givery> 0 andAsz > 0 according to the well-
known Hurwitz criterion. So, the mutant host-free equililbon E; would lose its local
stability so that the mutant hosts have a chance to invadgergshosts successfully if

eitherA, > 0 orA; > O is violated. Moreover, the sign changesgf= 0 results in Hopf
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bifurcation aroundk; for system (4.30) whilég > 0 (see Theorem 2 in [25]). However,
it is difficult for us to construct a fithess on the corresponding p&rgalution of such

a Hopf bifurcation. So, we have to exclude this case.

The above observation suggests thAg is a reasonable measurement of the fitness
for the mutant hosts with two parasites. This means that tiiamh hosts can invade

resident hosts successfully only-fA; > 0. As such, we choose the following fithness

function T (cyp, Ceh, C1, Co):

T(Can, Cen, C1, C2)

= "%[(/J +0 + C1) _Bg](g(CZh) + CZh)(/J +0+ Clh) (4.32)
—[%0(01 —C2) — (b= )] ( + 0 + Can) (1 + 6 + Czn)
+%[,8§ — (u+ 0+ c)](f(cin) + Can)(p + 6 + Con).

To proceed further, we calculate the derivative3 (i, Cch, C1, Co) as below:

2|

dcin

—_—

(C1h,C2n)=(C1,C2)

[(u + 6 + c1) = BS(cy. €2)(9(c2) + C2) — [(c1- ) — (b—w)](u+6+c)
+2[B5(c1, €2) — (1 + 6+ C)|(F/(c)) + L) + 5+ )

AR

(4.33)

and

=
0Coh (c1,con)=(C1,C2)
(1 + 6+ c1) - B3(C1, NG () + Lt + 6+ ¢1)

%D(Cl —C) - (b-w)]u+ds+cy) + é[ﬁé(cb C2) — (u+ 0 + c2)](f(cy) + C1).

4
-1
(4.34)
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The evolutionary singular points are determined by

(Cncan)=(cr.c2) (4.35)

|
dcin

|
dcon

If (C;, C;) is a solution of (4.35),d, f(C})) and €, 9(C;)) are called an evolutionarily

(C1h,C2n)=(C1,C2)

singular species pair.

Although we can obtain the expressionsfofc;) andg’(c;) by transforming the
two equations of (4.35), the slopé4c,) andg’(c,) only give us partial information
of f(c1) andg(cy) nearc] andc,. Thus, the critical functions cannot be constructed in

dimorphic case.

According to the paper of Kisdi [15], if this singular pairrceot be invaded by
mutant hosts with either parasites, it is locally evoluéignstable. This can be implied

by the following two conditions:

&%T (C1n, Con, C1, C2)
acs,

<0, (4.36)

(Can, Czn, €1, €2)=(E1, &, &}, &)

and
&%T (C1n, Con, C1, C2)
ac3,

<0. (4.37)

(C1h, C2n, €1, C2)=(E7, T3, €7, €3)

In dimorphic case, the convergence stability become vdficdit and may be af-

fected by the relative speed of evolution in the two hostd$9,17].

Firstly, we identify conditions for ’isoclinic stability’ Assuming that the evolution

of parasite 2 is prevented by keepiog = C,. Then, by the generalization of the
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monomorphic case; would evolve toc] from its neighbourhood if

L(M
dcy acy

01h=01) c1=C;

— 82T (C1n,C2h,C1,C2)
‘3C§h

< 0.

82T (C1h,C2h,C2,C2) (4.38)

0C10C1h (e ome me &
(C1n, C2n, €1, C2)=(C7, €5, €7, T7)

(Can, Con €1, ©2)=(C7, &5, €7, C3)

Similarly,c, is set toc], ¢, would evolve tocy if

)

(Can, C2n, €1, C2)=(E}, &5, €1, ©3)

A(M
dcy ocy

Con=C2” 1C2 =§§

0C20Con

2
(')CZh

5 Rk Rk

(Can, C2n, €1, C2)=(C], T3, €1, T

< 0.
(4.39)

However, 'isoclinic stability’ is neither necessary nofistient condition for conver-

gence stability if both parasites evolve [19, 20].

Next, we discuss the conditions for absolutely convergestagility [20]. In this
case, we assume two traits of parasites in mutant hosts @ependent. Suppose the
most extreme path is constructed in the neighbourhood’oty); which brings the
system as far away front{;T;) as possible. Then, the singularity is necessarily con-
vergence stable because no trajectory can diverge. Theré&®convergence is termed

absolute convergence [16]. If

(')ZT(Clh ,C2oh,C1,C2) 82T (C1h,C2n,C2,C2) (')ZT(Clh ,C2h,C1,C2) 82T (C1h,C2n,C1,C2)
{)c%h 0C10C1h {)c%h 0C20Con

(4.40)

82T (C1h,C2n,C1,C2) 92T (C1n.Con.C1.C2)
0C20C1n 0C10Con

>

holds at the singularity and (4.38), (4.39) are satisfiedntig;, ;) absolute conver-

gence stable.

Next, these approaches are utilizing to obtain more detatlss case.
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Evolutionary stability

Let us analyze the condition of evolutionary stability. Blttat

0T (C1h,C2n,C1,C2)
ac, (Cih, Con, €1, €2)=(E, 5, 5, &) (4.41)

= [BS(E. &) ~ (u+5+ &) (E).

Under the conditions (4.3), (4.4), (4.5), and (4.@6(”:}, C)) — (u + 6 + C) is positive.
Thus, the condition (4.36) can be metcatwhen trade- f(c;) is concave down or

locally concave down at;~

Similarly, under the conditions (4.3), (4.4), (4.5), andb4there is

82T (C1n,C2h,C1,C2)
ac?

1h (Can, C2n, €1, €2)=(E}, &5 €3, C3)

= [(u+6+8&)-BS(E&. &g’ &) (4.42)
< 0

if g(cy) is concave down or locally concave dowrcat ~

Therefore, this evolutionary singularity is &8S if both trade-d¢fs are concave

down or locally concave down atj("C5)

To conveniently demonstrate the above general resultssevéno simple quadratic
functions f(c;) = b - k;cZ andg(c;) = b — k;c3, wherek; < k;, for the two trade-
offs respectively. Obviously, the corresponding evolutigreingularity is a locally
ESSin this case. Next, we discuss the conditions for isoclitab#ity and absolute

convergence respectively.
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Isoclinic stability

Substituting the specified tradéf®into the conditions of isoclinic stability, we obtain

_ SR+ Rx _ X 11 R 1 §
= [BS(E. &) - (u+5+8)F(E) + (1

6C

d (M
dcy o

Cih=C1’IC :E‘i

O +5) (4.43)

(01,02)=(5’i,5§))

~ 2
(c1,62)=(C1.53)

and
a ( 9T (C1h,C2n,C1,C2) )
dey o Cih=C1”lc1=C]
= [(+o+8)-SE Q&) - @@+ 18| . (444
’ 1072
L(pa ~1)(FE) + &
go( 0c (c1.62)=(&,.&) )( ( 1) 1),
where
f'(€) = -2k€;, 7 (C)) = -2k,
g(&) =-2G5. 9'(&) = -2k,
ﬁaé(cl,cz) _ o+ G (E)-9E)
9 (ey,c0)=(E,.8) e(o—1)+T(E)-9(E)

_ (rO)[E S+ F(E)-g@+E F(€)-E0(E)

f(€7)
[eo-+fE&)-a@]” g
3L _ o)y @I+ E) GO @)
T2 ee)=@E,8) o(b-)+fE)-9(E)
(OB -+ £ (&) -0EHE F(E)+EUE) ) rme
_ 1~ S+ TG NG TG )+C 2g(C2).

[0+ @E-0p]
According to previous discussiort; (T;) is isoclinic stable when both (4.43) and (4.44)

are negative.

Since the two functions areftlcult to be simplified, we can only give some nu-
merical results in Figure 4.3. After fixing the values of paeders, we show the corre-

sponding singularity in Figures 4.3a and 4.3c, which aré& wifferent superinfection
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rate respectively. In Figure 4.3b and 4.3d, the two conaigtifor isoclinic stability can
be met in shadow areas. By comparing Figure 4.3b and Fig@ce e find that the
shape of the shadowed area could be changed by varying tedrseption rate.

Absolute convergence stability

For this pair of quadratic tradefdunctions, we have

0C20C1h

(Can, C2n, €1, 2)=(E], €5, &7, €5)

et _l @ Rk P23 l ~y
- [ {)CZ (Cl’cz):(é}éz)(g(cz) + CZ) + (p(l’t + 5 + Cz) (4.45)
+Hp% ~1)(F(E) + D+ 6+ )

(c1,€2)=(C1.55)

and

0C20C1h

- 1 B@
#7700 |(c1,00)=(8;.8)

1 3S
+3(1-8%

(Can, C2n, €1, C2)=(E}, &5, €1, €3)

(f@)+8) - 2u+o+8) (4.46)

@ @)+ D+ +8).

(c1.62)=(&;.&)
Although we choose quadratic functions to simplify the peotn, the second conditions
for absolute stability is still very complicated. To shovatlthis condition is feasible, a
numerical result is showed in Figure 4.4. We only plot thd fiisadrant, because the
data for simulation in other regions has no biological megniThe three conditions
(4.38), (4.39) and (4.40) can be met in the two shadows. Wetliatithis condition is

very sensitive to value of each parameter.

4.5 Discussion

In this chapter, we studied the host-parasite co-evolutiopopulation level. Super-
infection and a tradefbinvolving production rate by infected hosts and their reagv

rate were considered in the baSitRmodel with two parasites and one host strain. We
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Condition 1 =— — Condition 2

(@)¢ = 0.05 (b) ¢ = 0.05
10 t/
/]
8 / /
/]
o /
Y
) / / )
“/ //
2 // K -
/o
5 3 3
C
Fitness gradient 1 =—— = Fim]ess gradient2 = = = * ¢ = Czl | Condition 1 — — Condition 2
()¢ =05 ()¢ =05

Figure 4.3:Singularity and Isoclinic stability: whens = 0.95,b = 10,8 = 0.4, u = 0.2,

ki = 0.5, andk, = 0.8. We only observe the regions in first quadrant. In figure (&) @),

we plot the solutions when (4.33) and (4.34) are equal to.zkrdigures (c) and (d), the red
solid curves represents function (4.43) and the blue dasresuepresent function (4.44). In
shadows, both conditions (4.38) and (4.39) for isoclinebsity can be met. We adjust the
value of superinfection rates to observe its #ects. When superinfection rate increase, the
values ofc; andc;, also increase. The shadow area has significant change wpenrgaction
rate changes.
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[ = = = Condition | — — Condition 2 Absolute3 |

Figure 4.4:Absolute stability: whens = 0.3, = 10,b =2, =04,u = 0.2,k = 0.1,
andk, = 0.8. The red dot curve represents function (4.43) and the kdsa durve represents
function (4.44), too. The golden solid line stands for therfola in inequality (4.40). In two
shadows, the conditions for absolute stability can befeadis

obtained a positive equilibrium that parasite 1 and 2 carnxisb@ resident hosts and
proved its local stability. Furthermore, we introduced amithosts into our model and

discused its invasion in monomorphic and dimorphic caspeaetively.

In monomorphic case, the critical value that can decide dballstabilities of the
mutant host-free equilibria was define as the fithess of thasion of mutant hosts
with a infection. Since mutant hosts could be infected byagiée 1 or 2, there were
two possible infections. For each type of infection, we oi#d evolutionary singular
points when fitness gradients were equal to zero. And theiBeakry and convergence
stabilities were analyzed respectively. In our examplesplaserved how the cost of im-
munological up-regulation and superinfection rate charbge value of singular points

in each case.

Comparing with the conclusions of Day and Burns [13], sugedtion trends to
help parasite 1 and 2 to coexist and keep evolving in hostanMaile, it makes host-
parasite co-evolution morefticult to study. Besides, our results suggest that the de-

gree of immune response cafliegt the future of the host evolution. As the degree of
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immunological response increasing, its cost from up-ra&tiph would also increase.
However, nutrients are limited for consuming in a host. Altgh immune response is
benign to hosts, the host evolution would not favor a highréeg@f immunological up-
regulation. In this way, an intermediate degree of immugial up-regulation would

be helpful to host evolution.

Furthermore, the case that mutant hosts with both parasited12 was explored.
A new fitness with four types of traits was defined. In this ¢éise conditions for an
evolutionary stable singularity was easily obtained. Hasvethe convergence stability
in multiple-dimension problem become complicated. Indt@# studied isoclinic and
absolute convergence stability. For convenience, theetofd were specified by two

simple quadratic functions. And the numerical results vatr@ved.

In both monomorphic and dimorphic case, superinfectionfaaisd to help parasite

2 with weaker virulence exist and keep evolving in hosts.

However, we only discuss the evolution on host level in ttapgy. Actually, the
evolutionary speed of parasites should be quicker tharoftfaists. So, a nested model
may be a better choice for our further research. Moreovey, &al Burns discussed
another trade{ between transmission rate and clearance rate, based orewvidehce
that quicker host death is caused by the parasites withasecetransmission rate, in
[13]. In the future, we could also consider this trad and compare results with our
conclusion to know the host-parasite co-evolution beBemg confined to the limited
approaches in dimorphic adaptive dynamics, so many idsainggtions are provided
to simplify the complex analysis. But they may not be remlistherefore, we need to

modify our model and make it closer to real world in the upaagrproject.

Moreover, we find that the convergence stability for muétigimension is signifi-
cantly complicated. Especially, the absolute convergstetility is too ideal to be met

in real world. Hence, there are many works that we can do o tiofll this gap.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Our whole thesis studies the evolution of hosts and pamasiférstly, a within-host
age-structured dynamical model was used to explore thé mingation phenomena.
For convenience, the PDE model was transformed into an OBtesyby defining the
production rates of virus are gamma distributions in theptdra2. To obtain the basic
reproductive number of this system, the method of contdiestem to calculate output
was utilized. After the discussion about the existence adololadjy asymptotical stabil-
ity of the infection-free equilibrium, the existences arndbdities of other equilibria

were analyzed in two cases of mutation rates, respectively.

In the first case, the competition between two viral straias without mutation.
It was demonstrated to comply with the competitive exclogioinciple that the one
with larger basic reproductive number would survive finallye considered mutation
and back mutation between two viral strains in the seconel. CEise existence of coex-
istence equilibrium was proved under some specific conditi@ecause the mutation

rates were considered as small perturbations, we showetthihaquilibrium was glob-
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ally asymptotically stable through average Lyapunov fiamctheory [4].

In the chapter 3, the adaptive dynamical approaches wdizedtito discuss viral
evolution. The study was based on a within-host model cenisig immune response to
analyze two types of tradeffs: the one is involving viral production rate and virulence;
the other is involving virulence and transmission rate. Gifitcal value that can decide
the local stability of the mutant free equilibrium of our 8% was defined as a fithess
to measure the invasion of mutant strain viruses. After switisg two trade-dfs in
the fitness, respectively, evolutionary singular straegiere found from the equations
when fitness gradients were set equal to zero. For their Booary and convergent
stability, we compared the geometrical properties of the tade-df functions with

corresponding critical functions at those evolutionangsilar points, respectively.

Viruses choose their production rate as the evolutionaategy in the first trade-
off. To explain the diversity of viral strains, the existencewablutionary branching was
demonstrated under th&ect of CTL response when the local concavity of the traffe-o
is ﬁ times more than it of the critical functions. The singulaimpas an evolutionary
stable strategy if its tradefiois all concave up (convex) or partial concave up at this
point; otherwise, it is a repellor. Therefore, the speedifses replication would help

viruses to overcome the immune system of hosts [1].

In the second tradefl) the viral evolutionary strategy was the death rate of itgfeéc
cells, which represented the viral virulence. It was shotirad the CTL response can
control viral evolution through shaping the tradé-oA singular strategy was evolu-
tionary stable when the tradd¢tavas all concave down (concave) or partial concave
down at this point; whereas too concave up would result irpaller. Based on our ex-
amples, viral evolution would favor neither a too high nar tow degree of virulence.
However, the results are more complicated than this whenttade-& is considered

in a between-host model with superinfection [2], which desa specific function to
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the trade-f. Meanwhile, hosts can play a significant role in viral eviotand decide
the evolutionary trend of viruses. Hence, we studied thé-pasasite co-evolution in

the chapter 4.

In chapter 4, the host-parasite co-evolution is discussgabpulation level. A ba-
sic S IRmodel with two parasites and one host strain is utilized tosater the &ects
of superinfection and a trade¥anvolving production rate by infected hosts and their
recovery rate. We obtained a positive equilibrium that pideal and 2 can coexist in
resident hosts and showed its local stability. Furthermorgant hosts are introduced
into our model to discuses its invasion in monomorphic anaodphic case, respective-
ly.

In monomorphic case, the critical value for the local sitibg of the mutant host-
free equilibria was defined as the fitness of the invasion dantthosts with one type
of infection, one is infected by parasite 1 and the otherfiedied by parasite 2. For
each type of infection, we obtained evolutionary singulaints when fithess gradients
vanished. And the evolutionary and convergence stalsiltiere analyzed respectively.
We provided examples to observe how the cost of immunolbgigaegulation and

superinfection rate changes the value of singular pointsah case.

In contrast to the conclusions of Day and Burns’ in [3], we fihdt superinfection
trends to help parasite 2 to coexist with parasite 1 and keeliag in hosts. Mean-
while, our results suggest that the future of the host eimiutan be decided by the
degree of immune response. As the degree of immune respuasases, its cost from
up-regulation would also increase. However, nutrientdiariged for consuming in a
host. Although immune response is benign to hosts, the kokiteon would not favor
a high degree of immunological up-regulation. Thereforejrdermediate degree of

immunological up-regulation would be helpful to the hostletion.

Furthermore, we explored the case of mutant hosts with batasite 1 and 2. A
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new fitness with four types of traits was constructed. In¢hise, we can easily obtained
the conditions for an evolutionary stable singularity. laltiple-dimension problem,
however, the convergence stability become very complicatée studied isoclinic and
absolute convergence stability to instead of convergetatalisy. We specified the

trade-dfs by two simple linear functions and showed some numericaillt®

In both monomorphic and dimorphic case, superinfectionfaasd to help parasite

2 with weaker virulence exist and evolve in hosts.

5.2 Future work

Summarizing the entire article, there are still remainirgrkg to be continued in the

future.

In chapter 2, we cannot help to wonder that whether thoseligegowill change
if mutation rates exceed these critical values. Also, amahguestion of whether the
mutation rates are always fixed or not arises. In fact, thtuéoea is a long and endless
journey for species. The direction of the evolution of vessvill be altered by a tiny
change in our environment. Then, we can study how the chaofgesitation rates
would dfect the viruses evolution as time goes by in the future. Siheetriggers
of the phenomenon of viral mutation, such as drug resistagtce in our model, are
ignored, we can also introduce this term to our model to disauhether our results

may be shifted as our future work.

The model is very ideal because of limited mathematicalriggres in chapter 3.
We can utilize the Holling Type Il function to replace theibdar function to describe
immune response for more real realistic in our model. Funtloee, we are interested
in a trade-d involving viral production rate and disease transmissaie and plan to

study it in the future. Also, the impact caused by the costamfybimmune response
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should be taken into account into the within-host level.

In chapter 4, we only discuss the evolution on host leveluAlty, the evolutionary
speed of parasites should be quicker than it of hosts. Sstadhmodel may be a better
choice for our further research. Moreover, another trafi&etween transmission rate
and clearance rate, based on much evidence that quickedéaitt is caused by the
parasites with increased transmission rate, is discugsBap and Burns in [3]. Thus,
we could also consider this tradé&,cand compare with our conclusion to deeply know
the host-parasite co-evolution. Being confined to the dohiapproaches in dimorphic
adaptive dynamics, so many ideal assumptions are provalsahriplify the complex
analysis. But they may not be realistic. Therefore, we needddify our model and

make it closer to real world in the upcoming project.
Moreover, we find that the convergence stability for muétigimension is signifi-

cantly complicated. Especially, the absolute convergstetility is too ideal to be met

in the real world. Hence, there are many works that we can @ielfoto fill this gap.
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Appendix A

A.1 Solution to the age-structured system

Let us consider the second equation in system (2.2) and itesponding boundary

condition:
8TI N GTI
oa ot

= —(u1(@) + m)T;(at), t=0,

T;(0,t) = B VA()T (), ax=0.

AssumerT; (0, a) = 0. By characteristic line

dt
ds - b
da
- = A.l
s 1, (A.1)
dT; .
1o = (@ +m)Ti@1).
S
with initial conditions:
All Ift>a
t(0) = to,
a(0) =0, (A.2)

T1(0,t) = B1Va()T(1).
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Let By(t) = B,V1(t)T(t). From (A.2), we can induce that= t; + s, anda = s. Then,
there isa = t — to. Supposd’;(a,t) = W(s), thenW(0) = T;(0, tp) = Ba(to) = Ba(t — a).

That is
dw(s)
ds

= —(u1(s) + m)W(s)

So, the general solution for above equationigs) = C,eb@©O+m% whereC, is
arbitrary constant. Sincé/(0) = C,, we haveC; = B,y(t — a). Then, there i3V(s) =

By(t — a)e™ b M) That js,

Ti(@.t) = AiVa(t - )T (t - a)e bLa@mk,

Al2 Ift<a

t(0) =0,
a(0) = ao, (A.3)
T7(0,8) = 0.

From above equations, we have- s, anda = ay + s. Thatisag = a—t. Then,

we can obtaifV(s) = Cye™ b @+ \whereC, is arbitrary constant. Sind&/(0) =

T;(0,a) = 0, there isC, = 0. Therefore, the result;(a, t) = 0 can be acquired.

Overall, the solution is

Vi(t-a)T(t - , t>
Ti@t) = BVi(t—a)T(t-a)oi(a), t=a,
0, t<a

whereo(a) = e b ®©+md¥ By the same method, we can solve

aT;  oT;
+
oa ot

= —(u2(a) + m)T;(at), t>0
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T5(0,1) = BV (D) T(), a=>0
to obtain that:

T;(a, t) — ,82V2(t - a)T(t — a)o'z(a), t>a,

0, t<a

whereo,(a) = e Jy () rme)ds.

A.2 Calculate the basic reproductive number of the sys-

tem (2.8) by next generation method

Firstly, we can figure out vecto& andV for system (2.8) as follows:

0 dT +ﬁ1TV1 +,82TV2— b
n
Pa(&) VT 1y
0 (X2 — X1)
0 %(Xn — Xn-1)
F = ] . V=
B2(2) VoT 1
0 2(y2 - Y1)
0 C1Vi — l_{lxn —2Yn
0 CoVo — l_{z)’n — 2%

Since the infected compartments &geandV,, F andV should be:
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giving
1
V—l — 1 0
1
0 3

Then, the next generation matrikV-1, has the two eigenvalue®; = ﬁ‘—é’(%)n,

i =1,2. Thatis,

Ro = maxq12Ri.



Appendix B

B.1 The local stability of the equilibrium E
The last equation of (3.3) is equivalent to
BX=(pZ+3); .

The Jacobian matrix at the poitis

-d-pBv 0 -Bx 0

pv  —a-pz Bx —py
0
0

Because we havey - b = 0, u = d + 8’ andgx = (pz + a); at E, putg = v and

w = a+ pzinto above matrix. It changes to:

-4 0 - 0
- F e i ¥
0O k -u O
0 cz O 0
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We notice that all parameters are positive, and 8/ & w > pz. Then, we need to
show that all solutions of the characteristic equatiod baive negative real parts. For
this purpose, we regayd w, &, ¢, 8/, a, vandz as independent variables.

!5’

The characteristic equation dfis denoted as

Al =J] = A% + a3 + @a1? + agd + a,. (B.1)

We calculateny, a,, az anday as follows by utilizing the formula (4.3) in the paper of

Huang, Yokoi and et al. [1]. Ldt = cpyz, and we have

ag = -trd)=p+(w+u),
-mu O - = -u 0 —w B
a = + + +
B —w 0 -u 0 0 k -u
-w —py -u 0
+ +
cz O 0O O
= u(w+U)+h,
-0 5 -py -u =% 0 -4 0 O
a3 = - k -u O (+| 0 -u O|—-|pB -w -py
cz 0 O 0O 0 O 0O cz O
-mu 0 %
—_ B/ —w UTU)
0 k -u

= uh+ (8'uw + uh),

-4 0 - 0
’ —w Uw _Nnv

a, = detd)= p o W = uuh,

0O k —-u O

0 cz 0 O
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Since that, i = 1,2, 3,4, is a linear function ofi, a necessary andicient conditions

for all roots of (B.1) have negative real parts are:

a 1 O
a 1
a; >0, >0, |ag a a |>0 a>0, (B.2)
a3 &
0 a4 a3

by Routh-Hurwitz criteria. It is easy to find that anda, are positive. Let us analyze

other two determinants in (B.2). We have

a 1

[u(w + u) + h] — uh — (B’uw + uh)
a3 &

(w + U)p? + (w + U)?u + hw — f'uw

(w + U)p? + (W? + U2 + wU)u + hw + uw(u — B’)

> 0,

provided thaj > '.

Consider the third determinant in (B.2) as a functiomothat is,

a 1 O al(/.l) 1 0
f) =] a3 a a |=|as) aw) a(w
0 a a 0 as(w) as(w)

Sinceay, ay, az anda, are all linear with respect tp, f(u) is a polynomial ofu with
degree 3. Denote

fu) = Agu® + Au® + A + Ao, (B.3)
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whereAs, A,, A; andAg do not containu. So,

w+U 1 0
Ao = f0)=|Buw+uh h w+u

0 0 B'uw +uh

= (B'uw + uh) oru 1
B'Uw+uh h

= Uwh? - B'WPwh + hB'uw? — BPw?p.

And,
A; = f/(0)
1 1 0

= |h glw+u)+h U+ (w+U)
0 uuh uh+ (8’uw + uh)
u+w+u 0 0
+| uh+pBuw+uh w+u u+w+u
0 uh uh+ B'uw + uh
U+ w+U 1 0
+| uh+pB'uw+uh pulw+u+h 1
0 uuh h

w+Uu w+u w+u 1
= (w+U) +h
uh  B'uw+uh B'uw+uh h
= (w+ W?[(B'uw + uh) — uh] + h[(w + u)h — ’'uw — uh|

= f'Uw + 26'V°w? + hw + B'udw — B'uwh.
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AsA, = I we obtain

1 0 0 w+Uu 0 0 110
A2 = |h w+u w+u |+|fuw+uh w+u 1|+|h h 1
0 uh puw+uh 0 uh h 0 0 h

(w + W[(B'Uuw + uh) — uh+ (w + u)h — uh|

Buw? + fUPw + w?h + wuh.

Then, let us computas

1 0 0
A3=@= h w+u 1
O uh h

(w + uh—uh= wh.

We rewrite the polynomial functiofi(u) in the form ofwg(u), where

g (1) = 3hu® + 2(8'uw + B'U? + wh + uh)u + (B'uw + 28'V?w + h? + g'u® — B'uh).

Setu = B, then we can prove:

g'(8) = 3h8% + 28"uw + B0 + f'wh + fuw + 28’ Ww + W* + p'u® > 0.

Now, the functiorg(8’) is demonstrated to be positive.

h(8’)2 + B3uw + 32 + B2wh + uhB’? + Buw + 2802w

a(8)

+h28" + p2u — p2uh + uk? — g'u?h + hg'uw — U?B?w
= ()3 + B3uw + B3U2 + f%wh + B2uw + 20w + W23’ + hB'uw

+(uh? — g'u?h + 2.
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The last term is positive because
LIBI

uk? — gu?h + B2 = u[(h - 7)2 + %uzﬁ’z] > 0.

Thus, there ig(8’) > 0. As a result, it can be concluded thyét:) > O for u > g’. Until
now, we have finished the proof of the local stability of theifige equilibriumEfor

one strain model.

B.2 Then local stability of the mutant-free equilibrium

The Jacobian matrix of the system (3.4)is:

13

—d-pVi-p 0  —B% 0 0 -BX
4% —a-pz pX —py1 0 0
N 0 k —u 0 0 0
J=
0 cz 0 cyi+&,-b & 0
BV 0 0 —py2 ~a-pz px
0 0 0 0 0

~d-pv;, 0 % O 0 -B%
Vi —a-pz pBX —p)71i 0 0

0 k -u 0, 0 0

| o & o ol @ o
0 0 0 0 l-a-p px
0 0 0 o0 k .y
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By observation, its eigenvalues are determined by theviatig two submatrices:

d-p% 0 g% O

BV —a-pz BX -pyi

Jll =
0 k -u 0
0 cz 0 0
and
—a-pz px
Joo = - )
k -G

where the eigenvalues df; are all negative whe®; > 1 (see Appendix B.1). So,
the local stability of this mutant free equilibrium only damls on the signs of the
eigenvalues of the matri¥,. The two critical conditions for the negative eigenvalues

of two by two matrix are:

tr(Jzz) = -a- pz-0<0,
det(Jy) = (&+ p2)i- kBx.

If det(J,;) > O, all eigenvalues of the matri¥;, are negative, i.e., the mutant-free

equilibrium is locally asymptotic stable. Otherwise, thawslity of E will be violated.



Appendix C

C.1 The local stability of the coexistence equilibrium

The Jacobian matrix of the system (4.2) at its coexistenadilequm is :

b— - B+ 1) f(c) + 1 - BS dc) + G - BS
J = Bl BS — (u+ 6 + 1) + Bol, Byl
Bl ~Byl, BS = (u+ 6+ C) + Byl

b-—u-%2 f)+a -85 do)+c-pS

1

= —(‘”5+f)"’3é 0 BS—(u+6+c)

—(“*5*;1)"33 BS—(u+6+cy) 0

121



CuaptER C.
So,
A-(b-p-2) pS-fc)-o  AS-gd) -
al-J = furor)ps A (u+6+c) - S
BSlede) (4 5+c) - BS A
+6+C)-BS
= [A-(b-pu-=2)] o
(u+d+c)—pBS A
| (urorc)-pS BS-f(c)-c1 BS-g(c)-c
Tl uro+c)-pS A
85 orcy) BS-fc)-c BS-gle)-c
i 2 (u+6+C)—BS
=3 = [A=(b—p)+ 2|22~ (u+6+01—BS)(u+6+C, - BS)]

122

_(,1+6+;2)—,8§ [(,Bé —f(c) —c)l—(u+6+¢C —,Bé)(ﬁé - 9(c) - )]
.\ 55_(#;5%1) [(BS - f(c1) = C)(u + 6 + C — BS) — A(BS - 9(C2) - ©2)]

= P +[E% - (b lA% ~ [(u + 6 +c0) ~ Sll( + 6 + Co) — B3]

_ (ut6+p—BS)(BS— T (C1)—C1) +(BS—(u+5+c1)) (BS—g(c2) —C2) 2

+(b—p = £2)[(u + 6 + 1) - BS][(u + 6 + ) - BS]

+é(f(01) —9(C2) + €1 — C)[(i + 6 + ¢1) — BS][(1 + 6 + &) — BS].

The characteristic equation is

aol® + ay? + apd + a3 = 0,

(C.1)
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where

a = 1>0,
a = 22-(b-p),
8 = [(u+3+0C1)-BSIBS - (u+6+C)] + 2[~(F(Ca) + Ca)u + 6 + 1)
+(g(C2) + C2)(u + 6 + €2) + BS(9(c2) — f(ca))]
= [(u+6+c) ~BSIIBS — (u+6 + )] + Z[(u +8)(g(cz) — f(cr) + 2 - c1)
+a19(c2) - &2 f (1) +BS(9(cz) - f(ca))] > O,
8 = l(u+6+cy)=BSl(k+6+cr) ~BSlle(b— ) + f(cr) — g(c)] > O,

under the conditions (4.3)-(4.6). If

CL—C

—(b-w) >0, (C.2)

we can prove that

Ar = 2-(b-1)>0,
Ay = apay-—a
= 2l +6)(9(c2) - f(cr) + 2 — €1) + C1g(Cy) — Cof (1) +5(g(c2) - f(cy)]
+2[(u+6+c1) = BSIIBS - (u+ 6+ c)l[cr — € + g(c) — F(ca)] > O,
A3 = azA, > 0.

Now, we have proved that all roots of polynomial equatiorij@ave negative real
parts by Routh-Hurwitz criterion. Therefore, the coexist equilibriumE is locally

asymptotic stable when the conditions (4.3)-(4.6) and)€a2 be satisfied.
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C.2 The local stability of the mutant hosts free equilib-
rium

Let us study the local stability of the mutant hosts free Kopiim E in system (4.8).

The Jacobian matrix of system (4.8) is

Jig 1 Jio
J: -+ == -
0 1 Jx

at the equilibriunE, where

b-p—-p+i) fle)+c-BS 9(C) + ¢ — Sy
Ju=| gin BS1—(u+6+c)+ Bl Bl ;
Bi1z —Bel1 BS1— (1 + 6+ C) - Bl
0 -BS,

b—u—pl f(Cm) +cin

Jiz=|0 BS; | J2=| _ .
Bl —(u + 6 + Cn)

00
Under the conditions (4.3)-(4.7), all eigenvalues of thdrinal,; are negative in last
subsection. Then, the local stability of the equilibrirwill depend on the signs of the
eigenvalues of the matri¥,. Because of the first inequality in condition (4.3) we can
easily obtain that the trace of matidy, is always negative. If matrid,, has positive
determinant, the mutant host-free equilibriéinis locally asymptotic stable. So, when
determinant ofl,, is negative, the mutant hosts with type 1 infection can ssfodly

establish in evolution; otherwise, mutant hosts will gosttrection in the future.

Therefore, we choose the valualet{,,) to denote the fitness of the mutant hosts

with type 1 infection.
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