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Abstract

In this thesis, we use mathematical models to study the problems about the evolution of
hosts and parasites. Firstly, we study a within-host age-structured model with mutation
and back mutation which is in the form of partial differential equations with double-
infections by two strains of viruses. For the case when the production rates of viruses
are gamma distributions, the PDE model can be transferred into an ODE one. Then, we
analyze our model in two cases: one is without mutation, and the other is with mutation.
In the first case, we prove that the two strains of viruses without mutation would die
out if both of the individual reproductive numbers are less than one; otherwise, their
evolution will comply with competitive exclusion principle meaning that the stronger
one will survive finally. In the second case, we verify that they can coexist under some
specific conditions in the sense that there exists a coexistence equilibrium which is
globally asymptotically stable.

Secondly, we explore the viral evolutionary strategies by using a within-host mod-
el under body immune response. We consider two types of trade-offs involving the
viral production rate, the host death rate caused by infection (i.e., virulence), and the
transmission rate. By choosing appropriate fitness, we showthat the evolutionary and
convergent stability of an evolutionary singular strategycan ne affected by the shapes
of the trade-off functions. We also find that the evolutionary branching may occur at
the singular strategy for some special trade-off functions. The results imply that the
immune response has an important effect on viral evolution. Finally, two classes of
trade-off functions are specified which yield some more detailed information on the
virus evolutionary strategies.

Thirdly, we investigate the cost of immunological up-regulation caused by infection
in a between-host transmission dynamical model with superinfection, which describes
disease transmission between a single host and two parasites. After introducing mu-
tant hosts to original model, we explore this problem in two cases: (A) monomorphic
case; (B) dimorphic case. For (A), mutant hosts have two possible infections: one is
by parasite 1; the other is by parasite 2. In each of these two cases, we identify an
appropriate fitness for the invasion of the mutant hosts by analyzing the local stability
of the mutant free equilibrium. Then, We consider the trade-off between the production
rate of infected hosts and their recovery rate. By employingthe adaptive dynamical
approach, we analyze the evolutionary stability and convergence stability of this singu-
lar point, leading to some the conditions for continuously stable strategy, evolutionary
branching point and repeller. For (B), we define a new fitness to measure the invasion
of mutant hosts with parasite 1 and 2 by the same method. When the trade-off function
is chosen to be linear, we are able to obtain conditions for isoclinic stability and abso-
lute convergence stability through simulations. We find that although immune response
is benign to hosts, the host evolution would not favor high degree of immunological
up-regulation, implying that an intermediate degree of immunological response will be
helpful to the host evolution. Moreover, superinfection would help weaker virulent par-
asite exist in hosts.

ii



Keywords: hosts, parasites, mutation, global asymptotical stability, evolutionary
stable strategy, convergence stable strategy, evolutionary branching, monomorphic, di-
morphic.

iii



Co-Authorship Statement

Chapter 2-4 of this thesis consist of the following papers:

Chapter 2: Liman Dai and Xingfu Zou: A within-host age-structured model with
mutation between two strains.

Chapter 3: Liman Dai and Xingfu Zou: Within-host viral evolution under body im-
mune response.

Chapter 4: Liman Dai and Xingfu Zou: The effects of superinfection and cost of
immunity on host-parasite co-evolution.

The original draft for each of the above articles was prepared by the author. Subse-
quent revisions were performed by the author and Dr. Xingfu Zou. The analytical and
numerical works are performed by the author under the supervision of Dr. Zou.

iv



This thesis is dedicated to my family

For their endless love, support and encouragement!

v



Acknowledgements

It would have been impossible to write this doctoral thesis without the help and

support from many kind people around me, to only a few of whom it is possible to give

particular mention here.

Above all, I would like to tender my sincerest gratitude to mysupervisor Dr. Xingfu

Zou and his family. It is difficult to express how honored I feel as a member of Dr. Zou’s

research group. Actually, I can still remember the moment when I got the offer from

him. There is no doubt that he opened a door for my pursuit of knowledge, particularly

in Mathematical Biology. In the past four years, he providedme with an excellent

atmosphere for doing research. Meanwhile, his expertise, inspiring guidance, academic

rigor, encouragement, and support are throughout my periodof study. I strongly believe

that the things I learned from him will benefit all my life. Moreover, I would like to

thank his family for their hospitality in each of the Christmas, which made me feel less

homesick.

I would also like to acknowledge all the members of bio-math and dynamical system

groups. In particular, I am thankful to Dr. L. Wahl, Dr. P. Yu and Dr. G. Wild for their

insightful advice, extensive comments, and constructive guidance. Flower hour and

the dynamical systems seminar taught me how to be a good audience and also a good

presenter.

I would like to acknowledge the financial, academic and technical support from the

department of Applied Mathematics of Western University for this research. I am also

very grateful to Ms. A. Kager, C. MacLean and K. L. Foullong for their support and

assistance in these four years.

My office mates and other fellow graduate students, F. Kan, X. Liu, M. Bao, X.

Chen, Q. Guo, X. Ji, X. Lai, X. Lin, A. Rahman, J. Ruan, G. Piatkovska, X. Peng, Y.

vi



Tian, A. Walton, F. Wang, X. Wang, J. Xu, X. Xi, Y. Xiao, C. Zhao, W. Zhang, S. Zhao,

and Y. Zhang et al., have played important roles in my studiesat Western. I highly

appreciate all input, help, support, and enjoyment they have offered.

I am thankful to my four best friends: Q. Deng, X. Luo, L. Song,and L. Wang.

Cheers for our friendship forever.

My parents and grandparents have given me their unequivocalsupport throughout,

as always, for which my mere expression of thanks likewise does not suffice.

Last, but by no means the least, to my dearest fiance Yu, I am so lucky that you

are always there cheering me up and standing by me through thegood and bad times.

Thank Western for letting us meet by chance!

vii



Contents

Abstract ii

Co-Authorship Statement iv

Dedication v

Acknowlegements vi

List of Figures xii

List of Tables xvii

List of Appendices xviii

1 Introduction 1

1.1 A between-host model . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A within-host model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Adaptive dynamical approaches . . . . . . . . . . . . . . . . . . . . .7

1.4 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 A within-host age-structured model with mutation betweentwo strains 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



2.3 Equivalent ODE system under Gamma distribution . . . . . . .. . . . 22

2.4 Basic reproductive number . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Equilibria and their stabilities . . . . . . . . . . . . . . . . . . .. . . . 29

2.5.1 In the absence of mutation . . . . . . . . . . . . . . . . . . . . 31

2.5.2 With the effect of mutation . . . . . . . . . . . . . . . . . . . . 34

2.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Within-host viral evolution under immune control 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Trade off betweena andk . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Exponential function . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Power function . . . . . . . . . . . . . . . . . . . . . . . . . . 59

n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Trade off betweenβ anda . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 The effects of superinfection and cost of immunity on host-parasite co-

evolution 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 A two-parasite model within a single host type . . . . . . . . .. . . . . 75

4.3 Monomorphic cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Mutant hosts with the parasite 1 . . . . . . . . . . . . . . . . . 78

Evolutionary stability analysis . . . . . . . . . . . . . . . . . . 80

ix



Convergence stability analysis . . . . . . . . . . . . . . . . . . 81

An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Mutant hosts with the parasite 2 . . . . . . . . . . . . . . . . . 86

Evolutionary and convergence stabilities analysis . . . . . .. . 88

4.4 Dimorphic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Evolutionary stability . . . . . . . . . . . . . . . . . . . . . . . 95

Isoclinic stability . . . . . . . . . . . . . . . . . . . . . . . . . 96

Absolute convergence stability . . . . . . . . . . . . . . . . . . 97

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusions and future work 104

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A 110

A.1 Solution to the age-structured system . . . . . . . . . . . . . . .. . . . 110

A.1.1 If t ≥ a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1.2 If t < a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 Calculate the basic reproductive number of the system (2.8) by next

generation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B 114

B.1 The local stability of the equilibrium̄E . . . . . . . . . . . . . . . . . . 114

B.2 Then local stability of the mutant-free equilibrium . . .. . . . . . . . . 119

C 121

x



C.1 The local stability of the coexistence equilibrium . . . .. . . . . . . . 121

C.2 The local stability of the mutant hosts free equilibrium. . . . . . . . . 124

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Curriculum Vitae 126

xi



List of Figures

1.1 Parasite (dashed line) and lymphocyte (solid line) densities for persistent in-

fections with a predator-prey model. Parameter values areϕ = 1,σ = 1, c = 5,

δ = 1, andb = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Examples of pairwise invasion plots.Gray shading denotes positive invad-

er growth rateSr (m), white shading negativeSr(m), the black diagonal lines

Sr(m) = 0. (a) Evolutionary stable strategy but not convergence stable. Such

strategies should be rare in nature: if the strategy is once established it cannot

be invaded locally, but it cannot be approached gradually insmall steps, either.

(b) Evolutionary stable strategy and convergence stable. Apossible endpoint

of evolution: the strategy can be attained gradually and then it will resist any

invaders successfully. (c) Convergence stable strategy but not evolutionary sta-

ble, i.e. evolutionary branching. A scenario where a population can become

dimorphic: the singular strategy can be established gradually, but then it can

be invaded by mutants both above and below the resident strategy at the same

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

xii



1.3 Three qualitatively different singular strategies: (a) a local fitness maxi-

mum representing a possible endpoint of evolutionary change. (b) Local fit-

ness minimum where evolutionary branching can occur. (c) A degenerate case

where the criteria fail because the second order derivativeof Sr (m) vanishes,

but practically these cases are without significance, sincefinite evolutionary

steps will lead evolution past these points. Fitness is defined here as the ex-

pected growth rate of an initially rare mutant and given by the invasion expo-

nentSr (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The flow chart of the model.. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Basic model of viral infection.. . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Figures of critical functions. (a). A family of critical functions with different

initial values. (b). Critical functions for different values ofc. In figure (b),

a less concave down (concave) critical functionacrit (k) can be caused by a

greater stimulation ratec. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Exponential function. Whereφ = 0.043,d = 0.01. . . . . . . . . . . . . . 58

3.4 Pairwise invasion plots. Only locating in the positive regions, the strategies

can invade successfully. Since a vertical line throughk∗ can entirely lie within

the white regions, it is a continuously stable strategy.. . . . . . . . . . . . 59

3.5 Power functions.Whereα = 0.01,d = 0.01. . . . . . . . . . . . . . . . . 59

3.6 Two pairwise invasion plots whenn = 1. Since the mutants fitness is a

linear function of the mutants strategy,k∗ is always an ESS according to the

conclusion in [10]. According to our observation, the location of k∗ moves to

right asα decreases.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

(a) α = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

(b) α = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



3.7 Two pairwise invasion plots whenn = 2. Both of them are continuously

stable strategies. Comparing the figure (a) with (b), the location of the evo-

lutionary singular point can be shifted by varying the valueof α, which is

opposite to the case ofn = 1. . . . . . . . . . . . . . . . . . . . . . . . . 61

(a) α = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

(b) α = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Figures of critical functions. (a). A family of critical functions. (b). The

critical functions with different initial values of the variablec. From (b), the

greater stimulation ratec can cause the less concave up (convex) critical function.63

3.9 Specific function.Wherem= 0.5. . . . . . . . . . . . . . . . . . . . . . . 64

3.10 A pairwise invasion plot whenn = 1
2. Based on our theories,a∗ is a continu-

ously stable strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 Two pairwise invasion plots whenn = 2. (a). We find that there is a ”+”

above the diagonal on the left and below the diagonal on the right ofa∗1. Also,

a vertical line througha∗1 lies entirely within a region marked ”+”. a∗1 is an

evolutionary branching point. (b). A vertical line througha∗2 lies entirely

within a region marked ”+”, so it is a repellor. . . . . . . . . . . . . . . . . 66

(a) a∗1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

(b) a∗2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Trade off 1: whereb = 0.059883,k1 = 0.075. f (c1) is a concave down function.82

xiv



4.2 Dependence of the value of evolutionary singular point on the cost of im-

munological up-regulation k1 and the superinfection rateϕ , whereδ =
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Chapter 1

Introduction

Researchers have questioned and studied the outbreak and spread of disease for many

years. If scientists could make predictions about diseases, people will be able to e-

valuate inoculation or isolation plans. This may help to diminish the mortality rate of

a particular epidemic. Mathematical modeling of infectious diseases is a tool which

has been used to study the mechanisms by which diseases spread, to predict the future

course of an outbreak and to evaluate strategies to control an epidemic [14].

Through utilizing mathematics to quantify a disease, we canknow the disease bet-

ter and predict its trend. A physician, Daniel Bernoulli, carried out the earliest account

of mathematical modeling of spread of disease in 1766 [6]. A mathematical model is

created by Bernoulli [26] to defend the practice of inoculating against smallpox. The

calculations from this model showed that universal inoculation against smallpox would

increase the life expectancy from 26 years 7 months to 29 years 9 months [7]. Certain-

ly, our modern understanding of germ theory is preceded by Daniel Bernoulli’s work.

Meanwhile, the modern theoretical epidemiology began withthe research of Ronald

Ross into the spread of malaria [38, 39, 40]. Following the research of Ronald Ross

and others, A. G. McKendrick and W. O. Kermack published their simple determin-

istic (compartmental) model in 1927 [28]. The model was successful in predicting

the behavior of outbreaks which were very similar to that observed in many recorded

1



Chapter 1. Introduction 2

epidemics [11].

1.1 A between-host model

In this section, two basic mathematical models, one for between-host and the other for

within-host, are further introduced.

In 1927 Kermack and McKendrick [28] proposed a model by dividing a constant

population into three compartments [26]:S(t), I (t) andR(t) where

• S(t) is used to represent the number of individuals not yet infected with the dis-

ease at time t, or those susceptible to the disease;

• I (t) denotes the number of individuals who have been infected with the disease

and are capable of spreading the disease to those in the susceptible category;

• R(t) is the compartment used for those individuals who have beeninfected and

then recovered from the disease. Those in this category are not able to be infected

again or to transmit the infection to others.

The flow of this model is described as follows:

S → I → R.

Kermack and McKendrick assumed a constant population,N(t) = S(t)+ I (t)+R(t). So,

theirS IRmodel was the following ordinary differential equations:



dS(t)
dt = −βS(t)I (t),

dI(t)
dt = βS(t)I (t) − γI (t),

dR(t)
dt = γI (t),

(1.1)
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whereβ is the transmission rate andγ is the removal rate of infective individuals [28,

34]. AssumeS(0) = S0 > 0 andI (0) = I0 > 0. The corresponding analysis was given

in [18, 34], respectively. To measure disease, a quantityR0, basic reproduction number

is defined by scientists.

In epidemiology, the basic reproduction numberR0 of an infection is the number of

new cases one case generates on average over the course of itsinfectious period [20].

Let us take system (1.1) as an example to show how the metricR0 works. In system

(1.1),

R0 :=
S0β

γ
.

• WhenR0 < 1, the disease will die out;

• whenR0 > 1 the disease will be able to spread in a population;

• in neither of the above cases, the disease finally dies out of the population, leaving

part of population; denoted byS∞, untouched by the disease.

The untouched partS∞ is often referred as the final size of (1.1). It is determined by

the equation

I0 + S0 −
γ

β
ln S0 = S∞ −

γ

β
ln S∞.

Due toI0 should be sufficiently small, above equation could be approximated by

S0 −
γ

β
ln S0 = S∞ −

γ

β
ln S∞.

In previous epidemic case, the duration of the disease was assumed to be short

compared to life expectancy of the host. Thus, any birth and disease-unrelated death

could be neglected. Normally, we would like to consider thatan endemic disease is

habitually in a population [13], which is called endemic case. Furthermore, the long-



Chapter 1. Introduction 4

term behavior is interesting to us. In mathematics, the corresponding model is



dS(t)
dt = bN− βS(t)I (t) − dS,

dI(t)
dt = βS(t)I (t) − γI (t) − dI(t),

dR(t)
dt = γI (t) − dR(t).

(1.2)

In this case, the basic reproduction rate is a perfect threshold condition to determin-

ing the future of disease in epidemiological models. Mathematically, it is a threshold

parameter for the stability of an disease-free equilibriumand is related to the peak and

final size of a disease [12]. Next generation method is commonmethod to obtainR0.

The basic reproductive numberR0 is defined as the spectral radius of the next genera-

tion matrix [19, 18].

From above summary, we can have a rudimentary knowledge of disease dynamics

on population level and its analysis approaches. In our thesis, we utilize another method

to compute the basic reduction number and compare the results with the value obtained

by next generation method.

1.2 A within-host model

Once a pathogen enters a host, it will produce/replicate and infect other target cells

within the host. To understand the dynamics of the pathogen population and the inter-

action with the cells and possibly the immune response, within-host models are typi-

cally used. The simplest and most classic within-host modelis the following system of
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ordinary differential equations [1, 2, 4, 8, 33, 35]:



dT(t)
dt = λ − dT − kTV,

dI(t)
dt = kTV− δI ,

dV(t)
dt = pI − cV,

(1.3)

whereT(t) is the density of susceptible target cells,I (t) is the density of infected target

cells andV(t) is the density of viruses. Here it is assumed that target cells can be

produced from a source at a rateλ and die at a rated. Productively infected cells (I )

that are produced by infection produce new viruses at a ratep, and die at a rateδ. The

clearance rate of free viruses isc.

The first attempts to model the dynamics of the immune system date from the 1970s

[2, 5, 37], and dynamic models for the interaction between parasites and the immune

system, based on the analogy with ecological interactions,followed about a decade

later [3, 29, 36]. So far, scientists have conducted a large number of studies of within-

host dynamics of microparasites. Several of these assume that parasites are resource

limited, but it is striking that the majority does not explicitly model dynamics of the

immune response of the host [1]. Here, we briefly introduce how this approach, even

in a simplified version, takes into account immunological dynamics.

There are a great variety of ways to model immunity in within-host models. How-

ever, following the differential equation describing prey dynamics in a Lotka-Volterra

predator-prey system [30, 25], similar equations are typically utilized to model the dy-

namics of the parasite. Thus, several life-stages (such as Plasmodium) of parasites and

their resource competition would not be described in models. Then, changes in parasite
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density takes the form [1]:



dx(t)
dt = (ϕ − σy)x,

dy(t)
dt = c0 + cxy− δy.

wherex is the density of parasite,y is the density of immune effector ,ϕ is the growth

rate of parasite,σ is the killing rate of the hosts by the immune system,c0 is the lympho-

cyte baseline production rate,c is the proliferation rate due to the presence of parasites

or their antigens, andδ is the lymphocyte death rate. In order to focus researches on

the parasites, usually, the simple structure of the immune system is given in within-host

models compared with typical models in theoretical immunology. Important oscilla-

tions are predicted in this model, which is consistent with the Lotka-Volterra model (see

figure 1.1, [1]). If the growth rate of parasite is very low compared with the strength of

Figure 1.1:Parasite (dashed line) and lymphocyte (solid line) densities for persistent infections
with a predator-prey model. Parameter values areϕ = 1,σ = 1, c = 5, δ = 1, andb = 0.01.

immune system, instantaneous clearance would occur. Sinceit occurs before the infec-

tion, this model cannot be used to describ an acute infection. This means the parasite

never really settles in the host. Therefore, this model can only account for persistent

infection [1].

Regardless of types of disease model, however, either hostsor parasites’ traits, i.e.
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the parameters in models, should never be constants when theevolution of species is

took into account. As a challenge, many traits of a species could affect its evolution.

1.3 Adaptive dynamical approaches

In recent years, a new set of techniques, i.e. adaptive dynamics, has been developed for

understanding the long-term consequences of small mutations in the traits expressing

certain phenotype [16, 17, 21, 32, 31, 41]. In adaptive dynamics, population dynamics

are linked to evolutionary dynamics by incorporating and generalizing the fundamental

idea of frequency dependent selection from game theory. By now, many papers used

this versatile tool to various evolutionary models. In the following, we introduce the

fundamental ideas behind adaptive dynamics.

Two fundamental ideas of adaptive dynamics are that the resident population can

be assumed to be in a dynamical equilibrium when new mutants appear, and that the

eventual fate of such mutants can be inferred from their initial growth rate when rare

in the environment consisting of the resident [41]. This rate is known as fitness to

measure the invasion of mutants. The initial exponential growth rate of mutants or the

corresponding basic reproductive number is usually referred to as invasion fitness of

mutants [17]. In this way, a mathematical model is required to explicitly incorporate

the traits undergoing evolutionary change. Meanwhile, both the environment and the

population dynamics depending on the environment should bedescribed in the model.

Below, we use a monomorphic case as an example to introduce the basic theory.

A monomorphic population is a population consisting of individuals with the same

trait. The trait is assumed as a real number without explicitstatement differently. Let

r andm denote the trait value of the monomorphic resident population and that of an

invading mutant, respectively. A functionSr(m) is defined as thefitnessto measure
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the invasion of mutant. By the classical views, evolution isconsidered an optimization

process towards higher value of fitness instead of higher value of trait. So, we need to

consider the selection gradient [17, 41] which is defined as the slope of the fitness at

m= r, S′r(r). As we know, the mutants may invade successfully ifSr(m) > 0; otherwise

they may eventually die out. There is linear approximationSr(m) = Sr(r)+S′r (r)(m−r),

which vanishes wheneverm= r. In the caseS′r(r) > 0, if the mutants are with slightly

higher trait values, i.eSr(m) > 0, they may invade successfully; otherwise they may

eventually die out.

The generic outcome of an invasion is that the mutant replaces the resident, and the

fitness landscape as experienced by a rare mutant changes [41]. Usually, the outcome of

the resulting series of invasions could be determined by pairwise-invasion plots (PIPs).

The figure 1.2 coming from [41] shows three examples. In the grey area marked with

Figure 1.2: Examples of pairwise invasion plots. Gray shading denotes positive invader
growth rateSr (m), white shading negativeSr (m), the black diagonal linesSr (m) = 0. (a) Evo-
lutionary stable strategy but not convergence stable. Suchstrategies should be rare in nature: if
the strategy is once established it cannot be invaded locally, but it cannot be approached gradu-
ally in small steps, either. (b) Evolutionary stable strategy and convergence stable. A possible
endpoint of evolution: the strategy can be attained gradually and then it will resist any invader-
s successfully. (c) Convergence stable strategy but not evolutionary stable, i.e. evolutionary
branching. A scenario where a population can become dimorphic: the singular strategy can be
established gradually, but then it can be invaded by mutantsboth above and below the resident
strategy at the same time.

+ , Sr(m) > 0. So, a resident population with trait valuer could be successfully invaded

by a mutant if (r,m) locates pair in the grey area.
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Obviously, a mutant with a slightly higher trait-value would generically invade and

replace the resident ifS′r(r) > 0. Thus, the direction of evolutionary change could be

determined by the selection of gradientSr(r). WhenS′r(r) vanishes, traits or strategies

r∗ for whichS′r(r
∗) = 0 are calledevolutionary singular strategies[17, 4, 10, 15, 23, 22,

24, 9, 41]. The fitness landscape experienced by a rare mutantwould be locally ’flat’

near such points. In figure 1.2, the singular strategies are found where the boundary of

the region of positive invasion fitness intersects the diagonal. We use three graphes in

Figure 1.3 [41] to show three types of singular points.

Figure 1.3:Three qualitatively different singular strategies: (a) a local fitness maximum
representing a possible endpoint of evolutionary change. (b) Local fitness minimum where
evolutionary branching can occur. (c) A degenerate case where the criteria fail because the
second order derivative ofSr(m) vanishes, but practically these cases are without significance,
since finite evolutionary steps will lead evolution past these points. Fitness is defined here as
the expected growth rate of an initially rare mutant and given by the invasion exponentSr (m).

A strategyr∗ is anevolutionary stable strategy(ESS) if Sr(m) as a function ofm

has maximum atr∗. Once it established, this trait cannot be invaded by nearbymutants.

Mathematically, the strategy would locally maximize fitness if its corresponding second

derivative is negative. Thus, at an evolutionary stable strategyr∗ we have

S′′r (r∗) < 0.

Otherwise, the strategy is evolutionary unstable. In the 1.2a and 1.2b of figure 1.2,

evolutionary stable strategies are showed since the invasion exponent is negative both
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above and below the singular strategy.

A convergence stable strategy r∗ is a singular strategy that is attracting in the sense

that monomorphic populations playing a strategy nearr∗ can be invaded by mutants

closer to it. This means that the selection gradientS′r(r) in a neighbourhood ofr∗ must

be positive forr < r∗ and negative forr > r∗ [41]. Hence, the slope ofS′r(r) as a

function ofr at r∗ should be negative, or equivalently

d
dr

(∂Sr(m)
∂m

∣∣∣∣
r=m

)∣∣∣∣
r=r∗
< 0.

In figure 1.2, only the 1.2b and 1.2c are convergence stable.

As a result, if a strategy is both evolutionary and convergence stable, it represents

a possible endpoint of evolutionary change. However, the singular strategy would be

a branching point if it only has convergence stability. In this case, the population will

become dimorphic. If neither of these stabilities can be satisfied, it is a repellor.

1.4 Scope of Thesis

We study the effects of mutation and back mutation in a within-host dynamical model

in Chapter 2. The phenomena of mutation and back mutation in viruses are briefly de-

scribed at the beginning of the chapter. After introducing two new terms about mutation

and back mutation into the age-structured model in [24], we present the formulation of

a new mathematical model with two strain viruses. Then, we utilize linear chain trick to

simplify our model and convert the partial differential equations to ordinary differential

equations [42, 44]. By following the method to calculate theoutput in a control system

(see Iggidr, Abderrahman et. al. [27]), a basic reproductive number for the model is

identitified for this model. Furthermore, we study the existences of equilibria and their

stability in two situations: one is without mutation and theother is with mutations.
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The case in absence of mutation has an infection-free equilibrium and two boundary

equilibria. We construct a Lyapunov function and demonstrate that the infection-free

equilibrium is globally asymptotic stable if the basic reproductive number is less than

1. Meanwhile, we prove that the stability of the two boundaryequilibria complies

with the competitive exclusion principle. When considering mutations, the system still

have infection-free equilibrium. Moreover, the existenceof a coexistence equilibrium

is proved in this case when basic reproductive number is larger than 1. When mutations

are considered as small perturbations, the globally asymptotic stability of this equilib-

rium can be established by the average Lyapunov function theory. We end this chapter

with a brief discussion about our results.

In Chapter 3, we utilize the classic adaptive dynamical approach [23, 21] to further

discuss how a strain of viruses succeeds under the immune response of hosts in evo-

lution when mutations happen. Firstly, we introduce a mutant strain into a within-host

model with CTL response and analyze the local stability of its mutant free equilib-

rium. The critical value that can decide its stability is defined as the fitness for the

mutant strain of viruses. Then, two parameters are chosen asvariables and two relevant

trade-offs are studied in this fitness function, respectively. The first trade-off involves

the infected cell death rate and the disease transmission rate, and the second trade-off

is between the virion production rate and the mortality of infected cells. At first, we

discuss the existence conditions of an evolutionary singular point for two cases, respec-

tively. Then, we analyze the evolutionary stability and convergence stability of this

point. Examples are provided revealing insight to our theoretical results in both cases,

respectively. Based on our mathematical conclusions, we discuss their corresponding

biological implications in the end and mention some relatedproblems to broaden this

topic.

We study the host-parasite co-evolution under immune response on population level
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in Chapter 4. In Section 4.2, we analyze the local stability of coexistence equilibrium

in a two parasites and one host strain model. Then, a mutant host is introduced to

this model. We explore the invasion of the mutant hosts in twocases, monomorphic

case and dimorphic case. In Section 4.3, we discuses two possible infections of mutant

hosts, one is by parasite 1; the other is by parasite 2. The critical value for local stability

of corresponding mutant-free equilibrium is defined as the fitness of mutant hosts. We

study the evolutionary and convergence stabilities of evolutionary singular strategies

through utilizing the adaptive dynamical approaches [23, 21, 43] in these two cases,

respectively. We also investigate on how the convexities oftwo trade-offs affect the

evolutionary and convergence stabilities. In Section 4.4,a dimorphic case is studied.

We define a new fitness to measure the invasion of mutant hosts with parasite 1 and

2 and obtain the conditions for evolutionary stability. Twotrade-offs are specify by

two simple linear functions to explore the conditions for isoclinic stability and absolute

convergence stability. We show some numerical conclusions, respectively. Meanwhile,

the value of superinfection rate is varied to observe how it affects the conditions for

isoclinic stability and absolute convergence stability, respectively. In Section 4.5, some

discussions on the biological implications of the mathematical results are provided.

Moreover, some related problems for future work on this topic are discussed.
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Chapter 2

A within-host age-structured model

with mutation between two strains

2.1 Introduction

Viruses using RNA (ribonucleic acid) as their genetic material are called RNA viruses.

They can cause extraordinary tough human diseases, such as HIV, hepatitis C, SARS

and influenza, due to their high infection rates. Comparing to DNA virus, they have

more rapid mutation rates [4, 2]. In the case of HIV-1, a pointmutation occurs with

probability 0.25 during every cycle of replication [7, 13]. This is one reason why it is

difficult to develop effective vaccines to prevent diseases caused by this kind of viruses

[17]. Furthermore, in the virion evolution, the fitter strain, which may produce offspring

faster than others, can beat others due to selection. However, errors always occur during

reproduction, which lead to mutations. As a result, the competitive balance may be

shifted as a result of mutation sometimes. With selection ofmedical treatment, not only

forward mutants but also backward mutants could survive in viral evolution because of

their drug resistance surveillance [14].

18
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Mathematical models are commonly used to study the diseasescaused by RNA

viruses, particularly HIV, for over 25 years [11, 12, 10]. The research achievements

about within-host virus disease models are fruitful. Theirconclusions illustrate that

two strains of viruses without mutation can coexist only if they have the same basic re-

productive rates, which are very difficult to actualize in the real world. However, if mu-

tations are considered, the situation changes. The within-host model about two strains

has a unique coexistence equilibrium. Its global stabilitywas proved when mutations

are treated as small perturbations [6, 1, 9]. However, ordinary differential equations are

too idealised to study the viral infection and production. Therefore, motivated by the

model 

dT
dt = s− dT(t) − kT(t)V(t),

∂T∗

∂a +
∂T∗

∂t = −δ(a)T∗(a, t),

dV
dt =

∫ ∞
0

p(a)T∗(a, t)da− cV(t),

T∗(0, t) = kV1(t)T(t), t ≥ 0.

(2.1)

in the paper of Nelson and et al. [8], we will extend the research by introducing an mu-

tant strain of viruses into this age-structured model and considering forward mutation

and back mutation between these two strains of viruses in this chapter.

The rest of this chapter is organized as follows. In the next section, we present the

formulation of mathematical model. In Sections 2.3 and 2.4,we utilize linear chain

trick to simplify our model and convert the partial differential equations to ordinary

differential equations and work out the basic reproductive number for this model. In

Section 2.5, we study the equilibria and their stability in two situations; one is with-

out mutation and the other is with mutation. Finally, we end this chapter with brief

discussions about our results.
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2.2 Model

We assume that the state variables areT (the population of susceptible host cells),

T∗i (a, t) (the population of target cells infected by virusi with age of infectiona at

time t), Vi (the population of virusi), wherei = 1, 2. Uninfected cells are produced at

constant rateb, die at rated. After infection at constant rateβi by straini, they progress

to the productively infected class. There are two death rates during this class. One is

a constant background death ratemi, and the other is an infection dependent mortality

rateµi(a). Then, the infected cells can produce virus at an infectiondependent rate

pi(a). Free viruses are cleared at a constant rateci. Meanwhile, we suppose that the

mutation and back mutation happen between the two strains ofviruses at rateǫ1 andǫ2,

respectively. The corresponding disease transmission diagram is shown in the following

figure:

d

( ) +

( ) +

b
T

∗

∗

( )

( )

Figure 2.1:The flow chart of the model.
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Translating the diagram in Figure 2.1 into equations, our model takes the form:



dT
dt = b− dT(t) − β1T(t)V1(t) − β2T(t)V2(t),

∂T∗1
∂a +

∂T∗1
∂t = −(µ1(a) +m1)T∗1(a, t),

∂T∗2
∂a +

∂T∗2
∂t = −(µ2(a) +m2)T∗2(a, t),

dV1
dt = (1− ǫ1)

∫ ∞
0

p1(a)T∗1(a, t)da+ ǫ2
∫ ∞

0
p2(a)T∗2(a, t)da− c1V1(t),

dV1
dt = (1− ǫ2)

∫ ∞
0

p2(a)T∗2(a, t)da+ ǫ1
∫ ∞

0
p1(a)T∗1(a, t)da− c2V2(t),

T∗1(0, t) = β1V1(t)T(t),

T∗2(0, t) = β2V2(t)T(t), t ≥ 0.

(2.2)

The system (2.2) will be reduced into DDE. By the method of characteristics, the

following two partial differential equations with boundary conditions

∂T∗1
∂a
+
∂T∗1
∂t
= −(µ1(a) +m1)T

∗
1(a, t),

∂T∗2
∂a
+
∂T∗2
∂t
= −(µ2(a) +m2)T

∗
2(a, t),

T∗1(0, t) = β1V1(t)T(t),

T∗2(0, t) = β2V2(t)T(t), t ≥ 0,

can be solved and their solutions are:

T∗1(a, t) =



β1V1(t − a)T(t − a)σ1(a), t ≥ a,

0, t < a,
(2.3)

T∗2(a, t) =



β2V2(t − a)T(t − a)σ2(a), t ≥ a,

0, t < a,
(2.4)

whereσ1(a) = e−
∫ a
0 (µ1(ξ)+m1)dξ andσ2(a) = e−

∫ a
0 (µ2(ξ)+m2)dξ (see details in Appendix A.1).



Chapter 2. Awithin-host age-structured model with mutation between two strains 22

Substituting (2.3) and (2.4) into (2.2), the system (2.2) can be rewritten as:



dT
dt = b− dT(t) − β1T(t)V1(t) − β2T(t)V2(t),

dV1
dt = β1(1− ǫ1)

∫ t

0
p1(a)T(t − a)V1(t − a)σ1(a)da

+β2ǫ2
∫ t

0
p2(a)T(t − a)V2(t − a)σ2(a)da− c1V1(t),

dV2
dt = β2(1− ǫ2)

∫ t

0
p2(a)T(t − a)V2(t − a)σ2(a)da

+β1ǫ1
∫ t

0
p1(a)T(t − a)V1(t − a)σ1(a)da− c2V2(t).

(2.5)

For convenience, we assume thatµi(a) is just a constantµi. So, there isσi(a) =

e−(µi+mi )a, wherei = 1, 2. Replacing variables in the integration (u = t − a, da = −du,

t − u = a; and leta = u), above system (2.5) is transformed into



dT
dt = b− dT(t) − β1T(t)V1(t) − β2T(t)V2(t),

dV1
dt = β1(1− ǫ1)

∫ t

0
p1(t − a)e−(µ1+m1)(t−a)T(a)V1(a)da

+β2ǫ2
∫ t

0
p2(t − a)e−(µ2+m2)(t−a)T(a)V2(a)da− c1V1(t),

dV2
dt = β2(1− ǫ2)

∫ t

0
p2(t − a)e−(µ2+m2)(t−a)T(a)V2(a)da

+β1ǫ1
∫ t

0
p1(t − a)e−(µ1+m1)(t−a)T(a)V1(a)da− c2V2(t).

(2.6)

2.3 Equivalent ODE system under Gamma distribution

For convenience to show our main idea, we assume that two strains have same natural

death rate and disease remove rate, i.e.,µ1 = µ2 = µ andm1 = m2 = m. Moreover,

according to the properties of production rate, we select the Gamma distribution [19],

which can approximate to many other frequently used distribution, for p1(a) andp2(a):

p1(a) = p2(a) = pα,n(a) =
an−1

(n− 1)!αn
e−

a
α , (2.7)
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whereα is a positive real number andn is an integer that is greater than 1. Denoting

α̂ =
α

1+ (µ +m)α
,

so

[1 + (µ +m)α]n =
(α
α̂

)n
.

We can rewrite the last two equations in (2.6) as:

dV1

dt
= (1− ǫ1)

( α̂
α

)n
∫ t

0
B1(a)p̂α,n(t − a)da+ ǫ2

( α̂
α

)n
∫ t

0
B2(a)p̂α,n(t − a)da− c1V1,

dV2

dt
= (1− ǫ2)

( α̂
α

)n
∫ t

0
B2(a)p̂α,n(t − a)da+ ǫ1

( α̂
α

)n
∫ t

0
B1(a)p̂α,n(t − a)da− c2V2,

whereBi(t) = βiVi(t)T(t), i = 1, 2.

Let

xj(t) = α̂
( α̂
α

)n
∫ t

0
B1(a)p̂α, j(t − a)da,

yj(t) = α̂
( α̂
α

)n
∫ t

0
B2(a)p̂α, j(t − a)da,

for j = 1, 2, . . . , n. Then for j ∈ {2, . . . , n}

dxj(t)

dt
= α̂

( α̂
α

)n
∫ t

0

( j − 1)(t − a) j−2

( j − 1)!̂α j
e−

(t−a)
α̂ B1(a)da

−α̂
( α̂
α

)n
∫ t

0

(t − a) j−1

( j − 1)!̂α j+1
e−

(t−a)
α̂ B1(a)da

=
1
α̂

[xj−1(t) − xj(t)].

Similarly, j = 1, 2, . . . , n,

dyj(t)

dt
=

1
α̂

[yj−1(t) − yj(t)].
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For j = 1, we have

x1(t) = α̂
( α̂
α

)n
∫ t

0
B1(a)

1
α̂

e−
(t−a)
α̂ da,

y1(t) = α̂
( α̂
α

)n
∫ t

0
B2(a)

1
α̂

e−
(t−a)
α̂ da,

yielding



dx1(t)
dt = β1

( α̂
α

)nV1(t)T(t) − β1
( α̂
α

)n
∫ t

0
1
α̂
e−

(t−a)
α̂ V1(a)T(a)da,

= β1
( α̂
α

)nV1(t)T(t) − 1
α̂
x1(t),

dy1(t)
dt = β2

( α̂
α

)nV2(t)T(t) − 1
α̂
y1(t)

Thus, withp1(a) andp2(a) specified by (2.7), the system (2.6) is equivalent to the

following system of ordinary differential equations:



dT
dt = b− dT − β1TV1 − β2TV2,

dx1
dt = β1

( α̂
α

)nV1T − 1
α̂
x1,

dx2
dt = 1

α̂
(x1 − x2),

...

dxn

dt = 1
α̂
(xn−1 − xn),

dy1

dt = β2
( α̂
α

)nV2T − 1
α̂
y1

dy2

dt = 1
α̂
(y1 − y2),

...

dyn

dt = 1
α̂
(yn−1 − yn),

dV1
dt =

(1−ǫ1)
α̂

xn +
ǫ2
α̂

yn − c1V1,

dV2
dt =

(1−ǫ2)
α̂

yn +
ǫ1
α̂

xn − c2V2.

(2.8)

In the rest of this chapter, we only need to study the ODE system (2.8).

It is easy to prove (e.g. by Smith [15], page 81, Theorem 2.1) that for a nonnegative
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initial set, the corresponding solution of (2.8) remains non-negative.

Lemma 2.3.1 The system(2.8) is dissipative, i.e. there is a forward-invariant compact

setΓ̄ ⊂ R2n+3
+ such that every solution eventually entersΓ̄.

Proof Adding equations aboutdT
dt , dx1

dt and dy1

dt in (2.8) gives

d
dt

[T +
(α
α̂

)n
x1 +

(α
α̂

)n
y1]

=b− dT − α
n

α̂n+1
(x1 + y1)

≤b− d∗
[
T +

(α
α̂

)n
x1 +

(α
α̂

)n
y1

]

whered∗ = min{d, 1
α̂
}. Thus, lim supt→∞[T +

(α
α̂

)nx1 +
(α
α̂

)ny1] ≤ b
d∗ . Similarly, we can

obtain that

lim sup
t→∞

(xj + yj) ≤
b
d∗

( α̂
α

)n
, j = 2, 3, · · · , n,

lim sup
t→∞

(V1 + V2) ≤
b

ĉαd∗
( α̂
α

)n
,

and

lim sup
t→∞

T ≤ b
d
.

Consequently, the feasible region is given by:

Γ̄ = {(T, x1, x2, . . . , xn, y1, y2, . . . , yn,V1,V2) ∈ R(2n+3)
+ |

T ≤ b
d , T +

(α
α̂

)nx1 + [1 + (µ +mα)]ny1 ≤ b
d∗ ,

xi + yi ≤ b
d∗
( α̂
α

)n
, V1 + V2 ≤ b

ĉαd∗
( α̂
α

)n
,

i = 2, . . . , n.



(2.9)

It can be verified that̄Γ in (2.9) is positively invariant with respect to (2.8). Dissipa-

tivity now follows by noticing that all the above bounds are independent of the initial

condition.
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2.4 Basic reproductive number

It is easy to see that

E0 =
(b
d
, 0, 0, . . . , 0

)
(2.10)

is an equilibrium of (2.8) which is called the infection-free equilibrium. The basic

reproductive number of the model is closely related to the stability of theE0.

For ODE models, the next generation matrix is typically utilized to calculate repro-

ductive number. See, e.g., van den Driessche and Watmough [18]. Here we choose

an alternative approach developed in Iggidr et al [3] to calculate this important number

because this approach can reveal some special relation of the two virus strains for the

model (2.8)

Following [3], we now rewrite (2.8) as



dT
dt = b− dT − β1TV1 − β2TV2,

dx
dt = Ax+ β1TV1B,

dy
dt = Ay+ β2TV2B,

dV
dt = D1x+ D2y− cV,

(2.11)

wherex = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , V = (V1, V2)T , c = (c1, c2), B =
( α̂
α

)ne1(n),

D1 =


0 0 . . . (1−ǫ1)

α̂

0 0 . . . ǫ1
α̂

 , D2 =


0 0 . . . ǫ2

α̂

0 0 . . . (1−ǫ2)
α̂

 ,
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A =



− 1
α̂

0 0 . . . . . . 0

1
α̂
− 1
α̂

0 . . . . . . 0

0 1
α̂
− 1
α̂
. . . . . . 0

...
...
. . .
. . .

...
...

...
...

...
. . .
. . .

...

0 0 0 . . . . . . − 1
α̂



,

ande1(n) = (1, 0, . . . , 0)T that is ann× 1 column.

During the mean duration of its lifetime, a virion of the firststrain can actually

generate a Dirac inputbβ1/c1d in the second controlled systemx′ = Ax+ β1TV1B (see

[3]). This input then generates secondary viruses given by formula:

bβ1

c1d

∫ +∞

0
Die

tABdt=
bβ1

c1d
Di(−A−1)B, i = 1, 2.

Since

−A−1 =



α̂ 0 0 . . . . . . 0

α̂ α̂ 0 . . . . . . 0

α̂ α̂ α̂ . . . . . . 0
...
...
...
. . .

...
...

...
...
...
...
...
...

α̂ α̂ α̂ . . . . . . α̂



,
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we obtain

D1(−A−1)B =


0 0 . . . 1−ǫ1

α̂

0 0 . . . ǫ1
α̂





α̂ 0 . . . 0

α̂ α̂ . . . 0
...
...
. . .

...

α̂ α̂ . . . α̂





0

0
...

( α̂
α

)n



,

=


(1− ǫ1)

( α̂
α

)n

ǫ1
( α̂
α

)n

 .

Therefore, based on the inputbβ1/c1d, two fractions in offsprings are given by

R11 = (1− ǫ1)
( α̂
α

)nbβ1

c1d
, R12 = ǫ1

( α̂
α

)nbβ1

c1d
(2.12)

both of which result from virus one.

Similarly, the numbers of offspring of strains 1 and 2 produced by a single virion of

strain 2 are given respectively by

R21 = ǫ2
( α̂
α

)nβ2b
c2d
, R22 = (1− ǫ2)

( α̂
α

)nβ2b
c2d

(2.13)

Now, assume that a single virus particle is brought into a host, and letp (q) be the

probability that this initially invaded virion is strain 1 (strain 2). Thenp + q = 1, and

all new viruses resulted from this virion are distributed among the two strains by the

following formula:


R11 R12

R21 R22




p

q

 =


pR11 + qR12

pR21 + qR22



Therefore, the total number of new virions resulted from theinitial single virion is the
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L1 norm of the above vector, i.e.,

∣∣∣∣∣∣∣∣∣


pR11 + qR12

pR21 + qR22



∣∣∣∣∣∣∣∣∣
1

= (pR11 + qR12) + (pR21 + qR22)

= p(R11 + R21) + q(R12 + R22) = pR1 + qR2

where

R1 = R11+ R12 =
β1b
c1d

( α̂
α

)n
, R2 = R21 + R22 =

β2b
c2d

( α̂
α

)n
. (2.14)

account for the individual reproductive numbers of strain 1and strain 2 virus respec-

tively. Thus, the basic reproductive number of the model (2.8) is obtained by taking the

maximum over all possible initial distribution:

R0 = max
p+q=1

∣∣∣∣∣∣∣∣∣


R11 R12

R21 R22




p

q



∣∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣∣∣


R11 R12

R21 R22



∣∣∣∣∣∣∣∣∣
1

= max{R11+ R12,R21+ R22} = max{R1,R2}

This conclusion is consistent with the result obtained by using the next generation

method, see details in Appendix A.2.

2.5 Equilibria and their stabilities

We already knew that the system (2.8) has the infection-freeequilibriumE0 =
(
b/d, 0, 0, · · · , 0

)
.

The following theorem discusses the stability of the virus-free equilibriumE0.

Theorem 2.5.1 If R0 < 1, the infection-free equilibrium E0 is globally asymptotically

stable onR2n+3
+ .

Proof Let us consider the stability of infection-free equilibrium E0 in Γ̄ under the con-
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dition R0 < 1. We construct the Lyapunov function as follows:

V = T0

( T
T0
− ln

T
T0
− 1

)
+

(α
α̂

)n{ n∑

i=1

(xi + yi) + V1 + V2

}
.

Calculating the derivative ofV along trajectories of (2.8), we obtain:

dV
dt

=
dT
dt

(
1− T0

T

)
+

(α
α̂

)n[
β1

( α̂
α

)n
V1T − c1V1 + β1

( α̂
α

)n
V2T − c2V2

]

= b− dT − b
T0

T
+ dT0 + β1V1T0 + β2V2T0 − c1

(α
α̂

)n
V1 − c2

(α
α̂

)n
V2

= b
(
1− T

T0
− T0

T

)
+

[
β1

( α̂
α

)n b
dc1
− 1

]
(
α

α̂
)nc1V1 +

[
β2

( α̂
α

)n b
dc2
− 1

](α
α̂

)n
c2V2

= b
(
1− T

T0
− T0

T

)
+ (R1 − 1)

(α
α̂

)n
c1V1 + (R2 − 1)

(α
α̂

)n
c2V2.

Notice that 1− T/T0 − T0/T ≤ 0 and the equality holds if and only ifT = T0, V1 = 0

andV2 = 0. Thus,dV
dt ≤ 0 if R0 < 1; anddV

dt = 0 is if and only if (T, x, y, V) is atE0.

Therefore, we can conclude that the virus free equilibriumE0 is globally asymptotically

stable in the positive orthant.

WhenR0 > 1, eitherR1 > 1 or R2 > 1. If R1 > 1, then there is the single-strain

equilibriumE1 = (T̂1, x̂1
1, · · · , x̂1

n, 0, · · · , 0V̂1
1, 0) given by

T̂1 =
c1

β1

(α
α̂

)n
, x̂1

l = α̂ f (T̂1)
( α̂
α

)n
, l = 1, · · · , n, V̂1

1 =
f (T̂1)

c1

( α̂
α

)n
, (2.15)

where f (T̂1) = b−dT̂1. In parallel, ifR2 > 1, then there is the single-strain equilibrium

E2 = (T̂1, 0, · · · , 0, ŷ2
1, · · · , ŷ2

n, 0, V̂
2
2) given by

T̂2 =
c2

β2

(α
α̂

)n
, ŷ2

l = α̂ f (T̂2)
( α̂
α

)n
, l = 1, · · · , n, V̂2

2 =
f (T̂2)

c2

( α̂
α

)n
, (2.16)
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where f (T̂2) = b − dT̂2. In the sequel, we will discuss the stability ofE1 andE2, and

possible positive (coexistence) equilibrium. We distinguish the case when the mutation

is absent and the case when the mutation are present.

2.5.1 In the absence of mutation

First, let us consider the caseǫ1 = ǫ2 = 0. SinceR1 andR2 depend on many model

parameters, the critical caseR1 = R2 is sensitive in the sense that a small change of any

model parameter would destroy this identity. Thus, for practical purpose, we exclude

this case in our discussion.

Note thatRi =
b
d

1
T̂ i for i = 1, 2. Thus

R1 > R2 iff T̂1 < T̂2 (2.17)

The following theorem establish the global stability ofE1 or E2, depending which

strain has larger basic reproduction number.

Theorem 2.5.2 Assume thatR0 > 1.

(i) If R1 > R2 andR1 > 1, then E1 is globally asymptotically stable with respect to

positive initial conditions.

(ii) If R2 > R1 andR2 > 1, then E2 is globally asymptotically stable with respect to

positive initial conditions.

Proof We only need to prove (i), since (ii) is parallel to (i). We construct a Lyapunov

function on

H := {(T, x1, y1, x2, y2, . . . , xn, yn,V1, v2) ∈ R(2n+3)|T, xi , yi,V1,V2 > 0, i = 1, 2, . . . , n}
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as follows:

L =T̂1
( T

T̂1
− ln

T

T̂1
− 1

)
+

(α
α̂

)n[ n∑

i=1

x̂1
i

( xi

x̂1
i

− ln
xi

x̂1
i

− 1
)
+ V̂1

1

( V

V̂1
1

− ln
V

V̂1
1

− 1
)
+

n∑

i=1

yi + V2

]
.

Then, the derivative ofL along the trajectories of (2.8) is calculated as below:

dL
dt
=

dT
dt

(
1− T̂1

T

)
+

(α
α̂

)n[
ẋ1

(
1−

x̂1
1

x1

)
+

n∑

i=2

ẋi

(
1−

x̂1
i

x

)
+ V̇1

(
1−

V̂1
1

V1

)

+

n∑

i=1

ẏ+ V̇2

]

= f (T)
(
1− T̂1

T

)
− (β1TV1 + β2TV2)

(
1− T̂1

T

)
+

(α
α̂

)n[
β1V1T

( α̂
α

)n

−1
α̂

x1 − β1V1T
( α̂
α

)n x̂1
1

x1
+

1
α̂

x̂1
1 +

1
α̂

(x1 − x2) −
1
α̂

x̂1
2

x2
x1 +

1
α̂

x̂1
2 +

1
α̂

(x2 − x3)

−1
α̂

x̂1
3

x3
x2 +

1
α̂

x̂1
3 + · · · +

1
α̂

(xn−1 − xn) −
1
α̂

x̂1
n

xn
xn−1 +

1
α̂

x̂1
n −

1
α̂

V̂1
1

v1
xn + cV̂1

1 +
1
α̂

xn

−c1V1 + β2V2T
( α̂
α

)n
− 1
α̂

y1 +
1
α̂

(y1 − y2) + · · · +
1
α̂

(yn−1 − yn) +
1
α̂

yn − c2V2

]
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= f (T)
(
1− T̂1

T

)
+ β1V1T̂

1 + β2V2T̂
1 +

(α
α̂

)n[n
α̂

x̂1
n − β1V1T

( α̂
α

)n x̂1
1

x1

−1
α̂

x̂1
2

x2
x1 −

1
α̂

x̂1
3

x3
x2 − · · · −

1
α̂

x̂1
n

xn
xn−1 −

V̂1
1

V1
xn + c1V̂

1
1 − c1V1 − c2V2

]

= f (T)
(
1− T̂1

T

)
+ β2V2T̂

1 − c2

(α
α̂

)n
V2 +

x̂1
n

α̂

(α
α̂

)n[
(n+ 1)

−
V1Tx̂1

1

V̂1
1T̂1x1

− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
−

V̂1
1 xn

V1x̂1
n

]

= f (T)
(
1− T̂1

T

)
+ β2V2T̂

1 − β2V2T̂
2 − f (T̂1)

(
1− T̂1

T

)
+

x̂1
1

α̂

(α
α̂

)n[
(n+ 2)

− T̂1

T
−

V1Tx̂1
1

V̂1
1T̂1x1

− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
−

V̂1
1 xn

V1x̂1
n

]

= ( f (T) − f (T̂1))
(
1− T̂1

T

)
+ β2V2(T̂

1 − T̂2) +
x̂1

1

α̂

(α
α̂

)n[
(n+ 2)− T̂1

T

−
V1Tx̂1

1

V̂1
1T̂1x1

− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
−

V̂1
1 xn

V1x̂1
n

]

It is obvious that

[ f (T) − f (T̂1)](1 − T̂1

T
) = d(T̂1 − T)(1− T̂1

T
) ≤ 0.

By (2.17), the second term of right part is nonpositive. Moreover, the relation of iso-

meric and geometric means implies that

T̂1

T
+

V1Tx̂1
1

V̂1
1T̂1x1

+
x1

x2
+

x2

x3
+

x3

x4
+ · · · + xn−1

xn
+

V̂1
1 xn

V1x̂1
n

≥ (n+ 2).

Thus, we have proveddLdt ≤ 0; anddL
dt = 0 if and only if state is at the equilibriumE1.

Then, we can conclude thatE1 is globally asymptotically stable inH and the proof is

completed.

This theorem shows that when the basic reproduction number is larger than 1, then

competition exclusion would be the generic result in the absence of mutation, implying
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that coexistence is in general impossible. Taking (i) as an example, if R1 > R2 and

R1 > 1, then regardless of whetherR2 < 1 or R2 > 1, E1 is globally asymptotically

stable, meaning that strain 1 will win the competition. Therefore there will no co-

existence equilibrium.

2.5.2 With the effect of mutation

In this section, we investigate the effect of the mutations by assuming thatǫ1 > 0 and

ǫ2 > 0. The first result along this line is that the co-existence equilibrium becomes

possible due to the presence of mutations,

Theorem 2.5.3 Assumeǫ1 > 0 andǫ2 > 0. If one of the following conditions holds,then

the model system(2.8)has a unique positive equilibrium̄E:

(i) R1 > 1 andR2 > 1;

(ii) R2 < 1 butR1 > 1+ c2k
c1

(1− R2);

(iii) R1 < 1 butR2 > 1+ c1k
c2

(1− R1),

where k is a positive constant to be determined by a quadraticequation in the proof of

the theorem.

Proof If a positive equilibriums exists, its components are givenby

x̄n = x̄n−1 = · · · = x̄1 = α̂β1T̄V̄1

( α̂
α

)n
,

ȳn = ȳn−1 = · · · = ȳ1 = α̂β2T̄V̄2

( α̂
α

)n
,

T̄ =
b

d+ β1V̄1 + β2V̄2
.



Chapter 2. Awithin-host age-structured model with mutation between two strains 35

with V̄1 andV̄2 being determined by



β1(1−ǫ1)b
(d+β1V̄1+β2V̄2)

(
α̂
α

)n
V̄1 +

β2ǫ2b
(d+β1V̄1+β2V̄1)

(
α̂
α

)n
V̄2 = c1V̄1

β2(1−ǫ2)b
(d+β1V̄1+β2V̄2)

(
α̂
α

)n
V̄2 +

β1ǫ1b
(d+β1V̄1+β2V̄2)

(
α̂
α

)n
V̄1 = c2V̄2.

(2.18)

By simplification, the equations (2.18) can be rewritten as



R11c1V̄1 + R21c2V̄2 − c1V̄1

(
1+ β1

d V̄1 +
β2

d V̄2

)
= 0,

R12c1V̄1 + R22c2V̄2 − c2V̄2

(
1+ β1

d V̄1 +
β2

d V̄2

)
= 0.

(2.19)

After calculating, we can further rewrite them as follows:



(R11 − 1)c1c2V̄1V̄2 + R21c2
2V̄

2
2 − c1c2V̄1V̄2

(
β1

d V̄1 +
β2

d V̄2

)
= 0,

R12c2
1V̄

2
1 + (R22 − 1)c1c2V̄1V̄2 − c1c2V̄1V̄2

(
β1

d V̄1 +
β2

d V̄2

)
= 0.

(2.20)

Subtracting the second equation in (2.20) from the first one leads to

R21c
2
2V̄

2
2 − R12c

2
1V̄

2
1 + (R11− R22)c1c2V̄1V̄2 = 0. (2.21)

BecausēV1 , 0, it can be transformed into

R21c
2
2(

V̄2

V̄1
)2 + (R11 − R22)c1c2(

V̄2

V̄1
) − R12c

2
1 = 0. (2.22)

Settingz= V̄2/V̄1, the equation (2.22) becomes the quadratic equation

a2z
2 + a1z+ a0 = 0, (2.23)

where

a0 = −R12c
2
1, a1 = (R11 − R22)c1c2, a2 = R21c

2
2.
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Note that ifǫ1 = 0 = ǫ2, thenR12 = 0 = R21 and hencea0 = 0 = a2, and thus, (2.23)

can not have a positive root and thus, (2.8) can not have a positive equilibrium. But

now, we have assumedǫ1 > 0 andǫ2 > 0, implyingR21 > 0 andR12 > 0. Hencea0 < 0

anda2 > 0, implying that the quadratic equation (2.23) has one positive root, denoting

it by k, corresponding to a non-zero solution (V̂1, V̂2) of (2.19) withV̄1, V̄2 having the

same sign.

SubstitutingV2 = kV1 into (2.19) gives



R11c1V̄1 + R21c2kV̄1 − c1V̄1

(
1+ β1

d V̄1 +
β2

d kV̄1

)
= 0,

R12c1V̄1 + R22c2kV̄1 − c2kV̄1

(
1+ β1

d V̄1 +
β2

d kV̄1

)
= 0.

from which, we obtain the following expression for̄V1:

V̄1 =

[
(R1 − 1)c1 + (R2 − 1)c2k

]
d

(c1 + kc2)(β1 + kβ2)
. (2.24)

Therefore,V̄1 > 0 provided that at least one of the three conditions stated inthe theorem

holds. The proof is completed.

So far, we proved the existence of the positive equilibriumĒ asǫ changes. Further-

more, we begin the analysis with the two boundary equilibriaE1 andE2 to investigate

the origin of the equilibriumĒ. Denoting vector field of the system (2.8) byg(X, ǫ), we

find thatg(Ei, 0) = 0, wherei = 1, 2. Then, if ∂g
∂X(Ei , 0) is invertible, we can establish

a unique equilibriumEi(ǫ) nearEi by implicit function theorem for smallǫ. So, let’s

verify our conjecture.

Proposition 2.5.4 Assume the equilibrium Ei exists (i.e.,Ri > 1). ∂g
∂X(Ei , 0) are invert-

ible for i = 1, 2, respectively.

Proof Firstly, we consider the situation forE1. The Jacobian matrix of linearized sys-
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tem (2.8) atE1 is given by

J =


J1(n) J2(n)

0 J4(n)

 .

where,

J1(n) =



−β1

(
α̂
α

)n
V̂1

1 0 0 · · · 0 −β1T̂1

β1

(
α̂
α

)n
V̂1

1 − 1
α̂

0 · · · 0 β1

(
α̂
α

)n
T̂1

0 1
α̂
− 1
α̂
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − 1
α̂

0

0 0 0 · · · 1
α̂

−c1


(n+1)×(n+1)

,

J2(n) =



0 0 · · · 0 −β2T̂1

0 0 · · · 0 0

0 0 · · · 0 0
...
...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 0


(n+1)×n

,

and

J4(n) =



− 1
α̂

0 · · · 0 β1

(
α̂
α

)n
T̂1

1
α̂
− 1
α̂
· · · 0 0

...
...
. . .

...
...

0 0 · · · − 1
α̂

0

0 0 · · · 1
α̂

−c2


n×n

.

Then, det(J) = det(J1(n)) det(J4(n)). This means that, if both det(J1(n)) and det(J4(n))

do not equal zero, the determinant ofJ at E1 is nonzero. Next, we will prove that

neither of det(J1(n)) and det(J4(n)) is zero.
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After adding the third column of det(J1(n)) to its second column and expanding the

new determinant along its third row, we achieve the following equation:

det(J(n)
1 ) =

(
− 1
α̂

)
det



−β1

(
α̂
α

)n
V̂1

1 0 0 · · · 0 −β1T̂1

β1

(
α̂
α

)n
V̂1

1 − 1
α̂

0 · · · 0 β1

(
α̂
α

)n
T̂1

0 1
α̂
− 1
α̂
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − 1
α̂

0

0 0 0 · · · 1
α̂

−c1


n×n

.

Arguing similarly as before, we have

det(J4(n)) =
(
− 1
α̂

)
det



− 1
α̂

0 · · · 0 β1

(
α̂
α

)n
T̂1

1
α̂
− 1
α̂
· · · 0 0

...
...
. . .

...
...

0 0 · · · − 1
α̂

0

0 0 · · · 1
α̂

−c2


(n−1)×(n−1)

.

Repeating these stepsn− 2 times, we obtain

det(J1(n)) =
(
− 1
α̂

)(n−2)
det



−d − β1V̂1
1 0 −β1T̂1

β1V̂1
1

(
α̂
α
)n − 1

α̂
β1T̂1

(
α̂
α

)n

0 1
α̂

−c1


= (−1)(n−1)β1V̂1c1

α̂(n−1)
, 0,

and

det(J4(n)) =
(
− 1
α̂

)(n−2)
det


− 1
α̂
β1T̂1

(
α̂
α

)n

1
α̂

−c2

 = (−1)(n−2)c2β1 − β1c1

β1α̂(n−1)
, 0.
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under the assumptionc1 , c2. Therefore, the determinant of Jacobian matrixJ is

nonzero atE1.

In the same way, we can demonstrate that det(J) , 0 at E2. Hence, ∂g
∂X(Ei , 0) are

invertible for all i = 1, 2.

When R2 < 1, only E1 exists in absence of mutation. Obviously, the positive

equilibrium Ē bifurcates from the equilibriumE1 when mutation happens. However,

the situation about the origin of̄E becomes more complicated whenR2 > 1. Next, we

will analyze the case when (2.17) holds (i.e.R1 > R2) to find out wetherĒ is equal to

E1(ǫ) or E2(ǫ).

Define that

P(ǫ) =


1− ǫ1 ǫ1

ǫ2 1− ǫ2

 ,

which is a mutation matrix and

P(ǫ) = I + Q(ǫ),

whereQ(ǫ) =


−ǫ1 ǫ1

ǫ2 −ǫ2

 is a matrix with positive off-diagonal entries. Each row of

Q sums to zero. Since ¯xn = x̄n−1 = . . . = x̄1 andȳn = ȳn−1 = . . . = ȳ1, then the rest of

equations when system (2.8) equals to zero except the first equation can be simplified

to

KV̄T̄ − BT̄∗ = 0, (2.25)

P(ǫ)BT̄∗ − MV̄ = 0, (2.26)
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where

K =


β1

(
α̂
α

)n
0

0 β2

(
α̂
α

)n

 , B =



1
α̂

0

0 1
α̂

 , M =


c1 0

0 c2

 .

SubstituteBT̄∗ = KV̄T̄ into (2.26) :

(M−1P(ǫ)K − 1

T̄
)V̄ = 0.

Denote

A(ǫ) =



β1(1−ǫ1)
c1

(
α̂
α

)n β2ǫ2
c2

(
α̂
α

)n

β1ǫ1
c1

(
α̂
α

)n β2(1−ǫ2)
c2

(
α̂
α

)n

 .

Then,
[
A(ǫ) − 1

T̄

]
V̄ = 0.

Finally, the problem about a positive solution become the existence of positive eigen-

value associated with positive eigenvector of matrixA(ǫ). Calculating

∣∣∣∣∣∣∣∣∣

β1(1−ǫ1)
c1

(
α̂
α

)n
− λ −β2ǫ2

c2

(
α̂
α

)n

−β1ǫ1
c1

(
α̂
α

)n β2(1−ǫ2)
c2

(
α̂
α

)n
− λ

∣∣∣∣∣∣∣∣∣
= 0, (2.27)

we obtain

λ1(ǫ) =
[
β1
c1

(1−ǫ1)+
β2
c2

(1−ǫ2)]+

√[
β1
c1

(1−ǫ1)+
β2
c2

(1−ǫ2)
]2

+4
β1β2
c1c2

(1−ǫ1−ǫ2)

2
(
α
α̂

)n ,
(2.28)

and

λ2(ǫ) =
[
β1
c1

(1−ǫ1)+
β2
c2

(1−ǫ2)]−

√[
β1
c1

(1−ǫ1)+
β2
c2

(1−ǫ2)
]2

+4
β1β2
c1c2

(1−ǫ1−ǫ2)

2
(
α
α̂

)n .
(2.29)

Because ofλ1(ǫ) > 0 > λ2(ǫ), the principle eigenvalueλ1(ǫ) owns a positive eigenvector

by Perron-Frobenius theorem. In addition, it is easy to find thatλ1(0) = T̂1 andλ2(0) =

T̂2. Thus,E2(ǫ) is nonpositive and the unique positive equilibrium̄E equalsE1(ǫ) when

R1 > R2 > 1.
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In the following, the average Lyapunov function method is utilized to analyze the

stability of the equilibriumĒ.

Theorem 2.5.5 WhenR1 > R2 > 1, Ē is globally asymptotically stable inH′ for all

ǫ ∈ [0, ǭ].

Proof Before the whole proof, we define a new set

Γ = Γ̄ × [0, ǫ0].

It is clear thatΓ is compact and forward invariant under system (2.8).

We will use the same Lyapunov function

L =T̂1
( T

T̂1
− ln

T

T̂1
− 1

)
+

(α
α̂

)n[ n∑

i=1

x̂1
i

( xi

x̂1
i

− ln
xi

x̂1
i

− 1
)
+ V̂1

1

( V

V̂1
1

− ln
V

V̂1
1

− 1
)
+

n∑

i=1

yi + V2

]
.

as before. CalculatedLdt along the trajectories of system (2.8)

dL
dt
= [ f (T) − f (T̂1)]

(
1− T̂1

T

)
+ β2V2(T̂

1 − T̂2) +
x̂1

1

α̂

(α
α̂

)n[
(n+ 2)− T̂1

T

−
V1Tx̂1

1

V̂1
1T̂1x1

− x1

x2
− x2

x3
− x3

x4
− . . . − xn−1

xn
−

V̂1
1 xn

V1x̂1
n

]
−

(α
α̂

)n V̂1
1

V1

(−ǫ1
α̂

xn

+
ǫ2

α̂
yn

)

= [ f (T) − f (T̂1)]
(
1− T̂1

T

)
−

x̂1
1

α̂

(α
α̂

)n[ T̂1

T
+

V1Tx̂1
1

V̂1T̂1x1

+
x1

x2
+

x2

x3

+
x3

x4
+ . . . +

xn−1

xn
+ (1− ǫ1)

V̂1
1 xn

V1x̂1
n

− (n+ 2)(1− ǫ1)
1

n+2
] − β2V2(T̂

2 − T̂1)

+
1
α̂

(n+ 2)[1− (1− ǫ1)
1

n+2 ](
α

α̂
)nx̂1

n −
1
α̂

(
α

α̂
)nǫ2yn
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≤ [ f (T) − f (T̂1)]
(
1− T̂1

T

)
−

x̂1
1

α̂

(α
α̂

)n[ T̂1

T
+

V1Tx̂1

V̂1
1T̂1x1

+
x1

x2
+

x2

x3

+
x3

x4
+ . . . +

xn−1

xn
+ (1− ǫ1)

V̂1
1 xn

V1x̂1
n

− (n+ 2)(1− ǫ1)
1

n+2

]
− β2V2(T̂

2 − T̂1)

+
1
α̂

(n+ 2)[1− (1− ǫ1)
1

n+2

](α
α̂

)n
x̂1

n

By Lemma 5 in [6], we can findǫa, η > 0 such thatV1(t)+V2(t) > η for all ǫ ∈ [0, ǫa]

and all sufficiently larget when (2.17) holds. Letγ = β2(T̂2 − T̂1), then

β2(T̂
2 − T̂1)V2 = γV2 ≥ γ(η − V1).

Then, the following inequality

dL
dt
≤ ( f (T) − f (T̂1))(1− T̂1

T
) −

x̂1
1

α̂

(α
α̂

)n[ T̂1

T
+

V1Tx̂1
1

V̂1
1T̂1x1

+
x1

x2
+

x2

x3

+
x3

x4
+ . . . +

xn−1

xn
+ (1− ǫ1)

V̂1
1 xn

V1x̂1
n

− (n+ 2)(1− ǫ1)
1

n+2

]
− γη + γV1

+
1
α̂

(n+ 2)[1− (1− ǫ1)
1

n+2 ]
(α
α̂

)n
x̂1

n.

would hold inΓ for all ǫ ∈ [0, ǫa].

Suppose a positive constantǫb can satisfy

1− ǫ1 ∈ (
1
2
, 1],

1
α̂

(n+ 2)[1− (1− ǫ1)
1

n+2 ]
(α
α̂

)n
x̂1

n − γη ≤ −
γη

4

for all ǫ ∈ [0, ǫb]. Denote ¯ǫ = min(ǫa, ǫb). Thus, for anyǫ ∈ [0, ǭ], we obtain that

dL
dt
≤ ( f (T) − f (T̂1))(1− T̂1

T
) −

x̂1
1

α̂

(α
α̂

)n[ T̂1

T
+

V1Tx̂1
1

V̂1
1T̂1x1

+
x1

x2
+

x2

x3

+
x3

x4
+ . . . +

xn−1

xn
+ (1− ǫ1)

V̂1
1 xn

V1x̂1
n

− (n+ 2)(1− ǫ1)
1

n+2

]
− γη

4
+ γV1
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A sufficiently largeN is chosen such that

1
α̂

(n+ 2)[1− (1+ ǫq11)
1

n+2 ]
(α
α̂

)n
x̂1

n − γη + γV1 < N,

for all solutions of (2.8) inΓ and allǫ ∈ (0, ǭ]. Meanwhile, letδ1 > 0 be such that

[ f (T) − f (T̂1)](1 − T̂1

T
) < −(N + 1),

for all T < δ1 and allǫ ∈ (0, ǭ]. It is easy to show that there exists aδ2 > 0 such that

− x̄1

α̂

(α
α̂

)n[ T̂1

T
+

V1Tx̂1
1

V̂1
1T̂1x1

+
x1

x2
+

x2

x3
+

x3

x4
+ . . . +

xn−1

xn

+ (1− ǫ1)
V̂1

1 xn

V1x̂1
n

− (n+ 2)(1+ ǫq11)
1

n+2

]
< −(N + 1)

for all xn

V1
< δ2 and allǫ ∈ (0, ǭ]. At last, we can find aδ3 > 0 to make−γη4 + γV1 < −γη8

for all V1 < δ3 and allǫ ∈ (0, ǭ]. Denote

Γ̂δ = {(T, x1, y1, x2, y2, . . . , xn, yn,V1,V2) ∈ H ∩ Γ|T ≥ δ1, xn ≥ δ2V1,V1 ≥ δ3}.

If (T, x1, y1, x2, y2, . . . , xn, yn,V1,V2) ∈ (H ∩ Γ) \ Γ̂δ and allǫ ∈ (0, ǭ], at least one of

following results holds:

(1) T < δ1, thendL
dt ≤ −(N + 1)+ N = −1;

(2) xn
V1
< δ2, thendL

dt ≤ −(N + 1)+ N = −1;

(3) V1 < δ3, thendL
dt ≤ −

γη

8 .

Therefore, for all (T, x1, y1, x2, y2, . . . , xn, yn,V1,V2) ∈ (H ∩ Γ) \ Γ̂δ and allǫ ∈ [0, ǭ],

there is
dL
dt
≤ 0.
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It is easy to see that nonnegative functionL(T, x1, y1, . . . , xn, yn,V1,V2, ǫ) is continuous

and bounded on setΓ̂δ × [0, ǭ] since thatT, x1, y1, . . . , xn, yn,V1,V2 are bounded away

from zero. Thus, it can reach a finite positive maximum:

ρ := max̂
Γδ×(0,ǭ]L(T, x1, y1, . . . , xn, yn,V1,V2, ǫ) > 0

Define a new set

Γδ ={(T, x1, y1, x2, y2, . . . , xn, yn,V1,V2) ∈ H ∩ Γ|L(T, x1, y1, . . . , xn, yn,

V1,V2, ǫ) ≤ ρ,∀ǫ ∈ [0, ǭ]}.

Then, we obtain that̂Γδ ⊂ Γδ ⊂ H ∩ Γ. That Γδ is closed can be implied by the

continuity ofL. Thus, it is compact inH.

In the following, we need to show that all solutions of (2.8) in H enter and remains

in Γδ for all large time. BecauseΓ is an absorbing set for allǫ ≥ 0, without loss of

generality, we need to prove this for all solutions inΓ.

Let Φ(t) = (T, x1, y1, x2, y2, . . . , xn, yn,V1,V2) ∈ H ∩ Γ be a solution of (2.8) for

some fixedǫ ∈ [0, ǭ]. It’s easy to verify that the inequalitydLdt ≤ 0 holds in setΓ \ Γ̂δ.

Because ofL ≥ 0, there exists at0 ≥ 0 such thatΦ(t0) ∈ Γ̂δ ⊂ Γδ. Next, we will prove

thatΦ(t) ∈ Γδ for all t ≥ t0. For the sake of contradiction, let’s assume that there is a

t1 > t0 such thatΦ(t1) < Γδ. Then there should be at2 ∈ [t0, t1) such thatΦ(t2) ∈ Γδ and

Φ(t) < Γδ for all t ∈ (t2, t1]. On the one hand, we have that

L(Φ(t2), ǫ) ≤ ρ < L(Φ(t1), ǫ)

by definition ofΓδ. But, on the other hand, for allt ∈ (t2, t1], we haveΦ(t) < Γδ and

consequentlyΦ(t) < Γ̂δ so that d
dtL(Φ(t), ǫ) = dL

dt < 0. This contradiction shows that
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Φ(t) ∈ Γδ for all t ≥ t0.

Let us define

H′ = {(T, x1, y1, x2, y2, . . . , xn, yn,V1, v2) ∈ R(2n+3)|T +∑
i xi + V1 > 0,

i = 1, 2, . . . , n} ⊃ H.

SinceE1(0) ∈ IntH′ is globally asymptotically stable inH′ for ǫ = 0 whenR1 > R2 > 1.

Then, the condition (H1) of Corollary 2.3 in the paper [5, 16] holds. As a result,̄E (or

E1(ǫ) ) is globally asymptotically stable inH′ for all ǫ ∈ [0, ǭ] if R1 > R2 > 1.

2.6 Discussion and Conclusion

In this chapter, we have studied the within-host age-structured model of two strain-

s. Different with the multiple-strains model in [6], we used an age-structured model

to study the coexistence between two strains of viruses. Fortunately, under some as-

sumptions, we can restore the information about viral infection age to new variables.

Then, our age-structured model were transformed into a stage model. To understand the

process that begins with viral attachment and end with the release of new viruses bet-

ter, we treated our stage model as a controlled system to gainthe corresponding basic

reproductive number. Comparing the numerical conclusion in [8], we proved the glob-

al stabilities of two boundary equilibria without the effects of mutations. Moreover, if

both boundary equilibria exist, we demonstrated that theirevolution would comply with

competitive exclusion principle that the stronger one willsurvive finally. Furthermore,

we discussed the existence and stability of the unique positive equilibrium when the

forward and backward mutations were considered. We explained how these two strains

coexist with the help of small mutation rates in mathematics. Meanwhile, the coexisted

equilibrium would be globally asymptotically stable if themutation is considered as a
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small perturbation.

As we all know, the mutation rates cannot be always fixed in theviral evolution.

Even there is a small change in environment, it can alter the direction of the evolution

of viruses. So, we are interested in the case when natural selection is considered. S-

ince mutation rates can change as times goes by, how would these changes affect the

viruses evolution? This could be also a very interesting problem as our future work.

Furthermore, if mutation rates exceed these critical values, will these stabilities change

or not? Although we found that it would not in our simulations, we cannot assert that

it is globally asymptotically stable with any values of mutations. The corresponding

mathematical demonstration is necessary.
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Chapter 3

Within-host viral evolution under

immune control

3.1 Introduction

In the last decades, scientists provided a simple system of differential equations [2, 3,

5, 17, 19]:

Ṫ = λ − dT − kTV,

İ = kTV− δI ,

V̇ = pI − cV,

(3.1)

to study the dynamics of human immunodeficiency virus, hepatitis C virus, hepatitis

B virus and cytomegalovirus infections in vivo. Target cells (T) that are susceptible to

infection are infected by viruses (V) with a constant ratek. They assumed that target

cells can be produced from a source at a rateλ and die at a rated. Productively infected

cells (I ) that are produced by infection produce new viruses at a ratep, and die at a rate

δ. The clearance rate of free viruses isc. This detail is showed in the Figure 3.1 [20].

In the meantime, however, immune system is activated to fightagainst viruses. De-

49
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Figure 3.1:Basic model of viral infection.

pending on the characteristics of the infection agents, themost effective mechanisms

are used by immune system. Both viral particles and infectedcells are the goals of

adaptive immunity. Antibodies offer the most important mechanism against viral par-

ticles; while the cytotoxic mechanisms play a most significant role against infected

cells. In this paper, we only discuss the cytotoxic mechanisms, particularly in cytotoxic

T-lymphocyte (CTL) response. A cell-mediated response to specific foreign antigen-

s associated with cells are provided by cytotoxic T-lymphocytes (CTLs), also called

killer T cells. As being activated by recognition of specificantigen on a cell, CTLs

release the cytotoxins perforin, granzymes, and granulysin. Apoptosis can be induced

in two ways: one is through the action of perforin; the other way is via the cell-surface

interactions between T cells and infected cells.

We incorporate CTL response into a basic model of virus infection and investi-

gate its effect on viral evolution. Usually, people treat the parameters as constants and

analyze the stabilities of corresponding equilibria in population dynamics. However,

viruses evolve to adapt the defense from hosts in nature. In the paper of Perelson and

et al. [12], the viral burst size is chosen as viral fitness. Considering the competition

between resident and mutant strains, we define the fitness of mutants based on analysis

about the local stability of the mutant-free equilibrium inour model. Then, the viral
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evolution will be explored in trait space in this chapter. Itmeans that a trait is selected as

the evolutionary strategy of each strain. Although virusesmutate quickly and random-

ly, only suitable strains can escape immune response and survive finally [18, 14, 16, 4].

So, strategies that they choose can be vitally important fortheir destinies. The two

strategies: the viral production rate and the virulence, will be took as variables in the

fitness function and studied, respectively.

An increment of the value of one strategy may cause variationof the other. To

explore the relation of strategies, we consider two trade-offs. The first one is between

virion production rate and mortality of infected cells, which is taken as viral virulence.

Nutrient from host cells consumed by virus is used to replicate itself, so the death rate

of infected cells will be assumed to increase as viral production increasing. There are

a number of reasons to expect that a virus utilizes the resources of its host in order to

produce viral proteins in the process of replication. Because of the loss of cell resources

and possible cytotoxic effects of viral proteins, the death rate of cells is likely increased

[21, 13, 15]. We take this mortality as production-dependent. The trade-off between the

infected cell death rate and the disease transmission rate is also considered. According

to previous researches [8, 1, 6, 22], an increase in transmission rate can only evolve

with a parallel increase in virulence, which is assumed to increase with virulence and

eventually converge towards an upper limit. Due to lack of accurate experimental data,

we only study the general cases instead of some specific functions. By the classical

adaptive dynamical approach, (Gertiz, Kisdi et al., [11, 10]), we have obtained some

information on how the CTL response shape these two types of trade-offs and affect the

viral evolution.

The rest of this chapter is as follows. In Section 3.2, we firstpresent the mathe-

matical model, and then analyze the local stability of the mutant free equilibrium and

define the fitness of mutant viruses. In Section 3.3, the trade-off involving the infected
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cell death rate and the disease transmission rate is studied. In Section 3.4, we discuss

the trade-off between the virion production rate and the mortality of infected cells. In

addition to the theoretical results, examples are given forboth cases. In the end, some

discussions on the biological implications of the mathematical results are given; more-

over, some related problems about future work on this topic are discussed.

3.2 The fitness

We use bilinear function to replace Holling Type II functionin the model of Nowak and

Wodarzs’ [22] and obtain the following one strain within-host model:



ẋ = γ − dx− βxv,

ẏ = βxv− ay− pyz,

v̇ = ky− uv,

ż = cyz− bz,

(3.2)

where the variables and parameters are explained as below:

x : Abundance of uninfected cells;

y : Abundance of infected cells;

v : Abundance of free viruses;

z : Abundance of CTLs;

γ : Birth rate of healthy cells;

d : Natural death rate of healthy cell;

c : A stimulant rate of CTLs;
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p : A killing rate of infected cells;

β : Infection rate;

a : Death rate of infected cell;

k : Virus production rate;

u : Virus clearance rate;

b : Death rate of CTL.

This model always has an infection-free equilibriumE0 =
(
γ

d , 0, 0, 0
)
. It also has

an immune-free equilibrium

E =
(au
kβ
,

kγβ − aud
kaβ

,
kγβ − aud

uaβ
, 0

)
.

If the immune mediated basic reproduction number

R1 =
γβk
aud
− bβk

duc
> 1,

a unique positive equilibrium̄E = (x̄, ȳ, v̄, z̄) exists, where

x̄ = γ

d+βv̄, ȳ = b
c , v̄ = k

uȳ, z̄= 1
p

(
k
uβx̄− a

)
, (3.3)

We have demonstrated in Appendix B.1 that this positive equilibrium Ē of system (3.2)

is locally asymptotic stable under the conditionR1 =
γβk
aud −

bβk
duc > 1.
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Next, assumed that a mutant strain is introduced, and accordingly the system (3.2)

is naturally modified to the following two strain model



ẋ = γ − dx− βxv1 − β̃xv2,

ẏ1 = βxv1 − ay1 − py1z,

v̇1 = ky1 − uv1,

ż = (cy1 + c̃y2)z− bz,

ẏ2 = β̃xv2 − ãy2 − p̃y2z,

v̇2 = k̃y2 − ũv2.

(3.4)

A mutant-free equilibrium of the system (3.4) is:

Ẽ =
( γ

d+ βṽ1
,

b
c
,

k
u

ỹ1,
1
p

(kβ
u

x̃− a
)
, 0, 0

)
.

We have proved that this equilibrium is locally asymptotic stable if det(J22) > 0 and

it becomes unstable ifdet(J22) < 0 (see details in Appendix B.2). This implies that

the mutant strain can invade successfully ifdet(J22) < 0. As such, it is natural and

reasonable to define−det(J22) as the fitness of mutant strain viruses:

W , −det(J22)

= k̃β̃x̃− (ã+ p̃z̃)ũ

= k̃β̃ γ

d+βṽ1
− ũ

[
ã+ p̃

p

(
kβ
u x̃− a

)]

= k̃β̃ γ

d+βṽ1
− ũ

[
ã+ p̃

p

(
kβγc

duc+kβb − a
)]

=
(
k̃β̃u− p̃

pkβũ
)
γc

duc+kβb + ũ
(

p̃
pa− ã

)
.

(3.5)

From above, it is easy to see that the value of the fitness depends on the difference

between two basic reproductive numbers of resident strain and mutant strain with CTL

response. If the mutants have bigger reproductive number, the value of fitness is posi-
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tive, which means that the mutant strain can invade successfully in the future. Different

with the fitness in [12], the competitiveness of both strainscan be reflect in our fitness.

3.3 Trade off betweena and k

In this section, the trade-off between the viral production rate and the mortality of

infected cells is studied. Because viruses need to consume nutrient from host cells

to replicate themselves, the replication will increase thedeath rate of infected cells.

Meanwhile, possible cytotoxic effect of their proteins can also raise the mortality [7,

3, 12]. Thus, the mortality of infected cells is taken as production-dependenta(k). So,

different strategies will have corresponding values of mortality. For convenience, we

assume the rest of parameters for the mutant strain to be the same as the quantities for

the resident strain. Therefore, the fitness function about this trade-off is written as

W(k, k̃) = (k̃− k) βγuc
duc+kβb + u[a(k) − a(k̃)]. (3.6)

Firstly, when the fitness gradient vanishes:

∂W

∂k̃

∣∣∣∣∣
k̃=k
=

βγuc
duc+ βbk

− ua′(k) = 0.

The solutions of this equation define as evolutionary singular points. The above equa-

tion can be written as the following ordinary differential equation:

a′(k) =
βγc

duc+ βbk
. (3.7)

The solutions of this differential equation are defined as critical functionsacrit(k). Thus,

the trade-off function is tangential to one of the critical functions at a corresponding
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evolutionary singular point. The numerical solutions of (3.7) by giving a range of

initial values ofk are shown in the Figure 3.2a. Furthermore, we vary the stimulation

ratec to observe the changes of one critical function in the Figure3.2b. It is found
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Figure 3.2:Figures of critical functions. (a). A family of critical functions with different
initial values. (b). Critical functions for different values ofc. In figure (b), a less concave down
(concave) critical functionacrit (k) can be caused by a greater stimulation ratec.

that the greater the stimulation ratec is, the less concave down (concave) the critical

functionacrit(k) is in the Figure 3.2b. Moreover, the stimulation ratec can also govern

the shape of the trade-off function by adjusting the critical functions.

Supposek∗ is an evolutionary singular point. If

∂2W

∂k̃2

∣∣∣∣∣
k̃=k=k∗

= −ua′′(k∗) < 0,

it is evolutionary stable. Obviously, this singular point is evolutionary stable when the

trade-off functiona(k) is all concave up (convex) or locally concave up atk∗.
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The condition for convergence stable strategy is as below:

d
dk

(∂W
∂k̃

∣∣∣∣∣
k̃=k

)∣∣∣∣∣
k=k∗
=
∂2W

∂k∂k̃

∣∣∣∣∣
k̃=k=k∗

+
∂2W

∂k̃2

∣∣∣∣∣
k̃=k=k∗

= − β2bγuc
(duc+ βbk∗)2

− ua
′′
(k∗) < 0.

Sincea′′crit(k
∗) = − β2bγc

(duc+βbk∗)2 < 0, the above condition is equivalent to

a′′crit(k
∗) < ua′′(k∗). (3.8)

So, if the trade-off function is concave up or locally concave up atk∗, then it is a

convergence stable strategy.

At k∗, if the trade-off function is all convex (concave up) or partial convex atk∗, this

evolutionary singular point is a continuously stable strategy, which is both evolution-

ary and convergence stable. If only (3.8) holds, this evolutionary singular point is an

evolutionary branching point. Otherwise, it is a repellor when neither of them holds.

Next, two particular types of trade-off functions are introduced to discuss this prob-

lem, with a hope to gain more detailed information about these strategies.

3.3.1 Exponential function

Denotea(k) = deφk, whereφ is a scaling factor to reflect the sensitivity of infected

cells to virus production. To find an evolutionary singular point, we solve the following

equation aboutk:
∂W

∂k̃

∣∣∣∣∣
k̃=k
=

βγcu
duc+ kβb

− udφeφk = 0. (3.9)

Suppose thatk∗ is a solution of (3.9), then

βγc
dφ

e−φk
∗ − βbk∗ − duc= 0. (3.10)
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Figure 3.3:Exponential function. Whereφ = 0.043,d = 0.01.

Let us discuss the existence ofk∗. Denote

f (k) =
βγc
dφ

e−φk − βbk− duc.

Since f (k) is a decreasing function ofk, k∗ is a positive solution of (3.9) if

f (0) =
βγc
dφ
− duc≥ 0.

So, the equation (3.9) has a unique positive solutionk∗ whenφ ≤ βγ

d2u. Then, the evolu-

tionary and convergence stability of this strategy is analyzed.

Because that both
∂2W

∂k̃2

∣∣∣∣∣
k̃=k=k∗

= −udφ2eφk
∗
< 0

and
d
dk

(∂W
∂k̃

∣∣∣∣∣
k̃=k

)∣∣∣∣∣
k=k∗
= − β

2γcub
duc+ k∗βb

− udφ2eφk
∗
< 0

hold, the viral production ratek∗ is both the evolutionary and convergence stable, i.e.,

a continuously stable strategy.
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Figure 3.4:Pairwise invasion plots. Only locating in the positive regions, the strategies can
invade successfully. Since a vertical line throughk∗ can entirely lie within the white regions, it
is a continuously stable strategy.

3.3.2 Power function

In this part, we utilize power functions of the form

a(k) = αkn + d, n ≥ 1 . . .

to describe the relationship between the virus production rate and the mortality of in-

fected cells.
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Figure 3.5:Power functions.Whereα = 0.01,d = 0.01.

n = 1

By solving the equation
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∂W

∂k̃

∣∣∣∣∣
k̃=k
=

βγcu
duc+ kβb

− uα = 0 (3.11)

for k, we obtain that the unique positive root:

k∗ =
(βγ − αdu)c
βbα

.

under the conditionβγ − αdu> 0. Then, the cross derivative and the second derivative

with respective tõk of the fitness are calculated, respectively, atk∗ as

d
dk

(∂W
∂k̃

∣∣∣∣∣
k̃=k

)∣∣∣∣∣
k=k∗
= − β2γcub

(duc+ k∗βb)2
= −buα2

γc
< 0,

and
∂2W

∂k̃2

∣∣∣∣∣
k̃=k=k∗

= 0.

According to the conclusion in [10],k∗ is an evolutionary stable strategy. Since it

also satisfied the condition for convergence stable strategy, k∗ is a continuously stable

strategy.

(a)α = 0.1 (b)α = 0.01

Figure 3.6: Two pairwise invasion plots whenn = 1. Since the mutants fitness is a lin-
ear function of the mutants strategy,k∗ is always an ESS according to the conclusion in [10].
According to our observation, the location ofk∗ moves to right asα decreases.
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n = 2

In such a case, the equation as below:

∂W

∂k̃

∣∣∣∣∣
k̃=k
=

βγcu
duc+ kβb

− 2uαk = 0,

is simplified to

2bβαk2 + αdu2ck− βγuc= 0. (3.12)

This quadratic equation has a unique positive solution:

k∗ =
−du2cα +

√
(du2cα)2 + 2β2bαγuc

2bβα
.

Then, we discuss the evolutionary and convergence stability of this singular point. S-

ince
d
dk

(∂W
∂k̃

∣∣∣∣∣
k̃=k

)∣∣∣∣∣
k=k∗
= − β2γcub

(duc+ k∗βb)2
− 2αuk∗ < 0,

and
∂2W

∂k̃2

∣∣∣∣∣
k̃=k=k∗

= −2αuk∗ < 0,

this singular pointk∗ is a continuously stable strategy for viruses (see the Figure 3.7).

(a)α = 0.01 (b) α = 0.001

Figure 3.7:Two pairwise invasion plots whenn = 2. Both of them are continuously stable
strategies. Comparing the figure (a) with (b), the location of the evolutionary singular point can
be shifted by varying the value ofα, which is opposite to the case ofn = 1.
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3.4 Trade off betweenβ and a

The trade-off between the disease transmission rate and the viral virulence is studied

in this section. The larger death rate of infected cell can result in increase of the trans-

mission rate. The other parameters are assumed to be the samefor two strains. So, the

fitness takes the from:

W(a, ã) =
(
β(ã) − β(a)

) γcku
duc+ kβb

− u(ã− a).

An evolutionary singular pointa∗ is the solution of the following equation:

∂W
∂ã

∣∣∣∣∣
ã=a=a∗

= β′(a∗)
γcku

duc+ kbβ(a∗)
− u = 0,

which is equivalent to

β′(a∗) =
duc+ kbβ(a∗)

γck
.

The second differential equation illustrates that the trade-off function is tangential to its

solution, i.e., the critical functionβcrit(a), at the pointa∗. The numerical solutions of

(3.7) are simulated by giving a range of initial values ofa in the Figure 3.8a. Further-

more, there are five curves of critical functions with different stimulation ratesc in the

Figure 3.8b, respectively. It is shown that the convexity ofa critical functionβcrit(a) can

be affected by the stimulation ratec. Thus, the stimulation ratec can also shape this

trade-off function through corresponding critical functions.

Next, we focus on the biologically evolutionary and convergence stability of the

pointa∗. When the following inequality

∂2W
∂ã2

∣∣∣∣∣
ã=a=a∗

= β′′(a∗)
γcku

duc+ kbβ(a∗)
< 0.
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Figure 3.8:Figures of critical functions. (a). A family of critical functions. (b). The critical
functions with different initial values of the variablec. From (b), the greater stimulation ratec
can cause the less concave up (convex) critical function.

holds, the pointa∗ is evolutionary stable. So, it is demonstrated that the evolutionary

singular pointa∗ is an evolutionary stable strategy if the trade-off functionβ(a) is all

concave down (concave) or locally concave down at this point.

A convergence stable strategya∗ should satisfy the following condition:

d
da

(
∂W
∂ã

∣∣∣∣
ã=a

)∣∣∣∣
a=a∗

= ∂2W
∂a∂ã

∣∣∣∣
ã=a=a∗

+ ∂
2W
∂ã2

∣∣∣∣∣
ã=a=a∗

= −(β′(a∗))2 γck2bu
(duc+kbβ(a∗))2 + β

′′(a∗) γcku
duc+kbβ(a∗) < 0.

from which we obtain

β′′(a∗) < β′′crit(a
∗), (3.13)

whereβ′′crit(a
∗) = b

kc2γ2 (duc+ kbβ(a∗)). Thus, we can conclude that the singular pointa∗

is a continuously stable strategy when the trade-off functionβ(a) is all concave down

(concave) or locally concave down at this point. Otherwise,there could be two possi-

bilities: if the critical function is less concave down thanthe trade-off function ata∗, it
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is an evolutionary branching point; or it is a repellor.

An example.

We assume that the trade-off function is a power function [8]:

β(a) = man, n = 1, 2, ...

wherem is an arbitrary positive constant. Evolutionary singular strategies are the solu-
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Figure 3.9:Specific function.Wherem= 0.5.

tions of the following equation:

∂W
∂ã

∣∣∣∣∣
ã=a
= mnan−1 γkcu

duc+ kmban
− u = 0,

which can be transformed to:

kbm· an −mnγck · an−1 + duc= 0. (3.14)

Since the existence of the solutions of the equation (3.14) is too complicated to discuss

whenn ≥ 5, a positive solutiona∗ is assumed to exist under some special conditions.

Let us study evolutionary and convergence stability of sucha strategy.

Consider the two conditions as below:

d
da

(
∂W
∂ã

∣∣∣∣
ã=a

)∣∣∣∣
a=a∗

= mn(n− 1)(a∗)n−2 ckuγ
duc+kmb(a∗)n − (mn(a∗)n−1)2 bck2uγ

(duc+kmb(a∗)n)2 ,

=
ckuγmn(a∗)n−2

(duc+kmb(a∗)n)2 [(n− 1)duc− kmb(a∗)n]
(3.15)
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and
∂2W
∂ã2

∣∣∣∣∣
ã=a=a∗

= mn(n− 1)(a∗)n−2 ckuγ
duc+ kmb(a∗)n

. (3.16)

The expressions (3.15) and (3.16) show that the singular point a∗ is a continuously

stable strategy ifn < 1. Whenn ≥ 1, the sign of the function (3.15) depends on the

quantity of (n−1)duc−kmb(a∗)n. Because ofkmb(a∗)n = mnckγ(a∗)n−1−duc, the value

of the functionnduc−mckγ(a∗)n−1 can also decide the sign of the function (3.15).

In the sequel, we choose two values forn to demonstrate our results.

Forn = 1
2, the equation (3.14) is rewritten as

kbm· a1
2 − 1

2
mγck · a− 1

2 + duc= 0.

This equation has a unique positive solution fora:

a∗ =
[−duc+

√
(duc)2 + 2mγckkbm

2kbm

]2
.

Substituting thisa∗ into (3.15) and (3.16), the singular pointa∗ can be proved to be a

continuously stable strategy (see the Figure 3.10).
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Figure 3.10:A pairwise invasion plot whenn = 1
2. Based on our theories,a∗ is a continuously

stable strategy.



Chapter 3. Within-host viral evolution under immune control 66

Whenn = 2, the equation (3.14) takes the form:

kbm· a2 − 2mγck · a+ duc= 0,

which has two positive roots:

a∗1 =
mnckγ +

√
(mckγ)2 − kmbduc

kbm
,

and

a∗2 =
mnckγ −

√
(mckγ)2 − kmbduc

kbm
,

whenm≥ dub
ckγ .

In this case, neither root can be evolutionary stable. Afterputtinga∗i , i = 1, 2, into

the condition (3.15), respectively, we demonstrate that the roota∗1 is convergence stable,

but the other roota∗2 is not. Therefore, the singular pointa∗1 is an evolutionary branching

point (see the Figure 3.11a) and the pointa∗2 is a repellor (see the Figure 3.11b).

(a)a∗1 (b) a∗2

Figure 3.11:Two pairwise invasion plots whenn = 2. (a). We find that there is a ”+” above
the diagonal on the left and below the diagonal on the right ofa∗1. Also, a vertical line througha∗1
lies entirely within a region marked ”+”. a∗1 is an evolutionary branching point. (b). A vertical
line througha∗2 lies entirely within a region marked ”+”, so it is a repellor.
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3.5 Conclusion and discussion

In this chapter, viral evolution was studied from two types of trade-offs: one is between

viral production rate and virulence; the other is between virulence and transmission

rate. We chose the critical value of the local stability of the mutant free equilibrium,

which was obtained from a within-host model with CTL response, as the fitness to

measure the invasion of mutant strain viruses. Then, the effects of the two trade-off

functions were discussed through the fitness, respectively. According to the adaptive

dynamical approach, evolutionary singular strategies were found from the equations

when the gradients of fitness is set to zero. To explore their evolutionary and conver-

gent stability, the geometrical properties of the two trade-off functions were studied by

comparing corresponding critical functions at evolutionary singular points, respective-

ly.

In the first trade-off, viruses choose their production rate as the evolutionary strat-

egy. With the effect of CTL response, the existence of the evolutionary branching was

demonstrated in a large portion of the parameter space, where the local concavity of the

trade-off is more than1
u times that of the critical functions. This result does illustrate the

diversity of virus strains. Too concave up (convex) trade-off results in an evolutionary

stable strategy, whereas too concave down (concave) trade-off results in a repellor.

For the second trade-off, the viral evolutionary strategy was represented by the vi-

ral virulence, i.e., the death rate of infected cells. The CTL response still played a

significant role in viral evolution through shaping the trade-off. In this case, too con-

cave down (concave) trade-off results in an evolutionary stable strategy; otherwise it is

a repellor. We excluded the existence of the evolutionary branching in the examples.

Therefore, neither a too high nor too low degree of virulencewould be favored by the

virus evolution. Due to the choice of our simple functions inthe examples, the exis-

tence of evolutionary branching was not observed. However,in a between-host model
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with superinfection [6], the authors utilize the logistic growth and a specific trade-off

function.

We point out that our model can be improved many ways. For example, instead of

the bilinear function, the Holling Type II function can be utilized to describe immune

response. Meanwhile, the relationship between viral production rate and disease trans-

mission rate can be researched as a new trade-off in a nested model. According to the

paper [9], higher rate of production implies higher clearance rate. Thus, the trade-off

between viral production rate and its corresponding clearance is also an interesting top-

ic for us. Furthermore, the impact caused by the cost of body immune response should

be taken into account when considering the host-virus co-evolution.
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Chapter 4

The effects of superinfection and cost

of immunity on host-parasite

co-evolution

4.1 Introduction

It is well known that the relationship between hosts and parasites is extremely con-

voluted [5, 14]. Parasites can be divided into two types: thetraditional one is called

macroparasite (typically protozoa and helminths); the other one is called microparasite,

which is typically smaller, such as viruses and bacteria, and can be directly transmitted

between hosts of the same species or even different species [4]. Although parasites

harm hosts and possibly cause death, they live on or in the bodies of the hosts and are

dependent on them. Host-parasite co-evolution is still a ubiquitous phenomenon of po-

tential importance to all living organisms, including humans. Many medically relevant

diseases (e.g. malaria, AIDS and influenza) are caused by co-evolving parasites. There-

fore detailed understanding of the co-evolutionary adaptation between parasite ”attack

72
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strategy” and host ”defence strategy” (i.e. immunologicalresponse), may result in the

development of novel medications and vaccines and thus helpsave human lives [24].

In this chapter, we are interested in the effect of superinfection and the cost caused

by immune response on this co-evolution. Complex immune systems are developed

in vertebrate animals that can target parasites through contact with body fluids. Host-

s are protected from infection with layered defenses of increasing specificity by their

immune systems. So, the benefits of such defences to a host areobvious. However,

according to the argument in the paper [18], the immunological up-regulation response

would cause costs in other nutrient-demanding processes such as growth, reproduction,

and thermoregulation. Thus, the production rate of an infected individual is a decreas-

ing function of the corresponding disease recovery rate. Toexplore the impact of this

phenomenon on host evolution, Day and Burns [8] provided an epidemiologic model:



dS1
dt = bsS1 + bI (c)I1 − µS1 + cI1 − βS1I1 − βS1I2,

dI1
dt = βS1I1 + βS1I2 − (u+ ν + c)I1,

dS2
dt = bsS2 + bI (ĉ)I2 − µS2 + cI1 − βS2I1 − βS2I2,

dI2
dt = βS2I1 + βS2I2 − (u+ ν + ĉ)I2,

(4.1)

where the degree of immunological up-regulation is represented byc (ĉ), the infec-

tion clearance rate of a resident (mutant) host. They assumed that the birth rate by

an infected host,bI (c), is a decreasing function ofc. It imposes the fecundity cost of

up-regulation (this formulation assumes an instantaneousswitch in resource allocation

once a host is infected).

However, single infection is very rare in our real world. Hosts are always attacked

by many different parasites simultaneously. So, multiple defence mechanisms would

also evolve to recognize and neutralize these pathogens [1]. Thus, the infection can

not be so simple as demonstrated by the above mathematical model. The influence of
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parasites competition on host evolution attracts our attention. We develop an epidemi-

ological model with superinfection. Superinfection represents an intermediate level of

complexity in the sense that a more virulent parasite of infection can ”take over” a host

that is already infected with a less virulent strain, but thehost will, in effect, harbour

only one strain of infection at any one time [3, 21, 22, 2]. We utilize this mathemati-

cal model with superinfection to analyze the effect of the cost caused by immunologic

up-regulation on host-parasite co-evolution.

The rest of this chapter is organized as follows. In Section 4.2, we introduce mutant

hosts to a basic superinfection model and explore their invasion in two cases, monomor-

phic case and dimorphic case. In Section 4.3, we discuses twopossible infections of

mutant hosts, one is by parasite 1; the other is by parasite 2.The local stabilities of their

corresponding equilibria are analyzed to obtain fitness. Westudy the evolutionary and

convergence stabilities of evolutionary singular strategies through utilizing the adaptive

dynamical approaches [13, 11, 23] in two cases, respectively. We also focus on how

the convexities of two trade-offs affect the evolutionary and convergence stabilities. In

Section 4.4, a dimorphic case is studied. We define a new fitness to measure the inva-

sion of mutant hosts with parasite 1 and 2, and obtain the conditions for evolutionary

stability. Two trade-offs are specified by two simple quadratic functions to explore the

conditions for isoclinic stability and absolute convergence stability. We show some nu-

merical conclusions, respectively. Meanwhile, the value of superinfection rate is varied

to observe how it affects the conditions for isoclinic stability and absolute convergence

stability, respectively. In Section 4.5, some discussionson the biological implications

of the mathematical results are provided. Moreover,some related problems for future

work on this topic are briefly discussed.
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4.2 A two-parasite model within a single host type

Our resident model is based on a classical SIR framework. We assume that the resident

hosts can be infected by two strains of the parasites. The population of susceptible hosts

is denoted byS, and the population infected by the parasitei is denoted byI i, where

i = 1, 2.

The susceptible host can be produced at rateb and die at rateµ. For convenience,

the two types of infections are assumed to have the same transmission rateβ and death

rate δ caused by infection. Moreover, the parasites 1 are assumed to have stronger

virulence than parasites 2. So, individuals infected by type 2 parasite can be re-infected

(superinfection) by contacting the type 1 parasites and enter theI1 class with rateϕ.

With these assumptions, the model takes the form:



dS
dt = bS+ f (c1)I1 + g(c2)I2 + c1I1 + c2I2 − µS − βS(I1 + I2),

dI1
dt = βS I1 − (µ + δ + c1)I1 + βϕI2I1,

dI2
dt = βS I2 − (µ + δ + c2)I2 − βϕI2I1.

(4.2)

In this model, the parametersc1 andc2, which are the recovery rates of resident host,

represent the degrees of immunological up-regulation. These two parameters are con-

sidered as the traits for each type of infection, respectively. We assume that the birth

rates by infected resident hosts,f (c1) andg(c2), are decreasing functions of the param-

etersc1 andc2 because of the fecundity cost of up-regulation.

Our model is based on the model (4.1) in whichS either grow or decay exponen-

tially. As in (4.1), (4.2) always has the trivial equilibrium E0 = (0, 0, 0) instead of an

infection-free equilibrium. Also, we find that there may be other three equilibria when

b > µ. We will discuss their existences below:

Firstly, whenb > µ andµ + δ > f (c1), there is an equilibrium with infection by
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parasite 1 only:

E2 = (S, I1, I2) =
(µ + δ + c1

β
,

(b− µ)(µ + δ + c1)
β(µ + δ − f (c1)

, 0
)
.

Similarly, whenb > µ andµ + δ > g(c2), the model (4.2) has another equilibrium with

infection by parasite 2 only:

E1 = (S, I1, I2) =
(µ + δ + c2

β
, 0,

(b− µ)(µ + δ + c2)
β(µ + δ − g(c2))

)
.

Now, we explore the possibility of coexistence equilibriumÊ. Directly solving for

this equilibrium with non-zero components give:

Ê = (Ŝ, Î1, Î2)

=
(

(µ+δ)(c1−c2+ f (c1)−g(c2))+c2 f (c1)−c1g(c2)
β[ϕ(b−µ)+ f (c1)−g(c2)] ,

βŜ−(µ+δ+c2)
βϕ

,
(µ+δ+c1)−βŜ

βϕ

)
.

By the formulas forŜ, Î1 and Î2, we know that

• if

c1 − c2 > 0, b > µ (4.3)

and

g(c2) − f (c1) > max{c1 − c2, ϕ(b− µ)} > 0, (4.4)

Ŝ is positive;

• if

f (c1)(c1 − c2) + ϕ(b− µ)c1 < [(c1 − c2) + ϕ(µ − b)](µ + δ), (4.5)

Î1 is positive;
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• if

g(c2)(c1 − c2) + ϕ(b− µ)c2 > [(c1 − c2) + ϕ(µ − b)](µ + δ), (4.6)

Î2 is positive.

In appendix C.1, we show that the coexistence equilibriumÊ is locally asymptotic

stable if the conditions (4.3)-(4.6) and

c1 − c2

ϕ
− (b− µ) > 0 (4.7)

hold.

As illustrated in Day [6, 7], the conditionc1 > c2 reflects that the virulence of

parasite 1 is stronger than that of parasite 2, which is in agreement with our hypothesis.

Our goal is to study the host-parasite co-evolution under the effect of superinfection

and immune response, so we assume that the mutant hosts emerge because of some

reasons such as drug resistance, or radiation, etc in the following sections. Furthermore,

the discussion is divided into two cases: (i) the mutant hosts can only be infected by

one of these two types of parasites; and (ii) the mutant hostscan be infected by both

two types parasites.

4.3 Monomorphic cases

According to the paper by Gandon et al [10], mutant hosts may obtain some new charac-

ters which can help them immune to parasites. This suggests ascenario which assumes

that a mutant host can only be infected by one parasite strain. Then, there are two pos-

sible infections in mutant hosts. Furthermore, the infected mutant hosts are assumed

not to infect resident hosts.
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4.3.1 Mutant hosts with the parasite1

At first, we study the case that only parasites 1 can infect mutant hosts. As an natural

extension of model (4.1) and (4.2), our new model with the above scenario incorporated

is given by the following system of differential equations:



dS1
dt = bS1 + f (c1)I11 + g(c2)I12 + c1I11 + c2I12 − µS1 − βS1(I11 + I12 + I21),

dI11
dt = βS1(I11 + I21) − (µ + δ + c1)I11 + βϕI12I11,

dI12
dt = βS1I12 − (µ + δ + c2)I12 − βϕI12I11,

dS2
dt = bS2 + f (c1h)I21 + c1hI21 − βS2(I21 + I11) − µS2,

dI21
dt = βS2(I11 + I21) − (µ + δ + c1h)I21,

(4.8)

where the meanings of the variables and parameters are in Table 4.1.

Notation Meaning
S1 Abundance of susceptible residents
S2 Abundance of susceptible mutants
I11 Abundance of residents infected by the parasites 1
I12 Abundance of residents infected by the parasites 2
I21 Abundance of mutants infected by the parasites 1
I22 Abundance of mutants infected by the parasites 2
b Birth rate of a host
µ Background mortality rate of a host
β Infection rate of a host
δ Disease induced death rate per host
ϕ Superinfection rate per host

c1 (c1h) Recovery rate of a resident (mutant) host infected by parasite 1
c2 (c2h) Recovery rate of a resident (or mutant) host infected by parasite 2

Table 4.1:Descriptions of the variables and parameters in section 4.3.

To explore the survivability of such a mutant host that can only be infected by strain

1 parasite, firstly we need to define its fitness. To this end, weconsider the stability of
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the equilibrium of mutant hosts free for this system (4.8):

Ẽ =
(
S̃1, Ĩ11, Ĩ12, S̃2, Ĩ21

)

=
(

(µ+δ)(c1−c2+ f (c1)−g(c2))+c2 f (c1)−c1g(c2)
β[ϕ(b−µ)+ f (c1)−g(c2)] ,

βS̃1−(µ+δ+c2)
βϕ

,
(µ+δ+c1)−βS̃1

βϕ
, 0, 0

)
.

Based on the criteria for the local stability ofẼ, the fitness of the mutant hosts that can

be infected by parasite 1 is defined as:

F(c1h, c1, c2) = (b− µ)(µ + δ + c1h) +
f (c1h)−µ−δ

ϕ(b−µ)+ f (c1)−g(c2) [
1
ϕ
(c1 − c2)(µ + δ − g(c2))

−(b− µ)(µ + δ + c2)]
(4.9)

(see detail in Appendix C.2).

Since the parasite 2 has no effect on mutant hosts, we takec2 as a positive constant

value in this case. Denoteg(c2) = ḡ, whereḡ is a positive constant. Due to the im-

munological up-regulation would decrease the fecundity ofhosts,ḡ should be less than

b. So, the fitness (4.9) can be simplified to

F(c1h, c1) = (b− µ)(µ + δ + c1h) +
f (c1h)−µ−δ

ϕ(b−µ)+ f (c1)−ḡ[ 1
ϕ
(c1 − c2)(µ + δ − ḡ)

−(b− µ)(µ + δ + c2)]
(4.10)

In the following, we utilize the adaptive dynamical methods[12] to examine wether

this fitness functions can be optimized.

At first, we need to find singular points, i.e. the solutions when the fitness gradient

[
∂F(c1h,c1)
∂c1h

]∣∣∣∣
c1h=c1

= b− µ + f ′(c1)
ϕ(b−µ)+ f (c1)−ḡ[ 1

ϕ
(c1 − c2)(µ + δ − ḡ) − (b− µ)(µ + δ + c2)],

(4.11)

is equals to zero. Assume thatc∗1 is a positive solution of (4.11), that is,c∗1 is a singular
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point. It follows from (4.11) that

f ′(c∗1) =
(µ − b)[ϕ(b− µ) + f (c∗1) − ḡ]

1
ϕ
(c∗1 − c2)(µ + δ − ḡ) − (b− µ)(µ + δ + c2)

. (4.12)

Associating with (4.12) is the following ordinary differential equation

f ′(c1) =
(µ − b)[ϕ(b− µ) + f (c1) − ḡ]

1
ϕ
(c1 − c2)(µ + δ − ḡ) − (b− µ)(µ + δ + c2)

. (4.13)

A solutions of which is referred to as a critical function with respect to the fitness

function F(c1h, c1), and is denoted byfcrit(c1). Thus, the trade-off f (c1) should be the

slope of fcrit(c1) at c∗1. Then, the critical functionfcrit(c1) can help us better know the

trade-off f (c1).

Evolutionary stability analysis

Now, we study the evolutionary stability of this singular point c∗1. Following the adap-

tive dynamical approach [12], its evolutionary stability can be decided by the sign of

E1 =
∂2F(c1h,c1)
∂c2

1h

∣∣∣∣
c1h=c1=c∗1

= F̃2 f ′′(c∗1), (4.14)

where

F̃2 =
1
ϕ

(c∗1−c2)(µ+δ−ḡ)−(b−µ)(µ+δ+c2)

ϕ(b−µ)+ f (c∗1)−ḡ .

According to the equation (4.12), the formula ofF̃2 can be rewritten as

F̃2 =
µ − b
f ′(c∗1)

. (4.15)

Because of the conditions (4.3) and (4.5), it is easy to show that F̃2 is positive. So, the

sign ofE1 only depends on the sign off ′′(c∗1). If f ′′(c∗1) < 0 (i.e. f (c1) is concave down
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at c∗1), thenE1 < 0 and thus, the singular pointc∗1 is an evolutionary stable strategy.

Convergence stability analysis

Firstly, let us calculate the cross-derivativeM1 of the fitnessF:

M1 =
∂2F(c1h,c1)
∂c1∂c1h

∣∣∣∣
c1h=c1=c∗1

= F̃12[ f ′(c∗1)]
2 + F̃11 f ′(c∗1),

where

F̃12 =
−F̃2

ϕ(b− µ) + f (c∗1) − ḡ
, F̃11 =

1
ϕ
(µ + δ − ḡ)

ϕ(b− µ) + f (c∗1) − ḡ
.

For the convergence stability ofc∗1, we need to consider

d
dc1

(
∂F(c1h,c1)
∂c1

∣∣∣∣
c1h=c1

)∣∣∣∣
c1=c∗1

= E1 +M1

= F̃2 f ′′(c∗1) + F̃12[ f ′(c∗1)]
2 + F̃11 f ′(c∗1).

(4.16)

Noticing that

f ′′crit(c
∗
1) =

(µ − b) − 1
ϕ
(u+ δ − ḡ)

1
ϕ
(c∗1 − c2)(u+ δ − ḡ) − (b− µ)(µ + δ + c2)

,

the right hand side of (4.16) can actually be expressed as

E1 +M1 = F̃2[ f ′′(c∗1) − f ′′crit(c
∗
1)].

Therefore, if

f ′′(c∗1) < f ′′crit(c
∗
1), (4.17)

thenE1+M1 < 0. Thus, according to the conclusion of [13],c∗1 is a convergence stable

strategy if the trade-off f (c1) is more concave down than the critical functionfcrit(c1) at

the singular pointc∗1. It means thatc1 would evolve toc∗1 from its neighbourhood in this
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case.

From the above analysis, we conclude that if the trade-off f (c1) is locally concave

down atc∗1 and more concave down than the critical functionfcrit(c1) at c∗1, this evolu-

tionary singular pointc∗1 is a continuously stable strategy, which is both evolutionary

and convergence stable; otherwise, it is a repellor. If the trade-off is not locally con-

cave down atc∗1 but (4.17) still holds,c∗1 should be an evolutionary branching point. In

addition, if the trade-off f (c1) is all concave down or locally concave down atc∗1 but

the inequality (4.17) is violated, the problem will be so complicated that we will not

discuss here.

An example

To demonstrate our results obtained above, we choose a specific trade-off function. To

make life easy, we choose the following simple concave down polynomial of degree 2:

f (c1) = b− k1c
2
1, (4.18)

wherek1 > 0, see (4.1) for its graph forc1 > 0.

Figure 4.1:Trade off 1: whereb = 0.059883,k1 = 0.075. f (c1) is a concave down function.
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Substitute the expression off (c1) into the fitness function (4.10):

F(c1h, c1) = (b− µ)(µ + δ + c1h) +
b−k1c2

1h−µ−δ
ϕ(b−µ)+b−k1c2

1−ḡ
[ 1
ϕ
(c1 − c2)(µ + δ − ḡ)

−(b− µ)(µ + δ + c2)].

According to previous theoretical conclusion, the singular point should be evolutionary

stable if it exists. The convergence stability will need further discussion by applying

our previous result.

To find the evolutionary singular point(s), we need to solve the following equation

resulting from setting the fitness gradients
[
∂F
∂c1h

]
c1h=c1

to zero:

b− µ − 2k1c1

ϕ(b−µ)+b−k1c2
1−ḡ

[ 1
ϕ
(c1 − c2)(µ + δ − ḡ) − (b− µ)(µ + δ + c2)] = 0, (4.19)

Equation (4.19) can be simplified into a quadratic equation:

a12c
2
1 + a11c1 + a10 = 0, (4.20)

where

a12 = k1[(b− µ) + 2
ϕ
(µ + δ − ḡ)],

a11 = −2k1[
c2
ϕ

(µ + δ − ḡ) + (b− µ)(µ + δ + c2)],

a10 = −[ϕ(b− µ) + (b− ḡ)](b− µ).

Note that

∆1 := 4k2
1[

c2
ϕ

(µ + δ − ḡ) + (b− µ)(µ + δ + c2)]2

+4k1[(b− µ) + 2
ϕ
(µ + δ − ḡ)][ϕ(b− µ) + (b− ḡ)](b− µ).

Thus, if 0< ḡ < min{b, ϕ2(b− µ) + (µ + δ)}, thena12 > 0, a11 < 0, a10 < 0 and∆1 > 0,
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and consequently, (4.20) has a unique positive root which isgiven by

c∗1 =
k1[

c2
ϕ

(µ + δ − ḡ) + (b− µ)(µ + δ + c2)] +
√
∆1

k1[(b− µ) + 2
ϕ
(µ + δ − ḡ)]

,

In this situation, the impact of the cost of immunological up-regulationk1 and the su-

perinfection rateϕ on c∗1 can be reflected by the above formula. For example, fixingϕ

or k1 at some value, Figure 4.2 gives some plots ofc∗1 as function ofk1 or ϕ. Therefore,
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Figure 4.2:Dependence of the value of evolutionary singular point on the cost of immuno-
logical up-regulation k1 and the superinfection rateϕ , whereδ = 0.095,b = 0.6, c2 = 0.3,
andḡ = 0.15. From two figures, bothc∗1(k1) andc∗2(k2) are decreasing functions in first quad-
rant. In (a) and (b), the four curves are obtained by varying the value ofµ, respectively. In (a),
the curves are moved up whenµ increases. However, the movement in (b) are in two direction
and more complicated than it in (a).
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it is straightforward to observe that the value ofc∗1 keeps decreasing until reaches a cer-

tain value when the variable is increasing in the Figures 4.2a and 4.2b respectively. In

Figure 4.2a, the curve is moving up as the mortality of infected hosts increasing. When

the level of superinfection maintains in some value, this issignificant. The evolutionary

increases in the degree of up-regulation in host will be thereby selected by evolutionary

increases inµ by parasite. However, it would become more complicated whenthe level

of superinfection is also changing.

If (b− µ) + 2
ϕ
(µ + δ − ḡ) = 0, i.e. a12 = 0, then (4.20) has no positive root because

a11 < 0 anda10 < 0.

If b > ḡ > ϕ

2(b − µ) + (µ + δ), thenh(c1) = a12c2
1 + a11c1 + a10 is concave down

because ofa12 < 0. Taking∆1 as a function of ¯g, i.e.∆1(ḡ), we can find that its quadratic

coefficient is positive. Meanwhile, straightforward verifications show that

∆1(0) > 0, ∆′1(0) < 0; ∆1

(ϕ
2

(b− µ) + (µ + δ)
)
> 0, ∆′1

(ϕ
2

(b− µ) + (µ + δ)
)
< 0,

and

∆1

(
(µ + δ) +

ϕ

c2
(b− µ)(µ + δ − c2)

)
< 0. (4.21)

According to the properties of quadratic function, we can infer that

(µ + δ) +
ϕ

c2
(b− µ)(µ + δ − c2) >

ϕ

2
(b− µ) + (µ + δ) > 0. (4.22)

There could not have a positive root when ¯g ≤ (µ+δ)+ ϕc2
(b−µ)(µ+δ−c2), i.e. a11 ≤ 0.

If b > ḡ > (µ + δ) + ϕc2
(b− µ)(µ + δ − c2), we can havea11 > 0 anda12 < 0 due to

(4.22). Through calculation, we obtain∆′1(b) > 0. So,

1. if ∆1(b) < 0, there is no real root;

2. if ∆1(b) = 0, there is no real root either;
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3. if ∆1(b) > 0, there are three possible situations:

(1) when∆1(ḡ) < 0, we cannot have any positive roots;

(2) when∆1(ḡ) = 0, we can only have a positive root

c∗∗∗1 =
[ c2
ϕ

(µ + δ − ḡ) + (b− µ)(µ + δ + c2)]

[(b− µ) + 2
ϕ
(µ + δ − ḡ)]

;

(3) when∆1(ḡ) > 0, we can have two positive rootsc∗1 and

c∗∗1 =
k1[

c2
ϕ

(µ + δ − ḡ) + (b− µ)(µ + δ + c2)] −
√
∆1

k1[(b− µ) + 2
ϕ
(µ + δ − ḡ)]

.

Since the existence conditions are extremely complicated,it is not easy to find a set

of values of parameters to meet all of them for us. Thus, we only show above theoretical

conclusions.

4.3.2 Mutant hosts with the parasite2

Now, we study the case that only parasites 2 can infect mutanthosts. With this assump-

tion, the model building on (4.1) and (4.2) is given by the following system of ordinary

differential equations:



dS1
dt = bS1 + f (c1)I11 + g(c2)I12 + c1I11 + c2I12 − µS1 − βS1(I11 + I12 + I22),

dI11
dt = βS1I11 − (µ + δ + c1)I11 + βϕI12I11,

dI12
dt = βS1(I12 + I22) − (µ + δ + c2)I12 − βϕI12I11,

dS2
dt = bS2 + g(c2h)I22 + c2hI22 − βS2(I22 + I12) − µS2,

dI22
dt = βS2(I12 + I22) − (µ + δ + c2h)I22,

(4.23)

where the meanings of the variables and parameters are explained in Table 4.1.

Since the parasite 1 has no effect on mutant hosts in this case, we takec1 as a
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positive constant. Denotef (c1) = f̄ , where f̄ is a positive constant. Due to that fact

that the immunological up-regulation would decrease the fecundity of hosts,f̄ < b will

be assumed in the sequel.

By similar consideration to that in Section 4.3.1, we can obtain the fitness of mutant

hosts with parasite 2:

G(c2h, c2) = (b− µ)(µ + δ + c2h) +
g(c2h)−µ−δ

ϕ(b−µ)+ f̄−g(c2)
[ 1
ϕ
(c1 − c2)( f̄ − µ − δ)

+(b− µ)(µ + δ + c1)].
(4.24)

The gradient of fitness is

[
∂G(c2h,c2)
∂c2h

]∣∣∣∣
c2h=c2

= b− µ + g′(c2)
ϕ(b−µ)+ f̄−g(c2)

[ 1
ϕ
(c1 − c2)( f̄ − µ − δ) + (b− µ)(µ + δ + c1)].

(4.25)

The evolutionary singular points are then determined by setting the gradient to zero

and solving the resulting equation forc2. We assume thatc∗2 is such a positive singular

point. From (4.25), we then have

g′(c∗2) =
(µ − b)[ϕ(b− µ) + f̄ − g(c∗2)]

1
ϕ
(c1 − c∗2)( f̄ − µ − δ) + (b− µ)(µ + δ + c1)

. (4.26)

Associated to (4.26) is the following ordinary differential equation

g′(c2) =
(µ − b)[ϕ(b− µ) + f̄ − g(c2)]

1
ϕ
(c1 − c2)( f̄ − µ − δ) + (b− µ)(µ + δ + c1)

, (4.27)

a solution of which is referred to as a critical function, andis denoted bygcrit(c2). Thus,

the trade-off should a slope of the critical functiongcrit(c2) at atc∗2. Then, the trade-off

g(c2) can be studied through the critical functiongcrit(c2).

Next, we discuss the evolutionary stability of the singularpointc∗2.
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Evolutionary and convergence stabilities analysis

Let

E2 =
∂2G(c2h,c2)
∂c2

2h

∣∣∣∣
c2h=c2=c∗2

= G̃2g′′(c∗2), (4.28)

where

G̃2 =
1
ϕ

(c∗1−c∗2)( f̄−µ−δ)+(b−µ)(µ+δ+c∗1)

ϕ(b−µ)+ f̄−g(c∗2)

=
µ−b

g′(c∗2) .

Due to the condition (4.3),̃G2 is positive. Thus, the sign ofg′′(c∗2) fully determines the

signs ofE2. If g′′(c∗2) < 0, i.e.g(·) is locally concave down atc∗2, E2 is negative, thenc∗2

is an evolutionary stable strategy.

For the convergence stability ofc∗2, we need to consider

d
dc2

(
∂G(c2h,c2)
∂c1

∣∣∣∣
c2h=c2

)∣∣∣∣
c2=c∗2

= E2 +M2

= G̃2g′′(c∗2) + G̃12[g′(c∗2)]
2 + G̃11g′(c∗2)

= G̃2[g′′(c∗2) − g′′crit(c
∗
2)].

(4.29)

Therefore, ifg′′(c∗2) < g′′crit(c
∗
2), c∗2 is a convergence stable strategy if the trade-off g(c2)

is more concave down than the critical functiongcrit(c2) at the singular pointc∗2. It

means thatc2 would evolve toc∗2 from its neighbourhood in this case.

Actually, both monomorphic cases are based on a assumption that one parasite can

evolve but the other can not. This is a very ideal assumption.Definitely, we can explore

the host-parasite co-evolution when mutant hosts can be either infected by parasite 1

or by parasite 2 which both evolve. The corresponding analysis can be implemented

similarly as the case in [23]. Thus, a pair of singular point is a solution, at which

both fitness gradients vanish. The discussion about its evolutionary and convergence

stability could be our future project. Alternatively, we will study the case that mutant

hosts can be infected by both parasite 1 and 2 in next section.
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4.4 Dimorphic case

In this section, we assume that both parasites can infect mutant hostswithout superin-

fection. We also assume the infected mutant hosts will not infect resident hosts. With

these assumptions, we arrive at the following model along the line of (4.1) and (4.2):



dS1
dt = bS1 + f (c1)I11 + g(c2)I12 + c1I11 + c2I12 − µS1 − βS1(I11 + I12 + I21 + I22),

dI11
dt = βS1(I11 + I21) − (µ + δ + c1)I11 + βϕI12I11,

dI12
dt = βS1(I12 + I22) − (µ + δ + c2)I12 − βϕI12I11,

dS2
dt = bS2 + f (c1h)I21 + g(c2h)I22 + c1hI21 + c2hI22 − βS2(I21 + I11 + I12 + I22) − µS2,

dI21
dt = βS2(I11 + I21) − (µ + δ + c1h)I21,

dI22
dt = βS2(I12 + I22) − (µ + δ + c2h)I22,

(4.30)

where the meanings of the variables and parameters are in Table 4.1. Trade-offs f (c1)

andg(c2) are still decreasing function.

The mutant host-free equilibrium of (4.30)

E3 =
(
S̃∗1, Ĩ ∗11, Ĩ ∗12, S̃

∗
2, Ĩ ∗21, Ĩ ∗22

)

=
(

(µ+δ)(c1−c2+ f (c1)−g(c2))+c2 f (c1)−c1g(c2)
β[ϕ(b−µ)+ f (c1)−g(c2)] ,

βS̃1−(µ+δ+c2)
βϕ

,
(µ+δ+c1)−βS̃1

βϕ
, 0, 0, 0

)
,

exists under conditions (4.3)-(4.7). And the quantities ofpositive components are the

same as before.

The local stability of this mutant host-free equilibriumE3 is determined by the

eigenvalues of the Jacobian matrix:

J∗ =


J11

0

J12
∗

J22
∗


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at the equilibriumE3, where

J∗22 =



b− µ − β(Ĩ ∗11 + Ĩ ∗12) f (c1h) + c1h g(c2h) + c2h

βĨ ∗11 −(µ + δ + c1h) 0

βĨ ∗12 0 −(µ + δ + c2h)


.

andJ11 is exactly the same as in Appendix C.2. When the conditions (4.3)-(4.7) hold,

the local stability of the equilibriumE3 will depend on the signs of the eigenvalues of

the matrixJ22
∗. So, we only need to analyze the eigenvalues ofJ22

∗.

Calculating the characteristic equation gives

|λI − J∗2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (b− µ) + 1
ϕ
(c1 − c2) −c1h − f (c1h) −g(c2h) − c2h

− 1
ϕ
[βŜ − (µ + δ + c2)] λ + (µ + δ + c1h) 0

− 1
ϕ
[(µ + δ + c1) − βS̃] 0 λ + (µ + δ + c2h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= − 1
ϕ
[(µ + δ + c1) − βS̃]

∣∣∣∣∣∣∣∣∣

−c1h − f (c1h) −g(c2h) − c2h

λ + (µ + δ + c1h) 0

∣∣∣∣∣∣∣∣∣

+[λ + (µ + δ + c2h)]

∣∣∣∣∣∣∣∣∣

λ − (b− µ) + 1
ϕ
(c1 − c2) −c1h − f (c1h)

− 1
ϕ
[βŜ − (µ + δ + c2)] λ + (µ + δ + c1h)

∣∣∣∣∣∣∣∣∣
.

Hence, the characteristic equation ofJ22
∗ is

A0λ
3 + A1λ

2 + A2λ + A3 = 0, (4.31)
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where

A0 = 1 > 0,

A1 = (µ + δ + c2h) + (µ + δ + c1h) − (b− µ) + 1
ϕ
(c1 − c2) > 0,

A2 = − 1
ϕ
[(µ + δ + c1) − βS̃]

(
g(c2h) + c2h

)
+

[ 1
ϕ
(c1 − c2) − (b− µ)](µ + δ + c1h)

− 1
ϕ
[βS̃ − (µ + δ + c2)]

(
f (c1h) + c1h

)
+ (µ + δ + c1h)(µ + δ + c2h)

+
[ 1
ϕ
(c1 − c2) − (b− µ)](µ + δ + c2h),

and

A3 = − 1
ϕ
[(µ + δ + c1) − βS̃]

(
g(c2h) + c2h

)
(µ + δ + c1h)

+
[ 1
ϕ
(c1 − c2) − (b− µ)](µ + δ + c1h)(µ + δ + c2h)

− 1
ϕ
[βS̃ − (µ + δ + c2)]

(
f (c1h) + c1h

)
(µ + δ + c2h).

Corresponding to the cubic polynomial, there are the following three quantities needed

for applying the Ruth-Hurwitz criteria:

∆1 = 1 > 0,

∆2 = A2A1 − A3

= [(µ + δ + c2h) + 1
ϕ
(c1 − c2) − (b− µ)]

{
(µ + δ + c1h)(µ + δ + c2h)

+(µ + δ + c2h)
[ 1
ϕ
(c1 − c2) − (b− µ)] − 1

ϕ
[(µ + δ + c1) − βS̃]

(
g(c2h) + c2h

)}

[(µ + δ + c1h) + 1
ϕ
(c1 − c2) − (b− µ)]

{
(µ + δ + c1h)(µ + δ + c2h)

+(µ + δ + c1h)
[ 1
ϕ
(c1 − c2) − (b− µ)] − 1

ϕ
[βS̃ − (µ + δ + c2)]

(
f (c1h) + c1h

)}
,

∆3 = A3∆2.

The necessary and sufficient conditions, under which all the roots of the polynomial

(4.31) have negative real parts, are given by∆2 > 0 and∆3 > 0 according to the well-

known Hurwitz criterion. So, the mutant host-free equilibrium E3 would lose its local

stability so that the mutant hosts have a chance to invade resident hosts successfully if

either∆2 > 0 or∆3 > 0 is violated. Moreover, the sign change of∆2 = 0 results in Hopf
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bifurcation aroundE3 for system (4.30) whileA3 > 0 (see Theorem 2 in [25]). However,

it is difficult for us to construct a fitness on the corresponding periodic solution of such

a Hopf bifurcation. So, we have to exclude this case.

The above observation suggests that−A3 is a reasonable measurement of the fitness

for the mutant hosts with two parasites. This means that the mutant hosts can invade

resident hosts successfully only if−A3 > 0. As such, we choose the following fitness

functionT(c1h, cch, c1, c2):

T(c1h, cch, c1, c2)

= 1
ϕ

[
(µ + δ + c1) − βS̃

](
g(c2h) + c2h

)(
µ + δ + c1h

)

−[ 1
ϕ
(c1 − c2) − (b− µ)](µ + δ + c1h

)(
µ + δ + c2h

)

+ 1
ϕ

[
βS̃ − (µ + δ + c2)

](
f (c1h) + c1h

)(
µ + δ + c2h

)
.

(4.32)

To proceed further, we calculate the derivatives ofT(c1h, cch, c1, c2) as below:

[
∂T
∂c1h

]∣∣∣∣
(c1h,c2h)=(c1,c2)

= 1
ϕ

[
(µ + δ + c1) − βS̃(c1, c2)

](
g(c2) + c2

) − [ 1
ϕ
(c1 − c2) − (b− µ)](u+ δ + c2)

+ 1
ϕ

[
βS̃(c1, c2) − (µ + δ + c2)

](
f ′(c1) + 1

)(
µ + δ + c2

)

(4.33)

and

[
∂T
∂c2h

]∣∣∣∣
(c1,c2h)=(c1,c2)

= 1
ϕ

[
(µ + δ + c1) − βS̃(c1, c2)

](
g′(c2) + 1

)(
µ + δ + c1

)

−[ 1
ϕ
(c1 − c2) − (b− µ)](µ + δ + c2

)
+ 1
ϕ
[βS̃(c1, c2) − (µ + δ + c2)]

(
f (c1) + c1

)
.

(4.34)
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The evolutionary singular points are determined by

[
∂T
∂c1h

]∣∣∣∣
(c1h,c2h)=(c1,c2)

= 0,
[
∂T
∂c2h

]∣∣∣∣
(c1h,c2h)=(c1,c2)

= 0.
(4.35)

If ( c̃∗1, c̃
∗
2) is a solution of (4.35), (˜c∗1, f (c̃∗1)) and (c̃∗2, g(c̃∗2)) are called an evolutionarily

singular species pair.

Although we can obtain the expressions off ′(c1) andg′(c2) by transforming the

two equations of (4.35), the slopesf ′(c1) andg′(c2) only give us partial information

of f (c1) andg(c2) nearc̃∗1 andc̃∗2. Thus, the critical functions cannot be constructed in

dimorphic case.

According to the paper of Kisdi [15], if this singular pair cannot be invaded by

mutant hosts with either parasites, it is locally evolutionary stable. This can be implied

by the following two conditions:

∂2T(c1h, c2h, c1, c2)

∂c2
1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)
< 0, (4.36)

and
∂2T(c1h, c2h, c1, c2)

∂c2
2h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)
< 0. (4.37)

In dimorphic case, the convergence stability become very difficult and may be af-

fected by the relative speed of evolution in the two hosts [9,19, 17].

Firstly, we identify conditions for ’isoclinic stability’. Assuming that the evolution

of parasite 2 is prevented by keepingc2 = c̃∗2. Then, by the generalization of the
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monomorphic case,c1 would evolve to ˜c∗1 from its neighbourhood if

d
dc1

(
∂T(c1h,c2h,c1,c2)

∂c1

∣∣∣∣
c1h=c1

)∣∣∣∣
c1=c̃∗1

=
∂2T(c1h,c2h,c1,c2)

∂c2
1h

∣∣∣∣
(c1h, c2h c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)
+
∂2T(c1h,c2h,c2,c2)

∂c1∂c1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)

< 0.

(4.38)

Similarly,c1 is set toc̃∗1, c2 would evolve to ˜c∗2 if

d
dc1

(
∂T(c1h,c2h,c1,c2)

∂c1

∣∣∣∣
c2h=c2

)∣∣∣∣
c2=c̃∗2

=
∂2T(c1h,c2h,c1,c2)

∂c2
2h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)
+
∂2T(c1h,c2h,c1,c2)

∂c2∂c2h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)

< 0.
(4.39)

However, ’isoclinic stability’ is neither necessary nor sufficient condition for conver-

gence stability if both parasites evolve [19, 20].

Next, we discuss the conditions for absolutely convergencestability [20]. In this

case, we assume two traits of parasites in mutant hosts are independent. Suppose the

most extreme path is constructed in the neighbourhood of (˜c∗1, c̃
∗
2), which brings the

system as far away from (˜c∗1, c̃
∗
2) as possible. Then, the singularity is necessarily con-

vergence stable because no trajectory can diverge. Therefore, its convergence is termed

absolute convergence [16]. If

(
∂2T(c1h,c2h,c1,c2)

∂c2
1h

+
∂2T(c1h,c2h,c2,c2)

∂c1∂c1h

)(
∂2T(c1h,c2h,c1,c2)

∂c2
2h

+
∂2T(c1h,c2h,c1,c2)

∂c2∂c2h

)

>

∣∣∣∣∣∣
∂2T(c1h,c2h,c1,c2)

∂c2∂c1h

∂2T(c1h,c2h,c1,c2)
∂c1∂c2h

∣∣∣∣∣∣
(4.40)

holds at the singularity and (4.38), (4.39) are satisfied, then (c̃∗1, c̃
∗
2) absolute conver-

gence stable.

Next, these approaches are utilizing to obtain more detailsin this case.
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Evolutionary stability

Let us analyze the condition of evolutionary stability. Note that

∂2T(c1h,c2h,c1,c2)
∂c2

1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)

=
[
βS̃(c̃∗1, c̃

∗
2) − (µ + δ + c̃∗2)

]
f ′′(c̃∗1).

(4.41)

Under the conditions (4.3), (4.4), (4.5), and (4.6),S̃(c̃∗1, c̃
∗
2) − (µ + δ + c̃∗2) is positive.

Thus, the condition (4.36) can be met at ˜c∗1 when trade-off f (c1) is concave down or

locally concave down at ˜c∗1.

Similarly, under the conditions (4.3), (4.4), (4.5), and (4.6), there is

∂2T(c1h,c2h,c1,c2)
∂c2

1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2 c̃∗1, c̃

∗
2)

=
[
(µ + δ + c̃∗1) − βS̃(c̃∗1, c̃

∗
2)
]
g′′(c̃∗2)

< 0

(4.42)

if g(c2) is concave down or locally concave down at ˜c∗2.

Therefore, this evolutionary singularity is anESS if both trade-offs are concave

down or locally concave down at (˜c∗1, c̃
∗
2)

To conveniently demonstrate the above general results, we use two simple quadratic

functions f (c1) = b − k∗1c
2
1 andg(c2) = b − k∗2c

2
2, wherek∗1 < k∗2, for the two trade-

offs respectively. Obviously, the corresponding evolutionary singularity is a locally

ESS in this case. Next, we discuss the conditions for isoclinic stability and absolute

convergence respectively.
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Isoclinic stability

Substituting the specified trade-offs into the conditions of isoclinic stability, we obtain

d
dc1

(
∂T(c1h,c2h,c1,c2)

∂c1

∣∣∣∣
c1h=c1

)∣∣∣∣
c1=c̃∗1

=
[
βS̃(c̃∗1, c̃

∗
2) − (µ + δ + c̃∗2)

]
f ′′(c̃∗1) +

1
ϕ

(
1− β ∂S̃

∂c1

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)

)(
g(c̃∗2) + c̃∗2

)

− 1
ϕ

(
f ′(c̃∗1) + 1

)(
µ + δ + c̃∗2

)
β ∂S̃
∂c1

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)
,

(4.43)

and

d
dc1

(
∂T(c1h,c2h,c1,c2)

∂c1

∣∣∣∣
c1h=c1

)∣∣∣∣
c1=c̃∗1

=
[
(µ + δ + c̃∗1) − βS̃(c̃∗1, c̃

∗
2)
]
g′′(c̃∗2) − 1

ϕ
(g′(c̃∗2) + 1)β ∂S̃

∂c2

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)

+ 1
ϕ

(
β ∂S̃
∂c2

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)
− 1

)(
f (c̃∗1) + c̃∗1

)
,

(4.44)

where

f ′(c̃∗1) = −2k∗1c̃
∗
1, f ′′(c̃∗1) = −2k∗1,

g′(c̃∗2) = −2k∗2c̃
∗
2, g′′(c̃∗2) = −2k∗2,

β
∂S̃(c1, c2)
∂c1

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)
=

(µ+δ)[1+ f ′(c̃∗1)]+c̃∗2 f ′(c̃∗1)−g(c̃∗2)
ϕ(b−µ)+ f (c̃∗1)−g(c̃∗2)

− (µ+δ)[c̃∗1−c̃∗2+ f (c̃∗1)−g(c̃∗2)]+c̃∗2 f (c̃∗1)−c̃∗1g(c̃∗2)[
ϕ(b−µ)+ f (c̃∗1)−g(c̃∗2)

]2 f ′(c̃∗1)

β
∂S̃(c1, c2)
∂c2

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)
=

(µ+δ)[−1−g′(c̃∗2)]+ f (c̃∗1)−c̃∗1g′(c̃∗2)
ϕ(b−µ)+ f (c̃∗1)−g(c̃∗2)

− (µ+δ)[c̃∗1−c̃∗2+ f (c̃∗1)−g(c̃∗2)]+c̃∗2 f (c̃∗1)+c̃∗1g(c̃∗2)[
ϕ(b−µ)+ f (c̃∗1)−g(c̃∗2)

]2 g′(c̃∗2).

According to previous discussion, (˜c∗1, c̃
∗
2) is isoclinic stable when both (4.43) and (4.44)

are negative.

Since the two functions are difficult to be simplified, we can only give some nu-

merical results in Figure 4.3. After fixing the values of parameters, we show the corre-

sponding singularity in Figures 4.3a and 4.3c, which are with different superinfection
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rate respectively. In Figure 4.3b and 4.3d, the two conditions for isoclinic stability can

be met in shadow areas. By comparing Figure 4.3b and Figure 4.3d, we find that the

shape of the shadowed area could be changed by varying the superinfection rate.

Absolute convergence stability

For this pair of quadratic trade-off functions, we have

∂2T(c1h,c2h,c1,c2)
∂c2∂c1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)

= − 1
ϕ
β ∂S̃
∂c2

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)

(
g(c̃∗2) + c̃∗2

)
+ 1
ϕ

(
µ + δ + c̃∗2

)

+ 1
ϕ

(
β ∂S̃
∂c2

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)
− 1

)(
f ′(c̃∗1) + 1

)(
µ + δ + c̃∗2

)
(4.45)

and
∂2T(c1h,c2h,c1,c2)

∂c2∂c1h

∣∣∣∣
(c1h, c2h, c1, c2)=(c̃∗1, c̃

∗
2, c̃
∗
1, c̃
∗
2)

= 1
ϕ
β ∂S̃
∂c1

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)

(
f (c̃∗1) + c̃∗1

)
− 1
ϕ

(
µ + δ + c̃∗1

)

+ 1
ϕ

(
1− β ∂S̃

∂c1

∣∣∣∣
(c1,c2)=(c̃∗1,c̃

∗
2)

)(
g′(c̃∗2) + 1

)(
µ + δ + c̃∗1

)
.

(4.46)

Although we choose quadratic functions to simplify the problem, the second conditions

for absolute stability is still very complicated. To show that this condition is feasible, a

numerical result is showed in Figure 4.4. We only plot the first quadrant, because the

data for simulation in other regions has no biological meaning. The three conditions

(4.38), (4.39) and (4.40) can be met in the two shadows. We findthat this condition is

very sensitive to value of each parameter.

4.5 Discussion

In this chapter, we studied the host-parasite co-evolutionon population level. Super-

infection and a trade-off involving production rate by infected hosts and their recovery

rate were considered in the basicS IRmodel with two parasites and one host strain. We
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(a)ϕ = 0.05 (b) ϕ = 0.05

(c) ϕ = 0.5 (d) ϕ = 0.5

Figure 4.3:Singularity and Isoclinic stability : whenδ = 0.95, b = 10, β = 0.4, µ = 0.2,
k1 = 0.5, andk2 = 0.8. We only observe the regions in first quadrant. In figure (a) and (b),
we plot the solutions when (4.33) and (4.34) are equal to zero. In figures (c) and (d), the red
solid curves represents function (4.43) and the blue dash curves represent function (4.44). In
shadows, both conditions (4.38) and (4.39) for isoclinic stability can be met. We adjust the
value of superinfection ratesϕ to observe its effects. When superinfection rate increase, the
values ofc̃∗1 andc̃∗2 also increase. The shadow area has significant change when superinfection
rate changes.
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Figure 4.4:Absolute stability: whenδ = 0.3, ϕ = 10, b = 2, β = 0.4, µ = 0.2, k1 = 0.1,
andk2 = 0.8. The red dot curve represents function (4.43) and the blue dash curve represents
function (4.44), too. The golden solid line stands for the formula in inequality (4.40). In two
shadows, the conditions for absolute stability can be satisfied.

obtained a positive equilibrium that parasite 1 and 2 can coexist in resident hosts and

proved its local stability. Furthermore, we introduced mutant hosts into our model and

discused its invasion in monomorphic and dimorphic case, respectively.

In monomorphic case, the critical value that can decide the local stabilities of the

mutant host-free equilibria was define as the fitness of the invasion of mutant hosts

with a infection. Since mutant hosts could be infected by parasite 1 or 2, there were

two possible infections. For each type of infection, we obtained evolutionary singular

points when fitness gradients were equal to zero. And the evolutionary and convergence

stabilities were analyzed respectively. In our examples, we observed how the cost of im-

munological up-regulation and superinfection rate changes the value of singular points

in each case.

Comparing with the conclusions of Day and Burns [13], superinfection trends to

help parasite 1 and 2 to coexist and keep evolving in hosts. Meanwhile, it makes host-

parasite co-evolution more difficult to study. Besides, our results suggest that the de-

gree of immune response can affect the future of the host evolution. As the degree of
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immunological response increasing, its cost from up-regulation would also increase.

However, nutrients are limited for consuming in a host. Although immune response is

benign to hosts, the host evolution would not favor a high degree of immunological up-

regulation. In this way, an intermediate degree of immunological up-regulation would

be helpful to host evolution.

Furthermore, the case that mutant hosts with both parasite 1and 2 was explored.

A new fitness with four types of traits was defined. In this case, the conditions for an

evolutionary stable singularity was easily obtained. However, the convergence stability

in multiple-dimension problem become complicated. Instead, we studied isoclinic and

absolute convergence stability. For convenience, the trade-offs were specified by two

simple quadratic functions. And the numerical results wereshowed.

In both monomorphic and dimorphic case, superinfection wasfound to help parasite

2 with weaker virulence exist and keep evolving in hosts.

However, we only discuss the evolution on host level in this paper. Actually, the

evolutionary speed of parasites should be quicker than thatof hosts. So, a nested model

may be a better choice for our further research. Moreover, Day and Burns discussed

another trade-off between transmission rate and clearance rate, based on muchevidence

that quicker host death is caused by the parasites with increased transmission rate, in

[13]. In the future, we could also consider this trade off, and compare results with our

conclusion to know the host-parasite co-evolution better.Being confined to the limited

approaches in dimorphic adaptive dynamics, so many ideal assumptions are provided

to simplify the complex analysis. But they may not be realistic. Therefore, we need to

modify our model and make it closer to real world in the upcoming project.

Moreover, we find that the convergence stability for multiple dimension is signifi-

cantly complicated. Especially, the absolute convergencestability is too ideal to be met

in real world. Hence, there are many works that we can do to help to fill this gap.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Our whole thesis studies the evolution of hosts and parasites. Firstly, a within-host

age-structured dynamical model was used to explore the viral mutation phenomena.

For convenience, the PDE model was transformed into an ODE system by defining the

production rates of virus are gamma distributions in the chapter 2. To obtain the basic

reproductive number of this system, the method of controlled system to calculate output

was utilized. After the discussion about the existence and globally asymptotical stabil-

ity of the infection-free equilibrium, the existences and stabilities of other equilibria

were analyzed in two cases of mutation rates, respectively.

In the first case, the competition between two viral strains was without mutation.

It was demonstrated to comply with the competitive exclusion principle that the one

with larger basic reproductive number would survive finally. We considered mutation

and back mutation between two viral strains in the second case. The existence of coex-

istence equilibrium was proved under some specific conditions. Because the mutation

rates were considered as small perturbations, we showed that this equilibrium was glob-

104
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ally asymptotically stable through average Lyapunov function theory [4].

In the chapter 3, the adaptive dynamical approaches were utilized to discuss viral

evolution. The study was based on a within-host model considering immune response to

analyze two types of trade-offs: the one is involving viral production rate and virulence;

the other is involving virulence and transmission rate. Thecritical value that can decide

the local stability of the mutant free equilibrium of our system was defined as a fitness

to measure the invasion of mutant strain viruses. After substituting two trade-offs in

the fitness, respectively, evolutionary singular strategies were found from the equations

when fitness gradients were set equal to zero. For their evolutionary and convergent

stability, we compared the geometrical properties of the two trade-off functions with

corresponding critical functions at those evolutionary singular points, respectively.

Viruses choose their production rate as the evolutionary strategy in the first trade-

off. To explain the diversity of viral strains, the existence ofevolutionary branching was

demonstrated under the effect of CTL response when the local concavity of the trade-off

is 1
u times more than it of the critical functions. The singular point is an evolutionary

stable strategy if its trade-off is all concave up (convex) or partial concave up at this

point; otherwise, it is a repellor. Therefore, the speed of viruses replication would help

viruses to overcome the immune system of hosts [1].

In the second trade-off, the viral evolutionary strategy was the death rate of infected

cells, which represented the viral virulence. It was showedthat the CTL response can

control viral evolution through shaping the trade-off. A singular strategy was evolu-

tionary stable when the trade-off was all concave down (concave) or partial concave

down at this point; whereas too concave up would result in a repellor. Based on our ex-

amples, viral evolution would favor neither a too high nor too low degree of virulence.

However, the results are more complicated than this when this trade-off is considered

in a between-host model with superinfection [2], which denotes a specific function to
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the trade-off. Meanwhile, hosts can play a significant role in viral evolution and decide

the evolutionary trend of viruses. Hence, we studied the host-parasite co-evolution in

the chapter 4.

In chapter 4, the host-parasite co-evolution is discussed on population level. A ba-

sic S IRmodel with two parasites and one host strain is utilized to consider the effects

of superinfection and a trade-off involving production rate by infected hosts and their

recovery rate. We obtained a positive equilibrium that parasite 1 and 2 can coexist in

resident hosts and showed its local stability. Furthermore, mutant hosts are introduced

into our model to discuses its invasion in monomorphic and dimorphic case, respective-

ly.

In monomorphic case, the critical value for the local stabilities of the mutant host-

free equilibria was defined as the fitness of the invasion of mutant hosts with one type

of infection, one is infected by parasite 1 and the other is infected by parasite 2. For

each type of infection, we obtained evolutionary singular points when fitness gradients

vanished. And the evolutionary and convergence stabilities were analyzed respectively.

We provided examples to observe how the cost of immunological up-regulation and

superinfection rate changes the value of singular points ineach case.

In contrast to the conclusions of Day and Burns’ in [3], we findthat superinfection

trends to help parasite 2 to coexist with parasite 1 and keep evolving in hosts. Mean-

while, our results suggest that the future of the host evolution can be decided by the

degree of immune response. As the degree of immune response increases, its cost from

up-regulation would also increase. However, nutrients arelimited for consuming in a

host. Although immune response is benign to hosts, the host evolution would not favor

a high degree of immunological up-regulation. Therefore, an intermediate degree of

immunological up-regulation would be helpful to the host evolution.

Furthermore, we explored the case of mutant hosts with both parasite 1 and 2. A
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new fitness with four types of traits was constructed. In thiscase, we can easily obtained

the conditions for an evolutionary stable singularity. In multiple-dimension problem,

however, the convergence stability become very complicated. We studied isoclinic and

absolute convergence stability to instead of convergence stability. We specified the

trade-offs by two simple linear functions and showed some numerical results.

In both monomorphic and dimorphic case, superinfection wasfound to help parasite

2 with weaker virulence exist and evolve in hosts.

5.2 Future work

Summarizing the entire article, there are still remaining works to be continued in the

future.

In chapter 2, we cannot help to wonder that whether those stabilities will change

if mutation rates exceed these critical values. Also, a natural question of whether the

mutation rates are always fixed or not arises. In fact, the evolution is a long and endless

journey for species. The direction of the evolution of viruses will be altered by a tiny

change in our environment. Then, we can study how the changesof mutation rates

would effect the viruses evolution as time goes by in the future. Sincethe triggers

of the phenomenon of viral mutation, such as drug resistance, etc, in our model, are

ignored, we can also introduce this term to our model to discuss whether our results

may be shifted as our future work.

The model is very ideal because of limited mathematical techniques in chapter 3.

We can utilize the Holling Type II function to replace the bilinear function to describe

immune response for more real realistic in our model. Furthermore, we are interested

in a trade-off involving viral production rate and disease transmission rate and plan to

study it in the future. Also, the impact caused by the cost of body immune response
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should be taken into account into the within-host level.

In chapter 4, we only discuss the evolution on host level. Actually, the evolutionary

speed of parasites should be quicker than it of hosts. So, a nested model may be a better

choice for our further research. Moreover, another trade-off between transmission rate

and clearance rate, based on much evidence that quicker hostdeath is caused by the

parasites with increased transmission rate, is discussed by Day and Burns in [3]. Thus,

we could also consider this trade off, and compare with our conclusion to deeply know

the host-parasite co-evolution. Being confined to the limited approaches in dimorphic

adaptive dynamics, so many ideal assumptions are provided to simplify the complex

analysis. But they may not be realistic. Therefore, we need to modify our model and

make it closer to real world in the upcoming project.

Moreover, we find that the convergence stability for multiple dimension is signifi-

cantly complicated. Especially, the absolute convergencestability is too ideal to be met

in the real world. Hence, there are many works that we can do tohelp to fill this gap.
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adaptation and evolutionary branching.Physical Review Letters, 78(10):2024–2027.



BIBLIOGRAPHY 109

[4] Kon, R. and Iwasa, Y. (2007). Single-class orbits in nonlinear Leslie matrix models

for semelparous populations.Journal of mathematical biology, 55(5-6):781–802.



Appendix A

A.1 Solution to the age-structured system

Let us consider the second equation in system (2.2) and its corresponding boundary

condition:
∂T∗1
∂a
+
∂T∗1
∂t
= −(µ1(a) +m1)T

∗
1(a, t), t ≥ 0,

T∗1(0, t) = β1V1(t)T(t), a ≥ 0.

AssumeT∗1(0, a) = 0. By characteristic line

dt
ds
= 1,

da
ds
= 1,

dT∗1
ds
= −(µ1(a) +m1)T

∗
1(a, t),

(A.1)

with initial conditions:

A.1.1 If t ≥ a

t(0) = t0,

a(0) = 0,

T∗1(0, t) = β1V1(t)T(t).

(A.2)
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Let B1(t) = β1V1(t)T(t). From (A.2), we can induce thatt = t0 + s, anda = s. Then,

there isa = t − t0. SupposeT∗1(a, t) =W(s), thenW(0) = T∗1(0, t0) = B1(t0) = B1(t − a).

That is
dW(s)

ds
= −(µ1(s) +m1)W(s)

So, the general solution for above equation isW(s) = C1e
∫ s
0 (µ1(ξ)+m1)dξ, whereC1 is

arbitrary constant. SinceW(0) = C1, we haveC1 = B1(t − a). Then, there isW(s) =

B1(t − a)e−
∫ s
0

(µ1(ξ)+m1)dξ. That is,

T∗1(a, t) = β1V1(t − a)T(t − a)e−
∫ s
0

(µ1(ξ)+m1)dξ.

A.1.2 If t < a

t(0) = 0,

a(0) = a0,

T∗1(0, a0) = 0.

(A.3)

From above equations, we havet = s, anda = a0 + s. That isa0 = a − t. Then,

we can obtainW(s) = C2e−
∫ s
0 (µ1(ξ)+m1)dξ, whereC2 is arbitrary constant. SinceW(0) =

T∗1(0, a0) = 0, there isC2 = 0. Therefore, the resultT∗1(a, t) = 0 can be acquired.

Overall, the solution is

T∗1(a, t) =



β1V1(t − a)T(t − a)σ1(a), t ≥ a,

0, t < a,

whereσ1(a) = e−
∫ a
0 (µ1(ξ)+m1)dξ. By the same method, we can solve

∂T∗2
∂a
+
∂T∗2
∂t
= −(µ2(a) +m1)T

∗
2(a, t), t ≥ 0
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T∗2(0, t) = β2V2(t)T(t), a ≥ 0

to obtain that:

T∗2(a, t) =



β2V2(t − a)T(t − a)σ2(a), t ≥ a,

0, t < a,

whereσ2(a) = e−
∫ a
0

(µ2(ξ)+m2)dξ.

A.2 Calculate the basic reproductive number of the sys-

tem (2.8)by next generation method

Firstly, we can figure out vectorsF andV for system (2.8) as follows:

F =



0

β1

(
α
α̂

)n
V1T

0
...

0

β2

(
α
α̂

)n
V2T

0
...

0

0



, V =



dT + β1TV1 + β2TV2 − b

1
α̂
x1

1
α̂
(x2 − x1)
...

1
α̂
(xn − xn−1)

1
α̂
y1

1
α̂
(y2 − y1)
...

c1V1 − 1−ǫ1
α̂

xn − ǫ2α̂ yn

c2V2 − 1−ǫ2
α̂

yn − ǫ1α̂ xn



.

Since the infected compartments areV1 andV2, F andV should be:

F =



β1b
d

(
α
α̂

)n
0

0 β2b
d

(
α
α̂

)n

 , V =


c1 0

0 c2

 ,
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giving

V−1 =



1
c1

0

0 1
c2

 .

Then, the next generation matrix,FV−1, has the two eigenvaluesRi =
βib
dci

(
α
α̂

)n
,

i = 1, 2. That is,

R0 = maxi∈{1,2}Ri .



Appendix B

B.1 The local stability of the equilibrium Ē

The last equation of (3.3) is equivalent to

βx̄ = (pz̄+ a)
u
k
.

The Jacobian matrix at the point̄E is

J =



−d − βv̄ 0 −βx̄ 0

βv̄ −a− pz̄ βx̄ −pȳ

0 k −u 0

0 cz̄ 0 cȳ− b



.

Because we havecȳ − b = 0, µ = d + β′ andβx̄ = (pz̄+ a)u
k at Ē, put β′ = βv̄ and

ω = a+ pz̄ into above matrix. It changes to:

J =



−µ 0 −uω
k 0

β′ −ω uω
k −pȳ

0 k −u 0

0 cz̄ 0 0



.
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We notice that all parameters are positive, andµ > β′ & ω > pz̄. Then, we need to

show that all solutions of the characteristic equation ofJ have negative real parts. For

this purpose, we regardµ, ω, k
a, c, β′, a, v̄ andz̄ as independent variables.

The characteristic equation ofJ is denoted as

|λI − J| = λ4 + a1λ
3 + a2λ

2 + a3λ + a4. (B.1)

We calculatea1, a2, a3 anda4 as follows by utilizing the formula (4.3) in the paper of

Huang, Yokoi and et al. [1]. Leth = cpȳz̄, and we have

a1 = −tr(J) = µ + (ω + u),

a2 =

∣∣∣∣∣∣∣∣∣

−mu 0

β′ −ω

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

−µ −uω
k

0 −u

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

−µ 0

0 0

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

−ω uω
k

k −u

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

−ω −pȳ

cz̄ 0

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

−u 0

0 0

∣∣∣∣∣∣∣∣∣

= µ(ω + u) + h,

a3 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω uω
k −pȳ

k −u 0

cz̄ 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ −uω
k 0

0 −u 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 0

β′ −ω −pȳ

0 cz̄ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−mu 0 −uω
k

β′ −ω uω
k

0 k −u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= µh+ (β′uω + uh),

a4 = det(J) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 −uω
k 0

β′ −ω uω
k −pȳ

0 k −u 0

0 cz̄ 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= µuh.
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Since thatai, i = 1, 2, 3, 4, is a linear function ofµ, a necessary and sufficient conditions

for all roots of (B.1) have negative real parts are:

a1 > 0,

∣∣∣∣∣∣∣∣∣

a1 1

a3 a2

∣∣∣∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0

a3 a2 a1

0 a4 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 a4 > 0, (B.2)

by Routh-Hurwitz criteria. It is easy to find thata1 anda4 are positive. Let us analyze

other two determinants in (B.2). We have

∣∣∣∣∣∣∣∣∣

a1 1

a3 a2

∣∣∣∣∣∣∣∣∣
= [µ(ω + u) + h] − µh− (β′uω + uh)

= (ω + u)µ2 + (ω + u)2µ + hω − β′uω

= (ω + u)µ2 + (ω2 + u2 + ωu)µ + hω + uω(µ − β′)

> 0,

provided thatµ > β′.

Consider the third determinant in (B.2) as a function ofµ, that is,

f (µ) ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0

a3 a2 a1

0 a4 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1(µ) 1 0

a3(µ) a2(µ) a1(µ)

0 a4(µ) a3(µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Sincea1, a2, a3 anda4 are all linear with respect toµ, f (µ) is a polynomial ofµ with

degree 3. Denote

f (µ) = A3µ
3 + A2µ

2 + A1µ + A0, (B.3)



Chapter B. 117

whereA3, A2, A1 andA0 do not containµ. So,

A0 = f (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω + u 1 0

β′uω + uh h ω + u

0 0 β′uω + uh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (β′uω + uh)

∣∣∣∣∣∣∣∣∣

ω + u 1

β′uω + uh h

∣∣∣∣∣∣∣∣∣

= uωh2 − β′u2ωh+ hβ′uω2 − u2ω2β′2.

And,

A1 = f ′(0)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0

h µ(ω + u) + h µ + (ω + u)

0 µuh µh+ (β′uω + uh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ + ω + u 0 0

µh+ β′uω + uh ω + u µ + ω + u

0 uh µh+ β′uω + uh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ + ω + u 1 0

µh+ β′uω + uh µ(ω + u) + h 1

0 µuh h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (ω + u)

∣∣∣∣∣∣∣∣∣

ω + u ω + u

uh β′uω + uh

∣∣∣∣∣∣∣∣∣
+ h

∣∣∣∣∣∣∣∣∣

ω + u 1

β′uω + uh h

∣∣∣∣∣∣∣∣∣

= (ω + u)2[(β′uω + uh) − uh] + h[(ω + u)h− β′uω − uh]

= β′uω + 2β′u2ω2 + h2ω + β′u3ω − β′uωh.
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As A2 =
f ′′(0)

2 , we obtain

A2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

h ω + u ω + u

0 uh β′uω + uh

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω + u 0 0

β′uω + uh ω + u 1

0 uh h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0

h h 1

0 0 h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (ω + u)[(β′uω + uh) − uh+ (ω + u)h− uh]

= β′uω2 + β′u2ω + ω2h+ ωuh.

Then, let us computeA3

A3 =
f ′′′(0)

6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

h ω + u 1

0 uh h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (ω + u)h− uh= ωh.

We rewrite the polynomial functionf (µ) in the form ofωg(µ), where

g′(µ) = 3hµ2 + 2(β′uω + β′u2 + ωh+ uh)µ + (β′uω + 2β′u2ω + h2 + β′u3 − β′uh).

Setµ = β′, then we can prove:

g′(β′) = 3hβ′2 + 2β′2uω + β′2u2 + β′ωh+ β′uω + 2β′u2ω + h2 + β′u3 > 0.

Now, the functiong(β′) is demonstrated to be positive.

g(β′) = h(β′)3 + β′3uω + β′3u2 + β′2ωh+ uhβ′2 + β′2uω + 2β′2u2ω

+h2β′ + β′2u3 − β′2uh+ uh2 − β′u2h+ hβ′uω − u2β′2ω

= h(β′)3 + β′3uω + β′3u2 + β′2ωh+ β′2uω + β′2u2ω + h2β′ + hβ′uω

+(uh2 − β′u2h+ β′2u3).
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The last term is positive because

uh2 − β′u2h+ β′2u3 = u[(h− uβ′

2
)2 +

3
4

u2β′2] > 0.

Thus, there isg(β′) > 0. As a result, it can be concluded thatg(µ) > 0 for µ > β′. Until

now, we have finished the proof of the local stability of the positive equilibriumĒ for

one strain model.

B.2 Then local stability of the mutant-free equilibrium

The Jacobian matrix of the system (3.4) atẼ is:

J̃ =



−d − βṽ1 − β̃ṽ2 0 −βx̃ 0 0 −β̃x̃

βṽ1 −a− pz̃ βx̃ −pỹ1 0 0

0 k −u 0 0 0

0 cz̃ 0 cỹ1 + c̃ỹ2 − b c̃z̃ 0

β̃ṽ2 0 0 −p̃ỹ2 −ã− p̃z̃ β̃x̃

0 0 0 0 k̃ −ũ



=



−d − βṽ1 0 −βx̃ 0

βṽ1 −a− pz̃ βx̃ −pỹ1

0 k −u 0

0 cz̃ 0 0

0 0 0 0

0 0 0 0

0 −β̃x̃

0 0

0 0

c̃z̃ 0

−ã− p̃z̃ β̃x̃

k̃ −ũ



.
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By observation, its eigenvalues are determined by the following two submatrices:

J11 =



−d − βṽ1 0 −βx̃ 0

βṽ1 −a− pz̃ βx̃ −pỹ1

0 k −u 0

0 cz̃ 0 0



and

J22 =


−ã− p̃z̃ β̃x̃

k̃ −ũ

 ,

where the eigenvalues ofJ11 are all negative whenR1 > 1 (see Appendix B.1). So,

the local stability of this mutant free equilibrium only depends on the signs of the

eigenvalues of the matrixJ22. The two critical conditions for the negative eigenvalues

of two by two matrix are:

tr(J22) = −ã− p̃z̃− ũ < 0,

det(J22) = (ã+ p̃z̃)ũ− k̃β̃x̃.

If det(J22) > 0, all eigenvalues of the matrixJ22 are negative, i.e., the mutant-free

equilibrium is locally asymptotic stable. Otherwise, the stability of Ẽ will be violated.



Appendix C

C.1 The local stability of the coexistence equilibrium

The Jacobian matrix of the system (4.2) at its coexistence equilibrium is :

J =



b− µ − β(Î1 + Î2) f (c1) + c1 − βŜ g(c2) + c2 − βŜ

βÎ1 βŜ − (µ + δ + c1) + βϕÎ2 βϕÎ1

βϕÎ2 −βϕÎ2 βŜ − (µ + δ + c2) + βϕÎ1



=



b− µ − (c1−c2)
ϕ

f (c1) + c1 − βŜ g(c2) + c2 − βŜ

− (µ+δ+c2)−βŜ
ϕ

0 βŜ − (µ + δ + c2)

(µ+δ+c1)−βŜ
ϕ

βŜ − (µ + δ + c1) 0


.
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So,

|λI − J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − (b− µ − c1−c2
ϕ

) βŜ − f (c1) − c1 βŜ − g(c2) − c2

(µ+δ+c2)−βŜ
ϕ

λ (µ + δ + c2) − βŜ
βŜ−(µ+δ+c1)

ϕ
(µ + δ + c1) − βŜ λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [λ − (b− µ − c1−c2
ϕ

)]

∣∣∣∣∣∣∣∣∣

λ (µ + δ + c2) − βŜ

(µ + δ + c1) − βŜ λ

∣∣∣∣∣∣∣∣∣

− (µ+δ+c2)−βŜ
ϕ

∣∣∣∣∣∣∣∣∣

βŜ − f (c1) − c1 βŜ − g(c2) − c2

(µ + δ + c1) − βŜ λ

∣∣∣∣∣∣∣∣∣

+
βŜ−(µ+δ+c1)

ϕ

∣∣∣∣∣∣∣∣∣

βŜ − f (c1) − c1 βŜ − g(c2) − c2

λ (µ + δ + c2) − βŜ

∣∣∣∣∣∣∣∣∣

|λI − J| = [λ − (b− µ) + c1−c2
ϕ

][λ2 − (µ + δ + c1 − βŜ)(µ + δ + c2 − βŜ)]

− (µ+δ+c2)−βŜ
ϕ

[(βŜ − f (c1) − c1)λ − (µ + δ + c1 − βŜ)(βŜ − g(c2) − c2)]

+
βŜ−(µ+δ+c1)

ϕ
[(βŜ − f (c1) − c1)(µ + δ + c2 − βŜ) − λ(βŜ − g(c2) − c2)]

= λ3 + [ c1−c2
ϕ
− (b− µ)]λ2 − [(µ + δ + c1) − βŜ][(µ + δ + c2) − βŜ]λ

− (µ+δ+c2−βŜ)(βŜ− f (c1)−c1)+(βŜ−(µ+δ+c1))(βŜ−g(c2)−c2)
ϕ

λ

+(b− µ − c1−c2
ϕ

)[(µ + δ + c1) − βŜ][(µ + δ + c2) − βŜ]

+ 1
ϕ
( f (c1) − g(c2) + c1 − c2)[(µ + δ + c1) − βŜ][(µ + δ + c2) − βŜ].

The characteristic equation is

a0λ
3 + a1λ

2 + a2λ + a3 = 0, (C.1)
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where

a0 = 1 > 0,

a1 =
c1−c2
ϕ
− (b− µ),

a2 = [(µ + δ + c1) − βŜ][βŜ − (µ + δ + c2)] + 1
ϕ
[−( f (c1) + c1)(µ + δ + c1)

+(g(c2) + c2)(µ + δ + c2) + βŜ(g(c2) − f (c1))]

= [(µ + δ + c1) − βŜ][βŜ − (µ + δ + c2)] + 1
ϕ
[(µ + δ)(g(c2) − f (c1) + c2 − c1)

+c1g(c2) − c2 f (c1) + βŜ(g(c2) − f (c1))] > 0,

a3 =
1
ϕ
[(µ + δ + c1) − βŜ][(µ + δ + c2) − βŜ][ϕ(b− µ) + f (c1) − g(c2)] > 0,

under the conditions (4.3)-(4.6). If

c1 − c2

ϕ
− (b− µ) > 0, (C.2)

we can prove that

∆1 =
c1−c2
ϕ
− (b− µ) > 0,

∆2 = a2a1 − a3

= 1
ϕ
[(µ + δ)(g(c2) − f (c1) + c2 − c1) + c1g(c2) − c2 f (c1) + βŜ(g(c2) − f (c1))]

+ 1
ϕ
[(µ + δ + c1) − βŜ][βŜ − (µ + δ + c2)][c1 − c2 + g(c2) − f (c1)] > 0,

∆3 = a3∆2 > 0.

Now, we have proved that all roots of polynomial equation (C.1) have negative real

parts by Routh-Hurwitz criterion. Therefore, the coexistence equilibriumÊ is locally

asymptotic stable when the conditions (4.3)-(4.6) and (C.2) can be satisfied.
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C.2 The local stability of the mutant hosts free equilib-

rium

Let us study the local stability of the mutant hosts free equilibrium Ẽ in system (4.8).

The Jacobian matrix of system (4.8) is

J =


J11

0

J12

J22



at the equilibriumẼ, where

J11 =



b− µ − β(Ĩ11 + Ĩ12) f (c1) + c1 − βS̃1 g(c2) + c2 − βS̃1

βĨ11 βS̃1 − (µ + δ + c1) + βϕĨ12 βϕĨ11

βĨ12 −βϕ ˜I12 βS̃1 − (µ + δ + c2) − βϕĨ11


,

J12 =



0 −βS̃1

0 βS̃1

0 0


, J22 =


b− µ − βĨ11 f (c1h) + c1h

βĨ11 −(µ + δ + c1h)

 .

Under the conditions (4.3)-(4.7), all eigenvalues of the matrix J11 are negative in last

subsection. Then, the local stability of the equilibriumẼ will depend on the signs of the

eigenvalues of the matrixJ22. Because of the first inequality in condition (4.3) we can

easily obtain that the trace of matrixJ22 is always negative. If matrixJ22 has positive

determinant, the mutant host-free equilibriumẼ is locally asymptotic stable. So, when

determinant ofJ22 is negative, the mutant hosts with type 1 infection can successfully

establish in evolution; otherwise, mutant hosts will go to extinction in the future.

Therefore, we choose the value− det(J22) to denote the fitness of the mutant hosts

with type 1 infection.
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